
Raoul-Gabriel Urma
 & Richard Warburton

Real-World
Software
Development
A Project-Driven Guide to Fundamentals in Java

Raoul-Gabriel Urma and Richard Warburton

Real-World Software
Development

A Project-Driven Guide to Fundamentals in Java

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96717-1

[LSI]

Real-World Software Development
by Raoul-Gabriel Urma and Richard Warburton

Copyright © 2020 Functor Ltd. and Monotonic Ltd. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Alicia Young
Production Editor: Kristen Brown
Copyeditor: Kim Cofer
Proofreader: Tracy Brown-Hamilton

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2019: First Edition

Revision History for the First Edition
2019-12-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491967171 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Real-World Software Development, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491967171

Table of Contents

Preface. ix

1. Starting the Journey. 1
Themes 1

Java Features 1
Software Design and Architecture 2
SOLID 2
Testing 2

Chapter Summary 3
Iterating on You 4

2. The Bank Statements Analyzer. 5
The Challenge 5
The Goal 5
Bank Statements Analyzer Requirements 6
KISS Principle 6

final Variables 8
Code Maintainability and Anti-Patterns 9

God Class 9
Code Duplication 10

Single Responsibility Principle 10
Cohesion 14

Class-Level Cohesion 17
Method-Level Cohesion 20

Coupling 21
Testing 23

Automated Testing 23
Using JUnit 24

iii

Code Coverage 27
Takeaways 28
Iterating on You 28
Completing the Challenge 29

3. Extending the Bank Statements Analyzer. 31
The Challenge 31
The Goal 31
Extended Bank Statements Analyzer Requirements 32
Open/Closed Principle 32

Creating an Instance of a Functional Interface 35
Lambda Expressions 36

Interfaces Gotchas 36
God Interface 37
Too Granular 38

Explicit Versus Implicit API 38
Domain Class or Primitive Value? 40

Multiple Exporters 41
Introducing a Domain Object 41
Defining and Implementing the Appropriate Interface 43

Exception Handling 44
Why Use Exceptions? 45
Patterns and Anti-Patterns with Exceptions 46
Guidelines for Using Exceptions 51
Alternatives to Exceptions 52

Using a Build Tool 54
Why Use a Build Tool? 54
Using Maven 55
Using Gradle 58

Takeaways 60
Iterating on You 61
Completing the Challenge 61

4. The Document Management System. 63
The Challenge 63
The Goal 63
Document Management System Requirements 64
Fleshing Out the Design 64

Importers 65
The Document Class 66
Attributes and Hierarchical Documents 68
Implementing and Registering Importers 69

iv | Table of Contents

The Liskov Substitution Principle (LSP) 71
Alternative Approaches 73

Making Importer a Class 73
Scoping and Encapsulation Choices 73

Extending and Reusing Code 74
Test Hygiene 79

Test Naming 79
Behavior Not Implementation 81
Don’t Repeat Yourself 83
Good Diagnostics 84
Testing Error Cases 86
Constants 87

Takeaways 88
Iterating on You 88
Completing the Challenge 88

5. The Business Rules Engine. 89
The Challenge 89
The Goal 89
Business Rules Engine Requirements 90
Test Driven Development 91

Why Use TDD? 92
The TDD Cycle 92

Mocking 95
Adding Conditions 96

Modeling State 96
Local Variable Type Inference 99
Switch Expressions 101
Interface Segregation Principle 103

Designing a Fluent API 106
What Is a Fluent API? 106
Modeling the Domain 107
Builder Pattern 108

Takeaways 111
Iterating on You 112
Completing the Challenge 112

6. Twootr. 113
The Challenge 113
The Goal 113
Twootr Requirements 114
Design Overview 115

Table of Contents | v

Pull-Based 116
Push-Based 116

From Events to Design 117
Communication 117
GUI 118
Persistence 119
The Hexagonal Architecture 119

Where to Begin 120
Passwords and Security 125
Followers and Twoots 127

Modeling Errors 128
Twooting 130
Creating Mocks 130
Verifying with Mocks 132
Mocking Libraries 132
SenderEndPoint 133

Positions 135
The equals and hashcode Methods 138
The Contract Between equals and hashCode 139

Takeaways 141
Iterating on You 141
Completing the Challenge 141

7. Extending Twootr. 143
The Challenge 143
The Goal 143
Recap 144
Persistence and the Repository Pattern 144

Designing the Repositories 145
Query Objects 147

Functional Programming 151
Lambda Expressions 152
Method References 153
Execute Around 155
Streams 156
Optional 160

User Interface 163
Dependency Inversion and Dependency Injection 164
Packages and Build Systems 167
Limitations and Simplifications 168
Takeaways 169
Iterating on You 169

vi | Table of Contents

Completing the Challenge 170

8. Conclusion. 171
Project-Based Structure 171
Iterating on You 171
Deliberate Practice 172
Next Steps and Additional Resources 173

Index. 175

Table of Contents | vii

Preface

Mastering software development involves learning a disparate set of concepts. If
you’re starting out as a junior software developer, or even if you’re more experienced,
it can seem like an insurmountable hurdle. Should you be spending time learning
about established topics in the object-oriented world such as SOLID principles,
design patterns, or test-driven development? Should you be trying out things that are
becoming increasingly popular such as functional programming?

Even once you’ve picked some topics to learn it’s often hard to identify how they fit
together. When you should go down the route of applying functional programming
ideas in your project? When do you worry about testing? How do you know at what
point to introduce or refine these techniques? Do you need to read a book on each of
these topics and then another set of blog posts or videos to explain how to put things
together? Where do you even start?

Don’t worry, this book is here to help you. You will be helped through an integrated,
project-driven approach to learning. You’ll learn the core topics that you need to
know in order to become a productive developer. Not only that, but we show how
these things fit together into bigger projects.

Why We Wrote This Book
Over the years we have built up a wealth of experience around teaching developers to
code. We have both written books on Java 8 onward and run training courses around
professional software development. In the process we’ve been recognized as Java
Champions and international conference speakers.

We’ve found over the years that many developers could benefit from either an intro‐
duction or a refresher on several core topics. Design patterns, functional program‐
ming, SOLID principles, and testing are practices that often get good coverage in
their own right, but it’s rarely shown how they work well and fit together. People
sometimes even get put off from improving their skills simply due to the paralysis of

ix

choice over what to learn. We want to not only teach people core skills, but do so in a
way that’s easy to approach and fun, too.

A Developer-Oriented Approach
This book also gives you the opportunity to learn in a developer-oriented way. It con‐
tains plenty of code samples and whenever we introduce a topic we always provide
concrete code examples. You get all the code for the projects within the book, so if
you want to follow along you can even step through the book code in an Integrated
Development Environment (IDE) or run the programs in order to try them out.

Another common bugbear when it comes to technical books is that they are often
written in a formal, lecturing style. That’s not how normal people speak to each other!
In this book you’ll get a conversational style that helps to engage you in the content
rather than being patronizing.

What’s in the Book?
Each chapter is structured around a software project. At the end of a chapter, if you’ve
been following along, you should be able to write that project. The projects start off as
simple command-line batch programs but grow in complexity to fully fledged
applications.

You’ll benefit from a project-driven structure in a variety of ways. First, you get to see
how different programming techniques work together in an integrated setting. When
we look at functional programming toward the end of the book, it isn’t just abstract
collection-processing operations—they’re presented in order to calculate actual
results used by the project in question. This solves the problem of educational mate‐
rial showing good ideas or approaches, but developers often use them inappropriately
or out of context.

Second, a project-driven approach helps ensure that at each stage you see realistic
examples. Educational materials are often full of example classes called Foo and meth‐
ods called bar. Our examples are relevant to the projects in question and show how to
apply the ideas to real problems, similar to the ones that you may encounter in your
career.

Finally, it’s more fun and engaging to learn this way. Each chapter is a fresh project
and a fresh opportunity to learn new things. We want you to read through to the end
and really enjoy turning the pages as you’re reading. The chapters start with a chal‐
lenge that will be solved, walk you through the solution, and then end by evaluating
what you learned and how the challenge was solved. We specifically call out the chal‐
lenge at the beginning and end of every chapter to ensure that its goals are clear to
you.

x | Preface

Who Should Read This Book?
We’re confident that developers from a wide variety of backgrounds will find things
that are useful and interesting in this book. Having said that, there are some people
who will get the maximum value out of this book.

Junior software developers, often just out of university or a couple of years into their
programming career, are who we think of as the core audience for this book. You’ll
learn about fundamental topics that we expect to be of relevance throughout your
software development career. You don’t need to have a university degree by any
means, but you do need to know the basics of programming in order to make the best
use of this book. We won’t explain what an if statement or a loop is, for example.

You don’t need to know much about object-oriented or functional programming in
order to get started. In Chapter 2, we make no assumptions beyond that you know
what a class is and can use collections with generics (e.g., List<String>). We take it
right from the basics.

Another group who will find this book of particular interest is developers learning
Java while coming from another programming language, such as C#, C++, or Python.
This book helps you quickly get up to speed with the language constructs and also the
principles, practices, and idioms that are important to write good Java code.

If you’re a more experienced Java developer, you may want to skip Chapter 2 in order
to avoid repeating basic material that you already know, but Chapter 3 onward will be
full of concepts and approaches that will be of benefit to many developers.

We’ve found that learning can be one of the most fun parts of software development
and hope that you’ll find that as well when reading this book. We hope you have fun
on this journey.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Preface | xi

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/Iteratr-Learning/Real-World-Software-Development.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Real-World Software
Development by Raoul-Gabriel Urma and Richard Warburton (O’Reilly). Copyright
2020 Functor Ltd. and Monotonic Ltd., 978-1-491-96717-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s

xii | Preface

https://github.com/Iteratr-Learning/Real-World-Software-Development
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com

online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/RealWorld_SoftwareDev.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xiii

http://oreilly.com
https://oreil.ly/RealWorld_SoftwareDev
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Starting the Journey

In this chapter, we’ll give you an introduction to the concepts and principles of this
book. A good way of summarizing the overall approach is Practices and Principles
over Technology. There are already many books about specific technologies, and we
aren’t seeking to add to that enormous pile. That isn’t to say that the detailed knowl‐
edge that is specific to a given language, framework, or library isn’t useful. It’s just that
it has a shorter shelf-life than general practices and principles that apply over longer
periods of time and across different languages and frameworks. That’s where this
book can help you.

Themes
Throughout the book we’ve used a project-based structure to aid learning. It’s worth
thinking about the different themes that run through the chapters, how they link up
together, and why we chose them. Following are the four different themes that weave
through the chapters.

Java Features
Structuring code with classes and interfaces is discussed in Chapter 2. We move onto
exceptions and packages in Chapter 3. You will also get a short overview of lambda
expressions in Chapter 3. Then local variable type inferences and switch expressions
are explained in Chapter 5, and finally lambda expressions and method references are
covered in detail in Chapter 7. Java language features are important because so many
software projects are written in Java, so it’s useful language to know the workings of
it. Many of these language features are useful in other programming languages as
well, such as C#, C++, Ruby, or Python. Even though those languages have differ‐
ences, understanding the how to use a class and core OOP concepts will be valuable
across different languages.

1

Software Design and Architecture
Throughout the book a series of design patterns are introduced that help provide you
with common solutions to common problems that developers encounter. These are
important to know because even though it may seem like every software project is
different and comes with its own set of problems, in practice many of these have been
encountered before. Understanding common problems and solutions that have
been solved by developers keeps you from reinventing the wheel in a new software
project and enables you to deliver software faster and more reliably.

The higher-level concepts of coupling and cohesion are introduced early on the book
in Chapter 2. The Notification pattern is introduced in Chapter 3. How to design a
user-friendly Fluent API and the Builder pattern are introduced in Chapter 5. We
look at the big-picture concepts of event-driven and hexagonal architectures in Chap‐
ter 6 and the Repository pattern in Chapter 7. Finally, you’re also introduced to func‐
tional programming in Chapter 7.

SOLID
We cover all the SOLID principles throughout various chapters. These are a set of
principles designed to help make software easier to maintain. While we like to think
of writing software as the fun part, if the software that you write is successful it will
need to evolve, grow, and be maintained. Trying to make the software as easy to
maintain as possible helps this evolution, maintenance, and long-term addition of
features. The SOLID principles and the chapters where we will discuss them are:

• Single Responsibility Principle (SRP), discussed in Chapter 2
• Open/Closed Principle (OCP), discussed in Chapter 3
• Liskov Substitution Principle (LSP), discussed in Chapter 4
• Interface Segregation Principle (ISP), discussed in Chapter 5
• Dependency Inversion Principle (DIP), discussed in Chapter 7

Testing
Writing reliable code that can be easily evolved over time is really important. Auto‐
mated tests are key to this. As the software that you write scales in size it becomes
increasingly hard to manually test different possible cases. You need to automate your
testing processes to avoid the days of human effort it would take to test your software
without it.

You learn about the basics of writing tests in Chapters 2 and 4. This is extended to
test-driven development, or TDD, in Chapter 5. In Chapter 6 we cover the use of test
doubles, including mocks and stubs.

2 | Chapter 1: Starting the Journey

Chapter Summary
Here’s the outline of the chapters.

Chapter 2, The Bank Statements Analyzer
You’ll write a program to analyze bank statements in order to help people under‐
stand their finances better. This will help you to learn more about core object-
oriented design techniques such as Single Responsibility Principle (SRP), coupling,
and cohesion.

Chapter 3, Extending the Bank Statements Analyzer
In this chapter you learn how to extend the code from Chapter 2, adding more
features, using the Strategy Design pattern, the Open/Closed Principle, and how
to model failures using exceptions.

Chapter 4, The Document Management System
In this chapter we help a successful doctor manage her patient records better.
This introduces concepts such as inheritance within software design, the Liskov
Substitution Principle, and tradeoffs between composition and inheritance. You
will also learn how to write more reliable software with automated test code.

Chapter 5, The Business Rules Engine
You’ll learn about building a core business rules engine—a way of defining busi‐
ness logic that is flexible and easy to maintain. This chapter introduces the topics
of test-driven development, developing a Fluent API, and the Interface Segrega‐
tion Principle.

Chapter 6, Twootr
Twootr is a messaging platform that enables people to broadcast short messages
to other users who follow them. This chapter builds out the core of a simple
Twootr system. You’ll learn how to think outside-in—to go from requirements
through to the core of your application. You’ll also learn how to use test doubles
to isolate and test interactions from different components within your codebase.

Chapter 7, Extending Twootr
The final project-based chapter in the book extends the Twootr implementation
from the previous chapter. It explains the Dependency Inversion Principle and
introduces bigger picture architectural choices such as event-driven and hexago‐
nal architectures. This chapter can help you extend your knowledge of automated
testing by covering test doubles, such as stubs and mocks, and also functional
programming techniques.

Chapter 8, Conclusion
This final concluding chapter revisits the major themes and concepts of the book
and offers additional resources as you continue in your programming career.

Chapter Summary | 3

Iterating on You
As a software developer you may well approach projects in an iterative fashion. That’s
to say, slice off the highest priority week or two’s worth of work items, implement
them, and then use the feedback in order to decide on the next set of items. We’ve
found that it’s often worth evaluating the progress of your own skills in the same way.

At the end of every chapter there is a brief “Iterating on You” section with a few sug‐
gestions on how you improve upon on the learning from the chapter in your own
time.

Now that you know what you can expect from this book, let’s get to work!

4 | Chapter 1: Starting the Journey

CHAPTER 2

The Bank Statements Analyzer

The Challenge
The FinTech industry is really hot right now. Mark Erbergzuck realizes that he spends
a lot of money on different purchases and would benefit from automatically summa‐
rizing his expenses. He receives monthly statements from his bank, but he finds them
a bit overwhelming. He has tasked you with developing a piece of software that will
automate the processing of his bank statements so he can get better insights into his
finances. Challenge accepted!

The Goal
In this chapter, you will learn the foundations about good software development
before learning more advanced techniques in the next few chapters.

You will start off by implementing the problem statement in one single class. You will
then explore why this approach poses several challenges in terms of coping for chang‐
ing requirements and maintenance of the project.

But do not worry! You will learn software design principles and techniques to adopt
to ensure that the code you write meets these criteria. You will first learn about the
Single Responsibility Principle (SRP), which helps develop software that is more main‐
tainable, easier to comprehend, and reduces the scope for introducing new bugs.
Along the way, you will pick up new concepts such as cohesion and coupling, which
are useful characteristics to guide you about the quality of the code and software that
you develop.

5

This chapter uses libraries and features from Java 8 and above,
including the new date and time library.
If at any point you want to look at the source code for this chapter,
you can look at the package com.iteratrlearning.shu_book.chap
ter_02 in the book’s code repository.

Bank Statements Analyzer Requirements
You had a delicious hipster latte (no added sugar) with Mark Erbergzuck to gather
requirements. Because Mark is pretty tech-savvy, he tells you that the bank statements
analyzer just needs to read a text file containing a list of bank transactions. He down‐
loads the file from his online banking portal. This text is structured using a comma-
separated values (CSV) format. Here is a sample of bank transactions:

30-01-2017,-100,Deliveroo
30-01-2017,-50,Tesco
01-02-2017,6000,Salary
02-02-2017,2000,Royalties
02-02-2017,-4000,Rent
03-02-2017,3000,Tesco
05-02-2017,-30,Cinema

He would like to get an answer for the following queries:

• What is the total profit and loss from a list of bank statements? Is it positive or
negative?

• How many bank transactions are there in a particular month?
• What are his top-10 expenses?
• Which category does he spend most of his money on?

KISS Principle
Let’s start simple. How about the first query: “What is the total profit and loss from a
list of bank statements?” You need to process a CSV file and calculate the sum of all
the amounts. Since there is nothing else required, you may decide that there is no
need to create a very complex application.

You can “Keep It Short and Simple” (KISS) and have the application code in one sin‐
gle class as shown in Example 2-1. Note that you do not have to worry about possible
exceptions yet (e.g., what if the file does not exist or what if parsing a loaded file
fails?). That is a topic that you will learn about in Chapter 3.

6 | Chapter 2: The Bank Statements Analyzer

CSV is not fully standardized. It’s often referred to as values separa‐
ted by commas. However, some people refer to it as a delimiter-
separated format that uses different delimiters, such as semicolons
or tabs. These requirements can add more complexity to the imple‐
mentation of a parser. In this chapter, we will assume that values
are separated by a comma (,).

Example 2-1. Calculating the sum of all statements

public class BankTransactionAnalyzerSimple {
 private static final String RESOURCES = "src/main/resources/";

 public static void main(final String... args) throws IOException {

 final Path path = Paths.get(RESOURCES + args[0]);
 final List<String> lines = Files.readAllLines(path);
 double total = 0d;
 for(final String line: lines) {
 final String[] columns = line.split(",");
 final double amount = Double.parseDouble(columns[1]);
 total += amount;
 }

 System.out.println("The total for all transactions is " + total);
 }
}

What is happening here? You are loading the CSV file passed as a command-line
argument to the application. The Path class represents a path in the filesystem. You
then use Files.readAllLines() to return a list of lines. Once you have all the lines
from the file, you can parse them one at a time by:

• Splitting the columns by commas
• Extracting the amount
• Parsing the amount to a double

Once you have the amount for a given statement as a double you can then add it to
the current total. At the end of the processing, you will have the total amount.

The code in Example 2-1 will work fine, but it misses a few corner cases that are
always good to think about when writing production-ready code:

• What if the file is empty?
• What if parsing the amount fails because the data was corrupted?
• What if a statement line has missing data?

KISS Principle | 7

We will come back to the topic of dealing with exceptions in Chapter 3, but it is a
good habit to keep these types of questions in mind.

How about solving the second query: “How many bank transactions are there in a
particular month?” What can you do? Copy and paste is a simple technique, right?
You could just copy and paste the same code and replace the logic so it selects the
given month, as shown in Example 2-2.

Example 2-2. Calculating the sum of January statements

final Path path = Paths.get(RESOURCES + args[0]);
final List<String> lines = Files.readAllLines(path);
double total = 0d;
final DateTimeFormatter DATE_PATTERN = DateTimeFormatter.ofPattern("dd-MM-yyyy");
for(final String line: lines) {
 final String[] columns = line.split(",");
 final LocalDate date = LocalDate.parse(columns[0], DATE_PATTERN);
 if(date.getMonth() == Month.JANUARY) {
 final double amount = Double.parseDouble(columns[1]);
 total += amount;
 }
}

System.out.println("The total for all transactions in January is " + total);

final Variables
As a short detour, we’ll explain the use of the final keyword in the code examples.
Throughout this book we’ve used the final keyword fairly extensively. Marking a
local variable or a field final means that it cannot be re-assigned. Whether you use
final or not in your project is a collective matter for your team and project since its
use has both benefits and drawbacks. We’ve found that marking as many variables
final as possible clearly demarcates what state is mutated during the lifetime of an
object and what state isn’t re-assigned.

On the other hand, the use of the final keyword doesn’t guarantee immutability of
the object in question. You can have a final field that refers to an object with muta‐
ble state. We will be discussing immutability in more detail in Chapter 4. Further‐
more, its use also adds a lot of boilerplate to the codebase. Some teams pick the
compromise position of having final fields on method parameters, in order to
ensure that they are clearly not re-assigned and not local variables.

One area where there is little point in using the final keyword, although the Java lan‐
guage allows it, is for method parameters on abstract methods; for example, in inter‐
faces. This is because the lack of body means that there is no real implication or
meaning to the final keyword in this situation. Arguably the use of final has

8 | Chapter 2: The Bank Statements Analyzer

diminished since the introduction of the var keyword in Java 10, and we discuss this
concept later in Example 5-15.

Code Maintainability and Anti-Patterns
Do you think the copy-and-paste approach demonstrated in Example 2-2 is a good
idea? Time to take a step back and reflect on what is happening. When you write
code, you should strive for providing good code maintainability. What does this
mean? It is best described by a wish list of properties about the code you write:

• It should be simple to locate code responsible for a particular feature.
• It should be simple to understand what the code does.
• It should be simple to add or remove a new feature.
• It should provide good encapsulation. In other words, implementation details

should be hidden from a user of your code so it is easier to understand and make
changes.

A good way to think about the impact of the code you write is to consider what hap‐
pens if a work colleague of yours has to look at your code in six months and you have
moved to a different company.

Ultimately your goal is to manage the complexity of the application you are building.
However, if you keep on copy pasting the same code as new requirements come in,
you will end up with the following issues, which are called anti-patterns because they
are common ineffective solutions:

• Hard to understand code because you have one giant “God Class”
• Code that is brittle and easily broken by changes because of code duplication

Let’s explain these two anti-patterns in more detail.

God Class
By putting all of your code in one file, you end up with one giant class making it
harder to understand its purpose because that class is responsible for everything! If
you need to update the logic of existing code (e.g., change how the parsing works)
how will you easily locate that code and make changes? This problem is referred to as
the anti-pattern “God Class.” Essentially you have one class that does everything. You
should avoid this. In the next section, you will learn about the Single Responsibility
Principle, which is a software development guideline to help write code that is easier
to understand and maintain.

Code Maintainability and Anti-Patterns | 9

1 This definition is attributed to Robert Martin.

Code Duplication
For each query, you are duplicating the logic for reading and parsing the input. What
if the input required is no longer CSV but a JSON file? What if multiple formats need
to be supported? Adding such a feature will be a painful change because your code
has hardcoded one specific solution and duplicated that behavior in multiple places.
Consequently, all the places will all have to change and you will potentially introduce
new bugs.

You will often hear about the “Don’t Repeat Yourself ” (DRY) prin‐
ciple. It is the idea that when you successfully reduce repetition, a
modification of the logic does not require multiple modifications of
your code anymore.

A related problem is what if the data format changes? The code only supports a spe‐
cific data format pattern. If it needs to be enhanced (e.g., new columns) or a different
data format needs to be supported (e.g., different attribute names) you will again have
to make many changes across your code.

The conclusion is that it is good to keep things simple when possible, but do not
abuse the KISS principle. Instead, you need to reflect on the design of your whole
application and have an understanding of how to break down the problem into sepa‐
rate sub-problems that are easier to manage individually. The result is that you will
have code that is easier to understand, maintain, and adapt to new requirements.

Single Responsibility Principle
The Single Responsibility Principle (SRP) is a general software development guideline
to follow that contributes to writing code that is easier to manage and maintain.

You can think about SRP in two complementary ways:

• A class has responsibility over a single functionality
• There is only one single reason for a class to change1

The SRP is usually applied to classes and methods. SRP is concerned with one partic‐
ular behavior, concept, or category. It leads to code that is more robust because there
is one specific reason why it should change rather than multiple concerns. The reason
why multiple concerns is problematic is, as you saw earlier, it complicates code

10 | Chapter 2: The Bank Statements Analyzer

maintainability by potentially introducing bugs in several places. It can also make the
code harder to understand and change.

So how do you apply SRP in the code shown in Example 2-2? It is clear that the main
class has multiple responsibilities that can be broken down individually:

1. Reading input
2. Parsing the input in a given format
3. Processing the result
4. Reporting a summary of the result

We will focus on the parsing part in this chapter. You will learn how to extend the
Bank Statements Analyzer in the next chapter so that it is completely modularized.

The first natural step is to extract the CSV parsing logic into a separate class so you
can reuse it for different processing queries. Let’s call it BankStatementCSVParser so
it is immediately clear what it does (Example 2-3).

Example 2-3. Extracting the parsing logic in a separate class

public class BankStatementCSVParser {

 private static final DateTimeFormatter DATE_PATTERN
 = DateTimeFormatter.ofPattern("dd-MM-yyyy");

 private BankTransaction parseFromCSV(final String line) {
 final String[] columns = line.split(",");

 final LocalDate date = LocalDate.parse(columns[0], DATE_PATTERN);
 final double amount = Double.parseDouble(columns[1]);
 final String description = columns[2];

 return new BankTransaction(date, amount, description);
 }

 public List<BankTransaction> parseLinesFromCSV(final List<String> lines) {
 final List<BankTransaction> bankTransactions = new ArrayList<>();
 for(final String line: lines) {
 bankTransactions.add(parseFromCSV(line));
 }
 return bankTransactions;
 }
}

You can see that the class BankStatementCSVParser declares two methods, parse
FromCSV() and parseLinesFromCSV(), that generate BankTransaction objects, which
is a domain class that models a bank statement (see Example 2-4 for its declaration).

Single Responsibility Principle | 11

What does domain mean? It means the use of words and terminol‐
ogy that match the business problem (i.e., the domain at hand).

The BankTransaction class is useful so that different parts of our application share
the same common understanding of what a bank statement is. You will notice that the
class provides implementation for the methods equals and hashcode. The purpose of
these methods and how to implement them correctly is covered in Chapter 6.

Example 2-4. A domain class for a bank transaction

public class BankTransaction {
 private final LocalDate date;
 private final double amount;
 private final String description;

 public BankTransaction(final LocalDate date, final double amount, final String
description) {
 this.date = date;
 this.amount = amount;
 this.description = description;
 }

 public LocalDate getDate() {
 return date;
 }

 public double getAmount() {
 return amount;
 }

 public String getDescription() {
 return description;
 }

 @Override
 public String toString() {
 return "BankTransaction{" +
 "date=" + date +
 ", amount=" + amount +
 ", description='" + description + '\'' +
 '}';
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;

12 | Chapter 2: The Bank Statements Analyzer

 if (o == null || getClass() != o.getClass()) return false;
 BankTransaction that = (BankTransaction) o;
 return Double.compare(that.amount, amount) == 0 &&
 date.equals(that.date) &&
 description.equals(that.description);
 }

 @Override
 public int hashCode() {
 return Objects.hash(date, amount, description);
 }
}

Now you can refactor the application so that it uses your BankStatementCSVParser,
in particular its parseLinesFromCSV() method, as shown in Example 2-5.

Example 2-5. Using the bank statement CSV parser

final BankStatementCSVParser bankStatementParser = new BankTransactionCSVParser();

final String fileName = args[0];
final Path path = Paths.get(RESOURCES + fileName);
final List<String> lines = Files.readAllLines(path);

final List<BankTransaction> bankTransactions
 = bankStatementParser.parseLinesFromCSV(lines);

System.out.println("The total for all transactions is " + calculateTotalAmount(bank
Transactions));
System.out.println("Transactions in January " + selectInMonth(BankTransactions,
Month.JANUARY));

The different queries you have to implement no longer need to know about internal
parsing details, as you can now use BankTransaction objects directly to extract the
information required. The code in Example 2-6 shows how to declare the methods
calculateTotalAmount() and selectInMonth(), which are responsible for process‐
ing the list of transactions and returning an appropriate result. In Chapter 3 you will
get an overview of lambda expressions and the Streams API, which will help tidy the
code further.

Example 2-6. Processing lists of bank transactions

public static double calculateTotalAmount(final List<BankTransaction> bankTransac
tions) {
 double total = 0d;
 for(final BankTransaction bankTransaction: bankTransactions) {
 total += bankTransaction.getAmount();
 }
 return total;

Single Responsibility Principle | 13

}

public static List<BankTransaction> selectInMonth(final List<BankTransaction> bank
Transactions, final Month month) {

 final List<BankTransaction> bankTransactionsInMonth = new ArrayList<>();
 for(final BankTransaction bankTransaction: bankTransactions) {
 if(bankTransaction.getDate().getMonth() == month) {
 bankTransactionsInMonth.add(bankTransaction);
 }
 }
 return bankTransactionsInMonth;
}

The key benefit with this refactoring is that your main application is no longer
responsible for the implementation of the parsing logic. It is now delegating
that responsibility to a separate class and methods that can be maintained and upda‐
ted independently. As new requirements come in for different queries, you can reuse
the functionality encapsulated by the BankStatementCSVParser class.

In addition, if you need to change the way the parsing algorithm works (e.g., a more
efficient implementation that caches results), you now have just a single place that
needs to change. Moreover, you introduced a class called BankTransaction that other
parts of your code can rely on without depending on a specific data format pattern.

It is a good habit to follow the principle of least surprise when you implement meth‐
ods. It will help ensure that it is obvious what is happening when looking at the code.
This means:

• Use self-documenting method names so it is immediately obvious what they do
(e.g., calculateTotalAmount())

• Do not change the state of parameters as other parts of code may depend on it

The principle of least surprise can be a subjective concept, though. When in doubt,
speak to your colleagues and team members to ensure everyone is aligned.

Cohesion
So far you have learned about three principles: KISS, DRY, and SRP. But you have not
learned about characteristics to reason about the quality of your code. In software
engineering you will often hear about cohesion as an important characteristic of dif‐
ferent parts of the code you write. It sounds fancy, but it is a really useful concept to
give you an indication about the maintainability of your code.

Cohesion is concerned with how related things are. To be more precise, cohesion
measures how strongly related responsibilities of a class or method are. In other
words, how much do things belong together? It is a way to help you reason about the

14 | Chapter 2: The Bank Statements Analyzer

complexity of your software. What you want to achieve is high cohesion, which means
that the code is easier for others to locate, understand, and use. In the code that you
refactored earlier, the class BankTransactionCSVParser is highly cohesive. In fact, it
groups together two methods that are related to parsing CSV data.

Generally, the concept of cohesion is applied to classes (class-level cohesion), but it
can also be applied to methods (method-level cohesion).

If you take the entry point to your program, the class BankStatementAnalyzer, you
will notice that its responsibility is to wire up the different parts of your application
such as the parser and the calculations and report back on the screen. However, the
logic responsible for doing calculations is currently declared as static methods within
the BankStatementAnalyzer. This is an example of poor cohesion because the con‐
cerns of calculations declared in this class are not directly related to parsing or
reporting.

Instead, you can extract the calculation operations into a separate class called BankSta
tementProcessor. You can also see that the list of transactions method argument is
shared for all these operations, so you can include it as a field to the class. As a result,
your method signatures become simpler to reason about and the class BankStatement
Processor is more cohesive. The code in Example 2-7 shows the end result. The
additional advantage is that the methods of BankStatementProcessor can be reused
by other parts of your application without depending on the whole BankStatement
Analyzer.

Example 2-7. Grouping the calculation operations in the class BankStatementProcessor

public class BankStatementProcessor {

 private final List<BankTransaction> bankTransactions;

 public BankStatementProcessor(final List<BankTransaction> bankTransactions) {
 this.bankTransactions = bankTransactions;
 }

 public double calculateTotalAmount() {
 double total = 0;
 for(final BankTransaction bankTransaction: bankTransactions) {
 total += bankTransaction.getAmount();
 }
 return total;
 }

 public double calculateTotalInMonth(final Month month) {
 double total = 0;
 for(final BankTransaction bankTransaction: bankTransactions) {
 if(bankTransaction.getDate().getMonth() == month) {

Cohesion | 15

 total += bankTransaction.getAmount();
 }
 }
 return total;
 }

 public double calculateTotalForCategory(final String category) {
 double total = 0;
 for(final BankTransaction bankTransaction: bankTransactions) {
 if(bankTransaction.getDescription().equals(category)) {
 total += bankTransaction.getAmount();
 }
 }
 return total;
 }
}

You can now make use the methods of this class with the BankStatementAnalyzer as
shown in Example 2-8.

Example 2-8. Processing lists of bank transactions using the BankStatementProcessor
class

public class BankStatementAnalyzer {
 private static final String RESOURCES = "src/main/resources/";
 private static final BankStatementCSVParser bankStatementParser = new BankState
mentCSVParser();

 public static void main(final String... args) throws IOException {

 final String fileName = args[0];
 final Path path = Paths.get(RESOURCES + fileName);
 final List<String> lines = Files.readAllLines(path);

 final List<BankTransaction> bankTransactions = bankStatementParser.parseLi
nesFrom(lines);
 final BankStatementProcessor bankStatementProcessor = new BankStatementPro
cessor(bankTransactions);

 collectSummary(bankStatementProcessor);
 }

 private static void collectSummary(final BankStatementProcessor bankStatementPro
cessor) {
 System.out.println("The total for all transactions is "
 + bankStatementProcessor.calculateTotalAmount());

 System.out.println("The total for transactions in January is "
 + bankStatementProcessor.calculateTotalInMonth(Month.JANUARY));

 System.out.println("The total for transactions in February is "

16 | Chapter 2: The Bank Statements Analyzer

 + bankStatementProcessor.calculateTotalInMonth(Month.FEBRUARY));

 System.out.println("The total salary received is "
 + bankStatementProcessor.calculateTotalForCategory("Salary"));
 }
}

In the next subsections, you will focus on learning guidelines to help you write code
that is easier to reason and maintain.

Class-Level Cohesion
In practice, you will come across at least six common ways to group methods:

• Functional
• Informational
• Utility
• Logical
• Sequential
• Temporal

Keep in mind that if the methods you are grouping are weakly related, you have low
cohesion. We discuss them in order and Table 2-1 provides a summary.

Functional

The approach you took when writing the BankStatementCSVParser was to group the
methods functionally. The methods parseFrom() and parseLinesFrom() are solving
a defined task: parse the lines in the CSV format. In fact, the method parseLines
From() uses the method parseFrom(). This is generally a good way to achieve high
cohesion because the methods are working together, so it makes sense to group them
so they are easier to locate and understand. The danger with functional cohesion is
that it may be tempting to have a profusion of overly simplistic classes grouping only
a single method. Going down the road of overly simplistic classes adds unnecessary
verbosity and complexity because there are many more classes to think about.

Informational
Another reason to group methods is because they work on the same data or domain
object. Say you needed a way to create, read, update, and delete BankTransaction
objects (CRUD operations); you may wish to have a class dedicated for these opera‐
tions. The code in Example 2-9 shows a class that exhibits informational cohesion
with four different methods. Each method throws a UnsupportedOperationExcep
tion to indicate the body is currently unimplemented for the purpose of the example.

Cohesion | 17

Example 2-9. An example of informational cohesion

public class BankTransactionDAO {

 public BankTransaction create(final LocalDate date, final double amount, final
String description) {
 // ...
 throw new UnsupportedOperationException();
 }

 public BankTransaction read(final long id) {
 // ...
 throw new UnsupportedOperationException();
 }

 public BankTransaction update(final long id) {
 // ...
 throw new UnsupportedOperationException();
 }

 public void delete(final BankTransaction BankTransaction) {
 // ...
 throw new UnsupportedOperationException();
 }
}

This is a typical pattern that you see often when interfacing with a
database that maintains a table for a specific domain object. This
pattern is usually called Data Access Object (DAO) and requires
some kind of ID to identify the objects. DAOs essentially abstract
and encapsulate access to a data source, such as a persistent data‐
base or an in-memory database.

The downside of this approach is that this kind of cohesion can group multiple con‐
cerns together, which introduces additional dependencies for a class that only uses
and requires some of the operations.

Utility
You may be tempted to group different unrelated methods inside a class. This hap‐
pens when it is not obvious where the methods belong so you end up with a utility
class that is a bit like a jack of all trades.

This is generally to be avoided because you end up with low cohesion. The methods
are not related, so the class as a whole is harder to reason about. In addition, utility
classes exhibit a poor discoverability characteristic. You want your code to be easy to
find and easy to understand how it is supposed to be used. Utility classes go against

18 | Chapter 2: The Bank Statements Analyzer

this principle because they contain different methods that are unrelated without a
clear categorization.

Logical
Say you needed to provide implementations for parsing from CSV, JSON, and XML.
You may be tempted to group the methods responsible for parsing the different for‐
mat inside one class, as shown in Example 2-10.

Example 2-10. An example of logical cohesion

public class BankTransactionParser {

 public BankTransaction parseFromCSV(final String line) {
 // ...
 throw new UnsupportedOperationException();
 }

 public BankTransaction parseFromJSON(final String line) {
 // ...
 throw new UnsupportedOperationException();
 }

 public BankTransaction parseFromXML(final String line) {
 // ...
 throw new UnsupportedOperationException();
 }
}

In fact, the methods are logically categorized to do “parsing.” However, they are dif‐
ferent by nature and each of the methods would be unrelated. Grouping them would
also break the SRP, which you learned about earlier, because the class is responsible
for multiple concerns. Consequently, this approach is not recommended.

