
Third
Edition

 JavaScript
Cookbook
Programming
the Web

Adam D. Scott,
Matthew MacDonald

& Shelley Powers

Adam D. Scott, Matthew MacDonald,
and Shelley Powers

JavaScript Cookbook
THIRD EDITION

978-1-492-05575-4

[LSI]

JavaScript Cookbook, Third Edition
by Adam D. Scott, Matthew MacDonald, and Shelley Powers

Copyright © 2021 Adam D. Scott and Matthew MacDonald. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Angela Rufino
Production Editor: Katherine Tozer
Copyeditor: Sonia Saruba
Proofreader: James Fraleigh

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

July 2021: Third Edition

Revision History for the Third Edition
2021-07-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492055754 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. JavaScript Cookbook, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492055754

Table of Contents

Preface. xi

Part I. The JavaScript Language

1. Setting Up a Development Environment. 1
1.1 Choosing a Code Editor 2
1.2 Using the Developer Console in Your Browser 3
1.3 Running Blocks of Code in the Developer Console 7
1.4 Using Strict Mode to Catch Common Mistakes 9
1.5 Filling in HTML Boilerplate with Emmet Shortcuts 11
1.6 Installing the npm Package Manager (with Node.js) 13
1.7 Downloading a Package with npm 16
1.8 Updating a Package with npm 20
1.9 Setting Up a Local Test Server 21
1.10 Enforcing Code Standards with a Linter 24
1.11 Styling Code Consistently with a Formatter 28
1.12 Experimenting in a JavaScript Playground 31

2. Strings and Regular Expressions. 35
2.1 Checking for an Existing, Nonempty String 35
2.2 Converting a Numeric Value to a Formatted String 38
2.3 Inserting Special Characters 40
2.4 Inserting Emojis 42
2.5 Using Template Literals for Clearer String Concatenation 43
2.6 Performing a Case-Insensitive String Comparison 45
2.7 Checking If a String Contains a Specific Substring 46
2.8 Replacing All Occurrences of a String 47

iii

2.9 Replacing HTML Tags with Named Entities 48
2.10 Using a Regular Expression to Replace Patterns in a String 49
2.11 Extracting a List from a String 52
2.12 Finding All Instances of a Pattern 54
2.13 Removing Whitespace from the Beginning and End of a String 57
2.14 Converting the First Letter of a String to Uppercase 58
2.15 Validating an Email Address 59

3. Numbers. 61
3.1 Generating Random Numbers 61
3.2 Generating Cryptographically Secure Random Numbers 63
3.3 Rounding to a Specific Decimal Place 65
3.4 Preserving Accuracy in Decimal Values 66
3.5 Converting a String to a Number 68
3.6 Converting a Decimal to a Hexadecimal Value 70
3.7 Converting Between Degrees and Radians 71
3.8 Calculating the Length of a Circular Arc 71
3.9 Manipulating Very Large Numbers with BigInt 72

4. Dates. 75
4.1 Getting the Current Date and Time 75
4.2 Converting a String to a Date 77
4.3 Adding Days to a Date 79
4.4 Comparing Dates and Testing Dates for Equality 80
4.5 Calculating the Time Elapsed Between Two Dates 82
4.6 Formatting a Date Value as a String 84

5. Arrays. 87
5.1 Checking If an Object Is an Array 88
5.2 Iterating Over All the Elements in an Array 88
5.3 Checking If Two Arrays Are Equal 90
5.4 Breaking Down an Array into Separate Variables 93
5.5 Passing an Array to a Function That Expects a List of Values 94
5.6 Cloning an Array 95
5.7 Merging Two Arrays 97
5.8 Copying a Portion of an Array by Position 98
5.9 Extracting Array Items That Meet Specific Criteria 100
5.10 Emptying an Array 101
5.11 Removing Duplicate Values 102
5.12 Flattening a Two-Dimensional Array 103
5.13 Searching Through an Array for Exact Matches 104
5.14 Searching Through an Array for Items That Meet Specific Criteria 105

iv | Table of Contents

5.15 Removing or Replacing Array Elements 107
5.16 Sorting an Array of Objects by a Property Value 108
5.17 Transforming Every Element of an Array 109
5.18 Combining an Array’s Values in a Single Calculation 110
5.19 Validating Array Contents 112
5.20 Creating a Collection of Nonduplicated Values 113
5.21 Creating a Key-Indexed Collection of Items 114

6. Functions. 117
6.1 Passing a Function as an Argument to Another Function 117
6.2 Using Arrow Functions 121
6.3 Providing a Default Parameter Value 124
6.4 Creating a Function That Accepts Unlimited Arguments 125
6.5 Using Named Function Parameters 126
6.6 Creating a Function That Stores its State with a Closure 129
6.7 Creating a Generator Function That Yields Multiple Values 131
6.8 Reducing Redundancy by Using Partial Application 135
6.9 Fixing this with Function Binding 138
6.10 Implementing a Recursive Algorithm 141

7. Objects. 145
7.1 Checking if an Object Is a Certain Type 145
7.2 Using an Object Literal to Bundle Data 147
7.3 Checking If an Object Has a Property 150
7.4 Iterating Over All the Properties of an Object 152
7.5 Testing for an Empty Object 154
7.6 Merging the Properties of Two Objects 155
7.7 Customizing the Way a Property Is Defined 156
7.8 Preventing Any Changes to an Object 159
7.9 Intercepting and Changing Actions on an Object with a Proxy 161
7.10 Cloning an Object 164
7.11 Making a Deep Copy of an Object 166
7.12 Creating Absolutely Unique Object Property Keys 168
7.13 Creating Enums with Symbol 170

8. Classes. 173
8.1 Creating a Reusable Class 173
8.2 Adding Properties to a Class 177
8.3 Giving a Class a Better String Representation 182
8.4 Using the Constructor Pattern to Make a Custom Class 183
8.5 Supporting Method Chaining in Your Class 186
8.6 Adding Static Methods to a Class 188

Table of Contents | v

8.7 Using a Static Method to Create Objects 190
8.8 Inheriting Functionality from Another Class 192
8.9 Organizing Your JavaScript Classes with Modules 197

9. Asynchronous Programming. 201
9.1 Updating the Page During a Loop 202
9.2 Using a Function That Returns a Promise 204
9.3 Promisifying an Asynchronous Function That Uses a Callback 208
9.4 Executing Multiple Promises Concurrently 211
9.5 Waiting for a Promise to Finish with Await and Async 214
9.6 Creating an Asynchronous Generator Function 218
9.7 Using a Web Worker to Perform a Background Task 220
9.8 Adding Progress Support to a Web Worker 224

10. Errors and Testing. 227
10.1 Catching and Neutralizing an Error 227
10.2 Catching Different Types of Errors 230
10.3 Catching Asynchronous Errors 232
10.4 Detecting Unhandled Errors 233
10.5 Throwing a Standard Error 237
10.6 Throwing a Custom Error 239
10.7 Writing Unit Tests for Your Code 241
10.8 Tracking Test Code Coverage 247

Part II. JavaScript in the Browser

11. Browser Tools. 253
11.1 Debugging JavaScript 253
11.2 Analyzing Runtime Performance 255
11.3 Identifying Unused JavaScript 257
11.4 Using Lighthouse to Measure Best Practices 259

12. Working with HTML. 263
12.1 Accessing a Given Element and Finding Its Parent and Child Elements 263
12.2 Traversing the Results from querySelectorAll() with forEach() 266
12.3 Adding Click Functionality to an Element 267
12.4 Finding All Elements That Share an Attribute 269
12.5 Accessing All Elements of a Specific Type 269
12.6 Discovering Child Elements Using the Selectors API 272
12.7 Changing an Element’s Class Value 273
12.8 Setting an Element’s Style Attribute 274

vi | Table of Contents

12.9 Adding Text to a New Paragraph 276
12.10 Inserting a New Element in a Specific DOM Location 278
12.11 Checking If a Checkbox Is Checked 279
12.12 Adding Up Values in an HTML Table 280
12.13 Deleting Rows from an HTML Table 283
12.14 Hiding Page Sections 285
12.15 Creating Hover-Based Pop-Up Info Windows 287
12.16 Validating Form Data 289
12.17 Highlighting Form Errors and Accessibility 292
12.18 Creating an Accessible Automatically Updated Region 298

13. Fetching Remote Data. 301
13.1 Requesting Remote Data with Fetch 301
13.2 Using XMLHttpRequest 305
13.3 Submitting a Form 306
13.4 Populating a Selection List from the Server 310
13.5 Parsing Returned JSON 314
13.6 Fetching and Parsing XML 316
13.7 Sending Binary Data and Loading into an Image 318
13.8 Sharing HTTP Cookies Across Domains 319
13.9 Using Websockets to Establish a Two-Way Communication Between

Client and Server 320
13.10 Long Polling a Remote Data Source 322

14. Data Persistence. 325
14.1 Persisting Information with Cookies 325
14.2 Using sessionStorage for Client-Side Storage 328
14.3 Creating a localStorage Client-Side Data Storage Item 334
14.4 Persisting Larger Chunks of Data on the Client Using IndexedDB 338
14.5 Simplifying IndexedDB with a Library 341

15. Working with Media. 345
15.1 Adding JavaScript to SVG 345
15.2 Accessing SVG from a Web Page Script 348
15.3 Creating an SVG Bar Chart with D3 350
15.4 Integrating SVG and the Canvas Element in HTML 354
15.5 Running a Routine When an Audio File Begins Playing 356
15.6 Controlling Video from JavaScript with the video Element 357

16. Writing Web Applications. 361
16.1 Bundling JavaScript 361
16.2 JavaScript and the Mobile Web 363

Table of Contents | vii

16.3 Writing a Progressive Web Application 366
16.4 Testing and Profiling a Progressive Web Application 373
16.5 Getting the Value of the Current URL 377
16.6 Redirecting a URL 379
16.7 Copying Text to a User’s Clipboard 380
16.8 Enabling a Mobile-Like Notification in the Desktop Browser 382
16.9 Loading a File Locally in the Browser 385
16.10 Extending the Possible with Web Components 388
16.11 Choosing a Front-End Framework 391

Part III. Node.js

17. Node Basics. 397
17.1 Managing Node Versions with Node Version Manager 397
17.2 Responding to a Simple Browser Request 400
17.3 Interactively Trying Out Node Code Snippets with REPL 402
17.4 Reading and Writing File Data 405
17.5 Getting Input from the Terminal 410
17.6 Getting the Path to the Current Script 412
17.7 Working with Node Timers and Understanding the Node Event Loop 413

18. Node Modules. 419
18.1 Searching for a Specific Node Module via npm 420
18.2 Converting Your Library into a Node Module 421
18.3 Taking Your Code Across Module Environments 422
18.4 Creating an Installable Node Module 425
18.5 Writing Multiplatform Libraries 431
18.6 Unit Testing Your Modules 435

19. Managing Node. 439
19.1 Using Environment Variables 439
19.2 Managing Callback Hell 441
19.3 Accessing Command-Line Functionality Within a Node Application 444
19.4 Passing Command-Line Arguments 447
19.5 Creating a Command-Line Utility with Help from Commander 448
19.6 Keeping a Node Instance Up and Running 450
19.7 Monitoring Application Changes and Restarting During Local

Development 452
19.8 Scheduling Repeat Tasks 453
19.9 Testing the Performance and Capability of Your WebSockets Application 455

viii | Table of Contents

20. Remote Data. 457
20.1 Fetching Remote Data 457
20.2 Screen Scraping 459
20.3 Accessing JSON-Formatted Data via a RESTful API 461

21. Building Web Applications with Express. 465
21.1 Using Express to Respond to Requests 465
21.2 Using the Express-Generator 469
21.3 Routing 474
21.4 Working with OAuth 476
21.5 OAuth 2 User Authentication with Passport.js 486
21.6 Serving Up Formatted Data 491
21.7 Building a RESTful API 492
21.8 Building a GraphQL API 496

Index. 501

Table of Contents | ix

Preface

As I sat down to work on the latest edition of JavaScript Cookbook, I considered the
“cookbook” metaphor carefully. What makes a great food cookbook? Browsing the
cookbooks on a shelf in my dining room, I noted that my favorites not only have deli‐
cious recipes, but they are also full of opinionated hard-earned advice. A cookbook
rarely seeks to teach you every recipe for beef bourguignon; rather it teaches you the
technique and recipe that the author has found works best for them, typically with a
bit of advice thrown in for good measure. It’s with this concept in mind that we put
together this collection of JavaScript recipes. The advice in this book comes from
three seasoned pros, but it is ultimately the culmination of our unique experiences.
Any other group of developers would have likely produced a similar, but different
book.

JavaScript has developed into an amazing and powerful multipurpose programming
language. With this collection in hand you will be able to solve all sorts of problems
that you encounter and may even begin to develop recipes of your own.

Book Audience
To encompass the many subjects and topics reflective of JavaScript in use today, we
had to start with one premise: this is not a book for someone brand new to program‐
ming. There are so many good books and tutorials for those looking to learn to pro‐
gram with JavaScript that we felt comfortable targeting the practicing developer, some‐
one looking to solve specific problems and challenges with JavaScript.

If you’ve been playing around with JavaScript for several months, maybe tried your
hand with a little Node or web development, you should be comfortable with the
book material. Additionally, if you’re a developer who primarily works in another
programming language, but find yourself needing to use JavaScript from time to
time, this should be a helpful guide. Finally, if you’re a working JavaScript developer
who sometimes gets stuck on some of the idiosyncrasies of the language, this should
act as a useful resource.

xi

Book Organization
There are two types of readers of this book. The first is someone who reads it cover to
cover, picking up tidbits of applicable knowledge along the way. The second is some‐
one who dips their toes in as needed, seeking out the solution to a specific challenge
or category of problem that they face. We attempted to organize the book in such a
way that it would be useful to both types of readers, organizing it into three sections:

• Part I, The JavaScript Language, covers recipes for JavaScript as a programming
language.

• Part II, JavaScript in the Browser, covers JavaScript in its natural habitat: the
browser.

• Part III, Node.js, looks at JavaScript specifically through the lens of Node.js.

Each chapter of the book is broken down into several individual “recipes.” A recipe is
composed of several parts:

Problem
This defines a common development scenario where JavaScript may be used.

Solution
A solution to the problem, with a code sample and minimal description.

Discussion
An in-depth discussion of the code sample and techniques.

Additionally, a recipe may contain recommendations for further reading in a “See
Also” section, or additional techniques in an “Extra” section.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Bold
Indicates UI items such as menu items and buttons to be selected or clicked.

Constant width

Indicates computer code in a broad sense, including commands, arrays, elements,
statements, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, and the output from
commands.

xii | Preface

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

hows text that should be replaced with user-supplied values or by values determined
by context.

This element signifies a general note.

This element signifies a tip or suggestion.

This element indicates a warning or caution.

Websites and pages are mentioned in this book to help you locate online information
that might be useful. Normally both the address (URL) and the name (or title, or
appropriate heading) of a page are mentioned. Some addresses are relatively compli‐
cated. You may locate such pages more easily using your favorite search engine to
search for a page by its name. This may also help if the page cannot be found by its
address; the URL may have changed, but the name may still work.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/javascripteverywhere/cookbook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

Preface | xiii

https://github.com/javascripteverywhere/cookbook

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: JavaScript Cookbook, Third Edition,
by Adam D. Scott, Matthew MacDonald, and Shelley Powers. Copyright 2021 Adam
D. Scott and Matthew MacDonald, 978-1-492-05575-4.

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/js-cookbook-3e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xiv | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/js-cookbook-3e
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
This is the third edition of the JavaScript Cookbook. The first two editions were writ‐
ten by Shelley Powers. This edition was written and updated by Adam Scott and Mat‐
thew MacDonald. Adam and Matthew would like to thank their editors, Angela
Rufino and Jennifer Pollock, who shepherded the project through all its growing
pains; and their top-shelf tech reviewers, Sarah Wachs, Schalk Neethling, and Elisa‐
beth Robson, who offered many sharp insights and helpful suggestions. Adam would
also like to thank John Paxton for his support and conversation during the early
drafts of this edition.

Shelley thanks her editors, Simon St. Laurent and Brian McDonald, and her tech
reviewers, Dr. Axel Rauschmayer and Semmy Purewal.

Collectively we all thank the O’Reilly production staff for their ongoing help and
support.

Preface | xv

PART I

The JavaScript Language

CHAPTER 1

Setting Up a Development Environment

You may have heard it said that the “tools make the developer.” While that’s some‐
thing of an exaggeration, no one wants to be left in front of a wall of JavaScript code
without their favorite tools to edit, analyze, and debug it.

When you’re setting up your own development environment, the first tool you’ll con‐
sider is a code editor. Even the most basic editor adds essentials like autocompletion
and syntax highlighting—two simple features that prevent piles of potential mistakes.
Modern code editors add many more features, such as integration with a source con‐
trol service like GitHub, line-by-line debugging, and smart refactoring. Sometimes
these features will snap into your editor with a plug-in. Sometimes you’ll run them
from the terminal or as part of a build process. But no matter how you use your tools,
assembling the right combination to suit your coding style, development environ‐
ment, and project types is part of the fun. It’s like a home improvement pro collecting
tools, or an aspiring chef investing in just the right cooking gear.

Tool choices aren’t static. As a developer, your preferences may shift. You’ll grow your
kit as you evolve and as new tools prove themselves useful. This chapter explores the
minimum toolset that every JavaScript developer should consider before they tackle a
project. But there’s plenty of room to choose between different, broadly equivalent
options. And, as many a wise person has remarked, there’s no accounting for taste!

In this chapter, we’re putting on our advocacy hat. You’ll see some
of our favorite tools, and references to other, equally good options.
But we don’t attempt to cover every tool, just some excellent default
choices you can start with.

1

1.1 Choosing a Code Editor
Problem
You want to write code in an editor that understands JavaScript syntax.

Solution
If you’re in a hurry, you won’t go wrong with our favorite choice, Visual Studio Code
(often shortened to just VS Code). You can download this free, open source editor for
Windows, Macintosh, or Linux.

If you have time to research, there are a number of other editors you might consider.
The list in Table 1-1 is far from complete, but shows some of the most consistently
popular editors.

Table 1-1. Desktop code editors
Editor Supported

platforms
Open
source

Cost Notes

Visual Studio
Code

Windows,
Macintosh, Linux

Yes Free A great choice for any language, and our first
choice for JavaScript development

Atom Windows,
Macintosh, Linux

Yes Free Most of the chapters in this book were
written using Atom with plug-ins for
AsciiDoc support

WebStorm Windows,
Macintosh, Linux

No Free for open source
developers and educational
users, otherwise roughly $60
per year for an individual

A heavier-weight environment that’s closer
to a traditional IDE than a code editor

Sublime Text Windows,
Macintosh, Linux

No A one-time payment of $80
for an individual, although
there is no license
enforcement or time limit

A popular editor with a reputation for fast
performance with massive text files

Brackets Windows,
Macintosh

Yes Free An Adobe-sponsored project that’s focused
on web development

No matter what code editor you choose, you’ll follow a similar process to start a new
project. Begin by creating a new folder for your project (like test-site). Then, in your
code editor, look for a command like File > Open Folder, and choose the project
folder you created. Most code editors will immediately show the contents of the
project folder in a handy list or tree panel, so you can quickly jump between files.

Having a project folder also gives you a place to put the packages you use (Recipe 1.7)
and store application-specific configuration files and linting rules (Recipe 1.10). And
if your editor has a built-in terminal (“Extra: Using a Terminal and Shell” on page
14), it always starts in the current project folder.

2 | Chapter 1: Setting Up a Development Environment

https://code.visualstudio.com
https://code.visualstudio.com
https://atom.io
https://jetbrains.com/webstorm
https://sublimetext.com
http://brackets.io

Discussion
Recommending a best editor is a little like me choosing your dessert. Personal taste is
definitely a factor, and there are at least a dozen reasonable choices. Most of the sug‐
gestions listed in Table 1-1 tick off all the important boxes, meaning they’re:

• Cross-platform, so it doesn’t matter what operating system you’re using.
• Plug-in-based, so you can snap in whatever features you need. Many of the tools

mentioned in this book (like the Prettier code formatter described in Recipe 1.10)
have plug-ins that integrate with different editors.

• Multilanguage, allowing you to go beyond HTML, CSS, and JavaScript to write
code in other programming languages (with the right plug-in).

• Community-driven, which gives you confidence that they’ll be maintained and
improved long into the future.

• Free, or available for a modest cost.

Our top choice, VS Code, is a Microsoft-built code editor with native JavaScript sup‐
port. In fact, the editor itself is written in JavaScript, and hosted in Electron. (More
precisely, it’s written in TypeScript, a stricter superset of JavaScript that’s transpiled
into JavaScript before it’s distributed or executed.)

In many ways, VS Code is the younger, trendier sibling to Microsoft’s sprawling Vis‐
ual Studio IDE, which is also available in a free Community edition, and also sup‐
ports JavaScript coding. But VS Code strikes a better balance for developers that
aren’t already working with the Microsoft .NET stack. That’s because it starts out
lightweight, but is endlessly customizable through its library with thousands of com‐
munity plug-ins. In Stack Overflow’s developer survey, VS Code regularly ranks as
the most popular code editor across as languages.

See Also
For an introduction to VS Code’s basic features and overall organization, there’s an
excellent set of introductory videos. In this chapter, you’ll also learn how to use
Emmet shortcuts in VS Code (Recipe 1.5), and how to add the ESLint (Recipe 1.10)
and Prettier (Recipe 1.11) plug-ins.

1.2 Using the Developer Console in Your Browser
Problem
You want to see the errors that occur in your web page and the messages you write to
the console.

1.2 Using the Developer Console in Your Browser | 3

https://oreil.ly/RvMZ9
https://oreil.ly/RvMZ9
https://oreil.ly/iiRhA

Solution
Use the developer console in your browser. Table 1-2 shows how to load the devel‐
oper tools in every modern desktop browser.

Table 1-2. Shortcut key to load the developer console
Browser Operating system Shortcut
Chrome Windows or Linux F12 or Ctrl+Shift+J

Chrome Macintosh Cmd-Option-J

Edge Windows or Linux F12 or Ctrl+Shift+J

Firefox Windows or Linux F12 or Ctrl+Shift+J

Firefox Macintosh Cmd-Shift-J

Safaria Macintosh Cmd-Option-C

Opera Windows Ctrl+Shift+J

Opera Macintosh Cmd-Option-J

a Before you can use the developer console in Safari, you must enable it. To do so, choose Safari Menu > Preferences from
the menu, click the Advanced tab, and check Show Develop menu in the menu bar.

The developer tools are usually presented as a tabbed group of panes at the right or
bottom of the web browser window. The Console panel is the one that shows the
messages you output with console.log() and any unhandled errors.

Here’s the full code for a page that writes to the console and then fails with an error:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Log and Error Test</title>
 </head>
 <body>
 <h1>Log and Error Test</h1>

<script>
 console.log('This appears in the developer console');
</script>

<script>
 // This will cause an error that appears in the console
 const myNumber =
</script>
 </body>
</html>

4 | Chapter 1: Setting Up a Development Environment

Figure 1-1 shows the output in the developer console. The logged message appears
first, followed by the error (a SyntaxError for “Unexpected end of input”). Errors are
displayed in red lettering, and Chrome helpfully adds links next to each message, so
you can quickly view the source code that caused the message. Lines in your web
pages and script files are numbered automatically. In this example, that makes it easy
to distinguish between the source of the message (line 13) and the source of the error
(the closing </script> tag on line 19).

Figure 1-1. Viewing the output in Chrome’s developer console

Discussion
We use console.log() throughout this book, often to write quick testing messages.
However, there are other console methods you can use. Table 1-3 lists some of the
most useful.

1.2 Using the Developer Console in Your Browser | 5

Table 1-3. Console methods
Method Description

console.warn(object) Similar to console.log(), but outputs text with a yellow
background.

console.error(object) Similar to console.log(), but outputs text with a red background.
It’s typically used to log error objects.

console.assert(expression, object) If the expression is false, the message is written to the console along
with a stack trace.

console.trace() Displays a stack trace.

console.count(label) Displays the number of times you’ve called this method with this label.

console.dir(object) Displays all the properties of an object in an expandable, tree-like list.

console.group() Starts a new group with the title you supply. The following console
messages are indented underneath this heading, so they appear to be
part of one logically related section. You use console.group
End() to end the group.

console.time(label) Starts a timer with a label you use to identify it.

console.timeEnd(label) Stops the timer associated with the label and displays the elapsed time.

The consoles in modern browsers sometimes use lazy evaluation
with objects and arrays. This issue may appear if you output an
object with console.log(), then change it, and then output the
same object a second time. If you do this from the script code in a
web page, you’ll often find that both calls to console.log() emit
the same changed object, even though the first call preceded the
actual change!
To avoid this quirk, you can explicitly convert your object to a
string before you log it. This trick works because the console
doesn’t use lazy evaluation with strings. This technique isn’t always
convenient (for example, it doesn’t help if you want to log a com‐
plete array that contains objects), but it does let you work around
most cases.

Of course, the console is only one panel (or tab) in the developer tools. Look around,
and you’ll find quite a bit of useful functionality packed into the other panels. The
exact arrangement and naming depends on your browser, but here are some high‐
lights in Chrome:

Elements
Use this panel to view the HTML markup for specific parts of your page, and
inspect the CSS rules that apply to individual elements. You can even change
markup and styles (temporarily) to quickly test potential edits.

6 | Chapter 1: Setting Up a Development Environment

Sources
Use this panel to browse all the files the current page is using, including Java‐
Script libraries, images, and style sheets.

Network
Use the panel tab to watch the size and download time of your page and its
resources, and to view the asynchronous messages being sent over the wire (for
example, as part of a fetch request).

Performance
Use this panel to start tracking the time your code takes to execute (see Recipe
11.2).

Application
Use this panel to review all the data the current site is storing with cookies, in
local storage or with the IndexedDB API.

You can play around with most of these panels to get an idea about how they work, or
you can review Google’s documentation.

See Also
Recipe 1.3 explains how to run ad hoc bits of code in the developer console.

1.3 Running Blocks of Code in the Developer Console
Problem
You want to try out a snippet of code without opening an editor and creating HTML
and JavaScript files.

Solution
Use the developer console in your browser. First, open the developer tools (as
explained in Recipe 1.2). Make sure the Console panel is selected. Then, paste or type
your JavaScript.

Press Enter to run your code immediately. If you need to type multiple lines of code,
press Shift+Enter at the end of each line to insert a soft return. Only press Enter when
you’re finished and you want to run your full block of code.

Often, you’ll want to modify the same piece of code and rerun it. In all modern
browsers, the developer console has a history feature that makes this easy. To use it,
press the up arrow key to show the previously executed code block. If you want to see
the code you ran before that, press the up arrow multiple times.

1.3 Running Blocks of Code in the Developer Console | 7

https://oreil.ly/cZ6AP

Figure 1-2 shows an example with a code block that didn’t run successfully the first
time because of a syntax error. The code was then called up in the history, edited, and
executed, with the output (15) appearing underneath.

Figure 1-2. Running code in the console

The history feature only works if you don’t start typing in any new code. If the con‐
sole command line isn’t empty, the up arrow key will just move through the current
code block rather than stepping back through the history.

Discussion
In the developer console, you can enter JavaScript code exactly as you would in a
script block. In other words, you can add functions and call them, or define a class
and then instantiate it. You can also access the document object, interact with HTML
elements in the current page, show alerts, and write to the console. (The messages
will appear directly below.)

8 | Chapter 1: Setting Up a Development Environment

There’s one potential stumbling block when using the console for longer code exam‐
ples. You may run into a naming clash, because JavaScript won’t allow you to define
the same variables or function names in the same scope more than once. For exam‐
ple, consider a simple block of code like this:

const testValue = 40+12;
console.log(testValue);

This works fine if you run it once. But if you call it back up in the history to make a
modification (by pressing the up arrow), and you try to run it again, you’ll get an
error informing you that testValue is already declared. You could rename your vari‐
able, but if you’re trying to perfect a snippet of code with multiple values and func‐
tions, this renaming gets awkward fast. Alternatively, you could execute the com‐
mand location.reload() to refresh the page, but that can be slow for complex
pages, and you might lose some page state you’re trying to keep.

Fortunately, there’s a simpler solution. Simply enclose your entire block of code in an
extra set of braces to create a new naming scope. You can then safely run the code
multiple times, because each time a new context is created (and then discarded).

{
 const testValue = 40+12;
 console.log(testValue);
}

See Also
Recipe 11.1 explores the art of debugging in the developer console. Recipe 11.2 shows
how to use the developer console for performance analysis.

1.4 Using Strict Mode to Catch Common Mistakes
Problem
You want to disallow potentially risky features, like automatic variable creation and
some statements that fail silently.

Solution
Add the use strict directive at the top of your JavaScript code file, like this:

'use strict';

Alternatively, consider writing your JavaScript in a module, which is always loaded in
strict mode (Recipe 8.9).

1.4 Using Strict Mode to Catch Common Mistakes | 9

Discussion
JavaScript has a (somewhat deserved) reputation for tolerating sloppy code practices.
The problem is that languages that ignore minor rule breaking put developers at a
disadvantage. After all, you can’t fix a problem that you never notice.

The following example demonstrates an example of JavaScript gone bad. Can you
find the mistake?

// This function adds a list of consecutive numbers
function addRange(start, end) {
 let sum = 0;
 for (let i = start; i < end+1; i++) {
 sum += i;
 }
 return sum;
}

// Add numbers from 10 to 15
let startNumber = 10;
let endNumber = 15;
console.log(addRange(startNumber,endNumber)); // Displays 75

// Now add numbers from 1 to 5
startnumber = 1;
endNumber = 5;
console.log(addRange(startNumber,endNumber)); // Displays 0, but we expect 15

Although the code runs without an error, the results aren’t what we expect. The prob‐
lem occurs in this line:

startnumber = 1;

The issue here is that JavaScript creates variables whenever you assign a value, even if
you don’t explicitly define the variable. So if you assign to startnumber when you
really want startNumber, JavaScript quietly creates a new startnumber variable. The
end result is that the value you intended to assign to startNumber vanishes into
another variable, never to be seen or used again.

To catch this problem, add the strict mode directive to the top of the file, before the
function code:

'use strict';

Now a ReferenceError occurs when JavaScript reaches the startnumber assignment.
This interrupts your code, ending the script. However, the error appears in red letter‐
ing in the developer console, explaining the problem and the line number where it
happened. Now, a fix is trivially easy.

Strict mode catches a number of small but pernicious errors. Some examples include:

10 | Chapter 1: Setting Up a Development Environment

• Assignments to undeclared variables
• Duplicate parameter names (like function(a, b, a)) or object literal property

names (as in {a: 5, a: 0})
• Attempts to assign values to special keywords like Infinity or undefined
• Attempts to set read-only properties (Recipe 7.7) or change frozen objects

(Recipe 7.8)

Many of these actions would fail without strict mode. However, they would fail
silently, potentially leading to a maddening situation where your code doesn’t work
the way you expect it to, and you have no idea why.

You may be able to configure your editor to insert the use strict
directive to every new code file. For example, Visual Studio Code
has at least three small extensions that offer to perform this task.

Strict mode catches a relatively small set of errors. Most developers also use a linting
tool (Recipe 1.10) to catch a much broader range of bugs and potentially risky
actions. In fact, developers rely on linters to such an extent that they sometimes don’t
bother to apply strict mode at all. However, it’s always recommended to have strict
mode as a basic level of protection against shooting yourself in the foot.

See Also
For the full details on what strict mode won’t accept, see the strict mode documenta‐
tion. To see how to use modules, which always execute in strict mode, see Recipe 8.9.

1.5 Filling in HTML Boilerplate with Emmet Shortcuts
Problem
You want to add a common chunk of HTML boilerplate without painstakingly typing
each start and end tag.

Solution
Emmet is an editor feature that automatically changes predefined text abbreviations
into standard blocks of HTML. Some code editors, like Visual Studio and WebStorm,
support Emmet natively. Other editors, like Atom and Sublime Text, require the use
of an editor plug-in. You can usually find the right plug-in by searching the plug-in

1.5 Filling in HTML Boilerplate with Emmet Shortcuts | 11

https://oreil.ly/ye0o7
https://oreil.ly/Z7QhF
https://oreil.ly/Z7QhF

library for “Emmet,” but if you’re in doubt, there’s a master list of Emmet-supporting
plug-ins.

To use Emmet, create a new file and save it with a .html or .htm extension, so your
code editor recognizes it as an HTML document. Then, type one of Emmet’s abbrevi‐
ations, followed by the Tab key. (In some editors, you might use a different shortcut,
like Enter or Ctrl+E, but the Tab key is most common.) Your text will be automati‐
cally expanded into the corresponding block of markup.

For example, the Emmet abbreviation input:time expands into this markup:

<input type="time" name="" id="" />

Figure 1-3 shows how VS Code recognizes an Emmet abbreviation as you type it. VS
Code provides autocomplete support for Emmet, so you can see possible choices, and
it adds the note “Emmet Abbreviation” to the autocomplete menu to signal that you
aren’t writing HTML, but an Emmet shortcut that will be translated into HTML.

Figure 1-3. Using Emmet in VS Code

Discussion
Emmet provides a straightforward syntax, but it’s surprisingly flexible. You can write
more complicated expressions that create nested combinations of elements, set

12 | Chapter 1: Setting Up a Development Environment

https://emmet.io/download
https://emmet.io/download

attributes, and incorporate sequential numbers into names. For example, to create a
bulleted list with five items, you use the abbreviation ul>li*5, which adds the follow‐
ing block of markup:

Or, you can create the starting skeleton for an HTML5 web page (the modern stan‐
dard) with the shortcut html:5.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Document</title>
</head>
<body>

</body>
</html>

All of these features are described in the Emmet documentation. If you’re in a hurry,
start with the patterns in the useful cheatsheet.

1.6 Installing the npm Package Manager (with Node.js)
Problem
You want to install npm, so you can easily download JavaScript libraries from the
npm registry and add them to web projects.

Solution
The Node Package Manager (npm) hosts the largest (and currently most popular)
software registry in the world. The easiest way to get software from the npm registry
is using npm, which is bundled with Node.js. To install Node, download an installer
for your operating system (Windows, MacOS, or Linux) from the Node website.

Once you finish installing Node, you can test that it’s available using the command
line. Open a terminal window and type the command node -v. To check if npm is
installed, type npm -v. You’ll see the version number of both packages:

1.6 Installing the npm Package Manager (with Node.js) | 13

https://docs.emmet.io
https://nodejs.org

$ node -v
v14.15.4
$ npm -v
6.14.10

Discussion
npm is included with Node.js, a JavaScript runtime environment and web server. You
might use Node to run a server-side JavaScript framework like Express, or to build a
JavaScript desktop application with Electron. But even if you don’t plan to use Node,
you’ll almost certainly still install it just to get access to the npm package manager.

The Node Package Manager is a tool that can download packages from the npm reg‐
istry, a free catalog that tracks tens of thousands of JavaScript libraries. In fact, you’ll
be hard-pressed to find a computer that’s used for JavaScript development that doesn’t
have an installation of Node and npm.

The work of a package manager goes beyond simply downloading useful libraries.
The package manager also has the responsibility of tracking what libraries your
project is using (called dependencies), downloading the packages they depend on
(sometimes called subdependencies), storing versioning information, and distin‐
guishing between test and production builds. Thanks to npm, you can take a comple‐
ted application to another computer and install all the dependencies it needs with a
single command, as explained in Recipe 1.7.

Although npm is currently the most popular package manager for JavaScript, it’s not
the only one you might encounter. Yarn is favored by some developers who find it
offers faster package installation. Pnpm is another option that aims to be command-
line compatible with npm, while requiring less diskspace and offering better installa‐
tion performance.

See Also
To install a package with npm, see Recipe 1.7.

If you’re using Node for development (not just npm), you should consider installing
it with nvm, the Node version manager. That way you can easily switch between dif‐
ferent Node versions and quickly update your installation when new releases are
available (which is often). For more information, see Recipe 17.1. And if you need
help to get started running code in the Node environment, Chapter 17 has many
more examples.

Extra: Using a Terminal and Shell
To run Node or npm, you use the terminal. Technically, a terminal is a text-based
interface that communicates with a shell to execute commands. Many different

14 | Chapter 1: Setting Up a Development Environment

https://yarnpkg.com
https://pnpm.io

terminal programs exist, along with many different shells. The terminal and shell
program that you use depends on your operating system (and your personal prefer‐
ence, because there are plenty of third-party alternatives).

Here are some of the most common terminal and shell combinations you’ll
encounter:

• On a Macintosh computer, go to Applications, open the Utilities folder, and
choose Terminal. This launches the default terminal program, which uses bash
as its shell.

• On a Linux computer, the terminal program depends on the distro. There’s often
a shortcut named Terminal, and it almost always uses the bash shell.

• On Windows, you can launch PowerShell from the Start menu. Technically, Pow‐
erShell is the shell and it’s wrapped in a terminal process called conhost. Micro‐
soft is developing a modern conhost replacement called Windows Terminal,
which early adopters can install from the Windows Store (or download from Git‐
Hub). Microsoft also includes the bash shell as part of its Windows Subsystem
for Linux, although that’s a relatively recent addition to the operating system.

• Code editors sometimes include their own terminals. For example, if you open
the terminal window in VS Code (use the Ctrl + ` shortcut [that’s a backtick, not
a single quote] or choose View > Terminal from the menu) you get VS Code’s
integrated terminal window. By default, it communicates with PowerShell on
Windows and bash on other systems, although you can configure its settings.

When we direct you to use a terminal command, you can use the terminal window in
your code editor, the terminal program that’s specific to your computer, or one of the
many third-party terminal and shell applications. They all get the same environment
variables (which means they have access to Node and npm once they’re installed),
and they all have the ability to run programs in the current path. You can also use
your terminal for the usual filesystem maintenance tasks, like creating folders and
files.

In this book, when we show the commands you should type in a
terminal (as in Recipe 1.6), we preceded them with the $ character.
This is the traditional prompt for bash. However, different shells
have different conventions. If you’re using PowerShell you’ll see a
folder name followed by the > character instead (as in C:\Projects
\Sites\WebTest>). Either way, the commands you use to run util‐
ities (like npm) don’t change.

1.6 Installing the npm Package Manager (with Node.js) | 15

https://github.com/microsoft/terminal
https://github.com/microsoft/terminal
https://oreil.ly/N7EWS
https://oreil.ly/N7EWS

1.7 Downloading a Package with npm
Problem
You want to install a specific software package from the npm registry.

Solution
First, you must have npm on your computer (see Recipe 1.6 for instructions). Assum‐
ing you do, open a terminal window (“Extra: Using a Terminal and Shell” on page
14), and go to the project directory for your website.

Next, you should create a package.json file, if your application doesn’t already have
one. You don’t actually need this file to install packages, but it does become important
for some other tasks (like restoring your packages to another development com‐
puter). The easiest way to create a package.json file is with npm’s init command:

$ npm init -y

The -y parameter (for yes) means that npm will simply choose default values rather
than prompt you for specific information about your application. If you don’t include
the -y parameter, you’ll be asked a variety of questions about your application (its
package name, description, version, license, and so on). However, you don’t need to
fill in any of these details at first (or at all), so it’s perfectly acceptable to press Enter to
leave each field blank and create the basic package.json boilerplate. For more informa‐
tion about the descriptive information inside package.json, see “Extra: Understanding
package.json” on page 18.

Once you’ve initialized your application, you’re ready to install a package. You must
know the exact name of the package you want to install. By convention, npm names
are made up of dash-separated lowercase words, like fs-extra or react-dom. To
install your package of choice, run the npm install command with the package
name. For example, here’s how you would install the popular Lodash library:

$ npm install lodash

npm adds the packages you install to the package.json file. It also records more
detailed versioning information about each package in a file named package-lock.json.

When you install a package, npm downloads its files and places them in a folder
named node_modules. For example, if you install Lodash in a project folder named
test-site, the Lodash script files will be placed in the folder test-site/node_modules/
lodash.

You can remove a package by name using npm uninstall:

$ npm uninstall lodash

16 | Chapter 1: Setting Up a Development Environment

Discussion
The genius of npm (or any package manager) becomes apparent when you have a
typical web project with half a dozen or more packages, each of which depends on
additional packages. Because all these dependencies are tracked in the package-
lock.json file, it’s easy to figure out what a web application needs. You can see a full
report by executing this command from your project folder:

$ npm list

It’s also easy to re-download these packages on a new computer. For example, if you
copy your website to another computer with the package.json and package-lock.json
files, but without the node_modules folder, you can install all the dependent packages
like this:

$ npm install

So far, you’ve seen how to install packages locally (as part of the current web applica‐
tion). npm also allows packages to be installed globally (in a system-specific folder, so
the same version is available to all the web applications on your computer). For most
software packages, local installation is best. It gives you the flexibility to control the
exact version of a package that you use, and it lets you use different versions of the
same package with different applications, so you never break compatibility. (This
potential problem becomes magnified when one package depends on the specific ver‐
sion of another package.) However, global installation is useful for certain types of
packages, particularly development tools that have command-line utilities. Some
examples of packages that are sometimes installed globally include create-react-
app (used to create a new React project), http-server (used to run a test web server),
typescript (used to compile TypeScript code into JavaScript), and jest (used to run
automated tests on your code).

To see all the global npm packages installed on your computer, run this command:

`npm list -g --depth 0`

Here, the --depth parameter makes sure that you only see the top layer of global
packages, not the other packages that these global packages use. npm has additional
features that we won’t cover here, including the ability to:

• Designate some dependencies as developer dependencies, meaning they’re
required for development but not deployment (like a unit testing tool). You’ll see
this technique in Recipes 1.9 and 1.10.

• Audit your dependencies by searching the npm registry for reports of known vul‐
nerabilities, which it may be able to fix by installing new versions.

1.7 Downloading a Package with npm | 17

https://oreil.ly/XJkEM

• Run command-line tasks through a bundled utility called npx. You can even
launch tasks automatically by adding them to package.json, like prepping your
site for production deployment or starting a web server during development test‐
ing. You’ll see this technique with the test server in Recipe 1.9.

npm isn’t the only package manager that JavaScript developers use. Yarn is a similar
package manager that was initially developed by Facebook. It has a performance edge
in some scenarios, due to the way that it downloads packages in parallel and uses
caching. Historically, it’s also enforced stricter security checks. There’s no reason not
to use Yarn, but npm remains significantly more popular in the JavaScript
community.

To learn everything there is to know about npm, you can spend some quality time
with the npm developer docs. You can also take a peek at Yarn.

Extra: Understanding package.json
The package.json file is an application configuration file that was introduced with
Node, but is now used for a variety of purposes. It stores descriptive information
about your project, its creator, and its license, which becomes important if you ever
decide to publish your project as a package on npm (a topic covered in Recipe 18.2).
The package.json file also tracks your dependencies (the packages your application
uses) and can store extra configuration steps for debugging and deployment.

It’s a good practice to begin by creating a package.json file whenever you start a new
project. You can create the file by hand, or using the npm init -y command, which is
what we use in the examples in this chapter. Your newly generated file will look some‐
thing like this (assuming your project folder is named test_site):

{
 "name": "test_site",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

As you may notice, the package.json file uses the JSON (JavaScript Object Notation)
format. It holds a comma-separated list of property settings, all wrapped inside {}
braces. You can edit package.json in your code editor at any time.

18 | Chapter 1: Setting Up a Development Environment

https://docs.npmjs.com
https://yarnpkg.com

When you install a package with npm, that dependency is recorded in package.json
using a property named dependencies. For example, if you install Lodash, the
package.json file will look like this:

{
 "name": "test_site",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "lodash": "^4.17.20"
 }
}

Don’t confuse package.json with package-lock.json. The package.json file stores basic
project settings and lists all the packages you use. The package-lock.json file specifies
the exact version and checksum of every package you use (and the version and check‐
sum of each package those packages use). For example, here’s the automatically cre‐
ated package-lock.json file after you install Lodash:

{
 "name": "test-site",
 "version": "1.0.0",
 "lockfileVersion": 1,
 "requires": true,
 "dependencies": {
 "lodash": {
 "version": "4.17.20",
 "resolved": "https://registry.npmjs.org/lodash/-/lodash-4.17.20.tgz",
 "integrity": "sha512-PlhdFcillOINfeV7Ni6oF1TAEayyZBoZ8bcshTHqOYJYlrqzRK5h
agpagky5o4HfCzzd1TRkXPMFq6cKk9rGmA=="
 }
 }
}

In other words, package-lock.json “locks” your packages to a specific version. This is
useful if you’re deploying your project to another computer, and you want to install
exactly the same versions of every package that you used during development.

There are two common reasons you might edit your application’s package.json file.
First, you might want to add more descriptive details for completeness before you
share the project with anyone else. You’ll definitely want to make sure this informa‐
tion is correct if you’re planning to share your package in the npm registry (Recipe
18.2). Second, you might decide to configure command-line tasks for debugging, like

1.7 Downloading a Package with npm | 19

starting a test server (Recipe 1.9). For a complete, property-by-property description
of what you can put in package.json, refer to the npm documentation.

1.8 Updating a Package with npm
Problem
You want to update an npm package to a newer version.

Solution
For minor updates, use npm update. You can name the specific package you want to
update, or ask npm to check for new versions of every package your site uses, and
update them all in one fell swoop:

$ npm update

npm will examine the package.json file and update every dependency and subdepend‐
ency. It will also download any missing packages. Finally, it will update the package-
lock.json file to match the new versions.

Discussion
It’s a good practice to regularly update the packages you use. However, not all updates
can happen automatically. npm updates follow the rules of semver (semantic version‐
ing). npm will install updates that have greater patch numbers (for example, updating
2.1.2 to 2.1.3) or minor version numbers (2.1.2 to 2.2.0), but it won’t upgrade a
dependency if the new release changes the major version number (2.1.2 to 3.0.0).
This behavior guards against breaking changes when you update or deploy your
application.

You can review what updates are available for all of your dependencies using the npm
outdated command:

$ npm outdated

This produces output like this:

Package Current Wanted Latest Location
------- ------- ------ ------ --------
eslint 7.18.0 7.25.0 7.25.0 my-site
eslint-plugin-promise 4.2.1 4.3.1 5.1.0 my-site
lodash 4.17.20 4.17.21 4.17.21 npm-test

The Wanted column shows available updates that will be installed the next time you
run npm update. The Latest column shows the most recent version of the package.
In the example above, both lodash and eslint can be updated to the latest package
version. But the eslint-plugin-promise package will only be updated to version

20 | Chapter 1: Setting Up a Development Environment

https://oreil.ly/n9PkO

4.3.1. The latest version, 5.1.0, changes the major version number, which means that
according to the rules of semver it can’t be applied automatically.

This is a slight simplification, because npm gives you the ability to
specify versioning policies more specifically in the package.json file.
But in practice, this is the way that almost all npm updates will
work. For more information about npm versioning, see the npm
documentation.

If you want to update a dependency to use a new major version, you need to do it
deliberately. Options include editing the package.json file by hand (slightly painful) or
using a tool that can do it for you, like npm-check-updates. The npm-check-updates
tool allows you to review your dependencies, see what updates are available, and
choose to update the package.json file to allow a new major version update. Once
you’ve done that, call npm update to download the new version.

1.9 Setting Up a Local Test Server
Problem
You want to test your web pages during development, without local security restric‐
tions, and without deploying them to a live web server.

Solution
Install a local test server on your computer. The test server will handle requests and
send web pages to your browser, just like a real web server. The only difference is that
the test server won’t accept remote connections from other computers.

There are many choices for a test server (see the Discussion section). However, two
simple, reliable choices are the http-server and lite-server packages that you can
install through npm. We use lite-server here, because it adds a live update feature
that automatically refreshes the page in the browser when you save changed code in
your editor.

Before you install lite-server, it helps to have a sample web page to request. If you
haven’t already done so, make a project folder and configure it with the npm init -y
command (Recipe 1.7). Then, add a file named index.html with a basic content. If
you’re in a hurry, here’s a minimal but valid HTML document you can use to test
where your code is running:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">

1.9 Setting Up a Local Test Server | 21

https://oreil.ly/NX8js
https://oreil.ly/NX8js
https://oreil.ly/0JcMt

 <title>Test Page</title>
 </head>
 <body>
 <p>This is the index page</p>
 <script>
if (window.location.protocol === 'file:') {
 console.log('Running as local file!');
}
else if (window.location.host.startsWith('localhost')) {
 console.log('Running on a local server');
}
else {
 console.log('Running on a remote web server');
}
 </script>
 </body>
</html>

Now you’re ready to make this document accessible to your browser through a test
server.

To install lite-server, use npm with the --save-dev option. That way it’s marked as
a developer dependency that won’t be deployed in a production build.

npm install lite-server --save-dev

Now you can run lite-server directly from a terminal window using npm’s package
runner, npx:

npx lite-server

This launches lite-server, opens a new browser tab, and requests http://localhost:
3000 (where 3000 is whatever port lite-server acquires dynamically). The lite-
server attempts to return index.html, or just displays “Cannot GET /” if you don’t
have a file with that name. If you used the sample page from this section, you’ll see
the “This is the index page” message on the page and “Running on a local server” in
the developer console. If you don’t have an index.html page in your test site, you can
load up a different page by editing the URL in the address bar (for example, http://
localhost:3000/someOtherPage.html).

Now try making some changes. The lite-server instance watches your project
folder. Whenever you change a file, it automatically forces the browser to refresh the
page. In the terminal, you’ll see a “Reloading Browsers” message whenever this
happens.

To end the server, press Ctrl+C at the terminal (Command-C on a Macintosh) and
answer Y. Or, close the terminal window (or use the Kill Terminal trashcan icon in VS
Code).

22 | Chapter 1: Setting Up a Development Environment

Behind the scenes, lite-server uses a popular browser automa‐
tion tool called BrowserSync to implement its live reloading. The
only requirement is that your web page must have a <body> section.
(Create a super-simple test page without that detail, and you won’t
see the automatic refreshing behavior.)

Discussion
You can save a web page on your local computer, open it in a web browser, and run its
code. However, web browsers greatly restrict pages that are opened from the local
filesystem. Entire features are unavailable and will fail quietly (like web workers, ES
modules, and certain Canvas operations). To avoid hitting these security barriers or—
even worse—being confused at why code isn’t working the way you expect, it’s always
better to run your web pages from a test web server.

While testing, it’s common to use a development server. There are many options, and
your decision will depend somewhat on the other server-side technologies that you
plan to use. For example, if you want to run PHP code in your web pages, you’ll need
a web server that supports it. If you plan to build part of the backend of your applica‐
tion using JavaScript or a JavaScript-powered server-side framework like Express,
you’ll need to use Node.js. But if you’re running web pages with traditional client-side
JavaScript, a simple server that sends static files is enough, like http-server or lite-
server. There are many more and code editors often have their own plug-in-based
test server. For example, if you’re using Visual Studio Code you can search the exten‐
sion library for the popular Live Server plug-in.

In the Solution section, you saw how to run lite-server with npx. However, a more
convenient setup is to make a development run task that automatically starts the
server. You can do that by editing the package.json file and adding the following
instruction to the scripts section:

{
...
 "scripts": {
 "dev": "lite-server"
 }
}

The scripts section holds executable tasks that you want to run regularly. These
might include verifying your code with a linter, checking it into source control, pack‐
aging your files for deployment, or running a unit test. You can add as many scripts
as you need—for example, it’s common to use one task to run your application,
another to test it with an automated testing tool (Recipe 10.7), another to prepare it
for distribution, and so on. In this example, the script is named dev, which is a con‐
vention that identifies a task you plan to use while developing your application.

1.9 Setting Up a Local Test Server | 23

https://oreil.ly/tAwyk
https://oreil.ly/NIrRK

Once you’ve defined a script in package.json, you can run it with the npm run com‐
mand at the terminal:

npm run dev

This launches lite-server with npx.

Some code editors have additional support for this configuration detail. For example,
if you open the package.json file in VS Code you’ll see that a “Debug” link is added
just above the dev setting. Click this link and VS Code opens a new terminal and
launches lite-server automatically.

See Also
To learn more about using Node as a test server, see the recipes in Chapter 17. For
more information about running tasks with npm, you can read this good overview.

1.10 Enforcing Code Standards with a Linter
Problem
You want to standardize your JavaScript code, follow best practices, and avoid com‐
mon pitfalls that can lead to bugs.

Solution
Check your code with a linter, which warns you when you deviate from the rules
you’ve chosen to follow. The most popular JavaScript linter is ESLint.

To use ESLint, you first need npm (see Recipe 1.6). Open a terminal window in your
project folder. If you haven’t already created the package.json file, get npm to create it
now:

$ npm init -y

Next, install the eslint package using the --save-dev option, because you want
ESLint to be a developer dependency that’s installed on developer computers, but not
deployed to a production server:

$ npm install eslint --save-dev

If you don’t already have an ESLint configuration file, you need to create one now.
Use npx to run the ESLint setup:

$ npx eslint --init

ESLint will ask you a series of questions to assess the type of rules it should enforce.
Often, it presents a small menu of choices, and you must use the arrow keys to pick
the option you want.

24 | Chapter 1: Setting Up a Development Environment

https://oreil.ly/nq31H

The first question is “How would you like to use ESLint?” Here you have three
options, arranged from least strict to most strict:

Check syntax only
Uses ESLint to catch errors. It’s not any stricter than the error-highlighting fea‐
ture in most code editors.

Check syntax and find problems
Enforces ESLint’s recommended practices (the ones marked with a checkmark).
This is an excellent starting point, and you can override individual rules to your
preference later on.

Check syntax, find problems, and enforce code style
Is a good choice if you want to use a specific JavaScript style guide, like Airbnb,
to enforce a broader set of style conventions. If you choose this option, you’ll be
asked to pick the style guide later in the process.

Next, you’ll be asked a series of technical questions: are you using modules, the React
or Vue framework, or the TypeScript language? Choose JavaScript modules to get
support for the ES6 modules standard described in Recipe 8.9, and choose No for
other questions unless you’re using the technology in question.

Next, you’ll be asked “Where does your code run?” Choose Browser for a traditional
website with client-side JavaScript code (the usual), or Node if you’re building a
server-side application that runs in the Node.js server.

If you’ve chosen to use a style guide, JavaScript will now prompt you to pick one from
a small list of choices. It then installs these rules automatically using one or more sep‐
arate packages, provided you allow it.

Finally, ESLint asks “What format do you want your config file to be in?” All the for‐
mat choices work equally well. We prefer to use JSON for symmetry with the pack‐
age.json file, in which case ESList stores its configuration in a file named .eslintrc.json.
If you use a JavaScript configuration file, the extension is .js, and if you choose a
YAML configuration file, the extension is .yaml.

Here’s what you’ll see in the .eslintrc.json file if you’ve asked ESLint to “check syntax
and find problems” without the addition of a separate style guide:

{
 "env": {
 "browser": true,
 "es2021": true
 },
 "extends": "eslint:recommended",
 "parserOptions": {
 "ecmaVersion": 12,
 "sourceType": "module"
 },

1.10 Enforcing Code Standards with a Linter | 25

https://eslint.org/docs/rules
https://github.com/airbnb/javascript

 "rules": {
 }
}

Now you can ESLint to check your files in the terminal:

npx eslint my-script.js

But a far more practical option is to use a plug-in that integrates ESLint with your
code editor. All the code editors introduced in Recipe 1.1 support ESLint, and you
can browse the full list of ESLint-supporting plug-ins.

To add ESLint to your code editor, go to its plug-in library. For example, in Visual
Studio Code you begin by clicking Extensions in the left panel, and then searching
the library for “eslint,” then clicking Install. Once you’ve installed ESLint, you will
need to officially allow it through the plug-in’s settings page (or by clicking the light‐
bulb icon that appears when you open a code file in the editor, and then choosing
Allow). You may also need to install ESLint globally across your entire computer so
the plug-in can find it:

$ npm install -g eslint

Once ESLint is enabled, you’ll see the squiggly underlines that denote ESLint errors
and warnings. Figure 1-4 shows an example where ESLint detects a case in a switch
statement that falls through to the next case, which isn’t allowed in ESLint’s standard
settings. The “eslint” label in the pop-up identifies that this message is from the
ESLint plug-in, not VS Code’s standard error checking.

If ESLint isn’t catching the issues that you expect it to catch, it
could be due to another error in your file, possibly even one in a
different section of code. Try resolving any outstanding issues, and
then recheck your file.

26 | Chapter 1: Setting Up a Development Environment

https://oreil.ly/isQMA

Figure 1-4. ESLint flags an error in VS Code

Click Quick Fix (or the lightbulb icon in the margin) to learn more about the prob‐
lem or attempt a fix (if possible). You can also disable checking for this issue in the
current line or file, in which case your override is recorded in a special comment. For
example, this disables the rule against declaring variables that you don’t use:

/* eslint-disable no-unused-vars */

If you must override ESLint with comments, it’s probably best to be as targeted and
judicious as possible. Instead of disabling checking for an entire file, override it for a
single, specific line, like this:

// eslint-disable-next-line no-unused-vars
let futureUseVariable;

or this (replacing eslint-disable-next-line with eslint-disable-line):

let futureUseVariable; // eslint-disable-line no-unused-vars

If you want to resume checking for the issue, just remove the comment.

1.10 Enforcing Code Standards with a Linter | 27

Discussion
JavaScript is a permissive language that gives developers a great deal of flexibility.
Sometimes this flexibility can lead to problems. For example, it can hide errors or
cause ambiguity that makes the code harder to understand. A linter works to prevent
these problems by enforcing a range of standards, even if they don’t correspond to
outright errors. It flags potential issues in the making, and suspicious practices that
don’t trigger your code editor’s error checker but may eventually come back to haunt
you.

ESLint is an opinionated linter, which means it flags issues that you may not consider
problems, like variables you declare but don’t use, parameter values you change in a
function, empty conditional blocks, and regular expressions that include literal spaces
(to name just a few). If you want to allow some of these, you have the power to over‐
ride any of these settings in the ESLint configuration file (or on a file-by-file or line-
by-line basis with a comment). But usually you’ll just decide to change your ways to
get along, knowing that ESLint’s choices will eventually avoid a future headache.

ESLint also has the ability to correct certain types of errors automatically, and enforce
style conventions (like tabs versus spaces, single quotes versus double quotes, brace
and indent styles, and so on). Using the ESLint plug-in for an editor like VS Code,
you can configure it to perform these corrections automatically when you save your
file. Or, you can use ESLint to flag potential problems only, and use a formatter
(Recipe 1.11) to enforce code style conventions.

If you work in a team, you may simply receive a preordained ESLint configuration file
to use. If not, you need to decide which set of ESLint defaults to follow. You can lean
more about ESLint recommended set (used in this recipe), which provides examples
of nonconforming code for every issue the ESLint can check. If you want to use a
more thorough JavaScript style guide, we recommend the popular Airbnb JavaScript
Style Guide, which can be installed automatically with eslint -init.

1.11 Styling Code Consistently with a Formatter
Problem
You want to format your JavaScript consistently to improve readability and reduce
ambiguity.

Solution
Use the Prettier code formatter to automatically format your code according to the
rules you’ve established. Prettier enforces consistency on style details like indentation,
use of single and double quotes, spacing inside brackets, spacing for function

28 | Chapter 1: Setting Up a Development Environment

https://eslint.org/docs/rules
https://github.com/airbnb/javascript
https://github.com/airbnb/javascript

parameter lists, and the wrapping of long code lines. But unlike a linter (Recipe 1.10),
Prettier doesn’t flag these issues for you to fix them. Instead, it applies its formatting
automatically every time you save your JavaScript code, HTML markup, or CSS style
rules.

Although Prettier exists as a package you can install with npm and use at the com‐
mand line, it’s much more useful to use a plug-in for your code editor. All the code
editors introduced in Recipe 1.1 have a Prettier plug-in. Most of them are listed at the
Prettier website.

To add Prettier to your code editor, go to its plug-in library. For example, in Visual
Studio Code you click Extensions in the left panel, search the library for “prettier,”
and then click Install.

Once you’ve installed Prettier, you’ll be able to use it when you’re editing a code file.
Right-click next to your code in the editor and choose Format Document. You can
configure the plug-in settings to change a small set of options (like the maximum
allowed width before code lines are split, and whether you prefer spaces to tabs).

In VS Code, you can also configure Prettier to run automatically
every time you save a file. To activate this behavior, choose File >
Preferences > Settings, go to the Text Editor > Formatting sec‐
tion, and choose Format On Save.

Discussion
Although many code editors have their own automatic formatting features, a code
formatter goes beyond these. For example, the Prettier formatter strips away any cus‐
tom formatting. It parses all the code and reformats it according to the conventions
you’ve set, with almost no consideration to how it was originally written. (Blank lines
and object literals are the only two exceptions.) This approach guarantees that the
same code is always presented in the same way, and that code from different develop‐
ers is completely consistent. And like a linter, the rules for a code formatter are
defined in a configuration file, which means you can easily distribute them to differ‐
ent members of a team, even if they’re using different code editors.

The Prettier formatter takes particular care with line breaks. By default, the maxi‐
mum line length is set to 80, but Prettier will allows some lines to stretch a bit longer
if it avoids a confusing line break. And if a line break is required, Prettier does it intel‐
ligently. For example, it would prefer to fit a function call into one line:

myFunction(argA(), argB(), argC());

But if that isn’t practical, it doesn’t just wrap the code however it fits. It chooses the
most pleasing arrangement it understands:

1.11 Styling Code Consistently with a Formatter | 29

https://oreil.ly/weRb5
https://oreil.ly/weRb5

myFunction(
 reallyLongArg(),
 omgSoManyParameters(),
 IShouldRefactorThis(),
 isThereSeriouslyAnotherOne()
);

Of course, no matter how intelligent a formatter like Prettier is, you may prefer your
own idiosyncratic code arrangements. It’s sometimes said that “Nobody loves what
Prettier does to their syntax. Everyone loves what Prettier does to their coworkers’
syntax.” In other words, the value of an aggressive, opinionated formatter like Prettier
is the way it unifies different developers, cleans up legacy code, and irons out bizarre
habits. And if you decide to use Prettier, you’ll have the unchecked freedom to write
your code without thinking about spacing, line breaks, or presentation. In the end,
your code will still be converted to the same canonical form.

If you’re not entirely certain that you want to use a code formatter,
or you’re not sure how to configure its settings, spend some time in
the Prettier playground to explore how it works.

A linter like ESLint and a formatter like Prettier have some overlap. However, their
goals are different and their use is complementary. If you’re using both ESLint and
Prettier, you should keep the ESLint rules that catch suspicious coding practices, but
disable the ones that enforce formatting conventions about indents, quotes, and spac‐
ing. Fortunately, this is easy to do by adding an extra ESLint configuration rule that
turns off potential settings that could conflict with Prettier. And the easiest way to do
that is by adding the eslint-config-prettier package to your project:

$ npm install --save-dev eslint-config-prettier

Lastly, you need to add prettier to the extends section in your .eslintrc.json file. The
extends section will hold a list wrapped in square brackets, and prettier should be
at the very end. Here’s an example:

{
 "env": {
 "browser": true,
 "es2021": true
 },
 "extends": ["eslint:recommended", "prettier"],
 "parserOptions": {
 "ecmaVersion": 12,
 "sourceType": "module"
 },
 "rules": {
 }
}

30 | Chapter 1: Setting Up a Development Environment

https://oreil.ly/TKam1

To review the most recent installation instructions, check out the documentation for
the eslint-config-prettier package.

1.12 Experimenting in a JavaScript Playground
Problem
You want to quickly test or share a code idea without building a project and spinning
up your desktop code editor.

Solution
Use a JavaScript playground, which is a website where you can edit and run JavaScript
code. There are well over a dozen JavaScript playgrounds, but Table 1-4 lists five of
the most popular.

Table 1-4. JavaScript playgrounds
Website Notes
JSFiddle Arguably the first JavaScript playground, JSFiddle is still at the forefront with

features for simulating asynchronous calls and GitHub integration.

JS Bin A classic playground with a simple tab-based interface that lets you pop different
sections (JavaScript, HTML, CSS) into view one at a time. The code for JS Bin is
also available as an open source project.

CodePen One of the more attractively designed playgrounds, with an emphasis on the
social (popular examples are promoted in the CodePen community). Its polished
interface is particularly suitable for novice users.

CodeSandbox One of the newer playgrounds, it uses an IDE-like layout that feels a lot like a
web-hosted version of Visual Studio Code.

Glitch Another IDE-in-a-browser, Glitch is notable for its VS Code plug-in, which lets
you switch between editing in a browser playground or using your desktop
editor on the same project.

All these JavaScript playgrounds are powerful, practical choices. They all work simi‐
larly, although they can look strikingly different. For example, compare the dense
developer cockpit of JSFiddle (Figure 1-5) to the more spaced-out editor in CodePen
(Figure 1-6).

1.12 Experimenting in a JavaScript Playground | 31

https://oreil.ly/AgxiF
https://jsfiddle.net
https://jsbin.com
https://codepen.io
http://codesandbox.io
https://glitch.com

Figure 1-5. The JavaScript playground JSFiddle

Figure 1-6. A simple example in CodePen

32 | Chapter 1: Setting Up a Development Environment

Here’s how you use a JavaScript playground. When you visit the site, you can start
coding immediately at a blank page. Even though your JavaScript, HTML, and CSS
are presented separately, you don’t need to explicitly add a <script> element to con‐
nect your JavaScript or a <link> element for your style sheet. These details are
already filled into the markup of your page or, more commonly, are an implicit part
of boilerplate that’s hidden behind the scenes.

All JavaScript playgrounds let you see the page you’re working on beside your code
window. In some (like CodePen), the preview is refreshed automatically as you make
changes. In others (like JSFiddle), you need to explicitly click a Play or Run button to
reload your page. If you write messages with console.log(), some JavaScript play‐
grounds send that directly to the browser console (like CodePen), while others can
also show it in a dedicated panel that’s visible on the page (like JSFiddle).

When you’re finished you can save your work, at which point you receive a newly
generated, shareable link. However, it’s a better idea to sign up for an account first, so
you’re able to return to the JavaScript playground, find all the examples you’ve cre‐
ated, and edit them. (If you save an example anonymously, you can’t edit it, although
you can use it as a starting point to build another example.) All the playgrounds listed
in Table 1-4 let you create an account and save your work for free.

The exact terminology for the kind of example you create in a Java‐
Script playground varies based on the site. It might be called a fid‐
dle, a pen, a snippet, or something else.

Discussion
JavaScript playgrounds are a useful idea that’s been picked up by more than a dozen
websites. Almost all of them share some important characteristics:

• They’re free to use. However, many have a subscription option for premium fea‐
tures, like being able to save your work and keep it private.

• You can save your work indefinitely. This is particularly handy if you want to
share a quick mock-up or collaborate on a new experiment with others.

• They support a wide range of popular JavaScript libraries and frameworks. For
example, you can quickly add Lodash, React, or jQuery to your example, just by
picking it from a list.

• You can edit HTML, JavaScript, and CSS all in one window. Depending on the
playground, it may be divided into panels that are all visible at once (like JSFid‐
dle) or tabs that you switch between (like JS Bin). Or, it may be customizable (like
CodePen).

1.12 Experimenting in a JavaScript Playground | 33

• They provide some level of autocompletion, error checking, and syntax high‐
lighting (colorizing different code ingredients), although it’s not as complete as
what you’ll get in a desktop code editor.

• They provide a preview of your page so you can jump easily between coding and
testing.

JavaScript playgrounds also have limits. For example, you may not be able to host
other resources like images, interact with backend services like databases, or use
asynchronous requests with fetch.

JavaScript playgrounds should also be distinguished from full cloud-based program‐
ming environments. For example, you can use VS Code online in a completely hosted
environment called GitHub Codespaces, or AWS Cloud9 from Amazon, or Google
Cloud. None of these products are free, but all are appealing if you want to set up a
specific development environment that you can use in your browser, on different
devices, and with no setup or performance concerns.

34 | Chapter 1: Setting Up a Development Environment

https://oreil.ly/Vo95d
https://oreil.ly/tvTZq
https://oreil.ly/fqWuW
https://oreil.ly/fqWuW

CHAPTER 2

Strings and Regular Expressions

Here’s a trivia question for your next JavaScript party: how many data types are there
in the world’s most popular language?

The answer is eight, but they might not be what you expect. JavaScript’s eight data
types are:

• Number

• String

• Boolean

• BigInt (for very large integers)
• Symbol (for unique identifiers)
• Object (the root of every other JavaScript type)
• undefined (a variable that hasn’t been assigned a value)
• null (a missing object)

The recipes in this book feature all of these ingredients. In this chapter, you’ll turn
your focus to the text-manipulating power of strings.

2.1 Checking for an Existing, Nonempty String
Problem
You want to verify that a variable is defined, is a string, and is not empty before you
use it.

35

Solution
Before you start working with a string, you often need to validate that it’s safe to use.
When you do, there are different questions you might ask.

If you want to make sure that your variable is a string (not just a variable that can be
converted to a string), you use this test:

if (typeof unknownVariable === 'string') {
 // unknownVariable is a string
}

If you want to check that you have a nonempty string (not the zero-length string ''),
you can tighten your verification like this:

if (typeof unknownVariable === 'string' && unknownVariable.length > 0) {
 // This is a genuine string with characters or whitespace in it
}

Optionally, you may want to reject strings that are made up of whitespace only, in
which case you can use the String.trim() method:

if (typeof unknownVariable === 'string' && unknownVariable.trim().length > 0) {
 // This is a genuine string that is not empty or all whitespace
}

The order of your conditions is important. JavaScript uses short-circuit evaluation.
That means it will only evaluate the second condition (the length check) if the first
condition (the type check) succeeds. This is important because the length check will
fail if unknownVariable is a different type of variable, like a number.

// This test is only safe if we already know unknownVariable is a string
if (unknownVariable.length > 0)

There’s a potential gap when using the typeof operator. It’s possible to circumvent the
string test by using a String object instead of a string literal:

const unknownVariable = new String('test');

Now the typeof operator will return object instead of string, because the string
primitive is wrapped in a String object.

In modern JavaScript, creating a String object instance is discouraged for reasons
like this. You’re better off removing this practice from any code you encounter than
coding around it. However, if you need to accommodate possible String objects, you
can use a more complex test like this:

if (typeof unknownVariable === 'string' ||
 String.prototype.isPrototypeOf(unknownVariable)) {
 // It's a string primitive or a string wrapped in an object.
}

36 | Chapter 2: Strings and Regular Expressions

1 In JavaScript, a prototype is a template for a specific type of object. In a more traditional object-oriented lan‐
guage, we would say that objects with the same prototype are instances of the same class. Chapter 8 has many
recipes that explore prototypes in JavaScript.

This code checks that one of two conditions are met: either you have a string primi‐
tive or an object that has the same prototype as String.1

Discussion
The type-checking test in this recipe uses the typeof operator. It returns the type
name of the variable as a lowercase string. The possible values are:

• undefined

• boolean

• number

• bigint

• string

• symbol

• function

• object

These values match the list at the beginning of this chapter, but with two small differ‐
ences. First, there’s no null, because null values return the string object instead.
(This is considered a bug by many, but it’s kept for historical reasons.) Second, there’s
an added function data type, even though a function is technically a special case of
object.

Occasionally, you’ll see the following old-fashioned string-validation technique. It
doesn’t require a variable to actually be a string. It simply verifies that your value can
be treated as a string, and that it isn’t the empty string.

if (unknownVariable) {
 /* We get here as long as:
 unknownVariable has been declared
 unknownVariable is not null
 unknownVariable is not the empty string ''
 */
}

This works because null values, undefined values, and empty strings ('') are all falsy
in JavaScript. If you evaluate any of them in a conditional expression, they are treated
as false.

2.1 Checking for an Existing, Nonempty String | 37

This approach has a potential blindspot with the number 0, which always evaluates to
false, skipping the if block. To be safe, it’s better to explicitly convert your numeric
variables to strings, as described in Recipe 2.2.

2.2 Converting a Numeric Value to a Formatted String
Problem
You want to create a string representation of a number.

Solution
JavaScript is a loosely typed language, and it will automatically convert any value to a
string when it needs to—for example, if you compare a number to a string or join a
number to a string with the + operator. In fact, one of the easiest tricks that JavaScript
developers use to convert numbers to strings is to simply concatenate an empty string
on the beginning or end of the value:

const someNumber = 42;
const someString = someNumber + '';

However, modern practice favors explicit variable conversions. Every JavaScript
object has a built-in toString() method, including the Number object. You can call it
like this:

const someNumber = 42;
const someString = someNumber.toString();

Often, you need to customize the string representation of your number. For example,
you might want a fixed number of decimal places (like 30.00 instead of 30). This
might also involve rounding (for example, from 30.009 to 30.01).

JavaScript has three utility methods built into the number data type that can help you.
All of them create string representations of a number:

Number.toFixed()

Lets you specify the number of digits to keep after the decimal point.

Number.toExponential()

Uses scientific notation, and lets you specify the number of digits to show after
the decimal point.

Number.toPrecision()

Lets you specify the number of significant digits to keep, without considering
how large or small your number is.

38 | Chapter 2: Strings and Regular Expressions

If you aren’t familiar with significant digits, it’s a scientific concept
used to make sure calculations keep an appropriate degree of preci‐
sion. It also helps to make sure a measurement is not represented
in a way that implies more precision than it actually has. (For
example, your average weight may be 162.5 pounds, but it’s proba‐
bly not meaningful to say it’s 162.503018 pounds, nor is it helpful
to round it to 200 pounds.) Wikipedia explains the concept in
detail.

Here’s an example that demonstrates all three string conversion methods:

const someNumber = 1242.0055;

// Ask for exactly 2 decimal points. Numbers will be rounded if necessary.
const fixedString = someNumber.toFixed(2);
// fixedString = '1242.01'

// Ask for 5 significant digits. Scientific notation is used if necessary.
const precisionString = someNumber.toPrecision(5);
// precisionString = '1242.0'

// Ask for scientific notation with 2 decimal plates.
const scientificString = someNumber.toExponential(2);
// scientificString = '1.24e+3'

If you want to apply formatting like commas, a currency symbol, or some other
locale-specific details, you need the help of the Intl.NumberFormat object. Once you
create an instance and configure it appropriately, you can use the Intl.NumberFormat
to perform your number-to-string conversion.

For example, to format a number as a US currency string, you use code like this:

const formatter =
 new Intl.NumberFormat('en-US', { style: 'currency', currency: 'USD' });

const someNumber = 1242.0005;
const moneyString = formatter.format(someNumber);
// moneyString = '$1,242.00'

Discussion
A locale represents a specific geographic or cultural region. Locale identifiers com‐
bine a language code and a region string. The locale en-US represents the English lan‐
guage in the United States of America. The local en_CA is English in Canada, fr-CA is
French in Canada, ja-JP is Japanese in Japan, and so on.

Depending on your locale, there are some standard number formatting rules that
apply. For example, numbers in English language regions often use commas to sepa‐
rate thousands (as in 1,200.00), while commas in French language regions often use

2.2 Converting a Numeric Value to a Formatted String | 39

https://oreil.ly/vrrPr
https://oreil.ly/vrrPr

commas instead of a decimal point (as in 1 200,00). If you create a Intl.NumberFor
mat object without any constructor arguments, you get the locale settings of the cur‐
rent computer:

const formatter = new Intl.NumberFormat();

You can also create an Intl.NumberFormat object for a specific locale, with no extra
options:

const formatter = new Intl.NumberFormat('en-US');

In the en-US region, this object will add comma separators, but it won’t apply a fixed
number of decimal points or add a currency symbol.

The Intl.NumberFormat object supports a number of options. You can change the
way negative numbers are displayed, set minimum and maximum numbers of digits,
show percentages, and choose different numbering systems in some languages. You
can find comprehensive information in the Mozilla Developer Network reference.

You may see an older version of this technique that uses the Number.toLocale
String() method. Here’s an example:

const someNumber = 1242.0005;
const moneyString = someNumber.toLocaleString(
 'en-US', { style: 'currency', currency: 'USD' });

This approach is perfectly valid, although if you plan to format a long series of num‐
bers, creating and reusing a single Intl.NumberFormat object will perform better.

See Also
If you need formatting support that’s more extensive than what Intl.NumberFormat
provides, you can use a third-party library like Numeral.js.

2.3 Inserting Special Characters
Problem
You want to insert a special character, such as a line break, into a string.

Solution
The simplest approach with many special characters is simple: just paste the character
you want into your editor. For example, if you need a copyright symbol (©), first find
the character in a desktop utility like charmap (on a Windows computer) or just
search for “copyright symbol” in Google. Select the symbol, copy it, and then paste it
into your code.

40 | Chapter 2: Strings and Regular Expressions

https://oreil.ly/JEF4Q
https://github.com/adamwdraper/Numeral-js

If you want to use a character that wouldn’t normally be allowed in your code
(according to the syntax rules of JavaScript), you need to use one of its escape sequen‐
ces—special character code combinations that aren’t interpreted literally.

For example, if you’re using apostrophes to delimit your strings, you can’t put an
apostrophe character directly in your string. Instead, you need to use the \' escape
sequence, like this:

const favoriteMovie = 'My favorite movie is \'The Seventh Seal\'.';

Now favoriteMovie holds the text My favorite movie is ‘The Seventh Seal’.

Discussion
The escape sequences in JavaScript all begin with the backslash character (\). This
character signals that what follows is a sequence of characters that needs special han‐
dling. Table 2-1 lists the other escape sequences that JavaScript recognizes.

Table 2-1. Escape sequences
Sequence Character

\' Single quote

\" Double quote

\\ Backslash

\n Newline

\t Horizontal tab

\b Nondestructive backspace*

\f Form feed*

\r Carriage returna

\ddd Octal sequence (3 digits: ddd)

\xdd Hexadecimal sequence (2 digits: dd)

\udddd Unicode sequence (4 hex digits: dddd)

a Some escape sequences (like the ones used for backspaces and form feeds) are holdovers from the original ASCII character
standard and C language. Unless you’re dealing with a legacy scenario (like sending input to a terminal), these escape
sequences aren’t likely to be useful in JavaScript.

The last three escape sequences in Table 2-1 are patterns that require you to supply a
numeric value. For example, if you don’t want to use the copy-and-paste trick to add
a copyright symbol, you can insert it by using the \u escape sequence and the copy‐
right symbol’s Unicode value:

const copyrightNotice = 'This page \u00A9 Shelley Powers.';

Now the copyrightNotice string is set to This page © Shelley Powers.

2.3 Inserting Special Characters | 41

See Also
For information about inserting even more specialized characters in your strings, see
Recipe 2.4. For an alternate approach to dealing with line breaks without using \n, see
Recipe 2.5.

2.4 Inserting Emojis
Problem
You want to insert an extended Unicode character that has a 4-byte encoding, like an
emoji or certain types of accented non-English letters.

Solution
If you simply want to create a string with an emoji, the copy-and-paste trick from
Recipe 2.3 usually works. In a modern code editor, you can write code like this:

const hamburger = '🍔';

const hamburgerStory = 'I like hamburgers' + hamburger;

Your code font doesn’t even need to support emojis, because your code editor will fall
back on the emoji support provided by your operating system. (Of course, issues can
still occur. For example, you might see a square “missing character” icon on an older
system where the emoji isn’t available.)

Another option is to use the Unicode value for the emoji. The problem is that you
can’t use a standard \u escape sequence to get an emoji, because every emoji is stored
as a 4-byte value. (By comparison, the Unicode characters that map to the keys of
your keyboard are usually encoded as 2-byte values.)

The solution is to use the String.fromCodePoint() method:

const hamburgerStory = 'I like hamburgers' + String.fromCodePoint(0x1F354);

The hamburger emoji has the hexadecimal code U+1F354. To use it with fromCode
Point(), replace the prefix U+ with 0x.

Once you’ve created an emoji-enhanced string, you can write it to the developer con‐
sole or show it in a web page, just as you would with an ordinary string composed of
ordinary characters.

Discussion
As of 2020, there are just over three thousand emojis in the world. You can see them,
with their corresponding hexadecimal values at the Full Emoji List. Just because an

42 | Chapter 2: Strings and Regular Expressions

https://oreil.ly/IIguA

emoji exists doesn’t mean it will be supported on the devices where you plan to use it,
so test for compliance early.

If you need to do string processing with strings that may include emojis, other issues
can crawl out of the woodwork. For example, what do you expect this code will find?

const hamburger = '🍔';

const hamburgerLength = hamburger.length;

Even though the hamburger string is just one character, to your code the length
appears to be 2 because the hamburger emoji takes twice as many bytes in memory.
This is an unpleasant leaky abstraction and a limitation of JavaScript’s support for
Unicode.

There are workarounds that people have invented to deal with emoji issues, like
incorrect lengths and problems iterating over characters or slicing strings. But mak‐
ing a home brew solution is risky, because there are often strange edge cases. Instead,
consider a JavaScript library with emoji support like Grapheme Splitter if you need to
manipulate emoji-enriched text.

2.5 Using Template Literals for Clearer String
Concatenation
Problem
You want a simpler, clearer way to write long string concatenation operations.

Solution
A common task in programming is to combine bits of static text with variables to cre‐
ate a single, longer string. The traditional way to assemble this kind of string is with
the concatentation operator +, as shown here:

const employeeDetail = 'Our team includes ' + firstName + ' ' + lastName +
 ' who works on the ' + team + " team. They/'ve been a team member since "
 + hireDate + '!';

It’s not awful, but it can get awkward, particularly as the fixed bits of text get longer.
It’s also surprisingly easy to forget to add spaces around the variables.

A different approach is to use template literals, a type of string literal that allows
embedded expressions. To create a template literal, just replace your standard string
delimeters (apostrophes or double quotes) with the backtick (`) character:

const greeting = `Hello world from a template literal!`;

2.5 Using Template Literals for Clearer String Concatenation | 43

https://oreil.ly/nlmvi
https://github.com/orling/grapheme-splitter

Now you can insert your variables directly into your template literal. All you need to
do is wrap each variable in curly braces, preceded by a dollar sign, like ${firstName}.
This is called an expression.

The advantage of the template literal approach becomes clearer when you look at a
full example:

employeeDetail = `Our team includes ${firstName} ${lastName} who works on the
${team} team. They've been a team member since ${hireDate}!`;

It’s even clearer when you use a modern code editor that colorizes the curly brace
expressions, making the variables stand out from the literal text.

Template literals also preserve line breaks. In the examples shown here, you can’t see
this effect, because we’ve wrapped the code to fit the page. But if you deliberately hit
Enter to put hard line breaks in your template literal, those breaks will be preserved
in the string, exactly as if you’d used the \n newline escape sequence (see Recipe 2.3).

Many JavaScript styte guides, including Airbnb, have rules that dis‐
courage string concatenation and favor template literals. You can
use a linter like ESLint (Recipe 1.10) to enforce this practice in your
code.

Discussion
When you use expressions in a template literal, you aren’t limited to inserting vari‐
ables as they are. In fact, you can use any code expression that JavaScript can evaluate.
For example, consider this code:

const calculation = `The sum of 5 + 3 is ${5+3}`;

Here, JavaScript executes the addition in the expression {5+3}, gets the result, and
creates the string The sum of 5 + 3 is 8.

If you want to do something more complex, like format strings or manipulate objects,
you can use an expression that calls a function. For example, if you’ve created a get
DaysSince() function for calculating the difference between dates (see Recipe 4.5),
you can use it in a template literal like this:

function getDaysSince(date) {
 const today = new Date();
 const oneDay = 24 * 60 * 60 * 1000; // hours*minutes*seconds*milliseconds
 return Math.round(Math.abs((today - date) / oneDay));
}

employeeDetail = `Our team includes ${firstName} ${lastName}. They've been a
team member since ${hireDate}! That's ${getDaysSince(hireDate)} days.`;

44 | Chapter 2: Strings and Regular Expressions

https://github.com/airbnb/javascript

The only limit is practical—in other words don’t make your expressions so complex
that the resulting template literal is more difficult to read than code that uses the tra‐
ditional string-concatenation approach.

Currently, JavaScript has no built-in way to format numbers, dates, and currency val‐
ues inside template literal expressions. Plenty of people have speculated that future
versions of JavaScript will add this capability. There’s even a JavaScript library that
uses an awkward extensibility feature called tagged templates to wedge it in.

2.6 Performing a Case-Insensitive String Comparison
Problem
You want to see if two strings match, while treating uppercase and lowercase letters as
the same.

Solution
The off-the-cuff approach is to use the String.toLowerCase() method on both
strings, and compare the result, like this:

const a = "hello";
const b = "HELLO";

if (a.toLowerCase() === b.toLowerCase()) {
 // We end up here, because the lowercase versions of both strings match
}

This approach is fairly reliable, but it can suffer from edge cases with different lan‐
guages, accents, and special characters. (For example, check out the potential prob‐
lems with Turkish.)

An alternate, bulletproof approach is to use the String.localeCompare() method
with sensitivity set to accent, as shown here:

const a = "hello";
const b = "HELLO";

if (a.localeCompare(b, undefined, { sensitivity: 'accent' }) === 0) {
 // We end up here, because the case-insensitive strings match.
}

Discussion
If localeCompare() deems that two strings match, it returns 0. Otherwise it returns a
positive or negative integer indicating whether the compared string falls before or
after the referenced string in the sort order. (Because we’re using localeCompare() to
test for equality, the sort order isn’t important, and you can ignore it.)

2.6 Performing a Case-Insensitive String Comparison | 45

https://github.com/skolmer/es2015-i18n-tag
https://oreil.ly/CiALB
https://oreil.ly/CiALB

The second parameter of localeCompare() holds a string that specifies the locale (as
explained in Recipe 2.2). If you pass undefined, then localeCompare() uses the
locale of the current computer, which is almost always what you want.

To perform a case-insensitive comparison, you need to set the sensitivity property.
There are two values that can work. If you set sensitivity to accent, characters that
have different accents (like a and á) are treated as unequal. But if you set sensitiv
ity to base, you’ll get a more permissive case-insensitive comparison that treats all
accented letters as matches.

2.7 Checking If a String Contains a Specific Substring
Problem
You want to check if one string contains another substring.

Solution
If you simply need a yes-or-no test, you can use the String.includes() method:

const searchString = 'infinitely';
const fullText = 'I know not where I was born, save that the castle was' +
 ' infinitely old and infinitely horrible.';

if (fullText.includes(searchString)) {
 // The search string was found
}

Optionally, you can tell the includes() method where to start its search by character
position. For example, pass in the value 5 and the search skips to the sixth character
in the string, and continues to the end:

const searchString = 'infinitely';
const fullText = 'I know not where I was born, save that the castle was' +
 ' infinitely old and infinitely horrible.';

if (fullText.includes(searchString, 70)) {
 // Still true, because the search skips the first 'infinitely' and
 // hits the second one.
}

Discussion
The search that includes() performs is case-sensitive. If you want a case-insensitive
search, you can call toLowerCase() on both strings first:

const searchString = 'INFINITELY';
const fullText = 'I know not where I was born, save that the castle was' +
 ' infinitely old and infinitely horrible.';

46 | Chapter 2: Strings and Regular Expressions

if (fullText.toLowerCase().includes(searchString.toLowerCase())) {
 // The search string was found
}

The includes() method doesn’t provide any information about where a match
occurs. If you want this information, consider using the String.indexOf() method
instead, which is described in Recipe 2.11.

2.8 Replacing All Occurrences of a String
Problem
You want to find all occurrences of a specific substring in a string, and replace them
with something else.

Solution
You can use the String.replaceAll() method to make the change in one step. All
you need is a substring to search for and another string to swap in its place:

const storyText = 'I know not where I was born, save that the castle was' +
 ' infinitely old and infinitely horrible.';

const changedStory = storyText.replaceAll('infinitely', 'somewhat');

console.log(changedStory);

If you run this code, you’ll see the altered string “I know not where I was born, save
that the castle was somewhat old and somewhat horrible.” appear in the developer
console.

Discussion
The replaceAll() method has the ability to use a regular expression for searching
instead of an ordinary string. You can see how this works in Recipe 2.10.

See Also
Consult Recipes 2.11 and 2.12 to see how you can find matches in a string and exam‐
ine each one, instead of just replacing them outright.

2.8 Replacing All Occurrences of a String | 47

2.9 Replacing HTML Tags with Named Entities
Problem
You want to insert markup into a web page, and escape the markup (so the browser
displays the angle brackets rather than interpreting them as HTML tags). This could
be because you want to show some example HTML markup, for example, in a tutorial
article. Or it may be because you need to safely sanitize outside data, like text submit‐
ted by a user or pulled out of a database.

Solution
Use the String.replaceAll() method to convert angle brackets (< >) into the
named HTML entities < and >. You’ll need to perform two steps, one for each
substitution:

const originalPieceOfHtml = '<p>This is a paragraph</p>';

// Get a new string with no < characters
let safePieceOfHtml = originalPieceOfHtml.replaceAll('<', '<');

// Get a new string with no > characters
safePieceOfHtml = safePieceOfHtml.replaceAll('>', '>');

// Show it in the page
document.getElementById('placeholder').innerHtml = safePieceOfHtml;

If you examine the string now, you’ll find it holds the text “<p>This is a para‐
graph</p>”, which will appear as you expect (with angle brackets shown) in
the web page.

You can perform both string substitutions in one step, as long as you can keep the
code readable:

const safePieceOfHtml =
 originalPieceOfHtml.replaceAll('<', '<').replaceAll('>', '>');

The first replaceAll() returns a new string, and the code calls replaceAll() on that
second string to get a third string in this case. This technique of calling a method on a
value that’s returned from a method is called method chaining.

Discussion
HTML escaping is critically important if you’re inserting raw text into a web page. If
you don’t perform this step, you’ve left open a gaping security hole. In fact, you
should make sure all text content is escaped before you show it in a web page, even if
you think that text doesn’t contain any HTML entities (for example, even if it’s just set

48 | Chapter 2: Strings and Regular Expressions

as a literal in your code). There’s no telling when someone might change the code and
substitute a text value from somewhere else.

That said, doing HTML escaping on your own usually isn’t the best approach. You
need to do it if you are deliberately creating a string that mingles your HTML tags
with outside content. But ideally you’ll put text in your web page using an element’s
textContent property instead of its innerHTML property. When you use textContent,
the browser escapes the content automatically, which means you don’t need to use
String.replaceAll().

See Also
See Chapter 12 for more information about using the HTML DOM to insert text con‐
tent into a web page.

2.10 Using a Regular Expression to Replace Patterns
in a String
Problem
You want to search a string for a pattern, rather than an exact sequence of characters.
You then want to create a new string, with the pattern replaced.

Solution
You can use the String.replace() or String.replaceAll() methods, both of which
support regular expressions.

A regular expression is a sequence of characters that defines a text
pattern. Regular expressions are a standard that’s implemented in
JavaScript and many other programming languages. Table 2-2 gives
a brief introduction to regular expression syntax.

For example, consider the regular expression pattern t\w{2}e. This translates into
look for any sequence of characters beginning with t, ending with e, and containing two
other alphanumeric characters. The solution matches time, but also matches tame.

Here’s the code that uses this regular expression:

const originalString = 'Now is the time, this is the tame';
const regex = /t\w{2}e/g;
const newString = originalString.replaceAll(regex, 'place');

// newString = 'Now is the place, this is the place'

2.10 Using a Regular Expression to Replace Patterns in a String | 49

Notice that the regular expression isn’t written a string. Instead, it’s a literal that
begins and ends with a slash (/). JavaScript recognizes this syntax and creates a RegEx
object that uses your expression.

The g at the end of the regular expression is an additional detail called the global flag.
It indicates that you are searching the whole string for matches. If you don’t include
the g flag, you’ll receive an error when you call replaceAll(). However, you can use
a regular expression without the global flag when you use the replace() method to
change just one occurrence of a pattern.

Discussion
If you’d rather create a regular expression without using the / delimiter, there’s
another option. Instead of writing a regular expression literal, you can explicitly cre‐
ate a RegEx object, like this:

const regex = new RegExp('t\\w{2}e', 'g');
const newString = originalString.replaceAll(regex, 'place');

When you use this approach, you don’t include the surrounding slashes around the
regular expression, but you do need to escape any backslashes in the pattern (by
replacing / with //). In addition, the global flag becomes a second argument to the
RegExp constructor, instead of being added to the end of the regular expression.

You might find that escaping backslashes is awkward or confusing in long, compli‐
cated regular expressions. If so, you can get around the escaping requirement with a
template literal (introduced in Recipe 2.5). The trick is to combine your template lit‐
eral with the String.raw() method. Remember to use backticks (`) around the
expression string instead of apostrophes or quotes:

// Although String.raw is a method, it has no parentheses after it,
// and it uses the specialized backtick syntax shown here.
const regex = new RegExp(String.raw`t\w{2}e`, 'g');

Extra: Regular Expressions
Regular expressions are made up of regular characters that are used alone or in com‐
bination with special characters. For instance, the following is a regular expression
for a pattern that matches against a string that contains the word technology and the
word book, in that order, and separated by one or more whitespace characters:

const regex = /technology\s+book/;

The backslash character (\) serves two purposes: either it’s used with a regular char‐
acter, to designate that it’s a special character, or it’s used with a special character, such
as the plus sign (+), to designate that the character should be treated literally. In this
case, the backslash is used with s, which transforms the letter s to a special character

50 | Chapter 2: Strings and Regular Expressions

designating a whitespace character (space, tab, line feed, or form feed). The +\s+ spe‐
cial character is followed by the plus sign, \s, which is a signal to match the preceding
character (in this example, a whitespace character) one or more times. This regular
expression would work with the following:

technology book

It would also work with the following:

technology book

It would not work with the following, because there is no whitespace between the
words:

technologybook

It doesn’t matter how much whitespace is between technology and book, because of
the use of \s+. However, using the plus sign does require at least one whitespace
character.

Table 2-2 shows the most commonly used special characters in JavaScript
applications.

