O'REILLY"

Learnin

Perl

Making Easy Things Easy
and Hard Things Possible

Randal L. Schwartz,
brian d foy &
Tom Phoenix

9

O'REILLY"

Learning Perl

If you're just getting started with Perl, this is the book you want—
whether you're a programmer, system administrator, or web
hacker. Nicknamed “the Llama" by two generations of users, this
best seller closely follows the popular introductory Perl course
taught by the authors since 1991. This eighth edition covers
recent changes to the language up to version 5.34.

Perl is suitable for almost any task on almost any platform, from
short fixes to complete web applications. Learning Perl teaches
you the basics and shows you how to write simple, single-file
programs—roughly 90% of the Perl programs in use today. And
each chapter includes exercises to help you practice what you've
just learned. Other books may teach you to program in Perl, but
this book will turn you into a Perl programmer.

Topics include:

¢ Perl dataand e String manipulation
variable types (including Unicode)

¢ Subroutines e Lists and sorting

* File operations e Process management

e Regular expressions e Use of third-party modules

Randal L. Schwartz is a two-decade veteran of the software industry,

skilled in software design, system administration, security, technical
writing, and training.

brian d foy is a prolific Perl trainer and writer, and runs The Per/
Review to help people use and understand Perl through education,
consulting, code review, and more.

Tom Phoenix has been working in the field of education since 1982.
He started teaching Perl classes for Stonehenge Consulting Services
in1996.

“Still the best way to
learn Perl: friendly,
accurate, and
encouraging.”

—Nathan Torkington
Coauthor of the Perl Cookbook

“Learning Perl[4th ed.]
should rightly be
regarded as one of the
classic texts for Perl
programmers to read
through atleast once
in their Perl careers. The
book is chock-full of
useful information, and
even experienced Perl
coders would do well to
at least leaf through the
pages of this book for
paradigms to help their
coding.”

—Craig Maloney
Slashdot reviewer

PROGRAMMING LANGUAGES / PERL

US $5999 CAN $7999
ISBN: 978-1-492-09495-1

IIVHNEOWAVINN
MR i

8

Twitter: @oreillymedia
facebook.com/oreilly

Praise for Learning Perl

Still the best way to learn Perl: friendly, accurate, and encouraging.

—Nathan Torkington, Coauthor of the Perl Cookbook

I consider the Llama the de facto standard when it comes to an introductory book
for the Perl language. It’s coherent, easy to approach, and it broadly covers the language
from legacy information to the bleeding edge.

—Grzegorz Szpetkowski, Software Engineer,
Intel Technology Poland

Learning Perl is an investment that will help unlock the full potential of this powerful
programming language. The authors are insightful as they methodically tackle a maze
of new and exciting concepts that should be part of everyone’s journey towards

Perl proficiency.

—André Philipp, Freelance software engineer

Learning Perl [4th ed.] should rightly be regarded as one of the classic texts for Perl
programmers to read through at least once in their Perl careers. The book is chock-full of
useful information, and even experienced Perl coders would do well to at least leaf
through the pages of this book for paradigms to help their coding.

—Craig Maloney, Slashdot reviewer

EIGHTH EDITION

Learning Perl
Making Easy Things Easy
and Hard Things Possible

Randal L. Schwartz, brian d foy,
and Tom Phoenix

Bejng - Boston « Farnham - Sebastopol - Tokyo [@YRIIMNY

Learning Perl
by Randal L. Schwartz, brian d foy, and Tom Phoenix

Copyright © 2021 Enhydra Services, LLC. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade Indexer: WordCo Indexing Services, Inc.
Development Editor: Jill Leonard Interior Designer: David Futato

Production Editor: Daniel Elfanbaum Cover Designer: Karen Montgomery
Copyeditor: Audrey Doyle lllustrator: Kate Dullea

Proofreader: Kim Cofer
July 2021: Eighth Edition

Revision History for the Eighth Edition
2021-06-29: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492094951 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Perl, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-09495-1
[GP]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492094951

Table of Contents

o] [Xiii

—

1o INtroduction.eveeiiiiii
Questions and Answers
Is This the Right Book for You?
What About the Exercises and Their Answers?
What If I'm a Per]l Course Instructor?
What Does “Per]” Stand For?
Why Did Larry Create Perl?
Why Didn’t Larry Just Use Some Other Language?
Is Perl Easy or Hard?
How Did Perl Get to Be So Popular?
What's Happening with Perl Now?
What's Perl Really Good For?
What Is Perl Not Good For?
How Can I Get Perl?
What Is CPAN?
Is There Any Kind of Support?
What If T Find a Bug in Perl?
How Do I Make a Perl Program?
A Simple Program
What's Inside That Program?
How Do I Compile My Perl Program?
A Whirlwind Tour of Perl
Exercises

O 00 00 NI NI O UT B R R W N =

— e e e e
N U U= O OO

2.

SalarData........ooiiiiii
Numbers
All Numbers Have the Same Format Internally
Integer Literals
Nondecimal Integer Literals
Floating-Point Literals
Numeric Operators
Strings
Single-Quoted String Literals
Double-Quoted String Literals
String Operators
Automatic Conversion Between Numbers and Strings
Perl’s Built-in Warnings
Interpreting Nondecimal Numerals
Scalar Variables
Choosing Good Variable Names
Scalar Assignment
Compound Assignment Operators
Output with print
Interpolation of Scalar Variables into Strings
Creating Characters by Code Point
Operator Precedence and Associativity
Comparison Operators
The if Control Structure
Boolean Values
Getting User Input
The chomp Operator
The while Control Structure
The undef Value
The defined Function
Exercises

ListS AN AFTaYS. . oo v eteetetit ettt r et enieennesaesanieaneennesnnnns
Accessing Elements of an Array
Special Array Indices
List Literals
The qw Shortcut
List Assignment
The pop and push Operators
The shift and unshift Operators
The splice Operator

19
20
20
20
21
22
23
23
24
25
26
27
28
29
30
31
31
32
32
34
34
36
37
37
38
39
40
40
41
42

43
44
45
45
46
47
49
49
50

vi

| Table of Contents

Interpolating Arrays into Strings 51

The foreach Control Structure 52
Perl’s Favorite Default: $_ 53
The reverse Operator 53
The sort Operator 54
The each Operator 54

Scalar and List Context 55
Using List-Producing Expressions in Scalar Context 56
Using Scalar-Producing Expressions in List Context 57
Forcing Scalar Context 58

<STDIN> in List Context 58

Exercises 59

 SUBFOULINES. . 61

Defining a Subroutine 61

Invoking a Subroutine 62

Return Values 62

Arguments 64

Private Variables in Subroutines 66

Variable-Length Parameter Lists 67
A Better &max Routine 67
Empty Parameter Lists 68

Notes on Lexical (my) Variables 69

The use strict Pragma 70

The return Operator 71
Omitting the Ampersand 72

Nonscalar Return Values 74

Persistent, Private Variables 74

Subroutine Signatures 76
Prototypes 78

Exercises 79

Inputand QUtPUL. .. .o et e e e 81

Input from Standard Input 81

Input from the Diamond Operator 83
The Double Diamond 85

The Invocation Arguments 85

Output to Standard Output 86

Formatted Output with printf 89
Arrays and printf 91

Filehandles 91

Table of Contents | vii

Opening a Filehandle
Binmoding Filehandles
Bad Filehandles
Closing a Filehandle

Fatal Errors with die
Warning Messages with warn
Automatically die-ing

Using Filehandles

Changing the Default Output Filehandle

Reopening a Standard Filehandle
Output with say

Filehandles in a Scalar

Exercises

Hashes. . .ovveiit ettt ittt et e e e

What Is a Hash?
Why Use a Hash?
Hash Element Access
The Hash as a Whole
Hash Assignment
The Big Arrow
Hash Functions
The keys and values Functions
The each Function
Typical Use of a Hash
The exists Function
The delete Function
Hash Element Interpolation
The %ENV Hash
Exercises

Regular EXpressions.c.coveviviiiiriiiienneennnens

Sequences

Practice Some Patterns

The Wildcard

Quantifiers

Grouping in Patterns

Alternation

Character Classes
Character Class Shortcuts
Negating the Shortcuts

93
96
96
97
97
99
99
100
100
101
101
102
104

105
105
107
108
109
110
111
112
112
113
115
115
115
116
116
117

119
119
121
123
125
129
132
134
135
136

viii

| Table of Contents

Unicode Properties
Anchors

Word Anchors
Exercises

. Matching with Regular EXpressions.covviuiiiiiiiiiiriinienneennnss

Matches with m//

Match Modifiers
Case-Insensitive Matching with /i
Matching Any Character with /s
Adding Whitespace with /x
Combining Option Modifiers
Choosing a Character Interpretation

Beginning- and End-of-Line Anchors

Other Options
The Binding Operator =~
The Match Variables
The Persistence of Captures
Captures in Alternations
Noncapturing Parentheses
Named Captures
The Automatic Match Variables
Precedence
Examples of Precedence
And There’s More
A Pattern Test Program
Exercises

. Processing Text with Regular Expressions
Substitutions with s///
Global Replacements with /g
Different Delimiters
Substitution Modifiers
The Binding Operator
Nondestructive Substitutions
Case Shifting
Metaquoting
The split Operator
The join Function
m// in List Context
More Powerful Regular Expressions

136
137
139
140

141
141
142
142
142
143
145
145
147
148
148
149
150
151
153
154
156
158
159
159
160
160

163
163
164
165
165
165
165
166
168
168
170
170
171

Table of Contents

ix

10.

1.

Nongreedy Quantifiers

Fancier Word Boundaries

Matching Multiple-Line Text

Updating Many Files

In-Place Editing from the Command Line
Exercises

More Control StrUCUNES. ..o vvvv ittt it ieeieneenenenennes

The unless Control Structure
The else Clause with unless
The until Control Structure
Statement Modifiers
The Naked Block Control Structure
The elsif Clause
Autoincrement and Autodecrement
The Value of Autoincrement
The for Control Structure
The Secret Connection Between foreach and for
Loop Controls
The last Operator
The next Operator
The redo Operator
Labeled Blocks
The Conditional Operator
Logical Operators
The Value of a Short-Circuit Operator
The defined-or Operator
Control Structures Using Partial-Evaluation Operators
Exercises

Perl Modules. . ..oovveeeiet ettt ittt e

Finding Modules
Installing Modules
Using Your Own Directories
Using Simple Modules
The File::Basename Module
Using Only Some Functions from a Module
The File::Spec Module
Path::Class
Databases and DBI
Dates and Times

171
173
174
174
177
178

179
179
180
180
181
182
183
184
184
185
187
188
188
189
190
191
192
193
194
195
196
198

199
199
200
201
203
204
205
206
207
208
209

X

Table of Contents

12.

13.

14.

15.

Exercises

L0 =3 £

File Test Operators
Testing Several Attributes of the Same File
Stacked File Test Operators

The stat and Istat Functions

The localtime Function

Bitwise Operators
Using Bitstrings

Exercises

Directory Operations.oeuuiiuniiiiiiiiii ittt

The Current Working Directory
Changing the Directory

Globbing

An Alternate Syntax for Globbing
Directory Handles

Manipulating Files and Directories
Removing Files

Renaming Files

Links and Files

Making and Removing Directories
Moditying Permissions

Changing Ownership

Changing Timestamps

Exercises

Stringsand SOrting.ovvuiiinii it i i i e e

Finding a Substring with index
Manipulating a Substring with substr
Formatting Data with sprintf

Using sprintf with “Money Numbers”
Advanced Sorting

Sorting a Hash by Value

Sorting by Multiple Keys
Exercises

Process Management.ouvvuiuiiniiieiieenernernnsrnsrnesneoneonans

The system Function
Avoiding the Shell

210

21
211
215
217
218
219
220
221
224

225
225
226
227
229
230
232
232
233
235
239
241
241
242
242

245
245
247
248
249
250
254
255
256

257
257
260

Table of Contents

| xi

16.

A. Exercise Answers
B. Beyond the Llama

C. AUnicode Primer

The Environment Variables
The exec Function
Using Backquotes to Capture Output
Using Backquotes in a List Context
External Processes with IPC::System::Simple
Processes as Filehandles
Getting Down and Dirty with fork
Sending and Receiving Signals
Exercises

Some Advanced Perl Techniques.ccovvvnnnenn..

Slices

Array Slice

Hash Slice

Key-Value Slices
Trapping Errors

Using eval

More Advanced Error Handling
Picking Items from a List with grep
Transforming Items from a List with map
Fancier List Utilities
Exercises

262
263
264
267
268
269
271
272
275

277
277
279
281
282
283
283
287
289
290
291
293

Xii

| Table of Contents

Preface

Welcome to the eighth edition of Learning Perl, updated for Perl 5.34 and its latest
features. This book is still mostly good even if you are still using Perl 5.8 (although,
it’s been a long time since it was released; have you thought about upgrading?).

If you're looking for the best way to spend your first 30 to 45 hours with the Perl pro-
gramming language, you've found it. In the pages that follow, you'll find a carefully
paced introduction to the language that is the workhorse of the internet, as well as the
language of choice for system administrators, web hackers, and casual programmers
around the world. We've designed this book based on the in-person classes we teach,
so we've timed the book for a week’s worth of work.

We hope you're reading this preface before you buy the book, because there’s a histor-
ical hiccup that may cause some confusion. There’s another language, Perl 6, that
started off as a replacement for Perl 5 but then went out on its own with the new
name “Raku” (although brian’s book on that language is still Learning Perl 6).

Along with that, there’s currently a move to make a new major version of Perl, Perl 7.
That’s supposed to be Perl v5.34 with different defaults as a baby step to evolving the
language. Since it’s basically Perl 5, it should be able to run Perl 5 programs, although
perhaps with a compatibility switch. As we write this, we're not sure how that will
shake out. After you finish this book, you may like to read another book by brian,
Preparing for Perl 7. Since much of that advice is simply modern good practices, we'll
try to give you that same advice in this book.

As we write this, Perl 5 is probably the version you want. It’s the widely installed and
used language that people mean when they say simply “Perl.” It’s going to be the inter-
esting and most used version for a long time. It’s the one you want if you don’t know
why this paragraph is here.

We can't give you all of Perl in just a few hours. The books that promise to do that are
probably fibbing a bit. Instead, we've carefully selected a useful subset of Perl for you
to learn, good for programs from 1 to 128 lines long (an arbitrary number), which

xXiii

https://learning.oreilly.com/library/view/learning-perl-6/9781491977675/
https://leanpub.com/preparing_for_perl7

end up being about 90% of the programs in use out there. And when you're ready to
go on, you can get Intermediate Perl, which picks up where this book leaves off. We've
also included a number of pointers for further education.

Each chapter is short enough for you to read in an hour or two. Each chapter ends
with a series of exercises to help you practice what you've just learned, with the
answers in Appendix A for your reference. Thus, this book is ideally suited for a
classroom “Introduction to Per]” course. We know this directly because the material
for this book was lifted almost word for word from our flagship “Learning Perl”
course, delivered to thousands of students around the world. However, we've
designed the book for self-study as well. brian provides additional exercises and
detailed answers in a separate companion book, Learning Perl Exercises.

Perl lives as the “toolbox for Unix,” but you don’t have to be a Unix guru, or even a
Unix user, to read this book. Unless otherwise noted, everything we're saying applies
equally well to Windows ActivePerl from ActiveState and Strawberry Perl and pretty
much every other modern implementation of Perl.

Although you don’t need to know a single thing about Perl to begin reading this book,
we recommend that you already have familiarity with basic programming concepts
such as variables, loops, subroutines, and arrays, and the all-important “editing a
source code file with your favorite text editor” We don’t spend any time trying to
explain those concepts. Although were pleased that we've had many reports of people
successfully picking up Learning Perl and grasping Perl as their first programming
language, of course we can’t promise the same results for everyone.

Typographical Conventions

The following font conventions are used in this book:

Constant width
Used for method names, function names, variables, and attributes. It is also used
for code examples.

Constant width bold
Used to indicate user input.

Constant width italic
Used to indicate a replaceable item in code (e.g., filename, where you are sup-
posed to substitute an actual filename).

xiv | Preface

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://leanpub.com/learning_perl_exercises
https://www.activestate.com/activeperl
http://www.strawberryperl.com/

Italic
Used for filenames, URLs, hostnames, commands in text, important words on
first mention, and emphasis.

[37]
At the start of an exercise’s text, we provide a (very rough) estimate of how many
minutes you can expect to spend on that particular exercise.

Code Examples

This book is here to help you get your job done. You are invited to copy the code in
the book and adapt it for your own needs. Rather than copying by hand, however, we
encourage you to download the code from the book’s companion website. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per-
mission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, authors, publisher, and ISBN. For example: “Learning Perl, 8th edition, by Ran-
dal L. Schwartz, brian d foy, and Tom Phoenix (O’Reilly). Copyright 2021 Enhydra
Services, LLC, 978-1-492-09495-1 If you feel your use of code examples falls outside
fair use or the permission given above, feel free to contact us at permis-
sions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O’'Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

Preface | xv

https://learning-perl.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/learning-perl-8e.

Email bookquestions@oreilly.com to comment on or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly.
Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://www.youtube.com/oreillymedia.

History of This Book

For the curious, here’s how Randal tells the story of how this book came about:

After T had finished the first Programming perl book with Larry Wall (in 1991), I was
approached by Taos Mountain Software in Silicon Valley to produce a training
course. This included having me deliver the first dozen or so courses and train their
staff to continue offering the course. I wrote the course for them' and delivered it for
them as promised.

On the third or fourth delivery of that course (in late 1991), someone came up to me
and said, “You know, I really like Programming perl, but the way the material is pre-
sented in this course is so much easier to follow—you oughta write a book like this
course.” It sounded like an opportunity to me, so I started thinking about it.

1 In the contract, I retained the rights to the exercises, hoping someday to reuse them in some other way, like in
the magazine columns I was writing at the time. The exercises are the only things that leapt from the Taos
course to the book.

xvi | Preface

https://oreil.ly/learning-perl-8e
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://www.programmingperl.org/
https://www.programmingperl.org/

I wrote to Tim O’Reilly with a proposal based on an outline that was similar to the
course I was presenting for Taos—although I had rearranged and modified a few of
the chapters based on observations in the classroom. I think that was my fastest pro-
posal acceptance in history—I got a message from Tim within 15 minutes, saying
“We've been waiting for you to pitch a second book—Programming perl is selling like
gangbusters” That started the effort over the next 18 months to finish the first edition
of Learning Perl.

During that time, I was starting to see an opportunity to teach Perl classes outside
Silicon Valley,? so I created a class based on the text I was writing for Learning Perl. 1
gave a dozen classes for various clients (including my primary contractor, Intel Ore-
gon), and used the feedback to fine-tune the book draft even further.

The first edition hit the streets on the first day of November 1993,> and became a
smashing success, frequently even outpacing Programming perl book sales.

The back-cover jacket of the first book said “written by a leading Perl trainer” Well,
that became a self-fulfilling prophecy. Within a few months, I was starting to get
email from all over the United States asking me to teach at their site. In the following
seven years, my company became the leading worldwide on-site Perl training com-
pany, and I had personally racked up (literally) a million frequent-flier miles. It didn’t
hurt that the web started taking off about then, and the webmasters and webmis-
tresses picked Perl as the language of choice for content management, interaction
through CGI, and maintenance.

For two years, I worked closely with Tom Phoenix in his role as lead trainer and con-
tent manager for Stonehenge, giving him charter to experiment with the “Llama”
course by moving things around and breaking things up. When we had come up with
what we thought was the best major revision of the course, I contacted O'Reilly and
said, “It’s time for a new book!” And that became the third edition.

Two years after writing the third edition of the Llama, Tom and I decided it was time
to push our follow-on “advanced” course out into the world as a book, for people
writing programs that are “100 to 10,000 lines of code” And together we created the
first Alpaca book (Learning Perl Objects, References, and Modules), released in 2003.

But fellow instructor brian d foy had noticed that we could use some rewriting in
both books, because our courseware still needed to track the changing needs of the
typical student. So, he pitched the idea to O'Reilly to take on rewriting both the Llama
and the Alpaca. This edition of the Llama reflects those changes. brian has really been

2 My Taos contract had a noncompete clause, so I had to stay out of Silicon Valley with any similar courses,
which I respected for many years.

3 Iremember that date very well, because it was also the day I was arrested at my home for computer-related
activities around my Intel contract, a series of felony charges for which I was later convicted.

Preface | xvii

https://www.programmingperl.org/
https://www.programmingperl.org/
https://learning.oreilly.com/library/view/learning-perl-objects/0596004788/

the lead writer here, working with my occasional guidance, and has done a brilliant
job of the usual “herding cats® that a multiple-writer team generally feels like.

On December 18, 2007, the Perl 5 Porters released Perl 5.10, a significant new version
of Perl with several new features. The previous version, 5.8, had focused on the
underpinnings of Perl and its Unicode support. The latest version, starting from the
stable 5.8 foundation, was able to add completely new features, some of which it bor-
rowed from the development of Perl 6. Some of these features, such as named cap-
tures in regular expressions, are much better than the old ways of doing things, thus
perfect for Perl beginners. We hadn't thought about a fifth edition of this book, but
Perl 5.10 was so much better that we couldn’t resist.

Since then, Perl has been under constant improvement and is keeping a regular
release cycle. Each new Perl release has brought exciting new features, many of which
programmers have wanted for years. As long as Perl keeps doing that, we'll keep
updating this book.

Changes from the Previous Edition

The text is updated for the latest version, Perl 5.34, and some of the code only works
with that version. We note in the text when we are writing about a Perl 5.34 feature,
and we mark those code sections with a special use statement that ensures you’re
using the right version:

use v5.34; # this script requires Perl 5.34 or greater

If you don't see that use v5.34 in a code example (or a similar statement with a dif-
ferent version), it should work all the way back to Perl 5.8. To see which version of
Perl you have, try the -v command-line switch:

$ perl -v
In some examples, we'll show a lower minimum Perl version because that’s all the

program needs. For instance, say was introduced in Perl v5.10:

use v5.10;

say "Howdy, Fred!";

In most cases, we'll probably forgo a new feature to make the examples work on as
many versions of Perl as possible. That doesn’t mean you shouldn’t use the new fea-
tures or that we don’t endorse them. We simply have a wide audience for this book.

We include Unicode examples and features where appropriate. If you haven’t started
playing with Unicode, you may want to read our primer in Appendix C. You have to
bite the bullet sometimes, so it might as well be now. You’ll see Unicode throughout
the book, most notably in the chapters on scalars (Chapter 2), input/output
(Chapter 5), and sorting (Chapter 14).

xviii | Preface

Here’s a quick summary of the updated or new things in this edition:

» We updated references to Perl 6 to call it by its new name, “Raku””

o The search.cpan.org site was subsumed into MetaCPAN, so we removed refer-
ences to the old site.

o ActiveState has discontinued PPM, its Perl Package Manager, so we've removed
references to that.

Acknowledgments

From Randal

I want to thank the Stonehenge trainers past and present (Joseph Hall, Tom Phoenix,
Chip Salzenberg, brian d foy, and Tad McClellan) for their willingness to go out and
teach in front of classrooms week after week and to come back with their notes about
what’s working (and what’s not), so we could fine-tune the material for this book. I
especially want to single out my coauthor and business associate, Tom Phoenix, for
having spent many, many hours working to improve Stonehenge’s Llama course and
to provide the wonderful core text for most of this book. And brian d foy for being
the lead writer beginning with the fourth edition, and taking that eternal to-do item
out of my inbox so that it would finally happen.

I also want to thank everyone at O’Reilly, especially our very patient editor and over-
seer for previous editions, Allison Randal (no relation, but she has a nicely spelled last
name), editor Simon St. Laurent, and Tim O’Reilly himself for taking a chance on me
in the first place with the Camel and Llama books.

I am also absolutely indebted to the thousands of people who have purchased the past
editions of the Llama so that I could use the money to stay “off the streets and out of
jail”; and to those students in my classrooms who have trained me to be a better
trainer; and to the stunning array of Fortune 1000 clients that have purchased our
classes in the past and will continue to do so into the future.

As always, a special thanks to Lyle and Jack, for teaching me nearly everything I know
about writing. I won't ever forget you guys.

From brian

I have to thank Randal first, since I learned Perl from the first edition of this book,
and then had to learn it again when he asked me to start teaching for Stonehenge in
1998. Teaching is often the best way to learn. Since then, Randal has mentored me not
only in Perl but several other things he thought I needed to learn—like the time he
decided we could use Smalltalk instead of Perl for a demonstration at a web confer-
ence. I'm always amazed at the breadth of his knowledge. He’s the one who told me

Preface | xix

https://www.activestate.com/blog/goodbye-ppm-hello-state-tool/

to start writing about Perl. Now I'm helping out on the book where I started. I'm
honored, Randal.

I probably only actually saw Tom Phoenix for less than two weeks in the entire time I
worked for Stonehenge, but I had been teaching his version of Stonehenge’s “Learn-
ing Perl” course for years. That version turned into the third edition of this book. By
teaching Tom’s new version, I found new ways to explain almost everything, and
learned even more corners of Perl.

When I convinced Randal that I should help out on the Llama update, I was anointed
as the maker of the proposal to the publisher, the keeper of the outline, and the ver-
sion control wrangler. Our editor, Allison Randal, helped me get all of those set up
and endured my frequent emails without complaining. After Allison went on to other
things, Simon St. Laurent was extremely helpful in the role of editor and inside guy at
O’Reilly, patiently waiting for the right phase of the moon to suggest another update.
Zan McQuade and Jill Leonard, both from O’Reilly, provided enthusiastic support to
publish the present edition.

From Tom

I've got to echo Randal’s thanks to everyone at O’'Reilly. For the third edition of this
book, Linda Mui was our editor, and I still thank her, for her patience in pointing out
which jokes and footnotes were most excessive, while pointing out that she is in no
way to blame for the ones that remain. Both she and Randal have guided me through
the process of writing, and I am grateful. In a previous edition, Allison Randal took
charge; then Simon St. Laurent became the editor. My thanks go to each of them in
recognition of their unique contributions.

And another echo with regard to Randal and the other Stonehenge trainers, who
hardly ever complained when I unexpectedly updated the course materials to try out
a new teaching technique. You folks have contributed many different viewpoints on
teaching methods that I would never have seen.

For many years, I worked at the Oregon Museum of Science and Industry (OMSI),
and I'd like to thank the folks there for letting me hone my teaching skills as I learned
to build a joke or two into every activity, explosion, or dissection.

To the many folks on Usenet who have given me your appreciation and encourage-
ment for my contributions there, thanks. As always, I hope this helps.

Also to my many students, who have shown me with their questions (and befuddled
looks) when I needed to try a new way of expressing a concept. I hope that the
present edition helps to relieve any remaining puzzlement.

Of course, deep thanks are due especially to my coauthor, Randal, for giving me the
freedom to try various ways of presenting the material both in the classroom and here

xx | Preface

in the book, as well as for the push to make this material into a book in the first place.
And without fail, I must say that I am indeed inspired by your ongoing work to
ensure that no one else becomes ensnared by the legal troubles that have stolen so
much of your time and energy; you're a fine example.

To my wife, Jenna, thanks for being a cat person, and everything thereafter.

From All of Us

We also thank our “correcters” The O’Reilly Media system is one of continuous pub-
lishing. As people find mistakes, we try to fix them immediately. When it’s time to
print more books, or release a new ebook, you get the benefit of those post-
publication corrections. For those, we thank Egon Choroba, Cody Cziesler, Kieren
Diment, Charles Evans, Keith Howanitz, Susan Malter, Enrique Nell, Peter O’Neill,
Povl Ole Haarlev Olsen, Flavio Poletti, Rob Reed, Alan Rocker, Dylan Scott, Peter
Scott, Shaun Smiley, John Trammel, Emma Urquhart, John Wiersba, Danny Woods,
and Zhenyo Zhou. Additionally, David Farrell, André Philipp, Grzegorz Szpetkowski,
and Ali Sinan Uniir carefully read through the entire book to find all (we hope) mis-
takes and lies. We learned from each of them.

Thanks also to our many students who have let us know what parts of the course
material have needed improvement over the years. It’s because of you that we're all so
proud of it today.

Thanks to the many Perl Mongers who have made us feel at home as we've visited
your cities. Let’s do it again sometime.

And finally, our sincerest thanks to our friend Larry Wall, for having the wisdom to
share his really cool and powerful toys with the rest of the world so that we can all get
our work done just a little bit faster, easier, and with more fun.

Preface | xxi

CHAPTER1
Introduction

Welcome to the Llama book, our affectionate name for our book covering Perl 5.

This is the eighth edition of a book that millions of readers have enjoyed since we
released the first one in 1993. We hope they’ve enjoyed it. It's a sure thing that we
enjoyed writing it. At least, that's how we remember it after we've turned in the book
and waited the months it took to see it show up on shelves. And by “shelves,” we
mean online.

This is the second edition of our popular Perl 5 book after the release of Perl 6, a lan-
guage that started its life as something based on Perl but has now taken on a life of its
own with the new name “Raku” Unfortunately, that bit of history means both lan-
guages have “Perl” in the name even though they are only lightly related. It’s likely
that you want Perl 5 and this book unless you know that you don’t. And from this
point, “Per]” means Perl 5, the same Perl that’s been getting work done for a couple of
decades.

Questions and Answers

You probably have some questions about Perl, and maybe even some about this book,
especially if you've already flipped through it to see what’s coming. So, we'll use this
chapter to answer them, including how to find answers that we don’t provide.

Is This the Right Book for You?

This is not a reference book. It’s a tutorial on the very basics of Perl, which is just
enough for you to create simple programs mostly for your own use. We don’t cover
every detail of every topic, and we spread out some of the topics over several chapters
so that you pick up concepts as you need them.

Our intended readers are people who know at least a little bit about programming
and just need to learn Perl. We assume you have at least some background in using a
terminal, editing files, and running programs—ijust not Perl programs. You already
know about variables and subroutines and the like, but you just need to see how Perl
does it.

This doesn’t mean that the absolute beginner, having never touched a terminal pro-
gram or written a single line of code, will be completely lost. You might not catch
everything we say the first time you go through the book, but many beginners have
used the book with only minor frustrations. The trick is to not worry about every-
thing you might be missing and to focus on just the core concepts we present. You
might take a little longer than an experienced programmer, but you have to start
somewhere.

