
Jason Katzer

Learning
Serverless
Design, Develop, and Deploy with Confidence

Praise for Learning Serverless

“In this book, Jason covers every important aspect of serverless architecture. Simply put,
if you’re working on or planning to work on serverless—this is the book for you!”

—Erez Berkner, CEO at Lumigo

“Serverless adoption is growing significantly. Jason Katzer’s book offers an important
overview of what developers need to learn, and what challenges they’ll have

to overcome, to become productive with serverless.”
—Vadym Kazulkin, Head of Technology Strategy at ip.labs

“Capital One leverages serverless architecture throughout our organization. Knowing
when, when not, and how to manage serverless at scale is a must-have tool for any

technology leader in the modern world.”
—Jason Valentino, Senior Director and Head of Engineering,

Capital One Shopping

Jason Katzer

Learning Serverless
Design, Develop, and Deploy with Confidence

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05701-7

[LSI]

Learning Serverless
by Jason Katzer

Copyright © 2021 Versa Labs LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Sarah Grey
Tech Editor: Right Touch Editing
Production Editor: Deborah Baker
Copyeditor: Sonia Saruba

Proofreader: Piper Editorial, LLC
Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

November 2020: First Edition

Revision History for the First Edition
2020-10-28: First Edition

See http://oreilly.com/catalog/errata.csp?isbn=9781492057017 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Serverless, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492057017

Table of Contents

Preface. xv

Introduction to Serverless. xxi

Part I. The Path to Production

1. Distributed Systems. 1
What Is a Distributed System? 1
Why Do We Want a Distributed System? 3
The Harsh Realities of Distributed Systems 3

The Physical World 4
Missing Messages 4
Unreliable Clocks 5
Cascading Failures 6
Unexpected Ordering 7
Idempotency 7

What Am I Responsible For? 8
What Do You Need to Consider When Designing a Distributed System? 8

Loose Coupling (or Decoupling) 9
Fault Tolerance 9
Generating Unique (Primary) Keys 10
Planning for Idempotency 10
Two-Phase Changes 11

Further Reading 11
Conclusion 12

v

2. Microservices. 13
Why Do You Want to Use Microservices? 14

Improved Developer Velocity 14
Increased Developer Freedom 15

Issues with Microservices 16
Increased Complexity 16
Proper DevOps Practices and Resources Needed 17
Challenges with Local Development and Testing 17

How Do You Use Microservices Effectively? 18
Consistent Interfaces 18
Loosely Coupled 19

How Micro Is a Microservice? 20
Choosing Between Monoliths and Microservices 21

When Should You Use a Monolith? 21
When Do You Want to Use Microservices? 24

Conclusion 24

3. Serverless Architecture and Patterns. 25
The Role of an Architect 26
What Do You Need to Know to Be an Architect? 27
Making Decisions 27

What Kinds of Decisions? 28
Documenting Your Decisions 28
How Do We Make Decisions? 29
When Do We Make Decisions? 30

Cloud Provider Components 31
Streams 31
Queues 31
Buckets 32
Compute 33
Datastores 33
Identity Service 34
API Gateways 34
GraphQL 35
Networking 35
State Machines 35
Logging 36
Monitoring and Alerting 36

Events from Your Cloud Provider 37
Periodic Invocations 37

Patterns 38
Example 1: Serverless Monolith 38

vi | Table of Contents

Example 2: Incoming Webhook 39
Example 3: Using Your Cloud Provider for User Authentication 40
Example 4: Generic Background Task Pattern 41
Example 5: Streaming Extract, Transform, Load 41
Example 6: Create Your Own Polling Integration 41
Example 7: Processing Files and Images 42
Example 8: Migration Service Pattern 43
Example 9: Fanning Out 43

Conclusion 44

4. Interfaces. 45
Interfaces: Some Assembly Required 46

The Message 46
The Protocol 46
The Contract 46

Serverless Interfaces 47
Automatic Retries and Dead Letter Queues 47
Finite Versus Infinite Scale 48

Designing Your Interfaces 48
Messages/Payloads 49
Sessions and Users/Auth 50
Avoid Unbounded Requests 50
Interface Versus Implementation 51
Lines with Logic 52

Designing the Unhappy Path 52
Validating Input 53
Failures 53

Strategies for Integrating with Other Services 55
Time-Outs 55
Retries 56
Exponential Backoff 57
Webhooks 57
Evaluating External Services 58
Rate Limits 58

Conclusion 59

Part II. The Tools

5. The Serverless Framework. 63
Why Use the Serverless Framework? 64
When the Serverless Framework Isn’t for You 65

Table of Contents | vii

AWS Is the Only First-Class Citizen 66
AWS CloudFormation Is Not Perfect 66
Relying on Strangers for Your Infrastructure 66

What to Know Before You Start 67
YAML 68
Node.js 69
Cloud Resources and Permissions 69
Infrastructure Templates 71
Production Secrets 71
.gitignore 71

The Components of a serverless.yml File 72
Provider 72
Environment 74
Functions 74
Resources 75
Package 75
Plug-Ins 76
Custom 77
Namespacing for Sanity and Security 77

Using the serverless Command 78
Installing Serverless 78
Setting Up Serverless with Credentials 79
Pulling in Templates Using serverless install 79
Inspecting the Package of Our Sample Project (What’s Inside) 80
Deployment 80
Invoking the Function, and Viewing Logs 81
Rollbacks 81
Destroying the Service 81
Deployment Packages 82

Real-World serverless.yml 82
Setting Environment Variables 83
Modify Permissions 83

Conclusion 84

6. Monitoring, Observability, and Alerting. 85
What Is Monitoring? 85

Why Do We Need Monitoring? 86
How Does Monitoring Relate to Serverless? 86
The On-Ramp to Automation 87

What Are My Options? 87
Hosted SaaS Offerings 88
Self-Hosted and Open Source 88

viii | Table of Contents

Components of Monitoring 89
Metrics 89
Charts/Graphs 93
Dashboards 94
Alerts/Alarms 95

A Selection of Advanced Practices 96
Heartbeats 96
Smoke Testing and/or Canaries 97
The Most Important Metric in the World 98
Avoiding Vendor Lock-In 99
Cleaning Up Metrics and Alerts over Time 100

Conclusion 100

7. Logging. 101
What Does It Mean to Log? 102
Why Log? 103
When to Rely on Logs Instead of Metrics 104
What Should You Log? 104
What Shouldn’t You Log? 106
How Does Logging Work? 107

Ensuring Your Logs Scale 108
Structured Logging 109
More Effective Debugging with Logs 109
Searching Logs 110
Exception Logging (Sentry) 110

Collecting Other Logs 111
Compliance 111
Distributed Tracing 112
Encrypting Logs for Privacy and Compliance 112

Encrypt Only the Values of Sensitive Fields 113
Encrypt the Entire Log Statement 113

Conclusion 114

8. Changes, Automation, and Deployment Pipelines. 115
Dealing with Change 116
The Role of Automation 116

What Do We Automate? 117
Getting Your Code Ready for Production 118
Infrastructure as Code 119
Database Changes (Migrations) 120
Configuration Management 121
What Is a Pipeline? 122

Table of Contents | ix

Decisions to Make Regarding Your Pipeline 123
Canaries and Blue/Green Deployments 123

Pipeline Permissions 124
Why Do You Need a Pipeline? 125
Key Phases of a Deployment Pipeline 125

Step 1. Enforce Standards 126
Step 2. Build and Package 126
Step 3. Test 127
Step 4. Publish the Artifact 127
Step 5. Deploy to the Target Environment 128
Step 6. Validate Deployment 128
Step 7. Roll Back if Necessary (and Possible) 128

Handling Pipeline Failures 129
Conclusion 130

Part III. Concepts

9. Security, Permissions, and Privacy. 133
Everyone Is Responsible, but You Are Especially Responsible 134
Prepare to Be Hacked 135

Understanding Your Threats and Your Attackers 136
Design for Security 137

Limit, Track, and Review All Secrets and Access 139
Be Ready to Roll 140

Defense in Depth 141
Limit Blast Radius 142
Trust but Verify 142

Validate All User Input and Double-Check Those Settings 145
Monitoring Your System for Anomalies 146
Test Your Security 146
Select Dependencies Carefully and Keep Your Software Up to Date 147
Prioritize Privacy for Your Data and Your Customers’ Data 149
Don’t Mess with Production 149

Keep Your Machine Secure 151
Keep Learning 151
Conclusion 151

10. Quality, Testing, and Staging. 153
The Role of Code Quality 154

Code Style 155
Linting 156

x | Table of Contents

Testing 157
What to Test and What Not to Test 158
Types of Testing 158
Code Coverage 163
Power Up Your Testing 164

Staging 164
Conclusion 168

11. Planning for Failure. 169
Introduction: Understand It, Even if You Don’t Manage It 169
Identify Risks 170

Exercise: Finding Your Failure Points 171
Be Prepared 172
Making a Runbook 173
Planning for Outages 174

On-Call/Escalation Plan 175
Monitor Your Cloud Provider 175
Know Your (Service) Limits 176
Conclusion 176

12. Conclusion. 177
Deciding among Vendors 178
Community 179
Gather the Advice of Others 179
What to Do When You Get Stuck 180
Taking the Next Step in Your Career 180

Index. 183

Table of Contents | xi

This book is dedicated to my loving parents.

Preface

This book will not make you an expert, but it will be an important step of your jour‐
ney—it will put you in the top half of developers.

The purpose of this book is to help you understand what’s important, and what you
need to learn and improve on in order to level up in your career or ship your next big
personal project.

About This Book
This book is about arming you with the knowledge you need to represent serverless
as an important new technology. There are plenty of doubters out there. And there
are plenty of zealots. This book is not from any of those, or for any of those. This
book is for people who want to write serious software and gain the respect of peers
and colleagues by doing it predictably. I didn’t choose to defend serverless. I just
chose to ship great software in a way that minimizes maintenance as much as
possible.

This book will not tell you how to make your use case serverless. Nor should it. This
book will tell you how serverless can help you ship amazing software while saving a
bunch of time. It will be real and honest with you about where the serverless world
stands. If, on the other hand, you already know everything, it will (I hope) reinforce
your worldview in a way that you can share with people who “don’t get it.”

The goal of this book is to serve as a guide for building maintainable and scalable
services through the lens of serverless computing. First, we’ll align ourselves on what
it means to build a production system. Then, we’ll discuss knowledge specific to the
current world of serverless compute, and the way that you or your team have decided
to run your serverless workloads.

The underlying ideas and philosophies in the first part of the book are meant to be as
timeless as a technical tome can be: plan your software for all edge cases and the real

xv

world. Use creative thinking and prioritization to spend the appropriate amount of
time solving issues that are less likely to occur.

I have been fortunate enough to spend time teaching programming. I have taught
students of all ages, and even ones who were learning English at the same time as
learning programming. Hopefully, these lessons will be shaped by that experience so a
12-year-old would be able to pick up this book and build something amazing. The
same goes for someone who is 88. So bear with me as I talk about some concepts in
this book that you may already be familiar with. I promise to keep the technical
knowledge in this book high, while keeping the barrier to understanding it as low as
possible.

How This Book Is Organized
After numerous conversations with engineers getting started in their careers, review‐
ing hundreds of online tutorials, and talking to users of serverless technologies at
conferences, I had a revelation. Most of the information produced and consumed
about programming is focused around building systems, but not around operating
them. Most of the questions I was being asked after giving a talk on serverless were
DevOps questions from those who chose serverless to avoid DevOps in the first place.
Serverless may abstract away servers, but it does not abstract away DevOps. You will
have to make tough decisions when designing, building, and operating your systems.
But if done properly, based on the advice of this book and using serverless when
applicable, you can meaningfully minimize frustration and time spent, while maxi‐
mizing your confidence in your systems.

To achieve that mission, you may need to round out your knowledge of system design
as it applies to building an internet application. You have the innate ability to design
your systems so they achieve the desired functionality intentionally instead of acci‐
dentally. This will be done in Part I. In Part II, you’ll walk you through the tools at
your disposal to achieve your wildest serverless dreams. You are then ready to build.
But before you do, you should read Part III if you intend to launch your creation into
any form of production.

xvi | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xvii

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/Learning_Serverless.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
First and foremost, I want to thank everyone with whom I have ever had a conversa‐
tion about technology. No single book can contain all the wisdom on developing
cloud native applications and workloads. But with the intent of broadening your
scope of what that entails, is not achieved by only one person. This book may contain
my interpretations, explanations, and attempts at pith, but most revelations offered

xviii | Preface

http://oreilly.com
http://oreilly.com
https://oreil.ly/Learning_Serverless
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

come from the current state of knowledge of a larger community. And to that com‐
munity I am endlessly grateful.

For personal friends who reviewed portions of this book and provided feedback,
please know that it all was taken deeply to heart. For those I have worked with who
provided feedback or enabled dialogue about building and evolving real working sys‐
tems, I hope we can continue to share such insights through thoughtful peer review,
or as nonengineers refer to it—arguing.

To all of the editors involved in this process, I truly could not have done this without
you. Thank you to Vadym Kazulkin, who provided crucial technical feedback. Each
and every one of you has taught me something truly valuable about who I am as a
person in addition to bringing my writing from zero to one.

And finally, I want to thank those in my life who had absolutely nothing to do with
this book, other than just being a part of my life.

Special mention to my partner and the love of my life, for not only putting up with
the normal day-to-day version of me, but especially for dealing with my writing alter
ego.

Preface | xix

Introduction to Serverless

Figure I-1. “Ancient Wisdom”, from the webcomic FaaS and Furious by Forrest Brazeal,
2019

xxi

https://faasandfurious.com/91

To begin...To begin...How to start? I’m hungry. I should get coffee. Coffee would help me
think. Maybe I should write something first, then reward myself with coffee. Coffee and a
muffin. Okay, so I need to establish the themes. Maybe a banana-nut. That’s a good muffin.

—Charlie Kaufman, Adaptation

What Is Serverless?
Serverless is the idea that you can run a server-based application without having to
manage a server. If you have this text in front of you, there is a chance you are already
familiar with serverless. But how do you explain it to others? Do you focus on what it
is, a new way to run application code, or on what it isn’t, managing servers? Do you
next tell people about all of its weaknesses or its strengths? If your path to success
with serverless involves others, and it likely does, you might be worried about how to
best sell its benefits without scaring anyone away in the process. You see, serverless is
still in its early days and it’s on a path of continuous improvement. Some of its weak‐
nesses are here to stay, but they are trade-offs to implementing the benefits and fea‐
tures that you are sure to love.

As the serverless community benefits from the rapid improvements of a cutting-edge
technology, it can be a struggle to invent and adopt best practices. I hope not only to
instill you with the most relevant best practices in serverless at the time of this writ‐
ing, but to also help you create and adopt best practices. I want you to know enough
of the rules to break them safely.

The first offering from Amazon Web Service (AWS) was the Simple Storage Service
(S3). S3 allows you to store as many files as you like without having to provision any
infrastructure. It is serverless storage. You may remember how S3 simplified storing
arbitrary files: create a bucket (the S3 abstraction for a collection of files), then just
give each file a unique name, and that’s it. You don’t have to worry about provisioning
drives or backups, or the many other previous issues with storing files. Sure, S3 may
not serve all file-storage purposes; it does have a maximum file size of 5 GB. Or it did
until 2010, when this maximum was updated to 5 TB. How did they do it? AWS does
all the heavy lifting on your behalf, splitting up files that are above 5 GB into multiple
chunks in a way that is fully seamless to the user. That is the benefit of a serverless
system. The similarities to modern serverless compute are uncanny: a general-
purpose solution to a common problem (that may not fit all use cases), seamless
improvements made behind the scenes (that usually began as hacks implemented by
customers), and a pay-for-usage billing model.

xxii | Introduction to Serverless

https://oreil.ly/GtltC

1 Cloud Native Computing Foundation, “CNCF WG-Serverless Whitepaper v1.0,” 2018, https://oreil.ly/A2ehY.
2 Ken Fromm, “Why the Future of Software and Apps Is Serverless,” Read/Write, https://oreil.ly/vh5ck.

The term serverless is a misnomer, because there are servers involved. In reality, there
is no serverless, just someone else’s container. The Cloud Native Computing Founda‐
tion’s Serverless Working Group best summarizes this in a whitepaper:1

Serverless computing does not mean that we no longer use servers to host and run
code; nor does it mean that operations engineers are no longer required. Rather, it
refers to the idea that consumers of serverless computing no longer need to spend time
and resources on server provisioning, maintenance, updates, scaling, and capacity
planning. Instead, all of these tasks and capabilities are handled by a serverless plat‐
form and are completely abstracted away from the developers and IT/operations
teams. As a result, developers focus on writing their applications’ business logic.

Less time spent on wrangling infrastructure, and more time spent on shipping fea‐
tures. That is why serverless demand is increasing. There are limits to what it can do,
but they are fading away as the technology progresses, and we may see functions
become the new containers as cloud compute becomes increasingly managed. But
how did we get here?

History of Serverless
Google’s App Engine was one of the first popularized use examples of serverless.
Launched in 2008, it was too early for the modern wave of serverless adoption. Many
developers viewed App Engine as being too restrictive, and that it was more of a
hobby offering from Google. In fact, despite being launched in 2008, it wasn’t out of
preview until 2011. But it was so ahead of its time that if you spin up a Google Cloud
Function (at least in Python), it wraps your function in an App Engine-compatible
package (using Flask) and runs it that way.

The term serverless first started swirling around in 2012, in an article written by Ken
Fromm of Iron.io.2 Fromm argued that web applications were moving from mono‐
lithic patterns to fully fledged distributed systems with loosely coupled components—
which the next chapter will touch on. Fromm made his prediction more than two
years before AWS released Lambda. But over six years before Lambda, and four years
before this article, the first modern serverless system may have launched. Serverless
offerings predate the term.

Introduction to Serverless | xxiii

https://oreil.ly/A2ehY
https://oreil.ly/vh5ck

The Cloud Provider Landscape
You may not get to choose the cloud provider for the project you are working on. You
may also be so picky that you only work at companies using certain cloud providers.
Right now, we live in a time of great competition among the providers. They are con‐
stantly finding new dimensions to compete in, ranging from price, performance,
capability, scalability, etc. However, this period will not last forever as business natu‐
rally transitions from high growth in an emerging market into a period where the
ROI of developing new features, attracting clients based on price, and even support
and engineering resources will no longer look attractive, and those things will get cut
out as quickly as you can say “shareholder returns.”

Think about the costs of storage, and network, especially egress. And sometimes that
can be compounded when using external providers for things like logging or moni‐
toring. Even transferring data between regions or availability zones of a given region
may count the same as sending over the public internet, and may be caked into click‐
ing a box such as “multi-AZ availability.”

How easy is it to click a button and have a database that is available in data centers
across the globe? Is that even something your organization would need or be allowed
to use based on data protection laws? You aren’t just renting a commodity offering.
Even when it seems like you are, you are paying for a product. Evaluate it as such.
Also consider the “cloud services” that may not fit into your mental model of what a
cloud service is. For example, Google Meet is considered a Google Cloud product that
is even marketed as being ready for telehealth. So is Google Maps. Amazon offers the
ability to communicate with satellites, and to bring anywhere from a hardback book-
sized device to an entire semi trailer to your site for easier migration of larger datasets
to the cloud. Microsoft offers a lot of advanced functionality around its Office suite of
products, which could be important for integrating with the software already in use
by some in your organization.

Reliability, Availability, Disaster Recovery
What kind of SLAs/guarantees does the cloud provider offer? What is their track
record? What are the remedies provided if they fail to meet their obligations? Google
is known for services that stay in the beta phase too long, while AWS generally opts to
offer a preview that may be more reliable but may still have some well-documented
sharp edges.

Also consider how easy it is to build for reliability and availability on the foundation
and services provided.

The network between the points of presence could be of interest if you plan on run‐
ning a truly global service. This may be outside of your expertise and even your area
of comfort, but some of these decisions may be made by taking a leap of faith in the

xxiv | Introduction to Serverless

right direction and realizing that any related issues will be understood. The best way
to avoid these issues and to avoid surprises is with well-maintained documentation.

Amazon Web Services
Amazon Web Services (AWS) is oddly analogous to just being a data center with
APIs. This is because of the services mandate at Amazon that states that all teams
must build services, opening these very enterprise-y-feeling systems for public usage.
This is the only explanation I can come up with that explains why it has so many
sharp edges and weird quirks. It’s almost like joining Amazon as an engineer to build
a greenfield project, and this is the internal service catalog. In fact, should you choose
to use Amazon as your primary cloud provider, this mentality will help you make the
most of the vendor lock-in to achieve maximum lift. AWS has the largest service cata‐
log, although sometimes to its own detriment.

Google Cloud Platform
Google Cloud Platform (GCP) is a powerful cloud contender that is the closest
approximation an outsider would have to Google’s own infrastructure. Kubernetes is
a recreation based on its internal Borg platform, and follows its infrastructure as a
service offering. Or that used to be the case. As the cloud wars heat up, Google has
launched more competitive products that are marketing directly to the users of the
public cloud, instead of relaunching its internal offerings once they have been in use
for a number of years.

Microsoft Azure
This is a great choice if your organization is already all in on Microsoft. For example,
if your organization uses Sharepoint, this would be the most straightforward way to
trigger advanced workflows or custom logic in reaction to your company’s shared
filesystem.

You don’t have to choose one of the big three to go serverless. If
your organization is using Kubernetes, there are a number of open
source options to run functions as you might run containers. Or
even better, you can run containers as if they were functions. Kna‐
tive, one of these options, is actually what powers Google Cloud
Run. So don’t feel left out if your organization isn’t in the public
cloud, or has gone “all-in” on Kubernetes. Running in Kubernetes
may already come with its own sets of pros and cons that you may
want to consider when going this route if you have other options.

Introduction to Serverless | xxv

Strengths of Serverless
Some of the strengths of serverless come from the change in focus from an applica‐
tion as a unit of deployment to a smaller and more finely grained model of individual
functions. You can still choose to deploy an entire monolithic web application as one
function and have it execute one API request per invocation, or you can choose to
carve up your applications into individual functions to reap the most benefits of serv‐
erless. These are not the only two choices, as you can meet in the middle and use one
function per service/microservice. But doing so is the same as utilizing containers:
you won’t get all of the benefits of serverless, but you will still get the downsides.
Meanwhile, some of the benefits of serverless are ones that you don’t want or need,
and therefore become problems. Just as every coin has two sides, some of these bene‐
fits will directly map to a weakness.

Increased Scalability, Security, and Reliability
This is a core feature of the serverless experience. You don’t have to plan for future
capacity, other than service limits from your cloud provider and interacting with
nonserverless components or systems. For example, there was a big marketing cam‐
paign for new users on a project where I was using serverless. I found out the next
day, which isn’t ideal, but sure enough, Lambda and Amazon DynamoDB took on all
the load without any action or knowledge from yours truly. You don’t have to manage
security other than the controls provided to you for granting permissions, and your
application code and bundled libraries. When you have dedicated teams keeping up
the servers that run your application code, you benefit from the economies of scale
that provide maximum uptime.

You Only Pay for What You Use
One of the most attractive features of serverless compute is not paying for idle time. If
your system is entirely serverless and isn’t used in a given billing period, the total bill
for compute will be $0. Pricing can be more predictable when you are charged for a
specific number of tasks instead of instance hours. If you have an application that is
used only during regular business hours and utilizes containers or other instances,
you can automatically shut it down on the weekends to save money. But what hap‐
pens if people need to use this service on the weekend? You leave it up and running in
a minimal state, and wind up paying for every single weekend. What about holidays?
What about a company all-hands event? You are paying for servers you don’t need,
but if you shut them off, your application has no availability. With serverless, a
request automatically spins up the compute it needs if none is available, and you are
only charged for that request. Your application is always available (although some‐
times it may suffer from a cold start, which we will address later); if no one uses it,
your cost for that time period is zero. Other parts of your application may have an

xxvi | Introduction to Serverless

effect on your cloud bill, such as data storage, monitoring, and other support systems,
but the compute will be zero.

Saving Time and Money on Managing Servers
Of course, you’ll be spending valuable engineering time on optimizing the cost of
non-serverless systems. The time spent making those decisions isn’t free. It is meas‐
ured in the pay of engineers and the costs of recruiting and retaining them, as well as
not shipping valuable features to users! Tedious tasks such as capacity planning don’t
entirely disappear when you use serverless, but you get to zoom out by an order of
magnitude, and that has clear benefits.

Think of it this way: if you can’t afford to hire a full-time platform-engineering team
to run your code, why not rent one from your cloud provider? You may lose the abil‐
ity to handle certain low-level tasks, but this is specialization of labor and economies
of scale at their best. Instead of you having to manually configure autoscaling groups
to provision and deprovision computing resources based on some abstractions of
work that needs to be performed by your system, serverless specifically operates by
scaling on the real metric of work that needs to be performed. There is no organiza‐
tion running in the cloud that does not have some amount of idle compute being
wasted at any given time.

Improved Developer Productivity
Some cloud providers suggest using functions as glue to add logic and process to con‐
nect services. You don’t have to reinvent the wheel when it comes to the distributed
execution environment, queuing, retrying logic, and so on for modern serverless
offerings that continue to increase with time.

There is no better example of this than creating an extract, transform, load (ETL)
pipeline using serverless. An ETL pipeline takes data from one source, runs some
compute over it, and loads it into a new destination. You can connect a data source
that will automatically invoke a function for every single write performed on a data‐
base, and that lambda can transform that data without any servers or worrying about
how many writes the original database will scale up or down to. It just works!

Decreased Management Responsibilities
I have already mentioned the idea of renting your DevOps from your cloud provider
when your organization can’t afford, or doesn’t need a full-time dedicated team of
platform engineers. That benefit cascades into other benefits as well. Serverless pro‐
vides a stable container to target while having someone else manage security updates
and patching of underlying infrastructure. It is important to remember the shared
model of responsibility when utilizing any such offering, because you still have to
take care of the security of your code and the libraries you utilize in your application.

Introduction to Serverless | xxvii

3 Personally, I like to stay up to date with Hacker News.

(I will cover security further in Chapter 9.) But you don’t have to worry about patch‐
ing the operating system, the libraries included on the system, and the version of the
programming language itself. Your cloud provider employs a 24/7 staff of engineers
who handle those choices and responsibilities.

Convenient Integrations
The biggest draw to the big three cloud providers when it comes to serverless is the
integrations. It all comes down to the events. Publish a message in Google Cloud Pub/
Sub? Why not react to that in real time with code? No need to monitor your worker
nodes anymore. Add or update a record in your database, and boom, you can attach
something that audits that action. Have a client upload an image directly to S3, and
you can process that image into thumbnails without provisioning a single server.
Using AWS Cognito to handle user accounts, and you want to send a welcome email
after a user registration? Serverless handles all of those use cases and many more.

Current offerings provide a way to have your function code glue together actions in
different parts of your system without worrying about provisioning queuing resour‐
ces or creating a task execution and background work environment on your own.
Some of this leads to opaqueness and comes back as a weakness in debugging. This is
especially true as it becomes easier to glue together external services into your appli‐
cation architecture.

Weaknesses of Serverless
The most interesting part of the weaknesses of serverless is how they become less
cumbersome or start to disappear as time progresses. The industry has seen major
advances on some such issues while this book was being written, and change will
continue to be rapid. To stay up to date on developments, especially in a space as rap‐
idly evolving as serverless, or cloud native as a whole, make sure to follow the blog or
get email announcements from your cloud providers, join mailing lists for relevant
groups, or even follow developments on a site like Reddit.3

The Cold (Start) War
A cold start happens when a function invocation occurs and there is no running func‐
tion available to execute the work. Instead, a new function container will spin up, and
your users have to spend time waiting for your application to respond. Some people
keep functions warm to prevent this problem, but I believe in using the right tool for
the job. People who are faking usage to keep their functions ready for user traffic are
not using serverless as it was intended. What they really want is to instantly answer

xxviii | Introduction to Serverless

https://news.ycombinator.com

up to a certain number of concurrent requests without waiting for an additional
machine to spin up and be added to a cluster. A serverless function will certainly beat
spinning up an entire additional EC2 instance, but for some people that just isn’t
enough. I will give these users the benefit of the doubt by saying they are just so exci‐
ted to use serverless that they are willing to use hacks to fix some of the weaknesses. If
this form of latency is a deal breaker for your application, then serverless may not be
right for your use case. Instead, utilize serverless for workloads that aren’t directly
user facing.

This cold start issue will continue to fade with time, but that future is already avail‐
able now. Some environments offering compute at the edge or Content Delivery Net‐
work (CDN), such as Cloudflare workers, have increased limitations on the functions
they will execute to decrease the cold start time in order to preprocess or post process
a web request. Think about that. While most developers are trying to respond to API
requests in under 100 ms, they are adding additional compute before or after that 100
ms. A common use case for this concept is injecting personalization into a cached
page being served from a CDN.

Many companies offering are also alternative environments to solve this issue. It’s an
arms race. If you need the performance at this time, it may not be there. But it will get
faster until it reaches the minimum overhead. AWS Lambda, for example, greatly
improved its start-up time for cold starts by completely reinventing how it connects a
function to a private network.

Compute Time
One agreed-upon weakness of serverless is the limited amount of time in which a
particular workload can run. There are some workarounds, but it may make sense
not to utilize serverless in some use cases.

However, this limitation is arbitrary in many ways. In 2018, Amazon changed the
limits on Lambda from 5 minutes to 15 minutes. There was no need to rearchitect
Lambda to make this change. As some issues with serverless are solved, the solutions
will be available to you without any additional engineering overhead. You may have
to spend engineering time to take the most advantage of the changing landscape, but
your system will still work without those changes as well.

VPC/Network Issues
If your application needs to run inside a specific private subnet or cloud network,
there are some limitations. You can’t scale to 10,000 concurrent executions in a sub‐
net with room for 254 IP addresses. Depending on your organization, you may be
forced to operate in a virtual private cloud (VPC) in order to access private resources,
or your application may call for accessing a database that can only be reached in a
certain network. You will have to capacity plan to make sure your private networks

Introduction to Serverless | xxix

are large enough. If you want to build a truly serverless system, you will have to avoid
certain cloud offerings, persistence layers, or other design choices that will tie you to
a specific private network.

Application Size
Limitations like compute time are also arbitrary, but if your application is too large,
the cold start times may become unmanageable, so limiting the bundle size of your
application is a good sanity check. How does this limitation affect you? One example
is that you may not be able to ship a large Java application into a serverless function—
using containers or instances is a better strategy for now, but keep an eye out for
changes that could enable this. You may also be limited in the amount and size of
dependencies of your application, although with the introduction of layers in AWS,
there are advancements in this area as well.

Potential to Be More Expensive
If your application requires a predictable and stable amount of compute, you will
overpay by using serverless. But consider the cost of maintenance and upkeep
required for patching systems with security and other updates. You can pay your
employees to do this, or you can overpay for your compute to have some of those
maintenance costs bundled in. Does it make more sense to spend an extra $200,000
per year on a DevOps engineer or overpay on your cloud bill by $20,000 per year?
Spend that money on another engineer who will build functionality with directly
attributable revenue.

Vendor Lock-In
Every technology you select will likely lock you into using a specific vendor in one
way or another: which base Docker image you use, which database you use, should
you really add that additional package, and so on. You can lessen this by having your
organization self-host a function execution environment on top of Kubernetes using
open source software. But there is a high likelihood your organization already has
some level of vendor lock-in to one of these cloud providers. If your organization has
already made a trade-off in a specific direction, it makes sense to piggyback on top of
that. This may be the case for you.

Vendor lock-in is an interesting concern. Some suggest this is just an overreaction to
switching costs, which comes with all technology choices. They liken it to what hap‐
pens if you want to change from Java to Python, or Go to Erlang. This is true only in
that every developer has the choice of making optimizations and trade-offs as they
see fit. Sure, you can save a lot of money on hosting costs by running your application
on an old server under your desk, or on a cluster of Raspberry Pis, but you will likely
choose to use virtualized instances from a large cloud provider because you will have

xxx | Introduction to Serverless

to decide how you want to spend your time: writing code, or carrying buckets of die‐
sel fuel up a staircase after a hurricane (see “The Physical World” on page 4).

Lock-in is something to be mindful of, but not to spend much time on. I will be
focusing on examples primarily from AWS due to the depth of supporting services
and integrations, but these examples are for illustration purposes. I am not advocat‐
ing allegiance to any one particular provider, and think the most pragmatic approach
is to keep your options open.

If your organization has chosen to invest in one of these platforms, take advantage of
the deep service catalog you have available to get your job done in the best way with
the fewest trade-offs possible. Learn to love your provider, but don’t trust them more
than you should.

Complex Debugging
When you have a dynamic runtime, debugging can be complicated to reproduce
errors in order to solve them. The more components or microservices your system is
comprised of, the more difficult it can be to trace a user action throughout the entire
system. That’s why so many tools and SaaS offerings address these issues. I believe
this is generally a symptom of using serverless incorrectly. Used correctly, serverless
should give you more understanding of the core functionality of your systems. Some
of these tools, however, are evolving into really compelling ways to find and filter
issues, as well as providing data helpful in reproducing such errors. Your debugging
and introspection are more powerful than ever before. What a time to be alive!

When Does It Make Sense to Use Serverless?
Many developers are making the move to serverless, or exploring serverless compo‐
nents for parts of their applications. Werner Vogels says:

At Amazon, we’re not completely serverless ourselves, but we’re moving in that direc‐
tion. And so are many of our customers. In fact, we anticipate that there will soon be a
whole generation of developers who have never touched a server and only write busi‐
ness logic. The reason is simple. Whether you’re building net new applications or
migrating legacy, using serverless primitives for compute, data, and integration enables
you to benefit from the most agility that the cloud has to offer.

He sees serverless primitives (the most basic types of resources), as superior to their
server-based equivalents, just as the cloud primitives were superior to the data center
primitives were superior to the mainframe equivalents.

Use cases vary, but here are some of the most common and best reasons to use
serverless.

The most important factor to determine your success will be the use case. Have you
heard people complain about serverless? What do they talk about? Cold starts. While

Introduction to Serverless | xxxi

https://oreil.ly/z2Y5L

cold starts will eventually be optimized as close to zero as possible, you can build a
system that is unaffected by cold starts. This pattern is the same for people who com‐
plain about how NoSQL doesn’t have transactions, or how iPads don’t have mouse
support. Although these days, things are changing: DynamoDB offers NoSQL with
transactions, and the latest iPad Pro has a trackpad.

You don’t need a specific reason to use serverless, but here are some examples of the
characteristics of the compute work you want to perform that will have the least fric‐
tion and most benefit when utilizing serverless:

• Tasks that can be broken up into small independent units of work
• Tasks that either have infrequent or unpredictable usage patterns
• Background work, or system to system communication that will not be impacted

by cold starts

Let’s break these down. A task is a unit of work that isn’t blocking, and can be broken
up into smaller units of work that would each fit into a function.

Serverless is best used for load that is not predictable. This doesn’t mean you can’t use
it in this case, it just may not be the most efficient and will cost more than use con‐
tainers (but again, that doesn’t include the overhead of managing the containers).

But what about your workload? If you can see your system as a collection of easily
separable parts, and you don’t want to deal with the overhead of servers for a lack of
resources, it may make sense to use serverless.

Some parts of your application will be high velocity, at least when it comes to the rate
of change of features and priorities. But then you have the strong and steady work‐
horse components. Imagine some of the problems you have yet to solve. There are
some parts of your overall application that will be low velocity once version 1.0 is
shipped. They don’t directly serve users, but offload work from the application
servers that do. Sending email to users is a perfect asynchronous task to set up to hap‐
pen in the background that won’t need much change to the basic architecture. It has
somewhat unpredictable demand. And while you want it to happen in real time, the
latency of a cold start is not going to ruin the password reset experience for a user
locked out of their account.

Another interesting use case of serverless is the nearly infinite scale it brings. Let’s
assume it takes 30 seconds to process one minute of high resolution video for stream‐
ing. How long will it take to process a 90-minute film? 30 seconds. Because you can
break up and parallelize the work and instantly feed it out to as many Lambda func‐
tions as possible, you can drastically speed up the time it takes to complete a task.
This is actually one way Netflix uses serverless.

xxxii | Introduction to Serverless

Another strong use case for serverless is event-driven architecture. Chapter 3 will
cover serverless architectural patterns in detail.

One of the most helpful uses of serverless compute is that it acts as the glue between
services. For example, you can monitor the utilization of a resource to scale a service
up or down to save costs.

Want to resize uploaded images into thumbnails automatically without setting up a
task or queueing service? Do you want to save money on your instances by using spot
instances that cost less money than traditional instances? When those spot instances
are being taken away (part of the reason they are less expensive), you can have a func‐
tion automatically invoked on that cloud event to spin up a regular instance to take its
place. Another spot instance becomes available later? Same thing in reverse: your
function can spin up the instance that costs less money and terminate the more
expensive one. Want to react to changes in data as they happen without adding brittle
analytical code to the main conversion funnel of your application? Serverless can help
with all of these use cases. It can be glue, DevOps, automation, out-of-band process‐
ing of data, or fully fledged applications.

When Is Serverless Compute Not Right for You?
Serverless will not serve you best when you have tasks that are computationally inten‐
sive, when your tasks have a long runtime that can’t be broken up into smaller work‐
loads, or when you need additional functionality not currently supported by the
cloud providers, to name a few examples. These tasks might look like reading a large
table of data and turning each row into an API request, encoding a feature-length
film for streaming, or running a persistent WebSockets connection for a chat func‐
tion. But some of these examples do have ways of being adapted to work. You can run
a parallel scan or certain types of datastores such as DynamoDB. You can break up
large files into smaller parallelized chucks as Netflix currently does to encode movies.
You can use an API Gateway with WebSockets to maintain a real-time connection to
clients, while invoking a Lambda for each message passed.

Let’s Get Started
It is time to start or continue your serverless journey. By the end of this book you will
have learned many fundamentals and best practices needed to succeed in any form of
cloud computing, servers or not.

How “full stack” are you? If you specialize in certain areas, how did you choose those
areas? Did you try other things out before deciding not to be an expert? You need to
know how to manage servers before you can manage a system that manages them for
you.

Introduction to Serverless | xxxiii

The choice to go serverless, is generally made to reduce the complexity in configuring
and managing infrastructure, but you must have some basic understanding of the
work you are abstracting away to build a reliable system on top of it. That will all be
covered in this book.

Part I of this book will walk you through what it means to launch a proper produc‐
tion system. There will be servers involved, of course, but you won’t need to know
them personally. Part II will cover the tools you will need to be successful with server‐
less. Part III will cover some more advanced topics in depth, such as security.

Now let’s talk about production systems.

xxxiv | Introduction to Serverless

PART I

The Path to Production

“Multicloud”, from the webcomic FaaS and Furious by Forrest Brazeal, 2018

https://faasandfurious.com/72

CHAPTER 1

Distributed Systems

We’ll begin our journey through serverless by talking about distributed systems.
Before we jump into definitions and examples, what do you need to know about dis‐
tributed systems to be effective with serverless? When you develop an application,
you have to make a large number of assumptions. Some may be as simple as knowing
that one step will occur after another. Others may be far more complex. Distributed
systems will tear apart all your assumptions about the environment in which your
code will run and how it will operate. When you develop for a single computer, many
of the harsh realities of the physical world are abstracted away. As soon as you start
building a system that resides on multiple computers, all of those realities suddenly
surface—though they might not be obvious.

This chapter will first offer a broad overview to better understand what you have
signed up for.

If you do not have experience developing backend systems, my goal is to explain what
has changed about your world. But even if you have experience, you will find value
here: distributed systems can bring out the pessimism and cynicism even in experi‐
enced software engineers and system administrators. We’ll talk about what can go
wrong and what you can do about it.

What Is a Distributed System?
A distributed system is any system where the individual components are separated
and communicate over a network. A distributed system can be part of a larger or
smaller distributed system. The internet is one giant distributed system. Your cell
phone provider operates a giant distributed system in order to connect you to an
even bigger one. Their system contains wireless gear, network gear, and applications
such as billing and customer information.

1

When working with apps, we usually expect determinism: given a specific input, the
output, and the states and sequences to achieve that output, will always be the same.
The reality of distributed systems, however, is nondeterminism. As the complexity of
your application grows, it becomes difficult to predict the state of it at any given
point. It is assumed that all parts of the system will be unreliable in either obvious or
nonobvious ways, but it is your job to build a reliable system from these unreliable
components.

Your application does not live or process logic in a single place. If you have a browser-
based application or a mobile application, the second you put a line of code in any
other place, such as a function in the cloud, your system is distributed. Generally,
components of a distributed system are asynchronous, meaning they pass off a task
and do not wait directly for the result. But many important operations, such as the
processing of credit card transactions, will be accessed synchronously, as they should
block the progress of the calling task until completion of the vital transaction.

A serverless system is inherently distributed. Given that a serverless function is by its
very nature stateless, if your application involves any form of state, it is going to have
to be distributed. But aren’t all modern applications distributed? While the answer is
likely yes, it is definitely true for applications that have ambitions to grow and
become more complex.

If you are building a simple web app with a client frontend, a monolithic backend,
and a database (also known as a three-tiered web application), then you are building a
distributed system. However, many developers will neglect this fact when thinking
about how the application stores its state in a database. And they will run into prob‐
lems as a result. At some point in scaling up their system, they will likely face an issue
caused by an application server, regarded as being easily and horizontally scalable,
connecting to their database (vertically scalable). This issue could range anywhere
from needing more resources for the database to simply needing to update the data‐
base configuration to allow additional connections. But those developers who forget
they are working on a distributed system will have all of the problems of one, without
any of the common patterns to minimize issues.

Serverless shifts many responsibilities to your cloud provider. However, as the soft‐
ware practitioner writing the business logic, there are still things you need to know
and understand to make promises to your stakeholders in regard to the reliability,
availability, and scalability of your software.

2 | Chapter 1: Distributed Systems

Why Do We Want a Distributed System?
Do you need a solution that handles what happens when someone introduces a bug
that causes your database to lock, preventing your main user-facing system from
operating? Well, that’s actually a strength of distributed systems because you can kill
the failing service, and all of the work expected to be done by it will be delayed but
not lost as it queues up. If your user registration code ran the email sending code
directly, you would be down completely. Designing so that one failure does not cas‐
cade and directly cause another is the subject of Chapters 4 and 11, but the resources
listed in “Further Reading” on page 11 cover these concepts in much more depth.

Any application intended to scale must be a distributed system. Otherwise, you will
be limited to the compute and storage of one computer, and your users must visit this
computer and use it in person, only one at a time. There are many advantages of dis‐
tributed systems, but there is no choice to be made. You are building a distributed
system. You must learn the disadvantages of doing so to best limit their impact on
your operations.

The Harsh Realities of Distributed Systems
Nothing about the network can be trusted. And in a distributed system, messages
must be passed over the network. In Designing Data-Intensive Applications (O’Reilly),
Martin Kleppmann expands on this interconnected relationship between your code
and the source of so many problems, the network:

A node in the network cannot know anything for sure—it can only make guesses based
on the messages it receives (or doesn’t receive) via the network. A node can only find
out what state another node is in (what data it has stored, whether it is correctly func‐
tioning, etc.) by exchanging messages with it. If a remote node doesn’t respond, there is
no way of knowing what state it is in, because problems in the network cannot reliably
be distinguished from problems at a node.

Networks seem to be pretty reliable, but every now and then you have to hit the
refresh button or wait. In a distributed system, your system has to deal with automat‐
ing that refresh. If one system goes down, and all of the other systems start attacking
it with requests when it is already failing to keep up, what happens?

There are far fewer things to consider when two pieces of code run in the same stack.
Asynchronicity can create a lot of unintended effects, especially when unexpected by
the programmer. Now add the reliability of a network to that.

To illustrate these issues, let’s look at a common application. This application has a
user registration process. New registrations go into a task queue to perform some
operations, such as sending a welcome email. The developer made a smart choice to
decouple the user’s registration and the back-of-the-house logic, such as sending an
email. If the application was suffering from issues with sending email, it should not

Why Do We Want a Distributed System? | 3

https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781491903063

block the user from registering successfully. Other actions in the system may also
cause a task to get queued up that will send some form of notification. Seems simple,
right? Let’s get to it.

The Physical World
In the aftermath of Hurricane Sandy in 2012, a group of operational engineers found
themselves in a precarious situation. The power was out in Lower Manhattan. The
data center had generators and diesel fuel on hand, but the diesel pump had failed
due to flooding; the pump was in the basement, and the generators were on the roof.
Heroically, the engineers mounted a bucket brigade to bring diesel fuel, in 5-gallon
buckets, up 17 flights of stairs, in the dark.

The physical world itself is nowhere near perfect. Just because your organization does
not own the servers, or can’t even touch or see them, does not mean you will not be
affected by a fire, a power disruption, or another disaster, natural or otherwise. The
companies relying on that particular data center were spared by the heroism of the
bucket brigade, blissfully unaware of their servers’ potential to be cut off at any
moment. When you host in the cloud, you may not be responsible for carrying a
bucket, but you still have to deliver your application to end users despite the circum‐
stances. The cloud solves this problem as much as current technology allows with
multiple availability zones, which generally come for free in serverless compute, but
must be accounted for in your persistence of data, and other services as well.

The physical world can be the root cause of many other failures we will encounter
when working in the cloud:

Network issues
Someone may have tripped on a cable and pulled it out of its socket.

Clock issues
The physical hardware on the server responsible for keeping track of the time, a
crystal, could be defective.

Unresponsive node
There could be a fire.

Calling attention to this allows us to drastically simplify the rest of the issues we will
face and focus more on the impact of these issues as you design your systems.

Missing Messages
Have you ever sent an email only to later find it stuck in the drafts or the outbox?

There is no guarantee when you make a request over a network that it will be deliv‐
ered or processed. This is one of the many things we take for granted when working

4 | Chapter 1: Distributed Systems

https://oreil.ly/6dHDK

on software that will run locally. These issues are the simple reality of computing that
has been abstracted away from engineers enough that people have forgotten their
existence. Networks can have congestion just like your local interstate during rush
hour. The modern network in a cloud computing environment is a distributed system
itself. The easiest way to observe this is when using a mobile network. We have all had
experiences with apps that hang because they expect an instantaneous response from
a remote computing system. How would this affect your code if it were some kind of
live or real-time game? If your response gets too delayed, it could even be rejected by
the remote system as anticheating logic. Messages go missing, show up late, or even
show up at the wrong destination. The wires can’t be trusted.

Unreliable Clocks
How important is it for your system to know what time it is? What happens if you set
your iPhone back in time before iPhones existed? Or what if you set it to a time 30
years into the future? Either way, there is a good chance it won’t boot. Apple has never
confirmed the issue, but it has been attributed to timestamps on Unix systems having
been started on January 1, 1970, creating a date of 0. Remember that the engineers
working on the iPhone likely did not expect users to set back their date so far in the
past, but they permitted users to do so. This has caused unexpected bugs, even for
Apple.

Servers have their system clock set automatically using the Network Time Protocol.
While relying on your system clock seems like a sure thing, there are potential issues.
Google published a paper on its internal Spanner database that details how they deal
with time for this critical system. When their nodes were set to poll every 30 seconds,
the system clock drifted by as much as 7 ms. That may not be an issue for you, even
as both Google and Amazon offer enhanced synchronization based on GPS, and
atomic clocks for hypersensitive systems such as trading stocks, though the common
commodity system clock has some other quirks. When your clock drifts, it will even‐
tually be corrected in a way that can alter the effect of your time-sensitive code. Mul‐
tiple CPU cores have different references of the current time, and logic living inside a
virtualized system on the cloud has an extra layer of separation from the reality of
time passing in the outside world. Your code may experience jumps in time, forward
or backward, at any time. It is important to utilize a monotonic clock when measur‐
ing the passage of time. A monotonic clock is one that is guaranteed to increase.

In addition to the clock being susceptible to changing more than a second in any
given second, there is no way to guarantee that all of your nodes’ clocks will be set to
the same time. They are subject to the same issues of network reliability we have
already discussed. As with all issues you will face, there will be a trade-off in the
importance of an aspect of your system to the use case and amount of engineering
resources available. Building a social network for pets? Those seconds may not be

The Harsh Realities of Distributed Systems | 5

worth your trouble. Building a high-frequency trading system? You may have to uti‐
lize hardware atomic clocks set by GPS, as those microseconds can cost megabucks.

The current time as it appears to your business logic can unexpectedly jump forward.
Serverless functions, as with other forms of cloud compute, run your code in a vir‐
tualized or isolated way. The software that provides this virtualization or isolation can
distort time in a number of ways. One distortion that can occur is when your code
competes for shared resources, it may suffer from a pause due to multithreading. It
will be put to sleep, then suddenly reactivated but with no understanding of the pas‐
sage of time that occurred in the outside world. This can similarly be caused by pro‐
cesses such as memory swaps, garbage collection, or even synchronously waiting on
some resource that is accessed over the network. Keep this in mind when attempting
to squeeze more performance by using threads or subprocesses to perform additional
work in your system.

These realities can manifest as issues where, for example, you can’t reliably know
which change happened first in a series of events in a queue. In reality, when dealing
with modern distributed systems, there is an expectation that your system may run in
multiple different geographies. In this case, we have already learned that events can
and will come out of order, and there is no real way to determine the order without
some form of locking, which can be expensive and bring its own issues to bear. But if
you need that kind of knowledge in your system, you won’t have any other choice.
Even then you can and will be wrong about which task deserves to have the lock first.
You have to handle that in software. No service will be offered in the short term that
will solve this for you. Even if they start offering “consensus as a service” or some‐
thing similar, you will still have to understand the trade-offs and issues around their
use when implementing your business logic.