Table 2-2. Regular expression special characters
Character Matches Example

^ Matches beginning of input /^This/ matches This is…

$ Matches end of input /end$/ matches This is the end

* Matches zero or more times /se*/ matches seeee as well as se

? Matches zero or one time /ap?/ matches apple and and

+ Matches one or more times /ap+/ matches apple but not and

{n} Matches exactly n times /ap{2}/ matches apple but not apie

\{n,\} Matches n or more times /ap{2,}/ matches all p’s in apple and appple but not
apie

\{n,m\} Matches at least n, at most m times /ap{2,4}/ matches four p’s in apppppple

. Any character except newline /a.e/ matches ape and axe

[…] Any character within brackets /a[px]e/ matches ape and axe but not ale

[^…] Any character but those within brackets /a[^px]/ matches ale but not axe or ape

\b Matches on word boundary /\bno/ matches the first no in nono

\B Matches on nonword boundary /\Bno/ matches the second no in nono

\d Digits from 0 to 9 /\d{3}/ matches 123 in Now in 123

\D Any nondigit character /\D{2,4}/ matches Now ' in ‘Now in 123;

\w Matches word character (letters, digits,
underscores)

/\w/ matches j in javascript

2.10 Using a Regular Expression to Replace Patterns in a String | 51

Character Matches Example

\W Matches any nonword character (not letters,
digits, or underscores)

\/W/ matches % in 100%

\n Matches a line feed

\s A single whitespace character

\S A single character that is not whitespace

\t A tab

(x) Capturing parentheses Remembers the matched characters

Regular expressions are powerful but can be tricky. They’re only
covered lightly in this book. If you want more in-depth coverage of
regular expressions, you can read the excellent Regular Expressions
Cookbook by Jan Goyvaerts and Steven Levithan (O’Reilly), or con‐
sult an online reference.

2.11 Extracting a List from a String
Problem
You have a string with several sentences, one of which includes a list of items. The list
begins with a colon (:), ends with a period (.), and separates each item with a comma
(,). You want to extract just the list.

Before:

This is a list of items: cherries, limes, oranges, apples.

After:

['cherries','limes','oranges','apples']

Solution
The solution requires two actions: extract the string containing the list of items, and
then convert this string into a list.

Use the String.indexOf() method twice—first to locate the colon, and again to find
the first period following the colon:

const sentence = 'This is one sentence. This is a sentence with a list of items:' +
'cherries, oranges, apples, bananas. That was the list of items.';
const start = sentence.indexOf(':');
const end = sentence.indexOf('.', start + 1);

Using these two locations and the String.slice() method, you can extract the string
you want:

52 | Chapter 2: Strings and Regular Expressions

http://shop.oreilly.com/product/0636920023630.do
http://shop.oreilly.com/product/0636920023630.do
https://github.com/ziishaned/learn-regex

const list = sentence.slice(start + 1, end);
// list = 'cherries, oranges, apples, bananas'

You could write a loop that uses the indexOf() method to look for commas, and the
slice() method to split the list string into smaller pieces, one for each item. But
there’s an easier approach. You can break the string into an array using the
String.split() method:

let fruits = list.split(',');
// now fruits has these elements: ['cherries', ' oranges', ' apples', ' bananas']

When you call split(), you must choose a delimiter. It could be a space, a comma, a
series of dashes, or something else. The delimiter is used to carve up the string into
smaller pieces, and it won’t appear in the results.

Discussion
The result of splitting the extracted string is an array of list items. However, the items
may come with artifacts (in this case, an extra leading space in all but the first string).
Fortunately, it’s easy to clean them up.

One obvious approach is to iterate over the array of strings and manually trim each
one, using the technique described in Recipe 2.13. This works, but there’s an easier
approach.

The trick is to use the Array.map(), which runs a piece of code you supply on each
element in the array. You need just a single line of code to call the trim() method:

fruits = fruits.map(s => s.trim());
// now fruits has these elements: ['cherries', 'oranges', 'apples', 'bananas']

If you aren’t familiar with the arrow syntax used to supply the trimming function in
this example, you can read a more detailed explanation of this technique in Recipe
6.2.

See Also
Another way to find matches in a string is to use regular expressions. For example,
depending on the way your list is structured, you might be able to use a regular
expression that grabs words that fall in between commas. Regular expressions are
introduced in Recipe 2.10, and using regular expressions to perform a search is cov‐
ered in Recipe 2.12.

2.11 Extracting a List from a String | 53

2.12 Finding All Instances of a Pattern
Problem
You want to find all instances of a pattern within a string and iterate over them.

Solution
Use a regular expression with the String.matchAll() method. The matchAll()
method returns an iterator that lets you loop over all the matches.

The next example uses a regular expression to find any word that begins with t and
ends with e, with any number of characters in between. It uses the template literal
syntax from Recipe 2.5 to build a new string with results:

const searchString = 'Now is the time and this is the time and that is the time';
const regex = /t\w*e/g;

const matches = searchString.matchAll(regex);
for (const match of matches) {
 console.log(`at ${match.index} we found ${match[0]}`);
}

Here are the results from this code:

at 7 we found the
at 11 we found time
at 28 we found the
at 32 we found time
at 49 we found the
at 53 we found time

Discussion
When you search with matchAll(), each match is an object. As you iterate over your
matches, you can examine the matched text (match[0]), and the index where the
match was found (match.index).

Here’s something that looks a little peculiar in the current example. Even though
you’re looking at one result at a time, you use match[0] to get the first item from an
array. This array exists because a regular expression can capture multiple portions of a
match using parentheses. You can then reference these captured sections later. For
example, imagine you write a regular expression that matches a row of information
about a person. With capturing, you can easily grab separate pieces of information
from each match, like that person’s name and birth date. When you use this technique
with matchAll(), the matched substrings are provided as match[1], match[2], and so
on.

54 | Chapter 2: Strings and Regular Expressions

And if you don’t want to iterate over the results right away, you can dump everything
into an array using the spread operator:

const searchString = 'Now is the time and this is the time and that is the time';
const regex = /t\w*e/g;

// Put the 6 match objects into an array
const matches = [...searchString.matchAll(regex)];

Now you can use foreach to loop through your matches array at another time. But
remember, matches isn’t just an array of matching text. It’s an array of match objects.
As you saw in the original example, each match object has a position (match.index)
and an array with one or more matched groups of text (starting with match[0]).

Extra: Highlighting Matches
Let’s take a look at a more detailed example that shows how you might find and high‐
light text matches on a web page. Figure 2-1 shows the application in action on Wil‐
liam Wordsworth’s poem, “The Kitten and the Falling Leaves.”

Figure 2-1. Application finding and highlighting all matched strings

This page has a textarea and an input text box for entering both a search string and
a regular expression. The pattern is used to create a RegExp object, which is then
applied against the text in the textarea using matchAll(), just as in the previous
(much shorter) example.

2.12 Finding All Instances of a Pattern | 55

As the code examines the matches, it creates a string, consisting of both the
unmatched text and the matched text. The matched text is surrounded by a
element, with a CSS class used to highlight the text. The resulting string is then inser‐
ted into the page, using the innerHTML property of a <div> element (see
Example 2-1).

Example 2-1. Highlight all matches in a text string

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Finding All Instances of a Pattern</title>

 <style>
 .found {
 background-color: #ff0;
 }
 body {
 margin: 15px;
 }
 textarea {
 width: 100%;
 height: 350px;
 }
 </style>
 </head>
 <body>
 <h1>Finding All Instances of a Pattern</h1>

 <form id="textsearch">
 <textarea id="incoming">
 </textarea>
 <p>
 Search pattern: <input id="pattern" type="text">
 </p>
 </form>
 <button id="searchSubmit">Search for pattern</button>
 <div id="searchResult"></div>

 <script>
 document.getElementById("searchSubmit").onclick = function() {
 // Get the pattern
 const pattern = document.getElementById('pattern').value;
 const regex = new RegExp(pattern, 'g');

 // Get the text to search
 const searchText = document.getElementById('incoming').value;

56 | Chapter 2: Strings and Regular Expressions

 let highlightedResult = "<pre>";
 let startPosition = 0;
 let endPosition = 0;

 // Find each match, and build the result
 const matches = searchText.matchAll(regex);
 for (const match of matches) {
 endPosition = match.index;

 // Get all of the string up to the match, and concatenate
 highlightedResult += searchText.slice(startPosition, endPosition);

 // Add matched text, using a CSS class for formatting
 highlightedResult += "" + match[0] + "";
 startPosition = endPosition + match[0].length;
 }

 // Finish off the result string
 highlightedResult += searchText.slice(startPosition);
 highlightedResult += "</pre>";

 // Show the highlighted text in the page
 document.getElementById("searchResult").innerHTML = highlightedResult;
 }
 </script>
 </body>
</html>

In Figure 2-1 this page performs a search with this regular expression:

lea(f|ves)

The bar (|) is a conditional test, and will match a word based on the value on either
side of the bar. So leaf matches, as well as leaves, but not leap.

2.13 Removing Whitespace from the Beginning and End
of a String
Problem
You want to trim extra spaces that pad the beginning or end of a string.

Solution
Use the String.trim() method. It removes all whitespace from both ends of a string,
including spaces, tabs, no-break spaces, and line terminator characters.

const paddedString = ' The road is long, with many a winding turn. ';
const trimmedString = paddedString.trim();

2.13 Removing Whitespace from the Beginning and End of a String | 57

// trimmedString = 'The road is long, with many a winding turn.'

Discussion
The trim() method is straightforward, but not customizable. If you have even
slightly more complex string alteration requirements, you’ll need to use a regular
expression.

One common problem that thwarts the trim() method is removing excess white‐
space inside a string. The replaceAll() method can accomplish this task with rela‐
tive ease using a regular expression with the \s character to match whitespace:

const paddedString = 'The road is long, with many a winding turn.';
const trimmedString = paddedString.replaceAll(/\s\s+/g, ' ');

// trimmedString = 'The road is long, with many a winding turn.'

Of course, unwanted artifacts are possible even after processing bad data with extra
spaces. For example, if there are multiple spaces where you don’t want any space ('is
long , with') you’ll still be left with a single space after you run the replacement ('is
long , with'). The only way to deal with issues like these is to manually step through
each match, as demonstrated in Recipe 2.12.

See Also
Regular expression syntax is described in Recipe 2.10.

2.14 Converting the First Letter of a String to Uppercase
Problem
You want to make the first letter of a string an uppercase letter, without changing the
rest of the string.

Solution
Split off the first letter and capitalize it with String.toUpper(). Join the uppercase
letter to the remainder of the string, which you can get with String.slice():

const original = 'if you cut an orange, there is a risk it will orbisculate.';
const fixed = original[0].toUpperCase() + original.slice(1);

// fixed = 'If you cut an orange, there is a risk it will orbisculate.';

58 | Chapter 2: Strings and Regular Expressions

Discussion
To get a single character from a string, you can use the string’s indexer, as in
original[0]. This gets the character in position 0 (which is the first character).

const firstLetter = original[0];

Alternatively, you can use the String.charAt() method, which works in exactly the
same way.

To get a fragment of a string, you use the slice() method. When calling slice(),
you must always specify the index where you want to start your string extraction. For
example, text.slice(5) starts at index position 5, continues to the end of the string,
and copies that section of the text into a new string.

If you don’t want slice() to continue to the end of the string, you can supply an
optional second parameter with the index where the string copying should stop:

// Get a string from index position 5 to 10.
const substring = original.slice(5, 10);

The example in this recipe changed a single letter to uppercase. If you want to change
an entire sentence to use initial capitals (called title case), it’s a more complex prob‐
lem. You might decide to split the string into separate words, trim each word, and
then join the results, using a variation of the technique from Recipe 2.11.

See Also
You can use slice() in conjunction with indexOf() to find the location of specific
bits of text that you want to extract. For an example, see Recipe 2.11.

2.15 Validating an Email Address
Problem
You want to catch and reject common errors in email addresses.

Solution
Regular expressions are useful for more than searching. You can also use them to val‐
idate strings by testing if a string matches a given pattern. In JavaScript, you test if a
string matches a regular expression using the RegEx.test() method.

const emailValid = "abeLincoln@gmail.com";
const emailInvalid = "abeLincoln@gmail .com";
const regex = /\S+@\S+\.\S+/;

if (regex.test(emailValid)) {

2.15 Validating an Email Address | 59

 // This code is executed, because the email passes.
}
if (regex.test(emailInvalid)) {
 // This code is not executed, because the email fails.
}

Discussion
Programmers use many different regular expressions to validate email addresses. The
best ones capture obvious mistakes and spurious values, but don’t get too complex.
Overly strict regular expressions have, from time to time, inadvertently disallowed
valid mail addresses. And even if an email address checks out with the most stringent
test possible, there’s no way to know if it’s truly correct (at least not without sending
an email message and requesting a confirmation).

The regular expression in this recipe requires that an email has a sequence of at least
one nonwhitespace character, followed by the @ character, followed by one or more
nonwhitespace characters, followed by a period (.), followed again by one or more
nonwhitespace characters. It catches obviously invalid emails like tomkhangmail.com
or tomkhan@gmail.

Often, you won’t write a regular expression for validation yourself. Instead, you’ll use
a prewritten expression that matches your data. For a massive collection of regular
expression resources, visit the Awesome Regex page.

See Also
Regular expression syntax is described in Recipe 2.10.

60 | Chapter 2: Strings and Regular Expressions

https://github.com/aloisdg/awesome-regex

CHAPTER 3

Numbers

There are few ingredients more essential to everyday programming than numbers.
Many modern languages have a set of different numeric data types to use in different
scenarios, like integers, decimals, floating point values, and so on. But when it comes
to numbers, JavaScript reveals its rushed, slightly improvised creation as a loosely-
typed scripting language.

Until recently, JavaScript had just a single do-everything numeric data type called Num
ber. Today, it has two: the standard Number you use almost all of the time, and the
very specialized BigInt that you only consider when you need to deal with huge
whole numbers. You’ll use both in this chapter, along with the utility methods of the
Math object.

3.1 Generating Random Numbers
Problem
You want to generate a random whole number that falls in a set range (for example,
from 1 to 6).

Solution
You can use the Math.random() method to generate a floating-point value between 0
and 1. Usually, you’ll scale this fractional value and round it, so you end up with an
integer in a specific range. Assuming your range spans from some minimum number
min to a maximum number max, here’s the statement you need:

randomNumber = Math.floor(Math.random() * (max - min + 1)) + min;

61

For example, if you want to pick a random number between 1 and 6, the code
becomes:

const randomNumber = Math.floor(Math.random()*6) + 1;

Now possible values of randomNumber are 1, 2, 3, 4, 5, or 6.

Discussion
The Math object is stocked full of static utility methods you can call at any time. This
recipe uses Math.random() to get a random fractional number, and Math.floor() to
truncate the decimal portion, leaving you with an integer.

To understand how this works, let’s consider a sample run-through. First, Math.ran
dom() picks a value between 0 and 1, like 0.374324823:

const randomNumber = Math.floor(0.374324823*6) + 1;

That number is multiplied by the number of values in your range (in this example, 6),
becoming 2.245948938:

const randomNumber = Math.floor(2.245948938) + 1;

Then the Math.floor() function truncates this to just 2:

const randomNumber = 2 + 1;

Finally, the starting number of the range is added, giving the final result of 3. Repeat
this calculation and you’ll get a different number, but it will always be an integer from
the range we’ve set of 1 to 6.

See Also
The Math.floor() method is only one way to round numbers. See Recipe 3.3 for
more.

It’s important to understand that numbers generated by Math.random() are pseudo‐
random, which means they can be guessed or reverse engineered. They are not ran‐
dom enough for cryptography, lotteries, or complex modelling. For more about the
difference, see Recipe 3.2. And if you need a way to generate a repeatable sequence of
pseudorandom numbers, refer to “Extra: Building a Repeatable Pseudorandom Num‐
ber Generator” on page 133.

62 | Chapter 3: Numbers

3.2 Generating Cryptographically Secure Random
Numbers
Problem
You want to create a random number that can’t be easily reverse engineered
(guessed).

Solution
Use the window.crypto property to get an instance of the Crypto object. Use the
Crypto.getRandomValues() method to generate random values that have more
entropy than those produced by Math.random(). (In other words, they are much less
likely to be repeated or predicted—see the Discussion section for full details.)

The Crypto.getRandomValues() method works differently from Math.random().
Rather than giving you a floating-point number between 0 and 1, getRandomValues()
fills an array with random integers. You can choose whether these integers are 8-bit,
16-bit, or 32-bit, and whether they are signed or unsigned. (A signed data type can be
negative or positive, whereas an unsigned number is only positive.)

There is an accepted workaround to convert the output of getRandomValues() to a
fractional value between 0 and 1. The trick is to divide the random value by the maxi‐
mum possible number that data type can contain:

const randomBuffer = new Uint32Array(1);
window.crypto.getRandomValues(randomBuffer);
const randomFraction = randomBuffer[0] / (0xffffffff + 1);

You can now work with randomFraction in the same way that you work with the
number returned from Math.random(). For example, you can convert it to a random
integer in a specific range, as explained in Recipe 3.1:

// Use the random fraction to make a random integer from 1-6
const randomNumber = Math.floor(randomFraction*6) + 1;
console.log(randomNumber);

If you’re running your code in the Node.js runtime environment, you won’t have
access to a window object. However, you can get access to a very similar implementa‐
tion of the Web Crypto API using this code:

const crypto = require('crypto').webcrypto;

3.2 Generating Cryptographically Secure Random Numbers | 63

Discussion
There’s a lot to unpack in this example. First, even if you don’t dig deeper into how
this code works, you need to be aware of a few important details about the implemen‐
tation of Crypto.getRandomValues():

• Technically, Crypto creates pseudorandom numbers that are generated by a
mathematical formula, like those provided by Math.random(). The difference is
that these numbers are considered cryptographically strong, because the random
number generator is seeded with a truly random value. The benefit of this trade-
off is that getRandomValues() has similar performance to Math.random(). (It’s
fast.)

• There’s no way to know how the Crypto object is seeded, because that’s up to the
implementation (for web page code, that means the browser manufacturer),
which in turn relies on functionality in the operating system. Usually, the seed is
created using a combination of recently recorded details about keyboard timings,
mouse movements, and hardware readings.

• No matter how good your random numbers are, if your JavaScript code is run‐
ning in a browser, it’s exposed to a great number of attacks. After all, there’s noth‐
ing to stop a malicious party from seeing your code and creating an altered copy
that bypasses all random number generation. If your code is running on a server,
the situation is different.

Now let’s look closer at how getRandomValues() works. Before you call getRandom
Values(), you must create a typed array, which is an array-like object that can only
hold values of a specific data type. (We say array-like because it behaves like an array,
but it isn’t an instance of the official Array type.) JavaScript provides several strongly
typed array objects you can use: like Uint32Array (for an array of unsigned 32-bit
integers), Uint16Array, Uint8Array, and the signed counterparts Int32Array,
Int16Array, and Int8Array. You create this array to be as big as you want, and
getRandomValues() will fill the whole buffer.

In this recipe, we make room for just one value in the Uint32Array:

const randomBuffer = new Uint32Array(1);
window.crypto.getRandomValues(randomBuffer);

The final step is to divide this random value by the maximum possible unsigned 32-
bit integer, which is 4,294,967,295. This number is cleaner in its hexadecimal repre‐
sentation, 0xffffffff:

const randomFraction = randomBuffer[0] / (0xffffffff + 1);

64 | Chapter 3: Numbers

As this code shows, you also need to add 1 to the maximum value. That’s because the
random value could theoretically land exactly on the maximum integer value. If it
did, the randomFraction would become 1, which differs from Math.random() and
most other random number generators. (And a tiny unexpected variation from the
norm is something that can lead to a incorrect assumption, and then a bug further
down the road.)

3.3 Rounding to a Specific Decimal Place
Problem
You want to round a number to a certain precision (for example, 124.793 to 124.80 or
120).

Solution
You can use the Math.round() method to round a number to the nearest whole
number:

const fractionalNumber = 19.48938;
const roundedNumber = Math.round(fractionalNumber);

// Now roundedNumber is 19

Oddly enough, the round() method doesn’t take an argument that lets you specify a
number of decimal places to keep. If you want a different degree of precision, it’s up
to you to multiply your number by the appropriate power of 10, round it, and then
divide it by the same power of 10 after rounding. Here’s the general formula for this
operation:

const numberToRound = fractionalNumber * (10**numberOfDecimalPlaces);
let roundedNumber = Math.round(numberToRound);
roundedNumber = roundedNumber / (10**numberOfDecimalPlaces);

For example, if you want to round to two decimal places, the code becomes this:

const fractionalNumber = 19.48938;
const numberToRound = fractionalNumber * (10**2);
let roundedNumber = Math.round(numberToRound);
roundedNumber = roundedNumber / (10**2);

// Now roundedNumber is 19.49

If you want to round left of decimal place (for example, to the nearest tens, hundreds,
and so on), just use a negative number for numberOfDecimalPlaces. For example, –1
rounds to the nearest 10, –2 rounds to the nearest 100, and so on.

3.3 Rounding to a Specific Decimal Place | 65

Discussion
The Math object has several static methods for turning fractional values into integers.
The floor() method removes all decimal digits, rounding a number down to the
nearest whole number. The ceil() method does the reverse, and always rounds a
fractional number up to the next whole number. The round() method rounds to the
closest whole number.

There are two important points you need to know about how round() works:

• An exact value of 0.5 is always rounded up, even though it is equally distant from
both the next lower and next higher integer. In finance and science, different
rounding techniques are often used to remove this bias (such as rounding some
0.5 values up and others down). But if you want that behavior in JavaScript, you
need to implement it yourself or use a third-party library.

• When rounding negative numbers, JavaScript rounds –0.5 up toward zero. That
means that –4.5 is rounded to –4, which is different than the rounding imple‐
mentation in many other programming languages.

See Also
Rounding numbers is one way to get a numeric value closer to an appropriate display
format. If you’re using rounding to prepare a number to show to a user, you may also
be interested in the Number formatting methods described in Recipe 2.2.

3.4 Preserving Accuracy in Decimal Values
Problem
All numbers in JavaScript are floating point values, which suffer minute rounding
errors with certain operations. In some applications (for example, when dealing with
amounts of money), these errors may not be acceptable.

Solution
Floating point rounding errors are a well-understood phenomenon that exists in
almost every programming language. To see it in JavaScript, run the following code:

const sum = 0.1 + 0.2;
console.log(sum); // displays 0.30000000000000004

66 | Chapter 3: Numbers

You can’t avoid the rounding error, but you can minimize it. If you’re working with a
currency type that has two decimal places of precision (like dollars), consider multi‐
plying all values by 100 to avoid dealing with decimals. Instead of writing code like
this:

const currentBalance = 5382.23;
const transactionAmount = 14.02;

const updatedBalance = currentBalance - transactionAmount;

// Now updatedBalance = 5368.209999999999

Use currency variables like this:

const currentBalanceInCents = 538223;
const transactionAmountInCents = 1402;

const updatedBalanceInCents = currentBalanceInCents - transactionAmountInCents;

// Now updatedBalanceInCents = 536821

This solves the problem for operations that work out to exact whole numbers, like
adding and subtracting numbers of cents. But what happens when you need to calcu‐
late tax or interest? In these situations you’ll end up with fractional values no matter
what, and you need to do what businesses and banks do—round your values immedi‐
ately after your transaction:

const costInCents = 4899;

// Calculate 11% tax, and round the result to the nearest cent
const costWithTax = Math.round(costInCents*1.11);

Discussion
The floating point rounding issue stems from the fact that some decimal values can’t
be stored in binary representation without rounding. The same problem occurs with
decimal numbering systems (for example, try to write the result of 1/3). The differ‐
ence with floating point numbers is that the effect is counterintuitive. We don’t expect
to have trouble adding 0.1 and 0.2, because in decimal notation both fractions can be
represented exactly.

Although other programming languages experience the same phenomenon, many of
them include an alternate data type for decimal or currency values. JavaScript does
not. However, there is a proposal for a new Decimal type, which could be incorpora‐
ted into a future version of the JavaScript language.

3.4 Preserving Accuracy in Decimal Values | 67

https://github.com/tc39/proposal-decimal

See Also
If you perform a lot of financial calculations, you can simplify your life by using a
third-party library like bignumber.js, which provides a customized numeric data type
that works a lot like the ordinary Number, but preserves exact precision for a fixed
number of decimal places.

3.5 Converting a String to a Number
Problem
You want to parse a number in a string and convert it to the number data type.

Solution
It’s always safe to convert a number into a string, because that operation can’t fail. The
reverse task—converting a string into a number, so you can use it in calculations—is a
more delicate affair.

The canonical approach is to use the Number() function:

const stringData = '42';
const numberData = Number(stringData);

The Number() function won’t accept formatting like currency symbols and comma
separators. It will allow extra spaces at the beginning and end of the string. The Num
ber() function also converts empty strings or strings with only whitespace to the
number 0. This might be a reasonable default (for example, if you’re retrieving user
input from a text box), but it’s not always appropriate. To avoid this case, consider
testing for a whitespace-only string before you call Number():

if (stringData.trim() === '') {
 // This is an all-whitespace or empty string
}

If a conversion fails, the Number() function assigns the value NaN (for not a number)
to your variable. You can test for this failure by calling the Number.isNaN() method
immediately after you use Number():

const numberData = Number(stringData);

if (Number.isNaN(numberData)) {
 // It's safe to process this data as a number
}

68 | Chapter 3: Numbers

https://github.com/MikeMcl/bignumber.js

The isFinite() method is almost the same as isNaN(), except it
avoids strange edge cases, like 1/0, which returns a value of infin
ity. If you use the isNaN() method on infinity, it somewhat
dubiously returns false.

An alternate approach is to use the parseFloat() method. It’s a slightly looser con‐
version that tolerates text after the number. However, parseFloat() is stricter with
blank strings, which it refuses.

console.log(Number('42')); // 42
console.log(parseFloat('42')); // 42

console.log(Number('12 goats')); // NaN
console.log(parseFloat('12 goats')); // 12

console.log(Number('goats 12')); // NaN
console.log(parseFloat('goats 12')); // NaN

console.log(Number('2001/01/01')); // NaN
console.log(parseFloat('2001/01/01')); // 2001

console.log(Number(' ')); // 0
console.log(parseFloat(' ')); // NaN

Discussion
Developers use some conversion tricks that are functionally equivalent to the
Number() function, like multiplying a string by 1 (numberInString*1) or using the
unary operator (+numberInString). But using Number() or parseFloat() is preferred
for clarity.

If you have a formatted number (like 2,300), you need to do more work to convert it.
The Number() method will return NaN, and parseFloat() will stop at the comma and
treat it as 2. Unfortunately, although JavaScript has an Intl.NumberFormat object that
can create formatted strings from numbers (see Recipe 2.2), it doesn’t provide parsing
functionality for the reverse operation.

You can use regular expressions to take care of tasks like removing commas from a
string (see Recipe 2.8). But a home brew solution can be risky, because some locales
use commas to separate thousands, while others use them to separate decimals. In sit‐
uations like these, a well-used, well-tested JavaScript library like Numeral is a better
choice.

3.5 Converting a String to a Number | 69

http://numeraljs.com

3.6 Converting a Decimal to a Hexadecimal Value
Problem
You have a decimal value, and need to find its hexadecimal equivalent.

Solution
Use the Number.toString() method, with an argument that specifies the base you are
converting to:

const num = 255;

// displays ff, which is hexadecimal equivalent for 255
console.log(num.toString(16));

Discussion
By default, numbers in JavaScript are base 10, or decimal. However, they can also be
converted to a different radix, including hexadecimal (16) and octal (8). Hexadecimal
numbers begin with 0x (a zero followed by lowercase x). Octal numbers used to begin
with just a zero (0), but now should begin with a zero and then a Latin letter O (upper
or lowercase):

const octalNumber = 0o255; // equivalent to 173 decimal
const hexaNumber = 0xad; // equivalent to 173 decimal

A decimal number can be converted to another radix, in a range from 2 to 36:

const decNum = 55;
const octNum = decNum.toString(8); // value of 67 octal
const hexNum = decNum.toString(16); // value of 37 hexadecimal
const binNum = decNum.toString(2); // value of 110111 binary

To complete the octal and hexadecimal presentation, you’ll need to concatenate the
0o to the octal, and the 0x to the hexadecimal value. But remember, once you’ve con‐
verted your number into a string, don’t expect to use it in any sort of numeric calcula‐
tion, no matter how it’s formatted.

Although decimals can be converted to any base number (between a range of 2 to 36),
only the octal, hexadecimal, and decimal numbers can be manipulated directly as
numbers.

70 | Chapter 3: Numbers

3.7 Converting Between Degrees and Radians
Problem
You have an angle in degrees. To use the value in the Math object’s trigonometric
functions, you need to convert the degrees to radians.

Solution
To convert degrees to radians, multiply the degree value by (Math.PI/180):

const radians = degrees * (Math.PI / 180);

So if you have a 90 degree angle, the calculation becomes:

const radians = 90 * (Math.PI / 180);
console.log(radians); // 1.5707963267948966

To convert radians to degrees, multiply the radians value by (180/Math.PI):

const degrees = radians * (180 / Math.PI);

Discussion
All the trigonometric methods of the Math object (sin(), cos(), tan(), asin(),
acos(), atan(), and atan2()) take values in radians, and return radians as a result.
Yet it’s not unusual for people to provide values in degrees rather than radians, as
degrees are the more familiar unit of measure.

3.8 Calculating the Length of a Circular Arc
Problem
Given the radius of a circle, and the angle of an arc in degrees, find the length of the
arc.

Solution
Use Math.PI to convert degrees to radians, and use the result in a formula to find the
length of the arc:

// angle of arc is 120 degrees, radius of circle is 2
const radians = degrees * (Math.PI / 180);
const arclength = radians * radius; // value is 4.18879020478...

3.7 Converting Between Degrees and Radians | 71

Discussion
The length of a circular arc is found by multiplying the circle’s radius times the angle
of the arc, in radians.

If the angle is given in degrees, you’ll need to convert the degree to radians first,
before multiplying the angle by the radius. This calculation is frequently used when
drawing shapes in SVG, as covered in Chapter 15.

3.9 Manipulating Very Large Numbers with BigInt
Problem
You need to work with very large integers (above 253), without losing precision.

Solution
Use the BigInt data type, which can hold integers of any size, limited only by system
memory (or the BigInt implementation of the JavaScript engine you’re using).

You can create a BigInt in two ways. You use the BigInt() function, like this:

// Create a BigInt and set it to 10
const bigInteger = BigInt(10);

Or you can add the letter n to the end of a number:

const bigInteger = 10n;

This example shows the difference between an ordinary Number and the BigInt for
very large values:

// Ordinarily, large integers suffer from imprecision
const maxInt = Number.MAX_SAFE_INTEGER // Probably about 9007199254740991
console.log(maxInt + 1); // 9007199254740992 (reasonable)
console.log(maxInt + 2); // 9007199254740992 (not a typo, this seems wrong)
console.log(maxInt + 3); // 9007199254740994 (sure)
console.log(maxInt + 4); // 9007199254740996 (wait, what now?)

// BigInts behave more reliably
const bigInt = BigInt(maxInt);
console.log(bigInt + 1n); // 9007199254740992 (as before)
console.log(bigInt + 2n); // 9007199254740993 (this is better)
console.log(bigInt + 3n); // 9007199254740994 (still good)
console.log(bigInt + 4n); // 9007199254740995 (excellent!)

72 | Chapter 3: Numbers

When you log a BigInt to the developer console, it appears with an
n appended to its value (as in 9007199254740992n). This conven‐
tion makes it easy to recognize BigInt values. But if you just want
the numeric value of your BigInt, you simply need to convert it to
text first, with BigInt.toString().

Discussion
JavaScript’s native Number type conforms to the IEEE-754 specification for 64-bit,
double-precision floating-point numbers. The standard has acceptable, known limi‐
tations and inaccuracies. One practical limitation is that integers cannot be accurately
represented past 253. Beyond this point, inaccuracies in representation which had pre‐
viously been confined to the right of the decimal place (see Recipe 3.4) jump over to
the left of the decimal place. Put another way, as the JavaScript engine counts higher,
the chance for inaccuracy grows. Once we are past 253, the inaccuracy is larger than 1
and shows up in calculations with integral numbers, not just decimal values.

JavaScript has a partial solution to this problem with the BigInt type, introduced as
part of the ECMAScript 2020 specification. A BigInt is an arbitrarily sized integer
that allows you to represent exceedingly large numbers. Practically speaking, there is
no upper limit to the bit width of a BigInt.

Almost all of the operators you are used to using with regular numbers can be used
on a BigInt, including addition (+), subtraction (-), multiplication (*), division (/),
and exponentiation (**). However, BigInt is an integer and does not store fractional
values. When you perform a division operation, BigInt quietly discards the decimal
portion:

const result = 10n / 6n; // result is 1.

BigInts and Numbers are not interchangeable nor are they interoperable. But they
can be converted to one another using the Number() and BigInt() functions:

let bigInteger = 10n;
let integer = Number(bigInteger); // Number is 10

integer = 20;
bigInteger = BigInt(integer); // bigInteger is 20n

You need to perform a conversion if you want to use a BigInt with a method that
expects a Number, like the methods of the Math object. Similarly, you need to perform
a conversion if you want to use a Number in a calculation with another BigInt.

If you attempt to convert a Number that holds a fractional value into a BigInt, you’ll
receive a RangeError. You can avoid this possibility by rounding first:

const decimal = 10.8;
const bigInteger = BigInt(Math.round(decimal)); // bigInteger is 11n

3.9 Manipulating Very Large Numbers with BigInt | 73

Remember to keep operations consistent with the type. Sometimes what seems like a
simple operation can fail because you accidentally combine a BigInt with an ordi‐
nary number:

let x = 10n;
x = x * 2; // throws a TypeError because x is a BigInt and 2 is a Number
x += 1; // also throws a TypeError

x = x * 2n; // x is now 20n, as expected
x += 1n; // x is 21

You can compare a BigInt value against a Number value using the standard compari‐
son operators (<, >, <=, >=). If you want to test if a BigInt and a number are equal, use
the loose equality operators (== and !=). Strict equality (===) will always return
false, because BigInt and Number are different data types. Or, better yet, explicitly
convert your Number to a BigInt and then compare it with ===.

One last thing to consider with BigInt: it is not (at publishing time) serializable to
JSON. Attempts to call JSON.stringify() on a BigInt yield a syntax error. You have
several options to consider as a solution. You could monkey-patch your BigInt
implementation with an appropriate toJSON() method:

BigInt.prototype.toJSON = function() { return this.toString() }

You could also use a library like granola, which provides JSON-compatiable stringifi‐
ers for a number of values, including BigInt.

74 | Chapter 3: Numbers

https://github.com/kanongil/granola

CHAPTER 4

Dates

JavaScript has surprisingly capable date features, which are wrapped in the somewhat
old-fashioned Date object. As you’ll see, the Date object has quirks and hidden traps
—like the way it counts months starting at 0 and parses year information differently
depending on the locale settings of the current computer. But once you learn to navi‐
gate these stumbling blocks, you’ll be able to accomplish a number of common, use‐
ful operations, like counting the days between two dates, formatting dates for display,
and timing events.

4.1 Getting the Current Date and Time
Problem
You need to get the current date or time.

Solution
JavaScript includes a Date object that provides good support for manipulating date
information (and more modest support for performing date calculations). When you
create a new Date object, it is automatically populated with the current day and time,
down to the nearest millisecond:

const today = new Date();

Now it’s simply a matter of extracting the information you want from your Date
object. The Date object has a long list of methods that can help you in this task.
Table 4-1 lists the most important methods. Notice that the counting used by differ‐
ent methods isn’t always consistent. Months and weekdays are numbered starting at 0,
while days are numbered starting at 1.

75

Table 4-1. Date methods for getting pieces of date information
Method Gets Possible values

getFullYear() The year A four-digit number like 2021

getMonth() The month number 0 to 11, where 0 represents January

getDate() The day of the month 1 to 31

getDay() The day of the week 0 to 6, where 0 represents Sunday

getHours() The hour of the day 0 to 23

getMinutes() The minute 0 to 59

getSeconds() The seconds 0 to 59

getMilliseconds() The milliseconds (one thousandth seconds) 0 to 999

Here’s an example that displays some basic information about the current date:

const today = new Date();

console.log(today.getFullYear()); // example: 2021
console.log(today.getMonth()); // example: 02 (March)
console.log(today.getDay()); // example: 01 (Monday)

// Do a little extra string processing to make sure minutes are padded with
// a leading 0 if needed to make a two-digit value (like '05' in the time 4:05)
const hours = today.getHours();
const minutes = today.getMinutes().toString().padStart(2, '0');
console.log('Time ' + hours + ':' + minutes); // example: 15:32

The Date methods listed in Table 4-1 exist in two versions. The
versions shown in the table use the local time settings. The second
set of methods adds the prefix UTC (as in getUTCMonth() and
getUTCSeconds()). They use Coordinated Universal Time, the
global time standard. If you need to compare dates from different
time zones (or ones that have different conventions for following
daylight saving time), you must use the UTC methods. Internally,
the Date object always uses UTC.

Discussion
The Date() object has several constructors. The empty constructor creates a Date
object for the current date and time, as you’ve just seen. But you can also create a
Date object for a different date by specifying the year, month, and day, like this:

// February 10, 2021:
const anotherDay = new Date(2021, 1, 10);

76 | Chapter 4: Dates

Once again, be wary of the inconsistent counting (months start at 0, while days start
at 1). That means the anotherDay variable above represents February 10, not January
10.

Optionally, you can tack on up to four more parameters to the Date constructor for
hours, minutes, seconds, and milliseconds:

// February 1, 2021, at 9:30 AM:
const anotherDay = new Date(2021, 1, 1, 9, 30);

As you’ll see in this chapter, JavaScript’s built-in Date object has some well-known
limitations and a few quirks. If you need to perform extensive date operations in your
code, such as calculating date ranges, parsing different types of date strings, or shift‐
ing dates between time zones, the best practice is to use a tested third-party date
library, such as day.js or date-fns.

See Also
Once you have a date, you may want to use it in date calculations, as explained in
Recipe 4.4. You may also be interested in turning a date into a formatted string
(Recipe 4.6), or a date-containing string into a proper Date object (Recipe 4.2).

4.2 Converting a String to a Date
Problem
You have date information in a string, but you want to convert it to a Date object so
you can manipulate it in your code or perform date calculations.

Solution
If you’re fortunate, you’ll have your date string in the ISO 8601 standard timestamp
format (like “2021-12-17T03:24:00Z”), which you can pass directly to the Date
constructor:

const eventDate = new Date('2021-12-17T03:24:00Z');

The T in this string separates the the date from the time, and the Z at the end of the
string indicates it’s a universal time using the UTC time zone, which is the best way to
ensure consistency on different computers.

There are other formats that the Date constructor (and the Date.parse() method)
may recognize. However, they are now strongly discouraged, because their imple‐
mentations are not consistent across different browsers. They may appear to work in
a test example, but they run into trouble when different browsers apply different
locale-specific settings, like daylight saving time.

4.2 Converting a String to a Date | 77

https://github.com/iamkun/dayjs
https://date-fns.org

If your date isn’t in the ISO 8601 format, you’ll need to take a manual approach.
Extract the different date components from your string, then use those with the Date
constructor. You can make good use of String methods like split(), slice(), and
indexOf(), which are explored in more detail in the recipes in Chapter 2.

For example, if you have a date string in the format mm/dd/yyyy, you can use code
like this:

const stringDate = '12/30/2021';

// Split on the slashes
const dateArray = stringDate.split('/');

// Find the individual date ingredients
const year = dateArray[2];
const month = dateArray[0];
const day = dateArray[1];

// Apply the correction for 0-based month numbering
const eventDate = new Date(year, month-1, day);

Discussion
The Date object constructor doesn’t perform much validation. Check your input
before you create a Date object, because the Date object may accept values that you
would not. For example, it will allow day numbers to roll over (in other words, if you
set 40 as your day number, JavaScript will just move your date into the next month).
The Date constructor will also accept strings that may be parsed inconsistently on dif‐
ferent computers.

If you attempt to create a Date object with a nonnumeric string, you’ll receive an
“Invalid Date” object. You can test for this condition using isNaN():

const badDate = '12 bananas';

const convertedDate = new Date(badDate);

if (Number.isNaN(convertedDate)) {
 // We end up here, because the date object was not created successfully
} else {
 // For a valid Data instance, we end up here
}

This technique works because Date objects are actually numbers behind the scenes, a
fact explored in Recipe 4.4.

78 | Chapter 4: Dates

See Also
Recipe 4.6 explains the reverse operation—taking a Date object and converting it to a
string.

4.3 Adding Days to a Date
Problem
You want to find a date that’s a specific number of days before or after another date.

Solution
Find the current day number with Date.getDate(), then change it with Date.set
Date(). The Date object is smart enough to roll over to the next month or year as
needed.

const today = new Date();
const currentDay = today.getDate();

// Where will be three weeks in the future?
today.setDate(currentDay + 21);
console.log(`Three weeks from today is ${today}`);

Discussion
The setDate() method isn’t limited to positive integers. You can use a negative num‐
ber to shift a date backward. You may want to use the other setXxx() methods to
modify a date, like setMonths() to move it forward or backward one month at a
time, setHours() to move it by hours, and so on. All these methods roll over just like
setDate(), so adding 48 hours will move a date exactly two days forward.

The Date object is mutable, which makes its behavior look distinctly old-fashioned. In
more modern JavaScript libraries, you would expect a method like setDate() to
return a new Date object. But what it actually does is change the current Date object.
This happens even if you declare a date with const. (The const prevents you from
setting your variable to point to a different Date object, but it doesn’t stop you from
altering the currently referenced Date object.) To safely avoid potential problems, you
can clone your date before operating on it. Just use Date.getTime() to get the under‐
lying millisecond count that represents your date and use it to create a new object:

const originalDate = new Date();

// Clone the date
const futureDate = new Date(originalDate.getTime());

// Change the cloned date

4.3 Adding Days to a Date | 79

futureDate.setDate(originalDate.getDate()+21);
console.log(`Three weeks from ${originalDate} is ${futureDate}`);

See Also
Recipe 4.5 shows how to calculate the time period between two dates.

4.4 Comparing Dates and Testing Dates for Equality
Problem
You need to see if two Date objects represent the same calendar date, or determine if
one date is before another.

Solution
You can compare Date objects just like you compare numbers, with the < and >
operators:

const oldDay = new Date(1999, 10, 20);
const newerDay = new Date(2021, 1, 1);

if (newerDay > oldDay) {
 // This is true, because newerDay falls after oldDay.
}

Internally, dates are stored as numbers. When you use the < or > operator, they are
automatically converted to numbers and compared. When you run this code, you are
comparing the millisecond value for oldDay (943,074,000,000) to the millisecond
value for newerDay (1,612,155,600,000).

The equality operator (=) works differently. It tests the object reference, not the object
content. (In other words, two Date objects are equal only if you are comparing two
variables that point to the same instance.)

If you want to test if two Date objects represent the same moment in time, you need
to convert them to numbers yourself. The clearest way to do this is by calling
Date.getTime(), which returns the millisecond number for a date:

const date1 = new Date(2021, 1, 1);
const date2 = new Date(2021, 1, 1);

// This is false, because they are different objects
console.log(date1 === date2);

// This is true, because they have the same date
console.log(date1.getTime() === date2.getTime());

80 | Chapter 4: Dates

Despite its name, getTime() does not return just the time. It
returns the millisecond number that is an exact representation of
that Date object’s date and time.

Discussion
Internally, a Date object is just an integer. Specifically, it’s the number of milliseconds
that have elapsed since January 1, 1970. The millisecond number can be negative or
positive, which means that the Date object can represent dates from the distant past
(roughly 271,821 BCE) to the distant future (year 275,760 CE). You can get the milli‐
second number by calling Date.getTime().

Two Date objects are only the same if they match exactly, down to the millisecond.
Two Date objects that represent the same date but have a different time component
won’t match. This can be a problem, because you may not realize that your Date
object contains time information. This is a common issue when creating a Date
object for the current day (Recipe 4.1).

To avoid this issue, you can remove the time information using Date.setHours().
Despite its name, the setHours() method accepts up to four parameters, allowing
you to set the hour, minute, second, and millisecond. To create a date-only Date
object, set all these components to 0:

const today = new Date();

// Create another copy of the current date
// The day hasn't changed, but the time may have already ticked on
// to the next millisecond
const todayDifferent = new Date();

// This could be true or false, depending on timing factors beyond your control
console.log(today.getTime() === todayDifferent.getTime());

// Remove all the time information
todayDifferent.setHours(0,0,0,0);
today.setHours(0,0,0,0);

// This is always true, because the time has been removed from both instances
console.log(today.getTime() === todayDifferent.getTime());

See Also
For more math with dates, see Recipes 4.5 and 4.3.

4.4 Comparing Dates and Testing Dates for Equality | 81

4.5 Calculating the Time Elapsed Between Two Dates
Problem
You need to calculate how many days, hours, or minutes separate two dates.

Solution
Because dates are numbers (in milliseconds, see Recipe 4.4), calculations with them
are relatively straightforward. If you subtract one date from another, you get the
number of milliseconds in between:

const oldDate = new Date(2021, 1, 1);
const newerDate = new Date(2021, 10, 1);

const differenceInMilliseconds = newerDate - oldDate;

Unless you’re timing short operations for performance testing, the number of milli‐
seconds isn’t a particularly useful unit. It’s up to you to divide this number to convert
it into a more meaningful number of minutes, hours, or days:

const millisecondsPerDay = 1000*60*60*24;
let differenceInDays = differenceInMilliseconds / millisecondsPerDay;

// Only count whole days
differenceInDays = Math.trunc(differenceInDays);

console.log(differenceInDays);

Even though this calculation should work out to an exact number of days (because
neither date has any time information), you still need to use Math.round() on the
result to deal with the rounding errors inherent to floating-point math (see Recipe
3.4).

Discussion
There are two pitfalls to be aware of when performing date calculations:

• Dates may contain time information. (For example, a new Date object created for
the current day is accurate up to the millisecond it was created.) Before you count
days, use setHours() to remove the time component, as explained in Recipe 4.4.

• Calculations with two dates only make sense if the dates are in the same time
zone. Ideally, that means you are comparing two local dates or two dates in the
UTC standard. It may seem straightforward enough to convert dates from one
time zone to another, but often there are unexpected edge cases with daylight
saving time.

82 | Chapter 4: Dates

There is a tentative replacement for the aging Date object. The Temporal object aims
to improve calculations with local dates and different time zones. In the meantime, if
your date needs go beyond the Date object, you can experiment with a third-party
library for manipulating the date. Both day.js and date-fns are popular choices.

And if you want to use tiny time calculations for profiling performance, the Date
object is not the best choice. Instead, use the Performance object, which is available
in a browser environment through the built-in window.performance property. It lets
you capture a high-resolution timestamp that’s accurate to fractions of a millisecond,
if supported by the system. Here’s an example:

// Get a DOMHighResTimeStamp object that represents the start time
const startTime = window.performance.now();

// (Do a time consuming task here.)

// Get a DOMHighResTimeStamp object that represents the end time
const endTime = window.performance.now();

// Find the elapsed time in milliseconds
const elapsedMilliseconds = endTime - startTime;

The result (elapsedMilliseconds) is not the nearest whole millisecond, but the most
accurate fractional millisecond count that’s supported on the current hardware.

Although Node doesn’t provide the Performance object, it has its
own mechanism for retrieving high-resolution time information.
You use its global process object, which provides the pro
cess.hrtime.bigint() method. It returns a timing readout in
nanoseconds, or billionths of a second. Simply subtract one pro
cess.hrtime.bigint() readout from another to find the time dif‐
ference in nanoseconds. (Each millisecond is 1,000,000
nanoseconds.)
Because the nanosecond count is obviously going to be a very large
number, you need to use the BigInt data type to hold it, as
described in Recipe 3.9.

See Also
Recipe 4.3 shows how to move a date forward or backward by adding to it or sub‐
tracting from it.

4.5 Calculating the Time Elapsed Between Two Dates | 83

https://oreil.ly/BAbB2
https://github.com/iamkun/dayjs
https://date-fns.org

4.6 Formatting a Date Value as a String
Problem
You want to create a formatted string based on a Date object.

Solution
If you print a date with console.log(), you’ll get the date’s nicely formatted string
representation, like “Wed Oct 21 2020 22:17:03 GMT-0400 (Eastern Daylight Time).”
This representation is created by the DateTime.toString() method. It’s a standard‐
ized, nonlocale-specific date string that’s defined in the JavaScript standard.

Internally, the Date object stores its time information as a UTC
time, with no additional time zone information. When you convert
a Date to a string, that UTC time is converted into a locale-specific
time for the current time zone, as set on the computer or device
where your code is running.

If you want your date string formatted differently, you could call one of the other pre‐
built Date methods demonstrated here:

const date = new Date(2021, 0, 1, 10, 30);

let dateString;
dateString = date.toString();
 // 'Fri Jan 01 2021 10:30:00 GMT-0500 (Eastern Standard Time)'

dateString = date.toTimeString();
 // '10:30:00 GMT-0500 (Eastern Standard Time)'

dateString = date.toUTCString();
 // 'Fri, 01 Jan 2021 15:30:00 GMT'

dateString = date.toDateString();
 // 'Fri Jan 01 2021'

dateString = date.toISOString();
 // '2021-01-01T15:30:00.000Z'

dateString = date.toLocaledateString();
 // '1/1/2021, 10:30:00 AM'

dateString = date.toLocaleTimeString();
// '10:30:00 AM'

84 | Chapter 4: Dates

https://oreil.ly/S0lMb

Keep in mind that if you use toLocaleString() or toLocaleTime(), your string rep‐
resentation is based on the browser implementation and the settings of the current
computer. Do not assume consistency!

Discussion
There are many possible ways to turn date information into a string. For display pur‐
poses, the toXxxString() methods work well. But if you want something more specific
or fine-tuned, you may need to take control of the Date object yourself.

If you want to go beyond the standard formatting methods, there are two approaches
you can take. You can use the getXxx() methods described in Recipe 4.1 to extract
individual time components from a date, and then concatenate those into the exact
string you need. Here’s an example:

const date = new Date(2021, 10, 1);

// Ensure date numbers less than 10 are padded with an initial 0.
const day = date.getDate().toString().padStart(2, '0');

// Ensure months are 0-padded and add 1 to convert the month from its
// 0-based JavaScript representation
const month = (date.getMonth()+1).toString().padStart(2, '0');

// The year is always 4-digit
const year = date.getFullYear();

const customDateString = `${year}.${month}.${day}`;
// now customDateString = '2021.11.01'

This approach is extremely flexible, but it forces you to write your own date boiler‐
plate, which isn’t ideal because it adds complexity and creates room for new bugs.

If you want to use a standard format for a specific locale, life is a bit easier. You can
use the Intl.DateTimeFormat object to perform the conversion. Here are three
examples that use locale strings for the US, the UK, and Japan:

const date = new Date(2020, 11, 20, 3, 0, 0);

// Use the standard US date format
console.log(new Intl.DateTimeFormat('en-US').format(date)); // '12/20/2020'

// Use the standard UK date format
console.log(new Intl.DateTimeFormat('en-GB').format(date)); // '20/12/2020'

// Use the standard Japanese date format
console.log(new Intl.DateTimeFormat('ja-JP').format(date)); // '2020/12/20'

4.6 Formatting a Date Value as a String | 85

All of these are date-only strings, but there are many other options you can set when
you create the Intl.DateTimeFormat() object. Here’s just one example that adds the
day of the week and month to the string, in German:

const date = new Date(2020, 11, 20);

const formatter = new Intl.DateTimeFormat('de-DE',
 { weekday: 'long', year: 'numeric', month: 'long', day: 'numeric' });

const dateString = formatter.format(date);
// now dateString = 'Sonntag, 20. Dezember 2020'

These options also give you the ability to add time information to your string with
the hour, minute, and second properties, which can be set to:

const date = new Date(2022, 11, 20, 9, 30);

const formatter = new Intl.DateTimeFormat('en-US',
 { year: 'numeric', month: 'numeric', day: 'numeric',
 hour: 'numeric', minute: 'numeric' });

const dateString = formatter.format(date);
// now dateString = '12/20/2022, 9:30 AM'

See Also
Recipe 2.2 introduced the Intl object and the concept of locale strings, which iden‐
tify different geographic and cultural regions. For a comprehensive explanation of the
21 options the Intl.DateTimeFormat object supports, see the MDN reference. It’s
worth noting that a few of these details are implementation dependent and may not
be present on all browsers. (Examples include the timeStyle, dateStyle, and time
Zone properties, which we haven’t discussed here.) As always, for complex Date
manipulation, consider a third-party library.

86 | Chapter 4: Dates

https://oreil.ly/at36f

CHAPTER 5

Arrays

Since its inception, JavaScript has had arrays as a separate, standalone data type. But
over the years, the way we interact with arrays has changed considerably.

In the past, manipulating an array involved plenty of loops and iterative logic, along
with a small set of underpowered methods. Today, the Array object is stocked with
much more functionality, including methods that emphasize functional approaches.
Using these methods, you can filter, sort, copy, and transform data, without stepping
through array elements one at a time.

In this chapter, you’ll see how to use these functional approaches—and learn when
you might need to sidestep them. The focus is on solving problems using the most
modern practices that are available today.

If you’re trying these examples out in the browser’s developer con‐
sole, be warned that lazy evaluation can fool you. For example, con‐
sider what happens if you output an array with console.log(),
sort it, and then log it again. You expect to see the information for
two differently sorted arrays. But you’ll actually see the final, sorted
array twice. That’s because most browsers won’t examine the items
in your array until you open the console and click to expand the
array. One way to avoid this problem is to iterate over the array and
log each item separately. For more about the issue, see “Why Chro‐
me’s Developer Console Sometimes Lies”.

87

https://oreil.ly/VDHtm
https://oreil.ly/VDHtm

5.1 Checking If an Object Is an Array
Problem
Before you perform an array operation, you want to verify that your object truly is an
array.

Solution
Use the static Array.isArray() method:

const browserNames = ['Firefox', 'Edge', 'Chrome', 'IE', 'Safari'];

if (Array.isArray(browserNames)) {
 // We end up here, because browserNames is a valid array.
}

Discussion
The Array.isArray() method is an obvious choice. Problems happen when develop‐
ers are tempted to use the older instanceOf operator. For historical reasons, the
instanceOf operator has weird edge cases with arrays (for example, it returns false
when you test an array that was created in another execution context, such as a differ‐
ent window). The isArray() method was added to patch this gap.

It’s also important to understand that isArray() specifically checks for instances of
the Array object. If you call it on a different type of collection (like Map or Set), it
returns false. This is true even if these collections have array-like semantics, and
even if they have array in the name, like TypedArray (a low-level wrapper for a buffer
of binary data).

5.2 Iterating Over All the Elements in an Array
Problem
You want to use the best approach for looping over every element in an array, in
order.

Solution
The traditional approach is a for…of loop, which automatically gets each item:

const animals = ['elephant', 'tiger', 'lion', 'zebra', 'cat', 'dog', 'rabbit'];

for (const animal of animals) {

88 | Chapter 5: Arrays

 console.log(animal);
}

In modern JavaScript, it’s becoming increasingly common to favor functional
approaches in array-processing code. You can iterate over your array in a functional
way using the Array.forEach() method. You supply a function, and that function is
called once for each element in the array, and passed three potentially useful parame‐
ters (the element, the element’s index, and the original array). Here’s an example:

const animals = ['elephant', 'tiger', 'lion', 'zebra', 'cat', 'dog', 'rabbit'];

animals.forEach(function(animal, index, array) {
 console.log(animal);
});

It’s possible to condense this further with arrow syntax (Recipe 6.2):

animals.forEach(animal => console.log(animal));

Discussion
In long-lived languages like JavaScript, there are often many ways to accomplish the
same thing. The for…of loop offers a straightforward syntax for iterating over an
array. It doesn’t allow you to modify the elements in the array you’re traversing, which
is a safe, sensible approach.

However, there are cases when you’ll need to use something different. One of the
most flexible choices is a basic for loop with a counter:

const animals = ['elephant', 'tiger', 'lion', 'zebra', 'cat', 'dog', 'rabbit'];

for (let i = 0; i < animals.length; ++i) {
 console.log(animals[i]);
}

This approach can allow off-by-one errors to slip by undetected, which are still a sur‐
prisingly common source of mistakes in modern-day programming. However, you’ll
need to use a for loop in some situations, such as when you’re moving through more
than one array at the same time (see Recipe 5.3).

You can also iterate over an array by passing a function to the Array.forEach()
method. This function is then called once for each element. Your function can receive
three parameters: the current array element, the current array index, and a reference
to the original array. Usually, you’ll only need the element. (You could use the index
to make changes to the element in the original array, but that’s considered bad form.)

Instead, if you want to use a functional approach to change or examine your array,
consider using a more specific, targeted method. Table 5-1 lists the most useful.

5.2 Iterating Over All the Elements in an Array | 89

Table 5-1. Methods for functional array processing
Task Array method Covered in
Change every array element map() Recipe 5.17

See if all elements meet a specific condition every() Recipe 5.19

See if at least one element meets a specific condition some() Recipe 5.19

Find array elements matching your criteria filter() Recipe 5.9

Reorder an array sort() Recipe 5.16

Use all the values of an array in one calculation reduce() Recipe 5.18

Modern coding practice favors functional approaches to array processing over iterative
approaches. The advantage of a functional approach is that your code can be more
concise, often more readable, and less error-prone. Most of the time, the functional
approach also enforces immutability for your array. It does that by creating a new
copy of the array with the changes you want, rather than making direct modifications
on the original array object. This approach also makes certain types of errors less
likely.

As a rule of thumb, look at the functional array methods as a first
resort. If they make your task more difficult (which might happen if
you need to write multiple arrays or perform several array opera‐
tions at once), switch to the iterative approach. And if you’re writ‐
ing performance-intensive code (for example, routines that operate
on extremely large arrays), consider the iterative approach, because
it tends to perform better. But don’t forget to profile both
approaches first to see if the difference is truly significant.

5.3 Checking If Two Arrays Are Equal
Problem
You want a simple way to test if two arrays are equivalent (have exactly the same
contents).

Solution
The most straightforward approach is actually the old-fashioned approach: use a
basic for loop with a counter, step through both arrays at the same time, and com‐
pare each element. Of course, there are a couple of checks to make before you start
looping, like verifying that each object is an array, isn’t null, and so on. Here’s a bit of
code that packages all these criteria into a single useful function:

function areArraysEqual(arrayA, arrayB) {
 if (!Array.isArray(arrayA) || !Array.isArray(arrayB)) {

90 | Chapter 5: Arrays

 // These objects are null, undeclared, or non-array objects
 return false;
 }
 else if (arrayA === arrayB) {
 // Shortcut: they're two references pointing to the same array
 return true;
 }
 else if (arrayA.length !== arrayB.length) {
 // They can't match if they have a different item count
 return false;
 }
 else {
 // Time to look closer at each item
 for (let i = 0; i < arrayA.length; ++i) {
 // We require items to have the same content and be the same type,
 // but you could use loosely typed equality depending on your task
 if (arrayA[i] !== arrayB[i]) return false;
 }
 return true;
 }
}

Now you can check that two arrays are the same, like this:

const fruitNamesA = ['apple', 'kumquat', 'grapefruit', 'kiwi'];
const fruitNamesB = ['apple', 'kumquat', 'grapefruit', 'kiwi'];
const fruitNamesC = ['avocado', 'squash', 'red pepper', 'cucumber'];

console.log(areArraysEqual(fruitNamesA, fruitNamesB)); // true
console.log(areArraysEqual(fruitNamesA, fruitNamesC)); // false

In this version of areArraysEqual(), arrays with the same items in a different order
are considered nonmatching. You can easily sort arrays of strings or numbers using
the Array.sort() method. However, it doesn’t make sense to put this code in the
areArrayEquals() method, because it may not be appropriate for the data types you
want to use, or it may be prohibitively slow if you want to compare huge arrays.
Instead, sort your arrays before you test them for equality:

const fruitNamesA = ['apple', 'kumquat', 'grapefruit', 'kiwi'];
const fruitNamesB = ['kumquat', 'kiwi', 'grapefruit', 'apple'];

console.log(areArraysEqual(fruitNamesA.sort(), fruitNamesB.sort())); // true

Discussion
Often in programming, it’s up to you to decide what equality means. In this example,
areArraysEqual() performs a shallow compare. If two arrays have the same primi‐
tives or the same object references, and their elements are in the same order, they
match. But if you start comparing more complex objects, ambiguities appear.

5.3 Checking If Two Arrays Are Equal | 91

For example, consider this comparison of two arrays that hold a single, identical Date
object:

const datesA = [new Date(2021,1,1)];
const datesB = [new Date(2021,1,1)];

console.log(areArraysEqual(datesA, datesB)); // false

These arrays don’t match because even though the underlying date content is the
same, the Date instances are different. (Or, to put it another way, there are two sepa‐
rate Date objects that just happen to save the same information in them.)

Of course, you can easily compare the content of two Date objects (just call get
Time() to convert them to the millisecond time representation, as explained in Recipe
4.4). But if you want to do that in an array comparison, it’s up to you to write a differ‐
ent function. In your function, you can use instanceOf to identify Date objects, and
then call getTime() on them:

function areArraysEqual(arrayA, arrayB) {
 if (!Array.isArray(arrayA) || !Array.isArray(arrayB)) {
 return false;
 }
 else if (arrayA === arrayB) {
 return true;
 }
 else if (arrayA.length !== arrayB.length) {
 return false;
 }
 else {
 for (let i = 0; i < arrayA.length; ++i) {
 // Check for equal dates
 if (arrayA[i] instanceOf Date && arrayB[i] instanceOf Date) {
 if (arrayA[i].getTime() !== arrayB[i].getTime()) return false;
 }
 else {
 // Use the normal strict equality check
 if (arrayA[i] !== arrayB[i]) return false;
 }
 }
 return true;
 }
}

The problem shown in this example applies to arrays that hold any type of JavaScript
object. It even applies to arrays that hold nested arrays (because every Array is an
object). Your solution will differ, however, because different equality tests make sense
for different objects.

Finally, it’s worth noting that many popular JavaScript libraries have their own
generic solutions for deep array comparison, which may or may not be suitable for

92 | Chapter 5: Arrays

your data. If you’re already using a library like Lodash or Underscore.js, investigate its
isEqual() method.

5.4 Breaking Down an Array into Separate Variables
Problem
You need to assign array element values to several variables, but you want a conve‐
nient approach that doesn’t force you to assign each variable separately.

Solution
Use the array destructuring syntax to assign multiple variables at a time. You write an
expression that declares several variables (on the left) and grabs the values from an
array (on the right). Here’s an example:

const stateValues = [459, 144, 96, 34, 0, 14];
const [arizona, missouri, idaho, nebraska, texas, minnesota] = stateValues;
console.log(missouri); // 144

When you use array destructuring, the values are copied by position. In this example,
that means arizona gets the first value in the array, missouri the second, and so on.
If you have more variables than array elements, the extra variables get the value unde
fined.

Discussion
When you use array destructuring, you don’t need to copy every value that’s in the
array. You can skip values you don’t want by adding extra commas without a variable
name:

const stateValues = [459, 144, 96, 34, 0, 14];

// Just get three values from the array
const [arizona, , , nebraska, texas] = stateValues;
console.log(nebraska); // 34

You can also use the rest operator to stuff all the remaining values (ones you didn’t
explicitly assign to variables) into a new array. Here’s an example that copies the three
last array elements into an array named others:

const stateValues = [459, 144, 96, 34, 0, 14];
const [arizona, missouri, idaho, ...others] = stateValues;
console.log(others); // 34, 0, 14

5.4 Breaking Down an Array into Separate Variables | 93

JavaScript’s rest operator looks just like the spread operator (it’s
three dots before a variable). They even “feel” similar in your code,
although they actually play complementary roles. The rest operator
vacuums up extra values and squashes them into a single array. The
spread operator expands an array (or another type of iterable
object) into separate values.

So far you’ve seen the variable declaration and assignment in one statement, but you
can split them, just as you can when you create ordinary variables. Just make sure you
keep the square brackets, because they indicate that you’re using array destructuring:

let arizona, missouri, idaho, nebraska, texas, minnesota;
[arizona, missouri, idaho, nebraska, texas, minnesota] = stateValues;

See Also
If you want a way to convert an array into a list of values without assigning these val‐
ues to variables, check out the spread operator described in Recipe 5.5.

5.5 Passing an Array to a Function That Expects a
List of Values
Problem
Your array has a list of values that you want to pass to a function. But the function
expects a list of argument values, not an array object.

Solution
Use the spread operator to expand your array. Here’s an example with the Math.max()
method:

const numbers = [2, 42, 5, 304, 1, 13];

// This syntax is not allowed. The result is NaN.
const maximumFail = Math.max(numbers);

// But this works, thanks to the spread operator. (The answer is 304.)
const maximum = Math.max(...numbers);

Discussion
The spread operator unfolds an array into a list of elements. Technically, it works with
any iterable object, including other types of collections. You’ll see it at work in several
recipes in this chapter.

94 | Chapter 5: Arrays

The spread operator doesn’t need to supply all the arguments to a function, or even
the final arguments. It’s perfectly valid to use it like this:

const numbers = [2, 42, 5, 304, 1, 13];

// Call max() on the array values, along with three more arguments.
const maximum = Math.max(24, ...numbers, 96, 7);

You probably don’t want to use this approach if the order of your arguments has any
significance. It’s just too easy to end up with an array that’s a bit bigger or smaller than
you thought, which will then displace your other arguments to new positions and
change their significance.

See Also
Recipe 5.7 shows an example of how you can use the spread operator to merge differ‐
ent arrays. Recipe 5.15 shows how you can use spread when removing items. Recipe
5.6 shows how you can use spread to copy an array.

5.6 Cloning an Array
Problem
You want to make a copy of an existing array.

Solution
Use the spread operator to expand your array into items and feed it into a new array:

const numbers = [2, 42, 5, 304, 1, 13];
const numbersCopy = [...numbers];

An equally good approach is to use the Array.slice() method with no arguments,
which tells it to take a slice of the entire array:

const numbers = [2, 42, 5, 304, 1, 13];
const numbersCopy = numbers.slice();

Both of these approaches are preferable to looping over array elements and building
up a new array by hand.

Discussion
Creating array copies is important because it allows you to perform nondestructive
changes. For example, you might keep your original array intact while you make
changes to a new copy. That way, you reduce the risk of unanticipated side effects (for
example, if other parts of your code are still using the original array).

5.6 Cloning an Array | 95

As with all reference objects, arrays cannot be copied by assignment. This code, for
example, ends with two variables pointing to the same in-memory Array object:

const numbers = [2, 42, 5, 304, 1, 13];
const numbersCopy = numbers;

To properly copy an array, you need to duplicate all of its elements. The easiest
approach is to use the spread operator, although the Array.slice() method works
equally well.

Both approaches shown here create shallow copies. If your array consists of primitives
(numbers, strings, or Boolean values), the copied array matches exactly. But if your
array holds objects, these techniques copy the reference, not the entire object. As a
result, your new array will have references pointing to the same objects. Change one
of the objects in the copied array, and it also affects the original array:

const objectsOriginal = [{name: 'Sadie', age: 12}, {name: 'Patrick', age: 18}];
const objectsCopy = [...objectsOriginal];

// Change one of the people objects in objectsCopy
objectsCopy[0].age = 14;

// Investigate the same object in objectsOriginal
console.log(objectsOriginal[0].age); // 14

This may or may not be a problem, depending on how you plan to use your arrays. If
you want multiple copies of objects that you can manipulate separately, there are sev‐
eral possible solutions you can use:

• Loop through your array with a for loop, create the new objects you need explic‐
itly, and then add them to the new array.

• Use the Array.map() function. This works well for simple objects, but doesn’t do
a deep clone all the way down. (For example, if you have objects referencing other
objects, only the first layer of objects is truly duplicated.)

• Use a helper function from another JavaScript library, like cloneDeep() in
Lodash or clone() in Ramda.

Here’s an example that demonstrates Array.map(). It works a little bit of magic by
first expanding the array element into its properties with the spread operator (…ele

ment), then uses them to create a new object ({…element}), which is assigned to the
new array:

const objectsOriginal = [{name: 'Sadie', age: 12}, {name: 'Patrick', age: 18}];

// Create a new array with copied objects
const objectsCopy = objectsOriginal.map(element => ({...element}));

// Change one of the people objects in objectsCopy

96 | Chapter 5: Arrays

objectsCopy[0].age = 14;

// Investigate the same object in objectsOriginal
console.log(objectsOriginal[0].age); // 12

To take a closer look at the map() method, see the full explanation in Recipe 5.17.

The spread operator (...) does double duty. In the original solu‐
tion, you saw how the spread operator can expand an array into
separate elements. In the Array.map() example, the spread opera‐
tor expands an object into separate properties. For more about how
the spread operator works on objects, see Recipe 7.6.

See Also
If you want to copy only some array items, see Recipe 5.8. To learn more about differ‐
ent ways of making deep copies of an object, see Recipe 7.11.

5.7 Merging Two Arrays
Problem
You want to join two entire arrays together into a new array.

Solution
There are two commonly used approaches for combining two arrays. The time-
honored approach (and likely the most performant option) is to use the Array.con
cat() method. You call concat() on the first array, passing in the second array as an
argument. The result is a third array that contains all the elements of both:

const evens = [2, 4, 6, 8];
const odds = [1, 3, 5, 7, 9];

const evensAndOdds = evens.concat(odds);
// now evensAddOdds contains [2, 4, 6, 8, 1, 3, 5, 7, 9]

The resulting array has the first array’s items first (evens, in this example), followed
by second array’s items (odds). Of course, you can follow up your concat() with a
call to the Array.sort() method (Recipe 5.16).

An alternate approach is to use the spread operator (introduced in Recipe 5.5):

const evens = [2, 4, 6, 8];
const odds = [1, 3, 5, 7, 9];

const evensAndOdds = [...evens, ...odds];

5.7 Merging Two Arrays | 97

The advantage of this approach is that the code is (arguably) more intuitive and easier
to read. The spread operator is also a great tool if you want to combine more than
two arrays at a time, or you want to combine arrays with literal values:

const evens = [2, 4, 6, 8];
const odds = [1, 3, 5, 7, 9];

const evensAndOdds = [...evens, 10, 12, ...odds, 11];

Performance testing suggests that on current implementations, large arrays are
merged faster with concat(). But in most scenarios, this performance different won’t
be significant (or even apparent).

Discussion
After you merge arrays with either of these techniques, you are left with three arrays:
the original two, and the new merged result. If your arrays contain primitive values
(numbers, strings, Boolean values), these are duplicated in the new array. But if your
array holds objects, the object reference is copied. For example, if you merge two
arrays of Date objects, no new Date objects are created. Instead, the new merged
array gets references pointing to the same Date objects. If you change a Date object in
the merged array, you’ll see the modification in the original array as well:

const dates2020 = [new Date(2020,1,10), new Date(2020,2,10)];
const dates2021 = [new Date(2021,1,10), new Date(2021,2,10)];

const datesCombined = [...dates2020, ...dates2021];

// Change a date in the new array
datesCombined[0].setYear(2022);

// The same object is in the first array
console.log(dates2020[0]); // 2022/02/10

For more about the difference between shallow and deep copies, see Recipe 7.11.

See Also
When you merge arrays, you have no power to control how the elements are com‐
bined. If you want to copy just a portion of an array, or put one array in the middle of
another, see the slice() method in Recipe 5.8.

5.8 Copying a Portion of an Array by Position
Problem
You want to copy a portion of an array, and keep the original array intact.

98 | Chapter 5: Arrays

Solution
Use the Array.slice() method, which makes a shallow copy of a portion of an exist‐
ing array, and returns that as a new array:

const animals = ['elephant', 'tiger', 'lion', 'zebra', 'cat', 'dog',
 'rabbit', 'goose'];

// Get the chunk from index 4 to index 7.
const domestic = animals.slice(4, 7);

console.log(domestic); // ['cat', 'dog', 'rabbit']

Discussion
The slice() method takes two parameters, indicating a starting and ending position.
You can omit the second parameter to go from the start index to the end of the array.
Calling slice(0) on an array copies the whole array.

For example, this code uses slice to get two subsections of the first array, and use
them to build a new array:

const animals = ['elephant', 'tiger', 'lion', 'zebra', 'cat', 'dog',
 'rabbit', 'goose'];

const firstHalf = animals.slice(0, 3);
const secondHalf = animals.slice(4, 7);

// Put two new animals in the middle
const extraAnimals = [...firstHalf, 'emu', 'platypus', ...secondHalf];

This may seem like an arbitrary example, because the index numbers are hard-coded.
But you can combine it with array searches and the findIndex() method (see Recipe
5.13) to find the place where you should divide an array.

The slice() method is easily confused with the splice() method,
which is used to replace or delete portions of an array. Unlike
slice(), the splice() method makes in-place changes that affect
the original array. In modern practice, it’s considered better to lock-
down your objects, keep them immutable when possible (hence the
use of const), and create a new copy with changes. So stick with
slice() unless you have a strong reason to use splice() (for
example, there’s a difference in performance that’s significant in
your use case).

See Also
Recipe 5.15 shows how you can use slice() to remove sections of an array.

5.8 Copying a Portion of an Array by Position | 99

5.9 Extracting Array Items That Meet Specific Criteria
Problem
You want to find all the items in an array that match a certain condition, and copy
them to a new array.

Solution
Use the Array.filter() method to run a test on every item:

function startsWithE(animal) {
 return animal[0].toLowerCase() === 'e';
}

const animals = ['elephant', 'tiger', 'emu', 'zebra', 'cat', 'dog',
 'eel', 'rabbit', 'goose', 'earwig'];
const animalsE = animals.filter(startsWithE);
console.log(animalsE); // ["elephant", "emu", "eel", "earwig"]

This example is intentionally long-winded so you can see the different pieces of the
solution. The filter function is called for every item in the array. In this case, that
means startsWithE() is called 10 times, and passed a different string each time. If
the filter function returns true, that item is added to the new array.

Here’s the same example condensed with an arrow function. Now the filter logic is
defined in the same place in code where you use it:

const animals = ['elephant', 'tiger', 'emu', 'zebra', 'cat', 'dog',
 'eel', 'rabbit', 'goose', 'earwig'];
const animalsE = animals.filter(animal => animal[0].toLowerCase() === 'e');

Discussion
In this example, the filter function checks that each item begins with the letter e. But
you could just as easily grab numbers that fall in a certain range, or objects that have
certain property values.

The filter() method is one of a new set of modern array methods that replace old-
fashioned iterative code with a functional approach. Nothing stops you from using a
for loop to step through your array, test each item, and insert matches into a new
array with Array.push(). However, if you can perform the same task with the fil
ter() method, you’ll usually be rewarded with more compact code and easier testing.

See Also
Several of the recipes in this chapter introduce similar methods for functional array
processing. In particular, Recipe 5.17 shows how to transform all the elements in an

100 | Chapter 5: Arrays

array, and Recipe 5.18 shows how to perform a calculation that combines all the val‐
ues in an array into one result.

5.10 Emptying an Array
Problem
You need to remove all the elements from an array, either to reclaim memory or so
that your array can be reused.

Solution
Set the length property of your array to 0:

const numbers = [2, 42, 5, 304, 1, 13];
numbers.length = 0;

Discussion
One of the easiest ways to give yourself a new array is to simply assign a new blank
array, like this:

myArray = [];

However, this approach has a couple of limits. First, because it creates a whole new
array object, it doesn’t work if you’ve defined your array with the const keyword.
This is a small detail, but modern practice favors using const over let to narrow the
possibilities for bugs in your code. Second, this assignment doesn’t actually destroy
the array. If you have another variable pointing to your array, it will stay alive and
remain in memory.

An alternate solution is to call the Array.pop() method repeatedly. Each time you
call pop(), you remove the last item from the array, so you can empty an array with a
loop that continues calling pop() until the array is empty. However, the length set‐
ting trick has exactly the same effect and requires just a single statement. Developers
sometimes overlook this technique, because they expect length to be a read-only
property (as it is in many other languages). But setting length on a JavaScript array
allows you to shrink its size and drop the leftover items.

There are other interesting ways to use the length property. For example, you can
chop off only part of an array by reducing length, but not all the way to 0. Or, you
can add blank items to the end of an array by increasing length:

const numbers = [2, 42, 5, 304, 1, 13];
numbers.length = 3;

console.log(numbers); // [2, 42, 5]

5.10 Emptying an Array | 101

numbers.length = 5;
console.log(numbers); // [2, 42, 5, undefined, undefined]

5.11 Removing Duplicate Values
Problem
You want to ensure that every value in your array is unique by removing the
duplicates.

Solution
Create a new Set object and fill it with your array. The Set object will discard dupli‐
cates automatically. Then, convert the Set object back to an array:

const numbersWithDuplicates = [2, 42, 5, 42, 304, 1, 13, 2, 13];

// Create a Set with unique values (the duplicate 42, 2, and 13 are discarded)
const uniqueNumbersSet = new Set(numbersWithDuplicates);

// Turn the Set back into an array (now with 6 items)
const uniqueNumbersArray = Array.from(uniqueNumbersSet);

Once you understand the idea, you can compress this down to a single statement with
the spread operator:

const numbersWithDuplicates = [2, 42, 5, 42, 304, 1, 13, 2, 13];

const uniqueNumbers = [...new Set(numbersWithDuplicates)];

Discussion
The Set object is a special type of collection that ignores duplicate values. It also
works as a quick and efficient way to remove duplicates from an array. This technique
(switching to a Set and then back to an array) is far more efficient than iterating over
the array and looking for duplicates with findIndex().

When searching for duplicates, the Set uses a test that’s similar to the strict equality
comparison ===, which means 3 and '3' are not considered duplicates. One special
bit of behavior the Set implements is that it treats repeated NaN values as duplicates,
even though NaN === NaN ordinarily evaluates to false.

See Also
This example uses the spread operator described in Recipe 5.5. For more about the
Set object, see Recipe 5.20.

102 | Chapter 5: Arrays

5.12 Flattening a Two-Dimensional Array
Problem
You want to flatten a two-dimensional array so that it becomes a one-dimensional
list.

Solution
Use the Array.flat() method:

const fruitArray = [];

// Add three elements to fruitArray
// Each element is an array of strings
fruitArray[0] = ['strawberry', 'blueberry', 'raspberry'];
fruitArray[1] = ['lime', 'lemon', 'orange', 'grapefruit'];
fruitArray[2] = ['tangerine', 'apricot', 'peach', 'plum'];

const fruitList = fruitArray.flat();
// Now fruitList has 11 elements, and each one is a string

Discussion
Consider a two-dimensional array, like this one:

const fruitArray = [];
fruitArray[0] = ['strawberry', 'blueberry', 'raspberry'];
fruitArray[1] = ['lime', 'lemon', 'orange', 'grapefruit'];
fruitArray[2] = ['tangerine', 'apricot', 'peach', 'plum'];

Each element in the fruitArray holds another array. For example, fruitArray[0]
has three strings, representing different berries. fruitArray[1] has citrus fruits, and
fruitArray[2] has stone fruits.

You could transform fruitArray with the help of the concat() method. Start with
the first nested array, call concat(), and pass the other nested arrays, like this:

const fruitList =
 fruitArray[0].concat(fruitArray[1],fruitArray[2],fruitArray[3]);

If the array has several members, this approach is tedious and error prone. Alterna‐
tively, you could use a loop or recursion, but these approaches can be equally tedious.
The flat() method implements the same logic, and concatenates every row for you.

The flat() method takes an optional depth argument, with a default value of 1. You
can increase this number to flatten more deeply nested arrays. For example, imagine
you have an array that contains nested arrays, and those arrays hold another layer of

5.12 Flattening a Two-Dimensional Array | 103

nested arrays. In this case, a depth of 2 will concatenate both layers, putting every‐
thing into a single list:

// An array with several levels of nested arrays inside
const threeDimensionalNumbers = [1, [2, [3, 4, 5], 6], 7];

// The default flattening
const flat2D = threeDimensionalNumbers.flat(1);
// now flat2D = [1, 2, [3, 4, 5], 6, 7]

// Flatten two levels
const flat1D = threeDimensionalNumbers.flat(2);
// now flat1D = [1, 2, 3, 4, 5, 6, 7]

// Flatten all levels, no matter how many there are
const flattest = threeDimensionalNumbers.flat(Infinity);

The depth argument sets the maximum level of flattening that’s used, if needed.
There’s no risk to increasing the depth beyond the actual dimensions of your array.

5.13 Searching Through an Array for Exact Matches
Problem
You want to search an array for a specific value. You may want to know if the array
contains a match, or the position where that match occurred.

Solution
Use one of the array searching methods: indexOf(), lastIndexOf(), or includes():

const animals = ['dog', 'cat', 'seal', 'elephant', 'walrus', 'lion'];
console.log(animals.indexOf('elephant')); // 3
console.log(animals.lastIndexOf('walrus')); // 4
console.log(animals.includes('dog')); // true

This technique only works for primitive values (typically numbers, strings, and
Boolean values). If you want to search for objects, you need to use the Array.find()
method instead (Recipe 5.14).

Discussion
Both indexOf() and lastIndexOf() take a search value that is then compared to
every element in the array. If the value is found, they return the index position of the
array element. If the value is not found, they return –1.

The indexOf() method returns the first match found searching from lowest to high‐
est index (in other words, starting at the beginning of the array and going forward).

104 | Chapter 5: Arrays

The lastIndexOf() method goes in reverse, starting at the end of the array. The dif‐
ference appears if the same item appears more than once in the array:

const animals = ['dog', 'cat', 'seal', 'walrus', 'lion', 'cat'];

console.log(animals.indexOf('cat')); // 1
console.log(animals.lastIndexOf('cat')); // 5

Both indexOf() and lastIndexOf() take an optional starting index argument. That
sets the position where the search will begin:

const animals = ['dog', 'cat', 'seal', 'walrus', 'lion', 'cat'];

console.log(animals.indexOf('cat', 2)); // 5
console.log(animals.lastIndexOf('cat', 4)); // 1

It may occur to you that you can use a loop to step through increasingly higher
indexes with indexOf() until you’ve found all the matches. But before you write that
kind of boilerplate code, consider using the filter() method, which quickly and
painlessly creates an array with all the matches for a condition you specify (see Recipe
5.9).

Finally, it’s important to understand that indexOf(), lastIndexOf(), and includes()
all use the === operator to test for matches. That means no type conversion is per‐
formed (so 3 will not equal '3'). Also, if your array contains objects, the references
are compared, not the content. If you need to change the meaning of equality or you
want to use a different search test, use the findIndex() method instead (see Recipe
5.14).

See Also
For customizable searching, see the find() and findIndex() methods in Recipe 5.14.

5.14 Searching Through an Array for Items That Meet
Specific Criteria
Problem
You want to search an array for an item that meets certain criteria. For example,
maybe you’re looking for an object with a specific property.

Solution
Use one of the functional array searching methods: find() or findIndex(). Either
way, you supply the function that tests each item until a match is found.

5.14 Searching Through an Array for Items That Meet Specific Criteria | 105

Here’s an example that finds the first number over 10:

const nums = [2, 4, 19, 15, 183, 6, 7, 1, 1];

// Find the first value over 10.
const bigNum = nums.find(element => element > 10);

console.log(bigNum); // 19 (the first match)

If instead of finding the matching element, you would rather know its position, you
can use the similar findIndex() method:

const nums = [2, 4, 19, 15, 183, 6, 7, 1, 1];

const bigNumIndex = nums.findIndex(element => element > 100);

console.log(bigNumIndex); // 4 (the index of the first match)

If no match is found, find() returns undefined, and findIndex() returns –1.

Discussion
When using find() and findIndex(), you supply a callback function that receives up
to three parameters (the current array element in the iteration, its index, and the
array itself). Arrow syntax offers a more streamlined approach, allowing you to
define the callback function right where you use it.

The find() and findIndex() methods really shine when you need to write more
complicated conditions. Consider the following code, which finds the first date in a
specific year:

// Remember, the Date constructor takes a zero-based month number, so a
// month value of 10 corresponds to the eleventh month, November
const dates = [new Date(2021, 10, 20), new Date(2020, 3, 12),
 new Date(2020, 5, 23), new Date(2022, 3, 18)];

// Find the first date in 2020
const matchingDate = dates.find(date => date.getFullYear() === 2020);

console.log(matchingDate); // 'Sun Apr 12 2020 ...'

This approach isn’t possible with the indexOf() method, because it involves examin‐
ing a property of an array item. (In fact, the standard indexOf() method can’t even
test Date objects for equality, because it only checks if the object references match.)

See Also
If you want to write a finding function and use it to get multiple results, you probably
want the filter() function described in Recipe 5.9. For more about the syntax of
arrow function, see Recipe 6.2.

106 | Chapter 5: Arrays

5.15 Removing or Replacing Array Elements
Problem
You want to find occurrences of a given value in an array, and either remove the ele‐
ment or replace it.

Solution
First, find the location of the item you want to remove using indexOf(). Then, you
can use one of two approaches.

For small jobs, the cleanest solution is to construct a new array around the item you
don’t want. You build the new array using slice() and the spread operator:

const animals = ['dog', 'cat', 'seal', 'walrus', 'lion', 'cat'];

// Find where the 'walrus' item is
const walrusIndex = animals.indexOf('walrus');

// Join the portion before 'walrus' to the portion after 'walrus'
const animalsSliced =
 [...animals.slice(0, walrusIndex), ...animals.slice(walrusIndex+1)];

// now animalsSliced has ['dog', 'cat', 'seal', 'lion', 'cat']

Discussion
An alternate approach is to perform an in-place array edit, instead of creating a
changed copy. This may perform better for large arrays. However, the more mutabil‐
ity you allow, the more complex your code becomes, which may make it more diffi‐
cult to manage and debug in the future.

To perform an in-place edit, you use the similarly named but very different splice()
method. It lets you remove as many items as you want, starting from any position:

const animals = ['dog', 'cat', 'seal', 'walrus', 'lion', 'cat'];

// Find where the 'walrus' item is
const walrusIndex = animals.indexOf('walrus');

// Starting at walrusIndex, remove 1 element
animals.splice(walrusIndex, 1);

// now animals = ['dog', 'cat', 'seal', 'lion', 'cat']

The first argument to the splice() method is the index where the splicing starts.
This is the only argument you need to supply. If you leave out the others, all the array
elements from the index to the end are removed:

5.15 Removing or Replacing Array Elements | 107

const animals = ['cat', 'walrus', 'lion', 'cat'];

// Start at 'lion', and remove the rest of the elements
animals.splice(2);
// now animals = ['cat', 'walrus']

The optional second argument is the number of elements to remove. The third argu‐
ment is an optional set of the replacement elements to insert at the same location.

const animals = ['cat', 'walrus', 'lion', 'cat'];

// Remove one element and add two new elements
animals.splice(2, 1, 'zebra', 'elephant');
// now animals = ['cat', 'walrus', 'zebra', 'elephant', 'cat']

You could use indexOf() in a loop to find and remove a series of matching elements.
But if this is your goal, the filter() method usually provides a cleaner approach, let‐
ting you define a function that picks the items you want to keep (see Recipe 5.9).

5.16 Sorting an Array of Objects by a Property Value
Problem
You want to sort an array that contains objects, based on one of its properties.

Solution
The Array.sort() method reorders an array. For example, it arranges an array of
numbers from smallest to largest, or it puts an array of strings in alphabetical order.
But you don’t need to stick to the array’s standard sorting system. Instead, you can
pass a comparison function to the sort() method, and the array will use it to order
its items.

The comparison function gets two items (corresponding to two different array ele‐
ments), compares them, and returns a number that indicates the result. You return 0
if the values should be considered equal, –1 if the first value is less than the second, or
1 if the first value is greater than the second.

Here’s a simple implementation that sorts an array of objects with people information:

const people = [
 { firstName: 'Joe', lastName: 'Khan', age: 21 },
 { firstName: 'Dorian', lastName: 'Khan', age: 15 },
 { firstName: 'Tammy', lastName: 'Smith', age: 41 },
 { firstName: 'Noor', lastName: 'Biles', age: 33 },
 { firstName: 'Sumatva', lastName: 'Chen', age: 19 }
];

// Sort the people from youngest to oldest

108 | Chapter 5: Arrays

people.sort(function(a, b) {
 if (a.age < b.age) {
 return -1;
 } else if (a.age > b.age) {
 return 1;
 } else {
 return 0;
 }
});
console.log(people);
// Now the order is Dorian, Sumatva, Joe, Noor, Tammy

A couple of shortcuts are possible here. Technically, you can return any negative
number instead of –1, and any positive number instead of 1. That allows you to write
a much shorter comparison function:

people.sort(function(a, b) {
 // Subtract the ages to sort from youngest to oldest
 return a.age - b.age;
});

Combine that with the compact arrow syntax, and it gets shorter still:

people.sort((a,b) => a.age - b.age);

Sometimes, when you perform sorting you can make use of existing comparison
methods. For example, if you want this example to sort by last name, there’s no need
to reinvent the wheel. Instead, make good use of the String.localeCompare()
method, like this:

people.sort((a,b) => a.lastName.localeCompare(b.lastName));
console.log(people);
// Now the order is Noor, Sumatva, Joe, Dorian, Tammy

Discussion
The sort() method alters your array in place. This is different than most of the other
array methods you’ll use, which return changed copies but leave your original array
untouched. If this isn’t the behavior you want, you can clone your array before you
sort it, as detailed in Recipe 5.6.

5.17 Transforming Every Element of an Array
Problem
You want to convert every element in an array using the same transformation, and
use the changed values to build a new array.

5.17 Transforming Every Element of an Array | 109

Solution
Use the Array.map() method, and supply a function that performs the change. The
map() method goes through the entire array, applying your function to each element
and building a new array with the return values.

Here’s an example that uses this approach to change an array of decimal numbers into
a new array with their hexadecimal equivalents (using the conversion technique
described in Recipe 3.6):

const decArray = [23, 255, 122, 5, 16, 99];

// Use the toString() method to conver to base-16 values
const hexArray = decArray.map(element => element.toString(16));

console.log(hexArray); // ['17', 'ff', '7a', '5', '10', '63']

Discussion
Usually, the map() function is only interested in the array elements. However, your
callback function can accept two more parameters: the index and the original array.
Using these details, it’s technically possible to use map() to change your original array.
This is considered an antipattern. In other words, if you don’t plan to use the new
array that map() returns, you shouldn’t use the map() method. Consider using the
forEach() method instead (Recipe 5.2), or just iterate over your array procedurally.

5.18 Combining an Array’s Values in a Single Calculation
Problem
You want to use all the values in an array in some sort of aggregate calculation, like
computing a sum or average.

Solution
You could iterate over the array in a loop. But for a more streamlined solution, use
the Array.reduce() method with a callback function. Your function (called the
reducer function) is called for each element in the array. You build some sort of run‐
ning total using an accumulator, a value that the reduce() method maintains until
the process is finished.

For example, imagine you want to calculate the sum of an array of numbers. Each
time your reducer function is called, it gets the current running total in the accumula‐
tor. It then adds the value of the current element and returns the new total:

const reducerFunction = function (accumulator, element) {
 // Add the current value to the running total in the accumulator.

110 | Chapter 5: Arrays

 const newTotal = accumulator + element;
 return newTotal;
}

This new total becomes the accumulator when the reducer is called for the next item.

Now you can use this function to sum up an array:

const numbers = [23, 255, 122, 5, 16, 99];

// The second argument (0) sets the starting value of the accumulator.
// If you don't set a starting value, the accumulator is automatically set
// to the first element.
const total = numbers.reduce(reducerFunction, 0);
console.log(total); // 520

When the reducer function is called on the last item, it makes its final calculation.
That return value becomes the result that’s returned from reduce().

Once you’re comfortable with the way reduce() works, you can make your code
shorter and more concise with inline functions and arrow syntax. Here’s a demon‐
stration that uses reduce() to calculate the sum of squared values, an average, and the
maximum value:

const numbers = [23, 255, 122, 5, 16, 99];

// The reducer function adds to the accumulator
const totalSquares = numbers.reduce((acc, val) => acc + val**2, 0);
// totalSquares = 90520

// The reducer function adds to the accumulator
const average = numbers.reduce((acc, val) => acc + val, 0) / numbers.length;
// average = 86.66...

// The reducer function returns the higher value (accumulator or current value)
const max = numbers.reduce((acc, val) => acc > val ? acc: val);
// max = 255

Discussion
Using the reduce() method can seem more complicated than other functional-style
array processing methods, like map() (Recipe 5.17), filter() (Recipe 5.9), or sort()
(Recipe 5.16). The difference is that you need to think carefully about what data you
need to store after each function call. Remember that you can use the accumulator to
store a custom object with more than one property, allowing you to track as much
information as you need. You can also add two more optional parameters to your
reducer function: index (the current index number of the element), and array (the
entire array that’s being reduced). But be careful. Over-enthusiastic code that uses
reduce() can quickly get hard for others to understand.

5.18 Combining an Array’s Values in a Single Calculation | 111

See Also
There’s another way to get the maximum out of an array of numbers. You can use the
Math.max() method in conjunction with the spread operator to turn your array into a
list of arguments (see Recipe 5.5).

5.19 Validating Array Contents
Problem
You want to ensure that array contents meet certain criteria.

Solution
Use the Array.every() method to check that every element passes a given test. For
example, the following code checks to ensure that every element in the array consists
of alphabetic characters using a regular expression:

// The testing function
function containsLettersOnly(element) {
 const textExp = /^[a-zA-Z]+$/;
 return textExp.test(element);
}

// Test an array
const mysteryItems = ['**', 123, 'aaa', 'abc', '-', 46, 'AAA'];
let result = mysteryItems.every(containsLettersOnly);
console.log(result); // false

// Test another array
const mysteryItems2 = ['elephant', 'lion', 'cat', 'dog'];
result = mysteryItems2.every(containsLettersOnly);
console.log(result); // true

Or, use the Array.some() method to ensure that at least one of the elements passes
the test. As an example, the following code checks to ensure that at least one of the
array elements is an alphabetical string:

const mysteryItems = new Array('**', 123, 'aaa', 'abc', '-', 46, 'AAA');

// testing function
function testValue (element) {
 const textExp = /^[a-zA-Z]+$/;
 return textExp.test(element);
}

// run test
const result = mysteryItems.some(testValue);
console.log(result); // true

112 | Chapter 5: Arrays

Discussion
Unlike many other array methods that use callback functions, the every() and
some() methods do not work against all array elements. Instead, they only process as
many array elements as necessary to fulfill their functionality.

The solution demonstrates that the same callback function can be used for both the
every() and some() methods. The difference is that when using every(), as soon as
the function returns a false value, the processing is finished, and the method returns
false. The some() method continues to test against every array element until the
callback function returns true. At that time, no other elements are validated, and the
method returns true. However, if the callback function tests against all elements, and
doesn’t return true for any of them, some() returns false.