We're assuming you know a little about Unicode, so we don't bog down in the details,
but we've explained a bit more in Appendix C. You can peruse it before you start the
book and refer to it as needed.

We've included an appendix on experimental features (Appendix D). Some exciting
new things await you, but we're not going to force you to use them. Whenever possi-
ble, we'll try to show you how to do the same amazing thing the old boring way.

And this shouldn’t be the only Perl book you ever read. It’s just a tutorial. It's not com-
prehensive. We get you started in the right direction so you can go on to our other
books, Intermediate Perl and Mastering Perl, when you are ready. The definitive refer-
ence for Perl is Programming Perl, also known as the “Camel book”

We should also note that even though this book covers up to Perl 5.34, it’s still useful
even if you have an earlier version. You might miss out on some of the cool new fea-
tures, but you’ll still learn how to use basic Perl. The least recent version that we'll
think about, however, is Perl 5.8, even though that was released almost 20 years ago.

What About the Exercises and Their Answers?

We've included exercises at the end of each chapter because, between the three of us,
we've presented this same course material to several thousand students. We know that
making mistakes by working through the exercises is the best way to learn. We have
carefully crafted these exercises to give you the chance to make mistakes as well.

It’s not that we want you to make mistakes, but you need to have the chance. You're
going to make most of these mistakes during your Perl programming career, and it
may as well be now. Any mistake that you make while reading this book you won’t
make again when you're writing a program on a deadline. And we're always here to
help you out if something goes wrong, in the form of Appendix A, which has our
answers for each exercise and a little text to go with it. Check out the answers when
you're done with the exercises.

2 | Chapter1:Introduction

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/
https://learning.oreilly.com/library/view/programming-perl-4th/9781449321451/

Try not to peek at the answer until you've given the problem a good try, though.
You'll learn better if you figure it out rather than read about it. Don’t knock your head
repeatedly against the wall if you don’t figure out a solution: move on to the next
chapter and don’t worry too much about it.

Even if you never make any mistakes, you should look at the answers when you’re
done; the accompanying text will point out some details of the program that might
not be obvious at first.

When you look at our answer, keep in mind that you could have done it in a different
manner and still be right. You don’t have to do the same thing we did. In some cases,
we'll have multiple solutions. Not only that, but after you make it through this book,
you’ll probably do the same task differently since we've limited our answers to only
the concepts we've shown so far. Other features you encounter later might make short
work of the problem.

Each exercise has a number in square brackets in front of the exercise text, looking
something like this:

1. [37] What does the number 37 inside square brackets mean, when it appears at
the start of an exercise’s text?

That number is our (very rough) estimate of how many minutes you can expect to
spend on that particular exercise. It's rough, so don’t be too surprised if youre all
done (with writing, testing, and debugging) in half that time, or not done in twice
that long. On the other hand, if youre really stuck, we won't tell anyone that you
peeked at Appendix A to see our answer.

If you want additional exercises, check out the Learning Perl Exercises, which adds
several exercises for each chapter.

What If I'm a Perl Course Instructor?

If you're a Perl instructor who has decided to use this as your textbook (as many have
over the years), you should know that we've tried to make each set of exercises short
enough that most students could do the whole set in 45 minutes to an hour, with a
little time left over for a break. Some chapters’ exercises should be quicker, and some
may take longer. That’s because, once we had written all of those little numbers in
square brackets, we discovered we don’t know how to add (luckily we know how to
make computers do it for us).

We also have a companion book, the Learning Perl Exercises, which has additional
exercises for each chapter. If you get the version of the workbook for previous edi-
tions, you might have to adjust the chapter order.

Questions and Answers | 3

https://leanpub.com/learning_perl_exercises/
https://leanpub.com/learning_perl_exercises/

What Does “Perl” Stand For?

Perl is sometimes called the “Practical Extraction and Report Language,” although it
has also been called a “Pathologically Eclectic Rubbish Lister;” among other expan-
sions. It’s actually a backronym, not an acronym—Larry Wall, Perl’s creator, came up
with the name first and the expansion later. That's why “Per]” isn’t in all caps. There’s
no point in arguing which expansion is correct: Larry endorses both.

You may also see “perl” with a lowercase p in some writing. In general, “Per]” with a
capital P refers to the language and “perl” with a lowercase p refers to the actual inter-
preter that compiles and runs your programs.

Why Did Larry Create Perl?

Larry created Perl in the mid-1980s when he was trying to produce some reports
from a Usenet-news-like hierarchy of files for a bug-reporting system, and awk ran
out of steam. Larry, being the lazy programmer that he is, decided to overkill the
problem with a general-purpose tool that he could use in at least one other place. The
result was Perl version zero.

We're not insulting Larry by saying he’s lazy; Laziness is a virtue. So are Impatience
and Hubris, as Larry wrote in the first edition of Programming perl. The wheelbarrow
was invented by someone who was too lazy to carry things; writing was invented by
someone who was too lazy to memorize; Perl was invented by someone who was too
lazy to get the job done without inventing a whole new computer language.

Why Didn't Larry Just Use Some Other Language?

There’s no shortage of computer languages, is there? But at the time, Larry didn’t see
anything that really met his needs. If one of the other languages of today had been
available back then, perhaps Larry would have used one of those. He needed some-
thing with the quickness of coding available in shell or awk programming, and with
some of the power of more advanced tools like grep, cut, sort, and sed, without having
to resort to a language like C.

Perl tries to fill the gap between low-level programming (such as in C or C++ or
assembly) and high-level programming (such as shell programming). Low-level pro-
gramming is usually hard to write and ugly, but fast and unlimited; it'’s hard to beat
the speed of a well-written low-level program on a given machine. And theres not
much you can't do there. High-level programming, at the other extreme, tends to be
slow, hard, ugly, and limited; there are many things you can’t do at all with the shell or
batch programming if there’s no command on your system that provides the needed
functionality. Perl is easy, nearly unlimited, mostly fast, and kind of ugly.

Let’s take another look at those four claims we just made about Perl.

4 | Chapter 1: Introduction

http://www.programmingperl.org/

First, Perl is easy. As you'll see, though, this means it’s easy to use. It’s not especially
easy to learn. If you drive a car, you spent many weeks or months learning how, and
now it’s easy to drive. When you've been programming Perl for about as many hours
as it took you to learn to drive, Perl will be easy for you.

Perl is nearly unlimited. There are very few things you can’t do with Perl. You wouldn’t
want to write an interrupt-microkernel-level device driver in Perl (even though that’s
been done), but most things that ordinary folks need most of the time are good tasks
for Perl, from quick little one-off programs to major industrial-strength applications.

Perl is mostly fast. Thats because nobody is developing Perl who doesn't also use it—
so we all want it to be fast. If someone wants to add a feature that would be really cool
but would slow down other programs, the Perl developers are almost certain to refuse
the new feature until we find a way to make it quick enough.

Perl is kind of ugly. This is true. The symbol of Perl has become the camel, from the
cover of the venerable Camel book (also known as Programming Perl), a cousin of this
booK’s Llama (and her sister, the Alpaca). Camels are kind of ugly, too. But they work
hard, even in tough conditions. Camels are there to get the job done despite all diffi-
culties, even when they look bad and smell worse and sometimes spit at you. Perl is a
little like that.

Is Perl Easy or Hard?

Perl is easy to use, but sometimes hard to learn. This is a generalization, of course. In
designing Perl, Larry made many trade-offs. When he’s had the chance to make
something easier for the programmer at the expense of being more difficult for the
student, he’s decided in the programmer’s favor nearly every time. That's because
you’ll learn Perl only once, but you’ll use it again and again.

If youre going to use a programming language for only a few minutes each week or
month, youd prefer one that is easier to learn since you'll have forgotten nearly all of
it from one use to the next. Perl is for people who are programmers for at least 20
minutes per day, and probably most of that in Perl.

Perl has any number of conveniences that let the programmer save time. For example,
most functions will have a default; frequently, the default is the way that you’ll want to
use the function. So you'll see lines of Perl code like these:

while (<>) {
chomp;
print join("\t", (split /:/)[0, 2, 1, 5]), "\n";

Don't worry that you don't know what any of that means yet. Written out in full,
without using Perl’s defaults and shortcuts, that snippet would be roughly 10 or 12
times longer, so it would take much longer to read and write. It would be harder to

What Does “Perl” Stand For? | 5

https://learning.oreilly.com/library/view/programming-perl-4th/9781449321451/

maintain and debug, too, with more variables. If you already know some Perl and you
don’t see the variables in that code, that’s part of the point. Theyre all being used by
default. But to have this ease at the programmer’s tasks means paying the price when
you're learning; you have to learn those defaults and shortcuts.

A good analogy is the proper and frequent use of contractions in English. Sure, “will
not” means the same as “won’t” But most people say “won’t” rather than “will not”
because it saves time, and because everybody knows it and it makes sense. Similarly,
Perl’s “contractions” abbreviate common “phrases” so that they can be “spoken”
quicker and understood by the maintainer as a single idiom rather than a series of
unrelated steps.

Once you become familiar with Perl, you may find yourself spending less time trying
to get shell quoting (or C declarations) right, and more time surfing the web because
Perl is a great tool for leverage. Perl’s concise constructs allow you to create (with
minimal fuss) some very cool one-up solutions or general tools. Also, you can drag
those tools along to your next job because Perl is highly portable and readily avail-
able, so you’ll have even more time to surf.

Perl is a very high-level language. That means the code is quite dense; a Perl program
may be around a quarter to three-quarters as long as the corresponding program in
C. This makes Perl faster to write, faster to read, faster to debug, and faster to main-
tain. It doesn't take much programming before you realize that, when the entire sub-
routine is small enough to fit onscreen all at once, you don't have to keep scrolling
back and forth to see what’s going on. Also, since the number of bugs in a program is
roughly proportional to the length of the source code (rather than being proportional
to the program’s functionality), the shorter source in Perl will mean fewer bugs on
average.

Like any language, Perl can be “write-only”—it’s possible to write programs that are
impossible to read. But with proper care, you can avoid this common accusation. Yes,
sometimes Perl looks like line noise to the uninitiated, but to the seasoned Perl pro-
grammer, it looks like the notes of a grand symphony. If you follow the guidelines of
this book, your programs should be easy to read and easy to maintain, and they prob-
ably won’t win an Obfuscated Perl Contest.

How Did Perl Get to Be So Popular?

After playing with Perl a bit, adding stuff here and there, Larry released it to the com-
munity of Usenet readers, commonly known as “the Net” The users on this ragtag
fugitive fleet of systems around the world (tens of thousands of them) gave him feed-
back, asking for ways to do this, that, or the other thing, many of which Larry had
never envisioned his little Perl handling.

6 | Chapter1:Introduction

But as a result, Perl grew, and grew, and grew. It grew in features. It grew in portabil-
ity. What was once a little language available on only a couple of Unix systems now
has thousands of pages of free online documentation, dozens of books, several main-
stream Usenet newsgroups (and a dozen newsgroups and mailing lists outside the
mainstream) with an uncountable number of readers, and implementations on nearly
every system in use today—and don’t forget this Llama book as well.

What's Happening with Perl Now?

Perl 5 development underwent an amazing revitalization while most people were
waiting for its successor, Perl 6. Those are actually different languages now, but Perl 5,
which is still doing a lot of good work in the world, keeps chugging along. They
shared a name for awhile, but Perl 6 is now on its own as “Raku” (although brian’s
book on that language is still titled Learning Perl 6).

Starting with v5.10, Per]l developed a way to include new features in the language
without disturbing old programs. We’ll show you how to get those new features when
you want them, as well as how to enable experimental features that you might want to
play with. You can peek at Appendix D for more details.

The Perl 5 Porters also adopted an official support policy. After 20 years of playing it
fast and loose, they decided they would support the last two stable releases. By the
time we're finished with this book, we expect those to be v5.32 and v5.34. The odd
numbers after the dot are reserved for development releases.

In 2019, Perl development moved to GitHub. That means you can now easily file
issues, send pull requests, and check out the “bleading” edge sources. This frees up a
lot of the effort that formerly went into maintaining the aging infrastructure.

There’s also talk of a new major version of Perl, Perl 7, which will be mostly v5.34
with different defaults. Learning the current version of Perl means you should be
ready for Perl 7. brian covers some things to expect in Preparing for Perl 7, and we'll
add notes in this book when we can.

What's Perl Really Good For?

Perl is good for quick-and-dirty programs that you whip up in three minutes. Perl is
also good for long and extensive programs that will take a dozen programmers three
years to finish. Of course, you'll probably find yourself writing many programs that
take you less than an hour to complete, from the initial plan to the fully tested code.

Perl is optimized for problems that are about 90% working with text and about 10%
everything else. That description seems to fit most programming tasks that pop up
these days. In a perfect world, every programmer would know every language; youd
always be able to choose the best language for each project. Most of the time, we hope
youd choose Perl.

What Does “Perl” Stand For? | 7

https://www.oreilly.com/library/view/learning-perl-6/9781491977675/
https://leanpub.com/preparing_for_perl7

What Is Perl Not Good For?

So, if it’s good for so many things, what is Perl not good for? Well, you shouldn’t
choose Perl if youre trying to make an opaque binary. That's a program that you
could give away or sell to someone who then can't see your secret algorithms in the
source, and thus can’t help you maintain or debug your code either. When you give
someone your Perl program, you'll normally be giving them the source, not an
opaque binary.

If youre wishing for an opaque binary, though, we have to tell you that they don’t
exist. If someone can install and run your program, they can turn it back into source
code. Granted, this won’t necessarily be the same source you started with, but it will
be some kind of source code. The real way to keep your secret algorithm a secret is,
alas, to apply the proper number of attorneys; they can write a license that says, “You
can do this with the code, but you can’t do that. And if you break our rules, we've got
the proper number of attorneys to ensure that you'll regret it”

How Can | Get Perl?

You probably already have it. At least, we find Perl wherever we go. It ships with many
systems, and system administrators often install it on every machine at their site. But
if you can't find it already on your system, you can still get it for free. It comes pre-
installed with most Linux or *BSD systems, macOS, and some others. Companies
such as ActiveState provide pre-built and enhanced distributions for several plat-
forms, including Windows. You can also get Strawberry Perl for Windows, which
comes with all the same stuff as regular Perl plus extra tools to compile and install
third-party modules.

Perl is distributed under two different licenses. For most people, since you’ll merely
be using it, either license is as good as the other. If you’ll be modifying Perl, however,
you’ll want to read the licenses more closely, because they put some small restrictions
on distributing the modified code. For people who won't modify Perl, the licenses
essentially say, “It's free—have fun with it

In fact, it's not only free, but it runs rather nicely on nearly everything that calls itself
Unix and has a C compiler. You download it, type a command or two, and it starts
configuring and building itself. Or, better yet, you get your package manager to do it
for you. Besides Unix and Unix-like systems, people addicted to Perl have ported it to
other systems, such as VMS, OS/2, even MS-DOS, and every modern species of Win-
dows—and probably even more by the time you read this. Many of these ports of Perl
come with an installation program that’s even easier to use than the process for instal-
ling Perl in Unix. Check for links in the “ports” section on CPAN.

It's nearly always better to compile Perl from the source in Unix systems. Other sys-
tems may not have a C compiler and other tools needed for compilation, so CPAN

8 | Chapter 1:Introduction

https://www.activestate.com
http://www.strawberryperl.com

has binaries for these. When you use your local package manager, youre changing the
perl that your system may use to do its own tasks. You might make a big mess. We
suggest you install a perl just for your use, but that’s not necessary for this book.

What Is CPAN?

CPAN is the Comprehensive Perl Archive Network, your one-stop shop for Perl. It
has the source code for Perl itself, ready-to-install ports of Perl to all sorts of non-
Unix systems, examples, documentation, extensions to Perl, and archives of messages
about Perl. In short, CPAN is comprehensive.

CPAN is replicated on hundreds of mirror machines around the world; start at meta-
cpan to browse or search the archive.

Is There Any Kind of Support?

Sure. One of our favorites is the Perl Mongers. This is a worldwide association of Perl
users groups. There’s probably a group near you with an expert or someone who
knows an expert. If there’s no group, you can easily start one.

Of course, for the first line of support, you shouldn't neglect the documentation.
Besides the included documentation, you can also read the documentation on CPAN,
MetaCPAN, as well as other sites that have the Perl documentation, and check out the
latest version of the perlfaq.

Another authoritative source is the book Programming Perl, commonly called “the
Camel book” because of its cover animal (just as this book is known as “the Llama
book”). The Camel book contains the complete reference information, some tutorial
stuff, and a bunch of miscellaneous information about Perl. There’s also a separate
pocket-sized Perl 5 Pocket Reference by Johan Vromans (O’Reilly) that’s handy to keep
at hand (or in your pocket).

If you need to ask a question, there are any number of mailing lists—many listed at
http://lists.perl.org. There’s also The Perl Monastery and Stack Overflow. At any hour
of the day or night, there’s a Perl expert awake in some time zone answering questions
somewhere—the sun never sets on the Perl empire. This means that if you ask a ques-
tion, you’ll often get an answer within minutes. And if you didn’t check the documen-
tation and FAQ first, you’'ll get flamed within minutes.

You can also check out http://learn.perl.org and its associated mailing list, begin-
ners@perl.org. Many well-known Perl programmers also have blogs that regularly fea-
ture Perl-related posts, most of which you can read through /r/perl on Reddit.

If you find yourself needing a support contract for Perl, there are a number of firms
that are willing to charge as much as youd like. In most cases, these other support
avenues will take care of you for free.

HowCanlGetPerl? | 9

https://www.metacpan.org
https://www.metacpan.org
https://www.pm.org
https://www.metacpan.org
https://perldoc.perl.org
https://learn.perl.org/faq/
https://learning.oreilly.com/library/view/programming-perl-4th/9781449321451/
https://learning.oreilly.com/library/view/perl-pocket-reference/9781449311186/
https://lists.perl.org
https://www.perlmonks.org
https://www.stackoverflow.com
http://learn.perl.org
mailto:beginners@perl.org
mailto:beginners@perl.org
https://reddit.com/r/perl

What If | Find a Bug in Perl?

As a new Perl programmer, you're likely to create a situation where you think some-
thing is wrong with Perl. Youre using a big language that you don’t know yet, so you
don’t know who to blame for the unexpected behavior. It happens.

The first thing to do when you find a bug is to check the documentation again. Maybe
even two or three times. Many times, we've gone into the documentation looking to
explain a particular unexpected behavior and found some new little nuance that ends
up on a slide or in a magazine article. Perl has so many special features and excep-
tions to rules that you may have discovered a feature, not a bug. Also, check that you
don’t have an older version of Perl; maybe you found something that’s been fixed in a
more recent version.

Once youre 99% certain that you've found a real bug, ask around. Ask someone at
work, at your local Perl Mongers meeting, or at a Perl conference. Chances are, it’s
still a feature, not a bug.

When youre 100% certain that you've found a real bug, cook up a test case. (What,
you haven't done so already?) The ideal test case is a tiny self-contained program that
any Perl user could run to see the same (mis-)behavior as you've found. Once you've
got a test case that clearly shows the bug, create an issue on GitHub at https://
github.com/Perl/perl5/issues.

Once you've sent off your bug report, if you've done everything right, it’s not unusual
to get a response within minutes. Typically, you can apply a simple patch and get right
back to work. Of course, you may (at worst) get no response at all; the Perl developers
are under no obligation to read your bug reports. But all of us love Perl, so nobody
likes to let a bug escape our notice.

How Do | Make a Perl Program?

It’s about time you asked (even if you didnt). Perl programs are text files; you can cre-
ate and edit them with your favorite text editor. You don’t need any special develop-
ment environment, although there are some commercial ones available from various
vendors. We've never used any of these enough to recommend them (but long
enough to stop using them). Besides, your environment is a personal choice. Ask
three programmers what you should use and you’ll get eight answers.

You should generally use a programmer’s text editor rather than an ordinary editor.
What’s the difference? Well, a programmer’s text editor will let you do things that
programmers need, like indenting or un-indenting a block of code, or finding the
matching closing curly brace for a given opening curly brace.

On Unix systems, the two most popular programmer editors are emacs and vi (and
their variants and clones). BBEdit, TextMate, and Sublime Text are good editors for

10 | Chapter1: Introduction

https://github.com/Perl/perl5/issues
https://github.com/Perl/perl5/issues

macOS, and a lot of people have said nice things about UltraEdit, SciTE, Komodo
Edit, and PFE (Programmer’s File Editor) in Windows. The perlfaq3 documentation
lists several other editors too. Ask your local expert about text editors on your system.

For the simple programs you’ll write for the exercises in this book, none of which
should be more than about 20 or 30 lines of code, any text editor will be fine.

Some beginners try to use a word processor instead of a text editor. We recommend
against this—it’s inconvenient at best and impossible at worst. But we won't try to
stop you. Be sure to tell the word processor to save your file as “text only”; the word
processor’s own format will almost certainly be unusable. Most word processors will
probably also tell you that your Perl program is spelled incorrectly and you should
use fewer semicolons.

In some cases, you may need to compose the program on one machine, then transfer
it to another to run it. If you do this, be sure that the transfer uses “text” or “ASCII”
mode, and not “binary” mode. This step is needed because of the different text for-
mats on different machines. Without it, you may get inconsistent results—some ver-
sions of Perl actually abort when they detect a mismatch in the line endings.

A Simple Program

According to the oldest rule in the book, any book about a computer language that
has Unix-like roots has to start with showing the “Hello, world” program. So, here it
is in Perl:

#!/usr/bin/perl

print "Hello, world!\n";
Let’s imagine that you've typed that into your text editor. (Don’t worry yet about what
the parts mean and how they work. You'll see about those in a moment.) You can
generally save that program under any name you wish. Per]l doesn't require any spe-
cial kind of filename or extension, and it’s better not to use an extension at all. But
some systems may require an extension like .plx (meaning PerL eXecutable).

You may also need to do something so that your system knows it’s an executable pro-
gram (that is, a command). What you’ll do depends on your system; maybe you won't
have to do anything more than save the program in a certain place. (Your current
directory will generally be fine.) On Unix systems, you mark a program as being exe-
cutable using the chmod command:

$ chmod a+x my_program

The dollar sign (and space) at the start of the line represents the shell prompt, which
will probably look different on your system. If youre used to using chmod with a
number like 755 instead of a symbolic parameter like a+x, that’s fine too, of course.
Either way, it tells the system that this file is now a program.

How Do | Make a Perl Program? | 11

https://perldoc.perl.org/perlfaq3

Now you're ready to run it:

$./my_program

The dot and slash at the start of this command mean to find the program in the cur-
rent working directory instead of looking through PATH to find a program. That’s
not needed in all cases, but you should use it at the start of each command invocation
until you fully understand what it’s doing.

You can also run this by explicitly stating perl. If you're in Windows, you must specify
perl on the command line because Windows won't guess the program you want to
run:

C:\> perl my_program

If everything worked, it’s a miracle. More often, you’ll find that your program has a
bug. Edit and try again—but you don’t need to use chmod each time, as that should
“stick” to the file. (Of course, if the bug is that you didn’t use chmod correctly, you'll
probably get a “permission denied” message from your shell.)

There’s another way to write this simple program in v5.10 or later, and we might as
well get that out of the way right now. Instead of print, we use say, which does
almost the same thing but with less typing. It adds the newline for us, meaning that
we can save some time forgetting to add it ourselves. Since it’s a new feature and you
might not be using Perl 5.10 yet, we include a use v5.10 statement that tells Perl we
used new features:

#!/usr/bin/perl
use v5.10;

say "Hello World!";

This program only runs under v5.10 or later. When we introduce features from v5.10
or later in this book, we'll explicitly say they are new features in the text and include
that use v5.10 statement to remind you.

Typically, we only require the earliest version of Perl for the features that we need.
This book covers up to v5.34, and in many of the new features we preface the exam-
ples to remind you the minimum version of Perl that you need for a feature:

use v5.34;

We could also write this version requirement without the v, but we have to remember
that the minor number is actually three digits:

use 5.034;

Instead of that, we'll use the v form throughout this book.

12 | Chapter 1: Introduction

What's Inside That Program?

Like other “free-form” languages, Perl generally lets you use insignificant whitespace
(like spaces, tabs, and newlines) at will to make your program easier to read. Most
Perl programs use a fairly standard format, though, much like most of what we show
here. There is some general advice (not rules!) in the perlstyle documentation. We
strongly encourage you to properly indent your programs, as that makes your pro-
grams easier to read; a good text editor will do most of the work for you. Good com-
ments also make a program easier to read. In Perl, comments run from a pound sign
(#) to the end of the line.

There are no “block comments” in Perl, but there are a number of
ways to fake them. See the perlfaq portions of the documentation.

We don’t use many comments in the programs in this book because the surrounding
text explains their workings, but you should use comments as needed in your own
programs.

So, another way (a very strange way, it must be said) to write that same “Hello, world”
program might be like this:

#!/usr/bin/perl

print # This 1s a comment
"Hello, world!\n"
; # Don't write your Perl code like this!

That first line is actually a very special comment. On Unix systems, if the very first
two characters on the first line of a text file are #! (pronounced “sh-bang,” or SHo
'baNG for you dictionary nerds), then what follows is the name of the program that
actually executes the rest of the file. In this case, the program is stored in the
file /usr/bin/perl.

This #! line is actually the least portable part of a Perl program because you’ll need to
find out what goes there for each machine. Fortunately, its almost always
either /usr/bin/perl or /usr/local/bin/perl. If that’s not it, you’ll have to find where your
system is hiding perl, then use that path. On some Unix systems, you might use a she-
bang line that finds perl for you:

#!/usr/bin/env perl

Beware though, that finds the first perl, which might not be the one that you wanted.
If perl is not in any of the directories in your search path, you might have to ask your
local system administrator or somebody using the same system as you.

How Do | Make a Perl Program? | 13

https://perldoc.perl.org/perlstyle
https://perldoc.perl.org/perlfaq

On non-Unix systems, it’s traditional (and even useful) to make the first line say #!
perl. If nothing else, it tells your maintenance programmer as soon as they get ready
to fix it that it’s a Perl program.

If that #! line is wrong, you’ll generally get an error from your shell. This may be
something unexpected, like “file not found” or “bad interpreter” It’s not your pro-
gram thats not found, though; it’s that /usr/bin/perl wasn’t where it should have been.
Wed make the message clearer if we could, but it's not coming from Perl; it’s the shell
that’s complaining.

Another problem you could have is that your system doesn’t support the #! line at all.
In that case, your shell (or whatever your system uses) will probably try to run your
program all by itself, with results that may disappoint or astonish you. If you can’t
figure out what some strange error message is telling you, search for it in the perldiag
documentation.

The “main” program consists of all the ordinary Perl statements (not including any-
thing in subroutines, which you’ll see later). There’s no “main” routine, as there is in
languages like C or Java. In fact, many programs dont even have routines (in the
form of subroutines).

There’s also no required variable declaration section, as there is in some other lan-
guages. If you've always had to declare your variables, you may be startled or unset-
tled by this at first. But it allows us to write quick-and-dirty Perl programs. If your
program is only two lines long, you don’t want to have to use one of those lines just to
declare your variables. If you really want to declare your variables, that’s a good thing;
you'll see how to do that in Chapter 4.

Most statements are an expression followed by a semicolon. Here’s the one you've
seen a few times so far:

print "Hello, world!\n";

You really only need semicolons to separate statements, not terminate them. You
could leave the semicolon off if there’s no statement following it (or it’s the last state-
ment in a scope):

print "Hello, world!\n"

As you may have guessed by now, this line prints the message Hello, world!. At the
end of that message is the shortcut \n, which is probably familiar to you if you've
used another language like C, C++, or Java; it means a newline character. When that’s
printed after the message, the print position drops down to the start of the next line,
allowing the following shell prompt to appear on a line of its own, rather than being
attached to the message. Every line of output should end with a newline character.
We'll see more about the newline shortcut and other so-called backslash escapes in
the next chapter.

14 | Chapter 1: Introduction

https://perldoc.perl.org/perldiag
https://perldoc.perl.org/perldiag

How Do | Compile My Perl Program?

Just run your Perl program. The perl interpreter compiles and runs your program in
one user step:

$ perl my_program

When you run your program, Perl’s internal compiler first runs through your entire
source, turning it into internal bytecodes, which is an internal data structure repre-
senting the program. Perl’s bytecode engine takes over and actually runs the bytecode.
If there’s a syntax error on line 200, you’ll get that error message before you start run-
ning line 2. If you have a loop that runs 5,000 times, it’s compiled just once; the actual
loop can then run at top speed. And there’s no runtime penalty for using as many
comments and as much whitespace as you need to make your program easy to under-
stand. You can even use calculations involving only constants, and the result is a con-
stant computed once as the program is beginning—not each time through a loop.

To be sure, this compilation does take time—it’s inefficient to have a voluminous Perl
program that does one small quick task (out of many potential tasks, say) and then
exits because the runtime for the program will be dwarfed by the compile time. But
the compiler is very fast; normally the compilation will be a tiny percentage of the
runtime.

What if you could save the compiled bytecodes to avoid the overhead of compilation?
Or, even better, what if you could turn the bytecodes into another language, like C,
and then compile that? Well, both of these things are possible in some cases, but they
probably won't make most programs any easier to use, maintain, debug, or install,
and they may even make your program slower.

A Whirlwind Tour of Perl

So, you want to see a real Perl program with some meat? (If you don't, just play along
for now.) Here you are:

#!/usr/bin/perl
@lines = “perldoc -u -f atan2°;
foreach (@lines) {
s/\w<(.+?)>/\U$1/g;
print;

}

If perldoc is not available, that probably means your system doesn’t
have a command-line interface or your particular system includes
it in a different package.

AWhirlwind Tourof Perl | 15

Now, the first time you see Perl code like this, it can seem pretty strange. (In fact,
every time you see Perl code like this, it can seem pretty strange.) But let’s take it line
by line and see what this example does. These explanations are very brief; this is a
whirlwind tour, after all. We'll see all of this program’s features in more detail in
upcoming chapters. You're not really supposed to understand the whole thing until
later.

The first line is the #! line, as you saw before. You might need to change that line for
your system, as we showed you earlier.