You will learn in “Coupling” on page 21 that there exist techniques to solve the prob‐
lem of providing different implementations for parsing while also keeping high
cohesion.

Sequential
Say you need to read a file, parse it, process it, and save the information. You may
group all of the methods in one single class. After all the output of reading the file
becomes the input to the parsing, the output of parsing becomes the input to the pro‐
cessing step, and so on.

This is called sequential cohesion because you are grouping the methods so that they
follow a sequence of input to output. It makes it easy to understand how the opera‐
tions work together. Unfortunately, in practice this means that the class grouping the

Cohesion | 19

methods has multiple reasons to change and is therefore breaking the SRP. In addi‐
tion, there may be many different ways of processing, summarizing, and saving, so
this technique quickly leads to complex classes.

A better approach is to break down each responsibility inside individual, cohesive
classes.

Temporal
A temporally cohesive class is one that performs several operations that are only
related in time. A typical example is a class that declares some sort of initialization
and clean-up operations (e.g., connecting and closing a database connection) that is
called before or after other processing operations. The initialization and the other
operations are unrelated, but they have to be called in a specific order in time.

Table 2-1. Summary of pros and cons for different levels of cohesion

Level of cohesion Pro Con
Functional (high cohesion) Easy to understand Can lead to overly simplistic classes

Informational (medium
cohesion)

Easy to maintain Can lead to unnecessary dependencies

Sequential (medium cohesion) Easy to locate related operations Encourages violation of SRP

Logical (medium cohesion) Provides some form of high-level
categorization

Encourages violation of SRP

Utility (low cohesion) Simple to put in place Harder to reason about the responsibility of the
class

Temporal (low cohesion) N/A Harder to understand and use individual operations

Method-Level Cohesion
The same principle of cohesion can be applied to methods. The more different func‐
tionalities a method performs, the harder it becomes to understand what that method
actually does. In other words, your method has low cohesion if it is handling multiple
unrelated concerns. Methods that display low cohesion are also harder to test because
they have multiple responsibilities within one method, which makes it difficult to test
the responsibilities individually! Typically, if you find yourself with a method that
contains a series of if/else blocks that make modifications to many different fields of a
class or parameters to the method, then it is a sign you should break down the
method in more cohesive parts.

20 | Chapter 2: The Bank Statements Analyzer

Coupling
Another important characteristic about the code you write is coupling. Where cohe‐
sion is about how related things are in a class, package, or method, coupling is about
how dependent you are on other classes. Another way to think about coupling is how
much knowledge (i.e., specific implementation) you rely on about certain classes.
This is important because the more classes you rely on, the less flexible you become
when introducing changes. In fact, the class affected by a change may affect all the
classes depending on it.

To understand what coupling is, think about a clock. There is no need to know how a
clock works to read the time, so you are not dependent on the clock internals. This
means you could change the clock internals without affecting how to read the time.
Those two concerns (interface and implementation) are decoupled from one another.

Coupling is concerned with how dependent things are. For example, so far the class
BankStatementAnalyzer relies on the class BankStatementCSVParser. What if you
need to change the parser so it supports statements encoded as JSON entries? What
about XML entries? This would be an annoying refactoring! But do not worry, you
can decouple different components by using an interface, which is the tool of choice
for providing flexibility for changing requirements.

First, you need to introduce an interface that will tell you how you can use a parser
for bank statements but without hardcoding a specific implementation, as shown in
Example 2-11.

Example 2-11. Introducing an interface for parsing bank statements

public interface BankStatementParser {
 BankTransaction parseFrom(String line);
 List<BankTransaction> parseLinesFrom(List<String> lines);
}

Your BankStatementCSVParser will now become an implementation of that interface:

public class BankStatementCSVParser implements BankStatementParser {
 // ...
}

So far so good, but how do you decouple the BankStatementAnalyzer from the spe‐
cific implementation of a BankStatementCSVParser? You need to use the interface!
By introducing a new method called analyze(), which takes BankTransaction
Parser as an argument, you are no longer coupled to a specific implementation (see
Example 2-12).

Coupling | 21

Example 2-12. Decoupling the Bank Statements Analyzer from the parser

public class BankStatementAnalyzer {
 private static final String RESOURCES = "src/main/resources/";

 public void analyze(final String fileName, final BankStatementParser bankState
mentParser)
 throws IOException {

 final Path path = Paths.get(RESOURCES + fileName);
 final List<String> lines = Files.readAllLines(path);

 final List<BankTransaction> bankTransactions = bankStatementParser.parseLi
nesFrom(lines);

 final BankStatementProcessor bankStatementProcessor = new BankStatementPro
cessor(bankTransactions);

 collectSummary(bankStatementProcessor);
 }

 // ...
}

This is great because the BankStatementAnalyzer class no longer requires knowledge
of different specific implementations, which helps with coping for changing require‐
ments. Figure 2-1 illustrates the difference of dependencies when you decouple two
classes.

Figure 2-1. Decoupling two classes

You can now bring all the different parts together and create your main application,
as shown in Example 2-13.

22 | Chapter 2: The Bank Statements Analyzer

Example 2-13. The main application to run

public class MainApplication {

 public static void main(final String... args) throws IOException {

 final BankStatementAnalyzer bankStatementAnalyzer
 = new BankStatementAnalyzer();

 final BankStatementParser bankStatementParser
 = new BankStatementCSVParser();

 bankStatementAnalyzer.analyze(args[0], bankStatementParser);

 }
}

Generally, when writing code you will aim for low coupling. This means that different
components in your code are not relying on internal/implementation details. The
opposite of low coupling is called high coupling, which is what you definitely want to
avoid!

Testing
You have written some software and it looks like things are working if you execute
your application a couple of times. However, how confident are you that your code
will always work? What guarantee can you give your client that you have met the
requirements? In this section, you will learn about testing and how to write your first
automated test using the most popular and widely adopted Java testing framework:
JUnit.

Automated Testing
Automated testing sounds like yet another thing that could take more time away from
the fun part, which is writing code! Why should you care?

Unfortunately in software development, things never work the first time. It should be
pretty obvious that testing has benefits. Can you imagine integrating a new auto-pilot
software for planes without testing if the software actually works?

Testing does not have to be a manual operation, though. In automated testing you
have a suite of tests that runs automatically without human intervention. This means
the tests can be executed quickly when you are introducing changes in the code and
you want to increase confidence that the behavior of your software is correct and has
not suddenly become unexpected. On an average day, a professional developer will
often run hundreds or thousands of automated tests.

Testing | 23

In this section, we will first briefly review the benefits of automated testing so you
have a clear understanding of why testing is a core part of good software develop‐
ment.

Confidence
First, performing tests on the software to validate whether the behavior matches the
specification gives you confidence that you have met the requirements of your client.
You can present the test specifications and results to your client as a guarantee. In a
sense, the tests become the specification from your client.

Robustness to changes
Second, if you introduce changes to your code, how do you know that you have not
accidentally broken something? If the code is small you may think problems will be
obvious. However, what if you are working on a codebase with millions of lines of
code? How confident would you feel about making changes to a colleague’s code?
Having a suite of automated tests is very useful to check that you have not introduced
new bugs.

Program comprehension
Third, automated tests can be useful to help you understand how the different com‐
ponents inside the source code project works. In fact, tests make explicit the depen‐
dencies of different components and how they interact together. This can be
extremely useful for quickly getting an overview of your software. Say you are
assigned to a new project. Where would you start to get an overview of different com‐
ponents? The tests are a great place to start.

Using JUnit
Hopefully you are now convinced of the value of writing automated tests. In this sec‐
tion, you will learn how to create your first automated test using a popular Java
framework called JUnit. Nothing comes for free. You will see that writing a test takes
time. In addition, you will have to think about the longer-term maintenance of the
test you write since it is regular code, after all. However, the benefits listed in the pre‐
vious section far outweigh the downsides of having to write tests. Specifically, you will
write unit tests, which verify a small isolated unit of behavior for correctness, such as
a method or a small class. Throughout the book you will learn about guidelines for
writing good tests. Here you will first get an initial overview for writing a simple test
for the BankTransactionCSVParser.

24 | Chapter 2: The Bank Statements Analyzer

Defining a test method
The first question is where do you write your test? The standard convention from the
Maven and Gradle build tools is to include your code in src/main/java and the test
classes inside src/test/java. You will also need to add a dependency to the JUnit library
to your project. You will learn more about how to structure a project using Maven
and Gradle in Chapter 3.

Example 2-14 shows a simple test for BankTransactionCSVParser.

Our BankStatementCSVParserTest test class has the Test suffix. It
is not strictly necessary, but often used as a useful aide memoire.

Example 2-14. A failing unit test for the CSV parser

import org.junit.Assert;
import org.junit.Test;
public class BankStatementCSVParserTest {

 private final BankStatementParser statementParser = new BankStatementCSV
Parser();

 @Test
 public void shouldParseOneCorrectLine() throws Exception {
 Assert.fail("Not yet implemented");
 }

}

There are a lot of new parts here. Let’s break it down:

• The unit test class is an ordinary class called BankStatementCSVParserTest. It is
a common convention to use the Test suffix at the end of test class names.

• The class declares one method: shouldParseOneCorrectLine(). It is recom‐
mended to always come up with a descriptive name so it is immediately obvious
what the unit test does without looking at the implementation of the test method.

• This method is annotated with the JUnit annotation @Test. This means that the
method represents a unit test that should be executed. You can declare private
helper methods with a test class, but they won’t be executed by the test runner.

• The implementation of this method calls Assert.fail("Not yet imple

mented"), which will cause the unit test to fail with the diagnostic message "Not

Testing | 25

yet implemented". You will learn shortly how to actually implement a unit test
using a set of assertion operations available in JUnit.

You can execute your test directly from your favorite build tool (e.g., Maven or Gra‐
dle) or by using your IDE. For example, after running the test in the IntelliJ IDE, you
get the output in Figure 2-2. You can see the test is failing with the diagnostic “Not
yet implemented”. Let’s now see how to actually implement a useful test to increase
the confidence that the BankStatementCSVParser works correctly.

Figure 2-2. Screenshot from the IntelliJ IDE of running a failing unit test

Assert statements

You have just learned about Assert.fail(). This is a static method provided by JUnit
called an assert statement. JUnit provides many assert statements to test for certain
conditions. They let you provide an expected result and compare it with the result of
some operation.

One of these static method is called Assert.assertEquals(). You can use it as shown
in Example 2-15 to test that the implementation of parseFrom() works correctly for a
particular input.

Example 2-15. Using assertion statements

@Test
public void shouldParseOneCorrectLine() throws Exception {
 final String line = "30-01-2017,-50,Tesco";

 final BankTransaction result = statementParser.parseFrom(line);

 final BankTransaction expected
 = new BankTransaction(LocalDate.of(2017, Month.JANUARY, 30), -50, "Tesco");
 final double tolerance = 0.0d;

 Assert.assertEquals(expected.getDate(), result.getDate());
 Assert.assertEquals(expected.getAmount(), result.getAmount(), tolerance);
 Assert.assertEquals(expected.getDescription(), result.getDescription());
}

26 | Chapter 2: The Bank Statements Analyzer

So what is going on here? There are three parts:

1. You set up the context for your test. In this case a line to parse.
2. You carry out an action. In this case, you parse the input line.
3. You specify assertions of the expected output. Here, you check that the date,

amount, and description were parsed correctly.

This three-stage pattern for setting up a unit test is often referred to as the Given-
When-Then formula. It is a good idea to follow the pattern and split up the different
parts because it helps to clearly understand what the test is actually doing.

When you run the test again, with a bit luck you will see a nice green bar indicating
that the test succeeded, as shown in Figure 2-3.

Figure 2-3. Running a passing unit test

There are other assertion statements available, which are summarized in Table 2-2.

Table 2-2. Assertion statements

Assertion statement Purpose

Assert.fail(message) Let the method fail. This is useful as a placeholder before you implement the
test code.

Assert.assertEquals
(expected, actual)

Test that two values are the same.

Assert.assertEquals
(expected, actual, delta)

Assert that two floats or doubles are equal to within a delta.

Assert.assertNotNull(object) Assert that an object is not null.

Code Coverage
You’ve written your first test and it’s great! But how can you tell if that is sufficient?
Code coverage refers to how much of the source code of your software (i.e., how many
lines or blocks) is tested by a set of tests. It is generally a good idea to aim for high
coverage because it reduces the chance of unexpected bugs. There isn’t a specific per‐
centage that is considered sufficient, but we recommend aiming for 70%–90%. In
practice, it is hard and less practical to actually reach 100% of code coverage because
you may, for example, start testing getter and setter methods, which provides less
value.

Testing | 27

However, code coverage is not necessarily a good metric of how well you are testing
your software. In fact, code coverage only tells you what you definitely have not tes‐
ted. Code coverage does not say anything about the quality of your tests. You may
cover parts of your code with a simplistic test case, but not necessarily for edge cases,
which usually lead to problematic issues.

Popular code coverage tools in Java include JaCoCo, Emma, and Cobertura. In prac‐
tice, you will see people talking about line coverage, which tells you how many state‐
ments the code covered. This technique gives a false sense of having good coverage
because conditionals (if, while, for) will count as one statement. However, condition‐
als have multiple possible paths. You should therefore favor branch coverage, which
checks the true and false branch for each conditional.

Takeaways
• God Classes and code duplication lead to code that is hard to reason about and

maintain.
• The Single Responsibility Principle helps you write code that is easier to manage

and maintain.
• Cohesion is concerned with how how strongly related the responsibilities of a

class or method are.
• Coupling is concerned with how dependent a class is on other parts of your code.
• High cohesion and low coupling are characteristics of maintainable code.
• A suite of automated tests increases confidence that your software is correct,

makes it more robust for changes, and helps program comprehension.
• JUnit is a Java testing framework that lets you specify unit tests that verify the

behavior of your methods and classes.
• Given-When-Then is a pattern for setting up a test into three parts to help

understand the tests you implement.

Iterating on You
If you want to extend and solidify the knowledge from this section, you could try one
of these activities:

• Write a couple more unit test cases to test the implementation of the CSV parser.
• Support different aggregate operations, such as finding the maximum or mini‐

mum transactions in specific date ranges.

28 | Chapter 2: The Bank Statements Analyzer

• Return a histogram of the expenses by grouping them based on months and
descriptions.

Completing the Challenge
Mark Erbergzuck is very happy with your first iteration of your Bank Statements
Analyzer. He takes your idea and renames it THE Bank Statements Analyzer. He is
so happy with your application that he is asking you for a few enhancements. It turns
out he would like to extend the reading, parsing, processing, and summarizing func‐
tionalities. For example, he is a fan of JSON. In addition, he found your tests a bit
limited and found a couple of bugs.

This is something that you will address in the next chapter, where you will learn
about exception handling, the Open/Closed Principle, and how to build your Java
project using a build tool.

Completing the Challenge | 29

CHAPTER 3

Extending the Bank Statements Analyzer

The Challenge
Mark Erbergzuck was very happy with the work you did in the previous chapter. You
built a basic Bank Statements Analyzer as a minimum viable product. Because of this
success Mark Erbergzuck thinks that your product can be taken further and asks you
to build a new version that support multiple features.

The Goal
In the previous chapter, you learned how to create an application to analyze bank
statements in a CSV format. Along this journey you learned about core design princi‐
ples that help you write maintainable code, the Single Responsibility Principle, and
anti-patterns you should avoid, such as God Class and code duplication. While you
were incrementally refactoring your code you also learned about coupling (how
dependent you are on other classes) and cohesion (how related things are in a class).

Nonetheless, the application is currently pretty limited. How about providing func‐
tionality for searching for different kinds of transactions, supporting multiple for‐
mats, processors, and exporting the results into a nice report with different formats
such as text and HTML?

In this chapter, you will go deeper in your software development quest. First, you will
learn about the Open/Closed principle, which is essential for adding flexibility to
your codebase and improving code maintenance. You will also learn general guide‐
lines for when it makes sense to introduce interfaces, as well as other gotchas to avoid
high coupling. You will also learn about the use of exceptions in Java—when it makes
sense to include them as part of the APIs you define and when it doesn’t. Finally, you

31

will learn how to systematically build a Java project using an established build tool
like Maven and Gradle.

If at any point you want to look at the source code for this chapter,
you can look at the package com.iteratrlearning.shu_book.chap
ter_03 in the book’s code repository.

Extended Bank Statements Analyzer Requirements
You had a friendly chat with Mark Erbergzuck to collect new requirements for the
second iteration of the Bank Statements Analyzer. He would like to extend the func‐
tionality of the kind of operations you can perform. At the moment the application is
limited, as it can only query for the revenue in a particular month or category. Mark
has requested two new functionalities:

1. He’d like to also be able to search for specific transactions. For example, you
should be able to return all the bank transactions in a given date range or for a
specific category.

2. Mark would like to be able to generate a report of summary statistics for his
search into different formats such as text and HTML.

You will work through these requirements in order.

Open/Closed Principle
Let’s start simple. You will implement a method that can find all the transactions over
a certain amount. The first question is where should you declare this method? You
could create a separate BankTransactionFinder class that will contain a simple find
Transactions() method. However, you also declared a class BankTransactionPro
cessor in the previous chapter. So what should you do? In this case, there aren’t a lot
of benefits in declaring a new class every time you need to add one single method.
This actually adds complexity to your whole project, as it introduces a pollution of
names that makes it harder to understand the relationships between these different
behaviors. Declaring the method inside BankTransactionProcessor helps with dis‐
coverability as you immediately know that this is the class that groups all methods
that do some form of processing. Now that you’ve decided where to declare it, you
can implement it as shown in Example 3-1.

32 | Chapter 3: Extending the Bank Statements Analyzer

Example 3-1. Find bank transactions over a certain amount

public List<BankTransaction> findTransactionsGreaterThanEqual(final int amount) {
 final List<BankTransaction> result = new ArrayList<>();
 for(final BankTransaction bankTransaction: bankTransactions) {
 if(bankTransaction.getAmount() >= amount) {
 result.add(bankTransaction);
 }
 }
 return result;
}

This code is reasonable. However, what if you want to also search in a certain month?
You need to duplicate this method as shown in Example 3-2.

Example 3-2. Find bank transactions in a certain month

public List<BankTransaction> findTransactionsInMonth(final Month month) {
 final List<BankTransaction> result = new ArrayList<>();
 for(final BankTransaction bankTransaction: bankTransactions) {
 if(bankTransaction.getDate().getMonth() == month) {
 result.add(bankTransaction);
 }
 }
 return result;
}

In the previous chapter, you already came across code duplication. It is a code smell
which leads to code that is brittle, especially if requirements change frequently. For
example, if the iteration logic needs to change, you will need to repeat the modifica‐
tions in several places.

This approach also doesn’t work well for more complicated requirements. What if we
wish to search transactions in a specific month and also over a certain amount? You
could implement this new requirement as shown in Example 3-3.

Example 3-3. Find bank transactions in a certain month and over a certain amount

public List<BankTransaction> findTransactionsInMonthAndGreater(final Month month,
final int amount) {
 final List<BankTransaction> result = new ArrayList<>();
 for(final BankTransaction bankTransaction: bankTransactions) {
 if(bankTransaction.getDate().getMonth() == month && bankTransaction.getA
mount() >= amount) {
 result.add(bankTransaction);
 }
 }
 return result;
}

Open/Closed Principle | 33

Clearly this approach exhibits several downsides:

• Your code will become increasingly complicated as you have to combine multiple
properties of a bank transaction.

• The selection logic is coupled to the iteration logic, making it harder to separate
them out.

• You keep on duplicating code.

This is where the Open/Closed principle comes in. It promotes the idea of being able
to change the behavior of a method or class without having to modify the code. In
our example, it would mean the ability to extend the behavior of a findTransac
tions() method without having to duplicate the code or change it to introduce a new
parameter. How is this possible? As discussed earlier, the concepts of iterating and the
business logic are coupled together. In the previous chapter, you learned about inter‐
faces as a useful tool to decouple concepts from one another. In this case, you will
introduce a BankTransactionFilter interface that will be responsible for the selec‐
tion logic, as shown in Example 3-4. It contains a single method test() that returns a
boolean and takes the complete BankTransaction object as an argument. This way
the method test() has access to all the properties of a BankTransaction to specify
any appropriate selection criteria.

An interface that only contains a single abstract method is called a
functional interface since Java 8. You can annotate it using the
@FunctionalInterface annotation to make the intent of the inter‐
face clearer.

Example 3-4. The BankTransactionFilter interface

@FunctionalInterface
public interface BankTransactionFilter {
 boolean test(BankTransaction bankTransaction);
}

Java 8 introduced a generic java.util.function.Predicate<T>
inferface, which would be a great fit for the problem at hand. How‐
ever, this chapter introduces a new named interface to avoid intro‐
ducing too much complexity early on in the book.

The interface BankTransactionFilter models the concept of a selection criteria for a
BankTransaction. You can now refactor the method findTransactions() to make
use of it as shown in Example 3-5. This refactoring is very important because you
now have introduced a way to decouple the iteration logic from the business logic

34 | Chapter 3: Extending the Bank Statements Analyzer

through this interface. Your method no longer depends on one specific implementa‐
tion of a filter. You can introduce new implementations by passing them as an argu‐
ment without modifying the body of this method. Hence, it is now open for extension
and closed for modification. This reduces the scope for introducing new bugs because
it minimizes cascading changes required to parts of code that have already been
implemented and tested. In other words, old code still works and is untouched.

Example 3-5. Flexible findTransactions() method using Open/Closed Principle

public List<BankTransaction> findTransactions(final BankTransactionFilter bankTran
sactionFilter) {
 final List<BankTransaction> result = new ArrayList<>();
 for(final BankTransaction bankTransaction: bankTransactions) {
 if(bankTransactionFilter.test(bankTransaction)) {
 result.add(bankTransaction);
 }
 }
 return result;
}

Creating an Instance of a Functional Interface
Mark Erbergzuck is now happy as you can implement any new requirements by call‐
ing the method findTransactions() declared in the BankTransactionProcessor
with appropriate implementations of a BankTransactionFilter. You can achieve this
by implementing a class as shown in Example 3-6 and then passing an instance as
argument to the findTransactions() method as shown in Example 3-7.

Example 3-6. Declaring a class that implements the BankTransactionFilter

class BankTransactionIsInFebruaryAndExpensive implements BankTransactionFilter {

 @Override
 public boolean test(final BankTransaction bankTransaction) {
 return bankTransaction.getDate().getMonth() == Month.FEBRUARY
 && bankTransaction.getAmount() >= 1_000);
 }
}

Example 3-7. Calling findTransactions() with a specific implementation of
BankTransactionFilter

final List<BankTransaction> transactions
 = bankStatementProcessor.findTransactions(new BankTransactionIsInFebruaryAndEx
pensive());

Open/Closed Principle | 35

Lambda Expressions
However, you’d need to create special classes every time you have a new requirement.
This process can add unnecessary boilerplate and can rapidly become cumbersome.
Since Java 8, you can use a feature called lambda expressions as shown in Example 3-8.
Don’t worry about this syntax and language feature for the time being. We will learn
about lambda expressions and a companion language feature called method references
in more detail in Chapter 7. For now, you can think of it as instead of passing in an
object that implements an interface, we’re passing in a block of code—a function
without a name. bankTransaction is the name of a parameter and the arrow -> sepa‐
rates the parameter from the body of the lambda expression, which is just some code
that is run to test whether or not the bank transaction should be selected.

Example 3-8. Implementing BankTransactionFilter using a lambda expression

final List<BankTransaction> transactions
 = bankStatementProcessor.findTransactions(bankTransaction ->
 bankTransaction.getDate().getMonth() == Month.FEBRUARY
 && bankTransaction.getAmount() >= 1_000);

To summarize, the Open/Closed Principle is a useful principle to follow because it:

• Reduces fragility of code by not changing existing code
• Promotes reusability of existing code and as a result avoids code duplication
• Promotes decoupling, which leads to better code maintenance

Interfaces Gotchas
So far you introduced a flexible method to search for transactions given a selection
criterion. The refactoring you went through raises questions about what should hap‐
pen to the other methods declared inside the BankTransactionProcessor class.
Should they be part of an interface? Should they be included in a separate class? After
all, there are three other related methods you implemented in the previous chapter:

• calculateTotalAmount()

• calculateTotalInMonth()

• calculateTotalForCategory()

One approach that we discourage you to put in practice is to put everything into one
single interface: the God Interface.

36 | Chapter 3: Extending the Bank Statements Analyzer

God Interface
One extreme view you could take is that the class BankTransactionProcessor acts as
an API. As a result, you may wish to define an interface that lets you decouple from
multiple implementations of a bank transaction processor as shown in Example 3-9.
This interface contains all the operations that the bank transaction processor needs to
implement.

Example 3-9. God Interface

interface BankTransactionProcessor {
 double calculateTotalAmount();
 double calculateTotalInMonth(Month month);
 double calculateTotalInJanuary();
 double calculateAverageAmount();
 double calculateAverageAmountForCategory(Category category);
 List<BankTransaction> findTransactions(BankTransactionFilter bankTransactionFil
ter);
}

However, this approach displays several downsides. First, this interface becomes
increasingly complex as every single helper operation is an integral part of the explicit
API definition. Second, this interface acts more like a “God Class” as you saw in the
previous chapter. In fact, the interface has now become a bag for all possible opera‐
tions. Worse, you are actually introducing two forms of additional coupling:

• An interface in Java defines a contract that every single implementation has to
adhere by. In other words, concrete implementations of this interface have to
provide an implementation for each operation. This means that changing the
interface means all concrete implementations have to be updated as well to sup‐
port the change. The more operations you add, the more likely changes will hap‐
pen, increasing the scope for potential problems down the line.

• Concrete properties of a BankTransaction such as the month and the category
have cropped up as part of method names; e.g., calculateAverageForCate
gory() and calculateTotalInJanuary(). This is more problematic with inter‐
faces as they now depend on specific accessors of a domain object. If the internals
of that domain object change, then this may cause changes to the interface as well
and, as a consequence, to all its concrete implementations, too.

All these reasons are why it is generally recommended to define smaller interfaces.
The idea is to minimize dependency to multiple operations or internals of a domain
object.

Interfaces Gotchas | 37

Too Granular
Since we’ve just argued that smaller is better, the other extreme view you could take is
to define one interface for each operation, as shown in Example 3-10. Your BankTran
sactionProcessor class would implement all these interfaces.

Example 3-10. Interfaces that are too granular

interface CalculateTotalAmount {
 double calculateTotalAmount();
}

interface CalculateAverage {
 double calculateAverage();
}

interface CalculateTotalInMonth {
 double calculateTotalInMonth(Month month);
}

This approach is also not useful for improving code maintenance. In fact, it introdu‐
ces “anti-cohesion.” In other words, it becomes harder to discover the operations of
interest as they are hiding in multiple separate interfaces. Part of promoting good
maintenance is to help discoverability of common operations. In addition, because
the interfaces are too granular it adds overall complexity, as well as a lot of different
new types introduced by the new interfaces to keep track of in your project.

Explicit Versus Implicit API
So what is the pragmatic approach to take? We recommend following the Open/
Closed Principle to add flexibility to your operations and define the most common
cases as part of the class. They can be implemented with the more general methods.
In this scenario, an interface is not particularly warranted as we don’t expect different
implementations of a BankTransactionProcessor. There aren’t specializations of
each of these methods that will benefit your overall application. As a result, there’s no
need to over-engineer and add unnecessary abstractions in your codebase. The Bank
TransactionProcessor is simply a class that lets you perform statistical operations
on bank transactions.

This also raises the question of whether methods such as findTransactionsGreater
ThanEqual() should be declared given that they can easily be implemented by the
more general findTransactions() method. This dilemma is often referred to as the
problem of providing an explicit versus implicit API.

In fact, there are two sides of the coin to consider. On one side a method like find
TransactionsGreaterThanEqual() is self-explanatory and easy to use. You should

38 | Chapter 3: Extending the Bank Statements Analyzer

not be worried about adding descriptive method names to help readability and com‐
prehension of your API. However, this method is restricted to a particular case and
you can easily have an explosion of new methods to cater for various multiple
requirements. On the other side, a method like findTransactions() is initially more
difficult to use and it needs to be well-documented. However, it provides a unified
API for all cases where you need to look up transactions. There isn’t a rule of what is
best; it depends on what kind of queries you expect. If findTransactionsGreaterTha
nEqual() is a very common operation, it makes sense to extract it into an explicit API
to make it easier for users to understand and use.

The final implementation of the BankTransactionProcessor is shown in
Example 3-11.

Example 3-11. Key operations for the BankTransactionProcessor class

@FunctionalInterface
public interface BankTransactionSummarizer {
 double summarize(double accumulator, BankTransaction bankTransaction);
}

@FunctionalInterface
public interface BankTransactionFilter {
 boolean test(BankTransaction bankTransaction);
}

public class BankTransactionProcessor {

 private final List<BankTransaction> bankTransactions;

 public BankStatementProcessor(final List<BankTransaction> bankTransactions) {
 this.bankTransactions = bankTransactions;
 }

 public double summarizeTransactions(final BankTransactionSummarizer bankTransac
tionSummarizer) {
 double result = 0;
 for(final BankTransaction bankTransaction: bankTransactions) {
 result = bankTransactionSummarizer.summarize(result, bankTransaction);
 }
 return result;
 }

 public double calculateTotalInMonth(final Month month) {
 return summarizeTransactions((acc, bankTransaction) ->
 bankTransaction.getDate().getMonth() == month ? acc + bankTransac
tion.getAmount() : acc
);
 }

Explicit Versus Implicit API | 39

 // ...

 public List<BankTransaction> findTransactions(final BankTransactionFilter bank
TransactionFilter) {
 final List<BankTransaction> result = new ArrayList<>();
 for(final BankTransaction bankTransaction: bankTransactions) {
 if(bankTransactionFilter.test(bankTransaction)) {
 result.add(bankTransaction);
 }
 }
 return bankTransactions;
 }

 public List<BankTransaction> findTransactionsGreaterThanEqual(final int amount)
{
 return findTransactions(bankTransaction -> bankTransaction.getAmount() >=
amount);
 }

 // ...
}

A lot of the aggregation patterns that you have seen so far could be
implemented using the Streams API introduced in Java 8 if you are
familiar with it. For example, searching for transactions can be
easily specified as shown here:

bankTransactions
 .stream()
 .filter(bankTransaction -> bankTransaction.getA
mount() >= 1_000)
 .collect(toList());

Nonetheless, the Streams API is implemented using the same foun‐
dation and principles that you’ve learned in this section.

Domain Class or Primitive Value?
While we kept the interface definition of BankTransactionSummarizer simple, it is
often preferable to not return a primitive value like a double if you are looking at
returning a result from an aggregation. This is because it doesn’t give you the flexibil‐
ity to later return multiple results. For example, the method summarizeTransac
tion() returns a double. If you were to change the signature of the result to include
more results, you would need to change every single implementation of the BankTran
sactionProcessor.

A solution to this problem is to introduce a new domain class such as Summary that
wraps the double value. This means that in the future you can add other fields and

40 | Chapter 3: Extending the Bank Statements Analyzer

results to this class. This technique helps further decouple the various concepts in
your domain and also helps minimize cascading changes when requirements change.

A primitive double value has a limited number of bits, and as a
result it has limited precision when storing decimal numbers. An
alternative to consider is java.math.BigDecimal, which has arbi‐
trary precision. However, this precision comes at the cost of
increased CPU and memory overhead.

Multiple Exporters
In the previous section you learned about the Open/Closed Principle and delved fur‐
ther into the usage of interfaces in Java. This knowledge is going to come handy as
Mark Erbergzuck has a new requirement! You need to export summary statistics
about a selected list of transactions into different formats including text, HTML,
JSON, and so on. Where to start?

Introducing a Domain Object
First, you need to define exactly what is it the user wants to export. There are various
possibilities, which we explore together with their trade-offs:

A number
Perhaps the user is just interested in returning the result of an operation like cal
culateAverageInMonth. This means the result would be a double. While this is
the most simple approach, as we noted earlier, this approach is somewhat inflexi‐
ble as it doesn’t cope well with changing requirements. Imagine you create an
exporter which takes the double as an input, this means that every places in your
code that calls this exporter will need to be updated if you need to change the
result type, possibly introducing new bugs.

A collection
Perhaps the user wishes to return a list of transactions, for example, returned by
findTransaction(). You could even return an Iterable to provide further flexi‐
bility in what specific implementation is returned. While this gives you more
flexibility it also ties you to only being able to return a collection. What if you
need to return multiple results such as a list and other summary information?

A specialized domain object
You could introduce a new concept such as SummaryStatistics which represents
summary information that the user is interested in exporting. A domain object is
simply an instance of a class that is related to your domain. By introducing a
domain object, you introduce a form of decoupling. In fact, if there are new
requirements where you need to export additional information, you can just

Multiple Exporters | 41

include it as part of this new class without having to introduce cascading
changes.

A more complex domain object
You could introduce a concept such as Report which is more generic and could
contain different kinds of fields storing various results including collection of
transactions. Whether you need this or not depends on the user requirements
and whether you are expecting more complex information. The benefit again is
that you are able to decouple different parts of your applications that produce
Report objects and other parts that consume Report objects.

For the purpose of our application, let’s introduce a domain object that stores sum‐
mary statistics about a list of transactions. The code in Example 3-12 shows its
declaration.

Example 3-12. A domain object storing statistical information

public class SummaryStatistics {

 private final double sum;
 private final double max;
 private final double min;
 private final double average;

 public SummaryStatistics(final double sum, final double max, final double min,
final double average) {
 this.sum = sum;
 this.max = max;
 this.min = min;
 this.average = average;
 }

 public double getSum() {
 return sum;
 }

 public double getMax() {
 return max;
 }

 public double getMin() {
 return min;
 }

 public double getAverage() {
 return average;
 }
}

42 | Chapter 3: Extending the Bank Statements Analyzer

Defining and Implementing the Appropriate Interface
Now that you know what you need to export, you will come up with an API to do it.
You will need to define an interface called Exporter. The reason you introduce an
interface is to let you decouple from multiple implementations of exporters. This goes
in line with the Open/Closed Principle you learned in the previous section. In fact, if
you need to substitute the implementation of an exporter to JSON with an exporter
to XML this will be straightforward given they will both implement the same inter‐
face. Your first attempt at defining the interface may be as shown in Example 3-13.
The method export() takes a SummaryStatistics object and returns void.

Example 3-13. Bad Exporter interface

public interface Exporter {
 void export(SummaryStatistics summaryStatistics);
}

This approach is to be avoided for several reasons:

• The return type void is not useful and is difficult to reason about. You don’t
know what is returned. The signature of the export() method implies that some
state change is happening somewhere or that this method will log or print infor‐
mation back to the screen. We don’t know!

• Returning void makes it very hard to test the result with assertions. What is the
actual result to compare with the expected result? Unfortunately, you can’t get a
result with void.

With this in mind, you come up with an alternative API that returns a String, as
shown in Example 3-14. It is now clear that the Exporter will return text and it’s then
up to a separate part of the program to decide whether to print it, save it to a file, or
even send it electronically. Text strings are also very useful for testing as you can
directly compare them with assertions.

Example 3-14. Good Exporter interface

public interface Exporter {
 String export(SummaryStatistics summaryStatistics);
}

Now that you have defined an API to export information, you can implement various
kinds of exporters that respect the contract of the Exporter interface. You can see an
example of implementing a basic HTML exporter in Example 3-15.

Multiple Exporters | 43

Example 3-15. Implementing the Exporter interface

public class HtmlExporter implements Exporter {
 @Override
 public String export(final SummaryStatistics summaryStatistics) {

 String result = "<!doctype html>";
 result += "<html lang='en'>";
 result += "<head><title>Bank Transaction Report</title></head>";
 result += "<body>";
 result += "";
 result += "The sum is: " + summaryStatistics.getSum()
+ "";
 result += "The average is: " + summaryStatistics.getA
verage() + "";
 result += "The max is: " + summaryStatistics.getMax()
+ "";
 result += "The min is: " + summaryStatistics.getMin()
+ "";
 result += "";
 result += "</body>";
 result += "</html>";
 return result;
 }
}

Exception Handling
So far we’ve not talked about what happens when things go wrong. Can you think of
situations where the bank analyzer software might fail? For example:

• What if the data cannot be parsed properly?
• What if the CSV file containing the bank transctions to import can’t be read?
• What if the hardware running your applications runs out of resources such as

RAM or disk space?

In these scenarios you will be welcomed with a scary error message that includes a
stack trace showing the origin of the problem. The snippets in Example 3-16 show
examples of these unexpected errors.

Example 3-16. Unexpected problems

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0

Exception in thread "main" java.nio.file.NoSuchFileException: src/main/resources/
bank-data-simple.csv

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

44 | Chapter 3: Extending the Bank Statements Analyzer

Why Use Exceptions?
Let’s focus on the BankStatementCSVParser for the moment. How do we handle
parsing problems? For example, a CSV line in the file might not be written in the
expected format:

• A CSV line may have more than the expected three columns.
• A CSV line may have fewer than the expected three columns.
• The data format of some of the columns may not be correct, e.g., the date may be

incorrect.

Back in the frightening days of the C programming language, you would add a lot of
if-condition checks that would return a cryptic error code. This approach had several
drawbacks. First, it relied on global shared mutable state to look up the most recent
error. This made it harder to understand individual parts of your code in isolation. As
a result, your code became harder to maintain. Second, this approach was error prone
as you needed to distinguish between real values and errors encoded as values. The
type system in this case was weak and could be more helpful to the programmer.
Finally, the control flow was mixed with the business logic, which contributed to
making the code harder to maintain and test in isolation.