See Also
To review regular expression syntax, which is used for the string matching pattern in
this example, see Recipe 2.10.

5.20 Creating a Collection of Nonduplicated Values
Problem
You want to create an array-like object that never contains more than one copy of the
same value.

Solution
Create a Set object. It quietly ignores attempts to add the same item more than once,
without generating an error.

The Set is not an array, but—like an array—it’s an iterable collection of elements. You
can add elements to a Set one at a time with the add() method, or you can pass an
array in the Set constructor to add multiple items at once:

// Start with six elements
const animals = new Set(['elephant', 'tiger', 'lion', 'zebra', 'cat', 'dog']);

// Add two more
animals.add('rabbit');
animals.add('goose');

// Nothing happens, because this item is already in the Set
animals.add('tiger');

// Iterate over the Set, just as you would with an array
for (const animal of animals) {

5.20 Creating a Collection of Nonduplicated Values | 113

 console.log(animal);
}

Discussion
The Set object is not an array. Unlike the Array class, which is stocked with thirty-
some useful methods, the Set class offers much less. You can use add() to insert an
item, delete() to remove one, has() to check if an item is in the Set, and clear() to
remove all the items at once. There are no methods for sorting, filtering, transform‐
ing, or copying.

However, if you need to process your Set object like an array, it’s easy enough to
make the conversion by passing your Set to the static Array.from() method:

// Convert an array to a Set
const animalSet = new Set(['elephant', 'tiger', 'zebra', 'cat', 'dog']);

// Convert a Set to an array
const animalArray = Array.from(animalSet);

In fact, you can convert a Set to an Array object and back as many times as you want,
with no cost other than possible performance (if you have a very long list of items).

To count the number of items in a Set or Map collection, you use
the size property. This is different than arrays, which have a
length property.

5.21 Creating a Key-Indexed Collection of Items
Problem
You want to create a collection where each item is labeled with a unique string key.

Solution
Use the Map object. Each object is indexed with a unique key (usually, but not neces‐
sarily, a string). To add an item, you call the set() method. When you need to
retrieve a specific item, you can grab exactly the item you want by using the key:

const products = new Map();

// Add three items
products.set('RU007', {name: 'Rain Racer 2000', price: 1499.99});
products.set('STKY1', {name: 'Edible Tape', price: 3.99});
products.set('P38', {name: 'Escape Vehicle (Air)', price: 2999.00});

114 | Chapter 5: Arrays

// Check for two items using the item code
console.log(products.has('RU007')); // true
console.log(products.has('RU494')); // false

// Retrieve an item
const product = products.get('P38');
if (typeof product !== 'undefined') {
 console.log(product.price); // 2999
}

// Remove the Edible Tape item
products.delete('STKY1');

console.log(products.size); // 2

Discussion
When adding items to a Map object, you must always use the set() method. Don’t fall
into this trap:

const products = new Map();

// Don't do this!
products['RU007'] = {name: 'Rain Racer 2000', price: 1499.99};

Although this seems to work at first (and it uses the same kind of syntax that’s used
with name-value collections in many other programming languages), it actually
bypasses the Map collection and sets an ordinary property named RU007 on the Map
object. These properties won’t appear if you iterate over the Map with a for…of loop,
and they won’t be visible to the has() or get() methods.

The Map object has a small set of methods for managing its contents: set(), get(),
has(), and delete(). If you want to make use of the functionality in the Array
object, you can easily convert your Map to an array with the static Array.from()
method:

const productArray = Array.from(products);

console.log(productArray[0]);
 // ['RU007', {name: 'Rain Racer 2000', price: 1499.99}]

You might expect that the productArray in this example will hold a collection of
product objects, but that’s not quite true. Instead, each element in productsArray is a
separate array with two elements. The first element is the key (like RUU07), and the
second element is the value (the product object).

5.21 Creating a Key-Indexed Collection of Items | 115

In some situations, you might not need to keep the key name when you convert a Map
to an array. Maybe the key isn’t important, or it’s duplicated by a property of your ele‐
ments. In this case, you can choose to transform your collection, throwing away the
key values as you copy your data out of the Map. Here’s how that works:

const productArray = Array.from(products, ([name, value]) => value);

console.log(productArray[0]);
 // {name: 'Rain Racer 2000', price: 1499.99}

116 | Chapter 5: Arrays

CHAPTER 6

Functions

Functions are the building blocks that you use to assemble a program out of discrete,
reusable code routines. But in JavaScript, that’s only part of the story.

JavaScript functions are also genuine objects—instances of the Function type. They
can be assigned to variables and passed around your code. They can be declared in an
expression, without a function name, and optionally using a streamlined arrow syn‐
tax. You can even wrap one function in another to create a private package that
includes the function’s state (called a closure).

Functions are also at the core of JavaScript’s object-oriented support. That’s because
custom classes are really just a special type of constructor function (as you’ll see in
Chapter 8). Sooner or later, everything in JavaScript comes back to functions.

6.1 Passing a Function as an Argument to Another
Function
Problem
You’re calling a function that expects you to provide your own function. What’s the
best way to pass it?

Solution
Many functions in JavaScript accept, or even require, a function that’s passed as an
argument. Some operations ask for a callback function that will be triggered when a
task is complete. Others need to use your function to complete a broader task. For
example, many methods of the Array object ask you to provide a function for sorting,

117

converting, combining, or selecting data. The array then uses your function multiple
times, until it has processed every element.

There are several different approaches you can use when supplying a function as an
argument. Here are three common patterns:

• Provide a reference to a function that’s already declared elsewhere in your code.
This approach makes sense if you want to use the function in other parts of your
application, or if the function is particularly long or complex.

• Declare the function in a function expression, then pass it as an argument. This
approach works well for straightforward tasks, and if you don’t plan to use the
function anywhere else.

• Declare the function inline, at the exact moment it’s required—when you pass it
as an argument to another function. This is similar to the second approach, but it
makes your code even more compact. It works best for very short, straightfor‐
ward functions (especially one-liners).

Let’s start with a simple page that has this button:

<button id="runTest">Run Test</button>

We attach an event handler as follows:

// Attach button event handler.
document.getElementById('runTest').addEventListener("click", buttonClicked);

Now consider the built-in setTimeout() function, which schedules a function to run
after a certain delay (you supply the function). Here’s the first approach to function
passing, with a separate function named showMessage():

// Runs when a button is clicked
function buttonClicked() {
 // Trigger the function after 2000 milliseconds (2 seconds)
 setTimeout(showMessage, 2000);
}

// Runs when setTimeout() triggers it
function showMessage() {
 alert('You clicked the button 2 seconds ago');
}

When you pass a function reference by name, make sure you don’t
add a set of empty parentheses. This example passes showMessage
to the setTimeout() function. If you accidentally write showMes
sage(), JavaScript will run the showMessage() function immedi‐
ately, and pass its return value to setTimeout() instead of passing a
function reference.

118 | Chapter 6: Functions

Here’s the second approach, which declares the function closer to where it’s needed
using a function expression:

function buttonClicked() {
 // Declare a function expression to use with setTimeout()
 const timeoutCallback = function showMessage() {
 alert('You clicked the button 2 seconds ago');
 }

 // Trigger the function after 2000 milliseconds (2 seconds)
 setTimeout(timeoutCallback, 2000);
}

In this case, the scope of showMessage() is limited to the buttonClicked() function.
It can’t be called from another function elsewhere in your code. Optionally, you could
omit the function name (showMessage), making it an anonymous function. Either
way, timeoutCallback works the same, but a function name can be useful in debug‐
ging, because it will appear in a stack trace if an error occurs.

And here’s the third approach, which declares the function inline when calling
setTimeout():

function buttonClicked() {
 // Trigger the function after 2000 milliseconds (2 seconds)
 setTimeout(function showMessage() {
 alert('You clicked the button 2 seconds ago');
 }, 2000);
}

Now the showMessage() function is declared and passed to setTimeout() in one
statement. There’s no way for any other part of code to interact with showMessage(),
even inside the buttonClicked() function. Optionally, you can leave out the name
showMessage() so that it becomes an anonymous function:

 setTimeout(function() {
 alert('You clicked the button 2 seconds ago');
 }, 2000);

You can simplify this approach even further using arrow syntax, as demonstrated in
Recipe 6.2. But using a function name is a good practice for long or complex code
routines. That’s because you’ll see the function name in the stack trace if an error
occurs inside the function.

6.1 Passing a Function as an Argument to Another Function | 119

Pay attention to your organization’s style conventions when you use
anonymous functions. One common pattern is to place the func
tion() declaration and the opening { brace on the same line. Then,
put all the code for the anonymous function underneath, with one
extra level of indent. Finally, put the closing } brace on a separate
line, followed immediately by the rest of the arguments for the
function call.

Discussion
These three approaches demonstrate a gradually narrowing scope, from the most
accessible function (in the first example) to the least accessible function (in the last
example). As a general rule, it’s best to use the narrowest scope possible. This reduces
ambiguity in your code (making it more understandable for the other developers who
follow in your footsteps), and reduces the possibility of unexpected side effects. How‐
ever, there’s a trade-off. As a function becomes longer and more complex, inline dec‐
larations become less readable. And if you want to use the function separately, or run
unit tests against it, you will need to break it out into a separate function.

If you’re in any doubt about how a function uses a function reference, here’s a simple
example with a custom function named callYouBack() that accepts a function
parameter and then calls it. Inside the callYouBack() function, you treat the func‐
tion reference exactly like an ordinary function, calling it by name and supplying any
parameters it needs:

function buttonClicked() {
 // Create a function that will handle the callback
 function logTime(time) {
 console.log('Logging at: ' + time.toLocaleTimeString());
 }

 console.log('About to call callYouBack()');
 callYouBack(logTime);
 console.log('All finished');
}

function callYouBack(callbackFunction) {
 console.log('Starting callYouBack()');

 // Call the provided function and supply an argument
 callbackFunction(new Date());

 console.log('Ending callYouBack()');
}

If you run this code and click the button, it produces output like this:

120 | Chapter 6: Functions

About to call callYouBack()
Starting callYouBack()
Logging at: 2:20:59 PM
Ending callYouBack()
All finished

See Also
See Recipe 6.2 for a syntax that lets you simplify the declaration of anonymous func‐
tions, and is especially useful for single-line functions that return a value. See
Table 5-1 for the most important Array methods that accept function parameters.

6.2 Using Arrow Functions
Problem
You want to use JavaScript’s arrow syntax to declare an inline function in the most
compact way possible.

Solution
In recent years, JavaScript has shifted to emphasize functional programming patterns
—array processing and asynchronous promises are two notable examples. To help,
they’ve added a new, streamlined function syntax for writing inline functions, called
arrow syntax.

Here’s an example of using the Array.map() method to transform the contents of an
array using a named function without using arrow syntax. The initial array is a list of
numbers, and the transformed array has the square of each number:

const numbers = [1,2,3,4,5,6,7,8,9,10];

function squareNumber(number) {
 return number**2;
}
const squares = numbers.map(squareNumber);

console.log(squares);
// Displays [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Here’s the same example, but with the squareNumber() function declared inline using
arrow syntax:

const numbers = [1,2,3,4,5,6,7,8,9,10];
const squares = numbers.map(number => number**2);

console.log(squares);

6.2 Using Arrow Functions | 121

Discussion
This example uses the most compact form of arrow syntax. This works for single-
parameter, single-statement functions. Other functions may not be able to use all the
simplifications of arrow syntax. To understand why, here’s a step-by-step breakdown
of how you convert a named function to a function expression that uses arrow syntax:

1. Put the list of parameters first, followed the => symbol. If there are no parame‐
ters, use an empty set of parentheses before the => symbol.

(number) =>

2. If there is exactly one parameter (as in this example), you can remove the paren‐
theses around the parameter list.

number =>

3. Put the braces and body of the function on the other side of the arrow.

number => {
 return number**2;
}

4. If there is just one statement, you can remove the braces and the return key‐
word. But if you have more than one statement, you must keep both the braces
and the return keyword.

number => number**2;

Remember, the arrow function is used for declaring inline functions, so you’ll always
be passing it to a parameter or assigning it to a variable in an expression:

const myFunc = number => number**2;

const squaredNumber = myFunc(10);
// squaredNumber = 100

Now let’s look at converting this slightly more complex function:

function raiseToPower(number, power) {
 return number**power;
}

You can carry out steps 1, 3, and 4, but step 2 doesn’t apply (because this function has
two parameters):

const myFunc = (number, power) => number**power;

Or, consider this more detailed string processing function:

122 | Chapter 6: Functions

function applyTitleCase(inputString) {
 // Split the string into an array of words
 const wordArray = inputString.split(' ');

 // Create a new array that will hold the processed words
 const processedWordArray = [];

 for (const word of wordArray) {
 // Capitalize the first letter of this word
 processedWordArray.push(word[0].toUpperCase() + word.slice(1));
 }

 // Join the words back into a single string
 return processedWordArray.join(' ');
}

Here, steps 1, 2, and 3 apply, but step 4 does not. You must keep the braces and
return statement intact.

const myFunc = inputString => {
 // Split the string into an array of words
 const wordArray = inputString.split(' ');

 // Create a new array that will hold the processed words
 const processedWordArray = [];

 for (const word of wordArray) {
 // Capitalize the first letter of this word
 processedWordArray.push(word[0].toUpperCase() + word.slice(1));
 }

 // Join the words back into a single string
 return processedWordArray.join(' ');
}

Now the difference between the traditional approach and the arrow syntax is much
smaller. Only the function declaration at the beginning has changed, and the overall
code savings is minimal.

Here’s where the decisions around arrow syntax become murkier.
It’s often possible to compress a function with several statements
into a single expression. In the string processing example, you
could use method chaining (as in Recipe 2.8) and the Array.map()
function (Recipe 5.17) instead of a for loop. Applied aggressively,
these changes can shorten applyTitleCase() down to one long
statement. You could then use all the arrow syntax shortcuts. How‐
ever, in this case the goal of more concise code isn’t worth the
tradeoff in clarity. As a general rule of thumb, arrow syntax is a
benefit only when it helps you write more readable code.

6.2 Using Arrow Functions | 123

Arrow functions have a different way of binding the this keyword. In a declared
function, this maps to the object that calls the function, which could be the current
window, a button, and so on. In an arrow function, this simply refers to the code
where the arrow function is defined. (In other words, whatever this is where you
create your arrow function remains this when the function runs.) This behavior sim‐
plifies many issues, but at a cost. It means that arrow syntax isn’t suitable for object
methods and constructors, because arrow functions won’t be bound to the object on
which they’re called. Even using Function.bind() won’t change this behavior.

There are a few smaller restrictions as well. Arrow functions can’t be used with yield
to make a generator function, and don’t support the arguments object.

See Also
Chapter 5 has numerous examples that use arrow syntax to pass short functions to
array-processing methods. See, for instance, Recipes 5.9, 5.14, and 5.16.

6.3 Providing a Default Parameter Value
Problem
You want to specify a default value for a parameter, which will be used if the caller
doesn’t pass in an argument when calling the function.

Solution
You can directly assign default values to your parameters when you declare a func‐
tion. Here’s an example that sets a default value for the third parameter, thirdNum:

function addNumbers(firstNum, secondNum, thirdNum=0) {
 return firstNum+secondNum+thirdNum;
}

Now it’s possible to call this function without specifying all three parameters:

console.log(addNumbers(42, 6, 10)); // displays 58
console.log(addNumbers(42, 6)); // displays 48

Discussion
Default parameters are a relatively recent invention. However, JavaScript has never
forced function callers to supply all the parameters for a function. In this distant past,
functions could simply check if a parameter was undefined (by testing it with the
typeof operator, as described in Recipe 7.1).

124 | Chapter 6: Functions

You can set default values for as many parameters as you want. As a matter of good
style, you should put your required parameters first, followed by parameters that have
default values. In other words, once you add a default parameter, all the parameters
after should also become optional and have default values. This convention isn’t
required, but it makes code clearer.

When calling a function that has multiple default parameters, you can pick and
choose which values you supply. Consider this example:

function addNumbers(firstNum=10, secondNum=20, thirdNum=30, multiplier=1) {
 return multiplier*(firstNum+secondNum+thirdNum);
}

If you want to specify firstNum, secondNum, and multiplier, but omit the thirdNum
parameter, you need to use undefined as a placeholder. This allows you to pass all
your parameters in the proper order:

const sum = addNumbers(42, 10, undefined, 1);
// sum = 82

But null won’t work as a placeholder. In this example, it’s simply converted to the
number 0, changing the result:

const sum = addNumbers(42, 10, null, 1);
// sum = 52

Many other languages have nicer shortcuts for default parameters (such as using
commas to indicate order without needing to supply a placeholder value, or setting
parameter values by name). JavaScript does not, although you can simulate named
parameters using object literal syntax (Recipe 6.5).

6.4 Creating a Function That Accepts Unlimited
Arguments
Problem
You want to create a function that accepts as many arguments as the caller wants to
supply, without requiring the creation of an array.

Solution
Use a rest parameter when you declare your function. The rest parameter is defined
with three dots before its name:

function sumRounds(...numbers) {
 let sum = 0;
 for(let i = 0; i < numbers.length; i+=1) {
 sum += Math.round(numbers[i]);
 }

6.4 Creating a Function That Accepts Unlimited Arguments | 125

 return sum;
}

console.log(sumRounds(2.3, 4, 5, 16, 18.1)); // 45

Discussion
The rest parameter does not need to be the only parameter, but it must be the last
parameter. It collects all the extra arguments that are passed to the function and adds
them to a new array.

In the past, JavaScript developers used the arguments object for similar functionality.
The arguments object is available in every function (technically, it’s the Func
tion.arguments property), and it provides array-like access to all the parameters.
However, arguments is not a true array, and developers often used boilerplate code to
transform it into one. You may still see this approach in the wild, but today rest
parameters avoid this hassle.

The rest parameter looks the same as the spread operator (Recipe
5.4), but the two play complementary roles. The spread operator
expands an array or the properties of an object into separate values,
whereas the rest operator collects separate values and inserts them
into a single array object.

See Also
If you have an array of values that you want to pass into a function, but the function
expects a rest parameter, you can make the conversion using the spread operator (see
Recipe 5.4).

This example uses a loop to process the array of values, but you could achieve the
same result more cleanly with the Array.reduce() function, as demonstrated in
Recipe 5.18.

6.5 Using Named Function Parameters
Problem
You want an easier way to choose the optional parameters you send to a function.

Solution
Bundle all the optional parameters into a single object literal (Recipe 7.2). The caller
can then decide what optional parameters to include when they create the object lit‐
eral. Here’s an example of how you call a function that uses this pattern:

126 | Chapter 6: Functions

someFunction(arg1, arg2, {optionalArg1: val1, optionalArg2: val2});

In your function, you can use destructuring assignment to quickly copy the values out
of the object literal and into separate variables. Here’s an example of a function that
accepts three arguments. The first two (newerDate and olderDate) are required, but
the third parameter is an object literal that can hold three optional values (discard
Time, discardYears, and precision):

function dateDifferenceInSeconds(
 newerDate, olderDate, {discardTime, discardYears, precision} = {}) {
 if (discardTime) {
 newerDate = newerDate.setHours(0,0,0,0);
 olderDate = newerDate.setHours(0,0,0,0);
 }
 if (discardYears) {
 newerDate.setYear(0);
 olderDate.setYear(0);
 }

 const differenceInSeconds = (newerDate.getTime() - olderDate.getTime())/1000;
 return differenceInSeconds.toFixed(precision);
}

You can call dateDifferenceInSeconds() with or without the object literal:

// Compare the current date to an older date
const newDate = new Date();
const oldDate = new Date(2010, 1, 10);

// Call the function without an object literal
let difference = dateDifferenceInSeconds(newDate, oldDate);
console.log(difference); // Shows something like 354378086

// Call the function with an object literal, and specify two properties
difference = dateDifferenceInSeconds(
 newDate, oldDate, {discardYears:true, precision:2});
console.log(difference); // Shows something like 7226485.90

Discussion
A common pattern in JavaScript is to use an object literal to transmit optional values.
This lets you set only the properties you need, without worrying about the order.

// This works
dateDifferenceInSeconds(newDate, oldDate, {precision:2});

// This also works
dateDifferenceInSeconds(newDate, oldDate, {discardYears:true, precision:2});

// This works too
dateDifferenceInSeconds(newDate, oldDate, {precision:2, discardYears:true});

6.5 Using Named Function Parameters | 127

In the function, you can retrieve properties from the object literal individually, like
this:

function dateDifferenceInSeconds(newerDate, olderDate, options) {
 const precision = options.precision;

But this solution in this recipe uses a better shortcut. It unpacks the object literal into
named variables using destructuring, which maps the properties of an object to indi‐
vidual, named variables. You can use destructuring assignment in a statement:

function dateDifferenceInSeconds(newerDate, olderDate, options) {
 const {discardTime, discardYears, precision} = options;

or right in the function declaration:

function dateDifferenceInSeconds(
 newerDate, olderDate, {discardTime, discardYears, precision})

It’s a good practice to set an empty object literal as a default value (Recipe 6.3). This
empty object is used if the caller doesn’t supply the object literal:

function dateDifferenceInSeconds(
 newerDate, olderDate, {discardTime, discardYears, precision} = {})

It’s up to the caller whether they decide to set some, all, or none of the properties in
the object literal. Any values that aren’t set will evaluate to the special value unde
fined, which you can test for in your code. Here’s a less-optimized example:

 if (discardTime != undefined || discardTime === true) {

Often, you won’t need to explicitly check for undefined values. For example, unde
fined evaluates to false in conditional logic. The dateDifferenceInSeconds()
function uses the behavior when it evaluates the discardYears and discardTime
properties, allowing us to shorten the code:

 if (discardTime) {

There’s a similar shortcut with the precision property. It’s safe to call Number.toPre
cision(undefined), because that’s the same as calling toPrecision() with no argu‐
ment. Either way, the number is rounded to the nearest whole integer.

The only disadvantage to the object literal pattern is that there’s no way to prevent
property-naming mistakes, like this one:

// We want discardYears, but we accidentally set discardYear
dateDifferenceInSeconds(newDate, oldDate, {discardYear:true});

See Also
Recipe 7.2 introduces object literals. Recipe 5.4 shows the array destructuring syntax,
which is similar to the object destructuring syntax used in this recipe, except it acts
on arrays instead of objects (and uses square brackets instead of curly braces).

128 | Chapter 6: Functions

6.6 Creating a Function That Stores its State
with a Closure
Problem
You want to create a function that can remember data, but without having to use
global variables and without repeatedly sending the same data with each function call.

Solution
Wrap the function that needs to preserve its state in another function. The outer func‐
tion returns the inner function, following this structure:

function outerFunction() {

 function innerFunction() {
 ...
 }

 return innerFunction;
}

Both of these functions can accept parameters. But here’s the trick. The outer func‐
tion’s parameters live as long as you have a reference to the inner function. You can
call the inner function as many times as you want, and the data from the outer func‐
tion persists. (Conceptually, it’s as though the outer function is an object-creation
method, and the inner function is an object with state.)

Here’s a complete example:

function greetingMaker(greeting) {
 function addName(name) {
 return `${greeting} ${name}`;
 }
 return addName;
}

// Use the outer function to create two copies of the inner function,
// each with a different value for greeting
const daytimeGreeting = greetingMaker('Good Day to you');
const nightGreeting = greetingMaker('Good Evening');

console.log(daytimeGreeting('Peter')); // Shows 'Good Day to you Peter'
console.log(nightGreeting('Sally')); // Shows 'Good Evening Sally'

Discussion
Often, you’ll find that you need a way to store data that’s used across several function
calls. You could use global variables, but that’s a technique of last resort. Global

6.6 Creating a Function That Stores its State with a Closure | 129

variables lead to naming collisions, complicate code, and often lead to hidden inter‐
dependencies between different functions, limiting the reuse of your code and giving
cover for subtle coding bugs to hide.

You could ask the function caller to maintain this information, and send it with each
function call, but this can also be awkward. This example shows a different solution—
creating a stateful function package called a closure.

In this solution, the outer function greetingMaker() takes one argument, which is a
specific greeting. It also returns an inner function, addName(), which itself takes the
person’s name. The closure encompasses the addName() function and its surrounding
context, which includes the parameter that was passed to the greetingMaker() func‐
tion. To demonstrate this fact, two copies of addName() are created, in two different
contexts. One exists in a closure where a daytime message was passed to greeting
Maker(), and the other exists in a closure where a nighttime message was passed to
greetingMaker(). Either way, when the addName() function is called, it uses the cur‐
rent context to construct its message.

It’s worth noting that state isn’t limited to parameter values. Any variables that are in
the outer function also stay alive as long as the function reference exists. Here’s an
example that uses a simple counter variable to keep track of how many function calls
you’ve made:

function createCounter() {
 // This variable persists as long as the createCounter function reference
 let count = 0;

 function counter() {
 count += 1;
 console.log(count);
 }
 return counter;
}

const counterFunction = createCounter();
counterFunction(); // displays 1
counterFunction(); // displays 2
counterFunction(); // displays 3

See Also
To see an another example of a function that uses a closure to store state, see “Extra:
Building a Repeatable Pseudorandom Number Generator” on page 133.

It’s not an accident that closures and wrapped functions seem to echo object-oriented
programming. In the past, JavaScript developers used functions to mimic custom
classes (see Recipe 8.4), and JavaScript’s class keyword extends this approach (see
Recipe 8.1).

130 | Chapter 6: Functions

6.7 Creating a Generator Function That Yields
Multiple Values
Problem
You want to create a generator, a function that can provide multiple values on-
demand. Each time a generator returns a value, it pauses its execution until the caller
requests the next value.

Solution
To declare a generator function, start by replacing the function keyword with
function*:

function* generateValues() {
}

Inside the generator function, use the yield keyword each time you want to return a
result. Remember, execution stops after you yield (much like when you use the
return keyword). However, execution resumes when the caller asks for the function’s
next value. This process continues until your function code ends, or you return a final
value with the return keyword.

Here is a naïve implementation of a generator. (It works, but it doesn’t solve a useful
problem.) This function yields three values, followed by a return value:

function* generateValues() {
 yield 895498;
 yield 'This is the second value';
 yield 5;
 return 'This is the end';
}

When you call a generator function, you receive a Generator object as a return value.
This happens immediately, before the generator function code begins to run. You use
the Generator object to run the function and retrieve the values that are yielded. You
can also use it to determine when the generator function is finished.

Each time you call Generator.next(), the generator function runs until it reaches the
next yield (or the final return). The next() method returns an object with two val‐
ues. The value property wraps the yielded or returned value from the generator func‐
tion. The done property is a Boolean that remains false until the generator function
has ended.

const generator = generateValues();

// Start the generator (it runs from the beginning to the first yield)
console.log(generator.next().value); // 895498

6.7 Creating a Generator Function That Yields Multiple Values | 131

// Resume the generator (until the next yield)
console.log(generator.next().value); // 'This is the second value'

// Get the final two values
console.log(generator.next().value); // 5
console.log(generator.next().value); // 'This is the end'

Discussion
Generators allow you to create functions that can be paused and resumed. Best of all,
JavaScript manages their state automatically, which means you don’t need to write any
code to preserve values in-between calls to next(). (This is different than building a
custom iterator, for example.)

Because generators have a lazy-execution model, they’re a good choice for time-
consuming data creation or retrieval operations. For example, you could use a gener‐
ator to calculate numbers in a complex sequence, to retrieve chunks of information
from a stream of data.

Usually, you won’t know how many values a generator will return. You could write a
while loop that checks the Generator.done property and keeps calling next() until
it’s finished. But because the generator object is iterable, a for…of loop works even
better:

// Get all the values from the generator
for (const value of generateValues()) {
 console.log(value);
}

// With spread syntax, you can dump everything into an array in one step
const values = [...generateValues()];

Either way, this approach only gets yielded results. If your generator has a final return
value, it’s ignored.

Some generator functions are designed to be infinite. As long as you keep calling
next(), they keep yielding values. If you’re calling an infinite generator, you can’t
dump all its values into an array (your program will hang). Instead, you’ll probably
use a while loop with a condition that turns false when you have all the values you
need.

See Also
Recipe 9.6 shows how to create generators that run asynchronously.

132 | Chapter 6: Functions

Extra: Building a Repeatable Pseudorandom Number Generator
Although you’ve dissected the essential syntax for generator functions, you haven’t
seen a truly practical example. Here’s one that shows how an infinite generator func‐
tion can provide a useful sequence of values.

As explained in Recipe 3.1, the Math.random() method lets you generate pseudo‐
random numbers, but you can’t control the seed value. (Instead, Math.random() seeds
its pseudorandom number generator using a opaque, noncryptographically secure
method that may vary from one JavaScript implementation to the next.) This is fine
for most applications. But in some scenarios you need a way to generate a repeatable
sequence of random-seeming numbers. The numbers still need to be statistically ran‐
dom in their distribution; the only difference is that you need to be able to ask your
pseudorandom number generator to give you same sequence more than once. Exam‐
ples where repeatable pseudorandom numbers are important include certain types of
simulations or tests that need to be precisely reproducible.

There are several third-party JavaScript libraries that provide seedable (and thus
repeatable) pseudorandom number generators. You can find a long list at GitHub.
One of the simplest is Mulberry32. Its JavaScript implementation fits in a single dense
block of code:

function mulberry32(seed) {
 return function random() {
 let t = seed += 0x6D2B79F5;
 t = Math.imul(t ^ t >>> 15, t | 1);
 t ^= t + Math.imul(t ^ t >>> 7, t | 61);
 return ((t ^ t >>> 14) >>> 0) / 4294967296;
 }
}

// Choose a seed
const seed = 98345;

// Get a version of mulberry32() that uses this seed:
const randomFunction = mulberry32(seed);

// Generate some random numbers
console.log(randomFunction()); // 0.9057375795673579
console.log(randomFunction()); // 0.44091642647981644
console.log(randomFunction()); // 0.7662326360587031

The mulberry32() function uses the closure technique described in Recipe 6.6. It
accepts a seed value that’s then locked into the context of the inner random() func‐
tion. That means that whenever you call random(), the original seed value will be
available in the outer function. This is important, because a different seed means a
different sequence of random variables. If you call mulberry32() with the same seed

6.7 Creating a Generator Function That Yields Multiple Values | 133

https://github.com/bryc/code/blob/master/jshash/PRNGs.md

value, you’re guaranteed to get the same sequence of pseudorandom numbers from
random().

Like most pseudorandom number generators, Mulberry32 returns
a fractional value between 0 and 1. To convert this to integer in a
given range, use the technique shown in Recipe 3.1.

Closures have been a part of the JavaScript language since time immemorial, but gen‐
erators are a much newer innovation. You can rewrite this example using a generator
function, which more clearly expresses its purpose:

function* mulberry32(seed) {
 let t = seed += 0x6D2B79F5;

 // Generate numbers indefinitely
 while(true) {
 t = Math.imul(t ^ t >>> 15, t | 1);
 t ^= t + Math.imul(t ^ t >>> 7, t | 61);
 yield ((t ^ t >>> 14) >>> 0) / 4294967296;
 }
}

// Use the same seed to get the same sequence.
const seed = 98345;

const generator = mulberry32(seed);
console.log(generator.next().value); // 0.9057375795673579
console.log(generator.next().value); // 0.7620641703251749
console.log(generator.next().value); // 0.0211441791616380

Because the mulberry32() function is declared with function*, it’s immediately
obvious that it will return multiple values. Inside, an infinite loop ensures that the
generator will always be ready to create a new number. After each pass through the
loop, random() yields a new random value and then pauses until a new value is
requested with next(). The overall operation of this solution is similar to its original
version, but now it follows a familiar pattern that could make its usage easier to dis‐
cover. (But—as always—the value of a refactoring like this depends on the conven‐
tions of your organization, the expectations of the people reading your code, and
your own personal taste.)

134 | Chapter 6: Functions

There’s no danger to building an infinite loop in a generator as long
as it yields. Yielding pauses the code, ensuring that it won’t tie up
the JavaScript event loop. Unlike normal functions, there is no
expectation that a generator function will run to its final closing
brace. As soon as a Generator object goes out of scope, that func‐
tion and its context are made available for garbage collection.

6.8 Reducing Redundancy by Using Partial Application
Problem
You have a function that takes several arguments. You want to wrap this function with
one or more specialized versions that require fewer arguments.

Solution
The following makestring() function accepts three parameters (in other words, it
has an arity of 3):

function makeString(prefix, str, suffix) {
 return prefix + str + suffix;
}

However, the first and last arguments are often repeated based on a specific use case.
You want to eliminate the repetition of arguments whenever possible.

You can solve this problem by creating new functions that wrap the previously cre‐
ated makeString() function, but with known argument values locked down:

function quoteString(str) {
 return makeString('"',str,'"');
}

function barString(str) {
 return makeString('-', str, '-');
}

function namedEntity(str) {
 return makeString('&#', str, ';');
}

Now only one argument is needed to call any of these new functions:

console.log(quoteString('apple')); // "apple"
console.log(barString('apple')); // -apple-
console.log(namedEntity(169)); // "© (the copyright symbol in HTML)

6.8 Reducing Redundancy by Using Partial Application | 135

Discussion
The technique of wrapping one function in another function to lock down one or
more argument values is called partial application (because the new functions parti‐
ally apply the argument values to the original function). Of course, the tradeoff is that
the extra functions you create can also clutter up your code, so don’t build wrappers
you don’t intend to use and reuse.

Advanced: A Partial Function Factory
You can reduce the redundancy of this approach even further by creating a function
that can partial-ize any other function. In fact, this approach is a fairly common Java‐
Script design pattern. In the past, you needed to rely on the JavaScript arguments
object and array manipulation. In modern JavaScript, the rest and spread operators
make the job much simpler.

In the implementation shown here, the partial-izing function is named partial(). It’s
capable of reducing any number of arguments for any function.

function partial(fn, ...argsToApply) {
 return function(...restArgsToApply) {
 return fn(...argsToApply, ...restArgsToApply);
 }
}

This function requires a bit of unpacking. But first, it helps to see a simple example
that uses it. Here, the partial() function is used to create a new cubeIt() function
that wraps the more general raiseToPower() function. In other words, cubeIt() uses
partial application to lock down one of the raiseToPower() arguments (the expo‐
nent, which it sets to 3).

// The function you want to partialize
function raiseToPower(exponent, number) {
 return number**exponent;
}

// Using partial(), make a customized function
const cubeIt = partial(raiseToPower, 3);

// Calculate the cube of 9 (9**3)
console.log(cubeIt(9)); // 729

Now when you call cubeIt(9), the call is mapped to raiseToPower(3, 9).

So how does it work? The partial() function accepts two arguments. First is the
function you want to partial-ize (fn). Second is a list of all the arguments you want to
lock in place (argsToApply), which is captured in an array using the rest operator
(...), as explained in Recipe 6.4.

136 | Chapter 6: Functions

function partial(fn, ...argsToApply) {

Now things get interesting. The partial function returns a nested inner function (a
technique explored in Recipe 6.6). The nested inner function accepts all the argu‐
ments that aren’t locked in place. Once again, these arguments are captured in an
array using the rest operator (...restToApply):

 // This returns a new anonymous function
 return function(...restArgsToApply) {

This newly created function now has three key pieces of information: the underlying
function (fn), the arguments that are locked in place (argsToApply), and the argu‐
ments that are set each time the function is called (restArgsToApply).

There’s only one line of code inside this function, but it packs in a lot. It expands the
two arrays into argument lists using the spread operator (which, somewhat confus‐
ingly, looks exactly like the rest operator). In other words, argsToApply becomes a list
or arguments followed by restToApply:

 // This calls the wrapped function
 return fn(...argsToApply, ...restArgsToApply);

A common practice in functional programming is writing higher-
order functions (functions that operate on other functions). The par
tial() function is a higher-level function that creates a wrapper
for another function.

There is one limitation to this implementation of the partial() function. Because it
puts fixed arguments first, you can’t lock down a later argument without locking
down all the arguments that occur first. If you wanted to use partial() to make a
wrapper for the makeString() function from the original solution, you need to rear‐
range its arguments first:

function makeString(prefix, suffix, str) {
 return prefix + str + suffix;
}

const namedEntity = partial(makeString, "&#", ";");

console.log(namedEntity(169));

Extra: Using bind() to Partially Provide Arguments
You can also create partial applications with the Function.bind() method. The
bind() method returns a new function, setting this to whatever is provided as a first
argument. All the other arguments are prepended to the argument list for the new
function.

6.8 Reducing Redundancy by Using Partial Application | 137

Rather than having to use partial() to create the named entity function, we can now
use bind() to provide the same functionality, passing in undefined as the first
argument:

function makeString(prefix, suffix, str) {
 return prefix + str + suffix;
}

const named = makeString.bind(undefined, "&#", ";");

console.log(named(169)); // "©"

Now you have two good ways to create multiple versions of a function that use differ‐
ent parameters.

6.9 Fixing this with Function Binding
Problem
Your function is attempting to use the keyword this, but it’s not bound to the right
object.

Solution
Use the Function.bind() method to change the context of your function and the
meaning of the this reference:

window.onload = function() {
 window.name = 'window';

 const newObject = {
 name: 'object',

 sayGreeting: function() {
 console.log(`Now this is easy, ${this.name}`);

 const nestedGreeting = function(greeting) {
 console.log(`${greeting} ${this.name}`);
 }.bind(this);

 nestedGreeting('hello');
 }
 };

 newObject.sayGreeting();
};

138 | Chapter 6: Functions

Discussion
The keyword this refers to the owner or parent of a function. The challenge associ‐
ated with this in JavaScript is that we can’t always guarantee what parent object will
apply to a function.

In the solution, the object has a method, sayGreeting(), which outputs a message
and maps another nested function to its property, nestedGreeting. You’ll see this
approach if you use the constructor pattern (Recipe 8.4) to create class-like function
objects.

Without the Function.bind() method, the first message would say “Now this is easy,
object,” but the second would say “hello window.” The reason the second message has
a different name is because the nesting of the function disassociates the inner func‐
tion from the surrounding object, and all unscoped functions automatically become
the property of the window object.

The bind() method solves this problem by binding the function to the object you
choose. In the example, the bind() method is invoked on the nested function and
given a reference to the parent object. Now, when the code inside nestedGreeting()
uses this, it points to the parent object you set.

The bind() method is particularly useful for the setTimeout() and setInterval()
timer functions. Ordinarily, when these functions trigger your callback, the this ref‐
erence is lost (it becomes undefined). But with bind(), you can ensure that the call‐
back function keeps the reference you want.

Example 6-1 is a web page that uses setTimeout() to perform a countdown operation
from 10 to 0. As the numbers are counted down, they’re inserted into the web page.
This example also uses the constructor pattern for object creation (as described in
Recipe 8.4) to create a class-like Counter function.

Example 6-1. Demonstrating the utility of bind()

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Using Bind with Timers</title>
 </head>
 <body>
 <div id="counterDiv"></div>

 <script>
 // This is the constructor function for the Counter object.

6.9 Fixing this with Function Binding | 139

 function Counter(from, to, divElement) {
 this.currentCount = from;
 this.finishCount = to;
 this.element = divElement;

 // The incrementCounter() method updates the page
 this.incrementCounter = function() {
 this.currentCount -= 1;
 this.element.textContent = this.currentCount;

 if (this.currentCount > this.finishCount) {
 // Schedule this function to run again after 1 second.
 setTimeout(this.incrementCounter.bind(this), 1000);
 }
 };

 this.startCounter = function() {
 this.incrementCounter();
 }
 }

 // Create the counter for this page.
 const counter = new Counter(10, 0, document.getElementById('counterDiv'));

 // When the page loads, start the counter.
 window.onload = function() {
 counter.startCounter();
 }
 </script>
 </body>
</html>

If the setTimeout() function in the code sample had been the following:

setTimeout(this.incrementCounter, 1000);

it would lose this, and the callback function wouldn’t be able to access variables like
currentCount, even though the incrementCounter() method is part of the same
object.

Extra: self = this
An older alternative to using bind(), and one that is still in use, is to assign this to a
variable in the outer function, which is then accessible to the inner. Typically this is
assigned to a variable named that or self:

window.onload = function() {
 window.name = 'window';

 const newObject = {
 name: 'object',

140 | Chapter 6: Functions

 sayGreeting: function() {
 const self = this;
 alert('Now this is easy, ' + this.name);
 nestedGreeting = function(greeting) {
 alert(greeting + ' ' + self.name);
 };

 nestedGreeting('hello');
 }
 };

 newObject.sayGreeting('hello');
};

Without the assignment, the second message would once again reference “window,”
not “object.”

6.10 Implementing a Recursive Algorithm
Problem
You want to implement a function that calls itself to accomplish a task, which is a
technique called recursion. Recursion is useful when dealing with hierarchical data
structures (for example, node trees or nested arrays), certain types of algorithms
(sorting), and some mathematical calculations (the Fibonacci sequence).

Solution
Recursion is a well-known concept in the field of mathematics, as well as computer
science. An example of recursion in mathematics is the Fibonacci sequence. A Fibo‐
nacci number is the sum of the two previous Fibonacci numbers:

f(n)= f(n-1) + f(n-2),
 for n= 2,3,4,...,n and
 f(0) = 0 and f(1) = 1

Another example of mathematical recursion is a factorial, usually denoted with an
exclamation point (4!). A factorial is the product of all integers from 1 to a given
number n. If n is 4, then the factorial (4!) would be:

4! = 4 x 3 x 2 x 1 = 24

These recursions can be coded in JavaScript using a series of loops and conditions,
but they can also be coded using functional recursion. Here’s a recursive function that
finds the nth number in the Fibonacci sequence:

function fibonacci(n) {
 return n < 2 ? n : fibonacci(n - 1) + fibonacci(n - 2);
}

6.10 Implementing a Recursive Algorithm | 141

And here’s one that solves a factorial:

function factorial(n) {
 return n <= 1 ? 1 : n * factorial(n - 1);
}

Discussion
A characteristic that distinguishes recursive functions is a termination condition (also
known as a base case). A recursive function cannot keep calling itself indiscrimin‐
ately, because that would lead to an infinite loop (until stack space is exhausted and
the program fails). Instead, a recursive function examines a condition and then
decides to call itself (stepping one level deeper into recursion) or return a value (step‐
ping one level back, to the calling function). When the top-level function returns a
value, that becomes the final result and the recursive operation is complete.

In the Fibonacci example, n is tested to see if it’s less than 2. If it is, it’s returned;
otherwise the Fibonacci function is called again with (n-1) and with (n-2), and the
sum of both is returned.

In the factorial example, when the function is first called, the value passed as the
argument is compared to the number 1. If n is less than or equal to 1 (negative num‐
bers aren’t supported in this simple implementation), the function terminates, return‐
ing 1. However, if n is greater than 1, what’s returned is the value of n times a call to
the factorial() function again, this time passing in a value of n–1. The value of n
then decreases with each iteration of the function, until the termination condition is
reached.

As a factorial is being computed, the interim values of each function call are pushed
onto a stack in memory and kept until the termination condition is met. Then the
values are popped from memory and returned, in a state similar to the following:

return 1; // 0!

return 1; // 1!

return 1 * 2; // 2!

return 1 * 2 * 3; // 3!

return 1 * 2 * 3 * 4; // 4!

Most recursive functions can be replaced with code that performs the same function
linearly, via some kind of loop. And loops may perform better, although the differ‐
ence is often negligible. The advantage of recursion is that recursive functions can be
very terse and minimal. Whether they are clearer is a matter of debate. (They are
clearly shorter, which makes them easier to digest, but their self-referential nature can
make their logic harder to grasp at first glance, particularly for programmers who
haven’t used recursive functions before.)

142 | Chapter 6: Functions

If a recursive function calls itself over and over again, it will eventually exhaust the
call stack. This condition leads to an error with a message like “Out of stack space,”
“Too much recursion,” or “Maximum call stack size exceeded.” The exact message and
the number of open function calls that are allowed at once depend on the implemen‐
tation of the JavaScript engine. However, these error messages usually indicate an
incorrectly structured recursive function that is failing to evaluate its termination
condition and calling itself in an infinite loop.

6.10 Implementing a Recursive Algorithm | 143

CHAPTER 7

Objects

There are two broad categories of types in JavaScript. On one side is a small set of
primitive types, like strings and numbers. On the other side are genuine objects, all of
which derive from JavaScript’s Object.

JavaScript’s built-in objects are easy to recognize. They have constructors, and you’ll
usually instantiate them with the new keyword. Basic ingredients like arrays, Date,
error objects, Map and Set collections, and RegExp regular expressions are all objects.

JavaScript objects also differ in important ways from the objects you find in tradi‐
tional object-oriented programming languages. For example, JavaScript allows you to
create instances of the base Object type, and attach new properties and functions at
runtime. In fact, you can take a live object—any object—and modify its members,
with no need to respect a class definition.

In this chapter you’ll take a closer look at the functionality and quirks of JavaScript’s
Object type. You’ll see how to use the core Object features to inspect, extend, and
copy objects of all types. And in the next chapter, you’ll go one step further and learn
the best practices for formalizing your own custom objects.

7.1 Checking if an Object Is a Certain Type
Problem
You have a mystery object and you want to determine its type.

Solution
Use the instanceof operator:

145

const mysteryObject = new Date(2021, 2, 1);

if (mysteryObject instanceof Date) {
 // We end up here because mysteryObject is a Date
}

You can test if an object is not an instance of some type using the not operator (!).
But make sure you use parentheses to apply the ! to the entire instanceof condition:

if (!(mysteryObject instanceof Date)) {
 // You get here if mysteryObject isn't a Date
}

// Don't make this mistake!
if (!mysteryObject instanceof Date) {
 // This code never runs
}

There’s one gap in the instanceof operator. It doesn’t work with primitive values, like
numbers, strings, Booleans, BigInt values, null, and undefined. Here’s a demonstra‐
tion of the problem:

const testNumber = 42;
if (testNumber instanceof Number) {
 // This code never runs
}

const testString = 'Hello';
if (testString instanceof String) {
 // This code never runs
}

// The following two tests work because the primitives are wrapped in objects,
// but that's uncommon in modern JavaScript.
const numberObject = new Number(42);
if (numberObject instanceof Number) {
 // This code runs
}

const stringObject = new String('Hello');
if (stringObject instanceof String) {
 // This code runs
}

The solution is to use the typeof operator if you’re testing a variable that might hold
one of the primitive data types. Unlike instanceof, typeof provides you with one of
nine predefined string values (as described in Recipe 2.1). If you get a value of
object, you can use the instanceof operator to dig deeper:

const mysteryPrimitive = 42;
const mysteryObject = new Date();

146 | Chapter 7: Objects

if (typeof mysteryPrimitive === 'number') {
 // This code runs
}

if (typeof mysteryObject === 'object') {
 // This code runs, because a Date is an object, not a primitive

 if (mysteryObject instanceof Date) {
 // This code also runs
 }
}

Discussion
The instanceof operator works by inspecting an object’s prototype chain, a concept
explained in “Extra: Prototype Chains” on page 195. Depending on how an object is
constructed, there can be several types in the prototype chain (similar to the way an
object in a traditional OOP language might inherit from a sequence of classes). For
example, every object has the Object prototype at the base of its chain, so this is
always true:

if (mysteryObject instanceof Object) {
 // This is true, unless mysteryObject is a primitive type
}

Remember, primitives don’t just include numbers, strings, and Booleans. They
encompass the specialized BigInt and Symbol, and the special values null and
undefined. All of these values will return false if you use the instanceof Object
test.

7.2 Using an Object Literal to Bundle Data
Problem
You want to group several variables together to create a basic data package.

Solution
Use the object literal syntax to create a new instance of the Object type. You don’t use
the new keyword or even name the Object type. Instead, you simply write a set of {}
braces that encloses a comma-separated list of properties. Each property consists of a
property name, followed by a colon, followed by the property value:

const employee = {
 employeeId: 402,
 firstName: 'Lisa',
 lastName: 'Stanecki',
 birthDate: new Date(1995, 8, 15)

7.2 Using an Object Literal to Bundle Data | 147

};

console.log(employee.firstName); // 'Lisa'

Of course, you can add additional properties after creating the object, as with any
JavaScript object:

employee.role = 'Manager';

This technique works even if you’ve declared your object with const, because object
literals are reference types, not values (unlike structs in other languages). Adding a
property changes the object, but it doesn’t change the reference. (On the other hand,
assigning the employee variable to a new object wouldn’t be allowed in this example,
because that operation would change the reference.)

Discussion
Object literal syntax gives you the cleanest, most compact way to quickly create a sim‐
ple object. However, it’s just a shortcut for explicitly creating a new Object instance
and assigning properties, like this:

const employee = new Object();
employee.employeeId = 402;
employee.firstName = 'Lisa';
employee.lastName = 'Stanecki';
employee.birthDate = new Date(1995, 8, 15);

or you can use key-value syntax:

const employee = new Object();
employee['employeeId'] = 402;
employee['firstName'] = 'Lisa';
employee['lastName'] = 'Stanecki';
employee['birthDate'] = new Date(1995, 8, 15);

One of the nicer features of object literal syntax is the way it handles nested objects,
like birthPlace in this example:

const employee = {
 employeeId: 402,
 firstName: 'Lisa',
 lastName: 'Stanecki',
 birthPlace: {country: 'Canada', city: 'Toronto'}
};

console.log(employee.birthPlace.city); // 'Toronto'

In JavaScript’s eyes, an object literal is an instance of the base Object type. This sim‐
plicity makes it easy to create an object out of any ad hoc grouping of data, but it also
has a cost—your object has no meaningful identity.

148 | Chapter 7: Objects

Yes, you can test if an object has a certain property (Recipe 7.3) or enumerate all its
properties (Recipe 7.4). But you can’t use instanceof to test against a custom object
type. In other words, there’s no contract to program against, and no easy way to vali‐
date that your objects are what you expect. If you need to use more durable objects
that are passed around your code, model complex entities, and include their own
methods, you should consider using formal classes (Recipe 8.1).

It might occur to you that you could streamline the object creation
process by creating a factory function that accepts parameters and
builds the corresponding object. While there’s nothing inherently
wrong with this approach, there’s a more powerful and conven‐
tional alternative. As soon as you want to build multiple objects
with the same structure, consider using classes (Recipe 8.1).

See Also
To find all the properties on an object literal, see Recipe 7.4. To step up to a formal
class definition, see Recipe 8.1.

Extra: Computed Property Names
As you know, you can add a new property to any JavaScript object in two ways. You
can use dot-syntax with property names:

employee.employeeId = 402;

Or key-value syntax:

employee['employeeId'] = 402;

These two approaches aren’t equivalent. When you use key-value syntax, the property
name is stored as a string, which means you have the opportunity to generate the
property name at runtime. This is called a computed property name, and it’s important
in certain extensibility scenarios. (For example, imagine if you’re fetching some exter‐
nal data and using that to create a matching object.)

const dynamicProperty = 'nickname';
const dynamicPropertyValue = 'The Izz';

employee[dynamicProperty] = dynamicPropertyValue;
// Now employee.nickname = 'The Izz'

const i = 10;
employee['sequence' + i] = 1;
// Now employee.sequence10 = 1

7.2 Using an Object Literal to Bundle Data | 149

Computed property names are always converted to strings. They support characters
that wouldn’t be allowed in ordinary variable names, like spaces. For example, this is
possible (although it’s a very bad idea):

const employee = {};
const today = new Date();

employee[today] = 42;

// This reveals that 42 is stored in a property that has a long string name like
// "Tue May 04 2021 08:18:16 GMT-0400 (Eastern Daylight Time)"
console.log(employee);

Object literal syntax also allows you to created computed properties. But because it
doesn’t use a format with string key names, you need to enclose each computed prop‐
erty name in square brackets. Here’s what that looks like:

const dynamicProperty = 'nickname';
const dynamicPropertyValue = 'The Izz';
const i = 10;

const employee = {
 employeeId: 402,
 firstName: 'Lisa',
 lastName: 'Stanecki',
 [dynamicProperty]: dynamicPropertyValue,
 ['sequence' + i]: 1
};

If you’re creating property names dynamically, you may run into a
situation where you need to ensure your property name is unique.
Various homemade workarounds are possible: checking for the
property and adding a sequence number until you get something
unique, or just using a GUID (globally unique identifer). But Java‐
Script provides a built-in solution with the Symbol type, which is
your best bet (see Recipe 7.12).

7.3 Checking If an Object Has a Property
Problem
You want to check at runtime if an object has a given property.

Solution
Use the in operator to look for a property by name:

const address = {
 country: 'Australia',

150 | Chapter 7: Objects

 city: 'Sydney',
 streetNum: '412',
 streetName: 'Worcestire Blvd'
};

if ('country' in address) {
 // This code runs, because there is an address.country property
}

if ('zipCode' in address) {
 // This code does not run, because there is no address.zipCode property
}

Discussion
If you attempt to read a property that doesn’t exist, you get the value undefined. You
could test for undefined, but that alone is not an ironclad guarantee that the property
doesn’t exist. (It’s technically possible to have a property and set it to undefined, in
which case the property still exists but your test would miss it.) A better approach to
finding properties is using the in operator.

The in operator searches an object and its prototype chain. That means if you create
an object Dog that derives from another object Animal, an in test will return true if a
property is defined in Dog or Animal. Alternatively, you can use the hasOwnProp
erty() method, which only searches the current object, and ignores inherited
properties.

const address = {
 country: 'Australia',
 city: 'Sydney',
 streetNum: '412',
 streetName: 'Worcestire Blvd'
};

console.log(address.hasOwnProperty('country')); // true
console.log(address.hasOwnProperty('zipCode')); // false

For more information about using inheritance, see Recipe 8.8.

See Also
Recipe 7.4 shows how to retrieve all the properties of an object into an array. Recipe
7.5 shows how to test if your object is empty of all data.

7.3 Checking If an Object Has a Property | 151

7.4 Iterating Over All the Properties of an Object
Problem
You want to examine all the properties in an object.

Solution
Use the static Object.keys() method to get an array with the property names for
your object. For example, this code:

const address = {
 country: 'Australia', city: 'Sydney', streetNum: '412',
 streetName: 'Worcestire Blvd'
};

const properties = Object.keys(address);

// Show every property and its value
for (const property of properties) {
 console.log(`Property: ${property}, Value: ${address[property]}`);
}

creates this console output:

Property: country, Value: Australia
Property: city, Value: Sydney
Property: streetNum, Value: 412
Property: streetName, Value: Worcestire Blvd

This technique—examining an object, finding all its properties, and displaying them
—is similar to what the console.log() method does when you pass it an object.

Discussion
When using Object.keys(), you retrieve all the property names (also known as
keys). But you still need to look up the corresponding value in the object. You can’t
use the dot syntax to do that (object.propertyName) because you have the property
as a string. Instead, you use the array-like indexer syntax (object['propertyName']).
Properties will typically appear in the order they were defined, but JavaScript doesn’t
guarantee the order.

152 | Chapter 7: Objects

The Object.keys() method is also commonly used to count the number of proper‐
ties (or length) of an object:

const address = {
 country: 'Australia', city: 'Sydney', streetNum: '412',
 streetName: 'Worcestire Blvd'
};

properties = Object.keys(address);
console.log(`The address object has a length of ${properties.length}`);
// (In this example, the length is 4.)

The Object.keys() method is just one of many possible solutions for reflecting on
JavaScript objects. However, it’s a good default starting point because it ignores inher‐
ited properties and nonenumerable properties, which is the behavior you want in
most scenarios.

Another option is to use a for...in loop, like this:

for (const property in address) {
 console.log(`Property: ${property}, Value: ${address[property]}`);
}

The for...in loop travels up the prototype chain to find properties that your object
has inherited. In this example, with the object literal named address, there’s no dif‐
ference. However, if you need to reflect on objects often, inadvertently using
for...in loops when Object.keys() would suffice could adversely affect
performance.

Contrary to what you might expect, the for...in loop has slightly
different coverage than the in operator. The in operator examines
all properties, including nonenumerable properties, symbol prop‐
erties, and inherited properties. The for...in loop finds inherited
properties but ignores nonenumerable properties and symbol
properties.

JavaScript also has other, more specialized functions that find different subsets of
properties. For example, the getOwnPropertyNames() function ignores inherited
properties, and the getOwnPropertyDescriptors() function ignores inherited prop‐
erties but also finds nonenumerable properties and symbol properties, which are
often used for extensibility (see Recipe 7.12). Table 7-1 outlines these different
approaches. For even more detailed information, the Mozilla Developer Network has
a full accounting of the different property searching functions.

7.4 Iterating Over All the Properties of an Object | 153

https://oreil.ly/rbd7z

Table 7-1. Different ways to find object properties
Method Returns Gets

enumerable
properties

Gets non-
enumerable
properties

Gets
symbol
properties

Includes
inherited
properties

Object.keys() An array of property
names

Yes No No No

Object.values() An array of property
values

Yes No No No

Object.entries() An array of property
arrays, each of which
holds a property
name and the
corresponding value

Yes No No No

Object.getOwnProperty
Names()

An array of property
names

Yes Yes No No

Object.getOwnProperty
Symbols()

An array of property
names

No No Yes No

Object.getOwnProperty
Descriptors()

An array of property
descriptor objects, like
when you use defin
eProperty()
(Recipe 7.7)

Yes Yes Yes No

Reflect.ownKeys() An array of property
names

Yes Yes Yes No

for...in loop Each property name Yes No No Yes

See Also
Recipe 7.3 explains how to use the in operator to check for a single property.

7.5 Testing for an Empty Object
Problem
You want to determine if an object is empty (has no properties).

Solution
Get an array of properties using Object.keys(), and check for a length of 0:

const blankObject = {};

if (Object.keys(blankObject).length === 0) {
 // This code runs because there's nothing in this object
}

154 | Chapter 7: Objects

const objectWithProperty = {price: 47.99};
if (Object.keys(objectWithProperty).length === 0) {
 // This code won't run, because objectWithProperty isn't empty
}

Discussion
It’s possible to create an empty object with object literal syntax:

const blankObject = {};

or by creating an instance of Object with new:

const blankObject = new Object();

Empty objects can also come about from other, less common, methods, such as tak‐
ing an existing object and removing properties with the delete operator:

const objectWithProperty = {price: 47.99};
delete objectWithProperty.price;

if (Object.keys(objectWithProperty).length === 0) {
 // This code runs, because objectWithProperty had its only property removed
}

Because objects are reference types, you can’t just compare one empty object to
another. For example, this test won’t recognize that your unknown object is empty:

const blankObject = {};
const unknownObject = {};

if (unknownObject === blankObject) {
 // We never get here
 // Even though unknownObject is empty, like blankObject, it holds a
 // different reference to a different memory location
}

Many JavaScript libraries, like Underscore and Lodash, provide an isEmpty() method
for checking objects. However, the Object.keys() test is just as easy.

7.6 Merging the Properties of Two Objects
Problem
You’ve created two simple objects with properties, and you want to combine their
data into a single object.

Solution
Use the spread operator (...) to expand both objects, and assign them to a new
object:

7.6 Merging the Properties of Two Objects | 155

const address = {
 country: 'Australia', city: 'Sydney', streetNum: '412',
 streetName: 'Worcestire Blvd'
};

const customer = {
 firstName: 'Lisa', lastName: 'Stanecki'
};

const customerWithAddress = {...customer, ...address};
console.log(customerWithAddress);
// The customerWithAddress now has all six properties

Discussion
Merging two objects is an easy operation, but not without potential problems. If both
objects have properties with the same name, the properties from the second object
(that’s address in the previous example) will quietly overwrite the properties from
the first object. Here’s a modified version of the example that demonstrates the
problem:

const address = {
 country: 'Australia', city: 'Sydney', streetNum: '412',
 streetName: 'Worcestire Blvd'
};

const customer = {
 firstName: 'Lisa', lastName: 'Stanecki', country: 'South Korea'
};

const customerWithAddress = {...customer, ...address};
console.log(customerWithAddress.country); // Shows 'Australia'

In this example, there are two instances of the country property. When the two
objects are merged, the customer object is expanded first, followed by the address
object. As a result, the address.country property overwrites the customer.country
property.

7.7 Customizing the Way a Property Is Defined
Problem
You can easily slap a new property onto an object. But sometimes you need to explic‐
itly customize your property so you have more control of how it’s used.

156 | Chapter 7: Objects

Solution
Instead of creating a property by assigning to it, use the Object.defineProperty()
method to define it. For example, consider the following object:

const data = {};

Let’s say you want to add the following two properties, with the given characteristics:

type

Initial value set and can’t be changed, can’t be deleted or modified, but can be
enumerated

id

Initial value set, but can be changed, can’t be deleted or modified, and can’t be
enumerated

Use the following JavaScript:

const data = {};

Object.defineProperty(data, 'type', {
 value: 'primary',
 enumerable: true
});

// Attempt to change the read-only property
console.log(data.type); // primary
data.type = 'secondary';
console.log(data.type); // nope, still primary

Object.defineProperty(data, 'id', {
 value: 1,
 writable: true
});

// Change this modifiable property
console.log(data.id); // 1
data.id = 300;
console.log(data.id); // 300

// See what properties appear during enumeration
for (prop in data) {
 console.log(prop); // only type displays
}

In this example, attempting to change the read-only property fails silently. More com‐
monly, you’ll be in strict mode, either because your code is in a module (see Recipe
8.9) or because you’ve added the 'use strict'; directive to the top of your Java‐
Script file. In strict mode, trying to set a read-only property interrupts your code with
a TypeError.

7.7 Customizing the Way a Property Is Defined | 157

Discussion
The defineProperty() is a way of adding a property to an object other than direct
assignment that gives you some control over its behavior and state. Even if all you do
with defineProperty() is set the property name and value, it’s not the same as
simply setting the property. That’s because the properties created with defineProp
erty() are read-only and nonenumerable by default.

The defineProperty() method takes three arguments: the object you’re setting the
property on, the name of the property, and a descriptor object that configures the
property. Here’s where things get a bit more interesting. There are actually two types
of descriptors you can use. The example in the solution uses a data descriptor, which
has four details you can set:

configurable

Controls whether the property descriptor can be changed. It’s false by default.

enumerable

Controls whether the property can be enumerated. It’s false by default.

value

Sets the initial value for the property.

writable

Controls whether the property value can be changed. It’s false by default.

Instead of using a data descriptor, you can use an accessor descriptor, which supports
a slightly different set of options:

configurable

Same as for a data descriptor

enumerable

Same as for a data descriptor

get

Sets a function to use as a property getter, which returns the property value

set

Sets a function to use as a property setter, which applies the property value

Here’s an example that uses defineProperty() with an accessor descriptor:

const person = {
 firstName: 'Joe',
 lastName: 'Khan',
 dateOfBirth: new Date(1996, 6, 12)
};

158 | Chapter 7: Objects

Object.defineProperty(person, 'age', {
 configurable: true,
 enumerable: true,
 get: function() {
 // Calculate the difference in years
 const today = new Date();
 let age = today.getFullYear() - this.dateOfBirth.getFullYear();

 // Adjust if the bithday hasn't happened yet this year
 const monthDiff = today.getMonth() - this.dateOfBirth.getMonth();
 if (monthDiff < 0 ||
 (monthDiff === 0 && today.getDate() < this.dateOfBirth.getDate())) {
 age -= 1;
 }

 return age;
 }
});

console.log(person.age);

Here defineProperty() creates a computed property (age) that performs a calcula‐
tion using a different property (birthdate). (You’ll note that you can refer to other
instance properties in a setter or getter using this.) At this point, the design of the
object is becoming a bit too ambitious for ad hoc creation with object literal syntax.
You’ll do better using a formal class, which has a more natural way of exposing the
same property getter and setter feature (Recipe 8.2).

You can use defineProperty() to change an existing property rather than add a new
one. In fact, the syntax is exactly the same—the only difference is that the property
name you specify already exists in the object. However, there’s one restriction. If the
property is set to be nonconfigurable, you’ll get a TypeError when you call define
Property() on it.

See Also
Recipe 8.2 explains how properties are set on classes, which partially overlaps with
the defineProperty() approach. Recipe 7.8 covers freezing an object to prevent
property changes.

7.8 Preventing Any Changes to an Object
Problem
You’ve defined your object, and now you want to make sure that its properties aren’t
redefined or edited by other code.

7.8 Preventing Any Changes to an Object | 159

Solution
Use Object.freeze() to freeze the object against any and all changes:

const customer = {
 firstName: 'Josephine',
 lastName: 'Stanecki'
};

// freeze the object
Object.freeze(customer);

// This statement throws an error in strict mode
customer.firstName = 'Joe';

// So does an attempt to add a property
customer.middleInitial = 'P';

// Or remove one
delete customer.lastName;

When you attempt to change a frozen object, one of two things will happen. If strict
mode is on, a TypeError exception is thrown. If strict mode is off, the operation fails
silently—the object is not changed but your code continues to execute. Strict mode is
always on in modules (see Recipe 8.9) or if you add the 'use strict'; directive to
the top of your JavaScript file.

Discussion
As you know, objects are reference types and JavaScript allows you to change them in
any way. You can change property values and add or remove properties, even if you’ve
declared your object variable with const.

However, JavaScript also includes some static methods in the Object class that you
can use to lock down your object. You have three choices, listed here from least to
most restrictive:

Object.preventExtensions()

Prevents you from adding new properties. However, you can still set property
values. You can also delete properties and configure properties with
Object.getOwnPropertyDescriptor().

Object.seal()

Prevents properties from being added, removed, or configured. However, you
can still set property values. This is sometimes used to catch assignments to non‐
existent properties, which is a silent mistake.

160 | Chapter 7: Objects

Object.freeze()

Disallows property modifications of any kind. You can’t configure properties, add
new properties, or set property values. The object becomes immutable.

If you’re using strict mode (as you always will be, except when writing test code in the
console), attempting to change a frozen object throws a TypeError exception. If
you’re not using strict mode, attempts to change a property will fail silently, leaving
the original property values but allowing the code to continue.

You can check if an object is frozen using Object.isFrozen(), the companion
method:

if (Object.isFrozen(obj)) ...

7.9 Intercepting and Changing Actions on an Object
with a Proxy
Problem
You want to run code when certain actions take place with an object, but you don’t
want to put your code inside the object.

Solution
The Proxy class allows you to intercept a variety of different actions on any object.
The following example uses a proxy to perform validation on an object named prod
uct. The proxy ensures that code can use a property that doesn’t exist, or use a non‐
numeric data type to set a number:

// This is the object that we'll watch with the proxy
const product = {name: 'banana'};

// This is the handler that the proxy uses to intercept traps
const propertyChecker = {
 set: function(target, property, value) {
 if (property === 'price') {
 if (typeof value !== 'number') {
 throw new TypeError('price is not a number');
 }
 else if (value <= 0) {
 throw new RangeError('price must be greater than zero');
 }
 }
 else if (property !== 'name') {
 throw new ReferenceError(`property '${property}' not valid`);
 }
 target[property] = value;
 }

7.9 Intercepting and Changing Actions on an Object with a Proxy | 161

};

// Create the proxy
const proxy = new Proxy(product, propertyChecker);

// Now, modify the product object through the proxy object
proxy.name = 'apple';

// This throws a ReferenceError
proxy.type = 'red delicious';

// This throws a TypeError
proxy.price = 'three dollars';

// This throws a RangeError
proxy.price = -1.00;

// This bypasses the proxy and succeeds
product.price = -1.00;

Once you’ve created a useful proxy that works on one property, you
can reuse it to intercept actions on other properties or other
objects.

Discussion
The Proxy object wraps an object and can be used to trap specific actions, and then
provide additional or alternative behaviors based the action and the object’s data at
the time of the action.

When you create a Proxy, you supply two parameters: the object you want to watch,
and the handler that can intercept the operations you choose. In the solution shown
here, the handler only intercepts property set operations. Each time it intercepts a
property set action, it receives the target object, the property that’s being set, and the
new property value. The function then tests to see if the property being set is price. If
so, it then checks to see if it’s a number. If it isn’t, a TypeError is thrown. If it is, then
the value is checked to make sure it’s greater than zero. If it’s not, then a RangeError
is thrown. Finally, the handler checks to see if the property is name. If it isn’t, the final
exception, a ReferenceError, is thrown. If none of the error conditions are triggered,
then the property is assigned the value, as usual.

The Proxy object supports a considerable number of traps, which are listed in
Table 7-2. The table lists each trap, followed by the parameters the handler function
expects, expected return value, and how it’s triggered.

162 | Chapter 7: Objects

Table 7-2. Proxy traps
Proxy trap Function parameters Expected

return
value

How the trap is triggered

getOwnProperty
Descriptor

target, name desc or
undefined

Object.getOwnPropertyDe
scriptor(proxy,name)

getOwnPropertyNames target string Object.getOwnProperty
Names(proxy)

getPrototypeOf target any Object.getPrototy
peOf(proxy)

defineProperty target, name, desc Boolean Object.defineProp
erty(proxy,name,desc)

deleteProperty target, name Boolean Object.deleteProp
erty(proxy,name)

freeze target Boolean Object.freeze(target)

seal target Boolean Object.seal(target)

preventExtensions target Boolean Object.preventExten
sions(proxy)

isFrozen target Boolean Object.isFrozen(proxy)

isSealed target Boolean Object.isSealed(proxy)

isExtensible target Boolean Object.isExtensible(proxy)

has target, name Boolean name in proxy

hasOwn target, name Boolean ({}).hasOwnProp
erty.call(proxy,name)

get target, name, receiver any receiver[name]

set target, name, value, receiver Boolean receiver[name] = val

enumerator target iterator for (name in proxy) (iterator should
yield all enumerable own and inherited
properties)

keys target string Object.keys(proxy) (return array
of enumerable own properties only)

apply target, thisArg, args any proxy(...args)

construct target, args any new proxy(...args)

Proxies can also wrap built-in objects, such as the Array or Date object. In the follow‐
ing code, a proxy is used to redefine the semantics of what happens when the code
accesses an array. When a get operation takes place, the handler checks the value of
the array at the given index. If it’s a value of zero (0), a value of false is returned;
otherwise, a value of true is returned:

const handler = {
 get: function(array, index) {

7.9 Intercepting and Changing Actions on an Object with a Proxy | 163

 if (array[index] === 0) {
 return false;
 }
 else {
 return true;
 }
 }
};

const numbers = [1,0,6,1,1,0];
const proxy = new Proxy(numbers, handler);

console.log(proxy[2]); // true
console.log(proxy[0]); // true
console.log(proxy[1]); // false

The array value at an index of 2 is not zero, so true is returned. The same is true for
the value at an index of zero. However, the value at the index of 1 is zero, so false is
returned. This behavior holds anytime this array proxy is accessed.

7.10 Cloning an Object
Problem
You want to create an exact copy of a custom object.

Solution
Use the spread operator (...) to unpack your object into a collection of properties,
and put that property list inside brackets {} to build a new object:

const animal = {
 name: 'Red Fox', class: 'Mammalia', order: 'Carnivora',
 family: 'Canidae', genus: 'Vulpes', species: 'Vulpes vulpes'
};

const animalCopy = {...animal};
console.log(animalCopy.species); // 'Vulpes vulpes'

Discussion
You might expect that this statement would copy an object:

const animalCopy = animal;

This works for primitive types, like strings, numbers, and BigInt. But objects are ref‐
erence types, and assigning an object copies the reference. You end up with two vari‐
ables (animal and animalCopy) pointing to the same in-memory object.

164 | Chapter 7: Objects

To properly copy a custom object, you need to create a new object and then iterate
over the old one, copying each of its properties. You could do the long way, using the
in operator (Recipe 7.4). But the spread operator offers a better approach, because
you can compress the work down to a single clean line of code.

When you use the spread operator, you get all the enumerable properties of an object.
This includes all the properties you create using object literal syntax, or any new
property you assign after the fact. However, you can specifically choose to create
nonenumerable properties using the Object.defineProperty() method (as intro‐
duced in Recipe 7.7). Usually, a nonenumerable property is something extra—for
example, a piece of data that another service adds as part of some kind of extensibility
system.

Usually, you don’t want to copy nonenumerable properties, so it
makes sense that the spread operator ignores them. However, other
approaches are possible. JavaScript objects have special built-in
plumbing, like the Object.getOwnPropertyDescriptors()

method, that let you find nonenumerable properties. Recipe 7.4
explains property enumeration in more detail.

You may also see a slightly older cloning approach that uses the Object.assign()
method. This is equivalent to using the spread operator:

const animalCopy = Object.assign({}, animal);

Either way, these operations perform a shallow copy. If your object includes arrays or
other objects as properties, these details won’t be copied. Instead, they’ll be shared
between the original object and the new object. Here’s a demonstration of the issue:

const student = {
 firstName: 'Tazie', lastName: 'Yang',
 testScores: [78, 88, 94, 91, 88, 96]
};

const studentCopy = {...student};

// Now there are two objects sharing the same testScores array
// We can see this if we change some details.
// This affects just the copy:
studentCopy.firstName = 'Dori';
// This affects both objects:
studentCopy.testScores[0] = 56;

console.log(student);
// {firstName: "Tazie", lastName: "Yang", testScores: [56, 88, 94, 91, 88, 96]
console.log(studentCopy);
// {firstName: "Dori", lastName: "Yang", testScores: [56, 88, 94, 91, 88, 96]

7.10 Cloning an Object | 165

This isn’t necessarily a problem, depending on what you’re trying to accomplish. But
if you want to copy more than one layer deep, you’ll need to consider a different clon‐
ing approach that can create a deep copy (Recipe 7.11).

See Also
Recipe 7.11 shows how to take the same basic structure of data (an student object that
holds an array) and create a deep copy of it.

7.11 Making a Deep Copy of an Object
Problem
You want to create an exact copy of a custom object. You want to copy not just the
top-level object, but also every object it references.

Solution
There is no single solution for deep copying an object. Instead, there are a variety of
techniques that developers use, each with its own trade-offs.

The safest approach is to write your own cloning logic that’s specific to the type of
object you want to clone. Here’s an example that makes a deep copy of the student
object introduced in Recipe 7.10.

const student = {
 firstName: 'Tazie', lastName: 'Yang',
 testScores: [78, 88, 94, 91, 88, 96]
};

function cloneStudent(student) {
 // Start with a shallow copy
 const studentCopy = {...student};

 // Now duplicate the array (by expanding it with spread)
 studentCopy.testScores = [...studentCopy.testScores];

 return studentCopy;
}

// Create a truly independent student copy
const studentCopy = cloneStudent(student);

// Verify the arrays are separate
studentCopy.testScores[0] = 56;

console.log(student.testScores[0]); // 78
console.log(studentCopy.testScores[0]); // 56

166 | Chapter 7: Objects

The beauty of this approach is that you know the object, so you know how deep you
should go. In this example, we know that the testScores array holds numbers.
Therefore, you know simple cloning with the spread operator is good enough to
duplicate it. But if the array held objects, you’d need to decide whether to duplicate all
those objects, a technique demonstrated in Recipe 5.6. Or, if testScores was some
other type of collection object (like a Set or Map), you could properly create and fill a
new collection of the corresponding type.

If you want a generic solution that can deep copy any arbitrary object, your best bet
(by far) is to use a prebuilt, pretested routine from a well-known JavaScript library,
like Lodash’s cloneDeep(), which can be imported separately through the lodash.clo
nedeep module.

Discussion
There has been discussion about built-in serialization and deep copying support in
future versions of JavaScript. But right now, deep cloning is a gap you’ll need to patch
yourself.

If you’re making a full-fledged class (Recipe 8.1), consider making your custom clon‐
ing function a method of the class itself:

class Student {
 constructor(firstName, lastName, testScores) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.testScores = testScores;
 }

 clone() {
 return new Student(this.firstName, this.lastName,
 [...this.testScores]);
 }
}

const student = new Student('Tazie', 'Yang', [78, 88, 94, 91, 88, 96]);
const studentCopy = student.clone();

// Verif the arrays are separate
studentCopy.testScores[0] = 56;

console.log(student.testScores[0]); // 78
console.log(studentCopy.testScores[0]); // 56

This example doesn’t use the spread operator. Instead, it creates a new Student object
using the constructor. If you use the spread operator, your copy will be an instance of
the base Object class, not an instance of Student. Your copy will still have the same
properties as the original, but it won’t appear to be a Student if you test it with

7.11 Making a Deep Copy of an Object | 167

instanceof (Recipe 7.1). It also won’t be able to use any methods you add to the Stu
dent class. To avoid these issues, you should always create the correct object type for
your copies.

You might wonder whether it’s possible to create your own a generic object-copying
routine. The problems are more difficult than they seem, and there are many anti-
patterns that are recommended on the web but are likely to cause serious headaches.

A naïve approach with recursive logic will fail catastrophically (with a stack overflow)
for self-referencing object chains. A simple example is when an object references
another object that references the original object. However, subtler versions are sur‐
prisingly common.

Another variation of this problem is if one object has two references to the same
object. For example, consider a ProductCatalog that has an array of Product objects,
some of which refer to the same Supplier object. A naïve approach will create multi‐
ple copies of the Supplier, one for each Product. A more sophisticated implementa‐
tion, like Lodash’s cloneDeep(), tracks references as it goes to make sure it doesn’t
recreate the same object more than once. (The source for its cloning implementation
is a useful antidote for anyone considering reinventing the wheel.)

Another commonly recommended cloning approach is to use JSON serialization to
convert an object to a string representation and back. This runs into problems with
Date objects (which become strings), special values like Infinity, and custom objects
that include functions (which are discarded). Worst of all, you won’t be alerted about
the missing information.

The same considerations come into play if you want to test if two
objects are equal. The === operator will only tell you if the two vari‐
ables point to the same object. It returns false if you have separate
objects with the same data. You could write a generic routine that
finds and compares all the properties of any two objects. However,
the meaning of equality depends on the type of data you’re com‐
paring, so writing your own isEqual() function is always the safest
approach.

7.12 Creating Absolutely Unique Object Property Keys
Problem
You want to add a uniquely named property to an object, and you want to be guaran‐
teed that it won’t clash with any other property name.

168 | Chapter 7: Objects

https://github.com/lodash/lodash/blob/master/.internal/baseClone.js

Solution
Create a new property name using the Symbol type. Then, use that name to set the
property, using key-value syntax:

const newObj = {};

// Set a unique property that will never clash with anything else
const uniqueId = Symbol();
newObj[uniqueId] = 'No two alike';

// Set another one
const anotherUniqueId = Symbol();
newObj[anotherUniqueId] = 'This will not clash, either';

console.log(newObj);

Interestingly, you never actually see the unique identifier that the Symbol type uses. In
this example, here’s the output you’ll get in the console:

{Symbol(): 'No two alike', Symbol(): 'This will not clash, either'}

To access a property created with Symbol, you need to keep track of the variable that
has the property name. You use that to retrieve your value at will:

console.log(newObj[uniqueID]); // 'No two alike'

Discussion
Property name collisions are not a common event, but they are more common in
JavaScript than many other languages. Part of the problem is that properties are
always public. That means that if you’re inheriting from another class (see Recipe
8.8), you need to be aware of every inherited property and make sure not to use the
same name yourself. But the most common cause of naming clashes is if you’re creat‐
ing some kind of extensibility system or service that needs you to add properties to
other people’s objects. In this situation, you won’t know if your properties will conflict
with the properties already in that object, because you don’t own the design of that
object.

There are various workarounds you can use to check for properties and generate ran‐
dom names. But the Symbol type gives you a quick and effective solution. Every Sym
bol is guaranteed to be unique. You create it by calling the Symbol() method. (You
don’t call a constructor with new, because Symbol is a primitive type, not an object.)

Optionally, you can give your symbol a description, which is useful for debugging:

newObj = {};
const propertyName = Symbol('Log Status');
newObj[propertyName] = 'logged';

7.12 Creating Absolutely Unique Object Property Keys | 169

However, the description is not used to create the Symbol. If you create two Symbol
instances with the same description, there will be two completely separate unique
identifiers, which JavaScript stores internally in a global registry of Symbol values.

7.13 Creating Enums with Symbol
Problem
You want to store a small, related group of constants, so you can refer to them by
name in your code.

Solution
Use the Symbol() to set the value for each constant:

// Create three constants to use as an enum
const TrafficLight = {
 Green: Symbol('green'),
 Red: Symbol('red'),
 Yellow: Symbol('yellow')
}

// This function uses the light enum
function switchLight(newLight) {
 if (newLight === TrafficLight.Green) {
 console.log('Turning light green');
 }
 else if (newLight === TrafficLight.Yellow) {
 console.log('Get ready to stop');
 }
 else {
 console.log('Turning light red');
 }
 return newLight;
}

let light = TrafficLight.Green;
light = switchLight(TrafficLight.Yellow);
light = switchLight(TrafficLight.Red);

console.log(light); // shows "Symbol('red')"

Discussion
An enum (or enumerated identifier) is a group of named constants. Enums are useful
anytime you have a variable that can only take a small set of allowed values. By using
the enum values, you make your code clearer. You also reduce the chance of mistakes

170 | Chapter 7: Objects

(versus using magic numbers), because you won’t forget what each number means
and you can’t accidentally use a number that doesn’t have a constant defined for it.

There’s some debate about the proper convention for the capitaliza‐
tion of constants. The Math class puts read-only properties like
Math.PI and Math.E in uppercase. The solution in this example
uses initial capitalization for enum constants and the object that
wraps them, as in TrafficLight.Red.

Often constants are created with numeric values or string values. That’s a particularly
good approach if the constant maps to some other useful bit of information, like the
unit conversion values shown here:

const Units = {
 Meters: 100,
 Centimeters: 1,
 Kilometers: 100000,
 Yards: 91.44,
 Feet: 30.48,
 Miles: 160934,
 Furlongs: 20116.8,
 Elephants: 625,
 Boeing747s: 7100
};

If you don’t have a natural unique value to use for your enum constants, consider
using a Symbol. This saves you from needing to pick your own arbitrary numbers,
and the guaranteed uniqueness of every Symbol ensures that you can’t substitute any
other value. (It also removes the chance that you’ll accidentally use a hard-coded
number in some places and a const variable in other places, which can lead to bug-
causing inconsistencies when you make changes.) The TrafficLight example in this
recipe uses a Symbol for each of its three values.

The drawback to using Symbol is that the underlying value is completely opaque.
That’s why the solution in this recipe gives each Symbol a descriptive name, like Sym
bol('red'). That’s the text you’ll see when you log the Symbol to the console or con‐
vert it to a string. If you don’t supply a descriptive name when you create your Sym
bol, you’ll only see the generic text "Symbol()".

See Also
To look closer at the Symbol data type, see Recipe 7.12.

7.13 Creating Enums with Symbol | 171

CHAPTER 8

Classes

Is JavaScript an object-oriented programming language? The answer depends on who
you ask (and how you phrase the question). But the general consensus is yes, with
some caveats.

Outside of academic circles, object-oriented programming languages usually revolve
around concepts like classes, interfaces, and inheritance. But until recently, JavaScript
was an outlier—an object-oriented programming language built on functions and
prototypes. Then, along came ES6, and all of sudden classes were available as a native
language construct, muddying the waters. Was it just syntactic sugar or a major lan‐
guage evolution?

The answer lies somewhere in between. Overall, ES6 classes are a higher-level lan‐
guage feature built on the familiar foundation of JavaScript prototypes. But the map‐
ping isn’t exact, and the class model introduces some new subtleties that aren’t com‐
pletely captured in the prototype model. Furthermore, it’s likely that classes will sup‐
port new object-oriented features in the future, pushing the two overlapping models
farther apart.

The bottom line is this: today new development favors using classes, but prototype-
based code is still common (and far from obsolete). This chapter focuses on common
patterns using classes, but also explores prototypes.

8.1 Creating a Reusable Class
Problem
You want to create a reusable template for custom objects.

173

Solution
Use the class keyword, and give your class a name. Inside, add a constructor func‐
tion that initializes your object. Here’s a complete Person class example:

class Person {
 constructor(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
}

// Test the Person class by creating an object
// The constructor is invoked when you use the new keyword with the class
const newPerson = new Person('Luke', 'Takei');
console.log(newPerson.firstName); // 'Luke'

In this example, the Person class is a simple package that bundles together two public
fields (firstName and lastName). But it’s easy enough to add methods to your class,
which work like functions but don’t include the function keyword. Here’s how you
would code a Person.swapNames() method:

class Person {
 constructor(firstName, lastName, dateOfBirth) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.dateOfBirth = dateOfBirth;
 }

 // This is a method
 swapNames() {
 // Use a handy shortcut (destructuring assignment) to assign both
 // properties at once
 [this.firstName, this.lastName] = [this.lastName, this.firstName];
 }
}

// Test the Person class
const newPerson = new Person('Luke', 'Takei', new Date(1990, 5, 22));
newPerson.swapNames();
console.log(newPerson.firstName); // 'Takei'

Discussion
In essence of a JavaScript class is the constructor function. In fact, behind the scenes a
JavaScript class is a constructor function, and all methods are attached to that func‐
tion’s prototype. That means that a method like Person.swapNames() is shared
between all the instances of the Person class, because they share the same prototype.
(To dig deeper into this behind-the-scenes reality, check out the constructor pattern
in Recipe 8.4.)

174 | Chapter 8: Classes

Classes have their own syntax requirements that you must follow:

• Constructor functions are always named constructor.
• Neither constructors nor methods use the keyword function, although they are

declared like functions in every other respect.

When you write a constructor, you use this to create new public fields on the current
object. You can then refer to these fields wherever you need them in your class meth‐
ods, as long as you remember to always prefix the variable name with this. You can
also access these fields outside of the class code, using the familiar dot syntax.

You might wonder how you can change this accessibility—say, make your fields pri‐
vate and wrap them with public properties. The answer is that currently you can’t—at
least, not without a home brew solution that introduces complications of its own. For
a full discussion of the subject, see Recipe 8.2.

As with functions, JavaScript allows you to create classes in an expression. Here’s an
example:

const personExpression = class Person {
 constructor(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
}

// This won't work, because there is no Person class to be found in scope
const newPerson = new Person('Luke', 'Takei');

// This works because you can create a new instance of the variable that holds
// the class expression
const newPerson = new personExpression('Luke', 'Takei');

This is a specialized—but not rare—technique. It allows you to avoid adding a class to
the current scope. For example, that might be useful in this example if you were wor‐
ried that there might already be a definition for another Person class. (Another way
to solve the problem of name collisions is by using modules, as described in Recipe
8.9.)

See Also
For the old-fashioned constructor pattern for object creation, see Recipe 8.4. To see
how to create class properties, refer to Recipe 8.2. To learn how to connect classes in
an inheritance relationship, see Recipe 8.8.

8.1 Creating a Reusable Class | 175

Extra: Multiple Constructors
In most object-oriented languages it’s possible to create multiple constructors, so the
code that creates the class has a choice of what parameters to specify. But JavaScript
doesn’t support constructor overloading or method overloading.

This isn’t quite as limiting as it seems, because JavaScript is notoriously loose with
function arguments and never forces you to supply them. So even though Person has
a single three-argument constructor, these are all valid ways to create an instance
without supplying every argument:

const noDatePerson = new Person('Luke', 'Takei');
const firstNamePerson = new Person('Luke');
const noDataPerson = new Person();

Every class has exactly one constructor, and it always runs. Even if you don’t specify
any arguments when you create a Person object, the three-argument constructor still
runs and sets this.firstName, this.lastName, and this.birthDate (all of which
will be set to undefined). If this isn’t acceptable, you can set default parameter values,
just as you do with ordinary functions (see Recipe 6.3).

If you create a class without a constructor, JavaScript automatically
gives it a blank no-argument constructor. This detail becomes sig‐
nificant if you decide to use class inheritance (Recipe 8.8).

Another way to deal with optional arguments is using an object literal that gets
passed to the constructor. That way the caller can choose to set only the named prop‐
erties they want to use:

const partialInfoPerson1 = new Person({
 lastName: "Takei",
 birthDate: new Date(1990, 04, 23)
});
const partialInfoPerson2 = new Person({firstName: 'Luke', lastName: 'Takei'});

This is a common JavaScript design pattern that’s described in detail in Recipe 6.5.
One advantage it provides is that you don’t need to worry about the order of proper‐
ties in the object literal. A disadvantage is that there’s nothing to prevent you from
accidentally creating incorrectly named parameters that will be silently ignored:

// The Person class will look for a firstName property in this object literal
// It will quietly ignore the firstname property
const partialInfoPerson2 = new Person({firstname: 'Luke'});

Another possible approach is to create a single constructor for your class, but add
static methods that create differently configured instances of the object. Depending

176 | Chapter 8: Classes

on the implementation, this is sometimes called the builder pattern or factory pattern.
It’s described in Recipe 8.7.

8.2 Adding Properties to a Class
Problem
You want to add property getters and setters to wrap your class data.

Solution
First, consider if properties are the best solution for your use case. (As explained in
the discussion, they have well-known limitations and are slightly controversial.) If
you decide to use properties, you can create get and set methods for each one. Here’s
an example with a computed property, called age, which is calculated from the date
stored in this.dateOfBirth:

class Person {
 constructor(firstName, lastName, dateOfBirth) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.dateOfBirth = dateOfBirth;
 }

 // This is a getter for the age property
 get age() {
 if (this.dateOfBirth instanceof Date) {
 // Calculate the difference in years
 const today = new Date();
 let age = today.getFullYear() - this.dateOfBirth.getFullYear();

 // Adjust if the bithday hasn't happened yet this year
 const monthDiff = today.getMonth() - this.dateOfBirth.getMonth();
 if (monthDiff < 0 ||
 (monthDiff === 0 && today.getDate() < this.dateOfBirth.getDate())) {
 age -= 1;
 }

 return age;
 }
 }
}

// Test the Person class
const newPerson = new Person('Luke', 'Takei', new Date(1990, 5, 22));
console.log(newPerson.age);

It’s up to you whether you include only a getter, only a setter, or both. Here’s an exam‐
ple that uses the property pattern to apply basic validation to the date of birth:

8.2 Adding Properties to a Class | 177

class Person {
 constructor(firstName, lastName, date) {
 this.firstName = firstName;
 this.lastName = lastName;

 // Set the date using the property setter so a Person
 // can't be created in an invalid state
 this.dateOfBirth = date;
 }

 // Just return the date with no extra processing
 get dateOfBirth() {
 return this._dateOfBirth;
 }

 // Don't allow dates in the future
 set dateOfBirth(value) {
 if (value instanceof Date && value < Date.now()) {
 // This is a valid date
 this._dateOfBirth = value;
 }
 else {
 throw new TypeError('Birthdate needs to be a valid date in the past');
 }
 }
}

// Test the date restrictions
const newPerson = new Person('Luke', 'Takei', new Date(1990, 5, 22));
console.log(newPerson.dateOfBirth);

// This change is allowed
newPerson.dateOfBirth = new Date(2010, 10, 10);
console.log(newPerson.dateOfBirth);

// This change causes an error
newPerson.dateOfBirth = new Date(2035, 10, 10);

This example throws an exception (Recipe 10.5) to notify the caller
when they attempt to set an invalid value. This is a reasonable
design decision, but it’s not always the best choice. Having an error
occur when setting a property (or even worse, when attempting to
create a Person with an invalid date) is not expected behavior in
JavaScript, and the potential error may not be anticipated by the
calling code. (The alternative—silently ignoring the offending error
—is also risky.) In the end, a better approach may be to use meth‐
ods to supply potentially problematic data instead of properties.

178 | Chapter 8: Classes

Discussion
There are many reasons you might consider creating property procedures. Some
examples include:

• To calculate a value (like Person.age)
• To transform a field into another representation
• To perform validation before updating a field
• To add hooks for some other service (like logging or testing) that should happen

every time a field is read or set
• To use some kind of lazy initialization, which only creates or calculates a property

value when it’s needed
• To expose a single property of an object that’s stored in a field

This recipe presents two examples. The Person.age property is a read-only compu‐
ted property. The Person.dateOfBirth property is a settable property with
validation.

When you use properties, you must be careful to avoid name collisions. The field that
stores the value cannot have the same name as the property or the constructor
parameter. To understand why, let’s take a closer look at the dateOfBirth example.
The constructor accepts a date parameter, which it sets like this:

this.dateOfBirth = date;

At first glance, you might assume this statement stores the date in a public field
named this.dateOfBirth (which is the usual pattern). But in this case, this.dateOf
Birth refers to the dateOfBirth property. Its setter takes over:

set dateOfBirth(value) {
if (value instanceof Date && value < Date.now()) {
 // This is a valid date
 this._dateOfBirth = value;
}
else {
 throw new TypeError('Birthdate needs to be a valid date in the past');
}

If the new value passes the test, it’s stored in a public field named this._dateOf
Birth. The awkward naming is necessary, because both this.dateOfBirth (the prop‐
erty) and this._dateOfBirth (the field) have the same scope. If you use the same
name for both, you’ll end up calling the wrong one (and triggering an infinite
sequences of calls that will eventually overflow the stack).

The leading underscore in a variable name like _dateOfBirth has another purpose.
Currently, JavaScript doesn’t have any way to create private fields. But the underscore

8.2 Adding Properties to a Class | 179

signals that a field is supposed to be private to the class. Then, you trust that the call‐
ing code will avoid using this field. If you don’t follow this convention, you’re almost
certain to run into a problem where the calling code accidentally uses the field instead
of the property. And even if you do observe this pattern, there’s no guarantee that the
calling code will follow it.

Many JavaScript developers argue that a more natural pattern in JavaScript is to use
setXxx() and getXxx() methods:

class Person {
 constructor(firstName, lastName, date) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.setDateOfBirth(date);
 }

 getDateOfBirth() {
 return this._dateOfBirth;
 }

 setDateOfBirth(value) {
 if (value instanceof Date && value < Date.now()) {
 // This is a valid date
 this._dateOfBirth = value;
 }
 else {
 throw new TypeError('Birthdate cannot be in the future');
 }
 }
}

const newPerson = new Person('Luke', 'Takei', new Date(1990, 5, 22));
console.log(newPerson.getDateOfBirth());

// This change is allowed
newPerson.setDateOfBirth (new Date(2010, 10, 10));
console.log(newPerson.getDateOfBirth());

// This change causes an error
newPerson.setDateOfBirth (new Date(2035, 10, 10));

This approach is a bit more cumbersome, but it has some advantages. It makes it
obvious that you’re calling a method and running code, not simply setting a variable.
As a result, the calling code can expect exceptions from type-checking or other side
effects. Methods also prevent problems like this:

// This isn't the property you want (that's dateOfBirth) but JavaScript
// creates it anyway, and you won't notice the mistake
person.DateOfBirth = new Date(2035, 10, 10);

// You can't call a function that doesn't exist, so this typo

180 | Chapter 8: Classes

// ("Data" instead of "Date") always fails and won't be ignored
person.setDataOfBirth(new Date(2035, 10, 10));

Both the Google JavaScript Style Guide and the often-consulted
Airbnb JavaScript Style Guide discourage the usage of property get‐
ters and setters but allow setXxx() and getXxx() methods.