The second line runs an external command, named within backquotes (* *). (The
backquote key is often found next to the number 1 on full-size American keyboards.
Be sure not to confuse the backquote with the single quote, '.) The command we
used is perldoc -u -f atan2; try typing that in your command line to see what its out-
put looks like. The perldoc command is used on most systems to read and display the
documentation for Perl and its associated extensions and utilities, so it should nor-
mally be available. This command tells you something about the trigonometric func-
tion atan2; were using it here just as an example of an external command whose
output we wish to process.

The output of that command in the backquotes is saved in an array variable called
@lines. The next line of code starts a loop that will process each one of those lines.
Inside the loop, the statements are indented. Although Perl doesn’t require this, good
programmers do.

The first line inside the loop body is the scariest one; it says s/\w<(.+?)>/\U$1/g;.
Without going into too much detail, we'll just say that this can change any line that
has a special marker made with angle brackets (< >), and there should be at least one
of those in the output of the perldoc command.

The next line, in a surprise move, prints out each (possibly modified) line. The result-
ing output should be similar to what perldoc -u -f atan2 would do on its own, but
there will be a change where any of those markers appear.

Thus, in the span of a few lines, you've run another program, saved its output in
memory, updated the memory items, and printed them out. This kind of program is a
fairly common use of Perl, where one type of data is converted to another.

16 | Chapter 1: Introduction

Exercises

Normally, each chapter will end with some exercises, with the answers in Appen-
dix A. But you don't need to write the programs needed to complete this section—
those are supplied within the chapter text.

If you can't get these exercises to work on your machine, double-check your work and
then consult your local expert. Remember that you may need to tweak each program
a little, as described in the text:

1. [7] Type in the “Hello, world” program and get it to work! You may name it any-
thing you wish, but a good name might be exI-1, for simplicity, as it’s Exercise 1
in Chapter 1. This is a program that even an experienced programmer would
write, mostly to test the setup of a system. If you can run this program, your perl
is working.

2. [5] Type the command perldoc -u -f atan2 at a command prompt and note its
output. If you can’t get that to work, find out from a local administrator or the
documentation for your version of Perl about how to invoke perldoc or its equiv-
alent. You'll need this for the next exercise anyway.

3. [6] Type in the second example program (from the previous section) and see
what it prints. Hint: be careful to type those punctuation marks exactly as shown!
Do you see how it changed the output of the command?

Exercises | 17

CHAPTER 2
Scalar Data

Perl’s datatypes are simple. A scalar is a single thing. That’s it. You may know the term
scalar from physics or mathematics or some other discipline, but Perl’s definition of
the term is its own. It's so important that we'll say it again. A scalar is a single thing,
and we use the word thing because we don’t have a better way to describe what Perl
considers a scalar.

A scalar is the simplest kind of data that Perl manipulates. Most scalars are either a
number (like 255 or 3.25¢20) or a string of characters (like hello or the Gettysburg
Address). Although you may think of numbers and strings as very different things,
Perl uses them nearly interchangeably.

If you have been using other programming languages, youre probably used to the
idea of several different sorts of single items. C has char, int, and so on. Perl doesn’t
make distinctions among single things, which is something some people find hard to
adjust to. However, as we'll see in this book, that allows us quite a bit of flexibility in
dealing with data.

In this chapter, we show both scalar data, which are the values themselves, and scalar
variables, which can store a scalar value. The distinction between these two is impor-
tant. The value itself is fixed and we can’t change it. We can, however, change what we
store in a variable (hence its name). Sometimes programmers are a bit sloppy with
this and simply say “scalar” We'll be a bit sloppy too, except when it matters. This will
be more important in Chapter 3.

Numbers

Although a scalar is most often either a number or a string, it’s useful to look at num-
bers and strings separately for the moment. We'll cover numbers first, and then move
on to strings.

19

All Numbers Have the Same Format Internally

Perl relies on the underlying C libraries for its numbers and uses a double-precision
floating-point value to store the numbers. You don't have to know much about that,
but it does mean Perl has some limitations in precision and magnitude of the num-
bers, which are related to how you compiled and installed the per! interpreter instead
of a limitation of the language itself. Perl does this to be as fast as possible by using
the optimizations of the local platform and libraries to do its math.

As you'll see in the next few paragraphs, you can specify both integers (whole num-
bers, like 255 or 2,001) and floating-point numbers (real numbers with decimal
points, like 3.14159, or 1.35 x 1,025). But internally, Perl computes with double-
precision floating-point values.

This means that there are no integer values internal to Perl—an integer constant in
the program is treated as the equivalent floating-point value. In Perl, a number is just
a number, unlike some other languages that ask you to decide what magnitude and
type of number it is.

Integer Literals

A literal is how you represent a value in your source code. A literal is not the result of
a calculation or an I/O operation; it’s data that you type directly into your program.
Integer literals are straightforward, as in:

0

2001

-40

137
61298040283768

That last one is a little hard to read. Perl allows you to add underscores for clarity

within integer literals, so you can also write that number with embedded underscores
to make it easier to read:

61_298_040_283_768

It's the same value; it merely looks different to us human beings. You might have
thought that commas should be used for this purpose, but commas are already used
for a more important purpose in Perl (as youll see in Chapter 3). Even then, not
everyone uses commas to separate numbers.

Nondecimal Integer Literals

Like many other programming languages, Perl allows you to specify numbers in ways
other than base 10 (decimal). Octal (base 8) literals start with a leading 0 and use the
digits from 0 to 7:

20 | Chapter2:Scalar Data

0377 # same as 255 decimal

Starting with v5.34, you can also start octal numbers with 0o, which brings octal
numbers in line with the other bases you are about to see:

00377 # same as 255 decimal

Hexadecimal (base 16) literals start with a leading 0x and use the digits 0 to 9 and the
letters A through F (or a through f) to represent the values from 0 to 15:

oxff # FF hex, also 255 decimal
Binary (base 2) literals start with a leading b and use only the digits 0 and 1:
0b11111111 # also 255 decimal

Although these values look different to us humans, all three are the same number to
Perl. It makes no difference to Perl whether you write 0377, OxFF, or 255, so choose
the representation that makes the most sense for your task. Many shell commands in
the Unix world assume octal numbers, for instance, so octal values make sense for the
Perl equivalents you’ll see in Chapters 12 and 13.

The “leading zero” indicator works only for literals—not for auto-
matic string-to-number conversions, which you’ll see in “Auto-
matic Conversion Between Numbers and Strings” on page 26.

When a nondecimal literal is more than about four characters long, it may be hard to
read, so underscores are handy:

0x1377_0B77
0x50_65_72_7C

Floating-Point Literals

Perl’s floating-point literals should look familiar to you. Numbers with and without
decimal points are allowed (including an optional plus or minus prefix), as well as
tacking on a power-of-10 indicator with E notation (also known as exponential nota-
tion).

For example:

1.25
255.000
255.0
7.25e45 # 7.25 times 10 to the 45th power (a big number)
-6.5e24 # negative 6.5 times 10 to the 24th
(a big negative number)
-12e-24 # negative 12 times 10 to the -24th

Numbers | 21

(a very small negative number)
-1.2E-23 # another way to say that the E may be uppercase

Perl v5.22 added hexadecimal floating-point literals. Instead of an e to mark the
exponent, you use a p for the power-of-2 exponent. Just like the hexadecimal integers,
these start with 0x:

0x1f.0p3

A hexadecimal floating-point literal is an exact representation of a number in the
storage format that Perl uses. There is no ambiguity in its value. With a decimal
floating-point number, Perl (or C or anything else that uses doubles) can’t represent
the number exactly if it's not a power of two. Most people don't even notice this, and
those who do see a very slight round-off error.

Numeric Operators

Operators are Perl’s verbs. They decide how to treat the nouns. Perl provides the typi-
cal ordinary addition, subtraction, multiplication, and division operators. These
numeric operators always treat their operands as numbers, and are denoted by sym-
bolic characters:

3

+
.1-2.4
*1

2 plus 3, or 5

5.1 minus 2.4, or 2.7

3 times 12 = 36

14 divided by 2, or 7

10.2 divided by 0.3, or 34

always floating-point divide, so 3.3333333...

0.3

BB R WU N
wWw~nNDN
H OHEH HE R R

4/
0.2
0/

Perl’s numeric operators return what youd expect from doing the same operation on
a calculator. Perl only has single values and it doesn’t distinguish numbers that are
integers, fractions, or floating-point numbers. This sometimes annoys people who are
used to minutely specifying these in other languages. For instance, someone used to
integer-only math might expect 160/3 to be another integer (3).

Perl also supports a modulus operator (%). The value of the expression 10 % 3 is the
remainder when 10 is divided by 3, which is 1. Both values are first reduced to their
integer values, so 10.5 % 3.2 is computed as 10 % 3.

The result of the modulus operator when either or both numbers are negative can
vary between Perl implementations because the underlying library does it differently
because people disagree about rounding numbers. For -10 % 3, is the remainder 2
because it’s two places above -12 or -1 because it’s one place from -9? It’s best to avoid
finding out accidentally.

Additionally, Perl provides the FORTRAN-like exponentiation operator, represented
by the double asterisk. So, 2**3 is two to the third power, or eight. In addition, there
are other numeric operators, which we'll introduce as we need them.

22 | Chapter2:Scalar Data

Strings

Strings are sequences of characters, such as hello or &%ow. Strings may contain any
combination of any characters. The shortest possible string has no characters and is
called the empty string. The longest string fills all of your available memory (although
you wouldn’t be able to do much with that). This is in accordance with the principle
of “no built-in limits” that Perl follows at every opportunity. Typical strings are print-
able sequences of letters, digits, punctuation, and whitespace. However, the ability to
have any character in a string means you can create, scan, and manipulate raw binary
data as strings—something with which many other utilities would have great diffi-
culty. For example, you could update a graphical image or compiled program by read-
ing it into a Perl string, making the change, and writing the result back out.

Perl has full support for Unicode, and your string can contain any of the valid Uni-
code characters. However, because of Perl’s history, it doesn’t automatically interpret
your source as Unicode. If you want to use Unicode literally in your program, you
need to add the utf8 pragma. It’s probably a good practice to always include this in
your program unless you know why you wouldn’t want to:

use utf8;

For the rest of this book, we assume you’re using that pragma. In some cases it won’t
matter, but if you see characters outside the ASCII range in the source, you’ll need it.
Also, you should ensure that you save your files with the UTF-8 encoding. If you
skipped our advice about Unicode from Chapter 1, you might want to go through
Appendix C to learn more.

A pragma is something that tells the Per] compiler how to act.

Like numbers, strings have a literal representation, which is the way you represent the
string in a Per]l program. Literal strings come in two different flavors: single-quoted
string literals and double-quoted string literals.

Single-Quoted String Literals

A single-quoted string literal is a sequence of characters enclosed in single quotes, the
' character. The single quotes are not part of the string itself—they’re just there to let
Perl identify the beginning and end of the string:

Strings | 23

'fred' # those four characters: f, r, e, and d

'barney' # those six characters

v # the null string (no characters)

'%=G3' # Some "wide" Unicode characters
Any character other than a single quote or a backslash between the quote marks
stands for itself inside a string. If you want a literal single quote or backslash inside
your string, you need to escape it with a backslash:

'Don\'t let an apostrophe end this string prematurely!'’

'the last character is a backslash: \\'

"\ # single quote followed by backslash
You can spread your string out over two (or more) lines. A newline between the sin-
gle quotes is a newline in your string:

'hello
there' # hello, newline, there (11 characters total)

Note that Perl does not interpret the \n within a single-quoted string as a newline but
as the two characters backslash and n:

'"hello\nthere' # hello\nthere

Only when the backslash is followed by another backslash or a single quote does it
have special meaning.

Double-Quoted String Literals

A double-quoted string literal is a sequence of characters, although this time enclosed
in double quotes. But now the backslash takes on its full power to specify certain con-
trol characters, or even any character at all through octal and hex representations.
Here are some double-quoted strings:

"barney" # just the same as 'barney'

"hello world\n" # hello world, and a newline

"The last character of this string is a quote mark: \
"coke\tsprite" # coke, a tab, and sprite

"\x{2668}" # Unicode HOT SPRINGS character code point
"\N{SNOWMAN}" # Unicode Snowman by name

Note that the double-quoted literal string "barney" means the same six-character
string to Perl as does the single-quoted literal string 'barney'.

The backslash can precede many characters to mean something other than their lit-
eral representation (generally called a backslash escape). The nearly complete list of
double-quoted string escapes is given in Table 2-1.

24 | Chapter2:Scalar Data

Table 2-1. Double-quoted string backslash escapes

\007 Any octal ASCII value (here, 007 = bell)

\a Bell

\b Backspace

\cC A“control” character (here, Ctrl-C)

\e Escape (ASCII escape character)

\E End \F, \L, \U, or \Q

\f Formfeed

\F Unicode case-fold all following letters until \E

\I Lowercase next letter

\L Lowercase all following letters until \E

\n Newline

\N{CHARACTER NAME} Any Unicode code point, by name

\Q Quote nonword characters by adding a backslash until \E
\r Return

\t Tab

\u Uppercase next letter

\U Uppercase all following letters until \E

\x7f Any two-digit, hex ASCII value (here, 7f = delete)
\x{2744} Any hex Unicode code point (here, U+2744 = snowflake)
\\ Backslash

* Double quote

Another feature of double-quoted strings is that they are variable interpolated, mean-
ing that some variable names within the string are replaced with their current values
when the strings are used. You haven't formally been introduced to what a variable
looks like yet, so we'll get back to that later in this chapter.

String Operators

You can concatenate, or join, string values with the . operator. (Yes, that’s a single
period.) This does not alter either string, any more than 2+3 alters either 2 or 3. The
resulting (longer) string is then available for further computation or assignment to a
variable. For example:

"hello" . "world" # same as "helloworld"
"hello" . ' ' . "world" # same as 'hello world'
'hello world' . "\n" # same as "hello world\n"

Note that you must explicitly use the concatenation operator, unlike in some other
languages where you merely have to stick the two values next to each other.

Strings | 25

A special string operator is the string repetition operator, consisting of the single
lowercase letter x. This operator takes its left operand (a string) and makes as many
concatenated copies of that string as indicated by its right operand (a number). For
example:

"fred" x 3 # is "fredfredfred"”
"barney" x (4+1) # is "barney" x 5, or "barneybarneybarneybarneybarney"
5x 4.8 # 1s really "5" x 4, which is "5555"

That last example is worth noting carefully. The string repetition operator wants a
string for a left operand, so the number 5 is converted to the string "5" (using rules
described in detail later), giving a one-character string. The x copies the new string
four times, yielding the four-character string 5555. Note that if you had reversed the
order of the operands, as 4 x 5, you would have made five copies of the string 4,
yielding 44444. This shows that string repetition is not commutative.

The copy count (the right operand) is first truncated to an integer value (4.8 becomes
4) before being used. A copy count of less than 1 results in an empty (zero-length)
string.

Automatic Conversion Between Numbers and Strings

For the most part, Perl automatically converts between numbers and strings as
needed. How does it know which it should use? It all depends on the operator that
you apply to the scalar value. If an operator expects a number (like + does), Perl will
see the value as a number. If an operator expects a string (like . does), Perl will see the
value as a string. So, you don’t need to worry about the difference between numbers
and strings; just use the proper operators, and Perl will make it all work.

When you use a string value where an operator needs a number (say, for multiplica-
tion), Perl automatically converts the string to its equivalent numeric value, as if you
had entered it as a decimal floating-point value. So "12" * "3" gives the value 36.
Trailing nonnumerical stuff and leading whitespace are discarded, so "12fred34" *
" 3" will also give 36 without any complaints (until you turn on warnings, which
we'll show in a moment). At the extreme end of this, something that isn’t a number at
all converts to zero. This would happen if you used the string "fred" as a number.

The trick of using a leading zero to mean an octal value only works for literals and
never for automatic conversion, which is always base 10:

0377 # that's octal for 255 decimal
'0377' # that's 377 decimal

Later we'll show you oct to convert that string value as an octal number.

Likewise, if a numeric value is given where a string value is needed (say, for string
concatenation), the numeric value is expanded into whatever string would have been

26 | Chapter2:Scalar Data

printed for that number. For example, if you want to concatenate the string Z followed
by the result of 5 multiplied by 7, you can say this simply as:

"Z" . 5 * 7 # same as "Z" . 35, or "Z35"

In other words, you don’t really have to worry about whether you have a number or a
string (most of the time). Perl performs all the conversions for you. It even remem-
bers what conversions it’s already done so it can be faster next time.

Perl’s Built-in Warnings

Perl can be told to warn you when it sees something suspicious going on in your pro-
gram. With Perl 5.6 and later, you can turn on warnings with a pragma (but be careful
because it won't work for people with ancient versions of Perl):

#!/usr/bin/perl
use warnings;

You can use the -w option on the command line, which turns on warnings every-
where in your program, including modules that you use but didn’t write yourself, so
you might see warnings from other people’s code:

$ perl -w my_program

You can also specify the command-line switches on the shebang line:
#!/usr/bin/perl -w

Now, Perl will warn you if you use '12fred34' as if it were a number:
Argument "12fred34" isn't numeric

The advantage of warnings over -w is that you only turn on warn-

ings for the file in which you use the pragma, whereas -w turns on
warnings for the entire program.

Perl still turns the nonnumeric '12fred34' into 12 using its normal rules even
though you get the warning.

Of course, warnings are generally meant for programmers, not for end users. If the
warning won’t be seen by a programmer, it probably won't do you any good. And
warnings won't change the behavior of your program, except that now it gripes once
in a while. If you get a warning message you don’t understand, you can get a longer
description of the problem with the diagnostics pragma. The perldiag documenta-
tion has both the short warning and the longer diagnostic description, and is the
source of diagnostics’s helpfulness:

use diagnostics;

Perl’s Built-in Warnings | 27

https://perldoc.perl.org/perldiag
https://perldoc.perl.org/perldiag

When you add the use diagnostics pragma to your program, it may seem to you
that your program now pauses for a moment whenever you launch it. That’s because
your program has to do a lot of work (and gobble a chunk of memory) just in case
you want to read the documentation as soon as Perl notices your mistakes, if any.
This leads to a nifty optimization that can speed up your program’s launch (and
memory footprint) with no adverse impact on users: once you no longer need to read
the documentation about the warning messages produced by your program, remove
the use diagnostics pragma. It’s even better if you fix your program to avoid caus-
ing the warnings. But it’s sufficient merely to finish reading the output.

A further optimization can be had by using one of Perl’s command-line options, -M,
to load the pragma only when needed instead of editing the source code each time to
enable and disable diagnostics:
$ perl -Mdiagnostics ./my_program
Argument "12fred34" isn't numeric in addition (+) at ./my_program line 17 (#1)
(W numeric) The indicated string was fed as an argument to

an operator that expected a numeric value instead. If you're
fortunate the message will identify which operator was so unfortunate.

Note the (W numeric) in the message. The W says that the message is a warning and

the numeric is the class of warning. In this case, you know to look for something
dealing with a number.

As we run across situations in which Perl will usually be able to warn us about a mis-
take in our code, we'll point them out. But you shouldn’t count on the text or behav-
ior of any warning staying exactly the same in future Perl releases.

Interpreting Nondecimal Numerals

If you have a string that represents a number as another base, you can use the hex()
or oct() function to interpret those numbers correctly. Curiously, the oct() function
is smart enough to recognize the correct base if you use prefix characters to specify
hex or binary, but the only valid prefix for hex is 0x:

hex('DEADBEEF') # 3_735_928_559 decimal
hex('OXDEADBEEF') # 3_735_928_559 decimal

oct('0377") # 255 decimal

oct('00377") # 255 decimal, new in v5.34, saw leading 0o
oct('377") # 255 decimal

oct('OxXDEADBEEF') # 3_735_928_559 decimal, saw leading 0Ox
oct('0b1101") # 13 decimal, saw leading 0b

oct("ObSbits") # convert $bits from binary

Those string representations are for us; the computer doesn’t care how we want to
think about the number. Specifying the same number in decimal or hexadecimal is all

28 | Chapter2: Scalar Data

the same to Perl. As long as we correctly identify the radix of the number, Perl will
translate it into its internal format.

Remember that Perl’s automatic conversion only works for base-10 numbers, and that
these routines only work on strings. Giving any of these a literal number, which Perl
will have already converted to its internal format, will likely give the wrong results.
Perl will turn the number back into a string, which it interprets as a hexadecimal
number string, then into a Perl number:

hex(10) # decimal 10, converted to "10", then decimal 16
hex(0x10) # hex 10, converted to "16", then decimal 22

We'll show you more about printing numbers in different bases in Chapter 5.

Scalar Variables

A variable is a name for a container that holds one or more values. As you'll see, a
scalar variable holds exactly one value, and in upcoming chapters you’ll see other
types of variables, such as arrays and hashes, that can hold many values. The name of
the variable stays the same throughout your program, but the value or values in that
variable can change over and over again.

A scalar variable holds a single scalar value, as youd expect. Scalar variable names
begin with a dollar sign, called the sigil, followed by a Perl identifier: a letter or under-
score, and then possibly more letters, or digits, or underscores. Another way to think
of it is that it's made up of alphanumerics and underscores, but can’t start with a digit.
Uppercase and lowercase letters are distinct: the variable $Fred is a different variable
from $fred. And all of the letters, digits, and underscores are significant, so all of
these refer to different variables:

Sname
S$Name
$NAME

$a_very_long_variable_that_ends_1in_1
$a_very_long_variable_that_ends_in_2
$A_very_long_variable_that_ends_1in_2
$AVerylLongVariableThatEndsIn2

Perl doesn’t restrict itself to ASCII for variable names, either. If you enable the utf8

pragma, you can use a much wider range of alphabetic or numeric characters in your
identifiers:

$résumé

$codrdinate
Perl uses the sigils to distinguish things that are variables from anything else that you
might type in the program. You don’t have to know the names of all the Perl functions
and operators to choose your variable name.

Scalar Variables | 29

Furthermore, Perl uses the sigil to denote what you're doing with that variable. The $
sigil really means “single item” or “scalar” Since a scalar variable is always a single
item, it always gets the “single item” sigil. In Chapter 3, you’ll see the “single item”
sigil used with another type of variable, the array. This is a very important concept in
Perl. The sigil isn't telling you the variable type; it’s telling you how you are accessing
that variable.

Choosing Good Variable Names

You should generally select variable names that mean something regarding the pur-
pose of the variable. For example, $r is probably not very descriptive, but
$1line_length is. If you are using a variable for only two or three lines close together,
you might name it something simple, such as $n. A variable you use throughout a
program should probably have a more descriptive name to not only remind you what
it does, but let other people know what it does. Most of your program will make sense
to you because you're the one who invented it. However, someone else isn’t going to
know why a name like $srly makes sense to you.

Similarly, properly placed underscores can make a name easier to read and under-
stand, especially if your maintenance programmer has a different spoken language
background than you have. $super_bowl is a better name than $superbowl, for
example, as that last one might look like $superb_owl. Does $stopid mean $sto_pid
(storing a process ID of some kind?) or $s_to_pid (converting something to a pro-
cess ID?) or $stop_id (the ID for some kind of “stop” object?) or is it just a stopid
misspelling?

Most variable names in our Perl programs are all lowercase, like most of the ones
you'll see in this book. In a few special cases, uppercase letters are used. Using all caps
(like $ARGV) generally indicates that there’s something special about that variable.

When a variable’s name has more than one word, some say $underscores_are_cool,
while others say $giveMeInitialCaps. Just be consistent. You can name your vari-
ables with all uppercase, but you might end up using a special variable reserved for
Perl. If you avoid all uppercase names, you won’t have that problem.

The perlvar documentation lists all of Perl’s special variable names,
and perlstyle has general programming style advice.

Of course, choosing good or poor names makes no difference to Perl. You could name
your program’s three most important variables $000000000, $00000000, and

30 | Chapter2:Scalar Data

https://perldoc.perl.org/perlvar
https://perldoc.perl.org/perlstyle

$000000000 and Perl wouldn't be bothered—but in that case, please, don't ask us to
maintain your code.

Scalar Assignment

The most common operation on a scalar variable is assignment, which is the way to
give a value to that variable. The Perl assignment operator is the equals sign (much
like other languages), which takes a variable name on the left side and gives it the
value of the expression on the right. For example:

Sfred = 17; # give $fred the value of 17
Sbarney = 'hello'; # give S$barney the five-character string 'hello'
Sbarney = $fred + 3; # give $barney the current value of $fred plus 3 (20)

$barney = $barney * 2; # Sbarney is now $barney multiplied by 2 (40)

Notice that last line uses the $barney variable twice: once to get its value (on the right
side of the equals sign), and once to define where to put the computed expression (on
the left side of the equals sign). This is legal, safe, and rather common. In fact, it’s so
common that you can write it using a convenient shorthand, as you'll see in the next
section.

Compound Assignment Operators

Expressions like $fred = $fred + 5 (where the same variable appears on both sides
of an assignment) occur frequently enough that Perl (like C and Java) has a shorthand
for the operation of altering a variable: the compound assignment operator. Nearly
all binary operators that compute a value have a corresponding compound assign-
ment form with an appended equals sign. For example, the following two lines are
equivalent:

$fred = $fred + 5; # without the compound assignment operator
$fred += 5; # with the compound assignment operator

These are also equivalent:

Sbarney = S$barney * 3;
Sbarney *= 3;

In each case, the operator alters the existing value of the variable in some way, rather
than simply overwriting the value with the result of some new expression.

Another common assignment operator is made with the string concatenation opera-
tor (.). This gives us an append operator (.=):

$str = $str . " "; # append a space to $str
$str .= " "; # same thing with compound assignment

Scalar Variables | 31

Nearly all compound operators are valid this way. For example, a raise to the power of
operator is written as **=. So, $fred **= 3 means “raise the number in $fred to the
third power, placing the result back in $fred”

Output with print

It's generally a good idea to have your program produce some output; otherwise,
someone may think it didn’t do anything. The print operator makes this possible: it
takes a scalar argument and puts it out without any embellishment onto standard
output. Unless you've done something odd, this will be your terminal display. For
example:

print "hello world\n"; # say hello world, followed by a newline

print "The answer is ";
print 6 * 7;
print ".\n";

You can give print a series of values separated by commas:
print "The answer is ", 6 * 7, ".\n";

This is really a list, but we haven't talked about lists yet, so well put that off for later.

Perl v5.10 adds a slightly better print that it calls say. It automatically puts a newline
on the end for you:

use v5.10;
say "The answer is ", 6 * 7, '.';

If you can, use say. In this book, we tend to stick to print because we want most
examples to work for the people stuck on v5.8.

Interpolation of Scalar Variables into Strings

When a string literal is double-quoted, it is subject to variable interpolation (besides
being checked for backslash escapes). This means that a scalar variable name in the
string is replaced with its current value. For example:

$meal = "brontosaurus steak";
Sbarney = "fred ate a $meal”; # Sbarney is now "fred ate a brontosaurus steak"
Sbarney = 'fred ate a ' . $meal; # another way to write that

As you see on the last line, you can get the same results without the double quotes,
but the double-quoted string is often the more convenient way to write it. Variable
interpolation is also known as double-quote interpolation because it happens when
double-quote marks (but not single quotes) are used. It happens for some other
strings in Perl, which we’ll mention as we get to them.

32 | Chapter2:Scalar Data

If the scalar variable has never been given a value, the empty string is used instead:

Sbarney = "fred ate a $meat"; # Sbarney is now "fred ate a
You’ll see more about this later in this chapter when we introduce the undef value.
Don't bother with interpolating if you have just the one lone variable:

print "$fred"; # unneeded quote marks

print $fred; # better style
There’s nothing really wrong with putting quote marks around a lone variable, but
you’re not constructing a larger string, so you don’t need the interpolation step.

To put a literal dollar sign into a double-quoted string, precede the dollar sign with a
backslash, which turns off the dollar sign’s special significance:

Sfred = 'hello';

print "The name is \$fred.\n"; # prints a dollar sign

Alternatively, you could avoid using double quotes around the problematic part of
the string:

print 'The name is $fred' . "\n"; # so does this

The variable name will be the longest possible variable name that makes sense at that
part of the string. This can be a problem if you want to follow the replaced value
immediately with some constant text that begins with a letter, digit, or underscore.

As Perl scans for variable names, it considers those characters as additional name
characters, which is not what you want. Perl provides a delimiter for the variable
name in a manner similar to the shell. Simply enclose the name of the variable in a
pair of curly braces. Or, you can end that part of the string and start another part of
the string with a concatenation operator:

$what = "brontosaurus steak";

$n = 3;

print "fred ate $n Swhats.\n"; # not the steaks, but the value of Swhats
print "fred ate $n ${what}s.\n"; # now uses $what

print "fred ate $n Swhat" . "s.\n"; # another way to do it

print 'fred ate ' . $n . ' ' . Swhat . "s.\n"; # an especially difficult way

If you need a left square bracket or a left curly brace just after a
scalar variable’s name, precede it with a backslash. You may also do
that if the variable’s name is followed by an apostrophe or a pair of
colons, or you could use the curly brace method.

Outputwithprint | 33

Creating Characters by Code Point

Sometimes you want to create strings with characters that may not appear on your
keyboard, such as ¢, d, &, or X. How you get these characters into your program
depends on your system and the editor you're using, but sometimes, instead of typing
them out, it’s easier to create them by their code point with the chr() function:

Salef = chr(0x05D0);
$alpha = chr(hex('03B1'));
Somega = chr(0x03C9);

We'll use “code point” throughout the book because we’re assuming
Unicode. In ASCII, we might have just said ordinal value to denote
the numeric position in ASCII. To pick up anything you might
have missed about Unicode, see Appendix C.

You can go the other way with the ord() function, which turns a character into its
code point:

$code_point = ord('X');
You can interpolate these into double-quoted strings just like any other variable:
"$alphaSomega"

That might be more work than interpolating them directly by putting the hexadeci-
mal representation in \x{}:

"\x{03B1}\x{03C9}"

Operator Precedence and Associativity

Operator precedence determines which operations in a complex group happen first.
For example, in the expression 2+3*4, do you perform the addition first or the multi-
plication first? If you did the addition first, youd get 5*4, or 20. But if you did the
multiplication first (as you were taught in math class), youd get 2+12, or 14. Fortu-
nately, Per] chooses the common mathematical definition, performing the multiplica-
tion first. Because of this, you say multiplication has a higher precedence than
addition.