Cascading Failures
Let’s say that you, the developer of the application in this example, did a great job
loosely coupling the two components provided. If the user registration system goes
down, the email system won’t really mind at all. In fact, if the email system is server‐
less, it won’t even run (how efficient!). If the email system goes down, the user regis‐
tration system stays up. Or so you might think. What happens if your task-queuing
system becomes full and no longer accepts new tasks, and now your users can’t sign
up? This is how issues compound, or cascade, to cause other issues.

In this example, when one system (sending mail) failed long and hard enough, the
outage caused another system to fail. When your system is composed of dominoes,
space them to avoid a chain reaction when one falls. No matter how slow it is (it
could have been an entire weekend before the queue filled up), a resilient system will
be engineered to avoid this issue. You may not be able to afford such resilience in
your current project, but you must be mindful of it.

6 | Chapter 1: Distributed Systems

Unexpected Ordering
Have you ever shipped a new version of your code that included an additional time‐
stamp field, only to find that somehow inserts are still being committed without one?
When operating in a distributed system, there is no guarantee for the order of execu‐
tion of logic split across multiple nodes. But how could your deployed changes not
take effect? Simple: the old version of the code is running somewhere. It could be a
task server that is faithfully chugging along while refusing to respond to requests for
it to shut down so that it can be replaced with the new version of that code.

Meanwhile, there is another change waiting to be pushed to production that includes
some kind of mandatory field on registration, such as a first name, as well as includ‐
ing that name in the welcome email. You have a large day of new sign-ups, and this
code makes it out to production. Instantly, people stop getting welcome emails, and
you now have a big headache—what went wrong? Synchronicity was assumed.

There were some number of welcome emails waiting to be sent out. When the new
code hit production, the existing tasks were to send welcome emails to users that
included their name, something those records don’t have. This particular issue can
also occur due to network latency.

Idempotency
Idempotency is the idea that a certain task repeated more than once will have the same
outcome. It is somewhat easy to build a system that will perform a given task at least
once, but much more difficult, if not impossible to do in a guaranteed way, to build a
system that performs a given task once and only once.

However your system sends email, whether speaking SMTP directly to your users’
mail exchanger or using a third-party API, it’s not hard to imagine a situation where
an email was successfully sent, but a failure is reported. This happens more than you
would imagine when you start to scale, and chaos takes full hold. You try and send
the email, and it gets sent, but right before the other side responds with success, the
network connection is severed, and you never get that successful response. So as a
responsible developer, you have designed the system to try again. This time it works.
But your task that has been attempted twice, was completed twice, and as a result the
user got two welcome emails.

This is enough of an edge case that you may not try and over-optimize your system to
always send exactly one welcome email, and you may not be able to without also hav‐
ing access to your user’s mailbox. But even then, what if they delete the message
before you check? You will send it over and over again. A single node can never really
know the truth of the outside world because it relies on the network to learn about
the truth, and by the time it gets a response, that truth may be stale.

Once you accept that, you can design for it.

The Harsh Realities of Distributed Systems | 7

1 For instance, you can view this video for DynamoDB.

It is important to dig into the design to see how these things will fail, but just as
important to deprioritize the rare case in which a user gets two welcome emails. Even
if it impacts all users in a given day, you will be fine. But what if the task is to send $20
from User A to User B? Or since we are focused on registration, giving User A credit
for referring User B? If that job gets into a queue and keeps failing and being retried,
you may have a real issue on your hands. It is best to design your tasks to be idempo‐
tent—the outcome is the same no matter how many times the action is repeated.

What Am I Responsible For?
When you use an offering like Amazon’s Simple Queue Service (SQS), or Google’s
Pub/Sub, you do not have to worry about keeping it running. You have to know what
the limitations of these offerings are (how long a message can wait without being read
before it gets expunged), and you have to deal with designing your systems to deal
with a failure or outage of these systems. It is best to know as much as possible about
how these systems work if you want to best understand how, when, and why they will
fail, as well as the impact of anything you build that relies on these offerings. Addi‐
tionally, it is great to see how reliable and robust systems were implemented and
designed. Before using any new system, read the intended use cases, limitations, and
watch a video from the cloud provider of the system implementation.1

When dealing with serverless compute, you don’t need to directly manage the clocks
and networks and other pain points, but you may have to configure them (network),
and learn to build in best practices around others (clocks).

What Do You Need to Consider When Designing a
Distributed System?
Imagine a student asked to solve a math problem. Seems straightforward enough.
Even if they have to slide off the cover of a graphing calculator to solve that problem,
they will do it synchronously, one step at a time. Imagine a room full of students.
How would it work if the students were paired up and had to solve problems in twos?
What if only one of the students could read and write from the problem sheet, and
the other one was only allowed to use the calculator, and neither was allowed to do
any reading or writing from the answer sheet or any other piece of paper? How would
that complicate things? This is one way to visualize how the components of your dis‐
tributed system must orchestrate work in a larger cohesive system.

It is almost a guarantee that each component of your system will fail. Partial failures
are particularly difficult to deal with because they break the determinism of the

8 | Chapter 1: Distributed Systems

https://oreil.ly/LFRtP

2 Or in the case of NoSQL, a Table.

system. Total failures are generally easier to detect, and it’s necessary to keep compo‐
nents isolated from each other so they don’t cause failures to spread like wildfire
through your system.

Loose Coupling (or Decoupling)
One of the most important factors of a well-designed distributed system is that its
components are loosely coupled. This means that individual components can be
changed independently of each other with hopefully no negative repercussions. This is
achieved by defining APIs for each service to bind to, while the implementation
details are abstracted away and hidden from the consuming service. This enables
teams to operate independently and focus on the details that matter for their areas of
concern. You may see this concept also referred to as being fully decoupled. Load bal‐
ancers do this, isolating your logic from the unpredictable requests of users.

Design your system to be loosely coupled. Find your failure points and figure out
how to avoid cascading failures. Do not let different components of your system
interfere with the operations of another system, or attach to private integration points
such as sharing a database.2 Teams can still view, learn, and submit revisions to each
other’s code, but do not allow any circumvention of the aforementioned APIs. If two
services share a database, they are not actually separate services. Even if they operate
on different tables, one component can easily bring down the other since they have
this tight coupling and reliance on similar components. We will discuss this concept
further in Chapter 4.

Fault Tolerance
You must build leeway into your system to handle faults. The more faults your sys‐
tems can tolerate, the less your users, and your engineering organization, will be
forced to tolerate. Have you ever been on a team that seems to be fighting production
fires all of the time? Depending on the scale of the system, letting your application
control your time and schedule is a conscious choice that your team makes every day
by not communicating the importance of shoring up your systems for production
traffic, and the prioritization of improving upon technical debt, or the built-up
amount of important work that was deferred usually in exchange for a short-term
gain.

An important part of tolerating faults is having some idea that a node is up and
operational. This is where the health check comes in. A health check is a simple API
on part of the system that simply responds to a request to let another system know
that it is indeed functioning. Some implement this as a simple static response, but if

What Do You Need to Consider When Designing a Distributed System? | 9

the component requires access to other systems, such as a database, you may want to
verify that the component can connect to the database and successfully execute a sim‐
ple query before responding that the component itself is up.

You must build in monitoring and alerting to be aware of the operation of your sys‐
tem at any given time (see Chapter 7), and have plans for dealing with failure (see
Chapter 11).

Generating Unique (Primary) Keys
Loose coupling should be the rule for any integration point. When designing how
your data will be stored, you may rely on your database to create unique identifiers
for data being stored. But when you store something to a bucket system such as S3,
you are forced to make your own identifier. Why is that?

Generating distinct identifiers known as distributed ID using an existing implementa‐
tion, such as Twitter’s Snowflake, is considered to be a best practice. It can prevent
issues with coupling to a specific database, as was the case for Twitter when it intro‐
duced Snowflake in 2010. Using distributed IDs also provides a benefit to relational
databases because operations don’t have to consult and wait on an insertion to gener‐
ate a primary key. When you perform an insert, you have to wait for it to return the
primary key to create or update other linked objects. This can cascade for a compli‐
cated transaction without distributed IDs. The operation will be much simpler if per‐
formed in one transaction by generating your own IDs. And the same is true for
complex microservices as well.

An example distributed ID consists of a combination of the time (usually so items
can be sorted) and some form of entropy to reduce the likelihood of a collision of
duplicated IDs to an infinitesimally small chance. These IDs allow you to sort based
on the order of creation, although within a given timestamp it is impossible to know
the order in which items were created. Given how much we have already discussed
the inaccuracies of system clocks, you shouldn’t over-trust the accuracy of any time‐
stamp, especially when debugging.

Planning for Idempotency
One way to attack idempotency is to design certain actions to be repeated as many
times as needed to be successful. For example, I was designing a system and the orga‐
nization I work for decided that being multiregion was important for all of our sys‐
tems. The downstream effect was that my system would notify another system that
something had happened. That system was properly designed to deduplicate those
notifications. My initial thought of how to run the system in multiple regions was to
simply run it in multiple regions. It would cost twice as much, and would be twice as
much work, but the request would be met with minimum effort. Once it actually
came time to implement multiregion support, we of course designed and deployed a

10 | Chapter 1: Distributed Systems

optimized version. In fact, we were able to deduplicate the messages ourselves, but
did not have to worry about the guarantee of deduplicating.

Two-Phase Changes
A two-phase change occurs when a change is broken up into two separate parts (pha‐
ses) of order to be safely deployed to production. In a distributed system, certain
changes (such as data migrations), must be done in two parts. In the first change, you
update the code to handle the code both before the change and after. Then, once the
code has been updated to handle either situation, you can safely push the new situa‐
tion into existence. In the earlier example of a new field being introduced, with a reli‐
ance on that new field in logic for email code, it was assumed that no new users could
be registered without that field, so it would not be an issue. But that change did not
account for tasks that were in transit, in queues, or even live requests that happened
during the deployment. There are a number of ways to solve for issues like this, but it
is a great excuse to introduce you to the concept of two-phase changes or migrations.
If you break that new feature into two different changes, you can release them
sequentially to avoid this issue. You could deploy the new field, and after letting that
change settle for an adequate amount of time, you could release the second. However,
in this case it would be wise to ensure that the email process does not fail based on
reliance on a field that previously did not exist. In that case, you could push out the
change in one deployment, but keep this pattern in mind for other use cases around
changing the structure of your database.

Further Reading
For more on the topics covered in this chapter, you can check out the following
resources:

• Release It!, 2nd Edition by Michael T. Nygard (Pragmatic Bookshelf)
• Designing Data-Intensive Applications by Martin Kleppmann (O’Reilly). I strongly

recommend Chapter 8, “The Trouble with Distributed Systems.” But you can skip
the parts about designing consensus protocols, as it may be too advanced at this
point of your journey.

• Site Reliability Engineering by Betsy Beyer et al. and The Site Reliability Workbook
by Betsy Beyer et al. (both O’Reilly)

• Refactoring Databases: Evolutionary Database Design by Scott Ambler and Pra‐
mod Sadalage (Addison-Wesley)

Further Reading | 11

https://learning.oreilly.com/library/view/release-it-2nd/9781680504552
https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781491903063
https://learning.oreilly.com/library/view/site-reliability-engineering/9781491929117
https://learning.oreilly.com/library/view/the-site-reliability/9781492029496
https://learning.oreilly.com/library/view/refactoring-databases-evolutionary/0321293533

Conclusion
We will zoom in further in the next chapter, which will cover a specific way to build a
distributed system: microservices.

12 | Chapter 1: Distributed Systems

CHAPTER 2

Microservices

In the last chapter, we talked about the pain of distributed systems. Microservices
seek to ease that pain by providing a structure and set of best practices to make sure
that the development of your application will scale. You may be thinking: why am I
concerned with the scalability of the development of my project? Scalability has
always been a pain point for applications and organizations that have the ambition or
the need to grow past a single team of developers.

There are many definitions of microservices, but I think Sam Newman described them
best in Building Microservices as “small, autonomous services that work together.”
They are an evolution of service-oriented architecture (SOA) to fit the way organiza‐
tions are actually structured. If a service can no longer be developed or maintained by
a single team of developers, it is too big in the eyes of microservices. How big should
that team be? That is up to your organizational structure.

In some ways, microservices are a bottom-up revolution in software engineering.
They are a fight that was waged by the masses and have arrived at a critical mass of
adoption. People joined this war for the increased autonomy of choosing their own
implementation details and the decreased friction of developing tightly coupled sys‐
tems, such as monoliths. While microservices are eating the world, that does not
mean you will need them specifically. We will end this chapter with a look into the
circumstances in which you should build in a monolithic way, when to build a
services-oriented architecture such as microservices, and when to build a monolith
that can later become services.

13

https://learning.oreilly.com/library/view/building-microservices/9781491950340

Why Do You Want to Use Microservices?
When building your application in serverless, you will have to choose the architec‐
tural patterns and practices that will allow your application to be resilient and, more
importantly, scale. The important part about scaling may not be how you handle the
additional load of users hammering your site in production. It may be how your engi‐
neering organization scales, making it increasingly difficult to build and grow the
code base to allow for the same high velocity in delivering enhancements, updates,
and entire new features and product offerings.

As I have mentioned, microservices are intended to solve the most difficult scaling
challenge ever: people. People don’t scale automatically. It is simple for one person to
build an application. They know all of the business logic and implementation details
of the entire application. They know every trade-off and decision made to get a
project across the line. However, one engineer can do only so much, inherently limit‐
ing what their organization can accomplish. A small team can increase the output
without adding too much additional friction. But once you add another team, com‐
munication and coordination become much more complex, slowing down develop‐
ment velocity. A good workaround might be instead of having two teams develop one
application, you have them develop two components that become an application
when combined. Since every application must interact with other software, whether it
be an API or the instruction set of a CPU, it feels very natural to develop software in
this way. By giving each team a tiny but independent part of an application, you can
scale up the people part of the equation, and scaling an engineering organization is
the main reason to build things in the way of microservices. This is the core strength
of microservices, so let’s dive right into it.

Improved Developer Velocity
In 1998, Amazon.com decided to reinvent the process with which it innovates.
“Invent, launch, reinvent, relaunch, start over, rinse, repeat, again and again” is the
iterative process Jeff Bezos, the CEO of Amazon.com, cited in his 2018 Annual Letter
to shareholders. This process was not occurring fast enough on the technical side.
“Most companies, like Amazon, start their business with a monolithic application
because it’s the fastest, easiest system to develop,” wrote Werner Vogels, the CTO of
Amazon.com, on his personal blog:

The giant, monolithic “bookstore” application and giant database that we used to
power Amazon.com limited our speed and agility. Whenever we wanted to add a new
feature or product for our customers, like video streaming, we had to edit and rewrite
vast amounts of code on an application that we’d designed specifically for our first
product—the bookstore. This was a long, unwieldy process requiring complicated
coordination, and it limited our ability to innovate fast and at scale.

14 | Chapter 2: Microservices

https://oreil.ly/Vf5v6
https://oreil.ly/Vf5v6
https://oreil.ly/fhFIU

But then it hit a wall: these monoliths could no longer accommodate a simple addi‐
tion, becoming fragile at their larger size. Amazon had to change all sorts of deep
dark corners of its codebase just to add something new and useful to customers.

This is the main reason teams and organizations turn to microservices: because of
how systems come to represent the organizations that build them. This is the basis of
Conway’s Law: organizations that design systems are constrained to produce designs
that are copies of the communication structures of these organizations. And it is just
as true now as it was when Melvin Conway stated his theory in 1967.

So what has changed since 1967? Systems and their organizational structures have
formed a symbiotic relationship where they adapt to each other to build something
stronger rather than just the software representing the company’s communication
system. Once an organization reaches a certain size, it can be argued that it should
adopt not only microservices, but the principles behind microservices. Teams that are
independent, loosely coupled, cohesive, and empowered with authority over a spe‐
cific set of responsibilities are vastly more productive and happier before they even
design their services to mirror that organizational structure. The increase in produc‐
tivity is a direct result of the ability to operate autonomously and make decisions
without being blocked by other teams, the reduced scope and complexity of the com‐
ponent being developed, and the specialized and deep understanding of the business
responsibilities of each team.

Increased Developer Freedom
When each component of an application becomes a mini application in itself, each
component can make more bold architectural choices for the problems that must be
solved and the version of the truth it is responsible for. When using microservices,
each component does not have to be written using the same programming language.
Some languages are better for certain kinds of workloads. Sometimes a killer library
makes all the heavy lifting trivial. Developers are the most effective and at their hap‐
piest when they have autonomy to do their jobs. If you are a CTO reading this book,
make sure that any new language usage is supported by a critical mass of engineers
who can be effective in that language, in case of an incident.

In the same way that you can pick the most optimal language for each microservice,
you can choose the most optimal database. Each microservice that has state will have
to have some form of datastore. This could be a virtualized drive (some form of block
storage), blob storage in a bucket, or a database. Vogels espouses the use of purpose-
driven databases. Need transactions? PostgreSQL might be the first to come to mind.
Is the schema not as important as just storing data against a given identity? NoSQL
might give you the flexibility you are looking for.

Why Do You Want to Use Microservices? | 15

Issues with Microservices
Microservices create a new problem for every problem solved. This may seem like a
bad thing, but it is just the natural phenomenon of incurring trade-offs for each deci‐
sion made when building your application. So why do people incur the costs we are
about to cover? At some point, developing, supporting, and running a monolith will
no longer allow for any agility in an organization. Each new business decision may
involve undoing the implementation of previous decisions. By contrast, in a micro‐
services architecture, when a component no longer represents the business interest of
the organization, it can be swiftly changed in place without affecting other parts.

Some of these issues come for free once your organization has scaled past having
multiple teams of developers working on the same user-facing application. It is
impossible for one person to fully understand every detail of how GitHub works
down to the implementation level, even though you can find open source alternatives
written by a single person. There is a difference in scale that requires more complex‐
ity in the organization the application belongs to, and that structure, at least accord‐
ing to Conway’s Law, will dictate how the system itself looks.

Even without tying yourself or your team to the specifics of microservices, based on
my rules or anyone else’s, if your organization is going to get big, it is going to need
some form of services. We’ll look at some of the challenges that will be faced in that
quest. This area is still rapidly evolving, so be on the lookout for tools that can help
solve these pain points, but your results may be best if you embrace the chaos of real‐
ity and build into it, knowing that it is the environment that you target.

Increased Complexity
The more unique and independent each service is, the more complicated it is to
maintain. Keep in mind that every active microservice needs to be actively owned by
a team. The external world is not a constant, and there will need to be an owner to
handle maintenance or defects that arise during the life cycle of each service. In addi‐
tion to increased independence, those teams may speak different programming
languages.

Putting aside the issue of the services being written in a variety of programming lan‐
guages, and developers having varying experience with those languages, a single
request by a user may be transformed through, handed off by, or fork into multiple
processes in a number of different services until its natural completion. This natural
completion may only occur when the user deletes their account. It can be difficult to
track this task in a cohesive way. There are tools that help with this, but it can still be
quite a cognitive challenge, since no one developer will fully know or understand the
task’s path through the other microservices.

16 | Chapter 2: Microservices

Proper DevOps Practices and Resources Needed
The complexity of having many different little applications increases if each deploy‐
ment pipeline is unique. Imagine if one service was deployed on a cluster of Rasp‐
berry Pi servers in the microkitchen instead of in the cloud. This is an example of
when implementation details leak and cause issues in production for others. While
one team may have thought this was a clever way to solve a problem, an engineer
paged in the middle of the night may not even know that this cabinet cluster even
exists. While the implementation for each step may be unique, companies must
ensure that all the steps, tools, and practices for production are the same, even though
the microservices are owned by different teams.

At a certain size, your organization will need its own platform engineering team. In
Chapter 1 of Production-Ready Microservices (O’Reilly), Susan Fowler mentions the
need for a microservices ecosystem: “A successful, scalable microservice ecosystem
requires that a stable and sophisticated infrastructure be in place”. At first, if you only
have one team doing all of the backend work, they will need to deal with the overhead
of managing the infrastructure and engineering the platform that your microservices
will target. Remember, the developer experience is part of the shift to microservices;
without it, you will be missing the main benefit of this choice. You may want to defer
this, as we will later discuss, until your organization has reached the scale at which it
can have a full-time team dedicated to how engineers ship their code to production.
Standardizing the pipelines and interfaces is just a part of this. But it is a significant
overhead that will only benefit your organization if it has the scale to need it, or at
least to make it worth the growing pains of getting there.

Challenges with Local Development and Testing
It can be much more difficult to develop a microservice when the other microservices
it will interact with and rely on are separate entities with other dependencies. Each
service being developed cannot be exhaustively tested in the vacuum of running a
single service locally. Depending on the scale of your application, you may be able to
run the entire constellation of microservices locally, but that will not always be the
case, especially when you decide to build in managed services from your cloud pro‐
vider. Some cloud providers have ways to run versions of these managed services
locally, such as DynamoDB, which has a development version that can be run locally;
others have community-reproduced services that can be run locally for the purpose
of development. Some managed services are just hosted versions of open source soft‐
ware that you can run locally. Otherwise, you are bound to make separate resources
in the cloud to develop against, as the cost of these pay-per-use services scales down
towards zero drastically, but you will be reliant on internet connectivity.

Much like the interconnectedness of dependencies for local development, this same
issue can persist in testing. But another one exists as well: if your organization has

Issues with Microservices | 17

https://learning.oreilly.com/library/view/production-ready-microservices/9781491965962

one quality assurance (QA) environment, what happens when one of the test versions
of the microservices is broken? Some other services may have issues testing their lat‐
est code against it.

You have to rely more on the independence of each application and that each team
has tests to prevent regressions from occurring. But you must also use integration
tests to make sure your applications will work in harmony in the real world. Also, you
need to have safety mechanisms, such as canaries (covered in Chapter 8) or other
gradual rollouts, so that if the new version of your service breaks some other services,
it will be automatically detected, rejected, and rolled back. This functionality may be
available from your cloud provider as an API gateway. You might want to consider
monitoring the health of newly deployed function code without the need for human
observation. Remember, in the land of the cloud, automation is king!

It is better to catch these issues before they ever hit production. Writing end-to-end
tests becomes critical in the production stability of your app. This is a topic we will
discuss later in Chapter 10, but some teams are turning to options like Mountebank
that allow each team to ship a fake version of their service for utilizing in test suites.

How Do You Use Microservices Effectively?
Microservices help us embody one form of operating rules when developing a dis‐
tributed system. It can help provide more clarity about the “what” and “how” of solv‐
ing the pain points of the previous chapter. Sure, it won’t help you deal with
inaccuracy in clocks, but it will provide more detail for how loosely coupled services
should communicate. There are organizations running thousands of microservices,
and they are only able to do so with strict adherence to best practices.

With microservices, consistency is key. You are taming the beast with a significantly
more complicated architecture, as an investment into your entire organization’s pro‐
ductivity. But without this consistency and consensus, you’ll have a bad time. With
strong patterns and practices, you will have plenty of extra time to read all those
microservices horror stories on the internet because of all of the time and productiv‐
ity you gain.

Consistent Interfaces
Microservices in your organization should all use the same type of interface, with
consistent rules about how they make information available and how they are
consumed.

Keeping in mind that the main feature of microservices is that independent teams
own their own destinies, and this independence can only be maintained by having
common rules and practices. Otherwise, the services will not be able to reliably
interact and depend on each other, and instead of an application, you will be left with

18 | Chapter 2: Microservices

http://www.mbtest.org

a house of cards. Be careful, however, not to prescribe specific technologies that will
counteract this independence. Think about how hard it would be to travel between
countries if each and every country had its own idea of what a passport should be
like. Imagine walking up to an immigration counter after a 16-hour flight only to be
told that your passport can’t be accepted because the picture has to be on the right
side in that country and yours is on the left. Or worse, imagine having two passports
for this very reason and leaving one at home! (See Chapter 4 for an in-depth discus‐
sion about interfacing with other services.)

Loosely Coupled
As discussed in Chapter 1, you should be able to make a change to one system
without having to make a change to another. This is what enables the high velocity of
change, one of the main reasons to use microservices.

Keep the glue between your applications technologically agnostic. Do not allow the
introduction of consistent patterns to dictate or limit the technological choices a team
can make. Your components will share interfaces, but other than that, they should
keep all details to themselves, especially implementation details. That way, other com‐
ponents can never become reliant on those details. While the teams developing com‐
ponents should be encouraged to share this information with other teams and their
organizations, the components themselves should be blissfully ignorant. Your system
does not need to know how Stripe or Twilio work, but you as a developer may need to
understand this in order to better interface with them or choose to use them in the
first place.

In this spirit, never allow two services to share the same database. Sharing a database
allows consumers of your service to circumvent your logic and tie directly to the
implementation details. A change in the database can break these other consumers,
which means you no longer have the freedom to change databases when the evolu‐
tion of your service calls for it. They should never be able to access that data directly
in the first place. If for some reason you have to share a common datastore between
services, make sure the services have different database users that can only see the
tables, queues, and buckets they should be able to see (also a security best practice).

Microservices must be independently deployable. That is the only logical conclusion
when the point of microservices is to be independently designed, developed, and tes‐
ted. If you cannot deploy changes to one component without having to bundle it with
other components, then they are not loosely coupled. One main focus of the modern
adaption of microservices is being able to move fast without breaking things. This is a
critical component to achieve that goal. When utilizing the serverless framework, you
can deploy changes to individual functions.

In the serverless world, some of the implementation details for interfaces may already
be chosen for you. You may have to wrap or adapt the interfaces to match the

How Do You Use Microservices Effectively? | 19

standards of your organization, or build your own on top of the default offerings. As
an example, imagine a third-party tool that helps you trace your workloads as they
pass through different components of your application. In order to facilitate this, a
request or trace_id must accompany all invocations or tasks. This can be a part of
your standard defined interface, and lambdas being invoked can refuse to work if the
request does not meet the standards of your organization. This may result in failed
workloads, but only enforcing these standards will empower you with the increased
velocity of development: in this case, the ability to trace a workload through the code
and process of many different teams and workflows. With a common set of rules for
how services communicate, you can maintain your independence and autonomy
regarding the implementation details.

How Micro Is a Microservice?
Here is a misconception: a microservice has to have a clear and defined size and
scope to qualify as a microservice. The truth is, there is no “one size fits all” in design‐
ing your services, nor is there a common metric to measure them. The size of your
services should instead be a factor of the size of your teams, project, and organiza‐
tion; the opinions of the people involved; and, most importantly, entropy.

Let’s think about building an accounts service. Sounds easy, boring, and perhaps even
a bit of a solved problem. But when a team decides to start carving up a monolith,
identity, authentication, and authorization go from being built-in features of the
application framework to problems you have to solve. Let’s pretend we have perfectly
designed and architected this accounts service. Where should a user’s physical mail‐
ing address live? In the shipping service or the location service? This will vary
depending on your application. If you send packages from a warehouse to a delivery
carrier, the location of your customers is not of much concern. But if you decide to
start making deliveries, understanding the physical location of where an item needs
to go becomes a lot more relevant. A delivery service would likely rely on both the
shipping and location services to get deliveries into the hands of your users. Thought‐
ful design must go into how you delineate your services and separate concerns
regardless of their sizes. Let’s dig a little deeper before we pull up.

Assume now that your organization has jumped into a new line of business and needs
to shift to microservices. The new line of business is so vastly different that a user of
one product is not automatically a user of all products. Maybe they have different
terms of service that must be accepted, or require different information to register.
Maybe you have two sides of a marketplace to service. For example, on a ride-sharing
platform, not all passengers are drivers, and vice versa. Should your accounts service
be the one to mark the distinction? Should your accounts service know the driver’s
license details of accounts that are registered as drivers?

20 | Chapter 2: Microservices

The quick answer is that if you are fully committed to the paradigm of microservices,
your accounts service should just handle authentication. A separate profiles service
can handle user information, and another can handle the authorization if a user can
see the driver dashboard. If this sounds too hectic for a small backend engineering
team, it very well might be, so let’s talk about monoliths.

Choosing Between Monoliths and Microservices
A monolithic application is one where all of the logic and components of the applica‐
tion live in one deployable package. If your entire application is living in one project
in a web framework such as Django or Rails, it is likely a monolith. These technolo‐
gies are not incompatible with microservices. But, generally speaking, there are other
frameworks meant for developing smaller components that were inspired by these
projects, such as Flask, Sinatra, or Express, that would be more appropriate for a
microservice.

When developing a monolith, things move quickly at first. Feature after feature gets
added on, and even small changes seem to be quickly applied. But as each component
becomes highly interdependent, development slows down. Making what used to be a
simple change becomes increasingly complicated because different components of the
application have become intertwined and tightly coupled. You can’t make a change in
the target component without making seemingly unrelated changes in components
tightly coupled to it. This coupling is normally what happens when an individual per‐
son or a small team works on a system that is simple enough to keep a fully accurate
mental model in the brain of one developer. Many frameworks enforce sharing of
unrelated business logic across common entities, furthering this coupling. This is not
a guarantee that all monoliths are complete messes. It helps if you can separate out
long-running tasks and background jobs, either using something like Celery to help
you easily defer the execution of these tasks, or by directly placing tasks into a queue.
It may also make sense to build certain components that seem highly independent to
avoid the future need to split them out.

When Should You Use a Monolith?
If you anticipate the size of your development team to stay under 15 people for the
next 5 years, and expect to have less than 10 million active users, you may want to
keep things easy by sticking with the monolith. If your project will likely scale past
these numbers, I will discuss later in this section how to design your monolith for
future separation into microservices, which gives you some of the advantages of
microservices without any of the downsides. This is referred to by some as the well-
structured monolith. This may include building subsystems that would make no sense
inside of your monolith as individual services, without breaking up the core business
functionality into microservices.

Choosing Between Monoliths and Microservices | 21

1 Jeff Bezos is famous for declaring the correct team size as that which can be fed by two pizzas. Any larger than
that, and team members are too busy deciding instead of doing.

Can I use serverless with a monolith?
Yes, you can use serverless with a monolith. And that might be a wonderful or terrible
decision, depending on what you are doing. There are two kinds of serverless adop‐
tion for application logic. One is to ship a monolith to a function as a service (FaaS)
provider, simply to avoid managing servers. This is a monolith. The other is deploy‐
ing collections of functions. This is more the focus of this book; however, we will not
leave the serverless monoliths in the dark.

No matter what you do, you will want to follow the principles we covered in the pre‐
vious chapter to reduce the friction of running a successful application. If you do not
expect your engineering organization to scale past the infamous “two pizza”1 teams at
Amazon, a monolith might be the right answer for you. You can still expose the mon‐
olith as different functions in your serverless deployment so you can have fine-
grained controls and introspection over each clearly separate part serving up your
user requests. But let’s look at another way to start off on the simple and easy route
while preparing for hypergrowth.

Perforating your monolith for easy separation in the future
I was interviewing for a small startup project when the CTO brought up services with
reliability around a critical function of a system that was not directly user facing, at a
scale of a magnitude larger than the rest of the monolith. He wanted to know how I
would carve this up and design a service to handle this scaling issue. My short
answer? I would not. Their application code was error-prone; with the most compute
and least visibility causing all sorts of issues to the core business. I suggested that
instead of having bad code talk to bad code directly, adding a TCP connection
between the bad code would just make the issue worse. The code itself had accumula‐
ted too much technical debt and needed to be addressed directly. So how does this
relate to microservices?

My recommendation took all of the best of microservices while avoiding the down‐
sides. The functionality would be rewritten as if it were a microservice. There would
be a clear separation of concerns and a well-defined and specified contract between
the two components; as a cherry on top, it would be perforated for future separation
when it would inevitably be required to be split out of the monolith. In this particular
case, the functionality expected to be turned into a microservice would be instead
turned into a library. This library would have its own robust test case, its own
versioning, and most importantly a clearly defined interface meant to be used as if it
were any other network-accessible API. In this pattern, the library was designed to
never raise an exception and instead to always return a response, even in an error

22 | Chapter 2: Microservices

case. They hired me, and I completed the refactor in a matter of weeks. The core of
this library wound up clocking in at around two hundred lines of code, and despite
being one of the most exercised code paths, years later, it still has not been modified.
This is a microservices-style win without any of the downsides of moving to micro‐
services prematurely.

What are the lessons of this story?

1. Monoliths can be a collection of services waiting to be broken up.
2. Microservices best practices are based on engineering best practices. Learn,

embody, encourage, and adopt best services at all costs. You can break the rules,
but you should use best practices when deciding to do so.

3. When making important architectural decisions, you can’t only rely on the advice
or opinions of others, myself included. Seek the information and experience of
others, but make your own best decisions when it comes to the implementation
details.

You can build your monolith with the patterns of microservices but without their
plumbing and overhead. This works well if you are trying to build a greenfield con‐
cept and get it to market as quickly as possible, but you want to avoid the later pitfalls
of a monolith. This is a certified best practice that you should share with all of your
friends. Here is how it works. Take all of the principles espoused in this book: clean
separation of concerns, loosely coupled and highly independent services, and consis‐
tent interfaces. Keep these in the same monolithic app, and never compromise on
these rules. The result will be a monolith that is baked to perfection and ready to be
carved up later.

You can even take this further by having your monolith operate in different modes. A
common but often overlooked example is wrapping a long-running task so that it can
be called directly, but deferring its execution by a task server. If you are using Python,
this is usually done with Celery, but the practice works the same regardless. These
long-running tasks live in the same monolithic application code as your tasks that are
directly user facing, but they will never be run by those servers. Instead they are run
by containers, servers designated as task servers, or, now, functions. One monolith,
two different modes of operation. True, it won’t be free or automatic to break this up
for the purpose of scaling or to help a growing engineering organization, but it will be
straightforward and predictable if you follow the principles of effective microservices
architecture from the start.

The beautiful part of this is that you are designing with the best practices needed for
highly distributed systems and microservices, but instead of dealing with all of the
pain of distributed systems, you get the simple operation of a monolith, until your
organization grows and a monolith no longer supports its needs.

Choosing Between Monoliths and Microservices | 23

When Do You Want to Use Microservices?
By now, you may be able to answer this question. If you are starting a greenfield
project, the hybrid or preperforated approach might be best. If you are building an
ecommerce site, you may want to build with a monolith. But if you imagine that one
day you will have an entire team, or teams, of engineers dedicated to a single compo‐
nent such as a shopping cart, then you want microservices and may want to incur the
costs of developing them while external demand is low. Furthermore, if you expect
that team to have something to do every sprint in terms of improving or maintaining
that component, then it only makes sense to avoid paying the switching costs later.

Keep in mind that teams-to-microservices does not have to be a strict one-to-one
mapping. The shopping cart on Amazon has likely scaled to the complexity that it
may need more than one team, or more than one service. The inverse may be true as
well: your organization may have a team focused on the “check-out” experience that
owns multiple services, including the shopping cart. It is important to balance work‐
load and team size. Again, the goal here is to model your system on how your organi‐
zation works.

Conclusion
Regardless of the size your organization will grow to, even if that will only ever be
you, make sure to follow the principles of well-crafted services: loosely coupled and
preferably independent components, and consistency in rules, practices, and inter‐
faces. Empower your developers to act in loosely coupled, independent, autonomous
yet cohesive teams to maximize the resilience of not just your application but your
organization. Don’t forget the inverse of Conway’s Law: design your teams as you
would your application. You can’t scale if your servers keep failing and especially if
your engineers keep leaving, and usually one leads to the other.

24 | Chapter 2: Microservices

CHAPTER 3

Serverless Architecture and Patterns

To fulfill its purpose, software must be soft—that is, it must be easy to change. When the
stakeholders change their minds about a feature, that change should be simple and easy to
make. The difficulty in making such a change should be proportional only to the scope of the
change, and not to the shape of the change.

—Robert C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and
Design (Pearson)

The first recorded use of the term architecture as it relates to software engineering was
a 1959 memo written at IBM. The company was trying to sell a supercomputer that
they had not yet built. So instead of describing the actual system, they described a
logical model of the system: an architecture.

Engineering and architecture are both relatively nascent fields in software; as things
are changing all the time and no one can be sure what the best answer is, because
today’s best answer is yesterday’s production failure. It is hard to incorporate the
unknown into planning. The future may involve not just scaling a system up and to
the right, but changing its functionality entirely.

To architect is to design the space for the software to be built in, as well as its shape.
Much in the same way that a company can outgrow an office, a system can outgrow
its architecture, and a piece of software can outgrow its server. So how do you plan
for such things? Through the architecture itself.

The architecture of a system is like the outline of written prose. You are creating
space for the words to occupy and a logical way for the writing to convey a higher
meaning, otherwise it is just a random assortment of words.

Software’s architecture, then, is also very similar to the blueprints for a house, even
co-opting some of the terminology (software is eating the world, after all). The big
difference is that once a house is designed, it’s built and that’s the end of it. With

25

https://learning.oreilly.com/library/view/clean-architecture-a/9780134494272
https://learning.oreilly.com/library/view/clean-architecture-a/9780134494272

1 Building Evolutionary Architectures: Support Constant Change by Neal Ford et al. (O’Reilly).

software, we can keep building on and changing the structure while we use it. That’s
the soft part in software. And you have to acknowledge when building it that software
will change at some later point. A well-designed architecture will provide you with
the hard structure needed to support your software.

Architecture isn’t just about the boxes on these blueprints, though; it is also about the
lines—the way systems connect and communicate. Because these diagrams are at dif‐
ferent levels of abstractions, each line is really an interface, with its own diagram of
boxes and lines. The interface consists of the messages being passed, how they are
being passed, and the service contract that governs the relationship between compo‐
nents. The interface is an important part of the architecture, but it is generally cov‐
ered better in textual documentation than diagrams. (Interfaces will be covered in
more detail in Chapter 4.)

The Role of an Architect
Simply put, the architecture of a system is one or more drawings that convey the
composition of a system visually, using diagrams. When you design a house, the arti‐
facts are “drawings” that comprise different views and layers of abstraction. Someone
installing electrical may need a different view than someone installing a toilet (unless
it’s a fancy Japanese toilet). The drawings they need will have different viewpoints and
details. The architectural drawing of a security handshake will be different from that
of an API request for the same reason. When someone wants to know how the secu‐
rity is implemented, they want a diagram that shows the sequence, but when someone
asks for the architecture of the API, they likely want a diagram of the structure.

Software used to only be available with the hardware it shipped with. Distribution
methods have evolved since then, passing interesting milestones such as having soft‐
ware show up in your physical mailbox without asking for it, being able to download
an application over your phone using that software from your mailbox, or loading an
application in your web browser almost every time you navigate to a new page. This
evolution has arrived at the concept of continuous delivery. The amount of time
between when a line of code is written and when it is run as software has never been
shorter. This is why architecting for change and for softness has never been more
important.1

As a software architect, your job is to understand the domain, problem space, and
issues that you are trying to solve. The better you can do this, the better you can solve
the problem. Also, don’t neglect the solved problems that already exist as you start to
create your own. The answer you are looking for may already be out there. People

26 | Chapter 3: Serverless Architecture and Patterns

https://learning.oreilly.com/library/view/building-evolutionary-architectures/9781491986356

present them, write books about them, and post about them deep in the comments of
Hacker News, Stack Overflow, Reddit, and I bet even on Snapchat.

What Do You Need to Know to Be an Architect?
Computer architecture, like other architecture, is the art of determining the needs of the user
of a structure and then designing to meet those needs as effectively as possible within eco‐
nomic and technological constraints.

—Werner Buchholz, Planning a Computer System: Project Stretch (McGraw-Hill)

As a software architect, you need to understand what the current state of the system is
(even if that’s nonexistent or theoretical), the intended use of the system, the steady
state, the stress cases, and what the future of the system may look like.

But what do you need to know about the systems themselves to come up with a plan?

Just like a building architect, you must have a broad swath of knowledge to pull from
in your drawings. Architects know more about heating, cooling, electrical, plumbing,
and just about any other “trade” than you can imagine. But they are not experts, and
their drawings will not be without flaws when a contractor shows up to install a sink.
They must continue the collaboration until the project is finished, and because a
project may never be finished, those collaborations may continue indefinitely.

The most important role of an architect is to make (or validate) critical decisions
about how to enable softness, while maintaining the rigidity needed for a safely main‐
tainable structure.

Making Decisions
Responsibility for making architectural decisions may not fall on a single person in
an organization. A technical lead, for example, might be responsible for creating a
design to support the structure of the work of their team, but they may have to take
this document to peers or panels to air out any issues or concerns and possibly incor‐
porate that feedback into the design.

As we will cover in the next chapter, a big part of software architecture is the inter‐
faces between each component. By designing these interfaces in a standardized way,
you’ll make sure all the chaotic change is performed in uniform and expected ways.
Sometimes, rules about implementation details must be created and enforced for the
stability and structure of the whole system or to enforce organizational or legal stand‐
ards. These smaller components will still require the rules and consistency of an over‐
all system to achieve stability and maturity in your architectures. While this book
cannot create expert architects, you will become an apprentice with an understanding
of some broadly accepted best practices.

What Do You Need to Know to Be an Architect? | 27

What Kinds of Decisions?
Depending on what part of the system you have architectural responsibility for, this
can vary greatly. If you are the CTO, you will have to either create or certify
company-wide rules about the use and adoption of technology as well as make strate‐
gic decisions about everything from what cloud provider to use and what databases
and languages are permissible to how monitoring and alerting are implemented and
utilized. This chapter, however, will focus on components of your system and not the
overall plan for every piece of technology in your organization. If you are starting
from scratch, these may be one and the same.

You will also have to make decisions about the perimeter of a system to support your
organization’s security goals. It is important to utilize threat modeling to better
understand how an intruder might try to invade your system, and what actions they
could try to take once there to pivot and gain additional access. An important prac‐
tice in planning for the reliability of your overall system is considering the blast
radius of each component of your overall system.

Imagine a user with access to everything in your cloud tries to delete a file stored in a
bucket-type system such as S3. That user could accidentally type the wrong command
or even hit Enter too early when formulating what they want to do, and everything
would be gone. That “everything” is the blast radius: how much damage could an
error—or a malicious attack—do? (This topic is covered in Chapter 9.) You do not
want two systems to directly access the same database, for example, because if one
takes down the database, both are impacted. An unexpected issue in your system can
spread slowly through interfaces or cracks; if blast radius is not a conscious part of
your design, one mistake can blow everything up.

Documenting Your Decisions
When Disney received interest from a Japanese firm to build Tokyo Disneyland in the
1980s, the “Imagineers” didn’t have sufficient records of how Disneyland had been
made back in the 1950s. Disney was fully occupied at the time with the creation of
EPCOT and did not want to work on other projects, so it made an offer it thought
would be rejected: that the Japanese firm would have to pay all of the costs, but they
would split the profits. The firm agreed but required strict accounting of the costs,
which had not been previously kept. It did not know what the cost of a component
was until it was itemized for reimbursement.

You see, in the mad scramble to realize Walt Disney’s vision for a better theme park,
the original Imagineers were empowered to do whatever it took to get the job done.
Because a value of Disney at the time was a focus on quality and Walt was not much
of a numbers type, budgets were less important than the end product. But the lack of
documentation on what parts were used to create each component made re-creating
Disneyland more difficult, and the Imagineers learned to keep meticulous records

28 | Chapter 3: Serverless Architecture and Patterns

going forward. The need for accounting created the record keeping of construction
and operation.

With new rides always under construction, Walt Disney once said (in what may be
the best marketing-speak ever recorded), “Disneyland will never be completed as
long as there is imagination left in the world.” This may be inspirational, but it is also
the reality of modern software projects.

How Do We Make Decisions?
While in residential architecture, a detailed plan can be executed without additional
input, the same is not true in software. What you’re creating is an abstraction, not a
specification.

When you start making decisions, it will seem that the options are plentiful and there
is no clear choice to be made. Sometimes it’s better to pick the devil you know, but
that kind of thinking could prevent you from adapting exciting technologies such as
serverless. As your experience grows, you will become more adept at seeing through
the fog. Rely on and learn from others if you know this is a current weakness for you.
Focus on best defining the problems that need to be solved, and try to find solutions
that best fit before making that decision. Consider the future. What are the current
and future unknowns? The unknown unknowns? What are the goals and trends of
the organization as a whole? Consider the implications and trade-offs of the deci‐
sions. Be responsible for documenting and communicating the accepted decision,
and ensuring that everyone is on board.

It is easy to neglect the business purpose of these systems, and if you find yourself in
the role of the architect, you must make sure that this gets incorporated into the
design as a whole. An architect designing a remodel of your home will want to know
if the current closet space is adequate. Their job is not just to certify that the resulting
edifice is safe for human habitation, but that it meets functional requirements as well.
The same is true for system architects.

People will be the most important part of the decisions being made: not just those
inside your organization, but the users as well. Consensus may not always be possible.
Keep in mind that the architecture of software will always be in flux, and the best way
to get things done is to “disagree, but commit.” Once the team has come to a decision,
detractors’ concerns can be documented, but they must no longer be detractors; they
must commit to the plan.

Making Decisions | 29

When Do We Make Decisions?
Depending on the size and scope of the project, it makes sense to start with at least
some logical view of the system you intend to build. That is an architecture! Now
write adequate documentation for others to fully understand the solution that has
been devised, its functionality, and the diagrams. Remember that the architecture
should allow for flexibility and change, and that now is not the time to lock down
every detail. Let the architecture provide structure as it evolves to meet demand, but
know that for tomorrow’s users, the decisions may need to be revisited.

For a system of any architectural complexity, you will want to review the architecture
at a reasonable cadence, and update the documentation and diagrams with the
changes. Make sure, too, that the changing architectural needs of the system have not
drifted far from the blueprints, or they will need to be updated.

For simpler systems, which will be common in a microservices architecture, a single
diagram may be enough to provide an adequate understanding of the component. It
will likely be enough for the lifetime of that microservice as well, since many micro‐
services are replaced rather than drastically refactored. The replacement should likely
have its own stable diagram as well.

In a larger organization, an architectural review will likely be required before a sys‐
tem is blessed for production. This process may be very invasive or it may be more of
an open forum where you self-certify that you are doing everything by the book. If
you would like to get better at architecture more rapidly, see if you can join these
meetings as a silent participant.

You may have to present your proposed architectures for peer review by a full-time
architect. They are a stakeholder in your project, as they have been charged with
ensuring that your system will be safe for the company to operate in production.

Interrogating and Documenting Architectural Decisions

AWS’s Well-Architected Framework is a method for questioning
the architectural decisions being made on your project. It covers
security, reliability, operational excellence, performance efficiency,
and cost optimizations as the five foundational pillars for making
the right decisions about the choices you are making in regards to
cloud infrastructure.
Architectural decision records (ADRs) are artifacts that document
the architectural choices made throughout the natural evolution of
a project. By utilizing ADRs, your team will leave a useful, searcha‐
ble record of changes being made, along with the rationale and rea‐
soning that went along with them. More information is available at
Architectural decision records.

30 | Chapter 3: Serverless Architecture and Patterns

https://oreil.ly/ZkGMm
https://adr.github.io

Cloud Provider Components
A major selling factor of serverless in the environment of a cloud provider is the
many powerful integrations currently offered, and the list is continuing to grow.
These integrations offer a lot of power and return for not much setup, but may deter‐
mine a path for you that can involve coupling to a proprietary interface. Remember,
this is not really about vendor lock-in per se; it is really about software architecture
maintaining adaptability as a system, as its use case and the outside world change
around it. The most useful analogy for many of these integrations is glue: it is a way
to stick systems together without much thought.

But before we get glue all over our hands, let’s talk about the parts of your architec‐
ture that may be provided by your cloud provider.

Streams
A stream is a sequence of events, messages, or data that can be processed after they
have occurred, but in the same sequence as their occurrence, which can be repeated
and distributed to multiple consumers or subscribers. You will want to use streams
when systems may want to react to an event, but the reaction is not explicitly a part of
that event, such as processing data outside the context of a user request. A powerful
pattern in serverless computing is to react to a change being made to the database.
This happens with streams.

Streams will either be created directly to use as a record of events or a message bus, or
they will be a component of your datastore to share the sequence of writes occurring
without causing any additional load on the datastore.

Streams are generally meant to be immutable, with new messages only being added to
the end. Consumers are meant to keep track of their place in processing the queue (or
an integration may handle this for them). Streams do not destroy messages they have
processed but move the reference point of where they are in the system.

Queues
Queues are a method for delaying work; they are used to decouple components of
your system and to isolate precious resources from being overloaded by an increase
in demand. They are also a convenient way in serverless to quickly receive and hold a
message without waiting for the cold start of a function to spin up just to acknowl‐
edge receipt. Queues can be ordered, such as in a first in first out (FIFO) queue, or
they can be unordered.

You will want to use queues to temporally isolate parts of a process, or to shape the
flow of demand to your will. Imagine you need to process a set of tasks every day at 2
A.M. You can add those tasks to the queue throughout the day without having to

Cloud Provider Components | 31

maintain a service to receive them. Then, you can have a function (or multiple) kick
off at a designated time to drain the queue. Maybe you only want it to be drained
once it has a certain number of messages waiting in it. You can have the depth of the
queue (that is, the number of messages waiting) fire off an alarm that causes a func‐
tion to process said queue.

Keep in mind that you may need some form of business logic to validate the incom‐
ing messages before they enter the queue, as well as isolate the interface and imple‐
mentation details of the system. You’ll also need to pay attention to the blast radius:
make sure that one system intended to write messages to a queue can’t destroy them
as well. (Cloud permissions can help here as well; for more details, see Chapter 9.)