There’s one more wrinkle to consider with properties. Behind the scenes, JavaScript
uses the Object.defineProperty() method to implement your property getters and
setters. Most of the time, that works perfectly well. However, there are specialized
cases when you may decide to use defineProperty() because it allows you to config‐
ure metadata details you can’t otherwise set. For example, if you want to make a prop‐
erty nonconfigurable (so its implementation can’t be altered) or nonenumerable (so it
won’t show up in a for...in loop), you need to explicitly call defineProperty(). In
this situation, the usual approach is to call defineProperty in the constructor.

See Also
If you want to use property procedures to react to property changes and trigger other
actions (like logging), consider using proxies instead (Recipe 7.9). For more about
creating properties with Object.defineProperty(), see Recipe 7.7.

Extra: Private Fields
Currently, JavaScript does not have a way to make member variables (those created
with this) private. Many workarounds are used, and many of them are dangerously
creative. The most popular implementation uses a WeakMap to store internal data. It
works, but it adds a dangerous layer of extra homemade complexity.

A better approach is to use the underscore convention (like _firstName) to name
fields that should not be accessed outside a class. In the future, JavaScript will patch
this gap and adopt some version of the private class fields proposal. Right now, the
private field syntax uses a # to identify private fields, which can be declared at the
beginning of your class block, making your class self documenting. Here’s what that
looks like:

// A likely implementation of private field syntax in the near future
class Person {
 #firstName;
 #lastName;

 constructor(firstName, lastName) {
 this.#firstName = firstName;
 this.#lastName = lastName;

8.2 Adding Properties to a Class | 181

https://google.github.io/styleguide/jsguide.html
https://github.com/airbnb/javascript
https://github.com/tc39/proposal-class-fields

 }

 // Wrap the fields in properties
 get firstName() {
 return this.#firstName;
 }
 set firstName(name) {
 this.#firstName = name;
 }

 get lastName() {
 return this.#lastName;
 }
 set lastName(name) {
 this.#lastName = name;
 }
}

If you want to experiment with these features today, you can use Babel to transpile
your code, although be aware that the syntax may change.

Interestingly, this is one case where JavaScript classes have less functionality than the
old-fashioned constructor pattern (Recipe 8.4). That’s because the constructor pattern
can use closures to store private variables, as explained in Recipe 6.6.

8.3 Giving a Class a Better String Representation
Problem
You want to choose a suitable text representation that will be used for your object
when it’s converted to a string.

Solution
Add a method named toString() to your class and return the string you want to use:

class Person {
 constructor(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 toString() {
 return `${this.lastName}, ${this.firstName}`;
 }
}

const newPerson = new Person('Luke', 'Takei');
console.log(newPerson.toString()); // 'Takei, Luke'

182 | Chapter 8: Classes

https://babeljs.io

Discussion
The default implementation of toString() for all objects displays the unhelpful text
[object Object]. You can set your own text by adding a toString() method.

The toString() method can be called explicitly (as in this example), or it can be
called implicitly when your object is converted to a string. For example, if you concat‐
enate your object with a string, toString() is called automatically:

const newPerson = new Person('Luke', 'Takei');
const message = 'The name is ' + newPerson;

// Now message = 'The name is Takei, Luke'
// which is much better than 'The name is [object Object]'

However, calling console.log() on an object, on its own, does not trigger your
toString(). That’s because console.log() has an extra bit of logic that iterates over
the properties of your object and uses that to build its own custom string. You can get
around this by calling toString() yourself, or using a template literal (Recipe 2.5).
Here’s a comparison:

const newPerson = new Person('Luke', 'Takei');

console.log(newPerson); // 'Person {firstName: "Luke", lastName: "Takei"}'
console.log(`${newPerson}`); // 'Takei, Luke'
console.log(newPerson+''); // 'Takei, Luke'

8.4 Using the Constructor Pattern to Make a Custom Class
Problem
You want to create a reusable, class-like entity in your code. You want to use the tradi‐
tional constructor pattern because it matches your existing code.

Solution
The constructor pattern is a slightly dated but still acceptable pattern for object cre‐
ation. Even if you plan to use formal classes (Recipe 8.1), it’s worth knowing the con‐
structor pattern, because you’re likely to encounter it out in the wild. It can also help
you understand how JavaScript classes work.

Here’s one of the Person class examples from Recipe 8.1, but written as a function
with the constructor pattern:

function Person(firstName, lastName) {
 // Store public data using 'this'
 this.firstName = firstName;
 this.lastName = lastName;

8.4 Using the Constructor Pattern to Make a Custom Class | 183

 // Add a nested function to represent a method
 this.swapNames = function() {
 [this.firstName, this.lastName] = [this.lastName, this.firstName];
 }
}

// Create a Person object
const newPerson = new Person('Luke', 'Takei');
console.log(newPerson.firstName); // 'Luke'

newPerson.swapNames();
console.log(newPerson.firstName); // 'Takei'

Notice that the code for using a function-based object is the same as the code for
using a class-based with an identical constructor. As a result, you can usually migrate
code from the constructor pattern to formal classes without disrupting the rest of
your application.

Discussion
Classes were a relative latecomer to the JavaScript language. Before they existed,
developers used functions in their place. This works because JavaScript allows you to
create new instances of a function (function objects) using the new keyword. Every
function gets its own scope, with its own local data.

The constructor pattern exists in several variants. The most common approach is to
create a function with the name of your “class” and accept all the constructor parame‐
ters you need to create an instance. Inside your function, you use this to create pub‐
lic fields. You can also create ordinary variables, which won’t be visible to outside
code, and are only usable by the constructor and any nested functions.

There are two common ways to create method-like functions. The approach shown
here creates each method using a function expression, and makes them publicly
accessible with this. Because the method functions are wrapped inside the construc‐
tor function, they have the same scope as the constructor, and they have access to all
the same variables and local variables. (Technically, the constructor function creates a
closure, as explained in Recipe 6.6.)

The other way to create methods is to explicitly add them to the prototype of your
constructor function. If you haven’t encountered prototypes yet, they’re a basic (but
mostly hidden) ingredient that allows objects to share functionality. When you
attempt to call a method (like Person.swapNames()), JavaScript looks for the swap
Names() function in the Person constructor. If it doesn’t find it, JavaScript looks for a
swapNames() function in the prototype. The process gets a bit more involved when
inheritance is involved, because JavaScript will search an entire prototype chain look‐
ing for a function, as explained in Recipe 8.8.

184 | Chapter 8: Classes

So how do you add a function to a prototype? You can do it directly, using the proto
type property:

function Person(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
}

// Add function to the Person prototype to represent a method
Person.prototype.swapNames = function() {
 [this.firstName, this.lastName] = [this.lastName, this.firstName];
}

const newPerson = new Person('Luke', 'Takei');
newPerson.swapNames();
console.log(newPerson.firstName); // 'Takei'

This example behaves mostly the same as the version with the nested constructor
functions. But there is a difference. Before, the swapNames() existed independently in
each Person object. Now, there is a single swapNames() function set in the prototype
and shared among all Person instances. This is important if you plan to create an
inheritance relationship linking prototypes together (see “Extra: Prototype Chains”
on page 195). It’s also significant if you attempt to use private variables with a closure
(Recipe 6.6), because functions attached to the prototype don’t exist in the same con‐
text as the constructor function, and won’t have access to private variables defined in
the constructor.

Using prototypes, you can alter the behavior of built-in JavaScript
objects. For example, you can add functionality to the base Array
or String types. This sounds like a nifty feature, but it’s rife with
complications and is strongly discouraged (except perhaps for
building frameworks). Blurring the distinction between standard
and custom code invites confusion, and creates the possibility for
nonstandard patterns, poorly optimized code, and hidden mis‐
takes. It can also fail outright if more than one person attempts to
extend a built-in object with the same name.

It’s interesting to compare the constructor pattern to the class keyword shown in
Recipe 8.1. Most of the code is exactly the same in both examples:

• You write a constructor function that accepts parameters and initializes your
object.

• You use the this keyword to create publicly accessible fields.

8.4 Using the Constructor Pattern to Make a Custom Class | 185

• You use the new keyword when creating the object (only now it’s technically an
instance of a function, not a class).

But there are also some subtle differences, most obviously in syntax. In the construc‐
tor pattern there are no dedicated properties, and methods are declared separately,
not nested in the constructor or explicitly attached to the constructor’s prototype
(although that’s exactly what happens at runtime).

See Also
Recipe 8.1 demonstrates the preferred way to create a custom object template in
modern JavaScript, which is using the class keyword.

8.5 Supporting Method Chaining in Your Class
Problem
You want to define your class methods in such a way that several methods can be
called in quick succession, in a single statement.

Solution
Make sure to return the current object at the end of each method that should support
method chaining. In a custom class, this is usually as simple as adding a return this
statement.

Here’s an example of a custom Book object with two methods, raisePrice() and
releaseNewEdition(), both of which use method chaining:

class Book {
 constructor(title, author, price, publishedDate) {
 this.title = title;
 this.author = author;
 this.price = price;
 this.publishedDate = publishedDate;
 }

 raisePrice(percent) {
 const increase = this.price*percent;
 this.price += Math.round(increase)/100;
 return this;
 }

 releaseNewEdition() {
 // Set the pulishedDate to today
 this.publishedDate = new Date();
 return this;
 }

186 | Chapter 8: Classes

}

const book = new Book('I Love Mathematics', 'Adam Up', 15.99,
 new Date(2010, 2, 2));

// Raise the price 15% and then change the edition, using method chaining
console.log(book.raisePrice(15).releaseNewEdition());

Discussion
The ability to directly call one method on the result of another method, in a single
code statement, is known as method chaining. Here’s an example with a string and the
replaceAll() method. Because replaceAll() returns a new string, you can call
replaceAll() again on that string, and get a third string:

const safePieceOfHtml =
 originalPieceOfHtml.replaceAll('<', '<').replaceAll('>', '>');

Method chaining doesn’t have to be with the same method. It works with any method
that returns an object. Consider how this code joins two arrays and then sorts the
resulting array by chaining a call to concat() with one to sort():

const evens = [2, 4, 6, 8];
const odds = [1, 3, 5, 7, 9];

const evensAndOdds = evens.concat(odds).sort();
console.log(evensAndOdds); // [1, 2, 3, 4, 5, 6, 7, 8, 9]

Chaining is used extensively in built-in JavaScript objects and in many JavaScript
libraries and frameworks. To use this pattern in your own classes, you simply return a
reference to this at the end of your method. The calling code can then ignore this
reference, or use it to perform method chaining.

In the current example, calling a method on Book changes the object and returns a
reference to the changed object. The caller can ignore the return value, because they
already have a reference to the Book object. However, many functional programming
purists do something different. They write methods that return a changed object
copy, while keeping the original object unchanged. Here’s how you’d implement this
pattern:

class Book {
 constructor(title, author, price, publishedDate) {
 this.title = title;
 this.author = author;
 this.price = price;
 this.publishedDate = publishedDate;
 }

 getRaisedPriceBook(percent) {
 const increase = this.price*percent;

8.5 Supporting Method Chaining in Your Class | 187

 return new Book(this.title, this.author, Math.round(increase)/100,
 this.publishedDate);
 }

 getNewEdition() {
 return new Book(this.title, this.author, this.price, new Date());
 }
}

This pattern doesn’t affect the way method chaining works, but it does mean the
caller needs to take the return value, or they won’t see the changes.

8.6 Adding Static Methods to a Class
Problem
You want to create a utility method that’s tied to your class, but can be called without
creating an object.

Solution
Place the static keyword before the method. Make sure your method doesn’t
attempt to use any instance fields, properties, or methods. Here’s an example with a
static method named Book.isEqual():

class Book {
 constructor(isbn, title, author, publishedDate) {
 this.isbn = isbn;
 this.title = title;
 this.author = author;
 this.publishedDate = publishedDate;
 }

 static isEqual(book, otherBook) {
 if (book instanceof Book && otherBook instanceof Book) {
 // Books are deemed equal if their ISBNs match,
 // irrespective of dashes
 return (book.isbn.replaceAll('-','') === otherBook.isbn.replaceAll('-',''));
 }
 else {
 return false;
 }
 }
}

You access a static method through the class name (as in Book.isEqual()). You can’t
access it through an object variable.

const firstPrinting = new Book('978-3-16-148410-0', 'A.I. Is Not a Threat',
 'Anne Droid', new Date(2019, 2, 2));

188 | Chapter 8: Classes

const secondPrinting = new Book('978-3-16-148410-0', 'A.I. Is Not a Threat',
 'A. Droid', new Date(2021, 2, 10));

// Compare the books with the static method
const sameBook = Book.isEqual(firstPrinting, secondPrinting);
// sameBook = true

// This doesn't work, because isEqual isn't available in Book instances
sameBook = firstPrinting.isEqual(firstPrinting, secondPrinting);

Discussion
Static methods have functionality that’s logically related to a class, but not tied to a
specific instance. The Array.isArray() method is a good example—it lets you test
whether any object is an array, without forcing you to create an array object first.
Occasionally, classes are made up entirely of static methods. JavaScript’s Math class is
a good example.

In the current example, you might want to give the Book class static methods related
to processing or verifying ISBNs. You can also use static methods to make decisions
about how objects of a certain class should be copied or compared. The solution
demonstrates this principle with a static isEqual() method. You could also add a
compare() method that would let you sort your objects in array (as shown in Recipe
5.16).

In a static method, this refers to the current class, not an object instance. This can
lead to problems, because your code will still be allowed to store data in this (or
retrieve it). It just might not have the effect you expect. Essentially, everything in the
static this acts like a class-scoped global variable, which is best avoided.

If you want one static method to call another static method, you
can use the this keyword. For example, if you want to call the
static isEqual() from another static method in the Book class, you
can refer to it as Book.isEqual() or this.isEqual(), which may
be clearer.

Property set and get methods can also be static, although their usage is sometimes
controversial. For example, you can use a static getter to store a constant, like this:

class Book {
 constructor(isbn, title, author, publishedDate) {
 this.isbn = isbn;
 this.title = title;
 this.author = author;
 this.publishedDate = publishedDate;
 }

8.6 Adding Static Methods to a Class | 189

 // Create a static, read-only Books.isnbnPrefix property
 static get isbnPrefix() {
 return '978-1';
 }
}

You can write a static setter, which acts like a global variable in your application.
However, because there’s no static constructor, you’ll be forced to run code some‐
where to assign the initial value. This isn’t particularly clear, so a new static property
syntax is under development, and currently supported by more modern browser ver‐
sions. It allows you to set a public static property using a variable-like syntax:

class Book {
 // Create a static Book.isbnPrefix property
 static isbnPrefix = '978-1';

 constructor(isbn, title, author, publishedDate) {
 this.isbn = isbn;
 this.title = title;
 this.author = author;
 this.publishedDate = publishedDate;
 }
}

However, it’s best to avoid this language feature altogether—or at least until some
future data when its use in JavaScript is more normative.

8.7 Using a Static Method to Create Objects
Problem
You want to create a method that generates a preconfigured object, possibly to get
around JavaScript’s single-constructor limitation.

Solution
Add a static method to your class that creates and returns the object you want. Here’s
an example with a Book class that you can create through the constructor or through
the static Book.createSequel() method:

class Book {
 constructor(title, firstName, lastName) {
 this.title = title;
 this.firstName = firstName;
 this.lastName = lastName;
 }

 static createSequel(prevBook, title) {
 return new Book(title, prevBook.firstName, prevBook.lastName);

190 | Chapter 8: Classes

https://oreil.ly/7O28H
https://oreil.ly/7O28H

 }
}

Here’s how you use the static method:

// Create a Book with the usual constructor
const book = new Book('Good Design', 'Polly', 'Morfissim');

// Create a sequel with the static method
const sequel = Book.createSequel(book, 'Even Gooder Design');
console.log(sequel);

Discussion
Using static methods, you can implement different types of creational patterns—basi‐
cally, patterns that help you create preconfigured instances of a class. For example, the
JavaScript Date class has a now() property that returns a new Date object that’s auto‐
matically set to the current date and time.

This approach is particularly suited to creating more complex combinations of
objects. For example, you could extend the previous example with a Book.create
Trilogy() method to get an array of three Book objects. In this example, the Book
objects share a single Author object, which means that if you update the Author
object, all the Book instances that link to it see the change:

class Author {
 constructor(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
}

class Book {
 constructor(title, author) {
 this.title = title;
 this.author = author;
 }

 static createSequel(prevBook, title) {
 return new Book(title, prevBook.author);
 }

 static createTrilogy(author, title1, title2, title3) {
 return [new Book(title1, author),
 new Book(title2, author),
 new Book(title3, author)];
 }
}

// Create a trilogy of three books with a factory method
const author = new Author('Koh','Der');

8.7 Using a Static Method to Create Objects | 191

const books = Book.createTrilogy(author, 'A Sea of Fire', 'A Sea of Ice',
 'A Sea of Water');
console.log(books);

Unlike constructors, there’s no limit to how many static methods you can add to sup‐
port different object-creation scenarios.

Sometimes these static methods are called factory methods,
although that description isn’t technically precise. In object-
oriented design theory, the factory pattern is used when you don’t
know the exact type of object you’re creating. For example, you
might write a createBook() method that examines the arguments
you supply and returns an instance of either the TechBook class or
the FictionBook class, both of which inherit from a base Book
class. It’s possible to implement this design in JavaScript, too, but
opinions are mixed about how well the language handles the heav‐
ier weight of this sort of classical OOP abstraction.

8.8 Inheriting Functionality from Another Class
Problem
You want to create a custom class that inherits the functionality of another class.

Solution
With inheritance, one or more child classes derive from a parent class. To model this
in code, you use the extends keyword when you declare the child class:

public class SomeChild extends SomeParent {

}

Here’s an example with a Triangle class that inherits from a more basic parent class
named Shape:

// This is the parent class
class Shape {
 getArea() {
 return null;
 }
}

// This is a child class
class Triangle extends Shape {
 constructor(base, height) {
 // Call the base class constructor
 super();

192 | Chapter 8: Classes

 this.base = base;
 this.height = height;
 }

 getArea() {
 return this.base * this.height/2;
 }
}

In this example, the parent class (Shape) doesn’t have any useful functionality. The
getArea() method is only there as a placeholder. But in other cases, base classes may
be useful on their own. For example, you could use inheritance with the Book class to
create an EBook child or with the Person class to create a Customer.

It may seem that there’s no point to build a Triangle that derives from a Shape if you
only plan to use the Triangle. And in a loosely typed language like JavaScript, this is
often true! But the potential value appears when you use a single parent class to
standardize more child classes:

class Circle extends Shape {
 constructor(radius) {
 super();
 this.radius = radius;
 }

 getArea() {
 return Math.PI * this.radius**2;
 }
}

class Square extends Shape {
 constructor(length) {
 super();
 this.length = length;
 }

 getArea() {
 return this.length**2;
 }
}

Now it becomes possible to write code like this:

// Create an array of different shapes
const shapes = [new Triangle(15, 8), new Circle(8), new Square(7)];

// Sort them by area from smallest to largest
shapes.sort((a,b) => a.getArea()-b.getArea());

console.log(shapes);
// New order: Square, Triangle, Circle

8.8 Inheriting Functionality from Another Class | 193

Of course, JavaScript is a loosely typed language, and you could call getArea() on
Triangle and Circle and Square objects even if they didn’t share a parent class that
defined the method. But formalizing this interface with inheritance can help make
these requirements explicit. It’s also important if you need to test objects using
instanceof (Recipe 7.1):

const triangle = new Triangle(15, 8);

if (triangle instanceof Shape) {
 // We end up here, because triangle is a Triangle which is a Shape
}

Discussion
If you don’t write a constructor for a child class, JavaScript creates one automatically.
That constructor calls the base class constructor (but provides no arguments).

If you write a constructor for your child class, you must call the parent class construc‐
tor. Otherwise, you’ll receive a ReferenceError when you try to create an instance.
To call the parent class constructor, you use the super() keyword:

constructor(length) {
 super();
}

If the parent class constructor accepts arguments, you should pass them to super()
like you would when creating the object. Here’s an example with an EBook class that
extends Book:

class Book {
 constructor(title, author, publishedDate) {
 this.title = title;
 this.author = author;
 this.publishedDate = publishedDate;
 }
}

class EBook extends Book {
 constructor(title, author, publishedDate, format) {
 super(title, author, publishedDate);
 this.format = format;
 }
}

You can also use super() to call other methods or properties in the parent class. For
example, if a child class wants to call the parent class implementation of format
String(), it would call super.formatString().

Classes are a relatively late introduction to JavaScript. Although they support inheri‐
tance, many of the other tools you might be used to in traditional object-oriented

194 | Chapter 8: Classes

languages, like abstract base classes, virtual methods, and interfaces, have no analog
in JavaScript. Some developers enjoy the lightweight nature of JavaScript and its
emphasis on prototypes, while others feel they are missing vital tools for building
large, complex applications. (If you’re in the latter camp, your best better is to con‐
sider TypeScript, a more rigorous superset of JavaScript.)

But inheritance isn’t without its own tradeoffs. It can encourage you to write tightly
coupled classes that are dependent on one another and difficult to adapt to future
changes. Even worse, it’s often difficult to identify these dependencies, and developers
become reluctant to make changes to the parent class (a situation called the fragile
base class problem). Because of problems like these, modern development often pre‐
fers aggregating groups of objects instead of using inheritance relationships. For
example, instead of building an Employee class that extends Person, you might create
an Employee object that includes a Person property, along with all the other details it
needs. This pattern is called composition:

class Person {
 constructor(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
}

class Employee {
 constructor(person, department, hireDate) {
 // person is a full-fledged Person object
 this.person = person;

 // These properties hold the extra, nonperson information
 this.department = department;
 this.hireDate = hireDate;
 }
}

// Create an Employee object that's composed of a Person object
// and some extra details
const employee = new Employee(new Person('Mike', 'Scott'), 'Sales', new Date());

Extra: Prototype Chains
You may remember that the JavaScript class feature creates a prototype for an object.
This prototype holds the implementation of all its methods and properties, and is
shared between all instances of that class. Prototypes are also the secret to inheri‐
tance. When one class extends another, they are linked in a prototype chain.

For example, consider the relationship of Shape and Triangle. The Triangle class
has a prototype that holds whatever you’ve defined for the child class. However, that
prototype has its own prototype, which is the prototype for Shape class, with all its

8.8 Inheriting Functionality from Another Class | 195

members. The Shape prototype has its own prototype, too: the base Object.proto
type, which ends the prototype chain.

Inheritance can go as many levels deep as you want, so a prototype chain can become
much longer. When you call a method like Triangle.getArea(), JavaScript searches
the prototype chain. It looks for a method in the Triangle prototype, then the Shape
prototype, and then the Object prototype (at which point it fails with an error if it
can’t find a matching method).

Of course, JavaScript classes are relatively new, and prototypes have been around
since the first version of the language. So it’s no surprise that you can create
inheritance-like relationships using prototypes even if you aren’t using JavaScript
classes. Sometimes this is paired with the old-fashioned constructor pattern (Recipe
8.4), which results in some decidedly inelegant code:

// This will be the parent class
function Person(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
}

// Add the methods you want to the Person class
Person.prototype.greet = function() {
 console.log('I am ' + this.firstName + ' ' + this.lastName);
}

// This will be the child class
function Employee(firstName, lastName, department) {
 // The Object.call() method allows you to chain constructor functions
 // It binds the Person constructor to this object's context
 Person.call(this, firstName, lastName);

 // Add extra details
 this.department = department;
}

// Link the Person prototype to the Employee function
// This establishes the inheritance relationship
Employee.prototype = Object.create(Person.prototype);
Employee.prototype.constructor = Employee;

// Now add the methods you want to the Employee class
Employee.prototype.introduceJob = function() {
 console.log('I work in ' + this.department);
}

// When you create an instance of the Employee function, its prototype
// is chained back to the Person prototype
const newEmployee = new Employee('Luke', 'Takei', 'Tech Support');

196 | Chapter 8: Classes

// You can call Person methods and Employee methods
newEmployee.greet(); // 'I am Luke Takei'
newEmployee.introduceJob(); // 'I work in Tech Support'

This pattern should be mostly obsolete now, because classes give you a cleaner
method to create inheritance relationships. But it still lingers in plenty of long-lived
codebases.

8.9 Organizing Your JavaScript Classes with Modules
Problem
You want to encapsulate your classes in a separate namespace to facilitate reuse and
prevent naming conflicts with other libraries.

Solution
Use the module system introduced with ES6. There are three steps:

1. Decide which functionality represents a complete module. Put the code for those
classes, functions, and global variables in a separate script file.

2. Choose which code details you want to export (make available to other scripts in
other files).

3. In another script, import the features you want to use.

Here’s an example of a module; we’ll store it in a file named lengthConverterModule.js:
const Units = {
 Meters: 100,
 Centimeters: 1,
 Kilometers: 100000,
 Yards: 91.44,
 Feet: 30.48,
 Miles: 160934,
 Furlongs: 20116.8,
 Elephants: 625,
 Boeing747s: 7100
};

class InvisibleLogger {
 static log() {
 console.log('Greetings from the invisible logger');
 }
}

class LengthConverter {
 static Convert(value, fromUnit, toUnit) {
 InvisibleLogger.log();

8.9 Organizing Your JavaScript Classes with Modules | 197

 return value*fromUnit/toUnit;
 }
}

export {Units, LengthConverter}

The important line is the export statement at the end. It lists all the functions, vari‐
ables, and classes that will be made accessible to other code files. In this example, the
Units constant (really just an enum) and the LengthConverter class are made avail‐
able, while the InvisibleLogger class is not.

When you create module files, the extension .mjs is sometimes rec‐
ommended. The .mjs extension clearly signals that you’re using an
ES6 module, and it helps tools like Node and Babel recognize these
files automatically. However, the .mjs extension can also cause
problems if your web server isn’t configured to serve .mjs files with
the right MIME type (text/javascript), like ordinary .js files. For
that reason, we don’t use it in this example.

Now you can import the functionality you need into another module. You can write
this module as a separate file, or use a <script> block in a web page as we do here.
But either way, your <script> tag must include the type="module" attribute.

Here’s the complete page, including a button that triggers a doSampleConversion()
test:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Module Test</title>
 </head>
 <body>
 <h1>Module Test</h1>
 <button id="convertButton">Do Sample Conversion</button>

<script type="module">
 import {Units, LengthConverter} from './lengthConverterModule.js';

 function doSampleConversion() {
 const lengthInMiles = 495;

 // This works because you have access to LengthConverter and Units
 const lengthInElephants =
 LengthConverter.Convert(lengthInMiles, Units.Feet, Units.Yards);
 alert(lengthInElephants);

198 | Chapter 8: Classes

 // This wouldn't work, because you don't have access to InvisibleLogger
 //InvisibleLogger.log();
 }

 // Connect the button
 document.getElementById('convertButton').addEventListener('click',
 doSampleConversion);
</script>

 </body>
</html>

Discussion
JavaScript has used a number of module systems over the years, most notably with
Node and npm. But since ES6, JavaScript has had its own module standard, which is
supported natively in all modern browsers.

Before you create a solution with modules, there are a few considerations you should
know:

• Browser security restrictions mean that you can’t run a module example from the
local filesystem. Instead, you need to host your example on a development web
server (as described in Recipe 1.9).

• Modules are locked into their own distinct “module” scope. You can’t access a
module from a normal nonmodule script. Similarly, you can’t access modules
from the developer console.

• You can’t access modules from the HTML of your page. That means you can’t
wire up an event handler using an HTML attribute like onclick, for example,
because the page won’t be able to access an event handler that’s inside a module.
Instead, your module code needs to reach out to the surrounding browser con‐
text using window or document.

• Modules are automatically executed in strict mode (Recipe 1.4).

Module features can only be imported into another module. If you want to create a
<script> block for a module in a web page, make sure you set the type attribute to
module, or the module importing feature won’t work:

<script type="module">

When you import functionality from a module, you must specify the file path of the
module in the from part of the import statement. Modules support a convenient
shortcut that lets you start relative paths with ./, so ./lengthConverterModule.js
points to the lengthConverterModule.js file in the current folder:

import {Units, LengthConverter} from './lengthConverterModule.js';

8.9 Organizing Your JavaScript Classes with Modules | 199

There’s quite a bit of flexibility in the naming you use when you import module fea‐
tures. You can wrap your imports in a module object, which is a special sort of con‐
tainer that namespaces everything. Here’s an example that imports every exported
type into a module object named LConvert:

import * as LConvert from './lengthConverterModule.js';

// Now you can access LengthConverter as LConvert.LengthConverter

Notice that no curly brackets are required when using module objects.

You can also set a default export in your module:

export default LengthConverter

And then you can import it using any name:

import LConvert from './lengthConverterModule.js';

The default export feature matches similar functionality in other module systems.
That makes it easier for those modules to be migrated into the ES6 modules standard.

It’s likely that ES6 modules will eventually become the dominant module standard in
JavaScript. But today, the implementation of ES modules in npm is still a bit rough
around the edges. For the foreseeable future, that means developers will be juggling at
least two module standards: the ES6 standard that’s recognized natively by modern
browsers, and the older CommonJS standard that’s mature and well-established in the
Node and npm ecosystem.

See Also
For information on using CommonJS modules with Node and npm, see Chapter 18.

200 | Chapter 8: Classes

CHAPTER 9

Asynchronous Programming

JavaScript was built as a single-threaded programming language, with one call stack,
one memory heap, and able to execute just one code routine at a time. But over the
years, JavaScript has grown. It’s acquired the ability to send network messages, read
files, and wait for user confirmation—all operations that might take time and could
lock up the user interface. To handle these operations safely, JavaScript has intro‐
duced its own asynchronous programming patterns.

In the early days, JavaScript’s asynchronous support revolved around callbacks. With
a callback, you request an operation (say, fetching an image from the web) and the
browser does the work on another thread, outside of your application code. When
the image has finished downloading and your application is idle, JavaScript triggers
your callback and passes the data back to your code. The end result is that your appli‐
cation code is still single-threaded, but you have the ability to launch asynchronous
work through a set of standardized web APIs.

Callbacks are still found all over JavaScript, but in recent years they’ve been wrapped
with more polished language features, like promises and the async and await key‐
words. The underlying plumbing is the same, but now it’s possible to create sophisti‐
cated applications that manage concurrent asynchronous tasks, handle sequences of
asynchronous calls, and deal gracefully with unexpected errors.

In this chapter, you’ll use callback and promises to manage asynchronous tasks. You’ll
also see how you can break out of JavaScript’s single-threaded model and perform
continuous background work with the Web Worker API.

201

9.1 Updating the Page During a Loop
Problem
You want to update the page during a long, CPU-intensive operation, but the browser
won’t repaint the window while it’s busy.

Solution
Use the setTimeout() function periodically to queue your work. Contrary to the
name, you don’t need to set a delay with setTimeout(). Instead, use a timeout value
of 0 to schedule the next step in your operation to execute immediately, as soon as the
UI thread is idle.

For example, consider this loop, which increments a counter for 10 seconds (10,000
milliseconds). After each pass through the loop, it attempts to change the text in a <p>
element named status:

function doWork() {
 // Get the <p> element to change
 const statusElement = document.getElementById('status');

 // Track the time and the number of passes through the loop
 const startTime = Date.now();
 let counter = 0;

 statusElement.innerText = 'Processing started';

 while ((Date.now() - startTime < 10000)) {
 counter += 1;
 statusElement.innerText = `Just generated number ${counter}`;
 }

 statusElement.innerText = 'Processing completed';
}

If you run this code, you won’t see any of the “Just generated number” messages.
Instead, the page will become unresponsive for 10 seconds, then display “Processing
completed.”

To fix the problem, you move the work (in this case, incrementing the counter and
showing a message) to a separate function. Then, instead of calling this function over
and over again in a loop, you call it with setTimeout(). Each time, the function
increments the counter, updates the page, and then calls setTimeout() for another
pass, until the 10-second time limit has finished:

function doWorkInChunks() {
 // Get the <p> element to change
 const statusElement = document.getElementById("status");

202 | Chapter 9: Asynchronous Programming

 // Track the time and the number of passes through the loop
 const startTime = Date.now();
 let counter = 0;

 statusElement.innerText = 'Processing started';

 // Create an anonymous function that does one chunk of work
 const doChunkedTask = () => {
 if (Date.now() - startTime < 10000) {
 counter += 1;
 statusElement.innerText = `Just generated number ${counter}`;

 // Call the function again, for the next chunk
 setTimeout(doChunkedTask, 0);
 }
 else {
 statusElement.innerText = 'Processing completed';
 }
 };

 // Start the process by calling the function for the first time
 doChunkedTask();
}

Here, the doChunkedTask variable holds an anonymous function that’s defined with
arrow function syntax (Recipe 6.2). You don’t need to use an anonymous function or
arrow syntax, but it simplifies the code. The doChunkedTask function gets access to
everything that’s in scope when you create it, including the startTime and statusEle
ment variables. As a result, you don’t need to worry about passing this information to
the function, which would be necessary if you declared it separately.

When you run this code, you’ll see the numbers quickly flash by in the paragraph on
the web page, and then be replaced with the completion message after 10 seconds.

Discussion
JavaScript has a mature solution for asynchronous work with the web workers feature
(see Recipe 9.7). However, you don’t always need this level of sophistication. Web
workers are great if you have a long-running task, an asynchronous operation that
needs to accept chunks of data as it works, or an asynchronous operation that needs
support for cancellation. But if you’re dealing with a relatively short task and you
have more modest requirements—for example, you just want to update the page dur‐
ing a brief burst of CPU-intensive work—the setTimeout() approach works perfectly
well.

In the example presented here, the setTimeout() method is called repeatedly. Each
time, the page relinquishes control and waits for the browser to schedule the reques‐
ted function, which it does as soon as the main application thread is idle (in this case,

9.1 Updating the Page During a Loop | 203

almost instantaneously). To understand how this works, it’s important to realize that
setTimeout() does not set exactly when a function will run. Instead, it sets a mini‐
mum time interval. When the setTimeout() timer ends, it asks the browser to exe‐
cute the function, but it’s up to the browser to schedule this request. If the browser is
busy, the request will be delayed. (In fact, even if the browser isn’t busy, modern
browsers throttle a sequence of requests so it is never triggered more frequently than
once every 4 milliseconds.) But in practice these delays are very small, and calling
setTimeout() with a value of 0 milliseconds causes your code to be triggered almost
immediately.

The setTimeout() method isn’t the only method JavaScript has for scheduling work
with a timer. There’s also the window.setInterval() method, which calls a function
repeatedly, with a fixed wait time before each subsequent call. And if you want to use
a timer to create an animation (for example, by redrawing objects in a <canvas>), it’s
better to use requestAnimationFrame(), which synchronizes itself with the browser’s
repainting operations to make sure you don’t waste resources calculating an anima‐
tion more frequently that it can be shown.

Both the setTimeout() and the setInterval() methods are
ancient parts of JavaScript. However, they are not obsolete or dep‐
recated. For more complex scenarios, you should web workers
rather than roll your own custom solutions built on setTimeout()
or setInterval(). However, both methods are still acceptable.

See Also
Recipe 9.7 describes how to carry out more ambitious operations in the background
using web workers.

9.2 Using a Function That Returns a Promise
Problem
You want to run code when an asynchronous task completes (successfully or unsuc‐
cessfully). You want to be notified about task completion through a Promise object.

Solution
A Promise is an object that helps you manage an asynchronous task. It tracks the sta‐
tus of the task and—most importantly—handles the callbacks that notify your code
when the task succeeds or fails. Technically, promises don’t add new functionality to
JavaScript, but they do make it easier to cleanly coordinate a sequence of asynchro‐
nous operations.

204 | Chapter 9: Asynchronous Programming

In order to use promises, the API you’re calling must support them. There’s rarely any
ambiguity about this, because APIs that support promises have methods that return
Promise objects. Older APIs that don’t use promises will ask you to supply one or
more callback functions or handle a specific event. (If you want to use a promise with
a callback-based API, see Recipe 9.3 instead.)

To specify what should happen after a promise finishes, you call Promise.then() and
supply a function. To specify what should happen in the case of an error, you call
Promise.catch() and supply a different function. To add some clean-up code that
should run after the promise has succeeded or failed, you call Promise.finally()
with a third function.

Here’s a naïve implementation of promises, using the Fetch API:

// Create the promise
const promise = fetch(
 'https://upload.wikimedia.org/wikipedia/commons/b/b2/Eagle_nebula_pillars.jpg');

// Supply a function that logs successful requests
promise.then(function onSuccess(response) {
 console.log(`HTTP status: ${response.status}`);
});

// Supply a function that logs errors
promise.catch(function onError(error) {
 console.error(`Error: ${error}`);
});

// Supply a function that runs either way
promise.finally(function onFinally() {
 console.log('All done');
});

If the call succeeds, you’ll see the HTTP status appear in the console window, fol‐
lowed by the “All done” message.

This example shows the structure of a basic promise call, but it isn’t the way we typi‐
cally write promise-based code, for two reasons. First, for more compact and readable
code, we favor declaring the functions with arrow function syntax (Recipe 6.2). Sec‐
ond, the then(), catch(), and finally() methods are usually chained into one state‐
ment. This is possible because these methods all return the same Promise object.

Here’s the more compact and more typical way to write this code:

fetch(
 'https://upload.wikimedia.org/wikipedia/commons/b/b2/Eagle_nebula_pillars.jpg')
.then(response => {
 console.log(`HTTP status: ${response.status}`);
})
.catch(error => {

9.2 Using a Function That Returns a Promise | 205

 console.error(`Error: ${error}`);
})
.finally(() => {
 console.log('All done');
});

This promise-based example uses just a single statement, and
you’re able to break the line wherever you like. One common con‐
vention, which we’ve used here, is to break the statement just before
the dot operator, so the next line begins with .then or .catch. This
way, the code is easy to follow and has an error-handling layout
that’s similar to synchronous code. This is also the structure
applied by the Prettier code formatter (Recipe 1.11).

Discussion
A Promise object is not a result, but a placeholder for a result that will be available in
the future.

As soon as you create a Promise object, its code begins to execute. It’s even possible
that the Promise may finish its work before you call then() or catch(). This won’t
change how your code works. If you call then() on a promise that’s already resolved
(successfully), or catch() on a promise that’s already rejected (with an error), your
code runs right away.

The simple solution shown here uses chaining to attach a success function (with
then()) and a failure function (with catch()). However, it’s also common to use
chaining to tie multiple asynchronous tasks together, so they run one after the other.
The fetch() function provides a good example. It returns a promise that resolves
once the server responds. However, if you want to read the body of this message, you
need to start a second asynchronous operation. (This sounds needlessly painful, but it
makes perfect sense, because the amount of data being sent could be huge, so you
don’t want to risk blocking your code while you retrieve it. In JavaScript, I/O opera‐
tions are always asynchronous.)

Here’s an example that performs an asynchronous fetch request, then reads the
results as a binary stream using response.blob(), which returns a second Promise
object. Now then() is called on that object to add a third step—turning the binary
data into a Base64-encoded string that can be shown in an element:

fetch(
 'https://upload.wikimedia.org/wikipedia/commons/b/b2/Eagle_nebula_pillars.jpg')
.then(response => response.blob())
.then(blob => {
 const img = document.getElementById('imgDownload');
 img.src = URL.createObjectURL(blob);
});

206 | Chapter 9: Asynchronous Programming

Good code formatting is important, because a promise chain can become quite long.
But if organized consistently, your asynchronous calls can look similar to a linear
block of code, which is a significant improvement over the past, when developers
coined the term callback hell to describe nested pyramids of consecutive callback
functions.

When chaining multiple promises, you call catch() and finally() at the end of the
chain, if you decide to use them. That gives you one place to collect unhandled errors
that occur during any stage of the promise chain. You can even throw your own
exceptions in a then() function to signify failure and end the chain:

fetch(
 'https://upload.wikimedia.org/wikipedia/commons/b/b2/Eagle_nebula_pillars.jpg')
.then(response => {
 if (!response.ok) {
 // Ordinarily, it's not an error if the server responds to our request
 // Now, let's treat any response other than HTTP 200 OK as an error
 throw new Error(`HTTP code: ${response.status}`);
 }
 else {
 return response.blob();
 }
})
.then(blob => {
 const img = document.getElementById('imgDownload');
 img.src = URL.createObjectURL(blob);
})
.catch(error => {
 console.log('An error occurred in the first or second promise');
});

As soon as an unhandled error occurs, the entire promise chain is derailed. You can
react to this error to perform logging or some other diagnostic task, but you can’t
resume the promises that were abandoned further down the chain. If you don’t catch
an error in a promise, it’s eventually raised as the window.unhandledrejection event
and, if not canceled there, it’s logged to the console.

See Also
Chapter 13 explains the Fetch API in more detail. Recipe 9.4 shows how to link con‐
current tasks with a promise. Recipe 9.5 shows how to use fetch() with the await
keyword.

9.2 Using a Function That Returns a Promise | 207

9.3 Promisifying an Asynchronous Function That
Uses a Callback
Problem
You want to change a callback-based asynchronous function to use a promise.

Solution
Create another function to wrap your asynchronous function. This function creates
and returns a new Promise object. When the asynchronous task finishes, the function
calls either Promise.resolve() if it succeeded or Promise.reject() if it failed.

Here’s an example of a function that acts like a traditional, callback-based asynchro‐
nous function. It uses a timer to perform its asynchronous work:

function factorializeNumber(number, successCallback, failureCallback) {
 if (number < 0) {
 failureCallback(
 new Error('Factorials are only defined for positive numbers'));
 }
 else if (number !== Math.trunc(number)) {
 failureCallback(new Error('Factorials are only defined for integers'));
 }
 else {
 setTimeout(() => {
 if (number === 0 || number === 1) {
 successCallback(1);
 }
 else {
 let result = number;
 while (number > 1) {
 number -= 1;
 result *= number;
 }
 successCallback(result);
 }
 }, 5000); // This hard-coded 5-second delay simulates a long async process
 }
}

There’s no benefit to calculating factorials asynchronously or to using a timer. This
example is just a stand-in for any older API that uses callbacks.

Right now, you can use the factorializeNumber() function like this:

function logResult(result) {
 console.log(`5! = ${result}`);
}

208 | Chapter 9: Asynchronous Programming

function logError(error) {
 console.log(`Error: ${error.message}`);
}

factorializeNumber(5, logResult, logError);

The easiest way to promisify the factorializeNumber() function is to create a new
function that wraps it:

function factorializeNumberPromise(number) {
 return new Promise((resolve, reject) => {
 factorializeNumber(number,
 result => {
 resolve(result);
 },
 error => {
 reject(error);
 });
 });
}

Now you can call factorializeNumberPromise(), receive a Promise object, and han‐
dle the result with Promise.then():

factorializeNumberPromise(5)
.then(result => {
 console.log(`5! = ${result}`);
});

You can also catch potential errors, and even create a whole chain of asynchronous
operations.

factorializeNumberPromise('Bad value')
.then(result => {
 console.log(`6! = ${result}`);
})
.catch(error => {
 console.log(error);
});

Discussion
Before going deeper into this solution, it’s important to address one possible miscon‐
ception right away. It’s easy to create a function that returns a Promise object. How‐
ever, this does not make your code asynchronous. Your code will run synchronously
on the UI thread, as usual. (It’s similar to calling setTimeout() with a delay of 0.)

To get around this limitation, the factorializeNumber() example uses a timer to
simulate an asynchronous API. If you really want to run your own code in the back‐
ground on another thread, you need to use the Web Workers API (Recipe 9.7).

9.3 Promisifying an Asynchronous Function That Uses a Callback | 209

In JavaScript you’ll use promises often, but you’ll create them
rarely. The most common reason for creating a Promise object is
because you’re wrapping older callback-based code, as in this
example.

To make a promisified version of a function, you need a function that creates a
Promise object and returns it. That’s the main job of the factorializeNumberPro
mise() function. And although creating a Promise is easy, it can look complex at first
because there are two layers of nested functions at work. t its heart, the Promise
object wraps a function that has this structure:

function(resolve, reject) {
 ...
}

The promise function receives two parameters, which are essentially callback func‐
tions. You use these functions to signal the completion of the promise. Call
resolve() (with your return value) to successfully end the promise, or reject()
(with an error object) to indicate a failure. Alternately, if an unhandled error occurs
anywhere in your promise function, the Promise object will catch it and automatically
call reject(), passing the error along.

Inside the promise function, you launch your asynchronous task. Or, in the factoria
lizeNumberPromise() example, you call the existing factorializeNumber() func‐
tion that starts the timer. You still need to use the callback functions to interface with
the old factorializeNumber() function. The difference is that now you will forward
them through the promise by calling resolve() or reject(). For example, here’s the
function for the successCallback, which calls resolve():

function(resolve, reject) {
 factorializeNumber(number,
 function successCallback(result) {
 resolve(result);
 },
 ...
);
}

And here’s the failure callback that calls reject():

function(resolve, reject) {
 factorializeNumber(number,
 function successCallback(result) {
 resolve(result);
 },
 function failureCallback(error) {
 reject(error);
 });

210 | Chapter 9: Asynchronous Programming

);
}

The Promise.reject() method takes one argument, which repre‐
sents the reason for the failure. This reason can be any type of
object, but it’s strongly recommended that you use an instance of
the Error object or a custom object that derives from Error
(Recipe 10.6). In the current example, the failure callback already
sends an Error object, so we can simply pass that to reject().

The full solution makes the code more compact by declaring the successCallback,
the failureCallback, and the promise function that holds them with arrow syntax
(Recipe 6.2).

It is possible to write a generic promisifying function that can promisify any callback-
based function. In fact, some libraries, like BlueBird.js, provide this functionality.
However, in most cases it’s simpler and less confusing to use promisification judi‐
ciously—for example, when you want to unify one asynchronous task with another
one that already uses promises—rather than attempt to wrap every old asynchronous
API.

See Also
If you’re developing for the Node runtime environment, you can use the promisify
utility to wrap a function with a promise, as described in Recipe 19.2.

9.4 Executing Multiple Promises Concurrently
Problem
You want to execute multiple promises at the same time, and react once all the prom‐
ises have finished their work.

Solution
Use the static Promise.all() method to combine multiple promises into a single
promise and wait for them all to resolve successfully (or for any one of them to fail).

To demonstrate how this works, imagine you have a function that returns a promise
that resolves after a wait of roughly 0 to 10 seconds. Here’s a randomWaitPromise()
function that does exactly that using setTimeout(). Treat it as a stand-in for any
asynchronous operation:

function randomWaitPromise() {
 return new Promise((resolve, reject) => {

9.4 Executing Multiple Promises Concurrently | 211

 // Decide how long to wait
 const waitMilliseconds = Math.round(Math.random() * 10000);

 // Simulate an asynchronous task with setTimeout()
 setTimeout(() => {
 console.log(`Resolved after ${waitMilliseconds}`);

 // Return the number of seconds waited
 resolve(waitMilliseconds);
 }, waitMilliseconds);
 });
}

Now you can use randomWaitPromise() to quickly create any number of new prom‐
ises. To wait for several promises to finish, you need to place all the Promise objects
in an array, and pass that array to the Promise.all() method. Promise.all() returns
a new promise that represents the completion of all your promises. Using that, you
can call then() and catch() to build a promise chain, like usual:

// Create three promises
const promise1 = randomWaitPromise();
const promise2 = randomWaitPromise();
const promise3 = randomWaitPromise();
const promises = [promise1, promise2, promise3];

// Wait for all of them, then log the result
Promise.all(promises).then(values => {
 console.log(`All done with: ${values}`);
});

There’s no Promise.catch() in this chain, because it’s impossible for this code to fail.

When you run this example, each promise will write to the console as it finishes.
When the last, slowest promise resolves, you’ll get the final “All done” message:

Resolved after 790
Resolved after 4329
Resolved after 6238
All done with: 790,6238,4329

When you’re using several promises at a time, it’s common to pass
an object with some sort of identifier to your promise (like a URL
or an ID). Then, when the promise resolves it can pass back an
object that includes this identifying detail. This way, you can deter‐
mine which result goes with which promise. This tracking is conve‐
nient, but it isn’t necessary, because you can tell which result is
which by their order. The order of the results that you receive in
the results array matches the order of the promises that you sub‐
mitted originally in the promises array.

212 | Chapter 9: Asynchronous Programming

Discussion
One advantage of asynchronous programming is being able to collapse your wait
time. In other words, rather than wait for one task to complete, and then another, and
then another, you can start all three at once. In real life, this is somewhat of a special‐
ized scenario. It’s far more common to have an asynchronous task that depends on
the results from another asynchronous task, in which case you need to chain one task
after the other. But if this isn’t the case, you can save considerable time by running
multiple promises at once and waiting for them with Promise.all().

Promise.all() uses a fail-fast behavior. As soon as one of the promises is rejected
(either deliberately by calling Promise.reject() or with an unhandled error), the
combined promise you created with Promise.all() is also rejected, triggering what‐
ever function you attached to the promise chain with Promise.catch(). The other
promises will still run, and you can get their results from the corresponding Promise
objects. For example, if promise1 rejects, nothing stops you from calling
promise2.then() to get its result. But in practice, when you use Promise.all() you
will probably treat a failure in one promise as the end of your combined operation.
Otherwise, it would be easier to keep your promises separate, or use one of the alter‐
native Promise methods listed below.

There are other static Promise methods besides all() that accept multiple promises
and return a single combined promise. They all have slightly different behavior:

Promise.allSettled()

Resolves when every promise has been resolved or rejected. (This is unlike
Promise.all(), which only resolves if all the promises are successful.) The func‐
tion you attach with Promise.then() receives an array of result objects, one for
each promise. Each result object has two properties: status indicates if the
promise was fulfilled or rejected, and value has the returned value or error
object.

Promise.any()

Resolves as soon as one promise has resolved successfully. It provides the value
for that promise only.

Promise.race()

Resolves as soon as one promise has resolved successfully or been rejected. It’s
the most specialized of all the Promise methods, but it can be used to build some
sort of custom scheduling system that queues up new asynchronous tasks as
existing ones are finished.

9.4 Executing Multiple Promises Concurrently | 213

9.5 Waiting for a Promise to Finish with Await and Async
Problem
Instead of creating a promise chain, you want to write linear logic that’s easier to read
and looks more like synchronous code.

Solution
Don’t call Promise.then(). Instead, use the await keyword on your promise:

console.log('taskPromise is working asynchronously');
await taskPromise;
console.log('taskPromise has finished');

The code after await doesn’t run until the awaited promise has been resolved or
rejected. The execution of your code pauses, but without blocking the thread, locking
up the UI, or preventing other timers and events from triggering.

But there’s a catch. The await keyword is only useable inside an async function. That
means you may need some rearranging to use await. Consider the fetch() example
from Recipe 9.2. With promises, it looks like this:

const url =
 'https://upload.wikimedia.org/wikipedia/commons/b/b2/Eagle_nebula_pillars.jpg';

fetch(url)
.then(response => {
 // The fetch operation has completed
 console.log(`HTTP status: ${response.status}`);
 console.log('All asynchronous steps completed');
})

With the async and await keywords, you can structure it like this:

async function getImage() {
 const url =
'https://upload.wikimedia.org/wikipedia/commons/b/b2/Eagle_nebula_pillars.jpg';

 const response = await fetch(url);

 // The fetch operation has completed and the promise is resolved or rejected
 console.log(`HTTP status: ${response.status}`);
}

getImage().then(() => {
 console.log('All asynchronous steps completed');
});

You can also use traditional exception-catching blocks around awaited operations,
instead of the Promise.catch() method:

214 | Chapter 9: Asynchronous Programming

async function getImage() {
 const url =
'https://upload.wikimedia.org/wikipedia/commons/b/b2/Eagle_nebula_pillars.jpg';

 try {
 const response = await fetch(url);
 console.log(`HTTP status: ${response.status}`);
 }
 catch(err) {
 console.error(`Error: ${error}`);
 }
 finally {
 console.log('All done');
 }
}

The advantage of using await for just one call is relatively small. However, await can
make your code considerably cleaner if you have a whole sequence of asynchronous
operations that need to occur one after the other. Ordinarily, you would handle this
with a promise chain that calls Promise.then() multiple times. But with await, the
code looks like ordinary synchronous code. Here’s an example that duplicates the
image-reading example from Recipe 9.2 to send an asynchronous web request, and
then asynchronously read the image data that’s returned:

async function getImage() {
 const url =
 'https://upload.wikimedia.org/wikipedia/commons/b/b2/Eagle_nebula_pillars.jpg';

 // Wait (asynchronously) for the response
 const response = await fetch(url);

 if (response.ok) {
 // Wait (asynchronously) for the blob to be read
 const blob = await response.blob();

 // Now show the image
 const img = document.getElementById('imgDownload');
 img.src = URL.createObjectURL(blob);
 }
}

Discussion
The await keyword handles promises in a way that looks like synchronous code, but
doesn’t lock up your application. Consider a statement like this:

const response = await fetch(url);

From the point of view of your code, it’s as though execution stops and the fetch()
function becomes synchronous. But in reality, JavaScript takes the remainder of your
function and attaches it to the promise returned by fetch(), just as if you passed it to

9.5 Waiting for a Promise to Finish with Await and Async | 215

Promise.then(). As a result, the rest of your code is scheduled and the UI thread isn’t
blocked. Your application is free to handle other events and timers while it waits for
the fetch operation to finish.

The await keyword only works in an async function. You can’t use await in the top
level of web page code. Instead, you need to create a new async function to hold it,
like the getImage() function in this example:

async function getImage() {
 ...
}

Now that getImage() is an async function, it will automatically return a Promise
object. You attach the code that runs when getImage() finishes using
Promise.then(), as you would with any promise chain.

If you forget that getImage() is an asynchronous function, you might call it but for‐
get to use the promise. This is a common mistake by developers who are new to
async and await:

// This probably isn't right, because you're discarding the Promise object
getImage();

Instead, you need to accept the Promise object returned by getImage(), and call
then() and catch() to attach the code that should run next, and your error-handling
code, respectively:

getImage()
.then(response => {
 console.log('Image download finished');
})
.catch(error => {
 console.error(`Error: ${error}`);
});

You might wonder why you’re dealing with a promise when the async and await key‐
words are supposed to save you from that effort. The answer is that you always need
to manage the root-level Promise object that starts your asynchronous operation.

There’s one relatively recent exception. You can use await in the
top-level code of a module (see Recipe 8.9). If you use this ability,
make sure you place the statement that uses await inside a
try...catch exception-handling block to catch any unhandled
errors.

The await keyword becomes more useful when you need to perform multiple asyn‐
chronous operations and make decisions along the way. For example, imagine you
need to write code that waits for an asynchronous task to finish, evaluates its result,

216 | Chapter 9: Asynchronous Programming

and then decides what task to launch next. You can implement this pattern with
promises, but the logic is harder to follow. With await, it’s organized like traditional
synchronous code:

const step1 = await someAsyncTask();

if (step1 === someResult) {
 const step2 = await differentAsyncTask();
 ...
}
else {
 const step2 = await anotherAsyncTask();
 ...
}

Given that this code looks so clean and straightforward, you might wonder why you
wouldn’t use await. Like all abstractions, await hides some details of the underlying
Promise object and makes certain situations more difficult. For example, it’s a com‐
mon mistake with await to wait for a series of actions to complete one after another
with separate await statements, when what you really want is to launch all of them at
once. Here’s a demonstration of the problem:

const response1 = await slowFunction(dataObject1);
const response2 = await slowFunction(dataObject2);
const response3 = await slowFunction(dataObject3);

You could solve this situation with Promise.all() (as described in Recipe 9.4). But
that’s not necessary. You can still use await, as long as you make sure all the promises
are started first. Here’s a correction:

const promise1 = slowFunction(dataObject1);
const promise2 = slowFunction(dataObject2);
const promise3 = slowFunction(dataObject3);

const response1 = await promise1;
const response2 = await promise2;
const response3 = await promise3;

This works because a promise starts running code as soon as it is created. By the time
the code has assigned promise1, promise2, and promise3, all three asynchronous
processes are underway. And although await is often used with a function that
returns a promise, it works on any Promise object.

It also doesn’t matter which promise you wait for first, because you can safely use
await on a promise that’s already completed. No matter what you do, you won’t get
past this section of your code until each promise is resolved or rejected. (Technically,
that means this code follows the same behavior as Promise.allSettled() rather than
Promise.all(), because the code keeps waiting for all the promises to be dealt with,
even if one of them has failed.)

9.5 Waiting for a Promise to Finish with Await and Async | 217

9.6 Creating an Asynchronous Generator Function
Problem
You want to create a generator for an operation that returns values asynchronously.

Solution
Use the async keyword with the specialized generator function syntax shown in
Recipe 6.7.

Consider this exceedingly simple generator that yields a never-ending sequence of
random numbers:

function* getRandomIntegers(max) {
 while (true) {
 yield Math.floor(Math.random() * Math.floor(max) + 1);
 }
}

Which you call like this:

const randomGenerator = getRandomIntegers(6);

// Get 10 random values between 1 and 6
for (let i=0; i<10; i++) {
 console.log(randomGenerator.next());
}

To make the generator asynchronous, you simply add the async keyword, exactly as
you do with an ordinary function:

async function* getRandomIntegers(max) {
 while (true) {
 yield Math.floor(Math.random() * Math.floor(max) + 1);
 }
}

And as with any other async function, an asynchronous generator function will not
yield direct results. Instead, it will yield Promise objects that wrap the results. You can
call Promise.then() to get the result, when it’s ready. Here’s an example that shows
what’s happening:

const randomGenerator = getRandomIntegers(6);

// Get 10 random values between 1 and 6
for (let i=0; i<10; i++) {
 const promise = randomGenerator.next();
 console.log('Received promise.');
 promise.then(result => console.log(`Received result: ${result.value}`));
}

218 | Chapter 9: Asynchronous Programming

When you run this, you’ll see a list of “Received promise” messages, immediately fol‐
lowed by the list of results.

Often, asynchronous generators are combined with the await keyword. A common
shortcut is the for await loop, which waits to request new values from the generator
until the previous promise has resolved. Here’s an example that uses this technique to
search for random numbers, one number at a time:

// This function uses a for await loop to perform consecutive awaits
async function searchRandomNumbers(searchNumber, generator) {
 for await (const value of generator) {
 console.log(value);
 if (value === searchNumber) return;
 }
}

// Use the searchRandomNumbers() function to generate random numbers
// from 1 to 100, asynchronously, until we find 42
const randomGenerator = getRandomIntegers(100);
searchRandomNumbers(42, randomGenerator).then(result => {
 console.log('Number found');
});

You’ll notice that the code that uses the asynchronous iterator is now itself wrapped
in an async function. This is because you can’t use await in top-level code (as
explained in Recipe 9.5).

Discussion
Generator functions provide a streamlined way to return on-demand values. After
each yield statement, JavaScript pauses the generator function. But the context
around it (all the local variables and passed-in arguments) is preserved until the next
value is requested by the calling code.

The example in the solution doesn’t do any real asynchronous work, and the random
numbers are available immediately. You could simulate an asynchronous process in
this example by adding a timeout. But it’s more interesting to consider an example
that shows asynchronous generators using a true asynchronous API.

Asynchronous generators are most useful for tasks that access an external resource
and have some latency. For example, you might see them in web request or filestream
APIs. Here’s a generator that uses the Fetch API to retrieve its list of random numbers
from a web service:

async function* getRandomWebIntegers(max) {
 // Construct a URL to get a random number in the requested range
 const url = https://www.random.org/integers/?num=1&min=1&max=' + max +
 '&col=1&base=10&format=plain&rnd=new';

9.6 Creating an Asynchronous Generator Function | 219

 while (true) {
 // Start the request (and wait asynchronously for the response)
 const response = await fetch(url);

 // Start reading the text asynchronously
 const text = await response.text();

 // Yield the result and wait for the next request
 yield Number(text);
 }
}

Now, each time the calling code requests a value, the generator starts an asynchro‐
nous fetch() operation and returns a promise. When fetch() finishes, the promise
resolves. The calling code could start several asynchronous calls at once by calling
next() multiple times on the generator. But it’s much more common to use a for
await loop to go one-by-one. Either way, there’s no need to change the code from
what was used in the original solution. If you run this version of the example, you’ll
see that each random number takes a short but measurable delay before it appears in
the developer console.

See Also
Recipe 6.7 explains how to create nonasynchronous generators. Recipe 9.5 explains
how to create ordinary asynchronous functions.

9.7 Using a Web Worker to Perform a Background Task
Problem
You want long-running code to execute on a separate thread, so it doesn’t block the
user interface.

Solution
Use the Web Worker API. You create a Worker object, which runs all its code on a
background thread. Although the Worker object is isolated from the rest of your code
(it can’t access the DOM, the page, or any global variables, for instance), you can
communicate with it by sending messages back and forth.

Figure 9-1 shows an example page that calculates all the prime numbers in a given
range. Because the page uses web workers, the interface remains responsive while the
job is underway. For example, it’s still possible to type in the text boxes or click the
Cancel button.

220 | Chapter 9: Asynchronous Programming

Figure 9-1. A web worker calculates prime numbers

The Start button triggers a function called startSearch(). It creates a new worker,
attaches functions to handle the Worker.error and Worker.message events, and
finally starts the operation by calling Worker.postMessage(). Here’s the relevant code
in the script for the web page:

// Keep a reference to the worker so we can cancel it, if needed
let worker;

function startSearch() {
 // Create the worker
 worker = new Worker('prime-worker.js');

 const statusDisplay = document.getElementById('status');
 statusDisplay.textContent = 'Search started.';

 // Report error message on the page
 worker.onerror = error => {
 statusDisplay.textContent = error.message;
 };

 // Respond to messages from the worker, and display the final result
 // (the list of primes) on the page when it's received
 worker.onmessage = event => {
 const primes = event.data;

9.7 Using a Web Worker to Perform a Background Task | 221

 document.getElementById('primeContainer').textContent = primes.join(', ');
 };

 // Get the search range and tell the worker to start
 const fromNumber = document.getElementById('from').value;
 const toNumber = document.getElementById('to').value;
 worker.postMessage({from: fromNumber, to: toNumber});
}

The prime-worker.js file contains the code that the web worker runs. That includes
a findPrimes() function (not shown here) which holds the logic for finding prime
numbers using the Sieve of Eratosthenes. The prime-worker.js file also handles the
Worker.message event, which is triggered whenever the page calls Worker.postMes
sage(). In this example, the page calls postMessage() to send the range of numbers
to the worker and begin the search:

// This is the code the worker uses to handle messages from the page
onmessage = (event) => {
 // Get the sent object from event.data and call the time-consuming
 // findPrimes() method to do the search
 const primes = findPrimes(Number(event.data.from), Number(event.data.to));

 // Send back the result
 postMessage(primes);
};

The only remaining ingredient is the event handler for the Cancel button, which
shuts down the web worker, even if it’s in the middle of its search:

function cancelSearch() {
 // Cancel the worker, provided the page has created it
 if (worker) worker.terminate();
}

Discussion
Ordinarily, the JavaScript code you write runs on a single application thread. Java‐
Script uses a scheduling system that’s based on an event loop. It continually watches
for events, listens to timer ticks, and waits for callbacks from asynchronous APIs.
When it receives functions to run, it queues them up in the order they arrive. If you
decide to write CPU-intensive code (like performing time-consuming calculations),
you’ll tie up the main thread and prevent other functions from running until your
work is finished.

222 | Chapter 9: Asynchronous Programming

https://oreil.ly/6CyO9

You may be confused about how ordinary JavaScript code is single-
threaded, but JavaScript provides certain APIs (like fetch) that are
able to work asynchronously. This is because these APIs are pro‐
vided by services in the browser and, ultimately, the operating sys‐
tem. They go outside of the JavaScript environment. For example,
web requests made with fetch() are made on a separate thread,
not the main application thread used for your application.

The Web Worker API gives you a way to escape JavaScript’s single-threaded execution
model. With web workers, you are able to run code concurrently, on a separate thread
from the main application user interface. To ensure that you don’t have to deal with
messy problems like thread safety, race conditions, and locks, web workers are kept in
a separate execution context. They can’t interact with a web page, the browser win‐
dow, or the rest of your code. To emphasize this fact, the Worker object asks that you
put your web worker code in a separate file, which you then supply when you create
the worker:

worker = new Worker('prime-worker.js');

Once you understand this limitation, the rest of the web worker model is quite intu‐
itive. All the communication between the application and a worker happens through
message passing. To send a message, you call postMessage(). In the prime number
example, the page sends an object literal with two properties, to and from, to repre‐
sent the search range:

worker.postMessage({from: fromNumber, to: toNumber});

When the worker responds, it calls postMessage() to send array of prime numbers:

postMessage(primes);

There’s no limit to how often you can send messages. For example, you could create a
worker, call postMessage() to send it some work, leave it idle for a while, and then
call postMessage() to send it more work. Web workers can also use the setTime
out() and setInterval() functions to schedule periodic work.

There are two ways to stop a worker. First, a worker can stop itself by calling close().
More commonly, the page that created the worker will shut it down by calling
worker.terminate(). Once a worker is stopped in this way, it can’t be resurrected.

See Also
To see the full code, including the prime number search routine, refer to the book’s
sample code. For a revised version of this example that uses more sophisticated mes‐
sage passing, see Recipe 9.8.

9.7 Using a Web Worker to Perform a Background Task | 223

https://github.com/javascripteverywhere/cookbook
https://github.com/javascripteverywhere/cookbook

9.8 Adding Progress Support to a Web Worker
Problem
You want your web worker to report progress while it’s running a task.

Solution
You can use the standard message-passing behavior of your worker. Use a property of
your message object to distinguish between different types of messages.

For example, consider a version of the prime number example (from Recipe 9.8) that
sends two types of messages: progress notifications (while the work is underway) and
the prime number list (when the work is finished).

To allow the application to tell the difference between these two types of messages, it
adds a string messageType property, which it sets to either "Progress" or
"PrimeList". Here’s the rewritten code to return the result:

onmessage = function(event) {
 // Perform the prime number search.
 const primes = findPrimes(Number(event.data.from), Number(event.data.to));

 // Send back the results.
 postMessage(
 {messageType: "PrimeList", data: primes}
);
};

Now the prime-number calculation code also needs to use postMessage() to report
on its progress. It uses a rate-limiting check to round the progress to the nearest per‐
cent, and to make sure it doesn’t notify about the same progress more than once:

function findPrimes(fromNumber, toNumber) {
 // Prepare the prime number search range
 ...

 // This is the loop that searches for primes
 for (let i = 0; i < list.length; i+=1) {

 // Check if the current number is prime
 ...

 // Calculate and report the progress
 var progress = Math.round(i/list.length*100);

 // Only send a progress update if the progress has changed at least 1%
 if (progress !== previousProgress) {
 postMessage(
 {messageType: 'Progress', data: progress}

224 | Chapter 9: Asynchronous Programming

);
 previousProgress = progress;
 }

 }

 // Clean up and return the list of prime numbers
 ...
}

When the page receives a message, it checks the messageType property to determine
the type of message and then acts accordingly. If it’s a prime list, it shows the results
in the page. If it’s a progress notification, it updates the progress text, as shown in
Figure 9-2.

worker.onmessage = event => {
 const message = event.data;

 if (message.messageType === 'PrimeList') {
 const primes = message.data;
 document.getElementById('primeContainer').textContent = primes.join(', ');
 }
 else if (message.messageType === 'Progress') {
 statusDisplay.textContent = `${message.data} % done ...`;
 }
};

Figure 9-2. A web worker reports progress as it works

9.8 Adding Progress Support to a Web Worker | 225

Discussion
To enforce thread safety, there’s no way for an application and a web worker to inter‐
act except by passing messages. You can send any object you want as a message, as
long as it can be serialized to JSON. It’s much the same as when you’re sending a mes‐
sage to a remote website.

You might decide to create your own custom class for messages to formalize the
structure you’re using. However, keep in mind that once the object is sent between
threads, it will look exactly like an ordinary object literal. It won’t have a custom pro‐
totype or any methods, and you won’t be able to test its type with instanceof. Simi‐
larly, you might think of using the enumerated values trick from Recipe 7.13, but it
won’t work because the application and the worker can’t share their symbols.

See Also
JavaScript also has two specialized APIs that build on the Web Worker API. You can
used shared workers if you want to interact with the same worker from different win‐
dows. And you can use more advanced service workers to create workers that, once
installed, stay alive even when your page isn’t open. The idea behind this API is to
help you build caching, synchronization, and notification services that make a web‐
site behave more like a native app.

226 | Chapter 9: Asynchronous Programming

https://oreil.ly/jGV06
https://oreil.ly/vh3L3

CHAPTER 10

Errors and Testing

To write code is to write errors. Often, an error can be anticipated. Risky activities
include actions that interact with outside resources (like files, databases, or web
server APIs). Information that comes from outside your code—whether you’re read‐
ing it from a web page form or receiving it from another library—may arrive with
errors, or in a different form than you expect. But to modify a well-worn cliché, it’s
not so much the error as what you do with it that matters.

What should we do with our errors, then? JavaScript’s default behavior is to die at the
point of the error, quietly logging a stack trace to the console. However, better options
are available. You can capture an error, react to it, modify it, rethrow it, and even hide
it if you choose. Compared to many other languages, JavaScript’s error-handling fea‐
tures are relatively underdeveloped. But basic error handling is still just as important,
and many of the recipes in this chapter focus on that task.

Defending against errors is essential practice, but it’s equally important to prevent
them wherever possible. To that end, there are many testing frameworks that work
with JavaScript, including Jest, Mocha, Jasmine, and Karma. With their help, you can
write unit tests that guarantee your code is executing as expected. You’ll take a quick
look at Jest in this chapter.

10.1 Catching and Neutralizing an Error
Problem
You are performing a task that may not succeed, and you don’t want an error to inter‐
rupt your code or appear in the developer console.

227

Solution
Wrap the section of your code in a try...catch block, like this one:

try {
 // This is guaranteed to fail with a URIError
 const uri = decodeURI('http%test');

 // We never get here
 console.log('Success!');
}
catch (error) {
 console.log(error);
}

When the decodeURI() function fails and an error occurs, execution jumps to the
catch block. The catch block receives an error object (also known as an exception),
which provides the following properties:

name

A string that usually reflects the error subtype (as in “URIError”), but it may just
be “Error.”

message

A string that gives you a human-language description of the problem, like “URI
malformed.”

stack

A string that lists the currently open functions on the stack, in order, from the
most recent calls to the earlier ones. Depending on the browser, the stack prop‐
erty may include information about the location of the function (such as line
number and filename) and the arguments the functions were called with.

Be careful. There are a few other properties defined on the error
object (like description and lineNumber) that only work in spe‐
cific browsers. Don’t rely on these nonstandard properties when
writing error-handling code, because they won’t work on all
browsers.

If you pass the error object directly to the console.log() method (as in this exam‐
ple), you’ll get the information extracted from all three of these properties. It will look
something like this, depending on the browser:

URIError: URI malformed
 at decodeURI (<anonymous>)
 at runTest (<anonymous>):14:15
 at <anonymous>:20:1

228 | Chapter 10: Errors and Testing

Here, a piece of top-level code written in the developer console (represented by the
bottom <anonymous> in the call stack list) called a function named runTest(), which
then used the code shown above to call decodeURI() with a bad URI, triggering the
error that was then logged.

Solution
Before you test your error-handling code, you need a routine that can cause an error
to occur. For this example, we don’t want to consider syntax errors or any logical mis‐
take that should realistically be caught when you’re writing your code (perhaps using
a linter, as described in Recipe 1.10). Instead, we want an operation that is risky
because it relies on an outside resource and could fail due to no fault of your code.

JavaScript is unusually tolerant of usage that would be considered an error in many
other programming languages. Attempting to access a property that doesn’t exist gets
an error-free value of undefined. The same is true if you go beyond the bounds of an
array. JavaScript’s error tolerance is particularly apparent with math, where nonsensi‐
cal calculations like multiplying a number by a string returns an error-free value of
NaN (not a number), and dividing by zero returns the special value Infinity.
Attempting to use the decodeURI() function is an example of an operation that can
fail, in this case with a UriError.

The decodeURI() and encodeURI() methods are designed to
replace characters that aren’t allowed in web URLs with escape
sequences that are acceptable, which is an important technique if
you’re storing arbitrary data in the query string (the portion of the
URL that follows the ?). Attempting to reverse this encoding on a
string that has not been properly encoded can fail—for example, if
it includes a % character that should begin an escape sequence.

The act of catching an error prevents it from being an unhandled error. This means
your code can continue (and in the case of a Node application, prevents your applica‐
tion from ending altogether). However, you should only catch errors that you under‐
stand and are prepared to deal with. You never use error-handling simply to suppress
and ignore potential problems. Recipe 10.4 has more about the effect of unhandled
errors.

Although a try...catch block is the most common structure for error handling, you
can optional add a finally section to the end. The code in the finally block always
runs. It runs after the try block if no errors occurred, or after the catch block if an
error was caught. It’s most commonly used as a place to put cleanup code that should
run regardless of whether your code succeeded or failed.

10.1 Catching and Neutralizing an Error | 229

try {
 const uri = decodeURI('http%test');

 // We never get here
 console.log('Success!');
}
catch (error) {
 console.log(error);
}
finally {
 console.log('The operation (and any error handling) is complete');
}

See Also
Recipe 10.2 shows how to selectively catch different error types. Recipe 10.3 shows
how to catch errors that happen during asynchronous operations.

10.2 Catching Different Types of Errors
Problem
You want to distinguish between different types of errors and handle them differently,
or handle only specific types.

Solution
Unlike many languages, JavaScript does not allow you to catch errors by type. Instead,
you must catch all errors (as usual), and then investigate the error with the instan
ceof operator:

try {
 // Some code that will raise an error
}
catch (error) {
 if (error instanceof RangeError) {
 // Do something about the value being out of range
 }
 else if (error instanceof TypeError) {
 // Do something about the value being the wrong type
 }
 else {
 // Rethrow the error
 throw error;
 }
}

Finally, if the error is not a type that you can handle, you should rethrow the error.

230 | Chapter 10: Errors and Testing

Discussion
JavaScript has eight error types, which are represented by different error objects (see
Table 10-1). You can check an error’s type to determine the kind of problem that
occurred. This may indicate what actions you should take, or if you can carry out
alternate code, retry an operation, or recover. It may also provide more information
about exactly what went wrong.

Table 10-1. Error objects
Error Type Description

RangeError Occurs when a numeric value is outside of its allowed range.

ReferenceError Occurs when trying to assign a nonexistent object to a variable.

SyntaxError Occurs when code has a clear syntactical error, like an extra (or missing }.

TypeError Occurs when a value is not the right data type for a given operation.

URIError Raised by problems escaping URLs with decodeURI() and other related
functions.

AggregateError Is a wrapper for multiple errors, which is useful for errors that occur
asynchronously. An array of error objects is provided in the errors property.

EvalError Meant to represent problems that occur with the built-in eval(), but it’s no
longer used. Now, using eval() on syntactically invalid code will cause a Syn
taxError to be thrown.

InternalError Occurs for a variety of nonstandard cases, and is browser specific. For example,
on Firefox an InternalError occurs if you exceed the recursion limit (by
having a function call itself over and over again), while in Chrome the same
condition is represented by a RangeError.

In addition to these error types, you can also throw and catch your own custom error
objects, as described in Recipe 10.6.

JavaScript only allows one catch block for every try block, which prevents you from
catching errors by type. However, you can catch the standard Error object, examine
its type with instanceof, and write conditional code to deal with it accordingly.
When you use this approach, you must be careful not to accidentally suppress errors
you can’t deal with.

In the current example, the code explicitly handles the RangeError and TypeError
type. If the error is something else, we assume there’s nothing practical we can do to
resolve the problem. The error is then rethrown with the throw statement. When you
use throw, it’s as if the same error occurred again. If your code is in a function, this
allows the error to continue to bubble up the stack until it reaches some error-
handling code that can deal with it appropriately. If there is no other error-handling
that catches this error, it becomes an unhandled error, just as it would have if you
hadn’t caught it in the first place. (See Recipe 10.4 for more about that.)

10.2 Catching Different Types of Errors | 231

In other words, rethrowing unknown errors gives you the same behavior you would
have if you caught only specific exception types—which is the approach you would
probably take if the JavaScript language supported it.

See Also
Recipe 10.6 shows how to create your own error class to indicate a custom error con‐
dition and pass along extra information about the error.

10.3 Catching Asynchronous Errors
Problem
You want to add error handling but the risky operation is performed on a back‐
ground thread.

Solution
JavaScript APIs have more than one model of asynchronicity, and the way you handle
errors depends on the function you’re using.

If you’re using an older API, you may need to supply a callback function that will be
called in the event of an error, or attach an event handler. The XMLHttpRequest object
provides an error event to notify you about failed requests, for example:

const request = new XMLHttpRequest();

request.onerror = function errorHander(error) {
 console.log(error);
}

request.open('GET', 'http://noserver');
request.send();

Here the call to send() triggers the asynchronous operation that leads to the error,
but the actual error occurs on a separate thread. Adding a try...catch block around
this statement won’t catch the problem. The best you can do is receive a notification
through the error event.

If you’re using a promise-based API, you attach your error-handling function by call‐
ing Promise.catch(). Here’s an example with the Fetch API:

fetch('http://noserver')
.then((response) => {
 console.log('We did it, fam.');
})
.catch((error) => {

232 | Chapter 10: Errors and Testing

 console.log(error);
});

The code you write here will be triggered in the event of an unhandled error or a
rejected promise. If you don’t catch an error that occurs in a promise, it will bubble
up to your main application thread and trigger the window.unhandledrejection
event, which is the promise-based equivalent to the window.error event (see Recipe
10.4).

Finally, if you’re using promises with the higher-level async and await model, you
can use a traditional error-handling block. The catch section will be attached to the
promise automatically with Promise.catch(). Here’s an example:

async function doWork() {
 try {
 const response = await fetch('http://noserver');
 }
 catch (error) {
 console.log(error);
 }
}

doWork().then(() => {
 console.log('All done');
});

Discussion
Putting error-handling code in the wrong place is a common mistake. Unfortunately,
it’s not always obvious that your error-handling code is ineffective or will never run,
although a linting tool (Recipe 1.10) may alert you to the problem. The best solution
is to test actual error conditions in your application, and verify that your error-
handling code runs and mitigates them.

See Also
Recipe 9.2 shows a complete example with the Fetch API and promise-based error
handling. Recipe 9.5 shows a complete example with the Fetch API and async and
await error handling.

10.4 Detecting Unhandled Errors
Problem
You want to catch errors that have not been handled in your code, possibly to create a
diagnostic log.

10.4 Detecting Unhandled Errors | 233

Solution
Handle the window.error event. Your event-handling function receives five parame‐
ters with error information. Along with an error object that represents the actual
error, you also get a separate message parameter and location information (source
with the URL of the script file, lineno with the line number where the error occur‐
red, and colno with the column number).

Here’s an example that tests this event:

// Attach the event handler
window.onerror = (message, url, lineNo, columnNo, error) => {
 console.log(`An unhandled error occurred in ${url}`);
}

// Cause an unhandled error
console.log(null.length);

Note that to test this example, you need to use a sample test page. You can’t attach a
function to the window.error event handler using the developer console.

In some cases, the browser’s cross-origin security policy will pre‐
vent your JavaScript code from having access to the error details.
One example is if you’re running your test page from the local file‐
system instead of using a test server. In this situation, the message
parameter will have the generic text “Script error,” and the url, lin
eNo, columnNo, and error properties will be blank. For more infor‐
mation, see the onerror notes.

Discussion
Unhandled errors that occur on the main thread of your application bubble up the
stack until they reach the top level of your code and—if it’s not handled there—trig‐
ger the window.error event in the browser.

The window.error event is unusual in that it allows you to cancel the error, effectively
suppressing it. To do that, you return true from the event-handling function. If you
don’t suppress an error, the browser’s default error-handler springs into action. It dis‐
plays the error information in the developer console in bright red lettering, just as
when you log it with the console.error() method. But if you return true from win
dow.error, the error vanishes, and no trace of it will appear in the developer console.

Other than that, there’s no practical difference between suppressing or allowing an
error in your window.error event handler. By the time an error has triggered the
window.error event, your code has already been halted and the stack has been
unwound. However, this doesn’t stop your web page from working. As soon as

234 | Chapter 10: Errors and Testing

https://oreil.ly/9MbGP

another event occurs (for example, you click a button), JavaScript begins executing
your code again.

Modern practice discourages us from hiding errors, even from the
developer console, unless there’s a very good reason. One possibil‐
ity might be you’re replacing the default error display with some‐
thing that’s fine-tuned to your application, and provides more use‐
ful information or removes information you don’t want to make
visible to users.

You can use your window.error event handler to execute any type of JavaScript code.
For example, you could log the error to a local data store or even send it to a web
server using the Fetch API. If an error occurs during the window.error event handler,
the event handler won’t be triggered again. It will simply pass straight to the browser’s
default error handler and show up in the developer console.

For asynchronous code, errors are handled differently. For older callback-based APIs,
there usually are no errors. Instead, these APIs use callbacks to notify your code
about error conditions (see Recipe 10.3). But for promise-based APIs, unhandled
errors bubble up and will trigger the window.unhandledrejection event:

// Attach the event handler
window.onunhandledrejection = (e) => {
 console.log(e.reason);
}

// Create a promise that will cause an unhandled asynchronous error
const faultyPromise = new Promise(() => {
 throw new Error('Disaster strikes!');
});

// Create a promise that rejects (also triggers window.onunhandledrejection)
const rejectedPromise = new Promise((resolve, reject) => {
 reject(new Error('Another disaster strikes!'));
});

The unhandledrejection event passes a single object with event properties to your
event handler. The reason property (used in the example above) has the unhandled
error object, or whatever object was passed to Promise.reject() if the promise was
manually rejected. You can also get the underlying Promise object from the promise
property.

Like window.error, window.unhandledrejection is a cancellable event. However, it
uses a different, more modern convention for cancellation. Instead of returning true,
you can use the preventDefault() method of the object with the event arguments.
Here’s an example that shows a message when an unhanded promise error occurs, but
hides the automatic error logging:

10.4 Detecting Unhandled Errors | 235

window.onunhandledrejection = (e) => {
 console.log('An error occurred, but we won\'t tell you what it was');

 // Cancel the default error handling
 e.preventDefault();
}

You might think that the unhandled exception events are a good
place to put your logging code. Sometimes they are. But usually,
you’ll want to catch errors closer to where they occur, log them
there, and rethrow them if necessary. However, the unhandled
exception events are always a good way to find risky bits of code
that need exception-handling logic but don’t have it.

Extra: Logging Tools
Broadly speaking, there are two times you catch errors: when you’re testing your code
and you’re able to fix them, and when your application is in production and you want
to know what went wrong. In the first case, logging is simple—your goal is to detect
the problem and fix it. Often your logging simply involves calling console.log(). In
the latter case, you need to investigate a problem that may be occurring sporadically,
in a specific environment, and in front of an end user. Now you need a way to detect
the problem and report the details back to you.

You could handle the window.error and window.unhandledrejection events, and
then write the details to some sort of storage. For example, you could save error
information in the localStorage object so it persists for longer than the current
browser session. You could use fetch() to send the details to a web API on your
server. If you’re building a Node application, you could write the details to a file or
database on the server. You could add extra contextual information, like system
details, a priority level, and a timestamp. But as your logging needs grow, you may
want to consider using an open source logging tool rather than roll your own
solution.

A good logging tool gives you an abstraction layer over your logging. That means
you’ll log messages (in much the same way you call the usual console.log()
method), without thinking about where that log is or how it’s implemented. While
you’re testing, the logging layer might just output your messages to the console. But
when your application is deployed, the logging layer might ignore low-level messages
entirely while sending the important ones somewhere else, such as to a remote web
server. The logging tool can implement advanced features, like batching, which
improves performance when multiple messages are logged to a remote site in quick
succession.

236 | Chapter 10: Errors and Testing

There’s a dizzying array of logging libraries for JavaScript applications, including
Winston, Bunyan, Log4js, Loglevel, Debug, Pino, and many more. Some are designed
specifically for Node applications, but many can also work with web page code in a
browser.

10.5 Throwing a Standard Error
Problem
You want to indicate an error condition by throwing an error object.

Solution
Create an instance of the Error object, passing a short description of the problem to
the constructor, which is used for the message property. Throw the Error object with
the throw statement. Your code can then catch this Error object just like it catches
any other type of JavaScript error:

function strictDivision(number, divisor) {
 if (divisor == 0) {
 throw new Error('Dividing by zero is not allowed');
 }
 else {
 return number/divisor;
 }
}

// Catch the error
try {
 const result = strictDivision(42, 0);
}
catch (error) {
 // Shows the custom error message
 console.log(`Error: ${error.message}`);
}

Discussion
There are two ways to create an Error object. You can use the new keyword to create
it, as in the solution. Or (less commonly), you can call Error() like a function, which
has the same result:

// Standard error-throwing
throw new Error(`Dividing by zero is not allowed`);

// An equivalent approach
throw Error(`Dividing by zero is not allowed`);

10.5 Throwing a Standard Error | 237

The Error object has the standard error properties, including the message you set, a
name (unhelpfully set to “Error”), and stack (the stack trace that pinpoints where the
error occurred).

JavaScript also allows code to use throw with nonerror objects (like
strings). This usage is nonstandard and can cause problems in
exception-handling code that expects properties like name and mes
sage. As a rule of thumb, do not throw nonexception objects.

Sometimes, you may be able to repurpose a more specific error subtype. Most of Jav‐
aScript’s built-in error types (listed in Table 10-1) are for specialized cases and are not
suitable for custom code. But a couple are potentially useful. You can use RangeError
if a function receives a value that falls outside of the acceptable numeric range. Make
sure to include an informative error message that includes the given value and the
expected range:

function setAge(age) {
 const upper = 125;
 const lower = 18;
 if (age > 125 || age < 18) {
 throw new RangeError(
 `Age [${age}] is out of the acceptable range of ${lower} to ${upper}.`);
 }
}

RangeError is specifically intended for numeric values. However, you might use Type
Error to indicate errors where the supplied value was of the wrong type. It’s up to you
to decide what constitutes a “wrong” type; perhaps a string when you expect a num‐
ber (test that with typeof), or the wrong sort of object (test that with instanceof).

function calculateValue(num) {
 if (typeof num !== 'number') {
 throw new TypeError(`Value [${num}] is not a number.`);
 }
}

Less useful error subtypes that you might consider include ReferenceError (if you
receive a null reference or undefined value when you expect an object) or SyntaxEr
ror (for instance, if you’re parsing some type of string content that doesn’t follow the
rules you’ve established). To get more specific about other error conditions, consider
making your own error class (Recipe 10.6).

Compared to many stricter languages, JavaScript uses errors sparingly. When design‐
ing your own libraries, it’s usually best to follow that convention. Don’t use exceptions
for cases that JavaScript would ordinarily tolerate (like implicit type conversions).
Don’t use errors to notify the calling code about nonexceptional cases—in other
words, things that are likely to happen during normal operation, like invalid user

238 | Chapter 10: Errors and Testing

input. Do use exceptions to prevent code from continuing with an operation that will
fail because something hasn’t been initialized correctly.

See Also
Recipe 10.6 explains how to create your own error object.

10.6 Throwing a Custom Error
Problem
You want to indicate a specific error condition by throwing a custom error object.

Solution
Create a class that inherits from the standard Error class. The constructor should
accept the descriptive text for the message property, and use super() to call the base
Error class constructor with the message. Here’s a bare minimum custom error, with
the code that throws it:

class CustomError extends Error {
 constructor(message) {
 super(message);
 this.name = 'CustomError';

 // Optional improvement: clean up the stack trace, if supported
 if (Error.captureStackTrace) {
 Error.captureStackTrace(this, CustomError);
 }
 }
}

// Try raising this error
throw new CustomError('An application-specific problem occurred');

There’s one more recommended, but optional, refinement. You can use the static
Error.captureStackTrace() method to clean up the stack trace slightly. (Techni‐
cally, captureStackTrace() ensures that the call to the error constructor doesn’t
appear in the stack trace that’s stored in the Error.stack property.)

You can also add custom properties to pass extra information about the error condi‐
tion. Here’s an example that stores a productID after a failed lookup:

class ProductNotFound extends Error {
 constructor(missingProductID) {
 super(`Product ${missingProductID} does not exist in the catalog`);

 this.name = 'ProductNotFound';
 this.productID = missingProductID;

10.6 Throwing a Custom Error | 239

 if (Error.captureStackTrace) {
 Error.captureStackTrace(this, ProductNotFound);
 }
 }
}

try {
 throw new ProductNotFound(420);
}
catch (error) {
 console.log(`An error occured with the message: ${error.message}`);

 if (error instanceof ProductNotFound) {
 console.log(`Missing: ${error.productID}`);
 }
}

Discussion
When creating custom Error classes, we should keep in mind two possibly compet‐
ing concerns: staying within the bounds of a typical JavaScript error, and expressing
enough information for our customized error condition. In the former case, do not
attempt to recreate the errors or exceptions of your second favorite language. Do not
overextend JavaScript’s Error type with unnecessary methods and extra functionality.

When you create a custom error, there are a few conventions to keep in mind:

• Use the class name to indicate the error type, and set the name property to match.
This is important if any code checks the name to determine the type of error
(rather than using instanceof). It also persists even if the error object is serial‐
ized to JSON, and it appears in the error’s default string representation and the
developer console.

• In the constructor, put your custom properties first in the parameter list. If you
include a message parameter, it should be the last parameter.

• In the constructor, call super() and pass the message to the base class
constructor.

• As a nicety, properly set the stack trace. Check for the captureStackTrace()
method, and, if present, call it, passing a reference to the current instance (as
this) and your custom error class.

See Also
To learn more about inheritance and the extends keyword, see Recipe 8.8.

240 | Chapter 10: Errors and Testing

10.7 Writing Unit Tests for Your Code
Problem
You want to use automated tests to ensure your code matches your design criteria
now and in the future.

Solution
Use a tool like Jest to write unit tests for your code at the earliest possible stage.

The easiest way to install Jest is with npm (Recipe 1.7). Open a terminal window in
your project folder, and create the package.json configuration file if you don’t already
have it with npm init:

$ npm init -y

Next, install Jest using the --save-dev parameter so that it’s only included in devel‐
opment builds:

$ npm install --save-dev jest

Now you need to find some code to test. Let’s say you have a file named factorialize.js,
with the factorialize() function shown here:

function factorialize(number) {
 if (number < 0) {
 throw new RangeError('Factorials are only defined for positive numbers');
 }
 else if (number != Math.trunc(number)) {
 throw new RangeError('Factorials are only defined for integers');
 }
 else {
 if (number == 0 || number == 1) {
 return 1;
 }
 else {
 let result = number;
 while (number > 1) {
 number--;
 result *= number;
 }
 return result;
 }
 }
}

To make this function accessible to Jest, you need to export the factorialze() func‐
tion by adding this line to the end of the file:

export {factorialize}

10.7 Writing Unit Tests for Your Code | 241

Jest assumes you’re using the Node module standard (CommonJS).
If you’re already using the newer ES6 module standard, you need to
use Babel, a JavaScript transpilation tool, to convert your module
references before Jest processes your code. This sounds compli‐
cated, but the plugin-transform-modules-commonjs module will
take care of most of the work. To see the completely configured sol‐
ution both ways (with CommonJS modules or ES6 modules), refer
to the sample code. For more about CommonJS modules, see
Recipe 18.2. For more about ES6 modules, see Recipe 8.9.

Now you need to create your test file. In Jest, test files have the extension .test.js. In
this case, that means you need to create a new file named factorialize.test.js. This file
then imports the function you want to test:

import {factorialize} from './factorialize.js';

The rest of your test file defines the test you want to run. The simplest approach to
testing is to start by verifying that your function works the way you expect. For exam‐
ple, you can write a Jest test that verifies that factorialize() returns the correct
information for a few representative cases. Here’s an example that checks that 10! is
3,628,800:

test('10! is 3628800', () => {
 expect(factorialize(10)).toBe(3628800);
});

Jest’s test() function creates a named test. The name allows you to identify tests in
the test report, so you know exactly which tests succeeded and which ones failed. The
test in this example uses Jest’s expect() function, which calls your code (in this case,
the factorialize() function) and then evaluates the result with toBe(). Technically,
toBe() is one of several Jest matcher functions. It determines whether the code passes
or fails the test.

To run this test, you need to use Jest. You can run it from the command line, with
your test file and the help of npm’s package runner, npx. In this example, you would
use this command in the terminal:

$ npx jest factorialize.test.js

which runs the single test you’ve written and generates a report like this:

PASS ./factorialize.test.js
 √ 10! is 3628800 (4 ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 2.725 s, estimated 3 s

242 | Chapter 10: Errors and Testing

Ran all test suites matching /factorialize.test.js

More commonly, you’ll add Jest to the scripts section of your package.json file so it
can run all your tests automatically:

{
 "scripts": {
 "test": "jest"
 }
}

Now you can ask Jest to run all the tests (the .test.js files) in your project folder.

Discussion
There are multiple types of tests, such as tests for security, usability, and performance,
but the most basic form of testing is unit testing. Unit testing consists of performing
tests of discrete source code units, and verifying that those units behave as expected.
In JavaScript, the most common unit for unit testing is a function.

Although there are many possible testing frameworks (Jest, Mocha, Jasmine, Karma,
and more), most of them use a similar syntax. In Jest, everything revolves around a
test() function that takes two arguments. The first argument is a label for the test,
which appears in the test report. The second argument is a function that includes one
or more test assertions—claims that will either be successfully proved true (a pass) or
false (a fail):

test('Some test name', () => {
 // Test assertions go here
});

To create test assertions, you use the expect() function, which is the lynchpin of Jest.
It works in conjunction with a matching function like toBe() that evaluates the
results from your test call:

test('10! is 3628800', () => {
 expect(factorialize(10)).toBe(3628800);
});

This example demonstrates a single test of the factorialize() function. But the goal
of the test writer is broader. You need to choose a representative group of tests—ones
that check multiple values and capture boundary conditions where possible. For
example, with the factorialize() function test, it makes sense to test how the func‐
tion deals with nonnumeric input, negative values, 0, very large values, and so on.