Parentheses have the highest precedence. Anything inside parentheses is completely
computed before the operator outside the parentheses is applied (just like you learned
in math class). So if you really want the addition before the multiplication, you can
say (2+3)*4, yielding 20. Also, if you wanted to demonstrate that multiplication is
performed before addition, you could add a decorative but unnecessary set of paren-
theses, as in 2+(3*4).

34 | Chapter2:Scalar Data

While precedence is simple for addition and multiplication, you start running into
problems when faced with, say, string concatenation compared with exponentiation.
The proper way to resolve this is to consult the official, accept-no-substitutes Perl
operator precedence chart in the perlop documentation, which we partially show in
Table 2-2.

Table 2-2. Associativity and precedence of operators (highest to lowest)

Associativity Operators

left parentheses and arguments to list operators
left ->
++ - - (autoincrement and autodecrement)
right *%
right \ ! ~ + - (unary operators)
left =~ I~
left * [%X
left + - . (binary operators)
left >> <<

named unary operators (- X filetests, rand)
<<=>>=1t le gt ge (the “unequal” ones)
== = <=> eq ne cmp (the “equal” ones)

left &
left | ~
left &&
left [//
right ?: (conditional operator)
right = += -= . = (and similar assignment operators)
left , =>
list operators (rightward)
right not
left and
|eft or xor

In the chart, any given operator has higher precedence than all of the operators listed
below it, and lower precedence than all of the operators listed above it. Operators at
the same precedence level resolve according to rules of associativity instead.

Just like precedence, associativity resolves the order of operations when two operators
of the same precedence compete for three operands:

4 *% 3 k% 2 f 4 *% (3 ** 2) or 4 ** 9 (right associative)
72 [/ 12 /3 # (72 [/ 12) / 3, or 6/3, or 2 (left associative)
36 / 6 *3 # (36/6)*3, or 18

Outputwithprint | 35

https://perldoc.perl.org/perlop

In the first case, the ** operator has right associativity, so the parentheses are implied
on the right. Comparatively, the * and / operators have left associativity, yielding a set
of implied parentheses on the left.

So should you just memorize the precedence chart? No! Nobody actually does that.
Instead, just use parentheses when you don't remember the order of operations, or
when you’re too busy to look in the chart. After all, if you can’t remember it without
the parentheses, your maintenance programmer is going to have the same problem.
So be nice to your maintenance programmer: you may be that person one day.

Comparison Operators

To compare numbers, Perl has logical comparison operators that may remind you of
algebra: < <= == >= > !=. Each of these returns a true or false value. You'll find out
more about those return values in the next section. Some of these may be different
than what youd use in other languages. For example, == is used for equality, not a
single =, because that’s used for assignment. And != is used for inequality testing
because <> is used for another purpose in Perl. And you’ll need >= and not => for
“greater than or equal to” because the latter is used for another purpose in Perl. In
fact, nearly every sequence of punctuation is used for something in Perl. So, if you get
writer’s block, just let the cat walk across the keyboard, and debug the result.

To compare strings, Perl has an equivalent set of string comparison operators that
look like funny little words: 1t, le, eq, ge, gt, and ne. These compare two strings
character by character to see whether they’re the same, or whether one comes first in
standard string sorting order. Note that the order of characters in ASCII or Unicode
is not an order that might make sense to you. You'll see how to fix that in Chapter 14.

The comparison operators (for both numbers and strings) are given in Table 2-3.

Table 2-3. Numeric and string comparison operators

Comparison Numeric String

Equal == eq
Not equal 1= ne
Less than < 1t
Greater than > gt
Less than or equal to <= le
Greater than orequal to >= ge

Here are some example expressions using these comparison operators:

35 1=30 + 5 # false
35 == 35.0 # true
'35' eq '35.0' # false (comparing as strings)

'fred' 1t 'barney' # false

36 | Chapter2:Scalar Data

'fred' 1t 'free' # true

'fred' eq "fred" # true
'fred' eq 'Fred' # false
gt ! # true

The if Control Structure

Once you can compare two values, you’ll probably want your program to make deci-
sions based on that comparison. Like all similar languages, Perl has an if control
structure that only executes if its condition returns a true value:

if (Sname gt 'fred') {
print "'Sname' comes after 'fred' in sorted order.\n";

}
If you need an alternative choice, the else keyword provides that as well:

if (Sname gt 'fred') {

print "'Sname' comes after 'fred' in sorted order.\n";
} else {

print "'Sname' does not come after 'fred'.\n";

print "Maybe it's the same string, in fact.\n";

}

You must have those block curly braces around the conditional code, unlike C
(whether or not you know C). It’s a good idea to indent the contents of the blocks of
code as we show here; that makes it easier to see what’s going on. If youre using a
programmer’s text editor (as we show in Chapter 1), it should do most of that work
for you.

Boolean Values

You may actually use any scalar value as the conditional of the if control structure.
That’s handy if you want to store a true or false value in a variable, like this:

$is_bigger = $name gt 'fred';
if ($is_bigger) { ... }

But how does Perl decide whether a given value is true or false? Perl doesn't have a
separate Boolean datatype like some languages have. Instead, it uses a few simple
rules:

o If the value is a number, 0 means false; all other numbers mean true.

« Otherwise, if the value is a string, the empty string (' ') and the string '0' mean
false; all other strings mean true.

o If the variable doesn’t have a value yet, it’s false.

The if Control Structure | 37

If you need to get the opposite of any Boolean value, use the unary not operator, !. If
what follows is a true value, it returns false; if what follows is false, it returns true:
if (! $is_bigger) {

Do something when $is_bigger is not true

}
Here’s a handy trick. Since Perl doesn’'t have a separate Boolean type, the ! has to
return some scalar to represent true and false. It turns out that 1 and 0 are good
enough values, so some people like to normalize their data to just those values. To do
that, they double up the ! to turn true into false into true again (or the other way
around):

'l 'Fred';
1 'e';

$still_true
$still_false

However, this idiom isn’t documented to always return exactly the value 1 or 0, and
we don’t think that behavior will change anytime soon.

Getting User Input

At this point, you're probably wondering how to get a value from the keyboard into a
Perl program. Here’s the simplest way: use the line-input operator, <STDIN>.

The <STDIN> is actually a line-input operator working on the file-
handle STDIN, but we can't tell you about that until we get to file-
handles (in Chapter 5).

Each time you use <STDIN> in a place where Perl expects a scalar value, Perl reads the
next complete text line from standard input (up to and including the first newline),
and uses that string as the value of <STDIN>. Standard input can mean many things,
but unless you do something uncommon, it means the keyboard of the user who
invoked your program (probably you). If there’s nothing waiting for <STDIN> to read
(typically the case, unless you type ahead a complete line), the Perl program will stop
and wait for you to enter some characters followed by a newline (return).

The string value of <STDIN> usually has a newline character on the end of it, so you
could do something like this:

$line = <STDIN>;
if ($line eq "\n") {

print "That was just a blank line!\n";
} else {

print "That line of input was: $line";

}

38 | Chapter2:Scalar Data

But in practice, you don't often want to keep the newline, so you need the chomp()
operator.

The chomp Operator

The first time you read about the chomp() operator, it seems terribly overspecialized.
It works on a variable. The variable has to hold a string, and if the string ends in a
newline character, chomp() removes that newline. That’s (nearly) all it does. For
example:

Stext = "a line of text\n"; # Or the same thing from <STDIN>

chomp($text); # Gets rid of the newline character
But it turns out to be so useful, youw’ll put it into nearly every program you write. As
you see, it’s the best way to remove a trailing newline from a string in a variable. In
fact, there’s an easier way to use chomp() because of a simple rule: anytime that you
need a variable in Perl, you can use an assignment instead. First, Perl does the assign-
ment. Then it uses the variable in whatever way you requested. So, the most common
use of chomp() looks like this:

chomp($text = <STDIN>); # Read the text, without the newline character

Stext = <STDIN>; # Do the same thing...
chomp($text); # ...but in two steps

At first glance, the combined chomp() may not seem to be the easy way, especially if it
seems more complex! If you think of it as two operations—read a line, then chomp()
it—it’s more natural to write it as two statements. But if you think of it as one opera-
tion—read just the text, not the newline—it’s more natural to write the one statement.
And since most other Perl programmers are going to write it that way, you may as
well get used to it now.

chomp() is actually a function. As a function, it has a return value, which is the num-
ber of characters removed. This number is hardly ever useful:

$food = <STDIN>;

S$betty = chomp $food; # gets the value 1 - but you knew that!
As you see, you may write chomp() with or without the parentheses. This is another
general rule in Perl: except in cases where it changes the meaning to remove them,
parentheses are always optional.

If a string ends with two or more newlines, chomp() removes only one. If there’s no
newline, it does nothing, and returns zero. For the most part, you don’t care what
chomp() returns.

The chomp Operator | 39

The while Control Structure

Like most algorithmic programming languages, Perl has a number of looping struc-
tures. The while loop repeats a block of code as long as a condition is true:

Scount = 0;
while (Scount < 10) {
Scount += 2;
print "count is now $count\n"; # Gives values 2 4 6 8 10

}

As always in Perl, the truth value here works like the truth value in the if test. Also
like the if control structure, the block curly braces are required. The conditional
expression is evaluated before the first iteration, so the loop may be skipped com-
pletely if the condition is initially false.

Eventually you’ll create an infinite loop by accident. You can stop it
in the same way youd stop any other program. Often, typing Ctrl-
C will stop a runaway program; check with your system’s documen-
tation to be sure.

The undef Value

What happens if you use a scalar variable before you give it a value? Nothing serious,
and definitely nothing fatal. Variables have the special undef value before they are
first assigned, which is just Perl's way of saying, “Nothing here to look at—move
along, move along” If you try to use this “nothing” as a “numeric something,” it acts
like zero. If you try to use it as a “string something,” it acts like the empty string. But
undef is neither a number nor a string; it’s an entirely separate kind of scalar value.

Because undef automatically acts like zero when used as a number, it’s easy to make a
numeric accumulator that starts out empty. You don’t do anything with $sum before
you use it:

Add up some odd numbers
$n = 1;
while ($n < 10) {
Ssum += $n;
Sn += 2; # On to the next odd number
}

print "The total was S$sum.\n";
This works properly when $sum was undef before the loop started. The first time
through the loop $n is 1, so the first line inside the loop adds 1 to $sum. That’s like
adding 1 to a variable that already holds 0 (because you’re using undef as if it were a

40 | Chapter2:ScalarData

number). So now it has the value 1. After that, since it’s been initialized, addition
works in the traditional way.

Similarly, you could have a string accumulator that starts out empty:
$string .= "more text\n";

If $string is undef, this will act as if it already held the empty string, putting "more
text\n" into that variable. But if it already holds a string, the new text is simply
appended.

Perl programmers frequently use a new variable in this way, letting it act as either
zero or the empty string as needed.

Many operators return undef when the arguments are out of range or don’t make
sense. If you don’t do anything special, you’ll get a zero or a null string without major
consequences. In practice, this is hardly a problem. In fact, most programmers will
rely on this behavior. But you should know that when warnings are turned on, Perl
will typically warn about unusual uses of the undefined value, since that may indicate
a bug. For example, simply copying undef from one variable into another isn’t a prob-
lem, but trying to print it generally causes a warning.

The defined Function

One operator that can return undef is the line-input operator, <STDIN>. Normally, it
will return a line of text. But if there is no more input, such as at end-of-file, it returns
undef to signal this. To tell whether a value is undef and not the empty string, use the
defined function, which returns false for undef and true for everything else:

$next_line = <STDIN>;
if (defined($next_line)) {

print "The input was Snext_line";
} else {

print "No input available!\n";

}

If youd like to make your own undef values, you can use the obscurely named undef
operator:

S$next_line = undef; # As if it had never been touched

The defined Function | 41

Exercises

See “Answers to Chapter 2 Exercises” on page 296 for answers to these exercises:

1.

[5] Write a program that computes the circumference of a circle with a radius of
12.5. Circumference is 2 times the radius (approximately 2 times 3.141592654).
The answer you get should be about 78.5.

[4] Modify the program from the previous exercise to prompt for and accept a
radius from the person running the program. So, if the user enters 12.5 for the
radius, they should get the same number as in the previous exercise.

. [4] Modity the program from the previous exercise so that, if the user enters a

number less than zero, the reported circumference will be zero rather than nega-
tive.

. [8] Write a program that prompts for and reads two numbers (on separate lines

of input) and prints out the product of the two numbers multiplied together.

. [8] Write a program that prompts for and reads a string and a number (on sepa-

rate lines of input) and prints out the string the number of times indicated by the
number on separate lines. (Hint: use the x operator.) If the user enters “fred” and
“3) the output should be three lines, each saying “fred.” If the user enters “fred”
and “299792,” there may be a lot of output.

)

| Chapter2: Scalar Data

CHAPTER 3
Lists and Arrays

If a scalar is the “singular” in Perl, as we described it at the beginning of Chapter 2,
the “plural” in Perl is represented by lists and arrays.

A list is an ordered collection of scalars. An array is a variable that contains a list.
People tend to use the terms interchangeably, but there’s a big difference. The list is
the data and the array is the variable that stores that data. You can have a list value
that isn’t in an array, but every array variable holds a list (although that list may be
empty). Figure 3-1 represents a list, whether it’s stored in an array or not.

Since lists and arrays share many of the same operations, just like scalar values and
variables do, we'll treat them in parallel. Don’t forget their differences though.

VALUES
g 0 35
=]
§ 2 1 124
=9
—a 2 “hello”
)
E 3 1.72e30
w 4 “bye\n”

Figure 3-1. A list with five elements

Each element of an array or list is a separate scalar value. These values are ordered—
that is, they have a particular sequence from the first to the last element. The elements
of an array or a list are indexed by integers starting at zero and counting by ones, so
the first element of any array or list is always element zero. This also means that the
last index is one less than the number of items in the list.

83

Since each element is an independent scalar value, a list or array may hold numbers,
strings, undef values, or any mixture of different scalar values. Nevertheless, it's com-
mon to have all elements of the same type, such as a list of book titles (all strings) or a
list of cosines (all numbers).

Arrays and lists can have any number of elements. The smallest one has no elements,
while the largest can fill all of available memory. Once again, this is in keeping with
Perl’s philosophy of “no unnecessary limits”

Accessing Elements of an Array

If you've used arrays in another language, you won’t be surprised to find that Perl
provides a way to subscript an array in order to refer to an element by a numeric
index.

The array elements are numbered using sequential integers, beginning at 0 and
increasing by 1 for each element, like this:

$fred[0] = "yabba";
$fred[1] = "dabba";
$fred[2] = "doo";

The array name itself (in this case, fred) is from a completely separate namespace
than scalars use; you can have a scalar variable named $fred in the same program,
and Perl will treat them as different things and won't be confused. (Your maintenance
programmer might be confused, though, so don't capriciously make all of your vari-
able names the same!)

You can use an array element like $fred[2] in (almost) every place where you could
use any other scalar variable. For example, you can get the value from an array ele-
ment or change that value by the same sort of expressions you used in Chapter 2:

print $fred[0];
$fred[2] "diddley";
$fred[1] .= "whatsis";

The subscript may be any expression that gives a numeric value. If it's not an integer
already, Perl will automatically truncate it (not round!) to the whole number portion:
Snumber = 2.71828;
print $fred[Snumber - 1]; # Same as printing S$fred[1]
If the subscript indicates an element that would be beyond the end of the array, the
corresponding value will be undef. This is just as with ordinary scalars; if you've
never stored a value in the variable, it’s undef:

$blank
$blanc

$fred[142_857]; # unused array element gives undef
Smel; # unused scalar $mel also gives undef

44 | Chapter3:Lists and Arrays

Special Array Indices

If you assign to an array element that is beyond the end of the array, the array is auto-
matically extended as needed—there’s no limit on its length, as long as there’s avail-
able memory for Perl to use. If Perl needs to create the intervening elements, it creates
them as undef values:

$rocks[0] = 'bedrock'; # One element...

$rocks[1] = 'slate'; # another...

S$rocks[2] = 'lava'; # and another...

$rocks[3] = 'crushed rock'; # and another...

$rocks[99] = 'schist'; # now there are 95 undef elements

Sometimes you need to find out the last element index in an array. For the array of
rocks, the last element index is $#rocks. That’s not the same as the number of ele-
ments, though, because there’s an element number zero:

Send = S#rocks; # 99, which is the last element's index

$number_of_rocks = $end + 1; # OK, but you'll see a better way later

$rocks[S$#rocks] = 'hard rock'; # the last rock
Using the $#name value as an index, like that last example, happens often enough that
Larry has provided a shortcut: negative array indices count from the end of the array.
But don’t get the idea that these indices “wrap around.” If you have three elements in
the array, the valid negative indices are -1 (the last element), -2 (the middle element),
and -3 (the first element). If you try -4 and beyond, you just get undef. In the real
world, nobody seems to use any of these except -1, though:

$rocks[-1] = 'hard rock'; # easier way to do that last example
$dead_rock = $rocks[-100]; # gets 'bedrock'
$rocks[-200] = 'crystal'; # fatal error!

List Literals

A list literal (the way you represent a list value within your program) is a list of
comma-separated values enclosed in parentheses. These values form the elements of
the list. For example:

(1, 2, 3) # list of three values 1, 2, and 3

(1, 2, 3,) # the same three values (the trailing comma is ignored)
("fred", 4.5) # two values, "fred" and 4.5

() # empty list - zero elements

You don't have to type out every value if they are in sequence. The .. range operator
creates a list of values by counting from the left scalar up to the right scalar by ones.
For example:

(1..100) # list of 100 integers
(1..5) # same as (1, 2, 3, 4, 5)

Special Array Indices | 45

(1.7..5.7) # same thing; both values are truncated
(0, 2..6, 10, 12) # same as (0, 2, 3, 4, 5, 6, 10, 12)

The range operator only counts up, so this won’t work and you’ll get the empty list:
(5..1) # empty list; .. only counts "uphill"

The elements of a list literal are not necessarily constants; they can be expressions that
will be newly evaluated each time the literal is used. For example:

($m, 17) # two values: the current value of $m, and 17
($m+S0, $p+5q) # two values
($m..Sn) # range determined by current values of $m and $n

(0..$#rocks) # the indices of the rocks array from the previous section

The qw Shortcut
A list may have any scalar values, like this typical list of strings:
("fred", "barney", "betty", "wilma", "dino")

It turns out that lists of simple words (like the previous example) are frequently
needed in Perl programs. The qw shortcut makes it easy to generate them without
typing a lot of extra quote marks:

qw(fred barney betty wilma dino) # same as earlier, but less typing

gw stands for “quoted words” or “quoted by whitespace,” depending on whom you
ask. Either way, Perl treats it like a single-quoted string (so, you can’t use \n or $fred
inside a qw list as you would in a double-quoted string). The whitespace (characters
like spaces, tabs, and newlines) disappear and whatever is left becomes the list of
items. Since whitespace is insignificant, here’s another (but unusual) way to write that
same list:

qw(fred
barney betty
wilma dino) # same as before, but pretty strange whitespace

Since qw is a form of quoting, though, you can’t put comments inside a qw list. Some
people like to format their lists with one element per line, which makes it easy to read
as a column:

aqw(
fred
barney
betty
wilma
dino

)

The previous two examples used parentheses, but Perl lets you choose any punctua-
tion character as the delimiter. Here are some of the common ones:

46 | Chapter3:Listsand Arrays

qw! fred barney betty wilma dino !

qw/ fred barney betty wilma dino /

qw# fred barney betty wilma dino # # like in a comment!
Sometimes the two delimiters can be different. If the opening delimiter is one of
those “left” characters, the corresponding “right” character is the proper closing
delimiter:

qw(fred barney betty wilma dino)

qw{ fred barney betty wilma dino }

qw[fred barney betty wilma dino]

qw< fred barney betty wilma dino >
If you need to include the closing delimiter within the string as one of the characters,
you probably picked the wrong delimiter. But even if you cant or don't want to
change the delimiter, you can still include the character using the backslash:

qw! yahoo\! google ask msn ! # include yahoo! as an element

As in single-quoted strings, two consecutive backslashes contribute one single back-
slash to the item:

qw(This as a \\ real backslash);

Now, although the Perl motto is “There’s More Than One Way To Do It,” you may
wonder why anyone would need all of those different ways! Well, you'll see later that
there are other kinds of quoting where Perl uses this same rule, and it can come in
handy in many of those. But even here, it could be useful if you need a list of Unix
filenames:

aw{

Jusr/dict/words
/home/rootbeer/.ispell_english

}

That list would be quite inconvenient to read, write, and maintain if you could only
use the / as a delimiter.

List Assignment

In much the same way as you can assign scalar values to variables, you can assign list
values to variables:

($fred, Sbarney, $dino) = ("flintstone", "rubble", undef);

All three variables in the list on the left get new values, just as if you did three sepa-
rate assignments. Since the list on the right side is built up before the assignment
starts, this makes it easy to swap two variables’ values in Perl:

($fred, Sbarney) = (Sbarney, $fred); # swap those values
($betty[0], Sbetty[1]) = (Sbetty[1], $betty[0]);

List Assignment | 47

But what happens if the number of variables (on the left side of the equals sign) isn’t
the same as the number of values (from the right side)? In a list assignment, extra val-
ues are silently ignored—Perl figures that if you wanted those values stored some-
where, you would have told it where to store them. Alternatively, if you have too
many variables, the extras get the value undef (or the empty list, as you'll see in a
moment):

($fred, Sbarney) = gw< flintstone rubble slate granite >; # two ignored items
($wilma, $dino) = gw[flintstone]; # Sdino gets undef

Now that you can assign lists, you could build up an array of strings with a line of
code like this:

(Srocks[0], $rocks[1], S$rocks[2], $rocks[3]) = qw/talc mica feldspar quartz/;

But when you wish to refer to an entire array, Perl has a simpler notation. Use the at
sign (@) before the name of the array (and no index brackets after it) to refer to the
entire array at once. You can read this as “all of the,” so @rocks is “all of the rocks”
This works on either side of the assignment operator:

@rocks = qw/ bedrock slate lava /;

@tiny = (); # the empty list

@giant = 1..1e5; # a list with 100,000 elements
@stuff = (@giant, undef, @giant); # a list with 200,001 elements
$dino = "granite";

Qquarry = (@rocks, "crushed rock", @tiny, $dino);

That last assignment gives @quarry the five-element list (bedrock, slate, lava,
crushed rock, granite), since @tiny contributes zero elements to the list. In partic-
ular, it doesn't add an undef item to the list—but you could do that explicitly, as we
did with @stuff earlier. It's also worth noting that an array name expands to the list it
contains. An array doesn't become an element in the list, because these arrays can
contain only scalars, not other arrays. The value of an array variable that has not yet
been assigned is (), the empty list. Just as new, empty scalars start out with undef,
new, empty arrays start out with the empty list.

In Intermediate Perl, we cover references, which lets you make what
are informally called “lists of lists,” among other interesting and
useful structures. The perldsc documentation is worth a read.

When you copy an array to another array, it’s still a list assignment. The lists are sim-
ply stored in arrays. For example:

@copy = @quarry; # copy a list from one array to another

48 | Chapter3:Lists and Arrays

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://perldoc.perl.org/perldsc

The pop and push Operators

You could add new items to the end of an array by simply storing them as elements
with new, larger indices.

One common use of an array is as a stack of information, where you add new values
to and remove old values from the righthand side of the list. The righthand side is the
end with the “last” items in the array, the end with the highest index values. These
operations occur often enough to have their own special functions. Think of this like
a stack of plates. You take a plate off the top of the stack and put plates on top of the
stack (if you're like most people).

The pop operator takes the last element off of an array and returns it:

@array = 5..9;

$fred = pop(@array); # $fred gets 9, @array now has (5, 6, 7, 8)
S$barney = pop @array; # Sbarney gets 8, @array now has (5, 6, 7)
pop @array; # @array now has (5, 6). (The 7 is discarded.)

That last example uses pop in a void context, which is merely a fancy way of saying the
return value isn’t going anywhere. There’s nothing wrong with using pop in this way,
if that’s what you want.

If the array is empty, pop leaves it alone (since there is no element to remove) and
returns undef.

You may have noticed that you can use pop with or without parentheses. This is a
general rule in Perl: as long as you don’t change the meaning by removing the paren-
theses, they’re optional. The converse operation is push, which adds an element (or a
list of elements) to the end of an array:

push(@array, 0); # @array now has (5, 6, 0)

push @array, 8; # @array now has (5, 6, 0, 8)

push @array, 1..10; # @array now has those 10 new elements

@others = qw/ 90210 /;

push @array, @others; # @array now has those five new elements (19 total)

Note that the first argument to push or the only argument for pop must be an array
variable—pushing and popping would not make sense on a literal list.

The shift and unshift Operators

The push and pop operators do things to the end of an array (or the right side of an
array, or the portion with the highest subscripts, depending on how you like to think
of it). Similarly, the unshift and shift operators perform the corresponding actions
on the “start” of the array (or the “left” side of an array, or the portion with the lowest
subscripts). Here are a few examples:

List Assignment | 49

@array = qw# dino fred barney #;

s$m = shift(@array); # $m gets "dino", @array now has ("fred", "barney")
$n = shift Q@array; # Sn gets "fred", @array now has ("barney")

shift @array; # @array is now empty

$o = shift @array; # So gets undef, @array is still empty
unshift(@array, 5); # @array now has the one-element list (5)

unshift @array, 4; # @array now has (4, 5)

@others = 1..3;
unshift @array, @others; # @array now has (1, 2, 3, 4, 5)

Analogous to pop, shift returns undef if you give it an empty array variable.

The splice Operator

The push-pop and shift-unshift operators work with the ends of the array, but what
if you need to remove or add elements to the middle? That’s where the splice opera-
tor comes in. It takes up to four arguments, two of which are optional. The first argu-
ment is always the array and the second argument is the position where you want to
start. If you only use those two arguments, Perl removes all of the elements from your
starting position to the end and returns them to you:

@array = qw(pebbles dino fred barney betty);

@removed = splice @array, 2; # remove fred and everything after
@removed is gw(fred barney betty)
@array is qw(pebbles dino)

You can use a third argument to specify a length. Read that sentence again because
many people assume that the third argument is an ending position, but no, its a

length. That way, you can remove elements from the middle and leave some at the
end:

@array = qw(pebbles dino fred barney betty);
@removed = splice @array, 1, 2; # remove dino, fred
@removed is gw(dino fred)
@array is qw(pebbles barney betty)

The fourth argument is a replacement list. At the same time that you take some ele-
ments out, you can put others in. The replacement list does not need to be the same
size as the slice that you are removing:

@array = qw(pebbles dino fred barney betty);

@removed = splice @array, 1, 2, gqw(wilma); # remove dino, fred
@removed is qw(dino fred)
@array is gw(pebbles wilma
barney betty)

You don’t have to remove any elements. If you specify a length of 0, you remove no
elements but still insert the “replacement” list:

@array = qw(pebbles dino fred barney betty);
@removed = splice @array, 1, 0, qw(wilma); # remove nothing

50 | Chapter3:Listsand Arrays

@removed is qw()

@array is qw(pebbles wilma dino

fred barney betty)
Notice that wilma shows up before dino. Perl inserted the replacement list starting at
index 1 and moved everything else over.

splice might not seem like a big deal to you, but this is a hard thing to do in some
languages, and many people developed complicated techniques, such as linked lists,
that take a lot of programmer attention to get right. Per] handles those details for you.

Interpolating Arrays into Strings

As with scalars, you can interpolate array values into a double-quoted string. Perl
expands the array and automatically adds spaces between the elements, putting the
whole result in the string upon interpolation:

@rocks = gqw{ flintstone slate rubble };
print "quartz @rocks limestone\n"; # prints five rocks separated by spaces

There are no extra spaces added before or after an interpolated array; if you want
those, you'll have to put them in yourself:

print "Three rocks are: @rocks.\n";
print "There's nothing in the parens (@empty) here.\n";

If you forget that arrays interpolate like this, youll be surprised when you put an
email address into a double-quoted string:

$email = "fred@bedrock.edu"; # WRONG! Tries to interpolate @bedrock

Although you probably intended to have an email address, Perl sees the array named
@bedrock and tries to interpolate it. Depending on your version of Perl, you’ll proba-
bly just get a warning:

Possible unintended interpolation of @bedrock

To get around this problem, you either escape the @ in a double-quoted string or use a
single-quoted string:

Semail
Semail

"fred\@bedrock.edu"; # Correct
'fred@bedrock.edu'; # Another way to do that

A single element of an array interpolates into its value, just as youd expect from a
scalar variable:

@fred = gqw(hello dolly);

Sy = 2;

$x = "This is S$fred[1]'s place"; # "This is dolly's place"
$x = "This is S$fred[$y-1]'s place"; # same thing

Interpolating Arrays into Strings | 51

Note that the index expression evaluates as an ordinary expression, as if it were out-
side a string. It is not variable-interpolated first. In other words, if Sy contains the
string "2*4", we're still talking about element 1, not element 7, because the string
"2*4" as a number (the value of $y used in a numeric expression) is just plain 2.

If you want to follow a simple scalar variable with a left square bracket, you need to
delimit the square bracket so that it isn’t considered part of an array reference, as
follows:

@fred = qw(eating rocks is wrong);

$fred = "right"; # we are trying to say "this is right[3]"
print "this is $fred[3]\n"; # prints "wrong" using $fred[3]

print "this is ${fred}[3]\n"; # prints "right" (protected by braces)
print "this is $fred"."[3]\n"; # right again (different string)

print "this is $fred\[3]\n"; # right again (backslash hides it)

The foreach Control Structure

It's handy to be able to process an entire array or list, so Perl provides a control struc-
ture to do just that. The foreach loop steps through a list of values, executing one
iteration (time through the loop) for each value:

foreach $rock (qw/ bedrock slate lava /) {
print "One rock is Srock.\n"; # Prints names of three rocks

}

The control variable ($rock in that example) takes on a new value from the list for
each iteration. The first time through the loop, its "bedrock"; the third time, its
"lava".