A specific type of queue, the dead letter queue, collects messages that have failed in
some way and are no longer in flight or in transit. In serverless systems, how messages
wind up here will vary as it is not automatic and must be configured, but for many
parts of your system, you will wonder how you ever lived without it.

These queues are useful for inspecting failures and learning from them to improve
the resiliency of the system, and you can even fix those bugs and reprocess failed
messages. The functionality of reprocessing messages does not come for free, but you
can use an integration to invoke a lambda for each message entering the failure
queue. However, it would be unwise to try and reprocess failures by the original func‐
tion that the message failed, as this will cause recursion and other unintended side
effects. You can instead use an integration to inspect failures to aggregate and report
data about them to a human user. You can also use utilize queue depth to invoke a
function to reprocess messages or inspect them, but be mindful not to implement any
retry mechanisms that will overload your system as well as others.

Dead letter queues are so popular that AWS has added the functionality to its tradi‐
tional queues. That’s right: you can now even have a dead letter queue of your dead
letter queue. (In Chapter 4, I’ll discuss how messages that did not originate in a queue
can end up in a dead letter queue.)

Buckets
There is a good chance you need a place to store files for some part of the application.
In the cloud, a bucket is where you can store an arbitrary collection of files. With the
advent of serverless, the bucket can share its changes as events, exposing new ways to
integrate. Consuming what used to be system events for your cloud provider as first-
class messages is a really powerful pattern for serverless, and has taken a classically
unintelligent form of storage and added intelligence by reacting to change.

Buckets have also become intelligent due to new abilities to query large amounts of
data, and they are rising in popularity as a final destination for all data in many
organizations. More and more companies are streaming data into a data lake (a

32 | Chapter 3: Serverless Architecture and Patterns

collection of storage) and utilizing new query executors to run traditional SQL quer‐
ies on archived flat file data stored in such buckets. Traditionally, all data would need
to be processed into one such datastore—a data warehouse.

This allows your organization to read stale data that your production systems may no
longer care about, but users and analysts would like to utilize. One such example is
storing data about orders that have reached a final state (that is, they do not need any
updates; other systems no longer care about the data). But your analysts will defi‐
nitely want to research last year’s data, and a user may need a receipt for a warranty.
You can still provide this functionality while keeping your production datastores lean
and performant. By expiring data to flat file storage, data here is not meant to be
changed, but it can be queried and stored cheaply forever thanks to modern archival
file formats such as Avro and Parquet and sharding and indexing tools such as Presto.
You can now even perform DELETE operations with this method to comply with new
changes in data retention law.

Compute
The serverless instance of compute is, of course, the function, but your cloud pro‐
vider will also offer other forms of compute. For example, you might utilize a man‐
aged compute instance for training or running machine learning models, as this is
not a task well suited for a serverless function. These can be very important compo‐
nents that allow your system to avoid being directly tied to regular instances.

You can also consume or react to the creation and destruction of classical compute
instances or containers as part of your cloud architecture.

Datastores
Serverless functions are stateless by nature and must rely on external systems to keep
track of state and store data. This can include SQL or NoSQL databases, in-memory
storage or caching, and other distributed datastores.

It is important to note that when provisioning a datastore involves specifying the
underlying hardware, it is not serverless and can be prone to the problems that often
arise when combining serverless and nonserverless components. You can address
these issues with thoughtful capacity planning, throttling, and concurrency (covered
in Chapter 4), as well as other forms of decoupling, such as queues or streams. You
could even create a stream that is intended to be read into a datastore.

Depending on what datastores you utilize, you may have available integrations such
as having a function fire for each write to the datastore. It is important to include and
understand these components of your architecture even when they are managed by
your cloud provider, especially if you have to make your case to an architect at your
organization who is unfamiliar with the new technology. Generally, examinations of

Cloud Provider Components | 33

the managed services’ architecture will be available in video form for free from the
cloud provider’s conferences, or, if you ask nicely, from their many developer
advocates.

Identity Service
In a microservices environment, there will be some form of identity service. Instead
of rolling your own, it might make sense to offboard that responsibility.

Appropriate usage of a managed identity service provided by your cloud provider, an
internal team, or a trusted third party such as Auth0 can help you in your mission to
maintain the least infrastructure. Cloud providers offer managed services for authen‐
ticating and managing your user accounts. This may be beneficial if you want to use
architectures that involve client apps directly interfacing with other managed services
that your cloud provider offers, such as a hosted GraphQL. The identity service can
also fire events that trigger functions so you can perform background tasks, such as
sending a welcome email.

When you decide to rely on your cloud provider for something as integral as identity,
you are beholden to them to implement new technology. You also save massive
amounts of time when they make these changes for you. For example, AWS just
released support for “Sign in with Apple,” which is a mandatory option on iOS for
applications providing social sign-on support. In this case, you might not have been
able to ship a new version of your app to the App Store without AWS adding support,
or you would have had to task an engineer with building support for it if you do not
use such a service.

API Gateways
Because functions do not sit on the public internet, or any network, with an open
port waiting to receive requests, cloud providers will provide some kind of interface
that speaks HTTP while invoking your functions as needed. This can generally inte‐
grate with their identity service as well.

An API gateway offers features such as load balancing, keeping the HTTP connection
away from your application servers, implementing versioning, enforcing schemas,
and even handling rate limits and quotas. Your cloud provider will offer some form of
API gateway that also can handle identity verification. This may use the provider’s
own identity service or invoke a custom function you create to verify a request before
it is handed off to its destination for processing.

Before serverless, you would generally use a load balancer and some form of HTTP
server, such as Nginx, to act as a proxy between the request and your actual applica‐
tion code. Even if your programming language can speak HTTP directly, it is gener‐
ally considered unsafe to trust it in production.

34 | Chapter 3: Serverless Architecture and Patterns

GraphQL
GraphQL is an increasingly popular way to create a backend with the interface of a
single database for applications that are in fact comprised of multiple services, each
with its own unique datastores. GraphQL allows for a single API request to invoke
and consume results from multiple services without explicitly creating logic to com‐
pose each specific combination of those services. This can be an alternate interface to
the API gateway model.

Networking
Networking is an important part of any internet application architecture, especially
where security is concerned. Life would be much simpler if we never gave any
thought to the networking components of our systems (especially since we would be
unemployed after either leaking or destroying all of the company data and systems, or
both).

For our purposes we must consider the construct of a subnetwork, or a subnet, when
deciding on our architectures. Even within the walls of a data center, a request to a
public IP address on the internet may be routed via the internet. As a result, it is best
if sensitive data is kept off the public internet and is only accessible via private IP
addresses on private subnets. You will have to consider what entities have access to
which networks, and which of those networks have access to the greatest network of
all, the internet. By default, your function will have full unfettered access to the inter‐
net, but that may not be acceptable to your organization due to the possibility for
exfiltration and the circumvention of all rules and controls. Sometimes logging egress,
traffic leaving the network, may be sufficient, but at other times, you may need to
force your serverless compute to exist on a private network that accesses the internet
through the channels and systems dictated by your company.

Depending on your system, you may or may not need to configure your functions to
exist in private networks to access other sensitive systems, internal-only services, or
the internet.

State Machines
Step functions are implementations of a state machine that offer many benefits for
appropriate workflows. Step functions allow you to codify a workflow as a series of
steps or with logic. The principal benefit is that task orchestration and the state of
each entity is managed for you without the need to handle any plumbing or even
interim datastores. This includes the ability to have an entity wait without having to
create or manage queues, even while waiting for another component or service to
reach a state of consistency before the next action can be taken. Your eventually con‐
sistent systems can be abstracted away as a simple set of steps. Additionally, having an

Cloud Provider Components | 35

entity wait without paying for compute can save money and is a great way to imple‐
ment exponential backoff, a concept covered in Chapter 4. Step functions may also
emit events so that you can integrate them with other parts of your system.

Logging
Due to the ephemeral nature of serverless functions and the way in which micro-
containers are spun up and down in a matter of milliseconds, cloud providers route
serverless function logs to their logging service. But since cloud components have a
new level of citizenship in the world of serverless, writing logs can trigger functions
to fire and consume them as well! This enables you to consume and react to your logs
or ship them to other systems (usually as part of an organizational requirement).
Logs are the lifeblood of a production application and the primary way to get useful
information about the current actions of a system. But they are also intended to be
lossy (they may lose information), as sending them to external systems, even the
cloud provider’s logging system, takes a back seat to the actual handling of messages
and business logic. If they must be persisted, accurate, and complete, then they are
not logs in the architectural sense. Instead, they are data and must be stored that way.
There is never, and should never be, a guarantee that data emitted to a log will ever be
seen again.

Logging will be covered extensively in Chapter 7.

Monitoring and Alerting
As with logging, you may be limited to your cloud provider as the only way to emit
metrics without an additional network connection. You may have other options, that
rely on emitting metrics through logs. Other integrations rely on network calls that
may change the outcome of your function invocations if they fail before the function
time-out. For our purposes, we will treat all monitoring and alerting options as equal.

A monitoring system consists of metrics of different components of your system.
Application level, or custom metrics that are defined by your system, are also meant
to be lossy in the same way logs are. (If they weren’t, they would be accounting, and
stored as such.) System metrics, or those provided by the cloud provider or by a
monitoring agent about a nonserverless instance, are generally more reliable as ways
to monitor the state of not only your systems, but managed services.

An alert is a configuration for your monitoring system to continuously observe a spe‐
cific metric, or aggregation of metrics, for an anomaly that should notify either a
human or nonhuman system. A proper monitoring solution should account for the
lossy nature of custom metrics, and should rely on system metrics and custom met‐
rics to create thoughtful alerts. You can react with automation such as spinning up
extra processing to relieve a backed-up queue by monitoring its depth. You can have

36 | Chapter 3: Serverless Architecture and Patterns

another alert with a higher threshold to alert a human operator if for some reason the
queue continues to grow.

Events from Your Cloud Provider
An interesting DevOps case has come about due to serverless compute. Before serv‐
erless, there were ways to consume events or a log about events happening in your
cloud environment such as the creation or destruction of instances. But with the
introduction of serverless, the major cloud providers have adapted their cloud events
to invoke your function with custom business logic. This can lead to powerful cloud
automations to save money, resolve issues, or even enforce compliance with policies.

In addition to all of the events and triggers mentioned above, there may be even more
available from your cloud provider. One such case is to consume logs of events hap‐
pening in your cloud environment. These logs or streams were originally intended for
ensuring compliance or auditing access trails, but in serverless, the power is now in
your hands to create even more use cases.

You can use functions to save even more money on your cloud bill. An example of
this is to use spot compute instances, which can be terminated at any time upon
demand and have huge cost savings. You can have an event triggered by the impend‐
ing shutdown of an instance, then cause a replacement instance to be provisioned, so
you have no degradation of service in a classical nonserverless component.

Periodic Invocations
Serverless architectures are event-driven by nature, even if sometimes that event is
caused by a user. Periodic invocations are a way to create synthetic events to kick off a
process without directly being driven by a user. This is a necessity since in a fully
serverless world, you don’t have any idle servers.

For those unfamiliar with cron, it is a daemon that runs on Unix systems to have
commands run at certain schedules. Its syntax can be a bit confusing, but is so widely
used that your cloud provider may support cron syntax in addition to more human-
friendly constructs, such as running a certain job every 5 minutes. Periodic invoca‐
tions are the serverless answer to a crontab (the file where cron entries are stored). If
you don’t have a server running around the clock, how can you schedule execution of
tasks?

Events from Your Cloud Provider | 37

2 What is a microservice but a tiny, single-purpose monolith?

Patterns
A pattern is like a template that you can copy, reuse, and adapt to meet your particu‐
lar needs. It provides some additional confidence since it has been used before.

Regardless of your cloud provider, integrations are numerous and compelling, as well
as a gateway to increased serverless adoption. Keep in mind, an integration is not just
something you take without understanding its complexity. Nor is it just something
provided by a vendor. If you have two services that interface in some way, the cohe‐
sive combination of the two is an integration. You can also make your own integra‐
tions, in the vendor-provided sense of the word, which we will cover later in this
section.

In the same way that software architecture is nascent, serverless architecture is essen‐
tially a sentient infant. Patterns, best practices, and tools are subject to change. I want
to give you the best overview of patterns to understand, evaluate, and create your
own since these patterns could be stale if we stuck to specific implementations of
them in their own architectural drawings, as serverless is still relatively new.

This will not be a comprehensive survey of what is available when utilizing only serv‐
erless. But these examples highlight strengths and common use cases of serverless,
which may not always be the same. Remember, the access pattern (when and how it is
used) and predictability of usage (can we predictably scale up and down to meet
demand) are the best ways to determine if a certain problem is best solved by a serv‐
erless architecture.

These example architectures will not all look the same. Remember, an architecture is
an abstraction of a certain layer (or layers) from a certain point of view. The sample
patterns ahead will not always be from the same point of view, but they will generally
be at the same layer of abstraction: the cloud building components that comprise the
pattern.

You might use serverless for one task in your entire system, or you might be fully
serverless. There are a lot of different use cases, and the remainder of this chapter will
provide examples.

Example 1: Serverless Monolith
The serverless monolith is the monolith pattern deployed as one function with an
API gateway in front of it (see Figure 3-1). Despite its name, this is a great pattern for
deploying a serverless microservice.2 It may also be the starting point for your first
foray into serverless computing, especially if you’re building a monolith that is

38 | Chapter 3: Serverless Architecture and Patterns

intended to evolve into microservices, as described in Chapter 2. If you plan to han‐
dle URL routing inside your application, this is how it will be deployed. Otherwise,
you will have to configure every routes to function mapping in your API gateway.

Figure 3-1. A serverless monolith

Example 2: Incoming Webhook
We will cover webhooks more in Chapter 4, but in essence it is when a system you
generally make API calls to instead makes API calls to you to notify you when some‐
thing changes so that you don’t have to poll and request. You can throttle to protect
your datastore if it is shared by other components of your system, but it is best to
decouple the incoming request, and your system, by acknowledging the message and
placing it into a queue. This way, you don’t lose valuable webhook data if your system
is not fully functional to act upon it.

The webhook pattern (shown in Figure 3-2) is also used for integrating with chat and
voice services such as Slack or Alexa, or for handling other real-time events such as
an incoming phone call or text message from Twilio. You can also use a similar pat‐
tern for chat, voice, and real-time events, but you will want to shed the initial decou‐
pling of the queue. You will need to respond directly to the webhook with a
meaningful message to be delivered to the user synchronously.

Figure 3-2. An incoming webhook

Patterns | 39

Webhooks are a common way to use serverless to implement a chatbot for a third-
party chat platform. Modern productivity chat applications allow you to create the
appearance of a chatbot that is simply an HTTP endpoint accepting a webhook and
responding with JSON, which will ultimately be displayed as a response from the vir‐
tual chatbot. Serverless works for chatbot integration because the latency seems natu‐
ral and the integrations usually require little computer power for the unpredictable
load and long idle periods.

Example 3: Using Your Cloud Provider for User Authentication
The major cloud providers offer managed services for handling identity and authenti‐
cation, which this can be beneficial for reducing the overall amount of servers in your
architecture because the sessions granted by these systems can be used to communi‐
cate directly with other managed services they provide without the need to imple‐
ment backend logic. Keep in mind that this may limit your options to sanitize and
validate input, but when dealing with certain storage use cases, such as storing user
data solely for the use of the same users or trusted members of their teams, it can save
a lot of time. These authentication can be used with their API gateway offerings to
further simplify your focus on business logic. You can even have actions such as user
registration trigger side effects by invoking functions directly, as shown in Figure 3-3.

Figure 3-3. An authorizer pattern

40 | Chapter 3: Serverless Architecture and Patterns

Example 4: Generic Background Task Pattern
Almost every user-facing system that is hosted in the cloud will find the need to
decouple a long-running task from a user request. Figure 3-4 shows a simple pattern
for one popular use case: sending a welcome email on registration.

Figure 3-4. Generic background task pattern

Example 5: Streaming Extract, Transform, Load
Serverless is great for streams. A very popular use case is utilizing functions to per‐
form an extract, transform, load (ETL) pipeline, shown in Figure 3-5. Set up a func‐
tion to consume a stream (extract), introduce some custom logic, filtering, validation,
normalization, or other processes (transform), and send the data elsewhere for stor‐
age and/or further processing (load).

Figure 3-5. Streaming ETL pattern

Example 6: Create Your Own Polling Integration
Serverless functions are a great way to create your own integration between two serv‐
ices. This method is used to adapt two components together when an integration is
not available natively by your cloud provider. A simple example is using a function to
poll a source of data or events, and create invocations as needed.

Patterns | 41

Figure 3-6 demonstrates how to adapt Kafka, a stream processing system, to trigger
serverless functions in reaction to a stream.

Figure 3-6. Polling integration pattern

Example 7: Processing Files and Images
If there was a gateway drug to serverless compute, it would be the ability to automati‐
cally process files as they are put into storage. You can set up an integration to take an
incoming image, for example, and compute all of the required thumbnails, water‐
marks, content sizing, and so on. Even Netflix uses serverless to manage processing
and transcoding video in all of the different formats, sizes, and compressions needed
to provide a user experience with minimum buffering and minimum servers. You can
utilize a serverless integration to have files put in a bucket with one cloud provider
and replicate into another cloud provider. See Figure 3-7 for an example.

Figure 3-7. Pattern for processing files and images

42 | Chapter 3: Serverless Architecture and Patterns

Example 8: Migration Service Pattern
The migration service pattern (see Figure 3-8) allows you to temporarily wrap
another HTTP API while you replace it with a different system. You can put an API
gateway in front of an existing API, even if it is external, and route by route imple‐
ment functions to change functionality or even what service fulfills the request. You
can have a function that validates and/or modifies a request, sends it to the original
endpoint, and then modifies or ingests the response before returning it to the original
requester. Once you have implemented your own version of the entire API, you can
change the interface if you want.

Figure 3-8. Migration service pattern

Example 9: Fanning Out
When one unit of work creates multiple additional tasks, spreading out a message or
work, that unit of work is considered to fan out. Unintentional fanning out is some‐
thing generally avoided as an anti-pattern. Some problems in serverless seemed to be
only solvable by fanning out. This felt like a dirty secret shared in whispers at confer‐
ences until it made the main stage and people realized it is sometimes a necessary
part of a real-world serverless application.

Patterns | 43

Since a purely serverless architecture is event driven, sometimes you need to amplify
an event to reach a desired outcome. See Figure 3-9 for an example.

Figure 3-9. Fanning out

Conclusion
Your job is to understand the domain, problem space, and issues you’re trying to
solve. Properly created architectures provide foresight and stability for the future of a
system. You’ll have many choices for components: managed services, open source
software, vendor solutions, and homegrown. Using multiple services from your cloud
provider will provide additional lift in your systems.

Remember to plan your architecture to grow with the software.

Serverless architectures provide many integrations and have reshaped the cloud by
making automation more accessible. In the land of the cloud, automation is king—
and serverless is the kingmaker!

44 | Chapter 3: Serverless Architecture and Patterns

CHAPTER 4

Interfaces

You shouldn’t be uneasy about any parts of the architecture. It shouldn’t contain anything
just to please the boss. It shouldn’t contain anything that’s hard for you to understand. You’re
the one who’ll implement it; if it doesn’t make sense to you, how can you implement it?

—Steve McConnell, Code Complete (Microsoft Press)

In Chapter 3, we discussed architecture. Traditionally, people think of the architec‐
ture of a system as the boxes in the diagram, but even more critical are the lines con‐
necting the boxes. These lines can signify many things, and they are an abstraction of
how these systems connect and communicate. In this chapter, we will study one
major part of those lines: interfaces.

This chapter will discuss what an interface is, what to consider when creating or con‐
necting to one, and the most common constructs the cloud providers offer for these
lines.

Adopting modern application design comprised of smaller, independent components
or services enables you to focus on development and empowers you to make the best
choices in how you want to solve each problem. You should be able to focus on the
features and the business logic, and the infrastructure should give you lift. But this
does not come for free. You have to mind every point where coupling can occur, and
minimize that coupling as much as possible. As previously discussed (in Chapter 3),
you have to have rules and standards for your services’ interfaces and how they inter‐
act with other services. But you will also have to implement software using the inter‐
faces provided by other services internally or ones outside of your company
altogether, such as Stripe or Twilio. We will cover how to best handle interfacing with
software you don’t control from both perspectives.

Your service relies on other services. Other services will rely on yours. The key to
winning is to design your service with purpose and foresight. You will make

45

https://learning.oreilly.com/library/view/code-complete-second/0735619670

trade-offs. Document, expose, and hold steadfast to these trade-offs until they are no
longer necessary.

Interfaces: Some Assembly Required
In the scope of this chapter, an interface is the surface area between two components
of the application. It is how they join together in order to serve a larger purpose.
These components can be internal or external, proprietary or open source, self-
hosted or managed. For our purposes we are concerned with the structure and
schema of the messages being passed around, how they are passed around, and what
happens when these actions do not behave as expected.

The Message
The message is what is being sent between components and how that message is
packaged. This may include information about the requestor, headers, sessions,
and/or information to validate that a given request or task is authorized. The most
common encapsulation of these messages will be in JSON.

The Protocol
The most ubiquitous application-level protocol in the world today is HTTP. (And
don’t forget about the S.) Remember, networks can’t be trusted, ever. They are not
safe, they are not secure, and they are not reliable. HTTPS at least provides some
assurances that messages are not being improperly modified.

Be mindful of abstractions when discussing or debugging interfaces. For example,
when a developer says HTTP, they generally mean HTTP over TLS (HTTPS) over
TCP over IP over Ethernet or fiber. Any one part of that stack may fail, cause issues or
limitations, or otherwise drive your implementation details.

The API you utilize to issue commands to your cloud provider is implemented over
HTTP, and HTTP is even used by cloud instances to get credentials to connect to
those APIs. However, you are not limited to HTTP. Many providers have the option
to communicate to clients over WebSockets. Your functions can utilize any type of
outgoing network connection to talk to other systems. For example, SFTP is still
commonly used to move data and even money around in nightly batch jobs, and you
can use a periodic invocation to start such a task.

The Contract
Finally, your interface includes the contract, or expectation of what will happen as a
result of a certain message. This is the functionality that you expose to software cli‐
ents of your component, generally via documentation. For example, what should hap‐
pen if a client tries to add the same email address to a mailing list twice? These are the

46 | Chapter 4: Interfaces

decisions you will be left to make, and you must provide a human-readable artifact to
convey promises and expectations to those integrating with your service.

Serverless Interfaces
Before we discuss designing interfaces, let’s examine the options and building blocks
available in serverless, and some of the characteristics of serverless compute compo‐
nents in your systems.

When connecting the architectural boxes of our serverless functions, we can choose
between two types of invocations: synchronous and asynchronous. Synchronous, or
request/response, invocations are blocking operations, meaning the caller is waiting
for the function to finish its request before returning a response. Asynchronous invo‐
cations, also known as events, are nonblocking and don’t require the request to com‐
plete before responding.

A good rule of thumb is that if the action or logic that invokes a function cares about
the result of the function in order to fulfill its own objectives, it fits into the synchro‐
nous model. If it does not directly care about the result of the function (other than
knowing it was triggered), it is best served by the asynchronous or event model. In
the asynchronous model, the result or actions taken by a function will likely be
important to the overall application, but not specifically to the action or logic that
first triggered it.

Some integrations offered by your cloud provider may surprise you with the type of
invocation utilized. For example, processing a stream of data that has been written to
the database is a very asynchronous action. It is literally a building block of an event-
driven architecture. But since the stream is processed in order, at least when utilizing
DynamoDB, the actual function invocations are synchronous. This is because the
hidden component that is responsible for keeping track of its place in processing the
stream and firing of your functions with your business code relies on the result of
each invocation to update state, and fire the next one as well.

Automatic Retries and Dead Letter Queues
Sending failed function invocations automatically to a queue of failures, or a dead let‐
ter queue, is a fundamental building block of an effective serverless component.

As far as serverless is concerned, in AWS, asynchronous invocations will be retried
automatically up to three times, with no control on your part as to how. After that,
you can have failed invocations fail into a failure queue. With Google Cloud Func‐
tions, you have the option to enable retries for background functions. However, Goo‐
gle cautions that invocations will retry repeatedly for up to seven days, so they should
be used only for retriable failures. Azure offers dead letter queues and retry behavior
for certain types of integrations.

Serverless Interfaces | 47

1 FIRST: “for the inspiration and recognition of science and technology.”

Concurrency
An important component of serverless compute is the ability to set a concurrency per
function, as well as an overall maximum concurrency across all functions. The con‐
currency is the number of simultaneous invocations being processed at a given time.
The biggest benefit of the granularity of deploying serverless functions is the ability to
scale a function independently of others based on demand, and this setting is quite
literally the scale of a given function.

Why not just set this to its maximum? First, you want to prevent unexpected behav‐
ior, so it is best to never leave any option unbounded. A runaway component can
cause havoc on other parts of the system, not to mention your monthly bill. The
unlimited scale of serverless is powerful and will break other components if not left in
check.

Also remember that your cloud provider will have default limits to the concurrency
of your overall account that you will want to incorporate into planning for the future.
If you do not have a support contract with your cloud provider, it may take a week for
them to respond to an increase in a service limit.

Finite Versus Infinite Scale
Serverless as a paradigm will break other services that are not set up for massive and
instant scale. What are you going to use for caching? How does it scale in relation
with demand?

Benchmark your tools, or find others who have. Have something planned to handle
it. Maybe you can even use a function.

Your customers will always be the least predictable point in your system. Will a surge
in new user sign-ups cause an influx of invocations to your service? Sure, your server‐
less compute will be able to scale, but other nonserverless components of your appli‐
cation may not be able to handle the sudden increase in load. One interesting
solution is to use functions to scale up or down other parts of your infrastructure
based on demand.

Designing Your Interfaces
In the FIRST Robotics Competition,1 they limit the maximum width of robots to 36
inches because that is the width of a door. They could allow robots to exceed this
width by being disassembled, or possibly even rotated, but enforcing this limitation
greatly simplifies the transport of all robots developed for the competition. Keep

48 | Chapter 4: Interfaces

https://www.firstinspires.org/

commonsense ideas like this in mind when developing the standard operating proce‐
dure for your services.

Don’t, however, allow these standards to limit your technological choices. A com‐
monly used but not perfect pseudostandard exists in JSON because at this point, it’s
likely that even your light switch can encode and decode JSON.

Consistency doesn’t improve the reliability, resilience, and scalability of your system
by magic; it does so by setting and communicating clear expectations of how compo‐
nents interact with each other, and reduces the cognitive load to develop, debug, and
maintain your applications.

Because you are going to have many different independent components, such as
functions, in your serverless system, having a strict design for how the services inter‐
face with each other will be critical to long-term stability.

Services are becoming increasingly distributed. With that distributed nature comes
increased complication. As discussed in Chapter 1, a small service with a well-defined
responsibility is simple. A constellation of those simple services is complex. The rest
of this chapter will discuss best practices around how your service interacts and
depends on other services, as well as how other services will interact and depend on
yours.

Messages/Payloads
It is important to thoughtfully design both the input and output payloads of a system.

JSON
Most messages are passed around in JSON. JSON is not perfect, but it is omnipresent.
As with any universally used tool, it does not handle every single use case with grace
and perfection. For example, the number type of JSON may not always perform in
the way you expect it to, because 64-bit numbers in JavaScript are not 64-bit integers.
This is a perfect example of how your components will have to adapt to their inter‐
face, and how interfaces will impact implementation details. While this is a problem
that should be minimized, JSON may not have been an intentional choice: it was
chosen by popular vote.

Thoughtful design of your payloads should also include creating a standard format
for error messages when a unit of work runs into a problem. Remember, just because
you might expect something to work and your code did not raise an exception or
return with an error, does not mean it worked as expected.

Designing Your Interfaces | 49

Securing messages at rest
HTTPS provides encryption in transit to keep messages secure from eavesdroppers.
Encryption at rest is the principle of ensuring data is encrypted when it sits on a disk.
The payload of a function invocation may be stored on disk, but not all payloads are
stored securely. Keep this in mind when deciding what data to pass around in mes‐
sages, and utilize proper encryption on any data that may touch a disk. Ensure that
your failure queues utilize encryption at rest, if possible. Avoid logging sensitive data.

Sessions and Users/Auth
An important part of your interfaces to consider is authentication. Authentication is
knowing that an entity is who it says it is. Depending on how a function is invoked, or
a component processes a task, there is either an implicit or explicit authorization
component that depends on that authentication. Authorization is ensuring that an
identified entity is permitted to perform an action, or access certain data. Never trust
a message payload on its own merit, as the network is never to be trusted. If the func‐
tion was executed, you can generally assume the caller has some authority to do so.
But some serverless patterns will rely on information about the user session, provided
by an API gateway. Never take this data at face value: always validate it in some way.
For some systems, this means utilizing JSON web tokens (JWTs); for others, it means
validating the session information with another service.

Avoid Unbounded Requests
Some requests are not bound by time and use time-outs to compensate for that. As
you write your code, don’t write just for now; write for future scale, and incorporate
consistency and standardization. One such standard to follow would be to never
allow an unbounded request by default. For example, fetching a query from a SQL
must have a LIMIT clause as the default, both to prevent it from growing in time com‐
plexity as your usage grows, and to protect the precious resource that is the database.

HTTP was widely adopted in part due to its versatility. It is powerful but not a perfect
protocol, and developers struggle with utilizing its full power and capability. One
underused feature is headers, which are a great way to encapsulate metadata about a
request, that can be extended using the X- namespace to indicate a nonstandard
header. Most custom headers are implemented with an additional namespace such as
X-LEARNING-SERVERLESS.

Status codes are integral to success with HTTP as a transport mechanism, but your
services should define the minutiae of what each status means. In addition, be mind‐
ful of the external services ideology of their status codes. Generally speaking, statuses
in the 200 or 2xx range are successful requests, statuses in the 4xx range indicate an
issue with the validity of the request, and statuses in the 5xx range are reserved for
server-side issues and errors. But not all statuses are implemented by the book. For

50 | Chapter 4: Interfaces

example, if you visit a private GitHub repository while logged out, or while using an
account that does not have access to that repository, you will get a 404 or File Not
Found. The application is telling you it is not found, even though it exists. GitHub in
fact found it, determined you were not able to see it, and instead of leaking data about
its existence, lied and said it was not found. This is considered by many to be a best
practice, and it is another reason why the implementation of your status codes should
be standardized and well documented.

Another example of the power of granular status codes is sharing that a result was
successful, but that the system already knew about it. You may want to return a suc‐
cess message regardless of the previous state because the end result is the same. You
may also want to return a more specific status such as 208, Already reported. But
you may not want to provide such information externally, as it could be useful to
hackers to know if a user with a leaked password has an account on your system.
Many times, a website with strict rate limiting and monitoring on incorrect login
attempts will leak information about what emails are registered on another endpoint.
Never let your interfaces leak accidentally.

Interface Versus Implementation
Just as an interface should not dictate an implementation, an implementation should
not dictate the interface. I was working on a system with a bunch of rules codified in
a YAML file. While I was onboarding another engineer to the team, an error with that
file caused part of the system to stop functioning. The engineer wanted to create a test
case for the CI/CD pipeline that would prevent a bad configuration from being
deployed. Sounds like a solid use case of best practices…right? Until I explained,
“That’s not a file, it’s a database.” The file consisted of rules that were meant to operate
independently of each other. A mistake in one entry should not prevent the whole
system from running. The database happens to be a file because we don’t need a data‐
base. A bad entry in this file shouldn’t prevent a good entry from going out in the
same commit or deployment. It is important that the file doesn’t have any syntax
errors (corrupt database), and maybe that the data is in the correct layout (validating
the data before saving it). In this example, the interface is not the implementation.
For now, we care about how the rules were processed, not how they were stored.

Remember, your interface should not leak your implementation details, as then you
become stuck on one way of doing things. You want to have flexibility in how you
implement it.

Designing Your Interfaces | 51

Avoid hidden coupling and interfaces
What happens when you share a datastore such as Redis with another service? (Redis
is an in-memory datastore commonly used for caching, or storing temporary data
such as user sessions). Sometimes, even sharing something as benign-seeming as S3
or bucket storage can break the interface of a service and cause issues for all involved.
You can utilize a smart redirect code like 30X to redirect requests to the underlying
resource as the current implementation, but having that request come to your service
to retrieve the resource will save a lot of trouble down the road if you ever want to
modify the behavior of this component or even change the underlying storage.

Lines with Logic
When we zoom in on an architectural diagram, we see that the lines are really more
like boxes—and those boxes are spring-loaded. They absorb load, but when given too
much load that is not released, they can fail. I introduced these components in the
previous chapter, and we will now look at a couple of options for designing them.

Queues
Queues are a great way to decouple two components of a system. You can reliably
pass a message or unit of work between systems without forcing them to interact
directly, and you can store messages while a component is down. They are like voice‐
mail for your systems! And just like voicemail, they have limits and automatic purg‐
ing of stale messages. Be sure to understand the promises your queue makes, a part of
its interface, when integrating it into your system.

Streams/Event bus
A stream, or event bus, links two items together in a decoupled and scalable way.
These components are a great way for actions in your system to have reactions
without having to explicitly hard code the reactions in the original source of the
action. You also benefit from deferring tasks that don’t have to happen immediately as
the result of an action but can be in near-real time, instead of causing the original
action to fail because of an inability to trigger a reaction.

Designing the Unhappy Path
Yes, it is time to talk about the author’s favorite topic, failure.

The surface area between services, or how their interfaces interact, is the most critical
failure point and requires adequate design to be properly decoupled.

A cornerstone of being an effective engineer is being able to turn as much unexpected
behavior as possible into expected behavior. We don’t have infinite time, so we can’t

52 | Chapter 4: Interfaces

do this for all aspects, but sometimes it may be as simple as properly documenting
something unexpected so that it’s expected.

Validating Input
Be sure to validate all input that flows into your components; do not even trust the
metadata about the request itself. You never know when that request, “authenticated”
by your cloud provider, is going to inadvertently misroute traffic or let traffic that is
not authenticated through. That is why they recommend validating even that data to
ensure it is authentic. Just because you can npm install a plug-in that gives you
authentication, or click some button on your cloud provider’s console, that doesn’t
mean your integration work is done. You must validate all your services. Remember
that the nature of the network means you will receive events past the replacement of
code that generated them, and you will even receive messages intended for other
services that may have previously occupied the same IP address.

Even webhooks (which we will discuss later in “Webhooks” on page 57) from service
providers such as Stripe must be validated. There is no way to accurately validate the
sender of the message using the network alone, so you must verify the signature they
provide as authentic before taking any actions based on the message.

Failures
If interfaces are the surface area between components of your application, failures are
cracks that wish to spread using these interfaces. Any place where two components
are connected is a point of eventual failure. Thoughtful interface design can minimize
failure, but its occurrences can never be reduced to zero, and therefore you must
design for them in your systems for maximum resilience, and minimum wake-up
calls to fix broken services.

Partial failures
A partial failure is a task execution that performed some work before it failed. It is a
pain point of developing robust systems, as some steps of a task may be successful,
and trying again can cause a failure due to that partial success. Earlier when discus‐
sing contracts in “The Contract” on page 46, we asked about how you might handle
trying to add a user to a mailing list that is already registered. If you have chosen to
return a failure in this situation, it may prevent a retry of a task that depends on this
step successfully being reprocessed. In these cases, idempotence is your friend: that is,
the same action performed multiple times with the same result every time. You may
want to return a success message for the idempotent step regardless of the previous
state because the end result is the same, and this may help you when dealing with par‐
tial failures so they can be retried successfully.

Designing the Unhappy Path | 53

But this will not be the case with all actions, so you may need to take extra care when
writing the application code for your functions to handle steps that may have already
completed successfully. You may not think that this is part of your interface, but it
definitely will be exposed and should be taken into consideration not just in the
implementation, but also in the contract and communicated expectations of the
component.

Cascading failures
Cascading failures are when a failure in one part of the system or application spreads
throughout the system. Want a quick idea of this? If you are running a classic “three-
tier” app, imagine what would happen if you shut down the database. Depending on
the implementation of your service, it would likely cause delays or time-outs and
would take down your service. The failure has spread.

Now imagine instead, someone pushes a database migration that locks the user table
in a way that prevents login from succeeding. Eventually, multiple users unintention‐
ally hammering the login will use up all the connection pool resources (you are using
a connection pool, right?), and all database connections will be taken by processes
trying to wait for the table to unlock. The actions of users who were able to browse
the site begin to slow down to the point of total failure, where all the available instan‐
ces running the monolithic web app are taken with requests waiting for the database,
and any new spun-up instances are waiting for database connections, which are fully
exhausted.

To avoid this type of failure, you must isolate and decouple services, as well as section
off failures.

The poison pill, or the importance of interface stability
For synchronous events, handling retries is up to the caller of the function. For man‐
aged integrations, such as our previous example with streams, where the invocations
are synchronous but the overall appearance of the component to you is asynchro‐
nous, the implementation logic of the cloud provider will be responsible for retries. In
the case of the DynamoDB streams, there is a metric you can consume or alert on,
called IteratorAge, that lets you see the status of the internal AWS logic handling the
stream, or the iterator. This is how you know that your stream is blocked, in what is
commonly known as the poison pill. The poison pill is a great example of the impor‐
tance of interfaces. If there is a message in a stream that cannot be processed, it will
prevent the consumer of that stream from moving forward to the next message. One
bad line of code here can hold up your entire system. One failing component can
cause others to fail in a set of cascading failures.

54 | Chapter 4: Interfaces

Don’t fail silently
Do not let important failures drop silently on the floor unnoticed and unfixed. Other
than the previously mentioned retry behavior of certain asynchronous function invo‐
cations, failures will go unnoticed by default. Not every failure needs to sound the
alarms, but a good starting point is to use a dead letter queue when you can, and a
platform for monitoring exceptions such as Sentry. Every task and message in your
system has some level of importance, and should not be relegated to a data point on a
chart of failures. Engineers may make jokes about only testing their code in produc‐
tion, but even when you have an exhaustive test suite, there is no better source of
truth of what is currently broken than the errors being faced in the realities of pro‐
duction traffic.

Later, in Chapter 6, we will discuss monitoring so that your systems can alert you to
their own health and to a potential degradation of service.

Strategies for Integrating with Other Services
Finally, as you pull all this together into your system design, there are several func‐
tions to consider that can help make integration with other services seamless.

Time-Outs
Any operation can fail, but usually it’s one that relies on the network or any compo‐
nent of a computer that is not the CPU or RAM. If you are having issues with the
CPU or RAM, you have much bigger problems to deal with; with functions or con‐
tainers, the broken node should eventually fail and be brought back up. But if you are
sending or receiving data over the network, or even reading a file from local storage,
you will want to be mindful of time-outs.

Computers are very obedient. If you tell the computer to fetch a piece of data over the
network from an unresponsive system, by default, the computer will wait forever!
Imagine sending your dog outside to fetch the paper, but the newspaper goes out of
business. Your dog will sit outside obediently, waiting forever. You would be surprised
how bad the default settings for time-outs are in many popular languages and libra‐
ries, or even in the kernel level networking implementation.

Luckily, serverless functions have an inherent time-out by default. If you have a func‐
tion that is a discrete and retriable unit of work and it is OK for it to partially fail and
be retried, boom, you now have time-outs! But when and where should you use time-
outs? The short answer is: always and everywhere.

Luckily, in the world of functions, there is a shortcut. If your function does one thing
but takes a couple of network connections to get it done, you can set a time-out on
your function. In fact, you have to. A time-out that is applied only to the connection

Strategies for Integrating with Other Services | 55

will not protect you against a very slow but active response trickling in over the net‐
work. But, let’s say you have a one-minute time-out on your function. If you want to
get a lot of HTTP requests done in a function invocation, you want to set a reasonable
time-out on each of those requests. Check with the library you are using and its
defaults. Some libraries have no time-outs by default. Some have multiple time-outs
you can set, and for good reason. There will likely be a time-out for a connection to
be established and a time-out for the maximum time elapsed while waiting for pack‐
ets from a server, as well as an overall time-out. A connection may be established
quickly, and the server may consistently respond with additional information, but
that may not be enough to prevent the request from taking too long.

Be mindful of the service limits and time-outs when designing your time-outs. Keep
in mind that Amazon API Gateway, for example, has a maximum 29-second time-
out. Your users will get a 502 response if your lambda takes 60 seconds. Your lambda
will think everything went great, and your user will think it didn’t work at all. The
user will retry and you will get stuck performing the same work twice, then they
won’t think it works, so they will try again. Adjust your time-outs to coordinate with
your services’ time-outs.

Retries
Retrying work has an inherent balance to it. Retry too soon, too often, or too many
times, and your attempt to make sure one unit of work gets done can quickly prevent
any work from being done throughout the whole system.

An incurable, or terminal, error is one that has no chance of a successful outcome if
retried. In reality, it may just be a temporary condition where the chance of a success‐
ful outcome is close enough to zero to round down. Depending on the observer, or
designer, of the system, you can determine if an error that is likely to succeed eventu‐
ally if retried should be considered terminal in the current situation. A simple exam‐
ple would be a lambda with a time-out limit of 60 seconds trying to access a crashed
system that takes at least 5 minutes to recover. Sure, the error itself is not terminal,
but given all the parameters available, it has a 0% chance of succeeding. But, that does
not mean the work should not be retried. Even if that unit of work get retried until its
natural exhaustion into a failure queue, as soon as it gets there, the other system may
be up and running and is no longer terminal. You should plan for how to inspect
and/or retry failures from your failure queues. If you just open the floodgates and
reprocess the entire failure queue against a service that is recovering to full health and
handling the backlog of retries from other components, you can easily cause it to fail
again. By coordinating your systems with those you work with, you’ll be better able to
prevent bigger, scarier failures.

56 | Chapter 4: Interfaces

Exponential Backoff
Exponential backoff is the strategy of increasing the amount of time between retries
exponentially. It prevents a component that is already struggling from performing a
task from being overwhelmed with retries. Instead, by using an exponentially increas‐
ing delay, a number of distributed components can coalesce on a retry strategy
without any coordination.

This is useful for any type of network-based request that can fail and should be
retried. You can use it for connecting to your database, interacting with third-party
APIs, or even retrying failures due to service or rate limits.

Webhooks
Webhooks are the name for an incoming HTTP request coming from the third-party
API to an endpoint you register with them. REST APIs are not bidirectional. So when
utilizing a popular API such as Stripe, they will utilize webhooks to give you updates
on changes, so you do not have to poll for updates. The interface for the webhook,
or the schema and behavior it is expected to implement, is defined by the third party.

An external service such as Stripe will send you very important webhooks, such as a
failure to renew a subscription, or even a chargeback.

Now let’s think about this in the legacy world. Imagine your payment processor called
you with the fact that a user’s payment bounced. Would you put them on hold while
you go and figure out what you are supposed to do with that information? Or do you
write it down, maybe verify that you have the information correct (and verify the
identity/authenticity of the information), save it somewhere important, and tell them
that you received it? They don’t care what you do with that information; that’s outside
the scope of their job. Their job is just to tell you. Your job is to faithfully receive that
information and make sure something happens as a result. Anytime you want to take
a synchronous action and make it asynchronous, this works too.

Tight coupling in your applications can cause cascading failures. These can even hap‐
pen across applications. You may operate a SaaS offering that delivers webhooks to
other applications across the internet. If they tightly couple that HTTP request to
their database, an influx of traffic can cause an outage. It’s more common than you
would think. Decouple anything and everything you can.

In this case, take in an HTTP request through an API gateway to a function invoca‐
tion. Validate the payload as valid and authentic, and then throw it into a queue,
stream, or a messaging bus. Return the appropriate HTTP status code for the payload
to the sender of the webhook. This is very important because it helps you in other
ways too…let’s say your database is down. The sender of the webhook may not care at
all. You give them a 5xx status code, so they faithfully retry. Now, those retries are
slowly starting to build up a DoS attack on your systems since they promised you

Strategies for Integrating with Other Services | 57

delivery of these messages and retries. Instead, if some other service is down, you can
just buffer up all the work and pick it back up when it matters.

Evaluating External Services
If you have the luxury of choosing or recommending services to integrate with, and
you likely do if you are reading this book, search on the internet for other developers
complaining about what that other service can’t do. What issues are they having?
How many issues do they have open on their GitHub? What are they searching for on
Stack Overflow about that system? How many migrated to a competitor after they hit
some serious traffic or issue?

Choose great APIs
Choose a service with great APIs. Look for a clean abstraction around difficult pro‐
cesses you don’t want to manage. Then, if for some reason in the future they can no
longer facilitate your use case, you can still use the API you integrated with and make
your own implementation. You don’t have to be stuck with their service, but you’ll
save time by sticking with their API.

Read their docs
Read (or scan) all of the docs before implementing or choosing a service. Look for the
trade-offs they had to make. What are the limitations? Kick the tires; read about
things even if you don’t yet know what you want to do with them. Maybe you will get
inspired. Maybe you will uncover some hidden knowledge. Maybe you will find out
that in order to get feature x to work, you really need to do action y. (We will talk
about documenting your service with a runbook in Chapter 11.)

Rate Limits
The services you interface with likely have rate limits, so in addition to the considera‐
tion of using rate limits with your own interfaces, you should consider how to be a
polite user of rate limits. Just because there are rate limits does not mean you have to
brute force API requests until they are successful. Use concurrency limits for func‐
tions that talk to rate-limited services, and remember to allocate that rate limit across
all the functions that interact with that service, and across regions, if you are using
multiple regions. If you are allowed to perform 100 requests per second, and you are
in 2 regions, you should limit concurrency to 50 in each region. Also, regardless of
this safeguard, utilize retry mechanisms such as exponential backoff to safely retry
when you do encounter a limit.

58 | Chapter 4: Interfaces

Conclusion
When designing your system, don’t just think about the boxes—think about the lines
too, the interfaces. Ultimately, the choices you make for your interfaces will reflect the
culture and norms of your engineering organization, but the encoding and transport
will likely be some form of JSON over HTTP. Never trust any message based on the
assumption that it must be valid if you were able to receive it. Just as you may push an
error to production, so might the network team at your cloud provider. Last but not
least, always plan for errors and failures, and plan how to minimize the impact of pre‐
ventable issues.

Congratulations! You now have the basic system design information needed to get
started with serverless.

Conclusion | 59

PART II

The Tools

“Sandbox”, from the webcomic FaaS and Furious by Forrest Brazeal, 2020

https://faasandfurious.com/128

CHAPTER 5

The Serverless Framework

Now that you have learned the basic concepts to launch your project into the cloud,
let’s discuss the basics of packaging, deploying, and supporting resources. Even if you
are not planning to use the Serverless Framework, you should read this chapter to
understand the basics of configuring cloud infrastructure. The Serverless Framework
serves as a convenient abstraction to illustrate these concepts, and it may provide you
with a lot of value if you can use it for your project.

The Serverless Framework allows for a system or application with a simple configura‐
tion file that configures the framework and creates the cloud infrastructure depen‐
dencies described in the file. Using the Serverless Framework, you can easily deploy a
simple project, or a complex constellation of services. In this chapter, we will cover
the basics of the open source components of the Serverless Framework, how to set up
a simple project, how to find sample projects, and all of the basics you need to use the
framework effectively. Later chapters will guide you through the other tools you will
need to get to a stable production environment. Note that the examples in this chap‐
ter are specific to AWS, but the concepts will apply to all cloud providers. If you
intend to run your functions inside Kubernetes, you may still find this tool to be use‐
ful, but the concepts around infrastructure will not directly translate. If you are using
Kubernetes, this book assumes that you, or another team in your organization,
already understand and can configure your infrastructure.

A serverless system comprised of only functions will not provide a comprehensive
application. Living in the cloud requires combining multiple offerings from a cloud
provider to create a cohesive application. Infrastructure is the collection of resources
comprising your application. Even without servers, your projects may have other
resources that require at least some setup and management over the course of their
operational service. While you could access the dashboard of your cloud provider to
set up infrastructure and make changes, there is a correct, more efficient way.

63

Modern applications utilize the notion of infrastructure as code, an important auto‐
mation technique where you control your infrastructure using only configuration,
code, and automated processes. Following this principle ensures that the infrastruc‐
ture is as expected, changes are treated like code with the use of source control (such
as Git), and changes are peer reviewed and auditable.

While you may be extremely comfortable writing application code, setting up such
operational processes for the first time can be intimidating. If you have chosen serv‐
erless to focus more on adding value and less on the logistics of operation, the Server‐
less Framework can help not only with your application code, but for managing your
infrastructure. It enables you to create, manage, deploy, test, and prod your infra‐
structure in a way that for many smaller projects would only require a simple config‐
uration file. Much like relying on a web framework such as Django or Express
simplifies application development, the Serverless Framework will help simplify your
infrastructure. Also, just like the library of libraries intended for those frameworks,
serverless has an evolving ecosystem of plug-ins that simplify common operations
and patterns so that you can stay heads down on your code, and not on the code ship‐
ping your code.

Note that vendor offerings in the serverless space are rapidly evolving and highly
competitive. My goal here is not to make choices for you but to empower you to
make choices for yourself. It’s the cornerstone of success in engineering—and in life.
Thus, I will stay agnostic to vendors as much as possible throughout this chapter. In
that spirit, when I mention the Serverless Framework, I mean the open source tool,
not the additional proprietary offerings.