The following code shows a more complete test suite. It checks the results of five dif‐
ferent calls to factorialize(). These calls are all grouped into one test suite using
describe(). The describe() function simply lets you label a collection of related test

10.7 Writing Unit Tests for Your Code | 243

calls. In this example, describe() is grouping calls to the same function, but you
might also use it to group calls that use the same set of sample data:

describe('factorialize() function tests', () => {
 test('0! is 1', () => {
 expect(factorialize(0)).toBe(1);
 });
 test('1! is 1', () => {
 expect(factorialize(1)).toBe(1);
 });
 test('10! is 3628800', () => {
 expect(factorialize(10)).toBe(3628800);
 });
 test('"5"! is 120', () => {
 expect(factorialize('5')).toBe(120);
 });
 test('NaN is 0', () => {
 expect(factorialize(NaN)).toBe(0);
 });
});

When you run this test, you’ll find that the final test fails. It expects the call factori
alize(NaN) to return 0, but it actually throws an error, as the test log makes clear:

 FAIL ./factorialize.test.js
 factorialize() function tests
 √ 0! is 1 (3 ms)
 √ 1! is 1
 √ 10! is 3628800
 √ "5"! is 120
 × NaN is 0 (3 ms)

 ● factorialize() function tests › NaN is 0

 RangeError: Factorials are only defined for integers

 4 | }
 5 | if (number != Math.trunc(number)) {
 > 6 | throw new RangeError('Factorials are only defined for integers');
 | ^
 7 | }
 8 | else {
 9 | if (number == 0 || number == 1) {

 at factorialize (factorialize.js:6:11)
 at Object.<anonymous> (factorialize.test.js:17:12)

Test Suites: 1 failed, 1 total
Tests: 1 failed, 4 passed, 5 total
Snapshots: 0 total
Time: 2.833 s
Ran all test suites.

244 | Chapter 10: Errors and Testing

Right now, every test you’ve seen uses the toBe() matching function to check for an
exact value. But Jest, like all testing frameworks, lets you use different types of rules.
For example, you could check that a number falls in a specific range, that text
matches a certain pattern, or that a value isn’t null. Table 10-2 outlines some of the
most useful matching functions you can use with expect(). For a comprehensive list,
consult the Jest documentation for the expect() method.

Table 10-2. Jest matchers
Function Description

arrayContaining() Searches an array for a given value.

not() Allows you to reverse any condition. For example, using
expect(...).not.toBe(5)` passes if the value is not 5.

stringContaining() Searches a string for a substring.

stringMatching() Attempts to match a string to a regular expression.

toBe() Tests for standard JavaScript equality, just as if you used the == operator.

toBeCloseTo() Tests that two numbers are equal or very close. Intended to avoid minute rounding errors
with floating-point numbers (an issue detailed in Recipe 3.4).

toBeGreaterThan() Checks if a numeric value is greater than the value you specify. There’s a small set of similar
matchers for different comparisons, including toBeGreaterThanOrEqual(), toBe
LessThan(), and toBeLessThanOrEqual().

toBeInstanceOf() Checks if a returned object is an instance of a specified class, just as if you used the
instanceof operator.

toBeNull() Checks if a value is null. You can also test for NaN values with toBeNaN() and
undefined values with toBeUndefined().

toBeTruthy() Tests if a number is truthy, which means it will be coerced to true in an if statement. In
JavaScript, everything is truthy except null, undefined, empty strings, NaN, 0, and
false.

toEqual() Performs a deep comparison that checks if one object has the same content as another. This
is in contrast to toBe(), which tests reference equality for objects. As a general rule of
thumb, toBe() works for primitive types, but toEqual() is what you need to compare
object instances. (Recipe 7.11 explains more about object equality in JavaScript.)

toHaveProperty() Checks if a returned object has a specific property and (optionally) if that property matches
a certain value.

toStrictEqual() Similar to toEqual() but requires the objects to match exactly. For example, objects
with the same properties and property values won’t match if they are instances of different
classes, or if one is a class instance and the other an object literal.

toThrow Tests if the function throws an exception. You can optionally require the exception to be a
specific error object.

To fix the current example, you can indicate that you expect a value of NaN to throw
an exception with the toThrow() matcher. However, toThrow() requires an extra
step. You need to wrap the code inside expect() inside another anonymous function.

10.7 Writing Unit Tests for Your Code | 245

https://oreil.ly/hnbiy

Otherwise, the exception won’t be caught and the test will still fail. Here’s the correct
code:

test('NaN causes error', () => {
 expect(() => {
 factorialize(NaN);
 }).toThrow();
});

See Also
This example gives a good overview of Jest’s core functionality, but there are many
additional features you may want to consider. For example, Jest has additional sup‐
port for using mock data, handling asynchronous results from promises, simulating
timers, and snapshot testing (which verifies that the UI of a page hasn’t changed). For
more information about all these features, refer to the Jest documentation.

Extra: Writing Tests First
Modern development practices have embraced the idea of writing the tests before
much of the functionality for the application (and libraries) is written. This test-
driven development (TDD) is a component of the Agile development paradigm.

TDD takes some getting used to. Rather than a more formal structured programming
or waterfall project design, which delays testing until you have reasonably complete
code, TDD mandates that you write tests before your write anything else. Here’s how
it unfolds:

1. Define the tests. For example, if you were planning to write the factorialize()
function shown in the previous example, you would begin by defining a repre‐
sentative set of tests that capture its expected inputs: for example, the largest
number it can factorialize, boundary values like 0, and potential edge cases (like
an implicitly coerced string or BigInt value). You would also write tests to check
that failure cases are treated appropriately—in this case, by throwing the
expected error.

2. Make it fail. Once you’ve written your tests, you write the code. Some TDD prac‐
titioners suggest that the first step is to make your code compile and your tests
fail. By achieving this step, you ensure that your tests are running, your test
requirements are meaningful, and you aren’t accidentally passing code before it’s
complete.

3. Make it pass. The next step is sometimes described as “make the tests pass any
way possible.” In other words, you don’t worry about creating the best possible
solution, but simply making all the tests pass. Do not write more code than dicta‐
ted by the test requirements.

246 | Chapter 10: Errors and Testing

https://oreil.ly/aeu1l

4. Refactor. After you successfully pass your tests, you start the work of refining the
code. This is the time when you refactor, remove duplicate code, and introduce
improvements, repeating your tests all the while to make sure they continue to
pass. You’ll probably also discover cases you haven’t covered, and end up writing
more tests.

One obvious advantage in TDD is that it makes you focus on the problem at hand.
You don’t need to interpret design requirements to decide how you should code a sol‐
ution. Instead, you code to the exacting specifications that are formalized in tests. But
TDD development also helps as an application evolves, because it diminishes the fear
of change. As long as your code continues to pass the tests you’ve set out, and as long
as your tests are truly representative (a bigger “if ”), it’s safe to commit new revisions
to your codebase.

The cost for this protection is that creating proper tests takes significantly more time
to complete and significant experience to get right. One metric that can help you
evaluate your testing regimen is test code coverage (Recipe 10.8).

10.8 Tracking Test Code Coverage
Problem
You want to assess how well your test cases cover all the possibilities in your code.

Solution
Get a code coverage report from your testing tool. In Jest, you use the --collect-
coverage option:

$ npx jest --collect-coverage

Now Jest will run all the tests in all the test.js files (as usual), followed by a more
detailed report that analyzes the code coverage of your tests. Here’s the report with
the tests for the factorialize() function shown in Recipe 10.7:

-----------------|---------|----------|---------|---------|-------------------
File | % Stmts | % Branch | % Funcs | % Lines | Uncovered Line #s
-----------------|---------|----------|---------|---------|-------------------
All files | 82.61 | 66.67 | 100 | 82.61 |
 factorialize.js | 82.61 | 66.67 | 100 | 82.61 | 3-4,6-7
-----------------|---------|----------|---------|---------|-------------------
Test Suites: 1 passed, 1 total
Tests: 4 passed, 4 total
Snapshots: 0 total
Time: 2.741 s

10.8 Tracking Test Code Coverage | 247

Discussion
Determining test code coverage requires a multifaceted approach. To be successful, it
should include techniques such as code reviews and walkthroughs with peers. How‐
ever, all testing tools also include automated code analysis features that can help you
size up how successful your tests are at evaluating your code.

In Jest, the --collect-coverage parameter triggers this analysis. You can use this
parameter at the command line or add it to the jest command in the package.json
configuration file for your application.

The code coverage report assesses how much of your code is tested using several per‐
centages, which appear in separate columns:

Functions
Shows how many of your functions are tested. This is a good starting point for
evaluating your test coverage, but it’s also the least fine-grained statistic. In the
factorialize() test, all the functions are tested. That doesn’t mean that all the
code in these functions is executed!

Statements
Shows the percentage of code statements that are executed during your tests. In
the factorialize() test, roughly 83% of all the code written is covered by at
least one test.

Branch
Shows how many different branches (through conditional logic, like if state‐
ments) are reached. In the factorialize() test, the tests travel down 67% of the
separate conditional branches.

Additionally, the code report can point you to lines that don’t have code coverage. For
example, the factorialize() example highlights lines 3–4 in your source code file,
which rejects negative numbers, and lines 6–7, which rejects noninteger numbers. To
improve your test code coverage, you could write a test assertion that uses toThrow()
to ensure that both these cases are rejected properly.

The command-line report gives you a quick review of your coverage, but Jest also
generates a more comprehensive HTML-formatted report, which it stores in the cov‐
erage folder. Open index.html to see a list of all the tested files with the top-line statis‐
tics in slightly more detail (see Figure 10-1). For example, rather than just giving you
percentages, the report tells you the exact number of statements, branches, and func‐
tions. Click on any file in the list to go to another page that shows the code, with a
twist: uncovered statements are highlighted for quick reference (see Figure 10-2).

248 | Chapter 10: Errors and Testing

Figure 10-1. Code coverage report

Figure 10-2. Highlighted code without test coverage

10.8 Tracking Test Code Coverage | 249

The appropriate test coverage goal is much-debated. Some devel‐
opers advocate for getting as close to 100% as possible, while others
argue that 70%–80% is more practical and achieves the best return
for your test-writing investment. However, the honest answer is
that test coverage is not a definitive metric. Not only does the per‐
centage differ based on how you measure it (functions, statements,
or branches), but testing tools have no way to identify the riskiest
or most vulnerable paths in your codebase.

250 | Chapter 10: Errors and Testing

PART II

JavaScript in the Browser

CHAPTER 11

Browser Tools

As a web developer, the browser is the window through which the world accesses
your creations. It also provides helpful tooling for developing and testing your sites. It
is a worthwhile investment to learn how to use your browser’s development tools so
that you may better and more easily debug your code. In this chapter we’ll cover sev‐
eral useful features for debugging, profiling, and analyzing JavaScript.

For simplicity, all of the examples in this book will make use of Google Chrome’s
Developer Tools (DevTools). At the time of writing, Chrome’s usage makes up over
65% of the global browser share. Most other browsers offer similar functionality.
Mozilla’s Firefox Developer Edition is an excellent alternative with useful developer
features.

11.1 Debugging JavaScript
Problem
You need to know the value of a variable at a specific point in your JavaScript code’s
execution.

Solution
Use a breakpoint to inspect code values and types. When setting a breakpoint, the
browser’s debugger will stop at the point of the breakpoint’s code execution and dis‐
play each of the current values in scope. It is then possible to step through the code or
allow the JavaScript to finish executing. Figure 11-1 shows a screenshot of code
paused on a breakpoint.

253

https://oreil.ly/QFZD9
https://oreil.ly/QFZD9
https://oreil.ly/lJSel

Figure 11-1. A screenshot of the Chrome debugger with a breakpoint set

To set a breakpoint on a specific line of JavaScript code in Chrome’s Developer Tools:

1. Open Chrome’s Developer Tools using Command-Option-C (Macintosh) or
Control+Shift+C (Windows or Linux).

2. Click the DevTools Sources tab.
3. Select the JavaScript file from the file list.
4. Click the line number where you would like to set the breakpoint.
5. Execute the code by either interacting with the page or refreshing the browser

window.

Discussion
It is common practice to use console.log statements to identify values at specific
points in code, but breakpoints offer more information and greater flexibility. As you
become familiar with debugging in this manner, you’ll be able to more easily trouble‐
shoot your browser-based JavaScript code.

In addition to setting breakpoints in the browser’s user interface, it is also possible to
set them with code by adding a debugger statement. Doing so will pause code execu‐
tion at the point of the debugger statement.

254 | Chapter 11: Browser Tools

function normalize(string) {
 const normalized = string.replace(/[^\w]/g, "").toLowerCase();
 debugger;
 return normalized;
}

Once the breakpoint has been reached, you are given several options as to how the
JavaScript should be executed:

Resume script execution
Continue executing the code in full.

Step over
Execute a function without “stepping into it” to debug.

Step into
Step into a function to debug it further.

Step out of
Execute the rest of the current function’s code.

Step
Step to the next line of code.

These line-based breakpoints are only one type of breakpoint that can be set. In addi‐
tion, it is possible to set breakpoints based on DOM changes, conditional values,
event listeners, exceptions, and fetch/XHR requests. The use of breakpoints provides
greater control over the JavaScript debugging experience.

11.2 Analyzing Runtime Performance
Problem
The execution of your JavaScript code seems slow or buggy, but you are unsure of the
source of the problem.

Solution
Use the browser developer tool’s Performance analysis to look for bottlenecks and
CPU-intensive tasks in your code (Figure 11-2).

To analyze JavaScript code performance in Chrome’s Developer Tools:

1. Open Chrome’s Developer Tools using Command-Option-C (Macintosh) or
Control+Shift+C (Windows or Linux).

2. Click the DevTools Performance tab.

11.2 Analyzing Runtime Performance | 255

3. Either click the Record button to interact with the page, or click the Reload but‐
ton to see the performance metrics related to a new page load.

Once Chrome completes the profile of the page, you will be presented with informa‐
tion that allows you to review potential performance bottlenecks.

Figure 11-2. Chrome’s Performance tab

Discussion
The Chrome Performance tooling breaks down the browser’s rendering process for a
page and presents it using a visual timeline, screenshots, and a summary chart (see
Figure 11-3). Using this information allows you to look for places where performance
is negatively affected.

As a developer, you may have a high-end machine and a fast internet connection.
One of the most useful features of browser performance tools is the ability to simulate
a throttled CPU or internet connection. Doing so may allow you to spot performance
issues that users will encounter, but may not be apparent to you.

256 | Chapter 11: Browser Tools

Figure 11-3. The Chrome Developer Performance tools allow you to throttle CPU and
network connections

Reviewing performance data is an important step in ensuring a positive user experi‐
ence. Good site performance has been shown to improve user retention rates and
sales conversions. In Recipe 11.4, we’ll cover how to further review potential perfor‐
mance issues.

11.3 Identifying Unused JavaScript
Problem
Your application’s performance is impacted by large JavaScript files.

11.3 Identifying Unused JavaScript | 257

Solution
Use the Chrome Developer Tool’s Coverage feature to identify unused JavaScript
(Figure 11-4).

Figure 11-4. Chrome’s Coverage tool

To view unused JavaScript, access the Coverage tab:

1. Open Chrome’s Developer Tools using Command-Option-C (Macintosh) or
Control+Shift+C (Windows or Linux).

2. Open the Command Menu using Command-Shift-P (Macintosh) or Control
+Shift+P (Windows or Linux) and type coverage.

3. Select Show Coverage and press Enter.
4. Either click the Record button to interact with the page, or click the Reload but‐

ton to record the coverage results related to a new page load.
5. Click Stop Instrumenting Coverage And Show Results when you want to stop

recording the results.

258 | Chapter 11: Browser Tools

The results will display a report with the following information:

• File URL
• File type
• Total bytes
• Unused bytes
• Usage visualization

You can then use this information to aid in refactoring code to reduce the total
amount of unused bytes on a page.

Discussion
Viewing code usage is helpful for getting a sense of the percentage of unused Java‐
Script you are serving your users. The task of reducing this unused code is then often
left to manual refactoring. However, a JavaScript bundling tool, such as Webpack, can
also be used to split code into multiple bundles and perform “tree shaking” to auto‐
matically eliminate dead code. These methods are covered in Recipe 16.2.

11.4 Using Lighthouse to Measure Best Practices
Problem
You want to measure your web application’s adherence to best practices.

Solution
Use Google’s Lighthouse tool, which is built into the Chrome Developer Tools
(Figure 11-5).

1. Open Chrome’s Developer Tools using Command-Option-C (Macintosh) or
Control+Shift+C (Windows or Linux).

2. Click the DevTools Lighthouse tab.
3. Select the categories you would like to profile and the device type (mobile or

desktop).
4. Click Generate Report.

Lighthouse will then create a report, with a score for each category and specific rec‐
ommendations for improvement.

11.4 Using Lighthouse to Measure Best Practices | 259

Figure 11-5. The results of a Google Lighthouse report within Chrome’s Developer Tools

Discussion
Lighthouse is an open source tool, created by Google, to measure the performance
and best practices of a website. The tool is built into Chrome’s Developer Tools, but it
can also be run as a standalone browser extension, a Node module, or from the com‐
mand line. The Lighthouse report can be generated in a desktop or mobile view,
allowing you to quickly get a sense of mobile performance. Lighthouse generates
reports and recommendations for each of the following areas:

• Performance
• Progressive Web Application
• Best Practices
• Accessibility
• SEO

260 | Chapter 11: Browser Tools

The report output provides actionable feedback with specific problems, and links to
documentation and recommended improvements. In Figure 11-6, you can see perfor‐
mance recommendations for a profiled website, including removing unused Java‐
Script and reducing the impact of third-party code. Expanding each of these diagnos‐
tics will provide additional details and file specifics.

Figure 11-6. Lighthouse performance recommendations

Google’s Lighthouse is a useful tool for gauging the overall health and performance of
the websites and applications that you develop. Accessing Lighthouse through the
browser Developer Tools provides a quick and efficient way to profile a site during
development. In addition to the developer tools user interface, the open source
command-line tooling and Node module make it possible to build Lighthouse reports
into continuous integration and delivery pipelines.

11.4 Using Lighthouse to Measure Best Practices | 261

https://github.com/GoogleChrome/lighthouse

CHAPTER 12

Working with HTML

In 1995 Netscape tasked software developer Brendan Eich with creating a program‐
ming language designed to add interactivity to pages in the Netscape Navigator
browser. In response, Eich infamously developed the first version of JavaScript in 10
days. A few years later, JavaScript became a cross-browser standard through the
adoption of the ECMAScript standardization.

Despite the early attempt at standardization, web developers battled for years with
browsers that had different JavaScript engine interpretations or features. Popular
libraries, such as jQuery, effectively allowed us to write simple cross-browser Java‐
Script. Thankfully, today’s browsers share a near uniform implementation of the lan‐
guage, allowing web developers to write “vanilla” (library-free) JavaScript to interact
with an HTML page.

When working with HTML, we are working with the Document Object Model
(DOM), which is the data representation of the HTML page. The recipes in this chap‐
ter will review how to interact with the DOM of an HTML page by selecting, updat‐
ing, and removing elements from the page.

12.1 Accessing a Given Element and Finding Its Parent
and Child Elements
Problem
You want to access a specific web page element, and then find its parent and child
elements.

263

Solution
Give the element a unique identifier:

<div id="demodiv">
 <p>
 This is text.
 </p>
</div>

Use document.getElementById() to get a reference to the specific element:

const demodiv = document.getElementById("demodiv");

Find its parent via the parentNode property:

const parent = demodiv.parentNode;

Find its children via the childNodes property:

const children = demodiv.childNodes;

Discussion
A web document is organized like an upside-down tree, with the topmost element at
the root and all other elements branching out beneath. Except for the root element
(HTML), each element has a parent node, and all of the elements are accessible via the
document.

There are several different techniques available for accessing these document ele‐
ments, or nodes as they’re called in the DOM. Today, we access these nodes through
standardized versions of the DOM, such as DOM Levels 2 and 3. Originally, though,
a de facto technique was to access the elements through the browser object model,
sometimes referred to as DOM Level 0. DOM Level 0 was invented by the leading
browser company of the time, Netscape, and its use has been supported (more or less)
in most browsers since. The key object for accessing web page elements in the DOM
Level 0 is the document object.

The most commonly used DOM method is document.getElementById(). It takes
one parameter: a case-sensitive string with the element’s identifier. It returns an ele
ment object, which is referenced to the element if it exists; otherwise, it returns null.

There are numerous ways to get one specific web page element,
including the use of selectors, covered later in the chapter. But
you’ll always want to use the most restrictive method possible, and
you can’t get more restrictive than document.getElementById().

264 | Chapter 12: Working with HTML

The returned element object has a set of methods and properties, including several
inherited from the node object. The node methods are primarily associated with tra‐
versing the document tree. For instance, to find the parent node for the element, use
the following:

const parent = document.getElementById("demodiv").parentNode;

You can find out the type of element for each node through the nodeName property:

const type = parent.nodeName;

If you want to find out what children an element has, you can traverse a collection of
them via a NodeList, obtained using the childNodes property:

let outputString = '';

if (demodiv.hasChildNodes()) {
 const children = demodiv.childNodes;
 children.forEach(child => {
 outputString += `has child ${child.nodeName} `;
 });
}
console.log(outputString);

Given the element in the solution, the output would be:

"has child #text has child P has child #text "

You might be surprised by what appeared as a child node. In this example, whitespace
before and after the paragraph element is itself a child node with a nodeName of #text.
For the following div element:

<div id="demodiv" class="demo">
 <p>Some text</p>
 <p>Some more text</p>
</div>

the demodiv element (node) has five children, not two:

has child #text
has child P
has child #text
has child P
has child #text

The best way to see how messy the DOM can be is to use a debugger such as the Fire‐
fox or Chrome developer tools, access a web page, and then utilize whatever DOM
inspection tool the debugger provides. I opened a simple page in Chrome and used
the developer tools to display the element tree, as shown in Figure 12-1.

12.1 Accessing a Given Element and Finding Its Parent and Child Elements | 265

Figure 12-1. Examining the element tree of a web page using Chrome’s Developer Tools

12.2 Traversing the Results from querySelectorAll()
with forEach()
Problem
You want to loop over the nodeList returned from a call to querySelectorAll().

Solution
In modern browsers, you can use forEach() when working with a NodeList (the col‐
lection returned by querySelectorAll()):

// use querySelectorAll to find all list items on a page
const items = document.querySelectorAll('li');

items.forEach(item => {
 console.log(item.firstChild.data);
});

Discussion
forEach() is an array method, but querySelectorAll() produces a NodeList which
is a different type of object than an array. Thankfully, modern browsers have built-in
support for forEach, allowing us to iterate over a NodeList as though it is an array.

Unfortunately, Internet Explorer (IE) does not support using forEach in this way. If
you’d like to support IE, the recommended approach is to include a polyfill that uses a
standard for loop under the hood:

266 | Chapter 12: Working with HTML

if (window.NodeList && !NodeList.prototype.forEach) {
 NodeList.prototype.forEach = function(callback, thisArg) {
 thisArg = thisArg || window;
 for (var i = 0; i < this.length; i++) {
 callback.call(thisArg, this[i], i, this);
 }
 };
}

In the polyfill, we check for the existence of NodeList.prototype.forEach. If it does
not exist, a forEach method is added to the NodeList prototype that uses a for loop
to iterate over the results of a DOM query. By doing so, you can use the forEach
syntax freely across your codebase.

12.3 Adding Click Functionality to an Element
Problem
You need to add JavaScript functionality when a user clicks a button, link, or element
on the page.

Solution
Add a click event listener for the element:

// define an event handler function
const clickHandler = (event) => {
 window.alert('The element has been clicked!');
};

// select element
const btn = document.getElementById('click-button');
// add the event listener to the element and call 'clickHandler' function
btn.addEventListener('click', clickHandler);

Discussion
The addEventListener() method allows our JavaScript to listen for a specific type of
event and define a function that will be called when the event is triggered. In the pre‐
vious example, I have added a click listener to a button element. When the button is
clicked, the clickHandler function will be called, which fires an alert.

By default, you should use a button element for clickable event handlers, as it is the
most accessible solution for handling click events. The button element can be styled
to appear as a link if necessary for the application’s design. However, it is appropriate
to use an element when the fallback behavior of linking to a page, should the

12.3 Adding Click Functionality to an Element | 267

JavaScript fail to load, is the desired behavior. When doing so, the preventDefault
event method allows you to override the default link behavior:

const clickHandler = (event) => {
 event.preventDefault();
 window.alert(`The ${event.currentTarget.nodeName} element has been clicked!`);
};

const href = document.getElementById('click-link');
href.addEventListener('click', clickHandler);

In traditional JavaScript functions, the this keyword would be
bound to the item being clicked. However, when using JavaScript’s
newer arrow function syntax, such as in this example, the value of
this is inherited from the parent function, which by default is win
dow. This can be confusing if you are accustomed to nonarrow syn‐
tax functions. If you are interested in reading more, I recommend
Joe Cardillo’s article on the topic.

On rare instances, it may be desirable to make a block element, such as a div clicka‐
ble. I’d recommend doing so sparingly, in favor of the button element whenever pos‐
sible. However, for these occasions, you will need to ensure that the functionality is
accessible for those using screen readers and keyboard navigation. First, in your
markup apply a role of button and a tabindex value. The role property will inform
screen reader users that this is a clickable element, while the tabindex will make the
element keyboard navigable:

<div tabindex="0" role="button" id="click-div">Click me</div>

In this instance, we use a keydown event handler. This will allow keyboard users to
interact with the element:

const clickHandler = (event) => {
 window.alert(`The ${event.currentTarget.nodeName} element has been clicked!`);
};

const clickableDiv = document.getElementById('click-link');
clickableDiv.addEventListener('click', clickHandler);

// when using a div add a keydown event listener for keyboard users
clickableDiv.addEventListener('keydown', (event) => {
 if (event.code === 'Space' || event.code === 'Enter') {
 clickableDiv.click();
 }
});

268 | Chapter 12: Working with HTML

https://oreil.ly/wK7Ik

12.4 Finding All Elements That Share an Attribute
Problem
You want to find all elements in a web document that share the same attribute.

Solution
Use the universal selector (*) in combination with the attribute selector to find all ele‐
ments that have an attribute, regardless of its value:

const elems = document.querySelectorAll('*[class]');

The universal selector can also be used to find all elements with an attribute that’s
assigned the same value:

const reds = document.querySelectorAll('*[class="red"]');

Discussion
The solution demonstrates a rather elegant query selector, the universal selector (*).
The universal selector evaluates all elements, so it’s the one you want to use when you
need to verify something about each element. In the solution, we want to find all of
the elements with a given attribute.

To test whether an attribute exists, all you need to do is list the attribute name within
square brackets ([attrname]). In the solution, we’re first testing whether the element
contains the class attribute. If it does, it’s returned with the element collection:

var elems = document.querySelectorAll('*[class]');

Next, we’re getting all elements with a class attribute value of red. If you’re not sure
of the class name, you can use the substring-matching query selector:

const reds = document.querySelectorAll('*[class="red"]');

Now any class name that contains the substring red matches.

You could also modify the syntax to find all elements that don’t have a certain value.
For instance, to find all div elements that don’t have the target class name, use
the :not negation operator:

const notRed = document.querySelectorAll('div:not(.red)');

12.5 Accessing All Elements of a Specific Type
Problem
You want to access all img elements in a given document.

12.4 Finding All Elements That Share an Attribute | 269

Solution
Use the document.getElementsByTagName() method, passing in img as the
parameter:

const imgElements = document.getElementsByTagName('img');

Discussion
The document.getElementsByTagName() method returns a collection of nodes (a
NodeList) of a given element type, such as the img tag in the solution. The collection
can be traversed like an array, and the order of nodes is based on the order of the
elements within the document (the first img element in the page is accessible at index
0, etc.):

const imgElements = document.getElementsByTagName('img');
for (let i = 0; i < imgElements.length; i += 1) {
 const img = imgElements[i];
 ...
}

As discussed in Recipe 12.2, a NodeList collection can be traversed like an array, but
it isn’t an Array object. You can’t use Array object methods, such as push() and
reverse(), with a NodeList. Its only property is length, and its only method is
item(), returning the element at the position given by an index passed in as a
parameter:

const img = imgElements.item(1); // second image

NodeList is an intriguing object because it’s a live collection, which means changes
made to the document after the NodeList is retrieved are reflected in the collection.
Example 12-1 demonstrates the NodeList live collection functionality, as well as getE
lementsByTagName.

In the example, three images in the web page are accessed as a NodeList collection
using the getElementsByTagName method. The length property, with a value of 3, is
output to the console. Immediately after, a new paragraph and img elements are cre‐
ated, and the img is appended to the paragraph. To append the paragraph following
the others in the page, getElementsByTagName is used again, this time with the para‐
graph tags (p). We’re not really interested in the paragraphs, but in the paragraphs’
parent elements, found via the parentNode property on each paragraph.

The new paragraph element is appended to the paragraph’s parent element, and the
previously accessed NodeList collection’s length property is again printed out. Now,
the value is 4, reflecting the addition of the new img element.

270 | Chapter 12: Working with HTML

Example 12-1. Demonstrating getElementsByTagName and the NodeList live collection
property

<!DOCTYPE html>
<html>
<head>
<title>NodeList</title>
</head>
<body>
 <p></p>
 <p></p>
 <p></p>

<script>
 const imgs = document.getElementsByTagName('img');
 console.log(imgs.length);
 const p = document.createElement('p');
 const img = document.createElement('img');
 img.src = './img/someimg.jpg';
 p.appendChild(img);

 const paras = document.getElementsByTagName('p');
 paras[0].parentNode.appendChild(p);

 console.log(imgs.length);
</script>

</body>
</html>

Example 12-1 will log the following output to the browser console:

3
4

In addition to using getElementsByTagName() with a specific element type, you can
also pass the universal selector (*) as a parameter to the method to get all elements:

const allElems = document.getElementsByTagName('*');

See Also
In the code demonstrated in the discussion, the children nodes are traversed using a
traditional for loop. In modern browsers, the forEach() method can be used directly
with a NodeList, as demonstrated in Recipe 12.2.

12.5 Accessing All Elements of a Specific Type | 271

12.6 Discovering Child Elements Using the Selectors API
Problem
You want to get a list of all instances of a child element, such as img elements, that are
descendants of a parent element, such as article elements, without having to tra‐
verse an entire collection of elements.

Solution
Use the Selectors API and access the img elements contained within article elements
using CSS-style selector strings:

const imgs = document.querySelectorAll('article img');

Discussion
There are two selector query API methods. The first, querySelectorAll(), is
demonstrated in the solution; the second is querySelector(). The difference
between the two is that querySelectorAll() returns all elements that match the
selector criteria, while querySelector() only returns the first found result.

The selector syntax is derived from CSS selector syntax, except that rather than style
the selected elements, they’re returned to the application. In the example, all img ele‐
ments that are descendants of article elements are returned. To access all img ele‐
ments regardless of parent element, use:

const imgs = document.querySelectorAll('img');

In the solution, you’ll get all img elements that are direct or indirect descendants of an
article element. This means that if the img element is contained within a div that’s
within an article, the img element will be among those returned:

<article>
 <div>

 </div>
</article>

If you want only those img elements that are direct children of an article element,
use the following:

const imgs = document.querySelectorAll('article > img');

If you’re interested in accessing all img elements that are immediately followed by a
paragraph, use:

const imgs = document.querySelectorAll('img + p');

272 | Chapter 12: Working with HTML

If you’re interested in an img element that has an empty alt attribute, use the
following:

const imgs = document.querySelectorAll('img[alt=""]');

If you’re only interested in img elements that don’t have an empty alt attribute, use:

const imgs = document.querySelectorAll('img:not([alt=""])');

The negation pseudoselector (:not) is used to find all img elements with alt
attributes that are not empty.

Unlike the collection returned with getElementsByTagName() covered earlier, the
collection of elements returned from querySelectorAll() is not a “live” collection.
Updates to the page are not reflected in the collection if the updates occur after the
collection is retrieved.

Though the Selectors API is a wonderful creation, it shouldn’t be
used for every document query. To keep your applications per‐
formant, I recommend always using the most restrictive query pos‐
sible when accessing elements. For example, it’s more efficient
(meaning faster for the browser) to use getElementById() to get a
specific element given an identifier than using querySelector
All() for the same element.

See Also
There are three different CSS selector specifications, labeled as Selectors Level 1, Level
2, and Level 3. CSS Selectors Level 3 contains links to the documents defining the
other levels. These documents provide the definitions of, and examples for, the differ‐
ent types of selectors.

12.7 Changing an Element’s Class Value
Problem
You want to update the CSS rules applied to an element by changing its class value.

Solution
Use the classList property of an element to add, remove, and toggle class values:

const element = document.getElementById('example-element');
// add a new class
element.classList.add('new-class');
// remove an existing class
element.classList.remove('existing-class');

12.7 Changing an Element’s Class Value | 273

https://oreil.ly/rGfxD

// if toggle-me is present it is removed, if not it is added
element.classList.toggle('toggle-me');

Discussion
Using classList allows you to easily manipulate the class properties of a selected ele‐
ment. This can come in handy for updating or swapping styles without using inline
CSS. At times, it may be helpful to check if an element already has a class value
applied, which can be accomplished with the contains method:

if (element.classList.contains('new-class')) {
 element.classList.remove('new-class');
}

It is also possible to add, remove, or toggle multiple classes, either by passing them
each as individual properties or using a spread operator:

// add multiple classes
.classList.add("my-class", "another-class");

// remove multiple classes with a spread operator
const classes = ["my-class", "another-class"];
div.classList.remove(...classes);

12.8 Setting an Element’s Style Attribute
Problem
You want to directly add or replace an inline style on a specific element.

Solution
To change one CSS property as an inline style, modify the property value via the ele‐
ment’s style property:

elem.style.backgroundColor = 'red';

To modify one or more CSS properties for a single element, you can use setAttri
bute() and create an entire CSS style rule:

elem.setAttribute('style',
 'background-color: red; color: white; border: 1px solid black');

These techniques set an inline style value for the HTML element, which will appear
within the HTML itself. To demonstrate further, the following JavaScript sets a style
attribute on an element with an ID of card:

const card = document.getElementById('card');
card.setAttribute(
 'style',

274 | Chapter 12: Working with HTML

 'background-color: #ecf0f1; color: #2c3e50;'
);

The resulting HTML output includes the inline style value:

<div id="card" style="background-color: #ecf0f1; color: #2c3e50;">
...
</div>

Discussion
An element’s CSS properties can be modified in JavaScript using one of three
approaches. As the solution demonstrates, the simplest approach is to set the proper‐
ty’s value directly using the element’s style property:

elem.style.width = '500px';

If the CSS property contains a hyphen, such as font-family or background-color,
use the CamelCase notation for the property:

elem.style.fontFamily = 'Courier';
elem.style.backgroundColor = 'rgb(255,0,0)';

The CamelCase notation removes the dash and capitalizes the first letter following
the dash.

You can also use setAttribute() or cssText to set the style property. This is useful
when adding multiple styles:

// using setAttribute
elem.setAttribute('style','font-family: Courier; background-color: yellow');

// alternately apply a value to style.cssText
elem.style.cssText = 'font-family: Courier; background-color: yellow';

The setAttribute() method is a way of adding an attribute or replacing the value of
an existing attribute for a web page element. The first argument to the method is the
attribute name (automatically lowercased if the element is an HTML element) and
the new attribute value.

When setting the style attribute, all CSS properties that are changed must be speci‐
fied at the same time, as setting the attribute erases any previously set values. How‐
ever, setting the style attribute using setAttribute() does not erase any settings
made in a stylesheet, or set by default by the browser.

Extra: Accessing an Existing Style Setting
For the most part, accessing existing attribute values is as easy as setting them.
Instead of using setAttribute(), use getAttribute(). For example, to get the value
of the class:

12.8 Setting an Element’s Style Attribute | 275

const className = elem.getAttribute('class');

Getting access to a style setting, though, is much trickier, because a specific element’s
style settings at any one time is a composite of all settings merged into a whole. This
computed style for an element is what you’re most likely interested in when you want
to see specific style settings for the element at any point in time. Happily, there is a
method for that, window.getComputedStyle(), which will return the current compu‐
ted styles applied to the element:

const style = window.getComputedStyle(elem);

Advanced
Rather than using setAttribute() to add or modify the attribute, you can create an
attribute and attach it to the element using createAttribute() to create an Attr
node, set its value using the nodeValue property, and then use setAttribute() to
add the attribute to the element:

const styleAttr = document.createAttribute('style');
styleAttr.nodeValue = 'background-color: red';
someElement.setAttribute(styleAttr);

You can add any number of attributes to an element using either createAttribute()
and setAttribute(), or setAttribute() directly. Both approaches are equally effi‐
cient, so unless there’s a real need, you’ll most likely want to use the simpler approach
of setting the attribute name and value directly using setAttribute().

When would you use createAttribute()? If the attribute value is going to be
another entity reference, as is allowed with XML, you’ll need to use createAttri
bute() to create an Attr node, as setAttribute() only supports simple strings.

12.9 Adding Text to a New Paragraph
Problem
You want to create a new paragraph with text and insert it into the document.

Solution
Use the createTextNode method to add text to an element:

const newPara = document.createElement('p');
const text = document.createTextNode('New paragraph content');
newPara.appendChild(text);

276 | Chapter 12: Working with HTML

Discussion
The text within an element is, itself, an object within the DOM. Its type is a Text
node, and it is created using a specialized method, createTextNode(). The method
takes one parameter: the string containing the text.

Example 12-2 shows a web page with a div element containing four paragraphs. The
JavaScript creates a new paragraph from text provided by the user via a prompt. The
text could just as easily have come from a server communication or other process.

The provided text is used to create a text node, which is then appended as a child
node to the new paragraph. The paragraph element is inserted in the web page before
the first paragraph.

Example 12-2. Demonstrating various methods for adding content to a web page

<!DOCTYPE html>
<html>
<head>
<title>Adding Paragraphs</title>
</head>
<body>
<div id="target">
 <p>
 There is a language 'little known,'

 Lovers claim it as their own.
 </p>
 <p>
 Its symbols smile upon the land,

 Wrought by nature's wondrous hand;
 </p>
 <p>
 And in their silent beauty speak,

 Of life and joy, to those who seek.
 </p>
 <p>
 For Love Divine and sunny hours

 In the language of the flowers.
 </p>
</div>
<script>
 // use getElementById to access the div element
 const div = document.getElementById('target');

 // get paragraph text
 const txt = prompt('Enter new paragraph text', '');

 // use getElementsByTagName and the collection index
 // to access the first paragraph
 const oldPara = div.getElementsByTagName('p')[0];

12.9 Adding Text to a New Paragraph | 277

 // create a text node
 const txtNode = document.createTextNode(txt);

 // create a new paragraph
 const para = document.createElement('p');

 // append the text to the paragraph, and insert the new para
 para.appendChild(txtNode);
 div.insertBefore(para, oldPara);
</script>
</body>
</html>

Inserting user-supplied text directly into a web page without scrub‐
bing the text first is not a good idea. When you leave a door open,
all sorts of nasty things can crawl in. Example 12-2 is for demon‐
stration purposes only.

12.10 Inserting a New Element in a Specific DOM Location
Problem
You want to insert a new paragraph just before the third paragraph within a div
element.

Solution
Use some method to access the third paragraph, such as getElementsByTagName(), to
get all of the paragraphs for a div element. Then use the createElement() and
insertBefore() DOM methods to add the new paragraph just before the existing
third paragraph:

// get the target div
const div = document.getElementById('target');

// retrieve a collection of paragraphs
const paras = div.getElementsByTagName('p');

// create the element and append text to it
const newPara = document.createElement('p');
const text = document.createTextNode('New paragraph content');
newPara.appendChild(text);

// if a third para exists, insert the new element before
// otherwise, append the paragraph to the end of the div
if (paras[2]) {
 div.insertBefore(newPara, paras[2]);

278 | Chapter 12: Working with HTML

} else {
 div.appendChild(newPara);
}

Discussion
The document.createElement() method creates any HTML element, which then can
be inserted or appended into the page. In the solution, the new paragraph element is
inserted before an existing paragraph using insertBefore().

Because we’re interested in inserting the new paragraph before the existing third
paragraph, we need to retrieve a collection of the div element’s paragraphs, check to
make sure a third paragraph exists, and then use insertBefore() to insert the new
paragraph before the existing one. If the third paragraph doesn’t exist, we can append
the element to the end of the div element using appendChild().

12.11 Checking If a Checkbox Is Checked
Problem
You need to verify that a user has checked a checkbox in your application.

Solution
Select the checkbox element and validate the status with the checked property. In this
example, I am selecting an HTML input checkbox element with an id of check and
listening for a click event. When the event is fired, the validate function is run,
which looks at the checked property of the element and logs its status to the console:

const checkBox = document.getElementById('check');

const validate = () => {
 if (checkBox.checked) {
 console.log('Checkbox is checked')
 } else {
 console.log('Checkbox is not checked')
 }
}

checkBox.addEventListener('click', validate);

Discussion
A common pattern is for a user to be presented with a checkbox to make some sort of
acknowledgement, such as accepting terms of service. In these instances, it is com‐
mon to disable a button unless the user has checked the checkbox. We can modify the
previous example to add this functionality:

12.11 Checking If a Checkbox Is Checked | 279

const checkBox = document.getElementById('check');
const acceptButton = document.getElementById('accept');

const validate = () => {
 if (checkBox.checked) {
 acceptButton.disabled = false;
 } else {
 acceptButton.disabled = true;
 }
}

checkBox.addEventListener('click', validate);

12.12 Adding Up Values in an HTML Table
Problem
You want to sum all numbers in a table column.

Solution
Traverse the table column containing numeric string values, convert the values to
numbers, and sum the numbers:

let sum = 0;

// use querySelectorAll to find all second table cells
const cells = document.querySelectorAll('td:nth-of-type(2)');

// iterate over each
cells.forEach(cell => {
 sum += Number.parseFloat(cell.firstChild.data);
});

Discussion
The :nth-of-type(n) selector matches the specific child (n) of an element. By using
td:nth-of-type(2) we are selecting the second td child element. In the example
HTML markup, the second td element in the table is a numeric value:

<td>Washington</td><td>145</td>

The parseInt() and parseFloat() methods convert strings to numbers, but parse
Float() is more adaptable when it comes to handling numbers in an HTML table.
Unless you’re absolutely certain all of the numbers will be integers, parseFloat() can
work with both integers and floating-point numbers.

Example 12-3 demonstrates how to convert and sum up numeric values in an HTML
table, and then how to insert a table row with this sum, at the end. The code uses

280 | Chapter 12: Working with HTML

document.querySelectorAll(), which uses a different variation on the CSS selector,
td + td, to access the data this time. This selector finds all table cells that are pre‐
ceded by another table cell.

Example 12-3. Converting table values to numbers and summing the results

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta http-equiv="X-UA-Compatible" content="ie=edge">
 <title>Adding Up Values in an HTML Table</title>
</head>
<body>
 <h1>Adding Up Values in an HTML Table</h1>
 <table>
 <tbody id="table1">
 <tr>
 <td>Washington</td><td>145</td>
 </tr>
 <tr>
 <td>Oregon</td><td>233</td>
 </tr>
 <tr>
 <td>Missouri</td><td>833</td>
 </tr>
 <tbody>
 </table>

 <script>
 let sum = 0;

 // use querySelector to find all second table cells
 const cells = document.querySelectorAll('td:nth-of-type(2)');

 // iterate over each
 cells.forEach(cell => {
 sum += Number.parseFloat(cell.firstChild.data);
 });

 // now add sum to end of table
 const newRow = document.createElement('tr');

 // first cell
 const firstCell = document.createElement('td');
 const firstCellText = document.createTextNode('Sum:');
 firstCell.appendChild(firstCellText);
 newRow.appendChild(firstCell);

 // second cell with sum

12.12 Adding Up Values in an HTML Table | 281

 const secondCell = document.createElement('td');
 const secondCellText = document.createTextNode(sum);
 secondCell.appendChild(secondCellText);
 newRow.appendChild(secondCell);

 // add row to table
 document.getElementById('table1').appendChild(newRow);
 </script>
</body>
</html>

Being able to provide a sum or other operation on table data is helpful if you’re work‐
ing with dynamic updates, such as accessing rows of data from a database. The
fetched data may not be able to provide summary values, or you may not want to
provide summary data until a web page reader chooses to do so. The users may want
to manipulate the table results, and then push a button to perform the summing
operation.

Adding rows to a table is straightforward, as long as you remember the steps:

1. Create a new table row using document.createElement("tr").
2. Create each table row cell using document.createElement("td").
3. Create each table row cell’s data using document.createTextNode(), passing in

the text of the node (including numbers, which are automatically converted to a
string).

4. Append the text node to the table cell.
5. Append the table cell to the table row.
6. Append the table row to the table. Rinse, repeat.

Extra: forEach and querySelectorAll
In the preceding example, I’m using the forEach() method to iterate over the results
of querySelectorAll(), which returns a NodeList, not an array. Though forEach()
is an array method, modern browsers have implemented NodeList.prototype.for
Each(), which enables it iterating over a NodeList with the forEach() syntax, as dis‐
cussed in Recipe 12.2. The alternative would be a loop:

let sum = 0;

// use querySelector to find all second table cells
let cells = document.querySelectorAll("td:nth-of-type(2)");

for (var i = 0; i < cells.length; i++) {
 sum+=parseFloat(cells[i].firstChild.data);
}

282 | Chapter 12: Working with HTML

Extra: Modularization of Globals
As part of a growing effort to modularize JavaScript, the parseFloat() and par
seInt() methods are now attached to the Number object, as new static methods, as of
ECMAScript 2015:

// modular method
const modular = Number.parseInt('123');
// global method
const global = parseInt('123');

These modules have reached widespread browser adoption, but can be polyfilled for
older browser support, using a tool like Babel or on their own:

if (Number.parseInt === undefined) {
 Number.parseInt = window.parseInt
}

12.13 Deleting Rows from an HTML Table
Problem
You want to remove one or more rows from an HTML table.

Solution
Use the removeChild() method on an HTML table row, and all of the child elements,
including the row cells, are also removed:

const parent = row.parentNode;
const oldrow = parent.removeChild(parent);

Discussion
When you remove an element from the web document, you’re not only removing the
element, you’re removing all of its child elements. In this DOM pruning you get a ref‐
erence to the removed element if you want to process its contents before it’s com‐
pletely discarded. The latter is helpful if you want to provide some kind of undo
method in case you accidentally select the wrong table row.

To demonstrate the nature of DOM pruning, in Example 12-4, DOM methods crea
teElement() and createTextNode() are used to create table rows and cells, as well as
the text inserted into the cells. As each table row is created, an event handler is
attached to the row’s click event. If any of the new table rows is clicked, a function is
called that removes the row from the table. The removed table row element is then
traversed, and the data in its cells is extracted and concatenated to a string, which is
printed out.

12.13 Deleting Rows from an HTML Table | 283

Example 12-4. Adding and removing table rows and associated table cells and data

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Deleting Rows from an HTML Table</title>
 <style>
 table {
 border-collapse: collapse;
 }
 td,
 th {
 padding: 5px;
 border: 1px solid #ccc;
 }
 tr:nth-child(2n + 1) {
 background-color: #eeffee;
 }
 </style>
 </head>
 <body>
 <h1>Deleting Rows from an HTML Table</h1>
 <table id="mixed">
 <tr>
 <th>Value One</th>
 <th>Value two</th>
 <th>Value three</th>
 </tr>
 </table>

 <div id="result"></div>
 <script>
 // table values
 const values = new Array(3);
 values[0] = [123.45, 'apple', true];
 values[1] = [65, 'banana', false];
 values[2] = [1034.99, 'cherry', false];

 const mixed = document.getElementById('mixed');
 const tbody = document.createElement('tbody');

 function pruneRow() {
 // remove row
 const parent = this.parentNode;
 const oldRow = parent.removeChild(this);

 // dataString from removed row data
 let dataString = '';
 oldRow.childNodes.forEach(row => {

284 | Chapter 12: Working with HTML

 dataString += `${row.firstChild.data} `;
 });

 // output message
 const msg = document.createTextNode(`removed ${dataString}`);
 const p = document.createElement('p');
 p.appendChild(msg);
 document.getElementById('result').appendChild(p);
 }

 // for each outer array row
 values.forEach(value => {
 const tr = document.createElement('tr');

 // for each inner array cell
 // create td then text, append
 value.forEach(cell => {
 const td = document.createElement('td');
 const txt = document.createTextNode(cell);
 td.appendChild(txt);
 tr.appendChild(td);
 });

 // attache event handler
 tr.onclick = pruneRow;

 // append row to table
 tbody.appendChild(tr);
 mixed.appendChild(tbody);
 });
 </script>
 </body>
</html>

12.14 Hiding Page Sections
Problem
You want to hide an existing page element and its children until needed.

Solution
You can set the CSS visibility property to hide and show the element:

msg.style.hidden = 'visible'; // to display
msg.style.hidden = 'hidden'; // to hide

Or you can use the CSS display property:

msg.style.display = 'block'; // to display
msg.style.display = 'none'; // to remove from display

12.14 Hiding Page Sections | 285

Discussion
Both the CSS visibility and display properties can be used to hide and show ele‐
ments. There is one major difference between the two that impacts which one you’ll
use.

The visibility property controls the element’s visual rendering, but its presence
also affects other elements. When an element is hidden, it still takes up page space.
The display property, on the other hand, removes the element completely from the
page layout.

The display property can be set to several different values, but four are of particular
interest to us:

none

When display is set to none, the element is removed completely from display.

block

When display is set to block, the element is treated like a block element, with a
line break before and after.

inline-block

When display is set to inline-block, the contents are formatted like a block ele‐
ment, which is then flowed like inline content.

inherit

This is the default display, and specifies that the display property is inherited
from the element’s parent.

There are other values, but these are the ones we’re most likely to use within Java‐
Script applications.

Unless you’re using absolute positioning with the hidden element, you’ll want to use
the CSS display property. Otherwise, the element will affect the page layout, pushing
any elements that follow down and to the right, depending on the type of hidden
element.

There is another approach to removing an element out of page view, and that is to
move it totally offscreen using a negative left value. This could work, especially if
you’re creating a slider element that will slide in from the left. It’s also an approach
that the accessibility community has suggested using when you have content that you
want rendered by assistive technology (AT) devices, but not visually rendered.

286 | Chapter 12: Working with HTML

12.15 Creating Hover-Based Pop-Up Info Windows
Problem
You want to create an interaction where a user mouses over a thumbnail image and
additional information is displayed.

Solution
This interaction is based on four different functionalities.

First, you need to capture the mouseover and mouseout events for each image thumb‐
nail in order to display or remove the pop-up window, respectively. In the following
code, the cross-browser event handlers are attached to all images in the page:

window.onload = () => {
 const imgs = document.querySelectorAll('img');
 imgs.forEach(img => {
 img.addEventListener(
 'mouseover',
 () => {
 getInfo(img.id);
 },
 false
);

 img.addEventListener(
 'mouseout',
 () => {
 removeWindow();
 },
 false
);
 });
};

Second, you need to access something about the item you’re hovering over in order to
know what to use to populate the pop-up bubble. The information can be in the page,
or you can use web server communication to get the information:

function getInfo(id) {
 // get the data
}

Third, you need to either show the pop-up window, if it already exists and is not dis‐
played, or create the window. In the following code, the pop-up window is created
just below the object, and just to the right when the web server call returns with the
information about the item. The getBoundingClientRect() method is used to

12.15 Creating Hover-Based Pop-Up Info Windows | 287

determine the location where the pop-up should be placed, and createElement()
and createTextNode() are used to create the pop-up:

// compute position for pop-up
function compPos(obj) {
 const rect = obj.getBoundingClientRect();
 let height;
 if (rect.height) {
 height = rect.height;
 } else {
 height = rect.bottom - rect.top;
 }
 const top = rect.top + height + 10;
 return [rect.left, top];
}

function showWindow(id, response) {
 const img = document.getElementById(id);

 console.log(img);
 // derive location for pop-up
 const loc = compPos(img);
 const left = `${loc[0]}px`;
 const top = `${loc[1]}px`;

 // create pop-up
 const div = document.createElement('popup');
 div.id = 'popup';
 const txt = document.createTextNode(response);
 div.appendChild(txt);

 // style pop-up
 div.setAttribute('class', 'popup');
 div.setAttribute('style', `position: fixed; left: ${left}; top: ${top}`);
 document.body.appendChild(div);
}

Lastly, when the mouseover event fires, you need to either hide the pop-up window or
remove it—whichever makes sense in your setup. Since the application created a new
pop-up window in the mouseover event, it removes the pop-up in the mouseout event
handler:

function removeWindow() {
 const popup = document.getElementById('popup');
 if (popup) popup.parentNode.removeChild(popup);
}

Discussion
Creating a pop-up information or help window doesn’t have to be complicated if you
keep the action simple and follow the four steps outlined in the solution. If the

288 | Chapter 12: Working with HTML

pop-up provides help for form elements, then you might want to cache the informa‐
tion within the page, and just show and hide pop-up elements as needed. However, if
you have pages with hundreds of items, you’ll have better performance if you get the
pop-up window information on demand via a web service call.

When I positioned the pop-up in the example, I didn’t place it directly over the
object. The reason is that I’m not capturing the mouse position to have the pop-up
follow the cursor around, ensuring that I don’t move the cursor directly over the pop-
up. But if I statically position the pop-up partially over the object, the web page read‐
ers could move their mouse over the pop-up, which triggers the event to hide the
pop-up…which then triggers the event to show the pop-up, and so on. This creates a
flicker effect, not to mention a lot of network activity.

If, instead, I allowed the mouse events to continue by returning true from either
event handler function, when the web page readers move their mouse over the pop-
up, the pop-up won’t go away. However, if they move the mouse from the image to
the pop-up, and then to the rest of the page, the event to trigger the pop-up event
removal won’t fire, and the pop-up is left on the page.

The best approach is to place the pop-up directly under (or to the side, or a specific
location in the page) rather than directly over the object.

12.16 Validating Form Data
Problem
Your web application gathers data from the users using HTML forms. Before you
send that data to the server, though, you want to make sure it’s well formed, complete,
and valid while providing feedback to the user.

Solution
Use the HTML5’s built-in form validation attributes, which can be extended with an
external library for string validation:

<form id="example" name="example" action="" method="post">
 <fieldset>
 <legend>Example Form</legend>
 <div>
 <label for="email">Email (required):</label>
 <input type="email" id="email" name="email" value="" required />
 </div>
 <div>
 <label for="postal">Postal Code:</label>
 <input type="text" pattern="[0-9]*" id="postal" name="url" value="" />
 </div>
 <div id="error"></div>

12.16 Validating Form Data | 289

 <div>
 <input type="submit" value="Submit" />
 </div>
 </fieldset>
</form>

You can use a standalone library, such as validator.js, to check for validity as a user
types:

<script type="text/javascript">
 function inputValidator(id, value) {
 // check email validity
 if (id === 'email') {
 return validator.isEmail(value);
 }

 // check US postal code validity
 if (id === 'postal') {
 return validator.isPostalCode(value, 'US');
 }

 return false;
 }

 const inputs = document.querySelectorAll('#example input');

 inputs.forEach(input => {
 // fire an event each time an input value changes
 input.addEventListener('input', () => {
 // pass the input value to the validation function
 const valid = inputValidator(input.id, input.value);
 // if not valid set the aria-invalid attribute to true
 if (!valid && input.value.length > 0) {
 this.setAttribute('aria-invalid', 'true');
 }
 });
 });
</script>

Discussion
By now, we should not be writing our own forms validation routines. Not unless we’re
dealing with some really bizarre form behavior and/or data. And by bizarre, I mean
so far outside the ordinary that trying to incorporate a JavaScript library would
actually be harder than doing it ourselves—a “the form field value must be a string
except on Thursdays, when it must be a number—but reverse that in even months”
type of validation.

You have a lot of options for libraries, and I’ve only demonstrated one. The valida‐
tor.js library is a nice, simple, easy-to-use library that provides validation for many
different types of strings. It doesn’t require that you modify the form fields, either,

290 | Chapter 12: Working with HTML

https://github.com/validatorjs/validator.js

which means it’s easier to just drop it in, instead of reworking the form. Any and all
styling and placement of error messages is developer dependent, too.

In the solution, the code adds an event listener to each input element. When a user
makes any change to the field, the input event listener is fired and calls the inputVa
lidator function, which checks the value against the validator.js library. If the value
is invalid, minimal CSS styling is used to add a red border to the input field. When
the value is valid, no style is added.

Sometimes you need a smaller library specifically for one type of data validation.
Credit cards are tricky things, and though you can ensure a correct format, the values
contained in them must meet specific rules in order to be considered valid credit card
submissions.

In addition to the other validation libraries, you can also incorporate a credit card
validation library, such as Payment, which provides a straightforward validation API.
As an example, specify that a field is a credit card number after the form loads:

const cardInput = document.querySelector('input.cc-num');

Payment.formatCardNumber(cardInput);

And then when the form is submitted, validate the credit card number:

var valid = Payment.fns.validateCardNumber(cardInput.value);

if (!valid) {
 message.innerHTML = 'You entered an invalid credit card number';
 return false;
}

The library doesn’t just check format; it also ensures that the value meets a valid card
number for all of the major card companies. Depending on how you are processing
credit cards, the payment processor may provide similar functionality in the client-
side code. For example, the payment processor Stripe’s Stripe.js includes a credit card
validation API.

Lastly, you can pair client and server validation, using the same library or different
ones. In the example, we are using validator.js in the browser, but it can also be used
to validate inputs on the backend in a Node application.

Extra: HTML5 Form Validation Techniques
HTML5 offers fairly extensive built-in form validation, which does not require Java‐
Script, including:

min and max
The minimum and maximum values of numeric inputs

12.16 Validating Form Data | 291

https://github.com/jessepollak/payment
https://oreil.ly/GqPVh

minlength and maxlength
The minimum and maximum length of string inputs

pattern

A regular expression pattern that the entered input must follow

required

Required inputs must be completed before the form can be submitted

type

Allows developers to specify a content type for an input, such as date, email
address, number, password, URL, or some other specific preset type

Additionally, CSS pseudoselectors can be used to match :valid and :invalid inputs.

Because of this, for simple forms you may not need JavaScript at all. If you need finite
control over the appearance and behavior of form validation, you’re better off using a
JavaScript library than depending on the HTML5 and CSS forms validation specifica‐
tions. If you do, though, make sure to incorporate accessibility features into your
forms. I recommend reading WebAIM’s “Creating Accessible Forms”.

12.17 Highlighting Form Errors and Accessibility
Problem
You want to highlight form field entries that have incorrect data, and you want to
ensure the highlighting is effective for all web page users.

Solution
Use CSS to highlight the incorrectly entered form field, and use WAI-ARIA (Web
Accessibility Initiative-Accessible Rich Internet Applications) markup to ensure the
highlighting is apparent to all users:

[aria-invalid] {
 background-color: #f5b2b2;
}

For the fields that need to be validated, assign a function to the form field’s oninput
event handler that checks whether the field value is valid. If the value is invalid, dis‐
play information to the user about the error at the same time that you highlight the
field:

function validateField() {
 // check for number
 if (typeof this.value !== 'number') {
 this.setAttribute('aria-invalid', 'true');
 generateAlert(

292 | Chapter 12: Working with HTML

https://oreil.ly/5oL3E

 'You entered an invalid value. Only numeric values are allowed'
);
 }
}

document.getElementById('number').oninput = validateField;

For the fields that need a required value, assign a function to the field’s onblur event
handler that checks whether a value has been entered:

function checkMandatory() {
 // check for data
 if (this.value.length === 0) {
 this.setAttribute('aria-invalid', 'true');
 generateAlert('A value is required in this field');
 }
}

document.getElementById('required-field').onblur = checkMandatory;

If any of the validation checks are performed as part of the form submission, make
sure to cancel the submission event if the validation fails.

Discussion
The WAI-ARIA provides a way of marking certain fields and behaviors so that assis‐
tive devices do whatever is the equivalent behavior for people who need these devices.
If a person is using a screen reader, setting the aria-invalid attribute to true (or
adding it to the element) should trigger an audible warning in the screen reader—
comparable to a color indicator doing the same for people who aren’t using assistive
technologies.

Read more on WAI-ARIA at the Web Accessibility Initiative at the
W3C. On Windows, I recommend using NVDA, an open source,
freely available screen reader, for testing whether your application
is responding as you think it should with a screen reader. For
macOS, I recommend using the built-in VoiceOver tool with the
Safari browser.

In addition, the role attribute can be set to several values of which one, “alert,” trig‐
gers a comparable behavior in screen readers (typically saying out the field contents).

Providing these cues are essential when you’re validating form elements. You can vali‐
date a form before submission and provide a text description of everything that’s
wrong. A better approach, though, is to validate data for each field as the user fin‐
ishes, so they’re not left with a lot of irritating error messages at the end.

12.17 Highlighting Form Errors and Accessibility | 293

https://oreil.ly/8wGnc
https://oreil.ly/8wGnc
http://www.nvaccess.org

As you validate the field, you can ensure your users know exactly which field has
failed by using a visual indicator. It shouldn’t be the only method used to mark an
error, but it is an extra courtesy.

If you highlight an incorrect form field entry with colors, avoid those that are hard to
differentiate from the background. If the form background is white, and you use a
dark yellow, gray, red, blue, green, or other color, there’s enough contrast that it
doesn’t matter if the person viewing the page is color-blind or not. In the example, I
used a darker pink in the form field.

I could have set the color directly, but it makes more sense to handle both updates—
setting aria-invalid and changing the color—with one CSS setting. Luckily, CSS
attribute selectors simplify our task in this regard.

In addition to using color, you also need to provide a text description of the error, so
there’s no question in the user’s mind about what the problem is.

How you display the information is also an important consideration. None of us
really like to use alert boxes, if we can avoid them. Alert boxes can obscure the form,
and the only way to access the form element is to dismiss the alert with its error mes‐
sage. A better approach is to embed the information in the page, near the form. We
also want to ensure the error message is available to people who are using assistive
technologies, such as a screen reader. This is easily accomplished by assigning an
ARIA alert role to the element containing the alert for those using screen readers or
other AT devices.

One final bonus to using aria-invalid is it can be used to discover all incorrect
fields when the form is submitted. Just search on all elements where the attribute is
present and if any are discovered, you know there’s still an invalid form field value
that needs correcting.

Example 12-5 demonstrates how to highlight an invalid entry on one of the form ele‐
ments, and highlight missing data in another. The example also traps the form sub‐
mit, and checks whether any invalid form field flags are still set. Only if everything is
clear is the form submission allowed to proceed.

Example 12-5. Providing visual and other cues when validating form fields

<!DOCTYPE html>
<head>
<title>Validating Forms</title>
<style>
[aria-invalid] {
 background-color: #ffeeee;
}

[role="alert"] {

294 | Chapter 12: Working with HTML

 background-color: #ffcccc;
 font-weight: bold;
 padding: 5px;
 border: 1px dashed #000;
}

div {
 margin: 10px 0;
 padding: 5px;
 width: 400px;
 background-color: #ffffff;
}
</style>
</head>
<body>

<form id="testform">
 <div><label for="firstfield">*First Field:</label>

 <input id="firstfield" name="firstfield" type="text" aria-required="true"
 required />
 </div>
 <div><label for="secondfield">Second Field:</label>

 <input id="secondfield" name="secondfield" type="text" />
 </div>
 <div><label for="thirdfield">Third Field (numeric):</label>

 <input id="thirdfield" name="thirdfield" type="text" />
 </div>
 <div><label for="fourthfield">Fourth Field:</label>

 <input id="fourthfield" name="fourthfield" type="text" />
 </div>

 <input type="submit" value="Send Data" />
</form>

<script>

 document.getElementById("thirdfield").onchange=validateField;
 document.getElementById("firstfield").onblur=mandatoryField;
 document.getElementById("testform").onsubmit=finalCheck;

 function removeAlert() {

 var msg = document.getElementById("msg");
 if (msg) {
 document.body.removeChild(msg);
 }
 }

 function resetField(elem) {
 elem.parentNode.setAttribute("style","background-color: #ffffff");
 var valid = elem.getAttribute("aria-invalid");
 if (valid) elem.removeAttribute("aria-invalid");

12.17 Highlighting Form Errors and Accessibility | 295

 }

 function badField(elem) {
 elem.parentNode.setAttribute("style", "background-color: #ffeeee");
 elem.setAttribute("aria-invalid","true");
 }

 function generateAlert(txt) {

 // create new text and div elements and set
 // Aria and class values and id
 var txtNd = document.createTextNode(txt);
 msg = document.createElement("div");
 msg.setAttribute("role","alert");
 msg.setAttribute("id","msg");
 msg.setAttribute("class","alert");

 // append text to div, div to document
 msg.appendChild(txtNd);
 document.body.appendChild(msg);
 }

 function validateField() {

 // remove any existing alert regardless of value
 removeAlert();

 // check for number
 if (!isNaN(this.value)) {
 resetField(this);
 } else {
 badField(this);
 generateAlert("You entered an invalid value in Third Field. " +
 "Only numeric values such as 105 or 3.54 are allowed");
 }
 }

 function mandatoryField() {

 // remove any existing alert
 removeAlert();

 // check for value
 if (this.value.length > 0) {
 resetField(this);
 } else {
 badField(this);
 generateAlert("You must enter a value into First Field");
 }
 }

 function finalCheck() {

296 | Chapter 12: Working with HTML

 removeAlert();
 var fields = document.querySelectorAll("[aria-invalid='true']");
 if (fields.length > 0) {
 generateAlert("You have incorrect field entries that must be fixed " +
 "before you can submit this form");
 return false;
 }
 }

</script>

</body>

If either of the validated fields is incorrect in the application, the aria-invalid
attribute is set to true in the field, and an ARIA role is set to alert on the error
message, as shown in Figure 12-2. When the error is corrected, the aria-invalid
attribute is removed, as is the alert message. Both have the effect of changing the
background color for the form field.

Figure 12-2. Highlighting an incorrect form field

Notice in the code that the element wrapping the targeted form field is set to its cor‐
rect state when the data entered is correct, so that when a field is corrected it doesn’t
show up as inaccurate or missing on the next go-round. I remove the existing mes‐
sage alert regardless of the previous event, as it’s no longer valid with the new event.

You can also disable or even hide the correctly entered form elements as a way to
accentuate those with incorrect or missing data. However, I don’t recommend this
approach. Your users may find as they fill in the missing information that their

12.17 Highlighting Form Errors and Accessibility | 297

answers in other fields are incorrect. If you make it difficult for them to correct the
fields, they’re not going to be happy with the experience—or the company, person, or
organization providing the form.

Another approach you can take is to only do validation when the form is submitted.
Many built-in libraries operate this way. Rather than check each field for mandatory
or correct values as your users tab through, you only apply the validation rules when
the form is submitted. This allows users who want to fill out the form in a different
order to do so without getting irritating validation messages as they tab through.

Using JavaScript to highlight a form field with incorrect and missing data is only one
part of the form submission process. You’ll also have to account for JavaScript being
turned off, which means you have to provide the same level of feedback when pro‐
cessing the form information on the server, and providing the result on a separate
page.

It’s also important to mark if a form field is required ahead of time. Use an asterisk in
the form field label, with a note that all form fields with an asterisk are required. Use
the aria-required and attribute to ensure this information is communicated to
those using assistive devices. I also recommend using the HTML5 required attribute
when using aria-required, which provides built-in browser validation.

See Also
In Recipe 12.16 I cover form validation libraries and modules to simplify form valida‐
tion. I also touch on using the HTML5 declarative form validation techniques.

12.18 Creating an Accessible Automatically Updated
Region
Problem
You have a section of a web page that is updated periodically, such as a section that
lists recent updates to a file, or one that reflects recent Twitter activity on a subject.
You want to ensure that when the page updates, those using a screen reader are noti‐
fied of the new information.

Solution
Use WAI-ARIA region attributes on the element being updated:

<div id="update" role="log" aria-live="polite" aria-atomic="true"
aria-relevant="additions">
</div>

298 | Chapter 12: Working with HTML

Discussion
A section of the web page that can be updated after the page is loaded, and without
direct user intervention, calls for WAI-ARIA Live Regions. These are probably the
simplest ARIA functionality to implement, and they provide immediate, positive
results. And there’s no code involved, other than the JavaScript you need to create the
page updates.

<div id="update" role="log" aria-live="polite" aria-atomic="true"
aria-relevant="additions"></div>

From left to right, the role is set to log, which would be used when polling for log
updates from a file. Other options include status, for a status update, and a more
general region value, for an undetermined purpose.

The aria-live region attribute is set to polite, because the update isn’t a critical
update. The polite setting tells the screen reader to voice the update, but not inter‐
rupt a current task to do so. If I had used a value of assertive, the screen reader
would interrupt whatever it is doing and voice the content. Always use polite, unless
the information is critical.

The aria-atomic is set to false, so that the screen reader only voices new additions,
based on whatever is set with aria-relevant. It could get very annoying to have the
screen reader voice the entire set with each new addition, as would happen if this
value is set to true.

Lastly, the aria-relevant is set to additions, as we don’t care about the entries being
removed from the top. This setting is actually the default setting for this attribute, so,
technically, it isn’t needed. In addition, assistive technology devices don’t have to sup‐
port this attribute. Still, I’d rather list it than not. Other values are removals, text,
and all (for all events). You can specify more than one, separated by a space.

This WAI-ARIA–enabled functionality was probably the one that impressed me the
most. One of my first uses for fetching remote data, years ago, was to update a web
page with information. It was frustrating to test the page with a screen reader (JAWS,
at the time) and hear nothing but silence every time the page was updated. I can’t
even imagine how frustrating it was for those who needed the functionality.

Now we have it, and it’s so easy to use. It’s a win-win.

12.18 Creating an Accessible Automatically Updated Region | 299

CHAPTER 13

Fetching Remote Data

The ability to receive and process data in the browser, without refreshing a page, is
one of JavaScript’s super powers. Real-time data trackers, chat applications, social
media feed updates, and much more, are all made possible through JavaScript’s ability
to make a request to a server and update content on the page. In this chapter, we’ll
cover how to make and process those requests.

You may also hear the term “AJAX,” which is an abbreviation for
Asynchronous JavaScript and XML. Although originally coined in
reference to retrieving XML, AJAX has become a generalized term
for retrieving and sending data to a remote server from a web
browser.

13.1 Requesting Remote Data with Fetch
Problem
You need to request remote data from a server.

Solution
Use the Fetch API, which allows you to make requests and manipulate the response.
To make a simple request, pass a URL as a fetch parameter, which returns the
response as a promise. The following example requests the URL, parses the JSON
response, and logs the response to the console:

const url = 'https://api.nasa.gov/planetary/apod?api_key=DEMO_KEY';
fetch(url)
 .then(response => response.json())
 .then(data => console.log(data));

301

Alternately, use the async/await syntax with fetch:

const url = 'https://api.nasa.gov/planetary/apod?api_key=DEMO_KEY';

async function fetchRequest() {
 const response = await fetch(url);
 const data = await response.json();
 console.log(data);
}

fetchRequest();

Discussion
The Fetch API provides a means for sending and retrieving data from a remote
source. When working in a web browser environment, this means that data can be
retrieved without refreshing the page. As a web user, you may experience these types
of requests frequently. The Fetch API can be used to:

• Load additional items in a social media feed
• Form autocomplete suggestions
• “Like” a social media post
• Update form field values based on a previous response
• Submit a form without navigating away from the page
• Add an item to a shopping cart

As you may imagine, the list can go on and on.

The fetch() method accepts two parameters:

url (mandatory)
The URL to which you are making a request

options

An object of options when making the request

The possible options include:

body

The body content of a request

cache

The cache mode of the request (default, no-store, reload, no-cache, force-
cache, or only-if-cached)

credentials

The request credentials of the request (omit, same-origin, or include)

302 | Chapter 13: Fetching Remote Data

headers

Headers included with the request

integrity

A subresource integrity value, used for verify resources

keepalive

Set to true for the request to outlive the page

method

The request method (GET, POST, PUT, or DELETE)

mode

The mode of the request (cors, no-cors, or same-origin)

redirect

Sets behavior for redirects (follow, error, or manual)

referrer

Sets the value of the referrer header (about:client, the current URL, or an
empty string)

referrerPolicy

Specifies the referrer policy (no-referrer, no-referrer-when-downgrade, same-
origin, origin, strict-origin, origin-when-cross-origin, strict-origin-
when-cross-origin, or unsafe-url)

signal

AbortController object to abort request

As shown in the previous example, only the url parameter is required. When passed
only a URL, the fetch method will perform a GET request. The following example
demonstrates how to use the options object:

const response = await fetch(url, {
 method: 'GET',
 mode: 'cors',
 credentials: 'omit',
 redirect: 'follow',
 referrerPolicy: 'no-referrer'
});

fetch makes use of JavaScript promises. The initial promise returns a Response
object, which contains the full HTTP response, including the body, headers, status
code, redirect information, cors type, and URL. With the response returned, you can
then use an additional parsing method to parse the body of the request. In the exam‐
ple, I’m using the json() method to parse the body as JSON. Here are the possible
parsing methods:

13.1 Requesting Remote Data with Fetch | 303

arrayBuffer()

Parse the body as an ArrayBuffer

blob()

Parse the body as a Blob

json()

Parse the body as JSON

text()

Parse the body as a UTF-8 string

formData()

Parse the body as a FormData() object

When using fetch, you can handle errors based on the server’s status response. In
async/await:

async function fetchRequestWithError() {
 const response = await fetch(url);
 if (response.status >= 200 && response.status < 400) {
 const data = await response.json();
 console.log(data);
 } else {
 // Handle server error
 // example: INTERNAL SERVER ERROR: 500 error
 console.log(`${response.statusText}: ${response.status} error`);
 }
}

For more robust error handling, you can wrap the entire fetch request in a try/
catch block, which will allow you to handle any additional errors:

async function fetchRequestWithError() {
 try {
 const response = await fetch(url);
 if (response.status >= 200 && response.status < 400) {
 const data = await response.json();
 console.log(data);
 } else {
 // Handle server error
 // example: INTERNAL SERVER ERROR: 500 error
 console.log(`${response.statusText}: ${response.status} error`);
 }
 } catch (error) {
 // Generic error handler
 console.log(error);
 }
}

Errors can be handled similarly when using the the JavaScript then promise syntax:

304 | Chapter 13: Fetching Remote Data

fetch(url)
 .then((response) => {
 if (response.status >= 200 && response.status < 400) {
 return response.json();
 } else {
 // Handle server error
 // example: INTERNAL SERVER ERROR: 500 error
 console.log(`${response.statusText}: ${response.status} error`);
 }
 })
 .then((data) => {
 console.log(data)
 }).catch(error) => {
 // Generic error handler
 console.log(error);
 };

If you’ve worked with AJAX requests in the past, you may have used the XMLHttpRe
quest (XHR) method (covered in Recipe 13.2). Due to its promise-based syntax, sim‐
pler syntax, and broad browser support, the Fetch API is now the recommended
method for making these requests. fetch is supported in all modern browsers
(Chrome, Edge, Firefox, Safari), however it is not supported in Internet Explorer. If
your application needs to support older versions of Internet Explorer, you may
choose to use XHR (XMLHttpRequest) or make use of a fetch polyfill alongside a
promise polyfill.

13.2 Using XMLHttpRequest
Problem
Your application needs to request remote data while supporting older browsers.

Solution
Use XMLHttpRequest (XHR) in place of fetch. The following is an XHR GET request,
which mirrors the example demonstrated in Recipe 13.1:

const url = 'https://api.nasa.gov/planetary/apod?api_key=DEMO_KEY';
const request = new XMLHttpRequest();
request.open('GET', url);
request.send();

request.onload = () => {
 if (request.status >= 200 && request.status < 400) {
 // successful request logs the returned JSON data
 const data = JSON.parse(request.response);
 console.log(data);
 } else {
 // server error

13.2 Using XMLHttpRequest | 305

https://github.com/github/fetch
https://github.com/taylorhakes/promise-polyfill

 // example: INTERNAL SERVER ERROR: 500 error
 console.log(`${request.statusText}: ${request.status} error`);
 }
};

// request error
request.onerror = () => console.log(request.statusText);

Discussion
XMLHttpRequest is the original syntax for making remote data requests. Though
XML is in the name, it can be used to request all sorts of data. In the previous exam‐
ple, I’m making a request for JSON data. So how does XMLHttpRequest differ from
fetch?

• fetch makes heavy use of JavaScript promises, while XMLHttpRequest is based
around the XMLHttpRequest() constructor function.

• XMLHttpRequest is supported in all browsers, including older versions of Internet
Explorer. fetch will not work without a polyfill (which is based on XMLHttpRe
quest) in Internet Explorer 11 or older, as well as some versions of modern auto-
updating browsers from 2017 or earlier.

• XMLHttpRequest defaults to sending cookies to the server with each request,
while fetch requires that the credentials option be explicitly set.

• XMLHttpRequest supports tracking upload progress, while, at the time of writing,
fetch only supports download progress.

• fetch does not support timeouts, leaving the length of the request up to the
user’s browser.

Though the rest of this chapter will make use of the modern fetch syntax, XMLHttpRe
quest continues to be a reasonable choice due to its browser support and differentiat‐
ing features, particularly when working with legacy applications.

13.3 Submitting a Form
Problem
You want to submit a form from the client.

Solution
Make a POST request of a FormData object, using fetch:

const myForm = document.getElementById('my-form');
const url = 'http://localhost:8080/';

306 | Chapter 13: Fetching Remote Data

myForm.addEventListener('submit', async event => {
 event.preventDefault();

 const formData = new FormData(myForm);
 const response = await fetch(url, {
 method: 'post',
 body: formData
 });

 const result = await response.text();
 alert(result);
});

Discussion
In the example code, I am selecting an HTML form element using getElementById
and storing the URL to POST the form to as a variable. In this case, I am POSTing the
form to a local development server, as shown in Example 13-1. I’ve then added an
event listener to the form and prevented the default form submission behavior, so
that I can instead perform a JavaScript POST request using fetch.

The complete HTML Markup and JavaScript is as follows:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Form POST</title>
 </head>
 <body>
 <h1>Form POST HTML</h1>

 <form id="my-form">
 <label for="name">Name:</label>
 <input type="text" id="name" name="name" />

 <label for="mail">E-mail:</label>
 <input type="email" id="mail" name="email" />

 <label for="msg">Message:</label>
 <textarea id="message" name="message"></textarea>

 <button>Submit</button>
 </form>

 <script>
 const myForm = document.getElementById('my-form');
 const url = 'http://localhost:8080/';

13.3 Submitting a Form | 307

 myForm.addEventListener('submit', async event => {
 event.preventDefault();

 const formData = new FormData(myForm);
 const response = await fetch(url, {
 method: 'post',
 body: formData
 });

 const result = await response.text();
 alert(result);
 });

 </script>
 </body>
</html>

JavaScript’s FormData provides a means for easily creating key/value pairs of all the
form data. This works with text-based form elements, as demonstrated in the exam‐
ple, as well as with file uploads. First, use the FormData constructor:

const myForm = document.getElementById('my-form');
const formData = new FormData(myForm);

You may also manipulate the data contained in the FormData with some helpful
methods:

FormData.append(key, value) or FormData.append(key, blob, filename)
Appends new data to the form

FormData.delete(key)

Deletes a field

FormData.set(key, value)

Appends new data, removing a duplicate key, if present

Here is how you would add an additional field to the previous example:

const myForm = document.getElementById('my-form');
const url = 'http://localhost:8080/';

myForm.addEventListener('submit', async event => {
 event.preventDefault();

 const formData = new FormData(myForm);
 // add a new field using FormData.append
 formData.append('user', true);

 const response = await fetch(url, {
 method: 'post',
 body: formData

308 | Chapter 13: Fetching Remote Data

 });

 const result = await response.text();
 console.log(result);
});

The body of the POST request will now be:

{
 name: 'Adam',
 email: 'adam@example.com',
 message: 'Hello',
 user: 'true'
}

It is also possible to work with the form values, using the get and has methods:

FormData.get(key)

Gets the value of a specific key

FormData.has(key)

Checks for a value with a given key and returns a Boolean

While FormData is incredibly useful, it is not the only value type of a POST body. The
following types can be sent in a POST request:

• A string
• An encoded string, such as JSON or XML
• A URLSearchParams object
• A Blob or BufferSource of binary data

In Recipe 13.4 I will demonstrate how to send a JSON POST request with fetch.

Finally, Example 13-1 is an example Node.js Express server that processes the request:

Example 13-1. Express form server example

const express = require('express');
const formidable = require('formidable');
const cors = require('cors');

const app = express();
const port = 8080;

app.use(cors());

app.get('/', (req, res) =>
 res.send('Example server for receiving JS POST requests')
);

13.3 Submitting a Form | 309

app.post('/', (req, res) => {
 const form = formidable();

 form.parse(req, (err, fields) => {
 if (err) {
 return;
 }
 console.log('POST body:', fields);
 res.sendStatus(200);
 });
});

app.listen(port, () =>
 console.log(`Example app listening at http://localhost:${port}`)
);

We cover Express in detail in Chapter 21.

13.4 Populating a Selection List from the Server
Problem
Based on a user’s actions with another form element, you want to populate a selection
list with values.

Solution
Capture the change event for the form element:

const niceThings = document.getElementById('nice-thing');
niceThings.addEventListener('change', async () => {
 // GET request and events go here
});

In the event handler function, make a fetch request as a POST with the form data as
JSON:

const niceThings = document.getElementById('nice-thing');
const url = 'http://localhost:8080/select';

// perform GET request when select value changes
niceThings.addEventListener('change', async () => {
 // object containing select value
 const selection = {
 niceThing: niceThings.value
 };

310 | Chapter 13: Fetching Remote Data

 // GET request to server
 const response = await fetch(url, {
 method: 'post',
 headers: {
 'Content-Type': 'application/json;charset=utf-8'
 },
 body: JSON.stringify(selection)
 });

});

Populate the selection list with the result:

const select = document.getElementById('nicestuff');

if (response.ok) {
 const result = await response.json();
 // empty the select element
 select.length = 0;
 // add a default display option with text and no value
 select.options[0] = new Option('--Please choose an option--', '');
 // populate the select with the returned values
 for (let i = 0; i < result.length; i += 1) {
 select.options[select.length] = new Option(result[i], result[i]);
 }
 // display the select element
 select.style.display = 'block';
} else {
 // if there's a problem fetching the data, display an error
 alert('Error');
 }

Discussion
Populating a select or other form element based on a choice made by the user is a
common user interface interaction. Instead of populating a select element with
many options, or building a set of 10 or 20 radio buttons, you can capture the user’s
choice in another form element, query a server application based on the value, and
build the other form elements based on the value—all without leaving the page.

Example 13-2 demonstrates a simple page that captures the change event for a select
element, makes a fetch request with the value of the selected value, and populates a
new selection list by parsing the returned data. In the example, the data is returned as
an array, and new options are created with the returned text having both an option
label and option value. Before populating the select element, its length is set to 0.
This is a quick and easy way to truncate the select element—removing all existing
options and starting fresh.

13.4 Populating a Selection List from the Server | 311

Example 13-2. Creating an on-demand select list

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Select List</title>
 <style>
 #nicestuff {
 display: none;
 margin: 10px 0;
 }

 label,
 legend {
 display: block;
 font-size: 1.6rem;
 font-weight: 700;
 margin-bottom: 0.5rem;
 }
 </style>
 </head>
 <body>
 <h1>Select List</h1>

 <form id="my-form">
 <label for="pet-select">Select a nice thing:</label>

 <select name="nicething" id="nice-thing">
 <option value="">--Please choose an option--</option>
 <option value="birds">Birds</option>
 <option value="flowers">Flowers</option>
 <option value="sweets">Sweets</option>
 <option value="critters">Cute Critters</option>
 </select>
 <select id="nicestuff">
 <option value="">--Please choose an option--</option>
 </select>
 </form>
 <script>
 const niceThings = document.getElementById('nice-thing');
 const select = document.getElementById('nicestuff');
 const url = 'http://localhost:8080/select';

 // perform GET request when select value changes
 niceThings.addEventListener('change', async () => {
 // object containing select value
 const selection = {
 niceThing: niceThings.value
 };

312 | Chapter 13: Fetching Remote Data

 // GET request to server
 const response = await fetch(url, {
 method: 'post',
 headers: {
 'Content-Type': 'application/json;charset=utf-8'
 },
 body: JSON.stringify(selection)
 });

 // if fetch is successful
 if (response.ok) {
 const result = await response.json();
 // empty the select element
 select.length = 0;
 // add a default display option with text and no value
 select.options[0] = new Option('--Please choose an option--', '');
 // populate the select with the returned values
 for (let i = 0; i < result.length; i += 1) {
 select.options[select.length] = new Option(result[i], result[i]);
 }
 // display the select element
 select.style.display = 'block';
 } else {
 // if there's a problem fetching the data, display an error
 alert('Error');
 }
 });

 </script>
 </body>
</html>

The example uses a Node application to populate the selection list, but could be writ‐
ten in any server-side programming language. Node is covered in detail in Part III.

const express = require('express');
const formidable = require('formidable');
const cors = require('cors');

const app = express();
const port = 8080;

app.use(cors());

app.get('/', (req, res) =>
 res.send('Example server for receiving JS POST requests')
);

app.post('/select', (req, res) => {
 const form = formidable();

13.4 Populating a Selection List from the Server | 313

 form.parse(req, (err, fields) => {
 if (err) {
 return;
 }
 if (fields.niceThing === 'critters') {
 res.send(['puppies', 'kittens', 'guinea pigs']);
 } else if (fields.niceThing === 'sweets') {
 res.send(['licorice', 'cake', 'cookies', 'custard']);
 } else if (fields.niceThing === 'birds') {
 res.send(['robin', 'mockingbird', 'finch', 'dove']);
 } else if (fields.niceThing === 'flowers') {
 res.send(['roses', 'lilys', 'daffodils', 'pansies']);
 } else {
 res.send(['No Nice Things Found']);
 }
 });
});

app.listen(port, () =>
 console.log(`Example app listening at http://localhost:${port}`)
);

Progressively building form elements isn’t necessary in all applications, but it is a
great way to ensure a more effective form in cases where the data can change, or the
form is complex.

13.5 Parsing Returned JSON
Problem
You want to safely create a JavaScript object from JSON. You also want to replace the
numeric representation of true and false (1 and 0, respectively) with their Boolean
counterparts (true and false).

Solution
Parse the object with the JSON.parse capability. To transform the numeric values to
their Boolean counterparts, create a reviver function:

const jsonobj = '{"test" : "value1", "test2" : 3.44, "test3" : 0}';
const obj = JSON.parse(jsonobj, (key, value) => {
 if (typeof value === 'number') {
 if (value === 0) {
 value = false;
 } else if (value === 1) {
 value = true;
 }
 }
 return value;
});

314 | Chapter 13: Fetching Remote Data

console.log(obj.test3); // false

Discussion
To figure out how to create JSON, think about how you create an object literal and
just translate it into a string (with some caveats).

If the object is an array:

const arr = new Array("one","two","three");

the JSON notation would be equivalent to the literal notation for the array:

["one","two","three"];

Note the use of double quotes ("") rather than single, which are not allowed in JSON.

If you’re working with an object:

const obj3 = {
 prop1 : "test",
 result : true,
 num : 5.44,
 name : "Joe",
 cts : [45,62,13]
 };

the JSON notation would be:

{"prop1":"test","result":true,"num":5.44,"name":"Joe","cts":[45,62,13]}

Notice in JSON how the property names are in quotes, but the values are only quoted
when they’re strings. In addition, if the object contains other objects, such as an array,
it’s also transformed into its JSON equivalent. However, the object cannot contain
methods. If it does, an error is thrown. JSON works with data only.

The JSON static object isn’t complex, as it only provides two methods: stringify()
and parse(). The parse() method takes two arguments: a JSON-formatted string
and an optional reviver function. This function takes a key/value pair as parameters,
and returns either the original value or a modified result.

In the solution, the JSON-formatted string is an object with three properties: a string,
a numeric, and a third property, which has a numeric value but is really a Boolean
with a numeric representation—0 is false, 1 is true.

To transform all 0, 1 values into false, true, a function is provided as the second
argument to JSON.parse(). It checks each property of the object to see if it is a
numeric. If it is, the function checks to see if the value is 0 or 1. If the value is 0, the
return value is set to false; if 1, the return value is set to true; otherwise, the original
value is returned.

13.5 Parsing Returned JSON | 315

The ability to transform incoming JSON-formatted data is essential, especially if
you’re processing the result of an AJAX request or JSONP response. You can’t always
control the structure of the data you get from a service.

There are restrictions on the JSON: strings must be double quoted,
and there are no hexadecimal values and no tabs in strings.

13.6 Fetching and Parsing XML
Problem
You need to retrieve a remote XML file and parse its contents.

Solution
Use fetch along with the DomParser API, which provides the ability to parse XML
from a string.

First, you will need to use fetch to request the XML file. In this example I’m request‐
ing the XML feed of the New York Times' home page:

const url = 'https://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml';

async function fetchAndParse() {
 const response = await fetch(url);
 const data = await response.text();
 console.log(data);
}

fetchAndParse();

Next, use DOMParser to parse the returned XML string, and then use the DOM meth‐
ods to query the document for data:

const url = 'https://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml';

async function fetchAndParse() {
 const response = await fetch(url);
 const data = await response.text();
 const parser = new DOMParser();
 const XMLDocument = parser.parseFromString(data, 'text/xml');
 console.log(XMLDocument);
}

fetchAndParse();

316 | Chapter 13: Fetching Remote Data

Discussion
When using fetch to retrieve XML, the document is returned as plain text. You can
then use the DOMParser API to enable DOM methods to query the document and
process the results.

DOMParser enables you to interact with the XML content using DOM querying meth‐
ods such as getElementsByTagName. DOMParser requires two arguments. The first
argument is the string to be parsed. The second argument is a mimeType, which speci‐
fies the document type. The mimeType options are:

• text/html

• text/xml

• application/xml

• applicatiom/xhtml+html

• image/svg+xml

The following example extends the XML parser to use DOM query selectors to out‐
put the names of the latest articles to a web page:

(async () => {
 const url = 'https://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml';

 // fetch and parse the XML document
 async function fetchAndParse() {
 const response = await fetch(url);
 const data = await response.text();
 const parser = new DOMParser();
 const XMLDocument = parser.parseFromString(data, 'text/xml');
 return XMLDocument;
 }

 function displayTitles(xml) {
 // HTML element where the results will be displayed
 // the markup contains a ul with an id of "results"
 const listElem = document.getElementById('results');
 // get the article titles
 // each is wrapped in a <title> tag within an <item> tag
 const titles = xml.querySelectorAll('item title');
 // loop over each title in the XML; append its text content to the HTML list
 titles.forEach(title => {
 const listItem = document.createElement('li');
 listItem.innerText = title.textContent;
 listElem.appendChild(listItem);
 });
 }

 const xml = await fetchAndParse();

13.6 Fetching and Parsing XML | 317

 displayTitles(xml);
})();

13.7 Sending Binary Data and Loading into an Image
Problem
You want to request a server-side image as binary data.

Solution
Getting binary data via a fetch request is a matter of setting the response type to
blob and then manipulating the data when returned. In the solution, the data is then
converted and loaded into an img element:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Binary Data</title>
 </head>
 <body>
 <h1>Binary Data</h1>

 <script>
 async function fetchImage() {
 const url = 'logo.png';
 const response = await fetch(url);
 const blob = await response.blob();

 // add returned url to image element
 const img = document.getElementById('result');
 img.src = URL.createObjectURL(blob);
 }

 fetchImage();
 </script>
 </body>
</html>

Discussion
A benefit of the CORS specification is support for binary data (also known as typed
arrays) in fetch requests. The key requirement to a binary request is to set the
response type to one of the following:

318 | Chapter 13: Fetching Remote Data

arraybuffer

Fixed-length raw binary data buffer

blob

File-like immutable raw data

In the solution, I used the URL.createObjectURL() method to convert the blob to a
DOMString (generally mapped to JavaScript String) with the URL of the passed
object. The URL is assigned to the img element’s src property.

Of course, it would be just as simple to assign the URL of the PNG file to the src
attribute in the first place. However, the ability to manipulate binary data is a neces‐
sity with various technologies, such as Web Workers and WebGL.

13.8 Sharing HTTP Cookies Across Domains
Problem
You want to access a resource from another domain as a credentialed request, includ‐
ing HTTP cookies and any authentication information.

Solution
Changes have to be made in both the client and the server applications to support
credentialed requests. In the following example, the client application is served at
somedomain.com while the server is at api.example.com. Because these are different
domains, by default credentialed requests would not be shared from the client to the
server.

In the client, we have to test the credentials property on the fetch request:

fetch('https://api.example.com', {
 credentials: "include"
})

In the server, the Access-Control-Allow-Controls header value must be set to true:

const http = require('http');
const Cookies = require('cookies');

const server = http.createServer((req,res) => {
 // Set CORS headers
 res.setHeader('Content-type', 'text/plain');
 res.setHeader('Access-Control-Allow-Origin', 'https://somedomain.com');
 res.setHeader('Access-Control-Allow-Credentials', true);

 const cookies = new Cookies (req, res);
 cookies.set("apple","red");

13.8 Sharing HTTP Cookies Across Domains | 319

 res.writeHead(200);
 res.end("Hello cross-domain");

});

server.listen(8080);

When using Express, I recommend using the CORS middleware.
We cover Express in detail in Chapter 21.

Discussion
Sharing information across domains is referred to as Cross-Origin Resource Sharing
or CORS. For security reasons, browsers restrict information shared across domains,
such as cookies and credential headers. Being able to send HTTP cookies or send
authentication headers across domains is possible by configuring CORS extension, as
long as both the client and the server signal agreement.