The control variable is not a copy of the list element—it actually is the list element.
That is, if you modify the control variable inside the loop, you modify the element
itself, as shown in the following code snippet. This is useful, and supported, but it
would surprise you if you weren’t expecting it:

@rocks = qw/ bedrock slate lava /;

foreach $rock (@rocks) {
Srock = "\tS$rock"; # put a tab in front of each element of @rocks
Srock .= "\n"; # put a newline on the end of each

irint "The rocks are:\n", @rocks; # Each one is indented, on its own line
What is the value of the control variable after the loop has finished? It’s the same as it
was before the loop started. Perl automatically saves and restores the value of the con-
trol variable of a foreach loop. While the loop is running, there’s no way to access or
alter that saved value. So after the loop is done, the variable has the value it had before
the loop, or undef if it hadn’t had a value:

52 | Chapter3:Lists and Arrays

$rock = 'shale';
@rocks = gw/ bedrock slate lava /;

foreach $rock (@rocks) {
}
print "rock is still $rock\n"; # 'rock is still shale'

That means that if you want to name your loop control variable $rock, you don’t have
to worry that maybe you've already used that name for another variable. After we
introduce subroutines to you in Chapter 4, we'll show you a better way to handle that.

That triple dot (. . .) is actually valid Perl. It was added in v5.12 as a
placeholder. It compiles but is a fatal error if the program encoun-
ters it. There’s a range operator that looks the same, but since this
use stands alone, it’s the yada yada operator.

Perl’s Favorite Default; $_

If you omit the control variable from the beginning of the foreach loop, Perl uses its
favorite default variable, $_. This is (mostly) just like any other scalar variable, except
for its unusual name. For example:

foreach (1..10) { # Uses $_ by default
print "I can count to $_!'\n";

}
Although this isn’t Perl’s only default by a long shot, it’s Perl’s most common default.
You'll see many other cases in which Per] will automatically use $_ when you don’t tell
it to use some other variable or value, thereby saving the programmer from the heavy
labor of having to think up and type a new variable name. So as not to keep you in
suspense, one of those cases is print, which will output $_ if given no other
argument:

$_ = "Yabba dabba doo\n";
print; # prints $_ by default

The reverse Operator

The reverse operator takes a list of values (which may come from an array) and
returns the list in the opposite order. So if you were disappointed that the range oper-
ator only counts upward, this is the way to fix it:

@fred = 6..10;

@barney = reverse(@fred); # gets 10, 9, 8, 7, 6

@wilma reverse 6..10; # gets the same thing, without the other array
@fred reverse @fred; # puts the result back into the original array

The foreach Control Structure | 53

The last line is noteworthy because it uses @fred twice. Perl always calculates the
value being assigned (on the right) before it begins the actual assignment.

Remember that reverse returns the reversed list; it doesnt affect its arguments. If the
return value isn't assigned anywhere, it’s useless:

reverse @fred; # WRONG - doesn't change @fred
@fred = reverse @fred; # that's better

The sort Operator

The sort operator takes a list of values (which may come from an array) and sorts
them in the internal character ordering. For strings, that would be in code point
order. In pre-Unicode Perls, the sort order was based on ASCII, but Unicode main-
tains that same order as well as defining the order of many more characters. So, the
code point order is a strange place where all of the capital letters come before all of
the lowercase letters, where the numbers come before the letters, and the punctuation
marks—well, those are here, there, and everywhere. But sorting in that order is just
the default behavior; you'll see in Chapter 14 how to sort in whatever order youd like.
The sort operator takes an input list, sorts it, and outputs a new list:

@rocks = qw/ bedrock slate rubble granite /;

@sorted = sort(@rocks); # gets bedrock, granite, rubble, slate
@back = reverse sort @rocks; # these go from slate to bedrock
@rocks = sort @rocks; # puts sorted result back into @rocks
@numbers = sort 97..102; # gets 100, 101, 102, 97, 98, 99

As you can see from that last example, sorting numbers as if they were strings may
not give useful results. But, of course, any string that starts with 1 has to sort before
any string that starts with 9, according to the default sorting rules. And like what hap-
pened with reverse, the arguments themselves aren't affected. If you want to sort an
array, you must store the result back into that array:

sort @rocks; # WRONG, doesn't modify @rocks
@rocks = sort @rocks; # Now the rock collection is in order

The each Operator

Starting with v5.12, you can use the each operator on arrays. Before that version, you
could only use each with hashes, but we don’t show you those until Chapter 6. Every
time you call each on an array, it returns two values for the next element in the array
—the index of the value and the value itself:

require v5.12;

@rocks = qw/ bedrock slate rubble granite /;
while(($index, $value) = each @rocks) {
print "$index: S$value\n";

}

54 | Chapter3:Lists and Arrays

We used require here because a use v5.12 would turn on “strict”
mode. We don't tell you how to fix that until Chapter 4, so we punt
here. You'll be fine after the next chapter.

If you wanted to do this without each, youd have to iterate through all of the indices
of the array and use the index to get the value:

@rocks = qw/ bedrock slate rubble granite /;
foreach $index (0 .. S$#rocks) {
print "$index: $rocks[$index]\n";

}

Depending on your task, one or the other may be more convenient for you.

Scalar and List Context

This is the most important section in this chapter. In fact, it’s the most important sec-
tion in the entire book. It wouldn’t be an exaggeration to say that your entire career in
using Perl will depend on understanding this section. So if you've gotten away with
skimming the text up to this point, this is where you should really pay attention.

That’s not to say that this section is in any way difficult to understand. It’s actually a
simple idea: a given expression may mean different things depending upon where it
appears and how you use it. This is nothing new to you; it happens all the time in
natural languages. For example, in English, suppose someone asked you what the
word “flies” means. It has different meanings depending on how its used. You can't
identify the meaning until you know the context.

The context refers to how you use an expression. You've actually already seen some
contextual operations with numbers and strings. When you do numbery sorts of
things, you get numeric results. When you do stringy sorts of things, you get string
results. And it’s the operator that decides what you are doing, not the values. The * in
2*3 is numeric multiplication, while the x in 2x3 is string replication. The first gives
you 6 while the second gives you 222. That’s context at work for you.

As Perl is parsing your expressions, it always expects either a scalar value or a list
value (or void, which we don't cover in this book). What Perl expects is called the
context of the expression:

42 + something # The something must be a scalar

sort something # The something must be a list
This is like spoken languages. If we make a grammatical mistake, you notice it right
away because you expect certain words in certain places. Eventually, you’ll read Perl
this way too, but at first you have to think about it.

Scalar and List Context | 55

Even if something is the exact same sequence of characters, in one case it may give a
single, scalar value, while in the other, it may give a list. Expressions in Perl always
return the appropriate value for their context. For example, how about the “name” of
an array. In a list context, it gives the list of elements. But in a scalar context, it returns
the number of elements in the array:

@people = qw(fred barney betty);
@sorted = sort @people; # list context: barney, betty, fred
Snumber = 42 + @people; # scalar context: 42 + 3 gives 45

Even ordinary assignment (to a scalar or a list) causes different contexts:

@list = @people; # a list of three people

$n = @people; # the number 3
But please don’t jump to the conclusion that scalar context always gives the number
of elements that would have been returned in list context. Most list-producing
expressions return something much more interesting.

Any expression can produce a list or a scalar depending on context. So when we say
“list-producing expressions,” we mean those that are typically used in a list context
and therefore might surprise you when theyre used unexpectedly in a scalar context
(like reverse or @fred).

Not only that, but you can’t make any general rules to apply what you know about
some expressions to others. Each expression can make up its own rules. Or, really,
follow the overall rule that isn’t very helpful to you: do the thing that makes the most
sense for that context. Perl is very much a language that tries to do the most common,
mostly right thing for you.

Using List-Producing Expressions in Scalar Context

There are many expressions that you will typically use to produce a list. If you use one
in a scalar context, what do you get? See what the author of that operation says about
it. Usually that person is Larry, and usually the documentation gives the whole story.
In fact, a big part of learning Perl is actually learning how Larry thinks. Therefore,
once you can think like Larry does, you know what Perl should do. But while you're
learning, you'll probably need to look into the documentation.

Some expressions don’t have a scalar-context value at all. For example, what should
sort return in a scalar context? You wouldn’t need to sort a list to count its elements,
so until someone implements something else, sort in a scalar context always returns
undef.

Another example is reverse. In a list context, it gives a reversed list. In a scalar con-
text, it returns a reversed string (or reversing the result of concatenating all the
strings of a list, if given one):

56 | Chapter3:Lists and Arrays

@backwards = reverse qw/ yabba dabba doo /;
gives doo, dabba, yabba
$backwards = reverse qw/ yabba dabba doo /;
gives oodabbadabbay
At first, it’s not always obvious whether an expression is being used in a scalar or a list
context. But trust us, it will become second nature for you eventually.

Here are some common contexts to start you off:

$fred = something; # scalar context
@pebbles = something; # list context
(Swilma, Sbetty) = something; # list context
($dino) = something; # still list context!

Don't be fooled by the one-element list; that last one is a list context, not a scalar one.
The parentheses are significant here, making the fourth of those different than the
first. If you assign to a list (no matter the number of elements), it’s a list context. If
you assign to an array, it’s a list context.

Here are some other expressions you've seen, and the contexts they provide. First,
some that provide scalar context to something:

$fred = something;

$fred[3] = something;

123 + something

something + 654

if (something) { ... }

while (something) { ... }
$fred[something] = something;

And here are some that provide a list context:

@fred = something;

($fred, S$barney) = something;
($fred) = something;

push @fred, something;

foreach $fred (something) { ... }
sort something

reverse something

print something

Using Scalar-Producing Expressions in List Context

Going this direction is straightforward: if an expression doesn’t normally have a list
value, the scalar value is automatically promoted to make a one-element list:

@fred = 6 * 7; # gets the one-element list (42)
@barney = "hello" . ' ' . "world";

Well, there’s one possible catch. Since undef is a scalar value, assigning undef to an
array doesn't clear the array. The better way to do that is to assign an empty list:

Scalar and List Context | 57

@wilma = undef; # OOPS! Gets the one-element list (undef)
which is not the same as this:
@betty = (); # A correct way to empty an array

Forcing Scalar Context

On occasion, you may need to force scalar context where Perl is expecting a list. In
that case, you can use the fake function scalar. Its not a true function because it just
tells Perl to provide a scalar context:

@rocks = gqw(talc quartz jade obsidian);

print "How many rocks do you have?\n";

print "I have ", @rocks, rocks!\n"; # WRONG, prints names of rocks
print "I have ", scalar @rocks, " rocks!\n"; # Correct, gives a number

Oddly enough, there’s no corresponding function to force list context. It turns out
you almost never need it. Trust us on this too.

<STDIN> in List Context

One previously seen operator that returns a different value in an array context is the
line-input operator, <STDIN>. As we described earlier, <STDIN> returns the next line of
input in a scalar context. Now, in list context, this operator returns all of the remain-
ing lines up to the end-of-file. It returns each line as a separate element of the list. For
example:

@lines = <STDIN>; # read standard input in list context

When the input is coming from a file, this will read the rest of the file. But how can
there be an end-of-file when the input comes from the keyboard? On Unix and simi-
lar systems, including Linux and macOS, you’ll normally type a Ctrl-D to indicate to
the system that there’s no more input; the special character itself is never seen by Perl,
even though it may be echoed to the screen. On DOS/Windows systems, use Ctrl+Z
instead. You'll need to check the documentation for your system or ask your local
expert if it’s different from these.

There’s a bug affecting some ports of Perl for DOS/Windows where
the first line of output to the terminal following the use of Ctrl+Z is
obscured. On these systems, you can work around this problem by
simply printing a blank line ("\n") after reading the input.

If the person running the program types three lines, then presses the proper keys
needed to indicate end-of-file, the array ends up with three elements. Each element
will be a string that ends in a newline, corresponding to the three newline-terminated
lines entered.

58 | Chapter3:Lists and Arrays

Wouldn't it be nice if, having read those lines, you could chomp the newlines all at
once? It turns out that if you give chomp an array holding a list of lines, it will remove
the newlines from each item in the list. For example:

@lines = <STDIN>; # Read all the lines
chomp(@lines); # discard all the newline characters

But the more common way to write that is with code similar to what you used earlier:
chomp(@lines = <STDIN>); # Read the lines, not the newlines

Although you're welcome to write your code either way in the privacy of your own
cubicle, most Perl programmers will expect the second, more compact, notation.

It may be obvious to you (but it's not obvious to everyone) that once these lines of
input have been read, they can't be reread. Once you've reached end-of-file, there’s no
more input out there to read.

And what happens if the input is coming from a 4 TB logfile? The line-input operator
reads all of the lines, gobbling up lots of memory. Perl tries not to limit you in what
you can do, but the other users of your system (not to mention your system adminis-
trator) are likely to object. If the input data is large, you should generally find a way to
deal with it without reading it all into memory at once.

Exercises

See “Answers to Chapter 3 Exercises” on page 299 for answers to these exercises:

1. [6] Write a program that reads a list of strings on separate lines until end-of-
input and prints out the list in reverse order. If the input comes from the key-
board, you'll probably need to signal the end of the input by pressing Ctrl-D in
Unix or Ctrl+Z on Windows.

2. [12] Write a program that reads a list of numbers (on separate lines) until end-of-
input and then prints for each number the corresponding person’s name from the
following list. (Hardcode this list of names into your program. That is, it should
appear in your programs source code.) For example, if the input numbers were 1,
2, 4, and 2, the output names would be fred, betty, dino, and betty:

fred betty barney dino wilma pebbles bamm-bamm

3. [8] Write a program that reads a list of strings (on separate lines) until end-of-
input. Then it should print the strings in code point order. That is, if you enter
the strings fred, barney, wilma, betty, the output should show barney betty
fred wilma. Are all of the strings on one line in the output or on separate lines?
Could you make the output appear in either style?

Exercises | 59

CHAPTER 4
Subroutines

You've already seen and used some of the built-in system functions, such as chomp,
reverse, print, and so on. But, as other languages do, Perl has the ability to make
subroutines, which are user-defined functions. These let you recycle one chunk of
code many times in one program. The name of a subroutine is another Perl identifier
(letters, digits, and underscores, but they can't start with a digit) with a sometimes-
optional ampersand (&) in front. There’s a rule about when you can omit the amper-
sand and when you cannot; you’'ll see that rule by the end of the chapter. For now, just
use it every time it’s not forbidden, which is always a safe rule. We'll tell you every
place where it’s forbidden, of course.

The subroutine name comes from a separate namespace, so Perl won’t be confused if
you have a subroutine called &fred and a scalar called $fred in the same program—
although there’s no reason to do that under normal circumstances.

Defining a Subroutine

To define your own subroutine, use the keyword sub, the name of the subroutine
(without the ampersand), then the block of code in curly braces, which makes up the
body of the subroutine. Something like this:

sub marine {
Sn += 1; # Global variable $n
print "Hello, sailor number $n!\n";

}
You may put your subroutine definitions anywhere in your program text, but pro-
grammers who come from a background of languages like C or Pascal like to put
them at the start of the file. Others may prefer to put them at the end of the file so
that the main part of the program appears at the beginning. It’s up to you. In any case,

61

you don’t normally need any kind of forward declaration. If you have two subroutine
definitions with the same name, the later one overwrites the earlier one. Although, if
you have warnings enabled, Perl will tell you when you do that. It’s generally consid-
ered bad form, or the sign of a confused maintenance programmer.

We don’t talk about subroutines of the same name in different
packages until Intermediate Perl.

As you may have noticed in the previous example, you may use any global variables
within the subroutine body. In fact, all of the variables you've seen so far are global;
that is, they are accessible from every part of your program. This horrifies linguistic
purists, but the Perl development team formed an angry mob with torches and ran
them out of town years ago. You'll see how to make private variables in the section
“Private Variables in Subroutines” on page 66.

Invoking a Subroutine

You invoke a subroutine from within an expression by using the subroutine name
(with the ampersand):

&marine; # says Hello, sailor number 1!

&marine; # says Hello, sailor number 2!

&marine; # says Hello, sailor number 3!

&marine; # says Hello, sailor number 4!
Most often, you refer to the invocation as simply calling the subroutine. You'll also see
other ways that you may call the subroutine as you read through this chapter.

Return Values

You always invoke a subroutine as part of an expression, even if you don't use the
result of the expression. When you invoked &marine earlier, you were calculating the
value of the expression containing the invocation but then throwing away the result.

Many times, you call a subroutine and actually do something with the result. This
means that you do something with the return value of the subroutine. All Perl sub-
routines have a return value—there’s no distinction between those that return values
and those that don’'t. Not all Perl subroutines have a useful return value, however.

Since you can call Perl subroutines in a way that needs a return value, itd be a
bit wasteful to have to declare special syntax to “return” a particular value for the
majority of the cases. So Larry made it simple. As Perl chugs along in a subroutine, it

62 | Chapter4:Subroutines

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

calculates values as part of its series of actions. Whatever calculation is last performed
in a subroutine is automatically also the return value.

For example, this subroutine has an addition as the last expression:

sub sum_of_fred_and_barney {
print "Hey, you called the sum_of_fred_and_barney subroutine!\n";
Sfred + $barney; # That's the return value

}

The last evaluated expression in the body of this subroutine is the sum of $fred and
$barney, so the sum of $fred and $barney is the return value. Here’s that in action:

Sfred = 3;
Sbarney = 4;
Swilma = &sum_of_fred_and_barney; # Swilma gets 7

print "\$wilma is Swilma.\n";

S$betty = 3 * &sum_of_fred_and_barney; # $betty gets 21
print "\$betty is $betty.\n";

That code produces this output:

Hey, you called the sum_of_fred_and_barney subroutine!
Swilma is 7.
Hey, you called the sum_of_fred_and_barney subroutine!
$betty is 21.

That print statement is just a debugging aid, so you can see that you called the sub-
routine. You normally take out those sorts of statements when you’re ready to deploy

your program. But suppose you added another print to the end of the subroutine,
like this:

sub sum_of_fred_and_barney {
print "Hey, you called the sum_of_fred_and_barney subroutine!\n";
Sfred + $barney; # That's not really the return value!
print "Hey, I'm returning a value now!\n"; # Oops!

}

The last expression evaluated is not the addition anymore; it's now the print state-
ment, whose return value is normally 1, meaning “printing was successful,” but that’s
not the return value you actually wanted. So be careful when adding additional code
to a subroutine, since the last expression evaluated will be the return value.

The return value of print is true for a successful operation and
false for a failure. You’ll see how to determine the kind of failure in
Chapter 5.

ReturnValues | 63

So, what happened to the sum of $fred and $barney in that second (faulty) subrou-
tine? You didn’t put it anywhere, so Perl discarded it. If you had requested warnings,
Perl (noticing that there’s nothing useful about adding two variables and discarding
the result) would likely warn you about something like “a useless use of addition in a
void context” The term void context is just a fancy way of saying that you aren't using
the answer, whether that means storing it in a variable or using it any other way.

“The last evaluated expression” really means the last expression that Perl evaluates
rather than the last statement in the subroutine. For example, this subroutine returns
the larger value of $fred or $barney:

sub larger_of_fred_or_barney {
if (S$fred > $barney) {
Sfred;
} else {
S$barney;
}
}
The last evaluated expression is either $fred or $barney, so the value of one of those
variables becomes the return value. You don’t know if the return value will be $fred

or $barney until you see what those variables hold at runtime.

These are all rather trivial examples. It gets better when you can pass values that are
different for each invocation into a subroutine instead of relying on global variables.
In fact, that’s coming right up.

Arguments

That subroutine called larger_of_fred_or_barney would be much more useful if it
didn’t force you to use the global variables $fred and $barney. If you wanted to get
the larger value from $wilma and $betty, you currently have to copy those into $fred
and $barney before you can use larger_of_fred_or_barney. And if you had some-
thing useful in those variables, youd have to first copy those to other variables—say,
$save_fred and $save_barney. And then, when youre done with the subroutine,
youd have to copy those back to $fred and $barney again.

Luckily, Per]l has subroutine arguments. To pass an argument list to the subroutine,
simply place the list expression, in parentheses, after the subroutine invocation, like
this:

$n = &max(10, 15); # This sub call has two parameters

Perl passes the list to the subroutine; that is, Perl makes the list available for the sub-
routine to use however it needs to. Of course, you have to store this list somewhere,
so Perl automatically stores the parameter list (another name for the argument list)
in the special array variable named @_ for the duration of the subroutine. You can

64 | Chapter4:Subroutines

access this array to determine both the number of arguments and the value of those
arguments.

This means that the first subroutine parameter is in $_[0], the second one is stored in
$_[1], and so on. But—and here’s an important note—these variables have nothing
whatsoever to do with the $_ variable, any more than $dino[3] (an element of the
@dino array) has to do with $dino (a completely distinct scalar variable). It’s just that
the parameter list must be in some array variable for your subroutine to use it, and
Perl uses the array @_ for this purpose.

Now, you could write the subroutine &max to look a little like the subroutine
&larger_of_fred_or_barney, but instead of using $fred, you could use the first sub-
routine parameter ($_[0]), and instead of using $barney, you could use the second
subroutine parameter ($_[1]). And so you could end up with something like this:

sub max {
Compare this to &larger_of_fred_or_barney
if (s_[0] > s_[1]) {
$_[o];
} else {
$_[11;
}
}
Well, as we said, you could do that. But it’s pretty ugly with all of those subscripts, and

it’s hard to read, write, check, and debug too. You'll see a better way in a moment.

There’s another problem with this subroutine. The name &max is nice and short, but it
doesn’t remind us that this subroutine works properly only if called with exactly two
parameters:

$n = &max(10, 15, 27); # Oops!

max ignores the extra parameters since it never looks at $_[2]. Perl doesn't care
whether there’s something in there or not. Perl doesn’t care about insufficient param-
eters either—you simply get undef if you look beyond the end of the @_ array, as with
any other array. You'll see how to make a better &max, which works with any number
of parameters, later in this chapter.

The @_ variable is private to the subroutine; if there’s a global value in @_, Perl saves it
before it invokes the next subroutine and restores its previous value upon return
from that subroutine. This also means that a subroutine can pass arguments to
another subroutine without fear of losing its own @_ variable—the nested subroutine
invocation gets its own @_ in the same way. Even if the subroutine calls itself recur-
sively, each invocation gets a new @_, so @_ is always the parameter list for the current
subroutine invocation.

Arguments | 65

You might recognize that this is the same mechanism as used with
the control variable of the foreach loop, as seen in Chapter 3. In
either case, the variable’s value is saved and automatically restored
by Perl.

Private Variables in Subroutines

But if Perl can give you a new @_ for every invocation, can't it give you variables for
your own use as well? Of course it can.

By default, all variables in Perl are global variables; that is, they are accessible from
every part of the program. But you can create private variables called lexical variables
at any time with the my operator:

sub max {
my($m, $n); # new, private variables for this block
($m, $n) = @_; # give names to the parameters
if ($m > Sn) { $m } else { $n }

}

These variables are private (or scoped) to the enclosing block; any other $m or $n is
totally unaffected by these two. And that goes the other way too—no other code can
access or modify these private variables, by accident or design. So you could drop this
subroutine into any Perl program in the world and know that you wouldn’t mess up
that program’s $m and $n (if any). Of course, if that program already had a subroutine
called &max, youd mess that up.

It’s also worth pointing out that, inside those i1f blocks, you don't need a semicolon
after the return value expression. The semicolon is really a statement separator, not a
statement terminator. Although Perl allows you to omit the last semicolon in a block,
in practice you omit it only when the code is so simple that you can write the block in
a single line.

You can make the subroutine in the previous example even simpler. Did you notice
that the list ($m, $n) shows up twice? You can apply the my operator to a list of vari-
ables enclosed in parentheses that you use in a list assignment, so it’s customary to
combine those first two statements in the subroutine:

my($m, $n) = @_; # Name the subroutine parameters

That one statement creates the private variables and sets their values, so the first
parameter now has the easier-to-use name $m and the second has $n. Nearly every
subroutine starts with a line much like that one, naming its parameters. When you
see that line, you’ll know that the subroutine expects two scalar parameters, which
you’'ll call $m and $n inside the subroutine.

66 | Chapter4: Subroutines

Variable-Length Parameter Lists

In real-world Perl code, subroutines often have parameter lists of arbitrary length.
That’s because of Perl's “no unnecessary limits” philosophy that you've already seen.
Of course, this is unlike many traditional programming languages, which require
every subroutine to be strictly typed; that is, to permit only a certain predefined num-
ber of parameters of predefined types. It’s nice that Perl is so flexible, but (as you saw
with the &max routine earlier) that may cause problems when you call a subroutine
with a different number of arguments than it expects.

Of course, you can easily check that the subroutine has the right number of argu-
ments by examining the @_ array. For example, you could have written &max to check
its argument list like this:

sub max {
if (@_ !'= 2) {
print "WARNING! &max should get exactly two arguments!\n";
}

continue as before...

}

That if test uses the “name” of the array in a scalar context to find out the number of
array elements, as you saw in Chapter 3.

But in real-world Perl programming, virtually no one really uses this sort of check; it’s
better to make your subroutines adapt to the parameters.

A Better &max Routine

Rewrite &max to allow for any number of arguments, so you can call it like this:

$maximum = &max(3, 5, 10, 4, 6);

sub max {
my(Smax_so_far) = shift @_; # the first one is the largest yet seen
foreach (@) { # look at the remaining arguments

if ($_ > Smax_so_far) { # could this one be bigger yet?
$max_so_far = $_;
}
}

Smax_so_far;
}
This code uses what has often been called the high-water mark algorithm; after
a flood, when the waters have surged and receded for the last time, the high-water
mark shows where the highest water was seen. In this routine, $max_so_far keeps
track of our high-water mark, the largest number yet seen, in the $max_so_far
variable.

Variable-Length Parameter Lists | 67

The first line sets $max_so_far to 3 (the first parameter in the example code) by shift-
ing that parameter from the parameter array, @_. So @_ now holds (5, 10, 4, 6),
since you removed the 3. And the largest number yet seen is the only one yet seen: 3,
the first parameter.

Next, the foreach loop steps through the remaining values in the parameter list, from
@_. The control variable of the loop is, by default, $_. (But remember, there’s no auto-
matic connection between @_ and $_; it’s just a coincidence that they have such simi-
lar names.) The first time through the loop, $_ is 5. The if test sees that it is larger
than $max_so_far, so it sets $max_so_far to 5—the new high-water mark.

The next time through the loop, $_ is 10. That’s a new record high, so you store it in
$max_so_far as well.

The next time, $_ is 4. The if test fails, since that’s not larger than $max_so_far,
which is 10, so you skip the body of the if.

Finally, $_ is 6, and you skip the body of the if again. And that was the last time
through the loop, so the loop is done.

Now, $max_so_far becomes the return value. It’s the largest number you've seen, and
you've seen them all, so it must be the largest from the list: 10.

Empty Parameter Lists

That improved &max algorithm works fine now, even if there are more than two
parameters. But what happens if there are none?

At first, it may seem too esoteric to worry about. After all, why would someone call
&max without giving it any parameters? But maybe someone wrote a line like this one:

Smaximum = &max(@numbers);

And the array @numbers might sometimes be an empty list; perhaps it was read in
from a file that turned out to be empty, for example. So you need to know: what does
&max do in that case?

The first line of the subroutine sets $max_so_far by using shift on @_, the (now
empty) parameter array. That’s harmless; the array is left empty, and shift returns
undef to $max_so_far.

Now the foreach loop wants to iterate over @_, but since that’s empty, you execute the
loop body zero times.

So in short order, Perl returns the value of $max_so_far—undef—as the return value
of the subroutine. In some sense, that’s the right answer because there is no largest
(non)value in an empty list.

68 | Chapter4: Subroutines

Of course, whoever called this subroutine should be aware that the return value may
be undef—or they could simply ensure that the parameter list is never empty.

Notes on Lexical (my) Variables

Those lexical variables can actually be used in any block, not merely in a subroutine’s
block. For example, they can be used in the block of an if, while, or foreach:

foreach (1..10) {
my($square) = $_ * $_; # private variable in this loop
print "$_ squared is $square.\n";
}
The variable $square is private to the enclosing block; in this case, that’s the block of
the foreach loop. If there’s no enclosing block, the variable is private to the entire
source file.

For now, your programs aren’t going to use more than one source file, so this isn’t an
issue. But the important concept is that the scope of a lexical variable’s name is limi-
ted to the smallest enclosing block or file. The only code that can say $square and
mean that variable is the code inside that textual scope.

This is a big win for maintainability—if you find a wrong value in $square, you
should also find the culprit within a limited amount of source code. As experienced
programmers have learned (often the hard way), limiting the scope of a variable to a
page of code, or even to a few lines of code, really speeds along the development and
testing cycle.

A file is a scope too, so a lexical variable in one file isn’t visible in another. However,
we put off covering reusable libraries and modules until Intermediate Perl.

Note also that the my operator doesn’t change the context of an assignment:

s

my($num) = @_; # list context, same as ($num)
= @_

=@
my $num ; # scalar context, same as Snum = @_

B

In the first one, $num gets the first parameter, as a list-context assignment; in the sec-
ond, it gets the number of parameters, in a scalar context. Either line of code could be
what the programmer wanted; you can’t tell from that one line alone, and so Perl can't
warn you if you use the wrong one. (Of course, you wouldn’t have both of those lines
in the same subroutine, since you can’t have two lexical variables with the same name
declared in the same scope; this is just an example.) So, when reading code like this,
you can always tell the context of the assignment by seeing what the context would be
without the word my.

Remember that without the parentheses, my only declares a single lexical variable:

my $fred, $barney; # WRONG! Fails to declare S$barney
my($fred, Sbarney); # declares both

Notes on Lexical (my) Variables | 69

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

Of course, you can use my to create new, private arrays as well:

my @phone_number;
Any new variable will start out empty—undef for scalars, or the empty list for arrays.
In regular Perl programming, you'll probably use my to introduce any new variable in

a scope. In Chapter 3, you saw that you could define your own control variable with
the foreach structure. You can make that a lexical variable too:

foreach my $rock (qw/ bedrock slate lava /) {
print "One rock is $rock.\n"; # Prints names of three rocks

}

This is important in the next section, where you start using a feature that makes you
declare all your variables.

The use strict Pragma

Perl tends to be a pretty permissive language. But maybe you want Perl to impose a
little discipline; that can be arranged with the use strict pragma.