To solve these issues, Java incorporated exceptions as a first-class language feature
that introduced many benefits:

Documentation
The language supports exceptions as part of method signatures.

Type safety
The type system figures out whether you are handling the exceptional flow.

Separation of concern
Business logic and exception recovery are separated out with a try/catch block.

The problem is that exceptions as a language feature also add more complexity. You
may be familiar with the fact that Java distinguishes between two kinds of exceptions:

Checked exceptions
These are errors that you are expected to be able to recover from. In Java, you
have to declare a method with a list of checked exceptions it can throw. If not,
you have to provide a suitable try/catch block for that particular exception.

Unchecked exceptions
These are errors that can be thrown at any time during the program execution.
Methods don’t have to explicitly declare these exceptions in their signature and
the caller doesn’t have to handle them explicitly, as it would with a checked
exception.

Exception Handling | 45

Java exception classes are organized in a well-defined hierarchy. Figure 3-1 depicts
that hierarchy in Java. The Error and RuntimeException classes are unchecked
exceptions and are subclasses of Throwable. You shouldn’t expect to catch and
recover from them. The class Exception typically represents errors that a program
should be able to recover from.

Figure 3-1. Exceptions hierarchy in Java

Patterns and Anti-Patterns with Exceptions
Which category of exceptions should you use under what scenario? You may also
wonder how should you update the BankStatementParser API to support excep‐
tions. Unfortunately, there isn’t a simple answer. It requires a bit of pragmatism when
deciding what is the right approach for you.

There are two separate concerns when thinking about parsing the CSV file:

• Parsing the right syntax (e.g., CSV, JSON)
• Validation of the data (e.g., text description should be less than 100 characters)

You will focus on the syntax error first and then the validation of the data.

Deciding between unchecked and checked
There are situations when the CSV file may not follow the correct syntax (for exam‐
ple, if separating commas are missing). Ignoring this problem will lead to confusing
errors when the application runs. Part of the benefit of supporting exceptions in your
code is to provide a clearer diagnosis to the user of your API in the event that a prob‐
lem arises. Accordingly, you decide to add a simple check as shown in the code in
Example 3-17, which throws a CSVSyntaxException.

46 | Chapter 3: Extending the Bank Statements Analyzer

Example 3-17. Throwing a syntax exception

final String[] columns = line.split(",");

if(columns.length < EXPECTED_ATTRIBUTES_LENGTH) {
 throw new CSVSyntaxException();
}

Should CSVSyntaxException be a checked or an unchecked exception? To answer
this question you need to ask yourself whether you require the user of your API to
take a compulsory recovery action. For example, the user may implement a retry
mechanism if it is a transient error or she may display a message back on the screen
to add graceful responsiveness to the application. Typically, errors due to business
logic validation (e.g., wrong format or arithmetic) should be unchecked exceptions,
as they would add a lot of try/catch clutter in your code. It may also not be obvious
what the right recovery mechanism is. Consequently, there’s no point enforcing it on
the user of your API. In addition, system errors (e.g., disk ran out of space) should
also be unchecked exceptions as there’s nothing the client can do. In a nutshell, the
recommendation is to use unchecked exceptions and only use checked exceptions
sparingly to avoid significant clutter in the code.

Let’s now tackle the problem of validating the data once you know it follows the cor‐
rect CSV format. You will learn about two common anti-patterns with using excep‐
tions for validation. Then, you will learn about the Notification pattern, which
provides a maintainable solution to the problem.

Overly specific
The first question going through your mind is where should you add validation logic?
You could have it right at the construction time of the BankStatement object. How‐
ever, we recommend creating a dedicated Validator class for several reasons:

• You don’t have to duplicate the validation logic when you need to reuse it.
• You get confidence that different parts of your system validate the same way.
• You can easily unit test this logic separately.
• It follows the SRP, which leads to simpler maintenance and program comprehen‐

sion.

The are various approaches to implementing your validator using exceptions. One
overly specific approach is shown in Example 3-18. You have thought of every single
edge case to validate the input and converted each edge case into a checked exception.
The exceptions DescriptionTooLongException, InvalidDateFormat, DateInTheFu
tureException, and InvalidAmountException are all user-defined checked excep‐
tions (i.e., they extend the class Exception). While this approach lets you specify

Exception Handling | 47

precise recovery mechanisms for each exception, it is clearly unproductive as it
requires a lot of setup, declares multiple exceptions, and forces the user to explicitly
deal with each of these exceptions. This is doing the opposite of helping the user
understand and simply use your API. In addition, you can’t collect all the errors as a
whole in case you want to provide a list to the user.

Example 3-18. Overly specific exceptions

public class OverlySpecificBankStatementValidator {

 private String description;
 private String date;
 private String amount;

 public OverlySpecificBankStatementValidator(final String description, final
String date, final String amount) {
 this.description = Objects.requireNonNull(description);
 this.date = Objects.requireNonNull(description);
 this.amount = Objects.requireNonNull(description);
 }

 public boolean validate() throws DescriptionTooLongException,
 InvalidDateFormat,
 DateInTheFutureException,
 InvalidAmountException {

 if(this.description.length() > 100) {
 throw new DescriptionTooLongException();
 }

 final LocalDate parsedDate;
 try {
 parsedDate = LocalDate.parse(this.date);
 }
 catch (DateTimeParseException e) {
 throw new InvalidDateFormat();
 }
 if (parsedDate.isAfter(LocalDate.now())) throw new DateInTheFutureExcep
tion();

 try {
 Double.parseDouble(this.amount);
 }
 catch (NumberFormatException e) {
 throw new InvalidAmountException();
 }
 return true;
 }
}

48 | Chapter 3: Extending the Bank Statements Analyzer

1 This pattern was first put forward by Martin Fowler.

Overly apathetic
The other end of the spectrum is making everything an unchecked exception; for
example, by using IllegalArgumentException. The code in Example 3-19 shows the
implementation of the validate() method following this approach. The problem
with this approach is that you can’t have specific recovery logic because all the excep‐
tions are the same! In addition, you still can’t collect all the errors as a whole.

Example 3-19. IllegalArgument exceptions everywhere

public boolean validate() {

 if(this.description.length() > 100) {
 throw new IllegalArgumentException("The description is too long");
 }

 final LocalDate parsedDate;
 try {
 parsedDate = LocalDate.parse(this.date);
 }
 catch (DateTimeParseException e) {
 throw new IllegalArgumentException("Invalid format for date", e);
 }
 if (parsedDate.isAfter(LocalDate.now())) throw new IllegalArgumentExcep
tion("date cannot be in the future");

 try {
 Double.parseDouble(this.amount);
 }
 catch (NumberFormatException e) {
 throw new IllegalArgumentException("Invalid format for amount", e);
 }
 return true;
}

Next, you will learn about the Notification pattern, which provides a solution to the
downsides highlighted with the overly specific and overly apathetic anti-patterns.

Notification Pattern
The Notification pattern aims to provide a solution for the situation in which you are
using too many unchecked exceptions. The solution is to introduce a domain class to
collect errors.1

The first thing you need is a Notification class whose responsibility is to collect
errors. The code in Example 3-20 shows its declaration.

Exception Handling | 49

Example 3-20. Introducing the domain class Notification to collect errors

public class Notification {
 private final List<String> errors = new ArrayList<>();

 public void addError(final String message) {
 errors.add(message);
 }

 public boolean hasErrors() {
 return !errors.isEmpty();
 }

 public String errorMessage() {
 return errors.toString();
 }

 public List<String> getErrors() {
 return this.errors;
 }

}

The benefit of introducing such a class is that you can now declare a validator that is
able to collect multiple errors in one pass. This wasn’t possible in the two previous
approaches you explored. Instead of throwing exceptions, you can now simply add
messages into the Notification object as shown in Example 3-21.

Example 3-21. Notification pattern

public Notification validate() {

 final Notification notification = new Notification();
 if(this.description.length() > 100) {
 notification.addError("The description is too long");
 }

 final LocalDate parsedDate;
 try {
 parsedDate = LocalDate.parse(this.date);
 if (parsedDate.isAfter(LocalDate.now())) {
 notification.addError("date cannot be in the future");
 }
 }
 catch (DateTimeParseException e) {
 notification.addError("Invalid format for date");
 }

 final double amount;
 try {
 amount = Double.parseDouble(this.amount);

50 | Chapter 3: Extending the Bank Statements Analyzer

 }
 catch (NumberFormatException e) {
 notification.addError("Invalid format for amount");
 }
 return notification;
}

Guidelines for Using Exceptions
Now that you’ve learned the situations for which you may use exceptions, let’s discuss
some general guidelines to use them effectively in your application.

Do not ignore an exception
It’s never a good idea to ignore an exception as you won’t be able to diagnose the root
of the problem. If there isn’t an obvious handling mechanism, then throw an
unchecked exception instead. This way if you really need to handle the checked
exception, you’ll be forced to come back and deal with it after seeing the problem at
runtime.

Do not catch the generic Exception
Catch a specific exception as much as you can to improve readability and support
more specific exception handling. If you catch the generic Exception, it also includes
a RuntimeException. Some IDEs can generate a catch clause that is too general, so
you may need to think about making the catch clause more specific.

Document exceptions
Document exceptions at your API-level including unchecked exceptions to facilitate
troubleshooting. In fact, unchecked exceptions report the root of an issue that should
be addressed. The code in Example 3-22 shows an example of documenting excep‐
tions using the @throws Javadoc syntax.

Example 3-22. Documenting exceptions

@throws NoSuchFileException if the file does not exist
@throws DirectoryNotEmptyException if the file is a directory and
could not otherwise be deleted because the directory is not empty
@throws IOException if an I/O error occurs
@throws SecurityException In the case of the default provider,
and a security manager is installed, the {@link SecurityManager#checkDelete(String)}
method is invoked to check delete access to the file

Exception Handling | 51

Watch out for implementation-specific exceptions
Do not throw implementation-specific exceptions as it breaks encapsulation of your
API. For example, the definition of read() in Example 3-23 forces any future imple‐
mentations to throw an OracleException, when clearly read() could support sour‐
ces that are completely unrelated to Oracle!

Example 3-23. Avoid implementation-specific exceptions

public String read(final Source source) throws OracleException { ... }

Exceptions versus Control flow
Do not use exceptions for control flow. The code in Example 3-24 exemplifies a bad
use of exceptions in Java. The code relies on an exception to exit the reading loop.

Example 3-24. Using exceptions for control flow

try {
 while (true) {
 System.out.println(source.read());
 }
}
catch(NoDataException e) {
}

You should avoid this type of code for several reasons. First, it leads to poor code
readability because the exception try/catch syntax adds unnecessary clutter. Second, it
makes the intent of your code less comprehensible. Exceptions are meant as a feature
to deal with errors and exceptional scenarios. Consequently, it’s good not to create an
exception until you are sure that you need to throw it. Finally, there’s overhead associ‐
ated with holding a stack trace in the event that an exception is thrown.

Alternatives to Exceptions
You’ve learned about using exceptions in Java for the purpose of making your Bank
Statements Analyzer more robust and comprehensible for your users. What are alter‐
natives to exceptions, though? We briefly describe four alternative approaches
together with their pros and cons.

Using null

Instead of throwing a specific exception, you may ask why you can’t just return null
as shown in Example 3-25.

52 | Chapter 3: Extending the Bank Statements Analyzer

Example 3-25. Returning null instead of an exception

final String[] columns = line.split(",");

if(columns.length < EXPECTED_ATTRIBUTES_LENGTH) {
 return null;
}

This approach is to be absolutely avoided. In fact, null provides no useful informa‐
tion to the caller. It is also error prone as you have to explicitly remember to check for
null as a result of your API. In practice, this leads to many NullPointerExceptions
and a lot of unnecessary debugging!

The Null Object pattern
An approach you sometimes see adopted in Java is the Null Object pattern. In a nut‐
shell, instead of returning a null reference to convey the absence of an object, you
return an object that implements the expected interface but whose method bodies are
empty. The advantage of this tactic is that you won’t deal with unexpected Null
Pointer exceptions and a long list of null checks. In fact, this empty object is very
predictable because it does nothing functionally! Nonetheless, this pattern can also be
problematic because you may hide potential issues in the data with an object that
simply ignores the real problem, and as a result make troubleshooting more difficult.

Optional<T>

Java 8 introduced a built-in data type java.util.Optional<T>, which is dedicated to
representing the presence or absence of a value. The Optional<T> comes with a set of
methods to explicitly deal with the absence of a value, which is useful to reduce the
scope for bugs. It also allows you to compose various Optional objects together,
which may be returned as a return type from different APIs you use. An example of
that is the method findAny() in the Streams API. You will learn more about how you
can use Optional<T> in Chapter 7.

Try<T>

There’s another data type called Try<T>, which represents an operation that may suc‐
ceed or fail. In a way it is analogous to Optional<T>, but instead of values you work
with operations. In other words, the Try<T> data type brings similar code composa‐
bility benefits and also helps reduce the scope for errors in your code. Unfortunately,
the Try<T> data type is not built in to the JDK but is supported by external libraries
that you can look at.

Exception Handling | 53

Using a Build Tool
So far you’ve learned good programming practices and principles. But what about
structuring, building, and running your application? This section focuses on why
using a build tool for your project is a necessity and how you can use a build tool
such as Maven and Gradle to build and run your application in a predictable manner.
In Chapter 5, you will learn more about a related topic of how to structure the appli‐
cation effectively using Java packages.

Why Use a Build Tool?
Let’s consider the problem of executing your application. There are several elements
you need to take care of. First, once you have written the code for your project, you
will need to compile it. To do this, you will have to use the Java compiler (javac). Do
you remember all the commands required to compile multiple files? What about with
multiple packages? What about managing dependencies if you were to import other
Java libraries? What about if the project needs to be packaged in a specific format
such as WAR or JAR? Suddenly things get messy, and more and more pressure is put
on the developer.

To automate all the commands required, you will need to create a script so you don’t
have to repeat the commands every time. Introducing a new script means that all
your current and future teammates will need to be familiar with your way of thinking
to be able to maintain and change the script as requirements evolve. Second, the soft‐
ware development life cycle needs to be taken into consideration. It’s not just about
developing and compiling the code. What about testing and deploying it?

The solution to these problems is using a build tool. You can think of a build tool as
an assistant that can automate the repetitive tasks in the software development life
cycle, including building, testing, and deploying your application. A build tool has
many benefits:

• It provides you with a common structure to think about a project so your collea‐
gues feel immediately at home with the project.

• It sets you up with a repeatable and standardized process to build and run an
application.

• You spend more time on development, and less time on low-level configurations
and setup.

• You are reducing the scope for introducing errors due to bad configurations or
missing steps in the build.

• You save time by reusing common build tasks instead of reimplementing them.

54 | Chapter 3: Extending the Bank Statements Analyzer

2 Earlier in Java’s life there was another popular build tool, called Ant, but it is now considered end-of-life and
should not be used anymore.

You will now explore two popular build tools used in the Java community: Maven
and Gradle.2

Using Maven
Maven is highly popular in the Java community. It allows you to describe the build
process for your software together with its dependencies. In addition, there’s a large
community maintaining repositories that Maven can use to automatically download
the libraries and dependencies used by your application. Maven was initially released
in 2004 and as you might expect, XML was very popular back then! Consequently, the
declaration of the build process in Maven is XML based.

Project structure
The great thing about Maven is that from the get-go it comes with structure to help
maintenance. A Maven project starts with two main folders:

/src/main/java

This is where you will develop and find all the Java classes required for your
project.

src/test/java

This where you will develop and find all the tests for your project.

There are two additional folders that are useful but not required:

src/main/resources

This is where you can include extra resources such as text files needed by your
application.

src/test/resources

This is where you can include extra resources used by your tests.

Having this common directory layout allows anyone familiar with Maven to be
immediately able to locate important files. To specify the build process you will need
to create a pom.xml file where you specify various XML declarations to document the
steps required to build your application. Figure 3-2 summarizes the common Maven
project layout.

Using a Build Tool | 55

Figure 3-2. Maven standard directory layout

Example build file
The next step is to create the pom.xml that will dictate the build process. The code
snippet in Example 3-26 shows a basic example that you can use for building the
Bank Statements Analyzer project. You will see several elements in this file:

project

This is the top-level element in all pom.xml files.

groupId

This element indicates the unique identifier of the organization that created the
project.

artifactId

This element specifies a unique base name for the artifact generated by the build
process.

packaging

This element indicates the package type to be used by this artifact (e.g., JAR,
WAR, EAR, etc.). The default is JAR if the XML element packaging is omitted.

version

The version of the artifact generated by the project.

build

This element specifies various configurations to guide the build process such as
plug-ins and resources.

dependencies

This element specifies a dependency list for the project.

56 | Chapter 3: Extending the Bank Statements Analyzer

Example 3-26. Build file pom.xml in Maven

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.iteratrlearning</groupId>
 <artifactId>bankstatement_analyzer</artifactId>
 <version>1.0-SNAPSHOT</version>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.7.0</version>
 <configuration>
 <source>9</source>
 <target>9</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>
 </dependenciesn>
</project>

Maven commands
Once you’ve set up a pom.xml, the next step is to use Maven to build and package
your project! There are various commands available. We only cover the fundamen‐
tals:

mvn clean

Cleans up any previously generated artifacts from a prior build

mvn compile

Compiles the source code of the project (by default in a generated target folder)

Using a Build Tool | 57

mvn test

Tests the compiled source code

mvn package

Packages the compiled code in a suitable format such as JAR

For example, running the command mvn package from the directory where the
pom.xml file is located will produce an output similar to this:

[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building bankstatement_analyzer 1.0-SNAPSHOT
[INFO] --
[INFO]
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.063 s
[INFO] Finished at: 2018-06-10T12:14:48+01:00
[INFO] Final Memory: 10M/47M

You will see the generated JAR bankstatement_analyzer-1.0-SNAPSHOT.jar in the
target folder.

If you want to run a main class in the generated artifact using the
mvn command, you will need to take a look at the exec plug-in.

Using Gradle
Maven is not the only build tool solution available in the Java space. Gradle is an
alternative popular build tool to Maven. But you may wonder why use yet another
build tool? Isn’t Maven the most widely adopted? One of Maven’s deficiencies is that
the use of XML can make things less readable and more cumbersome to work with.
For example, it is often necessary as part of the build process to provide various cus‐
tom system commands, such as copying and moving files around. Specifying such
commands using an XML syntax isn’t natural. In addition, XML is generally consid‐
ered as a verbose language, which can increase the maintenance overhead. However,
Maven introduced lots of good ideas such as standardization of project structure,
which Gradle gets inspiration from. One of Gradle’s biggest advantages is that it uses
a friendly Domain Specific Language (DSL) using the Groovy or Kotlin program‐
ming languages to specify the build process. As a result, specifying the build is more
natural, easier to customize, and simpler to understand. In addition, Gradle supports

58 | Chapter 3: Extending the Bank Statements Analyzer

https://oreil.ly/uoPbv

3 For more information on Maven versus Gradle, see https://gradle.org/maven-vs-gradle/.

features such as cache and incremental compilation, which contribute to faster build
time.3

Example build file
Gradle follows a similar project structure to Maven. However, instead of a pom.xml
file, you will declare a build.gradle file. There’s also a settings.gradle file that includes
configuration variables and setup for a multiproject build. In the code snippet in
Example 3-27 you can find a small build file written in Gradle that is equivalent to the
Maven example you saw in Example 3-26. You have to admit it’s a lot more concise!

Example 3-27. Build file build.gradle in Gradle

apply plugin: 'java'
apply plugin: 'application'

group = 'com.iteratrlearning'
version = '1.0-SNAPSHOT'

sourceCompatibility = 9
targetCompatibility = 9

mainClassName = "com.iteratrlearning.MainApplication"

repositories {
 mavenCentral()
}
dependencies {
 testImplementation group: 'junit', name: 'junit', version:'4.12'
}

Gradle commands
Finally, you can now run the build process by running similar commands to what you
learned with Maven. Each command in Gradle is a task. You can define your own
tasks and execute them or use built-in tasks such as test, build, and clean:

gradle clean

Cleans up generated files during a previous build

gradle build

Packages the application

gradle test

Runs the tests

Using a Build Tool | 59

https://gradle.org/maven-vs-gradle/

gradle run

Runs the main class specified in mainClassName provided the application plug-
in is applied

For example, running gradle build will produce an output similar to this:

BUILD SUCCESSFUL in 1s
2 actionable tasks: 2 executed

You will find the generated JAR in the build folder that is created by Gradle during
the build process.

Takeaways
• The Open/Closed Principle promotes the idea of being able to change the behav‐

ior of a method or class without having to modify the code.
• The Open/Closed Principle reduces fragility of code by not changing existing

code, promotes reusability of existing code, and promotes decoupling, which
leads to better code maintenance.

• God interfaces with many specific methods introduce complexity and coupling.
• An interface that is too granular with single methods can introduce the opposite

of cohesion.
• You should not be worried about adding descriptive method names to help read‐

ability and comprehension of your API .
• Returning void as a result of an operation makes it difficult to test its behavior.
• Exceptions in Java contribute to documentation, type safety, and separation of

concerns.
• Use checked exceptions sparingly rather than the default as they can cause signif‐

icant clutter.
• Overly specific exceptions can make software development unproductive.
• The Notification Pattern introduces a domain class to collect errors.
• Do not ignore an exception or catch the generic Exception as you will lose the

benefits of diagnosing the root of the problem.
• A build tool automates the repetitive tasks in the software development life cycle

including building, testing, and deploying your application.
• Maven and Gradle are two popular build tools used in the Java community.

60 | Chapter 3: Extending the Bank Statements Analyzer

Iterating on You
If you want to extend and solidify the knowledge from this section you could try one
of these activities:

• Add support for exporting in different data formats including JSON and XML
• Develop a basic GUI around the Bank Statements Analyzer

Completing the Challenge
Mark Erbergzuck is very happy with your final iteration of the Bank Statements Ana‐
lyzer. A few days later, the world hit a new financial crisis and your application is
going viral. Time to work on a new exciting project in the next chapter!

Iterating on You | 61

CHAPTER 4

The Document Management System

The Challenge
After successfully implementing an advanced Bank Statements Analyzer for Mark
Erbergzuck you decide to run some errands—including going to an appointment
with your dentist. Dr. Avaj has run her practice successfully for many years. Her
happy patients retain their white teeth well into old age. The downside of such a suc‐
cessful practice is that every year more and more patient documents get generated.
Every time she needs to find a record of prior treatment, her assistants spend longer
and longer searching their filing cabinets.

She realizes that it’s time to automate the process of managing these documents and
keeping track of them. Luckily, she has a patient who can do that for her! You are
going to help by writing software for her that manages these documents and enables
her to find the information that will allow her practice to thrive and grow.

The Goal
In this chapter you’ll be learning about a variety of different software development
principles. Key to the design of managing documents is an inheritance relationship,
which means extending a class or implementing an interface. In order to do this the
right way you’ll get to understand the Liskov Substitution Principle, named after
famed computer scientist Barbara Liskov.

Your understanding of when to use inheritance will get fleshed out with a discussion
of the “Composition over Inheritance” principle.

63

Finally, you’ll extend your knowledge of how to write automated test code by under‐
standing what makes a good and maintainable test. Now that we’ve spoiled the plot of
this chapter, let’s get back to understanding what requirements Dr. Avaj has for the
Document Management System.

If at any point you want to look at the source code for this chapter,
you can look at the package com.iteratrlearning.shu_book.chap
ter_04 in the book’s code repository.

Document Management System Requirements
A friendly cup of tea with Dr. Avaj has revealed that she has the documents that she
wants to manage as files on her computer. The Document Management System needs
to be able to import these files and record some information about each file that can
be indexed and searched. There are three types of documents that she cares about:

Reports
A body of text detailing some consultation of operation on a patient.

Letters
A text document that gets sent to an address. (You’re probably familiar with these
already, come to think of it.)

Images
The dental practice often records x-rays or photos of teeth and gums. These have
a size.

In addition, all documents need to record the path to the file that is being managed
and what patient the document is about. Dr. Avaj needs to be able to search these
documents, and query whether each of the attributes about a different type of docu‐
ment contains certain pieces of information; for example, to search for letters where
the body contains “Joe Bloggs.”

During the conversation, you also established that Dr. Avaj might wish to add other
types of documents in the future.

Fleshing Out the Design
When approaching this problem, there are lots of big design choices to make and
modeling approaches that we could take. These choices are subjective, and you’re
welcome to try to code up a solution to Dr. Avaj’s problem before or after reading this
chapter. In “Alternative Approaches” on page 73 you can see the reasons why we
avoid different choices and the overarching principles behind them.

64 | Chapter 4: The Document Management System

One good first step to approaching any program is to start with test-driven develop‐
ment (TDD), which is what we did when writing the book’s sample solution. We
won’t be covering TDD until Chapter 5, so let’s begin with thinking about the behav‐
iors that your software needs to perform and incrementally fleshing out the code that
implements these behaviors.

The Document Management System should be able to import documents on request
and add them into its internal store of documents. In order to fulfill this requirement,
let’s create the DocumentManagementSystem class and add two methods:

void importFile(String path)

Takes a path to a file that our user wants to import to the Document Manage‐
ment System. As this is a public API method that might take input from users in
a production system, we take our path as a String rather than relying on a more
type-safe class like java.nio.Path or java.io.File.

List<Document> contents()

Returns a list of all the documents that the Document Management System cur‐
rently stores.

You’ll notice that contents() returns a list of some Document class. We’ve not said
what this class entails yet, but it’ll reappear in due course. For now, you can pretend
that it’s an empty class.

Importers
A key characteristic of this system is that we need to be able to import documents of
different types. For the purposes of this system you can rely on the files’ extensions in
order to decide how to import them, since Dr. Avaj has been saving files with very
specific extensions. All her letters have the .letter extension, reports have .report,
and .jpg is the only image format used.

The simplest thing to do would be to just throw all the code for the importing mecha‐
nism into a single method, as shown in Example 4-1.

Example 4-1. Switch of extension example

switch(extension) {
 case "letter":
 // code for importing letters.
 break;

 case "report":
 // code for importing reports.
 break;

Fleshing Out the Design | 65

 case "jpg":
 // code for importing images.
 break;

 default:
 throw new UnknownFileTypeException("For file: " + path);
}

This approach would have solved the problem in question but would be hard to
extend. Every time you want to add another type of file that gets processed you would
need to implement another entry in the switch statement. Over time this method
would become intractably long and hard to read.

If you keep your main class nice and simple and split out different implementation
classes for importing different types of documents, then it’s easy to locate and under‐
stand each importer in isolation. In order to support different document types, an
Importer interface is defined. Each Importer will be a class that can import a differ‐
ent type of file.

Now that we know we need an interface to import the files, how should we represent
the file that is going to be imported? We have a couple of different options: use a plain
String to represent the path of the file, or use a class that represents a file, like
java.io.File.

You could make the case that we should apply the principle of strong typing here:
take a type that represents the file and reduce the scope for errors versus using a
String. Let’s take that approach and use a java.io.File object as the parameter in
our Importer interface to represent the file being imported, as shown in Example 4-2.

Example 4-2. Importer

interface Importer {
 Document importFile(File file) throws IOException;
}

You might be asking, Why don’t you use a File for the public API of DocumentManage
mentSystem as well then? Well, in the case of this application, our public API would
probably be wrapped up in some kind of user interface, and we aren’t sure what form
that is taking files in. As a result we kept things simple and just used a String type.

The Document Class
Let’s also define the Document class at this point in time. Each document will have
multiple attributes that we can search on. Different documents have different types of
attributes. We have several different options that we can consider the pros and cons
of when defining the Document.

66 | Chapter 4: The Document Management System

The first and simplest way to represent a document would be to use a Map<String,
String>, which is a map from attribute names to values associated with those
attributes. So why not just pass a Map<String, String> around through the
application? Well, introducing a domain class to model a single document is not just
drinking the OOP Koolaid, but also provides a series of practical improvements in
application maintability and readability.

For a start, the value of giving concrete names to components within an application
cannot be overstated. Communication is King! Good teams of software developers
use a Ubiquitous Language to describe their software. Matching the vocabulary that
you use within the code of your application to the vocabulary that you use to talk to
clients like Dr. Avaj makes things a lot easier to maintain. When you have a conversa‐
tion with a colleague or client you will invariably need to agree upon some common
language with which to describe different aspects of the software. By mapping this to
the code itself, it makes it really easy to know what part of the code to change. This is
called discoverability.

The term Ubiquitous Language was coined by Eric Evans and origi‐
nates in Domain Driven Design. It refers to the use of a common
language that is clearly degined and shared between both develop‐
ers and users.

Another principle that should encourage you to introduce a class to model a docu‐
ment is strong typing. Many people use this term to refer to the nature of a program‐
ming language, but here we’re talking about the more practical use of strong typing in
implementing your software. Types allow us to restrict the way in which data is used.
For example, our Document class is immutable: once it has been created you can’t
change, or mutate, any of its attributes. Our Importer implementations create the
documents; nothing else modifies them. If you ever see a Document with an error in
one of its attributes, you can narrow the source of the bug down to the specific
Importer that created the Document. You can also infer from the immutability that it’s
possible to index or cache any information associated with the Document and you
know that it will be correct forever, since documents are immutable.

Another design choice that developers might consider when modeling their Document
would be make the Document extend HashMap<String, String>. At first that seems
great because the HashMap has all the functionality you need to model a Document.
However, there are several reasons why this is a bad choice.

Software design is often as much about restricting functionality that is undesirable as
it is about building things that you do want. We would have instantly thrown away
the aforementioned benefits from immutability by allowing anything in the applica‐
tion to modify the Document class if it were just a subclass of HashMap. Wrapping the

Fleshing Out the Design | 67

collection also gives us an opportunity to give more meaningful names to the meth‐
ods, instead of, for example, looking up an attribute by calling the get() method,
which doesn’t really mean anything! Later on we’ll go into more detail about inheri‐
tance versus composition, because this is really a specific example of that discussion.

In short, domain classes allow us to name a concept and restrict the possible behav‐
iors and values of this concept in order to improve discoverability and reduce the
scope for bugs. As a result, we’ve chosen to model the Document as shown in
Example 4-3. If you’re wondering why it isn’t public like most interfaces, this is dis‐
cussed later in “Scoping and Encapsulation Choices” on page 73.

Example 4-3. Document

public class Document {
 private final Map<String, String> attributes;

 Document(final Map<String, String> attributes) {
 this.attributes = attributes;
 }

 public String getAttribute(final String attributeName) {
 return attributes.get(attributeName);
 }
}

One final thing to note about Document is that it has a package-scoped constructor.
Often Java classes make their constructor public, but this can be a bad choice as it
allows code anywhere in your project to create objects of that type. Only code in the
Document Management System should be able to create Documents, so we keep the
constructor package scoped and restrict access to only the package that the Docu‐
ment Management System lives in.

Attributes and Hierarchical Documents
In our Document class we used Strings for attributes. Doesn’t this go against the prin‐
ciple of strong typing? The answer here is yes and no. We are storing attributes as text
so that they can be searched through a text-based search. Not only that, but we want
to ensure that all attributes are created in a very generic form that is independent of
the Importer that created them. Strings aren’t a bad choice as such in this context. It
should be noted that passing Strings around throughout an application in order to
represent information is often considered a bad idea. In contrast with something
being strongly typed, this is termed stringly typed!

In particular, if more complicated use was being made of the attribute values, then
having different attribute types parsed out would be useful. For example, if we wanted
to be able to find addresses within a certain distance or images with a height and

68 | Chapter 4: The Document Management System

width less than a certain size, then having strongly typed attributes would be a boon.
It would be a lot easier to make comparisons with a width value that is an integer. In
the case of this Document Management System, however, we simply don’t need that
functionality.

You could design the Document Management System with a class hierarchy for Docu
ments that models the Importer hierarchy. For example, a ReportImporter imports
instances of the Report class that extends the Document class. This passes our basic
sanity check for subclassing. In other words, it allows you to say a Report is a Docu
ment and it makes sense as a sentence. We chose not to go down that direction, how‐
ever, as the right way to model classes in an OOP setting is to think in terms of
behavior and data.

The documents are all modeled very generically in terms of named attributes, rather
than specific fields that exist within different subclasses. Additionally, as far as this
system is concerned, documents have very little behavior associated with them. There
was simply no point in adding a class hierarchy here when it provided no benefit. You
might think that this statement in and of itself is a little arbitrary, but it informs us of
another principle: KISS.

You learned about the KISS principle in Chapter 2. KISS means that designs are better
if they are kept simple. It’s often very hard to avoid unnecessary complexity, but it’s
worth trying hard to do so. Whenever someone says, “we might need X” or “it would
be cool if we also did Y,” just say No. Bloated and complex designs are paved with
good intentions around extensibility and code that is a nice-to-have rather than must-
have.

Implementing and Registering Importers
You can implement the Importer interface to look up different types of files.
Example 4-4 shows the way that images are imported. One of the great things about
Java’s core library is that it provides a lot of built-in functionality right out of the box.
Here we read an image file using the ImageIO.read method and then extract the
width and height of the image from the resulting BufferedImage object.

Example 4-4. ImageImporter

import static com.iteratrlearning.shu_book.chapter_04.Attributes.*;

class ImageImporter implements Importer {
 @Override
 public Document importFile(final File file) throws IOException {
 final Map<String, String> attributes = new HashMap<>();
 attributes.put(PATH, file.getPath());

 final BufferedImage image = ImageIO.read(file);

Fleshing Out the Design | 69

 attributes.put(WIDTH, String.valueOf(image.getWidth()));
 attributes.put(HEIGHT, String.valueOf(image.getHeight()));
 attributes.put(TYPE, "IMAGE");

 return new Document(attributes);
 }
}

Attribute names are constants defined in the Attributes class. This avoids bugs
where different importers end up using different strings for the same attribute name;
for example, "Path" versus "path". Java itself doesn’t have a direct concept of a con‐
stant as such, Example 4-5 shows the commonly used idiom. This constant is public
because we want to be able to use it from different importers, though you may well
have a private or package scoped constant instead. The use of the final keyword
ensures that it can’t be reassigned to and static ensures that there is only a single
instance per class.

Example 4-5. How to define a constant in Java

public static final String PATH = "path";

There are importers for all three different types of files and you will see the other two
implemented in “Extending and Reusing Code” on page 74. Don’t worry, we’re not
hiding anything up our sleeves. In order to be able to use the Importer classes when
we import files, we also need to register the importers to look them up. We use the
extension of the file that we want to import as the key of the Map, as shown in
Example 4-6.

Example 4-6. Registering the importers

 private final Map<String, Importer> extensionToImporter = new HashMap<>();

 public DocumentManagementSystem() {
 extensionToImporter.put("letter", new LetterImporter());
 extensionToImporter.put("report", new ReportImporter());
 extensionToImporter.put("jpg", new ImageImporter());
 }

Now that you know how to import documents, we can implement search. We won’t
be focusing on the most efficient way to implement searching of documents here
since we’re not trying to implement Google, just get the information to Dr. Avaj that
she requires. A conversation with Dr. Avaj revealed that she wanted to be able to look
up information about different attributes of a Document.

Her requirements could be met by just being able to find subsequences within
attribute values. For example, she might want to search for documents that have a

70 | Chapter 4: The Document Management System

patient called Joe, and with Diet Coke in the body. We thus devised a very simple
query language that consisted of a series of attribute name and substring pairs
separated by commas. Our aforementioned query would be written as
"patient:Joe,body:Diet Coke".

Since the search implementation keeps things simple rather than trying to be highly
optimized, it just does a linear scan over all the documents recorded in the system
and tests each one against the query. The query String that is passed to the search
method is parsed into a Query object that can then be tested against each Document.

The Liskov Substitution Principle (LSP)
We’ve talked about a few specific design decisions related to classes—for example,
modeling different Importer implementations with classes, and why we didn’t intro‐
duce a class hierarchy for the Document class and why we didn’t just make Document
extend HashMap. But really there’s a broader principle at stake here, one that allows us
to generalize these examples into an approach that you can use in any piece of soft‐
ware. This is called the Liskov Substitution Principle (LSP) and it helps us understand
how to subclass and implement interfaces correctly. LSP forms the L of the SOLID
principles that we’ve been referring to throughout this book.

The Liskov Substitution Principle is often stated in these very formal terms, but is
actually a very simple concept. Let’s demystify some of this terminology. If you hear
type in this context, just think of a class or an interface. The term subtype means
establish a parent-to-child relationship between types; in other words, extend a class
or implement an interface. So informally you can think of this as meaning that child
classes should maintain the behavior they inherit from their parents. We know, we
know—it sounds like an obvious statement, but we can be more specific and split out
LSP into four distinct parts:

LSP
Let q(x) be a property provable about objects x of type T. Then q(y) should be true for
objects y of type S where S is a subtype of T.

Preconditions cannot be strengthened in a subtype
A precondition establishes the conditions under which some code will work. You
can’t just assume what you’ve written will work anyway, anyhow, anywhere. For
example, all our Importer implementations have the precondition that the file
being imported exists and is readable. As a result, the importFile method has
validation code before any Importer is invoked, as can be seen in Example 4-7.