If using XMLHttpRequest on the client in place of fetch, set the withCredentials
property:

const request = new XMLHttpRequest();

request.onreadystatechange = function() {
 if (this.readyState == 4) {
 console.log(this.status);
 if (this.status == 200) {
 document.getElementById('result').innerHTML = this.responseText;
 }
 }
};
request.open('GET','http://localhost:8080/');
request.withCredentials = true;
request.send(null);

13.9 Using Websockets to Establish a Two-Way
Communication Between Client and Server
Problem
You want to initiate two-way, real-time communication between a server and web
page client.

320 | Chapter 13: Fetching Remote Data

https://oreil.ly/vNPPC

Solution
WebSockets allows you to support bidirectional communication between the client
and server. The client creates a new WebSockets object, passing in the URI for the
WebSockets server. Notice that the ws: protocol is used in place of http or https.
When the client gets a message, it converts the message text to an object, retrieves the
number counter, increments it, and then uses it in the object’s string member.

In the following example, the client print outs every other number, starting with 2.
State is maintained between the client and server by passing the string to be printed
out within the message:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Using Websockets</title>
 </head>
 <body>
 <h1>Using Websockets</h1>

 <div id="output"></div>
 <script type="text/javascript">
 const socket = new WebSocket('ws://localhost:8080');
 socket.onmessage = event => {
 const msg = JSON.parse(event.data);
 msg.counter = Number(msg.counter) + 1;
 msg.strng += `${msg.counter}-`;
 const html = `<p> ${msg.strng} </p>`;
 document.getElementById('output').innerHTML = html;
 socket.send(JSON.stringify(msg));
 };
 </script>
 </body>
</html>

For the server, I’m using the ws Node module. Once the server is created, it starts the
communication with the client by sending through a JavaScript object with two
members: a number counter and a string. The object must first be converted to string.
The code listens for both an incoming message and a close event. When it gets an
incoming message, it increments the counter and sends the object:

var wsServer = require('ws').Server;
var wss = new wsServer({port:8001});
wss.on('connection', (function (conn) {

 // object being passed back and forth between
 // client and server
 var counter = {counter: 1, strng: ''};

13.9 Using Websockets to Establish a Two-Way Communication Between Client and Server | 321

 // send first communication to client
 conn.send(JSON.stringify(counter));

 // on response back
 conn.on('message', function(message) {
 var ct = JSON.parse(message);
 ct.counter = parseInt(ct.counter) + 1;
 if (ct.counter < 100) {
 conn.send(JSON.stringify(ct));
 }
 });
}));

Discussion
Bidirectional communication, also known as full-duplex communication, is two-way
communication that can occur at the same time. Think of it as a two-way road, with
traffic going both ways. All modern browsers support the WebSockets specification,
and as you can see, it’s extremely easy to use.

The advantage to WebSockets, other than being unbelievably easy to work with in
browsers, is its ability to traverse both proxies and firewalls, something that isn’t triv‐
ial or even possible with other bidirectional communication techniques, such as long
polling. And to ensure that applications are secure, user agents such as Chrome and
Firefox prohibit mixed content (i.e., using both HTTP and HTTPS).

WebSockets supports binary data, as well as text. And as the examples demonstrated,
you can transmit JSON by calling JSON.stringify() on the object before sending,
and JSON.parse() on the string in the receiving end.

See Also
See the website for more information on WebSockets.

13.10 Long Polling a Remote Data Source
Problem
You would like to keep a connection open with a server so that the client is immedi‐
ately updated with new information, but the server does not use WebSockets.

Solution
Use long polling, a technique where the client maintains a connection to the server by
using an asynchronous fetch function that calls itself after a response. At its most
basic, client-side long polling looks like this:

322 | Chapter 13: Fetching Remote Data

https://www.websocket.org

const url = 'http://localhost:8080/';

async function longPoll() {
 const response = await fetch(url);
 // if message received, log response to console and call polling function
 const message = await response.text();
 console.log(message);
 await longPoll();
}

longPoll();

This can be improved by adding some error handling, which when an error is
received will wait a specified amount of time and then attempt to poll the server:

const url = 'http://localhost:8080/';

async function longPoll() {
 try {
 // if message received, log response to console and call polling function
 const response = await fetch(url);
 const message = await response.text();
 console.log(message);
 await longPoll();
 } catch (error) {
 // if fetch returns an error, wait 1 second and try again
 console.log(`Request failed ${error}`);
 await new Promise(resolve => setTimeout(resolve, 1000));
 await longPoll();
 }
}

longPoll();

Discussion
Long polling a server involves making a request and maintaining a connection to that
server until a response is sent. Once the client receives the response, it immediately
reconnects to the server and waits for a new response. The process can be broken
down in this way:

1. Client sends request to the server.
2. Client stays connected to server while it waits for a response.
3. Server sends a response to the client.
4. Client reconnects to the server and the process repeats itself.

I find that a chat program is a helpful way to think about long polling. Imagine a chat
program where we have two users who are chatting with each other, Riley and Har‐
low. Each of them is connected to a the server. When Riley sends a message, the

13.10 Long Polling a Remote Data Source | 323

server sends a response to Harlow’s browser, which immediately reconnects and waits
for the next message.

The limitation of long polling is in the number of open connections that the server
can maintain. Node was designed to handle many concurrent connections, while
some languages have limitations. All languages are limited by the hardware of the
server itself. Though long polling is a simple and effective method maintaining a con‐
nection, WebSockets (as covered in Recipe 13.9) is a more efficient means of two-way
communication between the client and server.

324 | Chapter 13: Fetching Remote Data

CHAPTER 14

Data Persistence

We can animate and interact, stream, play, and render, but we always come back to
the data. Data is the foundation on which we build the majority of our JavaScript
applications. In the first part of the book we worked with the JavaScript languages
standards for data types, in Chapter 13 we fetched data from a remote source, and in
Chapter 20 we’ll work with data on the server, manipulating data using APIs and data
sources. Data and JavaScript, friends forever.

In this chapter, we’re going to look at ways we can persist data with JavaScript in the
browser using cookies, sessionStorage, localStorage, and IndexedDB.

14.1 Persisting Information with Cookies
Problem
You need to read or set the value of a browser cookie.

Solution
Use document.cookie to set and retrieve cookie values:

document.cookie = 'author=Adam';
console.log(document.cookie);

To encode strings, use encodeURIComponent, which will remove any commas, semi‐
colons, or whitespace:

const book = encodeURIComponent('JavaScript Cookbook');
document.cookie = `title=${book}`;
console.log(document.cookie);

// logs title=JavaScript%20Cookbook

325

Options can be added to the end of the cookie value and should be separated with a
semicolon:

document.cookie = 'user=Abigail; max-age=86400; path=/';

To delete a cookie, set an expiration date for the cookie that has already occurred:

function eraseCookie(key) {
 const cookie = `${key}=;expires=Thu, 01 Jan 1970 00:00:00 UTC`;
 document.cookie = cookie;
}

Discussion
Cookies are small bits of data that are stored in the browser. They are often set from
the server application and sent to the server with nearly every request. In a browser
they are accessed via the document.cookie object.

Cookies accept the following options, each separated with a semicolon:

domain

The domain where the cookie is accessible. If not set, this defaults to the current
host location. Specifying a domain allows the cookie to be accessed at subdo‐
mains.

expires

Sets a time at which the cookie expires. Accepts a date in GMTString format.

max-age

Sets the length of time that the cookie is valid. Accepts a value in seconds.

path

The path at which the cookie is accessible (such as / or /app). If not specified, the
cookie defaults to the current path.

secure

If set to true, the cookie will only be transmitted over https.

samesite

Defaults to strict. If set to strict, the cookie will not be sent in cross-site
browsing. Alternatively, lax will send cookies on top-level GET requests.

In the following example, the user can enter a value which is stored as a cookie. They
can then retrieve the value of a specified key and delete the value.

In an HTML file:

<!DOCTYPE html>
<html lang="en">
 <head>

326 | Chapter 14: Data Persistence

 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <style>
 div {
 margin: 10px;
 }

 .data {
 width: 200px;
 background-color: yellow;
 padding: 5px;
 }
 </style>
 <title>Store, retrieve, and delete a cookie</title>
 </head>
 <body>
 <h1>Store, retrieve, and delete a cookie</h1>

 <form>
 <div>
 <label for="key"> Enter key:</label>
 <input type="text" id="key" />
 </div>
 <div>
 <label for="value">Enter value:</label>
 <input type="text" id="value" />
 </div>
 </form>
 <button id="set">Set data</button>
 <button id="get">Get data</button>
 <button id="erase">Erase data</button>

 <p>Cookie value:</p>
 <div id="cookiestr" class="data"></div>

 <script src="cookie.js"></script>
 </body>
</html>

And the associated cookie.js file:

// set the cookie
function setData() {
 const formKey = document.getElementById('key').value;
 const formValue = document.getElementById('value').value;

 const cookieVal = `${formKey}=${encodeURIComponent(formValue)}`;
 document.cookie = cookieVal;
}

// retrieve the cookie value for a specified key
function getData() {

14.1 Persisting Information with Cookies | 327

 const key = document.getElementById('key').value;
 const cookie = document.getElementById('cookiestr');
 cookie.innerHTML = '';

 const keyValue = key.replace(/([.*+?^=!:${}()|[\]/\\])/g, '\\$1');
 const regex = new RegExp(`(?:^|;)\\s?${keyValue}=(.*?)(?:;|$)`, 'i');
 const match = document.cookie.match(regex);
 const value = (match && decodeURIComponent(match[1])) || '';
 cookie.innerHTML = `<p>${value}</p>`;
}

// remove the cookie for a specified key
function removeData() {
 const key = document.getElementById('key').value;
 document.getElementById('cookiestr').innerHTML = '';

 const cookie = `${key}=; expires=Thu, 01 Jan 1970 00:00:00 UTC`;
 document.cookie = cookie;
}

document.getElementById('set').onclick = setData;
document.getElementById('get').onclick = getData;
document.getElementById('erase').onclick = removeData;

Notice that I am using regular expressions to match the cookie values, which have
been encoded using encodeURIComponent. This is because document.cookie returns
a string with all of the cookie values. Using regular expressions in this way allows me
to extract the information that I need. Regular expressions are covered in more detail
in Chapter 2.

14.2 Using sessionStorage for Client-Side Storage
Problem
You want to easily store information for a single session, without running into the
size and cross-page contamination problems associated with cookies.

Solution
Use the DOM Storage sessionStorage functionality:

sessionStorage.setItem('name', 'Franco');
sessionStorage.city = 'Pittsburgh';

// returns 2
console.log(sessionStorage.length);

// retrieve individual values
const name = sessionStorage.getItem('name');
const city = sessionStorage.getItem('city');

328 | Chapter 14: Data Persistence

console.log(`The stored name is ${name}`);
console.log(`The stored city is ${city}`);

// remove an individual item from storage
sessionStorage.removeItem('name');

// remove all items from storage
sessionStorage.clear();

// returns 0
console.log(sessionStorage.length);

Discussion
sessionStorage allows us to easily store information in the user’s browser for a sin‐
gle session. A session lasts for as long as a single browser tab is open. Once the user
closes the browser or tab, the session ends. Opening a new tab of the same page will
start a new browser session.

By comparison, the default behavior of both cookies and localStorage (discussed in
Recipe 14.3) is to persist across sessions. As an example of the differences between
these storage methods, Example 14-1 stores information from a form in a cookie,
localStorage, and sessionStorage.

Example 14-1. Comparing sessionStorage and cookies

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <style>
 div {
 margin: 10px;
 }

 .data {
 width: 100px;
 background-color: yellow;
 padding: 5px;
 }
 </style>
 <title>Comparing Cookies, localStorage, and sessionStorage</title>
 </head>
 <body>
 <h1>Comparing Cookies, localStorage, and sessionStorage</h1>

 <form>

14.2 Using sessionStorage for Client-Side Storage | 329

 <div>
 <label for="key"> Enter key:</label>
 <input type="text" id="key" />
 </div>
 <div>
 <label for="value">Enter value:</label>
 <input type="text" id="value" />
 </div>
 </form>
 <button id="set">Set data</button>
 <button id="get">Get data</button>
 <button id="erase">Erase data</button>

 <p>Session:</p>
 <div id="sessionstr" class="data"></div>
 <p>Local:</p>
 <div id="localstr" class="data"></div>
 <p>Cookie:</p>
 <div id="cookiestr" class="data"></div>

 <script src="cookie.js"></script>
 <script src="app.js"></script>
 </body>
</html>

The cookies.js file contains the code necessary to set, retrieve, and erase a given
cookie:

// set session cookie
function setCookie(cookie, value) {
 const cookieVal = `${cookie}=${encodeURIComponent(value)};path=/`;
 document.cookie = cookieVal;
 console.log(cookieVal);
}

// each cookie separated by semicolon;
function getCookie(key) {
 const keyValue = key.replace(/([.*+?^=!:${}()|[\]/\\])/g, '\\$1');
 const { cookie } = document;
 const regex = new RegExp(`(?:^|;)\\s?${keyValue}=(.*?)(?:;|$)`, 'i');
 const match = cookie.match(regex);

 return match && decodeURIComponent(match[1]);
}

// set cookie date to the past to erase
function eraseCookie(key) {
 const cookie = `${key}=;path=/; expires=Thu, 01 Jan 1970 00:00:00 UTC`;
 document.cookie = cookie;
 console.log(cookie);
}

330 | Chapter 14: Data Persistence

And the app.js file contains the rest of the program functionality:

// set data for both session and cookie
function setData() {
 const key = document.getElementById('key').value;
 const { value } = document.getElementById('value');

 // set sessionStorage
 sessionStorage.setItem(key, value);

 // set localStorage
 localStorage.setItem(key, value);

 // set cookie
 setCookie(key, value);
}

function getData() {
 try {
 const key = document.getElementById('key').value;
 const session = document.getElementById('sessionstr');
 const local = document.getElementById('localstr');
 const cookie = document.getElementById('cookiestr');

 // reset display
 session.innerHTML = '';
 local.innerHTML = '';
 cookie.innerHTML = '';

 // sessionStorage
 let value = sessionStorage.getItem(key) || '';
 if (value) session.innerHTML = `<p>${value}</p>`;

 // localStorage
 value = localStorage.getItem(key) || '';
 if (value) local.innerHTML = `<p>${value}</p>`;

 // cookie
 value = getCookie(key) || '';
 if (value) cookie.innerHTML = `<p>${value}</p>`;
 } catch (e) {
 console.log(e);
 }
}

function removeData() {
 const key = document.getElementById('key').value;

 // sessionStorage
 sessionStorage.removeItem(key);

 // localStorage
 localStorage.removeItem(key);

14.2 Using sessionStorage for Client-Side Storage | 331

 // cookie
 eraseCookie(key);

 // reset display
 getData();
}

document.getElementById('set').onclick = setData;
document.getElementById('get').onclick = getData;
document.getElementById('erase').onclick = removeData;

You can get and set the data from sessionStorage, accessing it directly, as demon‐
strated in the solution, but a better approach is to use the getItem() and setItem()
functions.

Load the example page, add one or more values for the same key, and then click the
“Get data” button. The result is displayed in Figure 14-1. No surprises here. The data
has been stored in cookies, localStorage, and sessionStorage. Now, open the same
page in a new tab window, enter the value into the key form field, and click the “Get
data” button. The activity results in a page like that shown in Figure 14-2.

Figure 14-1. Displaying stored sessionStorage and cookie data in original tab

332 | Chapter 14: Data Persistence

Figure 14-2. Displaying stored sessionStorage and cookie data in second tab

In the new tab window, the cookie and localStorage values persist because the
cookie is session specific, but the sessionStorage, which is specific to the tab win‐
dow, does not.

The screenshots illustrate the difference in cross-tab persistence, one of the key dif‐
ferences between sessionStorage and cookies, aside from how they’re set and
accessed in JavaScript. Hopefully, the images and the example also demonstrate the
potential hazards involved when using sessionStorage, especially in circumstances
where cookies have normally been used.

If your website or application users are familiar with the cookie persistence across
tabbed windows, sessionStorage can be an unpleasant surprise. Along with the dif‐
ferent behavior, there’s also the fact that browser menu options to delete cookies
probably won’t have an impact on sessionStorage, which could also be an unwel‐
come surprise for your users. On the other hand, sessionStorage is incredibly clean
to use, and provides a welcome storage option when we want to link storage to a spe‐
cific tab window only.

One last note on sessionStorage related to its implementation: both sessionStor
age and localStorage, covered in the next recipe, are part of the W3C DOM Storage
specification. Both are window object properties, which means they can be accessed
globally. Both are implementations of the Storage object, and changes to the proto
type for Storage result in changes to both the sessionStorage and localStorage
objects:

14.2 Using sessionStorage for Client-Side Storage | 333

Storage.prototype.someMethod = function (param) { ...};
...
localStorage.someMethod(param);
...
sessionStorage.someMethod(param);

Aside from the differences covered in this recipe and the next, another major differ‐
ence is that the Storage objects don’t make a round trip to the server—they’re purely
client-side storage techniques.

See Also
For more information on the Storage object, sessionStorage, localStorage, or the
Storage DOM, consult the specification. See Recipe 14.3 for a different look at how
sessionStorage and localStorage can be set and retrieved.

14.3 Creating a localStorage Client-Side Data Storage
Item
Problem
You want to persist form element entries (or any data) in such a way that users can
continue where they left off if the browser crashes, the user accidentally closes the
browser, or the internet connection is lost.

Solution
You could use cookies if the data is small enough, but that strategy doesn’t work in an
offline situation. Another, better approach, especially when you’re persisting larger
amounts of data or if you have to support functionality when no internet connection
is present, is to use localStorage:

const formValue = document.getElementById('formelem').value;
if (formValue) {
 localStorage.formelem = formValue;
}

// recover
const storedValue = localStorage.formelem;
if (storedValue) {
 document.getElementById('formelem').value = storedValue;
}

334 | Chapter 14: Data Persistence

https://oreil.ly/PgBUt

Discussion
Recipe 14.2 covered sessionStorage, one of the DOM Storage techniques. The
localStorage object interface is the same, with the same approaches to setting the
data:

// use item methods
sessionStorage.setItem('key', 'value');
localStorage.setItem('key', 'value');

// use property names directly
sessionStorage.keyName = 'value';
localStorage.keyName = 'value';

// use the key method
sessionStorage.key(0) = 'value';
localStorage.key(0) = 'value';

and for getting the data:

// use item methods
value = sessionStorage.getItem('key');
value = localStorage.getItem('key');

// use property names directly
value = sessionStorage.keyName;
value = localStorage.keyName;

// use the key method
value = sessionStorage.key(0);
value = localStorage.key(0);

Again, as with sessionStorage, though you can access and set data on localStorage
directly, you should use getItem() and setItem(), instead.

Both of the storage objects support the length property, which provides a count of
stored item pairs, and the clear method (no parameters), which clears out all stor‐
age. In addition, both are scoped to the HTML5 origin, which means that the data
storage is shared across all pages in a domain, but not across protocols (e.g., http is
not the same as https) or ports.

The difference between the two is how long data is stored. The sessionStorage
object only stores data for the session, but the localStorage object stores data on the
client forever, or until specifically removed.

The sessionStorage and localStorage objects also support one event: the storage
event. This is an interesting event, in that it fires on all pages when changes are made
to a localStorage item. It is also an area of low compatibility among browsers: you
can capture the event on the body or document elements for Firefox, on the body for
IE, or on the document for Safari.

14.3 Creating a localStorage Client-Side Data Storage Item | 335

Example 14-2 demonstrates a more comprehensive implementation than the use case
covered in the solution for this recipe. In the example, all elements of a small form
have their onchange event handler method assigned to a function that captures the
change element name and value, and stores the values in the local storage via local
Storage. When the form is submitted, all of the stored form data is cleared.

When the page is loaded, the form elements onchange event handler is assigned to
the function to store the values, and if the value is already stored, it is restored to the
form element. To test the application, enter data into a couple of the form fields—but,
before clicking the Submit button, refresh the page. Without localStorage, you’d
lose the data. Now, when you reload the page, the form is restored to the state it was
in before the page was reloaded.

Example 14-2. Using localStorage to back up form entries in case of page reload or
browser crash

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Creating a localStorage Client-Side Data Storage Item</title>
 </head>
 <body>
 <h1>Creating a localStorage Client-Side Data Storage Item</h1>

 <form id="inputform">
 <div>
 <label for="field1">Enter field1:</label>
 <input type="text" id="field1" />
 </div>
 <div>
 <label for="field2">Enter field2:</label>
 <input type="text" id="field2" />
 </div>
 <div>
 <label for="field3">Enter field1:</label>
 <input type="text" id="field3" />
 </div>
 <div>
 <label for="field4">Enter field1:</label>
 <input type="text" id="field4" />
 </div>
 <input type="submit" value="Clear Storage" />
 </form>

 <script src="localstorage.js"></script>

336 | Chapter 14: Data Persistence

 </body>
</html>

In the JavaScript file:

// store the form input elements as a variable
const elems = document.querySelectorAll('input');

// store field values
function processField() {
 localStorage.setItem(window.location.href, 'true');
 localStorage.setItem(this.id, this.value);
}

// clear individual fields
function clearStored() {
 elems.forEach(elem => {
 if (elem.type === 'text') {
 localStorage.removeItem(elem.id);
 }
 });
}

// capture submit button to clear storage when clicked
document.getElementById('inputform').onsubmit = clearStored;

// on form element change, store the value in localStorage
elems.forEach(elem => {
 if (elem.type === 'text') {
 const value = localStorage.getItem(elem.id);
 if (value) elem.value = value;

 // change event
 elem.onchange = processField;
 }
});

The size allotted for localStorage varies by browser, but most are in the 5 mb to 10
mb range. You can use a try/catch block to test to ensure you have not exceeded the
limit in the user’s browser:

try {
 localStorage.setItem('key', 'value');
} catch (domException) {
 if (
 ['QuotaExceededError', 'NS_ERROR_DOM_QUOTA_REACHED'].includes(
 domException.name
)
) {
 // handle file size exceeded error
 } else {
 // handle any other error

14.3 Creating a localStorage Client-Side Data Storage Item | 337

 }
}

The localStorage object can be used for offline work. For the form example, you can
store the data in the localStorage and provide a button to click when connected to
the internet, in order to sync the data from localStorage to server-side storage.

See Also
See Recipe 14.2 for more on the Storage object, and on sessionStorage and local
Storage.

14.4 Persisting Larger Chunks of Data on the Client
Using IndexedDB
Problem
You need more sophisticated data storage on the client than what’s provided with
other persistent storage methods, such as localStorage.

Solution
In modern browsers, use IndexedDB.

The JavaScript file in Example 14-3 uses IndexedDB to create a database and a data
object. Once created, it adds data and then retrieves the first object. A more detailed
description of what’s happening is in the discussion.

Example 14-3. Example of using IndexedDB to create a datastore, add data, and then
retreive a data object

const data = [
 { name: 'Joe Brown', age: 53, experience: 5 },
 { name: 'Cindy Johnson', age: 44, experience: 5 },
 { name: 'Some Reader', age: 30, experience: 3 }
];

// delete the 'Cookbook' database, so the example can be run more than once
const delReq = indexedDB.deleteDatabase('Cookbook');
delReq.onerror = event => {
 console.log('delete error', event);
};

// open the 'Cookbook' database with a version of '1'
// or create it if it does not exist
const request = indexedDB.open('Cookbook', 1);

338 | Chapter 14: Data Persistence

// upgradeneeded event is fired when a db is opened
// with a version number higher than the currently stored version (in this case none)
request.onupgradeneeded = event => {
 const db = event.target.result;
 const { transaction } = event.target;

 // create a new object store named 'reader' in the database
 const objectStore = db.createObjectStore('reader', {
 keyPath: 'id',
 autoIncrement: true
 });

 // create new keys in the object store
 objectStore.createIndex('experience', 'experience', { unique: false });
 objectStore.createIndex('name', 'name', { unique: true });

 // when all data loaded, log to the console
 transaction.oncomplete = () => {
 console.log('data finished');
 };

 const readerObjectStore = transaction.objectStore('reader');

 // add each value from the data object to the indexedDB database
 data.forEach(value => {
 const req = readerObjectStore.add(value);
 // console log a message when successfully added
 req.onsuccess = () => {
 console.log('data added');
 };
 });

 // if the request throws an error, log it to the console
 request.onerror = () => {
 console.log(event.target.errorCode);
 };

 // when the data store is successfully created, log to the console
 request.onsuccess = () => {
 console.log('datastore created');
 };

 // on page click, get a random value from the database and log it to the console
 document.onclick = () => {
 const randomNum = Math.floor(Math.random() * 3) + 1;
 const dataRequest = db
 .transaction(['reader'])
 .objectStore('reader')
 .get(randomNum);
 dataRequest.onsuccess = () => {
 console.log(`Name : ${dataRequest.result.name}`);
 };

14.4 Persisting Larger Chunks of Data on the Client Using IndexedDB | 339

 };
};

Discussion
IndexedDB is the specification the W3C and others agreed to when exploring solu‐
tions to large data management on the client. Though it is transaction based, and
supports the concept of a cursor, it isn’t a relational database system. It works with
JavaScript objects, each of which is indexed by a given key, whatever you decide the
key to be.

IndexedDB can be both asynchronous and synchronous. It can be used for larger
chunks of data in a traditional server or cloud application, but is also helpful for off‐
line web application use.

Most implementations of IndexedDB don’t restrict data storage size, but if you store
more than 50 MB in Firefox, the user will need to provide permission. Chrome cre‐
ates a pool of temporary storage, and each application can have up to 20% of it. Other
agents have similar limitations. All of the main browsers support IndexedDB, except
Opera Mini, though the overall support may not be identical.

As the solution demonstrates, the IndexedDB API methods trigger both success and
error callback functions, which you can capture using traditional event handling, or
as callback, or assign to a function. Mozilla describes the pattern of use with Index‐
edDB:

1. Open a database.
2. Create an object store in upgrading database.
3. Start a transaction and make a request to do some database operation, like

adding or retrieving data.
4. Wait for the operation to complete by listening to the right kind of DOM event.
5. Do something with the results (which can be found on the request object).

Starting from the top in the solution, a data object is created with three values to add
to the datastore. The database is deleted if it exists, so that the example can be run
multiple times. Following, a call to open() opens the database, if it exists, or creates it,
if not. Because the database is deleted before the example is run, it’s recreated. The
name and version are both necessary, because the database can be altered only if a
new version of the database is opened.

A request object (IDBOpenDBRequest) is returned from the open() method, and
whether the operation succeeds or not is triggered as events on this object. In the
code, the onsuccess event handler for the object is captured to provide a message to
the console about the success. You can also assign the database handle to a global

340 | Chapter 14: Data Persistence

variable in this event handler, but the code assigns this in the next event handled, the
upgradeneeded event.

The upgradeneeded event handler is only invoked when a database doesn’t exist for a
given database name and version. The event object also gives us a way to access the
IDBDatabase reference, which is assigned to the global variable, db. The existing
transaction can also be accessed via the event object passed as an argument to the
event handler, and it’s accessed and assigned to a local variable.

The event handler for this event is the only time you’ll be able to create the object
store and its associated indexes. In the solution, a datastore named reader is created,
with its key set to an autoincrementing id. Two other indexes are for the datastore’s
name and experience fields. The data is also added to the datastore in the event,
though it could have been added at a separate time, say when a person submits an
HTML form.

Following the upgradeneeded event handler, the success and error handlers are
coded, just to provide feedback. Last but not least, the document.onclick event han‐
dler is used to trigger a database access. In the solution, a random data instance is
accessed via the database handler, its transaction, the object store, and eventually, for
a given key. When the query is successful, the name field is accessed and the value is
printed to the console. Rather than accessing a single value, we can also use a cursor,
but I’ll leave that for your own experimentation.

The resulting printouts to the console are, in order:

data added
data finished
datastore created
Name : Cindy Johnson

14.5 Simplifying IndexedDB with a Library
Problem
You’d like to work with IndexedDB in an asynchronous fashion, using JavaScript
promises.

Solution
Use the IDB library, which offers usability improvements to the IndexedDB API as
well as a wrapper for using promises.

The following file imports the IDB library, creates an IndexedDB data store, and adds
data to it:

14.5 Simplifying IndexedDB with a Library | 341

https://github.com/jakearchibald/idb

import { openDB, deleteDB } from 'https://unpkg.com/idb?module';

const data = [
 { name: 'Riley Harrison', age: 57, experience: 1 },
 { name: 'Harlow Everly', age: 29, experience: 5 },
 { name: 'Abigail McCullough', age: 38, experience: 10 }
];

(async () => {
 // for demo purposes, delete existing db on page load
 try {
 await deleteDB('CookbookIDB');
 } catch (err) {
 console.log('delete error', err);
 }

 // open the database and create the data store
 const database = await openDB('CookbookIDB', 1, {
 upgrade(db) {
 // Create a store of objects
 const store = db.createObjectStore('reader', {
 keyPath: 'id',
 autoIncrement: true
 });

 // create new keys in the object store
 store.createIndex('experience', 'experience', { unique: false });
 store.createIndex('name', 'name', { unique: true });
 }
 });

 // add all of the reader data to the store
 data.forEach(async value => {
 await database.add('reader', value);
 });
})();

In the example, I am loading the idb module from UNPKG, which
allows me to directly access the module from a URL, rather than
locally installing it. This works well for demo purposes, but in an
application you will want to install the module via npm and bundle
it with your code.

Discussion
IDB bills itself as “a tiny library that mostly mirrors the IndexedDB API, but with
small improvements that make a big difference to usability.” Using idb simplifies
some of the syntax of IndexedDB, along with enabling support for asynchronous
code execution with promises.

342 | Chapter 14: Data Persistence

https://unpkg.com

The openDB method opens a database and returns a promise:

const db = await openDB(name, version, {
 // ...
});

In the following example, a user can add data to the database and retrieve all of the
data to be displayed on the page. In an HTML file:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>IDB Discussion Example</title>
 <style>
 div {
 margin: 10px;
 }

 .data {
 width: 200px;
 background-color: yellow;
 padding: 5px;
 }
 </style>
 </head>
 <body>
 <h1>IDB Discussion Example</h1>

 <form>
 <div>
 <label for="name"> Enter name:</label>
 <input type="text" id="name" />
 </div>
 <div>
 <label for="age">Enter age:</label>
 <input type="text" id="age" />
 </div>
 </form>
 <button id="set">Set data</button>
 <button id="get">Get data</button>

 <p>Data:</p>
 <div class="data">
 <ul id="data-list">
 </div>

 <script type="module" src="idb-discussion.js"></script>
 </body>
</html>

14.5 Simplifying IndexedDB with a Library | 343

And the idb-discussion.js file:

import { openDB } from 'https://unpkg.com/idb?module';

(async () => {
 // open the database and create the data store
 const database = await openDB('ReaderNames', 1, {
 upgrade(db) {
 // Create a store of objects
 const store = db.createObjectStore('reader', {
 keyPath: 'id',
 autoIncrement: true
 });

 // create new keys in the object store
 store.createIndex('age', 'age', { unique: false });
 store.createIndex('name', 'name', { unique: true });
 }
 });

 async function setData() {
 const name = document.getElementById('name').value;
 const age = document.getElementById('age').value;

 await database.add('reader', {
 name,
 age
 });
 }

 async function getData() {
 // get the reader data from the database
 const readers = await database.getAll('reader');

 const dataDisplay = document.getElementById('data-list');

 // add the name and age of each reader in the db to the page
 readers.forEach(reader => {
 const value = `${reader.name}: ${reader.age}`;
 const li = document.createElement('li');
 li.appendChild(document.createTextNode(value));
 dataDisplay.appendChild(li);
 });
 }

 document.getElementById('set').onclick = setData;
 document.getElementById('get').onclick = getData;
})();

I won’t go into the full API, but highly recommend consulting the library’s documen‐
tation and using IDB whenever working with IndexedDB.

344 | Chapter 14: Data Persistence

https://github.com/jakearchibald/idb/blob/master/README.md
https://github.com/jakearchibald/idb/blob/master/README.md

CHAPTER 15

Working with Media

Pretty pictures. Animations. Cool videos. Sound!

The web is a richer place through the availability of many media types. Our old
friends SVG and Canvas can be used for complex animations, charts, and graphs.
Added to them are the video and audio elements included in HTML5, and the near-
future potential of 3D graphics.

Best of all, none of these require any kind of proprietary plug-in—they’re all integra‐
ted with all your browser clients, including those on your smartphones, tablets, and
computers.

15.1 Adding JavaScript to SVG
Problem
You want to add JavaScript to an SVG file or element.

Solution
JavaScript in SVG is included in script elements, just as with HTML, except with the
addition of CDATA markup surrounding the script (Example 15-1). DOM methods
are also available for working with the SVG elements.

Example 15-1. Demonstration of JavaScript within an SVG file

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" width="600" height="600">
 <script type="text/ecmascript">
 <![CDATA[

345

 // set element onclick event handler
 window.onload = function() {
 const square = document.getElementById('square');

 // onclick event handler, change circle radius
 square.onclick = function click() {
 const color = this.getAttribute('fill');
 if (color === '#ff0000') {
 this.setAttribute('fill', '#0000ff');
 } else {
 this.setAttribute('fill', '#ff0000');
 }
 };
 };
]]>
 </script>
 <rect id="square" width="400" height="400" fill="#ff0000"
 x="10" y="10" />
</svg>

Discussion
As the solution demonstrates, SVG is XML, and the rules for embedding script into
XML must be adhered to. This means providing the script type within the script
tag, as well as wrapping the script contents in a CDATA block. If you don’t have the
CDATA section, and your script uses characters such as < or &, your page will have
errors, because the XML parser treats them as XML characters, not script.

There is some drive to treat SVG as HTML, especially when the
SVG is inline in HTML documents. That’s what Chrome does. Still,
it’s better to be safe than sorry, and follow XML requirements.

The DOM methods, such as document.getElementById(), aren’t HTML specific;
they’re usable with any XML document, including SVG. What’s new is the SVG-
specific fill attribute, an attribute unique to SVG elements, such as rect.

If namespaces were used with any of the elements in the file, then
the namespace version of the DOM methods would have to be
used.

346 | Chapter 15: Working with Media

The code in the solution is a standalone SVG file, with a .svg extension. If we were to
embed the SVG within an HTML file, as shown in Example 15-2, the color-changing
animation would work the same. The CDATA section is removed because all modern
browsers understand the SVG is now in an HTML context. If the file is XHTML,
though, add them back.

Example 15-2. SVG element from Example 15-1, embedded into an HTML page

<!DOCTYPE html>
<html>
<head>
<title>Accessing Inline SVG</title>
<meta charset="utf-8">
</head>
<body>
<svg width="600" height="600">
 <script>
 // set element onclick event handler
 window.onload = function() {
 const square = document.getElementById('square');

 // onclick event handler, change circle radius
 square.onclick = function click() {
 const color = this.getAttribute('fill');
 if (color === '#ff0000') {
 this.setAttribute('fill', '#0000ff');
 } else {
 this.setAttribute('fill', '#ff0000');
 }
 };
 };
 </script>
 <rect id="square" width="400" height="400" fill="#ff0000"
 x="10" y="10" />
</svg>
</body>
</html>

The above example embeds the SVG directly into the HTML page. You can also
embed a JavaScript-containing SVG file on the page by using the <object> tag with a
fallback tag:

<object type="image/svg+xml" data="demo.svg">

</object>

All modern browsers support SVG, including SVG in HTML. IE supports SVG after
version 9.

15.1 Adding JavaScript to SVG | 347

To learn more about SVG, I recommend SVG Animations by Sarah
Drasner (O’Reilly).

Extra: Using SVG Libraries
There aren’t quite as many libraries for working with SVG as there are for working
with Canvas, but the ones that exist are very handy. One of the most popular is the
D3 library, covered in Recipe 15.3. A few other popular libraries include Raphaël,
GreenSock, Snap.svg, and SVG.js. All of these can simplify SVG creation and anima‐
tion. The following code snippet shows an example of using Raphaël:

// Creates canvas 320 × 400 at 10, 50
const paper = Raphael(10, 50, 320, 400);
// Creates circle at x = 150, y = 140, with radius 100
const circle = paper.circle(150, 140, 100);
// Sets the fill attribute of the circle to red (#f00)
circle.attr("fill", "#f0f");
// Sets the stroke attribute of the circle to white
circle.attr("stroke", "#ff0");

15.2 Accessing SVG from a Web Page Script
Problem
You want to modify the contents of an SVG element from script within the web page.

Solution
If the SVG is embedded directly in the web page, access the element and its attributes
using the same functionality you would use with any other web page element:

const square = document.getElementById("square");
square.setAttribute("width", "500");

However, if the SVG is in an external SVG file embedded into the page via an object
element, you have to get the document for the external SVG file in order to access the
elements. The technique requires object detection because the process differs by
browser:

window.onload = function onLoad() {
 const object = document.getElementById('object');
 let svgdoc;

 try {
 svgdoc = object.contentDocument;
 } catch (e) {

348 | Chapter 15: Working with Media

https://www.oreilly.com/library/view/svg-animations/9781491939697/
http://raphaeljs.com
https://greensock.com
http://snapsvg.io
https://svgjs.dev/docs/3.0

 try {
 svgdoc = object.getSVGDocument();
 } catch (err) {
 console.log(err, 'SVG in object not supported in this environment');
 }
 }

 if (!svgdoc) return;

 const square = svgdoc.getElementById('square');
 square.setAttribute('width', '900');
};

Discussion
The first option listed in the solution accesses SVG embedded in an HTML file. You
can access SVG elements using the same methods you’ve used to access HTML ele‐
ments.

The second option is a little more involved, and depends on retrieving the document
object for the SVG document. The first approach tries to access the contentDocument
property on the object. If this fails, the application then tries to access the SVG docu‐
ment using getSVGDocument(). Once you have access to the SVG document object,
you can use the same DOM methods you would use with elements native to the web
page.

Example 15-3 shows the second way to add SVG to a web page, and how to access the
SVG element(s) from script in HTML.

Example 15-3. Accessing SVG in an object element from script

<!DOCTYPE html>
<head>
 <title>SVG in Object</title>
 <meta charset="utf-8" />
</head>
<body>
 <object id="object" type="image/svg+xml" data="../demo1.svg">
 <p>No SVG support</p>
 </object>
 <script type="text/javascript">
 const object = document.getElementById('object');
 object.onload = function() {
 let svgdoc;

 // get access to the SVG document object
 try {
 svgdoc = object.contentDocument;
 } catch (e) {
 try {

15.2 Accessing SVG from a Web Page Script | 349

 svgdoc = object.getSVGDocument();
 } catch (err) {
 console.log(err, 'SVG in object not supported in this environment');
 }
 }

 if (!svgdoc) return;

 // get SVG element and modify
 const square = svgdoc.getElementById('square');
 square.onclick = function() {
 let width = parseFloat(square.getAttribute('width'));
 width -= 50;
 square.setAttribute('width', width);
 const color = square.getAttribute('fill');
 if (color == 'blue') {
 square.setAttribute('fill', 'yellow');
 square.setAttribute('stroke', 'green');
 } else {
 square.setAttribute('fill', 'blue');
 square.setAttribute('stroke', 'red');
 }
 };
 };
 </script>
</body>

In the example code, the object is accessed after it has loaded; the object.onload
event handler is then accessed to get the SVG document and assign the function to
the onclick event handler.

15.3 Creating an SVG Bar Chart with D3
Problem
You want to create a scalable bar chart, but you’re hoping to avoid having to create
every last bit of the graphics.

Solution
Use D3 and SVG to create a chart bound to a set of data that your application pro‐
vides. Example 15-4 shows a vertical bar chart created using D3 with a given set of
data representing the height of each bar.

350 | Chapter 15: Working with Media

Example 15-4. SVG bar chart created using D3

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>SVG Bar Chart using D3</title>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/d3/5.15.0/d3.min.js"></script>
 </head>
 <body>
 <script type="text/javascript">
 const data = [56, 99, 14, 12, 46, 33, 22, 100, 87, 6, 55, 44, 27, 28, 34];

 const height = 400;
 const barWidth = 25;

 const x = d3
 .scaleLinear()
 .domain([0, d3.max(data)])
 .range([0, height]);

 const svg = d3
 .select('body')
 .append('svg')
 .attr('width', data.length * (barWidth + 1))
 .attr('height', height);

 svg
 .selectAll('rect')
 .data(data)
 .enter()
 .append('rect')
 .attr('fill', '#008b8b')
 .attr('x', function(d, i) {
 return i * (barWidth + 1);
 })
 .attr('y', function(d) {
 return height - x(d);
 })
 .attr('width', barWidth)
 .attr('height', x);
 </script>
 </body>
</html>

Discussion
D3 isn’t a standard graphics tool that creates the shape based on the dimensions you
provide. With D3, you give it a set of data, the objects used to visualize the data, and
then stand back and let it do its thing. It sounds simple, but to get this data

15.3 Creating an SVG Bar Chart with D3 | 351

visualization goodness, you do have to properly set it up, and that can be challenging
when you first start using the library.

First of all, be aware that D3 makes use of method chaining to a maximum degree. Yes,
you can invoke methods separately, but it’s clearer, cleaner, and more efficient to use
the library’s chaining support.

In the solution, the first line is the creation of a data set as an array. D3 expects data
points to be in an array, though each element can be an object, as well as a simple
value, as shown in the solution. Next, the maximum height of the bar chart is defined,
as is the width of each bar. Next, we get into the first use of D3.

D3, created by Mike Bostock, is a powerful data visualization tool
that isn’t necessarily something you can pick up and master in a
lazy afternoon. However, it is a tool well worth learning, so con‐
sider the example in this recipe more of a teaser to get you interes‐
ted, rather than a definitive introduction.
For a more in-depth primer, I recommend D3 for the Impatient by
Philipp Janert (O’Reilly).

I could have added a static SVG element to the web page, but I wanted to demonstrate
how D3 creates an element. By creating the SVG element, we’re also getting a refer‐
ence to it for future work, though we could have used D3 to get a reference to an
existing element. In the code, a reference to the body element is obtained using D3’s
select() method. Once this happens, a new SVG element is appended to the body
element via append(), and attributes are given to it via the attr() function. The
height of the element is already predefined, but the width is equal to multiplying the
number of data elements by the bar width (+1, to provide necessary spacing).

Once the SVG element is created, the code uses D3’s scale functionality to determine
the necessary ratio between the element’s height and each bar’s height, in such a way
that the bar chart fills the SVG element, but each bar’s height is proportional. It does
this by using scale.linear() to create a linear scale. According to the D3 documen‐
tation, “The mapping is linear in that the output range value y can be expressed as a
linear function of the input domain value x: y = mx + b.”

The domain() function sets the input domain for the scale, while the range() sets the
output range. In the solution, the value given for the domain is zero to the maximum
value in the data set, determined via a call to max(). The value given for the range is
zero to the height of the SVG element. A function is then returned to a variable that
will normalize any data passed to it when called. If the function is given a value equal
to the height of the largest data value, the returned value is equal to the height of the
element (in this case, the largest data value of 100 returns a scaled value of 400).

352 | Chapter 15: Working with Media

http://d3js.org
http://shop.oreilly.com/product/0636920224341.do

The last portion of the code is the part that creates the bars. We need something to
work with, so the code calls selectAll() with rect. There aren’t any rect elements
in the SVG block yet, but we’ll be adding them. The data is passed to D3 via the
data() method, and then the enter() function is called. What enter() does is pro‐
cess the data and return placeholders for all the missing elements. In the solution,
placeholders for all 15 rect elements, one for each bar, are created.

A rect element is then appended to the SVG element with append(), and the
attributes for each are set with attr(). In the solution, the fill and stroke are given,
though these could have been defined in the page’s stylesheet. Following, the position
for the x attribute, or the lower-left attribute for the bar, is provided as a function,
where d is the current datum (data value) and i is the current index. For the x
attribute, the index is multiplied by the barWidth, plus one (1), to account for
spacing.

For the y attribute, we have to get a little tricky. SVG’s point of origin is the top-left
corner, which means increasing values of y go down the chart, not up. To reverse this,
we need to subtract the value of y from the height. However, we can’t just do this
directly. If the code used the datum passed to it directly, then we’d have a proportional
chart with very small, scrunched-down bars. Instead we need to use the newly created
scale function, x, passing the datum to it.

The width of each bar is a constant value given in barWidth, and the height is just the
scale function variable, which is equivalent to calling the scale function and passing in
the datum. All of this creates the chart shown in Figure 15-1.

Figure 15-1. Example of a bar chart with each bar’s height normalized to fill the given
space

15.3 Creating an SVG Bar Chart with D3 | 353

15.4 Integrating SVG and the Canvas Element in HTML
Problem
You want to use the canvas element and SVG together within a web page.

Solution
One option is to embed both the SVG and the canvas element directly into the
HTML page, and then access the canvas element from script within SVG:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Integrating SVG and the Canvas Element in HTML</title>
 </head>
 <body>
 <canvas id="myCanvas" width="400px" height="100px">
 <p>canvas item alternative content</p>
 </canvas>

 <svg id="svgelem" height="400">
 <title>SVG Circle</title>
 <script type="text/javascript">
 window.onload = function () {
 var context = document.getElementById("myCanvas").getContext('2d');
 context.fillStyle = 'rgba(0,200,0,0.7)';
 context.fillRect(0,0,100,100);
 }
 </script>
 <circle id="redcircle" cx="100" cy="100" r="100" fill="red" stroke="#000" />
 </svg>
 </body>
</html>

Or you can embed the canvas element as a foreign object directly in the SVG:

<!DOCTYPE html>
<html>
<head>
<title>Accessing Inline SVG</title>
<meta charset="utf-8">
</head>
<body>
<svg id="svgelem" height="400" width="600">
 <script type="text/javascript">
 window.onload = function () {
 var context2 = document.getElementById("thisCanvas").getContext('2d');

354 | Chapter 15: Working with Media

 context2.fillStyle = "#ff0000";
 context2.fillRect(0,0,200,200);
 };
 </script>

 <foreignObject width="300" height="150">
 <canvas width="300" height="150" id="thisCanvas">
 alternate content for browsers that do not support Canvas
 </canvas>
 </foreignObject>
 <circle id="redcircle" cx="300" cy="100" r="100" fill="red" stroke="#000" />
 </svg>
</body>
</html>

Discussion
When the SVG element is embedded into the current web page, you can access
HTML elements from within the SVG. However, you can also embed elements
directly in SVG, using the SVG foreignObject element. This element allows us to
embed XHTML, MathML, RDF, or any other XML-based syntax.

In both solutions, I was able to use getElementById(). However, if I want to manipu‐
late the elements using other methods, such as getElementsByTagName(), I have to be
careful about which version of the method I use. For instance, I can use getElements
ByTagName() for the outer canvas element, but I would need to use the namespace
version of the method, getElementsByTagNameNS, if the contained object is XML,
such as RDF/XML. Because the embedded object in the solution is HTML5, a name‐
space wasn’t necessary.

Once you have the canvas context, use the element like you would from script within
HTML: add rectangles, draw paths, create arcs, and so on.

Extra: Canvas? Or SVG?
Why would you use Canvas over SVG, or SVG over Canvas? The canvas element is
faster in frame-type animations. With each animation, the browser only needs to
redraw the changed pixels, not recreate the entire scene. However, the advantage you
get with the canvas element animation lessens when you have to support a variety of
screen sizes, from smartphone to large monitor. SVG scales beautifully.

Another advantage to SVG is that it figures in rich data visualizations with the assis‐
tance of powerful libraries. But then, Canvas is used with 3D systems, such as
WebGL.

15.4 Integrating SVG and the Canvas Element in HTML | 355

One use of SVG and Canvas together is to provide a fallback for the canvas element:
the SVG writes to the DOM and persists even if JavaScript is turned off, while the
canvas element does not.

15.5 Running a Routine When an Audio File Begins
Playing
Problem
You want to provide an audio file and then share additional information when the
audio file begins or ends playing.

Solution
Use the HTML5 audio element:

<audio id="meadow" controls>
 <source src="meadow.wav" type="audio/wav" />
 <p>Meadow sounds</p>
</audio>

and capture either its play event (playback has begun) or ended event (playback has
finished):

const meadow = document.getElementById('meadow');
meadow.addEventListener('play', aboutAudio);

then display the information:

function aboutAudio() {
 const info = 'A summer field near a lake in July.';
 const txt = document.createTextNode(info);
 const div = document.createElement('div');
 div.appendChild(txt);
 document.body.appendChild(div);
}

Discussion
HTML5 added two media elements: audio and video. These simple-to-use controls
provide a way to play audio and video files.

In the solution, the audio element’s controls Boolean attribute is set, so the controls
are displayed. The element has a src of a WAV audio file for in-browser playback.
Additionally, a link to the WAV file is provided as a fallback, which means people
using browsers that don’t support audio can still access the sound file. I could have
also provided an object element, or other fallback content.

356 | Chapter 15: Working with Media

WAV is a widely supported audio format, but different browsers
support various formats and filetypes. The Mozilla Developer Net‐
work has a comprehensive table with audio and video codec sup‐
port for the various browsers, and Wikipedia maintains a simple
browser support table for audio coding formats.

The media elements come with a set of methods to control the playback, as well as
events that can be triggered when the event occurs. In the solution, the ended event is
captured and assigned the event handler aboutAudio(), which displays a message
about the file after the playback is finished. Notice that though the code is using a
DOM Level 0 event handler with the window load event, it’s using DOM Level 2
event handling with the audio element. Browser support is erratic with this event
handler, so I strongly recommend you use addEventListener(). However, onended
does seem to work without problems when used directly in the element:

<audio id="meadow" src="meadow.wav" controls onended="alert('All done')">
 <p>Meadow sounds</p>
</audio>

It’s interesting to see the appearance of the elements in all of the browsers that cur‐
rently support them. There is no standard look, so each browser provides its own
interpretation. You can control the appearance by providing your own playback con‐
trols and using your own elements/CSS/SVG/Canvas to supply the decoration.

15.6 Controlling Video from JavaScript with the video
Element
Problem
You want to embed video in your web page along with a consistent look for the video
controls, regardless of browser and operating system.

Solution
Use the HTML5 video element:

<video id="meadow" poster="purples.jpg" >
 <source src="meadow.m4v" type="video/mp4"/>
 <source src="meadow.ogv" type="video/ogg" />
</video>

You can provide controls for it via JavaScript, as shown in Example 15-5. Buttons are
used to provide the video control, and text in a div element is used to provide feed‐
back on time during the playback.

15.6 Controlling Video from JavaScript with the video Element | 357

http://mzl.la/1DS3rPL
https://oreil.ly/55EwV
https://oreil.ly/55EwV

Example 15-5. Providing a custom control for the HTML5 video element

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <meta http-equiv="X-UA-Compatible" content="ie=edge" />
 <title>Controlling Video from JavaScript with the video Element</title>
 <style>
 video {
 border: 1px solid black;
 max-width: 600px;
 }
 </style>
 </head>
 <body>
 <h1>Controlling Video from JavaScript with the video Element</h1>

 <video id="meadow" controls>
 <source src="meadow.mp4" type="video/mp4" />
 <source src="meadow.webm" type="video/webm" />
 </video>
 <div id="feedback"></div>
 <div id="controls">
 <button id="start">Play</button>
 <button id="stop">Stop</button>
 <button id="pause">Pause</button>
 </div>

 <script src="video.js"></script>
 </body>
</html>

And in video.js:

// dom elements
const meadow = document.getElementById('meadow');
const start = document.getElementById('start');
const pause = document.getElementById('pause');
const stop = document.getElementById('stop');

// start video, enable stop and pause
// disable play
function startPlayback() {
 meadow.play();
 pause.disabled = false;
 stop.disabled = false;
 this.disabled = true;
}

// pause video, enable start, disable stop
// disable pause

358 | Chapter 15: Working with Media

function pausePlayback() {
 meadow.pause();
 pause.disabled = true;
 start.disabled = false;
 stop.disabled = true;
}

// stop video, return to zero time
// enable play, disable pause and stop
function stopPlayback() {
 meadow.pause();
 meadow.currentTime = 0;
 start.disabled = false;
 pause.disabled = true;
 this.disabled = true;
}

// for every time divisible by 5, output feedback
function reportProgress() {
 const time = Math.round(this.currentTime);
 const div = document.getElementById('feedback');
 div.innerHTML = `${time} seconds`;
}

// event listeners
document.getElementById('start').addEventListener('click', startPlayback);
document.getElementById('stop').addEventListener('click', stopPlayback);
document.getElementById('pause').addEventListener('click', pausePlayback);
meadow.addEventListener('timeupdate', reportProgress);

Discussion
The HTML5 video element, as with the HTML5 audio element, can be controlled
with its own built-in controls, or you can provide your own. The media elements sup‐
port the following methods:

play

Starts playing the video

pause

Pauses the video

load

Preloads the video without starting play

canPlayType

Tests if the user agent supports the video type

The media elements don’t support a stop method, so the code emulates one by paus‐
ing video play and then setting the video’s currentTime attribute to 0, which basically

15.6 Controlling Video from JavaScript with the video Element | 359

resets the play start time. I also used currentTime to print out the video time, using
Math.round to round the time to the nearest second.

The video control is providing two different video codecs: H.264 (.mp4) and VP8
(.webm). Nearly all modern browsers support the WebM file format, but including
the MP4 provides a fallback for older browsers that support the video element.

The video and audio controls are inherently keyboard accessible. If you replace the
controls, you’ll want to provide accessibility information with your replacements.

The video playback functionality demonstrated in the solution
works, as is, with video that isn’t encrypted. If the video (or audio)
file is encrypted, considerably more effort is necessary so that the
video plays, making use of the HTML 5.1 W3C Encrypted Media
Extensions (EME).
The W3C EME working draft has been implemented in Internet
Explorer 11, Chrome, Firefox, Microsoft Edge, and Safari.

360 | Chapter 15: Working with Media

https://oreil.ly/mMu7q
http://bit.ly/1DS5umQ
http://bit.ly/1DS5umQ

CHAPTER 16

Writing Web Applications

While JavaScript was once used to add simple interactivity to web pages, today it can
be used to build complicated and fully featured software applications that run in a
web browser. The possibilities include mapping, email clients, streaming video sites,
real-time chat applications, and much more. The line between “website” and “applica‐
tion” can be fuzzy, but one way to think about it is that an application is any site that
takes user input and returns something as a result.

As a developer, you can develop these applications and deploy them instantly across
the world, but this ability comes with unique challenges. As an application code base
grows, you will need to split your codebase into smaller modules and ensure that
users are receiving optimized code bundles. You will need to create features and expe‐
riences that compete with those of native mobile applications, such as offline func‐
tionality, notifications, and application icons. Thankfully, modern JavaScript and
browser APIs enable these feature-rich experiences.

16.1 Bundling JavaScript
Problem
You want to make use of JavaScript modules in a browser environment.

Solution
Make use of native JavaScript modules or a bundling tool, such as Webpack.

Native JavaScript is supported in all modern browsers. If we have a simple module
that exports a value, named mod.js:

export const name = 'Riley';

361

https://webpack.js.org
https://oreil.ly/FhPq9

we can use the module natively in an HTML file:

<script type='module'>
 import {name} from './mod.js';
 console.log(name);
</script>

For more advanced applications and sites, you may benefit from using a bundling
tool that can optimize your modules. To use Webpack as a bundling tool, first install
its dependencies with npm:

$ npm install webpack webpack-cli --save-dev

Before you are able to install packages from npm, your project will
need a package.json file. To generate this file, make sure you are in
the root of your project’s directory and type npm init. The
command-line interface will then guide you through a series of
prompts. Additional information about installing and using npm is
in Chapter 1.

We can then create a file named webpack.config.js in the root of the project directory,
where we specify the entry file and output directory:

const path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 filename: 'bundle.js',
 path: path.resolve(__dirname, 'dist')
 }
};

Finally, add a script to the package.json to run the Webpack build:

"scripts": {
 ...
 "build": "webpack"
}

Discussion
JavaScript modules are now widely available and supported by browsers. This allows
us to break our code into smaller, more maintainble pieces.

Webpack is a popular tool for compiling JavaScript modules. The power of Webpack
lies in the configuration file.

In the previous configuration file, we are instructing Webpack to look at the src direc‐
tory for a file named index.js. This file will be the entry file for our project’s JavaScript:

362 | Chapter 16: Writing Web Applications

import foo from './foo.js';
import bar from './bar.js';

foo();
bar();

The index.js file is importing two additional files, foo.js and bar.js.

When the build script is run, Webpack will output a new minified file named bun‐
dle.js in the dist directory.

Compiling simple import statements is only the tip of the iceberg. Webpack can be
used for hot module reloading, code splitting, browser support shims, and even as a
development server. In Recipe 16.2, we’ll explore how Webpack can be used to reduce
the size of a JavaScript bundle.

Extra: Using npm Modules
In addition to using your own modules, Webpack enables you to download and uti‐
lize modules directly from npm. To do so, first install the module and save it as a
dependency to the project:

$ npm install some-module --save

You can then require the module directly in your code, without needing to specify the
path to the module:

import some-code from 'some-module'

16.2 JavaScript and the Mobile Web
Problem
Your website or application makes use of JavaScript, which can noticeably increase
the time to load on mobile and slow connections.

Solution
For sites using a small amount of JavaScript in a single file, use a tool such as UglifyJS
to minify your JavaScript. Minification will reduce the size of a JavaScript file by
removing unnecessary characters (such as whitespace).

To use UglifyJS, first install it with npm:

$ npm install uglify-js

Then, add a script to your package.json file, specifying the input JavaScript file and a
name for the minified file:

16.2 JavaScript and the Mobile Web | 363

https://www.npmjs.com
https://github.com/mishoo/UglifyJS

"scripts": {
 "minify": "uglifyjs index.js --output index.min.js"
}

For larger sites and applications with multiple JavaScript files, use a bundling tool,
such as Webpack, to perform a combination of minification, code splitting, tree shak‐
ing, and lazy loading.

Webpack automatically minifies its output in production mode, meaning that no spe‐
cific configuration or minification tool is needed.

Code splitting is the process of generating multiple bundles, so that HTML pages or
templates only load the code they need. The following webpack.config.js file will out‐
put two JavaScript files (index.bundle.js and secondary.bundle.js) to the dist directory:

const path = require('path');

module.exports = {
 entry: {
 index: './src/index.js',
 secondary: './src/secondary.js',
 },
 output: {
 filename: '[name].bundle.js',
 path: path.resolve(__dirname, 'dist'),
 },
};

Bundles can balloon in size, particularly when importing third-party libraries with
functionality that may not be needed. Tree shaking is the concept of eliminating dead
or unused code. Webpack can be configured to eliminate dead code with the optimi
zation setting:

module.exports = {
 mode: 'development',
 entry: {
 index: './src/index.js',
 secondary: './src/secondary.js'
 },
 output: {
 filename: '[name].bundle.js',
 path: path.resolve(__dirname, 'dist')
 },
 optimization: {
 usedExports: true
 }
};

364 | Chapter 16: Writing Web Applications

https://webpack.js.org

The final step for code splitting is to add a sideEffects field to the project’s pack‐
age.json file. According to the Webpack documentation, “a side effect is defined as
code that performs a special behavior when imported, other than exposing one or
more exports.” An example of a side effect would be a global polyfill, which does not
expose any export statements.

If no such file is present, we can set the following in package.json:

"sideEffects": false

If your project does have JavaScript files that would fall under the “side effect” cate‐
gory, we can provide them as an array:

"sideEffects": [
 "./src/file-with-side-effect.js"
]

Finally, we can utilize Webpack to enable the lazy loading of JavaScript modules, only
loading them when they are needed by a browser interaction. Webpack makes this
straightforward with a dynamic import statements. With a file named button.js in the
src directory, the contents of the file can be loaded when a user clicks a button. In
index.js:

const buttonElement = document.getElementById('button');
buttonElement.onclick = e =>
 import(/* webpackChunkName: "button" */ './button').then(module => {
 const button = module.default;
 button();
 });

Discussion
The fastest JavaScript is no JavaScript; however, the interactive demands of modern
web applications often rely on client-side JavaScript. With that in mind, our goal is to
limit the amount and file size of the JavaScript being downloaded by a user’s browser.
Utilizing strategies such as minification, code splitting, tree shaking, and lazy loading
allows you finer control over size and amount of JavaScript being loaded in a user’s
browser.

See Also
Webpack’s Getting Started guide is a useful introduction to code bundling and Web‐
pack configuration files.

16.2 JavaScript and the Mobile Web | 365

https://oreil.ly/TAnYG

16.3 Writing a Progressive Web Application
Problem
You’d like your web application to take advantage of native application features such
as fast load times, offline functionality, and app launching icons.

Solution
Turn your web application into a Progressive Web Application (PWA). The phrase
“Progressive Web Applications” was coined to describe a set of technologies that,
when combined, enable web applications to use native-like features, such as offline
functionality and user-installed app icons, while being built with standard web tech‐
nologies and deployed to the web.

All PWAs are required to include two features that extend beyond that of a typical
web page:

Application manifest
Defines application specific features for the browser.

Service worker
Enables the application’s offline functionality.

The first step in creating a progressive web application is to add the web app manifest
file. This file enables developers to control things like application icons, splash
screens, browser display style, and view orientation. In a file named manifest.json:

{
 "name": "JavaScript Everywhere",
 "short_name": "JavaScript",
 "start_url": "/index.html",
 "display": "standalone",
 "background_color": "#ffc40d",
 "theme_color": "#ffc40d",
 "icons": [
 {
 "src": "/images/icons/icon-192x192.png",
 "sizes": "192x192",
 "type": "image/png"
 },
 {
 "src": "/images/icons/icon-512x512.png",
 "sizes": "512x512",
 "type": "image/png"
 }
]
}

Now, in your HTML files or templates, add a reference to the manifest file and appro‐
priate application icons in the document’s <head>.

366 | Chapter 16: Writing Web Applications

Example 16-1. PWA Metatags

<!-- link to manifest.json file -->
<link rel="manifest" href="manifest.json" />
<!-- link to iOS icons -->
<link rel="apple-touch-icon" sizes="180x180" href="images/icons/apple-touch-icon.png" />
<!-- Microsoft application tile icons and color settings -->
<meta name="msapplication-TileColor" content="#ffc40d" />
<meta name="msapplication-TileImage" content="/img/icons/mstile-310x310.png" />
<!-- set theme color -->
<meta name="theme-color" content="#ffc40d" />

The PWA install prompt is automatically triggered in Chrome when a website meets
the PWA criteria (see Figure 16-1). Once installed, the PWA’s icon appears on the
user’s device, much like a native application (Figure 16-2).

Figure 16-1. PWA install prompt

Figure 16-2. The application can be saved to a mobile device

The second step is to create a service worker. A service worker is a script that runs
separately from the page, providing us with a way to make our sites work offline, run
faster, and add capabilities for background features. With the limits of mobile con‐
nectivity, service workers provide us with a means to build offline-first capable

16.3 Writing a Progressive Web Application | 367

applications, which will load content for our users after an initial site visit, regardless
of network conditions. Best of all, service workers are truly a progressive enhance‐
ment, layering on an additional feature to supporting browsers without changing the
functionality of our site for users of nonsupporting browsers.

When introducing a service worker, the initial step is to register the script that will
contain our service worker code with the user’s browser. To accomplish this, add the
script registration to the bottom of the page just before the closing </body> tag:

<!-- initiate the service worker -->
<script>
 if ('serviceWorker' in navigator) {
 window.addEventListener('load', function() {
 navigator.serviceWorker
 .register('service-worker.js')
 .then(reg => {
 console.log('Service worker registered!', reg);
 })
 .catch(err => {
 console.log('Service worker registration failed: ', err);
 });
 });
 }
</script>

This script checks for service worker support, and if the support is available, points
the browser to a service worker script (in this case service-worker.js). For debugging
purposes, the script also catches errors and logs them to the console.

In service-worker.js, begin by specifying a cache version and listing the files that the
browser should cache:

var cacheVersion = 'v1';

filesToCache = [
 'index.html',
 '/styles/main.css',
 '/js/main.js',
 '/images/logo.svg'
]

For changes to the site, the cacheVersion needs to be updated, or
users risk being served content from the cache.

Now, in the service-worker.js file, set up the install, fetch, and activate event lis‐
teners. The install event provides the browser with instructions for installing our
cached files. The fetch event provides the browser with guidelines for handling fetch

368 | Chapter 16: Writing Web Applications

events by instructing the browser to either load the cached files or those received over
the network. Finally, the activate event, which fires when the service worker is acti‐
vated, can be used to check for existing items in the cache and remove them if an
updated cacheVersion is present and the file is no longer in the filestoCache list
(see Figure 16-3).

const cacheVersion = 'v1';

const filesToCache = ['index.html', '/styles/main.css', '/js/main.js'];

self.addEventListener('install', event => {
 console.log('Service worker install event fired');
 event.waitUntil(
 caches.open(cacheVersion).then(cache => {
 return cache.addAll(filesToCache);
 })
);
});

self.addEventListener('fetch', event => {
 console.log('Fetch intercepted for:', event.request.url);
 event.respondWith(
 caches.match(event.request).then(cachedResponse => {
 if (cachedResponse) {
 return cachedResponse;
 }
 return fetch(event.request);
 })
);
});

self.addEventListener('activate', event => {
 event.waitUntil(
 caches.keys().then(keyList => {
 return Promise.all(
 keyList.map(key => {
 if (key !== cacheVersion) {
 return caches.delete(key);
 }
 })
);
 })
);
});

16.3 Writing a Progressive Web Application | 369

Figure 16-3. With the service worker installed, the application can load files when offline

Discussion
A Progressive Web Application is a user-installable web application with some form
of offline functionality. These features allow web applications to closely mimic the
best features of native applications while providing the benefits of the open web.

The web app manifest is a JSON file that provides information about the application.
The full list of key values that it can contain are as follows:

background_color

A color code for a placeholder launch screen background.

categories

An array of strings of categories that the application belongs to.

description

A string description of the application.

dir

The direction in which to display characters. This can be auto, ltr (left to right),
or rtl (right to left).

370 | Chapter 16: Writing Web Applications

display

The preferred display mode. This can be either browser, for default browser
behavior, or fullscreen, which will reduce the browser chrome on some devices.

iarc_rating_id

An International Age Rating value.

icons

An array of objects linking to icon images and descriptions.

lang

Identifies the primary language of the application.

name

The application name.

orientation

Allows the developer to set the default orientation of the application.

prefer_related_applications

If set to true, allows the developer to specify related applications that should be
installed instead of the web application.

related_applications

An array of objects containing a list of related native applications.

scope

A string that contains the navigation scope of the app. Specifying a scope restricts
navigation in application mode to that directory.

screenshots

An array of application screenshots.

short_name

A shortened version of the application name to be used in contexts where the full
name is too long to display.

start_url

The URL that should open when a user launches the application.

theme_color

A string that defines the default theme color for the application.

The W3C provides an example of a robust manifest file for a web-based game:

{
 "lang": "en",
 "dir": "ltr",
 "name": "Super Racer 3000",

16.3 Writing a Progressive Web Application | 371

https://oreil.ly/zlk9P

 "description": "The ultimate futuristic racing game from the future!",
 "short_name": "Racer3K",
 "icons": [{
 "src": "icon/lowres.webp",
 "sizes": "64x64",
 "type": "image/webp"
 },{
 "src": "icon/lowres.png",
 "sizes": "64x64"
 }, {
 "src": "icon/hd_hi",
 "sizes": "128x128"
 }],
 "scope": "/racer/",
 "start_url": "/racer/start.html",
 "display": "fullscreen",
 "orientation": "landscape",
 "theme_color": "aliceblue",
 "background_color": "red",
 "screenshots": [{
 "src": "screenshots/in-game-1x.jpg",
 "sizes": "640x480",
 "type": "image/jpeg"
 },{
 "src": "screenshots/in-game-2x.jpg",
 "sizes": "1280x920",
 "type": "image/jpeg"
 }]
}

In addition to the web app manifest file, some platforms, such as iOS and Windows,
require additional information which can be provided in the form of HTML meta‐
tags. In Example 16-1, metatags are used to define a theme color, the iOS icon, and
Windows tile settings.

Generating icons for all of the different device types and resolu‐
tions can be a tedious affair, so I recommend using RealFavicon‐
Generator.

A service worker is a script that the browser runs in the background, parallel to the
rendering and execution of the page. Because it is a “worker,” the service worker can‐
not access the DOM directly, however this parallel script enables all sorts of new use
cases. One of the most exciting of these use cases is the ability to cache bits of our
application for offline use. In the above example, I’m caching an HTML, JavaScript,
and CSS file to provide a full-featured (if minimal) site experience when offline.
Other use cases may include creating a separate offline experience or caching the
shared template markup and styles, often referred to as the “application shell.”

372 | Chapter 16: Writing Web Applications

https://oreil.ly/ALsQe
https://oreil.ly/ALsQe

When utilizing service workers, there are a few limitations to be aware of:

• Sites using a service worker must be served over HTTPS.
• Service workers do not work when a user is in private browsing mode.
• Since service workers run as a separate thread in the browser, they do not have

access to the DOM.
• Service workers are scoped, meaning that they should be placed in the root of

your application.
• Cache storage sizes can vary by browser and available space on a user’s hard

drive.

Though I’ve created a service worker by hand in the above example, that can quickly
become unmanageable for larger applications. The Workbox library, created by Goo‐
gle, is a package for managing service workers and offline functionality in web appli‐
cations. Workbox takes much of the pain out of versioning and managing the cache,
as well as advanced capabilities such as background sync and precaching.

Progressive web applications are an exciting step for the web and are framework
agnostic, meaning they can be built with simple HTML, CSS, and JavaScript, or using
the latest JavaScript frameworks. In this section we have only scratched the surface of
the power of these technologies. Tal Alter’s book Building Progressive Web Apps
(O’Reilly) offers a detailed look at the features and functionality of Progressive Web
Applications.

16.4 Testing and Profiling a Progressive Web Application
Problem
You’d like to test that you’ve successfully fulfilled the requirements of a Progressive
Web Application.

Solution
Use Lighthouse to audit performance, accessibility, best practices, SEO, and Progres‐
sive Web Application criteria. The easiest way to access Lighthouse is within the
“Lighthouse” tab of Google Chrome Developer Tools. Visit the site (either in produc‐
tion or on a local web server) and click “Generate Report” (see Figure 16-4).

Lighthouse will then generate a report, making recommended improvements for any
score reductions (see Figures 16-5 and 16-6).

16.4 Testing and Profiling a Progressive Web Application | 373

https://oreil.ly/Gu3Z6
http://shop.oreilly.com/product/0636920052067.do
https://oreil.ly/hEdHB

Figure 16-4. Lighthouse within Chrome Developer Tools

Figure 16-5. A high score demonstrates a performant application and successful progres‐
sive web app

374 | Chapter 16: Writing Web Applications

Figure 16-6. A site receiving a low Lighthouse score will also receive recommendations
for improvement

The general use of profiling non-Progressive Web Application sites
with Lighthouse in the Chrome Developer Tools is covered in more
detail in Recipe 11.4.

Discussion
Lighthouse is a tool for measuring web best practices, including performance and
progressive web application compatibility. It comes built into the Chrome Developer
Tools, but can also be installed as a Firefox extension.

In addition to being a browser tool, Lighthouse can be installed through npm and
used on the command line or as a Node module. You would install Lighthouse the
same as any other Node module:

$ npm install -g lighthouse

which can then be run by passing a URL as an argument:

16.4 Testing and Profiling a Progressive Web Application | 375

$ lighthouse https://www.oreilly.com/

Passing a --view argument will open the results in your browser:

$ lighthouse https://www.oreilly.com/ --view

You can also specify an output filetype and location to store the report results:
$ lighthouse https://www.oreilly.com/ --view --output html --output-path ./report.html

And a budget.json file can be used to set and test against performance budget limita‐
tions. In a budget.json file, define the limitations to test against:

[
 {
 "path": "/*",
 "timings": [
 {
 "metric": "interactive",
 "budget": 3000
 },
 {
 "metric": "first-meaningful-paint",
 "budget": 1000
 }
],
 "resourceSizes": [
 {
 "resourceType": "script",
 "budget": 125
 },
 {
 "resourceType": "total",
 "budget": 300
 }
],
 "resourceCounts": [
 {
 "resourceType": "third-party",
 "budget": 10
 }
]
 }
]

The Google Chrome team mantains a repository containing the
documentation of budget.json options.

Testing locally from the command line can be helpful for local development, but the
real power of Lighthouse as a code module is realized when used with continuous

376 | Chapter 16: Writing Web Applications

https://github.com/GoogleChrome/budget.json

integration tools such as GitHub Actions, Circle CI, Jenkins, and Travis CI. The
Lighthouse CI module enables you to perform Lighthouse testing in a continuous
integration pipeline, such as on every GitHub pull request.

Here’s a sample configuration for CircleCI:

version: 2.1
jobs:
 build:
 docker:
 - image: circleci/node:10.16-browsers
 working_directory: ~/your-project
 steps:
 - checkout
 - run: npm install
 - run: npm run build
 - run: sudo npm install -g @lhci/cli@0.3.x
 - run: lhci autorun

Full details on how to use Lighthouse in multiple CI environments are available in
Google’s Getting Started guide.

16.5 Getting the Value of the Current URL
Problem
Your application needs to read the value of the current URL.

Solution
Use the href property of window.location to read the current value of the full URL:

const URL = window.location.href;

Discussion
window.location provides read-only information about the current URL or location
of the document. The href property provides the full URL, which includes the proto‐
col (such as HTTPS), hostname, the path to the current document, and any query
strings. All together, this will match what is displayed in the user’s URL bar:

const URL = window.location.href;
// logs https://www.jseverywhere.io/example
console.log(`The current URL is ${URL}`);

16.5 Getting the Value of the Current URL | 377

https://github.com/GoogleChrome/lighthouse-ci
https://oreil.ly/7jnwx

The global variable location is the same as window.location;
however, I prefer the explicitness of using the window API.

The href property is not the only useful one. If you already know that the user is on
your site, it may be more useful to access the pathname and search properties:

// user is at https://www.jseverywhere.io/example?page=2

const PATH = window.location.pathname;
// logs /example/
console.log(`The current path is ${PATH}`);

const QUERY = window.location.search;
// logs ?page=2
console.log(`The current query parameter is ${QUERY}`)

The full list of read-only properties of window.location are:

hash

A hash value in the URL, such as #id

host

The domain plus port

hostname

The domain

href

The full URL

origin

The protocol, hostname, and port

pathname

The path of the current document

port

The server’s port number value

protocol

The protocol (HTTP or HTTPS)

search

Query string values

378 | Chapter 16: Writing Web Applications

16.6 Redirecting a URL
Problem
You need to use JavaScript to route a user to a different page.

Solution
Use either the assign or replace window.location method, depending on the goal
of the redirect:

// route user to new page & preserve browser history
window.location.assign('https://www.example.com');
// route user to new page but do not preserve current page in history
window.location.replace('https://www.example.com');

The window.location.assign method will route a user to a new URL, but will pre‐
serve the routing page in the browser history. This means that a user will be able to
use the browser’s back button to navigate back to the page. Conversely, window.loca
tion.replace will replace the current URL in the history, disabling the ability to
return to the current page.

Discussion
By using window.location methods, you are able to route a user to a new URL using
JavaScript. This allows you to reroute a user or redirect a user based on a page inter‐
action. assign and replace are not the only window.location methods at your dis‐
posal. The full list of methods is as follows:

.assign()

Navigates the user’s browser to a given URL

.reload()

Reloads the page

.replace()

Navigates the user’s browser to a given URL and removes the current document
from the browser history

toString()

Returns the current URL as a string

By leveraging these methods, you will be able to use JavaScript to manipulate the
route of the page, which can provide useful functionality for application UIs and
interactive routing. Although these features can be very useful when developing
applications, full page redirects should always be done with an HTTP redirect with

16.6 Redirecting a URL | 379

the appropriate status code of 301 for permanent redirects or 302 for temporary
redirects.

Popular JavaScript frameworks come with a routing library or can
be extended with a third-party routing library, which can be used
for robust client-side routing.

16.7 Copying Text to a User’s Clipboard
Problem
Your application needs to copy text, such as a share link, to the user’s clipboard.

Solution
To copy text to a user’s clipboard, place the text within a text input or textarea ele‐
ment and use the navigator.clipboard.writeText method to copy the text.

In your HTML, include the form element as well as a button. In the example, I’m set‐
ting an explicit value for the input element. This value could also be set by the user
or dynamically in code:

<input type="text" id="copy-text" value="https://example.com/share/12345">
<button id="copy-button">Copy To Clipboard</button>

And in the corresponding JavaScript, add an event handler to the button element.
When the button is clicked, use the select method to select the text within the input
element followed by navigator.clipboard.writeText() to copy the text to the
user’s clipboard, as shown in Example 16-2.

Example 16-2. Copying text to the clipboard

const copyText = document.getElementById('copy-text');
const copyButton = document.getElementById('copy-button');

const copyToClipboard = () => {
 copyText.select();
 navigator.clipboard.writeText(copyText.value);
};

copyButton.addEventListener('click', copyToClipboard);

380 | Chapter 16: Writing Web Applications

Discussion
Adding text to a user’s clipboard from a text input box is a common UI pattern seen
in web applications such as GitHub and Google Docs. This can be a useful feature to
simplify the sharing of information or a URL for users. The input and button pattern
demonstrated in the primary recipe is the most common use, but there may be times
where you want to instead copy a user selection from the page’s content. In this sce‐
nario, it may be useful to hide the form control. To do this, include the markup of the
page content as well as a textarea or input element. In this example, I’ve used a tex
tarea element and set the tabindex to remove it from the user’s tab flow, then set
aria-hidden to true so that screen readers know to ignore the element:

<p>Some example text<p>

<textarea id="copy-text" tabindex="-1" aria-hidden="true"></textarea>
<button id="copy-button">Copy the Highlighted Text</button>

In my CSS, I’ve hidden the element by placing it offscreen and giving it a height and
width value of 0:

#copy-text {
 position: absolute;
 left: -9999px;
 height: 0;
 width: 0;
}

Finally, in my JavaScript I follow a similar pattern as Example 16-2, with the addition
of using the document.getSelection() to get the value of any text that the user has
selected on the page:

const copyText = document.getElementById('copy-text');
const copyButton = document.getElementById('copy-button');

const copyToClipboard = () => {
 const selection = document.getSelection();
 copyText.value = `${selection} — Check out my highlight at https://example.com `;
 copyText.select();
 navigator.clipboard.writeText(copyText.value);
}

copyButton.addEventListener('click', copyToClipboard);

Enabling easy sharing of web application content is a common pattern in the social
web era. Using these techniques provides a pattern to simplify that interaction.

16.7 Copying Text to a User’s Clipboard | 381

16.8 Enabling a Mobile-Like Notification in the
Desktop Browser
Problem
You need a way to notify a user that an event has occurred or a long-running process
is finished, even if your site isn’t open in an active tab.

Solution
Use the Web Notifications API.

This API provides a relatively simple technique to pop up a notification window out‐
side of the browser, so that if a person is currently looking at a web page in another
tab, they’ll still see the notification.

To use a Web Notification, you do need to get permission. In the following code,
Notification permission is requested when a user clicks a button. If permission is
granted, a notification is displayed:

const notificationButton = document.getElementById('notification-button');

const showNotification = permission => {
 // if the user didn't grant permission, exit the function
 if (permission !== 'granted') return;

 // content of the notification
 const notification = new Notification('Title', {
 body: 'Check out this super cool thing'
 });

 // optional: action to take when a user clicks the notification
 notification.onclick = () => {
 window.open('https://example.com');
 };
};

const notificationCheck = () => {
 // if notifications aren't supported return
 // alternately you could perform a different action
 // like redirect the user to email signup
 if (!window.Notification) return;

 // request permission from the user
 Notification.requestPermission().then(showNotification);
};

// on click, call the `notificationCheck` function
notificationButton.addEventListener('click', notificationCheck);

382 | Chapter 16: Writing Web Applications

Discussion
Mobile environments have notifications that let you know when you’ve received a
new “Like” on a Facebook post or a new email in your email client. Traditionally, we
didn’t have this capability in a desktop environment, though some might say this is a
good thing.

Still, as we create more sophisticated web applications, it may help to have this func‐
tionality, particularly when our applications may take a significant amount of time.
Instead of forcing people to hang around looking at a “working” icon on our pages,
the web page visitor can view other web pages in other tabs, and know they’ll get
notified when the long-running process is finished.

In the solution, the first time the code creates a new notification, it gets permission
from the web page visitor. If your application is created as a standalone web applica‐
tion, you can specify permissions in the manifest file, but for web pages, you have to
ask permission.

Prior to the Notification permission request, you can also test to see if Notification
exists, so an error is not thrown if it’s not supported:

if (window.Notification) {
 Notification.requestPermission(() => {
 setTimeout(() => {
 const notification = new Notification('hey wake up', {
 body: 'your process is done',
 tag: 'loader',
 icon: 'favicon.ico'
 });
 notification();
 }, 5000);
 });
}

The Notification takes two arguments—a title string and an object with options:

body

The text message in the body of the notification

tag

A tag to help identify notifications for global changes

icon

A custom icon

lang

Language of notification

dir

Direction of the language

16.8 Enabling a Mobile-Like Notification in the Desktop Browser | 383

You can also code four event handlers:

• onerror

• onclose

• onshow

• onclose

And you can programatically close the notification with Notification.close(),
though Safari and Firefox automatically close the notification in a few seconds. All
browsers provide a window close (x) option in the notification.

Extra: Web Notifications and the Page Visibility API
You can combine Web Notifications with the Page Visibility API to display the Notifi‐
cation only when the web page visitor isn’t actively looking at the web page.

The Page Visibility API has broad support in modern browsers. It adds support for
one event, visibilitychange, which is fired when the visibility of the tab page
changes. It also supports a couple of new properties—document.hidden returns true
if the tab page isn’t visible, and document.visibilityState, which has one of the fol‐
lowing four values:

• visible: When the tab page is visible
• hidden: When the tag page is hidden
• prerender: The page is being rendered but not yet visible (browser support is

optional)
• unloaded: The page is being unloaded from memory (browser support is

optional)

To modify the solution so that the notification only fires when the tabbed page is hid‐
den, modify the code to check for visbilityState:

if (window.Notification) {
 Notification.requestPermission(() => {
 setTimeout(() => {
 if (document.visibilityState === 'hidden') {
 const notification = new Notification('hey wake up', {
 body: 'your process is done',
 icon: 'favicon.ico'
 });
 notification();
 } else {
 document.getElementById('result').innerHTML = 'your process is done';
 }

384 | Chapter 16: Writing Web Applications

 }, 5000);
 });
}

Before creating the Notification, the code tests to see if the page is hidden. If it is, then
the Notification is created. If it isn’t, then a message is written out to the page instead.

16.9 Loading a File Locally in the Browser
Problem
You want to open an image file and output the metadata in the browser.

Solution
Use the File API:

const inputElement = document.getElementById('file');

function handleFile() {
 // read the contents of the file
 const file = this.files[0];
 const reader = new FileReader();
 // add 'load' event listener
 reader.addEventListener('load', event => {
 // once loaded do something with the contents of the file
 });
 reader.readAsDataURL(file);
}

inputElement.addEventListener('change', handleFile, false);

Discussion
The File API bolts onto the existing input element file type, used for file uploading.
In addition to the capability of uploading the file to the server via a form upload, you
can now access the file directly in JavaScript, and either work with it locally or upload
the file to a server.

For more on FileReader, check out MDN’s page on the API, and a
related tutorial.

There are three objects in the File API:

16.9 Loading a File Locally in the Browser | 385

http://mzl.la/1ya0o1k
http://mzl.la/1ya0qGs

FileList

A list of files to upload via input type="file"

File

Information about a specific file

FileReader

Object to asynchronously upload the file for client-side access

Each object has associated properties and events, including being able to track the
progress of a file upload (and provide a custom progress bar), as well as signaling
when the upload is finished. The File object can provide information about the file,
including the filename, size, and MIME type. The FileList object provides a list of
File objects, because more than one file can be specified if the input element has the
multiple attribute set. The FileReader is the object that does the actual file upload.

Example 16-3 shows an application that uploads an image, embeds it in the web page,
and displays some information about the image. The result is shown in Figure 16-7.

Example 16-3. Loading an image and metadata

<!DOCTYPE html>
<head>
 <title>Image Reader</title>
 <meta charset="utf-8" />
 <style>
 #result {
 width: 500px;
 margin: 30px;
 }
 </style>
</head>
<body>
 <h1>Image Reader</h1>
 <form>
 <label for="file">File:</label>

 <input type="file" id="file" accept=".jpg, .jpeg, .png" />
 </form>
 <div id="result">

 Image name:
 Image type:

 </div>

 <script>
 const inputElement = document.getElementById('file');
 const result = document.getElementById('result');
 const nameEl = document.getElementById('name');
 const typeEl = document.getElementById('type');

386 | Chapter 16: Writing Web Applications

 function handleFile() {
 // read the contents of the file
 const file = this.files[0];
 const reader = new FileReader();
 // add 'load' event listener
 reader.addEventListener('load', event => {
 // create the image element and display it within the result div
 const img = document.createElement('img');
 img.setAttribute('src', event.target.result);
 img.setAttribute('width', '250');
 result.appendChild(img);
 // display the image name and file type
 const name = document.createTextNode(file.name);
 const type = document.createTextNode(file.type);
 nameEl.appendChild(name);
 typeEl.appendChild(type);
 });
 reader.readAsDataURL(file);
 }

 inputElement.addEventListener('change', handleFile, false);
 </script>
</body>

Figure 16-7. Using the File API to read an image

16.9 Loading a File Locally in the Browser | 387

The File API is a W3C effort. For more information, you can read
the latest draft or Mozilla’s coverage.

16.10 Extending the Possible with Web Components
Problem
You need a component that encapsulates a specific look, feel, and behavior, and that
you can include as easily as you’d include an HTML element, but don’t want to use a
web framework.

Solution
Consider Web Components, which allow you to create custom and reusable HTML
elements. Web Components consist of a Template, custom elements, and shadow
DOM. Each will be covered in the discussion.

Discussion
Think of a web page widget that’s completely self-contained and you have some
resemblance to Web Components, but only in the most shallow sense. Web Compo‐
nents, as a term, encompasses several different constructs. In the following sections,
I’ll cover each, provide examples, discuss polyfills, and what to expect in the future.

HTML templates

The template element is now part of the HTML5 specification. Currently it’s sup‐
ported in most modern browsers. Within the template element, we include HTML
that we want to group as a whole that isn’t instantiated until it is cloned. It is parsed
when loaded, to ensure it’s valid, but it doesn’t exist. Yet.

Working with templates is very intuitive. Consider a common practice with today’s
single-page JavaScript applications: taking returned data from a web service and for‐
matting it as an unordered list (ul) (or new paragraph, or table, or whatever). Typi‐
cally, we’d use the DOM methods to query for the existing ul element, create each list
item (li) in the list, append text to the item, and append the item to the list.

What if we could cut out some of the steps? We could with the template. Given the
following HTML:

<template id="hello-world">
 <p>Hello world!</p>
</template>

388 | Chapter 16: Writing Web Applications

http://.w3.org/TR/FileAPI
http://mzl.la/1ya0qGs
https://oreil.ly/SJZDC
https://oreil.ly/SJZDC

This is the JavaScript to add our “Hello World” template to a page:

const template = document.getElementById('hello-world');
const templateContent = template.content;
document.body.appendChild(templateContent);

In the example we access the template element, access the HTML element’s content,
and then append it to the HTML document using appendChild(). As I noted, tem‐
plates are very intuitive, but you might be wondering, what’s the point? All we’ve
done is add more code for a process that’s already simple, but templates are important
for their use in Custom Elements, discussed in “Custom elements” on page 389, as
well as the “Shadow DOM” on page 389.

Custom elements
The Web Components construct that has generated the most interest is the custom
element. Instead of having to deal with existing HTML elements and their default
behaviors and appearance, we create a custom element, package in its styling and
behavior, and just attach it to the web page. A custom element can either extend an
existing element or be “autonomous,” meaning it is a completely new element. In the
following example, I will extend the HTML <p> element to create a new element
named <hello-world>. To do so, I will first need to define a class with any special
methods for the element:

class CustomGreeting extends HTMLParagraphElement {
 constructor() {
 // always call super first in constructor
 super();

 // any additional element functionality can be written here
 }
}

Once the class is defined, I can register my element. Note that the element name must
contain a hyphen to avoid any potential conflicts with existing HTML elements:

customElements.define("custom-greeting", CustomGreeting);

Now I can use my element in my HTML page:

<custom-greeting>Hello world!</custom-greeting>

Shadow DOM
I can’t see shadow DOM without thinking of the fictional character “The Shadow.”
What a great character, and appropriate, too. Only The Shadow knew what evil
lurked in the minds of men, and only the shadow DOM knows what lurks in its ele‐
ment’s DOM.

16.10 Extending the Possible with Web Components | 389

Dragging ourselves away from fictional distraction, the shadow DOM is the most
twisty of the Web Components. But intriguing, too.

First, the nonmysterious bits. The shadow DOM is a DOM, a tree of nodes just like
we’re used to when we access elements from the document element. The primary dif‐
ference is that it doesn’t exist, not in a way we know a DOM existing. When we create
a shadow root of an element, then it comes into existence. But then, whatever the ele‐
ment used to have, is gone. That’s the key to remember about the shadow DOM: cre‐
ating it replaces the element’s existing DOM.

By using the attachShadow method, you can attach a shadow root to any element:

const shadow = element.attachShadow({mode: 'open'});

The attachShadow method takes one parameter (mode), which accepts a value of
either open or closed. Setting the value to open allows you to access the shadow
DOM in the context of the page, like any other element. The most common shadow
DOM use case is attaching a shadow DOM to a custom element as part of its con‐
structor:

class CustomGreeting extends HTMLElement {
 constructor() {
 super();
 const shadow = this.attachShadow({mode: 'open'});
 const greeting = this.getAttribute('greeting') || 'world'
 shadow.innerHTML = `<p>
 Hello, ${greeting}
 </p>`;
 }
}

Though the above example contains two HTML elements, global CSS styles will not
apply to a shadow DOM element. To style a custom element with a shadow DOM, we
would create a style element within the custom element class and apply the styles:

class CustomGreeting extends HTMLElement {
 constructor() {
 super();
 const shadow = this.attachShadow({mode: 'open'});
 const greeting = this.getAttribute('greeting') || 'world'
 shadow.innerHTML = `<p class="wrapper">
 Hello, ${greeting}
 </p>`;

 // add css styles
 const style = document.createElement('style');

 style.textContent = `
 .wrapper {
 color: pink;
 }

390 | Chapter 16: Writing Web Applications

 .greeting {
 color: green;
 font-weight: bold;
 }
 `;
 }
}

The Polymer Project is a collection of libraries and tools for work‐
ing with web components.

Web components are a very interesting part of the web standards ecosystem with
great potential. HTML templates, custom HTML elements, and the shadow DOM
provide a means for creating small, reusable UI components. This idea of lightweight
components has been reflected in JavaScript libraries such as React and Vue.

16.11 Choosing a Front-End Framework
Problem
You are building a complex web application that requires a JavaScript framework.
How do you choose the right framework?

Solution
There was a time when JavaScript frameworks seemingly came in and out of style
faster than a fashion week runway. Thankfully, over the past few years the framework
wars have slowed down and we have been left with a handful of excellent choices.
Despite the slowdown of new development, it can still be challenging to choose the
best framework for you and your project. When evaluating frameworks for a project,
I recommend asking yourself the following questions:

Do I need a JavaScript framework?
Don’t always reach for a framework by default. Oftentimes, simple sites and
applications may be easier to write and maintain without a framework, while
being more performant for a user.

What is the type of project I’ll be developing?
Is this a personal project? A project for a client? An enterprise project with long-
term support needs? An open source project? Consider the maintainers of your
project and what will best meet their needs.

16.11 Choosing a Front-End Framework | 391

https://oreil.ly/874AX

What is the level of community adoption and the longevity of the project?
Consider the long-term support of the framework. Is it still an active project?
Will it be supported by a large community to answer questions and fix bugs?

How well documented is the framework?
Ensure that the documentation is easy to understand and complete.

What does the developer ecosystem for the framework look like?
Evaluate the tooling, plug-ins, and metaframeworks.

Am I familiar with the framework?
Is the framework something that you already know or have familiarity with or is
this a learning project?

What will be the impact on my users?
Perhaps the most important question of all. Determine if a framework will
impact the performance, accessibility, or usability of your project.

While this is far from an exhaustive list, the authors of this book recommend looking
at the following frameworks: React, Vue, Svelte, and Angular.

React
React is a UI-driven JavaScript framework developed and released by Facebook. React
focuses on small visual components and commonly makes use of jsx, an XML syntax
within JavaScript for rendering HTML components. React makes updates to the page
more efficient by using a representation of the DOM, referred to as the virtual DOM.

Vue
Vue is a community-focused, UI-driven framework. Like React, Vue makes use of a
virtual DOM to make page updates instantaneous. Many view Vue as an alternative to
React. The feature set is similar, but Vue makes use of a more HTML-friendly tem‐
plate syntax and is community backed, rather than supported by Facebook. I’d rec‐
ommend giving both React and Vue a spin to see which best matches you and your
team’s development style.

Svelte
Svelte takes a different approach from the other JS frameworks here. Similar to React
and Vue, it is a UI-focused library, but rather than doing the bulk of the work in the
user’s browser, Svelte focuses on a compile step at development build time. The goal
is to limit the tax on the user’s browser so that developers can build performant
applications.

392 | Chapter 16: Writing Web Applications

https://reactjs.org
https://oreil.ly/oK21x
https://vuejs.org
https://svelte.dev

Angular
Angular is a full-featured JavaScript framework, developed and released by Google.
Angular survived the first wave of “framework” wars and has adapted to a
component-based architecture that is similar to modern libraries. Unlike React, Vue,
and Svelte, Angular is a fully featured framework out of the box, with in-app naviga‐
tion, data and state management, and testing built into the framework. For many,
particularly enterprise-focused teams, this can be a useful feature as it limits decision
making when building new applications or adding features.