A pragma is a hint to a compiler, telling it something about the code. In this case, the
use strict pragma tells Perl’s internal compiler that it should enforce some good
programming rules for the rest of this block or source file.

Why would this be important? Well, imagine that youre composing your program
and you type a line like this one:

Sbamm_bamm = 3; # Perl creates that variable automatically

Now, you keep typing for a while. After that line has scrolled off the top of the screen,
you type this line to increment the variable:

$bammbamm += 1; # Oops!

Since Perl sees a new variable name (the underscore is significant in a variable name),
it creates a new variable and increments that one. If youre lucky and smart, you've
turned on warnings, and Perl can tell you that you used one or both of those global
variable names only a single time in your program. But if youre merely smart, you
used each name more than once, and Perl won't be able to warn you.

To tell Perl] that you're ready to be more restrictive, put the use strict pragma at the
top of your program (or in any block or file where you want to enforce these rules):

use strict; # Enforce some good programming rules

Starting with Perl 5.12, you implicitly use this pragma when you declare a minimum
Perl version:

use v5.12; # loads strict for you

70 | Chapter4: Subroutines

Now, among other restrictions, Perl will insist that you declare every new variable,
usually done with my:

my $bamm_bamm = 3; # New lexical variable

Now if you try to spell it the other way, Perl recognizes the problems and complains
that you haven't declared any variable called $bammbamm, so your mistake is automati-
cally caught at compile time:

$bammbamm += 1; # No such variable: Compile time fatal error

Of course, this applies only to new variables; you don’t need to declare Perl’s built-in
variables, such as $_ and @_. If you add use strict to an already written program,
you'll generally get a flood of warning messages, so it’s better to use it from the start,
when it’s needed.

use strict doesn’'t check variables named $a and $b because sort
uses those global variables. They aren’t very good variable names

anyway.

Most people recommend that programs that are longer than a screenful of text gener-
ally need use strict. And we agree.

From here on, we'll write most (but not all) of our examples as if use strict is in
effect even where we don’t show it. That is, well generally declare variables with my
where its appropriate. Although we don't always do so here, we encourage you
to include use strict in your programs as often as possible. You'll thank us in the
long run.

The return Operator

What if you want to stop your subroutine right away? The return operator immedi-
ately returns a value from a subroutine:

my @names = qw/ fred barney betty dino wilma pebbles bamm-bamm /;
my $result = &which_element_is("dino", @names);

sub which_element_is {
my($what, Qarray) = @_;
foreach (0..$#array) { # indices of @array's elements
if (Swhat eq S$array[S$_]1) {
return $_; # return early once found

-1; # element not found (return is optional here)

Thereturn Operator | 71

You're asking this subroutine to find the index of dino in the array @names. First, the
my declaration names the parameters: there’s $what, which is what you’re searching
for, and @array, an array of values to search within. That’s a copy of the array @names,
in this case. The foreach loop steps through the indices of @array (the first index is 0,
and the last one is $#array, as you saw in Chapter 3).

Each time through the foreach loop, you check to see whether the string in $what is
equal to the element from @array at the current index. If it’s equal, you return that
index at once. This is the most common use of the keyword return in Perl—to return
a value immediately, without executing the rest of the subroutine.

But what if you never found that element? In that case, the author of this subroutine
has chosen to return -1 as a “value not found” code. It would be more Perlish, per-
haps, to return undef in that case, but this programmer used -1. Saying return -1 on
that last line would be correct, but the word return isn’t really needed.

Some programmers like to use return every time there’s a return value, as a means of
documenting that it is a return value. For example, you might use return when the
return value is not the last line of the subroutine, such as in the subroutine
&larger_of_fred_or_barney, earlier in this chapter. You don't really need it, but it
doesn’t hurt anything either. However, many Per]l programmers believe it’s just an
extra seven characters of typing.

Omitting the Ampersand

As promised, now we'll tell you the rule for when you can omit the ampersand on a
subroutine call. If the compiler sees the subroutine definition before invocation, or if
Perl can tell from the syntax that it’s a subroutine call, the subroutine can be called
without an ampersand, just like a built-in function. (But there’s a catch hidden in that
rule, as you'll see in a moment.)

This means that if Perl can see that it’s a subroutine call without the ampersand, from
the syntax alone, thats generally fine. That is, if you've got the parameter list in paren-
theses, it’s got to be a function call:

my @cards = shuffle(@deck_of_cards); # No & necessary on &shuffle

In this case, the function is the subroutine &shuffle. But it may be a built-in func-
tion, as you'll see in a moment.

Or, if Perl’s internal compiler has already seen the subroutine definition, that’s gener-
ally OK too. In that case, you can even omit the parentheses around the argument list:

72 | (Chapter4: Subroutines

sub division {
$_[0] / $_[1]; # Divide first param by second
}

my $quotient = division 355, 113; # Uses &division

This works because of the rule that you may always omit parentheses when they don’t
change the meaning of the code. You can't omit those parentheses if you use the &,
though.

However, don’t put that subroutine declaration after the invocation; if you do, the
compiler won’'t know what the attempted invocation of division is all about. The
compiler has to see the definition before the invocation in order to use the subroutine
call as if it were a built-in. Otherwise, the compiler doesn’t know what to do with that
expression because it doesn’t know what division is yet.

As with many things in this book, our use of the & is expedient for
teaching you the Perl language rather than teaching you to be an
experienced Per]l programmer. Some people disagree. We say more
about this in the “Why we teach the subroutine ampersand” blog
post.

That’s not the catch, though. The catch is this: if the subroutine has the same name as
a Perl built-in, you must use the ampersand to call your version. With an ampersand,
you're sure to call the subroutine; without it, you can get the subroutine only if there’s
no built-in with the same name:

sub chomp {
print "Munch, munch!\n";

}

&chomp; # That ampersand is not optional!

Without the ampersand, youd be calling the built-in chomp, even though you've
defined the subroutine &chomp. So the real rule to use is this one: until you know the
names of all of Perl’s built-in functions, use the ampersand on function calls. That
means you will use it for your first one hundred or so programs. But when you see
someone else has omitted the ampersand in their own code, it’s not a mistake; per-
haps they simply know that Perl has no built-in with that name.

Thereturn Operator | 73

https://www.learning-perl.com/2013/05/why-we-teach-the-subroutine-ampersand/

Nonscalar Return Values

A scalar isn't the only kind of return value a subroutine may have. If you call your
subroutine in a list context, it can return a list of values.

You can detect whether a subroutine is being evaluated in a scalar
or list context using the wantarray function, which lets you easily
write subroutines with specific list or scalar context values.

Suppose you want to get a range of numbers (as from the range operator, . .), except
that you want to be able to count down as well as up. The range operator only counts
upward, but that’s easily fixed:

sub list_from_fred_to_barney {
if ($fred < Sbarney) {
Count upward from S$fred to Sbarney
$fred. .Sbarney;
} else {
Count downward from $fred to $barney
reverse Sbarney..S$fred;

}
}
S$fred = 11;
Sbarney = 6;

@c = &list_from_fred_to_barney; # @c gets (11, 10, 9, 8, 7, 6)

In this case, the range operator gives you the list from 6 to 11, then reverse reverses
the list so that it goes from $fred (11) to $Sbarney (6), just as we wanted.

The least you can return is nothing at all. A return with no arguments will return
undef in a scalar context or an empty list in a list context. This can be useful for an
error return from a subroutine, signaling to the caller that a more meaningful return
value is unavailable.

Persistent, Private Variables

With my, you were able to make variables private to a subroutine, although each time
you called the subroutine you had to define them again. With state, you can still
have private variables scoped to the subroutine, but Perl will keep their values
between calls.

Going back to the first example in this chapter, you had a subroutine named marine
that incremented a variable:

74 | (Chapter4: Subroutines

sub marine {
Sn += 1; # Global variable $n
print "Hello, sailor number Sn!\n";

}

Now that you know about strict, you add that to your program and realize that
your use of the global variable $n is now a compilation error. You can’t make $n a lexi-
cal variable with my because it wouldn’t retain its value between calls.

Declaring our variable with state tells Perl to retain the variable’s value between calls
to the subroutine and to make the variable private to the subroutine. This feature
showed up in Perl 5.10:

use v5.10;

sub marine {
state $n = 0; # private, persistent variable $n
Sn += 1;
print "Hello, sailor number $n!\n";

}
Now you can get the same output while being strict-clean and not using a global
variable. The first time you call the subroutine, Perl declares and initializes $n. Perl
ignores the statement on all subsequent calls. Between calls, Perl retains the value of
$n for the next call to the subroutine.

You can make any variable type a state variable; it's not just for scalars. Here’s a sub-
routine that remembers its arguments and provides a running sum by using a state
array:

use v5.10;

running_sum(5, 6);
running_sum(1..3);
running_sum(4);

sub running_sum {
state $sum = 0;
state @numbers;

foreach my $number (@_) {
push @numbers, $number;
$sum += $number;

}

say "The sum of (@numbers) is Ssum";

}

Persistent, Private Variables | 75

This outputs a new sum each time you call it, adding the new arguments to all of the
previous ones:

The sum of (5 6) is 11
The sum of (5 6 1 2 3) is 17
The sum of (56 12 3 4) is 21

There’s a slight restriction on arrays and hashes as state variables, though. You can’t
initialize them in list contexts as of Perl 5.10:

state @array = qw(a b c); # Error!

This gives you an error that hints that you might be able to do it in a future version of
Perl, but as of Perl 5.24, you still can’t:

Initialization of state variables in list context currently forbidden ...

This restriction is lifted in Perl 5.28, which allows you to initialize arrays and hashes
in state. For example, a Fibonacci number generator needs the first two numbers to
get started, so you seed the @numbers array with them:

use v5.28;

say next_fibonacci(); # 1
say next_fibonacci(); # 2
say next_fibonacci(); # 3
say next_fibonacci(); # 5

sub next_fibonacci {
state @numbers = (0, 1);
push @numbers, $numbers[-2] + Snumbers[-1];
return $numbers[-1];

}

Prior to v5.28, you could have used an array reference instead since all references are
scalars. However, we don't tell you about those until Intermediate Perl.

Subroutine Signatures

Perl v5.20 added a long-awaited and exciting feature called subroutine signatures. So
far it’s experimental (see Appendix D), but were hoping it’s stable soon. We think it
deserves a section in this chapter, even if to merely tease you with it.

Subroutine signatures are different from prototypes, a much different feature that
many people have tried to use for the same reason. If you don’t know what a proto-
type is, that’s good. You probably don’t need to know about them, at least not in this
book.

76 | Chapter4: Subroutines

https://www.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

So far, you have seen subroutines that take a list of arguments in @_ and then assign
them to variables. You saw that earlier in the max subroutine:

sub max {

my($m, $n);

(5m, $n) = @_;

if ($m > Sn) { $m } else { $n }
}

First, you have to enable this experimental feature (see Appendix D):

use v5.20;

use experimental qw(signatures);
After that, we can move the variable declarations outside the braces right after the
subroutine names:

sub max ($m, $n) {
if (Sm > %n) { $m } else { %n }
}
That’s an exceedingly pleasant syntax. The variables are still private to the subroutine,
but you type much less to declare and assign to them. Perl handles that for you.
Otherwise, the subroutine is the same.

Well, it’s almost the same. Previously, you could pass any number of arguments to
&max even if you only used the first two of them. That doesn’t work anymore:

&max(137, 48, 7);
You get an error if you try this:
Too many arguments for subroutine

The signature feature is also checking the number of arguments for you! But you
want to take the maximum of a list of numbers where you don’t know the length of
the list. You can modify the subroutine in the same way you modified it earlier. You
can use an array in the signature:

sub max ($max_so_far, @rest) {
foreach (@rest) {
if ($_ > $max_so_far) {
Smax_so_far = $_;
}
}

$max_so_far;
}
You don’t have to define an array to slurp up the rest of the arguments, though. If you
use a plain @, Perl knows the subroutine can take a variable number of arguments.
The argument list still shows up in @_:

Subroutine Signatures | 77

sub max ($max_so_far, @) {
foreach (@) {
if ($_ > $max_so_far) {
Smax_so_far = $_;
}
}

Smax_so_far;

}

That handles the case of too many arguments, but what about too few arguments?
Signatures can also specify defaults:

sub list_from_fred_to_barney ($fred = 0, $barney = 7) {
if ($fred < $barney) { $fred..S$barney }
else { reverse Sbarney..S$fred }

}

my @defaults = list_from_fred_to_barney();
my @default_end = list_from_fred_to_barney(17);

say "defaults: @defaults";
say "default_end: @default_end";

When you run this, you can see the default values at work:

defaults: 0 1234567
default_end: 17 16 15 14 13 12 11 10 9 8 7

Sometimes you want optional arguments that don’'t have defaults. You can use the $=
placeholder to denote an optional argument:

sub one_or_two_args (S$first, $=) { ... }
There’s a Perl special variable for formats, $=, but that’s not what's going on here.

And sometimes you want exactly zero arguments. You could create a constant value
like this:

sub PI () { 3.1415926 }

You can read more about signatures in perlsub. We also write about them in the “Use
v5.20 subroutine signatures” blog post.

Prototypes

Prototypes are an older Perl feature that allows you to tell the parser how to interpret
your source; they are a primitive form of signatures that never evolved. It’s not a fea-
ture that we recommend, but it does clash with signatures, so we want to mention
them merely so you know they exist.

78 | Chapter4: Subroutines

https://perldoc.perl.org/perlsub
https://www.effectiveperlprogramming.com/2015/04/use-v5-20-subroutine-signatures/
https://www.effectiveperlprogramming.com/2015/04/use-v5-20-subroutine-signatures/

Suppose you want a subroutine that takes exactly two arguments. You could note that
in the prototype. Since those are instructions to the parser, you need the prototype to
show up before any call to the subroutine:

sub sum ($$) { $_[0] + $_[1] }
print sum(1, 3, 7);

This code gives you a compilation error because sum has one more argument than it
should:

Too many arguments for main::sum

Prototypes and signatures both use parentheses after the name in a subroutine defini-
tion, and each has its own syntax. That’s a problem if you want to use both. To get
around this, v5.20 also adds the :prototype attribute, another feature we aren’t going
to explain other than to note how you preserve prototypes while also using signa-
tures. Put : prototype before the parentheses:

sub sum :prototype($$) { $_[0] + $_[1] }

print sum(1, 3, 7);

We advise that you avoid prototypes altogether unless you understand what you are
doing. Even then, you may want to think twice about it. The full details are in perlsub.
If you have no idea what were talking about, that’s fine, because you won't see this
again in this book!

Exercises

See “Answers to Chapter 4 Exercises” on page 300 for answers to these exercises:

1. [12] Write a subroutine, named total, that returns the total of a list of numbers.
Hint: the subroutine should not perform any I/O; it should simply process its
parameters and return a value to its caller. Try it out in this sample program,
which merely exercises the subroutine to see that it works. The first group of
numbers should add up to 25.

my @fred = qw{ 13579 };
my $fred_total = total(@fred);
print "The total of \@fred is S$fred_total.\n";

print "Enter some numbers on separate lines: ";
my Suser_total = total(<STDIN>);
print "The total of those numbers is $user_total.\n";

Note that using <STDIN> in list context like that will wait for you to end input in
whatever way is appropriate for your system.

2. [5] Using the subroutine from the previous problem, make a program to calcu-
late the sum of the numbers from 1 to 1,000.

Exercises | 79

https://perldoc.perl.org/perlsub

3.

[18] Extra credit exercise: write a subroutine, called &above_average, that takes a
list of numbers and returns the ones above the average (mean). (Hint: make
another subroutine that calculates the average by dividing the total by the num-
ber of items.) Try your subroutine in this test program:

my @fred = above_average(1..10);

print "\@fred is @fred\n";

print "(Should be 6 7 8 9 10)\n";

my @barney = above_average(100, 1..10);
print "\@barney is @barney\n";

print "(Should be just 100)\n";

[10] Write a subroutine named greet that welcomes the person you name by tell-
ing them the name of the last person it greeted:

greet("Fred");
greet("Barney");

This sequence of statements should print:

Hi Fred! You are the first one here!
Hi Barney! Fred is also here!

. [10] Modity the previous program to tell each new person the names of all the

people it has previously greeted:

greet("Fred");

greet("Barney");
greet("Wilma");
greet("Betty");

This sequence of statements should print:

Hi Fred! You are the first one here!
Hi Barney! I've seen: Fred

Hi Wilma! I've seen: Fred Barney

Hi Betty! I've seen: Fred Barney Wilma

80

| Chapter 4: Subroutines

CHAPTER 5
Input and Output

You've already seen how to do some input/output (I/O) in order to make some of the
earlier exercises possible. But now you’ll learn more about those operations by cover-
ing the 80% of the I/O you’ll need for most programs. If you're already familiar with
the workings of standard input, output, and error streams, youre ahead of the game.
If not, we'll get you caught up by the end of this chapter. For now, just think of “stan-
dard input” as being “the keyboard,” and “standard output” as being “the display
screen.

Input from Standard Input

Reading from the standard input stream is easy. You've been doing it already with the
<STDIN> operator. Evaluating this operator in a scalar context gives you the next line
of input:

$line = <STDIN>; # read the next line
chomp($line); # and chomp it
chomp($line = <STDIN>); # same thing, more idiomatically

What we're calling the line-input operator here, <STDIN>, is actually a line-input oper-
ator (represented by the angle brackets) around a filehandle. You'll learn about file-
handles later in this chapter.

Since the line-input operator will return undef when you reach end-of-file, this is
handy for dropping out of loops:

while (defined($line = <STDIN>)) {
print "I saw $line";

}

81

There’s a lot going on in that first line: youre reading the input into a variable, check-
ing that it’s defined, and if it is (meaning that we haven’t reached the end of the
input), youre running the body of the while loop. So, inside the body of the loop,
you’'ll see each line, one after another, in $1line. This is something you’ll want to do
fairly often, so naturally Perl has a shortcut for it. The shortcut looks like this:

while (<STDIN>) {

print "I saw $_";

}
Now, to make this shortcut, Larry chose some useless syntax. That is, this is literally
saying, “Read a line of input, and see if it’s true. (Normally it is.) And if it is true, enter
the while loop, but throw away that line of input!” Larry knew that it was a useless
thing to do; nobody should ever need to do that in a real Perl program. So Larry took
this useless syntax and made it useful.

What this is actually saying is that Perl should do the same thing as you saw in our
earlier loop: it tells Perl to read the input into a variable, and (as long as the result was
defined, so you haven't reached end-of-file) then enter the while loop. However,
instead of storing the input in $1ine, Perl uses its favorite default variable, $_, just as
if you had written this:

while (defined($_ = <STDIN>)) {
print "I saw $_";

}
Now, before you go any further, we must be very clear about something: this shortcut
works only if you write it just like that. If you put a line-input operator anywhere else
(in particular, as a statement all on its own), it won’t read a line into $_ by default. It
works only if there’s nothing but the line-input operator in the conditional of a while
loop. If you put anything else into the conditional expression, this shortcut won't
apply.

There’s otherwise no other connection between the line-input operator (<STDIN>) and
Perl’s favorite default variable ($_). In this case, though, it just happens that Perl is
storing the input in that variable.

On the other hand, evaluating the line-input operator in a list context gives you all of
the (remaining) lines of input as a list—each element of the list is one line:

foreach (<STDIN>) {

print "I saw $_";

}
Once again, there’s no connection between the line-input operator and Perl’s favorite
default variable. In this case, though, the default control variable for foreach is $_. So
in this loop, you see each line of input in $_, one after the other.

82 | Chapter5:Inputand Output

That may sound familiar, and for good reason: that’s the same thing the while loop
would do. Isn't it?

The difference is under the hood. In the while loop, Perl reads a single line of input,
puts it into a variable, and runs the body of the loop. Then it goes back to find
another line of input. But in the foreach loop, you're using the line-input operator in
a list context (since foreach needs a list to iterate through); you read all of the input
before the loop can start running. That difference will become apparent when the
input is coming from your 400 MB web server logfile! It’s generally best to use code
like the while loop’s shortcut, which will process input a line at a time, whenever
possible.

Input from the Diamond Operator

Another way to read input is with the diamond operator: <>. This is useful for mak-
ing programs that work like standard Unix utilities, with respect to the invocation
arguments (which we'll see in a moment). If you want to make a Perl program that
can be used like the utilities cat, sed, awk, sort, grep, Ipr, and many others, the dia-
mond operator will be your friend. If you want to make anything else, the diamond
operator probably won't help.

Randal went over to Larry’s house one day to show off the new
training materials hed been writing and complained that there was
no spoken name for “that thing” Larry didn’t have a name for it
either. Heidi (eight years old at the time) quickly chimed in, “That’s
a diamond, Daddy”” So the name stuck. Thanks, Heidi!

The invocation arguments to a program are normally a number of “words” on the
command line after the name of the program. In this case, they give the names of the
files your program will process in sequence:

$./my_program fred barney betty

That command means to run the command my_program (which will be found in the
current directory), and that it should process file fred, followed by file barney, fol-
lowed by file betty.

If you give no invocation arguments, the program should process the standard input
stream. Or, as a special case, if you give just a hyphen as one of the arguments, that
means standard input as well. So, if the invocation arguments had been fred - betty,
that would have meant that the program should process file fred, followed by the
standard input stream, followed by file betty.

The benefit of making your programs work like this is that you may choose where the
program gets its input at runtime; for example, you won't have to rewrite the program

Input from the Diamond Operator | 83

to use it in a pipeline (which we’ll show more later). Larry put this feature into Perl
because he wanted to make it easy for you to write your own programs that work like
standard Unix utilities—even on non-Unix machines. Actually, he did it so he could
make his own programs work like standard Unix utilities; since some vendors’ utilit-
ies don’t work just like others, Larry could make his own utilities, deploy them on a
number of machines, and know that theyd all have the same behavior. Of course, this
meant porting Perl to every machine he could find.

The diamond operator is actually a special kind of line-input operator. But instead of
getting the input from the keyboard, it comes from the user’s choice of input:

while (defined($line = <>)) {
chomp($line);
print "It was $line that I saw!\n";

}

So, if you run this program with the invocation arguments fred, barney, and betty,
it will say something like: “It was [a line from file fred] that I saw!”, “It was [another
line from file fred] that I saw!”, on and on until it reaches the end of file fred. Then it
will automatically go on to file barney, printing out one line after another, and then
on through file betty. Note that there’s no break when you go from one file to another;
when you use the diamond, it’s as if the input files have been merged into one big file.
The diamond will return undef (and we'll drop out of the while loop) only at the end
of all of the input.

If it matters to you, or even if it doesn't, the current files name is
kept in Perl’s special variable $ARGV. This name may be "-" instead
of a real filename if the input is coming from the standard input
stream, though.

In fact, since this is just a special kind of line-input operator, you may use the same
shortcut you saw earlier to read the input into $_ by default:
while (<>) {
chomp;
print "It was $_ that I saw!\n";
}
This works like the loop from before but with less typing. And you may have noticed
that you use the default for chomp; without an argument, chomp works on $_. Every
little bit of saved typing helps!

Since you generally use the diamond operator to process all of the input, it’s typically
a mistake to use it in more than one place in your program. If you find yourself
putting two diamonds into the same program, especially using the second diamond
inside the while loop that is reading from the first one, it’s almost certainly not going

84 | Chapter5:Inputand Output

to do what you would like. In our experience, when beginners put a second diamond
into a program, they meant to use $_ instead. Remember, the diamond operator reads
the input, but the input itself is (generally, by default) found in $_.

If the diamond operator can’'t open one of the files and read from it, it'll print an
allegedly helpful diagnostic message, such as:

can't open wilma: No such file or directory

The diamond operator will then go on to the next file automatically, much like what
youd expect from cat or another standard utility.

The Double Diamond

There’s a problem with the diamond operator that has a fix in v5.22. Suppose that the
filename from the command line has a special character in it, such as |. This might
cause perl to perform a “pipe open” (see Chapter 15), which runs an external program
and reads that program’s output as if it were a file. The “double diamond” operator,
<<>>, prevents this. It's the same as the diamond operator you just saw but without
the magic that will run external programs:

use v5.22;

while (<<>>) {
chomp;
print "It was $_ that I saw!\n";
}
If you have v5.22 or later, you should use this version instead. We might have liked
someone to fix the good ol single diamond operator, but that might break something
that someone has relied on for years. Instead, the Perl developers maintained back-
ward compatibility.

For the rest of this book, we'll say “diamond operator;” leaving it up to you to choose
which one you want to use. We'll use the old single diamond to drag along the people
on older versions.

The Invocation Arguments

Technically, the diamond operator isn’t looking literally at the invocation arguments
—it works from the @ARGV array. This array is a special array that is preset by the Perl
interpreter as the list of the invocation arguments. In other words, this is just like any
other array (except for its funny, all-caps name), but when your program starts, @ARGV
is already stuffed full of the list of invocation arguments.

You can use @ARGV just like any other array; you could shift items off of it, perhaps,
or use foreach to iterate over it. You could even check to see if any arguments start

The Invocation Arguments | 85

with a hyphen so that you could process them as invocation options (like Perl does
with its own -w option).

If you need more than just one or two such options, you should
almost certainly use a module to process them in a standard way.
See the documentation for the Getopt::Long and Getopt::Std
modules, which are part of the standard distribution.

The diamond operator looks in @ARGV to determine what filenames it should use. If it
finds an empty list, it uses the standard input stream; otherwise, it uses the list of files
that it finds. This means that after your program starts and before you start using the
diamond, you've got a chance to tinker with @ARGV. For example, you can process
three specific files, regardless of what the user chose on the command line:

@ARGV = qw# larry moe curly #; # force these three files to be read
while (<>) {

chomp;

print "It was $_ that I saw in some stooge-like file!\n";

}

Output to Standard Output

The print operator takes a list of values and sends each item (as a string, of course)
to standard output in turn, one after another. It doesn’t add any extra characters
before, after, or in between the items; if you want spaces between items and a newline
at the end, you have to say so:

$name = "Larry Wall";

print "Hello there, $name, did you know that 3+4 is ", 3+4, "?\n";
Of course, that means that there’s a difference between printing an array and interpo-
lating an array:

print @array; # print a list of items

print "@array"; # print a string (containing an interpolated array)
That first print statement will print a list of items, one after another, with no spaces
in between. The second one will print exactly one item, which is the string you get by
interpolating @array into the empty string—that is, it prints the contents of @array,
separated by spaces. So, if @array holds qw/ fred barney betty /, the first one
prints fredbarneybetty, while the second prints fred barney betty separated by
spaces. But before you decide to always use the second form, imagine that @array is a
list of unchomped lines of input. That is, imagine that each of its strings has a trailing
newline character. Now, the first print statement prints fred, barney, and betty on
three separate lines. But the second one prints this:

86 | Chapter5:Inputand Output

fred

barney

betty
Do you see where the spaces come from? Perl is interpolating an array, so it puts
spaces between the elements (actually, whatever is in the variable $"). So we get the
first element of the array (fred and a newline character), then a space, then the next
element of the array (barney and a newline character), then a space, then the last ele-
ment of the array (betty and a newline character). The result is that the lines seem to
have become indented, except for the first one.

Every week or two, we encounter a question like “Perl indents everything after the
first line” Without even reading the message, we can immediately see that the pro-
gram used double quotes around an array containing unchomped strings. “Did you
perhaps put an array of unchomped strings inside double quotes?” we ask, and the
answer is always “yes”

Generally, if your strings contain newlines, you simply want to print them, after all:
print @array;

But if they don’t contain newlines, you generally want to add one at the end:
print "@array\n";

So, if you use the quote marks, youre (generally) adding the \n at the end of the
string anyway; this should help you remember which is which.

It's normal for your program’s output to be buffered. That is, instead of sending out
every little bit of output at once, your program saves the output until there’s enough
to bother with.

If, for example, you want to save the output to disk, it’s (relatively) slow and ineffi-
cient to spin the disk every time you add one or two characters to the file. Generally,
then, the output will go into a buffer that is flushed (that is, actually written to disk, or
wherever) only when the buffer gets full, or when the output is otherwise finished
(such as at the end of runtime). Usually, that’s what you want.

But if you (or a program) may be waiting impatiently for the output, you may wish to
take that performance hit and flush the output buffer each time you print. See $! in
the perlvar documentation for more information on controlling buffering in that
case.

Since print is looking for a list of strings to print, it evaluates its arguments in list
context. Since the diamond operator (as a special kind of line-input operator) returns
a list of lines in a list context, these can work well together:

print <>; # implementation of /bin/cat

print sort <>; # implementation of /bin/sort

Output to Standard Output | 87

https://perldoc.perl.org/perlvar

Well, to be fair, the standard Unix commands cat and sort do have some additional
functionality that these replacements lack. But you can't beat them for the price! You
can now reimplement all of your standard Unix utilities in Perl and painlessly port
them to any machine that has Perl, whether that machine is running Unix or not.
And you can be sure that the programs on every different type of machine will never-
theless have the same behavior.

The Perl Power Tools project, whose goal is to implement all of the
classic Unix utilities in Perl, completed nearly all the utilities. Perl
Power Tools has been helpful because it has made these standard
utilities available on many non-Unix machines.

What might not be obvious is that print has optional parentheses, which can some-
times cause confusion. Remember the rule that parentheses in Perl may always be
omitted—except when doing so would change the meaning of a statement. So, here
are two ways to print the same thing:

print("Hello, world!\n");

print "Hello, world!\n";
So far, so good. But another rule in Perl is that if the invocation of print looks like a
function call, then it is a function call. It's a simple rule, but what does it mean for
something to look like a function call?

In a function call, there’s a function name immediately followed by parentheses
around the function’s arguments, like this:

print (2+3);

That looks like a function call, so it is a function call. It prints 5, but it returns a value
like any other function. The return value of print is a true or false value, indicating
the success of the print. It nearly always succeeds, unless you get some I/O error, so
the $result in the following statement will normally be 1:

$result = print("hello world!\n");

But what if you use the result in some other way? Suppose you decide to multiply the
return value by four:

print (2+3)*4; # Oops!

When Perl sees this line of code, it prints 5, just as you asked. Then it takes the return
value from print, which is 1, and multiplies that by 4. It then throws away the prod-
uct, wondering why you didn't tell it to do something else with it. And at this point,
someone looking over your shoulder says, “Hey, Perl can’t do math! That should have
printed 20 rather than 5!”