The Liskov Substitution Principle (LSP) | 71

Example 4-7. importFile definition

 public void importFile(final String path) throws IOException {
 final File file = new File(path);
 if (!file.exists()) {
 throw new FileNotFoundException(path);
 }

 final int separatorIndex = path.lastIndexOf('.');
 if (separatorIndex != -1) {
 if (separatorIndex == path.length()) {
 throw new UnknownFileTypeException("No extension found For
file: " + path);
 }
 final String extension = path.substring(separatorIndex + 1);
 final Importer importer = extensionToImporter.get(extension);
 if (importer == null) {
 throw new UnknownFileTypeException("For file: " + path);
 }

 final Document document = importer.importFile(file);
 documents.add(document);
 } else {
 throw new UnknownFileTypeException("No extension found For
file: " + path);
 }
 }

LSP means that you can’t require any more restrictive preconditions than your
parent required. So, for example, you can’t require your document to be smaller
than 100KB in size if your parent should be able to import any size of document.

Postconditions cannot be weakened in a subtype
This might sound a bit confusing because it reads a lot like the first rule. Postcon‐
ditions are things that have to be true after some code has run. For example, after
importFile() has run, if the file in question is valid it must be in the list of docu‐
ments returned by contents(). So if the parent has some kind of side effect or
returns some value, then the child must do so as well.

Invariants of the supertype must be preserved in a subtype
An invariant is something that never changes, like the ebb and flow of the tides.
In the context of inheritance, we want to make sure that any invariants that are
expected to be maintained by the parent class should also be maintained by the
children.

The History Rule
This is the hardest aspect of LSP to understand. In essence, the child class
shouldn’t allow state changes that your parent disallowed. So, in our example

72 | Chapter 4: The Document Management System

program we have an immutable Document class. In other words, once it has been
instantiated you can’t remove, add, or alter any of the attributes. You shouldn’t
subclass this Document class and create a mutable Document class. This is because
any user of the parent class would expect certain behavior in response to calling
methods on the Document class. If the child were mutable, it could violate callers’
expectations about what calling those methods does.

Alternative Approaches
You could have taken a completely different approach when it comes to designing the
Document Management System. We’ll take a look at some of these alternatives now as
we think they are instructive. None of the choices could be considered wrong as such,
but we do think the chosen approach is best.

Making Importer a Class
You could have chosen to make a class hierarchy for importers, and have a class at the
top for the Importer rather than an interface. Interfaces and classes provide a differ‐
ent set of capabilities. You can implement multiple interfaces, while classes can con‐
tain instance fields and it’s more usual to have method bodies in classes.

In this case the reason to have a hierarchy is to enable different importers to be used.
You’ve already heard about our motivation for avoiding brittle class-based inheri‐
tance relationships, so it should be pretty clear that using interfaces is a better choice
here.

That’s not to say that classes wouldn’t be a better choice elsewhere. If you want to
model a strong is a relationship in your problem domain that involves state or a lot of
behavior, then class-based inheritance is more appropriate. It’s just not the choice we
think is most appropriate here.

Scoping and Encapsulation Choices
If you have taken the time to peruse the code you might notice that the Importer
interface, its implementations, and our Query class are all package scoped. Package
scope is the default scope, so if you see a class file with class Query at the top you
know it’s package scoped, and if it says public class Query it’s public scoped. Pack‐
age scoping means that other classes within the same package can see or have access to
the class, but no one else can. It’s a cloaking device.

A strange thing about the Java ecosystem is that even though package scope is the
default scope, whenever we’ve been involved in software development projects there
are always more public-scoped classes than package-scoped ones. Perhaps the
default should have been public all along, but either way package scope is a really

Alternative Approaches | 73

useful tool. It helps you encapsulate these kinds of design decisions. A lot of this sec‐
tion has commented on the different choices that are available to you around design‐
ing the system, and you may want to refactor to one of these alternative designs when
maintaining the system. This would be harder if we leaked details about this imple‐
mentation outside of the package in question. Through diligent use of package scop‐
ing you can stop classes outside of the package making so many assumptions about
that internal design.

We think it’s also worth reiterating that this is simply a justification and explanation
of these design choices. There’s nothing inherently wrong with making other choices
listed in this section—they may work out to be more appropriate depending on how
the application evolves over time.

Extending and Reusing Code
When it comes to software, the only constant is change. Over time you may want to
add features to your product, customer requirements may change, and regulations
could force you alter your software. As we alluded to earlier, there may be more
documents that Dr. Avaj would like to add to our Document Management System. In
fact, when we first came to showcase the software that we’ve written for her she
immediately realized that invoicing clients was something that she also wanted to
keep track of in this system. An invoice is a document with a body and an amount
and has an .invoice extension. Example 4-8 shows an example invoice.

Example 4-8. Invoice example

Dear Joe Bloggs

Here is your invoice for the dental treatment that you received.

Amount: $100

regards,

 Dr Avaj
 Awesome Dentist

Fortunately for us, all of Dr. Avaj’s invoices are in the same format. As you can see, we
need to extract an amount of money from this, and the amount line starts with the
Amount: prefix. The person’s name is at the beginning of the letter on a line with
the prefix Dear. In fact, our system implements a general method of finding the suffix
of a line with a given prefix, shown in Example 4-9. In this example, the field lines
has already been initialized with the lines of the file that we’re importing. We pass this
method a prefix—for example, “Amount:”—and it associates the rest of the line, the
suffix, with a provided attribute name.

74 | Chapter 4: The Document Management System

Example 4-9. addLineSuffix definition

 void addLineSuffix(final String prefix, final String attributeName) {
 for(final String line: lines) {
 if (line.startsWith(prefix)) {
 attributes.put(attributeName, line.substring(prefix.length()));
 break;
 }
 }
 }

We in fact have a similar concept when we try to import a letter. Consider the exam‐
ple letter presented in Example 4-10. Here you can extract the name of the patient by
looking for a line starting with Dear. Letters also have addresses and bodies of text
that you want to extract from the contents of the text file.

Example 4-10. Letter example

Dear Joe Bloggs

123 Fake Street
Westminster
London
United Kingdom

We are writing to you to confirm the re-scheduling of your appointment
with Dr. Avaj from 29th December 2016 to 5th January 2017.

regards,

 Dr Avaj
 Awesome Dentist

We also have a similar problem when it comes to importing patient reports. Dr. Avaj’s
reports prefix the name of the patient with Patient: and have a body of text to
include, just like letters. You can see an example of a report in Example 4-11.

Example 4-11. Report example

Patient: Joe Bloggs

On 5th January 2017 I examined Joe's teeth.
We discussed his switch from drinking Coke to Diet Coke.
No new problems were noted with his teeth.

So one option here would be to have all three text-based importers implement the
same method to find the suffixes of text lines with a given prefix that was listed in
Example 4-9. Now if we were charging Dr. Avaj based on the number of lines of code

Extending and Reusing Code | 75

that we had written, this would be a great strategy. We could triple the amount of
money that we would make for basically the same work!

Sadly (or maybe not so sadly, given the aforementioned incentives), customers rarely
pay based on the number of lines of code produced. What matters are the require‐
ments that the customer wants. So we really want to be able to reuse this code across
the three importers. In order to reuse the code we need to actually have it live in some
class. You have essentially three options to consider, each with pros and cons:

• Use a utility class
• Use inheritance
• Use a domain class

The simplest option to start with is to create a utility class. You could call this ImportU
til. Then every time you wanted to have a method that needs to be shared between
different importers it could go in this utility class. Your utility class would end up
being a bag of static methods.

While a utility class is nice and simple, it’s not exactly the pinnacle of object-oriented
programming. The object-oriented style involves having concepts in your application
be modeled by classes. If you want to create a thing, then you invoke new Thing() for
whatever your thing is. Attributes and behavior associated with the thing should be
methods on the Thing class.

If you follow this principle of modeling real-world objects as classes, it does genuinely
make it easier to understand your application because it gives you a structure and
maps a mental model of your domain onto your code. You want to alter the way that
letters are imported? Well then edit the LetterImporter class.

Utility classes violate this expectation and often end up turning into bundles of proce‐
dural code with no single responsibility or concept. Over time, this can often lead to
the appearance of a God Class in our codebase; in other words, a single large class
that ends up hogging a lot of responsibility.

So what should you do if you want to associate this behavior to a concept? Well, the
next most obvious approach might be to use inheritance. In this approach you would
have the different importers extend a TextImporter class. You could then place all the
common functionality on that class and reuse it in subclasses.

Inheritance is a perfectly solid choice of design in many circumstances. You’ve
already seen the Liskov Substitution Principle and how it puts constraints on the cor‐
rectness of our inheritance relationship. In practice, inheritance is often a poor choice
when the inheritance fails to model some real-world relationship.

76 | Chapter 4: The Document Management System

In this case, a TextImporter is an Importer and we can ensure that our classes follow
the LSP rules, but it doesn’t really seem like a strong concept to work with. The issue
with inheritance relationships that don’t correspond to real-world relationships is that
they tend to be brittle. As your application evolves over time you want abstractions
that evolve with the application rather than against it. As a rule of thumb, it’s a bad
idea to introduce an inheritance relationship purely to enable code reuse.

Our final choice is to model the text file using a domain class. To use this approach
we would model some underlying concept and build out our different importers by
invoking methods on top of the underlying concept. So what’s the concept in ques‐
tion here? Well, what we’re really trying to do is manipulate the contents of a text file,
so let’s call the class a TextFile. It’s not original or creative, but that’s the point. You
know where the functionality for manipulating text files lies, because the class is
named in a really dead simple manner.

Example 4-12 shows the definition of the class and its fields. Note that this isn’t a sub‐
class of a Document because a document shouldn’t be coupled to just text files—we
may import binary files like images as well. This is just a class that models the under‐
lying concept of a text file and has associated methods for extracting data from text
files.

Example 4-12. TextFile definition

class TextFile {
 private final Map<String, String> attributes;
 private final List<String> lines;

 // class continues ...

This is the approach that we pick in the case of importers. We think this allows us to
model our problem domain in a flexible way. It doesn’t tie us into a brittle inheritance
hierarchy, but still allows us to reuse the code. Example 4-13 shows how to import
invoices. The suffixes for the name and amount are added, along with setting the type
of the invoice to be an amount.

Example 4-13. Importing invoices

 @Override
 public Document importFile(final File file) throws IOException {
 final TextFile textFile = new TextFile(file);

 textFile.addLineSuffix(NAME_PREFIX, PATIENT);
 textFile.addLineSuffix(AMOUNT_PREFIX, AMOUNT);

 final Map<String, String> attributes = textFile.getAttributes();
 attributes.put(TYPE, "INVOICE");

Extending and Reusing Code | 77

 return new Document(attributes);
 }

You can also see another example of an importer that uses the TextFile class in
Example 4-14. No need to worry about how TextFile.addLines is implemented; you
can see an explanation of that in Example 4-15.

Example 4-14. Importing letters

 @Override
 public Document importFile(final File file) throws IOException {
 final TextFile textFile = new TextFile(file);

 textFile.addLineSuffix(NAME_PREFIX, PATIENT);

 final int lineNumber = textFile.addLines(2, String::isEmpty, ADDRESS);
 textFile.addLines(lineNumber + 1, (line) -> line.startsWith("regards,"),
BODY);

 final Map<String, String> attributes = textFile.getAttributes();
 attributes.put(TYPE, "LETTER");
 return new Document(attributes);
 }

These classes weren’t first written like this, though. They evolved into their current
state. When we started coding up the Document Management System, the first text-
based importer, the LetterImporter, had all of its text extraction logic written inline
in the class. This is a good way to start. Trying to seek out code to reuse often results
in inappropriate abstractions. Walk before you run.

As we started writing the ReportImporter it become increasingly apparent that a lot
of the text extraction logic could be shared between the two importers, and that really
they should be written in terms of method invocations upon some common domain
concept that we have introduced here—the TextFile. In fact, we even copy and pas‐
ted the code that was to be shared between the two classes to begin with.

That isn’t to say that copy and pasting code is good—far from it. But it’s often better
to duplicate a little bit of code when you start writing some classes. Once you’ve
implemented more of the application, the right abstraction—e.g., a TextFile class
will become apparent. Only when you know a little bit more about the right way to
remove duplication should you go down the route of removing the duplication.

In Example 4-15 you can see how the TextFile.addLines method was implemented.
This is common code used by different Importer implementations. Its first argument
is a start index, which tells you which line number to start on. Then there’s an isEnd
predicate that is applied to the line and returns true if we’ve reached the end of the

78 | Chapter 4: The Document Management System

line. Finally, we have the name of the attribute that we’re going to associate with this
value.

Example 4-15. addLines definition

 int addLines(
 final int start,
 final Predicate<String> isEnd,
 final String attributeName) {

 final StringBuilder accumulator = new StringBuilder();
 int lineNumber;
 for (lineNumber = start; lineNumber < lines.size(); lineNumber++) {
 final String line = lines.get(lineNumber);
 if (isEnd.test(line)) {
 break;
 }

 accumulator.append(line);
 accumulator.append("\n");
 }
 attributes.put(attributeName, accumulator.toString().trim());
 return lineNumber;
 }

Test Hygiene
As you learned in Chapter 2, writing automated tests has a lot of benefits in terms of
software maintainability. It enables us to reduce the scope for regressions and under‐
stand which commit caused them. It also enables us to refactor our code with confi‐
dence. Tests aren’t a magic panacea, though. They require that we write and maintain
a lot of code in order to get these benefits. As you know, writing and maintaining
code is a difficult proposition, and many developers find that when they first start
writing automated tests that they can take a lot of developer time.

In order to solve the problem of test maintainability you need to get to grips with test
hygiene. Test hygiene means to keep your test code clean and ensure that it is main‐
tained and improved along with your codebase under test. If you don’t maintain and
treat your tests, over time they will become a burden on your developer productivity.
In this section you’ll learn about a few key points that can help to keep tests hygienic.

Test Naming
The first thing to think about when it comes to tests is their naming. Developers can
get highly opinionated about naming—it’s an easy topic to talk about a lot because
everyone can relate to it and think about the problem. We think the thing to

Test Hygiene | 79

remember is that there’s rarely a clear, really good name for something, but there are
many, many, bad names.

The first test we wrote for the Document Management System was testing that we
import a file and create a Document. This was written before we had introduced the
concept of an Importer and weren’t testing Document-specific attributes. The code is
in Example 4-16.

Example 4-16. Test for importing files

 @Test
 public void shouldImportFile() throws Exception
 {
 system.importFile(LETTER);

 final Document document = onlyDocument();

 assertAttributeEquals(document, Attributes.PATH, LETTER);
 }

This test was named shouldImportFile. The key driving principles when it comes to
test naming are readability, maintainability, and acting as executable documentation.
When you see a report of a test class being run, the names should act as statements
that document what functionality works and what does not. This allows a developer
to easily map from application behavior to a test that asserts that this behavior is
implemented. By reducing the impedence mismatch between behavior and code, we
make it easier for other developers to understand what is happening in the future.
This is a test that confirms that the document management system imports a file.

There are lots of naming anti-patterns, however. The worst anti-pattern is to name a
test something completely nondescript—for example, test1. What on earth is test1
testing? The reader’s patience? Treat people who are reading your code like you
would like them to treat you.

Another common test naming anti-pattern is just named after a concept or a noun—
for example, file or document. Test names should describe the behavior under test,
not a concept. Another test naming anti-pattern is to simply name the test after a
method that is invoked during testing, rather than the behavior. In this case the test
might be named importFile.

You might ask, by naming our test shouldImportFile haven’t we committed this sin
here? There’s some merit to the accusation, but here we’re just describing the behavior
under test. In fact, the importFile method is tested by various tests; for example,
shouldImportLetterAttributes, shouldImportReportAttributes, and shouldIm
portImageAttributes. None of those tests are called importFile—they are all
describing more specific behaviors.

80 | Chapter 4: The Document Management System

OK, now you know what bad naming looks like, so what is good test naming? You
should follow three rules of thumb and use them to drive test naming:

Use domain terminology
Align the vocabulary used in your test names with that used when describing the
problem domain or referred by the application itself.

Use natural language
Every test name should be something that you can easily read as a sentence. It
should always describe some behavior in a readable way.

Be descriptive
Code will be read many times more often than it is written. Don’t skimp on
spending more time thinking of a good name that’s descriptive up front and eas‐
ier to understand later down the line. If you can’t think of a good name, why not
ask a colleague? In golf, you win by putting in the fewest shots. Programming
isn’t like that; shortest isn’t necessarily best.

You can follow the convention used in the DocumentManagementSystemTest of prefix‐
ing test names with the word “should,” or choose not to; that’s merely a matter of per‐
sonal preference.

Behavior Not Implementation
If you’re writing a test for a class, a component, or even a system, then you should
only be testing the public behavior of whatever is being tested. In the case of the
Document Management System, we only have tests for the behavior of our public
API in the form of DocumentManagementSystemTest. In this test we test the public
API of the DocumentManagementSystem class and thus the whole system. The API can
be seen in Example 4-17.

Example 4-17. Public API of the DocumentManagementSystem class

public class DocumentManagementSystem
{
 public void importFile(final String path) {
 ...
 }

 public List<Document> contents() {
 ...
 }

 public List<Document> search(final String query) {
 ...
 }
}

Test Hygiene | 81

Our tests should only invoke these public API methods and not try to inspect the
internal state of the objects or the design. This is one of the key mistakes made by
developers that leads to hard-to-maintain tests. Relying on specific implementation
details results in brittle tests because if you change the implementation detail in ques‐
tion, the test can start to fail even if the behavior is still working. Take a look at the
test in Example 4-18.

Example 4-18. Test for importing letters

 @Test
 public void shouldImportLetterAttributes() throws Exception
 {
 system.importFile(LETTER);

 final Document document = onlyDocument();

 assertAttributeEquals(document, PATIENT, JOE_BLOGGS);
 assertAttributeEquals(document, ADDRESS,
 "123 Fake Street\n" +
 "Westminster\n" +
 "London\n" +
 "United Kingdom");
 assertAttributeEquals(document, BODY,
 "We are writing to you to confirm the re-scheduling of your appointment
\n" +
 "with Dr. Avaj from 29th December 2016 to 5th January 2017.");
 assertTypeIs("LETTER", document);
 }

One way of testing this letter-importing functionality would have been to write the
test as a unit test on the LetterImporter class. This would have looked fairly similar:
importing an example file and then making an assert about the result returned from
the importer. In our tests, though, the mere existence of the LetterImporter is an
implementation detail. In “Extending and Reusing Code” on page 74, you saw
numerous other alternative choices for laying out our importer code. By laying out
our tests in this manner, we give ourselves the choice to refactor our internals to a
different design without breaking our tests.

So we’ve said that relying on the behavior of a class relies on using the public API, but
there’s also some parts of the behavior that aren’t usually restricted just through mak‐
ing methods public or private. For example, we might not want to rely on the order of
documents being being returned from the contents() method. That isn’t a property
that’s restricted by the public API of the DocumentManagementSystem class, but simply
something that you need to be careful to avoid doing.

A common anti-pattern in this regard is exposing otherwise private state through a
getter or setter in order to make testing easier. You should try to avoid doing this

82 | Chapter 4: The Document Management System

wherever possible as it makes your tests brittle. If you have exposed this state to make
testing superficially easier, then you end up making maintaining your application
harder in the long run. This is because any change to your codebase that involves
changing the way this internal state is represented now also requires altering your
tests. This is sometimes a good indication that you need to refactor out a new class
that can be more easily and effectively tested.

Don’t Repeat Yourself
“Extending and Reusing Code” on page 74 extensively discusses how we can remove
duplicate code from our application and where to place the resulting code. The exact
same reasoning around maintenance applies equally to test code. Sadly, developers
often simply don’t bother to remove duplication from tests in the same way as they
would for application code. If you take a look at Example 4-19 you’ll see a test that
repeatedly makes asserts about the different attributes that a resulting Document has.

Example 4-19. Test for importing images

 @Test
 public void shouldImportImageAttributes() throws Exception
 {
 system.importFile(XRAY);

 final Document document = onlyDocument();

 assertAttributeEquals(document, WIDTH, "320");
 assertAttributeEquals(document, HEIGHT, "179");
 assertTypeIs("IMAGE", document);
 }

Normally you would have to look up the attribute name for every attribute and assert
that it is equal to an expected value. In the case of the tests here, this is a common
enough operation that a common method, assertAttributeEquals, was extracted
with this logic. Its implementation is shown in Example 4-20.

Example 4-20. Implementing a new assertion

 private void assertAttributeEquals(
 final Document document,
 final String attributeName,
 final String expectedValue)
 {
 assertEquals(
 "Document has the wrong value for " + attributeName,
 expectedValue,
 document.getAttribute(attributeName));
 }

Test Hygiene | 83

Good Diagnostics
Tests would be no good if they didn’t fail. In fact, if you’ve never seen a test fail how
do you know if it’s working at all? When writing tests the best thing to do is to opti‐
mize for failure. When we say optimize, we don’t mean make the test run faster when
it fails—we mean ensure that it is written in a way that makes understanding why and
how it failed as easy as possible. The trick to this is good diagnostics.

By diagnostics we mean the message and information that gets printed out when
a test fails. The clearer this message is about what has failed, the easier it is to debug
the test failure. You might ask why even bother with this when a lot of the time Java
tests are run from within modern IDEs that have debuggers built in? Well, sometimes
tests may be run within continuous integration environments, and sometimes they
may be from the command line. Even if you’re running them within an IDE it is still
helpful to have good diagnostic information. Hopefully, we’ve convinced you of the
need for good diagnostics, but what do they look like in code?

Example 4-21 shows a method that asserts that the system only contains a single
document. We will explain the hasSize() method in a little bit.

Example 4-21. Test that the system contains a single document

 private Document onlyDocument()
 {
 final List<Document> documents = system.contents();
 assertThat(documents, hasSize(1));
 return documents.get(0);
 }

The simplest type of assert that JUnit offers us is assertTrue(), which will take a
boolean value that it expects to be true. Example 4-22 shows how we could have just
used assertTrue to implement the test. In this case the value is being checked to
equal 0 so that it will fail the shouldImportFile test and thus demonstrate the failure
diagnostics. The problem with this is that we don’t get very good diagnostics—just an
AssertionError with no information in the message shown in Figure 4-1. You don’t
know what failed, and you don’t know what values were being compared. You know
nothing, even if your name isn’t Jon Snow.

Example 4-22. assertTrue example

assertTrue(documents.size() == 0);

84 | Chapter 4: The Document Management System

Figure 4-1. Screenshot of assertTrue failing

The most commonly used assertion is assertEquals, which takes two values and
checks they are equal and is overloaded to support primitive values. So here we can
assert that the size of the documents list is 0, as shown in Example 4-23. This pro‐
duces a slightly better diagnostic as shown in Figure 4-2, you know that the expected
value was 0 and the actual value was 1, but it still doesn’t give you any meaningful
context.

Example 4-23. assertEquals example

assertEquals(0, documents.size());

Figure 4-2. Screenshot of assertEquals example failing

The best way of making an assert about the size itself is to use a matcher for asserting
the collection size as this provides the most descriptive diagnostics. Example 4-24 has
our example written in that style and demonstrates the output as well. As Figure 4-3
shows, this is much clearer as to what went wrong without you needing to write any
more code.

Example 4-24. assertThat example

assertThat(documents, hasSize(0));

Test Hygiene | 85

Figure 4-3. Screenshot of assertThat example failing

What is going on here is that JUnit’s assertThat() is being used. The method assert
That() takes a value as its first parameter and a Matcher as its second. The Matcher
encapsulates the concept of whether a value matches some property and also its asso‐
ciated diagnostics. The hasSize matcher is statically imported from a Matchers utility
class that contains a bundle of different matchers and checks that the size of a collec‐
tion is equal to its parameter. These matchers come from the Hamcrest library, which
is a very commonly used Java library that enables cleaner testing.

Another example of how you can build better diagnostics was shown in
Example 4-20. Here an assertEquals would have given us the diagnostic for the
attribute’s expected value and actual value. It wouldn’t have told us what the name of
the attribute was, so this was added into the message string to help us understand fail‐
ure.

Testing Error Cases
One of the absolute worst and most common mistakes to make when writing soft‐
ware is only to test the beautiful, golden, happy path of your application—the code
path that is executed when the sun is shining on you and nothing goes wrong. In
practice lots of things can go wrong! If you don’t test how your application behaves in
these situations, you’re not going to end up with software that will work reliably in a
production setting.

When it comes to importing documents into our Document Management System
there are a couple of error cases that might happen. We might try to import a file that
doesn’t exist or can’t be read, or we might try to import a file that we don’t know how
to extract text from or read.

Our DocumentManagementSystemTest has a couple of tests, shown in Example 4-25,
that test these two scenarios. In both cases we try to import a path file that will expose
the problem. In order to make an assert about the desired behavior we use the
expected = attribute of JUnit’s @Test annotation. This enables you to say Hey listen,
JUnit, I’m expecting this test to throw an exception, it’s of a certain type.

86 | Chapter 4: The Document Management System

http://hamcrest.org/

Example 4-25. Testing for error cases

 @Test(expected = FileNotFoundException.class)
 public void shouldNotImportMissingFile() throws Exception
 {
 system.importFile("gobbledygook.txt");
 }

 @Test(expected = UnknownFileTypeException.class)
 public void shouldNotImportUnknownFile() throws Exception
 {
 system.importFile(RESOURCES + "unknown.txt");
 }

You may want an alternative behavior to simply throwing an exception in the case of
an error, but it’s definitely helpful to know how to assert that an exception is thrown.

Constants
Constants are values that do not change. Let’s face it—they are one of the few well-
named concepts when it comes to computer programming. The Java programming
language doesn’t use an explicit const keyword like C++ does, but conventionally
developers create static field fields in order to represent constants. Since many
tests consist of examples of how a part of your computer program should be used,
they often consist of many constants.

It’s a good idea when it comes to constants that have some kind of nonobvious mean‐
ing to give them a proper name that can be used within tests. We do that extensively
through the DocumentManagementSystemTest, and in fact, have a block at the top
dedicated to declaring constants, shown in Example 4-26.

Example 4-26. Constants

public class DocumentManagementSystemTest
{
 private static final String RESOURCES =
 "src" + File.separator + "test" + File.separator + "resources" + File.separa
tor;
 private static final String LETTER = RESOURCES + "patient.letter";
 private static final String REPORT = RESOURCES + "patient.report";
 private static final String XRAY = RESOURCES + "xray.jpg";
 private static final String INVOICE = RESOURCES + "patient.invoice";
 private static final String JOE_BLOGGS = "Joe Bloggs";

Test Hygiene | 87

Takeaways
• You learned how to build a Document Management System.
• You recognized the different trade-offs between different implementation

approaches.
• You understood several principles that drive the design of software.
• You were introduced to the Liskov Substitution Principle as a way to think about

inheritance.
• You learned about situations where inheritance wasn’t appropriate.

Iterating on You
If you want to extend and solidify the knowledge from this section you could try one
of these activities:

• Take the existing sample code and add an implementation for importing pre‐
scription documents. A prescription should have a patient, a drug, a quantity, a
date, and state the conditions for taking a drug. You should also write a test that
checks that the prescription import works.

• Try implementing the Game of Life Kata.

Completing the Challenge
Dr. Avaj is really pleased with your Document Management System and she now uses
it extensively. Her needs are effectively met by the features because you drove your
design from her requirements toward application behavior and into your implemen‐
tation details. This is a theme that you will return to when TDD is introduced in the
next chapter.

88 | Chapter 4: The Document Management System

https://oreil.ly/RrxJU

CHAPTER 5

The Business Rules Engine

The Challenge
Your business is now doing really well. In fact, you’ve now scaled to an organization
with thousands of employees. This mean you’ve hired many people for different busi‐
ness functions: marketing, sales, operations, admin, accounting, and so on. You real‐
ize that all the business functions have requirements for creating rules that trigger
actions depending on some conditions; for example, “notify sales team if prospect’s
job title is ‘CEO’.” You could be asking your tech team to implement each new
requirement with bespoke software, but your developers are quite busy working on
other products. In order to encourage collaboration between the business team and
the tech team, you’ve decided that you will develop a Business Rules Engine that will
enable developers and the business team to write code together. This will allow you to
increase productivity and reduce the time it takes to implement new rules because
your business team will be able to contribute directly.

The Goal
In this chapter you’ll first learn about how to approach a new design problem using
test-driven development. You will get an overview about a technique called mocking,
which will help specify unit tests. You will then learn about a couple of modern fea‐
tures in Java: local variable type inference and switch expressions. Finally, you’ll learn
how to develop a friendly API using the Builder pattern and the Interface Segregation
Principle.

89

If at any point you want to look at the source code for this chapter,
you can look at the package com.iteratrlearning.shu_book.chap
ter_05 in the book’s code repository.

Business Rules Engine Requirements
Before you start, let’s think about what is it you want to achieve. You’d like to enable
nonprogrammers to add or change business logic in their own workflow. For exam‐
ple, a marketing executive may wish to apply a special discount when a prospect is
making an inquiry about one of your products and fits certain criteria. An accounting
executive may wish to create an alert if expenses are unusually high. These are exam‐
ples of what you can achieve with a Business Rules Engine. It’s essentially software
that executes one or more business rules that are often declared using a simple
bespoke language. A Business Rules Engine can support multiple different
components:

Facts
The available information to which rules have access

Actions
The operation you want to perform

Conditions
These specify when an action should be triggered

Rules
These specify the business logic you want to execute, essentially grouping facts,
conditions, and actions together

The main productivity benefit of a Business Rules Engine is that it enables rules to be
maintained, executed, and tested within one place without having to integrate with a
main application.

There are many production-ready Java Business Rules Engine such
as Drools. Typically such an engine conforms to standards such as
the Decision Model and Notation (DMN) and comes with a central‐
ized rule repository, an editor using a Graphical User Interface
(GUI), and visualization tools to help maintenance of complex
rules. In this chapter, you will develop a minimal viable product for
a Business Rules Engine and iterate over it to improve both its
functionality and accessibility.

90 | Chapter 5: The Business Rules Engine

https://www.drools.org

Test Driven Development
Where do you start? The requirements are not set in stone and are expected to evolve
so you begin by simply listing the basic features you will need your users to
undertake:

• Add an action
• Run the action
• Basic reporting

This translates in the basic API shown in Example 5-1. Each method throws an Unsup
portedOperationException indicating it is yet to be implemented.

Example 5-1. Basic API for Business Rules Engine

public class BusinessRuleEngine {

 public void addAction(final Action action) {
 throw new UnsupportedOperationException();
 }

 public int count() {
 throw new UnsupportedOperationException();
 }

 public void run() {
 throw new UnsupportedOperationException();
 }

}

An action is simply a piece of code that will be executed. We could use the Runnable
interface, but introducing a separate interface Action is more representative of the
domain at hand. The Action interface will allow the Business Rules Engine to be
decoupled from concrete actions. Since the Action interface only declares a single
abstract method, we can annotate it as a functional interface, as shown in
Example 5-2.

Example 5-2. The Action interface

@FunctionalInterface
public interface Action {
 void execute();
}

Test Driven Development | 91

Where do we go from here? It’s now time to actually write some code—where is the
implementation? You will use an approach called test-driven development (TDD). The
TDD philosophy is to start writing some tests that are going to let you guide the
implementation of the code. In other words, you write tests first before the actual
implementation. It’s a bit like doing the opposite of what you’ve been doing so far:
you wrote the full code for a requirement and then tested it. You will now focus more
on the tests.

Why Use TDD?
Why should you take this approach? There are several benefits:

• Writing a test at a time will help you focus and refine the requirements by cor‐
rectly implementing one thing at a time.

• It’s a way to ensure a relevant organization for your code. For example, by writing
a test first, you need to think hard about the public interfaces for your code.

• You are building a comprehensive test suite as you iterate through the require‐
ments, which increases confidence that you are matching the requirements and
also reduces the scope of bugs.

• You don’t write code that you don’t need (over-engineer) because you’re just writ‐
ing code that passes the tests.

The TDD Cycle
The TDD approach roughly consists of the following steps in a cycle, as depicted in
Figure 5-1:

1. Write a test that fails
2. Run all tests
3. Make the implementation work
4. Run all tests

92 | Chapter 5: The Business Rules Engine

Figure 5-1. TDD cycle

In practice, as part of this process, you must continuously refactor your code or it will
end up unmaintainable. At this moment you know you have a suite of tests that you
can rely on when you introduce changes. Figure 5-2 illustrates this improved TDD
process.

Figure 5-2. TDD with refactoring

In the spirit of TDD, let’s start by writing our first tests to verify that addActions and
count behave correctly, as shown in Example 5-3.

Example 5-3. Basic tests for the Business Rules Engine

@Test
void shouldHaveNoRulesInitially() {
 final BusinessRuleEngine businessRuleEngine = new BusinessRuleEngine();

 assertEquals(0, businessRuleEngine.count());
}

@Test
void shouldAddTwoActions() {

Test Driven Development | 93

 final BusinessRuleEngine businessRuleEngine = new BusinessRuleEngine();

 businessRuleEngine.addAction(() -> {});
 businessRuleEngine.addAction(() -> {});

 assertEquals(2, businessRuleEngine.count());
}

When running the tests, you will see that they fail with an UnsupportedOperationEx
ception, as shown in Figure 5-3.

Figure 5-3. Failing tests

All tests are failing, but that’s fine. It gives us a reproducible test suite that will guide
the implementation of the code. Now can add some implementation code, as shown
in Example 5-4.

Example 5-4. Basic implementation for the Business Rules Engine

public class BusinessRuleEngine {

 private final List<Action> actions;

 public BusinessRuleEngine() {
 this.actions = new ArrayList<>();
 }

 public void addAction(final Action action) {
 this.actions.add(action);
 }

 public int count() {
 return this.actions.size();
 }

 public void run(){
 throw new UnsupportedOperationException();
 }
}

You can now rerun the tests and they are passing! However, there’s one crucial opera‐
tion missing. How do we write a test for the method run? Unfortunately, run() does

94 | Chapter 5: The Business Rules Engine

not return any result. We are going to need a new technique called mocking to verify
that the method run() operates correctly.

Mocking
Mocking is a technique that will allow you to verify that when the method run() is
executed, each action that was added to the Business Rules Engine is actually exe‐
cuted. At the moment it is difficult to do because both the methods run() in Busi
nessRuleEngine and perform() in Action are returning void. We have no way to
write an assertion! Mocking is covered in detail in Chapter 6, but you will get a brief
overview now so you are able to progress with writing a test. You’ll be using Mockito,
which is a popular mocking library for Java. At its simplest you can do two things:

1. Create a mock.
2. Verify that a method is called.

So how do you get started? You will need to import the library first:

import static org.mockito.Mockito.*;

This import allows you to use the methods mock() and verify(). The static method
mock() allows you to create a mock object which you can then verify that certain
behaviors happen. The method verify() allows you to set up assertions that a partic‐
ular method is invoked. Example 5-5 shows an example.

Example 5-5. Mocking and verifying interaction with an Action object

@Test
void shouldExecuteOneAction() {
 final BusinessRuleEngine businessRuleEngine = new BusinessRuleEngine();
 final Action mockAction = mock(Action.class);

 businessRuleEngine.addAction(mockAction);
 businessRuleEngine.run();

 verify(mockAction).perform();
}

The unit test creates a mock object for Action. This is done by passing the class as
argument to the mock method. Next, you have the when part of your test where you
invoke behaviors. Here we are adding the action and executing the method run().
Finally, you have the then part of the unit tests, which sets up assertions. In this case,
we verify that the method perform() on the Action object was invoked.

If you run this test it will fail as expected with a UnsupportedOperationException.
What if the body of run() is empty? You will receive a new exception trace:

Mocking | 95

Wanted but not invoked:
action.perform();
-> at BusinessRuleEngineTest.shouldExecuteOneAction(BusinessRuleEngineTest.java:
35)
Actually, there were zero interactions with this mock.

This error is coming from Mockito and tells you that the method perform() was
never invoked. It’s now time to write the correct implementation for the method
run(), as shown in Example 5-6.

Example 5-6. The run() method implementation

public void run() {
 this.actions.forEach(Action::perform);
}

Re-run the tests and you will now see the test passing. Mockito was able to verify that
when the Business Rules Engine is running, the method perform() on the Action
object should be invoked. Mockito allows you to specify sophisticated verification
logic such as how many times a method should be invoked, with certain arguments,
etc. You will learn more about this in Chapter 6.

Adding Conditions
You have to admit that so far the Business Rules Engine is pretty limiting. You can
only declare simple actions. However, in practice, the users of the Business Rules
Engine will need to execute actions based on certain conditions. These conditions
will be dependent on some facts. For example, notify the sales team only if the pros‐
pect’s job title is CEO.

Modeling State
You may start by writing code that adds an action and refers to a local variable using
an anonymous class as shown in Example 5-7, or using a lambda expression as shown
in Example 5-8.

Example 5-7. Adding an action using an anonymous class

// this object could be created from a form
final Customer customer = new Customer("Mark", "CEO");

businessRuleEngine.addAction(new Action() {

 @Override
 public void perform() {
 if ("CEO".equals(customer.getJobTitle())) {
 Mailer.sendEmail("sales@company.com", "Relevant customer: " + customer);

96 | Chapter 5: The Business Rules Engine

 }
 }
});

Example 5-8. Adding an action using a lambda expression

// this object could be created from a form
final Customer customer = new Customer("Mark", "CEO");

businessRuleEngine.addAction(() -> {
 if ("CEO".equals(customer.getJobTitle())) {
 Mailer.sendEmail("sales@company.com", "Relevant customer: " + customer);
 }
});

However, this approach is inconvenient for several reasons:

1. How do you test the action? It’s not an independent piece of functionality; it has a
hardcoded dependency on the customer object.

2. The customer object is not grouped with the action. It is a sort of external state
that is shared around, leading to a confusing mix of responsibilities.

So what do we need? We need to encapsulate the state that is available to actions
within the Business Rules Engine. Let’s model these requirements by introducing a
new class called Facts, which will represent the state available as part of the Business
Rules Engine, and an updated Action interface that can operate on facts. An updated
unit test is shown in Example 5-9. The unit test checks that when the Business Rules
Engine runs, the specified action is actually invoked with the Facts object passed as
an argument.