16.11 Choosing a Front-End Framework | 393

https://angular.io

PART III

Node.js

CHAPTER 17

Node Basics

The dividing line between “old” and “new” JavaScript occurred when Node.js
(referred to primarily as just Node) was released to the world. Yes, the ability to
dynamically modify page elements was an essential milestone, as was the emphasis on
establishing a path forward to new versions of ECMAScript, but it was Node that
really made us look at JavaScript in a whole new way. And it’s a way I like—I’m a big
fan of Node and server-side JavaScript development.

In this chapter, we’ll explore the basics of Node. At a minimum, you will need to have
Node installed, as covered in Recipe 1.6 or Recipe 17.1.

17.1 Managing Node Versions with Node Version Manager
Problem
You need to install and manage multiple versions of Node on your development
machine.

Solution
Use Node Version Manager (NVM), which allows you to install and use any dis‐
tributed version of Node on a per-shell basis. NVM is compatible with Linux, macOS,
and Windows Subsystem for Linux.

To install NVM, run the install script using either curl or wget in your system’s ter‐
minal application:

using curl:
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.37.2/install.sh | bash

397

https://github.com/nvm-sh/nvm

using wget:
wget -qO- https://raw.githubusercontent.com/nvm-sh/nvm/v0.37.2/install.sh | bash

If you are developing on Windows, we recommend using nvm-
windows, which is unaffiliated with the NVM project, but provides
similar functionality for the Windows operating system. For
instructions on how to use nvm-windows, consult the project’s
documentation.

Once you have installed NVM, you will need to install a version of Node. To install
the latest version of Node, run:

$ nvm install node

You can also install a specific version of Node:

install the latest path release of a major version
$ nvm install 15

install a specific major/minor/patch version
$ nvm install 15.6.0

Once you’ve installed Node, you’ll need to set a default version for new shell sessions.
This can either be the latest version of Node that has been installed or a specific ver‐
sion number:

default new shell sessions to the latest version of node
nvm alias default node
default new shell sessions to a specific version
nvm alias default 14

To switch the version being used in a shell session, use the nvm use command fol‐
lowed by a specific installed version:

$ nvm use 15

Discussion
Using NVM allows you to easily download and switch between multiple versions of
Node on your operating system. This can be incredibly useful when working with
libraries that support multiple versions and legacy codebases. It also simplifies the
management of Node within your development environment. You can view the list of
releases and support timelines for each release.

When using NVM, it’s possible to list out all of the versions installed on your
machine using the nvm ls command. This will show all of the installed versions, the
default version for new shell sessions, and any LTS versions that you do not have
installed:

398 | Chapter 17: Node Basics

https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://oreil.ly/9IY83
https://oreil.ly/9IY83

$ nvm ls
 v8.1.2
 v8.11.3
 v10.13.0
-> v10.23.1
 v12.8.0
 v12.20.0
 v12.20.1
 v13.5.0
 v14.14.0
 v14.15.1
 v14.15.4
 v15.6.0
 system
default -> 14 (-> v14.15.4)
node -> stable (-> v15.6.0) (default)
stable -> 15.6 (-> v15.6.0) (default)
iojs -> N/A (default)
unstable -> N/A (default)
lts/* -> lts/fermium (-> v14.15.4)
lts/argon -> v4.9.1 (-> N/A)
lts/boron -> v6.17.1 (-> N/A)
lts/carbon -> v8.17.0 (-> N/A)
lts/dubnium -> v10.23.1
lts/erbium -> v12.20.1
lts/fermium -> v14.15.4

As you can see, I have several redundant patch versions of major releases installed on
my machine. To uninstall and remove a specific version, you can use the nvm unin
stall command:

nvm uninstall 14.14

Keeping track of which version of Node a project is designed to use can be a chal‐
lenge. To make this easier, you can add an .nvmrc file to your project’s root directory.
The contents of the file is the version of Node that the project is designed to use. For
example:

default to the latest LTS version
$ lts/*

to use a specific version
$ 14.15.4

To use the version specified in a project’s .nvmrc file, run nvm use command from the
root of the director.

17.1 Managing Node Versions with Node Version Manager | 399

For large projects, using a container technology, such as Docker, is
an incredibly useful way to ensure version matching across envi‐
ronments, including deployment. The Node documentation has a
helpful guide on Dockerizing a Node.js web app.

17.2 Responding to a Simple Browser Request
Problem
You want to create a Node application that can respond to a very basic browser
request.

Solution
Use the built-in Node HTTP server to respond to requests:

// load http module
const http = require('http');

// create http server
http
 .createServer((req, res) => {
 // content header
 res.writeHead(200, { 'content-type': 'text/plain' });

 // write message and signal communication is complete
 res.end('Hello, World!');
 })
 .listen(8124);

console.log('Server running on port 8124');

Discussion
A web server response to a browser request is the “Hello World” application for
Node. It demonstrates not only how a Node application functions, but how you can
communicate with it using a fairly traditional communication method: requesting a
web resource.

Starting from the top, the first line of the solution loads the http module using Node’s
require() function. This instructs Node’s modular system to load a specific library
resource for use in the application. The http module is one of the many that come, by
default, with a Node installation.

Next, an HTTP server is created using http.createServer(), passing in an anony‐
mous function, known as the RequestListener with two parameters. Node attaches
this function as an event handler for every server request. The two parameters are

400 | Chapter 17: Node Basics

https://oreil.ly/phXQZ

request and response. The request is an instance of the http.IncomingMessage object
and the response is an instance of the http.ServerResponse object.

The http.ServerResponse is used to respond to the web request. The http.Incoming
Message object contains information about the request, such as the request URL. If
you need to get specific pieces of information from the URL (e.g., query string
parameters), you can use the Node url utility module to parse the string.
Example 17-1 demonstrates how the query string can be used to return a more cus‐
tom message to the browser.

Example 17-1. Parsing out query string data

// load http module
const http = require('http');
const url = require('url');

// create http server
http
 .createServer((req, res) => {
 // get query string and parameters
 const { query } = url.parse(req.url, true);

 // content header
 res.writeHead(200, { 'content-type': 'text/plain' });

 // write message and signal communication is complete
 const name = query.first ? query.first : 'World';

 // write message and signal communication is complete
 res.end(`Hello, ${name}!`);
 })
 .listen(8124);

console.log('Server running on port 8124');

A URL like the following:

http://localhost:8124/?first=Reader

results in a web page that reads “Hello, Reader!”

In the code, the url module object has a parse() method that parses out the URL,
returning various components of it (href, protocol, host, etc.). If you pass true as
the second argument, the string is also parsed by another module, querystring,
which returns the query string as an object with each parameter as an object property,
rather than just returning a string.

17.2 Responding to a Simple Browser Request | 401

In both the solution and in Example 17-1, a text message is returned as page output,
using the http.ServerResponse end() method. I could also have written the message
out using write(), and then called end():

res.write(`Hello, ${name}!`);
res.end();

The important takeaway from either approach is you must call the response end()
method after all the headers and response body have been set.

Chained to the end of the createServer() function call is another function call, this
time to listen(), passing in the port number for the server to listen in on. This port
number is also an especially important component of the application.

Traditionally, port 80 is the default port for most web servers (that aren’t using
HTTPS, which has a default port of 443). By using port 80, requests for the web
resource don’t need to specify a port when requesting the service’s URL. However,
port 80 is also the default port used by our more traditional web server, Apache. If
you try to run the Node service on the same port that Apache is using, your applica‐
tion will fail. The Node application either must be standalone on the server, or run off
a different port.

You can also specify an IP address (host) in addition to the port. Doing this ensures
that people make the request to a specific host, as well as port. Not providing the host
means the application will listen for the request for any IP address associated with the
server. You can also specify a domain name, and Node resolves the host.

There are other arguments for the methods demonstrated, and a host of other meth‐
ods, but this will get you started. Refer to the Node documentation for more
information.

17.3 Interactively Trying Out Node Code Snippets
with REPL
Problem
You want to easily run server-based Node code snippets.

Solution
Use Node’s REPL (Read-Evalute-Print-Loop), an interactive command-line version of
Node that can run any code snippet.

To use REPL, type node at the command line without specifying an application to
run:

$ node

402 | Chapter 17: Node Basics

http://nodejs.org/api

You can then specify JavaScript in a simplified Emacs (sorry, no vi) line-editing style.
You can import libraries, create functions—whatever you can do within a static appli‐
cation. The main difference is that each line of code is interpreted instantly:

> const add = (x, y) => { return x + y };
undefined
> add(2, 2);
4

When you’re finished, exit the program with .exit:

> .exit

Discussion
REPL can be started standalone or within another application if you want to set cer‐
tain features. You type in the JavaScript as if you’re typing in the script in a text file.
The main behavioral difference is you might see a result after typing in each line,
such as the undefined that shows up in the runtime REPL.

But you can import modules:

> const fs = require('fs');

And you can access the global objects, which we just did when we used require().

The undefined that shows after typing in some code is the return value for the execu‐
tion of the previous line of code. Setting a new variable and creating a function are
some of the JavaScript that return undefined, which can get quickly annoying. To
eliminate this behavior, as well as make some other modifications, you can use the
REPL.start() function within a small Node application that triggers REPL (but with
the options you specify).

The options you can use are:

prompt

Changes the prompt that shows (default is >)

input

Changes the input readable stream (default is process.stdin, which is the stan‐
dard input)

output

Changes the output writable stream (default is process.stdout, the standard
output)

terminal

Set to true if the stream should be treated like a TTY, and have ANSI/VT100
escape codes written

17.3 Interactively Trying Out Node Code Snippets with REPL | 403

eval

Function used to replace the asynchronous eval() function used to evaluate the
JavaScript

useColors

Set to true to set output colors for the writer function (default is based on the
terminal’s default values)

useGlobal

Set to true to use the global object, rather than running scripts in a separate
context

ignoreUndefined

Set to true to eliminate the undefined return values

writer

The function that returns the formatted result from the evaluated code to the dis‐
play (default is the util.inspect function)

The following is an example application that starts REPL with a new prompt, ignor‐
ing the undefined values, and using colors:

const repl = require('repl');

const options = {
 prompt: '-> ',
 useColors: true,
 ignoreUndefined: true
};

repl.start(options);

The options we want are defined in the options object and then passed as parameters
to repl.start(). When we run the application, REPL is started but we no longer
have to deal with undefined values:

-> const add = (x, y) => { return x + y };
-> add(2, 2);
4

As you can see, this is a cleaner output without all those messy undefined printouts.

Extra: Wait a Second, What Global Object?
Caught that, did you?

One difference between JavaScript in Node and JavaScript in the browser is the global
scoping. Traditionally in a browser, when you create a variable outside a function,
using var, it belongs to the top-level global object, which we know as window:

404 | Chapter 17: Node Basics

var test = 'this is a test';
console.log(window.test); // 'this is a test'

Similarly, when using let or const in the browser, the variables are globally scoped,
though not attached to the window object.

In Node, each module operates within its own separate context, so modules can
declare the same variables, and they won’t conflict if they’re all used in the same
application.

However, there are objects accessible from Node’s global object. We’ve used a few in
previous examples, including console, the Buffer object, and require(). Others
include some very familiar old friends: setTimeout(), clearTimeout(), setIn
terval(), and clearInterval().

17.4 Reading and Writing File Data
Problem
You want to read from or write to a locally stored file.

Solution
Node’s filesystem management functionality is included as part of the Node core, via
the fs module:

const fs = require('fs');

To read a file’s contents, use the readFile() function:

const fs = require('fs');

fs.readFile('main.txt', 'utf8', (err, data) => {
 if (err) throw err;
 console.log(data);
});

To write to a file, use writeFile():

const fs = require('fs');

const buf = "I'm going to write this text to a file";
fs.writeFile('main2.txt', buf, err => {
 if (err) throw err;
 console.log('wrote text to file');
});

The writeFile() function overwrites the existing file. To append text to the file, use
appendText():

17.4 Reading and Writing File Data | 405

const fs = require('fs');

const buf = "\nI'm going to add this text to a file";
fs.appendFile('main.txt', buf, err => {
 if (err) throw err;
 console.log('appended text to file');
});

Discussion
Node’s filesystem support is both comprehensive and simple to use. To read from a
file, use the readFile() function, which supports the following parameters:

• The filename, including the operating system path to the file if it isn’t local to the
application

• An options object, with options for encoding, as demonstrated in the solution,
and flag, which is set to r by default (for reading)

• A callback function with parameters for an error and the read data

In the solution, if I didn’t specify the encoding in my application, Node would have
returned the file contents as a raw buffer. Since I did specify the encoding, the file
content is returned as a string.

The writeFile() and appendFile() functions for writing and appending, respec‐
tively, take parameters similar to readFile():

• The filename and path
• The string or buffer for the data to write to the file
• The options object, with options for encoding (w as default for writeFile() and
a as the default for appendFile()) and mode, with a default value of 438 (0666 in
Octal)

• The callback function, with only one parameter: the error

The options value of mode can be used to set the file’s permissions if the file was cre‐
ated by write or append. By default, the file is created as readable and writable by the
owner, and readable by the group and the world.

I mentioned that the data to write can be either a buffer or a string. A string cannot
handle binary data, so Node provides the buffer, which is capable of dealing with
either strings or binary data. Both can be used in all of the filesystem functions dis‐
cussed in this section, but you’ll need to explicitly convert between the two types if
you want to use them both.

406 | Chapter 17: Node Basics

For example, instead of providing the utf8 encoding option when you use write
File(), you convert the string to a buffer, providing the desired encoding when you
do:

const fs = require('fs');

const str = "I'm going to write this text to a file";
const buf = Buffer.from(str, 'utf8');
fs.writeFile('mainbuf.txt', buf, err => {
 if (err) throw err;
 console.log('wrote text to file');
});

The reverse—that is, to convert the buffer to a string—is just as simple:

const fs = require('fs');

fs.readFile('main.txt', (err, data) => {
 if (err) throw err;
 const str = data.toString();
 console.log(str);
});

The buffer toString() function has three optional parameters: encoding, where to
begin the conversion, and where to end it. By default, the entire buffer is converted
using the utf8 encoding.

The readFile(), writeFile(), and appendFile() functions are asynchronous, mean‐
ing they won’t wait for the operation to finish before proceeding in the code. This is
essential when it comes to notoriously slow operations such as file access. There are
synchronous versions of each: readFileSync(), writeFileSync(), and appendFile
Sync(). I can’t stress enough that you should not use these variations. I only include a
reference to them to be comprehensive.

Advanced
Another way to read or write from a file is to use the open() function in combination
with read() for reading the file contents, or write() for writing to the file. The
advantages to this approach is more finite control of what happens during the pro‐
cess. The disadvantage is the added complexity associated with all of the functions,
including only being able to use a buffer for reading from and writing to the file.

The parameters for open() are:

• Filename and path
• Flag

17.4 Reading and Writing File Data | 407

• Optional mode
• Callback function

The same open() is used with all operations, with the flag controlling what happens.
There are quite a few flag options, but the ones that interest us the most at this time
are:

r

Opens the file for reading; the file must exist

r+
Opens the file for reading and writing; an exception occurs if the file doesn’t exist

w

Opens the file for writing, truncates the file, or creates it if it doesn’t exist

wx

Opens the file for writing, but fails if the file does exist

w+
Opens the file for reading and writing; creates the file if it doesn’t exist; truncates
the file if it exists

wx+

Similar to w+, but fails if the file exists

a

Opens the file for appending, creates it if it doesn’t exist

ax

Opens the file for appending, fails if the file exists

a+
Opens the file for reading and appending; creates the file if it doesn’t exist

ax+

Similar to a+, but fails if the file exists

The mode is the same one mentioned earlier, a value that sets the sticky and permis‐
sion bits on the file if created, and defaults to 0666. The callback function has two
parameters: an error object, if an error occurs, and a file descriptor, used by subse‐
quent file operations.

The read() and write() functions share the same basic types of parameters:

• The open() methods callback file descriptor
• The buffer used to either hold data to be written or appended, or read

408 | Chapter 17: Node Basics

• The offset where the input/output (I/O) operation begins
• The buffer length (set by read operation, controls write operation)
• Position in the file where the operation is to take place; null if the position is the

current position

The callback functions for both methods have three arguments: an error, bytes read
(or written), and the buffer.

That’s a lot of parameters and options. The best way to demonstrate how it all works
is to create a complete Node application that opens a brand new file for writing,
writes some text to it, writes some more text to it, and then reads all the text back and
prints it to the console. Since open() is asynchronous, the read and write operations
have to occur within the callback function. Be ready for it in Example 17-2, because
you’re going to get your first taste of a concept known as callback hell.

Example 17-2. Demonstrating open, read, and write

const fs = require('fs');

fs.open('newfile.txt', 'a+', (err, fd) => {
 if (err) {
 throw err;
 } else {
 const buf = Buffer.from('The first string\n');
 fs.write(fd, buf, 0, buf.length, 0, (err, written) => {
 if (err) {
 throw err;
 } else {
 const buf2 = Buffer.from('The second string\n');
 fs.write(fd, buf2, 0, buf2.length, buf.length, (err, written2) => {
 if (err) {
 throw err;
 } else {
 const length = written + written2;
 const buf3 = Buffer.alloc(length);
 fs.read(fd, buf3, 0, length, 0, err => {
 if (err) {
 throw err;
 } else {
 console.log(buf3.toString());
 }
 });
 }
 });
 }
 });
 }
});

17.4 Reading and Writing File Data | 409

Taming callbacks is covered in Recipe 19.2.

To find the length of the buffers, I used length, which returns the number of bytes
for the buffer. This value doesn’t necessarily match the length of a string in the buffer,
but it does work in this usage.

That many levels of indentation can make your skin crawl, but the example demon‐
strates how open(), read(), and write() work. These combinations of functions are
what’s used within the readFile(), writeFile(), and appendFile() functions to
manage file access. The higher-level functions just simplify the most common file
operations.

See Recipe 19.2 for a solution to all that nasty indentation.

17.5 Getting Input from the Terminal
Problem
You want to get input from the application user via the terminal.

Solution
Use Node’s Readline module.

To get data from the standard input, use code such as the following:

const readline = require('readline');

const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});

rl.question(">>What's your name? ", answer => {
 console.log(`Hello ${answer}`);
 rl.close();
});

410 | Chapter 17: Node Basics

Discussion
The Readline module provides the ability to get lines of text from a readable stream.
You start by creating an instance of the Readline interface with createInterface()
passing in, at minimum, the readable and writable streams. You need both, because
you’re writing prompts, as well as reading in text. In the solution, the input stream is
process.stdin, the standard input stream, and the output stream is pro

cess.stdout. In other words, input and output are from, and to, the command line.

The solution uses the question() function to post a question, and provides a callback
function to process the response. Within the function, close() is called, which closes
the interface, releasing control of the input and output streams.

You can also create an application that continues to listen to the input, taking some
action on the incoming data, until something signals the application to end. Typically
that something is a letter sequence signaling the person is done, such as the word exit.
This type of application makes use of other Readline functions, such as setPrompt()
to change the prompt given the individual for each line of text; prompt(), which pre‐
pares the input area, including changing the prompt to the one set by setPrompt();
and write(), to write out a prompt. In addition, you’ll also need to use event han‐
dlers to process events, such as line, which listens for each new line of text.

Example 17-3 contains a complete Node application that continues to process input
from the user until they type in exit. Note that the application makes use of pro
cess.exit(). This function cleanly terminates the Node application.

Example 17-3. Access numbers from stdin until the user types in exit

const readline = require('readline');

let sum = 0;

const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});

console.log("Enter numbers, one to a line. Enter 'exit' to quit.");

rl.setPrompt('>> ');
rl.prompt();

rl.on('line', input => {
 const userInput = input.trim();
 if (userInput === 'exit') {
 rl.close();
 return;
 }

17.5 Getting Input from the Terminal | 411

 sum += Number(userInput);
 rl.prompt();
});

// user typed in 'exit'
rl.on('close', () => {
 console.log(`Total is ${sum}`);
 process.exit(0);
});

Running the application with several numbers results in the following output:

Enter numbers, one to a line. Enter 'exit' to quit.
>> 55
>> 209
>> 23.44
>> 0
>> 1
>> 6
>> exit
Total is 294.44

I used console.log() rather than the Readline interface write() to write the
prompt, followed by a new line, and to differentiate the output from the input.

See Also
Chapter 19 covers passing and reading command-line arguments in Node
applications.

17.6 Getting the Path to the Current Script
Problem
Your application needs to read the path of the script that is being executed.

Solution
Use the __dirname or __filename variables, which are in the scope of the module
executing it:

// logs the directory of the currently executed file
// ex: /Users/Adam/Projects/js-cookbook/node
console.log(__dirname);

// logs the directory and filename of the currently executed file
// ex: /Users/Adam/Projects/js-cookbook/node/example.js
console.log(__filename);

412 | Chapter 17: Node Basics

Discussion
The __dirname or __filename variables appear to be in the global scope, but they
actually exist in the scope of the module itself. Let’s assume that you have a project
with the following directory structure:

example-app
| index.js
├───dir1
| | example.js
| └───dir3
| | nested.js

If you were to read the __dirname in the index.js file, it would be the path to the proj‐
ect’s root directory. However, reading the __dirname in from a script in the nested.js
file would read the path to the dir3 directory. This allows you to read the path of a
module as it’s executed, rather than being limited to the parent directory itself.

A useful example of __dirname in action is when creating a new file or directory
within the current directory. In the following example, the script creates a new sub‐
directory named cache within the current file’s directory:

const fs = require('fs');
const path = require('path');
const newDirectoryPath = path.join(__dirname, '/cache');

fs.mkdirSync(newDirectoryPath);

17.7 Working with Node Timers and Understanding the
Node Event Loop
Problem
You need to use a timer in a Node application, but you’re not sure which of Node’s
three timers to use, or how accurate they are.

Solution
If your timer doesn’t have to be precise, you can use setTimeout() to create a single
timer event, or setInterval() if you want a reccurring timer:

setTimeout(() => {}, 3000);

setInterval(() => {}, 3000);

Both function timers can be canceled:

const timer1 = setTimeout(() => {}, 3000);
clearTimeout(timer1);

17.7 Working with Node Timers and Understanding the Node Event Loop | 413

const timer2 = setInterval(() => {}, 3000);
clearInterval(timer2);

However, if you need more finite control of your timer, and immediate results, you
might want to use setImmediate(). You don’t specify a delay for it, as you want the
callback to be invoked immediately after all I/O callbacks are processed but before any
setTimeout() or setInterval() callbacks:

setImmediate(() => {});

It, too, can be cleared, with clearImmediate().

Discussion
Node, being JavaScript based, runs on a single thread. It is synchronous. However,
input/output (I/O) and other native API access either runs asynchronously or on a
separate thread. Node’s approach to managing this timing disconnect is the event
loop.

In your code, when you perform an I/O operation, such as writing a chunk of text to
a file, you specify a callback function to do any post-write activity. Once you’ve done
so, the rest of your application code is processed. It doesn’t wait for the file write to
finish. When the file write has finished, an event signaling the fact is returned to
Node, and pushed on to a queue, waiting for processing. Node processes this event
queue, and when it gets to the event signaled by the completed file write, it matches
the event to the callback, and the callback is processed.

As a comparison, think of going into a deli and ordering lunch. You wait in line to
place your order, and are given an order number. You sit down and read the paper, or
check your Twitter account while you wait. In the meantime, the lunch orders go into
another queue for deli workers to process the orders. But each lunch request isn’t
always finished in the order received. Some lunch orders may take longer. They may
need to bake or grill for a longer time. So the deli worker processes your order by
preparing your lunch item and then placing it in an oven, setting a timer for when it’s
finished, and goes on to other tasks.

When the timer pings, the deli worker quickly finishes their current task, and pulls
your lunch order from the oven. You’re then notified that your lunch is ready for
pickup by your order number being called out. If several time-consuming lunch
items are being processed at the same time, the deli worker processes them as the
timer for each item pings, in order.

All Node processes fit the pattern of the deli order queue: first in, first to be sent to
the deli (thread) workers. However, certain operations, such as I/O, are like those
lunch orders that need extra time to bake in an oven or grill, but don’t require the deli
worker to stop any other effort and wait for the baking and grilling. The oven or grill

414 | Chapter 17: Node Basics

timers are equivalent to the messages that appear in the Node event loop, triggering a
final action based on the requested operation.

You now have a working blend of synchronous and asynchronous processes. But
what happens with a timer?

Both setTimeout() and setInterval() fire after the given delay, but what happens is
a message to this effect is added to the event loop, to be processed in turn. So if the
event loop is particularly cluttered, there is a delay before the the timer functions’
callbacks are called:

It is important to note that your callback will probably not be called in exactly (delay)
milliseconds. Node.js makes no guarantees about the exact timing of when the callback
will fire, nor of the ordering things will fire in. The callback will be called as close as
possible to the time specified.

—Node Timers documentation

For the most part, whatever delay happens is beyond the kin of our human senses,
but it can result in animations that don’t seem to run smoothly. It can also add an odd
effect to other applications.

In Example 17-4, I created a scrolling timeline in SVG, with data fed to the client via
WebSockets. To emulate real-world data, I used a three-second timer and randomly
generated a number to act as a data value. In the server code, I used setInterval(),
because the timer is reccurring:

Example 17-4. Scrolling timeline example

const app = require('http');
const fs = require('fs');
const ws = require('nodejs-websocket');

let server;

// serve static page
const handler = (req, res) => {
 fs.readFile(`${__dirname}/drawline.html`, (err, data) => {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading drawline.html');
 }
 res.writeHead(200);
 res.end(data);
 return data;
 });
};

/// start the webserver
// connections on Port 8124 will be handled by the handler
app.listen(8124);

17.7 Working with Node Timers and Understanding the Node Event Loop | 415

app.createServer(handler);

// data timer
const startTimer = () => {
 setInterval(() => {
 const newval = Math.floor(Math.random() * 100) + 1;
 if (server.connections.length > 0) {
 console.log(`sending ${newval}`);
 const counter = { counter: newval };
 server.connections.forEach(conn => {
 conn.sendText(JSON.stringify(counter), () => {
 console.log('conn sent');
 });
 });
 }
 }, 3000);
};

// Create a websocket connection handler on a different port
server = ws
 .createServer(conn => {
 console.log('connected');
 conn.on('close', () => {
 console.log('Connection closed');
 });
 })
 .listen(8001, () => {
 startTimer();
 });

I included console.log() to call in the code so you can see the timer event in com‐
parison to the communication responses. When the setInterval() function is
called, it’s pushed into the process. When its callback is processed, the WebSocket
communications are also pushed into the queue.

The solution uses setInterval(), one of Node’s three different types of timers. The
setInterval() function has the same format as the one we use in the browser. You
specify a callback for the first function, provide a delay time (in milliseconds), and
any potential arguments. The timer is going to fire in three seconds, but we already
know that the callback for the timer may not be immediately processed.

The same applies to the callbacks passed in the WebSocket sendText() calls. These
are based on Node’s Net (or TLS, if secure) sockets, and as the socket.write()
(what’s used for sendText()) documentation notes:

The optional callback parameter will be executed when the data is finally written out—
this may not be immediately.

—Node documentation

416 | Chapter 17: Node Basics

If you set the timer to invoke immediately (giving zero as the delay value), you’ll see
that the data sent message is interspersed with the communication sent message
(before the browser client freezes up, overwhelmed by the socket communications—
you don’t want to use a zero value in the application again).

However, the timelines for all the clients remain the same because the communica‐
tions are sent within the timer’s callback function, synchronously, so the data is the
same for all of the communications—it’s just the callbacks that are handled, seem‐
ingly out of order.

Earlier I mentioned using setInterval() with a delay of zero. In actuality, it isn’t
exactly zero—Node follows the HTML5 specification that browsers adhere to, and
“clamps” the timer interval to a minimum value of four milliseconds. While this may
seem to be too small of an amount to cause a problem, when it comes to animations
and time-critical processes, the time delay can impact the overall appearance and/or
function.

To bypass the constraints, Node developers utilize Node’s process.nextTick()
instead. The callback associated with process.nextTick() is processed on the next
event loop go around, usually before any I/O callbacks (though there are constraints,
which I’ll get to in a minute). No more pesky four-millisecond throttling. But then,
what happens if there’s an enormous number of recursively called process.next
Tick() calls?

To return to our deli analogy, during a busy lunch hour, workers can be overrun with
orders and so caught up in trying to process new orders that they don’t respond in a
timely manner to the oven and grill pings. Things burn when this happens. If you’ve
ever been to a well-run deli, you’ll notice the counter person taking the orders will
assess the kitchen before taking the order, tossing in some slight delay, or even taking
on some of the kitchen duties, letting the people wait just a tiny bit longer in the
order queue.

The same happens with Node. If process.nextTick() were allowed to be the spoiled
child, always getting its way, I/O operations would get starved out. Node uses another
value, process.maxTickDepth, with a default value of 1000 to constrain the number
of process.next() callbacks that are processed before the I/O callbacks are allowed
to play. It’s the counter person in the deli.

In more recent releases of Node, the setImmediate() function was added. This func‐
tion attempts to resolve all of the issues associated with the timing operations and
create a happy medium that should work for most folks. When setImmediate() is
called, its callback is added after the I/O callbacks, but before the setTimeout() and
setInterval() callbacks. We don’t have the four-millisecond tax for the traditional
timers, but we also don’t have the brat that is process.nextTick().

17.7 Working with Node Timers and Understanding the Node Event Loop | 417

To return one last time to the deli analogy, setImmediate() is a customer in the order
queue who sees that the deli workers are overwhelmed with pinging ovens, and
politely states they’ll wait to give their order.

However, you do not want to use setImmediate() in the scrolling
timeline example, as it will freeze your browser up faster than you
can blink.

418 | Chapter 17: Node Basics

CHAPTER 18

Node Modules

One of the great aspects of writing Node.js applications is the built-in modularity the
environment provides. It’s simple to download and install any number of Node mod‐
ules, and using them is equally simple: just include a single require() statement
naming the module, and you’re off and running.

The ease with which the modules can be incorporated is one of the benefits of Java‐
Script modularization. Modularizing ensures that external functionality is created in
such a way that it isn’t dependent on other external functionality, a concept known as
loose coupling. This means I can use a Foo module, without having to include a Bar
module, because Foo is tightly dependent on having Bar included.

JavaScript modularization is both a discipline and a contract. The discipline comes in
having to follow certain mandated criteria in order for external code to participate in
the module system. The contract is between you, me, and other JavaScript developers:
we’re following an agreed-on path when we produce (or consume) external function‐
ality in a module system, and we all have expectations based on the module system.

One major dependency on virtually all aspects of application and
library management and publication is the use of Git, a source con‐
trol system, and GitHub, an extremely popular Git endpoint. How
Git works and using Git with GitHub are beyond the scope of this
book. I recommend the Git Pocket Guide by Richard Silverman
(O’Reilly) to get more familiar with Git, and GitHub’s own docu‐
mentation for more on using this service.

419

http://shop.oreilly.com/product/0636920024972.do
https://github.com
https://github.com

18.1 Searching for a Specific Node Module via npm
Problem
You’re creating a Node application and want to use existing modules, but you don’t
know how to discover them.

Solution
Recipe 1.7 explains how to install packages with npm, Node’s popular package man‐
ager (and the glue that holds the Node universe together). But you haven’t yet consid‐
ered how to find the useful packages that you need in npm’s sprawling registry.

In most cases, you’ll discover modules via recommendations from your friends and
codevelopers, but sometimes you need something new. You can search for new mod‐
ules directly at the npm website. You can also use the npm command-line interface
directly to search for a module. For instance, if you’re interested in modules that do
something with PDFs, run the following search at the command line:

$ npm search pdf

Discussion
The npm website provides more than just documentation for using npm; it also pro‐
vides an interface for searching for modules. If you access each module’s page at npm,
you can see how popular the module is, what other modules are dependent on it, the
license, and other relevant information.

However, you can also search for modules, directly, using npm. The process can take
a fair amount of time and when it finishes, you’re likely to get a huge number of mod‐
ules in return, especially with a broader topic such as modules that work with PDFs.

You can refine the results by listing multiple terms:

$ npm search PDF generation

This query returns a much smaller list of modules, specific to PDF generation.

Once you do find a module that sounds interesting, you can get detailed information
about it with:

$ npm view electron

You’ll get useful information from the package.json of the module, which can tell you
what it’s dependent on, who wrote it, and when it was created. We still recommend
checking out the module’s npm website page and GitHub repository page directly.
There you’ll be able to determine if the module is being actively maintained, get a
sense of how popular the module is, review open issues, and look at the source code.

420 | Chapter 18: Node Modules

https://www.npmjs.org

18.2 Converting Your Library into a Node Module
Problem
You want to use one of your libraries in Node.

Solution
Convert the library into a Node module. In Node, each file is treated as a module. For
example, if the library is a file containing a function stored at /lib/hello.js:

const hello = val => {
 return console.log(`Hello ${val}`);
};

You can convert it to work as a Node module with the exports keyword:

const hello = val => {
 return console.log(`Hello ${val}`);
};

module.exports = hello;

Alternately, can also export the function directly:

module.exports = val => {
 return console.log(`Hello ${val}`);
};

You can then use the module in your application:

var hello = require('./lib/hello.js');

// logs 'Hello world'
hello('world');

Discussion
Node’s default module system is based on CommonJS, which uses three constructs:
exports to define what’s exported from the library, require() to include the module
in the application, and module, which includes information about the module but also
can be used to export a function directly.

If your library returns an object with several functions and data objects, you can
assign each to the comparably named property on module.exports, or you could
return an object:

const greeting = {
 hello: val => {
 return console.log(`Hello ${val}`);
 },

18.2 Converting Your Library into a Node Module | 421

 ciao: val => {
 return console.log(`Ciao ${val}`);
 }
};

module.exports = greeting;

or:

const hello = val => {
 return console.log(`Hello ${val}`);
};

const ciao = val => {
 return console.log(`Ciao ${val}`);
};

module.exports = { hello, ciao };

And then access the object properties directly:

const greeting = require('./lib/greeting.js')

// logs 'Hello world'
greeting.hello('world');
// logs 'Ciao mondo'
greeting.ciao('mondo');

Because the module isn’t installed using npm, and just resides in the directory where
the application resides, it’s accessed by the file location and name, not just the name.

See Also
In Recipe 18.3, we cover how to make sure your library code works in both Com‐
monJS and ECMAScript module environments.

In Recipe 18.4, we cover how to create an standalone module.

18.3 Taking Your Code Across Module Environments
Problem
You’ve written a library that you’d like to share with others, but folks are using a vari‐
ety of Node versions with both CommonJS and ECMAScript modules. How can you
ensure your library works in all of the various environments?

Solution
Use CommonJS modules with an ECMAScript module wrapper.

First, write the library as a CommonJS module, saved with the .cjs file extension:

422 | Chapter 18: Node Modules

const bbarray = {
 concatArray: (str, array) => {
 return array.map(element => {
 return `${str} ${element}`;
 });
 },
 splitArray: (str, array) => {
 return array.map(element => {
 return element.substring(str.length + 1);
 });
 }
};

module.exports = bbarray;
exports.concatArray = bbarray.concatArray;
exports.splitArray = bbarray.splitArray;

Followed by an ECMAScript wrapper module, which uses the .mjs file extension:

import bbarray from './index.cjs';

export const { concatArray, splitArray } = bbarray;
export default bbarray;

And a package.json file, which includes the type, main, and exports fields:

"type": "module",
"main": "./index.cjs",
"exports": {
 ".": "./index.cjs",
 "./module": "./wrapper.mjs"
},

Users of our module, using CommonJS syntax, can use the require syntax to import
the module:

const bbarray = require('bbarray');

bbarray.concatArray('is', ['test', 'three']);
bbarray.splitArray('is', ['is test', 'is three']);

or:

const { concatArray, splitArray } = require('bbarray');

concatArray('is', ['test', 'three']);
splitArray('is', ['is test', 'is three']);

While those using ECMAScript modules can specify the module version of the library
to use the ES import syntax:

import bbarray from 'bbarray/module';

bbarray.concatArray('is', ['test', 'three']);
bbarray.splitArray('is', ['is test', 'is three']);

18.3 Taking Your Code Across Module Environments | 423

or:

import { concatArray, splitArray } from 'bbarray/module';

concatArray('is', ['test', 'three']);
splitArray('is', ['is test', 'is three']);

At the time of writing, it is possible to avoid the /module naming
convention for ECMAScript modules using the --experimental-
conditional-exports flag. However, due to the current experi‐
mental nature and the potential of future changes in the syntax, we
currently recommend against it. In future versions of Node, this
will likely become the standard. You can read more about this
approach in the Node documentation.

Discussion
CommonJS modules have been the standard in Node since the beginning, and tools
such as Browserify brought this syntax out of the Node ecosystem, allowing develop‐
ers to use Node style modules in the browser. The ECMAScript 2015 (also known as
ES6) standard introduced a native JavaScript module syntax, which was introduced in
Node 8.5.0 and could be used behind an --experimental-module flag. Beginning
with Node 13.2.0, Node ships with native support for ECMAScript modules.

A common pattern is to write a module using either the CommonJS or ECMAScript
module syntax and use a compile tool to ship both as either separate module entry
points or exported paths. However, this runs the risk of a module being loaded twice
if it is loaded directly via one syntax by the application and either loaded directly or
by a dependency using the other syntax.

In package.json there are three key fields:

"type": "module",
"main": "./index.cjs",
"exports": {
 ".": "./index.cjs",
 "./module": "./wrapper.mjs"
},

"type"

Specifies that this is a module, meaning that this library is using the ECMAScript
module syntax. For libraries that exclusively use CommonJS, the "type" would
be "commonjs".

"main"

Specifies the main entry point of the application, for which we will point to the
CommonJS file.

424 | Chapter 18: Node Modules

https://oreil.ly/Xzkid

"exports"

Defines the exported paths of our modules. Through this consumers of the
default package will receive the CommonJS module directly, while those using
package/module will import the file from the ECMAScript module wrapper.

If we wish to avoid using the .cjs and .mjs file extensions, we may do so:

"type": "module",
"main": "./index.js",
"exports": {
 ".": "./index.js",
 "./module": "./wrapper.js"
},

See Also
In Recipe 18.5, we cover how to make sure your library code works across multiple
module environments in both Node and the browser by using Webpack as a code
bundler.

18.4 Creating an Installable Node Module
Problem
You’ve either created a Node module from scratch, or converted an existing library to
one that will work in the browser or in Node. Now, you want to know how to modify
it into a module that can be installed using npm.

Solution
Once you’ve created your Node module and any supporting functionality (including
module tests), you can package the entire directory. The key to packaging and pub‐
lishing the Node module is creating a package.json file that describes the module, any
dependencies, the directory structure, what to ignore, and so on. You can generate a
package.json file by running the npm init command in the root of the project’s direc‐
tory and following the prompts.

The following is a relatively basic package.json file:

{
 "name": "bbArray",
 "version": "0.1.0",
 "description": "A description of what my module is about",
 "main": "./lib/bbArray",
 "author": {
 "name": "Shelley Powers"
 },
 "keywords": [

18.4 Creating an Installable Node Module | 425

 "array",
 "utility"
],
 "repository": {
 "type": "git",
 "url": "https://github.com/accountname/bbarray.git"
 },
 "engines" : {
 "node" : ">=0.10.0"
 },
 "bugs": {
 "url": "https://github.com/accountname/bbarray/issues"
 },
 "licenses": [
 {
 "type": "MIT",
 "url": "https://github.com/accountname/bbarray/raw/master/LICENSE"
 }
],
 "dependencies": {
 "some-module": "~0.1.0"
 },
 "directories":{
 "doc":"./doc",
 "man":"./man",
 "lib":"./lib",
 "bin":"./bin"
 },
 "scripts": {
 "test": "nodeunit test/test-bbarray.js"
 }
 }

Once you’ve created package.json, package all the source directories and the pack‐
age.json file as a gzipped tarball. Then install the package locally, or install it in npm
for public access.

Discussion
The package.json file is key to packaging up a Node module for local installation or
uploading to npm for management. At a minimum, it requires a name and a version.
The other fields given in the solution are:

description

A description of what the module is and does

main

Entry file for the module

author

Author(s) of the module

426 | Chapter 18: Node Modules

keywords

List of keywords that can help others find the module

repository

Place where the code lives, typically GitHub

engines

Node versions you know your module works with

bugs

Where to file bugs

licenses

License for your module

dependencies

A list of dependencies required by the module

directories

A hash describing the directory structure for your module

scripts

A hash of object commands that are run during the module life cycle

There are a host of other options that are described at the npm website. You can also
use a tool to help you fill in many of these fields. Typing the following at the com‐
mand line runs the tool that asks questions and then generates a basic package.json
file:

$ npm init

Once you have your source set up and your package.json file, you can test whether
everything works by running the following command in the top-level directory of
your module:

$ npm install . -g

If you have no errors, then you can package the file as a gzipped tarball. At this point,
if you want to publish the module, you’ll first need to add yourself as a user in the
npm registry:

$ npm add-user

To publish the Node module to the npm registry, use the following in the root direc‐
tory of the module, specifying a URL to the tarball, a filename for the tarball, or a
path:

$ npm publish ./

If you have development dependencies for your module, such as using a testing
framework like Jest, one excellent shortcut to ensure these are added to your

18.4 Creating an Installable Node Module | 427

https://oreil.ly/iXynV

package.json file is to use the following, in the same directory as the package.json file,
when you’re installing the dependent module:

$ npm install jest --save-dev

Not only does this install Jest (discussed later, in Recipe 18.6), this command also
updates your package.json file with the following command:

 "devDependencies": {
 "jest": "^24.9.0"
 }

You can also use this same type of option to add a module to dependencies in
package.json. The following:

$ npm install express --save

adds the following to the package.json file:

"dependencies": {
 "express": "^3.4.11"
 }

If the module is no longer needed and shouldn’t be listed in package.json, remove it
from the devDependencies with:

$ npm remove jest

And remove a module to dependencies with:

$ npm remove express

If the module is the last in either dependencies or devDependencies, the property
isn’t removed. It’s just set to an empty value:

"dependencies": {}

npm provides a decent developer guide for creating and installing a
Node module. You should consider the use of an .npmignore
or .gitignore file for keeping stuff out of your module. And though
this is beyond the scope of the book, you should also become famil‐
iar with Git and GitHub, and make use of it for your applications/
modules.

Extra: The README File and Markdown Syntax
When you package your module or library for reuse and upload it to a source reposi‐
tory such as GitHub, you’ll need to provide how-to information about installing the
module/library and basic information about how to use it. For this, you need a
README file.

428 | Chapter 18: Node Modules

https://oreil.ly/ifa4e
https://oreil.ly/ifa4e

You’ve likely seen files named README.md with applications and Node modules.
They’re text-based with some odd, unobtrusive markup that you’re not sure is useful,
until you see it in a site like GitHub, where the README file provides all of the
project page installation and usage information. The markup translates into HTML,
making for readable web-based help.

The content for the README is marked up with annotation known as Markdown.
The popular website Daring Fireball calls Markdown easy to read and write, but
“Readability, however, is emphasized above all else.” Unlike with HTML, the Mark‐
down markup doesn’t get in the way of reading the text.

Daring Fireball also provides an overview of generic Markdown,
but if you’re working with GitHub files, you might also want to
check out GitHub’s Flavored Markdown.

Here is a sample REAMDE.md file:

Project Title

Provide a brief description of the project and what it does.
If the project has a UI, include a screenshot as well.

If more comprehensive documentation exists, link to it here.

Features

Describe the core features of the project (what does it do?)
in the form of a bulleted list:

- Feature #1
- Feature #2
- Feature #3

Getting Started

Provide installation instructions, general usage guidance, API examples,
and build and deployment information. Assume as little prior knowledge
as possible, describing everything in clear and coherent steps.

Installation/Dependencies

How does a user get up and running with your project? What dependencies
does the project have? Aim to describe these in clear and simple steps.
Provide external links.

Usage

Provide examples of how the project may be used. For large projects with

18.4 Creating an Installable Node Module | 429

https://oreil.ly/qkKRT
https://help.github.com/en/github/writing-on-github

external documentation, provide a few examples and link to the full docs here.

Build/Deployment

If the user will be building or deploying the project, add any useful guidance.

Getting Help

What should users do and expect when they encounter bugs or get stuck using
your project? Set expectations for support, link to the issue tracker and
roadmap, if applicable.

Where should users go if they have a question? (Stack Overflow, Gitter, IRC,
mailing list, etc.)

If desired, you may also provide links to core contributor email addresses.

Contributing Guidelines

Include instructions for setting up the development environment, code standards,
running tests, and submitting pull requests. It may be useful to link to a
separate CONTRIBUTING.md file. See this example from the Hoodie project:
https://github.com/hoodiehq/hoodie/blob/master/CONTRIBUTING.md

Code of Conduct

Provide a link to the Code of Conduct for your project. I recommend using the
Contributor Covenant: http://contributor-covenant.org/

License

Include a license for your project. If you need help choosing a license,
use this guide: https://choosealicense.com

Most popular text editors include Markdown syntax highlighting and previewing
capabilities. There are also desktop Markdown editors available for all platforms. I
can also use a CLI tool, like Pandoc, to covert the README.md file into readable
HTML:

$ pandoc README.md -o readme.html

Figure 18-1 displays the generated content. It’s not fancy, but it is eminently readable.

430 | Chapter 18: Node Modules

https://oreil.ly/Cc4GX

Figure 18-1. Generated HTML from README.md text and Markdown annotation

When you host your source code at a site such as GitHub, GitHub uses the
README.md file to generate the cover page for the repository.

18.5 Writing Multiplatform Libraries
Problem
You’ve created a library that is useful both in the browser and in Node.js, and would
like to make it available in both environments.

Solution
Use a bundling tool, such as Webpack, to bundle your library so that it works as an
ES2015 module, CommonJS module, and AMD module, and can be loaded as a
script tag in the browser.

In Webpack’s webpack.config.js file, include the library and libraryTarget fields,
which signify that the module should be bundled as a library and target multiple
environments:

18.5 Writing Multiplatform Libraries | 431

const path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 path: path.resolve(__dirname, 'dist'),
 filename: 'my-library.js',
 library: 'myLibrary',
 libraryTarget: 'umd',
 globalObject: 'this'
 },
};

The library field specifies a name for the library that will be used in ECMAScript,
CommonJS, and AMD module environments. The libraryTarget field allows you to
specify how the module will be exposed. The default is var, which will expose a vari‐
able. Specifying umd will utilize the JavaScript Universal Module Definition (UMD),
enabling the ability for multiple module styles to consume the library. To make the
UMD build available in both browser and Node.js environments, you will need to set
the output.globalObject option to this.

For more details on using Webpack to bundle code, see Chapter 17.

Discussion
In the example, I’ve created a simple math library. Currently, the only function is one
called squareIt, which accepts a number as a parameter and returns the value of that
number multiplied by itself. This is at src/index.js:

export function squareIt(num) {
 return num * num;
};

The package.json file contains Webpack and the Webpack command-line interface
(CLI) as development dependencies. It also points the main distribution at the
bundled version of the library, which Webpack will output to the dist folder. I’ve also
added a build script that will run the Webpack bundler, aptly named build. This will
allow me to generate the bundle by typing npm run build (or yarn run build if
using Yarn).

{
 "name": "my-library",
 "version": "1.0.0",
 "description": "An example library bundled by Webpack",
 "main": "dist/my-library.js",

432 | Chapter 18: Node Modules

https://oreil.ly/VSpd0

 "scripts": {
 "build": "webpack"
 },
 "keywords": ["example"],
 "author": "Adam Scott <adam@jseverywhere.io>",
 "license": "MIT",
 "devDependencies": {
 "webpack": "4.44.1",
 "webpack-cli": "3.3.12"
 }
}

Finally, my project contains a webpack.config.js, as described in the recipe:

const path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 path: path.resolve(__dirname, 'dist'),
 filename: 'my-library.js',
 library: 'myLibrary',
 libraryTarget: 'umd',
 globalObject: 'this'
 },
};

With this setup, the command npm run build will bundle the library and place it
within the dist directory of the project. This bundled file is what consumers of the
library will use.

To test the package locally, before publishing it to npm, run npm
link from the root of the project directory. Then in a separate
project, where you’d like to use the module, type npm link

<library name>. Doing so will create a symbolic link to the pack‐
age, as though it is globally installed.

Publishing the library
Once your library is complete, you will most likely want to publish it to npm for dis‐
tribution. Make sure that your project is version controlled with Git and has been
pushed to a public remote repository (such as GitHub or GitLab). From the root of
your project’s directory:

$ git init
$ git remote add origin git://git-remote-url
$ npm publish

Once published to a remote Git repository and the npm registry, the library can be
consumed by running npm install, downloading or cloning the Git repository, or

18.5 Writing Multiplatform Libraries | 433

directly referencing the library in a web page using https://unpkg.com/<library-
name>. The library can be consumed across the multiple JavaScript library formats.

As an ES 2015 module:

import * as myLibrary from 'my-library';

myLibrary.squareIt(4);

As a CommonJS module:

const myLibrary = require('my-library');

myLibrary.squareIt(4);

As an AMD module:

require(['myLibrary'], function (myLibrary) {
 myLibrary.squareIt(4);
});

And using a script tag on a web page:

<!doctype html>
<html>
 <script src="https://unpkg.com/my-library"></script>
 <script>
 myLibrary.squareIt(4);
 </script>
</html>

Handling library dependencies
Oftentimes a library may contain subdependencies. With our current setup, all
dependencies will be packaged and bundled with the library itself. To limit the out‐
putted bundle and to ensure that library consumers are not installing multiple instan‐
ces of a subdependency, it may be best to treat them as a “peer dependency,” which
must also be installed or referenced on its own. To do so, add an externals property
to your webpack.config.js. In the instance below, moment is being used as a peer
dependency:

const path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 path: path.resolve(__dirname, 'dist'),
 filename: 'my-library.js',
 library: 'myLibrary',
 libraryTarget: 'umd',
 globalObject: 'this'
 },
 externals: {

434 | Chapter 18: Node Modules

 moment: {
 commonjs: 'moment',
 commonjs2: 'moment',
 amd: 'moment',
 root: 'moment',
 }
 }
};

With this configuration, moment will be treated as a global variable by our library.

18.6 Unit Testing Your Modules
Problem
You want to make sure your module is functioning correctly and ready to be used by
others.

Solution
Add unit tests as part of your production process.

Given the following module, named bbarray, and created in a file named index.js:
const util = require('util');

const bbarray = {
 concatArray: (str, array) => {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 }

 if (typeof str !== 'string') {
 return -1;
 }

 return array.map(element => {
 return `${str} ${element}`;
 });
 },
 splitArray: (str, array) => {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 }

 if (typeof str !== 'string') {
 return -1;
 }

 return array.map(element => {
 return element.substring(str.length + 1);

18.6 Unit Testing Your Modules | 435

 });
 }
};

module.exports = bbarray;

Using Jest, a JavaScript testing framework, the following unit test (created as index.js
and located in the project’s test subdirectory) should result in the successful pass of
six tests:

const bbarray = require('../index.js');

describe('concatArray()', () => {
 test('should return -1 when not using array', () => {
 expect(bbarray.concatArray(9, 'str')).toBe(-1);
 });

 test('should return -1 when not using string', () => {
 expect(bbarray.concatArray(9, ['test', 'two'])).toBe(-1);
 });

 test('should return an array with proper args', () => {
 expect(bbarray.concatArray('is', ['test', 'three'])).toStrictEqual([
 'is test',
 'is three'
]);
 });
});

describe('splitArray()', () => {
 test('should return -1 when not using array', () => {
 expect(bbarray.splitArray(9, 'str')).toBe(-1);
 });

 test('should return -1 when not using string', () => {
 expect(bbarray.splitArray(9, ['test', 'two'])).toBe(-1);
 });

 test('should return an array with proper args', () => {
 expect(bbarray.splitArray('is', ['is test', 'is three'])).toStrictEqual([
 'test',
 'three'
]);
 });
});

The result of the test is shown in Figure 18-2, run using npm test.

436 | Chapter 18: Node Modules

https://jestjs.io

Figure 18-2. Running unit tests based on Jest

Discussion
A unit test is a way that developers test their code to ensure it meets the specifications.
It involves testing functional behavior, and seeing what happens when you send bad
arguments—or no arguments at all. It’s called unit testing because it’s used with indi‐
vidual units of code, such as testing one module in a Node application, as compared
to testing the entire Node application. It becomes one part of integration testing,
where all the pieces are plugged together, before going to user acceptance testing: test‐
ing to ensure that the application does what users expect it to do (and that they gener‐
ally don’t hate it when they use it).

Unit testing is one of those development tasks that may seem like a pain when you
first start, but can soon become second nature. A good goal is to develop both tests
and code in parallel to one another. Many developers even practice test-driven devel‐
opment, where unit tests are written prior to the code itself.

In the solution, we use Jest, a sophisticated testing framework. The module is simple,
so we’re not using some of the more complex Jest testing mechanisms. However, this
provides an example of the building blocks of writing unit tests.

To install Jest, use the following:

$ npm install jest --save-dev

I’m using the --save-dev flag, because I’m installing Jest into the module’s develop‐
ment dependencies. In addition, I modify the module’s package.json file to add the
following section:

18.6 Unit Testing Your Modules | 437

 "scripts": {
 "test": "jest"
 },

The test script is saved as index.js in the tests subdirectory under the project. Jest
automatically looks for files in a tests directory or files following the filename.test.js
naming pattern. The following command runs the test:

$ npm test

The Jest unit tests makes use of expect matchers to test for the returned values.

438 | Chapter 18: Node Modules

https://oreil.ly/E7RnY

CHAPTER 19

Managing Node

The Node ecosystem reaches far and wide, from running scripts on a laptop to man‐
aging data on remote servers. The diversity of Node’s core functionality, combined
with the thousands of user-created modules, provides a rich environment for accom‐
plishing nearly any programming task. However, this diversity can also present a
challenge in navigating the options for accomplishing common tasks. This chapter
demonstrates some of the common issues that Node developers may face.

19.1 Using Environment Variables
Problem
Your Node application requires different values in different environments, such as on
your local machine and in production.

Solution
Use environment variables to set and read values in different environments. The core
Node module process contains an env property, which will provide your application
with access to any environment variables. In the following example, I am reading an
environment variable named NODE_ENV:

process.env.NODE_ENV

To set an environment variable, you can specify a value ahead of running the node
command to start the application. The following will set the NODE_ENV value to devel
opment and run the index.js script:

$ NODE_ENV=development node index.js

439

When working with projects with multiple environment variables, it is typically pref‐
erable to store those values locally in an .env file. Doing so in Node requires the
dotenv package, which can be instaled from npm:

$ npm install dotenv --save

Now in your application code, require the module and initiate its configuration:

require('dotenv').config();

With this module, environment variables can be read from a .env file, rather than
being passed as arguments to the command line. The .env file can consist of a number
of environment variable values:

PORT=8080
DB_URI=mongodb://mongodb0.example.com:27017
KEY=12345

Discussion
The process object does not need to be imported as a module with a require state‐
ment as it is available globally to all Node programs. It is used to provide information
about the current operating Node process, including the environment.

When reading an environment variable, it is often useful to use an || operator to
specify a default value as a fallback for when a value is not provided in the environ‐
ment. The following example will set the port variable to a value specified by a PORT
environment variable, or 8080 if no environment variable value is provided:

const port = process.env.PORT || 8080;

The dotenv package is an npm module that allows you to load environment variables
from a .env file. The usage is as straightforward as installing the package, combining
the require statement, and initiating the configuration:

require('dotenv').config();

Once initiated and configured, the module will automatically read the values from a
file named .env in the root of the project’s directory. It is also possible to configure the
package to read the file from an alternate location:

require('dotenv').config({ path: '/alternate/file/path/.env' })

If you choose to use ECMAScript modules with your Node project, first import the
package as module and then separately initiate the configuration:

import dotenv from 'dotenv'

dotenv.config()

When working in a production environment, it is common for the host to set the
environment variables. In that instance, you will not want to load the values from

440 | Chapter 19: Managing Node

an .env file. A useful pattern is to only load the dotenv module in nonproduction
environments:

if (process.env.NODE_ENV !== 'production') {
 require('dotenv').config();
}

Never commit the .env file, and be sure to add it to your version
control ignore list. These files are often used to store secure envi‐
ronment information, such as passwords or keys that should not be
shared. A best practice is to instead include a file named .env.exam‐
ple, which contains blank or dummy values.

19.2 Managing Callback Hell
Problem
You want to do something with asynchronous operations, such as read the contents
of a file and append it to a new file. Node provides this functionality using callback
functions, but to use it asynchronously, you end up with nested code (noted by
indentations) that makes the application unreadable and difficult to maintain.

Solution
Since Node version 8.0, we can use the async/await syntax along with the promisfy
utility:

const fs = require('fs');
const { promisify } = require('util');

const readFile = promisify(fs.readFile);
const appendFile = promisify(fs.appendFile);

const readAppend = async (originalFile, secondaryFile) => {
 const fileData = await readFile(originalFile);
 await appendFile(secondaryFile, fileData);
 console.log(
 `The data from ${originalFile} was appended to ${secondaryFile}!`
);
};

readAppend('./files/main.txt', './files/secondary.txt');

Node’s built-in promisify utility is incredibly useful as it enables any function that
follows the common error, values, callback style to return a promise. In Node 10+,
filesystem operations can be used as promises natively by using the fs.promises API:

19.2 Managing Callback Hell | 441

const fsp = require('fs').promises;

const readAppend = async (originalFile, secondaryFile) => {
 const fileData = await fsp.readFile(originalFile);
 await fsp.appendFile(secondaryFile, fileData);
 console.log(
 `The data from ${originalFile} was appended to ${secondaryFile}!`
);
};

readAppend('./files/main.txt', './files/tertiary.txt');

Discussion
By design, Node code is asynchronous, or nonblocking, meaning that while the code
is waiting on an operation, it can do something else. Oftentimes, however, we require
that these operations happen in a specific order. Traditionally in Node, this was
accomplished using callback functions. A callback function is a function that is called
after the execution of a task. In the following example, the code reads a file and then
performs an operation within the callback function:

fs.readFile(file, (error, data) => {
 if (error) {
 // handle error
 } else {
 // execute an operation after the file is read
 }
});

The async/await syntax allows you to write asynchronous code in a synchronous
fashion. We cover async/await in detail in Chapter 10:

const waitOne = () => {
 return new Promise(resolve => {
 setTimeout(() => {
 console.log('It has been one second');
 resolve();
 }, 1000);
 });
};

const callWait = async () => {
 await waitOne();
};

callWait();

When working with a function that follows the common error, values, callback style,
we can use Node’s built-in promisify utility to return a promise:

const fs = require('fs');
const { promisify } = require('util');

442 | Chapter 19: Managing Node

const writeFile = promisify(fs.writeFile);

When using async/await, errors are handled within try/catch blocks:

try {
 await writeFile(file, buf);
} catch (error) {
 console.log(error);
 throw error;
}

As an example of how you can refactor existing code, the following example uses call‐
backs to write two lines to a file, read them back, and output the contents to the
console:

const fs = require('fs');

const callbackHell = file => {
 const buf = Buffer.from('Callback hell first string\n');
 const buf2 = Buffer.from('Callback hell second string\n');

 // write or append the contents of the first buffer
 fs.writeFile(file, buf, err => {
 if (err) {
 console.log(err);
 throw err;
 }
 // append the contents of the second buffer
 fs.appendFile(file, buf2, err2 => {
 if (err2) {
 console.log(err2);
 throw err2;
 }
 // log the contents of the file
 fs.readFile(file, 'utf-8', (err3, data) => {
 if (err3) {
 console.log(err3);
 throw err3;
 }
 console.log(data);
 });
 });
 });
};

callbackHell('./files/callback.txt');

This is a relatively straightforward operation, but notice how quickly the indentation
increases for the nested callbacks. We can clean it up using async/await:

const fs = require('fs');
const { promisify } = require('util');

19.2 Managing Callback Hell | 443

const writeFile = promisify(fs.writeFile);
const appendFile = promisify(fs.appendFile);
const readFile = promisify(fs.readFile);

const fileWriteRead2 = async file => {
 const buf = Buffer.from('The first string\n');
 const buf2 = Buffer.from('The second string\n');

 // write or append the contents of the first buffer
 try {
 await writeFile(file, buf);
 } catch (error) {
 console.log(error);
 throw error;
 }

 // append the contents of the second buffer
 try {
 await appendFile(file, buf2);
 } catch (error) {
 console.log(error);
 throw error;
 }

 // log the contents of the file
 console.log(await readFile(file, 'utf8'));
};

fileWriteRead2('./files/async.txt');

This is much easier to understand without sacrificing the asynchronous code
execution.

In each of the examples, I’ve used filesystem operations, but the async/await syntax
is incredibly useful for a wide range of use cases in Node, including database interac‐
tions, fetching remote resources, hashing strings, and much more.

19.3 Accessing Command-Line Functionality Within a
Node Application
Problem
You want to access a command-line utility, such as ImageMagick, from within a Node
application.

444 | Chapter 19: Managing Node

Solution
Use Node’s child_process module. For example, if you want to use ImageMagick’s
identify, and then print out the data to the console, use the following:

const { spawn } = require('child_process');

const identify = spawn('identify', ['-verbose', 'osprey.jpg']);

identify.stdout.on('data', data => {
 console.log(`stdout: ${data}`);
});

identify.stderr.on('data', data => {
 console.log(`stderr: ${data}`);
});

identify.on('exit', code => {
 console.log(`child process exited with code ${code}`);
});

Discussion
The child_process module provides four methods to run command-line operations
and process returned data:

spawn(command, [args], [options])

This launches a given process, with optional command-line arguments, and an
options object specifying additional information, such as cwd to change direc‐
tory and uid to find the user ID of the process.

exec(command, [options], callback)

This runs a command in a shell and buffers the result.

execFile(file, [args],[options],[callback])

This is like exec() but executes the file directly.

fork(modulePath, [args],[options])

This is a special case of spawn(), and spawns Node processes, returning an object
that has a communication channel built in. It also requires a separate instance of
V8 with each use, so use sparingly.

The child_process methods have three streams associated with them: stdin,
stdout, and stderr. The spawn() method is the most widely used of the child_pro
cess methods, and the one used in the solution. From the solution top, the command
given is the ImageMagick identify command-line application, which can return a
wealth of information about an image. In the args array, the code passes in the
--verbose flag and the name of the image file. When the data event happens with

19.3 Accessing Command-Line Functionality Within a Node Application | 445

the child_process.stdout stream, the application prints it to the console. The data
is a buffer that uses toString() implicitly when concatenated with another string. If
an error happens, it’s also printed out to the console. A third event handler just com‐
municates that the child process is exiting.

If you want to process the result as an array, modify the input event handler:

identify.stdout.on('data', (data) => {
 console.log(data.toString().split("\n"));
});

Now the data is processed into an array of strings, split on the new line within the
identify output.

Instead of using a child process, if you have either GraphicsMagick
or ImageMagick installed, you can use the gm Node module for
accessing the imaging capability.

Extra: Using Child Processes with Windows
The solution demonstrates how to use child processes in a macOS or Linux environ‐
ment. There are similarities and differences between using child processes in Linux/
Unix, and using them in Windows.

In Windows, you can’t explicitly give a command with a child process; you have to
invoke the Windows cmd.exe executable and have it perform the process. In addition,
the first flag to the command is /c, which tells cmd.exe to process the command and
then terminate.

Borrowing an example from Learning Node by Shelley Powers (O’Reilly), in the fol‐
lowing code, the cmd.exe command is used to get a directory listing, using the Win‐
dows dir command:

const { spawn } = require('child_process');

const cmd = spawn('cmd', ['/c', 'dir\n']);

cmd.stdout.on('data', data => {
 console.log(`stdout: ${data}`);
});

cmd.stderr.on('data', data => {
 console.log(`stderr: ${data}`);
});

cmd.on('exit', code => {

446 | Chapter 19: Managing Node

http://aheckmann.github.io/gm
http://shop.oreilly.com/product/0636920024606.do

 console.log(`child process exited with code ${code}`);
});

19.4 Passing Command-Line Arguments
Problem
You would like to be able to pass command-line arguments and read their values
within your Node application.

Solution
For simple use cases, utilize the process.argv property, which returns an array con‐
taining any command-line arguments passed to the program when it is run. Since
these values are an array, we can iterate over them to read (or in this example, print)
their values:

process.argv.forEach((value, index) => {
 console.log(`${index}: ${value}`);
});

Now if I run my script, I can pass it command-line arguments, which will be printed
to the console:

$ node index.js --name=Adam --food=pizza

Which will print the following:

0: /usr/local/bin/node
1: /Users/ascott/Projects/command-line-args/index.js
2: --name=Adam
3: --food=pizza

Node’s process is a global object that allows a script to access information about the
current Node.js process. The argv property or the process object contains the values
of the arguments. The first index is always the path to the environment’s Node exe‐
cutable, the second value of the array is always the path to the script itself, and the
remaining items are the arguments in the order that they were passed to the script.

Discussion
Accessing arguments directly from Node’s process object provides a straightforward
way to retrieve command-line properties. However, parsing and making use of these
values can prove tricky. Thankfully, utilizing the popular module Yargs makes work‐
ing with command-line arguments a more streamlined task:

const yargs = require('yargs/yargs');
const { hideBin } = require('yargs/helpers');

19.4 Passing Command-Line Arguments | 447

https://oreil.ly/Ue9LF

const {argv} = yargs(hideBin(process.argv));

console.log(argv);

Now if I rerun my script, passing it command-line arguments, the values will be
printed to the console:

$ node index.js --name=Adam --food=pizza
logs the following:
{ _: [], name: 'Adam', food: 'pizza', '$0': 'yargs/index.js' }

By using the Yargs module, you can easily read specific values and act on them in
your script:

const yargs = require('yargs/yargs');
const { hideBin } = require('yargs/helpers');

const {argv} = yargs(hideBin(process.argv));

if (argv.food === 'pizza') {
 console.log('mmm');
}

By using command-line arguments, you can utilize information passed at runtime
and react accordingly. Yargs can handle a lot more than reading input values, such as
configuring help commands, enabling Boolean input values, limiting values to prede‐
fined choices, and much more. I recommend consulting the Yargs documentation for
additional resources and documentation.

19.5 Creating a Command-Line Utility with Help
from Commander
Problem
You want to turn your Node module into a Linux command-line utility, including
support for command-line options/arguments.

Solution
To convert your Node module to a Linux command-line utility, add the following line
as the first line of the module:

#!/usr/bin/env node

To provide for command-line arguments/options, including the ever-important --
help, make use of the Commander module:

#!/usr/bin/env node
const program = require('commander');

448 | Chapter 19: Managing Node

https://github.com/yargs/yargs#documentation

program
 .version('0.0.1')
 .option('-n, --number <value>', 'A number to square')
 .parse(process.argv);

const square = Math.pow(program.number, 2);

console.log(`The square of ${program.number} is ${square}`);

In Recipe 19.4 we discuss using the Yargs module, which simplifies
the use of handling command-line arguments. Yargs is a great
option for handling command-line argument inputs, while
Commander is a fully featured module for building command-
line-driven applications. We recommend taking a look at both
options and choosing the one that is right for your use case.

Discussion
To convert a Node module to a command-line utility, first add the following line to
the module:

#!/usr/bin/env node

Change the module file’s mode to an executable, using CHMOD:

$ chmod a+x square.js

To run the above example, I would type the following in the terminal, from the
project folder:

$./square.js -n 4

The command-line utility I created simply logs the square of a number. Let’s look at a
more complete example, which would create an image capture of a website using the
Puppeteer library. In a file named snapshot.js:

#!/usr/bin/env node
const program = require('commander');
const puppeteer = require('puppeteer');

program
 .version('0.0.1')
 .option('-s, --source [website]', 'Source website')
 .option('-f, --file [filename]', 'Filename')
 .parse(process.argv);

(async () => {
 console.log('capturing screenshot...');
 const browser = await puppeteer.launch();
 const page = await browser.newPage();
 await page.goto(program.source);
 await page.screenshot({ path: program.file });

19.5 Creating a Command-Line Utility with Help from Commander | 449

https://github.com/puppeteer/puppeteer

 await browser.close();
 console.log(`captured screenshot at ${program.file}`);
})();

We can then update the package.json file so that our command can be named and
used directly (without the .js extension):

"main": "snapshot.js",
"preferGlobal": true,
"bin": {
 "snapshot": "snapshot.js"
},

Now if we run npm link, we can use the command directly on our local machine,
without referencing the file directly:

$ snapshot -s http://oreilly.com -f test.png

Or you can use the long option, consisting of a double-dash (--) followed by a com‐
plete word:

$ snapshot --source http://oreilly.com --file test.png

And when you run the utility with either -h or --help, you get:

 Usage: snapshot [options]

 Options:

 -h, --help output usage information
 -V, --version output the version number
 -s, --source [website] Source website
 -f, --file [filename] Filename

Running the following returns the version:

$ snapshot -V

Commander generates all of this automatically, so we can focus on our utility’s pri‐
mary functionality.

Publishing a command-line utility to the npm registry is the same as any other
module:

$ npm publish

19.6 Keeping a Node Instance Up and Running
Problem
You’re in a production environment and want to start up a Node application, keep it
running forever, and reload it without downtime.

450 | Chapter 19: Managing Node

Solution
Use the pm2 module to ensure the application is restarted if it’s ever shut down:

$ pm2 start index.js

Discussion
pm2 is a CLI tool that can be used to not only start a Node application, but to ensure
the application is restarted if, for some reason, it’s shut down.

Install pm2 using npm:

$ sudo npm install pm2 -g

Then start your Node application, making use of pm2:

$ pm2 start index.js

The start action starts the Node application as a Unix daemon or background pro‐
cess. The utility can also make use of a number of options, which can all be listed with
the pm2 --help command. A few that are particularly useful:

-l

Create a log file

-o

Log stdout from the script to the specified output file

-e

Log stderr from the script to the specified error file

-n

Name the application

--watch

Watch for changes and restart the application

To start an application that includes these logs, use the flags and specify output files:

$ pm2 start -l forever.log -o out.log -e err.log -n app_name index.js --watch

Some other helpful pm2 actions are:

stop

Stop the daemon script

restart

Restart the daemon script

delete

Delete the daemon script

19.6 Keeping a Node Instance Up and Running | 451

describe

Retrieve the details of a specific application

list

List all running scripts

monitor

Monitor logs, metrics, and application information

It can be very helpful to add an npm script to a project’s package.json file to run the
pm2 command:

"scripts": {
 "start": "pm2 start index.js",
}

With this addition, running npm start from the project’s root directory will start the
application using pm2. As an added bonus, this is often the default behavior of many
Node application cloud hosting platforms.

19.7 Monitoring Application Changes and Restarting
During Local Development
Problems
Development can get rather active, and it can be difficult to remember or time-
consuming to restart an application each time the code has changed.

Solution
Use the nodemon utility to watch your source code and restart your application when
the code changes.

To use, first install nodemon:

$ npm install -g nodemon

Instead of starting the application with node, use nodemon instead:

$ nodemon index.js

Discussion
The nodemon utility monitors the files within the directory where it was started. If any
of the files change, the Node application is automatically restarted. This is a handy
way of making sure your running Node application reflects the most recent code
changes.

452 | Chapter 19: Managing Node

Generally, nodemon is not a tool you want to use in a production system. Instead, use
a process manager such as pm2, as discussed in Recipe 19.6.

If the application accepts values when started, you can provide these on the com‐
mand line, just as with Node, but precede them with the double dashes (--) flag,
which signals to nodemon to ignore anything that follows and pass it to the
application:

$ nodemon index.js -- -param1 -param2

When started, you should get feedback similar to the following:

[nodemon] 2.0.2
[nodemon] to restart at any time, enter `rs`
[nodemon] watching dir(s): *.*
[nodemon] watching extensions: js,mjs,json
[nodemon] starting `node index.js`
Listening on port 8124

If the code changes, you’ll see something similar to the following:

[nodemon] restarting due to changes...
[nodemon] starting `node index.js`
Server running on 8124/

If you want to manually restart the application, type rs into the terminal where node‐
mon is running. You can also use a configuration file or package.json configuration
with the utility, monitor only select files or subdirectories, and even use it to run non-
Node applications.

Here is a sample package.json configuration, which will instruct nodemon to use ver
bose mode and ignore specific directories:

{
 "nodemonConfig": {
 "verbose": true,
 "ignore": ["__tests__/*", "docs/*"],
 }
}

19.8 Scheduling Repeat Tasks
Problem
You have a task that needs to be run repeatedly at specific intervals.

Solution
Use node-cron, which enables you to schedule tasks in Node using the GNU crontab
syntax.

19.8 Scheduling Repeat Tasks | 453

https://oreil.ly/dYQHv

The following will log to the console every minute:

const cron = require('node-cron');

cron.schedule('* * * * *', () => {
 console.log('Log to the console every minute');
});

Discussion
To use the node-cron module, first install it with npm:

$ npm install node-cron

You can then use the schedule method along with the crontab syntax to create a
scheduled task.

The crontab syntax can be a bit confusing if you have never encountered it before. In
the above example, I’ve used an asterisk for each field, which stands for “first-last.”
We can replace the asterisks with the following values (in order):

• second (optional): 0–59
• minute: 0–59
• hour: 0–23
• day of month: 0–31
• month: 0–12 (or three-letter names)
• day of week: 0–7 (or three-letter names, 0 or 7 is Sunday)

The following will run at five minutes after midnight on the first day of every month:

const cron = require('node-cron');

cron.schedule('5 0 1 * *', () => {
 console.log('It is the first of the month!');
});

We can also include ranges. The following will run a job at midnight, on each week‐
day from June through September:

const cron = require('node-cron');

cron.schedule('0 0 * 6-9 1-5', () => {
 console.log('Summer workdays');
});

node-cron accepts two options: scheduled and timezone. The following will run a
job at midnight in the same time zone as New York City:

454 | Chapter 19: Managing Node

var cron = require('node-cron');

cron.schedule('0 0 * * *', () => {
 console.log('Running a job at midnight ');
}, {
 scheduled: true,
 timezone: "America/New_York"
});

scheduled is a Boolean value that defaults to true. Cron jobs will not run if the value
is set to false. timezone allows you to set a specific time zone for the schedule. For
all the time zone names, see the Moment.js time zone page.

19.9 Testing the Performance and Capability of Your
WebSockets Application
Problem
You have an application that sends updated information on a frequent basis to every
connected client, and you’re concerned about performance and how the application
will handle the load.

Solution
You’ll want to perform both speed (performance) tests and load testing. See the discus‐
sion for details.

Discussion
Thanks to Node and WebSockets and other bidirectional communication techniques,
we no longer have to use timers in web pages to hit servers for new data. The server
itself can push the data to all the connected clients whenever the data is fresh. The
animated, scrolling timeline in Example 17-4 demonstrates this type of application.

The question then becomes: yes, it’s cool, but what does the coolness cost? Is my
server going to crash and burn once 10 (100/1,000/10,000) clients connect? Will all
the clients get the same response? The only answer to these questions comes from
two types of tests:

• Speed or performance testing, which tests how fast the page loads, especially
when the server is under stress

• Load testing that emulates many concurrent clients accessing the page at once

There are services that provide both types of testing, and if you’re a large commercial
operation and the reliability and performance of your application are critical, I

19.9 Testing the Performance and Capability of Your WebSockets Application | 455

https://oreil.ly/VhAkl

definitely recommend taking advantage of them. Some, like Load Impact, even pro‐
vide a decent trial of its product before committing. There are also tools you can use
that will hit a page concurrently and then print out the load responses for each (or
even graph it). Selenium is a very popular tool for performance testing.

The Node world also provides tools we can install easily and quickly with npm. They
may not have exactly the same polish as the commercial tools, but they’re certainly a
lot cheaper. One tool to try is loadtest, which is an easier-to-run variation of Apa‐
cheBench (aka ab). You need to install it globally:

$ npm install -g loadtest

And then you run it from the command line. The following runs 200 requests per
second (rps), with a concurrency of 10:

$ loadtest -c 10 --rps 200 http://mysite.com/

There are several other options, and ApacheBench is also an alternative that can be
good for performance testing. However, the tests don’t test the WebSockets connec‐
tion because the request to the WebSockets server is contained in JavaScript that’s
never processed.

Another option is Thor, which is a load tester that’s run directly against the Web‐
Socket server:

$ npm install -g thor
$ thor --amount 5000 ws://shelleystoybox.com:8001

This is an effective way of hammering (ahem) the WebSockets server with connec‐
tions, but we’re still not getting the back and forth communication to really test the
entire application, front and back. The connections are made, and then dropped as
quickly, so it’s not really testing the communication as it exists if you and I were to
access the application from our browsers. However, used with other tests that actually
access the client page and process the WebSockets connection, they can help us deter‐
mine if performance is going to be an issue with that many demands for connections
(note: the app held up).

456 | Chapter 19: Managing Node

http://loadimpact.com
http://seleniumhq.org

CHAPTER 20

Remote Data

Data surrounds us. We create and interact with data throughout our daily lives, often
in interesting and unexpected ways. When building Node applications, we often
interact with data. At times, that data may be something that we’ve created for the
application, or data that the user has entered into our system. However, it’s also com‐
mon to need to interact with data that comes from outside of our applications. This
chapter covers best practices and techniques for working with remote data in Node
applications.

20.1 Fetching Remote Data
Problem
You want to make a request to a remote server within your Node application.

Solution
Use node-fetch, one of the most popular and widely used modules, which brings the
browser’s window.fetch to Node. It’s installed with npm:

$ npm install node-fetch

and can be used as simply as:

const fetch = require('node-fetch');

fetch('https://oreilly.com')
 .then(res => res.text())
 .then(body => console.log(body));

457

Discussion
node-fetch provides an API that closely mirrors the browser’s window.fetch, allow‐
ing our Node programs to access remote resources. Like window.fetch, it offers sup‐
port for the HTTP methods of GET, POST, DELETE, and PUT. In the case of GET, if
the response indicates success (a status code of 200), you can then process the
returned data (formatted as HTML in this instance) however you would like.

You can make a request for a JSON resource:

fetch('https://swapi.dev/api/people/1')
 .then(res => res.json())
 .then(json => console.log(json));

It’s also possible to use the async/await syntax, including a try/catch block for error
handling:

(async () => {
 try {
 const response = await fetch('https://swapi.dev/api/people/3');
 const json = await response.json();
 console.log(json);
 } catch (error) {
 console.log(error);
 }
})();

You can also stream a result to a file using the filesystem module:

const fs = require('fs');
const fetch = require('node-fetch');

fetch('https://example.com/image.png')
 .then(res => {
 const dest = fs.createWriteStream('image.png');
 res.body.pipe(dest);
 });

node-fetch can also handle POST, DELETE, and PUT methods, allowing you to send
data to a server. In the following example, we make a POST request:

// example body for the request
const body = {
 id: 1,
 title: "Example"
};

fetch('https://example.com/post', {
 method: 'post',
 body: JSON.stringify(body),
 headers: { 'Content-Type': 'application/json' },
 })

458 | Chapter 20: Remote Data

 .then(res => res.json())
 .then(json => console.log(json));

node-fetch is a common and useful library for fetching remote
data, but it is not the only one. Popular alternatives include Request
(which, though still popular, is no longer actively maintained), Got,
Axios, and Superagent.

20.2 Screen Scraping
Problem
You want to access specific content from a web resource from within your Node
application.

Solution
Use the node-fetch and Cheerio modules to screen scrape a website.

First install the required modules:

$ npm install node-fetch cheerio

To scrape the page, make use of node-fetch to retrieve the content and then query
the retrieved content with Cheerio:

const fetch = require('node-fetch');
const cheerio = require('cheerio');

fetch('https://example.com')
 .then(res => res.text())
 .then(body => {
 const $ = cheerio.load(body);
 $('h1').each((i, element) => {
 console.log(element.children[0].data);
 });
 });

Discussion
An interesting use of Node is to scrape a website or resource and then use other func‐
tionality to query for specific information within the returned material. A popular
module to use for querying is Cheerio, which is a tiny implementation of jQuery core
intended for use in the server. In the following example, a simple application is cre‐
ated to pull in all of the post titles on the O’Reilly Radar blog page. To select these
titles, we use Cheerio to find links (a) contained within h2 elements that are within
the main content. We then list the text of the link to a separate output:

20.2 Screen Scraping | 459

const fetch = require('node-fetch');
const cheerio = require('cheerio');

fetch('https://www.oreilly.com/radar/posts/')
 .then(res => res.text())
 .then(body => {
 const $ = cheerio.load(body);
 $('main h2 a').each((i, element) => {
 console.log(element.children[0].data);
 });
 });

After the successful request is made, the HTML returned is passed to Cheerio via the
load() method, and the result is assigned to a dollar sign variable ($), so we can
select elements in the result in a manner similar to the jQuery library.

The element pattern of main h2 a is then used to query for all matches, and the result
is processed using the each method, accessing the text for each heading. The output
to the console should be the titles of all the articles on the main page of the blog.

A common use case is to download data when an API is not provided. In the follow‐
ing example, we’re locating specific links on the page and piping the linked resource
to a local file. I’m also using the async/await syntax to demonstrate how it may be
used:

const path =
 'data-research/mortgage-performance-trends/mortgages-30-89-days-delinquent/';
const url = `https://www.consumerfinance.gov/${path}`;

(async () => {
 try {
 const response = await fetch(url);
 const body = await response.text();
 const $ = cheerio.load(body);
 $("a:contains('state')").each(async (i, element) => {
 const fetchFile = await fetch(element.attribs.href);
 const dest = fs.createWriteStream(`data-${i}.csv`);
 await fetchFile.body.pipe(dest);
 });
 } catch (error) {
 console.log(error);
 }
})();

We first fetch the page at the specific URL, which in this instance is a United States
government website containing several linked CSV files. We then use Cheerio to
locate all links on the page that contain the word “state.” Finally, we fetch the linked-
to file and pipe it to a local file.

460 | Chapter 20: Remote Data

Screen scraping can be a useful tool to have in your toolbox, but
proceed with caution. Before scraping a website for use in a pro‐
duction application, be sure to consult its Terms of Service (ToS) or
seek out permission from the site owner. Also be careful not to
accidentally perform a denial-of-service attack (DDoS) by over‐
loading the host’s servers.

20.3 Accessing JSON-Formatted Data via a RESTful API
Problem
You want to access data formatted as JSON from a service through its API.

Solution
In a Node application, the simplest technique for accessing JSON-formatted data
from an API is to use an HTTP request library.

In the following example, I’ll again use node-fetch, much like in Recipe 20.1:

const fetch = require('node-fetch');

(async () => {
 try {
 const response = await fetch('https://swapi.dev/api/people/1/');
 const json = await response.json();
 console.log(json);
 } catch (error) {
 console.log(error);
 }
})();

The npm module got is a popular alternative to node-fetch:

const got = require('got');

(async () => {
 try {
 const response = await got('https://swapi.dev/api/people/2/');
 console.log(JSON.parse(response.body));
 } catch (error) {
 console.log(error.response.body);
 }
})();

20.3 Accessing JSON-Formatted Data via a RESTful API | 461

Discussion
A RESTful API is one that is stateless, meaning that each client request contains
everything necessary for the server to respond (doesn’t imply any stored state
between requests); it uses HTTP methods explicitly. It supports a directory-like URI
structure, and transfers data formatted a certain way (typically XML or JSON). The
HTTP methods are:

• GET: To get resource data
• PUT: To update a resource
• DELETE: To delete a resource
• POST: To create a resource

Because we’re focusing on getting data, the only method of interest at this time is
GET. And because we’re focused on JSON, we’re using client methods that can access
JSON-formatted data and convert the data into objects we can manipulate in our
JavaScript applications.

Let’s look at another example.

The Open Exchange Rate provides an API that we can use to get current exchange
rates, name-to-acronym for the different types of currencies, and the exchange rates
for a specific date. It has a Forever Free plan that provides limited access to the API
without cost.

It’s possible to make two queries of the system (for current currency rate and name-
to-acronyms), and when both queries finish, to get the acronyms as keys, and use
these to look up the long name and rate in the results, printing the pairs out to the
console:

const fetch = require('node-fetch');
require('dotenv').config();

const id = process.env.APP_ID;

(async () => {
 try {
 const moneyAPI1 = await fetch(
 `https://openexchangerates.org/api/latest.json?app_id=${id}`
);
 const moneyAPI2 = await fetch(
 `http://openexchangerates.org/api/currencies.json?app_id=${id}`
);

 const latest = await moneyAPI1.json();
 const names = await moneyAPI2.json();
 const keys = Object.keys(latest.rates);

462 | Chapter 20: Remote Data

https://openexchangerates.org
https://oreil.ly/TjhFo

 keys.forEach((value, index) => {
 const rate = latest.rates[keys[index]];
 const name = names[keys[index]];
 console.log(`${name} ${rate}`);
 });
 } catch (error) {
 console.log(error);
 }
})();

Note that the id value will need to be replaced with your unique
ID, assigned by the API provider when you create an account. In
the example, I’ve used the dotenv module to load the stored value
from a .env file.

The base currency is “USD” or the US dollar, and a here’s a sampling of the results:

"Malawian Kwacha 394.899498"
"Mexican Peso 13.15711"
"Malaysian Ringgit 3.194393"
"Mozambican Metical 30.3662"
"Namibian Dollar 10.64314"
"Nigerian Naira 162.163699"
"Nicaraguan Córdoba 26.03978"
"Norwegian Krone 6.186976"
"Nepalese Rupee 98.07189"
"New Zealand Dollar 1.185493"

In the code snippet, I use async/await to make the queries, and then process the
results when both queries are finished. In a production system, we’d most likely cache
the results for however long our plan allows (hourly for the free API access).

See Also
The examples didn’t need to escape the values used as parameters in the API requests,
but if you do need to escape values, you can use Node’s built-in query

string.escape() method.

20.3 Accessing JSON-Formatted Data via a RESTful API | 463

CHAPTER 21

Building Web Applications with Express

Express is a lightweight web framework that has been the long-standing leader in web
application development in Node. Similar to Ruby’s Sinatra and Python’s Flask, the
Express framework by itself is very minimal, but can be extended to build any type of
web application. Express is also the backbone of batteries included in web application
frameworks, such as Keystone.js, Sails, and Vulcan.js. If you are doing web applica‐
tion development in Node, you are likely to encounter Express. This chapter focuses
on a handful of basic recipes for working with Express, which can be extended to
build out all sorts of web applications.

21.1 Using Express to Respond to Requests
Problem
Your Node application needs to respond to HTTP requests.

Solution
Install the Express package:

$ npm install express

To set up Express, we require the module, call the module, and specify a port for con‐
nections in a file named index.js:

const express = require('express');

const app = express();
const port = process.env.PORT || '3000';

app.listen(port, () => console.log(`Listening on port ${port}`));

465

https://expressjs.com
https://keystonejs.com
https://sailsjs.com
http://vulcanjs.org

To respond to a request, specify a route and the response using Express’s .get
method:

const express = require('express');

const app = express();
const port = process.env.PORT || '3000';

app.get('/', (req, res) => res.send('Hello World'));

app.listen(port, () => console.log(`Listening on port ${port}`));

To serve static files, we can specify a directory with the express.static middleware

const express = require('express');

const app = express();
const port = process.env.PORT || '3000';

// middleware for static files
// will serve static files from the 'files' directory
app.use(express.static('files'));

app.listen(port, () => console.log(`Listening on port ${port}`));

To respond with HTML generated from a template, first install the templating engine:

$ npm install pug --save

Next, in the index.js file, set the view engine and specify the route that will respond
with the template content:

app.set('view engine', 'pug')

app.get('/template', (req, res) => {
 res.render('template');
});

And then create a template file in the views subdirectory of the project with a new file.
The template filename should match the name specified in res.render. In views/
template.pug:

html
 head
 title="Using Express"
 body
 h1="Hello World"

Now requests to http://localhost:3000/template will return the template content as
HTML.

466 | Chapter 21: Building Web Applications with Express

Discussion
Express is a minimalist, but highly configurable framework for responding to HTTP
requests and building out web applications. In the example, we set the port to pro
cess.env.PORT or port 3000. In development, we can then specify a new port using
an environment variable, such as:

$ PORT=7777 node index.js

or by using a .env file paired with the dotenv Node module. When deploying the
application, the application hosting platform may require a specific port number or
allow us to configure the port number ourselves.

With the Express get method, the application receives a request to a specific URI and
then responds. In our example, when the application receives a request to the root
URI (/), we respond with the text “Hello World”:

app.get('/', (req, res) => res.send('Hello World'));

These responses can also be HTML, templates rendered to HTML, static files, and
formatted data (such as JSON or XML).

Due to its minimal nature, Express itself contains minimal functionality, but can be
extended using middleware. In Express, middleware functions have access to the
request and response objects. Application-level middleware is bound to an instance
of the app object through app.use(MIDDLEWARE). In the example, we’re making use of
the built-in static files middleware:

app.use(express.static('files'));

Middleware packages can be used to extend Express’s functionality in many ways.
The helmet middleware package can be used to improve the Express security
defaults:

const express = require('express');
const helmet = require('helmet');

const app = express();

app.use(helmet());

Templating engines simplify the process of writing HTML and allow you to pass data
from your application to the page.

Here I am passing the data from the userData object to the template found at views/
user.pug, which will be accessible at the /user route:

// a user object of data to send to the template
const userData = {
 name: 'Adam',
 email: 'adam@jseverywhere.io',

21.1 Using Express to Respond to Requests | 467

 avatar: 'https://s.gravatar.com/avatar/33aab819d1ffa11fc4b31a4eebaf0c5a?s=80'
};

// render the template with user data
app.get('/user', (req, res) => {
 res.render('user', { userData });
});

Then in our template, we can make use of the data:

html
 head
 title User Page
 body
 h1 #{userData.name} Profile
 ul
 li
 image(src=userData.avatar)
 li #{userData.name}
 li #{userData.email}

The Pug templating engine is maintained by the Express core team and is a popular
choice for Express applications, but its whitespace-driven syntax is not for everyone.
EJS is an excellent alternative that offers a more HTML-like syntax. Here’s how the
above example would look using EJS.

First, specify to install the ejs package:

$ npm install ejs

Then set EJS as the view engine in your Express application:

app.set('view engine', 'ejs');

And in views/user.ejs:
<!DOCTYPE html>
<html lang="en">
 <head>
 <title>User Page</title>
 </head>
 <body>
 <h1><%= userData.name %> Profile</h1>

 <img src=<%= userData.avatar %> />
 <%= userData.name %>
 <%= userData.email %>

 </body>
</html>

468 | Chapter 21: Building Web Applications with Express

https://ejs.co

21.2 Using the Express-Generator
Problem
You’re interested in using Express to manage your server-side data application, but
you don’t want to manage all of the setup yourself.

Solution
To kickstart your Express application, use the Express-Generator. This is a command-
line tool that generates the skeleton infrastructure of a typical Express application.

First, create a working directory where the tool can safely install a new application
subdirectory. Next, run the express-generator command with npx:

$ npx express-generator --pug --git

I’ve passed two options with the command: --pug will result in the use of the Pug
templating engine, while --git will generate a default .gitignore file in the project
directory. For the full list of options, run the generator with the -h option:

$ npx express-generator -h

The generator creates a new directory with several subdirectories, some basic files to
get you started, and a package.json file with all of the dependencies. To install the
dependencies, change to the newly created directory and type:

$ npm install

Once all of the dependencies are installed, run the application using the following:

$ npm start

You can now access the generated Express application, using your IP address or
domain and port 3000, the default Express port.

Discussion
Express provides a web application framework based on Node and with support for
multiple templating engines and CSS preprocessors. In the solution, the options I
chose for the example application are Pug as the template engine (the default) and the
default of plain CSS (no CSS preprocessor). Though building the application from
scratch enables a wider selection, Express supports only the following template
engines:

--ejs

Adds support for the EJS template engine

21.2 Using the Express-Generator | 469

--pug

Adds support for the Pug template engine

--hbs

Adds support for the Handlebar template engine

--hogan

Adds support for the Hogan.js template engine

Express also supports the following CSS preprocessors:

express --css sass

Support for Sass

express --css less

Support for Less

express --css stylus

Support for Stylus

express --css compass

Support for Compass

Not specifying any CSS preprocessor defaults to plain CSS.

Express also assumes that the project directory is empty. If it isn’t, force the Express
generator to generate the content by using the -f or --force option.

The newly generated subdirectory has the following structure (disregarding node
_modules):

app.js
package-lock.json
package.json
/bin
 www
/node_modules
/public
 /images
 /javascripts
 /stylesheets
 style.css
 style.styl
/routes
 index.js
 users.js
/views
 error.pug
 index.pug
 layout.pug

470 | Chapter 21: Building Web Applications with Express

The app.js file is the core of the Express application. It includes the references to the
necessary libraries:

var createError = require('http-errors');
var express = require('express');
var path = require('path');
var cookieParser = require('cookie-parser');
var logger = require('morgan');

var indexRouter = require('./routes/index');
var usersRouter = require('./routes/users');

Although the convention followed in this book is to use const and
let to define variables, at the time of writing, the Express generator
uses var.

It also creates the Express app with the following line:

var app = express():

Next, it establishes Pug as the view engine by defining the views and view engine
variables:

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'pug');

The middleware calls are loaded next with app.use(). Middleware is functionality
that sits between the raw request and the routing, processing specific types of
requests. The rule for the middleware is if a path is not given as the first parameter, it
defaults to a path of /, which means the middleware functions are loaded with the
default path. In the following generated code:

app.use(logger('dev'));
app.use(express.json());
app.use(express.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));

The first several middleware are loaded with every app request. Among the middle‐
ware includes support for development logging, as well as parsers for both JSON and
urlencoded bodies. It’s only when we get to the static entry that we see assignment to
specific paths: the static file request middleware are loaded when requests are made to
the public directory.

The routing is handled next:

app.use('/', indexRouter);
app.use('/users', usersRouter);

21.2 Using the Express-Generator | 471

The top-level web request (/) is directed to the routes module, while all user requests
(/users) get routed to the users module.

Read more about routing with Express in Recipe 21.3.