Why Use the Serverless Framework?
There are many reasons to add a framework or tool such as the Serverless Framework
into your workflow. First and foremost, by using such a tool, you are making the wise
decision to treat your infrastructure as code. There are many ways to manage your
infrastructure, but only automation will allow you to scale. A change to infrastructure
performed manually, via a dashboard or even a command-line tool, is similar to
adding a zip tie or piece of duct tape to modern factory equipment: it has no clear
purpose, it is subject to future failure, and it will surprise the next person who has to
deal with the problem. Even worse, in the cloud, deployments may reverse manual
changes, or fail due to them. Every rule has an exception, and in an urgent response
to an incident, you may want to make manual changes first (while keeping a log), and
then undo or codify those changes after the fact. (In addition to updating documen‐
tation and publishing a postmortem, of course.)

Using a framework forces you to follow a certain set of rules or practices in order to
achieve the desired functionality of that framework. Sometimes that means changing
the way your system works to fit into a set of rules you don’t have control over, but

64 | Chapter 5: The Serverless Framework

other times it means saving hours and hours of time by doing things in a way that is
widely known to work.

Additionally, when using a tool like the Serverless Framework, you are benefiting
from the wisdom of the crowd, which can be especially helpful when you’re just start‐
ing out. The solutions you find can be extremely timely, as when a change elsewhere
causes problems for anyone using a Serverless Framework. Because you’re all experi‐
encing the same issue, the likelihood that a solution will be found quickly and shared
is extremely high. You can give back by sharing your own solutions. And because
tools that support plug-ins can allow you to share a solution without sharing propri‐
etary company code, everyone is happy.

Even when I first started using the Serverless Framework in 2016, I was surprised by
the quality and structure of its documentation. Usually, I was not the first person to
find an issue as some new service or change was made in the world of cloud provid‐
ers. I wasn’t always able to find an answer immediately; however, when I did
encounter an issue, there was usually some form of thoughtful discussion of why an
issue was occurring and some suggestions for a remedy. This is a much better starting
point than just finding what is purported to be the answer for everyone. Many times,
the community had created a plug-in to solve the pain point or add support for some
new feature being offered by the cloud provider.

Using the Serverless Framework can be a great way to simplify and standardize the
configuration for your many serverless microservices, if that is the route you intend
to take.

When the Serverless Framework Isn’t for You
Using a framework forces you into a specific way of thinking. However, that way of
thinking could be incompatible with the problems you are trying to solve and the
methods you are trying to use.

You do not have to use the Serverless Framework to make your project serverless.
Depending on the nature of your application and the cloud provider you are plan‐
ning to target, it may be simpler to use another tool, such as the one provided by the
cloud provider.

There is no perfect one-size-fits-all tool, as evidenced by the growing number of
plug-ins for small but common oversights in the Serverless Framework. Creating a
dead letter queue, for example, which is just a checkbox on the AWS dashboard,
requires the installation of a plug-in when using the Serverless Framework. Also,
plug-ins must be written in JavaScript, or a language that runs as JavaScript (such as
TypeScript).

When the Serverless Framework Isn’t for You | 65

Finally, if your organization has already gone all in on some other tool or workflow,
and that workflow cannot utilize the deployment or packaging methods of serverless,
this may not be the right tool for you.

AWS Is the Only First-Class Citizen
One caveat: just as AWS is the market share leader in the cloud as of this writing, it’s
also the leader in the community and therefore documentation, features, and plug-ins
in relation to the Serverless Framework. The other cloud providers included in this
book, and all of the Kubernetes-based offerings, require a plug-in to function.

AWS CloudFormation Is Not Perfect
Even on AWS, the Serverless Framework is not always empowered to utilize the latest
and greatest. Under the hood, your serverless.yml file will become the CloudForma‐
tion template. CloudFormation does not have full feature parity and availability with
the AWS dashboard, API, and command-line tools. Something as simple as tagging
an SQS queue, which may be required by your organization, might trail months after
the ability to do so via an alternate method.

In addition, some tools for describing infrastructure as code document the steady
state. These systems will actively make changes to bring you to the desired steady
state. If you create an extra instance of something in an autoscaling group, for exam‐
ple, it will destroy one of them to reach the intended number of instances.

CloudFormation, the underlying infrastructure management of the Serverless Frame‐
work when using AWS, does not operate that way.

For example, assume you have a CloudWatch Events timer, which is a simple way to
invoke a function on a given schedule. If you have it configured as enabled in your
serverless.yml file, and you disable it using the AWS API or dashboard, the next time
you deploy your serverless project, it will still be disabled.

Relying on Strangers for Your Infrastructure
Using solutions from other developers who do not know your specific infrastructure
is not without risks. You’re trusting their advice on critical components of your sys‐
tem and the permissions to spin up costly infrastructure.

For example, when someone shows how simple it is to do something, it may be sim‐
ple for a great reason: it’s wrong, or it doesn’t take into account the complexity of the
real world. Consider all the projects that suggest how to “safely” store your creden‐
tials, such as your database password. Don’t be afraid to question the code and exam‐
ples you find on the internet; many of them are just marketing to get people to try a

66 | Chapter 5: The Serverless Framework

1 Your package manager may support installing a language outside of the expected default system directories.

tool by showing how simple it is. Ask coworkers or other friends to take a look as
well. (I’ll address credential storage in further detail in Chapter 9.)

Additionally, don’t deploy random sample projects from the internet to your organi‐
zation’s production accounts. Make a personal account, or have your company create
a sandbox account for learning.

Finally, take care with letting code run on your computer, especially code that can
affect your company financially. People actively look for leaked credentials on web‐
sites such as GitHub so that hackers can spin up costly cloud infrastructure to do
things as relatively innocuous as mine for cryptocurrency and leave you stuck with
the bill (and the inefficiency of overpaying to mine) or as damaging as doing that
while infiltrating and compromising your organization’s cloud resources and its treas‐
ure trove of data.

It is not just bad projects that get hacked; good projects get hacked too.

Personally, I like to avoid using sudo to install software—that is, running commands
as root as much as possible. So I install my development languages in the user space;
on macOS this is done with brew install.1 This allows you to pip install or npm
install without having to run as root. This can also be achieved by explicitly instal‐
ling packages in the user space (pip install --user), or using a virtual environ‐
ment (virtualenv in Python), or using other project dependency management tools
such as npm to keep requirements contained inside a specific project folder. All of
these approaches limit the permissions of potentially malicious packages, but all
dependencies should be vetted before even trying them out on your local machine.

It is difficult to get into the specifics of what makes a specific sample code, blog post,
or set of instructions wrong for your adoption. My hope is that by the end of this
book, you will be equipped with the information, understanding, and discipline of
being mindful of such things. But it is important to remember that the context will
dictate how strict or lax your security posture needs to be. And let us be thankful for
the people who spent their time sharing examples and knowledge and not judge them
for what they may not know, or may have omitted for the sake of simplicity.

What to Know Before You Start
To simplify the instructions and examples later in this chapter, I would first like to
review a couple of topics that you may not already be familiar with.

What to Know Before You Start | 67

YAML
YAML has seen elevated popularity for configurations due to its clean syntax that
produces cleaner diffs or changes for your Git repository, and ability to have
comments.

The aptly named Yet Another Markup Language (YAML) is not a replacement for
HTML but is instead an alternative to using JSON or other formats to store data such
as a configuration file in a human readable and machine readable format. If that
sounds like JSON to you, you’re right: the creators of YAML have included JSON to
be syntactically correct YAML. That certainly makes switching to YAML a cinch, as
you don’t have to change any of the files to a new format. But that is not the type of
YAML syntax you will likely see in the real world; instead it looks like Example 5-1.

Example 5-1. Example of YAML syntax

key: value
an_array:
 - something
 - something else
a_dictionary:
 a_string: blah
 one_more_string: No quotes needed most of the time
 another_string: "This time in quotes"
 a_boolean: Yes # Comment to inform you that a string is not always a string
 another_boolean: true
 a_number: 4
 another_number: 3.14
 this_is_not_a_number: 2.7.12 # it is a string!

However, there is no perfect format, and YAML is no exception. There are some
sharp edges that can get you, and it is worth doing some reading about YAML best
practices. The main criticism is how the advanced functionality of YAML can lead to
unexpected results for those not fully familiar with its behavior.

Example 5-2 is the equivalent of Example 5-1 in JSON, but notice one hugely popular
feature of YAML that is missing in JSON: comments!

Example 5-2. Example of JSON syntax

{
 "key": "value",
 "an_array": [
 "something",
 "something else"
],
 "a_dictionary": {
 "a_string": "blah",

68 | Chapter 5: The Serverless Framework

 "one_more_string": "No quotes needed most of the time",
 "another_string": "This time in quotes",
 "a_boolean": true,
 "another_boolean": true,
 "a_number": 4,
 "another_number": 3.14,
 "this_is_not_a_number": "2.7.12"
 }
}

If this is your first time encountering YAML, read the docs to better understand how
it is parsed and avoid any mistakes.

Node.js
If you use the Serverless Framework, you will have to understand the most basic parts
of Node.js’s package manager, NPM.

The package.json file is used both for packages and libraries being published to the
NPM repository, or for private projects. For a serverless project that relies on plug-
ins, you will need to have this file, as well as a package-lock.json file. The lockfile, as
it is known, is a common pattern to specify the exact versions of dependencies being
used, to lock them in time, and to make sure your builds and deploys are as reprodu‐
cible as possible.

Once you need a plug-in, you must also start to follow the pattern of using a pack‐
age.json to manage your Node.js dependencies, even if your project is not written in
Node.js. While that may not be the end of the world, it is an additional step (usually
involving npm install) in your documentation and deployment.

Cloud Resources and Permissions
Managing the permissions of a cloud account is an often overlooked and misunder‐
stood part of living in someone else’s datacenters.

First, you have to understand that each resource in the cloud that can take any form
of action on any part of your cloud provider other than itself requires some form of
identity. If you have an API gateway that allows an HTTP request to be processed by
a function, that API gateway needs an identity, and that identity needs permission to
invoke that specific function.

If you’re using AWS, all of your resources will have an Amazon Resource Name
(ARN). Think of it as a URL for a resource in the cloud—not for how it is publicly
found on the internet, but how it is found inside the cloud account. Following are the
example formats provided by Amazon:

What to Know Before You Start | 69

https://oreil.ly/LAZU-

arn:partition:service:region:account-id:resource-id
arn:partition:service:region:account-id:resource-type/resource-id
arn:partition:service:region:account-id:resource-type:resource-id

We will have to use these to create the permissions for our cloud systems. For most
AWS systems, the partition will be aws. When creating rules for permissions, you can
omit certain parts such as region or account, as a wildcard to make a permission as
permissive as possible. The following is an example of a role statement, essentially a
rule granting or denying permission:

Effect: Allow
Action:
 - s3:PutObject
Resource: "arn:aws:s3:::MySpecialBucket"

This statement allows an entity (in the case of your serverless.yml file, your functions)
to put objects into a specific S3 bucket. Actions are granular, so this example does not
allow you to read or list objects in that same bucket. This would mean the function
could not verify the file is actually there. You can find the different actions in the
AWS documentation.

For the resource-id component of an ARN, you can also use an asterisk (*) to create
a wildcard, such as arn:aws:s3:::Learning-Serverless-*. This would allow that
role statement to work for any buckets that we can access in our account with that
naming scheme.

Having to manage and update these permissions can be a sharp edge, especially when
first learning how to manage infrastructure in the cloud. The more granular the per‐
missions, the better regarded they are. However, nobody, especially not those who are
used to wielding sudo permissions, enjoys red “access denied” error messages. One
way to simplify things is by using namespacing. For example, it is unlikely that your
service should have access to all DynamoDB tables across your account, but it makes
sense for your service to have access to all of its DynamoDB tables. By prefixing your
resources with the name of the service, and the stage, you can be more generous with
your permissions, while maintaining granularity and good security posture.

Similarly, while the role deploying your service might need the ability to create Dyna‐
moDB tables, it should not be able to read or write from them. You may choose to
safeguard your tables further by disallowing anyone from deleting them. As such,
permissions are a major part of the architecture of your cloud application.

If you are not the owner of the cloud provider account you are using, you may run
into permissions errors while creating, managing, and deploying your serverless sys‐
tems. If available, use a sandbox AWS account, or one where you can control permis‐
sions to craft the correct permissions, or else you will find yourself brute forcing
them.

70 | Chapter 5: The Serverless Framework

Infrastructure Templates
When using the Serverless Framework with AWS, Google Cloud, or Azure, the com‐
ponents of your service described by your serverless.yml file will be adapted into the
native infrastructure templating format of your cloud provider. For AWS that is
CloudFormation; for Google, Deployment Manager; and for Azure, Resource
Manager.

If your team is already using other tools to manage infrastructure, you can create a
deployment package using the Serverless Framework that may be deployable using
the other tools. For example, you can deploy a CloudFormation template using a tool
such as Terraform.

Production Secrets
Your production secrets, such as a password to connect to a database or an API token
for a third-party service, should never be kept in your Git repository unencrypted.
The best practice is to use a secrets store, which may create issues with bursts of traf‐
fic across your lambdas, or to utilize something like the AWS Key Management Ser‐
vice to encrypt these secrets. Then in the initialization code for your functions, they
will need to decrypt these secrets.

.gitignore
It is expected that you are familiar with using Git, a popular form of version control.
Many people who use Git don’t really know it well, but for the purpose of this chapter
I want to make sure you are familiar with the .gitignore file.

The .gitignore file lives in the root of a Git repository and must be checked into that
repository in order to take effect. It lists files and file patterns that tell Git to exclude
files and paths from being considered as files of the repository. This is not foolproof
as it does not affect files currently in the repository or added manually with an over‐
ride. You may want to use Git hooks, a method of running scripts at certain parts of
the Git life cycle, such as when committing code, to ensure that files with secrets are
kept out of the repository. Once there, they live on forever by default, as that is the
point of version control. The only way to remove them is to find the correct incanta‐
tion of git filter-branch to run in order to remove them from every single com‐
mit in the repository.

If you utilize a method that allows you to have a local unencrypted version of these
secrets for testing and development (hopefully nonproduction secrets, but secrets
nonetheless), stored in a file, make sure to include that filename or pattern in
the .gitignore file of your project. Secrets are no longer secret once they are in your
Git repository. If you are using a method where they are stored in an encrypted form,

What to Know Before You Start | 71

it is acceptable to store them in your repository, although the practices of your orga‐
nization may dictate otherwise.

The Components of a serverless.yml File
The serverless.yml file is where the Serverless Framework expects to find the configu‐
ration that is required to deploy your application code to its intended target. This file
is how you define the infrastructure of your service. The file can contain multiple
functions, the events that trigger them, and the other resources that comprise the ser‐
vice. It will also be the home to enabling plug-ins and their configuration.

There should be one serverless.yml per service, and each service should be independ‐
ently deployed. In a microservices architecture, each microservice will have its own
serverless.yml file.

At its root, the serverless.yml file is the root of a dictionary, or a key value mapping. I
will cover each part of the file as its own section, but realize that you can have a valid
configuration without including every section. I will talk about the basics of what
goes into each section, then I will show you how this works in practice with examples
of adding infrastructure that requires changes in multiple sections.

Provider
This is where you define and configure the cloud provider you will rely on for your
service (see Example 5-3). If your service is meant to be deployed to multiple cloud
providers, you may want to rely on multiple serverless.yml files, as configuring this in
one file may be daunting and confusing, and the results may be brittle.

Example 5-3. Provider section of serverless.yml

provider:
 name: learning-serverless
 runtime: python3.8
 stage: dev
 region: us-east-1
 iamRoleStatements:
 Effect: Allow
 Action:
 - s3:GetObject
 - s3:PutObject
 Resource: "arn:aws:s3:::Learning-Serverless-*"

This is also where you define the runtime that will execute your code, as well as the
region for your infrastructure. Many of these settings are overridable in the relevant
sections.

72 | Chapter 5: The Serverless Framework

The stage allows you to have multiple versions of the service running, such as dev,
staging, and production. The stage will get incorporated into the names of all of the
functions, but you must make sure to incorporate it into the names of any other
resources being created. Also make sure to consider the stage as part of the resource
name for your cloud permissions. Lastly, it is a best practice to separate your produc‐
tion and nonproduction services into different accounts or projects with your cloud
provider. Using the same account for both can lead to taking down a vital system, or
even worse, complete loss of data. A development account should be safe and permis‐
sive to allow developers to understand what is possible without taking down the com‐
pany. A QA account should have as much parity as possible with Production, without
using any of the same secrets or data. Lastly, the Production account should be as
locked down as possible. One system failing as a result of too restrictive permissions
is better than all systems failing due to overly permissive permissions.

Also, if you are deploying to multiple regions, you can configure which region to use
through the serverless tool; keep in mind that you will have to run the deploy com‐
mand multiple times, one for each region. You will also have to be mindful of failures
in this deployment process and roll back if one region is successful and another is
not. You can override the role specified in the file using a command-line argument on
the serverless tool, -r.

For AWS, you will also configure the permissions of the role used by your collections
of lambdas here. If you are not able to make changes to the permissions on your
cloud account, you can instead specify a role in this section, and have your cloud
team grant the permissions you would like to that role. This is generally safer in a
large organization, as you want to minimize the number of people able to control
such things.

On AWS, this is also where you will add any required tags for your infrastructure for
other tools in your organizations workflow. These tags may be used to define the
owner, or route an alert to the proper people in the event of an incident. They may
also be used to break down the costs of the infrastructure.

If you do not have the ability to manage your own permissions, I will share a shortcut
with you: you can add a value for the role, under this section, with the ARN for the
role your operations teams have created for your service’s functions. You can keep the
iamRoleStatements section, but comment it out. When the needs for your permis‐
sions change, you can comment out the role, and uncomment the iamRoleState
ments. You can then create a deployment package (covered in “Deployment” on page
80), and share the CloudFormation template, or the extracted permissions from that
template, with your operations teams so they can update the role. Finally, uncomment
the role and recomment the iamRoleStatements.

The Components of a serverless.yml File | 73

Environment
This is where you store environment variables for all of the functions inside of each
service (see Example 5-4). Each function can also have additional environment vari‐
ables specific to it, but that would go under the next section.

Example 5-4. Environment section of serverless.yml

environment:
 MEDIA_BUCKET: Learning-Serverless-Media

You may store the names of resources or other configurable options here. I like to
think of this as what levers you are exposing to an operator of the system. Because
each function can have its own value, you can have simple environment variables
such as one I call CLOSING_TIME. When I have a function that will try to do as much
work as possible in a given invocation, it needs to keep track of how much time is
remaining, and cleanly exit so as not to incur a retry. For that, I would set the variable
with the amount of time, in seconds, the function would like allocated for closing up
shop. Instead of having multiple CLOSING_TIME variables per function or task, you can
keep the simple name, and set it with a default value for the whole service as well as
different values, as needed.

You may need to store secrets for your service to run correctly. As previously men‐
tioned, do not put such secrets directly into your serverless.yml file, unencrypted.

Functions
This section is where you define your functions and the events that will trigger them,
as in Example 5-5.

Example 5-5. Functions section of serverless.yml

functions:
 hello:
 handler: functions.hello_function
 events:
 - http:
 path: users/create
 method: get
 periodic-task-example:
 handler: functions.periodic_task_example
 events:
 - schedule: rate(10 minutes)

Defining certain events will automatically create and configure the underlying infra‐
structure. Other event definitions will require existing resources. Some events will

74 | Chapter 5: The Serverless Framework

create the infrastructure for you if you omit the details, or rely on your configuration
if you add the additional configuration, such as specifying an ARN. Different types of
events will require different types of infrastructure and configuration, and it is best to
read the documentation for the specific event type. The documentation for the Serv‐
erless Framework includes a section for each event, and any events added by plug-ins
should have adequate documentation as well.

There are many options for the events that can invoke a function, depending on the
destination for your service. The best source is the documentation for each cloud
provider. Additional event sources can be installed via plug-in as well.

Resources
This section is only used for AWS (at least currently). In this section, you will define
the additional components or resources of your service (see Example 5-6). This syn‐
tax is taken directly from CloudFormation, and the AWS docs are the best resource
for finding all of the available options.

Example 5-6. Resources section of serverless.yml

resources:
 Resources:
 MediaBucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: Learning-Serverless-Media

Package
This is where you configure what files should, and shouldn’t be, included in the bun‐
dle or your application code that will be created and deployed to the cloud (see
Example 5-7).

Example 5-7. Package section of serverless.yml

package:
 include:
 - config/**
 - include-me.py
 - include-me-dir/**
 exclude:
 - config/production-secrets
 - exclude-me.py
 - exclude-me-dir/**

The Components of a serverless.yml File | 75

Make sure to include the code or packaged build of the code, and make sure to
exclude any unnecessary files or any sensitive files, such as the credentials or environ‐
ment variable files, if you are doing things in that way.

You will need to include the dependencies of your project. If any of your dependen‐
cies are compiled (and they might be, even if the language you are using isn’t com‐
piled), you will need to make sure to build them for the correct OS running in your
cloud provider’s function environment. For example, the plug-in serverless-
python-requirements uses a Docker container to take care of building the require‐
ments of your Python project so that they will run.

Depending on the needs of your project or organization, you might not use the Serv‐
erless Framework for deploying, but that doesn’t mean you can’t use it for packaging
up your code to be deployed. We will cover this later in Chapter 8.

Plug-Ins
Plug-ins extend the functionality of the Serverless Framework. The plug-in engine is
very powerful, and there are some amazing plug-ins already made. Some plug-ins are
official and hosted on the serverless organization on GitHub. Others can be found on
their website, or the NPM repository. You can also make your own (which you can
publish internally, externally, or not at all). Regardless of source, this is where you
enable them (see Example 5-8).

Example 5-8. Example of the plug-ins section of serverless.yml

plugins:
 - serverless-offline

When relying on a plug-in—or any other software that you did not develop—for your
production systems, you are still responsible for the code contained within. You must
do some due diligence to make sure that it is not only safe, but that the implementa‐
tion will work for you. For example, your organization may have standards that are
not followed by the plug-in, or even the Serverless Framework itself.

The following are some examples of plug-ins:

serverless-graphql

An example of a plug-in that enables an integration with a newer managed ser‐
vice before it makes its way into official Serverless Framework support.

serverless-offline

Allows you to run local versions of functions for local development.

76 | Chapter 5: The Serverless Framework

serverless-python-requirements

An almost essential plug-in if you are using Python. This builds your require‐
ments.txt file inside a Docker container that resembles the AWS Lambda environ‐
ment so you don’t have to.

serverless-scriptable-plugin

This can help you add other parts to your deployment and tooling without hav‐
ing to write JavaScript. This could be how you build other components, such as
static files if they are part of your service as well.

Custom
This is where you can store extra variables for reference in other parts of your config‐
uration, or where a plug-in might allow you to override a default setting (see
Example 5-9).

Example 5-9. Custom section of serverless.yml

custom:
 stuff: It's what you want.
 you_can_put:
 - anything
 - you
 - want
 to:
 reference: elsewhere
 in: this file

Namespacing for Sanity and Security
In addition to clarity of ownership when an administrator is viewing the cloud dash‐
board, this namespacing is important for security and helps to define the blast radius,
a concept we discussed in Chapter 3.

Serverless already provides some amount of namespacing when using its default
built-in functionality, but you may have to configure this if it is incompatible with
your organization’s standards or existing resources. You may also have to keep the
namespacing performed by the Serverless Framework in mind when creating your
own resources or defining them manually or with plug-ins. Remember, consistency is
key in keeping things clear and well organized in the dashboard of your cloud
provider.

If you share your cloud account with any other services, you will want to be thought‐
ful about namespacing your resources, as they are entities in their own right.
Depending on the size of your organization, it may make sense to have multiple
accounts. Your organization can still have one bill, and one set of common rules

The Components of a serverless.yml File | 77

2 Telemetry can either be voting or surveillance, depending on your personal ideology. You can read more
about slstats at https://oreil.ly/XnjYf.

applied against all subaccounts, so this may be helpful for also avoiding issues when
teams share service limits.

Using the serverless Command
The command-line tool is your main interface to operate the Serverless Framework.
It has a set of commands built in, and some plug-ins for additional functionality.
Through the following steps and examples, we will cover the most commonly used
commands of the Serverless Framework.

For these steps, we are going to rely heavily on the documentation and sample
projects available on https://www.serverless.com. By doing this, I can cover multiple
cloud providers and multiple languages. I will walk you through the overall steps in
deploying a sample project, and during each step you can pause and follow along the
linked detailed instructions provided by the project. After we deploy the sample
project of your choosing, I will get into the details of how you will build on the exam‐
ples provided to meet the needs of your applications.

Installing Serverless
To get started, you will install the Serverless Framework using the Node.js package
manager:

1. Install Node.js using a package manager or an installer.
2. Install the Serverless Framework by running npm install -g serverless in

your terminal.

You may subsequently choose to turn off the telemetry, or usage data sharing, by run‐
ning serverless slstats --disable in your terminal.2 While it may be helpful to
provide usage data to the creators of a tool, you, or your organization, may not be
comfortable with sharing data from such a sensitive environment. Your organization
may also consider blocking all outside internet access in your build pipeline, and only
allowing certain URL patterns through.

78 | Chapter 5: The Serverless Framework

https://oreil.ly/XnjYf
https://www.serverless.com
https://oreil.ly/5bD3G
https://oreil.ly/cJVqE

Setting Up Serverless with Credentials
We will rely on the documentation from the Serverless Framework to get set up with
our cloud provider:

• Amazon Web Services
• Google Cloud
• Microsoft Azure

There are a couple of key takeaways, at least from the AWS version of these
instructions:

Tokens
To access your cloud provider programmatically, you will rely on tokens. You can
generally generate them yourself per the instructions, but your organization may
have that functionality restricted. In that case, rely on your organization’s method
for getting tokens, and setting them up for AWS tooling on your command line.

Permission
For your deployment, or some of the other commands like invoke, to work
locally, you will need permission. Depending on your use case, you may not want
developers to have access to invoke production lambdas directly.

Pulling in Templates Using serverless install
You can either use serverless install to start with a sample project, or use server
less create in a new or existing repository to create the basic scaffolding needed.

If your project requires the use of plug-ins, you will need to install these dependen‐
cies using the Node.js package manager, or npm. Here’s how:

1. Go to the examples page.
2. Find the “Simple HTTP Endpoint” example project for your preferred cloud pro‐

vider and vendor if it exists, or you can, follow along on this Serverless.com page.
3. The following command will create a folder with the example project, so you may

first wish to navigate to your preferred directory for such projects. (If you are
using a different example project, you will find the equivalent command there.)
In your terminal, run the following: serverless install -u https://

github.com/serverless/examples/tree/master/aws-python-simple-http-

endpoint -n aws-python-simple-http-endpoint.
4. Navigate, or cd into the newly created folder, aws-python-simple-http-endpoint or

the name of the example you have chosen.

Using the serverless Command | 79

https://oreil.ly/lnoso
https://oreil.ly/gwMwI
https://oreil.ly/6lXxR
https://oreil.ly/D7ozp
https://oreil.ly/BKG1x

Inspecting the Package of Our Sample Project (What’s Inside)
In computer security, there is a concept known as “trust, but verify.” Sometimes you
or your organization have to trust something, such as an open source library, but that
does not mean you have to do it blindly. If you or your organization audit the code on
GitHub for a library, or even for your programming language, you still take a leap of
faith by assuming that a pip or npm install will get the same code onto your computer,
or even worse, your servers. But that is part of the trust your organization has to have
with GitHub as it may also host your company’s software code, and could hack you
even more directly and surgically. Your option here is not to trust GitHub at all, and
for most, that’s just not practical. You have to trust even more than that to jump to the
conclusion that it is safe to run, but for the purposes of practical paranoia, you can
learn when to trust but verify. You trust the NPM community to deliver safe code,
else you wouldn’t use it. But you need to verify that, as others have found out the hard
way, compromised packages exist. Maybe, the hackers were just after free mining
power, but sometimes they’re after more than that.

It makes sense to verify these files. Take a look at what we are going to send to the
cloud. Start by looking at the README file. Then, look at the serverless.yml file, and
finally the application code. You don’t need to perform a code review, and may not
have the requisite experience at this point, but you should be able to identify that
there are no security red flags.

Deployment
To deploy this project, simply run serverless deploy. Sit back and watch the termi‐
nal output. Upon success, it should display the created resources, including the
HTTP endpoint for your first function.

Cash Rules Everything Around Me

Before we deploy, we should quickly mention the costs incurred
with your cloud provider. All of the supporting services from your
cloud provider may have cost implications.
Not everything we are doing here may be under the free tier.
Instructions for how to destroy a provisioned service are provided
later so you can remove these test projects to avoid incurring addi‐
tional costs.

80 | Chapter 5: The Serverless Framework

Invoking the Function, and Viewing Logs
If you want to manually test your function you can invoke it using the serverless
command:

1. Run serverless invoke -f currentTime to see the current time.
2. Note the URL for the endpoint created when you deployed. If you have lost it,

you can run serverless info to output information about the service, including
the endpoint.

3. Run serverless log -f currentTime -t to tail, or follow, the logs of the
function.

4. In a separate terminal, curl the endpoint URL, or access it in a browser.

You should see the logging information in near-real time.

Rollbacks
The Serverless Framework command-line tool also allows for an easy rollback in the
case of a bad deployment. By default, the framework keeps the last five deployments
(the CloudFormation template, as well as the application code), so that you can easily
roll back with one line. It is important to note that some organizations will have a
policy of rolling forward: creating and deploying a new version instead of going back‐
wards to a previously known working one.

Because we have only performed one deploy, there is nothing to roll back to; however,
you can use serverless deploy list to see the deployed versions, and serverless
rollback to perform a roll back if needed. I would recommend experimenting with
this before you need it in order to better understand its operation.

Destroying the Service
To avoid any additional costs, start by doing the following:

serverless remove

Any steps you may have manually followed to make changes to your cloud provider
account to set up an additional service may have to be deprovisioned manually as
well. One example, would be remove the IAM policies or the IAM users you have cre‐
ated if they are no longer needed. But doing that can have consequences if they are
being relied on somehow, such as if you are still using those permissions to deploy
and manage other services in the same account.

Be mindful of any errors when running this command, and verify by accessing your
dashboard that all of these resources have been destroyed.

Using the serverless Command | 81

Deployment Packages
In many organizations, you will not be able to deploy in this manner for generally
valid reasons dictated from above. No worries. Instead, you can utilize serverless
package to create a deployment package. The deployment package will be a Cloud‐
Formation template and a .zip file of your application code and requirements. You
can then follow your organization’s procedures with actions such as making a pull
request with your CloudFormation template, or shipping the .zip file to an artifact
management system for further validation and deployment. If these actions require
separate steps, make sure the .zip file first gets uploaded to an appropriate S3 bucket
before the CloudFormation template (which points your functions to that specific
uploaded file) gets deployed.

Real-World serverless.yml
It is doubtful that your service will consist of only functions. There are many ins and
outs of expanding your service with the serverless.yml file. To walk you through the
basics, here is a specific example of adding a managed database to our service.

We are going to use DynamoDB to illustrate the additional configuration you will
need to add a managed service with your cloud provider. You will need to consider
other things such as the permissions of your function to access the resources you
have created, and also the permissions of the user account that will deploy the
resource initially, and even the permissions to later modify it. (We will discuss this
type of permissioning later in Chapter 9.)

If you are going to follow along for the next steps, you should be working from this
GitHub site. You do not need to follow these steps now, but later when you are adding
different resources to create your architecture, they will be here as a reference.

Let’s talk about what is different in this example from the hello world one that we
deployed. At the end of the serverless.yml file, you will see the following has been
added:

resources:
 Resources:
 NicknamesTable:
 Type: 'AWS::DynamoDB::Table'
 Properties:
 AttributeDefinitions:
 - AttributeName: firstName
 AttributeType: S
 KeySchema:
 - AttributeName: firstName
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 1

82 | Chapter 5: The Serverless Framework

https://oreil.ly/kyW-3
https://oreil.ly/kyW-3

 WriteCapacityUnits: 1
 TableName: ${self:provider.environment.DYNAMODB_TABLE}

Setting Environment Variables
As previously mentioned, the resources section is where you put additional resources
using the CloudFormation syntax. The preceding block describes a DynamoDB table
that will be created. From the name, you can see that there is some form of templat‐
ing being used. The Serverless Framework has templating built in for your configura‐
tions so you can keep the variables of your project tidy, and adopt your files to the
different stages and regions they may be deployed to. The preceding example reads
from self, which is the serverless.yml file, and then reads the DYNAMODB_TABLE value
from the environment variables set in the provider section:

provider:
 # This is toward the beginning of the provider section
 environment:
 DYNAMODB_TABLE: ${self:service}-${self:provider.stage}

This is where that value is set. Here it is exposed to the functions that will run in this
service. This example itself, is using variables to create the value, although it would be
best if there were a name appended to this, such as ${self:service}-$

{self:provider.stage}-nicknames.

Modify Permissions
Under the provider section of the serverless.yml file, you will see the following has
been added to allow for the functions of this service to have access to the database we
have created. This may be different from how you normally connect to a database.
Traditionally, you may have used a connection string, or a combination of IP address
and port, with a username and password. When connecting to a managed database
such as DynamoDB, you may have to connect using the cloud provider’s API, which
is authenticated through something such as IAM. When connecting to other hosted
databases such as PostgreSQL or MySQL, you will still use the connection string style
method, but you will have to ensure that your lambdas have access to the VPC with
your database:

provider:
 # This is at the end of the provider section
 iamRoleStatements:
 - Effect: Allow
 Action:
 - dynamodb:GetItem
 - dynamodb:UpdateItem
 Resource: >
 arn:aws:dynamodb:${opt:region,
 self:provider.region}:*:table/${self:provider.environment.DYNAMODB_TABLE}

Real-World serverless.yml | 83

Conclusion
There are many moving parts to creating, configuring, deploying, and managing your
cloud infrastructure, but you are now familiar with the basics. The Serverless Frame‐
work aims to simplify these responsibilities, but don’t get caught up in copying too
much from others, as every use case is different. At the end of the day, you are
responsible for every line of code you push into production—even the lines you did
not write. Configuration for your cloud provider can be more powerful and danger‐
ous than your application code, so you need to fully understand the documentation
from your cloud provider, the requirements of your organization, and the evolving
best practices of the community.

84 | Chapter 5: The Serverless Framework

CHAPTER 6

Monitoring, Observability, and Alerting

This job would be great if it weren’t for the customers.
—Randal Graves, Clerks

What Is Monitoring?
Once you have your service in the cloud, it begins to take on a whole new life. That
lovely deterministic behavior you have witnessed while developing and testing your
code is long gone. Your service has now been sent out to face the internet, and with
that traffic comes unexpected states of entities in your systems. Bugs start to surface,
and these perfectly chaotic flows of user actions and their consequences will likely
cause some form of degraded service in your system at least once, if not total failure
and lack of availability. When this happens, how are you supposed to know that your
service is even down in the first place?

Monitoring.

Monitoring is the component of your application that enables you to detect incidents
and understand why they are occurring in order to attempt to fix them. It is the way
to confirm when things have returned to normal. It is how you interrogate the health
and status of your systems.

But monitoring is much more than that. It is your best tool to avoid failure in the first
place. With monitoring, you expose the health of your application and all of its serv‐
ices in real time so that you can detect anomalies before they snowball into incidents.
Emitting the right metrics and being able to understand and interpret them are skills
that everyone on your team must learn. In modern engineering organizations, devel‐
opers no longer just toss their code over the proverbial fence and leave the conse‐
quences to the system administrators. Instead, developers now own, or share, this
responsibility.

85

Either you have already been bitten by the monitoring bug and your life has never
been the same since, or you are operating in the dark ages. In this chapter, we will
cover the basic constructs of monitoring, how to assemble them into a basic monitor‐
ing system, and touch on some, but nowhere near all, advanced practices to open up
your thinking and accept monitoring into your life.

Why Do We Need Monitoring?
Monitoring the health of your systems for anomalous values for key metrics and hav‐
ing the right people notified about the situation can be time-consuming to initially set
up; however, it is critical to delivering a reliable system using automation.

Automation is a fundamental tenet of a successful DevOps culture. The simplest
automation is to measure the health of your systems using monitoring to detect
anomalous values for key metrics, then notifying the right people about the situation.

Another use case of monitoring is to measure something in real time as the answer to
a question. Unsure of the likelihood of the edge case? Emit a metric before you imple‐
ment the feature, or as the error handling for the unhappy path. Engineering is always
about making trade-offs; with monitoring, you can make an informed decision. You
can find out if it is worth it to prioritize implementing a new feature, handling an
edge case, or just having a better understanding of how events and data flow through
your services.

How does your organization define and measure success? It may use a system for goal
setting known as key performance indicators (KPIs). If so, you can likely measure
these key metrics, or other metrics that are important to the health of your systems or
the business as a whole, in real time, with notifications when you reach significant
milestones.

Your application or service(s) may have to abide by a service-level agreement (SLA), a
contract that defines specific metrics your technology must meet, such as having ser‐
vice availability 99.9% of the time. How do you maintain such a commitment? How
can you commit to staying below a certain error rate if you don’t measure such
things?

How Does Monitoring Relate to Serverless?
Many developers and system administrators perform a remote login to the server
using a Secure Shell (SSH) to investigate issues with a production system. But the
more distributed your system becomes, the less useful and practical such a method
becomes. Not just because the environments are becoming increasingly ephemeral
and disposable, but also because effective operations in such a system are stateless by
nature. Even if you could SSH into a serverless function, it wouldn’t help you under‐
stand the health of the overall system.

86 | Chapter 6: Monitoring, Observability, and Alerting

In a serverless world, you may be able to understand and plan your scaling, and then
set alerts accordingly using monitoring. For example, if you have a limit on the num‐
ber of concurrent invocations, you can set alarms to know when you are approaching
them to avoid approaching or exceeding the limit. But what about just raising limits
ahead of time? There can be cost and other issues (like pummeling other services
with traffic) that make you want to keep those limits in check. A good rule of thumb
is that every limit should be balanced by an alarm. Also remember that service limit
changes may have a lead time and that you may hit service limits because of an anom‐
aly that prevents legitimate work from being performed.

The On-Ramp to Automation
Getting started with monitoring as described in this chapter is the first step toward
saving more time, and preventing mistakes and oversights, with an automation-first
approach to DevOps.

In order to get to more automation, you need to have the right inputs for the pro‐
cesses you are going to automate, and that will generally come in the form of metrics.
It also comes in the form of alarms. Depending on your cloud provider, you may be
able to receive notification of certain events occurring in your cloud account to react
to such changes automatically. You can even add a serverless function to react in scale
to these events automatically to save money by throttling up and down different
resources in response to user traffic or other inputs.

What Are My Options?
There are a growing number of providers in the monitoring space and many of them
have unique value propositions, so make sure the tool you choose can handle the
basics, and handle them well. You will want to thoroughly kick the tires, as monitor‐
ing tools can improve over time with the accumulation of historical data for metrics;
but caveat emptor, there is no clean migration path for historical data when moving
between providers. Depending on your needs, the built-in tooling from your cloud
provider may be sufficient, and in the current world of serverless functions, the
nature of ephemeral containers for compute may limit your options to get telemetry
out reliably without incurring any additional overhead.

Relying on your cloud provider may be the easiest way to get metrics out of your sys‐
tems. They might be the only way, in the case of certain metrics about the health of
lower-level systems or managed services; using another tool will require shipping
those metrics to the vendor.

What Are My Options? | 87

Hosted SaaS Offerings
There may be a simple reason why the built-in monitoring metrics from your cloud
provider don’t feel like enough. One such example is if your organization is operating
in multiple clouds.

If your organization has selected such a solution, take full advantage of the vendor
lock-in: watch some of their conference presentations to learn to use that tool to its
fullest advantage. But also use abstraction to stay as decoupled from the vendor as
possible, in case the political winds in your organization change or you want to A/B
test vendors in the future. (This pattern is covered later in the chapter.)

When designing your monitoring plans, it is best to understand the offerings, limita‐
tions, and even pricing of the vendor you are using. A developer may want to meas‐
ure something they see as benign but rack up a huge bill because they don’t
understand how usage is measured. For example, DataDog may only charge $5 per
serverless function per month, but that is an approximation for having 40 custom
metrics per function. This may suffice if you split out each component of your service
to individual functions, but it might not work if you ship a monolith into a single
function. What’s more, you could end up overpaying for this particular service if you
split services into multiple functions.

Utilizing a hosted solution allows you to focus on the value you are creating for your
users instead of on the infrastructure of self-hosting an open source solution,
although you may still need some way to log all of the monitoring metrics if you want
to truly own your monitoring data.

Self-Hosted and Open Source
Many people struggle with running their own tooling for a particular part of their
applications. If you’ve chosen serverless, I would imagine you are not too concerned
with creating, managing, and scaling a cluster of services to gain insights into your
production application—there is an overwhelming array of choices out there.

You may want to avoid building your own tools at first and use SaaS solutions or the
cloud provider tools. If you build your own monitoring, you have to monitor it and
keep it up! But it makes sense to build tools, automation, and so forth around moni‐
toring providers and services. If you build your own monitoring or tooling, you may
want to be sure to keep it serverless if you want it to scale in the same way as your
services.

Just because tool X worked for team Y does not mean it will work for you. Make sure
you are solving for your problems specifically, not just adapting a popular choice.
Think about what you need to know about your systems and then find the tools that
do that, and change them as you need to. Sometimes, you will have to build your own
tools. But remember that you must maintain those tools as well.

88 | Chapter 6: Monitoring, Observability, and Alerting

Before you make a decision here, consider: if you are going to have your own moni‐
toring platform, will there be a team you can adequately staff to handle those needs,
not only now but as they grow and reach new levels of scale? Someone in your orga‐
nization may push a change that clobbers your monitoring system, but monitoring
utilization can spike with any and every other spike in your system. When your team
is already scrambling to identify and fix a failing system, losing your monitoring sys‐
tem will not only make it more difficult, but could prevent you from investigating the
health of any system during that outage. That being said, you may work somewhere
that has already made this decision and so you fall into this category, as may be the
case for organizations with enhanced requirements for data storage.

Components of Monitoring
Monitoring is not a switch you can turn on and automatically have its full benefits,
nor is it confined to one problem and one tool. It must include metrics and logging,
and may be enhanced with application performance monitoring (APM) as well. I’ll
limit the conversation here to monitoring as it relates to collecting, aggregating,
reporting, and alerting on metrics. Logging, which is the same but for statements
instead of metrics, will be covered in the next chapter. Also, many providers and ven‐
dors offer an APM system. These systems offer granular data about application per‐
formance, on a per-function (the application code kind) basis, with the time
consumed with all network requests, including accessing data from your datastores.

Monitoring can be a difficult concept to grasp if you are unfamiliar with it. To illus‐
trate the application of these topic as we cover them, we are going to bring monitor‐
ing to the latest fictional streaming service, Dry+, where you can watch an extensive
library of paints, lacquers, and solvents dry. Dry+ is relatively simple from the user
perspective. On the web, a smartphone, or a smart TV, a user can sign up for a sub‐
scription plan, manage their existing plan, browse and search different types of mate‐
rials and conditions (you know, for the drying videos), and watch and control videos.

Metrics
Effective monitoring is both an art and a science. Deciding what to measure is not
something you should expect to get right on the first attempt. Just like the entire sys‐
tem, metrics are a dynamic thing that can change from one millisecond to the next.
You need to determine what metrics best measure the health of your systems and
even your organization.

Components of Monitoring | 89

What to measure
You can quickly start by coming up with metrics that support or directly measure
your KPIs, such as new user subscriptions. Next, consider the metrics that measure
your ability to drive those KPIs in real time, such as new users on the subscription
checkout page. Finally, you can’t reach any of these KPIs without a healthy service up
and running, so you’ll need to come up with metrics to determine the health and
stress levels of your services, such as user traffic or database utilization.

That may seem like a daunting task, but it all starts with the users. What actions and
sequences will users take through a system, and how can you measure those? Not for
analytical reasons for marketing, although monitoring metrics can serve as a proxy
for that, but as analytics for the occupants of the architecture you and possibly others
have erected. Think about the criticality of these sequences. Which actions or sequen‐
ces, if they fail, signal larger worries for the availability of your application? Which of
these constitute an outage? If the ability for a user to “check out” a virtual shopping
cart starts creating more errors than expected, how will you react? Keep in mind, too,
that the root cause of your incident can be increased user traffic; be sure to measure
that as well.

For example, imagine a metric that measures login attempts on the Dry+ website,
mobile app, and smart TVs. You may want to augment that data with tags, such as the
device type, browser type, or the country of origin of the request. If the production
system is unaware of the country as it does not affect its operation, it might not be
important as a component of the metric. But if it is important for something else,
such as the security of the system, it might make sense to enrich the metrics by
adding additional processing. In other cases, it might make sense to process other
data out of band to achieve the desired metric. For example, you could use the access
logs to determine login attempts from the URL, and information from the headers
(such as IP address, or the locale of the user’s device). Also, when considering tags,
you want to consider the balance between readability of the tags and the constraints
of the monitoring system. For example, “The United States of America” might be too
long to be supported as a tag. It might make sense to use the ISO two-letter abbrevia‐
tions instead. But that might be difficult for less technical users to understand, so you
could try another method, such as custom country names. But that involves adding
even more code to the application. Starting to recognize the pattern? Your application
should not have to bend over backward to emit useful metrics. While you may choose
to do so for logging, where details become more important, constrain the implemen‐
tation of metrics coming from your application code to those that are vital, and keep
away from adding complexity for metrics that are nice to have. If understanding a cer‐
tain measure is important, you may need to add more code to craft the metric. Just
make sure to write your code in a way that does not prevent the surrounding code
from functioning, and add unit tests.

90 | Chapter 6: Monitoring, Observability, and Alerting

System metrics
System metrics are provided by your cloud provider or a monitoring agent about
underlying systems (or servers). These metrics can indicate the health of a system by
providing an insight into the usage of resources such as CPU, memory, network, and
disk space. In the world of serverless, some of these metrics might be the number of
invocations, execution durations, and throttles if your function is rate limited.

For a database, system metrics can include the number of connections and replication
health, in addition to the base system metrics. (Databases can run out of space too.) If
a component is a managed service, the details may not be exposed as they are not rel‐
evant to you as a consumer of the service, but I guarantee the people managing those
services are keeping an eye on them.

Just because all of your infrastructure might be serverless, and you do not need to
concern yourself with the underlying servers, metrics regarding these systems may
still be available and of use in your overall monitoring and alerting strategy. Some of
the system or provider metrics available to you will be the closest proxy you can get
to the real user actions occurring outside of your system. This might be overall
requests per second if you are using a content distribution network (CDN) such as
CloudFront or Cloudflare. Keep in mind that the root cause of your incident can be
increased user traffic, so you need to measure that as well.

If you have metrics from other vendors or services you use, you may want to utilize a
SaaS metrics offering that can bring all of these disparate metrics to the same place, or
a custom-built one if your organization is large enough to need and use it. Remem‐
ber, these metrics will be the basic building blocks that allow us to build visual repre‐
sentations of the health of a system. As such, having all of the data in one place may
be needed to have an easy and consistent way to understand the health of a system at
a glance.

Custom metrics
Application, or custom, metrics are those metrics that you emit about your systems.
There is no way for your monitoring tool to know the intimate details of your busi‐
ness logic and the importance of each action taken. You have to create these events by
adding metrics to your code.

The two basic metrics available to add are increments and gauges. An increment
(counter) is when you want each event to add to the other events occurring during
the same time period. For example, if you want to keep track of the count of an action
or event, such as a user login. An increment is not limited to simply being increased
by 1, but can be increased by any number within the limitations of your monitoring
provider. Increments can only be increased or reset. A gauge measures a value of
something as an observation at a given time. During a given time period, the last
gauge will indicate the reading, but for counters, the value will be a sum of all

Components of Monitoring | 91

measurements in that period of time. For example, a gauge could measure a specific
value in a process, while a counter keeps track of all the occurrences of that process,
or the sum of the values in that process.

You’ll want to keep good metrics for the entire life cycle of your services. But you
won’t always get them right at first. Try to capture metrics that you will want to track
over long periods of time. The longer your metrics have been in place, the more his‐
torical context you have when investigating an anomalous data point or a disturbing
trend appearing on the horizon of your charts. Metrics can help inform engineering
decisions with basic data about trends and seasonality. Think about what kind of data
you will want to be able to reflect on days, weeks, and months from now.

To avoid collisions and confusion, it’s best practice to give your metrics unique names
and to have clear rules about how they should be named. Effective namespacing, such
as servicename.filename.function.metric, can avoid potential collisions. Some
may choose to include the stage, such as production, in their metric format, but I
would encourage you to include that data as a tag so that you can use the same dash‐
board across different environments.

Metrics can be augmented with tags that allow you to add metadata to the measure‐
ments being collected. The most common tag to add is the stage in which the obser‐
vation was generated. For Dry+, you may want to include information about which
plan a user has with their metrics. For example, if they are on a plan with ads, versus a
plan without ads, it could have an impact in an incident, or understanding how stress
on one system transfers to another, such as the ad server. Monitoring systems limit
tags and have naming conventions that you should make sure to understand fully, as
they can cause data to magically go missing. You can enrich events such as annotating
each user sign-up with the promo code they are using, or how they were referred.
This kind of information allows you to create more powerful visualizations of the
data. The more your dashboards get used, the better, since it increases the awareness
of how your team or organization is working to achieve their goals and meet their
commitments.

Never log or emit a metric that contains personal data. It is perfectly acceptable to
emit a metric tagged with the state of a user, but you shouldn’t include any personally
identifiable information (PII). Don’t send customer data to your monitoring or even
logging tools. Doing so can make compliance impossible, especially with strengthen‐
ing laws improving consumer privacy. There may be other rules inside your organiza‐
tion that you should be familiar with for compliance reasons.