Example 5-9. Testing an action with facts

@Test
public void shouldPerformAnActionWithFacts() {
 final Action mockAction = mock(Action.class);
 final Facts mockFacts = mock(Facts.class);
 final BusinessRuleEngine businessRuleEngine = new BusinessRuleEngine(mocked
Facts);

 businessRuleEngine.addAction(mockAction);
 businessRuleEngine.run();

 verify(mockAction).perform(mockFacts);
}

Adding Conditions | 97

To follow the TDD philosophy, this test will initially fail. You always need to run the
tests to begin with to ensure that they fail, otherwise you may write a test that acci‐
dentally passes. To make the test pass you will need to update the API and implemen‐
tation code. First, you’ll introduce the Facts class, which allows you to store a fact
represented as a key and a value. The benefit of introducing a separate Facts class for
modeling state is that you can control the operations available to your users by pro‐
viding a public API, and also unit test the behavior of the class. For the time being,
the Facts class will only support String keys and String values. The code for the
Facts class is shown in Example 5-10. We chose the names getFact and addFact
because they better represent the domain at hand (working with facts) rather than
getValue and setValue.

Example 5-10. The Facts class

public class Facts {

 private final Map<String, String> facts = new HashMap<>();

 public String getFact(final String name) {
 return this.facts.get(name);
 }

 public void addFact(final String name, final String value) {
 this.facts.put(name, value);
 }
}

You’ll now need to refactor the Action interface so that the perform() method can
use a Facts object passed as an argument. This way it’s clear the facts are available
within the context of the single Action (Example 5-11).

Example 5-11. The Action interface that takes facts

@FunctionalInterface
public interface Action {
 void perform(Facts facts);
}

Finally, you can now update the BusinessRuleEngine class to utilize the facts and the
updated Action’s perform() method as shown in Example 5-12.

Example 5-12. BusinessRuleEngine with facts

public class BusinessRuleEngine {

 private final List<Action> actions;

98 | Chapter 5: The Business Rules Engine

 private final Facts facts;

 public BusinessRuleEngine(final Facts facts) {
 this.facts = facts;
 this.actions = new ArrayList<>();
 }

 public void addAction(final Action action) {
 this.actions.add(action);
 }

 public int count() {
 return this.actions.size();
 }

 public void run() {
 this.actions.forEach(action -> action.perform(facts));
 }
}

Now that the Facts object is available to actions, you can specify arbitrary logic in
your code that looks up the Facts object as shown in Example 5-13.

Example 5-13. An action utilizing the facts

businessRuleEngine.addAction(facts -> {
 final String jobTitle = facts.getFact("jobTitle");
 if ("CEO".equals(jobTitle)) {
 final String name = facts.getFact("name");
 Mailer.sendEmail("sales@company.com", "Relevant customer: " + name);
 }
});

Let’s look at some more examples. This is also a good opportunity to introduce two
recent features in Java, which we explore in order:

• Local variable type inference
• Switch expressions

Local Variable Type Inference
Java 10 introduced variable local type inference. Type inference is the idea that the
compiler can figure out the static types for you so you don’t have to type them. You
saw an example of type inference earlier in Example 5-10 when you wrote

Map<String, String> facts = new HashMap<>();

instead of

Adding Conditions | 99

Map<String, String> facts = new HashMap<String, String>();

This is a feature that was introduced in Java 7 called the diamond operator. Essentially,
you can omit the type parameters of generics (in this case String, String) in an
expression when its context determines them. In the preceding code, the lefthand
side of the assignment indicates the keys and values of the Map should be Strings.

Since Java 10, type inference has been extended to work on local variables. For exam‐
ple, the code in Example 5-14 can be rewritten using the var keyword and local vari‐
able type inference shown in Example 5-15.

Example 5-14. Local variable declaration with explicit types

Facts env = new Facts();
BusinessRuleEngine businessRuleEngine = new BusinessRuleEngine(env);

Example 5-15. Local variable type inference

var env = new Facts();
var businessRuleEngine = new BusinessRuleEngine(env);

By using the var keyword in the code shown in Example 5-15, the variable env still
has a static type Facts and the variable businessRuleEngine still has the static type
BusinessRuleEngine.

A variable declared using the var keyword is not made final. For
example, this code:

final Facts env = new Facts();

is not strictly equivalent to:
var env = new Facts();

You can still assign another value to the variable env after declaring
it using var. You’d have to explicitly add the final keyword as fol‐
lows in front of the variable env for it to be final:

final var env = new Facts()

In the rest of the chapters, we simply use the var keyword without
final for brevity as it is in the spirit of code conciseness. When we
explicitly declare the type of a variable, we use the final keyword.

Type inference helps reduce the amount of time taken to write Java code. However,
should you use this feature all the time? It’s worth remembering that developers
spend more time reading code than writing it. In other words, you should think
about optimizing for ease of reading over ease of writing. The extent to which var
improves this will always be subjective. You should always be focusing on what helps

100 | Chapter 5: The Business Rules Engine

your teammates read your code, so if they are happy reading code with var then you
should use it, otherwise not. For example, here we can refactor the code in
Example 5-13 to use local variable type inference to tidy up the code as shown in
Example 5-16.

Example 5-16. An action utilizing the facts and local variable type inference

businessRuleEngine.addAction(facts -> {
 var jobTitle = facts.getFact("jobTitle");
 if ("CEO".equals(jobTitle)) {
 var name = facts.getFact("name");
 Mailer.sendEmail("sales@company.com", "Relevant customer: " + name);
 }
});

Switch Expressions
So far you’ve only set up actions with exactly one condition to handle. This is pretty
limiting. For example, say you work with your sales team. They may record on their
Customer Relationship Management (CRM) system different deals with different
amounts that have different stages. A deal stage may be represented as an enum Stage
with values including LEAD, INTERESTED, EVALUATING, CLOSED, as shown in
Example 5-17.

Example 5-17. Enum representing different deal stages

public enum Stage {
 LEAD, INTERESTED, EVALUATING, CLOSED
}

Depending on the stage of the deal you can assign a rule that gives you the probability
of winning the deal. Consequently, you can help the sales team with generating a
forecast. Say for a particular team, LEAD has 20% probability to convert, then a deal at
stage LEAD with amount of 1000USD will have a forecasted amount of 200USD. Let’s
create an action to model these rules and return a forecasted amount for a particular
deal as shown in Example 5-18.

Example 5-18. A rule to calculate a forecast amount for a specific deal

businessRuleEngine.addAction(facts -> {
 var forecastedAmount = 0.0;
 var dealStage = Stage.valueOf(facts.getFact("stage"));
 var amount = Double.parseDouble(facts.getFact("amount"));
 if(dealStage == Stage.LEAD){
 forecastedAmount = amount * 0.2;
 } else if (dealStage == Stage.EVALUATING) {

Adding Conditions | 101

 forecastedAmount = amount * 0.5;
 } else if(dealStage == Stage.INTERESTED) {
 forecastedAmount = amount * 0.8;
 } else if(dealStage == Stage.CLOSED) {
 forecastedAmount = amount;
 }
 facts.addFact("forecastedAmount", String.valueOf(forecastedAmount));
});

The code shown in Example 5-18 is essentially providing a value for each enum value
available. A preferred language construct is the switch statement as it’s more suc‐
cinct. This is shown in Example 5-19.

Example 5-19. A rule to calculate a forecast amount for a specific deal using a switch
statement

switch (dealStage) {
 case LEAD:
 forecastedAmount = amount * 0.2;
 break;
 case EVALUATING:
 forecastedAmount = amount * 0.5;
 break;
 case INTERESTED:
 forecastedAmount = amount * 0.8;
 break;
 case CLOSED:
 forecastedAmount = amount;
 break;
}

Note all the break statements in the code in Example 5-19. The break statement
ensures that the next block in the switch statement is not executed. If you forget the
break by accident, then the code still compiles and you get what’s called a fall-through
behavior. In other words, the next block is executed and this can lead to subtle bugs.
Since Java 12 (using the language feature preview mode) you can rewrite this to avoid
the fall-through behavior and multiple breaks by using a different syntax for switch.
switch can now be used as an expression, as illustrated in Example 5-20.

Example 5-20. Switch expression with no fall-through behavior

var forecastedAmount = amount * switch (dealStage) {
 case LEAD -> 0.2;
 case EVALUATING -> 0.5;
 case INTERESTED -> 0.8;
 case CLOSED -> 1;
}

102 | Chapter 5: The Business Rules Engine

Another benefit of this enhanced switch form, besides increased readability, is
exhaustiveness. This means that when you use switch with an enum, the Java com‐
piler checks that for all enum values there’s a corresponding switch label. For exam‐
ple, if you forget to handle the CLOSED case, the Java compiler would produce the
following error:

error: the switch expression does not cover all possible input values.

You can rewrite the overall action using a switch expression as shown in
Example 5-21.

Example 5-21. A rule to calculate a forecast amount for a specific deal

businessRuleEngine.addAction(facts -> {
 var dealStage = Stage.valueOf(facts.getFact("stage"));
 var amount = Double.parseDouble(facts.getFact("amount"));
 var forecastedAmount = amount * switch (dealStage) {
 case LEAD -> 0.2;
 case EVALUATING -> 0.5;
 case INTERESTED -> 0.8;
 case CLOSED -> 1;
 }
 facts.addFact("forecastedAmount", String.valueOf(forecastedAmount));
});

Interface Segregation Principle
We would now like to develop an inspector tool that allows users of the Business Rules
Engine to inspect the status of possible actions and conditions. For example, we
would like to evaluate each action and associated condition in order to log them
without actually performing the action. How do we go about this? The current
Action interface is not sufficient because it doesn’t separate the code performed ver‐
sus the condition that triggers that code. At the moment there’s no way to separate
out the condition from the action code. To make up for this, we could introduce an
enhanced Action interface that has a built-in functionality for evaluating the condi‐
tion. For example, we could create an interface ConditionalAction that includes a
new method evaluate() as shown in Example 5-22.

Example 5-22. ConditionalAction interface

public interface ConditionalAction {
 boolean evaluate(Facts facts);
 void perform(Facts facts);
}

We can now implement a basic Inspector class that takes a list of ConditionalAc
tion objects and evaluates them based on some facts, as shown in Example 5-23. The

Adding Conditions | 103

Inspector returns a list of reports that captures the facts, the conditional action, and
the result. The implementation for the Report class is shown in Example 5-24.

Example 5-23. An Inspector of conditions

public class Inspector {

 private final List<ConditionalAction> conditionalActionList;

 public Inspector(final ConditionalAction...conditionalActions) {
 this.conditionalActionList = Arrays.asList(conditionalActions);
 }

 public List<Report> inspect(final Facts facts) {
 final List<Report> reportList = new ArrayList<>();
 for (ConditionalAction conditionalAction : conditionalActionList) {
 final boolean conditionResult = conditionalAction.evaluate(facts);
 reportList.add(new Report(facts, conditionalAction, conditionResult));
 }
 return reportList;
 }
}

Example 5-24. The Report class

public class Report {

 private final ConditionalAction conditionalAction;
 private final Facts facts;
 private final boolean isPositive;

 public Report(final Facts facts,
 final ConditionalAction conditionalAction,
 final boolean isPositive) {
 this.facts = facts;
 this.conditionalAction = conditionalAction;
 this.isPositive = isPositive;
 }

 public ConditionalAction getConditionalAction() {
 return conditionalAction;
 }

 public Facts getFacts() {
 return facts;
 }

 public boolean isPositive() {
 return isPositive;
 }

104 | Chapter 5: The Business Rules Engine

 @Override
 public String toString() {
 return "Report{" +
 "conditionalAction=" + conditionalAction +
 ", facts=" + facts +
 ", result=" + isPositive +
 '}';
 }
}

How would we go about testing the Inspector? You may start by writing a simple
unit test as shown in Example 5-25. This test highlights a fundamental issue with our
current design. In fact, the ConditionalAction interface breaks the Interface Segrega‐
tion Principle (ISP).

Example 5-25. Highlighting ISP violation

public class InspectorTest {

 @Test
 public void inspectOneConditionEvaluatesTrue() {

 final Facts facts = new Facts();
 facts.setFact("jobTitle", "CEO");
 final ConditionalAction conditionalAction = new JobTitleCondition();
 final Inspector inspector = new Inspector(conditionalAction);

 final List<Report> reportList = inspector.inspect(facts);

 assertEquals(1, reportList.size());
 assertEquals(true, reportList.get(0).isPositive());
 }

 private static class JobTitleCondition implements ConditionalAction {

 @Override
 public void perform(Facts facts) {
 throw new UnsupportedOperationException();
 }

 @Override
 public boolean evaluate(Facts facts) {
 return "CEO".equals(facts.getFact("jobTitle"));
 }
 }
}

What is the Interface Segregation Principle? You may notice that the implementation
of the perform method is empty. In fact, it throws an UnsupportedOperationExcep

Adding Conditions | 105

tion. This is a situation where you are coupled to an interface (ConditionalAction)
that provides more than what you need. In this case, we just want a way to model a
condition—something that evaluates to either true or false. Nonetheless, we are
forced to depend on the perform() method because it is part of the interface.

This general idea is the foundation of the Interface Segregation Principle. It makes the
case that no class should be forced to depend on methods it does not use because this
introduces unnecessary coupling. In Chapter 2, you learned about another principle,
the Single Responsibility Principle (SRP), which promotes high cohesion. The SRP is a
general design guideline that a class has responsibility over a single functionality and
there should be only one reason for it to change. Although the ISP may sound like the
same idea, it takes a different view. The ISP focuses on the user of an interface rather
than its design. In other words, if an interface ends up very large, it may be that the
user of that interface sees some behaviors it doesn’t care for, which causes unneces‐
sary coupling.

To provide a solution that meets the Interface Segregation Principle, we are encour‐
aged to separate out concepts in smaller interface that can evolve separately. This idea
essentially promotes higher cohesion. Separating out interfaces also provides an
opportunity for introducing names that are closer to the domain at hand, such as
Condition and Action, which we explore in the next section.

Designing a Fluent API
So far we’ve provided a way for our users to add actions with complex conditions.
These conditions were created using the enhanced switch statement. However, for
business users the syntax isn’t as friendly as it could be to specify simple conditions.
We’d like to allow them to add rules (a condition and an action) in a way that matches
their domain and is simpler to specify. In this section, you will learn about the Builder
pattern and how to develop your own Fluent API to address this problem.

What Is a Fluent API?
A Fluent API is an API that is explicitly tailored for a specific domain so that you can
solve a specific problem more intuitively. It also embraces the idea of chaining
method calls to specify a more complex operation. There are several high-profile Flu‐
ent APIs you may be already familiar with:

• The Java Streams API allows you to specify data processing queries in a way that
reads more like the problem you need to solve.

• Spring Integration offers a Java API to specify enterprise integration patterns
using a vocabulary close to the domain of enterprise integration patterns.

106 | Chapter 5: The Business Rules Engine

https://oreil.ly/549wN
https://oreil.ly/rMIMD

• jOOQ offers a library to interact with different databases using an intuitive API.

Modeling the Domain
So what is it that we want to simply for our business users? We’d like to help them
specify a simple combination of “when some condition holds,” “then do something”
as a rule. There are three concepts in this domain:

Condition
A condition applied on certain facts that will evaluate to either true or false.

Action
A specific set of operations or code to execute.

Rule
This is a condition and an action together. The action only runs if the condition
is true.

Now that we’ve defined the concepts in the domain, we translate it into Java! Let’s first
define the Condition interface and reuse our existing Action interface as shown in
Example 5-26. Note that we could have also used the java.util.function.Predi
cate interface available since Java 8, but the name Condition better represents our
domain.

Names are very important in programming because good names
help you understand the problem that your code is solving. Names
are in many cases more important than the “shape” of the interface
(in terms of its parameters and return types), because the names
convey contextual information to humans reading the code.

Example 5-26. The Condition interface

@FunctionalInterface
public interface Condition {
 boolean evaluate(Facts facts);
}

Now the remaining question is how to model the concept of a rule? We can define a
interface Rule with an operation perform(). This will allow you to provide different
implementations of a Rule. A suitable default implementation of this interface is a
class DefaultRule, which will hold a Condition and Action object together with the
appropriate logic to perform a rule as shown in Example 5-27.

Designing a Fluent API | 107

https://www.jooq.org/

Example 5-27. Modeling the concept of a rule

@FunctionalInterface
interface Rule {
 void perform(Facts facts);
}

public class DefaultRule implements Rule {

 private final Condition condition;
 private final Action action;

 public Rule(final Condition condition, final Action action) {
 this.condition = condition;
 this.action = action;
 }

 public void perform(final Facts facts) {
 if(condition.evaluate(facts)){
 action.execute(facts);
 }
 }
}

How do we create new rules using all these different elements? You can see an exam‐
ple in Example 5-28.

Example 5-28. Building a rule

final Condition condition = (Facts facts) -> "CEO".equals(facts.getFact("jobTi
tle"));
final Action action = (Facts facts) -> {
 var name = facts.getFact("name");
 Mailer.sendEmail("sales@company.com", "Relevant customer!!!: " + name);
};

final Rule rule = new DefaultRule(condition, action);

Builder Pattern
However, even though the code uses names that are close to our domain (Condition,
Action, Rule), this code is fairly manual. The user has to instantiate separate objects
and assemble things together. Let’s introduce what’s called the Builder pattern to
improve the process of creating a Rule object with the appropriate condition and
action. The purpose of this pattern is to allow the creation of an object in a simpler
manner. The Builder pattern essentially deconstructs the parameters of a constructor
and instead provides methods to supply each of the parameters. The benefit of this
approach is that it allows you to declare methods with names that are suitable to the
domain at hand. For example, in our case we’d like to use the vocabulary when and

108 | Chapter 5: The Business Rules Engine

then. The code in Example 5-29 shows how to set up the Builder pattern to build a
DefaultRule object. We’ve introduced a method when(), which supplies the condi‐
tion. The method when() returns this (i.e., the current instance), which will allow us
to chain up further methods. We’ve also introduced a method then(), which will sup‐
ply the action. The method then() also returns this, which allows us to further chain
a method. Finally, the method createRule() is responsible for the creation of the
DefaultRule object.

Example 5-29. Builder pattern for a Rule

public class RuleBuilder {
 private Condition condition;
 private Action action;

 public RuleBuilder when(final Condition condition) {
 this.condition = condition;
 return this;
 }

 public RuleBuilder then(final Action action) {
 this.action = action;
 return this;
 }

 public Rule createRule() {
 return new DefaultRule(condition, action);
 }
}

Using this new class, you can create RuleBuilder and configure a Rule using the
methods when(), then(), and createRule() as shown in Example 5-30. This idea of
chaining methods is a key aspect of designing a Fluent API.

Example 5-30. Using the RuleBuilder

Rule rule = new RuleBuilder()
 .when(facts -> "CEO".equals(facts.getFact("jobTitle")))
 .then(facts -> {
 var name = facts.getFact("name");
 Mailer.sendEmail("sales@company.com", "Relevant customer: " + name);
 })
 .createRule();

This code looks more like a query and it leverages the domain at hand: the notion of
a rule, when(), and then() as built-in constructs. But it’s not entirely satisfactory
because there are still two awkward constructs the user of your API will have to
encounter:

Designing a Fluent API | 109

• Instantiate an “empty” RuleBuilder
• Call the method createRule()

We can improve this by coming up with a slightly improved API. There are three pos‐
sible improvements:

• We’ll make the constructor private so that it can not be invoked explicitly by a
user. This means that we will need to come up with a different entry point for our
API.

• We can make the method when() static so it’s invoked directly and essentially
short circuits the invocation to the old constructor. In addition, a static factor
method improves discoverability of what’s the right method to use to set up Rule
objects.

• The method then() will become responsible for the final creation of our
DefaultRule object.

Example 5-31 shows the improved RuleBuilder.

Example 5-31. Improved RuleBuilder

public class RuleBuilder {
 private final Condition condition;

 private RuleBuilder(final Condition condition) {
 this.condition = condition;
 }

 public static RuleBuilder when(final Condition condition) {
 return new RuleBuilder(condition);
 }

 public Rule then(final Action action) {
 return new DefaultRule(condition, action);
 }
}

You can now simply create rules by starting with the RuleBuilder.when() method
followed by the then() method as shown in Example 5-32.

Example 5-32. Using the improved RuleBuilder

final Rule ruleSendEmailToSalesWhenCEO = RuleBuilder
 .when(facts -> "CEO".equals(facts.getFact("jobTitle")))
 .then(facts -> {
 var name = facts.getFact("name");

110 | Chapter 5: The Business Rules Engine

 Mailer.sendEmail("sales@company.com", "Relevant customer!!!: " + name);
 });

Now that we’ve refactored the RuleBuilder, we can refactor the Business Rules
Engine to support rules instead of just actions, as shown in Example 5-33.

Example 5-33. Updated Business Rules Engine

public class BusinessRuleEngine {

 private final List<Rule> rules;
 private final Facts facts;

 public BusinessRuleEngine(final Facts facts) {
 this.facts = facts;
 this.rules = new ArrayList<>();
 }

 public void addRule(final Rule rule) {
 this.rules.add(rule);
 }

 public void run() {
 this.rules.forEach(rule -> rule.perform(facts));
 }

}

Takeaways
• The test-driven development philosophy starts with writing some tests that are

going to let you guide the implementation of the code.
• Mocking allows you to write unit tests that assert that certain behaviors are

triggered.
• Java supports local variable type inferences and switch expressions.
• The Builder pattern helps design a user-friendly API for instantiating complex

objects.
• The Interface Segregation Principle helps promote high cohesion by reducing

dependence on unnecessary methods. This is achieved by breaking up large
interfaces into smaller cohesive interfaces so that users only see what they need.

Takeaways | 111

Iterating on You
If you want to extend and solidify the knowledge from this chapter you could try one
of these activities:

• Enhance the Rule and RuleBuilder to support a name and description.
• Enhance the Facts class so the facts can be loaded from a JSON file.
• Enhance the Business Rules Engine to support rules having multiple conditions.
• Enhance the Business Rules Engine to support rules with different priorities.

Completing the Challenge
Your business is booming and your company has adopted the Business Rules Engine
as part of its workflow! You are now looking for your next idea and want to put your
software development skills to something new that will help the world rather than
just your company. It’s time to jump to the next chapter—Twootr!

112 | Chapter 5: The Business Rules Engine

CHAPTER 6

Twootr

The Challenge
Joe was an excited young chap, keen to tell me all about his new startup idea. He was
on a mission to help people communicate better and faster. He enjoyed blogging but
wondered about how to get people to blog more frequently in smaller amounts. He
was calling it micro-blogging. The big idea was that if you restricted the size of the
messages to 140 characters that people would post little and often rather than in big
messages.

We asked Joe if he felt that this restriction would encourage people to just post short,
pithy statements that didn’t really mean anything. He said “Yolo!” We asked Joe how
he was going to make money. He said “Yolo!” We asked Joe what he planned to call
the product. He said “Twootr!” We thought it sounded like a cool and original idea,
so we decided to help him build his product.

The Goal
In this chapter you will learn about the big picture of putting a software application
together. A lot of the previous apps in this book were smaller examples—batch jobs
that would run on the command line. Twootr is a server-side Java application, similar
to the kind of application that most Java developers write.

In this chapter you’ll have the opportunity to learn about a number of different skills:

• How to take a big picture description and break it down into different architec‐
tural concerns

• How to use test doubles to isolate and test interactions from different compo‐
nents within your codebase

113

• How to think outside-in—to go from requirements through to the core of your
application domain

At several places in this chapter we will also talk not only about the final design of the
software, but how we got there. There are a few places where we show how certain
methods iteratively evolved over the development of the project in response to an
expanding list of implemented features. This will give you a feel for how software
projects can evolve in reality, rather than simply presenting an idealized final design
abstract of its thought process.

Twootr Requirements
The previous applications that you’ve seen in this book are all line-of-business appli‐
cations that process data and documents. Twootr, on the other hand, is a user-facing
application. When we talked to Joe about the requirements for his system, it became
apparent that he had refined his ideas a bit. Each micro-blog from a user would be
called a twoot and users would have a constant stream of twoots. In order to see what
other users were twooting about, you would follow those users.

Joe had brainstormed some different use cases—scenarios in which his users use the
service. This is the functionality that we need to get working in order to help Joe ach‐
ieve his goal of helping people communicate better:

• Users log in to Twootr with a unique user ID and password.
• Each user has a set of other users that they follow.
• Users can send a twoot, and any followers who are logged in should immediately

see the twoot.
• When users log in they should see all the twoots from their followers since they

last logged in.
• Users should be able to delete twoots. Deleted twoots should no longer be visible

to followers.
• Users should be able to log in from a mobile phone or a website.

The first step in explaining how we go about implementing a solution fit for Joe’s
needs is to overview and outline the big-picture design choices that we face.

114 | Chapter 6: Twootr

Design Overview
If at any point you want to look at the source code for this chapter,
you can look at the package com.iteratrlearning.shu_book.chap
ter_06 in the book’s code repository.
If you want to see the project in action, you should run the Twootr
Server class from your IDE and then browser to http://localhost:
8000.

If we pick out the last requirement and consider it first then it strikes us that, in con‐
trast to many of the other systems in this book, we need to build a system that has
many computers communicating together in some way. This is because our users may
be running the software on different computers—for example, one user may load the
Twootr website on their desktop at home and another may run Twootr on a mobile
phone. How will these different user interfaces talk to each other?

The most common approach taken by software developers trying to approach this
kind of problem is to use the client-server model. In this approach to developing dis‐
tributed applications we group our computers into two main groups. We have clients
who request the use of some kind of service and servers who provide the service in
question. So in our case our clients would be something like a website or a mobile
phone application that provides a UI through which we can communicate with the
Twootr server. The server would process the majority of the business logic and send
and receive twoots to different clients. This is shown in Figure 6-1.

Figure 6-1. Client-server model

It was clear from the requirements and talking to Joe that a key part of this system
working was the ability to immediately view twoots from users you follow. This
means that the user interface would have to have the ability to receive twoots from
the server as well as send them. There are, in big-picture terms, two different styles of
communication that can be used to achieve this goal: pull-based or push-based.

Design Overview | 115

Pull-Based
In a pull-based communication style the client makes a request to the server and quer‐
ies it for information. This style of communication is often called a point-to-point
style or a request-response style of communication. This is a particularly common
communication style, used by most of the web. When you load a website it will make
an HTTP request to some server, pulling the page’s data. Pull-based communication
styles are useful when the client controls what content to load. For example, if you’re
browsing wikipedia you control which pages you’re interested in reading about or
seeing next and the content responses are sent back to you. This is shown in
Figure 6-2.

Figure 6-2. Pull communications

Push-Based
Another approach is a push-based communication style. This could be referred to as a
reactive or event-driven communication approach. In this model, streams of events
are emitted by a publisher and many subscribers listen to them. So instead of each
communication being 1 to 1, they are 1 to many. This is a really useful model for sys‐
tems where different components need to talk in terms of ongoing communication
patterns of multiple events. For example, if you’re designing a stock market exchange
then different companies want to see updated prices, or ticks, constantly rather than
having to make a new request every time they want to see a new tick. This is shown in
Figure 6-3.

Figure 6-3. Push communications

In the case of Twootr, an event-driven communication style seems most suitable for
the application as it mainly consists of ongoing streams of twoots. The events in this
model would be the twoots themselves. We could definitely still design the applica‐
tion in terms of a request-response communication style. If we went down this route,
however, the client would have to be regularly polling the server and asking with a
request saying, “Hey, has anyone twooted since my last request?” In an event-driven

116 | Chapter 6: Twootr

style you simply subscribe to your events—i.e., follow another user—and the server
pushes the twoots that you’re interested in to the client.

This choice of an event-driven communication style influences the rest of the applica‐
tion design from here on in. When we write code that implements the main class of
our application, we’ll be receiving events and sending them. How to receive and send
events determines the patterns within our code and also how we write tests for our
code.

From Events to Design
Having said that, we’re building a client-server application—this chapter will focus on
the server-side component rather than the client component. In “User Interface” on
page 163 you will see how a client can be developed for this codebase, and an example
client is implemented in the code samples that go with this book. There are two rea‐
sons why we focus on the server-side component. First, this is a book on how to write
software in Java, which is extensively used on the server side but not so widely on the
client side. Second, the server side is where the business logic lies: the brains of the
application. The client side is a very simple codebase that just needs to bind a UI to
publishing and subscribing events.

Communication
Having established that we want to send and receive events, a common next step in
our design would be to pick some kind of technology to send those messages to or
from our client to our server. There are lots of choices in this area, and here are a few
routes that we could go down:

• WebSockets are a modern, lightweight communications protocol to provide
duplex (two-way) communication of events over a TCP stream. They are often
used for event-driven communication between a web browser and a web server
and is supported by recent browser releases.

• Hosted cloud-based message queues such as Amazon Simple Queue Service are
an increasingly popular choice for broadcasting and receiving events. A message
queue is a way of performing inter-process communication by sending messages
that can either be received by a single process of a group of processes. The benefit
of being a hosted service is that your company doesn’t have to expend effort on
ensuring that they are reliably hosted.

• There are many good open source message transports or message queues, such as
Aeron, ZeroMQ, and AMPQ implementations. Many of these open source
projects avoid vendor lock-in, though they may limit your choice of client to

From Events to Design | 117

something that can interact with a message queue. For example, they wouldn’t be
appropriate if your client is a web browser.

That’s far from an exhaustive list, and as you can see different technologies have dif‐
ferent trade-offs and use cases. It might be the case that, for your own program, you
pick one of these technologies. At a later date you decide that it’s not the right choice
and want to pick another. It might be that you wish to choose different types of com‐
munications technologies for different types of connecting clients. Either way, making
that decision at the beginning of your project and being forced to live with it forever
isn’t a great architectural decision. Later in this chapter we will see how it’s possible to
abstract away this architectural choice to avoid a big-mistake-up-front architectural
decision.

It’s even possibly the case that you may want to combine different communications
approaches; for example, by using different communications approaches for different
types of client. Figure 6-4 visualizes using WebSockets to communicate with a website
and Android push notifications for your Android mobile app.

Figure 6-4. Different communications approaches

GUI
Coupling the choice of UI communications technology or your UI to your core
server-side business logic also has several other disadvantages:

• It is difficult and slow to test. Every test would have to test the system by publish‐
ing and subscribing to events running in parallel with the main server.

• It breaks the Single Responsibility Principle that we talked about in Chapter 2.
• It assumes that we’re going to have a UI as our client. At first this might be a solid

assumption for Twootr, but in the glorious future we might wish to have interac‐
tive artificially intelligent chat bots helping solve user problems. Or twooting cat
GIFs at least!

118 | Chapter 6: Twootr

The takeaway from this is that we would be prudent to introduce some kind of
abstraction to decouple the messaging for our UI from the core business logic. We
need an interface through which we can send messages to the client and an interface
through which we can receive messages from the client.

Persistence
There are similar concerns at the other side of the application. How should we store
the data for Twootr? We have many choices to pick from:

• Plain-text files that we can index and search ourselves. It’s easy to see what has
been logged and avoids a dependency on another application.

• A traditional SQL database. It’s well tested and understood, with strong querying
support.

• A NoSQL database. There are a variety of different databases here with differing
use cases, query languages, and data storage models.

We don’t really know which to pick at the beginning of our software project and our
needs may evolve over time. We really want to decouple our choice of storage back‐
end from the rest of our application. There’s a similarity between these different
issues—both are about wanting to avoid coupling yourself to a specific technology.

The Hexagonal Architecture
In fact, there’s a name for a more general architectural style here that helps us solve
this problem. It’s called the Ports and Adapters or Hexagonal architecture and was
originally introduced by Alister Cockburn. The idea, shown in Figure 6-5, is that the
core of your application is the business logic that you’re writing, and you want to keep
different implementation choices separate from this core logic.

Whenever you have a technology-specific concern that you want to decouple from
the core of your business logic, you introduce a port. Events from the outside world
arrive at and depart from your business logic core through a port. An adapter is the
technology-specific implementation code that plugs into the port. For example, we
may have a port for publishing and subscribing to UI events and a WebSocket adapter
that talks to a web browser.

From Events to Design | 119

https://oreil.ly/wJO17

Figure 6-5. Hexagonal architecture

There are other components within a system for which you might want to create a
port and adapter abstraction. One thing that might be relevant to an expanded
Twootr implementation is a notification system. Informing users that they have a lot
of twoots they might be interested in logging in and seeing would be a port. You may
wish to implement this with an adapter for email or text messages.

Another example port that comes to mind is authentication services. You may wish to
start off with an adapter that just stores the usernames and passwords, later replacing
it with an OAuth backend or tying it to some other system. In the Twootr implemen‐
tation that this chapter describes we don’t go so far as to abstract out authentication.
This is because our requirements and initial brainstorming session haven’t come up
with a good reason why we might want different authentication adapters as of yet.

You might be wondering how you separate what should be a port and what should be
part of the core domain. At one extreme you could have hundreds or even thousands
of ports in your application and nearly everything could be abstracted out of the core
domain. At the other extreme you could have none at all. Where you decide your
application should live on this sliding scale is a matter of personal judgment and cir‐
cumstance: there are no rules.

A good principle to help you decide might be to think of anything that is critical to
the business problem that you’re solving as living inside the core of the application
and anything that is technology specific or involves communicating with the outside
world as living outside the core application. That is the principle that we’ve used in
this application. So business logic is part of our core domain, but responsibility for
persistence and event-driven communication with the UI are hidden behind ports.

Where to Begin
We could proceed with outlining the design in more and more detail at this stage,
designing more elaborate diagrams and deciding what functionality should live in
what class. We’ve never found that to be a terribly productive approach to writing
software. It tends to result in lots of assumptions and design decisions being pushed

120 | Chapter 6: Twootr

down into little boxes in an architecture diagram that turn out to be not so little. Div‐
ing straight into coding with no thought to overall design is unlikely to result in the
best software, either. Software development needs just enough upfront design to avoid
it collapsing into chaos, but architecture without coding enough bits to make it real
can quickly become sterile and unrealistic.

The approach of pushing all your design work before you start
writing your code is called Big Design Up Front, or BDUF. BDUF is
often contrasted with the Agile, or iterative, development method‐
ologies that have become more popular over the last 10–20 years.
Since we find iterative approaches to be more effective, we’ve
described the design process over the next couple of sections in an
iterative manner.

In the previous chapter you saw an introduction to TDD—test-driven development—
so by now you should be familiar with the fact that it’s a good idea to start writing our
project with a test class, TwootrTest. So let’s start with a test that our user can log in:
shouldBeAbleToAuthenticateUser(). In this test a user will log in and be correctly
authenticated. A skeleton for this method can be seen in Example 6-1.

Example 6-1. Skeleton for shouldBeAbleToAuthenticateUser()

@Test
public void shouldBeAbleToAuthenticateUser()
{
 // receive logon message for valid user

 // logon method returns new endpoint.

 // assert that endpoint is valid
}

In order to implement the test we need to create a Twootr class and have a way of
modeling the login event. As a matter of convention in this module any method that
corresponds to an event happening will have the prefix on. So, for example, we’re
going to create a method here called onLogon. But what is the signature of this
method—what information does it need to take as parameters and what should it
reply with?

We’ve already made the architectural decision to separate our UI communications
layer with a port. So here we need to make a decision as to how to define the API. We
need a way of emitting events to a user—for example, that another user who the user
is following has twooted. We also need a way of receiving events from a given user. In
Java we can just use a method call to represent the events. So whenever a UI adapter
wants to publish an event to Twootr, it will call a method on some object owned by

Where to Begin | 121

the core of the system. Whenever Twootr wants to publish an event, it will call a
method on some object owned by the adapter.

But the goal of ports and adapters is that we decouple the core from a specific adapter
implementation. This means we need some way of abstracting over different adapters
—an interface. We could have chosen to use an abstract class at this point in time. It
would have worked, but interfaces are more flexible because adapter classes can
implement more than one interface. Also by using an interface we’re discouraging our
future selves from the devilish temptation to add some state into the API. Introducing
state in an API is bad because different adapter implementations may want to repre‐
sent their internal state in a different way, so putting state into the API could result in
coupling.

We don’t need to use an interface for the object where user events are published as
there will only be a single implementation in the core—we can just use a regular class.
You can see what our approach looks like visually in Figure 6-6. Of course we need a
name, or indeed a pair of names, in order to represent this API for sending and
receiving events. There are lots of choices here; in practice, anything that made it
clear that these were APIs for sending and receiving events would do well.

We’ve gone with SenderEndPoint for the class that sends events to the core and Recei
verEndPoint for the interface that receives events from the core. We could in fact flip
the sender and receiver designations around to work from the perspective of the user
or the adapter. This ordering has the advantage that we’re thinking core first, adapters
second.

Figure 6-6. Events to code

Now that we know the route we’re going down we can write the shouldBeAbleToAu
thenticateUser() test. This just needs to test that when we log on to the system with
a valid username that the user logs on. What does logging on mean here? Well, we
want to return a valid SenderEndPoint object, as that is the object returned to the UI
in order to represent the user who has just logged on. We then need to add a method
to our Twootr class in order to represent the logon event happening and allow the test
to compile. The signature of our implementation is shown in Example 6-2. Since
TDD encourages us to do the minimal implementation work in order to get a test to

122 | Chapter 6: Twootr

pass and then evolve the implementation, we’ll just instantiate the SenderEndPoint
object and return it from our method.