88 | (Chapter5:Input and Output

http://www.perlpowertools.com/

This is the problem with the optional parentheses; sometimes we humans forget
where the parentheses really belong. When there are no parentheses, print is a list
operator, printing all of the items in the following list; that's generally what youd
expect. But when the first thing after print is a left parenthesis, print is a function
call, and it will print only what’s found inside the parentheses. Since that line had
parentheses, it’s the same to Perl as if youd said this:

(print(2+3)) * 4; # Oops!

Fortunately, Perl itself can almost always help you with this, if you ask for warnings—
o use -w, or use warnings, at least during program development and debugging. To
fix this, use more parentheses:

print((2+43) * 4);

Actually, this rule—“If it looks like a function call, it is a function call’—applies to all
list functions in Perl, not just to print. It’s just that youre most likely to notice it with
print. If print (or another function name) is followed by an opening parenthesis,
make sure that the corresponding closing parenthesis comes after all of the argu-
ments to that function.

Formatted Qutput with printf

You may wish to have a little more control with your output than print provides. In
fact, you may be accustomed to the formatted output of C’s printf function. Fear
not! Perl provides a comparable operation with the same name.

The printf operator takes a template string followed by a list of things to print. That
string is a fill-in-the-blanks template showing the desired form of the output:

printf "Hello, %s; your password expires in %d days!\n",
Suser, Sdays_to_die;
The template string holds a number of so-called conversions; each conversion begins
with a percent sign (%) and ends with a letter. (As you'll see in a moment, there may
be significant extra characters between these two symbols.) There should be the same
number of items in the following list as there are conversions; if these don’t match up,
it won’t work correctly. In the preceding example, there are two items and two con-
versions, so the output might look something like this:

Hello, merlyn; your password expires in 3 days!

There are many possible printf conversions, so we'll take time here to describe just
the most common ones. Of course, the full details are available in the perlfunc
documentation.

To print a number in what’s generally a good way, use %g, which automatically choo-
ses floating-point, integer, or even exponential notation, as needed:

Formatted Output with printf | 89

https://perldoc.perl.org/perlfunc
https://perldoc.perl.org/perlfunc

printf "%g %g %g\n", 5/2, 51/17, 51 ** 17; # 2.5 3 1.0683e+29
The %d format means a decimal integer, truncated as needed:
printf "in %d days!\n", 17.85; # in 17 days!

Note that this is truncated, not rounded; you’ll see how to round off a number in a
moment.

There’s also %x for hexadecimal and %o for octal if you need those:

printf "in Ox%x days!\n", 17; # in Ox11 days!
printf "in 0%o days!\n", 17; # in 021 days!

In Perl, you most often use printf for columnar data, since most formats accept a
field width. If the data won't fit, the field will generally be expanded as needed:

printf "%6d\n", 42; # output like ""''42 (the ' symbol stands for a space)
printf "%2d\n", 2e3 + 1.95; # 2001

The %s conversion means a string, so it effectively interpolates the given value as a
string but with a given field width:

printf "%10s\n", "wilma"; # looks like '"'"° wilma
A negative field width is left-justified (in any of these conversions):
printf "%-15s\n", "flintstone"; # looks like flintstone " "’

The %f conversion (floating-point) rounds off its output as needed, and even lets you
request a certain number of digits after the decimal point:

printf "%12f\n", 6 * 7 + 2/3; # looks like " '42.666667

printf "%12.3f\n", 6 * 7 + 2/3; # looks like ""' """ 42.667

printf "%12.0f\n", 6 * 7 + 2/3; # looks like " """ '"'"° 43
To print a real percent sign, use %%, which is special in that it uses no element from
the list:

printf "Monthly interest rate: %.2f%%\n",

5.25/12; # the value looks like "0.44%"

Maybe you thought you could simply put a backslash in front of the percent sign.
Nice try, but no. The reason that won’t work is that the format is an expression, and
the expression "\%" means the one-character string '%'. Even if we got a backslash
into the format string, printf wouldn’t know what to do with it.

So far, you've specified the width of a field by putting it directly in the format string.
You can also specify it as one of the arguments. A * inside the format string takes the
next argument as a width:

printf "%*s", 10, "wilma"; # looks like "*"'° wilma

90 | Chapter5:Inputand Output

You can use two * to get the total width and the number of decimal places to format a
float:

printf "%*.*f", 6, 2, 3.1415926; # looks like "'3.14
printf "%*.*f", 6, 3, 3.1415926; # looks like '3.142

There’s quite a bit more that you can do; see the sprintf documentation in perlfunc.

Arrays and printf

Generally, you won’t use an array as an argument to printf. That’s because an array
may hold any number of items, and a given format string will work with only a cer-
tain fixed number of items.

But there’s no reason you can’t whip up a format string on the fly, since it may be any
expression. This can be tricky to get right, though, so it may be handy (especially
when debugging) to store the format in a variable:

my @items = qw(wilma dino pebbles);

my $format = "The items are:\n" . ("%10s\n" x @items);

print "the format is >>$format<<\n"; # for debugging
printf $format, @items;

This uses the x operator (which you learned about in Chapter 2) to replicate the given
string the number of times given by @items (which is being used in a scalar context).
In this case, that’s 3, since there are three items, so the resulting format string is the
same as if you wrote it as "The items are:\n%10s\n%10s\n%10s\n". And the output
prints each item on its own line, right-justified in a 10-character column, under a
heading line. Pretty cool, huh? But not cool enough, because you can even combine
these:

printf "The items are:\n".("%10s\n" x @items), @items;

Note that here you have @items being used once in a scalar context, to get its length,
and once in a list context, to get its contents. Context is important.

Filehandles

A filehandle is the name in a Perl program for an I/O connection between your Perl
process and the outside world. That is, it's the name of a connection, not necessarily
the name of a file. Indeed, Perl has mechanisms to connect a filehandle to almost any-
thing.

Before Perl 5.6, all filehandle names were barewords, and Perl 5.6 added the ability to
store a filehandle reference in a normal scalar variable. We'll show you the bareword
versions first since Perl still uses those for its special filehandles, and catch up with
the scalar variable versions later in this chapter.

Filehandles | 91

https://perldoc.perl.org/perlfunc

You name these filehandles just like other Perl identifiers: letters, digits, and under-
scores (but not starting with a digit). The bareword filehandles don’t have any prefix
character, so Perl might confuse them with present or future reserved words, or with
labels, which you’ll see in Chapter 10. Once again, as with labels, the recommenda-
tion from Larry is that you use all uppercase letters in the name of your filehandle—
not only does it stand out better, but it also guarantees that your program won't fail
when Perl introduces a future (always lowercase) reserved word.

But there are also six special filehandle names that Perl already uses for its own pur-
poses: STDIN, STDOUT, STDERR, DATA, ARGV, and ARGVOUT. Although you may choose
any filehandle name you like, you shouldn’t choose one of those six unless you intend
to use that one’s special properties.

Maybe you recognized some of those names already. When your program starts,
STDIN is the filehandle naming the connection between the Perl process and wherever
the program should get its input, known as the standard input stream. This is gener-
ally the user’s keyboard unless the user asked for something else to be the source of
input, such as a file or the output of another program through a pipe.

The defaults for the three main I/O streams are what the Unix
shells do by default. But it’s not just shells that launch programs, of
course. You'll see in Chapter 15 what happens when you launch
another program from Perl.

There’s also the standard output stream, which is STDOUT. By default, this one goes to
the user’s display screen, but the user may send the output to a file or to another pro-
gram, as you'll see shortly. These standard streams come to you from the Unix “stan-
dard I/O” library, but they work in much the same way on most modern operating
systems. The general idea is that your program should blindly read from STDIN and
blindly write to STDOUT, trusting in the user (or generally whichever program is start-
ing your program) to have set those up. In that way, the user can type a command like
this one at the shell prompt:

$./your_program <dino >wilma

That command tells the shell that the program’s input should be read from the file
dino, and the output should go to the file wilma. As long as the program blindly reads
its input from STDIN, processes it (in whatever way we need), and blindly writes its
output to STDOUT, this will work just fine.

And at no extra charge, the program will work in a pipeline. This is another concept
from Unix, which lets us write command lines like this one:

$ cat fred barney | sort | ./your_program | grep something | lpr

92 | Chapter5:Inputand Output

Now, if youre not familiar with these Unix commands, that’s OK. This line says that
the cat command should print out all of the lines of file fred followed by all of the
lines of file barney. Then that output should be the input of the sort command, which
sorts those lines and passes them on to your_program. After it has done its process-
ing, your_program sends the data on to grep, which discards certain lines in the data,
sending the others on to the [pr command, which should print everything that it gets
on a printer. Whew!

Pipelines like that are common in Unix and many other systems today because they
let you build powerful, complex commands out of simple, standard building blocks.
Each building block does one thing very well, and it’s your job to use them together in
the right way.

There’s one more standard I/O stream. If (in the previous example) your_program
had to emit any warnings or other diagnostic messages, those shouldn’t go down the
pipeline. The grep command is set to discard anything that it hasn’t specifically been
told to look for, and so it will most likely discard the warnings. Even if it did keep the
warnings, you probably don't want to pass them downstream to the other programs
in the pipeline. So that’s why there’s also the standard error stream: STDERR. Even if the
standard output is going to another program or file, the errors will go to wherever the
user desires. By default, the errors will generally go to the user’s display screen, but
the user may send the errors to a file with a shell command like this one:

$ netstat | ./your_program 2>/tmp/my_errors

Generally, errors aren’t buffered. That means that if the standard error and standard
output streams are both going to the same place (such as the monitor), the errors
may appear earlier than the normal output. For example, if your program prints a line
of ordinary text, then tries to divide by zero, the output may show the message about
dividing by zero first, and the ordinary text second.

Opening a Filehandle

So you've seen that Perl provides three filehandles—STDIN, STDOUT, and STDERR—
which are automatically open to files or devices established by the program’s parent
process (probably the shell). When you need other filehandles, use the open operator
to tell Perl to ask the operating system to open the connection between your program
and the outside world. Here are some examples:

open CONFIG, 'dino';

open CONFIG, '<dino';

open BEDROCK, '>fred';

open LOG, '>>logfile';
The first one opens a filehandle called CONFIG to a file called dino. That is, the (exist-
ing) file dino will be opened and whatever it holds will come into our program

Opening aFilehandle | 93

through the filehandle named CONFIG. This is similar to the way that data from a file
could come in through STDIN if the command line had a shell redirection like <dino.
In fact, the second example uses exactly that sequence. The second does the same as
the first, but the less-than sign explicitly says “use this filename for input,” even
though that’s the default.

This may be important for security reasons. As you'll see in a moment (and in further
detail in Chapter 15), there are a number of magical characters that may be used in
filenames. If $name holds a user-chosen filename, simply opening $name will allow
any of these magical characters to come into play. We recommend always using the
three-argument form of open, which we’ll show you in a moment.

Although you don’t have to use the less-than sign to open a file for input, we include
it because, as you can see in the third example, a greater-than sign means to create a
new file for output. This opens the filehandle BEDROCK for output to the new file fred.
Just as when the greater-than sign is used in shell redirection, were sending the out-
put to a new file called fred. If there’s already a file of that name, you're asking to wipe
it out and replace it with this new one.

The fourth example shows how you may use two greater-than signs (again, as the
shell does) to open a file for appending. That is, if the file already exists, you will add
new data at the end. If it doesn't exist, you will create it in much the same way as if
you had used just one greater-than sign. This is handy for logfiles; your program
could write a few lines to the end of a logfile each time it’s run. So thats why the
fourth example names the filehandle LOG and the file logfile.

You can use any scalar expression in place of the filename specifier, although typically
you'll want to be explicit about the direction specification:

my $selected_output = 'my_output';

open LOG, "> $selected_output";
Note the space after the greater-than sign. Perl ignores this, but it keeps unexpected
things from happening if $selected_output were ">passwd”, for example (which
would make an append instead of a write).

In modern versions of Perl (starting with Perl 5.6), you can use a “three-argument”
open:

open CONFIG, '<', 'dino';

open BEDROCK, 's>', $file_name;

open LOG, '>>', &logfile_name();
The advantage here is that Perl never confuses the mode (the second argument) with
some part of the filename (the third argument), which has nice advantages for secu-
rity. Since they are separate arguments, Perl doesn’t have a chance to get confused.

94 | Chapter5:Inputand Output

The three-argument form has another big advantage. Along with the mode, you can
specify an encoding. If you know that your input file is UTF-8, you can specify that
by putting a colon after the file mode and naming the encoding:

open CONFIG, '<:encoding(UTF-8)', 'dino’';

If you want to write your data to a file with a particular encoding, you do the same
thing with one of the write modes:

open BEDROCK, 's>:encoding(UTF-8)', $file_name;

open LOG, '>>:encoding(UTF-8)', &logfile_name();
There’s a shortcut for this. Instead of the full encoding(UTF-8), you might sometimes
see :utf8. This isn't really a shortcut for the full version, because it doesn’t care if the
input (or output) is valid UTF-8. If you use encoding(UTF-8), you ensure that the
data is encoded correctly. The :utf8 takes whatever it gets and marks it as a UTF-8
string even if it isn’t, which might cause problems later. Still, you might see people do
something like this:

open BEDROCK, 's>:utf8', $file_name; # probably not right

With the encoding() form, you can specify other encodings too. You can get a list of
all of the encodings that your perl understands with a Perl one-liner:

$ perl -MEncode -le "print for Encode->encodings(':all')"

You should be able to use any of the names from that list as an encoding for reading
or writing a file. Not all encodings are available on every machine, since the list
depends on what you've installed (or excluded).

If you want a little-endian version of UTF-16:

open BEDROCK, 's>:encoding(UTF-16LE)', $file_name;
Or perhaps Latin-1:

open BEDROCK, 's>:encoding(iso-8859-1)', $file_name;

There are other layers that perform transformations on the input or output. For
instance, you sometimes need to handle files that have DOS line endings, where each
line ends with a carriage-return/linefeed (CR-LF) pair (also normally written as
"\r\n"). Unix line endings only use the newlines. When you try to use one on the
other, odd things can happen. The :crlf encoding takes care of that. When you want
to ensure that you get a CR-LF at the end of each line, you can set that encoding on
the file:

open BEDROCK, 's:crlf', $file_name;

Now when you print to each line, this layer translates each newline to a CR-LE,
although be careful, since if you already have a CR-LE you’ll end up with two carriage
returns in a row.

Opening aFilehandle | 95

You can do the same thing to read a file, which might have DOS line endings:
open BEDROCK, '<:crlf', $file_name;

Now when you read a file, Perl will translate all CR-LFs to just newlines.

Binmoding Filehandles

You don’t have to know the encoding ahead of time, or even specify it if you already
know it. In older Perls, if you didn’t want to translate line endings, such as a random
value in a binary file that happens to have the same ordinal value as the newline, you
used binmode to turn off line-ending processing:

binmode STDOUT; # don't translate line endings
binmode STDERR; # don't translate line endings

Perl 5.6 called it a discipline, but that name changed in favor of layer.

Starting with Perl 5.6, you could specify a layer as the second argument to binmode. If
you want to output Unicode to STDOUT, you want to ensure that STDOUT knows how to
handle what it gets:

binmode STDOUT, ':encoding(UTF-8)';

If you don’t do that, you might get a warning (even without turning on warnings)
because STDOUT doesn’t know how youd like to encode it:

Wide character in print at test line 1.

You can use binmode with either input or output handles. If you expect UTF-8 on
standard input, you can tell Perl to expect that:

binmode STDIN, ':encoding(UTF-8)';

Bad Filehandles

Perl can’t actually open a file all by itself. Like any other programming language, Perl
can merely ask the operating system to let us open a file. Of course, the operating
system may refuse because of permission settings, an incorrect filename, or other
reasons.

If you try to read from a bad filehandle (that is, a filehandle that isn’t properly open or
a closed network connection), you’ll see an immediate end-of-file. (With the I/O
methods you’ll see in this chapter, end-of-file will be indicated by undef in a scalar
context or an empty list in a list context.) If you try to write to a bad filehandle, the
data is silently discarded.

Fortunately, these dire consequences are easy to avoid. First of all, if you ask for warn-
ings with -w or the warnings pragma, Perl will generally be able to tell you with a
warning when it sees that youre using a bad filehandle. But even before that, open

96 | Chapter5:Inputand Output

always tells you if it succeeded or failed by returning true for success or false for fail-
ure. So you could write code like this:

my $success = open LOG, '>>', 'logfile'; # capture the return value
if (! S$success) {
The open failed

}

Well, you could do it like that, but there’s another way that you'll see in the next
section.

Closing a Filehandle

When you are finished with a filehandle, you may close it with the close operator,
like this:

close BEDROCK;

Closing a filehandle tells perl to inform the operating system that youre done with
the given data stream, so it should write any last output data to disk in case someone
is waiting for it. Perl automatically closes a filehandle if you reopen it (that is, if you
reuse the filehandle name in a new open) or if you exit the program.

When it closes a filehandle, per! will flush any output buffers and release any locks on
the file. Since someone else may be waiting for those things, a long-running program
should generally close each filehandle as soon as possible. But many of our programs
will take only one or two seconds to run to completion, so this may not matter. Clos-
ing a filehandle also releases possibly limited resources, so it's more than just being

tidy.

Because of this, many simple Perl programs don’t bother with close. But it’s there if
you want to be tidy, with one close for every open. In general, it’s best to close each
filehandle soon after youre done with it, though the end of the program often arrives
soon enough.

Fatal Errors with die

Step aside for a moment. You need some stuff that isn’t directly related to (or limited
to) I/O but is more about getting out of a program earlier than normal.

When a fatal error happens inside Perl (for example, if you divide by zero, use an
invalid regular expression, or call a subroutine that you haven’t declared), your pro-
gram stops with an error message telling why. But this functionality is available to you
with the die function, so you can make your own fatal errors.

Fatal Errorswithdie | 97

The die function prints out the message you give it (to the standard error stream,
where such messages should go) and makes sure that your program exits with a non-
zero exit status.

You may not have known it, but every program that runs in Unix (and many other
modern operating systems) has an exit status, telling whether it was successful or not.
Programs that run other programs (like the make utility program) look at that exit
status to see that everything happened correctly. The exit status is just a single byte, so
it can’t say much; traditionally, it is O for success and a nonzero value for failure. Per-
haps 1 means a syntax error in the command arguments, while 2 means that some-
thing went wrong during processing, and 3 means the configuration file couldn't be
found; the details differ from one command to the next. But 0 always means that
everything worked. When the exit status shows failure, a program like make knows
not to go on to the next step.

So you could rewrite the previous example, perhaps as something like this:

if (! open LOG, '>>', 'logfile') {
die "Cannot create logfile: $!";

}

If the open fails, die terminates the program and tells you that it cannot create the
logfile. But what’s that $! in the message? That’s the human-readable complaint from
the system. In general, when the system refuses to do something you've requested
(such as opening a file), $! will give you a reason (perhaps “permission denied” or
“file not found,” in this case). This is the string that you may have obtained with
perror in C or a similar language. This human-readable complaint message is avail-
able in Perl’s special variable $!.

It's a good idea to include $! in the message when it could help the user figure out
what they did wrong. But if you use die to indicate an error that is not the failure of a
system request, don’t include $!, since it will generally hold an unrelated message left
over from something Perl did internally. It will hold a useful value only immediately
after a failed system request. A successful request won't leave anything useful there.

There’s one more thing that die will do for you: it will automatically append the Perl
program name and line number:

Cannot create logfile: permission denied at your_program line 1234.

That’s pretty helpful—in fact, you always seem to want more information in your
error messages than you included the first time around. If you don't want the line
number and file revealed, make sure the dying words have a newline on the end. That
is, another way you could use die is with a trailing newline on the message:

if (@ARGV < 2) {

die "Not enough arguments\n";

}

98 | Chapter5:Inputand Output

If there aren’t at least two command-line arguments, that program will say so and
quit. It won't include the program name and line number, since the line number is of
no use to the user; this is the user’s error, after all. As a rule of thumb, put the newline
on messages that indicate a usage error and leave it oft when the error might be
something you want to track down during debugging.

You should always check the return value of open, since the rest of the program is
relying on its success.

Warning Messages with warn

Just as die can indicate a fatal error that acts like one of Perl’s built-in errors (like
dividing by zero), you can use the warn function to cause a warning that acts like one
of Perl’s built-in warnings (like using an undef value as if it were defined, when warn-
ings are enabled).

The warn function works just like die does, except for that last step—it doesn’t
actually quit the program. But it adds the program name and line number if needed,
and it prints the message to standard error, just as die would.

Automatically die-ing

Starting with v5.10, the autodie pragma is part of the Standard Library. So far in the
examples, you checked the return value of open and handled the error yourself:

if (! open LOG, '>>', 'logfile') {

die "Cannot create logfile: $!";

}
That can get a bit tedious if you have to do that every time you want to open a file-
handle. Instead, you can use the autodie pragma once in your program and automat-
ically get the die if your open fails:

use autodie;

open LOG, '>>', 'logfile';

This pragma works by recognizing which Perl built-ins are system calls, which might
fail for reasons beyond your program’s control. When one of those system calls fails,
autodie magically invokes the die on your behalf. Its error message looks close to
what you might choose yourself:

Can't open('>>', 'logfile'): No such file or directory at test line 3

And having talked about death and dire warnings, we now return you to your regu-
larly scheduled I/O instructional material. Read on.

Fatal Errorswithdie | 99

Using Filehandles

Once a filehandle is open for reading, you can read lines from it just like you can read
from standard input with STDIN. So, for example, to read lines from the Unix pass-
word file:

if (! open PASSWD, "/etc/passwd") {
die "How did you get logged in? ($!)";
}

while (<PASSWD>) {
chomp;

}...

In this example, the die message uses parentheses around $!. Those are merely
parentheses around the message in the output. (Sometimes a punctuation mark is just
a punctuation mark.) As you can see, what we've been calling the “line-input opera-
tor” is really made of two components; the angle brackets (the real line-input opera-
tor) are around an input filehandle.

You can use a filehandle open for writing or appending with print or printf, appear-
ing immediately after the keyword but before the list of arguments:

print LOG "Captain's log, stardate 3.14159\n"; # output goes to LOG

printf STDERR "%d percent complete.\n", $done/$total * 100;
Did you notice that there’s no comma between the filehandle and the items to be
printed? This looks especially weird if you use parentheses. Either of these forms is
correct:

printf (STDERR "%d percent complete.\n", $done/Stotal * 100);
printf STDERR ("%d percent complete.\n", $done/S$total * 100);

Changing the Default Output Filehandle

By default, if you don’t give a filehandle to print (or to printf, as everything we say
here about one applies equally well to the other), the output will go to STDOUT. But
that default may be changed with the select operator. Here we'll send some output
lines to BEDROCK:

select BEDROCK;

print "I hope Mr. Slate doesn't find out about this.\n";

print "Wilma!\n";
Once you've selected a filehandle as the default for output, it stays that way. But it’s
generally a bad idea to confuse the rest of the program, so you should generally set it
back to STDOUT when youre done. Also by default, the output to each filehandle is
buffered. Setting the special $| variable to 1 will set the currently selected filehandle

100 | Chapter5: Inputand Output

(that is, the one selected at the time that the variable is modified) to always flush the
buffer after each output operation. So if you wanted to be sure that the logfile gets its
entries at once, in case you might be reading the log to monitor progress of your
long-running program, you could use something like this:

select LOG;

$| = 1; # don't keep LOG entries sitting in the buffer

select STDOUT;

... time passes, babies learn to walk, tectonic plates shift, and then...
print LOG "This gets written to the LOG at once!\n";

Reopening a Standard Filehandle

We mentioned earlier that if you were to reopen a filehandle (that is, if you were to
open a filehandle FRED when you've already got an open filehandle named FRED), the
old one would be closed for you automatically. And we said that you shouldn’t reuse
one of the six standard filehandle names unless you intended to get that one’s special
features. And we also said that the messages from die and warn, along with Perl’s
internally generated complaints, go automatically to STDERR. If you put those three
pieces of information together, you now have an idea about how you could send error
messages to a file rather than to your program’s standard error stream:

Send errors to my private error log
if (! open STDERR, ">>/home/barney/.error_log") {
die "Can't open error log for append: S$!";

}
After reopening STDERR, any error messages from Perl go into the new file. But what

happens if the die is executed—where will that message go, if the new file couldn’t be
opened to accept the messages?

The answer is that if one of the three system filehandles—STDIN, STDOUT, or STDERR—
fails to reopen, Perl kindly restores the original one. That is, Perl closes the original
one (of those three) only when it sees that opening the new connection is successful.
Thus, this technique could be used to redirect any (or all) of those three system file-
handles from inside your program, almost as if the program had been run with that
I/0 redirection from the shell in the first place.

Output with say

Perl 5.10 borrowed the say built-in from the ongoing development of Raku (which
may have borrowed its say from Pascal’s println). It’s the same as print, although it
adds a newline to the end. These forms all output the same thing:

use v5.10;

print "Hello!\n";

Reopening a Standard Filehandle | 101

print "Hello!", "\n";

say "Hello!";
To just print a variable’s value followed by a newline, we don't need to create an extra
string or print a list. We just say the variable. This is especially handy in the com-
mon case of simply wanting to put a newline after whatever we want to output:

use v5.10;

my $name = 'Fred';

print "$name\n";

print $name, "\n";

say $name;
To interpolate an array, we still need to quote it, though. It’s the quoting that puts the
spaces between the elements:

use v5.10;

my @rray = qw(abcd);
say @array; # "abcd\n"
say "@array"; # "a b c d\n";

Just like with print, we can specify a filehandle with say:

use v5.10;

say BEDROCK "Hello!";

Since this is a Perl 5.10 feature, though, we'll only use it when we are otherwise using
a Perl 5.10 feature. The old, trusty print is still as good as it ever was, but we suspect
that there will be some Perl programmers out there who want the immediate savings
of not typing the four extra characters (two in the name, plus the \n).

Filehandles in a Scalar

Since v5.6, you can create a filehandle in a scalar variable so that you don’t have to use
a bareword. This makes many things, such as passing filehandles as subroutine argu-
ments, storing them in arrays or hashes, or controlling their scope, much easier.
Although you still need to know how to use the barewords, because you’ll still find
them in Perl code and they are actually quite handy in short scripts where you don’t
benefit that much from the filehandles in a variable.

If you use a scalar variable without a value in place of the bareword in open, your file-
handle ends up in the variable. People typically do this with a lexical variable since
that ensures that you get a variable without a value; some like to put a _fh on the end
of these variable names to remind themselves that they are using it for a filehandle:

102 | Chapter5: Inputand Output

my $rocks_fh;
open Srocks_fh, '<', 'rocks.txt'
or die "Could not open rocks.txt: $!";
You can even combine those two statements so that you declare the lexical variable
right in the open:
open my $rocks_fh, '<', 'rocks.txt'
or die "Could not open rocks.txt: $!";
Once you have the filehandle in your scalar variable, you use the variable, sigil and
all, in the same place that you used the bareword version:

while(<S$rocks_fh>) {
chomp;

}...

This works for output filehandles too. You open the filehandle with the appropriate
mode, then use the scalar variable in place of the bareword filehandle:

open my $rocks_fh, '>>', 'rocks.txt'
or die "Could not open rocks.txt: $!";
foreach my $rock (gqw(slate lava granite)) {
say Srocks_fh S$rock
}

print $rocks_fh "limestone\n";

close $rocks_fh;
Notice that you still don’t use a comma after the filehandle in these examples. Perl
realizes that $rocks_fh is a filehandle because there’s no comma after the first thing
following print. If you put a comma after the filehandle, your output looks odd. This
probably isn’t what you want to do:

print $rocks_fh, "limestone\n"; # WRONG
That example produces something like this:
GLOB(OXABCDEF12)1limestone

What happened? Since you used the comma after the first argument, Perl treated that
first argument as a string to print instead of the filehandle. Although we don’t talk
about references until the next book, Intermediate Perl, you're seeing a stringification
of the reference instead of using it as you probably intend. This also means that these
two are subtly different:

print STDOUT;

print $rocks_fh; # WRONG, probably
In the first case, Perl knows that STDOUT is a filehandle because it is a bareword. Since
there are no other arguments, it uses $_ by default. In the second one, Perl can't tell
what $rock_fh will have until it actually runs the statement. Since it doesn’t know

FilehandlesinaScalar | 103

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

that it’s a filehandle ahead of time, it always assumes that the $rock_fh has a value
you want to output. To get around this, you can always surround anything that
should be a filehandle in braces to make sure that Perl does the right thing, even if
you are using a filehandle that you stored in an array or a hash:

print { $rocks[0] } "sandstone\n";

When you use the braces, you don't print $_ by default. You have to supply it yourself
explicitly:

print { $rocks_fh } $_;

Depending on the sort of programming that you actually do, you might go one way
or the other, choosing between bareword and scalar variable filehandles. For short
programs, such as in system administration, barewords don’t pose much of a prob-
lem. For big application development, you probably want to use the lexical variables
to control the scope of your open filehandles.

Exercises

See “Answers to Chapter 5 Exercises” on page 303 for answers to these exercises:

1. [7] Write a program that acts like cat but reverses the order of the output lines.
(Some systems have a utility like this named tac.) If you run yours as . /tac fred
barney betty, the output should be all of file betty from last line to first, then
barney, and then fred, also from last line to first. (Be sure to use the ./ in your
program’s invocation if you call it tac so that you don't get the system’s utility
instead!)

2. [8] Write a program that asks the user to enter a list of strings on separate lines,
printing each string in a right-justified, 20-character column. To be certain that
the output is in the proper columns, print a “ruler line” of digits as well. (This is
simply a debugging aid.) Make sure that you're not using a 19-character column
by mistake! For example, entering hello, good-bye should give output some-
thing like this:

123456789012345678901234567890123456789012345678901234567890
hello
good-bye

3. [8] Modify the previous program to let the user choose the column width so that
entering 30, hello, good-bye (on separate lines) would put the strings at the 30th
column. (Hint: see “Interpolation of Scalar Variables into Strings” on page 32,
about controlling variable interpolation.) For extra credit, make the ruler line
longer when the selected width is larger.