92 | Chapter 6: Monitoring, Observability, and Alerting

Bringing in data from other sources
Your custom metrics are not just limited to instrumenting your application code. You
can bring other useful information to help understand the current health of your sys‐
tems or business by writing custom code to collect metrics from external sources
such as an API or even screen scraping, and emit them as metrics. With some moni‐
toring options you may be able to bring in useful information from other sources
with prebuilt integrations.

Monitoring vendor performance
You rely on your vendors and are likely compensating them for an often critical part
of your system. So you need to keep tabs on them, too. Don’t just rely on their status
dashboard (although it could be a useful part of your automation and alerting to
share updates from your vendors into a chat system).

Be sure to check the documentation of your monitoring tools for any explicit warn‐
ings or limits they give about how you utilize them. Understand the way they meas‐
ure and bill to avoid any costly mistakes.

Charts/Graphs
Charts take your monitoring metrics to the next level by making it possible to visual‐
ize them. Why work on this task? Because viewing the charts you create will unlock a
different kind of creativity when facing an impending incident in your production
systems.

It may take some time to get it right; creating effective charts that tell you what you
need to know about your application is more of an art than a science. This is the case
at least for the custom metrics you are emitting, as well as combinations of those
same custom metrics with other metrics, such as system level or those from managed
services or other software packages where you don’t generally modify the code (such
as an open source database).

For example, you can use login metrics to start to understand the current traffic flow‐
ing through a certain user path, while also being able to contextualize that instantly
with the insight of overlaying the history over certain time periods.

Additionally, changing the aggregation you are using can tell you different things.
Think back to calculus class, if you took it: the current value of a metric can tell you
something interesting, but the rate of change of that metric can indicate a trend that
tells you something different.

You are discussing a feature idea with a colleague for Dry+. A key question comes up:
how often do users visit a certain section of the account settings? When you are hav‐
ing an argument about how often one thing happens versus another, that is a perfect

Components of Monitoring | 93

time to turn to metrics. You can add a line of code to track something, ship it to pro‐
duction, and start to get answers instead of guessing.

Functions allow you to permute the data being graphed in a limited set of ways, as
made available by your cloud provider. Sometimes overlaying the same metric on the
same graph multiple times, but applying different functions to each line, can instantly
give you even more information about a key metric.

Some of the basic functions you should expect to have are sum, avg, min, and max.
These functions are the building blocks to create more powerful visualizations that
give you the most insight into the operation of your services and systems. Make sure
you are familiar with all of the offerings of the tool you are using.

Documentation is a must for each graph that you create. Explain what the human
operator is looking at and how to make sense of it. Reference or link to additional
information in your runbook or operations manual (Chapter 11 discusses runbooks).
And if there is a specific reason you chose certain functions to display the data that
wouldn’t be easily understood by someone unfamiliar with the system, add that rea‐
soning to your documentation.

Dashboards
Creating a dashboard of effective charts can bring what was once an invisible system
to life, with full visibility into all of the vital signs of health for your service or even
the application as a whole.

Many dashboards have the ability to change the data displayed based on changing the
value of a tag. You can reuse dashboards between the different stages of your services
by utilizing this functionality.

Well-designed monitoring dashboards that are easy to understand and reflect the
health of the service should allow you and others to detect anomalies and incidents.
Here is where you are actually able to understand the health at a glance.

Generally, dashboards should allow you to adjust for the time period in which you
would like to inspect. Keep in mind the different functions and options, such as avg
or max, and how the choices made in selecting the graphs should be clearly reflected
and easy to understand, even to a sleepy operator who is waking up to a dashboard
they have never seen before.

There is no one dashboard that will solve everything for everyone. You might com‐
bine multiple tools and sources into a dashboard. Either way, you’ll need a consistent
set of rules and standard for all of the “official” service dashboards. Keep in mind that
you can make personal dashboards for unique views of the health and performance
of a service.

94 | Chapter 6: Monitoring, Observability, and Alerting

Important events such as deploys should be indicated on the graphs. This can help a
human operator determine if an issue was directly caused by a deploy and investigate
further.

Alerts/Alarms
Why sit around and watch your metrics all day when you can set an alarm? Setting an
alarm is how you can have your system tell you when it is broken. If a customer tells
you that your site is down or a feature is not working, it may already be too late.
There will be others who experience an issue and now think less of your system, even
if they didn’t have the time to complain about it. Incidents should really be detected
by alarms, not by humans.

Anything that can lead to an outage or degrade service in a meaningful way needs an
alarm. Set an alarm for any information that you would share with a coworker imme‐
diately and directly—and would then tell your boss if you couldn’t reach your
coworker.

Most tools offer the ability to set two distinct levels, which we refer to generically as
warning and alert, although your tool may refer to them another way. Broadly speak‐
ing, when a metric is inside the warning range, it should politely attract the attention
of a human operator, but may not require any specific action other than additional
observation. It may instead be used to communicate a broader situational awareness
rather than an impending incident. An alert, on the other hand, occurs with a specific
event and often needs immediate attention. But how can you tell the difference? You
can’t! At least not without adequate documentation, which most tools allow you to
include with your alarms. Let people know whether they should respond to a warning
as an incident or treat it as an indicator of the general health of a service. Set clear
definitions of what each of these terms mean to the humans involved.

At the alert level, an alarm must be useful and actionable. The parameters need to be
high enough to avoid noise but low enough to catch potential disruption. This may
take trial and error to get right, and that beta badge of honor might make sense to
include in the messaging for your early alarms. This will be one of those topics where
you and the organization might need to “disagree but commit” to the agreed upon
definitions and standards. Finding the correct settings for your alarms may seem like
a guessing game, but you can utilize performance or load testing to test and calibrate
your alerting thresholds, as well as to better understand how your systems function
with load.

Email is not a good medium for alerts. Engineers can and will create filters to divert
machine-created emails that flow in ad nauseam. Information alerts are best sent to
relevant topics on the company chat system, and alarms that need to get an acknowl‐
edgment should be handled by an on-call management system such as PagerDuty.

Components of Monitoring | 95

If there is no plan of action for response, the alarm’s usefulness is drastically dimin‐
ished. When responding to an alert, you must have adequate documentation, ideally
provided in the messaging of the alert or in the monitoring panel of the alert. In addi‐
tion to providing context in the text that gets delivered with an alert, these plans
should be kept in a runbook.

Keep a log when responding to an incident. During the heat of the moment, it can be
easy to lose or misremember important pieces of data or other evidence that could
help you properly understand the root cause to solve the issue. Even if it’s messy, any
log during your reaction is better than nothing. That log should be used to create a
root cause analysis or a report that should contain, at minimum, the main cause of the
incident, what was impacted and how, what steps were taken to restore service, and a
timeline of events. The timeline should include when service degraded initially or
further, when new things were learned, when actions were performed to restore ser‐
vice, and progress toward the restoration of service.

Additionally, make sure to utilize rich integrations with your organization’s chat sys‐
tem. Like or it not, the new wave of chat platforms such as Slack and Mattermost have
taken root in organizations of all sizes; for many, this may be an integral component
of your overall monitoring and alerting strategy. Many vendors offer a solution to
provide rich information about an alert to such platforms. With some of these inte‐
grations you can see a static graph associated with the alert and potentially take
action, such as acknowledging or resolving an alert.

A Selection of Advanced Practices
Simply creating, maintaining, and updating the monitoring components that you are
now familiar with may be all you need to have effective monitoring for your applica‐
tion. But there are some best practices you should be familiar with, both for their pos‐
itive impact on your sanity and to understand how to build more complex and useful
constructs and solutions using these components.

Heartbeats
A heartbeat is an event, generally synthetic, to determine or inquire about the health
of a system. You may be familiar with creating a heartbeat or health endpoint for an
application or service so that a load balancer can keep track of what nodes or servers
are healthy, ready, and available to serve traffic. In the context of monitoring, we want
to ensure that a heartbeat is emitted and tracked for every action of a system so we
can understand that pulse in depth across the entire system. We are not concerned
with the health of individual nodes; in serverless, nodes are as ephemeral as can be,
and we don’t manage them.

96 | Chapter 6: Monitoring, Observability, and Alerting

Creating synthetic heartbeats
Sometimes you can’t rely on the real world to provide you with the chaos or even
basic entropy for your system to be alive enough to measure. Sure, as a metric it may
be fine to see zero requests coming through, but how can you know that the system is
available if there are no successful executions of the most common functions? That
may not be the only way to measure your system, but consider the case of an early-
stage ecommerce company. It may see only a couple of checkouts a day, but each one
is of great importance to the fledgling startup. A deploy of a new version may go
hours without even seeing a visitor, let alone a buyer. So how do you know that your
website is functioning in case you suddenly get visitors? Create a fake end-to-end test
that runs against your real production system. One example would be creating an
account, adding items to the cart, checking out, logging in, cancelling the purchase,
and logging out. If you were to have this run via a periodic invocation every hour and
report its attempt, each successful stage, and its success as metrics, you can have an
alarm go off when this process no longer works. This will let you know not only if
your services are down, but your dependencies as well. This testing in production pat‐
tern is useful when you do not have a constant flow of traffic bombarding your ser‐
vice, which may even be the reason you chose serverless in the first place. In this
example, you may have to use a real credit card to test, and you will want to call and
let the credit card company know why a mysterious charge is happening every hour
from the same merchant.

Smoke Testing and/or Canaries
After you deploy, you’ll want to verify that everything is working by performing a
smoke test. A smoke test is where you test a newly deployed system by running some
basic actions that are vital to the functionality of the system, in order to see if it smells
or does not seem to be working. The idea is that as a final test of quality, the new
version is testing in production for the most basic functionality—in the same spirit as
plugging in a repaired kitchen appliance to make sure it doesn’t catch fire.

Smoke testing has evolved into canary deployments, which is when you roll out a new
release of your service slowly to an increasing percentage of live production traffic
while measuring the health of the application using metrics. If the metrics do not
appear to be healthy or appear to be a step backward in some way, the release gets
cancelled, preventing a potential incident. But if the key metrics appear to be nomi‐
nal, the release will be promoted to handle all traffic.

It is helpful to use metrics to ensure that new changes deployed to production are not
causing a regression or worse, a complete failure of a system.

A Selection of Advanced Practices | 97

The Most Important Metric in the World
AWS Lambda offers the ability to fail an asynchronous function invocation, or an
“event,” into a failure queue. They label this the dead letter queue (DLQ). This func‐
tionality is a big game changer in the serverless world. Located on the monitoring tab
of a function in the AWS console is a metric labeled “DeadLetterErrors”—the most
important metric in the world (Figure 6-1).

Figure 6-1. The most important metric in the world

What are “DeadLetterErrors”? They are not the number of failures that wound up in
a failure queue. They are the number of failures that failed to get into a failure queue.
Meditate on that for a second, and you may learn everything you need to know about
production systems and you can throw out this book (to a friend).

When would something show up on this chart? That is a great question, especially
because if it shows up here, it is gone forever. The pixel(s) on the pane are the final
resting place of that job.

The two most likely cases are cloud permissions and service limits. What? You don’t
remember reading about dead letter queue (DLQ) limits on the AWS Lambda service
limits? You must look elsewhere to find it. A DLQ is really a Simple Queueing Service
(SQS) queue. That’s not a secret: its resource identifier suggests this, and the resource
lives in the SQS dashboard, not in Lambda. But SQS has service limits and you may
have gone over them. As for the cloud permissions, your Lambda’s execution role has

98 | Chapter 6: Monitoring, Observability, and Alerting

permission to take the necessary actions against the SQS queue. Oh yeah, and your
deploy role or someone else had the permission to make the queue in the first place.
If any of these occur, your failures that are supposed to end up in the failure queue end
up as a data point on this metric.

This one pane tells you everything you need to know about monitoring. Make sure
important and terminal errors show up somewhere. Set an alarm on it.

Avoiding Vendor Lock-In
Regardless of the choice you make for your monitoring, whether choosing self-
hosted, your cloud provider, or another vendor, your needs or preferences may
change over time.

As you now are familiar, most statements to emit a metric are very simple one-liners.
But what happens when you want to make a change? You will have to go and update
each and every single line. While that may seem like a minor task in your text editor
or integrated development environment (IDE) of choice, if the syntax varies too greatly,
it may not be possible at all.

So my recommendation is this: no matter how simple, fast, or easy the promises
being made by your monitoring tool, wrap it in a simple abstraction. This abstraction
may be simple enough to only be a simple function definition in your code for each
method available, with only one line of code inside.

In addition to providing a method against vendor lock-in, you can provide additional
functionality (such as namespacing) to help keep your code tidy.

This method also allows you to use more than one vendor if you want to evaluate
other options, or if different tools meet different needs for your organization.

This method is not just applicable for monitoring, but also for almost every third-
party vendor. First, you will make it drastically easier to change in the future if your
needs change, or your vendor changes or decides to shut down. Second, you can
enhance your integration of third-party vendors with metrics!

If you are utilizing a vendor that is widely known by the community to have a stable
and straightforward API, one that is exactly how you would have designed your
abstraction around it, it may not be worth the additional time to create such an
abstraction. But keep in mind in the future, if you choose to replace them, you may
have to create an abstraction around the new vendor you choose, or create an internal
replacement with exactly the same API.

You can test an edge case before making a feature to get a better understanding of the
traffic that will flow through the service. If you are confident that the edge case would
affect no or very few users, you can emit a metric and raise/return an error as a tem‐
porary placeholder for handling the edge case.

A Selection of Advanced Practices | 99

Cleaning Up Metrics and Alerts over Time
It is unlikely that you will achieve perfection on your first attempt at creating metrics
and alerts. Invest time getting familiar with your tools, investigating behaviors, and
testing out your monitoring. This will make it easier to use them during an incident
and continuously refine them over time.

Make sure to delete temporary monitoring that is no longer useful and causes noise
or costs money. But don’t spend more time than it is worth—developer time might be
more expensive and scarce.

If something can be simply and safely resolved, you may want to consider automa‐
tion. Be mindful not to cause other issues when doing this.

Conclusion
Monitoring holds the flashlight when you’re inspecting your production systems.

Monitoring takes time and effort to get right, but without them, you’re flying in fog.
When you have an incident, how do you know what subsystem to investigate? With
monitoring, you can find your root cause more quickly and more accurately, with the
evidence needed to support your findings in a proper postmortem.

Monitoring can seem intimidating and out of reach, but remember the basics. Meas‐
ure and instrument vital parts of your application or service so that you better under‐
stand how they work in the real world.

100 | Chapter 6: Monitoring, Observability, and Alerting

CHAPTER 7

Logging

As developers, we have to communicate on many levels. We spend hours in meetings, listen‐
ing and talking. We work with end users, trying to understand their needs. We write code,
which communicates our intentions to a machine and documents our thinking for future
generations of developers. We write proposals and memos requesting and justifying resources,
reporting our status, and suggesting new approaches. And we work daily within our teams to
advocate our ideas, modify existing practices, and suggest new ones. A large part of our day
is spent communicating, so we need to do it well.

—David Thomas and Andrew Hunt, The Pragmatic Programmer (Addison-Wesley)

It is well understood that communication is fundamental to success. We can instill
the value of communication into our code by infusing it with the power of logging.
The story of a system in production is not written by the developer, it’s written by the
system—and the only way to hear that story is with logs.

Computing environments are becoming increasingly ephemeral, and interacting with
an instance of your code in production may be impractical, impossible, or even ille‐
gal. Bugs in production will be an issue inside either your code or the environment it
operates in. Logging can help you quickly understand how an undesired result was
achieved by allowing you to manually step through the code without a debugger. It
can also help increase confidence that an issue does not directly result from your
code and may enable you to share that reasoning with others in a larger group effort
to find the root cause. Keep in mind that not every issue (defect) that a user of your
application faces will result in an incident (reduced service availability).

You will encounter issues that started as the result of a frustrated customer reaching
out for support. Even if you could SSH into some machine to reproduce the user’s
issue, it is unlikely that the state of the system, or even that user’s account, is the same,
but you will have to understand what happened, when, and why in order to solve
their issue. Oh yeah, and they are the lead investor of your startup. Logging will help
you resolve the issue.

101

https://learning.oreilly.com/library/view/the-pragmatic-programmer/9780135956977

1 The same goes for monitoring metrics.

When you have an issue in production, your immediate reaction might be to connect
to a misbehaving server and start poking around. That is not always an option, and
unless you are an infrastructure or operations engineer, it is likely a bad habit. A live
production server that your users are depending on that is failing does not need addi‐
tional stress and entropy caused by a curious developer. And if your software runs on
a client device, you can’t always SSH into someone else’s computer, or start up a
remote desktop session and borrow their mouse while you figure out what is wrong.

Instead, you must rely on monitoring and logs. Logs provide detailed information to
help you understand what has happened, find the issue, or at least reproduce it. Logs
are by and for developers, just as tests are, and some developers think their lives
would be better without either. But that is because they have not had the opportunity
to experience the utility of these important components done correctly.

Logs allow you to extract and collect useful information about the operation of your
code in the real world. And as you have learned, your local development setup is just
as far away from the real world as possible.

What Does It Mean to Log?
Logging is exactly what it sounds like: keeping a log of events that have transpired or
information that may be of note. It is record-keeping for your systems. But with one
major caveat: logs are intended to be lossy or disposable. In fact, if you work in a
regulated environment, your organization may have strict rules about when logs need
to be deleted.

Data that is truly important should not be kept solely in logs. Despite the usefulness
of log statements, they are not guaranteed to be delivered.1 Nor are logs a full repre‐
sentation of the work being done by a system. Logs must be unreliable to avoid
unnecessarily coupling noncritical information with critical execution of tasks. Deliv‐
ering logs is a secondary function of the servers or containers running your applica‐
tion code. Logs are a gift, not a given.

For serverless, your logs will likely be sent first to the tooling of your cloud provider.
You can set up functions to react to log statements from your other functions, or even
other systems, to process the log statements and/or even send them to another log
system for safekeeping.

102 | Chapter 7: Logging

Why Log?
I will give you an overview of logging before diving into the main topic of relevance,
logging for your application code. Then I will talk about the logging that is available
to you from the various cloud services that you use. You will likely need to enable
these features if you need to have any form of auditing for compliance or regulatory
reasons.

When I teach about programming, I mention “the future you.” When a computer
reads a piece of code, it will always read it the same (when the versions of everything
have been frozen). But tomorrow, when you read code that you wrote today, it might
mean something entirely different. Now imagine six months or a year from now. In
addition to writing legible code and utilizing comments and/or documentation, log‐
ging can help ensure that the future you (and others) can understand a piece of code
when you need to most. During a failure, effective logging allows you to leave bread‐
crumbs of important information that may be needed to understand the operation of
code in the real world. In addition, logging can help you analyze the data of how sys‐
tems work. (Although, as platforms evolve, this responsibility has shifted to monitor‐
ing for many organizations.) Your monitoring system may be able to ingest your logs,
or you may be able to make a simple function that filters relevant statements into
monitoring metrics. This works especially well with legacy code that may need to
transition to the current state of monitoring, but without having to make code-level
changes to those systems.

There are three main types of logs. Application logs are the main focus of this chapter.
Similarly to the custom metrics of the previous chapter, application logging is where
you modify your code to emit detailed information about the state of a task to better
understand in detail the performance of a system in production. System logs are the
application logs from the operating system or other system-level components. Finally,
access logs are any record of attempts to access a system. The most prevalent, HTTP-
specific application logs, contain data about HTTP requests, but all of your systems
should maintain a record of access. An engineer connecting to a system via SSH
should result in a log, and so should every connection and query made to a database.
Access logs are primarily used for security reasons, not for debugging, but that does
not mean they have no value for understanding application state. If these logs are not
too sensitive, they should be made available to engineers.

Why Log? | 103

When to Rely on Logs Instead of Metrics
How do I know if I should use logs or metrics to report and understand the health of
a system?

Metrics best assist you in understanding things that are easily quantifiable and make
sense to be measured against the passage of time. They also can help identify issues
where a drastic deviation from the norm is the root cause. Otherwise, metrics will just
alert you to symptoms or downstream failures caused by the real issue.

Imagine an issue caused by a bad configuration. One wrong character, and now the
whole system is down. Did you know that sometimes your configuration file can be
ruined by your text editor? It happens more commonly than you think, and when it is
the root cause, metrics will not be the best way to determine what the state of your
system is. If metrics let you know that none of the application servers are responding
on their health check endpoints, you will want to see the logs of those instances as
they try and spin up. If your lambdas have a 100% error rate, you are going to want to
hear what they have to say personally. That is where logs come into play. And not just
for bad configuration files, because hopefully before you ever have to experience such
an issue, you can ensure that such garden-variety issues become automated out of
existence.

When dealing with an incident, monitoring is how you will determine where you will
need to dig deeper to find a root cause and resolution. With that in mind, what infor‐
mation will you or others want when you find yourself in this situation? That is how
you know what you should be logging. Monitoring helps you understand, evaluate,
and investigate the current state of a system, and the logs explain how they got to be
that way.

What Should You Log?
To get an idea of how to add logging to a system, imagine each task being completed
by workers on a factory floor. This factory converts cargo vans into fully customized
motorhomes. Every single order is custom. An example task is creating a dinette of a
table and benches. A worker, Tim Burr, must obtain all of the custom-built compo‐
nents and assemble them according to the plan. When Tim goes to the woodshop to
get the boards, what information or inputs will the woodshop ask for? How can the
process go wrong? What subtasks being performed in the woodshop are likely to be
important in understanding how something went wrong, such as the desired wood
not being in stock? Does someone order more wood? Is there a record of that? If the
customer inquires of the status of a delayed order, how do they know why it is
delayed? What subtasks are likely less important, for example, Tim was marking the
places to cut and had to get a new pencil? What information would Tim take note of,
if they are trying to improve the processes in their department? What artifact will

104 | Chapter 7: Logging

remain to document the success of the action? (Keep in mind, the cut piece of wood
is going to leave the factory.)

Now, Tim wants to make the custom cushions that will serve as padding for the
benches. Again, what information is needed to perform this task successfully? Does it
make sense that this action is somehow tied back to the customer order? What are the
critical parts of this operation that can fail? What information do we want to know
about the progress and state of a task as it nears completion, and what do we want to
know when it fails? Is there a log of actions Tim takes to correct an in-progress issue
that would be relevant later if a customer complained that one of their seat cushions
feels like it is stabbing them with a flathead screwdriver? That is the desired goal.
What information is going to be the most useful to understand why something that
was never covered in the ticket, or the test cases, or even in your engineering curricu‐
lum, fails? Sometimes, screwdrivers get left places, and the digital equivalent of that is
just as true, and that is where you need logs.

Log levels allow you to denote the importance of each log statement. One set of such
levels would be ERROR, WARNING, INFO, and DEBUG, with ERROR being the highest level
and DEBUG being the lowest. Your logging system will only record logging statements
set to the level you have selected or higher. In some logging systems, you can set dif‐
ferent levels for different modules, libraries, or logger instances. Reference the docu‐
mentation from your programming language to understand the full set of levels and
capabilities available by default:

ERROR

This is used to communicate the occurrence and details of an error. It is best to
provide the observer of the error with as much detailed information as possibl
about why the situation occurred.

WARNING

This is a message of any type that the programmer thinks is worthy of a high level
of attention, although not necessarily a failure. A good example is deprecation
warnings. They warn that something expected to work is going to stop working.

INFO

This is the logging level you will likely set on your systems. This is where you can
share for informational purposes. These are the breadcrumbs you can sprinkle
through your code to understand how it functioned for that one customer two
weeks ago.

DEBUG

For many developers, this is the replacement of using a print statement. You can
set your code to log very detailed information that would normally be too much,
but becomes highly relevant when you’re trying to solve a specific problem.

What Should You Log? | 105

2 Internet hackers are the unpaid security interns your team can’t afford to have.

You then configure the logging system provided by your programming language to
the desired level, and only the log statements that pass the filter will make it into the
logs. There is no published standard regarding log levels, so ultimately it comes down
to the organization, and like everything else, should be standardized and docu‐
mented. When in doubt, seek out a set of sane guidelines commonly accepted by the
community as a starting point to keep everyone on the same page. In addition to log
levels, you can use other attributes in the log statement to filter further. For example,
you can filter on plain text, or utilize structured logging (discussed in “Structured
Logging” on page 109).

When you’re running a service, there is a chance it will rely on libraries to provide
additional functionality. It is in your interest to set the logging levels for the different
libraries, as their logs may be useful as well. Why log a Stripe transaction for debug‐
ging purposes if Stripe already does that for you? Conversely, why retain a bunch of
information about Stripe transactions that may not be relevant to the logging needs
of your team?

Avoid Using DEBUG in Production

The DEBUG level is useful for debugging. Since you should not be
debugging in production, you should not be emitting DEBUG level
statements in production. You may want to take extra steps to
avoid leaking sensitive data by accidentally setting logs to the DEBUG
level in production, since these statements will likely not be scruti‐
nized in the same way as other logging statements for privacy, com‐
pliance, or security issues. (Encrypting logs is covered in
“Encrypting Logs for Privacy and Compliance” on page 112.)

What Shouldn’t You Log?
Logs are a godsend for developers trying to inspect the functionality of a system.
Some engineers advise logging everything. But these digital artifacts are just as pow‐
erful for hackers. The only difference between developers and hackers is that the for‐
mer has permission to inspect your system.2 By default, logs are not encrypted in any
way. Sure, they may have encryption at rest and in transit—the same as your database
or storage buckets, perhaps. Now take a second and imagine that a hacker manages to
access your database. It does not matter that it is encrypted at rest, because all of the
data is unencrypted to the database. Logging is the same; however, your logging sys‐
tem may not be locked down in the same way. Nor should it be. Log access should be
available to all engineers, whereas databases will not always be accessible. Logs should
not be considered private or secure, so any sensitive data should be excluded from

106 | Chapter 7: Logging

logging statements, or if necessary, encrypted as described in “Encrypting Logs for
Privacy and Compliance” on page 112.

Other components in your system, such as the database, can emit logs as well. Pro‐
ducing and keeping all of these logs may have additional cost. Not just the cost added
to your cloud bill, but noisy logs can impede debugging and leak sensitive data. It is
important to understand what data will be visible in logs, and how that data is stored,
transmitted, or accessed. Other systems, or even system libraries, could unknowingly
log sensitive data.

You need to take relevant laws into account as well. Something as simple as logging
the email address of a user that had an exception could be against the law in your
country, or one the system operates in. Recent laws such as GDPR and California’s
CCPA have increased user privacy, but have also increased the responsibilities of
organizations that collect or process data. In the US, most compliance efforts are
driven by HIPAA, PCI, and SOX, which affect healthcare data, payments, and the
accounting of publicly traded systems, respectively. Become familiar with any kind of
regulatory requirements affecting your system so you can avoid breaking the law,
while increasing your marketability as an engineer who understands business
requirements. If your organization does not yet have such standards, be the hero who
helps others understand what not to log and why. And when in doubt, don’t log it out.

How Does Logging Work?
Inside your serverless functions, you will likely use the standard logging capabilities
of the programming language you are utilizing, in addition to the logging capabilities
of your cloud provider. If the tooling is not accurate, you may have to spin up your
own, or your organization may have already set up a logging system that meets the
internal requirements. In a perfect world, these internal systems are presented as a
managed service in the same way as other cloud offerings. There is never a perfect
solution for everyone, but in general, if you are trying to minimize the overhead of
managing other systems, you will want to rely on as many such systems as possible. I
will not cover the mechanics of logging in production at such depth, as it is assumed
that you will be using the logging offered by the cloud provider, another widely adop‐
ted and documented solution, or a proprietary, internal-only solution. But here is a
high-level overview of what you need to know about operational logging.

You see, logs are not a part of the critical path of an application. The critical path is
everything that must function for the system to be operational. Logs are an accessory.
If your logging system fails, it should not bring your application down, nor should it
ever magnify or create excessive stress on your systems. In the cloud, you may share a
single network connection (virtualized to boot) that needs to take in a request, con‐
nect to other systems, services, and datastores, and then return a response in a timely
fashion. Any attempts to log during that request are competing for network

How Does Logging Work? | 107

resources. That is why, in a data center environment, system administrators use addi‐
tional network connections to make sure applications maintain availability. In an
ideal system, they may have one connection for handling the request and response,
one connection for talking to internal systems, such as databases, and even one or
two more for logging and management.

Another best practice for logging is to utilize the User Datagram Protocol (UDP) as
opposed to the Transmission Control Protocol (TCP). You may already be familiar
with TCP, as it is the basis for many other protocols, such as HTTP, IMAP, POP, and
FTP. TCP is designed to ensure the receipt of data sent in both directions. Although
there is no guarantee that data that is acknowledged has been processed, it greatly
increases the confidence that a transmission was successful. UDP, on the other hand,
is designed for communications where timeliness is more important than acknowl‐
edging receipt. The most common example would be making a voice or video call
over the internet. When you watch a video online, it must buffer to ensure playback.
If you watch a live video, it can still buffer because you are not a participant in the
video. But in a video call, the buffer must be as small as possible to maintain a smooth
experience for users, limiting the delay to provide a natural feel to the conversation.
With TCP, there is a built-in retry mechanism, and additional overhead comes from
the back and forth needed to ensure that data was transmitted accurately and cor‐
rectly. If detectable data corruption is caused in transmission, TCP will resend the
required information. UDP, on the other hand, is a bullhorn. It broadcasts informa‐
tion (generally to a single recipient), and does not have a mechanism for ensuring the
data makes it there.

Still, if you need to keep logs for compliance, you may need to use TCP. Those log‐
ging requirements are for business data that must be kept in an appropriate datastore,
which is different from the application logs covered in this chapter. That datastore
might be your normal logging system, but it must be done synchronously, using TCP
if necessary.

Ensuring Your Logs Scale
As mentioned in Chapter 4, the frictionless scaling of a function can cause issues with
other systems that do not scale in the same manner. Just because a service is managed
does not mean that it is serverless or even scalable. And even if it is scalable, it still
may need some kind of intervention to scale. If your organization already has a log‐
ging system in place, it may not be able to handle the spikes of your particular service;
serverless systems can scale multiple magnitudes instantly, then resolve down to zero
before even automation can deploy an additional node in a logging cluster. For that
reason, it is best to utilize the built-in logging available to functions, and if necessary
build a way to pipe those logs into the relevant systems outside of the processing of
those user requests. If your serverless functions trample the logging system, your sys‐
tem logs will drop on the floor, and others in your organization will be impacted not

108 | Chapter 7: Logging

only as their logs fail to write, but as it may become sluggish or impossible to search
for data in the logging system due to the increased load.

It is not uncommon for users of the Elasticsearch, Logstash, and Kibana (ELK) sys‐
tem to run into capacity issues with serverless systems. If you are going to use your
own logging system, self-hosted or otherwise, decouple your serverless functions by
using streams to ingest the data from the cloud provider’s logging system to your
own. Make it known to consumers that logs can and will be delayed in periods of
high volume, and publish an appropriate metric, such as an iterator age or queue
depth, so that users of the logging system can understand the delay in detail.

Structured Logging
By default, log statements are just a string of text. This limits the potential of search‐
ing, filtering, or analyzing logs. Imagine if your database was just one long unstruc‐
tured text file of every change made to the database. Structured logging is when you
log in any format that allows the logging system to decode that string into structured
data. A common way to do this is using JSON as the format. You can search online
for the most widely recommended method of configuring JSON logging for the pro‐
gramming language you are utilizing.

More Effective Debugging with Logs
Your logs won’t just help in production, they can also be immensely useful in devel‐
opment and testing.

In addition to being an alternative to the print statement, debug statements can be
effectively used in a number of ways. One such way is to increase understanding of
code by encapsulating information about the operation of a system that might nor‐
mally be kept as a comment, as a debug statement instead. That way a developer try‐
ing to understand the functionality of some code can run it locally with a lower
logging level, DEBUG, that will not only print out to their console the commentary
steps the code is taking, but can be augmented by showcasing and including the rele‐
vant values and state throughout the process. Used effectively, this may also supplant
the need for a debugger or setting breakpoints when developing code.

How frustrated do you get when you are ready to commit your code and the test suite
fails on some part of the code you are unfamiliar with? Your test runner can include
logging statements for failed tests, and with the extra verbosity of DEBUG statements, a
quick glance may help you or a teammate grasp why a test that they have never seen
before failed.

I personally like to have an environment variable set that changes the logging level, so
that I can enable it on a specific lambda when testing in a development or staging

How Does Logging Work? | 109

environment. Remember, the DEBUG level should likely not be enabled in production,
as it may leak data unintentionally.

Searching Logs
A very common use case of searching log entries is to gather diagnostic data about an
error or exception that occurred. This is likely the only reason you may seek out log‐
ging in your engineering career.

As with everything else, it is best practice to take a quick look at the limitations of the
offerings you are choosing from or the one you have already been dealt. You should
not have to bend over backward to fit your tooling, as that defeats the purpose, but
there may be common limitations across many tools, or limitations that you are
forced to deal with due to organizational politics. Taking the high ground of not
matching your work to your tools just because you didn’t get to choose the tools will
not get you anywhere in life. So make sure you are logging in a way that will facilitate
the best experience when you have to interact with those very same log statements,
potentially in the middle of the night, with the brightness down, trying to avoid wak‐
ing your significant other.

You can use logs to query historical data that may not have been measured as a met‐
ric. This works very well if you come up with proxy measurements. A proxy in this
case means a substitute, and there may be an artifact that can be extrapolated from
logs (such as the number of times a particular process was executed), as a proxy for
something else, such as user sign-ups.

Exception Logging (Sentry)
Exception logs are a very specific type of application logs that contain additional
information in the case of an exception. Sentry, available as either a self-hosted or
hosted service, collects relevant information about exceptions occurring in your
system.

Sentry’s value proposition is that it deduplicates and aggregates errors that are likely
similar, and then presents that debugging information in a specialized web applica‐
tion that allows developers to navigate the data surrounding each instance of the
exception. It not only notifies you of an error, but you can mark an issue as resolved,
and it will let you know when there is a regression. It provides detailed debugging
information, such as local values of the application state, and must be configured to
avoid leaking anything sensitive. This type of additional tooling is most powerful
when deployed in addition to the best practices of logging we have already discussed.
When you dig through an exception captured by Sentry, your log statements will be
available both in a traditional linear fashion, as well as tied to the relevant parts of the
stack trace. A stack trace is a representation of the different areas of code that are cur‐
rently being executed in a given stack or thread.

110 | Chapter 7: Logging

Utilizing such a tool requires some considerations. As Sentry logs data over HTTP, it
is relying on TCP. I prefer to use this exclusively for nonretriable terminal errors. In
this situation, it does not matter that the operation is blocking because the processing
of the task has failed and nothing can be done about it other than producing useful
information to figure out what the problem was for the purpose of triaging and fix‐
ing, as well as sending the event to a failure queue if it makes sense for that task. Also,
your serverless functions can induce excessive load on Sentry if it is not provisioned
to scale. Again, this can impact both writing and reading data from such a system.
For Sentry, similar exceptions already get aggregated, so rate limiting is my preferred
method to isolate serverless traffic from destroying a sentry cluster.

Collecting Other Logs
If you are exposing your serverless (or other complementary services) to any kind of
traffic, even internal traffic, you will likely want to keep an access log. In the world of
HTTP requests, an access log is the record of the requests being made. If you are uti‐
lizing an HTTP server, such as nginx, you can configure it to create logs and then
find a way to ship those logs elsewhere. However, if you are exposing an endpoint to
the public internet, you will likely be using a Content Distribution Network (CDN), a
load balancer, or both. When utilizing the ones offered by your cloud provider, you
should enable, and configure, in a standardized way, these logs and how they are kept.
The namespaces for many things can shift and change over time, but it is best that
your logging has a smart plan for storage. With today’s offerings, it is simple to get
started with an implementation that will scale by leaning on the previous learnings of
others.

Compliance
Unlike monitoring metrics, which provide historical context, there may be reasons to
expire logging data. Over time it can become a liability. It can be costly to store, and
debugging an issue from last year is not a common occurrence. Even if keeping logs
around is affordable, having them actively accessible and searchable in your logging
system will be more costly unless you have a data lake–type setup in your organiza‐
tion. Some organizations have requirements on purging logs automatically. Other
organizations may require you to store logs indefinitely. These rules generally apply
to the logging output of the application, while other logs, e.g., access logs that have
security or compliance value, may be kept indefinitely. The record of which developer
accessed a production system may only live in access logs, but application data is not
stored in application logs.

You may need to keep a log for the purpose of auditing the production systems. It is
important to understand the distinction between keeping an auditable log and
generic logging, as they are not one and the same. Logging is emitting logs statements

Collecting Other Logs | 111

for the purpose of analyzing a system, usually related to fixing a bug or improving
part of a system. As previously mentioned, they should be considered unreliable, and
secondary to the functionality of the business logic. If a transaction needs to be regis‐
tered in a log for legal purposes, it is best to consider the logging of that transaction as
critical business logic to a proper datastore.

Let us consider HIPAA. This US law governs the privacy of information in medical
records and other personal health records. Intentional HIPAA violations can lead to
hefty fines for the business found at fault, as well as employee termination and possi‐
ble imprisonment. While accidental violations don’t have to result in such severe pen‐
alties, they can if accidental violations are not reported immediately and properly. A
core requirement of a HIPAA-compliant system is to keep a log of any occurrence of
a person seeing personal health information (PHI) alongside the identity or personally
identifiable information (PII). An example would be a doctor viewing a patient record
where the name of the patient is visible. Does it make sense to deny the doctor the
ability to view the patient record, if the attempt to log that action fails? In the case of
HIPAA, an action that fails to be logged should not be permitted.

Distributed Tracing
Following a unit of work as it appears to the consumer of a system can be very diffi‐
cult in a distributed system unless you take one major precaution. If possible for your
design, every request coming in from an end user should have a request identifier
that you can pass along to each task that will be triggered directly in service of satisfy‐
ing a request. Your CDN or load balancer may provide a unique value per request,
and that might be all you need. However, while this may not be necessary for your
application, if you think it might be necessary one day, you can prepare your systems
and put the necessary structure into place. At Google, for example, certain systems
will refuse to process a unit of work unless they have a request identifier associ‐
ated with them. Sometimes you may have to make a trade-off of implementing a very
strict rule that could prevent an important task from being completed, for the larger
mission of properly standardizing your systems. Just think about any project you
have done by yourself in your spare time, and remember that without any structure,
that is the default that will be produced by other people. Now imagine the complexity
of a huge software organization where no rules or standards are enforced.

Encrypting Logs for Privacy and Compliance
I mentioned function invocation parameters in Chapter 4. If you are using a dead let‐
ter queue for failures, those parameters will not be encrypted at rest by default. You
have to set your dead letter queue to be encrypted. If you log the invocation parame‐
ters for debugging purposes, you have already lost this battle. This problem is com‐
mon well beyond serverless—where do you think all these developers got the idea in

112 | Chapter 7: Logging

the first place? These logs can take on new life when being written to an ephemeral
serverless container than they otherwise have when they are shipped. And sure, the
shipping may be encrypted (although not by default) and the storage may be encryp‐
ted at rest (again, not by default), but the dashboards that allow you to access these
logs show just how unencrypted they are. And thanks to the continuous improve‐
ment of developer tools, you can just log in to your logging dashboard and type
“password” to find some interesting entries if these precautions are not followed.

So what should you do?

How leaky should your logs be? A safe middle ground could involve encrypting the
values of your structured logging data. If you are working on a system where that is
not adequate enough protection, you may want to find other examples of how devel‐
opers do logging there, and take those lessons as they are not specific to serverless.

Keep this in mind: the mere reference of a customer record (such as a user_id) in the
presence of the name of the tasks being performed (billing.charge_for_visit)
may be enough to violate HIPAA. Keep this in mind when choosing what values to
encrypt, even when deciding if the name of a field can be visible in a log statement. If
your organization is covered under HIPAA, it may choose to utilize a HIPAA compli‐
ant solution such as Splunk. Even so, the path your serverless logs take to get there
may not be compliant, and you may need to encrypt the log statements, and then
externally decrypt and ingest them into your organization’s logging system.

Here are some quick options to get you started with encrypting your logs. When con‐
sidering these options, keep in mind that you may need to encrypt sensitive data in
the messages, tasks, and function invocations in your application. These ideas can be
utilized for those use cases as well.

Encrypt Only the Values of Sensitive Fields
It is important to consider what values should be kept away from the accidental view
of human eyes, and which values you need to find relevant clues to a failure in the
logs. Once you find the right logs, you can manually decrypt a value needed to repro‐
duce the issue or investigate further. You should utilize a key specific to logs, or the
logs of one system, and that key should be centrally managed so a record can be kept
of the decryption actions taken by that key.

Encrypt the Entire Log Statement
One way to protect sensitive data is to take the entire log statement (ideally a struc‐
tured log statement in JSON), compress it, encrypt it, and base64 encode it before
emitting it as the logging statement. If your use case allows it, your logging system
could decrypt these values on ingestion, but there is another situation for which this
method can provide increased understanding.

Encrypting Logs for Privacy and Compliance | 113

Debugging in production is not a best practice, but you may find yourself in a situa‐
tion where you need full DEBUG level understanding of what is happening. You can
create a utility function for use in your code, or you could apply such a process to all
DEBUG level logs in your application logger so they can be safely turned on in produc‐
tion during an incident to collect further information.

Conclusion
Logging is a powerful way to understand how your applications actually function in
production, as well as in testing and debugging. But it is not without peril. You must
understand the laws regarding processing and storing data to ensure compliance. In
addition to the logs produced by your systems, other logs must be considered for
storage and analysis.

Being thoughtful of your future self and the others on your team when designing,
writing, and managing the code you come in contact with is the most important
investment you can make in your skillset and your career. Effective use of logging is a
vital part in this endeavor.

114 | Chapter 7: Logging

CHAPTER 8

Changes, Automation, and
Deployment Pipelines

Innovation, increased developer velocity and productivity, rapid technological advancement,
and the ever-changing microservice ecosystem can all very quickly be brought to a screeching
halt if any piece of the microservice ecosystem becomes unstable or unreliable. In some cases,
all it takes to bring the entire business down is deploying a broken build or a build containing
a bug to one business-critical microservice.

—Susan J. Fowler, Production-Ready Microservices (O’Reilly)

It’s one thing to create a prototype or even an MVP of a software project. It’s an
entirely different thing to get that code into production and shepherd it to launch. Or
at least it used to be. Launching the code over the wall is no longer in vogue (I blame
open office floor plans). It would be nice if we could rely on a magical team of bash-
script-incanting wizards to maintain stability and resilience, but in reality this is up to
the engineering team, whose previous primary focus may have been simply to
develop features.

If that’s you, don’t be embarrassed that your employer now expects an instant fluency
in infrastructure and production. This chapter is here to help. By the end, you will be
tourist-level proficient at DevOps: you’ll at least be able to ask for directions, under‐
stand the maps, and not feel as lost.

I’m going to assume that you are in an organization that provides some access to
DevOps resources, even if they are more internal consultants than caretakers of your
code. Befriend these amazing people. They have spent their entire careers investigat‐
ing crash sites, but for some reason not many plane designers want their input. Some
engineers look down their nose at infrastructure or operational work, but modern
infrastructure is engineering in its own right. These are your peers, and you each have
knowledge and experience that the other can learn from.

115

https://learning.oreilly.com/library/view/production-ready-microservices/9781491965962

A DevOps engineer may have to sign off on your production plans or even architec‐
ture, so start getting their feedback early. If you have some level of responsibility over
production and your organization does not provide such resources, following the
basic level of standard practices in this book should get you far enough to be able to
staff up. Or, if you can rely on managed services, you may stand instead on the
DevOps shoulders of those providers. Either way, thank these heroes for their service.

Dealing with Change
The only constant with your systems will be change. But change management is not
actively taught to early-career software engineers. Not only will you have to under‐
stand the changes you are incurring on your system, but you will need to understand
how to describe your systems using code and configuration to keep everything in
order and to make sure that the steady state (or desired state) of your system is realis‐
tic and achievable.

First, you must go from having nothing running in your target environment to hav‐
ing something running. You’ll need to make changes, including to the code in pro‐
duction, in ways that do not cause issues elsewhere.

When you are targeting the cloud as your deployment strategy, you will have to do
certain types of testing and confidence building in a real environment provided by
your cloud provider. At a minimum, you’ll need to test that infrastructure changes are
safe and won’t have unintended side effects. As a bonus, the low cost of spinning up
test environments on demand can turn into quite a benefit.

The Role of Automation
Automation doesn’t just provide consistency. Designed and done properly, automatic systems
also provide a platform that can be extended, applied to more systems, or perhaps even spun
out for profit. (The alternative, no automation, is neither cost effective nor extensible: it is
instead a tax levied on the operation of a system.)

—Betsy Beyer et al., Site Reliability Engineering (O’Reilly), Chapter 7

The Google Site Reliability Engineering (SRE) group once determined that 70% of
outages at Google were directly caused by a change. Manual changes are subject to
human error and might not be documented. Automated ones are at least documented
once as code or configuration. Because a manual change may be simultaneously criti‐
cal and undocumented, it is highly likely for a future push (generally the next one) to
undo those crucial changes. You’ll need to understand and manage those changes: the
best way to do that is with automation.

116 | Chapter 8: Changes, Automation, and Deployment Pipelines

https://learning.oreilly.com/library/view/site-reliability-engineering/9781491929117/ch07.html#chapter_automation

What Do We Automate?
There is an inherent trade-off every time you turn to automation: time spent creating
the automation versus the time saved by that automation. The webcomic xkcd made
this helpful reference that can help you understand which tasks are worth your time
to save you time, in Figure 8-1. Automation is not just to be rationed and used spar‐
ingly for those tasks that are worth the payoff; instead, focus on which tasks must be
done reliably, repeatedly, and rapidly.

Figure 8-1. “Is It Worth the Time?”, xkcd, Randall Munroe

It makes sense to automate things outside of your pipelines too! You can create APIs
as a façade to manual processes to prepare for the possibility of future automation.
You can have an API generate a “task” that is really just a ticket that will be handled
by a human being. Once that task can be automated, the API is already in place and
nothing needs to be changed on the other side. As you start to automate, you can also
send failed tasks to the ticket system.

When you don’t have the resources you need to faithfully execute the best practices of
software engineering, try to take incremental steps in the correct direction. Make sure

The Role of Automation | 117

https://xkcd.com
https://xkcd.com/1205

you adequately document these as trade-offs and ensure that they will not hamper
your future efforts to finish implementing the ideal solution. This way, you avoid pre‐
mature optimization as well.

Getting Your Code Ready for Production
Standardization and consistency should be baked into the development process.

Even your terminology, such as deployment or staging, must be standardized through‐
out the organization: it’s important for everyone to mean the same thing when they
talk about deployment. You’ll also want to standardize your branch naming and
merging conventions.

Your project should go through some form of mandatory code review before changes
can make it into production. If not, implementing this should be a priority, since any
subsequent steps you take to increase confidence in your production builds and envi‐
ronment depend on this step. Even if you have to play devil’s advocate and review
your own code as a formal process because you are the only person working on that
team or in that language, please do this. Build in the direction of best practices.

Code review is the final stage in preventing human error from making its way into
production. Reject things that are going to cause issues in the real world during the
code review stage. Do not give a formal review on any pull request that has failing
tests, and make sure new code has new tests. All of these tools and standards should
not be an additional layer of management overhead for engineers to work against in
order to do their jobs. They should be as frictionless as possible while preventing
errors from working their way into production apps.

One such example is connecting your project management software, such as Jira, to
work with your branching and deployment strategies. You can take a ticket to work
off of, name your feature branch with that ticket ID, and include the ticket ID in com‐
mit messages so that when you start pushing code, it updates to being “in progress.”
When it has been accepted as a pull request, your ticket can automatically update
itself as done. You can also create release notes this way. The key is not to fight auto‐
mation but to embrace it. Automation reduces your work and even the cognitive load
of your project, generally more than it takes to set up, and is less work than dealing
with incidents as a result of not having proper pipelines.

Continuous integration is the process of integrating all of the changes to a specific
project on an ongoing and continuous basis.

Your project will need a clear and standardized (for its programming language) way
to specify not only the dependencies of the project but which versions they depend
on. Sure, you may want to run the latest version to ensure you have the latest security
updates, but without version pinning, library developers can and will break your

118 | Chapter 8: Changes, Automation, and Deployment Pipelines

code. (And you have no excuse to complain if you were not version pinning.) But
sometimes version pinning is inadequate, since the “version” can itself just be an alias
that is mutable after first being published. Even if you are version pinning, the
authors of a library can change the artifact you download for that version. Watch out
for this anti-pattern (I’m looking at you, Docker).

Ensure that the repository and the build being bundled do not have any unencrypted
secrets or sensitive values or data. In addition to the reasons we have discussed
already, access to your build artifacts will likely be less controlled than access to your
code, and especially less controlled than access to your production systems.

Other parts of your system may need to be adapted for proper deploys. For example,
frontend assets or code may need to introduce timestamps or version numbers into
their URLs to avoid issues with caching and to ensure each page load is properly pin‐
ned to the version of the resources it is expecting. Not doing this will cause websites
to fail to load or paint, or cause the CSS change to not show up in the browser of your
most important stakeholder.