Example 6-2. First onLogon signature

SenderEndPoint onLogon(String userId, ReceiverEndPoint receiver);

Now that we’ve got a nice green bar we need to write another test—shouldNotAuthen

ticateUnknownUser(). This will ensure that we don’t allow a user who we don’t know
about to log on to the system. When writing this test, an interesting issue crops up.
How do we model the failure scenario here? We don’t want to return a SenderEnd
Point here, but we do need a way of indicating to our UI that the logon has failed.
One approach would be to use exceptions, which we described in Chapter 3.

Exceptions could work here, but arguably it’s a bit of an abuse of the concept. Failing
to logon isn’t really an exceptional scenario—it’s a thing that happens all the time.
People typo their username, they typo their passwords, and they can sometimes even
go to the wrong website! An alternative, and common, approach would be to return
the SenderEndPoint if the logon succeeds, and return null if it fails. This is a flawed
approach for several reasons:

• If another developer uses the value without checking that it isn’t null, they get a
NullPointerException. These kinds of bugs are incredibly common mistakes
for Java developers to make.

• There is no compile-time support in order to help avoid these kind of issues.
They crop up at runtime.

• There is no way to tell from looking at the signature of a method whether it is
deliberately returning a null value to model failure or whether there’s just a bug
in the code.

A better approach that can help here is to use the Optional data type. This was intro‐
duced in Java 8 and models values that may be present or absent. It’s a generic type
and can be thought of a box where a value may or may not lurk inside—a collection
with only one or no values inside. Using Optional as a return type makes it explicit
what happens when the method fails to return its value—it returns the empty
Optional. We’ll talk about how to create and use the Optional type throughout this
chapter. So we now refactor our onLogon method to have the signature in
Example 6-3.

Where to Begin | 123

Example 6-3. Second onLogon signature

Optional<SenderEndPoint> onLogon(String userId, ReceiverEndPoint receiver);

We also need to modify the shouldBeAbleToAuthenticateUser() test in order to
ensure that it checks that the Optional value is present. Our next test is shouldNotAu
thenticateUserWithWrongPassword() and is shown in Example 6-4. This test
ensures that the user who is logging in has the correct password for their logon to
work. That means our onLogon() method needs to not only store the names of our
users, but also their passwords in a Map.

Example 6-4. shouldNotAuthenticateUserWithWrongPassword

 @Test
 public void shouldNotAuthenticateUserWithWrongPassword()
 {
 final Optional<SenderEndPoint> endPoint = twootr.onLogon(
 TestData.USER_ID, "bad password", receiverEndPoint);

 assertFalse(endPoint.isPresent());
 }

A simple approach for storing the data in this case would have been to use a
Map<String, String>, where the key is the user ID and the value is the password. In
reality, though, the concept of a user is important to our domain. We’ve got stories
that refer to users and a lot of the system’s functionality is related to users talking to
each other. It’s time for a User domain class to be added to our implementation. Our
data structure will be modified to a Map<String, User>, where the key is the user’s
ID and the value is the User object for the user in question.

A common criticism about TDD is that it discourages the design of software. That it
just leads you to write tests and you end up with an anaemic domain model and have
to just rewrite your implementation at some point. By an anaemic domain model we
mean a model where the domain objects don’t have much business logic and it’s all
scattered across different methods in a procedural style. That’s certainly a fair critique
of the way that TDD can sometimes be practiced. Spotting the right point in time to
add a domain class or make some concept real in code is a subtle thing. If the concept
is something that your user stories are always referring to, though, you should really
have something in your problem domain representing it.

There are some clear anti-patterns that you can spot, however. For example, if you’ve
built different lookup structures with the same key, that you add to at the same time
but relate to different values, then you’re missing a domain class. So if we track the set
of followers and the password for our user and we have two Map objects from the user

124 | Chapter 6: Twootr

ID, one onto followers and one onto a password, then there’s a concept in the prob‐
lem domain missing. We actually introduced our User class here with only a single
value that we cared about—the password—but an understanding of the problem
domain tells us that users are important so we weren’t being overly premature.

From this point onward in the chapter we’ll use the word “user” to
represent the generic concept of a user, and the stylized User to
represent the domain class. Similarly, we use Twootr to refer to the
system as a whole, and Twootr to refer to the class that we’re devel‐
oping.

Passwords and Security
So far we’ve avoid talking about security at all. In fact, not talking about security con‐
cerns and hoping that they will just go away is the technology industries’ favorite
security strategy. Explaining how to write secure code isn’t a primary, or even secon‐
dary, objective of this book; however, Twootr does use and store passwords for
authentication so it’s worth thinking a little about this topic.

The simplest approach to storing passwords is to treat them like any other String,
known as storing them plain text. This is bad practice in general as it means anyone
who has access to your database has access to the passwords of all your users. A mali‐
cious person or organization can, and in many cases has, used plain-text passwords in
order to log in to your system and pretend to be the users. Additionally, many people
use the same password for multiple different services. If you don’t believe us, ask any
of your elderly relatives!

In order to avoid anyone with access to your database just reading the passwords, you
can apply a cryptographic hash function to the password. This is a function that takes
some arbitrarily sized input string and converts it to some output, called a digest.
Cryptographic hash functions are deterministic, so that if you want to hash the same
input again you can get the same result. This is essential in order to be able to check
the hashed password later. Another key property is that while it should be quick to go
from input to digest, the reverse function should take so long or use so much mem‐
ory that it is impractical for an attacker to reverse the digest.

The design of cryptographic hash functions is an active research topic on which gov‐
ernments and companies spend a lot of money. They are hard to implement correctly
so you should never write your own—Twootr uses an established Java library called
Bouncy Castle. This is open source and has undergone heavy peer review. Twootr
uses the Scrypt hashing function, which is a modern algorithm specifically designed
for storing passwords. Example 6-5 shows an example of the code.

Passwords and Security | 125

https://www.bouncycastle.org/

Example 6-5. KeyGenerator

class KeyGenerator {
 private static final int SCRYPT_COST = 16384;
 private static final int SCRYPT_BLOCK_SIZE = 8;
 private static final int SCRYPT_PARALLELISM = 1;
 private static final int KEY_LENGTH = 20;

 private static final int SALT_LENGTH = 16;

 private static final SecureRandom secureRandom = new SecureRandom();

 static byte[] hash(final String password, final byte[] salt) {
 final byte[] passwordBytes = password.getBytes(UTF_16);
 return SCrypt.generate(
 passwordBytes,
 salt,
 SCRYPT_COST,
 SCRYPT_BLOCK_SIZE,
 SCRYPT_PARALLELISM,
 KEY_LENGTH);
 }

 static byte[] newSalt() {
 final byte[] salt = new byte[SALT_LENGTH];
 secureRandom.nextBytes(salt);
 return salt;
 }
}

A problem that many hashing schemes have is that even though they are very compu‐
tationally expensive to compute, it may be feasible to compute a reversal of the hash‐
ing function through brute forcing all the keys up to a certain length or through a
rainbow table. In order to guard against this possibility, we use a salt. Salts are extra
randomly generated input that is added to a cryptographic hashing function. By
adding some extra input to each password that the user wouldn’t enter, but is ran‐
domly generated, we stop someone from being able to create a reverse lookup of the
hashing function. They would need to know the hashing function and the salt.

Now we’ve mentioned a few basic security concepts here around the idea of storing
passwords. In reality, keeping a system secure is an ongoing effort. Not only do you
need to worry about the security of data at rest, but also data in flight. When someone
connects to your server from a client, it needs to transmit the user’s password over a
network connection. If a malicious attacker intercepts this connection, they could
take a copy of the password and use it to do the most dastardly thing possible in 140
characters!

126 | Chapter 6: Twootr

https://oreil.ly/0y6Pc

In the case of Twootr, we receive a login message via WebSockets. This means that for
our application to be secure the WebSocket connection needs to be secure against a
man-in-the-middle attack. There are several ways to do this; the most common and
simplest is to use Transport Layer Security (TLS), which is a cryptographic protocol
that aims to provide privacy and data integrity to data sent out over its connection.

Organizations with a mature understanding of security build regular reviews and
analysis into the design of their software. For example, they might periodically bring
in outside consultants or an internal team to attempt to penetrate a system’s security
defenses by playing the role of a attacker.

Followers and Twoots
The next requirement that we need to address is following users. You can think about
designing software in one of two different ways. One of those approaches, called
bottom-up, starts with designing the core of the application—data storage models or
relationships between core domain objects—works its way up to building the func‐
tionality of the system. A bottom-up way of looking at following between users would
be to decide how to model the relationship between users that following entails. It’s
clearly a many-to-many relationship since each user can have many followers and a
user can follow many other users. You would then proceed to layer on top of this data
model the business functionality that is required to keep users happy.

The other approach is a top-down approach to software development. This starts with
user requirements or stories and tries to develop the behavior or functionality
needed to implement these stories, slowly driving down to the concerns of storage or
data modeling. For example, we would start with the API for receiving an event to
follow another user and then design whatever storage mechanism is needed for this
behavior, slowly working from API to business logic to persistence.

It is hard to say that one approach is better in all circumstances and that the other
should always be avoided; however, for the line-of-business type of applications that
Java is very popular for writing our experience is that a top-down approach works
best. This is because the temptation when you start with data modeling or designing
the core domain of your software is that you can expend unncessary time on features
that aren’t necessary for your software to work. The downside of a top-down
approach is that sometimes as you build out more requirements and stories your ini‐
tial design can be unsatisfactory. This means that you need to take a vigilant and iter‐
ative approach to software design, where you constantly improve it over time.

In this chapter of the book we will show you a top-down approach. This means that
we start with a test to prove out the functionality of following users, shown in
Example 6-6. In this case our UI will be sending us a event to indicate that a user
wants to follow another user, so our test will call the onFollow method of our end

Followers and Twoots | 127

point with the unique ID of the user to follow as an argument. Of course, this method
doesn’t yet exist—so we need to declare it in the Twootr class in order to get the code
to compile.

Modeling Errors
The test in Example 6-6 just covers the golden path of the following operation, so we
need to ensure that the operation has succeeded.

Example 6-6. shouldFollowValidUser

 @Test
 public void shouldFollowValidUser()
 {
 logon();

 final FollowStatus followStatus = endPoint.onFollow(TestData.OTHER_USER_ID);

 assertEquals(SUCCESS, followStatus);
 }

For now we only have a success scenario, but there are other potential scenarios to
think about. What if the user ID passed as an argument doesn’t correspond to an
actual user? What if the user is already following the user that they’ve asked to follow?
We need a way of modeling the different results or statuses that this method can
return. As with everything in life, there’s a proliferation of different choices that we
can make. Decisions, decisions, decisions…

One approach would be to throw an exception when the operation returns and return
void when it succeeds. This could be a completely reasonable choice. It may not fall
foul of our idea that exceptions should only be used for exceptional control flow, in
the sense that a well-designed UI would avoid these scenarios cropping up under
normal circumstances. Let’s consider some alternatives, though, that treat the status
like a value, rather than using exceptions at all.

One simple approach would be using a boolean value—true to indicate success and
false to indicate failure. That’s a fair choice in situations where an operation can
either succeed or fail, and it would only fail for a single reason. The problem with the
boolean approach in situations that have multiple failure scenarios is that you don’t
know why it failed.

Alternatively, we could use simple int constant values to represent each of the differ‐
ent failure scenarios, but as discussed in Chapter 3 when introducing the concept of
exceptions, this is an error prone, type unsafe, and poor readability + maintainability
approach. There is an alternative here for statuses that is type safe and offers better
documentation: enum types. An enum is a list of predefined constant alternatives that

128 | Chapter 6: Twootr

constitutes a valid type. So anywhere that you can use an interface or a class you
can use an enum.

But enums are better than int-based status codes in several ways. If a method returns
you an int you don’t necessarily know what values the int could contain. It’s possible
to add javadoc to describe what values it can take, and it’s possible to define constants
(static final fields), but these are really just lipstick on a pig. Enums can only contain
the list of values that are defined by the enum declaration. Enums in Java can also have
instance fields and methods defined on them in order to add useful functionality,
though we won’t be using that feature in this case. You can see the declaration of our
follower status in Example 6-7.

Example 6-7. FollowStatus

public enum FollowStatus {
 SUCCESS,
 INVALID_USER,
 ALREADY_FOLLOWING
}

Since TDD drives us to write the simplest implementation to get a test passing, then
onFollow method at this point should simply return the SUCCESS value.

We’ve got a couple of other different scenarios to think about for our following()
operation. Example 6-8 shows the test that drives our thinking around duplicate
users. In order to implement it we need to add a set of user IDs to our User class to
represent the set of users that this user is following and ensure that the addition of
another user isn’t a duplicate. This is really easy with the Java collections API. There’s
already a Set interface that defines unique elements, and the add method will return
false if the element that you’re trying to add is already a member of the Set.

Example 6-8. shouldNotDuplicateFollowValidUser

 @Test
 public void shouldNotDuplicateFollowValidUser()
 {
 logon();

 endPoint.onFollow(TestData.OTHER_USER_ID);

 final FollowStatus followStatus = endPoint.onFollow(TestData.OTHER_USER_ID);
 assertEquals(ALREADY_FOLLOWING, followStatus);
 }

Followers and Twoots | 129

The test shouldNotFollowInValidUser() asserts that if the user isn’t valid, then the
result status will indicate that. It follows a similar format to shouldNotDuplicateFol
lowValidUser().

Twooting
Now we’ve laid the foundations let’s get to the exciting bit of the product—twooting!
Our user story described how any user could send a twoot and that any followers who
were logged in at that moment in time should immediately see the twoot. Now realis‐
tically we can’t see that users will see the twoot immediately. Perhaps they’re logged
into their computer but getting a coffee, staring at another social network or, God
forbid, doing some work.

By now you’re probably familiar with the overall approach. We want to write a test for
a scenario where a user who has logged on receives a twoot from another user who
sends the twoot—shouldReceiveTwootsFromFollowedUser(). In addition to logging
on and following, this test requires a couple of other concepts. First, we need to
model the sending of a twoot, and thus add an onSendTwoot() method to the Sender
EndPoint. This has parameters for the id of the twoot, so that we can refer back to it
later, and also its content.

Second, we need a way of notifying a follower that a user has twooted—something
that we can check has happened in our test. We earlier introduced the ReceiverEnd
Point as a way of publishing messages out to users, and now is the time to start using
it. We’ll add an onTwoot method resulting in Example 6-9.

Example 6-9. ReceiverEndPoint

public interface ReceiverEndPoint {
 void onTwoot(Twoot twoot);
}

Whatever our UI adapter is will have to send a message to the UI to tell it that a twoot
has happened. But the question is how do write a test that checks that this onTwoot
method has been called?

Creating Mocks
This is where the concept of a mock object comes in handy. A mock object is a type of
object that pretends to be another object. It has the same methods and public API as
the object being mocked and looks to the Java type system as though it’s another
object, but it’s not. Its purpose is to record any interactions, for example, method
calls, and be able to verify that certain method calls happen. For example, here we

130 | Chapter 6: Twootr

want to be able to verify that the onTwoot() method of ReceiverEndPoint has been
called.

It might be confusing for people who have a computer science
degree reading this book to hear the word “verify” being used in
this way. The mathematics and formal methods communities tend
to use it to mean situations where a property of a system has been
proved for all inputs. Mocking uses the word totally differently. It
just means checking that a method has been invoked with certain
arguments. It’s sometimes frustrating when different groups of peo‐
ple use the same word with overloaded meanings, but often we just
need to be aware of the different contexts that terminology exists
within.

Mock objects can be created in a number of ways. The first mock objects tended to be
written by hand; we could in fact hand write a mock implementation of ReceiverEnd
Point here, and Example 6-10 is an example of one. Whenever the onTwoot method
is called we record its invocation by storing the Twoot parameter in a List, and we
can verify that it has been called with certain arguments by making an assertion that
the List contains the Twoot object.

Example 6-10. MockReceiverEndPoint

public class MockReceiverEndPoint implements ReceiverEndPoint
{
 private final List<Twoot> receivedTwoots = new ArrayList<>();

 @Override
 public void onTwoot(final Twoot twoot)
 {
 receivedTwoots.add(twoot);
 }

 public void verifyOnTwoot(final Twoot twoot)
 {
 assertThat(
 receivedTwoots,
 contains(twoot));
 }
}

In practice, writing mocks by hand can become tedious and error prone. What do
good software engineers do to tedious and error-prone things? That’s right—they
automate them. There are a number of libraries that can help us by providing ways of
creating mock objects for us. The library that we will use in this project is called
Mockito, is freely available, open source, and commonly used. Most of the operations

Followers and Twoots | 131

relating to Mockito can be invoked using static methods on the Mockito class, which
we use here as static imports. In order to create the mock object you need to use the
mock method, as shown in Example 6-11.

Example 6-11. mockReceiverEndPoint

 private final ReceiverEndPoint receiverEndPoint = mock(ReceiverEndPoint.class);

Verifying with Mocks
The mock object that has been created here can be used wherever a normal Receiver
EndPoint implementation is used. We can pass it as a parameter to the onLogon()
method, for example, to wire up the UI adapter. Once the behavior under test—the
when of the test—has happened our test needs to actually verify that the onTwoot
method was invoked (the then). In order to do this we wrap the mock object using
the Mockito.verify() method. This is a generic method that returns an object of the
same type that it is passed; we simply call the method in question with the arguments
that we expect in order to describe the expected interaction with the mock object, as
shown in Example 6-12.

Example 6-12. verifyReceiverEndPoint

verify(receiverEndPoint).onTwoot(aTwootObject);

Something you may have noticed in the last section is the introduction of the Twoot
class that we used in the signature of the onTwoot method. This is a value object that
will be used to wrap up the values and represent a Twoot. Since this will be sent to the
UI adapter it should just consist of fields of simple values, rather than exposing too
much from the core domain. For example, in order to represent the sender of the
twoot it contains the id of the sender rather than a reference to their User object. The
Twoot also contains a content String and the id of the Twoot object itself.

In this system Twoot objects are immutable. As mentioned previously, this style
reduces the scope for bugs. This is especially important in something like a value
object that is being passed to a UI adapter. You really just want to let your UI adapter
display the Twoot, not to alter the state of another user’s Twoot. It’s also worth noting
that we continue to follow domain language here in naming the class Twoot.

Mocking Libraries
We’re using Mockito in this book because it has nice syntax and fits our preferred way
of writing mocks, but it’s not the only Java mocking framework. Both Powermock
and EasyMock are also popular.

132 | Chapter 6: Twootr

Powermock can emulate Mockito syntax but it allows you to mock things that Mock‐
ito doesn’t support; for example, final classes or static methods. There is some debate
around whether it’s ever a good idea to mock things like final classes—if you can’t
provide a different implementation of the class in production, then should you really
really be doing so in tests? In general, Powermock usage isn’t encouraged but there
can occasionally be break-glass situations where it is useful.

EasyMock takes a different approach to writing mocks. This is a stylistic choice and
may be preferred by some developers over others. The biggest conceptual difference
is that EasyMock encourages strict mocking. Strict mocking is the idea that if you
don’t explicitly state that an invocation should occur, then it’s an error to do so. This
results in tests that are more specific about the behavior that a class performs, but that
can sometimes become coupled to irrelevant interactions.

SenderEndPoint
Now these methods like onFollow and onSendTwoot are declared on the SenderEnd
Point class. Each SenderEndPoint instance represents the end point from which a
single user sends events into the core domain. Our design for Twoot keeps the Sender
EndPoint simple—it just wraps up the main Twootr class and delegates to the meth‐
ods passing in the User object for the user that it represents within the system.
Example 6-13 shows the overall declaration of the class and an example of one
method corresponding to one event—onFollow.

Example 6-13. SenderEndPoint

public class SenderEndPoint {
 private final User user;
 private final Twootr twootr;

 SenderEndPoint(final User user, final Twootr twootr) {
 Objects.requireNonNull(user, "user");
 Objects.requireNonNull(twootr, "twootr");

 this.user = user;
 this.twootr = twootr;
 }

 public FollowStatus onFollow(final String userIdToFollow) {
 Objects.requireNonNull(userIdToFollow, "userIdToFollow");

 return twootr.onFollow(user, userIdToFollow);
 }

Followers and Twoots | 133

You might have noticed the java.util.Objects class in Example 6-13. This is a util‐
ity class that ships with the JDK itself and offers convenience methods for null refer‐
ence checking and implementation of hashCode() and equals() methods.

There are alternative designs that we could consider instead of introducing the Send
erEndPoint. We could have received events relating to a user by just exposing the
methods on the Twootr object directly, and expect to have any UI adapter call those
methods directly. This is a subjective issue, like many parts of software development.
Some people would consider creating the SenderEndPoint as adding unnecessary
complexity.

The biggest motivation here is that, as mentioned earlier, we don’t want to expose the
User core domain object to a UI adapter—only talking to them in terms of simple
events. It would have been possible to take a user ID as a parameter to all the Twootr
event methods, but then the first step for every event would have been looking up the
User object from the ID, whereas here we already have it in the context of the Sender
EndPoint. That design would have removed the concept of the SenderEndPoint, but
added more work and complexity in exchange.

In order to actually send the Twoot we need to evolve our core domain a little bit. The
User object needs to have a set of followers added to it, who can be notified of the
Twoot when it arrives. You can see code for our onSendTwoot method as it is imple‐
mented at this stage in the design in Example 6-14. This finds the users the who are
logged on and tells them to receive the twoot. If you’re not familiar with the filter
and forEach methods or the :: or -> syntax, don’t worry—these will be covered in
“Functional Programming” on page 151.

Example 6-14. onSendTwoot

void onSendTwoot(final String id, final User user, final String content)
{
 final String userId = user.getId();
 final Twoot twoot = new Twoot(id, userId, content);
 user.followers()
 .filter(User::isLoggedOn)
 .forEach(follower -> follower.receiveTwoot(twoot));
}

The User object also needs to implement the receiveTwoot() method. How does a
User receive a twoot? Well, it should notify the UI for the user that there’s a twoot
ready to be displayed by emitting an event, which entails calling receiverEnd
Point.onTwoot(twoot). This is the method call that we’ve verified the invocation of
using mocking code, and calling it here makes the test pass.

134 | Chapter 6: Twootr

You can see the final iteration of our test in Example 6-15, and this is the code
that you can see if you download the example project from GitHub. You might notice
it looks a bit different than what we’ve so far described. First, as the tests for receiving
twoots have been written, a few operations have been refactored out into common
methods. An example of this is logon(), which logs our first user onto the system—
part of the given section of many tests. Second, the test also creates a Position object
and passes it to the Twoot, and also verifies the interaction with a twootRepository.
What the heck is a repository? Both of these are concepts that we’ve not needed so far,
but are part of the evolution of the design of the system and will be explained in the
next two sections.

Example 6-15. shouldReceiveTwootsFromFollowedUser

 @Test
 public void shouldReceiveTwootsFromFollowedUser()
 {
 final String id = "1";

 logon();

 endPoint.onFollow(TestData.OTHER_USER_ID);

 final SenderEndPoint otherEndPoint = otherLogon();
 otherEndPoint.onSendTwoot(id, TWOOT);

 verify(twootRepository).add(id, TestData.OTHER_USER_ID, TWOOT);
 verify(receiverEndPoint).onTwoot(new Twoot(id, TestData.OTHER_USER_ID,
TWOOT, new Position(0)));
 }

Positions
You will learn about Position objects very soon, but before presenting their defini‐
tion we should meet their motivation. The next the requirement that we need to get
working is that when a user logs in they should see all the twoots from their followers
since they last logged in. This entails needing to be able to perform some kind of
replay of the different twoots, and know what twoots haven’t been seen when a user
logs on. Example 6-16 shows a test of that functionality.

Positions | 135

Example 6-16. shouldReceiveReplayOfTwootsAfterLogoff

 @Test
 public void shouldReceiveReplayOfTwootsAfterLogoff()
 {
 final String id = "1";

 userFollowsOtherUser();

 final SenderEndPoint otherEndPoint = otherLogon();
 otherEndPoint.onSendTwoot(id, TWOOT);

 logon();

 verify(receiverEndPoint).onTwoot(twootAt(id, POSITION_1));
 }

In order to implement this functionality, our system needs to know what twoots were
sent while a user was logged off. There are lots of different ways that we could think
about designing this feature. Different approaches may have different trade-offs in
terms of implementation complexity, correctness, and performance/scalability. Since
we’re just starting out building Twootr and not expecting many users to begin with,
focusing on scalability issues isn’t our goal here:

• We could track the time of every twoot and the time that a user logs off and
search for twoots between those times.

• We could think of twoots as a contiguous stream where each twoot has a position
within the stream and record the position when a user logs off.

• We could use positions and record the position of the last seen twoot.

When considering the different designs we would lean away from ordering messages
by time. It’s the kind of decision that feels like a good idea. Let’s suppose we store the
time unit in terms of milliseconds—what happens if we receive two twoots within the
same time interval? We wouldn’t know the order between those twoots. What if a
twoot is received on the same millisecond that a user logs off?

Recording the times at which users log off is another problematic event as well. It
might be OK if a user will only ever log off by explicitly clicking a button. In practice,
however, that’s only one of several ways in which they can stop using our UI. Perhaps
they’ll close the web browser without explicitly logging off, or perhaps their web
browser will crash. What happens if they connect from two web browsers and then
log off from one of them? What happens if their mobile phone runs out of battery or
closes the app?

136 | Chapter 6: Twootr

We decided the safest approach to knowing from where to replay the twoots was to
assign positions to twoots and then store the position up to which each user has seen.
In order to define positions we introduce a small value object called Position, which
is shown in Example 6-17. This class also has a constant value for the initial position
where streams will be before the stream starts. Since all of our position values will be
positive, we could use any negative integer for the initial position: -1 is chosen here.

Example 6-17. Position

public class Position {
 /**
 * Position before any tweets have been seen
 */
 public static final Position INITIAL_POSITION = new Position(-1);

 private final int value;

 public Position(final int value) {
 this.value = value;
 }

 public int getValue() {
 return value;
 }

 @Override
 public String toString() {
 return "Position{" +
 "value=" + value +
 '}';
 }

 @Override
 public boolean equals(final Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;

 final Position position = (Position) o;

 return value == position.value;
 }

 @Override
 public int hashCode() {
 return value;
 }

 public Position next() {
 return new Position(value + 1);

Positions | 137

 }
}

This class looks a little bit complex, doesn’t it? At this point in your programming you
may ask yourself: Why do I have these equals() and hashCode() methods defined on
it, rather than just let Java handle them for me? What is a value object? Why am I
asking so many questions? Don’t worry, we have just introduced a new topic and will
answer your questions soon. It is often very convenient to introduce small objects
that represent values that are compounds of fields or give a relevant domain name to
some numeric value. Our Position class is one example; another one might be the
Point class that you see in Example 6-18.

Example 6-18. Point

class Point {
 private final int x;
 private final int y;

 Point(final int x, final int y) {
 this.x = x;
 this.y = y;
 }

 int getX() {
 return x;
 }

 int getY() {
 return y;
 }

A Point has an x coordinate and a y coordinate, while a Position has just a value.
We’ve defined the fields on the class and the getters for those fields.

The equals and hashcode Methods
If we want to compare two objects defined like this with the same value, then we find
that they aren’t equal when we want them to be. Example 6-19 shows an example of
this; by default, the equals() and hashCode() methods that you inherit from
java.lang.Object are defined to use a concept of reference equality. This means that
if you have two different objects located in different places in your computer’s mem‐
ory, then they aren’t equal—even if all the field values are equal. This can lead to a lot
of subtle bugs in your program.

138 | Chapter 6: Twootr

Example 6-19. Point objects aren’t equal when they should be

final Point p1 = new Point(1, 2);
final Point p2 = new Point(1, 2);
System.out.println(p1 == p2); // prints false

It’s often helpful to think in terms of two different types of objects—reference objects
and value objects—based upon what their notion of equality is. In Java we can over‐
ride the equals() method in order to define our own implementation that uses the
fields deemed relevant to value equality. An example implementation is shown in
Example 6-20 for the Point class. We check that the object that we’re being given is
the same type as this object, and then check each of the fields are equal.

Example 6-20. Point equality definition

 @Override
 public boolean equals(final Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;

 final Point point = (Point) o;

 if (x != point.x) return false;
 return y == point.y;
 }

 @Override
 public int hashCode() {
 int result = x;
 result = 31 * result + y;
 return result;
 }

final Point p1 = new Point(1, 2);
final Point p2 = new Point(1, 2);
System.out.println(p1.equals(p2)); // prints true

The Contract Between equals and hashCode
In Example 6-20 we not only override the equals() method, but also the hashCode()
method. This is due to the Java equals/hashcode contract. This states that if we have
two objects that are equal according to their equals() method, they also have to have
the same hashCode() result. A number of core Java APIs make use of the hashCode()
method—most notably collection implementations like HashMap and HashSet. They
rely on this contract holding true, and you will find that they don’t behave as you
would expect if it doesn’t. So how do you correctly implement the hashCode()?

Positions | 139

Good hashcode implementations not only follow the contract, but they also produce
hashcode values that are evenly spread throughout the integers. This helps improve
the efficiency of HashMap and HashSet implementations. In order to achieve both of
those goals, the following is a simple series of rules that if you follow will result in a
good hashCode() implementation:

1. Create a result variable and assign it a prime number.
2. Take each field that is used by the equals() method and compute an int value to

represent the hashcode of the field.
3. Combine the hashcode from the field with the existing result by multiplying the

previous result by a prime number; for example, result = 41 * result + hash
codeOfField;

In order to calculate the hashcode for each field, you need to differentiate based upon
the type of the field in question:

• If the field is a primitive value, use the hashCode() method provided on its com‐
panion class. For example, if it’s a double then use Double.hashCode().

• If it’s a nonnull object, just call its hashCode() method or use 0 otherwise. This
can be abbreviated with the java.lang.Objects.hashCode() method.

• If it’s an array, you need to combine the hashCode() values of each of its elements
using the same rules as we’ve described here. The java.util.Arrays.hash
Code() methods can be used to do this for you.

In most cases you won’t need to actually write the equals() and hashCode() methods
yourself. Modern Java IDEs will generate them for you. It’s still helpful to understand
the principles and reasons behind the code they generate, though. It’s especially
important to be able to review a pair of equals() and hashCode() methods that you
see in code and know whether they are well or poorly implemented.

We’ve talked in this section a little bit about value objects, but a
future version of Java is scheduled to include inline classes. These
are being prototyped in Project Valhalla. The idea behind inline
classes is to provide a very efficient way to implement data struc‐
tures that look like values. You will still be able to code against
them like you can a normal class, but they will generate correct
hashCode() and equals() methods, use up less memory, and for
many use cases be faster to program with.

140 | Chapter 6: Twootr

https://oreil.ly/muvlT

When implementing this feature we need to associate a Position with every Twoot,
so we add a field to the Twoot class. We also need to record each user’s last seen Posi
tion, so we add a lastSeenPosition to a User. When a User receives a Twoot they
update their position, and when a User logs on they emit the twoots that the user
hasn’t seen. So no new events need to be added to either the SenderEndPoint or the
ReceiverEndPoint. Replaying twoots also requires that we store the Twoot objects
somewhere—initially, we just use a JDK List. Now our users don’t have to be logged
on to the system all the time in order to enjoy Twootr, which is awesome.

Takeaways
• You learned about bigger-picture architectural ideas like communication styles.
• You developed the ability to decouple domain logic from library and framework

choices.
• You drove the development of code in this chapter with tests going outside-in.
• You applied object-oriented domain modeling skills to a larger project.

Iterating on You
If you want to extend and solidify the knowledge from this section you could try one
of these activities:

• Try the word wrap Kata.
• Without reading the next chapter write down a list of things that need to be

implemented in order for Twootr to be complete.

Completing the Challenge
We had a followup meeting with your client Joe and talked about the great progress
that was made with the project. A lot of the core domain requirements have been cov‐
ered and we’ve described how the system could be designed. Of course Twootr isn’t
complete at this point. You’ve not heard about how you wire the application up
together so that the different components can talk to each other. You’ve also not been
exposed to our approach to persist the state of twoots into some kind of storage sys‐
tem that won’t disappear when Twootr is rebooted.

Joe is really excited by both the progress made and he’s really looking forward to see‐
ing the finished Twootr implementation. The final chapter will complete the design of
Twootr and cover the remaining topics.

Takeaways | 141

https://oreil.ly/vH2Q5

CHAPTER 7

Extending Twootr

The Challenge
Previously, on Twootr, Joe had wanted a modern online communication system to be
implemented. The previous chapter presented a potential design for Twootr and
the implementation of the core business domain was described, including driving out
that design through tests. You learned about some of the design and data modeling
decisions involved and how to break down the initial problem and structure your sol‐
ution. That didn’t cover the whole of the Twootr project, so it’s up to this chapter to
complete the narrative.

The Goal
This chapter extends and completes the progress made in the previous chapter by
helping you understand about the following topics:

• Avoiding coupling with the Dependency Inversion Principle and Dependency
Injection

• Persistence with the Repository pattern and the Query Object pattern.
• A brief introduction to functional programming that will show you how you can

make use of the ideas from this in a Java-specific context and a real application.

143

Recap
Since we’re continuing the Twootr project from the previous chapter, it’s probably
worth recapping the key concepts in our design at this point. If you’re continuing
from the previous chapter in a marathon reading session, then we’re glad you’re
enjoying the book, but feel free to skip this section:

• Twootr is the parent class that instantiates the business logic and orchestrates the
system.

• A Twoot is a single instance of a message broadcast by a user in our system.
• A ReceiverEndPoint is an interface that is implemented by a UI adapter and

pushes Twoot objects out to the UI.
• The SenderEndPoint has methods that correspond to events being sent into the

system from a user.
• Password management and hashing are performed by the KeyGenerator class.

Persistence and the Repository Pattern
So we’ve now got a system that can support much of the core twooting operations.
Unfortunately, if we restart the Java process in any way all the twoots and user infor‐
mation is lost. We need a way of persisting the information that we’re storing in order
to survive a restart. Earlier in the discussion of software architecture we talked about
ports and adapters and how we would like to keep the core of our application agnos‐
tic of the storage backend. There’s, in fact, a commonly used pattern that helps us do
this: the Repository pattern.

The Repository pattern defines an interface between the domain logic and storage
backend. In addition to allowing us to use a different storage backend over time as
our application evolves, this approach offers several advantages:

• Centralizing logic for mapping data from our storage backend to the domain
model.

• Enables unit testing of core business logic without having to spin up a database.
This can speed up the execution of tests.

• Improves maintainability and readability by keeping each class single responsi‐
bility.

You can think of a repository as a being like a collection of objects, but instead of just
storing the objects in memory, the repository persists them somewhere. When

144 | Chapter 7: Extending Twootr

evolving the design of our application we drove the design of the repositories through
tests; however, to save time here we will just describe the final implementation. Since
a repository is a collection of objects we need two of them in Twootr: one to store
User objects and one for Twoot objects. Most repositories have a series of common
operations that are implemented:

add()

Stores a new instance of the object into the repository.

get()

Looks up a single object based on an identifier.

delete()

Deletes an instance from the persistence backend.

update()

Ensures that the values saved for this object are equal to the instance fields.

Some people use the acronym CRUD to describe these kind of operations. This
stands for Create, Read, Update, and Delete. We’ve used add and get instead of cre
ate and read as the naming is more inline with common Java usage, for example, in
the collections framework.

Designing the Repositories
In our case we’ve designed things top-down and driven the development of the repo‐
sitories from tests. The implication of this is that not all the operations are defined on
both repositories. The UserRepository, shown in Example 7-1, doesn’t have an oper‐
ation to delete a User. That’s because there’s no requirement that has actually driven
an operation to delete a user. We asked our customer, Joe, about this and he said
“once you Twoot, you can’t stop!”

When working on your own, you might be tempted to add functionality just to have
the “normal” operations in the repository, but we would strongly caution against
going down that route. Unused code, or dead code as it’s often known, is a liability. In
some sense all code is a liability, but if the code is actually doing something useful
then it has a benefit to your system, while if it unused it’s merely a liability. As your
requirements evolve you need to refactor and improve your codebase and the more
unused code that you have lying around, the more difficult this task is.

There’s a guiding principle here that we’ve been alluding to throughout the chapter,
but not mentioned until now: YAGNI. This stands for You ain’t gonna need it. This
doesn’t mean don’t introduce abstractions and different concepts like repositories. It
just means don’t write code that you think you’re going to need in the future—only
write it when you actually need it.

Persistence and the Repository Pattern | 145

Example 7-1. UserRepository

public interface UserRepository extends AutoCloseable {
 boolean add(User user);

 Optional<User> get(String userId);

 void update(User user);

 void clear();

 FollowStatus follow(User follower, User userToFollow);
}

There are also differences between the design of our two repositories due to the
nature of the objects that they are storing. Our Twoot objects are immutable, so the
TwootRepository shown in Example 7-2 doesn’t need to implement an update()
operation.

Example 7-2. TwootRepository

public interface TwootRepository {
 Twoot add(String id, String userId, String content);

 Optional<Twoot> get(String id);

 void delete(Twoot twoot);

 void query(TwootQuery twootQuery, Consumer<Twoot> callback);

 void clear();
}

Normally the add() method in a repository simply takes the object in question and
persists it to the database. In the case of the TwootRepository, we have taken a differ‐
ent approach. This method takes some specific parameters and actually creates the
object in question. The motivation behind this approach was that the data source
would be the one to assign the next Position object to the Twoot. We’re delegating
the responsibility of ensuring a unique and ordered object to the data layer that will
have the appropriate tool for creating such a sequence.

Another alternative might have been to take a Twoot object that doesn’t have a posi
tion assigned to it and then have the position field set when it is added. Now one of
the key goals of an object’s constructor should be to ensure that all the internal state is
completely initialized, ideally checked with final fields. By not assigning the position
at object creation time we would have created an object that wasn’t completely instan‐
tiated, breaking one of our principles around creating objects.