What follows is the error handling. First up is 404 error handling when a request is
made to a nonexistent web resource:

app.use(function(req, res, next) {
 next(createError(404));
});

Next comes the server error handling, for both production and development:

app.use(function(err, req, res, next) {
 // set locals, only providing error in development
 res.locals.message = err.message;
 res.locals.error = req.app.get('env') === 'development' ? err : {};

 // render the error page
 res.status(err.status || 500);
 res.render('error');
});

The last line of the generated file is the module.exports for the app:

module.exports = app;

In the routes subdirectory, the default routing is included in the routes/index.js file:

var express = require('express');
var router = express.Router();

/* GET home page. */
router.get('/', function(req, res, next) {
 res.render('index', { title: 'Express' });
});

module.exports = router;

What’s happening in the file is the Express router is used to route any HTTP GET
requests to / to a callback where the request response receives a view rendered for the
specific resource page. This is in contrast to what happens in the routes/users.js file,
where the response receives a text message rather than a view:

var express = require('express');
var router = express.Router();

472 | Chapter 21: Building Web Applications with Express

/* GET users listing. */
router.get('/', function(req, res, next) {
 res.send('respond with a resource');
});

module.exports = router;

What happens with the view rendering in the first request? There are three Pug files
in the views subdirectory: one for error handling, one defining the page layout, and
one, index.pug, that renders the page. The index.pug file contains:

extends layout

block content
 h1= title
 p Welcome to #{title}

It extends the layout.pug file, which contains:

doctype html
html
 head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content

The layout.pug file defines the overall structure of the page, regardless of content,
including a reference to an automatically generated CSS file. The block content set‐
ting defines where the location of the content is placed. The format for the content is
defined in index.js, in the equivalently named block content setting.

The Pug templating engine (formerly known as Jade) was popular‐
ized by Express and offers a minimalist take on templating that
makes use of whitespace in place of traditional HTML style tags.
This approach may not be for everyone, and the Pug alternatives
(Handlebars, Hogan.js, and EJS) all offer a more HTML-like
syntax.

The two Pug files define a basic web page with an h1 element assigned a title variable,
and a paragraph with a welcome message. Figure 21-1 shows the default page.

21.2 Using the Express-Generator | 473

Figure 21-1. The Express-generated web page

Figure 21-1 shows that the page isn’t especially fascinating, but it does represent how
the pieces are holding together: the application router routes the request to the
appropriate route module, which directs the response to the appropriate rendered
view, and the rendered view uses data passed to it to generate the web page. If you
make the following web request:

http://yourdomain.com:3000/users

you’ll see the plain text message, rather than the rendered view.

By default, Express is set up to run in development mode. To change the application to
production mode, you need to set an environment variable, NODE-ENV to “production.”
In a Linux or Unix environment, the following could be used:

$ export NODE_ENV=production

21.3 Routing
Problem
You want to route users to different resources in your application based on the
request.

Solution
Use routes in Express to send specific resources based on the request path and
parameters:

474 | Chapter 21: Building Web Applications with Express

// respond with different route paths
app.get('/', (req, res) => res.send('Hello World'));
app.get('/users', (req, res) => res.send('Hello users'));

// parameters
app.get('/users/:userId', (req, res) => {
 res.send(`Hello user ${req.params.userId}`);
});

Discussion
In Express, we can return a response to the user when they make an HTTP request.
In the above examples, I’m using get requests, but Express supports a number of
additional methods. The most common of these methods are:

• app.get: request data
• app.post: send data
• app.put: send or update data
• app.delete: delete data

app.post('/new', (req, res) => {
 res.send('POST request to the `new` route');
});

Often we may want to enable multiple HTTP methods to a specific route. We can
accomplish this by chaining them together:

app
 .route('/record')
 .get((req, res) => {
 res.send('Get a record');
 })
 .post((req, res) => {
 res.send('Add a record');
 })
 .put((req, res) => {
 res.send('Update a record');
 });

Often requests have parameters with specific values that we will make use of in our
application. We can specify these in the URL using a colon (:):

app.get('/users/:userId', (req, res) => {
 res.send(`Hello user ${req.params.userId}`);
});

In the above example, when a user visits a URL at /users/adam123, the browser will
send the response of Hello user adam123. While this is a simple example, we could

21.3 Routing | 475

also make use of the URL parameter to retrieve data from our database, passing the
information on to a template.

We’re also able to specify formats for the request parameters. In the following exam‐
ple, I make use of a regular expression to limit the noteId parameter to a six-digit
integer:

app.get('^/users/:userId/notes/:noteId([0-9]{6})', (req, res) => {
 res.send(`This is note ${req.params.noteId}`);
});

We are also able to use a regular expression to define an entire route:

app.get(/.*day$/, (req, res) => {
 res.send(`Every day feels like ${req.path}`);
});

The above example will route any request ending in day. For example, in local devel‐
opment a request to http://localhost:3000/Sunday will result in “Every day feels like
Sunday” being printed to the page.

21.4 Working with OAuth
Problem
You need access to a third-party API (such as GitHub, Facebook, or Twitter) in your
Node application, but it requires authorization. Specifically, it requires OAuth
authorization.

Solution
You’ll need to incorporate an OAuth client in your application. You’ll also need to
meet the OAuth requirements demanded by the resource provider.

See the discussion for details.

Discussion
OAuth is an authorization framework used with most popular social media and cloud
content applications. If you’ve ever gone to a site and it’s asked you to authorize access
to data from a third-party service, such as GitHub, you’ve participated in the OAuth
authorization flow.

There are two versions of OAuth, 1.0 and 2.0, which are not compatible with one
another. OAuth 1.0 was based on proprietary APIs developed by Flickr and Google,
was heavily web page focused, and didn’t gracefully transcend the barrier among web,
mobile, and service applications. When wanting to access resources in a mobile
phone app, the app would have the user log in to the app in a mobile browser and

476 | Chapter 21: Building Web Applications with Express

then copy access tokens to the app. Other criticisms of OAuth 1.0 is that the process
required that the authorization server be the same as the resource server, which
doesn’t scale when you’re talking about service providers such as Twitter, Facebook,
and Amazon.

OAuth 2.0 presents a simpler authorization process, and also provides different types
of authorization (different flows) for different circumstances. Some would say,
though, that it does so at the cost of security, as it doesn’t have the same demands for
encrypting hash tokens and request strings.

Most developers won’t have to create an OAuth 2.0 server, and doing so is way
beyond the scope of this book, much less this recipe. But it’s common for applications
to incorporate an OAuth client (1.0 or 2.0) for one service or another, so I’m going to
present different types of OAuth use. First, though, let’s discuss the differences
between authorization and authentication.

Authorization isn’t authentication
Authorization is saying, “I authorize this application to access my resources on your
server.” Authentication is the process of authenticating whether you are, indeed, the
person who owns this account and has control over these resources. An example
would be if I want to comment on an article at a newspaper’s online site. It will likely
ask me to log in via some service. If I pick my Facebook account to use as the login,
the news site will most likely want some data from Facebook.

The news site is, first, authenticating me as a legitimate Facebook user, with an estab‐
lished Facebook account. In other words, I’m not just some random person coming
in and commenting anonymously. Secondly, the news site wants something from me
in exchange for the privilege of commenting: it’s going to want data about me. Per‐
haps it will ask for permission to post for me (if I post my comment to Facebook as
well as the news site). This is both an authentication and an authorization request.

If I’m not already logged in to Facebook, I’ll have to log in. Facebook is using my cor‐
rect application of username and password to authenticate that, yes, I own the Face‐
book account in question. Once logged in, Facebook asks whether I agree to giving
the newspaper site the authorization to access the resources it wants. If I agree
(because I desperately want to comment on a particular story), Facebook gives the
news site the authorization, and there’s now a persistent connection from the newspa‐
per to my Facebook account (which you can see in your Facebook settings). I can
make my comment, and make comments at other stories, until I log out or revoke the
Facebook authorization.

Of course, none of this implies that Facebook or the news site are actually authenti‐
cating who I am. Authentication, in this case, is about establishing that I am the
owner of the Facebook account. The only time real authentication enters the picture
is in a social media context such as Twitter’s authenticated accounts for celebrities.

21.4 Working with OAuth | 477

Our development task is made simpler by the fact that software to handle authoriza‐
tion is frequently the same software that authenticates the individual, so we’re not
having to deal with two different JavaScript libraries/modules/systems. There are also
several excellent OAuth (1.0 and 2.0) modules we can use in Node applications. One
of the most popular is Passport, and there are extensions for various authorization
services created specifically for the Passport system. However, there are also very sim‐
ple OAuth clients that provide barebones authorization access for a variety of serv‐
ices, and some modules that are created specifically for one service.

Passport.js is covered in Recipe 21.5. You can also read more about
Passport and its various strategies supporting different servers at its
website.

Now, on to the technology.

Client Credentials Grant
There are few web resources that nowadays provide an API you can access without
having some kind of authorization credential. This means having to incorporate a
round-trip directive to the end users—asking them to authorize access to their
account at the service before the application can access data. The problem is that
sometimes all you need is simple read-only access without update privileges, without
a frontend login interface, and without having a specific user make an authorizing
grant.

OAuth 2.0 accounts for this particular type of authorizing flow with the Client Cre‐
dentials Grant. The diagram for this simplified authorization is shown in Figure 21-2.

Figure 21-2. The Client Credentials Grant authorization flow

Twitter provides what it calls application-only authorization, which is based on
OAuth 2.0’s Client Credentials Grant. We can use this type of authorization to access
Twitter’s Search API.

In the following example, I used the Node module oauth to implement the authoriza‐
tion. It’s the most basic of the authorization modules, and supports both OAuth 1.0
and OAuth 2.0 authorization flows:

478 | Chapter 21: Building Web Applications with Express

http://www.passportjs.org

const OAuth = require('oauth');
const fetch = require('node-fetch');
const { promisify } = require('util');

// read Twitter keys from a .env file
require('dotenv').config();

// Twitter's search API endpoint and the query we'll be searching
const endpointUrl = 'https://api.twitter.com/2/tweets/search/recent';
const query = 'javascript';

async function getTweets() {
 // consumer key and secret passed in from environment variables
 const oauth2 = new OAuth.OAuth2(
 process.env.TWITTER_CONSUMER_KEY,
 process.env.TWITTER_CONSUMER_SECRET,
 'https://api.twitter.com/',
 null,
 'oauth2/token',
 null
);

 // retrieve the credentials from Twitter
 const getOAuthAccessToken = promisify(
 oauth2.getOAuthAccessToken.bind(oauth2)
);
 const token = await getOAuthAccessToken('', {
 grant_type: 'client_credentials'
 });

 // make the request for data with the retrieved token
 const res = await fetch(`${endpointUrl}?query=${query}`, {
 headers: {
 authorization: `Bearer ${token}`
 }
 });

 const json = await res.json();
 return json;
}

(async () => {
 try {
 // Make request
 const response = await getTweets();
 console.log(response);
 } catch (e) {
 console.log(e);
 process.exit(-1);
 }
 process.exit();
})();

21.4 Working with OAuth | 479

To use the Twitter authorization API, the client application has to register its applica‐
tion with Twitter. Twitter provides both a consumer key and a consumer secret.

Using the oauth module, a new OAuth2 object is created, passing in:

• Consumer key
• Consumer secret
• API base URI (API URI minus the query string)
• A value of null signals OAuth to use the default /oauth/authorize
• The access token path
• Null, because we’re not using any custom headers

The oauth module takes this data and forms a POST request to Twitter, passing along
the consumer key and secret, as well as providing a scope for the request. Twitter’s
documentation provides an example POST request for an access token (line breaks
inserted for readability):

POST /oauth2/token HTTP/1.1
Host: api.twitter.com
User-Agent: My Twitter App v1.0.23
Authorization: Basic eHZ6MWV2RlM0d0VFUFRHRUZQSEJvZzpMOHFxOVBaeVJn
 NmllS0dFS2hab2xHQzB2SldMdzhpRUo4OERSZHlPZw==
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8
Content-Length: 29
Accept-Encoding: gzip

grant_type=client_credentials

The response includes the access token (again, line breaks for readability):

HTTP/1.1 200 OK
Status: 200 OK
Content-Type: application/json; charset=utf-8
...
Content-Encoding: gzip
Content-Length: 140

{"token_type":"bearer","access_token":"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
%2FAAAAAAAAAAAAAAAAAAAA%3DAA"}

The access token has to be used with any of the API requests. There are no further
authorization steps, so the process is very simple. In addition, since the authorization
is at the application level, it doesn’t require an individual’s authorization, making it
less disruptive to the user.

480 | Chapter 21: Building Web Applications with Express

Twitter provides wonderful documentation. I recommend reading
the “Application-only authentication overview”.

Read/write authorization with OAuth 1.0
Application-Only authentication is great for accessing read-only data, but what if you
want to access a user’s specific data, or even make a change to their data? Then you’ll
need the full OAuth authorization. In this section, we’ll again use Twitter for the dem‐
onstration because of its use of OAuth 1.0 authorization. In the next recipe, we’ll look
at OAuth 2.0.

I refer to it as OAuth 1.0, but Twitter’s service is based on OAuth
Core 1.0 Revision A. However, it’s a lot easier just to say OAuth 1.0.

OAuth 1.0 requires a digital signature. The steps to derive this digital signature,
graphically represented in Figure 21-3, and as outlined by Twitter, are:

1. Collect the HTTP method and the base URI, minus any query string.
2. Collect the parameters, including the consumer key, request data, nonce, signa‐

ture method, and so on.
3. Create a signature base string, which consists of the data we’ve gathered, formed

into a string in a precise manner, and encoded just right.
4. Create a signing key, which is a combination of consumer key and OAuth token

secret, again combined in a precise manner.
5. Pass the signature base string and the signing key to an HMAC-SHA1 hashing

algorithm, which returns a binary string that needs further encoding.

Figure 21-3. OAuth 1.0 authorization flow

21.4 Working with OAuth | 481

https://oreil.ly/Mikyl
http://oauth.net/core/1.0a
http://oauth.net/core/1.0a

You have to follow this process for every request. Thankfully, we have modules and
libraries that do all of this mind-numbing work for us. I don’t know about you, but if
I had to do this, my interest in incorporating Twitter data and services into my appli‐
cation would quickly wane.

Our friend oauth provides the underlying OAuth 1.0 support, but we don’t have to
code to it directly this time. Another module, node-twitter-api, has wrapped all of
the OAuth pieces. All we need do is create a new node-twitter-api object, passing in
our consumer key and secret, as well as the callback/redirect URL required by the
resource services, as part of the authorization process. Processing the request object
in that URL provides us the access token and secret we need for API access. Every
time we make a request, we pass in the access token and secret.

The twitter-node-api module is a thin wrapper around the REST API: to make a
request, we extrapolate what the function is from the API. If we’re interested in post‐
ing a status update, the REST API endpoint is:

https://api.twitter.com/1.1/statuses/update.json

The twitter-node-api object instance function is statuses(), and the first parame‐
ter is the verb, update:

 twitter.statuses('update', {
 "status": "Hi from Shelley's Toy Box. (Ignore--developing Node app)"
 }, atoken, atokensec, function(err, data, response) {...});

twitter.statuses(
 'update',
 {
 status: 'Ignore learning OAuth with Node'
 },
 tokenValues.atoken,
 tokenValues.atokensec,
 (err, data) => { ... });

The callback function arguments include any possible error, requested data (if any),
and the raw response.

A complete example is shown in Example 21-1. It uses Express as a server and pro‐
vides a primitive web page for the user, and then uses another module.

Example 21-1. Twitter app fully authorized via OAuth 1.0

const express = require('express');
const TwitterAPI = require('node-twitter-api');

require('dotenv').config();

const port = process.env.PORT || '8080';

482 | Chapter 21: Building Web Applications with Express

// keys and callback URL are configured in the Twitter Dev Center
const twitter = new TwitterAPI({
 consumerKey: process.env.TWITTER_CONSUMER_KEY,
 consumerSecret: process.env.TWITTER_CONSUMER_SECRET,
 callback: 'http://127.0.0.1:8080/oauth/callback'
});

// object for storing retrieved token values
const tokenValues = {};

// twitter OAuth API URL
const twitterAPI = 'https://api.twitter.com/oauth/authenticate';

// simple HTML template
const menu =
 'Say hello
' +
 'Account Settings
';

// Create a new Express application.
const app = express();

// request Twitter permissions when the / route is visited
app.get('/', (req, res) => {
 twitter.getRequestToken((error, requestToken, requestTokenSecret) => {
 if (error) {
 console.log(`Error getting OAuth request token : ${error}`);
 res.writeHead(200);
 res.end(`Error getting authorization${error}`);
 } else {
 tokenValues.token = requestToken;
 tokenValues.tokensec = requestTokenSecret;
 res.writeHead(302, {
 Location: `${twitterAPI}?oauth_token=${requestToken}`
 });
 res.end();
 }
 });
});

// callback url as specified in the Twitter Developer Center
app.get('/oauth/callback', (req, res) => {
 twitter.getAccessToken(
 tokenValues.token,
 tokenValues.tokensec,
 req.query.oauth_verifier,
 (err, accessToken, accessTokenSecret) => {
 res.writeHead(200);
 if (err) {
 res.end(`problems getting authorization with Twitter${err}`);
 } else {
 tokenValues.atoken = accessToken;
 tokenValues.atokensec = accessTokenSecret;

21.4 Working with OAuth | 483

 res.end(menu);
 }
 }
);
});

// post a status update from an authenticated and authorized users
app.get('/post/status/', (req, res) => {
 twitter.statuses(
 'update',
 {
 status: 'Ignore teaching OAuth with Node'
 },
 tokenValues.atoken,
 tokenValues.atokensec,
 (err, data) => {
 res.writeHead(200);
 if (err) {
 res.end(`problems posting ${JSON.stringify(err)}`);
 } else {
 res.end(`posting status: ${JSON.stringify(data)}
${menu}`);
 }
 }
);
});

// get account details for an authenticated and authorized user
app.get('/get/account/', (req, res) => {
 twitter.account(
 'settings',
 {},
 tokenValues.atoken,
 tokenValues.atokensec,
 (err, data) => {
 res.writeHead(200);
 if (err) {
 res.end(`problems getting account ${JSON.stringify(err)}`);
 } else {
 res.end(`<p>${JSON.stringify(data)}</p>${menu}`);
 }
 }
);
});

app.listen(port, () => console.log(`Listening on port ${port}!`));

484 | Chapter 21: Building Web Applications with Express

The routes of interest in the app are:

• /: Page that triggers a redirect to Twitter for authorization
• /auth: The callback or redirect URL registered with the app, and passed in the

request
• /post/status/: Post a status to the Twitter account
• /get/account/: Get account information for the individual

In each case, the appropriate node-twitter-api function is used:

• /: Get a request token and request token secret, using getRequestToken()
• /auth/: Get the API access token and token secret, caching them locally, display

menu
• /post/status/: status() with update as first parameter, status, access token and

secret, and callback function
• /get/account/: account() with settings as the first parameter, an empty object,

since no data is needed for the request, and the access token, secret, and callback

The Twitter authorization page that pops up is displayed in Figure 21-4, and the web
page that displays account information for yours truly is displayed in Figure 21-5.

Though it is no longer actively maintained, you can read more
about the node-twitter-api module at its GitHub repository page.
Other libraries are more actively maintained and provide the same
type of functionality, but I found node-twitter-api offers the sim‐
plest functional example for the purpose of demonstration.

21.4 Working with OAuth | 485

https://github.com/reneraab/node-twitter-api

Figure 21-4. Twitter authorization page, redirected from the recipe app

Figure 21-5. Display of Twitter user account data in app

21.5 OAuth 2 User Authentication with Passport.js
Problem
You want to authenticate users in your application through a third-party service.

486 | Chapter 21: Building Web Applications with Express

Solution
Use the Passport.js library paired with the appropriate strategy for the authentication
provider you’ve chosen. In this example, I’ll make use of the GitHub strategy, but the
workflow will be identical for any OAuth 2 provider, including Facebook, Google,
and Twitter.

You can make use of the GitHub strategy, first by visiting GitHub’s website and regis‐
tering a new OAuth application. Once the application is registered, you can integrate
the Passport.js OAuth code into the application.

To begin, configure the Passport strategy, which will include the GitHub-provided cli‐
ent ID and client secret, along with the callback URL that you have specified:

const express = require('express');
const passport = require('passport');
const { Strategy } = require('passport-github');

passport.use(
 new Strategy(
 {
 clientID: GITHUB_CLIENT_ID,
 clientSecret: GITHUB_CLIENT_SECRET,
 callbackURL: 'login/github/callback'
 },
 (accessToken, refreshToken, profile, cb) => {
 return cb(null, profile);
 }
)
);

To restore authentication state across HTTP requests, Passport needs to serialize and
deserialize users:

passport.serializeUser((user, cb) => {
 cb(null, user);
});

passport.deserializeUser((obj, cb) => {
 cb(null, obj);
});

To preserve user logins across browser sessions, make use of the express-session
middleware:

app.use(
 require('express-session')({
 secret: SESSION_SECRET,
 resave: true,
 saveUninitialized: true
 })
);

21.5 OAuth 2 User Authentication with Passport.js | 487

https://github.com/settings/applications/new
https://github.com/settings/applications/new

app.use(passport.session());

You can then authenticate requests using passport.authenticate:

app.use(passport.initialize());

app.get('/login/github', passport.authenticate('github'));

app.get(
 '/login/github/callback',
 passport.authenticate('github', { failureRedirect: '/login' }),
 (req, res) => {
 res.redirect('/');
 }
);

And reference the user object from requests:

app.get('/', (req, res) => {
 res.render('home', { user: req.user });
});

Discussion
OAuth is an open standard for user authentication. It allows us to authenticate users
through third-party applications. This can be useful when allowing users to easily
create accounts and log in to your applications, as well as for authenticating to use
data from a third-party source.

OAuth requests follow a specific flow:

1. Your application makes an authorization request to the third-party service.
2. The user approves that request.
3. The service redirects the user back to your application, along with an authoriza‐

tion code.
4. The application makes a request to the third-party service with the authorization

code.
5. The service responds with an access token (and optionally a refresh token).
6. The application makes a request to the service with the access token.
7. The service responds with the protected resource (in our case, the user account

information).

Using Passport.js along with a Passport.js strategy for the OAuth provider simplifies
this flow in an Express.js application. In this example, we’ll build a small Express
application that authenticates with GitHub and persists user logins across sessions.

488 | Chapter 21: Building Web Applications with Express

Once we have registered our application with the service provider, we can begin
development by installing the appropriate dependencies:

install general application dependencies
npm install express pug dotenv
install passport dependencies
npm install passport passport-github
install persistent user session dependencies
npm install connect-ensure-login express-session

To store our OAuth client ID, client secret, and session secret values, we will use
a .env file. Alternately, you could use a JavaScript file (such as a config.js file). It is crit‐
ical that we not check this file into public source control, and I recommend adding it
to your .gitignore file. In .env:

GITHUB_CLIENT_ID=<Your client ID>
GITHUB_CLIENT_SECRET=<Your client secret>
SESSION_SECRET=<A session secret - this can be any value you decide>

Next, we’ll set up our Express application with Passport.js. In index.js:
const express = require('express');
const passport = require('passport');
const { Strategy } = require('passport-github');

require('dotenv').config();

const port = process.env.PORT || '3000';

// Configure the Passport strategy
passport.use(
 new Strategy(
 {
 clientID: process.env.GITHUB_CLIENT_ID,
 clientSecret: process.env.GITHUB_CLIENT_SECRET,
 callbackURL: `http://localhost:${port}/login/github/callback`
 },
 (accessToken, refreshToken, profile, cb) => {
 return cb(null, profile);
 }
)
);

// Serialize and deserialize the user
passport.serializeUser((user, cb) => {
 cb(null, user);
});

passport.deserializeUser((obj, cb) => {
 cb(null, obj);
});

// create the Express application

21.5 OAuth 2 User Authentication with Passport.js | 489

const app = express();
app.set('views', `${__dirname}/views`);
app.set('view engine', 'pug');

// use the Express session middleware for preserving user session
app.use(
 require('express-session')({
 secret: process.env.SESSION_SECRET,
 resave: true,
 saveUninitialized: true
 })
);

// Initialize passport and restore the authentication state from the session
app.use(passport.initialize());
app.use(passport.session());

// listen on port 3000 or the PORT set as an environment variable
app.listen(port, () => console.log(`Listening on port ${port}!`));

You can then build your view templates, which can access the user data.

In views/home.pug:

if !user
 p Welcome! Please
 a(href='/login/github') Login with GitHub
else
 h1 Hello #{user.username}!
 p View your
 a(href='/profile') profile

In views/login.pug:

h1 Login
a(href='/login/github') Login with GitHub

In views/profile.pug:

h1 Profile
ul
 li ID: #{user.id}
 li Name: #{user.username}
 if user.emails
 li Email: #{user.emails[0].value}

Finally, we can set up our routes in the index.js file:

app.get('/', (req, res) => {
 res.render('home', { user: req.user });
});

app.get('/login', (req, res) => {
 res.render('login');
});

490 | Chapter 21: Building Web Applications with Express

app.get('/login/github', passport.authenticate('github'));

app.get(
 '/login/github/callback',
 passport.authenticate('github', { failureRedirect: '/login' }),
 (req, res) => {
 res.redirect('/');
 }
);

app.get(
 '/profile',
 require('connect-ensure-login').ensureLoggedIn(),
 (req, res) => {
 res.render('profile', { user: req.user });
 }
);

This example was designed to closely match the Express 4.x Facebook example, which
provides well-documented code for working with Express and Facebook authentica‐
tion. You can view hundreds of additional Passport.js strategies.

21.6 Serving Up Formatted Data
Problem
Instead of serving up a web page or sending plain text, you want to return formatted
data, such as XML, to the browser.

Solution
Use Node module(s) to help format the data. For example, if you want to return
XML, you can use a module to create the formatted data:

const builder = require('xmlbuilder');

const xml = builder
 .create('resources')
 .ele('resource')
 .ele('title', 'Ecma-262 Edition 10')
 .up()
 .ele('url', 'https://www.ecma-international.org/ecma-262/10.0/index.html')
 .up()
 .end({ pretty: true });

Then create the appropriate header to go with the data, and return the data to the
browser:

21.6 Serving Up Formatted Data | 491

https://github.com/passport/express-4.x-facebook-example
http://www.passportjs.org

app.get('/', (req, res) => {
 res.setHeader('Content-Type', 'application/xml');
 res.end(xml.toString(), 'utf8');
});

Discussion
Web servers frequently serve up static or server-side generated resources, but just as
frequently, what’s returned to the browser is formatted data that’s then processed in
the web page before display.

There are two key elements to generating and returning formatted data. The first is to
make use of whatever Node library to simplify the generation of the data, and the sec‐
ond is to make sure that the header data sent with the data is appropriate for the data.

In the solution, the xmlbuilder module is used to assist us in creating proper XML.
This isn’t one of the modules installed with Node by default, so we have to install it
using npm, the Node Package Manager:

npm install xmlbuilder

Then it’s a matter of creating a new XML document, a root element, and then each
resource element, as demonstrated in the solution. It’s true, we could build the XML
string ourselves, but that’s a pain. And it’s too easy to make mistakes that are then
hard to discover. One of the best things about Node is the enormous number of mod‐
ules available to do most anything we can think of. Not only do we not have to write
the code ourselves, but most of the modules have been thoroughly tested and actively
maintained.

Once the formatted data is ready to return, create the header that goes with it. In the
solution, because the document is XML, the header content type is set to applica
tion/xml before the data is returned as a string.

21.7 Building a RESTful API
Problem
You want to build a REST API using Node.js.

Solution
Use Express with the app.get, app.post, app.put, and app.delete methods:

const express = require('express');

const app = express();
const port = process.env.PORT || 3000;

492 | Chapter 21: Building Web Applications with Express

app.get('/', (req, res) => {
 return res.send('Received a GET HTTP method');
});
app.post('/', (req, res) => {
 return res.send('Received a POST HTTP method');
});
app.put('/', (req, res) => {
 return res.send('Received a PUT HTTP method');
});
app.delete('/', (req, res) => {
 return res.send('Received a DELETE HTTP method');
});
app.listen(port, () => console.log(`Listening on port ${port}!`));

Discussion
REST stands for “Representational State Transfer,” and is the most common architec‐
tural approach for building APIs. REST allows us to interact with a remote data
source over HTTP, using the standard HTTP methods of GET, POST, PUT, and DELETE.
We can make use of the Express routing methods to accept these requests.

In the following example, I’ll create several routes that serve as API endpoints. Each
endpoint will respond to an HTTP request:

/todos

Will accept a get request for a list of todos as well as a post request for creating a
new todo.

/todos/:todoId

Will accept a get request that will return a specific todo as well as a put request,
which will allow the user to update the todo content or completed state, and a
delete request, which will delete the specific todo.

With these routes defined, we can develop a REST API that responds to these
requests appropriately:

const express = require('express');

const port = process.env.PORT || 3000;
const app = express();
app.use(express.json());
app.use(express.urlencoded({ extended: true }));

// an array of data
let todos = [
 {
 id: '1',
 text: 'Order pizza',
 completed: true
 },

21.7 Building a RESTful API | 493

 {
 id: '2',
 text: 'Pick up pizza',
 completed: false
 }
];

// get the list of todos
app.get('/todos', (req, res) => {
 return res.send({ data: { todos } });
});

// get an individual todo
app.get('/todos/:todoId', (req, res) => {
 const foundTodo = todos.find(todo => todo.id === req.params.todoId);
 return res.send({ data: foundTodo });
});

// create a new todo
app.post('/todos', (req, res) => {
 const todo = {
 id: String(todos.length + 1),
 text: req.body.text,
 completed: false
 };

 todos.push(todo);
 return res.send({ data: todo });
});

// update a todo
app.put('/todos/:todoId', (req, res) => {
 const todoIndex = todos.findIndex(todo => todo.id === req.params.todoId);
 const todo = {
 id: req.params.todoId,
 text: req.body.text || todos[todoIndex].text,
 completed: req.body.completed || todos[todoIndex].completed
 };

 todos[todoIndex] = todo;
 return res.send({ data: todo });
});

// delete a todo
app.delete('/todos/:todoId', (req, res) => {
 const deletedTodo = todos.find(todo => todo.id === req.params.todoId);
 todos = todos.filter(todo => todo.id !== req.params.todoId);
 return res.send({ data: deletedTodo });
});

// listen on port 3000 or the PORT set as an environment variable
app.listen(port, () => console.log(`Listening on port ${port}!`));

494 | Chapter 21: Building Web Applications with Express

From the terminal, you can use curl to test our responses:

get the list of todos
curl http://localhost:3000/todos

get an individual todo
curl http://localhost:3000/todos/1

create a new todo
curl -X POST -H "Content-Type:application/json" /
 http://localhost:3000/todos -d '{"text":"Eat pizza"}'

update a todo
curl -X PUT -H "Content-Type:application/json" /
 http://localhost:3000/todos/2 -d '{"completed": true }

delete a todo
curl -X DELETE http://localhost:3000/todos/3

Manually testing with curl can quickly become tedious. For API development, you
may also want to make use of a REST client UI, such as Insomnia or Postman (see
Figure 21-6).

Figure 21-6. A GET request in the Insomnia REST client

In the above example, I’m using an in-memory data store. When building an API,
you will most likely want to connect to a database. To do so, you can reach for a
library such as Sequelize (for SQL databases), Mongoose (for MongoDB), or an
online data store such as Firebase.

21.7 Building a RESTful API | 495

https://insomnia.rest
https://postman.com
https://oreil.ly/NuXyR
https://oreil.ly/zP8Fr
https://oreil.ly/iZSFB

21.8 Building a GraphQL API
Problem
You would like to build a GraphQL API server application or add GraphQL end‐
points to an existing Express application.

Solution
Use the Apollo Server package to include GraphQL type definitions, GraphQL resolv‐
ers, and the GraphQL Playground:

const express = require('express');
const { ApolloServer, gql } = require('apollo-server-express');

const port = process.env.PORT || 3000;
const app = express();

const typeDefs = gql`
 type Query {
 hello: String
 }
`;

const resolvers = {
 Query: {
 hello: () => 'Hello world!'
 }
};
const server = new ApolloServer({ typeDefs, resolvers });
server.applyMiddleware({ app, path: '/' });
app.listen({ port }, () => console.log(`Listening on port ${port}!`));

Apollo Server provides access to the GraphQL Playground (see Figure 21-7), which
allows us to easily interact with the API during development (and in production, if
desired).

496 | Chapter 21: Building Web Applications with Express

Figure 21-7. A GraphQL query in the GraphQL Playground

The GraphQL Playground also provides automatically generated documentation for
the API, based on the type definitions you’ve provided (see Figure 21-8).

21.8 Building a GraphQL API | 497

Figure 21-8. The generated documentation in GraphQL Playground

Discussion
GraphQL is an open source query language for APIs. It was developed with the goal
of providing single endpoints for data, allowing applications to request the specific
data that is needed. Apollo Server can be used as a standalone package or integrated
as middleware for popular Node.js server application libraries, such as Express, Hapi,
Fastify, and Koa.

In GraphQL, a type definition schema is a written representation of our data and
interactions. By requiring a schema, GraphQL enforces a strict plan for our API. This
is because your API can only return data and perform interactions that are defined
within the schema. The fundamental component of GraphQL schemas are object
types. GraphQL contains five built-in scalar types:

• String: A string with UTF-8 character encoding
• Boolean: A true or false value
• Int: A 32-bit integer
• Float: A floating-point value

498 | Chapter 21: Building Web Applications with Express

https://oreil.ly/toPLM

• ID: A unique identifier

Once the schema is written, we provide the API with a series of resolvers. These are
functions that specify how the data should be returned in a query or changed within a
data mutation.

In the previous example, we’re using the apollo-server-express package, which
should be installed alongside the express and gql packages:

$ npm install express apollo-server-express gql

To create a CRUD application, we can define our GraphQL type definitions and the
appropriate resolvers. The following example mimics the one found in Recipe 21.7:

const express = require('express');
const { ApolloServer, gql } = require('apollo-server-express');

const port = process.env.PORT || 3000;
const app = express();

// an array of data
let todos = [
 {
 id: '1',
 text: 'Order pizza',
 completed: true
 },
 {
 id: '2',
 text: 'Pick up pizza',
 completed: false
 }
];

// GraphQL Type Definitions
const typeDefs = gql`
 type Query {
 todos: [Todo!]!
 todo(id: ID!): Todo!
 }

 type Mutation {
 newTodo(text: String!): Todo!
 updateTodo(id: ID!, text: String, completed: Boolean): Todo!
 deleteTodo(id: ID!): Todo!
 }

 type Todo {
 id: ID!
 text: String!
 completed: Boolean
 }
`;

// GraphQL Resolvers

21.8 Building a GraphQL API | 499

const resolvers = {
 Query: {
 todos: () => todos,
 todo: (parent, args) => {
 return todos.find(todo => todo.id === args.id);
 }
 },
 Mutation: {
 newTodo: (parent, args) => {
 const todo = {
 id: String(todos.length + 1),
 text: args.text,
 completed: false
 };

 todos.push(todo);
 return todo;
 },

 updateTodo: (parent, args) => {
 const todoIndex = todos.findIndex(todo => todo.id === args.id);
 const todo = {
 id: args.id,
 text: args.text || todos[todoIndex].text,
 completed: args.completed || todos[todoIndex].completed
 };

 todos[todoIndex] = todo;
 return todo;
 },
 deleteTodo: (parent, args) => {
 const deletedTodo = todos.find(todo => todo.id === args.id);
 todos = todos.filter(todo => todo.id !== args.id);
 return deletedTodo;
 }
 }
};

// Apollo + Express server setup
const server = new ApolloServer({ typeDefs, resolvers });
server.applyMiddleware({ app, path: '/' });
app.listen({ port }, () => console.log(`Listening on port ${port}!`));

In the above example, I’m using an in-memory data store. When building an API,
you will most likely want to connect to a database. To do so, you can reach for a
library such as Sequelize (for SQL databases), Mongoose (for MongoDB), or an
online data store such as Firebase.

The defined queries return data directly from the API, while the mutations allow us
to perform changes to the data, such as create a new item, update an item, or delete
an item.

500 | Chapter 21: Building Web Applications with Express

Index

Symbols
!= operator, 74
(private field), 181
$ (terminal command line), 15
${} (template literal expression), 44
* (universal selector), 269
+ operator

concatenation, 43
joining numbers to strings, 38

; (semicolon), cookie value, 326
< angle bracket, 74, 80
<= comparison operator, 74
= operator, 80
== operator, 74
=== operator, 74, 168
> angle bracket, 74, 80
>= comparison operator, 74
\ (backslash character/escape sequence), 41, 50
_ (underscore character), 179, 181
` (backtick character), 43
{} (curly brackets), 44, 200
|| operator, 440
… (spread operator), 94, 97, 107, 155, 164

A
aboutAudio() event handler, 357
abstraction layers, logging, 236
accessibility

automatically updated regions, 298-299
for forms, 292-298
to HTML elements, 263, 269-271
public versus private fields in constructor,

175
removing elements from page view, 285

video controls, 360
accessor descriptor, 158
accumulator, 110
add() method, Set, 113
addEventListener() method, 267
Agile development paradigm, 246
Airbnb JavaScript Style Guide, 25
AJAX, 301, 305
alert boxes, 294
all() method, 211-213, 217
allSettled() method, 213
Alter, Tal

Building Progressive Web Apps (O’Reilly),
373

AMD (Asynchronous Module Definition), 431,
434

Angular framework, 393
anonymous functions, 120, 203
any() method, 213
ApacheBench, 456
Apollo Server package, 496-500
app.js file, 471
appendChild() method, 279, 389
appendFile() function, 406
appendText() function, 405
application manifest, 366, 370-372
application-only authentication, 478
arc length, calculating, 71
areArraysEqual() method, 91
arguments object, 124, 126, 136
argv property, 447
ARIA alert role, 294, 297
aria-atomic attribute, 299
aria-invalid attribute, 293-297

501

aria-live region attribute, 299
aria-relevant attribute, 299
aria-required attribute, 298
arrays (Array object), 87-116

breaking down into separate variables,
93-94

checking that object is an array, 88
cloning of, 95-97
combining values in single calculation,

110-112
converting function arguments into, 94, 121
converting sets to, 114
copying portion of array by position, 98-99
emptying of, 101
equality testing for two arrays, 90-93
exact matches, searching for, 104-105
extracting items meeting specific criteria,

100-101
flattening of two-dimensional, 103-104
iterating over all elements in, 88-90
joining, 187
key-indexed collection of items, 114-116
merging of, 97-98
methods for processing, 89
nonduplicated value collection, 113
passing to function expecting list of values,

94
reducing, 110
removing artifacts from, 53
removing duplicate values, 102
removing/replacing elements, 107-108
searching for items meeting specific criteria,

105
sorting array of objects by property value,

108-109
transforming every element, 109
validating contents of, 112-113

arrow syntax, 117, 121-124
artifacts, removing from arrays, 53
assertion tests, 243
assign() method

Object, 165
window.location, 379

async function, await keyword in, 214-217, 304,
441

async keyword, 218-220
Asynchronous Module Definition (see AMD)
asynchronous programming, 201-226

await and async for waiting for promise,
214-217

callback function change to promise,
208-211

callback hell, managing in Node, 441-444
concurrent multiple promise execution,

211-213
error handling, 232-233, 235
generator function, 218-220
Node timers and, 414
page updating during loop, 202-204
Promise object, using function that returns,

204-207
reading/writing files, 407
web workers, 220-226

attachShadow() method, 390
attribute selectors, 269, 294
audio element, 356-357
authentication

versus authorization, 477
Passport.js, 486-491

authorization frameworks, 485-491
automatically updated regions, 298-299
await keyword, 201, 214-217, 219, 304, 441

B
Babel, 182, 242
base case, recursive functions, 142
bidirectional communication, client-server,

320-322, 455
BigInt type, 61, 72-74
binary data, sending and loading into image,

318-319
bind() method, 137, 138-141
blob() response type, 206, 318
Bostock, Mike, 352
breakpoint, setting, 253-255
browser, 3, 253-261

(see also web apps/APIs)
debugging JavaScript, 253-255
developer console, 3-9
identifying unused JavaScript, 257-259
lazy evaluation in browser-based consoles,

6, 87
Lighthouse for measuring best practices,

259-261
local file loading, 385-388
notifications in, 382-385
responding to requests in, 400-402

502 | Index

runtime performance analysis, 255-257
security and access to error details, 234

Building Progressive Web Apps (O’Reilly), 373
button element, for click handler, 267

C
cacheVersion, 369
call stack, 143
callback function

arguments supported, 110, 117-121
asynchronous programming and, 201
change to promise, 208-211
with every() and some() methods, 113
forEach() method and, 110
function binding and, 139-140
Node management, 441-444
Node timers, 414, 417
Readline module, 411
with reduce() method, 110
validating array contents, 113

CamelCase notation, 275
Canvas, 348, 355
canvas element, 354-356
captureStackTrace() method, 239
capturing parentheses (x), 54
case conversion of first letter in strings, 58
case-insensitive string comparison, 45-46
CDATA (character data) markup, 345-348
ceil() method, 66
chaining, method, 48, 186-188, 206, 352
change event, 310, 311
character data (CDATA) markup (see CDATA)
charAt() method, 59
checkbox status check, 279
checked property, 279
Cheerio, 459-460
child element discovery with Selectors API,

272-273
childNodes property, 264, 265
child_process module, 445-446
Chrome Developer Tools (see DevTools)
CI (continuous integration) tools, 376
circular arc length, calculating, 71
class expression, 175
class keyword, 174-175
class value change to an HTML element, 273
classes, 173-200

adding properties to, 177-182
adding static methods to, 188-190

constructors and, 174, 176-177, 183-186,
194

creating objects with static method, 190-192
inheriting functionality from another class,

192-197
method chaining support, 186-188
modularization, 197-200
parent and child, 192-195
reusable class, 173-177
string representation, 182

classlist property, 273
clear method, DOM Storage, 335
clear() method, Set, 114
clearImmediate() function, 414
CLI (command-line interface) tools

accessing functionality in Node, 444-446
curl, 495
init (npm), 16
passing arguments in Node, 447-448
utility using Commander module, 448-450

click events, 267, 283
click functionality, adding, 267-268
Client Credentials Grant, 478-480
client-server communication

bidirectional, 320-322, 455
long polling, 322-324
sharing cookies across domains, 319-320
with Websockets, 320-322

cloning
arrays, 95-97
objects, 164-168

closures, 117, 129-130, 134
cloud-based programming environments, 34
code

enforcing standards with linter, 24-28, 44
JavaScript playground, 31-34
programming approaches, 246
running blocks of code in console, 7-9
sharing across module environments,

422-425
simplifying with destructuring assignment,

127-128
strings (see strings (String object))
styling consistently with formatter, 28-31
test code coverage, 247-250
unit tests of, 242
validation of, 36

code editor, choosing, 2-3
code snippets, REPL for trying out, 402-404

Index | 503

code splitting, 364
command-line interface (see CLI)
Commander module, 448
CommonJS, 242, 423, 431, 434
composition pattern, 195
computed property names, 149
computed styles, 276
concat() method, 97, 103
concatenation of strings, 43-45
console, using, 3-9
console.error() method, 234
console.log() method, 4, 183
const keyword, 101
constants, storing to refer to by name, 170-171
constructors

classes and, 174, 176-177, 183-186, 194
multiple, 176-177
objects and, 145, 167
public versus private fields in, 175

container technology, 400
contains() method, 274
continuous integration tools (see CI)
controls attribute, audio element, 356
cookies, 319-320, 325-328
Coordinated Universal Time (see UTC)
copying text to user clipboard, 380-381
© copyright symbol, 40
CORS (Cross-Origin Resource Sharing), 320
createAttribute() method, 276
createElement() method, 278, 287
createInterface() function, 411
createServer() method, 400
createTextNode() method, 276, 287
credentialed requests, 319
credit card validation library, 291
cross-domain communication, 319-320
Cross-Origin Resource Sharing (see CORS)
CRUD (Create-Read-Update-Delete), 499
Crypto object, 63
cryptograpically secure random numbers,

63-65
CSS (Cascading Style Sheet)

attribute selectors, 274-275, 294
changing properties, 273
preprocessor, 469
shadow DOM element, 390
visibility of properties, 285

CSS-style selector strings, 272
curl command-line tool, 495

currency format, 462
current date and time, 75-77
currentTime attribute, 359
custom classes, constructor pattern in making,

183-186
custom elements in HTML, 389

D
D3 for the Impatient (O’Reilly), 352
D3 library, 350-353
Daring Fireball, 429
data

CDATA markup, 345-348
cookies, 319-320, 325-328
Express’s return of formatted, 491-492
Fetch API to request, 223, 301-305
form, 289-292, 306-310
IndexedDB database management, 338-344
localStorage client-side storage item,

334-338
persistence of, 129, 325-344
reading/writing to files, 405-410
remote data (see remote data)
sessionStorage for client-side storage,

328-334
types, 35, 37

data descriptor, 158
database management (IndexedDB), 338-344
dates (Date object), 75-86

adding days to a date, 79-80
comparing, 80
converting ISO 8601 format to, 77-79
current date and time, 75-77
formatting date value as string, 84-86
methods available, 75
testing for equality, 80-81
tracking elapsed time between, 82-83

debugger statement, 254
debugging, 253-255, 265
Decimal type, 67
decimal values, 66-68, 70-70
decodeURI() function, 229
deep copy of an object, 166-168
default parameters, 124
defineProperty() method, 157, 181
degrees, converting to radians, 71
delete() method, Set, 114
deleting rows from table, 283
dependencies, managing, 17, 434

504 | Index

describe() function, 243
destructuring assignment, 93-94, 127-128
developer console, using, 3-9
development environment, setting up, 1-34

choosing code editor, 2-3
developer console, 3-9
enforcing code standards with linter, 24-28
experimenting in playground, 31-34
filling in boilerplate with Emmet shortcuts,

11-13
npm package manager, 13-21
strict mode to catch mistakes, 9-11
styling code consistently with formatter,

28-31
test server setup, 21-24

development mode, 474
development run task, 23
DevTools (Chrome Developer Tools), 253-261,

265
_dirname variable, 412
display property, 285
Docker, 400
document object, 264
document.cookie object, 325
DOM (Document Object Model), 263

inserting new element in, 278
nodes (elements), 264-265
pruning, 283
sessionStorage, 328-334
shadow DOM, 389
SVG and, 345

DomParser API, 316-317
dot-syntax, 149
dotenv package, 441
Drasner, Sarah

SVG Animations (O’Reilly), 348
duplicate values, removing from arrays, 102

E
ECMAScript, 73

(see also ES6)
adoption of standard, 263
BigInt and, 73
modularization, 283, 422-425
using with Node project, 440

Eich, Brendan, 263
EJS template system, 468
elapsed time between dates, tracking, 82-83
element object, 265

elements, 264
(see also HTML5)
in arrays, 88-90, 107-108, 109
assigning variables, 93
button, 267
canvas element, 354-356
DOM, 278, 390
img (see images (img element))
media, 354-360
parent and child, 263-265
script elements, 346

email validation, regular expression, 59-60
EME (Encrypted Media Extensions), 360
Emmet editor feature, 11-13
emojis, inserting into strings, 42-43
encodeURI() function, 229
encrypted files, 360
Encrypted Media Extensions (see EME)
endcodeURIComponent() method, 325
ended event, 356
enum (enumerated identifier), 170-171
environment variables, 439-441
equality operators, 74
equality testing, 80-81, 90-93
Error class, 239
Error() function, 237
errors (Error object), 227-240

in asynchronous programming, 232-233,
235

catching and neutralizing, 227-230
catching different types, 230-232
debugging, 253-255, 265
detecting unhandled, 233-236
floating point rounding, 66
in forms, 292-298
handling with fetch(), 304-305
list of types, 231
logging tools, 236
long polling, 322-324
RangeError, 231, 238
ReferenceError, 238
strict mode to catch mistakes, 9-11, 157
SyntaxError, 238
throwing custom error object, 239-240
throwing standard error object, 237-239
TypeError, 157, 231

ES6 (ECMAScript 2015)
classes in JavaScript and, 173, 197-200
multiplatform libraries, 431, 434

Index | 505

sharing code across module environments,
424-425

unit tests of code, 242
escape sequence, 41, 50
ESLint, 24, 30, 44
event handlers

aboutAudio(), 357
onblur, 293
onsuccess, 340
upgradeneeded, 341
window.error, 234

event loop, 414-415
events

addEventListener(), 267
change, 310, 311
click, 267, 283
ended, 356
input event listener, 291
mouseover or mouseout, 287
onchange, 336
play, 356
storage, 335
timer, 139
visibilitychange, 384
window.unhandledrejection, 235

every() method, 112
exception, Error object, 228
exec() method, 445
execFile() method, 445
expect() function, 242
Express framework, 465-500

Express-Generator, 469-474
formatted data, returning, 491-492
GraphQL API, 496-500
OAuth, 476-491
responding to HTTP requests, 465-468
RESTful API, 492-495
routing, 474-476

extends keyword, 192

F
Facebook, 477
factorials, 141
factory functions, 136-137, 149
factory methods, 176
fail-fast behavior, 213
Fetch API, 223, 301-305
fetch() method, 302

binary data request, 318-319

form submission, 306
long polling, 322-324
XML, 316-317
XMLHttpRequest(), 306

Fibonacci Sequence, 141
File API, 385-388
File object, 385
FileList object, 385
_filename variable, 412
FileReader object, 385
files

app.js file, 471
encrypted, 360
execFile() method, 445
loading locally in browsers, 385-388
.mjs format, 198
.nvmrc format, 399
package.json file, 16, 18-20, 362, 425-428
reading/writing data in Node, 405-410
README, 428-431
test.js file, 242
WAV format, 357

fill attribute, 346
filter() method, 100
find() method, 105-106
findIndex() method, 102, 105-106
Firefox Developer Edition, 253
flat() method, 103
flattening of two-dimensional arrays, 103-104
floating point rounding errors, 66
floor() method, 62, 66
for await loop, 219
for loop, 88, 90
forEach() method

adding values to HTML table, 282
Array object, 89, 110
results from querySelectorAll() with, 266

foreignObject element, 355
fork() method, 445
formatting

code, 28-31
data, 491-492
dates, 77-79, 84-86
JSON formatted strings, 310, 315
numbers, 38-40, 69, 462
RESTful API and JSON-formatted data,

461-463
FormData object, 308-310
forms

506 | Index

error highlighting, 292-298
fetching remote data submissions, 306-310
populating selection lists, 310-314
validating data, 289-292

for…in loop, 153
for…of loop, 88, 132
fragile base class problem, 195
freeze() method, 160, 161
from() method, 114
frontend frameworks, 391-393
fs module, 405-410
full-duplex communication (see bidirectional

communication)
function constructor, 117, 183-186
function expression, 118
function keyword, 131
function objects, 117, 139, 184-186
Function type, 37, 117
functional programming, 87, 89, 90

(see also arrays; promises)
functions, 117-143

accepting unlimited arguments, 125-126
anonymous, 120, 203
arrow, 121-124
async, 214-217, 304, 441-444
bind() method, 137
binding() method, 138-141
callback (see callback function)
constructors and, 175
converting arguments into arrays, 117, 121
default parameters, 124
generator function, 131-135, 218-220
higher order, 137
inner and outer, 129-130
Jest’s matcher functions, 241-246
literals in, 126-128
method-like, 184
named, 121, 126-128
partial application, 135-138
passing array to function expecting list of

values, 94
passing as arguments to other functions,

117-121
recursive algorithms, 141-143
reducer, 110
returning Promise object, 204-207
storing state with closure, 129-130

G
generator function, 131-135, 218-220
Generator object, 131
getAttribute() method, 275
getBoundingClientRect() method, 287
getComputedStyle() method, 276
getDate() method, 79
getElementsByTagName() method, 270-271,

278
getElementsByTagNameNS() method, 355
getItem() function, 332
getRandomValues() method, 63-65
getSelection() method, 381
getSVGDocument() method, 349
getTime() method, 79
Git Pocket Guide (O’Reilly), 419
GitHub, 419, 429, 487
global flag (g), 50
global methods

parseFloat(), 283
parseInt(), 283

global objects, Node versus JavaScript, 404
global variables, 129, 283
global versus local installation of developer

tools, 17
Google Chrome Developer Tools (see Dev‐

Tools)
Google Lighthouse (see Lighthouse)
Goyvaerts, Jan

Regular Expressions Cookbook (O’Reilly),
52

GraphicsMagick, 446
GraphQL API, 496-500

H
has() method, Set, 114
hexadecimal to decimal value, converting,

70-70
hidden property, 384
higher order functions, 137
hover-based pop-up info windows, 287-289
href property, 377
hrtime.bigint() method, 83
HTML5, 48, 263-299

(see also DOM)
accessibility to elements, 263-265, 269-271
audio element, 356-357
automatically updated regions, 298-299

Index | 507

canvas element integration with SVG,
354-356

checkbox status check, 279
child element discovery with Selectors API,

272-273
class value change to an element, 273
click functionality, 267-268
copying text to user’s clipboard, 380-381
custom elements, 389
deleting rows from table, 283
document tree organization, 264
filling in boilerplate with Emmet shortcuts,

11-13
hiding page elements, 285-286
highlighting form errors, 292-298
hover-based pop-up info windows, 287-289
importance of escaping, 48
parent and child elements, 263-265
replacing tags with named entities, 48-49
results from querySelectorAll() with forE‐

ach(), 266
select element, 311-313
shared attributes, finding elements with, 269
style attribute setting, 274-276
table values, adding up, 280-282
template element, 388
text, adding to paragraph, 276-278
validating form data, 289-292
video element, 356, 357-360
Web Components and, 388-391

HTTP
cookie sharing across domains, 319-320
mixed content security issue, 321
responding to Express requests, 465-468
responding to Node server request, 400
RESTful API methods, 462, 493

http module, 400

I
I/O operations, Node and, 414-415
id property, 157
IDB library, 341-344
IE (Internet Explorer), 266, 305
ImageMagick, 445
images (img element), 206

(see also SVG)
accessing, 206-207, 269-271
discovering child elements, 272-273
hover-based pop-up info windows, 287-289

sending as binary data, 318-319
video, 356, 357-360

immutability, array, 90
in operator, 150
includes() method, 46, 104
IncomingMessage object, 400
IndexedDB, 338-344
indexOf() method

Array object, 104-105, 107
String object, 47, 52

inheritance, 151, 153, 192-197
init command (npm), 16, 425
input event listener, 291
insertBefore() method, 278
instanceOf operator, 92, 145-147, 230
integration testing, 437
Internet Explorer (see IE)
Intl.DateTimeFormat object, 86
Intl.NumberFormat object, 39, 69
isArray() method, 88
isFinite() method, 69
isFrozen() method, 161
isNan() method, 69
ISO 8601 format, converting dates, 77-79
iterative versus functional approaches to array

processing, 90

J
Janert, Philipp

D3 for the Impatient (O’Reilly), 352
JavaScript

history, 263
playground, 31-34

Jest, 241-246, 247, 436-438
joining arrays, 187
jQuery, 263, 459
JSON

accessing data RESTfully, 461-463
BigInt issue, 74
formatted strings, 310, 315
parsing of returned, 314-316

JSONP (JSON with padding), 316

K
key-indexed collection of items, 114-116
key-value syntax, 149
key/value pairs, 308, 315
keyboard navigation, 268
keys() method, 153

508 | Index

L
lastIndexOf() method, 104
lazy evaluation, browser-based consoles, 6, 87
lazy loading, 365
leaky abstraction, Unicode characters, 43
length property, 335
Levithan, Steven

Regular Expressions Cookbook (O’Reilly),
52

libraries
converting to Node modules, 421-422
credit card validation, 291
D3, 350-353
handling dependencies, 434
IDB, 341-344
multiplatform, 431-435
sharing across environments, 422-425
Workbox, 373
writing tests first before, 246

Lighthouse, 259-261, 373-377
linter, enforcing code standards with, 24-28, 44
lists

arrays passing to function expecting list of
values, 94

extracting from strings, 52-53
populating selection lists, 310-314

lite-server, 21-24
literal functions, 126-128
live regions, 298-299
Load Impact, 455
load testing, Node, 455
local versus global installation of developer

tools, 17
locale identifiers, 39
localeCompare() method, 45, 109
localStorage functionality, 329, 334-338
long option, 450
long polling a remote data source, 322-324
loose coupling, 419
loose equality, testing for, 74

M
makeString() function, 135
Map object, 114-116
map() method, 53, 96, 110
Markdown syntax, 428-431
markup, escaping, 48
matchAll() method, 54, 55
matcher functions, 242, 245

Math object, 61-66, 71
media, working with, 345-360

adding JavaScript to SVG, 345-348
audio file playing, 356-357
canvas element integration, 354-356
D3 tool to create SVG bar chart, 350-353
video control, 356, 357-360
web page script, accessing SVG from,

348-350
merging of arrays, 97-98
message property, 228, 237
messageType property, 225
method chaining, 48, 186-188, 206, 352
methods

adding new, 174
adding to class, 188-190
array processing, 89
creating method-like functions, 184
creating objects, 190-192
date, 75
factory, 176
global, 283
promises, 205-206, 208, 210
versus properties, 180-181
RESTful API, 462, 493

middleware packages for Express, 467
minification of JavaScript, 363
.mjs files, 198
mobile web loading time issue, 363-365
module object, 200
modules, 216, 419-438

(see also web apps/APIs)
await keyword in, 216
child_process, 445-446
classes with modules, 197-200
Commander, 448
converting library into module, 421-422
fs module, 405-410
of global variables, 283
http, 400
installable, 425-431
multiplatform libraries, 431-435
npm in search for specific module, 420-420
pm2, 451-452
Readline, 410-412
strict mode in, 160
taking code across environments, 422-425
unit testing of, 435-438
url module object, 401

Index | 509

xmlbuilder, 492
Yargs, 447

mouseout event, 287
mouseover event, 287
mulberry32() function, 133
multiple constructors, 176-177

N
name property, 228
named entities, replacing HTML tags with,

48-49
named functions, 121, 126-128
namespaces, 197-200, 346
NaN values, 102
nesting, 139
new keyword, 145, 184, 185
next() method, 131
Node, 397-500

callback hell, 441-444
command-line functionality, 444-448
command-line utility using Commander,

448-450
downloading package with npm, 16-18
environment variables, 439-441
with Express (see Express framework)
global process object, 83
HTTP server, 400
input from terminal, 410-412
installing/maintaining with npm, 13-21,

362, 397
keeping Node instance up and running,

450-452
Lighthouse as code module, 375-377
modules (see modules)
package.json file, 18-20
path to current script, 412
reading and writing file data, 405-410
remote data, 457-463
REPL for trying out code snippets, 402-404
require() function, 400
responding to browser request, 400-402
restarting app during local development,

452-453
scheduling repeat tasks, 453-455
terminal and shell, 14-15
testing WebSockets app, 455-456
timers and event loop, 413-418
Twitter API, 478-485
updating package with npm, 20-21

version management, 397-400
Web Crypto API, 63

node object, 265
Node Version Manager (see NVM)
node-cron module, 453-455
node-fetch module, 457-461
NodeList, 265, 266, 282
nodemon utility, 452-453
nodeName property, 265
nodes, DOM, 264-265
Node_env environment variable, 439
nondestructive changes, 95
nonduplicated value collection, 113
nonenumerable properties, 165
notifications in desktop browser, 382-385
now() property, 191
npm (Node package manager)

creating installable module for, 425-428
installing, 13-21, 362
Lighthouse, 375-377
maintaining Node with, 397
publishing a library to, 433
in search for specific module, 420-420
with Webpack, 363

:nth-of-type() selector, 280
Number type, 61, 73, 73
Number() function, 68
numbers, 61-74

BigInt for manipulating very large, 72-74
calculating circular arc length, 71
converting between degrees and radians, 71
converting decimal to hexadecimal value,

70-70
converting string to number, 68-69
cryptograpically secure random, 63-65
formatting, 38-40, 69, 462
generating random, 61-65
preserving accuracy in decimal values,

66-68
pseudorandom generator, 62, 133-135
rounding to specific decimal place, 65-66

numeric value, converting to formatted string,
38-40

NVM (Node Version Manager), 14, 397-400
nvm-windows, 398
.nvmrc file, 399

O
OAuth framework, 476-491

510 | Index

authorization versus authentication, 477
Client Credentials Grant, 478-480
Passport.js for authentication, 486-491
read/write authorization, 481-485

object literal, 126-128, 147-150, 176
object-oriented programming, 173
objects (Object type), 145-171, 403

(see also regular expressions)
altering behavior with prototypes, 185
cloning of, 164-168
constructors and, 145, 167
converting to JSON formatted strings, 310
creating with static method, 190-192
customizing how property is defined,

156-159
deep copy of, 166-168
enum creation with Symbol(), 170-171
global, 403
identifying properties, 150-151
identifying types, 145-147
iterating over all properties of, 152-154
literal, 126-128, 147-150, 176
merging properties of two, 155
preventing changes to, 159-161
Proxy class for intercepting and changing

actions on, 161-164
sorting array by property value, 108-109
testing for empty, 154
unique object property keys, 168-170

octal numbers, 70
onblur event handler, 293
onchange event, 336
onsuccess event handler, 340
Open Exchange Rate, 462
open() function, file system, 407-410
open() method, IndexedDB, 340

P
package.json file, 16, 18-20, 362, 425-428
page updating during loop, 202-204
Page Visibility API, 384
paragraphs

adding text to, 276-278
inserting new in div element, 278

parameters
default, 124
fetch, 302
named function, 126-128
rest, 125

undefined, 138
parent and child classes, 192-195
parent and child elements in HTML, 263-265
parentNode property, 270
parse() method

Date object, 77
JSON, 314, 315
url module object, 401

parseFloat() method, 69, 280
parseInt() function, 280
partial application, 135-138
Passport.js, 486-491
pathname property, 378
patterns

building creational, 191
finding all instances in strings, 54-57
replacing with new strings, 49-52

Performance analysis, 255-257
Performance object, 83
performance testing, Node, 455
permissions, Web Notification, 382
play event, 356
playgrounds, 31-34
pm2 module, 451-452
Pnpm package manager, 14
polling, 322-324
polyfills, 266, 283, 305, 365
Polymer Project, 391
pop() method, 101
pop-up info windows, 287-289
POST request, 307-310
postMessage() function, 221, 223
Prettier code formatter, 28
preventDefault() method, 235, 268
primitive types, 145, 146
private class fields, 181
process object, 447
process.exit() function, 411
process.nextTick() function, 417
profiling, web apps/APIs, 373-377
progressive web applications (see PWAs)
promises (Promise object), 201

in asynchronous generator function, 218
await and async for waiting for promise,

214-217
callback function change to promise,

208-211
concurrent multiple promise execution,

211-213

Index | 511

error handling, 232, 235
methods, 205-206, 208, 210
using function that returns, 204-207

promisfy utility, 441
properties

adding to class, 177-182
CSS, 273, 274, 285, 294
customizing definitions, 156-159
defining new, 150-151
Error object, 228
identifying, 150-151
iterating over all properties of objects,

152-154
keeping private, 179
merging of two objects’, 155
methods for finding, 153
versus methods, 180
naming, 150, 169
nonenumerable, 165
preventing addition of, 160
sorting array by property value, 108-109
unique keys, 168-170

prototype chain, 147, 151, 153, 184, 195-197
prototypes, 173, 174, 184-186
Proxy class/object traps, 161-164
pseudorandom number generator, 62, 133-135
Pug templating engine, 468, 471-473
push() method, 100
PWAs (progressive web applications), 366-377

Q
query string, 229
querySelector() method, 272
querySelectorAll() method, 266, 272, 282
question() function, 411

R
race() method, 213
radians, converting to degrees, 71
radix, 70
random numbers, generating, 61-65
random() method, 61, 133
RangeError, 231, 238
React framework, 392
read() function, 407-410
read/write authorization, OAuth 1.0, 481-485
readFile() function, 406
reading and writing file data, 405-410
Readline module, 410-412

README files, 428-431
RealFaviconGenerator, 372
rect element, 353
recursive algorithm, 141-143
redirecting a URL, 379-380
reduce() function, 110
reduce() method, 110
reducer function, 110
redundancy, reducing, 135-138
reference types, 155
ReferenceError, 238
RegEx object, 50, 55
region attributes, 299
regular expressions, 40, 49-52

(see also strings)
basic use of, 50
cookie value matching, 328
email address validation, 59-60
replacing HTML tags with named entities,

48-49
special characters, 40-42, 51

Regular Expressions Cookbook (O’Reilly
Media), 52

reload() method, 379
remote data, 301-324

fetching, 301-314, 457-459
form submission, 306-310
HTTP cookie sharing across domains,

319-320
long polling a remote data source, 322-324
in Node, 457-463
parsing of returned JSON, 314-316
RESTful API and accessing JSON-formatted

data, 461-463
screen scraping, 459-461
selection list population from server,

310-314
sending binary data and loading into image,

318-319
WebSockets for client-server communica‐

tion, 320-322
XML, fetching and parsing, 316-317
XMLHttpRequest to request data, 305-306,

320
removeChild() method, 283
REPL (read-evaluate-print-loop), 402-404
replace() method

String object, 49, 50
window.location, 379

512 | Index

replaceAll() method, 47, 49
RequestListener function, 400
require() function, 400
rest operator, 93
rest parameter, 125
RESTful API, 461-463, 492-495
reusable class, creating, 173-177
reviver function, 314
round() method, 65, 82
rounding numbers to specific decimal place,

65-66
routing, Express, 474-476
rows, deleting from table, 283
runtime performance analysis, 255-257

S
Scalable Vector Graphics (see SVG)
scale functionality, D3, 352
scheduling repeat tasks in Node, 453-455
scope, 135, 184
screen scraping, 459-461
script elements, 346
seal() method, 160
search property, 378
security issues

browser access to error details, 234
encrypted media and playback functional‐

ity, 360
mixed content (HTTP and HTTPS), 321

seed value, pseudorandom number generator,
133

select element, 311-313
selection list population from server, 310-314
Selectors API, 272-273
Selenium, 456
semver (semantic versioning), 20
sendText() function, 416
sensitivity property, 45
ServerResponse end() method, 402
ServerResponse object, 400
service workers, 226, 367-369, 372
sessionStorage functionality, 328-334
Set object, 102, 113
set() method, 114
setAttribute() method, 274-276
setDate() method, 79
setHours() method, 81
setImmediate() function, 414
setInterval() function, Node, 413, 416

setInterval() method, web workers, 204
setItem() function, 332
sets, converting to arrays, 114
setTimeout() function

asynchronous programming, 118, 139, 202,
202

Node, 413
shadow DOM, 389
shadow root of HTML element, 390
shallow compare, 91
shallow copies, 96, 99, 165
shared attributes, finding elements with, 269
shared workers, 226
shell, 14
short-circuit evaluation, 36
showMessage() function, 118
side effect, 365
significant digits, 39
Silverman, Richard

Git Pocket Guide (O’Reilly), 419
slice() method

Array object, 96, 99, 107
String object, 52, 59

socket.write() function, 416
some() method, 112
sort() method, 97, 108
spaces, removing from strings, 58
spawn() method, 445
special characters

inserting into strings, 40-42
list of regular expressions, 51

speed testing, Node, 455
splice() method, 99, 107
split() method, 53
stack property, 228
start() function, 403
startsWithE() method, 100
state, functions storing with closure, 129-130
static keyword, 188
static methods

adding to class, 188-190
creating objects, 190-192

storage event, 335
Storage object, 328-334
strict equality, 74
strict mode

catching mistakes with, 9-11, 157
customizing propery definition, 157
in modules, 160

Index | 513

stringify() method, 74, 315
strings (String object), 35-60, 182

(see also regular expressions)
case-insensitive string comparison, 45-46
checking for existing, nonempty, 35-38
checking for specific substring, 46
converting numeric value to formatted,

38-40
converting to dates, 77-79
converting to numbers, 68-69
CSS-style selector, 272
date value formatted as, 84-86
extracting lists from, 52-53
finding all instances of patterns in, 54-57
inserting emojis into, 42-43
inserting special characters into, 40-42
JSON formatted, 310, 315
providing better representation for class,

182
replacing all occurrences of, 47
replacing HTML tags with named entities,

48-49
template literals for clearer concatenation,

43-45
uppercase conversion of first letter, 58
whitespace removal from beginning and

end of, 57-58
structured programming, 246
style attribute, 274-276
style property, 274
substrings

checking for specific, 46
replacing matched, 54

super() keyword, 194, 239
Svelte framework, 392
SVG (Scalable Vector Graphics)

adding JavaScript to, 345-348
canvas element integration in HTML,

354-356
D3 tool to create SVG bar chart, 350-353
web page script access, 348-350

SVG Animations (O’Reilly), 348
Symbol type, 169
Symbol() method, 169-171
SyntaxError, 238

T
tables

adding up values, 280-282

deleting rows from, 283
tagged templates, 45
TDD (Test-Driven Development), 246, 437
template element, 388
template literals for clearer concatenation,

43-45
templating engines, 467
Temporal object, 83
terminal, using in Node or npm, 14, 410-412
termination condition, recursive functions, 142
test code coverage, 247-250
test server setup, 21-24
test() function, 242
test() method, 59
Test-Driven Development (see TDD)
test.js file, 242
testing, 241-250

assertion tests, 243
for empty objects, 154
for equality, 80-81, 90-93
integration, 437
load testing, 455
for loose equality, 74
matcher functions list, 245
Node modules, 435-438
Node speed and performance, 455
with REPL, 402-404
user acceptance, 433, 437
web apps/APIs, 373-377
WebSockets app, 455-456
writing unit tests, 241-246

text
adding to paragraphs, 276-278
copying to user clipboard, 380-381
working with in Node, 277, 287, 405, 416

Text node, 277
this keyword

arrow function syntax and, 268
classes, 185, 189
constructors, 175
Function, 137, 139-141
static methods, 189

Thor, 456
throw statement, 231, 237, 239-240
timers

event, 139
Node, 413-418

toBe() function, 242
toExponential() method, 38

514 | Index

toFixed() method, 38
toJSON() method, 74
toLowerCase() method, 45, 46
toPrecision() method, 38
toString() method

child_process module, 446
classes and, 182
file system, 407
Number object, 38, 70
window.location, 379

toThrow() function, 245
toUpper() method, 58
tree shaking, 364
trim() method, 53, 57-58
truthy values, 245
try…catch block, 229, 304
Twitter API, 478-485
type conversion, 38-40
type property, 157
typed arrays (see binary data)
TypeError, 157, 231
typeof operator, 36-37, 146
types, identifying object, 145-147

U
UglifyJS, 363
undefined parameter, 138
unique identifiers, 169
unit testing

matcher functions list, 245
Node modules, 435-438
writing tests with Jest, 241-246, 437

Universal Module Definition (UMD), 432
unscoped function, 139
upgradeneeded event handler, 341
uppercase conversion of first letter in strings,

58
url module object, 401
URLs

current value, 377-378
redirecting, 379-380

user acceptance testing, 433, 437
UTC (Coordinated Universal Time), 76, 84

V
validation

array contents, 112-113
form data, 289-292

validator.js library, 290

variables
assigning elements to, 93
breaking array into separate, 93-94
confirming, 35-38
environment, 439-441
global, 129, 283

video element, 356, 357-360
visibility property, 285
visibilitychange event, 384
visibilityState property, 384
VS (Visual Studio) Code, 2, 3
Vue framework, 392

W
WAI-ARIA (Web Accessibility Initiative-

Accessible Rich Internet Applications),
292-299

waterfall project design, 246
WAV file format, 357
web apps/APIs, 361-393

accessing JSON data via RESTful, 461-463
bundling JavaScript, 361-363
copying text to user clipboard, 380-381
DomParser API, 316-317
Express (see Express framework)
Fetch API, 223, 301-305
File API, 385-388
frontend framework, 391-393
loading files locally, 385-388
mobile web loading time issue, 363-365
notifications in desktop browser, 382-385
Page Visibility API, 384
progressive web applications, 366-377
redirecting a URL, 379-380
Selectors API, 272-273
testing and profiling, 373-377
Twitter API, 478-485
URL current value, 377-378

Web Components, 388-391
Web Crypto API, 63
Web Notifications API, 382-385
Web Worker API (Worker object), 203, 220-226
Webpack, 361-363, 364-365, 431, 434
WebSockets, 320-322, 455-456
while loop, 132
whitespace characters, 50-51, 57-58
window API, 378
window.crypt property, 63
window.error event handler, 234

Index | 515

window.location, 377
window.unhandledrejection event, 235
Windows OS, Node on, 398, 446
withCredentials property, 320
Workbox library, 373
write() function, 407-410
writeFile() function, 406
writeText() method, 380

X
XHTML, CDATA and, 347
XML

fetching and parsing of, 316-317
formatting with Node, 491-492
SVG (see SVG)

xmlbuilder module, 492
XMLHttpRequest() (XHR) method, 305-306,

320

Y
Yargs module, 447
Yarn package manager, 14
yield keyword, 131

516 | Index

About the Authors
Adam D. Scott is an engineering leader, web developer, educator, and artist based in
Connecticut. He has worked at the crossroads of technology and education for over a
decade, teaching and writing curriculum on a range of technical topics. This is his
seventh book.

Matthew MacDonald is a tech writer and long-ago Microsoft MVP who’s written
enough heavy books to prop open all the doors in his house. Visit his website to learn
about his free JavaScript book for kids, or to follow his semi-regular hot-takes pro‐
gramming publication, Young Coder.

Shelley Powers has been working with, and writing about, web technologies—from
the first release of JavaScript to the latest graphics and design tools—for more than 12
years. Her recent O’Reilly books have covered the semantic web, Ajax, JavaScript, and
web graphics. She’s an avid amateur photographer and web development aficionado,
who enjoys applying her latest experiments on her many websites.

Colophon
The bird on the cover of JavaScript Cookbook is a little egret (Egretta garzetta). This
small white heron, the smallest and most common in Singapore, is a lot like the new
world snowy egret. Its original breeding distribution included the large inland and
coastal wetlands in warm temperate parts of Europe, Asia, Africa, Taiwan, and Aus‐
tralia. Little egrets in warmer locations are permanent residents, while the northern
birds migrate to Africa and southern Asia.

Adult little egrets are 55–65 cm long with an 88–106 cm wingspan and weigh 350–
550 grams. Their plumage is all white. They have long black legs, yellow feet, and slim
black bills. In the breeding season, adults have two long nape plumes, gauzy plumes
on their backs and breasts, and red or blue skin between their bills and eyes.

Little egrets are lively hunters with a wide variety of techniques: they patiently stalk
prey in shallow waters; stand on one leg and stir the mud with the other to scare up
prey; and stand on one leg and wave the other foot over the water’s surface as a lure.
They eat fish, insects, amphibians, crustaceans, and reptiles. They nest in colonies on
platforms of sticks in trees or shrubs, reed beds, or bamboo groves, often with other
wading birds. Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Cassell’s Natural History. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

https://prosetech.com

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Copyright
	Table of Contents
	Preface
	Book Audience
	Book Organization
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. The JavaScript Language
	Chapter 1. Setting Up a Development Environment
	1.1 Choosing a Code Editor
	Problem
	Solution
	Discussion
	See Also

	1.2 Using the Developer Console in Your Browser
	Problem
	Solution
	Discussion
	See Also

	1.3 Running Blocks of Code in the Developer Console
	Problem
	Solution
	Discussion
	See Also

	1.4 Using Strict Mode to Catch Common Mistakes
	Problem
	Solution
	Discussion
	See Also

	1.5 Filling in HTML Boilerplate with Emmet Shortcuts
	Problem
	Solution
	Discussion

	1.6 Installing the npm Package Manager (with Node.js)
	Problem
	Solution
	Discussion
	See Also
	Extra: Using a Terminal and Shell

	1.7 Downloading a Package with npm
	Problem
	Solution
	Discussion
	Extra: Understanding package.json

	1.8 Updating a Package with npm
	Problem
	Solution
	Discussion

	1.9 Setting Up a Local Test Server
	Problem
	Solution
	Discussion
	See Also

	1.10 Enforcing Code Standards with a Linter
	Problem
	Solution
	Discussion

	1.11 Styling Code Consistently with a Formatter
	Problem
	Solution
	Discussion

	1.12 Experimenting in a JavaScript Playground
	Problem
	Solution
	Discussion

	Chapter 2. Strings and Regular Expressions
	2.1 Checking for an Existing, Nonempty String
	Problem
	Solution
	Discussion

	2.2 Converting a Numeric Value to a Formatted String
	Problem
	Solution
	Discussion
	See Also

	2.3 Inserting Special Characters
	Problem
	Solution
	Discussion
	See Also

	2.4 Inserting Emojis
	Problem
	Solution
	Discussion

	2.5 Using Template Literals for Clearer String Concatenation
	Problem
	Solution
	Discussion

	2.6 Performing a Case-Insensitive String Comparison
	Problem
	Solution
	Discussion

	2.7 Checking If a String Contains a Specific Substring
	Problem
	Solution
	Discussion

	2.8 Replacing All Occurrences of a String
	Problem
	Solution
	Discussion
	See Also

	2.9 Replacing HTML Tags with Named Entities
	Problem
	Solution
	Discussion
	See Also

	2.10 Using a Regular Expression to Replace Patterns in a String
	Problem
	Solution
	Discussion
	Extra: Regular Expressions

	2.11 Extracting a List from a String
	Problem
	Solution
	Discussion
	See Also

	2.12 Finding All Instances of a Pattern
	Problem
	Solution
	Discussion
	Extra: Highlighting Matches

	2.13 Removing Whitespace from the Beginning and End of a String
	Problem
	Solution
	Discussion
	See Also

	2.14 Converting the First Letter of a String to Uppercase
	Problem
	Solution
	Discussion
	See Also

	2.15 Validating an Email Address
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Numbers
	3.1 Generating Random Numbers
	Problem
	Solution
	Discussion
	See Also

	3.2 Generating Cryptographically Secure Random Numbers
	Problem
	Solution
	Discussion

	3.3 Rounding to a Specific Decimal Place
	Problem
	Solution
	Discussion
	See Also

	3.4 Preserving Accuracy in Decimal Values
	Problem
	Solution
	Discussion
	See Also

	3.5 Converting a String to a Number
	Problem
	Solution
	Discussion

	3.6 Converting a Decimal to a Hexadecimal Value
	Problem
	Solution
	Discussion

	3.7 Converting Between Degrees and Radians
	Problem
	Solution
	Discussion

	3.8 Calculating the Length of a Circular Arc
	Problem
	Solution
	Discussion

	3.9 Manipulating Very Large Numbers with BigInt
	Problem
	Solution
	Discussion

	Chapter 4. Dates
	4.1 Getting the Current Date and Time
	Problem
	Solution
	Discussion
	See Also

	4.2 Converting a String to a Date
	Problem
	Solution
	Discussion
	See Also

	4.3 Adding Days to a Date
	Problem
	Solution
	Discussion
	See Also

	4.4 Comparing Dates and Testing Dates for Equality
	Problem
	Solution
	Discussion
	See Also

	4.5 Calculating the Time Elapsed Between Two Dates
	Problem
	Solution
	Discussion
	See Also

	4.6 Formatting a Date Value as a String
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Arrays
	5.1 Checking If an Object Is an Array
	Problem
	Solution
	Discussion

	5.2 Iterating Over All the Elements in an Array
	Problem
	Solution
	Discussion

	5.3 Checking If Two Arrays Are Equal
	Problem
	Solution
	Discussion

	5.4 Breaking Down an Array into Separate Variables
	Problem
	Solution
	Discussion
	See Also

	5.5 Passing an Array to a Function That Expects a List of Values
	Problem
	Solution
	Discussion
	See Also

	5.6 Cloning an Array
	Problem
	Solution
	Discussion
	See Also

	5.7 Merging Two Arrays
	Problem
	Solution
	Discussion
	See Also

	5.8 Copying a Portion of an Array by Position
	Problem
	Solution
	Discussion
	See Also

	5.9 Extracting Array Items That Meet Specific Criteria
	Problem
	Solution
	Discussion
	See Also

	5.10 Emptying an Array
	Problem
	Solution
	Discussion

	5.11 Removing Duplicate Values
	Problem
	Solution
	Discussion
	See Also

	5.12 Flattening a Two-Dimensional Array
	Problem
	Solution
	Discussion

	5.13 Searching Through an Array for Exact Matches
	Problem
	Solution
	Discussion
	See Also

	5.14 Searching Through an Array for Items That Meet Specific Criteria
	Problem
	Solution
	Discussion
	See Also

	5.15 Removing or Replacing Array Elements
	Problem
	Solution
	Discussion

	5.16 Sorting an Array of Objects by a Property Value
	Problem
	Solution
	Discussion

	5.17 Transforming Every Element of an Array
	Problem
	Solution
	Discussion

	5.18 Combining an Array’s Values in a Single Calculation
	Problem
	Solution
	Discussion
	See Also

	5.19 Validating Array Contents
	Problem
	Solution
	Discussion
	See Also

	5.20 Creating a Collection of Nonduplicated Values
	Problem
	Solution
	Discussion

	5.21 Creating a Key-Indexed Collection of Items
	Problem
	Solution
	Discussion

	Chapter 6. Functions
	6.1 Passing a Function as an Argument to Another Function
	Problem
	Solution
	Discussion
	See Also

	6.2 Using Arrow Functions
	Problem
	Solution
	Discussion
	See Also

	6.3 Providing a Default Parameter Value
	Problem
	Solution
	Discussion

	6.4 Creating a Function That Accepts Unlimited Arguments
	Problem
	Solution
	Discussion
	See Also

	6.5 Using Named Function Parameters
	Problem
	Solution
	Discussion
	See Also

	6.6 Creating a Function That Stores its State with a Closure
	Problem
	Solution
	Discussion
	See Also

	6.7 Creating a Generator Function That Yields Multiple Values
	Problem
	Solution
	Discussion
	See Also
	Extra: Building a Repeatable Pseudorandom Number Generator

	6.8 Reducing Redundancy by Using Partial Application
	Problem
	Solution
	Discussion
	Advanced: A Partial Function Factory
	Extra: Using bind() to Partially Provide Arguments

	6.9 Fixing this with Function Binding
	Problem
	Solution
	Discussion
	Extra: self = this

	6.10 Implementing a Recursive Algorithm
	Problem
	Solution
	Discussion

	Chapter 7. Objects
	7.1 Checking if an Object Is a Certain Type
	Problem
	Solution
	Discussion

	7.2 Using an Object Literal to Bundle Data
	Problem
	Solution
	Discussion
	See Also
	Extra: Computed Property Names

	7.3 Checking If an Object Has a Property
	Problem
	Solution
	Discussion
	See Also

	7.4 Iterating Over All the Properties of an Object
	Problem
	Solution
	Discussion
	See Also

	7.5 Testing for an Empty Object
	Problem
	Solution
	Discussion

	7.6 Merging the Properties of Two Objects
	Problem
	Solution
	Discussion

	7.7 Customizing the Way a Property Is Defined
	Problem
	Solution
	Discussion
	See Also

	7.8 Preventing Any Changes to an Object
	Problem
	Solution
	Discussion

	7.9 Intercepting and Changing Actions on an Object with a Proxy
	Problem
	Solution
	Discussion

	7.10 Cloning an Object
	Problem
	Solution
	Discussion
	See Also

	7.11 Making a Deep Copy of an Object
	Problem
	Solution
	Discussion

	7.12 Creating Absolutely Unique Object Property Keys
	Problem
	Solution
	Discussion

	7.13 Creating Enums with Symbol
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Classes
	8.1 Creating a Reusable Class
	Problem
	Solution
	Discussion
	See Also
	Extra: Multiple Constructors

	8.2 Adding Properties to a Class
	Problem
	Solution
	Discussion
	See Also
	Extra: Private Fields

	8.3 Giving a Class a Better String Representation
	Problem
	Solution
	Discussion

	8.4 Using the Constructor Pattern to Make a Custom Class
	Problem
	Solution
	Discussion
	See Also

	8.5 Supporting Method Chaining in Your Class
	Problem
	Solution
	Discussion

	8.6 Adding Static Methods to a Class
	Problem
	Solution
	Discussion

	8.7 Using a Static Method to Create Objects
	Problem
	Solution
	Discussion

	8.8 Inheriting Functionality from Another Class
	Problem
	Solution
	Discussion
	Extra: Prototype Chains

	8.9 Organizing Your JavaScript Classes with Modules
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Asynchronous Programming
	9.1 Updating the Page During a Loop
	Problem
	Solution
	Discussion
	See Also

	9.2 Using a Function That Returns a Promise
	Problem
	Solution
	Discussion
	See Also

	9.3 Promisifying an Asynchronous Function That Uses a Callback
	Problem
	Solution
	Discussion
	See Also

	9.4 Executing Multiple Promises Concurrently
	Problem
	Solution
	Discussion

	9.5 Waiting for a Promise to Finish with Await and Async
	Problem
	Solution
	Discussion

	9.6 Creating an Asynchronous Generator Function
	Problem
	Solution
	Discussion
	See Also

	9.7 Using a Web Worker to Perform a Background Task
	Problem
	Solution
	Discussion
	See Also

	9.8 Adding Progress Support to a Web Worker
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Errors and Testing
	10.1 Catching and Neutralizing an Error
	Problem
	Solution
	Solution
	See Also

	10.2 Catching Different Types of Errors
	Problem
	Solution
	Discussion
	See Also

	10.3 Catching Asynchronous Errors
	Problem
	Solution
	Discussion
	See Also

	10.4 Detecting Unhandled Errors
	Problem
	Solution
	Discussion
	Extra: Logging Tools

	10.5 Throwing a Standard Error
	Problem
	Solution
	Discussion
	See Also

	10.6 Throwing a Custom Error
	Problem
	Solution
	Discussion
	See Also

	10.7 Writing Unit Tests for Your Code
	Problem
	Solution
	Discussion
	See Also
	Extra: Writing Tests First

	10.8 Tracking Test Code Coverage
	Problem
	Solution
	Discussion

	Part II. JavaScript in the Browser
	Chapter 11. Browser Tools
	11.1 Debugging JavaScript
	Problem
	Solution
	Discussion

	11.2 Analyzing Runtime Performance
	Problem
	Solution
	Discussion

	11.3 Identifying Unused JavaScript
	Problem
	Solution
	Discussion

	11.4 Using Lighthouse to Measure Best Practices
	Problem
	Solution
	Discussion

	Chapter 12. Working with HTML
	12.1 Accessing a Given Element and Finding Its Parent and Child Elements
	Problem
	Solution
	Discussion

	12.2 Traversing the Results from querySelectorAll() with forEach()
	Problem
	Solution
	Discussion

	12.3 Adding Click Functionality to an Element
	Problem
	Solution
	Discussion

	12.4 Finding All Elements That Share an Attribute
	Problem
	Solution
	Discussion

	12.5 Accessing All Elements of a Specific Type
	Problem
	Solution
	Discussion
	See Also

	12.6 Discovering Child Elements Using the Selectors API
	Problem
	Solution
	Discussion
	See Also

	12.7 Changing an Element’s Class Value
	Problem
	Solution
	Discussion

	12.8 Setting an Element’s Style Attribute
	Problem
	Solution
	Discussion
	Extra: Accessing an Existing Style Setting
	Advanced

	12.9 Adding Text to a New Paragraph
	Problem
	Solution
	Discussion

	12.10 Inserting a New Element in a Specific DOM Location
	Problem
	Solution
	Discussion

	12.11 Checking If a Checkbox Is Checked
	Problem
	Solution
	Discussion

	12.12 Adding Up Values in an HTML Table
	Problem
	Solution
	Discussion
	Extra: forEach and querySelectorAll
	Extra: Modularization of Globals

	12.13 Deleting Rows from an HTML Table
	Problem
	Solution
	Discussion

	12.14 Hiding Page Sections
	Problem
	Solution
	Discussion

	12.15 Creating Hover-Based Pop-Up Info Windows
	Problem
	Solution
	Discussion

	12.16 Validating Form Data
	Problem
	Solution
	Discussion
	Extra: HTML5 Form Validation Techniques

	12.17 Highlighting Form Errors and Accessibility
	Problem
	Solution
	Discussion
	See Also

	12.18 Creating an Accessible Automatically Updated Region
	Problem
	Solution
	Discussion

	Chapter 13. Fetching Remote Data
	13.1 Requesting Remote Data with Fetch
	Problem
	Solution
	Discussion

	13.2 Using XMLHttpRequest
	Problem
	Solution
	Discussion

	13.3 Submitting a Form
	Problem
	Solution
	Discussion

	13.4 Populating a Selection List from the Server
	Problem
	Solution
	Discussion

	13.5 Parsing Returned JSON
	Problem
	Solution
	Discussion

	13.6 Fetching and Parsing XML
	Problem
	Solution
	Discussion

	13.7 Sending Binary Data and Loading into an Image
	Problem
	Solution
	Discussion

	13.8 Sharing HTTP Cookies Across Domains
	Problem
	Solution
	Discussion

	13.9 Using Websockets to Establish a Two-Way Communication Between Client and Server
	Problem
	Solution
	Discussion
	See Also

	13.10 Long Polling a Remote Data Source
	Problem
	Solution
	Discussion

	Chapter 14. Data Persistence
	14.1 Persisting Information with Cookies
	Problem
	Solution
	Discussion

	14.2 Using sessionStorage for Client-Side Storage
	Problem
	Solution
	Discussion
	See Also

	14.3 Creating a localStorage Client-Side Data Storage Item
	Problem
	Solution
	Discussion
	See Also

	14.4 Persisting Larger Chunks of Data on the Client Using IndexedDB
	Problem
	Solution
	Discussion

	14.5 Simplifying IndexedDB with a Library
	Problem
	Solution
	Discussion

	Chapter 15. Working with Media
	15.1 Adding JavaScript to SVG
	Problem
	Solution
	Discussion
	Extra: Using SVG Libraries

	15.2 Accessing SVG from a Web Page Script
	Problem
	Solution
	Discussion

	15.3 Creating an SVG Bar Chart with D3
	Problem
	Solution
	Discussion

	15.4 Integrating SVG and the Canvas Element in HTML
	Problem
	Solution
	Discussion
	Extra: Canvas? Or SVG?

	15.5 Running a Routine When an Audio File Begins Playing
	Problem
	Solution
	Discussion

	15.6 Controlling Video from JavaScript with the video Element
	Problem
	Solution
	Discussion

	Chapter 16. Writing Web Applications
	16.1 Bundling JavaScript
	Problem
	Solution
	Discussion
	Extra: Using npm Modules

	16.2 JavaScript and the Mobile Web
	Problem
	Solution
	Discussion
	See Also

	16.3 Writing a Progressive Web Application
	Problem
	Solution
	Discussion

	16.4 Testing and Profiling a Progressive Web Application
	Problem
	Solution
	Discussion

	16.5 Getting the Value of the Current URL
	Problem
	Solution
	Discussion

	16.6 Redirecting a URL
	Problem
	Solution
	Discussion

	16.7 Copying Text to a User’s Clipboard
	Problem
	Solution
	Discussion

	16.8 Enabling a Mobile-Like Notification in the Desktop Browser
	Problem
	Solution
	Discussion
	Extra: Web Notifications and the Page Visibility API

	16.9 Loading a File Locally in the Browser
	Problem
	Solution
	Discussion

	16.10 Extending the Possible with Web Components
	Problem
	Solution
	Discussion

	16.11 Choosing a Front-End Framework
	Problem
	Solution
	React
	Vue
	Svelte
	Angular

	Part III. Node.js
	Chapter 17. Node Basics
	17.1 Managing Node Versions with Node Version Manager
	Problem
	Solution
	Discussion

	17.2 Responding to a Simple Browser Request
	Problem
	Solution
	Discussion

	17.3 Interactively Trying Out Node Code Snippets with REPL
	Problem
	Solution
	Discussion
	Extra: Wait a Second, What Global Object?

	17.4 Reading and Writing File Data
	Problem
	Solution
	Discussion
	Advanced

	17.5 Getting Input from the Terminal
	Problem
	Solution
	Discussion
	See Also

	17.6 Getting the Path to the Current Script
	Problem
	Solution
	Discussion

	17.7 Working with Node Timers and Understanding the Node Event Loop
	Problem
	Solution
	Discussion

	Chapter 18. Node Modules
	18.1 Searching for a Specific Node Module via npm
	Problem
	Solution
	Discussion

	18.2 Converting Your Library into a Node Module
	Problem
	Solution
	Discussion
	See Also

	18.3 Taking Your Code Across Module Environments
	Problem
	Solution
	Discussion
	See Also

	18.4 Creating an Installable Node Module
	Problem
	Solution
	Discussion
	Extra: The README File and Markdown Syntax

	18.5 Writing Multiplatform Libraries
	Problem
	Solution
	Discussion

	18.6 Unit Testing Your Modules
	Problem
	Solution
	Discussion

	Chapter 19. Managing Node
	19.1 Using Environment Variables
	Problem
	Solution
	Discussion

	19.2 Managing Callback Hell
	Problem
	Solution
	Discussion

	19.3 Accessing Command-Line Functionality Within a Node Application
	Problem
	Solution
	Discussion
	Extra: Using Child Processes with Windows

	19.4 Passing Command-Line Arguments
	Problem
	Solution
	Discussion

	19.5 Creating a Command-Line Utility with Help from Commander
	Problem
	Solution
	Discussion

	19.6 Keeping a Node Instance Up and Running
	Problem
	Solution
	Discussion

	19.7 Monitoring Application Changes and Restarting During Local Development
	Problems
	Solution
	Discussion

	19.8 Scheduling Repeat Tasks
	Problem
	Solution
	Discussion

	19.9 Testing the Performance and Capability of Your WebSockets Application
	Problem
	Solution
	Discussion

	Chapter 20. Remote Data
	20.1 Fetching Remote Data
	Problem
	Solution
	Discussion

	20.2 Screen Scraping
	Problem
	Solution
	Discussion

	20.3 Accessing JSON-Formatted Data via a RESTful API
	Problem
	Solution
	Discussion
	See Also

	Chapter 21. Building Web Applications with Express
	21.1 Using Express to Respond to Requests
	Problem
	Solution
	Discussion

	21.2 Using the Express-Generator
	Problem
	Solution
	Discussion

	21.3 Routing
	Problem
	Solution
	Discussion

	21.4 Working with OAuth
	Problem
	Solution
	Discussion

	21.5 OAuth 2 User Authentication with Passport.js
	Problem
	Solution
	Discussion

	21.6 Serving Up Formatted Data
	Problem
	Solution
	Discussion

	21.7 Building a RESTful API
	Problem
	Solution
	Discussion

	21.8 Building a GraphQL API
	Problem
	Solution
	Discussion

	Index
	About the Authors