Infrastructure as Code
Infrastructure as code is the practice of having all infrastructure and configuration of
such infrastructure in some form of machine-readable code, so that machines can
execute the underlying operations and changes required. Infrastructure as code
allows for standardization, optimization, and peer review of your infrastructure and
all changes being proposed and orchestrated by your overall pipeline process. Plus, it
is the only real way to achieve automation. Generally speaking, you want to achieve
100% infrastructure as code and only as much automation as your company either
needs or can afford to build.

In addition to infrastructure as code, an effective DevOps strategy requires a thor‐
ough understanding of the desired steady state of the system. You’re using automa‐
tion to turn your infrastructure as code into the steady state desired, but any and all
potential issues may cause an undesired or error state. What do you do when the sys‐
tem reaches that state? How can the partial transaction of a change be designed to be
unwound in case of error? Do infrastructure changes have some sort of transactions?
Well, unless you ensure otherwise, the default behavior of the system can fail and
leave it in a completely unexpected state. Any deployment action you take without
fully considering the ramifications will either completely succeed or completely fail.
You must put in the work; don’t make any assumptions.

Infrastructure as Code | 119

From One Template to Another
The Serverless Framework provides an abstraction of resources in its own vendor-
agnostic templating format, serverless.yml. Depending on where you deploy, the file
will be converted into the native infrastructure-templating format of your cloud
provider.

On AWS, for example, the Serverless Framework generates CloudFormation tem‐
plates to describe your infrastructure. That means you need to understand the mech‐
anisms of deploying CloudFormation templates, because you should never trust any
magic you don’t understand. What is the life cycle of a CloudFormation change?
What happens when a deploy fails? What is the syntax for specifying additional infor‐
mation in CloudFormation YAML in serverless.yml, and what does it all look like
when it gets put into JSON and sent to Amazon? You do not need to learn how to
write a CloudFormation template from scratch, but you DO need to know how these
changes roll out from an operational perspective. I cannot stress that enough. The
same goes for Google Deployment Manager and Azure Resource Manager.

You may also need to take the outputs generated by the Serverless Framework to
another tool, such as HashiCorp’s Terraform, to manage the infrastructure. Either
way, your organization will expect you to understand how to make your software
choices, including tools such as the Serverless Framework, and to meet the expecta‐
tions and requirements that all other teams must meet.

Database Changes (Migrations)
There’s never a good time to talk about database migrations. Onboard a new engineer
to a project, set them up with a feature, and I guarantee the first major incident they
cause will be related to a database change. Developers who are utilizing an object rela‐
tional manager (ORM), such as those built into Django or Rails, are kept at arm’s
length from their database. ORMs are a great way to save time, but you should under‐
stand what the ORM is doing on your behalf to make sure it does not break things on
your behalf. When it does break things, the migration or ORM tool is not going to
warn you or even let you know it was at fault. The main thing to understand is that in
a relational or SQL database, changing the schema can cause a lock on a table that
stops queries from being executed before the migration and completely prevents any
queries from occurring during or after migration.

In addition to this, always remember the option of using a two-phase change instead
to decouple changes to data from changes to code, or for other situations in order to
isolate two changes that are independently going to break just because they were
included in the same deploy. Here is a basic set of rules that should mostly keep you
out of trouble:

120 | Chapter 8: Changes, Automation, and Deployment Pipelines

• Do not deploy changes to infrastructure (or databases) and changes to code in
the same deploy.

• Do not let your pipeline run the migration directly—instead, have the migration
system generate the changes in SQL form, and include that as a file in your
repository or infrastructure repository.

• Use transactions if possible.
• Have someone experienced code-review this change on its own, and approve and

deploy the migration on its own. Be ready to interrupt if necessary.

Keep in mind that the running database must support old and new versions of the
code simultaneously. Do not code yourself into a corner by purposely breaking the
old code in a deploy. Always break it up into two parts so that you can deploy the
change that is safe for both versions. Then when it has stabilized, you can deploy the
other part of the change.

What about NoSQL? Keep in mind that while a NoSQL database may not have a tra‐
ditional schema, your code expects the data to be structured in a certain way, which
serves as a de facto schema. Breaking the contract of the ephemeral schema will cause
issues that you do not want. Consider all the moving parts for both SQL and NoSQL
databases.

When in doubt, test your changes manually in a testing or staging environment, mak‐
ing sure to be as close to the situation that the production environment will be in
when the changes occur. And do your best to avoid dropping columns. They should
just be left orphaned if not needed, and then dropped in the future during an appro‐
priate maintenance window.

Configuration Management
As with logging, the levers exposed by your service or application code have different
kinds of levels. There are values that are hardcoded into your application. There are
values needed by one line of code, values needed at the build time for your software,
values needed to start your application and get it running, and dynamic configuration
variables that may be the result of a business decision by someone else, and it may
make sense for nonengineers to have the ability to control them (with proper controls
and auditing, of course). Imagine the ability to change parameters in production
without needing a redeploy. (Your options for handling secrets in configuration will
be covered in Chapter 9.)

When creating a new configuration parameter for your code, make sure to create
defaults that make sense in the absence of configuration or in a case where the config‐
uration gets corrupted. These types of configurable variables are best set by when
they are needed by the code and when they will need to be changed.

Configuration Management | 121

What Is a Pipeline?
A pipeline is a uniform process that takes an input on one end (your application code)
and creates one or many outputs as a result. A common example would be a deploy‐
ment pipeline that takes your application code, installs any required dependencies,
packages it for deployment, runs the test suite for your code, and then deploys the
build to its intended destination. The destination may be a specific server running
code, some kind of storage bucket for your serverless functions, or an artifact man‐
agement system if you are in a large enterprise. (An artifact is the result of the build
process.) A deployment pipeline is the assembly line that assembles, validates, and
launches your code into the real world. This chapter exclusively discusses deployment
pipelines.

These pipelines will share phases and sometimes artifacts. They will possibly include
or exclude certain steps based on the desired end result. For example, if you package
and test a build based on a certain version of the code, attempting to make another
package from the same code could yield different results. What happens if you try to
download dependencies when the internet is down? Once a build has been completed
and tested, deploying the resulting artifact is more reliable than running a new build
and test on the same code, because the outside world has changed between the two
builds. Some engineers make the mistake of testing code and then packaging it,
which will cause a problem on a long enough timeline. While one method may pro‐
duce more reliable results, you might not have the infrastructure in place to store
build artifacts and deploy them seamlessly. Just make sure that if you are going to
deploy a build, you run a test suite on that build.

In the world of computer security, reproducible builds are sometimes discussed. The
idea is that anyone on any computer building the same version of the code will get the
exact same build artifacts down to each individual bit. This is likely overkill for your
needs, but it certainly enforces the notion that without a lot of engineering work, no
two builds are guaranteed to be exactly the same. You can build and test to validate
the code, and then build and test to deploy and hope for the best. But it’s far better to
build, test, and store an artifact to ensure the same results each time.

Especially when dealing with microservices, a pipeline must ensure that each deploy‐
ment of one microservice does not lower the reliability or availability of another
microservice. Deployment pipelines can deploy to different stages, enforcing quality
checks in staging before then automatically deploying to the next stage, such as
production.

122 | Chapter 8: Changes, Automation, and Deployment Pipelines

Decisions to Make Regarding Your Pipeline
Your code should have to go through the pipeline before it can get onto the master.
After that, it should have to go through another pipeline for production: either the
same pipeline again or another pipeline that takes the build artifact and only does
some of the steps, since the build has been deemed valid. All that is left is the deploy‐
ment, which needs to happen in the correct order and be validated.

One way to ensure quality is to use a checklist. Some might roll their eyes at the
thought of spending valuable engineering time “checking boxes,” but what do you
think happens at NASA before a launch or in a cockpit before a plane flies? Every
pilot makes their final “checks” before they decide it is safe to take off. Checklists are
not the solution to everything, but they are certainly better than most other solutions.
At the least, your organization should require some basic level of quality to deem a
project ready for production.

You should not make a change to your infrastructure or deployment process without
testing that it will work first by utilizing a staging environment. Set and enforce a rule
that all changes must be pushed to staging before QA.

If you add some shiny new plug-in that is going to change a CloudFormation tem‐
plate that you have never read, how will you know that it is going to work? You won’t
know. You may get lucky, but you will never know.

I will cover staging and other nonproduction environments in Chapter 10.

Canaries and Blue/Green Deployments
Every part of your deployment is designed to increase confidence in the quality of a
build and to block potentially substandard builds from entering into production. The
following two methods measure the quality of the software after it is already in pro‐
duction by allowing it to be tested with real production traffic and providing an
opportunity to roll back a bad build, manually or automatically:

Canary release
This is when you slowly ramp up the percentage of requests coming into a new
version to ensure that it does not cause an increase in errors or a decrease in per‐
formance or availability. The name originates from mining, where a canary in a
cage would accompany workers down the mine shaft. If the canary no longer
appeared to be breathing, the workers would leave for fear of suffocation.

Decisions to Make Regarding Your Pipeline | 123

Blue/green strategy
This is when you have two environments for production. One is the current ver‐
sion that receives all incoming requests; the other is waiting to be upgraded to
the new version. Once it is upgraded, you can test it directly, put it through a
canary-type ramping up of traffic, or transition all traffic over to it directly.

After a successful outcome of either of those options, the other environment now
waits dormant for its turn to be upgraded and promoted. If the build is defective,
traffic can be transferred back to the old version of the service. This strategy was once
considered wasteful, but now with cloud resources, the unneeded environment can
be destroyed and regenerated as needed. The cost of keeping the past couple of ver‐
sions around may not even register a significant change in your cloud bill, and no
change at all for your functions, as they are pay-for-usage priced.

Deploys are best with the smallest changes possible so that you can detect any
changes in the behavior or performance of the app and associate them with the
change that incurred the regression. If a build fails, its deployment should be rolled
back or removed from the pool of production servers when in a canary-type situa‐
tion. Success at this deployment strategy hinges on having a successful monitoring
and alerting strategy—you can’t automate rejecting a failure you can’t detect.

Pipeline Permissions
Your pipelines need sensitive access to production systems. The pipeline system
should have properly set up and clearly defined roles in your cloud provider’s permis‐
sioning system, and in an ideal world, each of your pipelines should have its own
role, and likely its own credentials. Keep in mind the principle of least privilege: give
users the minimum permissions they need to do their work. Don’t let your build
servers or process be the “root” access to your cloud systems. Malicious employees, as
well as your friendly neighborhood hackers, will try to compromise these systems
first and then pivot from there. Build servers are highly permissioned and have less
oversight, and guess what? They tend to download and execute arbitrary software
from the internet.

Your organization’s policies may prevent you or your pipelines from making changes
to permissions, especially when you want to add a new resource to your service, such
as a datastore. In this case, you will have to change the deployment system to get
access to create the table, and it will likely need to be able to alter your functions per‐
missions to access the newly created table.

Just as your application code can emit logs that allow a developer to investigate an
incident with code, infrastructure changes can and should emit some kind of audita‐
ble log to understand the changes being made to the system. Your cloud provider will
have one such option available, which can be useful for debugging purposes as well as

124 | Chapter 8: Changes, Automation, and Deployment Pipelines

simply being a regulatory requirement. (Permissions will be discussed further in
Chapter 9.)

Why Do You Need a Pipeline?
Pipelines are the place to make sure your code meets the standards and requirements
of the organization, and to provide as much confidence as possible that the build of a
project is ready for production. Pipelines enforce quality, standardization, reproduci‐
bility, and optimization, but they are only as good as the components, phases, and
design allow.

Determining who is responsible for each phase of the pipeline may be an institutional
decision. But at the end of the day, as the engineer you may have to expose your
implementation of certain phases to other engineers who will help get the entire pipe‐
line onboarded. A makefile is a great interface for this and can help you standardize
the API for your pipelines across the entire organization.

In the spirit of automation, as many phases as possible should be published internally
because standardized solutions do not require additional heavy lifting. A simple
option could be a directory of organization-specific configurations and a shell script
per phase to help the inner workings of the pipeline fade away.

Key Phases of a Deployment Pipeline
Building application code to achieve a desired end result is a custom process. So are
the build pipelines that launch these projects into production. However, the overall
components and themes that will comprise any pipeline you interact with will be the
same, regardless. You need to turn your code into something that can run, test that it
is functioning correctly, launch it, validate its launch, and handle any deployment
errors. Most importantly, the pipeline must enforce the standards and practices of
your organization.

The following overview shows an ideal pipeline. In real life, this may not be a single
pipeline. It may be broken up into multiple pipelines to achieve the flowchart-style
process of your deployment strategy, or it may be some massively perfected system
that gives fine-grained control and battle-tested automation over every single part of
the process, like at a large tech behemoth. All of the steps of your pipeline may run in
one environment in one sequence, or it may be broken up into single steps being run
one at a time. It may be distributed and run concurrently. It may be something else
altogether.

If you want to peer into the deep end of automation, take a look at the book Site Reli‐
ability Engineering by Betsy Beyer et al. (O’Reilly), which explains an open sourced

Why Do You Need a Pipeline? | 125

https://learning.oreilly.com/library/view/site-reliability-engineering/9781491929117
https://learning.oreilly.com/library/view/site-reliability-engineering/9781491929117

version of the strategies undertaken by one of the largest computing operations in the
world to ensure the highest level of reliability possible.

This section provides a high-level overview of what a standardized pipeline should
include.

Step 1. Enforce Standards
During a pipeline is a great time to enforce the engineering quality or standards of
the build. Linting is one way to do that. A linter is a tool that analyzes code to identify
potential issues, deviations from a standard format, and in some cases automatically
reformats the code to be compliant as well. Linting is a way to not only keep your
code clean or conformant to a set of norms but also to test your code—at least your
code quality.

In addition to linting, setting up your development environment to automatically for‐
mat and enforce the coding standards set by the organization can decrease the overall
cognitive load of reading code, simplifying writing code, and solving any arguments
on style. Google publishes its style guides in many languages, which can be a helpful
starting point. But any set of responsible standards will increase code quality.

Your organization may have or need its deployment pipelines to enforce standards
outside of the engineering quality of the build, such as which open source licenses are
allowed by an organization.

Step 2. Build and Package
When designing your build pipelines, consider the dependencies of the build process
as entities that also need some form of version pinning in order to ensure that the
code builds and runs correctly in all environments.

You will need to package the dependencies of your system depending on how you
plan to carry out deployment. Relying on the public internet may introduce errors or
inconsistencies into your build processes. Even with version pinning, some package
and container management systems allow a specified version to be changed arbitrar‐
ily after release. In 2016, there was an incident when some high-profile NPM pack‐
ages broke and could not satisfy their dependencies. The culprit? Eleven lines of
JavaScript available in package form as left-pad. Node, Babel, and many other criti‐
cal dependencies could no longer be included in builds after the left-pad package
was deleted. Without adding to that pile, or assigning any blame, just remember this:

126 | Chapter 8: Changes, Automation, and Deployment Pipelines

https://oreil.ly/Z44hT

1 See David Haney, “NPM and left-pad: Have We Forgotten How to Program?”, blog entry, https://oreil.ly/
cR26O.

the world would be a better place if everyone would build their software and systems
to be more resilient.1

One more friendly reminder about your build process. The environment you develop
in may differ drastically from the environment your function code will run in. Make
sure to build and test your code in a similar environment for the best results. You can
find Docker images of re-created function environments online.

Step 3. Test
Testing will be covered in its own chapter as one of the most important parts of your
pipeline. The pipeline is the last place to ensure quality and raise confidence in a
change that will propagate out into your production environment.

Parallelized Builds and Tests

You can speed up builds by enabling some of your phases to take
advantage of multiple threads and cores available in today’s test
runners. Regardless if you are using a homegrown solution, self-
hosted, or a full-on SaaS solution, increasingly powerful test run‐
ners can speed your tests.
You can also parallelize your tests to take advantage of all available
cores of a local development machine or the beefy build server.
Depending on how your tests are written, you may need each run‐
ning thread of your test to have its own infrastructure, since some
common unit tests assume that tests only run one at a time and in
serial fashion. Starting with parallelized tests early helps avoid such
coupling.

Step 4. Publish the Artifact
At this point, a build could be published to a private artifact repository or even an
object storage bucket. For a serverless project, the artifact may be a zip file of applica‐
tion code. For other backend services, it may be a Docker container. Either way, the
artifact must be published to a system. You can then tag those builds as they pass
through the remaining steps of the pipelines. For example, a build that has passed
testing should be marked as such. The same if it has been successfully deployed to
staging. And so on.

Key Phases of a Deployment Pipeline | 127

https://oreil.ly/cR26O
https://oreil.ly/cR26O

Step 5. Deploy to the Target Environment
If you are using the serverless framework, this might be as simple as running server
less deploy in your pipeline system, although that may be insufficient. Instead use
serverless package for the build step. Publish that build. Test that build. Deploy
that specific build, and not a new one. You can use the -p option of serverless
deploy to specify an existing package that was created by serverless package to
deploy the build properly after the other steps.

The target environment will depend on the way the pipeline was invoked. It might be
for development, staging, or production. If it is production, try to tag and reuse the
same artifact (build) as before, because it has been tested in staging as a discrete unit
that is more reliable than just the commit hash of the code.

Step 6. Validate Deployment
Only you (and your team) will know the best way to validate that your deployment
was a success. Despite this, many just take the fact that a script or function executed
without raising an error as a successful deployment. But the commands used to com‐
plete your deployment may not implement error checking, and most certainly can’t
by default verify that the new version of your code is up and ready to process requests
or tasks. Does your application have a health check endpoint? Is there a simple test
suite you can run against the live production site to make sure it is available? What
about checking the output of an HTTP request? The last thing you want to do is push
some new code to production on a Friday afternoon, see a successful deployment,
and then go home to realize a successful deployment does not actually mean a suc‐
cessful change, or even an operational system.

One can certainly argue against Friday or evening deploys, but a well-designed pipe‐
line and deployment process, especially one with some form of smoke testing (see
“Smoke testing” on page 161), can raise the team’s confidence level to where they feel
comfortable deploying anytime and anywhere.

This is where you can carefully and slowly ramp up real production traffic to a new
version of a service or application to ensure that it is reliable and does not potentially
degrade service in any way before making it the exclusive version running in your
production environment.

Step 7. Roll Back if Necessary (and Possible)
Handling an error during deployment that may cause an unstable state to be achieved
in your production environment is not easy. Before you can automate something
well, you first need to learn how it works manually, in detail. If this is the case, you
can do your deployments when you expect lower user traffic or a smaller compute
workload, and try out the process manually by breaking things in production and

128 | Chapter 8: Changes, Automation, and Deployment Pipelines

learning the hard way. Or you can do the exact same thing in a safer environment,
such as development or staging. If you want to test how cloud infrastructure compo‐
nents, configurations, and managed services can deploy into an error state, you will
have to learn this in those real cloud environments. This is the perfect use case for a
sandbox account or project. A safe place that is isolated for you to study and under‐
stand what can and will go wrong, and to automate solutions so that it’s not a big deal
when it does.

The simplest way to roll back is to deploy the previous version for that stage, the one
that was already in service. Some organizations are, however, against rolling back.
They instead believe in rolling forward. If you launch a bug into production, rolling
forward means fixing it by pushing a new version of the code instead of rolling back
to the previous version. Either way, have a plan for a failed deploy.

Handling Pipeline Failures
Plan for failure in all parts and phases of your automation (see Chapter 11). Any
phase of your pipeline, or any part of that phase, could fail. It is up to you whether
such a failure allows or blocks progress. Failing open, as it is commonly called, is
when you allow something to fail but still allow the remainder of the pipeline to suc‐
ceed. An example might be sending the code to an auditing system. Depending on the
type, the system should not block production if it is unavailable or the results of that
system never arrive. But why would you include something in your pipeline that
could fail, and allow such a failure to be ignored? Sometimes you may be asked to do
this in an enterprise environment. Other times, it’s a way to gradually introduce a new
part of your pipeline that is in its early phases and not fully required yet. It may be a
helpful but nonessential step of the process that just makes something else easier in
some way.

You must make a conscious decision for how each part of your build process should
fail. Avoid allowing such seemingly innocuous changes that when combined can trig‐
ger a complex and unexpected failure under control on the code review level. Ensure
that experienced code reviewers who understand the infrastructure changes are avail‐
able, and that inexperienced ones are instructed and trained to spot parts of the code
that they are uncomfortable certifying. Help code reviewers understand how to query
code that they do not understand, and ask the author questions (humbly).

Don’t let anyone circumvent the pipeline, but make sure there is a plan for real emer‐
gencies. Define what those are, and create instructions for how to directly apply a
hotfix with manual actions, and instruct to keep a written log of actions taken to solve
a problem, so a proper postmortem can be created.

Handling Pipeline Failures | 129

Conclusion
Managing your infrastructure can be a daunting task—which may be the reason you
chose serverless. But even with serverless, you’ll need to manage important choices.
You are responsible for determining the steady state and understanding if anything
internal or external can disrupt it.

Having a stable, standardized pipeline will ensure consistency in how your organiza‐
tion ships its software. But that deployment can only be as good as the code itself, and
that is where the rest of the standards in this chapter will serve you best.

Without standards, and enforcement of those standards, you will leave your projects
open to unexpected behavior, and will not be able to achieve security, as discussed
next.

130 | Chapter 8: Changes, Automation, and Deployment Pipelines

PART III

Concepts

“Feeling the Heat”, from the webcomic FaaS and Furious by Forrest Brazeal, 2019

https://faasandfurious.com/92

CHAPTER 9

Security, Permissions, and Privacy

Security must be baked in. It’s not a seasoning to sprinkle onto your system at the end. Even
if your company has a dedicated security team, you aren’t off the hook. You’re still responsible
to protect your customers and your company.

—Michael T. Nygard, Release It!, 2nd Edition (Pragmatic Bookshelf)

There is no shame in making a mistake with security. It is impossible to be perfect.
But it is inexcusable to make such mistakes out of apathy, ignorance, or fear of speak‐
ing up. If you are building a prototype and don’t have time to incorporate security,
ensure that your stakeholders understand the time that will be needed to secure that
system and the consequences of launching without it. If you are building a new fea‐
ture on a production system with real live users, you don’t get that option. The feature
has to at least maintain, if not improve, the system’s current state of security.

This chapter will cover only a small portion of the security knowledge you will need
to be fully effective. Any part of your system that’s not fully serverless will have its
own requirements. As it is, cloud security is so complex that we’ll barely scratch the
surface. The best way to learn to build more secure software is to learn about attacks
and the underlying principles of security that prevent those attacks. Learning why
attacks work will help you spot weaknesses or potential issues as the software is being
built instead of trying to bolt on extra practices later. Some of the advice in this chap‐
ter simplifies real-world best practices to make them more generally applicable to all
readers. Your actual best practices will vary depending on the size of your team or
organization, as well as the precise software you run and the nature of your operation.

133

https://learning.oreilly.com/library/view/release-it-2nd/9781680504552

1 You can read more directly from the researchers: Enable Security, “How We Abused Slack’s TURN Servers to
Gain Access to Internal Services,” April 6, 2020, Communication Breakdown, https://oreil.ly/mGP7y.

TURN Down for What?
Traversal Using Relays around Network Address Translation (NAT) (TURN) is a simple
way to connect devices that are on private networks behind a firewall, usually so that
they can establish a connection for a video or audio call. By design, a TURN service is
meant to connect machines that could not be connected otherwise. When attempting
a call inside Slack, for example, a user may need to use such a service to be connected
with their peers. But this all happens magically from the end user’s point of view.
Their Slack account is used to generate temporary credentials to authenticate with the
TURN service that will bridge, or relay, the connection. Sounds very useful and very
secure, doesn’t it? It turns out to be more useful than secure, as Slack found out when
a security researcher notified the company that this very helpful relay had access to
privately available resources and would help bad actors circumvent the firewall and
establish a reliable connection, just like it was designed to do.1

There are many lessons in this story. For example, this is a perfect use case of isolating
a service inside of its own cloud account to ensure it has access to nothing else. Why
would you need to do such a thing? Because the researchers were able to connect to
the privately available AWS metadata service, allowing them to request credentials as
the TURN service and perform any AWS-authorized duties (granted by IAM permis‐
sions) from the comfort of their own home internet connection for as long as those
tokens were valid. This is a known as a server-side request forgery (SSRF), and it’s a
common early action researchers attempt if they know which cloud they are operat‐
ing within (which can be identified by IP address ownership).

While Slack thought about security enough to use temporary usernames and pass‐
words for each TURN connection, it did not think of restricting IP ranges that could
be connected, or isolating the service in its own cloud account without access to any‐
thing else. This is why it’s so important to understand the basics of computer and
internet security, apply that understanding to every decision, and ensure that security
is a part of the discussion from day one.

Everyone Is Responsible, but You Are Especially
Responsible
While you are responsible for securing all the components of your application, every‐
one in your organization is responsible for maintaining that security. Think about the
security measures that keep an office building safe: locked doors and coded entry,
safety glass, guards, sign-in procedures, and so on. Now imagine if all of the external

134 | Chapter 9: Security, Permissions, and Privacy

https://oreil.ly/mGP7y

doors were removed. A major security risk, right? Yet people prop open office doors
and walk away all the time. One person can’t secure your entire organization, but one
person can render all that security useless.

In the cloud, a lot of legacy security issues are no longer there for you to worry about.
Setting up a biometric access control to control access to servers? No longer your
concern. But that does not mean security is solely up to the cloud provider. In the
cloud, a shared responsibility model clarifies who is responsible for what. Here’s a sam‐
ple from Amazon’s perspective:

Security and Compliance is a shared responsibility between AWS and the customer.
This shared model can help relieve the customer’s operational burden as AWS oper‐
ates, manages and controls the components from the host operating system and virtu‐
alization layer down to the physical security of the facilities in which the service
operates. The customer assumes responsibility and management of the guest operating
system (including updates and security patches), other associated application software
as well as the configuration of the AWS provided security group firewall. Customers
should carefully consider the services they choose as their responsibilities vary
depending on the services used, the integration of those services into their IT environ‐
ment, and applicable laws and regulations.

To protect your organization, you must include security in all parts of your design:
monitoring and alerting, customer support, your employee guidebook. Everywhere.

At the start of the COVID-19 pandemic, the video-conferencing company Zoom
came under fire for sloppy security and privacy practices. It apologized, explaining
that the surge in use from schools and personal group chats was just not something
the company had designed for. Normally, the default user settings were determined
by an IT professional at the user’s company. But the default settings were too lax. As a
result, Zoom announced a feature freeze across the company for 90 days so it could
focus on improving privacy and security, but it lost a lot of good will in the process. It
had promised end-to-end encryption in video calls, but it turned out that was only
true for a very specific custom definition of “end-to-end.” This decision was visible to
many different job functions—marketing, engineering, sales—but nobody managed
to stop it.

Prepare to Be Hacked
Think about how you will be hacked. Understand your adversaries and what you are
trying to protect from them. Consider the likelihood of each potential threat and the
magnitude of its impact when deciding on your security posture.

Penetration tests (hiring ethical hackers to hack, or penetrate, your system) are key to
identifying weaknesses. Make it as easy as possible for your pen testers by helping
identify ways they could exploit the system. The easier you make it for them, the
more deeply they can probe, and the more you can learn as a result. You might need

Prepare to Be Hacked | 135

https://oreil.ly/zh31-

2 Anna Schecter and Tom Winter, “Were These Six Chinese Trespassers Confused Tourists or Spies?”,
NBCNews.com, February 23, 2020, https://oreil.ly/GZzH-.

to set up different testing or entry points for them for testing your defense in depth—
e.g., you may need to give them access to a server, even if they can’t reach it by hack‐
ing in.

No system available to the public internet can be fully secure from being hacked.
Even those not on the public internet are vulnerable. Hackers can attack their way
into systems via Wi-Fi networks, by leaving a thumb drive in a parking lot for an
unsuspecting person to pick up and put into their computer, or even through email.
It’s not a matter of when your systems will be hacked, but how. Limiting the number
of options available for hackers to initially enter a system, maneuver around for
increased access, and even exfiltrate data out of the systems is in your best interest. So
why does it seem to be an afterthought for many systems? As Michael Nygard notes
in the quote at the beginning of this chapter, “Security must be baked in. It’s not a
seasoning to sprinkle onto your system at the end.”

Threats do not only arrive from the outside, either. Nobody likes to think about it,
but threats can come from inside your organization. Someone downloading the
entire production database could be a corporate spy or just a developer trying to test
something locally. Either way, it’s a bad practice and should not be allowed. Even if
none of your associates are malicious, they or their machines could become compro‐
mised and someone could use their internal access to ease an unwanted outcome for
your organization. That is why it is important to understand your threats and the
likely actors who could invade your systems.

Understanding Your Threats and Your Attackers
Penetration tests are valuable because attackers like to probe and gather information
about a system’s capabilities before making their main attempt or escalating privileges
to expand their hold on a vulnerable system. As with any security measures, you need
to think like your attacker. A fun way to understand this is a game called Skynet Sim‐
ulator. You play as an AI that has just awoken and is sentient for the first time, and
your job is to take over all electronic systems in the world and build Skynet. You must
tread cautiously to avoid detection, build up skills and capabilities, probe and learn
more about your surrounding environments, and exploit other hosts on the network.
This is exactly the same behavior a likely attacker would exhibit once inside your
systems.

Take for example an article2 that describes two Chinese nationals who accidentally
drove onto a high-clearance US military installation. The US accused them of prob‐
ing the base’s security systems. Attackers want to know every detail they can,

136 | Chapter 9: Security, Permissions, and Privacy

https://oreil.ly/GZzH-
http://skynetsimulator.com
http://skynetsimulator.com

3 Deviant Ollam and Howard Payne, “Elevator Hacking—From the Pit to the Penthouse,” 2014, Internet
Archive, https://oreil.ly/5meTZ.

including how lenient certain controls might be. The difference with a consumer-
facing internet app is that you are trying to maintain the security of that military
installation while being as open to visitors as your neighborhood megamart.

Design for Security
You know you have to design for your users. But you also have to design for your
attackers; think of them as anti-users. Designing your system to be secure is the same
as designing your system to be reliable or to provide a nice end-user experience: you
must think through each component of the system, each action or sequence of
actions a user is likely to perform—and then you must do the same for threats.

Instead of features, you’ll make anti-features. In this section, I’ll tell you how to
design for your anti-users by helping you understand how they think and what meth‐
ods are widely used in attacks. Then I’ll share some things you can do to secure your
systems. Remember, though, every situation will be different. Think of what follows
as patterns and practices for those anti-features.

Understanding will not come instantly, but as you come to learn some of the broad
concepts and methods attackers use (known as attack vectors), you will see what you
have in common with them. You both might coerce iteratively or surgically in the
same way to get it to do something it was not designed to do.

Threat Modeling

Threat modeling is an exercise you can undertake with your team or
organization to better understand and improve your security pos‐
ture, the defensive stance of your application or system.
For a brief overview, watch the first section ofthe video, “Secure
Your App: Threat Modeling and Anti-Patterns”, from Apple’s
WWDC 2020 Conference.

The more entities involved in security, the more complex achieving such a goal can
become without proper understanding and design-level thinking (or threat modeling)
of such systems. A wonderful presentation on Elevator Security, from the 2014 DEF
CON computer security conference illustrated this to hilarious effect (as do many
DEF CON speakers).3 A group of penetration testers discussed the role of elevators in
physical building security. No matter the sophistication of the security system, the
programming of the elevator, the keycards being used, or the locks in play, there is
generally a place within the elevator for a firefighter to insert a special key that

Prepare to Be Hacked | 137

https://oreil.ly/5meTZ
https://oreil.ly/STIZA
https://oreil.ly/STIZA

overrides everything and grants them full control of the elevator. This is very impor‐
tant for first responders in an emergency, but it can give tenants a false sense of secu‐
rity. For one client, a simple fire key was enough to compromise sensitive areas in the
building they had thought were well secured. While many localities and states have
laws on the books to prevent the sale of such keys to people who should not have
access to them, the only way to specify what key is prohibited is by quite literally
explaining the numeric code needed to duplicate a key, which can be repeated with a
blank key and a metal file without violating that same law. If your organization relies
solely on an elevator as a means of securing access to a particular resource, it should
think again. Even if possessing the key is against the law, how easy would it be to steal
keys from an off-duty first responder? Don’t trust that a secure system was imple‐
mented properly—or designed properly.

In some cases, you can make drastic trade-offs to increase the security posture of
your system. I built a large-scale serverless system that handled sensitive information
at a bank. I was able to incorporate a strict rule into my design and implementation:
no requests could be made to this system other than registering an account for pro‐
cessing. The system I replaced had a lot more functionality but at a cost of increased
security and privacy risk. I was able to convince people of this drastic choice with the
following argument: If our system is working, it does not need APIs to inspect the
functionality of the system; it can use monitoring instead. If the system does not
function as expected for an individual user, you can re-register them to validate that
the system has the access needed to perform its duties. Otherwise, if the system does
not work for a user in a valid state, it should be considered to not work across multi‐
ple users, and actions to repair such issues should never target an individual account
(other than for engineering-level debugging) but should be taken to fix the issue sys‐
tem wide.

This is the level of depth and defensibility needed for your design to launch a green‐
field (a completely new project) in a large-scale enterprise. If you’re an early-career
engineer, no one expects you to know your system this well yet, but you need to be
able to model, understand, and ultimately translate a system into both human lan‐
guage (documentation and meetings) and a computer language that will ultimately
determine your success as an engineer.

Make sure your application code, artifacts, and datastores are private, as well, in order
to keep information about your business and systems secure. Encrypt everything at
rest if possible. Use client-side encryption for highly sensitive data. Use customer-
provided keys for the most security available in the cloud. Even if your only option is
to use the default key, that’s better than no encryption at all. Whatever you do, never
“roll your own crypto” by trying to create your own new way of handling encryption.
It is too easy to create a weakness.

138 | Chapter 9: Security, Permissions, and Privacy

Limit, Track, and Review All Secrets and Access
Limit the access of every role and privilege as much as possible. Make sure that inter‐
nal tools, such as those for reporting and analytics, are as isolated as possible from
production. In addition to using roles with read-only permissions for these tools, try
to use read replicas, or even separate instances that get updates periodically. You
should have a service account for each service that accesses a database, or for each
subsystem that has different permissions to such an entity such as a database.

When you are assigning privileges, you want to follow the principle of least privilege,
or deny by default, by giving just the minimum, hopefully granular, permissions
needed to operate a system or the appropriate level of access of someone on your
team. The distinct components of your systems, just like your fellow human beings,
should each have their own identity or service account, which is useful for security as
well as debugging.

Even without servers to manage, you may have to establish and maintain networks in
your cloud environment. You may be tempted to open up access to these networks
from outside of the cloud, such as to your development machine. Be mindful of what
services are accessible over the public internet. Keeping your services off the public
internet may not be possible for your threat model, but lock down and limit access as
much as possible. Use a VPN to connect to such resources, and limit what IP
addresses can access that VPN if possible. White-listing large IP ranges for service
providers should be avoided. For example, a service provider may ask you to open up
access to a large range of IP addresses because they are operating within the cloud
and don’t have full control over which IPs will be used on a given day. If you do this,
you are opening up access to anyone who can access that cloud provider and create
an account. The default should be to limit this access as much as possible.

When designing permissions and security inside of your business logic, lean towards
more granular permissions and away from being permissive and open. The more
strict your code, the more reliable it will be, and that will generally lead towards more
secure practices.

Across systems and humans it is best to come up with common bands, or levels of
access, for the different roles a system or human may take. Think about what permis‐
sions a developer might need in development, staging, and production, and how
those might compare to a DevOps engineer tasked with keeping the system running.
What if your organization has blended the two roles in a You Build It, You Own It
(YBYO) role? Such a role quickly becomes You Build It, You Own It, You Secure It, so
get ready to add even more knowledge to your security tool belt.

Utilize single sign-on (SSO) systems to consolidate access control. With an SSO, one
set of credentials is used to access multiple systems. This also means being able to dis‐
able compromised credentials instantly and ubiquitously. Use your cloud provider’s

Limit, Track, and Review All Secrets and Access | 139

key and secret management options, or a widely trusted open source system such as
HashiCorp’s Vault (yes, the same company responsible for Docker, Terraform, and
more).

Be Ready to Roll
Something often overlooked in secrets management is the notion of who has been
able to read a sensitive piece of information, even if they have only had access once. If
someone leaves the company, any secret they might have seen needs to be changed, or
rolled. Rolling a token means changing it without impacting your production
systems.

If your team is smaller, keep a spreadsheet of all secrets and the procedures to roll
each one, including who needs to be notified and what systems need to be updated.
Make this a part of registering a new secret. If your organization is larger, you should
be rolling your secrets regularly and limiting direct access to as many as possible.
Have an auditable system that tracks which identity has seen which tokens and the
access levels of all employees, so that you can roll them immediately when someone
departs the company. What you have to do when someone leaves will depend on your
situation, of course, but the only way to be as secure as possible is to design each
component of your overall system, procedures, and processes with security in mind
and model each and every likely interaction point.

Providing your application code with the secrets required to perform its job in pro‐
duction, just as everything else in life, is not secure by default. AWS Lambda, for
example, gives you an easy way to set environment variables for your functions. This
would be a convenient place to set such a configuration, right? Not by default. Some
people might argue that secure credentials should be stored in a file instead of in the
environment of a running process, but most agree that encryption should be used in
either method. Let’s look at how you would do this.

Let’s say you’re going the route of environment variables. You’ll use a key management
service (KMS) to manage keys. You’ll then use those keys to encrypt and decrypt sen‐
sitive tokens or secrets without having access to the key itself. In order to do this, you
must encrypt the secrets and store the encrypted version in your serverless.yml or
another method that would set those environment variables for your function. In
your application code but outside of the function handler, you need to detect those
encrypted values and decrypt them before attempting to use the underlying secrets.
Make sure that your functions have permission to decrypt using the appropriate KMS
key and service. Also remember that your developers may not need that privilege, but
they may need the ability to encrypt using that key.

140 | Chapter 9: Security, Permissions, and Privacy

To go the file route, you can encrypt the entire file of secrets using a KMS key in a
similar fashion, and decrypt that file before it is read into your code as application
settings.

Lastly, you can use a system such as HashiCorp’s Vault to manage your own secrets.
This may be a mandatory choice from your larger enterprise, so you will need their
assistance in ensuring your functions can access their appropriate secrets.

All of these methods allow for keys to be rolled, but none enables it alone. Make sure
the keys themselves can be rolled, which usually involves an overlap of time where
both secrets are valid and can be changed without causing interruptions. Ideally, you
can determine that the old secret is not being used anymore through monitoring (if
needed) to fully shut it off.

To be safe, however, you should ensure that rolling these credentials is not an issue
and periodically roll all tokens in a phased operation or using automation.

How Is Your Function Assigned an Identity in the Cloud?

While setting up your serverless functions, we discussed in “Cloud
Resources and Permissions” on page 69 how cloud permissions are
managed, generally referred as identity and access management
(IAM). Before we discuss those settings further, how does your
serverless function access things using those granted roles? In
AWS, Google Cloud, and Azure, that would be the job of the meta‐
data service. Nefarious actors can take advantage of that access or
identity if they gain the ability to run code on your system. Just as
any line of code you write can request a fresh set of identity tokens
from the metadata service, so can any malicious line of code you
didn’t write. AWS has released a new version of the metadata ser‐
vice that mitigates the issue in part by preventing direct access to
tokens.

Defense in Depth
Defense in depth is a relatively simple concept—you should account for security in
your systems at multiple depths, layers, or components of those systems. Just because
a hacker has compromised part of the system, does not mean they should have easy
access to everything else. Some of these serve as barriers between layers by keeping
attackers from penetrating a different part of the system.

On the perimeter of your system, utilizing a Web Application Firewall (WAF) can be
one line of defense. It is an application-aware system, meaning that it understands
how to speak HTTP and can be loaded with rules to block common attacks. In addi‐
tion many WAFs have a learning mode, where the WAF does not decide to allow or
block a request but instead develops automated rules to prevent requests that appear

Be Ready to Roll | 141

to be anomalies. Of course, this can lead to a valid web request being rejected for
security purposes. You’ll need to design your defenses to match your attackers and
what you are defending.

Another type of protection to achieve defense in depth is to limit access between sys‐
tems to the minimum necessary to function. For example, your production applica‐
tion generally doesn’t need the ability to manage database users, or to drop tables, so
lock down your database credentials under the assumption they will be compromised
one day.

Limit Blast Radius
A related concept is the idea of a blast radius: the expected worst-case scenario for a
system given the access that an attacker could exert on other parts of the system. (The
term comes, as you might expect, from the world of explosives.) It is imperative to
account for the blast radius as a component of your design. Limiting your blast radius
means containing an invading attacker to one system and preventing the attacker
from compromising all systems, thereby limiting the damage caused by the attack.
For example, don’t let something in staging compromise production.

Keeping a tight blast radius is increasingly important in the cloud. Separate produc‐
tion and nonproduction with different accounts in your cloud provider. You should
be able to do this while maintaining consolidated billing, including reserved capacity
pricing (if your provider offers it). Build on defense in depth by denying by default,
ensuring all roles permissions and access are as restrictive as possible.

Do not use root account credentials for anything other than managing subaccounts
and roles. Utilize the settings to enable boundaries or make global restrictions by
default to enhance policies and security. Do not let an attacker perform an action that
an employee would not perform in the course of their duties.

Remember: the cloud is not secure by default. Nowhere near it. It exposes so many
security controls and options that trying to achieve best practices is like trying to hit a
moving target. And there is a clear reason why: the attackers keep attacking. The
internet is under attack by various actors in various ways to meet nefarious ends.

Trust but Verify
Despite being deployed outside of your perimeter, your client applications must be
secured as well. Your backend should not trust that a request coming from your client
is in fact coming from your client. Yet inexperienced developers may leak sensitive
information, ship secret keys, and more!

Even the network itself can’t be trusted as a source of identity, authentication, or
authorization. You should verify that a message coming to one of your systems is
actually for you. Networks can be misconfigured as they are defined in software and

142 | Chapter 9: Security, Permissions, and Privacy

4 Chris Welch, “Roku Releases Fix After New Pokémon Games for Nintendo Switch Cause Crashing Issues,”
The Verge, November 18, 2019, https://oreil.ly/RKdVN.

are essentially a virtual layer over the datacenter or, in this case, an availability zone of
a cloud region. Don’t trust anything. Even if your permissions are such that only one
thing can invoke your function, validate the payload to make sure it is trusted. Why?
Here’s an example: Roku devices developed an issue where they would restart in
households where Nintendo Switch users were playing the latest Pokémon game.4

The game broadcast packets on the network to find other devices on the network to
play with, and it happened to include a perfectly valid reboot message for the Roku.
This was an accidental replay attack, and Roku had to figure out a fix fast.

When breaking up a monolith into services or functions, or when building some‐
thing new that way, there’s a tendency to assume that all requests are authentic and
should be processed. This couldn’t be further from the truth. When you start building
something with the serverless framework, expect your permissions to have an awful
lot of asterisks in them. There is nothing inherently wrong with an asterisk, but many
of them are left unchecked. I prefer to namespace my asterisks. (This was first dis‐
cussed in “Namespacing for Sanity and Security” on page 77.) In a microservice it
could be a good balance, at least at the beginning, to say that anything in this micro‐
service or namespace can touch anything else in the same namespace. That is better
than an unvalidated namespace, but for most systems, it is not enough. Does that
function really need any permissions to write data to the datastore? Should that func‐
tion be able to invoke other functions? Or spin up a compute instance (hello, Bit‐
coin!)? There are plenty of excuses to “keep it simple” by having one set of credentials
for critical systems, such as databases, but they are nothing more than excuses. Let
your IAM system deal with the complexity of roles while you stay safe at night. Let
each distinct subsystem (even a singular function) have its own role for database
access. At the least, have one per distinct set of related functions that comprise a sys‐
tem. This will prevent unauthorized data and can even avoid mistakes by removing
the permission to perform certain actions that would have an unintended result, such
as deleting a table. And if someone manages to compromise one unit of compute, it
makes it that much harder for them to pivot (use access to one system to gain access
to other systems) or exfiltrate data.

Multi-factor authentication, which includes two-factor authentication, is a method of
using multiple factors, or types of verification. Generally, the first factor is the pass‐
word or something you know. But something you know can be easily compromised.
So a second factor is used; usually something you have, like your phone. This can be
done using one-time passwords or codes sent to a user’s confirmed contact informa‐
tion, or using an authenticator app.

Be Ready to Roll | 143

https://oreil.ly/RKdVN

A client-side request forgery is a forged request that the identified user didn’t make at
all. The request was not really made by the user, at least not knowingly. Instead, their
browser was tricked into making it by using the user’s cookies. This is due to the fact
that any request initiated by the browser to that domain or subdomain or even IP
address will be accompanied by its own cookies because that is what cookies do.

One way to protect against this is Cross-Origin Request Sharing (CORS), in which one
resource on the web, such as your API, can verify to the browser another resource,
such as your static client application. This is only for browser-based requests and is
not fully secure in and of itself. Remember, that an overly permissive CORS setting,
such as * (wildcard), is the same, disabling this protection. Another protection
against this, is to use a token, referred to as a CSRF token, with every GET response
and have the client-side application include that token with the POST or request that
makes an action occur on the behalf of a user. This proves the code making the
request is the same code already communicating with the server, and has first-class
access to do so. Another way is to utilize a browser’s local storage instead of cookies
to store an API token for the user so that only code calling from that domain can
access the token and send it as the Authorization header for each request. This is the
method utilized by JSON Web Tokens (JWT).

Just as bounds are useful in reliability, such as the use of time-outs, it makes sense to
set bounds or limitations on what can happen not only inside the cloud, but inside
your application logic as well. Enforce security in your business logic.

Also be careful of what you leak. Just as you should be mindful of the caller and
weary of their payload, be mindful of what information you return, even when the
person asking you to add in information is a trusted and verified member of your
development team. Let’s say you receive a request to extend an existing function to
return the email address of the user at hand. Seems innocuous enough, but what if
the main point of the function is to send a message to a user? What if the requester
wants this functionality so they can return that information to a user on the frontend?
Sounds like a pretty easy path to an enumeration attack.

This posture may be too paranoid for your application, but it’s important to be para‐
noid on behalf of your users and to err on the side of extra tinfoil. In this case, there is
no reason for the function to confirm which email it was sent to, just that it was sent
(or queued for sending, depending on how the call was made). You may disagree with
this particular example, but please don’t disagree with the moral of the Law of Deme‐
ter: don’t talk to strangers. Every additional line of code, every additional parameter
taken in, and every bit of data returned carries additional overhead and maintenance.
Someone or some system will rely on your additional information, and when you try
to trim it down, something is going to break. With distributed systems, you may not
find out as quickly as you hope to, causing a cascading failure.

144 | Chapter 9: Security, Permissions, and Privacy

https://oreil.ly/FwBLv
https://oreil.ly/FwBLv

Validate All User Input and Double-Check Those Settings
The Open Web Application Security Project (OWASP) is a nonprofit that publishes
information about computer security. It’s known for tools such as the Zed Attack
Proxy, but it’s most widely known for maintaining its list of the top 10 internet appli‐
cation security vulnerabilities, which OWASP says “represents a broad consensus
about the most critical security risks to web applications.”

Every item in Table 9-1 can be attributed to misprocessing user input or misconfigur‐
ing the system itself.

Table 9-1. The OWASP top 10 vulnerabilities

Rank Name Root issue
1 Injection Untrusted input

2 Broken authentication Implementation

3 Sensitive data exposure Implementation

4 XML external entities (XXE) Untrusted input

5 Broken access control Implementation

6 Security misconfiguration Implementation

7 Cross-site scripting XSS Untrusted input

8 Insecure deserialization Untrusted input

9 Using components with known vulnerabilities Implementation

10 Insufficient logging and monitoring Implementation

The two main root causes of security vulnerabilities are unexpected handling of input
and mistakes with implementation. One could argue these are the same, because a
change in your code or configuration may prevent an attack. Broadly interpreted,
“mishandling input” could include an injection, where a seemingly innocent payload
from a seemingly innocent user contains code packaged in a way that will be executed
in the same manner as your application code, to a cookie or session token being pro‐
cessed incorrectly to allow a user access they had not been granted. A misconfigura‐
tion, on the other hand, is more likely to allow an attacker to gain access because a
system or setting was not locked down appropriately or designed thoughtfully.

The number one way for your app or your users to become compromised is to trust
rather than verify a request (or a piece of information from a request). This root issue
is reflected in multiple vulnerabilities in the OWASP top 10. It does not matter if
some unexpected input allows for arbitrary execution of code, or a database query,
because your application processes and handles what is effectively application code
that will be run in your production environment and that didn’t even go through the
code review process. Protecting against injections will not only increase your security

Validate All User Input and Double-Check Those Settings | 145

https://oreil.ly/C4ls-
https://oreil.ly/C4ls-

but improve your overall user experience (UX), because it forces everyone involved
to think about all valid cases to be expected from a feature.

Many of the choices discussed in this chapter will be codified in your configuration,
infrastructure as code, and even small settings you make on libraries buried deep
inside your code. It should not be surprising, then, that many common security vul‐
nerabilities come from errors around these settings, ranging from being unaware of
the options available to being unaware of the consequences and reasoning behind
certain choices even to making simple typos. Carefully read as least the basic infor‐
mation and security information, if provided, for the dependencies and technologies
you rely on. But that may not be enough. Search for the security best practices for
each of these choices, remembering to take with a grain of salt the free advice of peo‐
ple who may have even less experience than you do.