146 | Chapter 7: Extending Twootr

Some implementations of the Repository pattern introduce a generic interface—for
example, something like Example 7-3. In our case this wouldn’t be appropriate as the
TwootRepository doesn’t have an update() method and the UserRepository doesn’t
have a delete() method. If you want to write code that abstracts over different repo‐
sitories, then this might be useful. Trying to avoid forcing different implementations
into the same interface for the sake of it is a key part of designing a good abstraction.

Example 7-3. AbstractRepository

public interface AbstractRepository<T>
{
 void add(T value);

 Optional<T> get(String id);

 void update(T value);

 void delete(T value);
}

Query Objects
Another key distinction between different repositories is how they support querying.
In the case of Twootr our UserRepository doesn’t need any querying capability, but
when it comes to Twoot objects we need to be able to look up the twoots to replay
when a user logs on. What is the best way to implement this functionality?

Well, there are several different choices that we could make here. The simplest is that
we could simply try our repository like a pure Java Collection and have a way of
iterating over the different Twoot objects. The logic to query/filter could then be writ‐
ten in normal Java code. This is lovely, but potentially quite slow as it requires us to
retrieve all the rows from our data store into our Java application in order to do the
querying, when in reality we may only want a few of them. Often data store backends
such as SQL databases have highly optimized and efficient implementations of how to
query and sort data, and it’s best to leave the querying to them.

Having decided that the repository implementation needs to have the responsibility
for querying the data store we need to decide how best to expose this through the
TwootRepository interface. One choice would have been to add a method that is tied
to our business logic that performs the querying operation. For example, we could
have written something like the twootsForLogon() method from Example 7-4 that
takes the user object and looks up twoots associated with it. The downside of this is
that we’ve now coupled the specific business logic functionality to our repository
implementation—something that the introduction of our repository abstraction was
designed to avoid. This will make it harder for us to evolve our implementation in

Persistence and the Repository Pattern | 147

line with requirements as we’ll have to modify the repository as well as the core
domain logic and also breaches the Single Responsibility Principle.

Example 7-4. twootsForLogon

List<Twoot> twootsForLogon(User user);

What we want to design is something that enables us to harness the power of a data
store’s querying capability without tying the business logic to the data store in ques‐
tion. We could add a specific method to query the repository for a given business cri‐
teria, as shown by Example 7-5. This approach is much better than the first two, but
can still be refined a little bit. The problem with hardcoding each query to a given
method is that as your application evolves over time and adds more querying func‐
tionality, we add more and more methods to the Repository interface, bloating it and
making it harder to understand.

Example 7-5. twootsFromUsersAfterPosition

List<Twoot> twootsFromUsersAfterPosition(Set<String> inUsers, Position lastSeenPosi
tion);

This brings us to the next querying iteration, shown in Example 7-6. Here we’ve
abstracted out the criteria that we query our TwootRepository on into its own object.
Now we can add additional properties to this criteria to query on without having the
number of query methods be a combinatorial explosion of different properties to
query about. The definition of our TwootQuery object is shown in Example 7-7.

Example 7-6. query

List<Twoot> query(TwootQuery query);

Example 7-7. TwootQuery

public class TwootQuery {
 private Set<String> inUsers;
 private Position lastSeenPosition;

 public Set<String> getInUsers() {
 return inUsers;
 }

 public Position getLastSeenPosition() {
 return lastSeenPosition;
 }

148 | Chapter 7: Extending Twootr

 public TwootQuery inUsers(final Set<String> inUsers) {
 this.inUsers = inUsers;

 return this;
 }

 public TwootQuery inUsers(String... inUsers) {
 return inUsers(new HashSet<>(Arrays.asList(inUsers)));
 }

 public TwootQuery lastSeenPosition(final Position lastSeenPosition) {
 this.lastSeenPosition = lastSeenPosition;

 return this;
 }

 public boolean hasUsers() {
 return inUsers != null && !inUsers.isEmpty();
 }
}

This isn’t the final design approach taken for querying the twoots, though. By return‐
ing a List of objects it means that we need to load into memory all the Twoot objects
that are going to be returned in one go. This isn’t a terribly good idea when this List
may grow to be very large. We may not want to query all of the objects in one go
either. That’s the case here—we want to push each of the Twoot objects out to our UI
without needing to have them all in memory at one point in time. Some repository
implementations create an object to model the set of results returned. These objects
let you page or iterate through the values.

In this case we’re going to do something simpler: just take a Consumer<Twoot> call‐
back. That’s a function that the caller is going to pass in that takes a single argument
—a Twoot—and returns void. We can implement this interface using either a lambda
expression or a method reference. You can see our final approach in Example 7-8.

Example 7-8. query

void query(TwootQuery twootQuery, Consumer<Twoot> callback);

See Example 7-9 to see how you would use this query method. This is how our
onLogon() method calls the query. It takes the user who has logged on, and uses the
set of users that this user is following as the user part of the query. It then uses the last
seen position for that part of the query. The callback that receives the results of this
query is user::receiveTwoot, a method reference to the function that we described
earlier that publishes the Twoot object to the UI ReceiverEndPoint.

Persistence and the Repository Pattern | 149

Example 7-9. An example of using the query method

twootRepository.query(
 new TwootQuery()
 .inUsers(user.getFollowing())
 .lastSeenPosition(user.getLastSeenPosition()),
 user::receiveTwoot);

That’s it—that’s our repository interface designed and usable in the core of the appli‐
cation logic.

There is another feature that some repository implementations use that we haven’t
described here, and that’s the Unit of Work pattern. We don’t use the Unit of Work
pattern in Twootr, but it’s often used in conjunction with the Repository pattern so its
worth mentioning it here. A common thing for line-of-business applications to do is
to have a single operation that performs many interactions with the data store. For
example, you might be transferring money between two bank accounts and want to
remove money from one back account and add it to the other bank account in the
same operation. You don’t want either of these operations to succeed without the
other one succeeding—you don’t want to put money into the creditor’s account when
there isn’t enough money in the debtor’s account. You also don’t want to reduce the
debtor’s balance without ensuring that you can put money into the creditor account.

Databases often implement transactions and ACID compliance in order to enable
people to perform these kinds of operations. A transaction is essentially a group of
different database operations that are logically performed as a single, atomic opera‐
tion. A Unit of Work is a design pattern that helps you perform database transactions.
Essentially, each operation that you perform on your repository gets registered with a
unit of work object. Your unit of work object can then delegate to one of more reposi‐
tories, wrapping these operations in a transaction.

One thing we haven’t talked about so far is how we actually implement the repository
interfaces that we’ve designed. As with everything else in software development, there
are often different routes we can go down. The Java ecosystem contains many Object-
Relational Mappers (ORMs) that try to automate the task of this implementation for
you. The most popular ORM is Hibernate. ORMs tend to be a simple approach that
can automate some of the work for you; however, they often end up producing sub-
optimal database querying code and can sometimes introduce more complexity than
they help remove.

In the example project we provide two implementations of each of the repositories.
One of them is a very simple in-memory implementation suitable for testing that
won’t persist the data over restarts. The other approach uses plain SQL and the JDBC
API. We won’t go into much detail about the implementation as most of it
doesn’t illustrate any particularly interesting Java programming ideas; however, in

150 | Chapter 7: Extending Twootr

http://hibernate.org/

“Functional Programming” on page 151 we will talk about how we use some ideas
from functional programming in the implementation.

Functional Programming
Functional programming is a style of computer programming that treats methods as
operating like mathematical functions. This means that it avoids mutable state and
changing data. You can program in this style in any language, but some programming
languages offer features to help make it easier and better—we call those functional
programming languages. Java isn’t a functional programming language, but in version
8, 20 years after it was first released, it started to add a number of features that helped
make functional programming in Java a reality. Those features include lambda
expressions, the Streams and Collectors API, and the Optional class. In this section
we’ll talk a little bit about how those functional programming features can be used
and how we use them in Twootr.

There are limits to the level of abstractions that library writers could use in Java
before Java 8. A good example of this was the lack of efficient parallel operations over
large collections of data. Java from 8 onward allows you to write complex collection-
processing algorithms, and simply by changing a single method call you can effi‐
ciently execute this code on multicore CPUs. In order to enable writing of these kinds
of bulk data parallel libraries, however, Java needed a new language change: lambda
expressions.

Of course there’s a cost, in that you must learn to write and read lambda-enabled
code, but it’s a good trade-off. It’s easier for programmers to learn a small amount of
new syntax and a few new idioms than to have to handwrite a large quantity of com‐
plex thread-safe code. Good libraries and frameworks have significantly reduced the
cost and time associated with developing enterprise business applications, and any
barrier to developing easy-to-use and efficient libraries should be removed.

Abstraction is a concept that is familiar to anyone who does object-oriented pro‐
gramming. The difference is that object-oriented programming is mostly about
abstracting over data, while functional programming is mostly about abstracting over
behavior. The real world has both of these things, and so do our programs, so we can
and should learn from both influences.

There are other benefits to this new abstraction as well. For many of us who aren’t
writing performance-critical code all the time, these are more important wins. You
can write easier-to-read code—code that spends time expressing the intent of its busi‐
ness logic rather than the mechanics of how it’s achieved. Easier-to-read code is also
easier to maintain, more reliable, and less error-prone than code that is more difficult
to read.

Functional Programming | 151

Lambda Expressions
We will define a lambda expression as a concise way of describing an anonymous
function. We appreciate that’s quite a lot to take in at once, so we’re going to explain
what lambda expressions are by working through an example of some existing Java
code. Let’s start by taking a interface used to represent a callback in our codebase:
ReceiverEndPoint, shown in Example 7-10.

Example 7-10. ReceiverEndPoint

public interface ReceiverEndPoint {
 void onTwoot(Twoot twoot);
}

In this example, we’re creating a new object that provides an implementation of the
ReceiverEndPoint interface. This interface has a single method, onTwoot, which is
called by the Twootr object when it is sending a Twoot object to the UI adapter. The
class listed in Example 7-11 provides an implementation of this method. In this case
to keep things simple we’re just printing it out on the command line rather than send‐
ing a serialized version to an actual UI.

Example 7-11. Implementing ReceiverEndPoint with a class

public class PrintingEndPoint implements ReceiverEndPoint {
 @Override
 public void onTwoot(final Twoot twoot) {
 System.out.println(twoot.getSenderId() + ": " + twoot.getContent());
 }
}

This is actually an example of behavior parameterization—we’re
parameterizing over the different behaviors to send a message to
the UI.

There are seven lines of boilerplate code required in order to call the single line of
actual behavior here. Anonymous inner classes were designed to make it easier for
Java programmers to represent and pass around behaviors. You can see an example in
Example 7-12, which reduces the boilerplate a bit but they still don’t make it easy
enough if you want to make passing behavior around really easy.

152 | Chapter 7: Extending Twootr

Example 7-12. Implementing ReceiverEndPoint with an anonymous class

 final ReceiverEndPoint anonymousClass = new ReceiverEndPoint() {
 @Override
 public void onTwoot(final Twoot twoot) {
 System.out.println(twoot.getSenderId() + ": " + twoot.getContent());
 }
 };

Boilerplate isn’t the only issue, though: this code is fairly hard to read because it
obscures the programmer’s intent. We don’t want to pass in an object; what we really
want to do is pass in some behavior. In Java 8 or later, we would write this code exam‐
ple as a lambda expression, as shown in Example 7-13.

Example 7-13. Implementing ReceiverEndPoint with a lambda expression

 final ReceiverEndPoint lambda =
 twoot -> System.out.println(twoot.getSenderId() + ": " + twoot.getCon
tent());

Instead of passing in an object that implements an interface, we’re passing in a block
of code—a function without a name. twoot is the name of a parameter, the same
parameter as in the anonymous inner class example. -> separates the parameter from
the body of the lambda expression, which is just some code that is run when the
twoot gets published.

Another difference between this example and the anonymous inner class is how we
declare the variable event. Previously, we needed to explicitly provide its type: Twoot
twoot. In this example, we haven’t provided the type at all, yet this example still com‐
piles. What is happening under the hood is that javac is inferring the type of the vari‐
able event from it’s context—here, from the signature of onTwoot. What this means is
that you don’t need to explicitly write out the type when it’s obvious.

Although lambda method parameters require less boilerplate code
than was needed previously, they are still statically typed. For the
sake of readability and familiarity, you have the option to include
the type declarations, and sometimes the compiler just can’t work it
out!

Method References
A common idiom you may have noticed is the creation of a lambda expression that
calls a method on its parameter. If we want a lambda expression that gets the content
of a Twoot, we would write something like Example 7-14.

Functional Programming | 153

Example 7-14. Get the content of a twoot

twoot -> twoot.getContent()

This is such a common idiom that there’s actually an abbreviated syntax for this that
lets you reuse an existing method, called a method reference. If we were to write the
previous lambda expression using a method reference, it would look like
Example 7-15.

Example 7-15. A method reference

Twoot::getContent

The standard form is Classname::methodName. Remember that even though it’s a
method, you don’t need to use brackets because you’re not actually calling
the method. You’re providing the equivalent of a lambda expression that can be called
in order to call the method. You can use method references in the same places as
lambda expressions.

You can also call constructors using the same abbreviated syntax. If you were to use a
lambda expression to create a SenderEndPoint, you might write Example 7-16.

Example 7-16. Lambda to create a new SenderEndPoint

(user, twootr) -> new SenderEndPoint(user, twootr)

You can also write this using method references, as shown in Example 7-17.

Example 7-17. Method reference to create a new SenderEndPoint

SenderEndPoint::new

This code is not only shorter, but also a lot easier to read. SenderEndPoint::new
immediately tells you that you’re creating a new SenderEndPoint without your having
to scan the whole line of code. Another thing to notice here is that method references
automatically support multiple parameters, as long as you have the right functional
interface.

When we were first exploring the Java 8 changes, a friend of ours said that method
references “feel like cheating.” What he meant was that, having looked at how we can
use lambda expressions to pass code around as if it were data, it felt like cheating to
be able to reference a method directly.

In fact, method references are really making the concept of first-class functions
explicit. This is the idea that we can pass behavior around and treat it like another
value. For example, we can compose functions together.

154 | Chapter 7: Extending Twootr

Execute Around
The Execute Around pattern is a common functional design pattern. You may
encounter a situation where you have common initialization and cleanup code that
you always want to do, but parameterize different business logic that runs within the
initialization and cleanup code. An example of the general pattern is shown in
Figure 7-1. There are a number of example situations in which you can use execute
around, for example:

Files
Open a file before you use it, and close it when you’ve finished using the file. You
may also want to log an exception when something goes wrong. The parameter‐
ized code can read from or write to the file.

Locks
Acquire a lock before your critical section, release the lock after your critical sec‐
tion. The parameterized code is the critical section.

Database connections
Open a connection to a database upon initialization, close it when finished. This
is often even more useful if you pool your database connections as it also allows
your open logic to also retrieve the connection from your pool.

Figure 7-1. Execute Around pattern

Because the initialization and cleanup logic is being used in many places, it is possible
to get into a situation where this logic is duplicated. This means that if you want to
modify this common initialization or cleanup code, then you will have to modify
multiple different parts of your application. It also exposes the risk that these different
code snippets could become inconsistent, introducing potential bugs into your appli‐
cation.

The Execute Around pattern solves this problem by extracting a common method
that defines both the initialization and cleanup code. This method takes a parameter
containing the behavior that differs between use cases of the same overall pattern.
The parameter will use an interface to enable it to be implemented by different blocks
of code, usually using lambda expressions.

Example 7-18 shows a concrete example of an extract method. This is used within
Twootr in order to run SQL statements against the database. It creates a prepared

Functional Programming | 155

statement object for a given SQL statement and and then runs our extractor behav‐
ior on the statement. The extractor is just a callback that extracts a result, i.e., reads
some data from the database, using the PreparedStatement.

Example 7-18. Use of the Execute Around pattern in the extract method

 <R> R extract(final String sql, final Extractor<R> extractor) {
 try (var stmt = conn.prepareStatement(sql, Statement.RETURN_GENER
ATED_KEYS)) {
 stmt.clearParameters();
 return extractor.run(stmt);
 } catch (SQLException e) {
 throw new IllegalStateException(e);
 }
 }

Streams
The most important functional programming features in Java are focused around the
Collections API and Streams. Streams allow us to write collections-processing code at
a higher level of abstraction than we would be able to do with loops. The Stream
interface contains a series of functions that we’ll explore throughout this chapter, each
of which corresponds to a common operation that you might perform on a
Collection.

map()

If you’ve got a function that converts a value of one type into another, map() lets you
apply this function to a stream of values, producing another stream of the new values.

You may very well have been doing some kind of map operations for years already
with for loops. In our DatabaseTwootRepository we’ve built up a tuple to be used in
a query String containing all the id values of the different users whom a user is fol‐
lowing. Each id value is a quoted String and the whole tuple is surrounded by brack‐
ets. For example, if they followed users with IDs "richardwarburto" and "raoulUK"
we would produce a tuple String of "(richardwarburto,raoulOK)". In order to
generate this tuple you would use a mapping pattern, transforming each id into "id"
and then adding them into a List. The String.join() method can then be used to
join them with commas between. Example 7-19 is code written in this style.

Example 7-19. Building a user tuple with a for loop

 private String usersTupleLoop(final Set<String> following) {
 List<String> quotedIds = new ArrayList<>();
 for (String id : following) {
 quotedIds.add("'" + id + "'");

156 | Chapter 7: Extending Twootr

 }
 return '(' + String.join(",", quotedIds) + ')';
 }

map() is one of the most commonly used Stream operations. Example 7-20 is the
same example of building up the user tuple but using map(). It also takes advantage of
the joining() collector, which allows us to join the elements in the Stream together
into a String.

Example 7-20. Building a user tuple using map

 private String usersTuple(final Set<String> following) {
 return following
 .stream()
 .map(id -> "'" + id + "'")
 .collect(Collectors.joining(",", "(", ")"));
 }

The lambda expression passed into map() both takes a String as its only argument
and returns a String. It isn’t necessary for both the argument and the result to be the
same type, but the lambda expression passed in must be an instance of Function.
This is a generic functional interface with only one argument.

forEach()

The forEach() operation is useful when you want to perform a side effect for each
value in the Stream. For example, suppose you want to print out the name of a user or
save each transaction in your stream to a database. forEach() takes a single argument
—a Consumer callback executed that gets invoked with every element in the stream as
an argument.

filter()
Any time you’re looping over some data and checking each element with an if state‐
ment, you might want to think about using the Stream.filter() method.

For example, the InMemoryTwootRepository needs to query the different Twoot
objects in order to find twoots that meet its TwootQuery. Specifically, that the position
is after the last seen position and that user is being followed. An example of this being
written in for loop style is shown in Example 7-21.

Example 7-21. Looping over twoots and using an if statement

 public void queryLoop(final TwootQuery twootQuery, final Consumer<Twoot> call
back) {
 if (!twootQuery.hasUsers()) {

Functional Programming | 157

 return;
 }

 var lastSeenPosition = twootQuery.getLastSeenPosition();
 var inUsers = twootQuery.getInUsers();

 for (Twoot twoot : twoots) {
 if (inUsers.contains(twoot.getSenderId()) &&
 twoot.isAfter(lastSeenPosition)) {
 callback.accept(twoot);
 }
 }
 }

You have probably written some code that looks like this: it’s called the filter pat‐
tern. The central idea of filter is to retain some elements of the Stream, while throw‐
ing others out. Example 7-22 shows how you would write the same code in a
functional style.

Example 7-22. Functional style

 @Override
 public void query(final TwootQuery twootQuery, final Consumer<Twoot> callback) {
 if (!twootQuery.hasUsers()) {
 return;
 }

 var lastSeenPosition = twootQuery.getLastSeenPosition();
 var inUsers = twootQuery.getInUsers();

 twoots
 .stream()
 .filter(twoot -> inUsers.contains(twoot.getSenderId()))
 .filter(twoot -> twoot.isAfter(lastSeenPosition))
 .forEach(callback);
 }

Much like map(), filter() is a method that takes just a single function as an argu‐
ment—here we’re using a lambda expression. This function does the same job that
the expression in the if statement did earlier. Here, it returns true if the String starts
with a digit. If you’re refactoring legacy code, the presence of an if statement in the
middle of a for loop is a pretty strong indicator that you really want to use filter.
Because this function is doing the same job as the if statement, it must return either
true or false for a given value. The Stream after the filter has the elements of the
Stream beforehand, which evaluated to true.

158 | Chapter 7: Extending Twootr

reduce()

reduce is a pattern that will also be familiar to anyone who has used loops to operate
on collections. It’s the kind of code that you write when you want to collapse down an
entire list of values into a single value—for example, finding the sum of all the values
of different transactions. The general pattern that you would see with reduction when
writing a loop is shown in Example 7-23. Use the reduce operation when you’ve got a
collection of values and you want to generate a single result.

Example 7-23. The reduce pattern

Object accumulator = initialValue;
for (Object element : collection) {
 accumulator = combine(accumulator, element);
}

An accumulator gets pushed through the body of the loop, with the final value of the
accumulator being the value that we were trying to compute. The accumulator starts
with an initialValue and then gets combined together with each element of the list
by calling the combine operation.

The things that differ between implementations of this pattern are the initialValue
and the combining function. In the original example, we used the first element in the
list as our initialValue, but it doesn’t have to be. In order to find the shortest value
in a list, our combine would return the shorter track of out of the current element
and the accumulator. We’ll now take a look at how this general pattern can be codi‐
fied by an operation in the Streams API itself.

Let’s demonstrate the reduce operation by adding a feature that combines together
different twoots into one large twoot. The operation will have a list of Twoot objects,
the sender of the Twoot, and its id provided as arguments. It will need to combine
together the different content value and return the highest position of the twoots
being combined. The overall code is demonstrated in Example 7-24.

We start with a new Twoot object created using the id, senderId with empty content
and the lowest possible position—the INITIAL_POSITION. The reduce then folds
together each element with an accumulator, combining the element to the accumula
tor at every step. When we reach the final Stream element, our accumulator has the
sum of all the elements.

The lambda expression, known as a reducer, performs the combining and takes two
arguments. acc is the accumulator and holds the previous twoots that have been
combined. It is also passed in the current Twoot in the Stream. The reducer in our
example creates a new Twoot, with the max of the two positions, the concatenation of
their content, and the specified id and senderId.

Functional Programming | 159

Example 7-24. Implementing sum using reduce

 private final BinaryOperator<Position> maxPosition = maxBy(comparingInt(Posi
tion::getValue));

 Twoot combineTwootsBy(final List<Twoot> twoots, final String senderId, final
String newId) {
 return twoots
 .stream()
 .reduce(
 new Twoot(newId, senderId, "", INITIAL_POSITION),
 (acc, twoot) -> new Twoot(
 newId,
 senderId,
 twoot.getContent() + acc.getContent(),
 maxPosition.apply(acc.getPosition(), twoot.getPosition())));
 }

Of course these Stream operations aren’t that interesting on their own. They become
really powerful when you combine them together to form a pipeline. Example 7-25
shows some code from Twootr.onSendTwoot() where we send twoots to the follow‐
ers of a user. The first step is to call the followers() method, which returns a
Stream<User>. We then use the filter operation to find the users who are actually
logged in who we want to send the twoot to. Then we use the forEach operation to
produce the desired side effect: sending a twoot to a user and recording the result.

Example 7-25. Use of Stream within the onSendTwoot method

 user.followers()
 .filter(User::isLoggedOn)
 .forEach(follower ->
 {
 follower.receiveTwoot(twoot);
 userRepository.update(follower);
 });

Optional
Optional is a core Java library data type, introduced in Java 8, that is designed to pro‐
vide a better alternative to null. There’s quite a lot of hatred for the old null value.
Even the man who invented the concept, Tony Hoare, described it as “my billion-
dollar mistake”. That’s the trouble with being an influential computer scientist—you
can make a billion-dollar mistake without even seeing the billion dollars yourself!

null is often used to represent the absence of a value, and this is the use case that
Optional is replacing. The problem with using null in order to represent absence is
the dreaded NullPointerException. If you refer to a variable that is null, your code

160 | Chapter 7: Extending Twootr

https://oreil.ly/OaXWj
https://oreil.ly/OaXWj

blows up. The goal of Optional is twofold. First, it encourages the coder to make ap‐
propriate checks as to whether a variable is absent in order to avoid bugs. Second, it
documents values that are expected to be absent in a class’s API. This makes it easier
to see where the bodies are buried.

Let’s take a look at the API for Optional in order to get a feel for how to use it. If you
want to create an Optional instance from a value, there is a factory method called
of(). The Optional is now a container for this value, which can be pulled out with
get, as shown in Example 7-26.

Example 7-26. Creating an Optional from a value

Optional<String> a = Optional.of("a");

assertEquals("a", a.get());

Because an Optional may also represent an absent value, there’s also a factory
method called empty(), and you can convert a nullable value into an Optional using
the ofNullable() method. You can see both of these methods in Example 7-27, along
with the use of the isPresent() method, which indicates whether the Optional is
holding a value.

Example 7-27. Creating an empty Optional and checking whether it contains a value

Optional emptyOptional = Optional.empty();
Optional alsoEmpty = Optional.ofNullable(null);

assertFalse(emptyOptional.isPresent());

// a is defined above
assertTrue(a.isPresent());

One approach to using Optional is to guard any call to get() by checking isPre
sent()—this is needed because a call to get() can throw a NoSuchElementException.
Unfortunately, this approach isn’t a very good coding pattern for using Optional. If
you use it this way, all you’ve really done is to replicate the existing patterns for using
null—where you would check if a value isn’t null as a guard.

Functional Programming | 161

A neater approach is to call the orElse() method, which provides an alternative
value in case the Optional is empty. If creating an alternative value is computationally
expensive, the orElseGet() method should be used. This allows you to pass in a Sup
plier function that is called only if the Optional is genuinely empty. Both of these
methods are demonstrated in Example 7-28.

Example 7-28. Using orElse() and orElseGet()

assertEquals("b", emptyOptional.orElse("b"));
assertEquals("c", emptyOptional.orElseGet(() -> "c"));

Optional also has a series of methods defined that can be used like the Stream API;
for example, filter(), map(), and ifPresent(). You can think of these methods
applying to the Optional API similarly to the Stream API, but in this case your
Stream can only contain 1 or 0 elements. So Optional.filter() will retain an ele‐
ment in the Optional if it meets the criteria and return an empty Optional if the
Optional was previously empty or if the predicate fails to apply. Similarly, map()
transforms the value inside the Optional, but if it’s empty it doesn’t apply the func‐
tion at all. That’s what makes these functions safer than using null—they only oper‐
ate on the Optional if there’s really something inside of it. ifPresent is the Optional
dual of forEach—it applies a Consumer callback if there’s a value there, but not other‐
wise.

You can see an extract of the code from the Twootr.onLogon() method in
Example 7-29. This is an example of how we can put together these different opera‐
tions to perform a more complex operation. We start off by looking up the User from
their ID by calling UserRepository.get(), which returns an Optional. We then vali‐
date the user’s password matchers using filter. We use ifPresent to notify the User
of the twoots that they’ve missed. Finally, we map the User object into a new Sender
EndPoint that is returned from the method.

Example 7-29. Use of Optional within the onLogon method

 var authenticatedUser = userRepository
 .get(userId)
 .filter(userOfSameId ->
 {
 var hashedPassword = KeyGenerator.hash(password, userOfSameId.get
Salt());
 return Arrays.equals(hashedPassword, userOfSameId.getPassword());
 });

 authenticatedUser.ifPresent(user ->
 {
 user.onLogon(receiverEndPoint);

162 | Chapter 7: Extending Twootr

 twootRepository.query(
 new TwootQuery()
 .inUsers(user.getFollowing())
 .lastSeenPosition(user.getLastSeenPosition()),
 user::receiveTwoot);
 userRepository.update(user);
 });

 return authenticatedUser.map(user -> new SenderEndPoint(user, this));

In this section we’ve really only scratched the surface of functional programming. If
you are interested in learning about functional programming in greater depth, we
recommend Java 8 In Action and Java 8 Lambdas.

User Interface
Throughout this chapter we’ve avoided talking too much about the user interface to
this system, because we’re focused on the design of the core problem domain. That
said, it’s worth delving a little into what the example project delivers as part of its UI
just in order to understand how the event modeling fits together. In our example
project we ship a single-page website that uses JavaScript to implement its dynamic
functionality. In order to keep things simple and not delve too much into the myriad
framework wars, we’ve just used jquery to update the raw HTML page, but kept a
simple separation of concerns in the code.

When you browse to the Twootr web page it connects back to the host using Web‐
Sockets. These were one of the event communication choices discussed back in
“From Events to Design” on page 117. All the code for communicating with it lies in
the web_adapter subpackage of chapter_06. The WebSocketEndPoint class imple‐
ments the ReceiverEndPoint and also invokes any needed methods on the Sender
EndPoint. For example, when the ReceiverEndPoint receives and parses a message to
follow another user it invokes the SenderEndPoint.onFollow(), passing the user‐
name through. The returned enum—FollowStatus then gets converted into a wire
format response and written down the WebSocket connection.

All communication between the JavaScript frontend and the server is done using the
JavaScript Object Notation (JSON) standard. JSON was chosen as it’s very easy for a
JavaScript UI to deserialize or serialize.

Within the WebSocketEndPoint we need to map to and from JSON within Java code.
There are many libraries that can be used for this purpose, here we’ve chosen the
Jackson library, which is commonly used and well maintained. JSON is often used in
applications that take a request/response approach rather than an event-driven
approach as well. In our case we manually extract the fields from the JSON object to

User Interface | 163

https://oreil.ly/wGImJ
https://oreil.ly/hDrfH
http://www.json.org/
https://github.com/FasterXML/jackson

keep things simple, but its also possible to use a higher-level JSON API, such as a
binding API.

Dependency Inversion and Dependency Injection
We’ve talked a lot about decoupling patterns in this chapter. Our overall application
uses the Ports and Adapters pattern and the Repository pattern to decouple business
logic away from implementation details. There is in fact a large, unifying principle
that we can think of when we see these patterns—Dependency Inversion. The Depend‐
ency Inversion Principle is the final of our five SOLID patterns that we’ve talked
about in this book, and like the others was introduced by Robert Martin. It states that:

• High-level modules should not depend upon low-level modules. Both should
depend upon abstractions.

• Abstractions should not depend upon details. Details should depend upon
abstractions.

The principle is called an inversion because in traditional imperative, structured pro‐
gramming it is often the case that high-level modules compose down to produce low-
level modules. It’s often a side effect of the top-down design that we talked about in
this chapter. You split up a big problem into different subproblems, write a module to
solve each of those subproblems, and then the main problem (the high-level module)
depends on the subproblems (the low-level modules).

In the design of Twootr we’ve avoided this problem through the introduction of
abstractions. We have a high-level entry point class, called Twootr, and it doesn’t
depend upon the low-level modules such as our DataUserRepository. It depends
upon the abstraction—the UserRepository interface. We perform the same inversion
at the UI port. Twootr doesn’t depend upon the WebSocketEndPoint—it depends
upon the ReceiverEndPoint. We program to the interface, not the implementation.

A related term is the concept of Dependency Injection, or DI. To understand what DI
is and why we need it, let’s undertake a thought experiment on our design. Our archi‐
tecture has determined that the main Twootr class needs to depend upon the UserRe
pository and TwootRepository in order to store User and Twoot objects. We have
defined fields inside Twootr to store instances of these objects, as shown in
Example 7-30. The question is, how do we instantiate them?

Example 7-30. Dependencies within the Twootr class

public class Twootr
{

164 | Chapter 7: Extending Twootr

 private final TwootRepository twootRepository;
 private final UserRepository userRepository;

The first strategy that we could use for populating the fields is to try and call con‐
structors using the new keyword, as shown in Example 7-31. Here we’ve hardcoded
the use of the database-based repositories into the codebase. Now most of the code in
the class still programs to the interface, so we could change the implementation here
quite easily without having to replace all our code, but it’s a bit of a hack. We have to
always use the database repositories, which means our tests for the Twootr class
depend upon the database and run more slowly.

Not only that, but if we want to ship different versions of Twootr to different custom‐
ers—for example, an in-house Twootr for enterprise customers that uses SQL and a
cloud-based version that uses a NoSQL backend—we would have to cut the builds
from two different versions of the codebase. It’s not enough to just define interfaces
and separate implementation—we also have to have a way of wiring up the right
implementation in a way that doesn’t break our abstraction and decoupling approach.

Example 7-31. Hardcoding the field instantiation

public Twootr()
{
 this.userRepository = new DatabaseUserRepository();
 this.twootRepository = new DatabaseTwootRepository();
}

// How to start Twootr
Twootr twootr = new Twootr();

A commonly used design pattern for instantiating different dependencies is the
Abstract Factory Design pattern. Example 7-32 demonstrates this pattern, where we
have a factory method that we can use to create an instance of our interface using the
getInstance() method. When we want to set up the right implementations to use,
we can call a setInstance(). So, for example, we could use setInstance() in tests to
create an in-memory implementation, in an on-premise installation to use a SQL
database, or in our cloud environment to use a NoSQL database. We’ve decoupled the
implementation from the interface and can call this wiring code wherever we want.

Example 7-32. Creating the instances with factories

public Twootr()
{
 this.userRepository = UserRepository.getInstance();
 this.twootRepository = TwootRepository.getInstance();
}

Dependency Inversion and Dependency Injection | 165

// How to start Twootr
UserRepository.setInstance(new DatabaseUserRepository());
TwootRepository.setInstance(new DatabaseTwootRepository());
Twootr twootr = new Twootr();

Unfortunately this factory method approach has its downsides as well. For a start,
we’ve now created a big ball of shared mutable state. Any situation where we want to
run a single JVM with different Twootr instances with different dependencies isn’t
possible. We’ve also coupled together lifetimes—perhaps we sometimes want to
instantiate a new TwootRepository when we start Twootr, or perhaps we sometimes
want to reuse an existing one. The factory method approach won’t let us directly do
this. It can also become rather complicated to have a factory for every dependency
that we want to create in our application.

This is where Dependency Injection comes in. DI can be thought of as an example of
the Hollywood Agent approach—don’t call us, we’ll call you. With DI instead of creat‐
ing dependencies explicitly or using factories to create them, you simply take a
parameter and whatever instantiates your object has the responsibiltiy for passing in
the required dependencies. It might be a test class’s setup method passing in a mock.
It might be the main() method of your application passing in a SQL database imple‐
mentation. An example of this in use with the Twootr class is shown in Example 7-33.
Dependency Inversion is a strategy; Dependency Injection and the Repository pat‐
tern are tactics.

Example 7-33. Creating the instances using Dependency Injection

public Twootr(final UserRepository userRepository, final TwootRepository twootReposi
tory)
{
 this.userRepository = userRepository;
 this.twootRepository = twootRepository;
}

// How to start Twootr
Twootr twootr = new Twootr(new DatabaseUserRepository(), new DatabaseTwootReposi
tory());

Taking objects this way not only makes it easier to write tests for your objects, but it
has the advantage of externalizing the creation of the objects themselves. This allows
your application code or a framework to control when the UserRepository is created
and what dependencies are wired into it. Many developers find it convenient to use
DI frameworks, such as Spring and Guice, that offer many features on top of basic DI.
For example, they define lifecycles for beans that standardize hooks to be called after
the objects are instantiated or before they are destroyed if required. They can also
offer scopes for objects, such as Singleton objects that are only instantiated once dur‐
ing the lifetime of a process or per-request objects. Furthermore, these DI

166 | Chapter 7: Extending Twootr

frameworks often hook nicely into web development frameworks such as Dropwizard
or Spring Boot and provide a productive out-of-the-box experience.

Packages and Build Systems
Java allows you to split your codebase into different packages. Throughout this book
we’ve put the code for each chapter into its own package and Twootr is the first
project where we’ve split out multiple subpackages within the project itself.

Here are the packages can you look at for the different components within the
project:

• com.iteratrlearning.shu_book.chapter_06 is the top-level package for the
project.

• com.iteratrlearning.shu_book.chapter_06.database contains the adapter for
SQL database persistence.

• com.iteratrlearning.shu_book.chapter_06.in_memory contains the adapter
for in-memory persistence.

• com.iteratrlearning.shu_book.chapter_06.web_adapter contains the adapter
for the WebSockets-based UI.

Splitting out large projects into different packages can be helpful to structure code
and make it easier for developers to find. Just in the same way that classes group
together related methods and state, packages group together related classes. Packages
should follow similar coupling and cohesion rules to your classes. Put classes in the
same package when they’re likely to change at the same time and are related to
the same structure. For example, in the Twootr project if we want to alter the SQL
database persistence code we know we go to the database subpackage.

Packages also enable information hiding. We discussed the idea of having a package-
scoped constructor method back in Example 4-3 in order to prevent objects from
being instantiated outside of the package. We can also have package scoping for
classes and methods. This prevents objects outside of the package from accessing the
details of the class and helps us achieve loose coupling. For example, WebSocketEnd
Point is package-scoped implementation of the ReceiverEndPoint interface that
lives in the web_adapter package. No other code in the project should talk to this
class directly—only through the ReceiverEndPoint interface that acts as the port.

Our approach of having a package per adapter in Twootr fits nicely with the hexago‐
nal architectural pattern that we’ve used throughout this module. Not every applica‐
tion is hexagonal, however, and there are two common package structures that you
may well encounter in other projects.

Packages and Build Systems | 167

One very common approach to structuring packages is to structure them by layer—
for example, grouping together all code that generates HTML views in a website into
a views package, and all the code that relates to handling web requests into a control
ler package. Despite being popular, this can be a poor choice of structure as it results
in poor coupling and cohesion. If you want to modify an existing web page to add an
additional parameter and display a value based upon that parameter, you would end
up touching the controller and the view packages, and probably several others as
well.