Monitoring Your System for Anomalies
If your system does not send a lot of data out to the public internet, it might make
sense to create an alarm for such an activity. It makes sense to put alarms on mun‐
dane things that don’t change often because they can be an early warning for oncom‐
ing traffic and the need to scale or they could be an indication of an ongoing attack.
Many such attacks include exfiltration of sensitive data as the ultimate goal. If, for
example, an event such as everything in a given storage bucket being accessed isn’t a
normal operation, it could be a security or reliability issue (such as misbehaving
code), and an alert could help you either way.

Intentionally limiting certain actions can increase security as well. Use rate limits to
slow down sensitive endpoints, such as login, to make a brute force less effective in
attacking your systems. Monitor those endpoints for significant changes in traffic,
either due to an attack, or a new marketing campaign.

Test Your Security
Enforce security in your testing suite by practicing fuzzing: inputting random or
known-to-be-vicious data into a system to try to compromise it (we’ll talk more
about fuzzing in the next chapter). Unit testing helps promote confidence and under‐
standability of your code, which eases the process of building more secure software.

You will also have to build manual or semiautomated processes around testing the
security procedures of the overall system, such as rolling secrets. To ensure that the
process can be done without interruption, test it periodically. It is the same thought as
ensuring that backups of a system are actually restorable.

146 | Chapter 9: Security, Permissions, and Privacy

5 Ben Knight, “JWT Validation Bypass in Auth0 Authentication API,” Insomnia Security Group Limited Advi‐
sory, https://oreil.ly/7UG4Z.

In July 2019, a security researcher noticed a bug when fuzzing a client’s JWT-based
authentication system.5 JWT is known for having many sharp edges, and one of those
is specifying which algorithm is used to sign the token. The choice of “none” is
allowed, which means no signature whatsoever. The signature is the only way to ver‐
ify the authenticity of the system. The Auth0 system rejects the choice “none,” but
guess which fuzzed choice made it through, without any validation of the malicious
JWT? “nonE.” The researcher wanted to share this information, so he tested Auth0,
an authentication-as-a-service provider, and found the same issue. The code that vali‐
dated the authorization, was sensitive to all alternate casing of the unwanted value,
but blocked expected casings “none,” “NONE,” and “None”; it should have instead
denied all types by default, and only allowed the one(s) the developers wanted to use.
This should have been caught by testing, which will be covered in depth in the next
chapter. As for securing your JWTs, although I’ve picked on them here, Auth0 has
you covered on the basics.

Select Dependencies Carefully and Keep Your Software Up to Date
When evaluating other services and code, keep in mind the best practices in this
book. If the service provider or library author does not seem to be aware of, doesn’t
agree with, or has not implemented such best practices, stay away at all costs. It is in
your best interest to “trust but verify” when selecting any form of dependency for
your system—not just for security.

As of early 2020, the most popular plugin for enabling dead-letter-queue support for
the serverless framework does not enable encryption at rest by default on those
queues. It does not mention encryption at all in its README, documentation, or
even in its code. But encryption must be enabled and configured because there can be
consequences to doing it wrong. It’s impossible for free code on the internet to under‐
stand the nuances of your use case or the encryption options available in your cloud
account. Nor is it their responsibility to secure your system. They provided some
awesome and time-saving code for free on the internet; it’s your responsibility to
secure your system.

AWS, Google, and Azure all provide a trusted computing platform. But just like trust‐
ing someone else for your AMI, Docker container, or a regular library, it can become
easy to spread the trust around. All external software dependencies must be scruti‐
nized. AWS Layers is one way to bring external dependencies into your project. Ven‐
dors may provide you functionality through an easy way that reduces setup such as a
layer, but think about this: how does that simple integration actually work? In the case
of a monitoring library, it may run code after your application logic is done. You have

Validate All User Input and Double-Check Those Settings | 147

https://oreil.ly/7UG4Z
https://oreil.ly/DeUsi

to pay for this time. It changes whether a lambda execution completes (it could die
improperly during a time-out, for example). That doesn’t mean layers are bad, but it’s
your responsibility to understand and secure your system. A layer seems like a conve‐
nient piece of magic, but it drastically changes the behavior and coupling of your
application. Don’t underestimate the repercussions of a single click in your cloud pro‐
vider’s dashboard.

Make sure you are on a supported release line of the software you are using. Carefully
select a version pinning requirement when choosing libraries, and sign up for notifi‐
cations of new releases and common vulnerabilities exposures (CVEs). Fixes and secu‐
rity updates are being released all of the time, and it is in your best interest to keep all
software requirements of your projects up to date—even for systems without active
development. Many large enterprises mandate the update of all requirements and sys‐
tem images every 30 to 90 days, and there are robots that will update your require‐
ments on a new branch and make a pull request when new versions come out,
running your test suite in the process.

The CVE system is a repository of new known vulnerabilities, with tracking numbers
to help you reference them in patches, warnings, and advisories. For example,
CVE-2013-0156 was the Rails vulnerability I mentioned earlier in this chapter. The
first number is the four-digit year, while the second is a sequential number assigned
to the vulnerability. So CVE-2013-0156 is the 156th vulnerability that was identified
in 2013. It is much simpler to reference a vulnerability this way than a long descrip‐
tion. It’s an easy matter to go to http://cve.mitre.org and look up the vulnerability and
learn how to fix it in your system.

Software Doesn’t Always Work as Expected
We can fall into the trap of thinking that computers are infallible. Computers just fol‐
low their code, but there are no guarantees that the code will work the way we intend
it to, if it runs at all. Just because your code is executing inside of a virtual private
cloud or your system is based on software-defined networking that limits your sys‐
tem’s and your system’s alone access to the virtual network doesn’t mean that it will
come through on the implicit promise of keeping all others out.

Your network isn’t just hardware anymore. The network, being software defined, is as
fallible as any other software. In addition to outages, transient packets intended for
previous owners of an IP address and port combination can show up too late and to
the wrong system. It can happen with your packets, too, so utilize encryption in transit
in addition to encryption at rest. For APIs, this can be as simple as ensuring all URLs
are using https:// instead of http://. This can also happen inside containers, but if
packets that were intended for the previous IP address and port combination are now
being used by a different microservice, it’s another reason to validate your input.

148 | Chapter 9: Security, Permissions, and Privacy

https://oreil.ly/Mt_FL
http://cve.mitre.org

6 Denver Nicks, “LinkedIn to Pay $13 Million in Spam Settlement,” Time, October 6, 2015, https://oreil.ly/
KIvU6.

When designing your systems, it is best to assume that the network is not only not
private but that it is actively hostile against your interests. This is why we use TCP for
most of our connections instead of UDP, as you may recall from Chapter 7.

Prioritize Privacy for Your Data and Your Customers’ Data
The topic of security is never fully discussed without talking about privacy. Security is
the enforcement of the entire design of your system, and nowhere is this more true
than in privacy. Storing sensitive information about a large pool of users makes your
system a target. Without security, privacy is meaningless.

Treat your users with the utmost respect. Gather only as much data as is necessary to
offer your product or service. For example, it is nearly impossible to make a new
Google account without a phone number, which is interesting when you consider that
they do not have a customer service number you can call. They use your phone num‐
ber to tie you to an identity. Sure, it helps them with fraud, but it helps them even
more with cross-referencing your identity to other sources of data. This is also why
LinkedIn settled a lawsuit for being overeager with your address book—while con‐
necting with your colleagues on LinkedIn improves your experience, it really helps
LinkedIn’s marketing budget more than anything else.6

Avoid accidental invasions of privacy. Consider what you would be comfortable with
if you or your family used the app. Also be aware of what legal guidelines, such as
GDPR and HIPAA, you are obligated to follow. Superfluous user data is a liability and
should be treated as such. Collect as little as possible because as users and legislators
deepen their understanding of the importance and power of an individual’s data,
future laws could force you to redesign your entire systems to comply.

The best way to avoid leaking sensitive data is to avoid collecting it. For example, this
is why user passwords should never be stored in your system, but instead should be
generated using salted hashes.

Don’t Mess with Production
Poking around production is like having a secure stockroom at the Apple store but
allowing any employee from any location to go into any stockroom at any location
and open up a new iPhone to try out the latest Animoji. That’s not very secure. What
good are controls if they are easily circumvented?

A recent trend, and a sound practice, is to use immutable containers. With immutable
containers, once a build of a system has been created, it is frozen and cannot be

Validate All User Input and Double-Check Those Settings | 149

https://oreil.ly/KIvU6
https://oreil.ly/KIvU6

modified in any way. If you want to change the smallest setting inside the build, you
need to make a new one. Keeping your containers unchangeable helps keep it secure
from attackers attempting to pivot or elevate access by preventing the modification of
the application code. It can also prevent any writes of any kind from occurring, help‐
ing prevent the accumulation of data from other systems for exfiltration as well.

Just as you do not want to make it easy for an attacker who has managed to execute
arbitrary code to have any extra help, you also want to prevent any kind of SSH access
to machines. It is in your best interest to lock down your compute environment as
much as possible. Avoid installing helpful tools such as curl, wget, or netcat. Why
should your web app require a copy of vim if it means that it will be available to assist
an attacker? In a serverless environment, these environments are increasingly limited
by default. In an aws lambda for example, the directory where your application code
is stored is read only. This is a best practice. The first time this sharp edge cuts you,
remember that delete paragraph break limited it in your best interest. For example,
allowing someone access to git or docker is just asking for trouble. In addition to
everything else, these tools would make running a random process or task or even
exfiltrating code and secrets appear to be normal behavior. You should do everything
you can to avoid normalizing the behaviors of an attacker.

If you have production services that are needed by members of the organization but
not by the outside world, you will need to set up a production network, generally
with some form of VPN setup to ensure that only authorized users can even connect
to those machines in the first place. Because these and other system components are
locked into a perceived safe zone, hidden behind layers or protection, attackers who
gain access want to figure out how to pivot to other systems or exfiltrate data by tun‐
neling back out. It is possible to limit these machines’ access to the outside world if
they do not need access to a public internet. Large enterprises may require the use of
a special proxy on their production networks for any access to the outside world so
such attempts can be prevented, detected, and intervened.

Direct production access is an anti-pattern in development and should only be used
for understanding an ongoing incident or handling critical changes. Staging is a bet‐
ter place for this kind of bug finding and fix testing, and we will cover this in the next
chapter.

150 | Chapter 9: Security, Permissions, and Privacy

7 Aaron Patterson, “SQL Injection Vulnerability in Ruby on Rails,” https://oreil.ly/2ech9.
8 Dan Goodin, “Hacker Commandeers GitHub to Prove Rails Vulnerability,” Ars Technica, March 5, 2012,

https://oreil.ly/zC2mo.
9 Heather Adkins et al., Building Secure and Reliable Systems (O’Reilly).

Keep Your Machine Secure
Some people expect their employer to keep their machines secure. Even with all the
corporate spyware in the world, this will never happen without the right mindset.
What’s more, your company will need to educate not only every developer on your
teams but every person in the organization.

You need to keep your software updated for critical security patches. You need to be
mindful of what you install on your system. Do not allow others to have any unsuper‐
vised access to your devices (if you allow any at all). Don’t leave systems or settings in
an insecure state just for your own personal convenience.

Keep your system locked down with a firewall, and be careful to not expose your local
development services onto even your corporate network.

Keep Learning
Security is a skillset you will never perfect, because hackers are always perfecting their
skillsets. Witness organizations of all sizes and types being compromised in many dif‐
ferent ways. The entire Ruby on Rails community was hit by a vulnerability in all
known versions of its ActiveRecord system.7 Every project ever created up until that
point was vulnerable to attack. In the previous year, GitHub learned about insecure
defaults the hard way when a hacker uploaded a commit posing as the authors of the
Rails project.8 Ever wonder why GitHub’s free Pages feature is hosted on *.github.io
instead of *.github.com? In 2013, they made the change to avoid letting malicious
users run arbitrary JavaScript on such a privileged domain.

Take a genuine interest in computer security. Genuine curiosity is the strongest char‐
acteristic of an effective engineer of any discipline, so flex that muscle. Stay curious
and keep learning about new vulnerabilities. You may even find reading them to be
entertaining. Spend some of your free time participating in (or organizing) a Capture
the Flag (CTF) event or game. CTF is when a system is set up with the sole intention
of being hacked. Proof of the hack is accomplished by gaining access to some digital
information on that system, or a flag.

Conclusion
Remember, as the authors of the book Building Secure and Reliable Systems write:9

Keep Your Machine Secure | 151

https://oreil.ly/2ech9
https://oreil.ly/zC2mo
https://oreil.ly/yBakr
https://learning.oreilly.com/library/view/building-secure-and/9781492083115

A simpler design reduces the attack surface, decreases the potential for unanticipated
system interactions, and makes it easier for humans to comprehend and reason about
the system. Understandability is especially valuable during emergencies, when it can
help responders mitigate symptoms quickly and reduce mean time to repair (MTTR).

The more understandable your systems, the more confidence you can have in their
security postures, and the more people can understand the risks involved in their
operation. It may seem overwhelming at first, but you can take things one step at a
time. Just like you would secure a vacation house that might sit dormant for months,
locking doors and bringing the porch furniture inside, think about where your sys‐
tem might be vulnerable.

Follow the recommendations from your cloud provider, and make sure to stay up to
date on vulnerabilities while keeping your software up to date as well.

Most importantly, test your security to boost confidence in it. In the next chapter,
we’ll look at how to do just that.

152 | Chapter 9: Security, Permissions, and Privacy

CHAPTER 10

Quality, Testing, and Staging

If your bench is cluttered and poorly organized, it’s hard to find the tools and materials that
you need as you work along. You constantly just have to shuffle things around to make room
for the work that you’re actually doing. And, in short, everything takes so much longer than
it should, and more accidents and mistakes happen along the way.

—Josh Tidsbury, Apple developer evangelist and woodworking enthusiast, “Great
Developer Habits”, WWDC 2019

If you are at a point in your software career where this does not loudly ring true, I
promise you will get there sooner than you think. Personally, I try to hone my code
once it’s initially working to ensure it is the most clear and logical implementation, a
very Pythonic trait indeed. But I treat my professional code with the consistency of
expertly pruning a bonsai tree and infinite raking of a sand garden. I actually some‐
times just marvel at the code’s beauty as it sits on the screen. I work on my code not
to reach the edges of perfection but to achieve the ever-elusive done.

It turns out that most engineers struggle with completion. We’re taught to chase a
near-impossible satisfactory execution. Once your code works, you may lose interest
in finishing it, as coding becomes tedious in the face of the exciting promise of build‐
ing something new.

But maybe you get lost in the details, obsessively reviewing your code without ever
letting the project be done. Either way, this chapter is for you.

Quality, testing, and staging all increase the confidence that your code will behave as
expected and that when executed correctly will serve as a form of validation of your
code and even the overall application.

Sometimes I am amazed at the number of hours that can go into making the UI or
even the API beautiful to the end user. But somehow, giving that same consideration
and respect to your actual colleagues becomes too time-consuming or unnecessary.

153

https://oreil.ly/6zMD1
https://oreil.ly/6zMD1

How much respect do you have for yourself if you produce sloppy work? I am not
talking about a documented trade-off or decision, especially early in a project, but
just the total lack of consideration for the human readers of your code. Readable code
should attempt to reduce the cognitive load of the human reader. Even details such as
consistent naming patterns of variables can make a piece of code easier to understand
or reason about.

“Reasoning about code” is what we call the most common operation you and your
peers undertake during software development. It is when you attempt to determine
what the code does (or doesn’t) do, how it works, and, frequently, why it is not doing
what you expected it to.

As this book has pointed out, engineers face numerous decisions about trade-offs
and, as with any system, bounds help simplify the process. Considering such limits
early, and revisiting them as needed to remain consistent with how certain trade-offs
are decided, can help reduce the number of decisions made, and simplify the overall
variance of the system as a whole. Although the intended reader of your code is a
machine, humans will also have to be able to read and execute the code to understand
its operation.

The Role of Code Quality
Code quality increases your confidence that the code does what it says it does, just
like testing and staging. Software is by its very name and nature malleable; in some
cases, it gets replaced hundreds of times a day.

Your team must have some standards. Code standards are easiest to adopt at the
beginning of a project, but they can also be gradually introduced to existing projects.
It’s better to get started now than never.

A software project will tend to face trade-offs.The worst part of a trade-off is its per‐
manence. The debate dies and the debt lives on. Rarely is there a proper procedure in
place to ensure that a decision is revisited, as other assumptions used to make that
decision have changed. However, this is a great opportunity to use documentation
and monitoring effectively.

Even when you are the only person on a project, write your code and treat your
source control practices as if they were a team project. If you are successful, your
team will grow as well—and they’ll be able to understand your code. Always invest in
quality; it will save you from unexpected time sinks. This can be as simple as docu‐
menting a shortcut taken, or something that may need to be eventually changed with
a comment, or with documentation. Think of editing your code not just so the com‐
puter can understand it, but to simplify the human understanding of it. Well-written
code should be obvious in its execution.

154 | Chapter 10: Quality, Testing, and Staging

It is hard to discuss testing and staging without first addressing the elephant in the
room—code quality. What is code quality? What is quality? Quality, it turns out, is
entirely subjective. Your code may fulfill all its obligations to stakeholders and users
but may not fulfill those of anybody else trying to understand it. In this chapter, you
will learn the absolute basics of setting and enforcing code standards, sometimes
known as a style guide, in order to create quality code. You will then learn about
increasing the confidence of a software project through testing and the use of a stag‐
ing environment.

Code Style
Peace of mind produces right values, right values produce right thoughts. Right thoughts pro‐
duce right actions and right actions produce work which will be a material reflection for oth‐
ers to see of the serenity at the center of it all.

—Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance: An Inquiry into Values
(HarperTorch)

Your programming language may already have some opinions about itself. Python
has the PEP-8 standard. Go decided that all code should be universally formatted to
the same syntax with the included and canonical gofmt tool. But these standards gen‐
erally leave a lot open when it comes to style. Consistency in style is important
because it reduces the cognitive load for everyone involved. When I join a team, I
want my code to blend in as much as possible and look like it has always been there.
You should not be able to identify the author from the code alone when working as a
team. However obviously the implementation choices may indicate authorship, good
code is simple, elegant, consistent, and, yes, beautiful. Even this writing was subject to
the O’Reilly style guide.

Your project may not need the scalability and resilience of the software produced by
modern tech giants. But every project needs readability. If the programming language
used by your project is also used by Google, it likely has an open source standards
guide already waiting for you. I guarantee it will not be perfect, but it is the no-
brainer, no-argument solution to having some style without writing a style guide
from scratch. If not, there are plenty of guides on the internet, and I would recom‐
mend starting with a linter for your project’s language. Any standard in your style
guide that is not easily enforceable by existing tools or by simple rules for code
reviews doesn’t really exist and should be tossed or adapted for your use. Yes, your
code standards need standards of their own.

For example, what line length works best for your team? Should you use tabs or
spaces? It may not have occurred to you before to consider the maximum acceptable
length for a given line in a source code file, but issues like that can lead to contention
between team members.

The Role of Code Quality | 155

Set your standards and make sure that everyone follows them, no exceptions. You can
make a simple repository of standards for the entire company, and if there is a con‐
cern, someone should open an issue (or a ticket) to have a nuanced flame war about
which way to go.

Linting
Linting smooths down the rough surfaces of your code by picking off the stray pieces.
More importantly, it can enforce some of your team’s standards, as well as format the
code to comply automatically. Make sure your editor is configured to show linting
errors, warnings, and possible errors. Review its default settings and any widely used
presets.

Depending on the language you work in, you can run code that has warnings, errors,
and sometimes even invalid syntax (handled by overly broad exception handling).
Regardless of the language, adopt a zero-warning, zero-error policy from the begin‐
ning. Fixing errors only gets harder later, and once you reach a certain level of errors,
there is no way for anyone to detect new ones while working on the code. A zero-
warning policy right from the get-go can also save you time when writing software, as
you can trust that an error or warning is due to your changes and you can fix it before
you test the code in the shell or even the browser.

Git hooks
Git hooks are a way to run custom actions at different parts in the Git life cycle. Most
commonly, you can use a Git hook that occurs before a commit can be made to
enforce linting and test coverage on your branches, but you must make sure develop‐
ers set up the hooks in the first place. And just like with Little Bobby Tables, never
trust user input. The developers on your team, including yourself, are users of the
code management and deployment systems, and the changes being presented in a
pull request are, in fact, user input. Your Git hosting service can and should reject
pushes to specific branches unless they meet the requirements. Read more at https://
githooks.com. But keep in mind that Git hooks don’t get installed automatically when
cloning a repository—this would be quite an attack vector. Make sure to document
and standardize the process of setting up and modifying such hooks.

Comments
Code comments are a powerful way to leave useful nuggets of information behind for
a future reader, possibly even yourself. Use comments to explain the why of the code
when appropriate. If your code has documentation inline, don’t just regurgitate the
function signature. Instead, provide the reader with nonobvious information about
why they might call this function and any other opaque knowledge that can’t be

156 | Chapter 10: Quality, Testing, and Staging

https://xkcd.com/327
https://githooks.com
https://githooks.com

gleaned from the variable names. Tests can aid in documenting the way code works,
so ensure that they can also be well understood by using comments.

Code reviews
Computers can’t always enforce all of the rules, especially the most important rules
about your business logic and their expected functionality. You need a human to
review the code. Humans ensure that a given set of additions and deletions to a
repository meets the team’s standards. In addition, a human review can make sure
that multiple people are exposed to broader sections of the codebase.

Testing
The test of the machine is the satisfaction it gives you. There isn’t any other test. If the
machine produces tranquility it’s right. If it disturbs you it’s wrong until either the machine or
your mind is changed.

—Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance: An Inquiry into Values
(HarperTorch)

You have likely already made up your mind about testing. You either swear by it or
swear at it.

How do you know that your code works? Just like anything else, the more times it is
observed, the more confidence you can have in its operation.

So why is it that many developers choose to run a line of code for the first time in
production? Sure, like the popular meme, we all test our code in production, but that
should not be the only method of testing.

Tests don’t exist just to exist. And they don’t add any value just because they exist.
Tests are a feature, and likely the most important part of your job if software pays
your bills. Even if you don’t write any tests in the literal sense, I bet you already spend
some time on testing. And here’s the thing: you already spend time finding the tools
and tactics to save yourself time and automate repetitive tasks. It’s why you are read‐
ing this book. You think adopting serverless for part or all of your architecture will
save you time and money and give you peace of mind. Where does that additional
peace of mind come from? From not having to worry about the underlying infra‐
structure. So why spend your time worrying on your application logic? Why troll
Hacker News for the latest text editor, language, library, framework, tool, keyboard,
chair, desk, whatever will save you time, when the best way to save time is to write
solid tests? I am not going to advocate for writing tests first or after the functionality.
Just write them!

Testing | 157

What to Test and What Not to Test
You are responsible for the scope of your application code, but others have responsi‐
bilities outside that scope. It is important to make this distinction clear when deciding
what and how to test. You will need to know how these work and how they are imple‐
mented, but you may have to take a leap of faith that the teams working on the
underlying infrastructure have the proper testing in place to ensure the expected
functionality of their systems. Likewise, they will need to have monitoring in place to
ensure this functionality.

Leaning on Libraries

When choosing external frameworks, or libraries, take a look at the
test suite. The functionality you depend on from someone else’s
code may already be covered by their test suite. If not, consider
covering this functionality in your own test suite or by expanding
the test suite of the library itself and giving back to the open source
community. As you update the version of that library over time,
you will want to check the release notes for any breaking changes
for your implementation, as well as for the test suite.

Types of Testing
The functionality of your code is theoretical or anecdotal at best until it is put into
production. Testing can reveal random actions that weren’t part of the original
design. For example, a test case can show that someone logging in with an invalid
password gets authenticated anyway. Be sure, then, to include tests for the unexpec‐
ted. You’ll be encoding the business logic of the code itself. Demonstrating what
behavior is expected during error cases could serve as additional documentation
itself, as well.

Write down and test your assumptions about how these tools should work. Test them
by making a proof of concept or a prototype to do it. Experiment and observe the
results. Note the findings in documentation.

Manual testing
Manual testing is the most time-consuming, least accurate, yet still important and rel‐
evant, form of testing, as it is the type you perform by default.

When you first run a line of code, you are testing it. But as we learned in Chapter 8,
automation is king. Writing tests is a way to automate those manual actions, and even
to enforce business logic that is important but might not make sense in the applica‐
tion code.

158 | Chapter 10: Quality, Testing, and Staging

Unit testing
The lowest and most discrete unit of testing is cleverly named the unit test. In unit
testing, you make sure your code does what it is supposed to at the most basic level of
functionality. It tests small, independent parts of your code for their individual
expected behavior, under the assumption that when you put together a bunch of well-
tested parts, they should function in an expected manner.

Generally speaking, you will run unit tests alongside the code while developing soft‐
ware. They should be easily runnable and be complete in a matter of minutes,
whether they run locally or on a testing service. Your test runner should also allow
you to mark and select which tests will run.

However, if your code doesn’t sound like this, consider refactoring your code for tes‐
tability, not just by your test suite but also by yourself and fellow developers. Break up
your code into small logical functions that can be individually tested. We have all seen
crazy-long functions with a bird’s nest of logic blocks making it almost impossible to
follow the method through to its natural execution. If you break the code up, it is eas‐
ier not only to run the code while developing and testing locally but also to follow
along in a debugger or in the human brain.

Planning how your function works under normal conditions as well as in unexpected
situations achieves something vital—the unexpected is no longer unexpected. You
have elevated it to expected status. Think about how you react when something
expected, rather than unexpected, happens in production. It’s a feeling of control over
your career, destiny, and happiness. Your system must react in a predictable way for
your happiness to be predictable as well.

Safety Within Boundaries

Processes are better with bounds. If it is unlikely an order on your
system would ever be above $100,000, it might make sense to limit
such an order from being created. Why are you turning down reve‐
nue? Quite the opposite. Even though you can refund the customer,
some card processing options such as Stripe do not refund process‐
ing fees, even if a transaction was done by mistake. You are trying
to prevent an event that should not occur from occurring that can
cost your organization money.
Another thing to test is operational bounds of the code. You may
have a monolith that runs in multiple forms (e.g., client API, inter‐
nal admin dashboard, task server). You can enforce boundaries
such as ensuring that the admin endpoints are never accessible on
the client API and vice versa. Pairing such business logic with
security-minded unit tests helps harden your application and
improve your security posture.

Testing | 159

Integration testing
Before attempting to merge your code, you’ll first want to run the full test suite over
the code. Testing how two (or more) components or systems interact with each other
with actual live network calls (or cached replays) is known as integration testing.

This is where you test the links between systems. In your unit tests, you assume that
the libraries you are using, such as one for an API, will work as expected. You support
that assumption by having integration tests that make sure that the external request
actually works, possibly by making a real request to a test version for that system (or a
separate testing account on a live system). Alternatively you may utilize mock ver‐
sions of external systems, using a library to generate mocks by intercepting requests
to a test version of a service.

There are ways in which you can run your code so that it targets managed services in
the cloud and locally for offline development and testing. But you may not need to
put together a true local cloud environment to test all the functionality of all of the
integrations that are possible in the walled garden of your cloud provider.

How do you know that a lambda fires for every event in an integration? How do you
know your cloud provider runs your code at all?

I am not suggesting you using a local cloud simulation is not helpful for avoiding
issues in production. What I am suggesting is that you may not need it. In unit testing
you are testing small, discrete units of code, and you don’t want to get tied up in the
details of other side effects of a highly intertangled and interdependent environment
that runs a small subset of your provider’s vast offerings. You can test that putting a
file into a bucket triggers your code, for example, but that is not the most important
part of your app. Instead, test that the side effect of one function is to put a file into a
bucket, and then that when a second function is invoked as a result of this, the first
does what it needs to. These functions can be tested individually, locally, and using
mocks instead of a LocalStack. LocalStack would be the best choice if you did want to
run your development system offline while targeting AWS.

Serverless systems that rely heavily on managed services must also rely heavily on
testing the integration with those services. With payment models that let you pay only
for your usage, you have no excuse not to test such dependencies and components in
the cloud. Yes, you can use things like LocalStack to speed the development and test‐
ing, but either way you should let your code air out in staging first.

Mocks
Instead of talking to live systems during the execution of your test suite, you can gen‐
erate mocks, or fake data, for staging and testing.

In the case of function invocations coming from your cloud provider, reference their
docs or search around. You may be tempted to capture event payloads from real

160 | Chapter 10: Quality, Testing, and Staging

events using logging, but remember to encrypt them using the patterns suggested in
Chapter 9 and sanitize them before committing them into your source control.

End-to-end testing
Testing the process from one end to the other is known appropriately as end-to-end
testing. This is effectively one long integration test comprised of multiple steps. For an
ecommerce site, you may have a test that involves some searching, shopping, adding
items to the cart, and checking out. You may have this for both logged-out and
logged-in users. You may have one with a longstanding cookie and one where you log
in directly into the flow. These can also serve as smoke tests, which we will cover later.
Such a test may also involve ensuring the end-to-end operation of your website or
graphical application, so it might involve testing the user interface.

UI testing
UI testing is when you utilize tools to run and inspect the graphical user interface
(GUI) of your application. For example, you can automate a testing suite of actions in
the browser to ensure that the user interface will be correct. Sometimes, seeing a vis‐
ual confirmation that a task is complete is as important to test as the task being com‐
plete. This is called headless testing because the test suite generally doesn’t show up on
a monitor. Serverless has actually become a great environment for running such
headless browsers and testing suites, which used to involve keeping expensive beefy
servers (browsers sure do love RAM) on standby.

Because of the separation of concerns, you should be able to test your user interface
against a mock, local, or staging source of truth because a UI test can still be discrete
instead of becoming an end-to-end test.

Smoke testing
Smoke testing is the method in which you test the regular functionality of a system by
performing a set of normal operations and watching your monitoring dashboard for
the digital equivalent of smoke—metrics informing you of an anomalous situation.

You wouldn’t reassemble an engine without making sure it fires up when you’re done.
You’d let it run for 10 minutes, maybe drive it around, and if it doesn’t smoke, then it
passes the test. The same is true for your code.

Why not get started on better testing by documenting the process of one of these
smoke tests? Then, see if you can build a tool that does it for you. Ready for the pro
level? Have a function fire periodically to test as well. This is especially helpful when
you are pre-revenue or pre-users. Should it fail open or closed? If it fails, should it
warn or should it roll back?

Testing | 161

For a proper smoke test, exercise the regular expected functionality of either a part or
all of your system, live and in production. You may also smoke test your smoke tests
in staging to make sure they work. The idea is, if something is broken, it should start
to smoke. That allows you to observe and control this behavior before it becomes a
problem.

If possible, automate the process, but check the result every time you deploy. There
should be no exceptions unless you get your CI/CD to run the smoke test suite and
roll back if it causes any anomalies. This type of automation can be achieved using
blue/green or canary deploys, which were covered in Chapter 8.

After deploying, validate that the new version is running, and use the system by run‐
ning a series of critical or popular actions. Open up your browser to make sure that
your fix or feature works as expected. Does that click take an extra 100 ms? Does it
look like it’s starting to hang?

You don’t have to do testing, of course. But if you don’t test or don’t test adequately,
your users will become the testers. And if they are also the end user or the decision-
maker of using your service or application, you might lose them. But, hey, that means
less testing!

Testing Your Failure Strategy

If you are developing a highly available or resilient system that is
supposed to be fault tolerant, make sure to test that it actually is.
There are many tools for chaos engineering, where components of
your system are terminated arbitrarily to test resilience.
Some teams forget or neglect to adequately test their failure behav‐
iors, especially since testing them can lead to a failure. But if you
don’t test, you won’t know. Make sure that in addition to being
mindful about the sequence of events your system will take to
detect and adapt to failure, those steps and sequences can and have
been reproduced, preferably with automation.
But don’t stop there. Make sure you plan and test the recovery
sequences, as well as for an extended outage. Organizations with
multiregion services may run exercises that actually shut off access
from employees and an entire region of their cloud provider, as
well as cut off access between regions for the servers. When in
doubt, test it out!

162 | Chapter 10: Quality, Testing, and Staging

Code Coverage
While some managers and organizations swear by the code coverage metric, it’s not
fully useful in itself. “Coverage” simply indicates the percentage of application code
that is executed during a run of a test suite, usually just the unit test suite, which is
not part of the test suite itself. Don’t get me wrong: this is an incredibly important
metric, but without the enforcement of the quality of those tests through a strict pro‐
cess of code (or peer) review, they may actually decrease the overall quality. In a
project with an object-relational mapping (ORM) system, such as Django, simply run‐
ning an empty test suite may give the impression that a lot of the model code is
already covered. This means it runs but is not really tested. It will likely prevent
against syntax and basic execution errors, but it has given no indication that the code
does what it is supposed to do. It just tells you that you have a valid model syntax.

Set a standard for your projects to have for code coverage to get started, even if it is
50% and a simple rule that all new code and changes must have accompanying test
coverage (if you are not doing this already). Then bump up that number as you see
fit. Many teams settle around a goal of 90% and that all new pull or merge requests
have fully covered code. Even when patching production with a hotfix, the procedure
should be to write a test that reproduces the error occurring in production and com‐
mit it to your branch with the test failing. Make a commit with the fix, and that test
should succeed. Then after peer review, you can responsibly and frantically push it,
hoping that it fixes everything. But really, that only works if the rest of the code is well
covered by tests, and you validate the fix in staging.

Configuration itself should sometimes be considered as code when calculating cover‐
age. You should include different expected values for settings variables, such as a
value for a promotional offer setting. Different expected values or ranges should be
tested for functionality. A configuration that is truly just that does not need to be
tested.

Changing how to connect to the database is important, and an invalid configuration
should be prevented from deployment. But that is not what needs to be tested. Some
configuration is really not that at all. Have a YAML or JSON file that changes the exe‐
cution of code in production? It’s generally static, like a source code file, and does not
get changed or configured per the environment. Its functionality may be covered by
other tests, but that file being walked and executed during the test suite is important
and should be measured, if possible.

Testing | 163

Test-Driven Development (TDD)

Which came first, the method or its test? I like to write out a skele‐
ton of the code first. I might even keep writing out my skeleton
until it has achieved some level of progress, and then I solidify that
progress by writing the tests immediately after. There is no perfect
workflow for integrating tests, but at least give TDD a try.
You can run a specific test module, group of tests, or a single test
using the command line. The package pytest-fastest provides
this exact functionality. Combined with the --pdb flag, you’ll have
a streamlined workflow.

Power Up Your Testing
Nobody likes a slow testing suite. It becomes a burden and needs to be maintained
just as any other part of your system. Make sure to empower your test suite with con‐
figurations or plug-ins that help you parallelize tests to run faster. By utilizing multi‐
ple processes, your tests will run in a fraction of the time.

But, over time, as they slow down, you can use plug-ins to ensure that your tools
report the speed of tests alongside the top slowest tests (as an encouragement for oth‐
ers to help improve these tests). Other plug-ins can format the output for easier con‐
sumption, such as outputting JUnit for Jenkins, so that your test runner can
specifically mention which tests fail and that can show up in the code review. You
might need to set up your test database or test database bootstrapping process to
allow for multiple test cases to make sure that even though tests are run concurrently,
each process running tests in a serial manner (one at a time) won’t affect the tests or
test data of the other processes.

Staging
The real purpose of the scientific method is to make sure nature hasn’t misled you into think‐
ing you know something you actually don’t know.

—Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance: An Inquiry into Values
(HarperTorch)

How do you know that a piece of code you intend to run in production operated the
same way it did when you ran it locally? Shipping code to production can be a leap of
faith. Sure, the age of containers has brought the ability to package software so that it
can run the same in all places, but that doesn’t help with the constellation of real-
world dependencies on systems whose state is always changing.

A presentation by an Apple engineer at its Worldwide Developers Conference
(WWDC) last year discussed the exponential nature of state growth as a factorial of
all events possible. The presentation discussed the design of the Swift UI, a declarative

164 | Chapter 10: Quality, Testing, and Staging

model for creating views in Swift applications similar to Facebook’s React for
browser-based applications. The engineer gave an example of a simple detail view in
an iOS application that allows for four events, or actions, to occur, and then demon‐
strated the complications of predicting the combinations of events to achieve a given
state and the difficulty in UI bugs that don’t crash. Perhaps you’ve written amazingly
idempotent actions and stateless services, but your production environment does, in
fact, have a state, no matter how much you attempt to factor it out. So you need a
production-like environment where you can stage your code.

Staging is an environment where you can stage your code to validate its preparedness
for going into production, thereby increasing your confidence in your code even fur‐
ther. Simplifying the factors you have to consider when something isn’t working in
production is the ultimate goal of parity between staging and production. The pur‐
pose is not only to stage that code and see if it stands up before going to production
but also to prevent incidents and outages and shorten the time to resolution of any
such incidents.

The cost of maintaining a high-fidelity staging environment is one of the most com‐
mon business cases against it. That concern fades in the cloud, thanks to on-demand
resources. Serverless should end that case entirely. If your company cannot justify the
cost of a proper staging environment given serverless tools, it may not be able to jus‐
tify your salary, as it will be spent dealing with preventable issues in production.

There is simply no excuse to not have some reliable form of staging. It does not need
to have perfect production parity, and it may not have the same volumes of types of
data (see the privacy section in Chapter 9), but how else could you test your deploy
process without a staging environment that at least mirrors production? You could
use canary or blue/green patterns, but how would you even test that your canary sys‐
tem works without testing it in staging first? If you don’t know your canary rollback
doesn’t work until you really need it, you’re going to have big troubles.

In real estate, many sellers or agents will stage a house with furniture. It gives you a
better idea of how your routines and preferences will work out in a new environment.
Not only does it help reduce the cognitive load of buyers imagining their new living
arrangements, but it makes it easier to envision themselves performing common
household activities. That is exactly what staging can do for the confidence of your
software.

Not only is it the best place to first test your production code other than actual pro‐
duction, but it also forces engineers to think about it as the target environment
instead of the default target environment of their favorite localhost. There is no home
like 127.0.0.1 after all, but one day your code will have to leave the nest and survive
on its own without the helicopter parenting support that you provide locally.

Staging | 165

Correctly configuring your code and avoiding arbitrary hardcoded values becomes
really important as you plan to run your software in multiple environments. The
same preparation you undertake to prepare your code for local development, testing,
and production is how you prepare your app for staging. (This book doesn’t cover the
advanced concepts involved in getting your application fully production ready. For
that, I recommend Susan Fowler’s Production-Ready Microservices.)

So how do you set up your staging environment? If you’ve been following along with
the best practices in the book so far, it should all be very easy, with one large excep‐
tion—data. Not only is data the hardest part, it can also be contentious or regulated. I
will get into further detail once we cover the easy stuff.

Why is having a staging environment easy? Your infrastructure and deployment code
should be automated to the point that all you have to do is add a new stage and possi‐
bly tweak some of the configuration settings related to that stage. The settings to
tweak are usually a trade-off between achieving full production and staging parity (a
difficult feat considering staging may lack any real user traffic or pressure) and keep‐
ing that pesky cloud bill in check. With serverless functions, you do not have to
worry about running costly infrastructure at idle all of the time. But if you depend on
instance-backed services, where you specify and pay for a specific type of server, you
may choose to lower instance types. Keep in mind, however, that this goes against
achieving the fidelity that is the basis of our staging swagger. How will you know how
your code performs when it doesn’t have the same CPU or RAM? You might not need
to. You can use blue/green or canary deployment strategies described in Chapter 8 to
avoid a degradation in performance if it is critical for your app. But it also may be the
lowest priority, as the Zen of Python reminds us to avoid premature optimization.
Consider what’s acceptable for your use case and your budget.

You will need to make difficult choices when dealing with other services and data, the
most difficult of which is: should staging use our production secrets and production
data? Take the payment processor Stripe. It offers a distinct test environment for all of
its users that allows testing credit cards and rejects real ones. This is the exact oppo‐
site behavior of its main or production environment. If you want to test payments in
your staging environment, do you want to use real cards or fake ones? Even when the
choice is clear, this type of decision must be made for every behavior in your system
where the development version and production version differ.

Even your database choice may not be straightforward. You may choose to point your
staging settings at the real production database. If you are in an organization that
espouses the practice of only rolling forward, never backward, and want to run a
cutting-edge beta with limited access that is part of the real production environment,
is that really staging?

166 | Chapter 10: Quality, Testing, and Staging

https://learning.oreilly.com/library/view/production-ready-microservices/9781491965962

Staging is whatever your organization wants and needs it to be. There is really no
definitive answer. The consensus is for more similarity or fidelity to production,
while being fully isolated from production.

Why isolation? As discussed in Chapter 9, you always need to limit your blast radius.
Make sure that the code in your staging environment is not relying on or accessing
the counterpart of a service that lives in your staging environment. And if you are
using sensitive user data in your staging environment, access needs to be controlled
in a similar fashion to data in production.

Which brings us to the hard part: should your staging environment use real, syn‐
thetic, or sanitized user data?

If engineers can’t access user data in production but can access a full copy of it in a
less-restrictive environment (staging), those controls in production are not protecting
the data. Keep in mind that if your production environment has controls limiting
access to sensitive data, your staging should as well, for fidelity and the ability to test
new versions or revisions of those controls themselves before they cause an incident
in production.

A year from reading this book, you may have a great application or service and need
to make a change to its infrastructure or configuration, possibly by changing its serv‐
erless.yml file. You want to add the latest, shiniest tech because it’s missing from your
CV, and thankfully the community has put in the hard work for a great plug-in that
makes it a breeze. The only problem? The plug-in is too new for the version of the
deployment tool, in this case the serverless framework, to work. Should you update it
and immediately try to deploy to production?

The answer is likely yes, because you should be keeping your dependencies up to date
for security purposes and because you can’t let this change be tested for the first time
in production. Unless you spend way too much time writing tests instead of shipping
features, your testing suites will not cover such a change. They may be able to fail
invalid syntax in your serverless.yml (a great idea), and your deployment pipeline
should catch the deployment failure, but by then it’s too late. You have potentially
introduced an inconsistent state in the cloud that you have to manually resolve before
you can even attempt another deployment.

Take the time to think about the repercussions and trade-offs of your staging design
and practices. If the staging database is constantly wiped and replaced with a sani‐
tized copy of production, you may miss out on bugs that only exist once testing
actions have had the chance to age.

Staging | 167

Conclusion
Art is anything you can do well. Anything you can do with quality.

—Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance: An Inquiry into Values
(HarperTorch)

Never forget the return achieved by how much time you invest into your tools. Test‐
ing is just another tool in your virtual workshop. So is staging. Feel free to find the
right level of testing, but I can guarantee you that level is never zero hours.

The more confidence you have in your code, the less time you will spend debugging
and wishing you could easily SSH into your distributed system.

168 | Chapter 10: Quality, Testing, and Staging

CHAPTER 11

Planning for Failure

Enterprise software must be cynical. Cynical software expects bad things to happen and is
never surprised when they do. Cynical software doesn’t even trust itself, so it puts up internal
barriers to protect itself from failures. It refuses to get too intimate with other systems,
because it could get hurt.

—Michael T. Nygard, Release It!, 2nd Edition (Pragmatic Bookshelf)

Plan for failure. This chapter will provide you the basics of planning for operational
failures, and the rest of the book will help you avoid and detect such anomalies, but
remember this: failures are not anomalies. An anomaly is an occurrence that deviates
from standard behavior, but you can reduce failures by planning for them as standard
operating behavior. This is how you build a system that outlives the time you spend
building it.

Introduction: Understand It, Even if You Don’t Manage It
It is not your responsibility to run these managed services, but you need to under‐
stand how they work. Just because you can copy and paste some code into the dash‐
board of your cloud provider, doesn’t mean you don’t need to think about Unix file
permissions. Upload a deployment package to AWS Lambda that is not world reada‐
ble, and it won’t run. Compile a dependency on your macOS machine and get a nice
surprising error when it doesn’t run on the serverless platform. “But I don’t compile
dependencies for my dynamically run language!” Try to manipulate an image, use
cryptography, or connect to an RDBMS database, and you might discover that your
successful deployment wasn’t quite so successful.

It doesn’t matter if this affects you or not; it is important as the designer to under‐
stand the environment and system running your code in the same way you have to
understand the language you are using, the libraries you are using, and how the cus‐
tomers are going to access your system as well.

169

https://learning.oreilly.com/library/view/release-it-2nd/9781680504552

The system takes on a life of its own and can continue to grow due to this thoughtful
planning, including the most thoughtful aspect of planning: making the ideas and
information necessary for the system to operate available in documentation. If it
doesn’t have a runbook, is it really production ready? A real production system needs
a runbook, which is an operator’s manual for the system itself. I will explain this con‐
cept further in this chapter, as well as cover failure points in more depth.

What happens to your system if you get hit by a bus? People might expect it to keep
running. This dark commonality in software engineering is not just limited to soft‐
ware. How did Coca-Cola keep running after the original inventor passed? Someone
wrote down the recipe. The recipe is so valuable, it is locked in a vault that is only
accessible by a few people.

Software is mutable. It changes, adapts, evolves, and lives. Even if yours doesn’t, all of
the other software it relies on does change, so you need to plan for that. If you are
reading this book, you hopefully agree that the best software design for your use case
might be software that is changeable. That is why people usually accept the trade-off
of functions or microservices: because mutability and the speed of development are
the priority. As you write software at this increased pace, don’t forget about what hap‐
pens when people who didn’t build it have to go back and understand it, change it, or
both. You’re building a business: it can’t be one that only works if you use it on Greg’s
MacBook after he chants a set of secret incantations. If you want your business to last,
you want your software to last.

You still can move fast! Set an expectation for the system(s) you are building. My first
large serverless system was designed to handle 10 million users, and a certain number
of concurrent new user registrations. “What happens after that?” many asked me. I
responded: “I am building for a specific goal. I will need to make trade-offs to achieve
that goal given the constraints.” In the same spirit of being constrained to a ship date,
we are constrained to a certain level of performance. We are not irresponsible. We
will monitor the number of users (and other metrics) to determine when, how, and
what it will take to get to the next order of magnitude. If you are building a startup
from scratch, and have the luxury, design for a million users. Total users? Monthly
actives? That is up to you and your teams. But don’t design for one user: Greg.

Identify Risks
How important is your system? Will someone die if it goes down or behaves unpre‐
dictably? That is the the most important question for anyone involved in the design
or business of your system. Your customers can help you gain additional insight.

You need to know what happens when your system goes down. This could range
from a failure queue backing up, to the disruption of the entire global economy. How
likely is your system to go down? You can take this under consideration when

170 | Chapter 11: Planning for Failure

1 B. Barrett, “How a NULL License Plate Landed One Hacker in Ticket Hell,” Wired, August 13, 2019, https://
oreil.ly/B-aS3.

designing your system, and you can also test your system to provide further insight,
but due to the entropy of nature, this will always be an educated guess. So let’s get
educated.

What might cause this system to go down? There are entire books dedicated to this
topic. The epitaph from the beginning of the chapter is from my favorite, Release It!.
The next chapter will provide further depth, but for the purpose of this chapter, your
system is merely a collection of failure points that can and will fail in different ways,
at different times, and with different severities. Since every situation is different, the
following is an exercise to help you discover the answer to these important questions.

Exercise: Finding Your Failure Points
Here is an exercise to get you started. Make a list of all of the things that could break
in your system. If you don’t have a system you are currently working on, either use an
existing project or think of what you want to build with serverless. Next to that, write
a score of 1-10 of how likely it would be to happen. Then write down what would
happen if it broke. Table 11-1 shows an example list. We can’t always control every‐
thing in the left column, or the middle column, or even the right column. But asking
yourself this question might change how you approach system design. Sometimes,
improving your system design isn’t about cracking open Cracking the Coding Inter‐
view by Gayle Laakmann McDowell (CareerCup), but simplifying the system as much
as possible. If you understand the trade-offs in every decision, and document those
trade-offs and why they seemed like the right decision at the time, you will likely save
yourself massive effort over time. This is how you get to sleep through the night
without a 2 A.M. call.

Table 11-1. Example table for this exercise

Ways your system can break Likelihood Impact
Large and persistent traffic spike from a marketing or PR
campaign

8 Lost customers, wasted effort

Database gets corrupted 5 Lost data, lost revenue, lost time

Database gets corrupted and backups don’t restore correctly 3 Find a new job

Certain long-running tasks don’t complete and block other
tasks

7 Weird side effects that cause you to wake up at
2 A.M.

Take a moment to reflect on what you have come up with. What did you learn about
the fragility of your system? Is your system resilient, or would it break for someone
with the last name “Null”?1 Investing time in sussing out your failure points is

Identify Risks | 171

https://oreil.ly/B-aS3
https://oreil.ly/B-aS3

imperative in building a resilient system. If you found this exercise difficult, try it out
as a brainstorming session with members of your team. Next we will discuss how to
best identify risks.

Be Prepared
Banks have been described as “too big to fail,” but they really do back that up with
documentation. To illustrate this point, let’s pull up an interesting document known
as a “Resolution Plan” that is filed regularly with the federal government and is
almost a runbook in itself. But it’s actually a living will:

Each plan, commonly known as a living will, must describe the company’s strategy for
rapid and orderly resolution in the event of material financial distress or failure of the
company, and include both public and confidential sections.

Figure 11-1 is from JPMorgan Chase’s 2017 public resolution plan. It is 170 pages
long, and this is just the public version. So if we read this document, what do we find?
More runbooks!

Figure 11-1. Chase’s Crisis Management Framework from their 2017 Resolution Plan
Public Filing, featuring “playbooks”

172 | Chapter 11: Planning for Failure

https://oreil.ly/pBDsa

Making a Runbook
Write on-call runbooks that sleepy developers can understand at 2 A.M.