An alternative way of structuring code is to group code by feature. So, for example, if
you were writing an ecommerce site you might have a cart package for your shop‐
ping cart, a product package for code related to product listings, a payment package
code related to taking card payments, etc. This can often be more cohesive. If you
want to add support for receiving payment by Mastercard as well as Visa, then you
would only need to modify the payment package.

In “Using Maven” on page 55 we talked about how to set up a basic build structure
using the Maven build tool. In the project structure for this book we have one Maven
project and the different chapters of the book are different Java packages within that
one project. That’s a nice and simple project structure that will work for a wide range
of different software projects, but it’s not the only one. Both Maven and Gradle offer
project structures that build and output many build artifacts from a single top-level
project.

This can make sense if you want to deploy different build artifacts. For example, sup‐
pose you’ve got a client/server project where you want to have a single build that
builds both the client and the server, but the client and the server are different binar‐
ies running on different machines. It’s best not to overthink or over-modularize build
scripts, though.

They’re something that you and your team will be running on your machines regu‐
larly and the highest priority is for them to be simple, fast, and easy to use. That’s why
we went down the route of having one single project for the entire book, rather than
submodule per project.

Limitations and Simplifications
You’ve seen how we implement Twootr and learned about our design decisions along
the way, but does that mean that the Twootr codebase that we’ve seen so far is the
only or the best way to write it? Of course not! In fact, there are a number of limita‐
tions to our approach and simplifications that we’ve deliberately taken in order to
make the codebase explainable in a single chapter.

For a start we’ve written Twootr as though it will be run on a single thread and com‐
pletely ignored the issue of concurrency. In practice we may want to have multiple

168 | Chapter 7: Extending Twootr

threads responding to and emitting events in our Twootr implementation. That way
we can make use of modern multicore CPUs and serve a larger number customers on
one box.

In a bigger-picture sense, we’ve also ignored any kind of failover that would allow our
service to continue to run if the server that it was hosted on fell over. We’ve also
ignored scalability. For example, requiring all our twoots have a single defined order
is something that is easy and efficient to implement on a single server but would
present a serious scalability/contention bottleneck. Similarly, seeing all the twoots
when you log on would cause a bottleneck as well. What if you go on holiday for a
week and when you log back on you get 20,000 twoots!

Addressing these issues in detail goes beyond the scope of this chapter. However,
these are important topics if you wish to go further with Java, and we plan to address
them in greater detail in future books in this series.

Takeaways
• You can now decouple data storage from business logic using the Repository

pattern.
• You have seen implementations of two different types of repositories within this

approach.
• You were introduced to the ideas of functional programming, including Java 8

Streams.
• You’ve seen how to structure a larger project with different packages.

Iterating on You
If you want to extend and solidify the knowledge from this section you could try one
of the following activities.

Suppose that we had taken a pull model for Twootr. Instead of having messages con‐
tinuously pushed out to a browser-based client over WebSockets, we had used HTTP
to poll for the latest messages since a position.

• Brainstorm how our design would have changed. Try drawing a diagram of the
different classes and how data would flow between them.

• Implement, using TDD, this alternative model for Twootr. You don’t need to
implement the HTTP parts, just the underlying classes following this model.

Takeaways | 169

Completing the Challenge
We built the product and it worked. Unfortunately, Joe realized when he launched
that someone called Jack had released a similar product, with a similar name, taking
billions in VC funding and with hundreds of millions of users. Jack only got there
first by 11 years; it was bad luck for Joe, really.

170 | Chapter 7: Extending Twootr

CHAPTER 8

Conclusion

If you’ve read this far, you’ve hopefully enjoyed the book. We enjoyed writing it as
well. In this concluding chapter you’ll learn about where to go next in your program‐
ming career. We’ll offer some advice on how to evolve your skills and push yourself to
the next level in your career as a developer.

Project-Based Structure
The project-based structure of the book was designed to help you understand soft‐
ware development concepts more easily. You were presented topics within software
projects in order to understand the context of software engineering decisions. Con‐
text is critical in software engineering—decisions that may be right in one context
aren’t so applicable in another. Many developers overuse and abuse subclassing due to
misunderstanding that it’s a mechanism for code reuse. Hopefully we’ve discouraged
that idea in your mind in Chapter 4.

But you can’t simply hope to read a book and magically become an expert software
developer. It takes practice, experience, and patience. This book is just here to help
optimize and improve the process. That’s why we’ve added an “Iterating on You” sec‐
tion to each chapter—they offer suggestions as to how you can take the material in
this book further and improve your understanding.

Iterating on You
As a software developer you probably often approach projects in an iterative fashion.
That’s to say, slice off the highest priority week or two’s worth of work items, imple‐
ment them, and then use the feedback in order to decide on the next set of items.
We’ve found that it’s often worth evaluating the progress of your own skills in the
same way.

171

Taking a regular retrospective on yourself can help you gain focus and direction
should you need it. Agile software development often involves weekly retrospectives,
but you don’t personally need to do it so frequently. A quarterly or biannual retro‐
spective can be very helpful. One topic we’ve found useful is to evaluate what skills
would help your current or a future job. In order to ensure that these skills are pro‐
gressed, it’s helpful to set a goal for the next quarter. This could be something to learn
or something to improve upon. It doesn’t need to a big goal like learning a whole new
programming language; it could be something simple like picking up a new testing
framework or a couple of design patterns.

We’ve heard pushback from some developers when it comes to skills. A frequently
asked question is “How can I be constantly expected to learn new technologies, prac‐
tices, and principles?” It’s not easy and everyone is busy. They trick is to not worry
about trying to learn everything in the technology industry. That’s a surefire route to
madness! Finding key skills that will serve you over time and build upon your exist‐
ing skillset is what helps you become an excellent developer. The key thing is to be
always improving yourself and iterating on you.

Deliberate Practice
While this book has covered a lot of the key concepts and skills that are needed to be
a good developer, it’s important to practice them. Reading isn’t enough on its own—
practice helps you internalize these skills and apply them yourself. In your day job
seeking out situations where different techniques are appropriate to apply will help.
As every pattern described in the book has places where it works and places where it
doesn’t work, so it’s also helpful to consider situations where a technique isn’t helpful.

Often we think that natural talent and intellect are the most crucial factors to success,
but a lot of research has established that practice and work are the real the key to suc‐
cess. Books such as Talent is Overrated by Geoff Colvin (Portfolio, 2008) and Outliers:
The Story of Success by Malcolm Gladwell (Penguin, 2009) evaluate a number of key
factors to being successful in your life, and the most effective of all is deliberate prac‐
tice.

Deliberate practice is a form of practice that has purpose and is systematic. Deliberate
practice has the goal of trying to improve performance and requires focus and atten‐
tion. Often when people practice their skills to improve them, they just engage in rep‐
etition. Doing the same thing over and over again expecting to get better at it is not
the most effective way of doing things.

One good example of this was when we were exploring and learning the Eclipse Col‐
lections library. In order to understand and learn the library in a systematic way we
stepped through the excellent set of code Katas that come with the library in ques‐
tion. To ensure that we were getting a really good understanding, we stepped through

172 | Chapter 8: Conclusion

https://www.eclipse.org/collections/
https://www.eclipse.org/collections/

the Katas three times. Each time we started from scratch and compared my solution
with the one that we had done previously, finding cleaner, better, and faster ways of
doing them.

The thing is that repeating personal behaviors means that they are automatic. So if
you pick up bad habits during your career, you can end up teaching them to yourself
through practicing on the job. Experience reinforces habit. Deliberate practice is the
way to break out of that cycle. Deliberate practice may involve practicing new
approaches from books systematically. It may involve taking a small problem that
you’ve solved before and solving it repeatedly with different approaches. It may
involve going on training courses that have exercises that have been designed to prac‐
tice. No matter which route you go down, deliberate practice is the key to honing
your skills over time and going beyond what this book covers.

Next Steps and Additional Resources
OK, so hopefully you’re convinced that this book isn’t the end of the road in terms of
learning, but what should you look at next?

Getting involved in open source is a great way to learn more about software and
expand your horizons. Many of the most popular Java open source projects, like JUnit
and Spring are hosted on GitHub. Some projects can be more welcoming than others
but often open source maintainers are overworked and in need of help on their
projects. You could take a look at the bug tracker and see if there’s anything you can
work.

Formal training courses and online learning are another practical and popular way of
improving your skills. Online training courses are increasingly popular and both Plu‐
ralsight and the O’Reilly Learning Platform have a great selection of Java training
courses.

Another fantastic source of information for developers are blogs and Twitter. Both
Richard and Raoul are on Twitter and often post links on software development. The
Programming Reddit often acts as a strong link aggregator, as does Hacker News.
Finally, the training company that the book authors run (Iteratr Learning) also pro‐
vides a series of free articles for anyone to read.

Thank you for reading this book. We appreciate your thoughts and feedback and wish
you the best in your journey as a Java developer.

Next Steps and Additional Resources | 173

https://github.com/
http://pluralsight.com/
http://pluralsight.com/
http://safaribooksonline.com/
http://twitter.com/richardwarburto
https://twitter.com/raouluk
http://reddit.com/r/programming
http://news.ycombinator.com/
http://iteratrlearning.com/articles

Index

Symbols
<> (diamond) operator, 100
@FunctionalInterface annotation, 34
@Test annotation, 25

expected =+ attribute, 86
@throws Javadoc syntax, 51

A
abstract classes, 122
abstract factory design pattern, 165
abstraction, 151

details and, 164
in functional programming, benefits of, 151

accumulators, 159
Action interface, 91

mocking and verifying interaction with
Action object, 95

refactoring so perform method can use
Facts object as argument, 98

actions, 90, 107
action using facts, 99
action using facts and local variable type

inference, 101
adding to business rules engine, 96
testing an Action with facts, 97

adapters, 119
decoupling core from specific adapter

implementation, 122
add method in repositories, 145

TwootRepository (example), 146
aggregations

avoiding returning primitive values from,
40

implementing with Streams API, 40

Agile, or iterative, development methodologies,
121
iterating on you, 171

anaemic domain model, 124
Android push notifications, 118
anti-cohesion, 38
anti-patterns, 9

code duplication, 10
exposing private state through getters/

setters, 82
God class, 9
in test naming, 80
indicating need for a domain class, 124

APIs
designing a Fluent API, 106-111
explicit vs. implicit API, 38-41
for sending and receiving events, 122

assertAttributeEquals method, 83
assertion statements, 26

Assert.fail method, 26
assertAttributeEquals method, 83
assertEquals method, 26, 85
assertThat method, 85
assertTrue method, 84
summary of, 27
using for testing, 26

AssertionError, 84
attributes

and hierarchical Documents, 68
assertAttributeEquals method, 83
for importers in document management

system, 70
searching on attributes of a Document, 70

authentication, 120

175

failing for unknown users, 123
testing for Twootr (example), 121

automated testing, 23

B
bank statements analyzer (example), 5-29

applying single responsibility pattern to
code, 11
domain class for bank transactions, 12
extracting parsing logic into a class, 11
processing lists of bank transactions, 13
using the CSV parser, 13

calculating sum of all statements, 7
class-level cohesion in, 17-20
decoupling from the parser, 21
decoupling interface from implementation,

21
enhancing functionalities of, 29
extending, 31-61

declaring class implementing BankTran‐
sactionFilter, 35

exception handling, 44-53
explicit vs. implicit API for BankTran‐

sactionProcessor, 38-41
exporting summary statistics in different

formats, 41-44
finding transactions in certain month, 33
finding transactions over certain

amount, 32
implementing BankTransactionFilter

using lambda expression, 36
interface gotchas, 36-38
requirements, 32
using a build tool, 54-60

requirements, 6
testing CSV parser, 25

behavior
abstracting over behavior in functional pro‐

gramming, 151
test names describing behavior under test,

not concepts, 80
testing public behavior, not implementation,

81-83
big design up front (BDUF), 121
BigDecimal class, 41
boolean values indicating success or failure, 128
bottom-up approach to software development,

127
Bouncy Castle library, 125

break statements in switch statement, 102
build tools, 54-60, 168

benefits of using, 54
using Gradle, 58-60
using Maven, 55-58

build.gradle files, 59
builder pattern, 108-111

improvements to RuleBuilder, 110
using the RuleBuilder, 109

business logic, separation from data stores, 148
business rules engine (example), 89-112

adding conditions, 96-106
BusinessRuleEngine with facts, 98
local variable type inference, 99
using interface segregation principle, 103

components, 90
designing a Fluent API, 106-111

modeling the domain, 107
updating to support rules, 111
using builder pattern for rules, 108-111

production-ready, in Java, 90
requirements, 90
test-driven development, 91-95
using mocking for tests, 95-96

C
chaining methods in Fluent APIs, 109
changes, robustness to, 24
checked exceptions, 45

choosing between unchecked exceptions
and, 46

class-level cohesion, 17-20
functional, 17
informational, 17
logical, 19
sequential, 19
temporal, 20
utility, 18

classes
adapter, 122
capabilities, 73
changing behavior without modifying code,

34
class hierarchy for Documents, 69
coupling, 21
decoupling, 22
exceptions hierarchy in Java, 46
inline, in future Java version, 140
modeling real-world objects as, 76

176 | Index

single responsibility principle, 10
test classes with Test suffix, 25

client-server model, 115
Cobertura code coverage tool, 28
code

duplication, 10, 33
extending and reusing in document man‐

agement system, 74-79
maintainability, 9, 38

code coverage, 27
tools in Java for, 28

cohesion, 5, 14-20
class-level, 17-20

pros and cons for different levels, 20
coupling versus, 21
method-level, 20
promoted by interface segregation principle,

106
Collectors API, 151
combine operation, 159
comma-separated values (CSV) format, 6

concerns in parsing files, 46
extracting parsing logic into BankState‐

mentCSVParser class, 11
problems with files, 45

communication in Twootr (example), 117
composition over inheritance principle, 63
conditions, 90, 107

adding to business rules engine, 96-106
local variable type inference, 99
modeling state, 96
using interface segregation principle, 103
using switch expressions, 101

defining Condition interface for business
rules engine, 107

constants
defining in Java, 70
in enum types, 128
in int-based status codes, 128
names that can be used in tests, 87

constructors
package scoped constructor for Document,

68
control flow versus exceptions, 52
coupling, 5, 21

of UI to core server-side business logic, dis‐
advantages of, 118

unnecessary, in violation of interface segre‐
gation principle, 106

cryptographic hash functions, 125
Bouncy Castle Java library for, 125
brute forcing reversal of, 126

CSVSyntaxException, 46

D
data access object (DAO) pattern, 18
data stores, separation from business logic, 148
data types

local variable type inference, 99
restricting data use with, 67
static typing in lambda method parameters,

153
strong typing, 66
types and subtypes in Liskov substitution

principle, 71
dead code, 145
Decision Model and Notation (DMN) stan‐

dard, 90
delete method in repositories, 145
deliberate practice, 172
delimiter-separated formats, 7
dependencies

coupling and, 21
decoupling classes, 22
managing with a build tool, 54

dependency injection, 164
creating Twootr class instances with, 166
frameworks for, 166

dependency inversion principle (DIP), 2, 164
design

big design up front (BDUF), 121
bottom-up approach, 127
in Twootr (example), recap of key concepts,

144
just enough upfront design in software

development, 121
test-driven development discouraging, 124
top-down approach, 127

diagnostics, good, for failing tests, 84-86
diamond operator (<>), 100
digests, 125
discoverability, 32, 38, 67
Document class hierarchy, defining, 69
document management system (example),

63-88
alternative approaches to, 73-74

making Importer a class, 73
scoping and encapsulation choices, 73

Index | 177

design and modeling approaches, 64-71
attributes and hierarchical Documents,

68
Document class, 66-68
implementing and registering Importers,

69
importers, 65

extending and reusing code, 74-79
Liskov substitution principle in design of,

71-73
requirements, 64
test hygiene, 79-88

constants, 87
Don't Repeat Yourself, 83
good diagnostics for test failures, 84-86
testing behavior, not implementation,

81-83
testing error cases, 86

documenting exceptions, 51
domain classes, 40

advantages of using Document class, 68
Notification, 49
spotting the right time to add, 124
using for code reuse in document manage‐

ment system, 77
domain-specific language (DSL), use by Gradle,

58
domains, 11

anaemic domain model, 124
Fluent APIs, 106
modeling in business rules engine, 107
ports versus parts of core domain, 120
using domain terminology in test naming,

81
Don't Repeat Yourself, 83
double value, wrapping in domain class, 40
Drools, 90

E
EasyMock, 133
Emma code coverage tool, 28
encapsulation, 9

choices in document management system,
73

enum types, 128
FollowStatus in Twootr (example), 129

equals method, 138
contract between hashCode method and,

139

Error class, 46
errors

modeling in following users in Twootr
(example), 128

testing error cases in document manage‐
ment system, 86

events
event-driven communications, 116
from events to design in Twootr (example),

117-120
methods corresponding to, beginning with

on, 121
sending to and receiving from users in

Twootr (example), 121
Exception class, 46
exception handling, 44-53

alternatives to exceptions, 52
exceptions hierarchy in Java, 46
guidelines for using exceptions, 51
patterns and anti-patterns with exceptions,

46-51
choosing between checked and

unchecked, 46
notification pattern, 49
overly apathetic exceptions, 49
overly specific exceptions, 47

reasons for using exceptions, 45
exceptions

checked and unchecked, 45
throwing in failures to follow valid users in

Twootr, 128
exec plug-in (Maven), 58
execute around pattern, 155
exhaustiveness in switch statement, 103
explicit versus implicit API, 38-41
exporters, multiple, 41-44

F
facts (in business rules engine), 90

action using facts, 99
action using facts and local variable type

inference, 101
BusinessRuleEngine with facts, 98
Facts class, 98
testing an Action with, 97

fall-through behavior, 102
File class, 66
files imported into document management sys‐

tem, representing, 66

178 | Index

Files.readAllLines method, 7
filter function, 157
final keyword

not used with variables declared using var,
100

using with attributes in document manage‐
ment system, 70

final variables, 8
Fluent APIs, designing, 106-111

about Fluent APIs, 106
modeling the domain, 107
using builder pattern, 108-111

followers, notifying of twoots in Twootr (exam‐
ple), 130

for loops, map operations with, 156
forEach function, 157
functional cohesion, 17

pros and cons, 20
functional interface, 34

Action interface, 91
creating instance of, 35

functional programming, 151-163
execute around pattern, 155
features added in Java 8, 151
lambda expressions, 152-153
learning more about, 163
method references, 153-154
Optional type, 160-163
streams, 156-160

functional programming languages, 151

G
generic Exception, not catching, 51
get method in repositories, 145
Given-When-Then formula, 27, 95, 132
God class, 9
God interface, 37
Gradle, 58-60

advantages of, 58
commands, 59
example build file, 59
packages and, 168
using to run tests, 26

granularity, too granular interfaces, 38
Groovy programming language, 58
GUI (graphical user interface) in Twootr

(example), 118
Guice framework, 166

H
Hamcrest library, matchers from, 86
hashCode method, 138

contract between equals method and, 139
HashMap class, Document class extending, 67
Hexagonal architecture, 119
Hibernate, 150
high coupling, 23
history rule (in LSP), 72
hosted cloud-based message queues, 117

I
IllegalArgumentException, 49
images

importer for in document management sys‐
tem, 69

importing, test for, 83
immutability

Document class, 67, 73
final keyword and, 8

implementation-specific exceptions, avoiding,
52

implicit versus explicit API, 38
importers

for files in document management system,
65, 67
implementing and registering, 69
making Importer a class, 73
reusing code across, 76
test for importing files, 80
test for importing images, 83
test for importing letters, 82

informational cohesion, 17
pros and cons, 20

inheritance
class-based, 73
favoring composition over inheritance, 63
for code reuse in document management

system, 76
supertype invariants and, 72

inline classes, 140
int-based status codes, 128
IntelliJ IDE, using to run tests, 26
inter-process communication, 117
interface segregation principle (ISP), 2

broken by ConditionalAction interface in
business rules engine, 105

single responsibility principle versus, 106
interfaces

Index | 179

adapter, 122
BankTransactionFilter (example), 34
capabilities, 73
decoupling from implementation, 21
Exporter, defining and implementing, 43-44
gotchas, 36-38

God interface, 37
too granular, 38

invariants of supertype, preserving in subtype,
72

is a relationship, 73
isEnd predicate, 78
iterative development methodologies, 121

iterating on you, 171

J
Jackson library, 163
JaCoCo, 28
Java

business rules engines, production-ready, 90
features, 1
functional programming features added in

Java 8, 151
Java Streams API, 106
local variable type inference and switch

expressions, 89
java.io.File class, 66
java.lang.Object, 138
java.math.BigDecimal, 41
java.util.function.Predicate<T> interface, 34,

107
java.util.Objects class, 134
java.util.Optional<T>, 53
jOOQ, library for interacting with databases

using intuitive API, 107
JSON, 163
JUnit, 23

creating automated test with, 24

K
KeyGenerator class, 125
KISS principle, 6, 69
Kotlin programming language, 58

L
lambda expressions, 36, 151

examples of use in Twootr (example),
152-153

static typing in lambda method parameters,
153

using method references, 154
using to add action to business rules engine,

97
Liskov substitution principle (LSP), 2, 63

in document management system design,
71-73

local variable type inference, 99
logical cohesion, 19

pros and cons, 20
logon

failing for unknown users, 123
onLogon method, 122

low coupling, 23
LSP (see Liskov substitution principle)

M
man-in-the-middle attacks, securing WebSock‐

ets against, 127
map function, 156
maps

Map using local variable type inference, 99
of attribute names and associated values, 67
storing user names and passwords in a Map,

124
matchers, 85

Matchers utility class, hasSize method, 86
Maven, 55-58

commands, 57
example build file, 56
packages and, 168
project structure, 55
using to run tests, 26

message queues
hosted, cloud-based, 117
open source, 118

method references, 36, 153-154
method-level cohesion, 20
methods

changing behavior without modifying code,
34

corresponding to events, beginning with on,
121

mock method, 95
mocking, 95-96

creating mock object to test calling of onT‐
woot in Twootr (example), 130

Java libraries for, 132

180 | Index

use of word verify in, 131
using Mockito library instead of writing

mocks by hand, 131
using to test an Action with facts, 97
verifying with mock objects, 132
writing mock objects by hand, 131

Mockito library, 95
using to write mockReceiverEndPoint in

Twootr (example), 131
verification logic, 96

N
names

naming constants for use in tests, 87
naming tests, 79

notification pattern, 49
null object pattern, 53
NullPointerException, 53, 123
nulls

Optional type as alternative to, 160
returning null for failed logon, 123
returning null instead of exception, 52

O
object class, equals and hashCode methods, 138
object-oriented programming

abstraction, functional programming vs.,
151

modeling real-world objects as classes, 76
object-relational mappers (ORMs), 150
Objects class, 134
on prefix for methods, 121
onFollow method, 128
onLogon method, 122

refactoring with Optional return type, 123
storing user names and passwords in a Map,

124
use of Optional in, 162

onSendTwoot method, 130, 134
onTwoot method, 130

verifying calling of with mocks, 132
open source message transports or message

queues, 117
open/closed principle (OCP), 2, 31, 32-36

advantages of, 36
flexible findTransactions method using, 35

Optional type, 123, 151, 160-163
creating empty Optional and checking if it

contains a value, 161

creating Optional instance from a value, 161
methods defined for use like Stream API,

162
using orElse and orElseGet methods, 162

Optional<T> type, 53
ORMs (object-relational mappers), 150
overly specific exceptions, 47

P
package scope, 73
packages, 167-168
passwords, 124

storing in Twootr (example), 125
Path class, 7
paths

for imports in document management sys‐
tem, 65

String type representing file path, 66
persistence in Twootr (example), 119

and repository pattern, 144-151
designing the repositories, 145

plain text, passwords stored in, 125
Point class, 138

equals method, 139
Point objects not equal when they should

be, 138
pom.xml files (Maven), 56
ports and adapters, 119

ports versus parts of core domain, 120
separating UI communication layer with a

port, 121
positions (in Twootr example), 135-141, 146

contract between equals and hashCode
methods, 139

defining positions for twoots in Position
class, 137

equals and hashCode methods, 138
Point class, 138

postconditions, no weakening in subtypes, 72
Powermock, 132
practices and principles over technology, 1
precision in decimal numbers, 41
preconditions, not strengthening in subtypes,

71
primitive values, returned from aggregations,

40
principle of least surprise, 14
program comprehension through testing, 24
Project Valhalla, 140

Index | 181

projects
Gradle project structure, 59
Maven project structure, 55
project-based structure of this book, 171

public modifier
for attributes in document management sys‐

tem, 70
public scope versus package scope, 73
using with constructors, 68

pull-based communications, 116
push-based communications, 116

Q
queries

support for querying in repositories, 147
TwootQuery object (example), 148

R
rainbow table, 126
ReceiverEndPoint interface, 122, 130
reduce function, 159

implementing sum with, 159
reference objects, 139
registering importers, 70
repository pattern, 144-151

common operations implemented in reposi‐
tories, 145

dependency injection and, 166
designing repositories for Twootr (exam‐

ple), 145
AbstractRepository, 147
TwootRepository, 146
UserRepository, 145

implementing repositories, choices in, 150
repositories needed in Twootr (example),

145
support for querying in TwootRepository,

147
unit of work pattern, using with, 150

robustness to changes, 24
rules, 90, 107

building a rule in business rules engine, 108
improving the RuleBuilder, 110
modeling concept of a rule, 107, 107
updating BusinessRuleEngine to support

rules, 111
using builder pattern for a Rule, 108
using the RuleBuilder, 109

run method, basic implementation, 96

RuntimeException class, 46

S
salts, 126
scope

package vs. public scope for constuctors, 68
scoping choices in document management

system, 73
Scrypt hashing function, 125
search

implementing in document management
system, 70

in bank statements analyzer, 31-36
security, 125

applying cryptographic hash functions to
passwords, 125

building regular reviews into software
design, 127

securing WebSocket connections, 127
SenderEndPoint class, 122, 133
sequential cohesion, 19

pros and cons, 20
servers, 115
Set interface, 129
settings.gradle files, 59
single responsibility principle (SRP), 2, 5, 10-14

interface segregation principle versus, 106
software design and architecture, 2
software development

bottom-up approach, 127
deliberate practice of key concepts and

skills, 172
just enough upfront design, 121
next steps and additional resources, 173
top-down approach, 127

SOLID principles, 2
(see also listings under individual principle

names)
dependency inversion principle (DIP), 2,

164
interface segregation principle (ISP), 2
Liskov substitution principle (LSP), 2, 71
open/closed principle (OCP), 2
single responsibility principle (SRP), 2

source code for this book, 32
Spring framework, 166
Spring integration, 106
src/main/java directory, 25
src/test/java directory, 25

182 | Index

start index, 78
state, modeling in business rules engine, 96
static modifier, 70
streams, 156-160

combining operations to form a pipeline,
160

filter function, 157
forEach function, 157
map function, 156
reduce function, 159

Streams API, 40, 106, 151
strict mocking, 133
strings

query String passed to search method, 71
String type as Document attributes, 68
String type as path in document imports, 65

strong typing, 66
using class to model a document, 67
versus Strings as attributes for Document

class, 68
subtypes, 71

no strengthening of preconditions in, 71
no weakening of postconditions in, 72
preserving supertype invariants in, 72

switch statement
break statements in, 102
switch expression calculating forecast

amount for a deal, 103
switch expressions with no fall-through

behavior, 102
using for file extensions in document

imports, 65
using switch expressions to add conditions,

101

T
temporal cohesion, 20
test-driven development (TDD), 65, 92-95

basic tests for business rules engine, 93
benefits of, 92
cycle, 92
discouraging design and leading to anaemic

domain model, 124
failing tests for business rules engine, 94
in Twootr (example)

logged in users receiving twoots, 130
not following duplicate users, 129
receiving replay of twoots after logoff,

135

testing if onTwoot in ReceiverEndPoint
has been called, 130

testing receipt of twoots from followed
users, 135

verifying onTwoot using mocking, 132
modeling errors in following users in

Twootr, 128
starting Twootr (example) with test class,

121
writing tests that initially fail, 98

testing, 2, 23-28
automated, 23
code coverage, 27
giving confidence of meeting requirements,

24
program comprehension, 24
robustness to changes, 24
test hygiene in document management sys‐

tem, 79-88
constants, 87
Don't Repeat Yourself, 83
good diagnostics for test failures, 84-86
naming tests, 79-81
testing behavior, not implementation,

81-83
testing error cases, 86

using JUnit, 24
defining a test method, 25

TextFile class, 77
addLines method, 78

themes, 1-2
Java features, 1
software design and architecture, 2
SOLID principles, 2
testing, 2

Throwable class, 46
top-down approach to software development,

127
benefits and limitations of, 127

Transport Layer Security (TLS), 127
Try<T> type, 53
tuples

building user tuple with for loop, 156
building user tuple with map function, 157

Twoot class (example), 132
Twootr (example), 113-141

design overview, 115-117
client-server model, 115
pull-based communications, 116

Index | 183

push-based communications, 116
extending, 143-170

dependency inversion and dependency
injection, 164-167

functional programming, 151-163
goal, 143
limitations and simplifications, 168
packages and build systems, 167-168
persistence and the repository pattern,

144-151
recap of key concepts, 144
user interface, 163

followers and twoots, 127-135
creating mocks, 130
mocking libraries, 132
modeling errors, 128
SenderEndPoint, 133
twooting, 130
verifying with mocks, 132

from events to design, 117-120
communication, 117
GUI, 118
Hexagonal architecture, 119
persistence, 119

goals, 113
passwords and security, 125-127
positions, 135-141
requirements, 114
where to begin, 120-125

type inference, 99
code readability and, 100

U
ubiquitous language (describing software), 67
unchecked exceptions, 45, 51

choosing between checked exceptions and,
46

unit of work pattern, 150
unit tests, 24

running a passing test, 27
testing an Action with facts, 97
using mocking, 95

UnsupportedOperationException, 94
unused code (or dead code), 145

update method in repositories, 145
user interfaces (UIs)

disadvantages of coupling to core server-
side business logic, 118

in Twootr (example), 163
users

designing UserRepository in Twootr (exam‐
ple), 145

following in Twootr (example), 127
not exposing User core domain object to UI

adapter, 134
user and User representations, 125
User domain class in Twootr (example), 124
User object receiving twoots, 134
User object with set of followers added to

notify of twoots, 134
utility classes, 76
utility cohesion, 18

pros and cons, 20

V
validator, implementing using exceptions, 47
value objects, 138, 139
var keyword, 100
variables

local variable declaration with explicit types,
100

local variable type inference, 100
verify method, 95, 130

using to verify ReceiverEndPoint onTwoot
method, 132

void return type, 43

W
WebSockets, 117

securing against man-in-the-middle attacks,
127

X
XML files, benefits of using Gradle with, 58

Y
YAGNI (You ain't gonna need it), 145

184 | Index

About the Authors
Dr. Raoul-Gabriel Urma is the CEO and founder of Cambridge Spark, a leader in
transformational data science and AI training, career development, and progression.
He is author of several programming books, including the best seller Modern Java in
Action (Manning). Raoul-Gabriel holds a PhD in Computer Science from Cambridge
University as well as an MEng in Computer Science from Imperial College London
and graduated with first-class honors, having won several prizes for technical innova‐
tion. His research interests lie in the area of programming languages, compilers,
source code analysis, machine learning, and education. He was nominated an Oracle
Java Champion in 2017. He is also an experienced international speaker, having deliv‐
ered talks covering Java, Python, Artificial Intelligence, and Business. Raoul has
advised and worked for several organizations on large-scale software engineering
projects including at Google, Oracle, eBay, and Goldman Sachs.

Dr. Richard Warburton is the cofounder of Opsian.com and maintainer of the Artio
FIX Engine. He’s worked as a developer in different areas including developer tools,
HFT, and network protocols. He has written the book Java 8 Lambdas for O’Reilly
and helps developers learn via http://iteratrlearning.com and http://www.plural‐
sight.com/author/richard-warburton. Richard is an experienced conference speaker,
having spoken at dozens of events and sat on conference committees for some of the
biggest conferences in Europe and the USA. He holds a PhD in Computer Science
from the University of Warwick.

Colophon
The animal on the cover of Real-World Software Development is a collared mangabey
(Cercocebus torquatus), an Old World monkey found in a range along the west coast
of Africa. The mangabey lives in forest habitat within both swamps and valleys. It
spends most of its time in trees (climbing as high as 100 feet), but also scavenges for
food on the ground, particularly during the dry season. It has a varied diet of fruit,
seeds, nuts, plants, mushrooms, insects, and bird eggs.

The collared mangabey is so named for the white fur surrounding its head and neck,
in contrast to the darker grey of its body. The monkey also has a striking chestnut-red
patch on its head and white eyelids (which lend character to an already expressive
face). The species weighs an average of 20-22 pounds and is 18-24 inches tall. Like
many arboreal primates, the mangabey has a long flexible tail that is longer than its
body—and the Latin name Cercocebus in fact means “tail monkey.”

Mangabeys live in large groups of 10 to 35, made up of an alpha male and assorted
females and juveniles. Adult males live alone until they can form or find a troop (the
name for a group of mangabeys) to lead. Equipped with large amplifying throat-sacs,

https://www.opsian.com/
http://iteratrlearning.com
http://www.pluralsight.com/author/richard-warburton
http://www.pluralsight.com/author/richard-warburton

these animals are very vocal, with a large repertoire of shrieks, grunts, cackles, and
other calls that serve to alert the troop to predators or warn away an intruder.
Unfortunately, the amount of noise made by mangabeys also makes them easy targets
for human hunters in search of bushmeat. They are listed as endangered.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Meyers Kleines Lexicon. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Copyright
	Table of Contents
	Preface
	Why We Wrote This Book
	A Developer-Oriented Approach
	What’s in the Book?
	Who Should Read This Book?
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	Chapter 1. Starting the Journey
	Themes
	Java Features
	Software Design and Architecture
	SOLID
	Testing

	Chapter Summary
	Iterating on You

	Chapter 2. The Bank Statements Analyzer
	The Challenge
	The Goal
	Bank Statements Analyzer Requirements
	KISS Principle
	final Variables

	Code Maintainability and Anti-Patterns
	God Class
	Code Duplication

	Single Responsibility Principle
	Cohesion
	Class-Level Cohesion
	Method-Level Cohesion

	Coupling
	Testing
	Automated Testing
	Using JUnit
	Code Coverage

	Takeaways
	Iterating on You
	Completing the Challenge

	Chapter 3. Extending the Bank Statements Analyzer
	The Challenge
	The Goal
	Extended Bank Statements Analyzer Requirements
	Open/Closed Principle
	Creating an Instance of a Functional Interface
	Lambda Expressions

	Interfaces Gotchas
	God Interface
	Too Granular

	Explicit Versus Implicit API
	Domain Class or Primitive Value?

	Multiple Exporters
	Introducing a Domain Object
	Defining and Implementing the Appropriate Interface

	Exception Handling
	Why Use Exceptions?
	Patterns and Anti-Patterns with Exceptions
	Guidelines for Using Exceptions
	Alternatives to Exceptions

	Using a Build Tool
	Why Use a Build Tool?
	Using Maven
	Using Gradle

	Takeaways
	Iterating on You
	Completing the Challenge

	Chapter 4. The Document Management System
	The Challenge
	The Goal
	Document Management System Requirements
	Fleshing Out the Design
	Importers
	The Document Class
	Attributes and Hierarchical Documents
	Implementing and Registering Importers

	The Liskov Substitution Principle (LSP)
	Alternative Approaches
	Making Importer a Class
	Scoping and Encapsulation Choices

	Extending and Reusing Code
	Test Hygiene
	Test Naming
	Behavior Not Implementation
	Don’t Repeat Yourself
	Good Diagnostics
	Testing Error Cases
	Constants

	Takeaways
	Iterating on You
	Completing the Challenge

	Chapter 5. The Business Rules Engine
	The Challenge
	The Goal
	Business Rules Engine Requirements
	Test Driven Development
	Why Use TDD?
	The TDD Cycle

	Mocking
	Adding Conditions
	Modeling State
	Local Variable Type Inference
	Switch Expressions
	Interface Segregation Principle

	Designing a Fluent API
	What Is a Fluent API?
	Modeling the Domain
	Builder Pattern

	Takeaways
	Iterating on You
	Completing the Challenge

	Chapter 6. Twootr
	The Challenge
	The Goal
	Twootr Requirements
	Design Overview
	Pull-Based
	Push-Based

	From Events to Design
	Communication
	GUI
	Persistence
	The Hexagonal Architecture

	Where to Begin
	Passwords and Security
	Followers and Twoots
	Modeling Errors
	Twooting
	Creating Mocks
	Verifying with Mocks
	Mocking Libraries
	SenderEndPoint

	Positions
	The equals and hashcode Methods
	The Contract Between equals and hashCode

	Takeaways
	Iterating on You
	Completing the Challenge

	Chapter 7. Extending Twootr
	The Challenge
	The Goal
	Recap
	Persistence and the Repository Pattern
	Designing the Repositories
	Query Objects

	Functional Programming
	Lambda Expressions
	Method References
	Execute Around
	Streams
	Optional

	User Interface
	Dependency Inversion and Dependency Injection
	Packages and Build Systems
	Limitations and Simplifications
	Takeaways
	Iterating on You
	Completing the Challenge

	Chapter 8. Conclusion
	Project-Based Structure
	Iterating on You
	Deliberate Practice
	Next Steps and Additional Resources

	Index
	About the Authors
	Colophon