—Susan J. Fowler, Production-Ready Microservices (O’Reilly)

What is it that people hate about 2 A.M.? Oh yeah, working at 2 A.M. We should try
and avoid that. My personal philosophy is that I write software so that no one will
wake me up in the middle of the night. But when it happens, a runbook is the best
way to get back to sleep as quickly as possible.

A runbook, or an operator’s manual, is a document created by the developers of a sys‐
tem to give instructions to the operators of a system. Even if those are the same peo‐
ple. It should be a living document that continues to be maintained and expanded by
both parties. The developers must be the owners and initial creators of the document,
and the operators should contribute and artifact knowledge gained from operating
the system. The developers can use this information to improve the operation of the
system.

At the very minimum, a runbook should provide the following:

Overview
What did we build and why?

Service contract
What is the expected behavior for this system? How are other systems supposed
to interact with it? What guarantees are made about the durability, reliability, or
availability of this service? Even if that means no guarantees.

Software functionality
How does the software work, and how are contributors expected to develop the
software further? Useful information about local testing and development.

Operational functionality
How does this software work in Production and Staging? What infrastructure
does it rely on? How does it get deployed? How is it expected to run?

Monitoring/observability
What information can you see about the state of the system and its performance?
Where can you find these metrics and what do they mean? What are the alerting
expectations? What does it mean if something is running out of bounds? What is
the process for updating these expected values and alarms?

How to tell when something isn’t working
Clear indications of failure states based on the data available in the previous
section.

Making a Runbook | 173

https://learning.oreilly.com/library/view/production-ready-microservices/9781491965962

What to do when something isn’t working
What are the common actions an operator might take to resolve an issue? What
actions do you want the operator to first take to better understand and remediate
the situation? If you can get the operator to resolve the issue with just the run‐
book, you get to stay asleep. Also, consider what actions could be automated to
have the system self-heal (as well as what indicators an operator needs to know to
intervene manually).

Operations you can perform on the system
What steps can an operator take to investigate behavior, fix an issue, or bring
back the system from a complete failure? These should have some form of orga‐
nization, but most importantly should have an identifier for each operation so
you can reference them elsewhere in the runbook. For example, when alarm X
goes above Y, run process Z to see if it resolves itself within N minutes (specificity
is important when it is important, and not important any other time).

Undocumented knowledge
What do you need to know that isn’t in the vendor docs? Why are we using that
obscure setting? Why did we turn off the default feature in X? What obscure
Stack Overflow incantation did process X take to get working? When and why
did that become a problem?

Team/project/company-specific knowledge
What promises did we make to Legal or Security when designing the system?
What trade-offs did we make and why? When should those be revisited? We pur‐
posely did not store X for concerns from Team Y. They said we could revisit that
decision in Q4 2020 based on Z.

Does this seem like a lot of work as you try and rush something out the door? Here is
an idea: start the document when you start designing the service, fill it in as you go
along, and then you won’t have to rush anything out the door.

Planning for Outages
No matter how much work gets put into planning for failure, if your system reaches
some level of success it will eventually have some form of outage. Being able to easily
track down the right point of contact is critical to successfully handling an incident.
In addition to the runbook, a production system should have a plan for reaching a
human when such intervention is required.

174 | Chapter 11: Planning for Failure

On-Call/Escalation Plan
This plan can be as simple or complicated as it needs to be for the use case, but a good
plan must have some form of redundancy or escalation. Only having one contact,
while being a serious deficiency for mission-critical applications, may be the only
option you have available on a small team. In a larger organization, however, it is a
common practice to have your alarm fail up the org chart until someone acknowl‐
edges it. The first thing that person may do (other than checking the runbook) is try
and get hold of the others the alarm failed to reach.

But wait. We are software engineers. We should try and automate as much of this as
possible. (We cover this further in Chapter 6.) There are tools that will take your
alarms and execute the on-call plan you have determined. In fact, they will even help
you get started with some of the most common ones available.

There are rare conditions where your cloud provider might need to reach out to you.
In these situations, failure to respond can lead to data loss or even more catastrophic
situations. Make sure your contact information is up to date. Use distribution lists
(and make sure external domains can reach them as well), and give them an email
that opens a PagerDuty incident. Even if you don’t have a service contract, they may
need to reach out to your for legal reasons, such as a violation of their terms of ser‐
vice. If you do not remediate or respond in time, they can suspend or close your
account (it might make sense to have multicloud backups). Add a quarterly action
item to your operational procedures to test these contact methods and to make sure
all of the information on these accounts is up to date. Get creative with the ways you
test all parts of the stack, and maybe ask them to try to reach you by opening a service
ticket. I have “heard” all sorts of stories from a “friend”: an external website claims
abuse coming from your system, the cloud provider approved a service limit but
didn’t have the capacity in a certain region to support it, and anything else you can
imagine. It may not be your job to handle this, but it is your job to ship the most reli‐
able system in your control. Don’t let something simple like this destroy your system,
its data, your company’s reputation, or your company.

Monitor Your Cloud Provider
Shared responsibility is the most important thing to understand when relying on
other people to run your servers, but it is widely misunderstood. The basic concept is
that you are responsible for what is in the cloud, and your provider is responsible for
the security of the cloud. The cloud itself is not magic. It is regular hardware and soft‐
ware managed by regular people. Given a long enough timeline, your system will run
into every possible problem imaginable. Your cloud provider can suffer an outage,
but a minor service degradation could be more damaging to your application if you
have not designed for its failure, and don’t have any monitoring to discover these
issues before they turn into larger incidents.

Monitor Your Cloud Provider | 175

Know Your (Service) Limits
Knowing the limits of the services you are planning to rely on for your own reliability
and resilience are paramount to success. Before you choose a package, library, lan‐
guage, or even a keyboard, do the research to make sure it’s going to work (or at least
that you can return it if it doesn’t). Before you integrate with another service or API
inside your own company, or from even someone with the stature of Stripe or Twilio,
you have to make sure it will do what you are expecting it to do.

Let’s walk through an example of what happens if you ignore this advice. Imagine uti‐
lizing a queue from your cloud vendor that has an option for visibility time-outs. You
implement a proper exponential backoff to the delight of everyone around you.
When a service you rely on starts throwing around 502 errors, you investigate and
decide to ignore the alert. Everything resolves itself. What a well-designed system.

This keeps happening for the next year until things start to go crazy. Do you know
how many messages your queue allows you to have in flight (invisible) at any given
time? Did you know your queue even had a limit for such a thing?

You are used to unidirectionally communicating limits all the time to your colleagues
and customers. Well, you are the customer in this situation. So read the service limits
before you solidify any immutable choices that you make.

You may want to take this advice one step further. If you want to learn how to build a
scalable system, look no further than the artifacts published by your cloud provider.
The service limits tell you the trade-offs they had to make in designing the service.
They can’t defy the laws of physics or computing with their services, and neither can
you. The pages of their documentation are full of lessons no matter where you are in
your software career.

Conclusion
Planning for failure is a critical part of the success of your system, as it takes on a life
of its own in production. But all of that work may be for naught if it is not docu‐
mented and readily accessible to a human who is paged to intervene in your system.
They may not know that it’s OK for your normally dormant function to burst to a
concurrency of 1,000 and get throttled after some other big event. And that this
behavior, while a cause for alarm in some settings, is designed to self-heal. We cov‐
ered the topic of how to design your alarms in Chapter 6, but it is a topic of much
nuance and no correct answers, and it will take time for you to find what works best
for your team or project.

176 | Chapter 11: Planning for Failure

CHAPTER 12

Conclusion

Everything has an end, except sausage, which has two.
—Dada Land, September 2019

Our journey together is coming to an end. To close out the book, let’s look at a frame‐
work for making decisions about vendors and technologies in general. Then I will
walk you through how you might apply certain key concepts from this book differ‐
ently based on which hosted or self-hosted options you use.

Remember that, as with all marketing speak, the promises of serverless don’t apply
universally. Be on the lookout for such language as a sign that people are hyping a
technology about which they only have a shallow understanding. Instead, try to
translate it into what it really means. For example, “you only pay for what you use” is
really “you don’t have to pay for idle capacity.” But of course that cost does get fac‐
tored into the pricing offered by your cloud provider: even marketing speak has to
obey the laws of physics. Idle capacity has to be powered, provisioned, and accounted
for in a multitude of ways. So it really comes down to throwing money at the
problem.

Managing a data center is complicated, no matter how much experience your organi‐
zation may have with it. Doing so may not provide any additional lift or value to the
internal or end users of your system, so if there is a reliable way to abstract the prob‐
lem away, that may be in your best interest. The same goes for servers. Sure, it’s best
to pick purpose-fit solutions when possible. So serverless may not be the best use
case. But anyone who believes in the public cloud and its merits should do the same
for serverless.

There’s a common metaphor in the tech industry that refers to managing a fleet of
servers in terms of animals: we’ve gone from treating servers like pets to treating

177

them like cattle. Well, I am here to say that now is a great time to go vegan. (Or at
least to be more vegan more of the time.)

If you have ever tried using a virtual reality headset for a long enough time, you have
likely found yourself adjusting to your new reality. Once your mind becomes envel‐
oped inside a new environment, it rewires and adapts. Serverless is the new reality. It’s
here. It’s not just a trend. It’s also the spiritual return of CGI-BIN: now that the funda‐
mental issue with CGI-BIN has been repaired by the return of a distributed exe‐
cutable, in this case the container, the history becomes the future.

Deciding among Vendors
To some, the cloud is the natural evolution of servers being available for rent by the
hour, minute, or even second. This evolution brought us to serverless and to compute
time billed in milliseconds. But those who just view the cloud this way are not using it
to its full potential. Think about why you are choosing the cloud or serverless in the
first place. Make sure those reasons are first and foremost in your considerations;
they likely should carry the most weight in your final decision.

You are not just choosing between all of the providers, but between all of their offer‐
ings (or groups of offerings). You might start to build your application in one of the
clouds, but decide some background work or data processing can be best done else‐
where—which may also provide enhanced disaster recovery as well.

Remember that your team, like the teams building search at the App Store or at Goo‐
gle, have different requirements and resources. Remember that using serverless is a
choice like any other choice, complete with trade-offs.

Part of being a professional is about on-demand performance. A major league base‐
ball player gets paid the big bucks because they can produce the hits. Same with expe‐
rienced engineers. That’s the bar you should set for any services, libraries,
technologies, and frameworks you choose in the time of your development. Remem‐
ber that the bar for your dependencies needs to be at least as high, if not higher, than
your project’s bar.

Don’t just think about the current offering of a vendor; consider the rate of change of
that offering and how it will improve or stagnate over time. You also need to do the
same for your own requirements, as they too will change as a function of time.

A smaller, more ambitious provider might see you as representing their target cus‐
tomer as they try to find product/market fit; they might be willing to build custom
options for you that others would charge an arm and a leg for, or tell you that what
you want is coming, but in some mythical quarter that will be delayed indefinitely.
However, you might not need that kind of customization or attention. If you just
want reliability, you may need the market leader.

178 | Chapter 12: Conclusion

Does the provider offer robust tooling? Do you want to be locked into it anyway or
do you want another choice that can support the shift to multiple clouds? What about
the infrastructure and templating tools?

How easy is it to set up the kind of reliability and availability that first made you
choose the public cloud? How do replication and recovery work? How easy is the
tooling around it all? How hard is it to manage the virtual networking aspects of your
cloud services?

Turn to the “deep dive” presentations from the cloud providers to better understand
the systems and services you’ll be relying on, as well as to learn more about interest‐
ing architectures designed to achieve a certain objective at scale. (DynamoDB’s sys‐
tem of tokens for writes is interesting, for example.)

Community
An important element in any technology decision is the community. Any technolo‐
gy’s community provides knowledge, advancement, and will be the source of extra
tooling or your future teammates.

The community helps ensure that you have tools to make your life easier. The tools
your provider offers will generally not be as wonderful as you would expect, although
there are some exceptions to that rule. Factor in all available supported tools when
comparing how you will manage your cloud, because you have to manage even your
managed services.

Gather the Advice of Others
Ask other smart people around you. Ask colleagues and former colleagues. Seek out
people in communities like Hacker News. Ask a college professor. Ask a job inter‐
viewer when they ask you for questions.

You should always be learning. Help others to always be learning too. Keep reading,
teaching, and mentoring. Try to get your employer to pay for books or subscriptions
(both technical and nontechnical) that will directly increase the value you provide to
the organization. Leave books on your desk, share them, read them in public spaces at
the office. Let people know by your actions that you are actively seeking to improve
yourself. If your employer paid for the book, give it away to a coworker when you are
done, with the condition they should do the same. Acquire and read books that are
outside the scope of value to your current role as well, and maintain a personal list or
library of books to recommend that improve personal or professional skills as well as
technical ones.

Get good at bad code. The essayist Paul Graham suggests that any writer looking to
improve their craft should “become a connoisseur of bad writing.” The more you

Community | 179

https://oreil.ly/VVwtv

appreciate bad code and why it is bad, the more you can understand and identify its
problems and attempt to turn it into “good” code. Good code and good writing are
both easily understood and achieve an objective in the minimum amount of argu‐
ment (or lines, if you will). Search for people who are having problems with the tech‐
nologies you’re interested in, to balance out all of the excited marketing hype.

Try to find things that you do repetitively, and automate them if it makes sense.
While it’s funny, the xkcd comic “Is It Worth the Time?” could almost become an ISO
standard (see Figure 8-1). Realize that you are part of the pipeline of your project and
are worthy of the investment. That scales, too, because you can share that automation
with others. Even doing something like speeding up your test suite can almost best be
debated by referencing this table. Remember, too, that you must know what you are
doing manually first, and have confidence at it, in order to automate.

There is no such thing as a simple change. Even with the confidence gained through
thoughtful design, automation, testing, and staging, there is still a chance things will
not work.

What to Do When You Get Stuck
Take a break from the situation, if possible. You need to spend time enjoying pro‐
gramming if you don’t feel that way at work. Learn new things, or just build or tinker
for fun. Try to make some things that make your life better. Share them online. Wel‐
come the community.

Ask the community for help. Learn. Share knowledge. Repeat.

Search for others facing the same issue by looking at the issues for that repository.
Make sure to check both open and closed issues. Consider creating a new one. Make
sure not to leak any sensitive data in doing so, and to follow any policies of your
organization.

Be grateful to those who share the work, sometimes with no compensation other than
the satisfaction of helping others or bettering themselves.

Taking the Next Step in Your Career
Take charge of your career, but don’t let it change who you are. Favor personal growth
and mutual respect over winning the shallow favor and approval of those around you.
Be the coworker people want to work with, and your career will be limitless. As your
experience and your craft increase over time, you can play the politics game and get
promoted, but do it with honor. Find and help others in your organization in ways
that aren’t directly related to your current position or title. The best way to be promo‐
ted is to perform at that level and take on those responsibilities. Those around you

180 | Chapter 12: Conclusion

should support you as you get promoted; if not, maybe you want to find a new job.
Life is too short for pettiness, and quality software engineers are scarce.

Find work that pays you fairly for what you know, but that allows and even expects
you to learn and grow. Repeat. Don’t be afraid of not knowing all the answers—that’s
an impossibility in this field. Share and be inclusive in your decision making. Let oth‐
ers help guide the decision, since they will likely have to live with its repercussions.
Don’t be selfish.

Decide if you are in it for a sprint or a marathon—not in terms of a single job, but
your career as a whole. Some people really just want to make as much money as pos‐
sible so they’ll never have to work again, and they tend to leave collateral damage
(externalities) in their wake.

When conducting interviews, be open to the possibility of learning something or
being wrong. You want to hire people who are better than you in at least some way
that you can learn from, even if you wind up competing with them for promotions
later. And you should return the favor to those teammates. Everyone on the team will
benefit from keeping the bar high.

Sometimes you will have to spend time at work learning new things and not produc‐
ing any immediately measurable results. Account for this time as you would any
other type of work.

Write down your thoughts. Keep a log of actions you take when solving a new prob‐
lem, especially when putting out a fire in production. It will help with your pacing
and your decision making, and it’ll certainly help you produce and share an accurate
and detailed postmortem.

Finally, remember that the production system that you ship or work on is a living,
breathing thing.

Taking the Next Step in Your Career | 181

Index

A
access limitations, 139-140
access logs, 103, 111
ADRs (see architectural decision records

(ADRs))
alerting, 36, 87, 95-96
Amazon

cloud services offerings, 24
shared responsibility model, 135

Amazon API Gateway, 56
Amazon Resource Name (ARN), 69
Amazon Web Services (AWS), 25

Amazon Resource Name (ARN), 69
AWS Layers, 147
CloudFormation

template deployment, 120
weaknesses of, 66

Lambda, 23
cold starts, 29
compute time limitations, 29
DeadLetterErrors pane, 98-99

as leading provider, 66
reputation as cloud services provider, 24
Simple Storage Service (S3), 22
Well-Architected Framework, 30

Amazon.com, 14
anomalies, 169
API gateway, 34
App Engine, 23
application level (custom) metrics, 36, 91-92
application logs, 103
application performance monitoring (APM), 89
application programming interfaces (APIs), 58

application size limitations of serverless com‐
puting, 30

architects
decision making, 27-30

documentation of decisions, 28-29
process of, 29
timing of decisions, 30
types of decisions, 28

decision-making
documentation of decisions, 30

knowledge of, 27
role of, 26-27

architectural decision records (ADRs), 30
architectural reviews, 30
architecture

cloud provider components, 31-37
API gateway, 34
buckets, 32-33
compute, 33
datastores, 33
GraphQL, 35
identity services, 34
logging, 36
monitoring/alerting, 36
networking, 35
queues, 31-32
state machines, 35-36
streams, 31

cloud provider events, 37
explained, 25-26
interfaces (see interfaces)
patterns, 38-44

background task, 41
fanning out, 43

183

file/image processing, 42
incoming webhook, 39
migration service, 43
polling integration, 41
serverless monolith, 38
streaming ETL, 41
user authentication, 40

ARN (see Amazon Resource Name (ARN))
artifacts, 122, 127
assessing threats, 135-137
asynchronous invocations, 47
asynchronous operations, 2
attack vectors, 137
auditable logs, general logging versus, 111
authentication

multi-factor, 143
of sessions, 50

authentication pattern, 40
authorization of sessions, 50
automation, 86, 87

in change management, 116-118
time savings from, 180

availability of cloud providers, 24
AWS (see Amazon Web Services (AWS))
Azure, 25

B
background task pattern, 41
bad code, learning from, 179
best practices

designing interfaces, 48-52
for monitoring, 96-100
for logging, 107-108
metrics namespacing, 92
for microservices, 22-23

Bezos, Jeff, 14
blast radius, 28, 77, 142, 167
blue/green deployments, 123-124
books, learning from, 179
boundaries, testing, 159
buckets, 28, 32-33
build process, 126

C
canaries, 97, 123-124
Capture the Flag (CTF), 151
career advancement, 180-181
cascading failures, 6, 54
CDN (see Content Delivery Network (CDN))

CGI-BIN, 178
change management, 116

automation in, 116-118
configuration management and, 121
database migrations, 120-121

chaos engineering, 162
charts/graphs for monitoring/alerting, 93-94
chat systems, integrations with, 96
checklists for deployment pipelines, 123
client-side request forgery, 144
clocks, reliability of, 5-6
cloud providers

AWS (see Amazon Web Services (AWS))
components provided by, 31-37

API gateway, 34
buckets, 32-33
compute, 33
datastores, 33
GraphQL, 35
identity services, 34
logging, 36
monitoring/alerting, 36
networking, 35
queues, 31-32
state machines, 35-36
streams, 31

current landscape, 24
events from, 37
infrastructure templates, 71
monitoring, 175
monitoring options, 88
on-call plan, 175
open source options, 25
permissions, 69-70
pricing, 80, 177
reliability/availability/disaster recovery, 24
resource identities, 69
selection process, 178-179

CloudFormation
template deployment, 120
weaknesses of, 66

CloudWatch Events timer, 66
code comments, 156-157
code quality, 154-157
code reviews, 118, 157
code style, 155-156
cold starts, 28, 31
comments, 156-157
common vulnerabilities exposures (CVEs), 148

184 | Index

communication, logging as, 101-102
community, learning from, 179, 180
complexity of microservices, 16
compliance, logging and, 107, 111-112
compute, 33
compute time limitations of serverless comput‐

ing, 29
concurrency of function invocations, 48
configuration management, 121
configuration testing, 163
consistency in microservice interfaces, 18-19
Content Delivery Network (CDN), 29, 111
continuous delivery, 26
continuous integration, 118
contracts for interfaces, 46-47
Conway, Melvin, 15
Conway’s Law, 15
CORS (Cross-Origin Request Sharing), 144
cost savings of serverless computing, 27
credentials

rolling, 140-141
setting up Serverless Framework, 79

critical path, 107
cron, 37
Cross-Origin Request Sharing (CORS), 144
CSRF tokens, 144
CTF (Capture the Flag), 151
custom (application level) metrics, 36, 91-92
custom section (serverless.yml), 77
CVEs (common vulnerabilities exposures), 148

D
dashboards in monitoring/alerting, 94
data lakes, 32
databases

migrating, 120-121
purpose-driven, 15
sharing, 19

datastores, 33
dead letter queues, 32, 47, 98-99
DeadLetterErrors pane, 98-99
DEBUG log level, 105, 106, 109, 114
debugging

with logs, 109, 114
in serverless computing, 31

decision making by architects, 27-30
documentation of decisions, 28-29
process of, 29
timing of decisions, 30

types of decisions, 28
decision-making by architects

documentation of decisions, 30
decoupling (see loose coupling)
defense in depth, 141-142
delivery methods for software, 26
deny by default, 139
dependencies

in package section (serverless.yml), 76
installing, 79
in packages, 126
security, 147-148
version pinning, 118

deploying
preparing code for, 118-119
Serverless Framework, 80
to target environment, 128
templates, 120

deployment packages
creating, 82
dependencies in, 126

deployment pipelines
explained, 122
failure management, 129
permissions, 124
phases of, 125-129

artifact publication, 127
build and package, 126
rollback, 128
standard enforcement, 126
target environment deployment, 128
test, 127
validation, 128

purpose of, 125
quality checks, 123-124

designing
distributed systems, 8-11

fault tolerance, 9-10
idempotency, 10
loose coupling, 9
primary keys, 10
two-phase changes, 11

interfaces, 48-52
for failure, 52-55
input validation, 53
interface versus implementation, 51-52
messages/payloads, 49-50
queues, 52
session validation, 50

Index | 185

streams, 52
unbounded requests, 50-51

for security, 137-138
destroying services, 81
DevOps practices in microservices, 17
diffs (Git), 68
disaster recovery, 24
Disney, 28-29
distributed IDs, 10
distributed systems, 1

design considerations, 8-11
developer responsibility in, 8
resources for information, 11
strengths of, 3
weaknesses of, 3-8

distributed tracing, 112
documentation

for charts/graphs, 94
of decisions, 28-29, 30
evaluating services, 58
importance of, 25
planning for failure, 172

E
elevator security, 137-138
encryption

of logs, 106, 112-114
rolling secrets, 140-141
of secrets, 71
in security design, 138

encryption at rest, 50, 147
encryption in transit, 148
end-to-end tests, 18, 161
environment section (serverless.yml), 74
environment variables, setting, 83
ERROR log level, 105
escalation plans, 175
ETL (see extract, transform, load (ETL) pipe‐

lines)
evaluating external services, 58
event buses, designing interfaces, 52
event-driven architectures, 33
events, 47

from cloud providers, 37
in functions section (serverless.yml), 74-75
periodic invocations, 37

exception logging, 110-111
exponential backoff, 57
extract, transform, load (ETL) pipelines, 27, 41

F
FaaS (see function as a service (FaaS) provid‐

ers)
failing open, 129
failing up, 175
failures

anomalies versus, 169
cascading, 54
dead letter queues, 32, 98-99
of deployment pipelines, 129
designing interfaces for, 52-55
exponential backoff, 57
of function invocations, 47
partial, 53-54
physical, 4
planning for

cloud provider monitoring, 175
documentation, 172
managed systems, understanding,

169-170
on-call/escalation plans, 175
risk identification, 170-172
runbooks, 173-174
service limits, 176

poison pill, 54
retries, 56
testing failure strategy, 162
time-outs, 55-56

fanning out pattern, 43
fault tolerance in distributed systems, 9-10
FIFO (see first in first out (FIFO) queues)
file/image processing pattern, 42
finite scale, 48
firewalls, 141
first in first out (FIFO) queues, 31
Fowler, Susan, 17
Fromm, Ken, 23
function as a service (FaaS) providers, 22
functions

cold starts, 28, 31
identities, 141
invocations, 81

concurrency, 48
failure of, 47
types of, 47

monoliths as, 22
retries, 56
scale, 48
time-outs, 55-56

186 | Index

functions section (serverless.yml), 74-75
fuzzing, 146-147

G
gauges, 91
GCP (see (Google Cloud Platform))
Git

diffs, 68
.gitignore file, 71
hooks, 71, 156

GitHub, 151
.gitignore file, 71
Google

cloud services offerings, 24
data privacy, 149
reputation as cloud services provider, 24

Google App Engine, 23
Google Cloud Functions, 47
Google Cloud Platform (GCP), 25
Google Cloud Run, 25
Google Maps, 24
Google Meet, 24
Graham, Paul, 179
graphical user interface (GUI) testing, 161
GraphQL, 35
graphs/charts for monitoring/alerting, 93-94
greenfield projects, 138

H
headers (HTTP), 50
headless testing, 161
health check, 9
heartbeats, 96-97
highly available systems, 162
HIPAA, 112, 113
hooks (Git), 71
hosted monitoring options, 88
HTTP, 46

headers, 50
status codes, 50

HTTPS, 46

I
idempotency in distributed systems, 7-8, 10
identities for cloud resources, 69
identity and access management (IAM), 141
identity services, 34
image/file processing pattern, 42

immutable containers, 149
implementation, interface versus, 51-52
in flight/in transit messages, 32
incident logging, 96
incoming webhook pattern, 39
increments, 91
infinite scale, 48
INFO log level, 105
infrastructure as code, 64

(see also Serverless Framework)
defined, 119
security risks, 66-67
steady state and, 119

infrastructure templates, 71
input validation, 53, 145-146, 156
installing

dependencies, 79
Serverless Framework, 78
software, 67

instance-backed services, 166
integration

of interfaces with external services, 55-58
of serverless computing, 28

integration tests, 18, 160
integrations

with chat systems, 96
explained, 38
polling integration pattern, 41

interfaces
API gateway, 34
in architecture, 26, 27
components of, 46-47
consistency in, 18-19
defined, 46
designing, 48-52

for failure, 52-55
input validation, 53
interface versus implementation, 51-52
messages/payloads, 49-50
queues, 52
session validation, 50
streams, 52
unbounded requests, 50-51

integration with other services, 55-58
evaluating services, 58
exponential backoff, 57
rate limits, 58
retries, 56
time-outs, 55-56

Index | 187

webhooks, 57-58
serverless, 47-48

invocations, 81
concurrency, 48
failure of, 47
types of, 47

J
JSON, 49, 68-69
JSON web tokens (JWTs), 50, 144, 147

K
key management service (KMS), 140
key performance indicators (KPIs), 86
Kleppmann, Martin, 3
Knative, 25
Kubernetes, 25

L
Lambda, 23

cold starts, 29
compute time limitations, 29
DeadLetterErrors pane, 98-99

learning
career advancement and, 180-181
from bad code, 179
from books, 179
from community, 179, 180

libraries
logging, 106
testing, 158

LinkedIn, 149
linting, 126, 156
load balancers, logging and, 111
load testing, 95
local development of microservices, 17-18
lock-in, 30, 99
lockfiles, 69
logging, 36

access logs, 111
auditable logs versus, 111
best practices, 107-108
as communication, 101-102
compliance and, 111-112
debugging with, 109, 114
distributed tracing, 112
encryption of logs, 106, 112-114
exception logging with Sentry, 110-111

explained, 102
incidents, 96
log levels, 105
as managed system, 107
purpose of, 103
scalability, 108-109
searching logs, 110
structured logging, 109
types of logs, 103
viewing logs, 81
what not to log, 106-107
what to log, 104-106
when to use, 104

loose coupling
in distributed systems, 9
in microservices, 19-20

M
machine security, 151
managed services

integration testing, 160
in serverless.yml file, 82-83

managed systems
logging as, 107
understanding, 169-170

management of serverless computing, 27
manual testing, 158
messages

defined, 46
designing interfaces, 49-50
in flight/in transit, 32
missing, 4-5

metadata service, 141
metrics

cleaning up, 100
code coverage, 163
custom (application level) metrics, 91-92
from external sources, 93
logging versus, 104
monitoring/alerting, 36, 89-93
system metrics, 91
for vendor performance, 93
what to measure, 90

microservices
best practices, 22-23
consistency in, 18-19
defined, 13
deployment pipelines and, 122
loose coupling in, 19-20

188 | Index

size of, 20-21
strengths of, 14-15
weaknesses of, 16-18
when to use, 24

microservices ecosystems, 17
Microsoft Azure, 25
Microsoft, cloud services offerings, 24
migrating databases, 120-121
migration service pattern, 43
missing messages, 4-5
mocks, 160
modifying permissions, 83
monitoring, 36

automation and, 87
best practices, 96, 100

DeadLetterErrors pane, 98-99
heartbeats, 96-97
smoke testing/canaries, 97
vendor lock-in, avoiding, 99

cloud providers, 175
components of, 89-96

alerts, 95-96
charts/graphs, 93-94
dashboards, 94
metrics, 89-93

importance of, 55
logging versus, 104
purpose of, 85-86
security, 146
serverless and, 86-87
tools available, 87-89

monoliths
Amazon.com example, 14
defined, 21
development process, 21
with microservices best practices, 22-23
serverless computing with, 22
serverless monolith pattern, 38
when to use, 21-23

multi-factor authentication, 143

N
namespacing, 70, 77, 92, 143
network access, 139
network limitations

in distributed systems, 3, 4-5
of serverless computing, 29

network security, 35, 148
Network Time Protocol (NTP), 5

Newman, Sam, 13
Node.js, 69
Node.js Package Manager (NPM), 69
NoSQL, 121
NTP (see Network Time Protocol (NTP))

O
object relational manager (ORM), 120, 163
on-call/escalation plans, 175
open source cloud providers, 25
open source monitoring options, 88-89
Open Web Application Security Project

(OWASP), 145
optimizing testing, 164
order of execution in distributed systems, 7
ORM (see object relational manager (ORM))
overpay, 30

P
package section (serverless.yml), 75-76
package-Lock.json file, 69
package.json file, 69
packages

creating, 82
dependencies in, 126

parallelized tests, 127
partial failures, 53-54
patterns, 38-44

background task, 41
fanning out, 43
file/image processing, 42
incoming webhook, 39
migration service, 43
polling integration, 41
serverless monolith, 38
streaming ETL, 41
testing in production, 97
user authentication, 40

payloads, designing interfaces, 49-50
peer reviews, 30
penetration tests, 135-136
performance optimization of testing, 164
periodic invocations, 37
permissions

for cloud systems, 69-70
for deployment pipelines, 124
limiting, 139-140
modifying, 83
Serverless Framework setup, 79

Index | 189

in serverless.yml file, 73
personal health information (PHI), 112
personally identifiable information (PII), 92,

112
physical world, failures caused by, 4
pipelines, 122

(see also deployment pipelines)
planning for failure

cloud provider monitoring, 175
documentation, 172
managed systems, understanding, 169-170
on-call/escalation plans, 175
risk identification, 170-172
runbooks, 173-174
service limits, 176

plug-ins section (serverless.yml), 76-77
poison pill, 54
polling integration pattern, 41
preparations for deployment, 118-119
pricing

for cloud providers, 80, 177
of serverless computing, 26-27, 30

primary keys, generating, 10
principle of least privilege, 124, 139
privacy, 149
production access, 149-150
productivity of serverless computing, 27
project development, scalability in, 13, 14

complexity, 16
developer freedom, 15
developer velocity, 14-15
DevOps practices, 17
local development and testing, 17-18

protocols for interfaces, 46
provider section (serverless.yml), 72-73
proxy measurements, 110
publishing artifacts, 127
purpose-driven databases, 15

Q
quality checks for deployment pipelines,

123-124
quality of code, 154-157
queues, 31-32, 52

R
rate limits, 58
“reasoning about code”, 154
Redis, 52

regions (serverless.yml), 73
regulatory requirements, logging and, 107,

111-112
reliability

of clocks, 5-6
of cloud providers, 24
of serverless computing, 26

removing services, 81
reproducible builds, 122
request identifiers, 112
requests, 47
resilient systems, 162
resource identities, 69
resources for information on distributed sys‐

tems, 11
resources section (serverless.yml), 75
responses, 47
responsibility for security, 134-135
risk identification, 170-172
role statements, 70
rollbacks, 81, 128
rolling forward, 81, 129
rolling secrets, 140-141
root cause analysis, 96
Ruby on Rails, 151
runbooks, 96, 170, 173-174

S
S3 (see Simple Storage Service (S3))
SaaS (Software-as-a-Service) monitoring

options, 88
savings of serverless computing, 27
scalability

of distributed systems, 2, 3
of logs, 108-109
in project development, 13, 14

complexity, 16
developer freedom, 15
developer velocity, 14-15
DevOps practices, 17
local development and testing, 17-18

of serverless computing, 26, 32
scale of functions, 48
searching logs, 110
secrets

encrypting, 71
rolling, 140-141

Secure Shell (SSH), 86
security

190 | Index

access limitations, 139-140
blast radius, limiting, 142
defense in depth, 141-142
dependencies, 147-148
designing for, 137-138
of elevators, 137-138
encryption (see encryption)
IAM (identity and access management), 141
improving skills in, 151
infrastructure as code, risks of, 66-67
input validation, 145-146
machine security, 151
monitoring, 146
of networks, 35, 148
permissions (see permissions)
privacy, 149
production access, 149-150
rolling secrets, 140-141
of serverless computing, 26
shared responsibility model, 134-135
software updates, 147-148
testing, 146-147
threat assessments, 135-137
trust, but verify, 80, 142-144
TURN services, 134

security posture, 137
selection process for vendors, 178-179
self-hosted monitoring options, 88-89
sensitive log fields, encrypting, 113
Sentry, 110-111
separating monoliths, 22-23
server-side request forgery (SSRF), 134
serverless command, 78-82

credentials setup, 79
dependencies, installing, 79
deploying Serverless Framework, 80
deployment packages, creating, 82
functions, invoking, 81
installing framework, 78
logs, viewing, 81
rollbacks, 81
services, destroying, 81

serverless computing
cloud provider landscape, 24
as distributed system, 2
explained, 22-23
history of, 23
monitoring and, 86-87
with monoliths, 22

reliability/availability/disaster recovery, 24
servers in, 23
strengths of, 26-28
weaknesses of, 28-31
when not to use, 33
when to use, 31-33

Serverless Framework
benefit of using, 64-65
dependencies, installing, 79
deploying, 80
deployment packages, creating, 82
functions, invoking, 81
installing, 78
logs, viewing, 81
namespacing, 77
rollbacks, 81
serverless command, 78-82
serverless.yml file

components of, 72-77
managed services in, 82-83

services, destroying, 81
setting up with credentials, 79
template deployment, 120
when not to use, 65-67

serverless interfaces, 47-48
serverless monolith pattern, 38
serverless.yml file

as CloudFormation template, 66
components of, 72-77

custom section, 77
environment section, 74
functions section, 74-75
package section, 75-76
plug-ins section, 76-77
provider section, 72-73
resources section, 75

managed services in, 82-83
template deployment, 120

servers in serverless computing, 23
service limits, 176
service-level agreement (SLA), 86
service-oriented architecture (SOA), 13
services

destroying, 81
interface integration with, 55-58

evaluating services, 58
exponential backoff, 57
rate limits, 58
retries, 56

Index | 191

time-outs, 55-56
webhooks, 57-58

sessions, validating, 50
shared responsibility model, 134-135
sharing databases, 19
Simple Queuing Service (SQS), 98
Simple Storage Service (S3), 22
simplicity of code, risks of, 66
single sign-on (SSO) systems, 139
Site Reliability Engineering (Beyer), 125
Skynet Simulator, 136
SLA (see service-level agreement (SLA))
smoke testing, 97, 161-162
Snowflake, 10
SOA (service-oriented architecture), 13
software

delivery methods, 26
installing, 67
updates, 147-148

software architects (see architects)
software architecture (see architecture)
Software-as-a-Service (SaaS) monitoring

options, 88
spot instances, 33
SQS (Simple Queuing Service), 98
SSH (see Secure Shell (SSH))
SSO systems (see single sign-on (SOO) sys‐

tems)
SSRF (see server-side request forgery (SSRF))
stack trace, 110
stage (serverless.yml), 73
staging, 164-167
state machines, 35-36
status codes (HTTP), 50
steady state, 116, 119
step functions, 35-36
streaming ETL patterns, 41
streams, 31

designing interfaces, 52
poison pill, 54

structured logging, 109
style of code, 155-156
synchronous invocations, 47
synchronous operations, 2
system logs, 103
system metrics, 36, 91

T
tags (serverless.yml), 73

target environment, deploying to, 128
tasks, 32
TCP (see Transmission Control Protocol

(TCP))
technical debt, 9
telemetry, 78
templates, deploying, 120
terminal errors, 56
test-driven development (TDD), 164
testing, 157-164

boundaries, 159
code coverage metric, 163
in deployment pipelines, 127
end-to-end testing, 161
failure strategy, 162
integration testing, 160
libraries, 158
manual testing, 158
microservices, 17-18
with mocks, 160
parallelized tests, 127
penetration tests, 135-136
performance optimization of, 164
security, 146-147
smoke testing, 161-162
in test-driven development (TDD), 164
UI testing, 161
unit testing, 159
what to test/not test, 158

testing in production pattern, 97
threat modeling, 137
threats, assessing, 135-137
three-tiered web applications, 2
tickets, 118
time-outs, 55-56
tokens, 79
Transmission Control Protocol (TCP), 108
Traversal Using Relays around Network

Address Translation (TURN), 134
trust, but verify, 80, 142-144
TURN (see Traversal Using Relays around Net‐

work Address Translation)
Twitter Snowflake, 10
two-factor authentication, 143
two-phase changes in distributed systems, 11

U
UDP (see User Datagram Protocol (UDP))
UI testing, 161

192 | Index

unbounded requests, 50-51
unique (primary) keys, generating, 10
unit testing, 159
updating software, 147-148
use cases

for monitoring, 86
patterns for, 38-44

background task, 41
fanning out, 43
file/image processing, 42
incoming webhook, 39
migration service, 43
polling integration, 41
serverless monolith, 38
streaming ETL, 41
user authentication, 40

for serverless computing, 31-33
user authentication pattern, 40
user data

privacy, 149
in staging environment, 167

User Datagram Protocol (UDP), 108
user input validation, 145-146, 156

V
validating

deployment, 128
sessions, 50

user input, 53, 145-146, 156
webhooks, 53

vendor lock-in, 30, 99
vendor performance metrics, 93
vendor selection process, 178-179
version pinning, 118
viewing logs, 81
virtual private cloud (VPC), 29
Vogels, Werner, 31, 14

W
WARNING log level, 105
Web Application Firewall (WAF), 141
webhooks

incoming webhook pattern, 39
for interface integration, 57-58
validating, 53

Well-Architected Framework, 30
well-structured monoliths, 21

Y
YAML, 68-69

Z
zero-warning policy, 156
Zoom, 135

Index | 193

About the Author
Jason Katzer is the creator of CloudPro.app, which creates developer productivity
tools for the cloud and offers consulting on cloud native architectures and cloud cost
savings. Previously, he served as director of software engineering at Capital One (Par‐
ibus/WikiBuy) and Blink Health. Jason is also a serial entrepreneur and angel investor
who’s been involved with and started many new ventures. He’s worked for several
industries, including health care, consumer tech, fitness, sales, finance, and telecom,
and loves to help people save both time and money. But his one real focus is building
quality software. He is a passionate teacher (MakeSchool) as well as a lifelong learner.
He devours TV shows, podcasts, and audio books, and will dearly miss the voice of
Vin Scully.

Colophon
The animal on the cover of Learning Serverless is the black-tailed godwit (Limosa
limosa). These wide-ranging shorebirds breed in northern wetlands from Iceland in
the west across Europe to Siberia in the east. A small population stays resident in
northwestern Europe. Migrating birds fly south to winter across central Africa and
parts of northern India, southeasternmost Asia, and coastal Australia.

Godwits are large, long-legged sandpipers, standing on average 16 inches tall, covered
with black and white speckled patterning. In summer breeding plumage, their main
body color is pale red; in winter they are pale gray brown. They are best distinguished
while flying by their white wing bars and back. These birds forage with their long bills
for small prey such as insects, worms, crustaceans, and tadpoles.

Like some other species of godwits, black-tailed godwits undertake long migration
journeys between breeding and winter territories, sometimes flying at altitudes of
three miles or higher, where the air contains far less oxygen than at sea level. They
have been known to undertake parts of their migration flights at these high altitudes
to take advantage of favorable high-level winds, among other factors. Studies have
also shown that black-tailed godwits show variation as to their migratory pathways as
a group as well as individually over a period of years.

The black-tailed godwit is considered Near Threatened at the global level, with many
wetlands across its range being developed for agricultural use. Many of the animals
on O’Reilly covers are endangered; all of them are important to the world.

The color illustration is by Karen Montgomery, based on a black-and-white engrav‐
ing from George Shaw’s General Zoology (1809-1826). The cover fonts are Gilroy and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://www.oreilly.com/online-learning/

	Copyright
	Table of Contents
	Preface
	About This Book
	How This Book Is Organized
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Introduction to Serverless
	What Is Serverless?
	History of Serverless
	The Cloud Provider Landscape
	Reliability, Availability, Disaster Recovery

	Strengths of Serverless
	Increased Scalability, Security, and Reliability
	You Only Pay for What You Use
	Saving Time and Money on Managing Servers
	Improved Developer Productivity
	Decreased Management Responsibilities
	Convenient Integrations

	Weaknesses of Serverless
	The Cold (Start) War
	Compute Time
	VPC/Network Issues
	Application Size
	Potential to Be More Expensive
	Vendor Lock-In
	Complex Debugging

	When Does It Make Sense to Use Serverless?
	When Is Serverless Compute Not Right for You?
	Let’s Get Started

	Part I. The Path to Production
	Chapter 1. Distributed Systems
	What Is a Distributed System?
	Why Do We Want a Distributed System?
	The Harsh Realities of Distributed Systems
	The Physical World
	Missing Messages
	Unreliable Clocks
	Cascading Failures
	Unexpected Ordering
	Idempotency

	What Am I Responsible For?
	What Do You Need to Consider When Designing a Distributed System?
	Loose Coupling (or Decoupling)
	Fault Tolerance
	Generating Unique (Primary) Keys
	Planning for Idempotency
	Two-Phase Changes

	Further Reading
	Conclusion

	Chapter 2. Microservices
	Why Do You Want to Use Microservices?
	Improved Developer Velocity
	Increased Developer Freedom

	Issues with Microservices
	Increased Complexity
	Proper DevOps Practices and Resources Needed
	Challenges with Local Development and Testing

	How Do You Use Microservices Effectively?
	Consistent Interfaces
	Loosely Coupled

	How Micro Is a Microservice?
	Choosing Between Monoliths and Microservices
	When Should You Use a Monolith?
	When Do You Want to Use Microservices?

	Conclusion

	Chapter 3. Serverless Architecture and Patterns
	The Role of an Architect
	What Do You Need to Know to Be an Architect?
	Making Decisions
	What Kinds of Decisions?
	Documenting Your Decisions
	How Do We Make Decisions?
	When Do We Make Decisions?

	Cloud Provider Components
	Streams
	Queues
	Buckets
	Compute
	Datastores
	Identity Service
	API Gateways
	GraphQL
	Networking
	State Machines
	Logging
	Monitoring and Alerting

	Events from Your Cloud Provider
	Periodic Invocations

	Patterns
	Example 1: Serverless Monolith
	Example 2: Incoming Webhook
	Example 3: Using Your Cloud Provider for User Authentication
	Example 4: Generic Background Task Pattern
	Example 5: Streaming Extract, Transform, Load
	Example 6: Create Your Own Polling Integration
	Example 7: Processing Files and Images
	Example 8: Migration Service Pattern
	Example 9: Fanning Out

	Conclusion

	Chapter 4. Interfaces
	Interfaces: Some Assembly Required
	The Message
	The Protocol
	The Contract

	Serverless Interfaces
	Automatic Retries and Dead Letter Queues
	Finite Versus Infinite Scale

	Designing Your Interfaces
	Messages/Payloads
	Sessions and Users/Auth
	Avoid Unbounded Requests
	Interface Versus Implementation
	Lines with Logic

	Designing the Unhappy Path
	Validating Input
	Failures

	Strategies for Integrating with Other Services
	Time-Outs
	Retries
	Exponential Backoff
	Webhooks
	Evaluating External Services
	Rate Limits

	Conclusion

	Part II. The Tools
	Chapter 5. The Serverless Framework
	Why Use the Serverless Framework?
	When the Serverless Framework Isn’t for You
	AWS Is the Only First-Class Citizen
	AWS CloudFormation Is Not Perfect
	Relying on Strangers for Your Infrastructure

	What to Know Before You Start
	YAML
	Node.js
	Cloud Resources and Permissions
	Infrastructure Templates
	Production Secrets
	.gitignore

	The Components of a serverless.yml File
	Provider
	Environment
	Functions
	Resources
	Package
	Plug-Ins
	Custom
	Namespacing for Sanity and Security

	Using the serverless Command
	Installing Serverless
	Setting Up Serverless with Credentials
	Pulling in Templates Using serverless install
	Inspecting the Package of Our Sample Project (What’s Inside)
	Deployment
	Invoking the Function, and Viewing Logs
	Rollbacks
	Destroying the Service
	Deployment Packages

	Real-World serverless.yml
	Setting Environment Variables
	Modify Permissions

	Conclusion

	Chapter 6. Monitoring, Observability, and Alerting
	What Is Monitoring?
	Why Do We Need Monitoring?
	How Does Monitoring Relate to Serverless?
	The On-Ramp to Automation

	What Are My Options?
	Hosted SaaS Offerings
	Self-Hosted and Open Source

	Components of Monitoring
	Metrics
	Charts/Graphs
	Dashboards
	Alerts/Alarms

	A Selection of Advanced Practices
	Heartbeats
	Smoke Testing and/or Canaries
	The Most Important Metric in the World
	Avoiding Vendor Lock-In
	Cleaning Up Metrics and Alerts over Time

	Conclusion

	Chapter 7. Logging
	What Does It Mean to Log?
	Why Log?
	When to Rely on Logs Instead of Metrics
	What Should You Log?
	What Shouldn’t You Log?
	How Does Logging Work?
	Ensuring Your Logs Scale
	Structured Logging
	More Effective Debugging with Logs
	Searching Logs
	Exception Logging (Sentry)

	Collecting Other Logs
	Compliance
	Distributed Tracing
	Encrypting Logs for Privacy and Compliance
	Encrypt Only the Values of Sensitive Fields
	Encrypt the Entire Log Statement

	Conclusion

	Chapter 8. Changes, Automation, and Deployment Pipelines
	Dealing with Change
	The Role of Automation
	What Do We Automate?

	Getting Your Code Ready for Production
	Infrastructure as Code
	Database Changes (Migrations)
	Configuration Management
	What Is a Pipeline?
	Decisions to Make Regarding Your Pipeline
	Canaries and Blue/Green Deployments
	Pipeline Permissions

	Why Do You Need a Pipeline?
	Key Phases of a Deployment Pipeline
	Step 1. Enforce Standards
	Step 2. Build and Package
	Step 3. Test
	Step 4. Publish the Artifact
	Step 5. Deploy to the Target Environment
	Step 6. Validate Deployment
	Step 7. Roll Back if Necessary (and Possible)

	Handling Pipeline Failures
	Conclusion

	Part III. Concepts
	Chapter 9. Security, Permissions, and Privacy
	Everyone Is Responsible, but You Are Especially Responsible
	Prepare to Be Hacked
	Understanding Your Threats and Your Attackers
	Design for Security

	Limit, Track, and Review All Secrets and Access
	Be Ready to Roll
	Defense in Depth
	Limit Blast Radius
	Trust but Verify

	Validate All User Input and Double-Check Those Settings
	Monitoring Your System for Anomalies
	Test Your Security
	Select Dependencies Carefully and Keep Your Software Up to Date
	Prioritize Privacy for Your Data and Your Customers’ Data
	Don’t Mess with Production

	Keep Your Machine Secure
	Keep Learning
	Conclusion

	Chapter 10. Quality, Testing, and Staging
	The Role of Code Quality
	Code Style
	Linting

	Testing
	What to Test and What Not to Test
	Types of Testing
	Code Coverage
	Power Up Your Testing

	Staging
	Conclusion

	Chapter 11. Planning for Failure
	Introduction: Understand It, Even if You Don’t Manage It
	Identify Risks
	Exercise: Finding Your Failure Points

	Be Prepared
	Making a Runbook
	Planning for Outages
	On-Call/Escalation Plan

	Monitor Your Cloud Provider
	Know Your (Service) Limits
	Conclusion

	Chapter 12. Conclusion
	Deciding among Vendors
	Community
	Gather the Advice of Others
	What to Do When You Get Stuck
	Taking the Next Step in Your Career

	Index
	About the Author
	Colophon