104 | Chapter5: Inputand Output

CHAPTER 6
Hashes

In this chapter, you will see a feature that makes Perl one of the world’s truly great
programming languages: hashes. Although hashes are a powerful and useful feature,
you may have used other powerful languages for years without ever hearing of
hashes. But you’ll use hashes in nearly every Perl program you write from now on;
they’re that important.

What Is a Hash?

A hash is a data structure, not unlike an array in that it can hold any number of values
and retrieve them at will. But instead of indexing the values by number, as you did
with arrays, you look up hash values by name. That is, the indices, called keys, aren’t
numbers but instead are arbitrary, unique strings (see Figure 6-1).

Hash keys are strings, first of all, so instead of getting element number 3 from an
array, you access the hash element named wilma, for instance.

These keys are arbitrary strings—you can use any string expression for a hash key.
And they are unique strings—just as there’s only one array element numbered 3,
there’s only one hash element named wilma.

Another way to think of a hash is that it’s like a barrel of data, where each piece of
data has a tag attached. You can reach into the barrel and pull out any tag and see
what piece of data is attached. But there’s no “first” item in the barrel; it’s just a jum-
ble. In an array, you start with element 0, then element 1, then element 2, and so on.
But in a hash there’s no fixed order, no first element. It’s just a collection of key-value
pairs.

105

VALUES
“foo" ——P> 35
"bar" ——» 24
2
w "2.5" —— “hello”
"wilma" ——» 1.72e30
“betty” —»> “bye\n”

Figure 6-1. Hash keys and values

The keys and values are both arbitrary scalars, but the keys are always converted to
strings. So, if you used the numeric expression 50/20 as the key, it would be turned
into the three-character string "2.5", which is one of the keys shown in Figure 6-2.

25 time
quark pi
|

[apple | Q5 |
hammer cow |
[T Igiﬂ
J : A
B s

Figure 6-2. A hash as a barrel of data

As usual, Perl’s “no unnecessary limits” philosophy applies: a hash may be of any size,
from an empty hash with zero key-value pairs, up to whatever fills up your memory.

Some implementations of hashes (such as in the original awk language, where Larry
borrowed the idea from) slow down as the hashes get larger and larger. This is not the
case in Perl—it has a good, efficient, scalable algorithm. So, if a hash has only three

106 | Chapter 6: Hashes

key-value pairs, it’s very quick to “reach into the barrel” and pull out any one of those.
If the hash has three million key-value pairs, it should be just about as quick to pull
out any one of those. A big hash is nothing to fear.

It's worth mentioning again that the keys are always unique, although you may use
the same value more than once. The values of a hash may be all numbers, all strings,
undef values, or a mixture. But the keys are all arbitrary, unique strings.

Why Use a Hash?

When you first hear about hashes, especially if you've lived a long and productive life
as a programmer using languages that don’t have hashes, you may wonder why any-
one would want one of these strange beasts. Well, the general idea is that you'll have
one set of data “related to” another set of data. For example, here are some hashes you
might find in typical applications of Perl:

Driver’s license number, name
There may be many, many people named John Smith, but you hope that each one
has a different driver’s license number. That number makes for a unique key, and
the person’s name is the value.

Word, count of number of times that word appears
This is a very common use of a hash. It's so common, in fact, that it just might
turn up in the exercises at the end of the chapter!

The idea here is that you want to know how often each word appears in a given
document. Perhaps you’re building an index to a number of documents so that
when a user searches for fred, you'll know that a certain document mentions
fred five times, another mentions fred seven times, and yet another doesn’t
mention fred at all—so you’ll know which documents the user is likely to want.
As the index-making program reads through a given document, each time it sees
a mention of fred, it adds one to the value filed under the key of fred. That is, if
you had seen fred twice already in this document, the value would be 2, but now
you increment it to 3. If you had not yet seen fred, you change the value from
undef (the implicit, default value) to 1.

Username, number of disk blocks they are using (wasting)
System administrators like this one: the usernames on a given system are all
unique strings, so they can be used as keys in a hash to look up information
about that user.

Yet another way to think of a hash is as a very simple database, in which just one piece
of data may be filed under each key. In fact, if your task description includes phrases

like “finding duplicates,” “unique,” “cross-reference;” or “lookup table,” it’s likely that a
hash will be useful in the implementation.

WhatlsaHash? | 107

Hash Element Access

To access an element of a hash, you use syntax that looks like this:
Shash{$some_key}

This is similar to what you used for array access, but here you use curly braces instead
of square brackets around the subscript (key). You do this because youre doing
something fancier than ordinary array access, so you should use fancier punctuation.
And that key expression is now a string rather than a number:

$family_name{'fred'}
$family_name{'barney'}

'flintstone';
'rubble’;

Figure 6-3 shows how the resulting hash keys are assigned.

fred —» flintstone

barmney —» rubble

Figure 6-3. Assigned hash keys

This lets you use code like this:

foreach my $person (gqw< barney fred >) {
print "I've heard of S$Sperson $family_name{$person}.\n";

}
The name of the hash is like any other Perl identifier. And its from a separate
namespace; that is, there is no connection between the hash element
$family_name{"fred"} and a subroutine &family_name, for example. Of course,
there’s no reason to confuse everyone by giving everything the same name. But Perl
won’t mind if you also have a scalar called $family_name and array elements like
$family_name[5]. We humans will have to do as Perl does; that is, you look to see
what punctuation appears before and after the identifier to see what it means. When
there is a dollar sign in front of the name and curly braces afterward, you're accessing
a hash element.

When choosing the name of a hash, it’s often nice to think of the word for between
the name of the hash and the key, as in “the family_name for fred is flintstone” So
the hash is named family_name. Then the relationship between the keys and their
values becomes clear.

Of course, the hash key may be any expression, not just the literal strings and simple
scalar variables that you're showing here:

108 | Chapter 6: Hashes

$foo = 'bar';
print $family_name{ $foo . 'ney' }; # prints 'rubble’

When you store something in an existing hash element, it overwrites the previous
value:

$family_name{'fred'} = 'astaire'; # gives new value to existing element
Sbedrock = $family_name{'fred'}; # gets 'astaire'; old value is lost

That’s analogous to what happens with arrays and scalars; if you store something new
in $pebbles[17] or $dino, the old value is replaced. If you store something new in
$family_name{'fred'}, the old value is replaced as well.

Hash elements spring into existence when you first assign to them:

$family_name{'wilma'} = 'flintstone'; # adds a new key (and value)
Sfamily_name{'betty'} .= $family_name{'barney'}; # creates the element if needed

This is a feature called autovivification, which we talk about more in Intermediate
Perl. That’s also just like what happens with arrays and scalars; if you didn’t have
$pebbles[17] or $dino before, you will have it after you assign to it. If you didn’t
have $family_name{'betty'} before, you do now.

And accessing outside the hash gives undef:
Sgranite = $family_name{'larry'}; # No larry here: undef

Once again, this is just like what happens with arrays and scalars; if there’s nothing yet
stored in $pebbles[17] or $dino, accessing them will yield undef. If there’s nothing
yet stored in $family_name{'larry'}, accessing it will yield undef.

The Hash as a Whole

To refer to the entire hash, use the percent sign (%) as a prefix. So, the hash you’ve
been using for the last few pages is actually called %family_name.

For convenience, you can convert a hash into a list and back again. Assigning to a
hash (in this case, the one from Figure 6-1) is a list-context assignment, where the list
is key-value pairs:

%some_hash = ('foo', 35, 'bar', 12.4, 2.5, 'hello’,
'wilma', 1.72e30, 'betty', "bye\n");

Although you can use any list expression, it must have an even number of elements,
because the hash is made of key-value pairs. An odd element will likely do something
unreliable, although it's a warnable offense.

The value of the hash (in a list context) is a simple list of key-value pairs:

my @any_array = %some_hash;

Hash Element Access | 109

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

Perl calls this unwinding the hash—turning it back into a list of key-value pairs. Of
course, the pairs won’t necessarily be in the same order as the original list:

print "@any_array\n";
might give something like this:
betty bye (and a newline) wilma 1.72e+30 foo 35 2.5 hello bar 12.4

In scalar context, a hash returns the number of keys in the hash: my
Scount = %hash;. However, before v5.26, this returned a weird
fraction related to the amount of the hash you have used versus the
amount perl has allocated.

The order is jumbled because Perl keeps the key-value pairs in an order that’s conve-
nient for Perl so that it can look up any item quickly. You use a hash either when you
don’t care what order the items are in, or when you have an easy way to put them into
the order you want.

Of course, even though the order of the key-value pairs is jumbled, each key “sticks”
with its corresponding value in the resulting list. So, even though you don’t know
where the key foo will appear in the list, you know that its value, 35, will be right
after it.

Hash Assignment

It’s rare to do so, but you can copy a hash using the obvious syntax of simply assign-
ing one hash to another:

my %new_hash = %old_hash;

This is actually more work for Perl than meets the eye. Unlike what happens in lan-
guages like Pascal or C, where such an operation would be a simple matter of copying
a block of memory, Perl’s data structures are more complex. So, that line of code tells
Perl to unwind the %old_hash into a list of key-value pairs, then assign those to
%new_hash, building it up one key-value pair at a time.

Its more common to transform the hash in some way, though. For example, you
could make an inverse hash:

my %inverse_hash = reverse %any_hash;

This takes %any_hash and unwinds it into a list of key-value pairs, making a list like
(key, value, key, value, key, value, ...). Then reverse turns that list end for end, mak-
ing a list like (value, key, value, key, value, key, ...). Now the keys are where the values
used to be, and the values are where the keys used to be. When you store that in
%inverse_hash, you can look up a string that was a value in %any_hash—it’s now a
key of %inverse_hash. And the value you find is one of the keys from %any_hash. So,
you have a way to look up a “value” (now a key), and find a “key” (now a value).

110 | Chapter 6: Hashes

Of course, you might guess (or determine from scientific principles, if youre clever)
that this will work properly only if the values in the original hash were unique—
otherwise, youd have duplicate keys in the new hash, and keys are always unique.
Here’s the rule that Perl uses: the last one in, wins. That is, the later items in the list
overwrite any earlier ones.

Of course, you don't know what order the key-value pairs will have in this list, so
there’s no telling which ones would win. Youd use this technique only if you know
there are no duplicates among the original values. But that’s the case for the IP
address and hostname examples given earlier:

%ip_address = reverse %host_name;

Now you can look up a hostname or IP address with equal ease to find the corre-
sponding IP address or hostname.

The Big Arrow

When assigning a list to a hash, sometimes it’s not obvious which elements are keys
and which are values. For example, in this assignment (which you saw earlier), we
humans have to count through the list, saying “key, value, key, value...” in order to
determine whether 2.5 is a key or a value:

%some_hash = ('foo', 35, 'bar', 12.4, 2.5, 'hello’,
'wilma', 1.72e30, 'betty', "bye\n");
Wouldn't it be nice if Per] gave you a way to pair up keys and values in that kind of a
list so that it would be easy to see which ones were which? Larry thought so, which is
why he invented the big arrow (=>). To Perl, it’s just a different way to “spell” a
comma, so it’s also sometimes called the “fat comma?” That is, in the Perl grammar,
any time you need a comma (,), you can use the big arrow instead; it’s all the same to
Perl. So here’s another way to set up the hash of last names:

my %last_name = (# a hash may be a lexical variable
'fred' => 'flintstone',
'dino' => undef,
'barney' => 'rubble',
'betty' => 'rubble',
);
Here, it’s easy (or perhaps easier, at least) to see whose name pairs with which value,
even if we end up putting many pairs on one line. And notice that there’s an extra
comma at the end of the list. As we saw earlier, this is harmless but convenient; if we
need to add additional people to this hash, we'll simply make sure that each line has a
key-value pair and a trailing comma. Perl will see that there is a comma between each
item and the next, and one extra (harmless) comma at the end of the list.

Hash Element Access | 111

It gets better, though. Perl offers many shortcuts that can help the programmer. Here’s
a handy one: you may omit the quote marks on some hash keys when you use the fat
comma, which automatically quotes the values to its left:

my %last_name = (
fred => 'flintstone',
dino => undef,
barney => 'rubble',
betty => 'rubble',
);
Of course, you can’t omit the quote marks on just any key, since a hash key may be
any arbitrary string. If that value on the left looks like a Perl operator, Perl can get
confused. This won’t work because Perl thinks the + is the addition operator, not a
string to quote:

my %last_name = (
+ => 'flintstone', # WRONG! Compilation error!
);
But keys are often simple. If the hash key is made up of nothing but letters, digits, and
underscores (without starting with a digit), you may be able to omit the quote marks.
This kind of simple string without quote marks is called a bareword, since it stands
alone without quotes.

Another place you are permitted to use this shortcut is the most common place a
hash key appears: in the curly braces of a hash element reference. For example,
instead of $score{'fred'}, you could write simply $score{fred}. Since many hash
keys are simple like this, not using quotes is a real convenience. But beware; if there’s
anything inside the curly braces besides a bareword, Perl will interpret it as an expres-
sion. For instance, if there is a ., Perl interprets it as a string concatenation:

Shash{ bar.foo } = 1; # that's the key 'barfoo'

Hash Functions

Naturally, there are some useful functions that can work on an entire hash at once.

The keys and values Functions

The keys function yields a list of all the keys in a hash, while the values function
gives the corresponding values. If there are no elements to the hash, then either func-
tion returns an empty list:

my %hash = ('a' => 1, 'b' => 2, 'c' => 3);

my @k = keys %hash;
my @ = values %hash;

112 | Chapter6: Hashes

So, @k will contain 'a', 'b', and 'c', and @v will contain 1, 2, and 3—in some order.
Remember, Perl doesn’t maintain the order of elements in a hash. But whatever order
the keys are in, the values are in the corresponding order: if 'b" is last in the keys, 2
will be last in the values; if 'c' is the first key, 3 will be the first value. That’s true as
long as you don’t modify the hash between the request for the keys and the one for
the values. If you add elements to the hash, Perl reserves the right to rearrange it as
needed, to keep the access quick. In a scalar context, these functions give the number
of elements (key-value pairs) in the hash. They do this quite efficiently, without hav-
ing to visit each element of the hash:

my $count = keys %hash; # gets 3, meaning three key-value pairs

Once in a long while, you’ll see that someone has used a hash as a Boolean (true/false)
expression, something like this:

if (%hash) {
print "That was a true value!\n";

}
That will be true if (and only if) the hash has at least one key-value pair. So, it’s just
saying, “If the hash is not empty...” But this is a pretty rare construct, as such things
go. The actual result is the number of keys (v5.26 and later) or the internal debugging
string useful to the people who maintain Perl (prior to v5.26). It used to look some-
thing like “4/16,” but either version of the value is guaranteed to be true when the
hash is nonempty and false when it’s empty, so the rest of us can still use it for that.

The each Function

If you wish to iterate over (that is, examine every element of) an entire hash, one of
the usual ways is to use the each function, which returns a key-value pair as a two-
element list. On each evaluation of this function for the same hash, the next succes-
sive key-value pair is returned, until you have accessed all the elements. When there
are no more pairs, each returns an empty list.

In practice, the only way to use each is in a while loop, something like this:

while ((Skey, $value) = each %hash) {
print "Skey => $value\n";
}

There’s a lot going on here. First, each %hash returns a key-value pair from the hash,
as a two-element list; let’s say the key is "c" and the value is 3, so the list is ("c", 3).
That list is assigned to the list ($key, $value), so Skey becomes "c" and $value

becomes 3.

But that list assignment is happening in the conditional expression of the while loop,
which is a scalar context. (Specifically, it's a Boolean context, looking for a true/false
value; and a Boolean context is a particular kind of scalar context.) The value of a list

Hash Functions | 113

assignment in a scalar context is the number of elements in the source list—2, in this
case. Since 2 is a true value, you enter the body of the loop and print the message
c = 3,

The next time through the loop, each %hash gives a new key-value pair; say it’s ("a",
1) this time. (It knows to return a different pair than previously because it keeps track
of where it is; in technical jargon, there’s an iterator stored in each hash.) Those two
items are stored in ($key, Svalue). Since the number of elements in the source list
was again 2, a true value, the while condition is true, and the loop body runs again,
tellingus a => 1.

Each hash has its own private iterator. Loops using each may be
nested as long as they are iterating over different hashes. Different
calls to each on the same hash will probably give you unexpected
results since they interfere with each other.

You go one more time through the loop, and by now you know what to expect, so it’s
no surprise to see b => 2 appear in the output.

But you knew it couldn’t go on forever. Now, when Perl evaluates each %hash, there
are no more key-value pairs available, so each has to return an empty list. The empty
list is assigned to ($key, $value), so $key gets undef and $value also gets undef.

But that hardly matters, because youre evaluating the whole thing in the conditional
expression of the while loop. The value of a list assignment in a scalar context is the
number of elements in the source list—in this case, that’s 0. Since 0 is a false value, the
while loop is done, and execution continues with the rest of the program.

Of course, each returns the key-value pairs in a jumbled order. (It's the same order
as keys and values would give, incidentally—the “natural” order of the hash.) If you
need to go through the hash in order, simply sort the keys, perhaps something
like this:

foreach $key (sort keys %hash) {
Svalue = Shash{Skey};
print "S$key => $value\n";
Or, we could have avoided the extra $value variable:
print "Skey => Shash{$key}\n";
}

We'll see more about sorting hashes in Chapter 14.

114 | Chapter 6: Hashes

Typical Use of a Hash

At this point, you may find it helpful to see a more concrete example.

The Bedrock Library uses a Perl program in which a hash keeps track of how many
books each person has checked out, among other information:

Sbooks{'fred'} = 3;
Sbooks{'wilma'} = 1;

It’s easy to see whether an element of the hash is true or false; do this:

if ($books{$someone}) {
print "$someone has at least one book checked out.\n";

}

But there are some elements of the hash that aren’t true:

$books{"barney"}
Sbooks{"pebbles"}

0; # no books currently checked out
undef; # no books EVER checked out; a new library card

Since Pebbles has never checked out any books, her entry has the value of undef
rather than @.

There’s a key in the hash for everyone who has a library card. For each key (that is, for
each library patron), there’s a value that is either a number of books checked out, or
undef if that person’s library card has never been used.

The exists Function

To see whether a key exists in the hash (that is, whether someone has a library card or
not), use the exists function, which returns a true value if the given key exists in the
hash, whether the corresponding value is true or not:

if (exists $books{"dino"}) {

print "Hey, there's a library card for dino!\n";

}
That is to say, exists $books{"dino"} will return a true value if (and only if) dino is
found in the list of keys from keys %books.

The delete Function

The delete function removes the given key (and its corresponding value) from the
hash (if there’s no such key, its work is done; there’s no warning or error in that case):

my $person = "betty";
delete Sbooks{$person}; # Revoke the library card for $person

Note that this is not the same as storing undef in that hash element—in fact, it’s pre-
cisely the opposite! Checking exists($books{"betty"}) will give opposite results in

Typical UseofaHash | 115

these two cases; after a delete, the key can’t exist in the hash, but after storing undef,
the key must exist.

In the example, delete versus storing undef is the difference between taking away
Betty’s library card versus giving her a card that has never been used.

Hash Element Interpolation

You can interpolate a single hash element into a double-quoted string just as youd
expect:
foreach $person (sort keys %books) { # each patron, in order
if ($books{$Sperson}) {
print "$person has S$books{$person} items\n"; # fred has 3 items
}
}
But there’s no support for entire hash interpolation; "%books" is just the six characters
of (literally) %books. So you've seen all of the magical characters that need backslash-
ing in double quotes: $ and @, because they introduce a variable that Perl will try to
interpolate; ", since that’s the quoting character that would otherwise end the double-
quoted string; and \, the backslash itself. Any other characters in a double-quoted
string are nonmagical and should simply stand for themselves. But do beware of the
apostrophe ('), left square bracket ([), left curly brace ({), small arrow (->), or double
colon (::) following a variable name in a double-quoted string, as they could perhaps
mean something you didn’t intend.

The %ENV Hash

There’s a hash that you can use right away. Your Perl program, like any other pro-
gram, runs in a certain environment, and your program can look at the environment
to get information about its surroundings. Perl stores this information in the %ENV
hash. For instance, you'll probably see a PATH key in %ENV:

print "PATH is $ENV{PATH}\n";
Depending on your particular setup and operating system, youll see something
like this:

PATH is /usr/local/bin:/usr/bin:/sbin:/usr/sbin

Most of these are set for you automatically, but you can add to the environment your-
self. How you do this depends on your operating system and shell. For Bash, youd
use export:

$ export CHARACTER=Fred

116 | Chapter 6: Hashes

For Windows, youd use set:
C:\> set CHARACTER=Fred

Once you set these environment variables outside your Perl program, you can access
them inside your Perl program:

print "CHARACTER is $ENV{CHARACTER}\n";

You’'ll see more about %ENV in Chapter 15.

Exercises

See “Answers to Chapter 6 Exercises” on page 305 for answers to these exercises:

1. [7] Write a program that will ask the user for a given name and report the corre-
sponding family name. Use the names of people you know, or (if you spend
so much time on the computer that you don’t know any actual people) use the
following table:

fred flintstone
barney rubble

wilma flintstone

2. [15] Write a program that reads a series of words (with one word per line) until
end-of-input, then prints a summary of how many times each word was seen.
(Hint: remember that when an undefined value is used as if it were a number,
Perl automatically converts it to 0. It may help to look back at the earlier exercise
that kept a running total.) So, if the input words were fred, barney, fred, dino,
wilma, fred (all on separate lines), the output should tell us that fred was seen
3 times. For extra credit, sort the summary words in code point order in the
output.

3. [15] Write a program to list all of the keys and values in %ENV. Print the results in
two columns in ASClIbetical order. For extra credit, arrange the output to verti-
cally align both columns. The length function can help you figure out how wide
to make the first column. Once you get the program running, try setting some
new environment variables and ensuring that they show up in your output.

Exercises | 117

CHAPTER7
Reqular Expressions

Perl has strong support for regular expressions, or regexes for short. This mini-
language within Perl is a tight and powerful way to describe a family of strings that
can match a pattern. It’s one of the features that has made Perl so popular.

Today many languages have some sort of access to these powerful tools (perhaps as
something called “Perl-Compatible Regular Expressions,” or PCRE), but Perl is still
out in front of most of them in its power and expressivity.

In the next three chapters, we will show you most of the regex features that you’ll use
in most programs. In this chapter, we’ll show you the basics of the regular expression
syntax. In Chapter 8, we show you the match operator and more sophisticated ways
to employ patterns. Finally, in Chapter 9, we show you ways to use patterns to modify
text.

Regexes will probably become one of your favorite parts of the language, at least for a
while. But since regular expressions are tight and compact, they may also frustrate
you to no end until you get used to them. That's normal. As you go through these
chapters, try the examples as you read them. The more complex patterns build on
what you've read earlier.

Sequences

Perl’s regular expressions either match a string or they don’t. There is no such thing as
a partial match. And Perl doesn't look for a best match. Instead, it matches the left-
most, longest substring that satisfies the pattern.

119

Some regular expression engines in other languages work differ-
ently, perhaps even looking for a “better” match after they find one
that fits. See Jeffrey Friedl's Mastering Regular Expressions for the
gory details.

The simplest sort of pattern is a sequence. You put literal characters next to each other
to assert that you want to match a substring with those characters in that order. If you
want to match the sequence abba, you put that between slashes:

$_ = "yabba dabba doo";

if (/abba/) {
print "It matched!\n";

}

The forward slashes in the 1f expression are the match operator. It applies its pattern
to the string in $_. The pattern is the part between the slashes. This might seem weird
because this is the first time in this book that you've seen an operator that surrounds
the value.

If the pattern matches the string in $_, the match operator returns true. Otherwise, it
returns false. The match works by trying the pattern at the first position in the string.
The first character in $_ is a y, but the first character in the pattern is a. Those don’t
match, so Perl keeps looking.

The match operator then slides over one spot and tries the match at the next position,
as shown in Figure 7-1. It matches the a—so far, so good. It tries to match the next
character in the sequence, the b. It matches the first b in the string. Again, so far, so
good. Then it matches the second b, and finally the last a. The match operator found
the sequence in the string, so the pattern matches.

yabba dabba do
/abba/ nomatch

yabba dabba do
/abba/ move over one, match!

Figure 7-1. The pattern moves along the string looking for a match

Once the pattern is successful, the match operator returns true. This process matched
the leftmost possible place to match. It doesn’t need to find the second match within
dabba because it already knows the string matches (although we'll show global match-
ing in Chapter 8).

Inside a Perl pattern, whitespace is significant. Any whitespace you include in the pat-
tern tries to match the same whitespace in $_. This example doesn’t match because it
looks for a space between the two bs:

120 | Chapter7: Regular Expressions

https://learning.oreilly.com/library/view/mastering-regular-expressions/0596528124/

$_ = "yabba dabba doo";

if (/ab ba/) { # Won't match
print "It matched!\n";

}

This pattern matches because the string in $_ has a space between the ba and da:

$_ = "yabba dabba doo";
if (/ba da/) { # Does match
print "It matched!\n";

}
The pattern in the match operator is a double-quoted context; you can do the same
sorts of things you can do in a double-quoted string. The special sequences such as \t
and \n mean tab and newline just like they do in a double-quoted string. There are
many ways to match a tab character:

/coke\tsprite/ # \t for tab
/coke\N{CHARACTER TABULATION}sprite/ # \N{charname}
/coke\O@11lsprite/ # character number, octal
/coke\x09sprite/ # character number, hex
/coke\x{9}sprite/ # character number, hex
/cokeS${tab}sprite/ # scalar variable

Perl first interpolates everything into the pattern and then compiles the pattern. If the
pattern isn't a valid regex, you'll get an error. For example, a pattern with a single
opening parenthesis is not valid (you’ll see why later in this chapter):

S$pattern = "(";
if (/Spattern/) {
print "It matched!\n";

}
There’s a pattern that matches every string. You can have the sequence of zero charac-
ters just like you can have the empty string:

$_ = "yabba dabba doo";

if (/N {
print "It matched!\n";

}
If you follow the leftmost, longest rule, you'll work out that the empty pattern
matches at the beginning of the string where it always finds the sequence of zero
characters.

Practice Some Patterns

Now that you know the simplest form of regular expressions, you should try some
yourself (especially if you've never used regular expressions). You'll learn more by
trying them yourself than merely reading about them.

Practice Some Patterns | 121

You know enough Perl to write a simple pattern tester now. You should replace the
PATTERN_GOES_HERE with the pattern youd like to test:

while(<STDIN>) {
chomp;
if (/PATTERN_GOES_HERE/) {
print "\tMatches\n";
}
else {
print "\tDoesn't match\n";
}
}

Let’s suppose that you want to test for fred. Change the pattern in the program:

while(<STDIN>) {
chomp;
if (/fred/) {
print "\tMatches\n";
}
else {
print "\tDoesn't match\n";
}
}

When you run this program, it waits for input. For each line you enter, it tries the
match and prints the result:

$ perl try_a_pattern

Capitalized Fred should not match
Doesn't match

Lowercase fred should match
Matches

Barney will not match
Doesn't match

Neither will Frederick
Doesn't match

But Alfred will
Matches

Some IDEs come with tools that help you build and test a regular
expression. There are many online tools that do the same, such as
regexr.com

Note that the input line with a capitalized F does not match. We haven’t shown you a
way to make a pattern case-insensitive yet. Also note that the fred in Alfred matches
even though it’s in the middle of a larger word. Later you’ll see how to fix that too.

122 | Chapter7: Regular Expressions

https://regexr.com

You have to change the program every time you want to try a new pattern. That’s an
annoying way to program. Since you can interpolate a variable into a pattern, you can
take the first argument from the command line as the pattern:

while(<STDIN>) {
chomp;
if (/SARGV[O]/) { # May be hazardous for your health
print "\tMatches\n";
}
else {
print "\tDoesn't match\n";
}
}

This is a slightly hazardous way to program since that argument could be anything
and Perl has regex features to execute arbitrary code. For our purposes of testing
simple regular expressions, we can take the hazard. Note that your shell may require
you to quote the pattern since some of the regex characters may be special shell
characters too:

$ perl try_a_pattern "fred"
This will match fred
Matches
But not Barney
Doesn't match

You can run it with a different pattern without changing the program:

$ perl try_a_pattern "barney"

This will match fred (not)
Doesn't match

But it will match barney
Matches

Again, this is slightly hazardous and we don’t endorse this for production code. For
this chapter, however, it does a decent job. As you go through this chapter, you may
want to use this program to try new patterns as we introduce them. Try the examples
as you run into them; your comfort with regexes comes with practice!

The Wildcard

The dot, ., matches any single character except a newline. It’s the first regex meta-
character we show:

$_ = "yabba dabba doo";

if (/ab.a/) {
print "It matched!\n";

}

TheWildcard | 123

That single exception, the newline, might seem weird. Perl considers the common
case where you read a line of input and want to match against that string. In that case,
the trailing newline is merely the line separator and not an interesting part of the
string.

Inside the pattern, the dot is not a literal character. Sometimes you might miss this
because the metacharacter also matches the literal version. This matches because the
dot wildcard can match the ! at the end of the string:

$_ = "yabba dabba doo!";

if (/doo./) { # matches
print "It matched!\n";

}

$_ = "yabba dabba doo\n";

if (/doo./) { # doesn't match
print "It matched!\n";

}

If you want to match an actual dot, you need to escape it with the backslash:

$_ = "yabba dabba doo.";
if (/doo\./) { # matches
print "It matched!\n";
}
The backslash is the second metacharacter (and we'll stop counting now). This means
to match a literal backslash, you have to escape that too:

$_ = 'a real \\ backslash';
if (/\\/) { # matches
print "It matched!\n";
}
Perl v5.12 added another way to write “any character except a newline” If you don’t
like the dot, you can use \N:

$_ = "yabba dabba doo!";

if (/doo\N/) { # matches
print "It matched!\n";

}

$_ = "yabba dabba doo\n";

if (/doo\N/) { # doesn't match
print "It matched!\n";

}

You'll see more about the \N in “Character Class Shortcuts” on page 135.

124 | Chapter7: Regular Expressions

Quantifiers

You can repeat parts of a pattern with a quantifier. These metacharacters apply to the
part of the pattern that comes directly before them. Some people call these repeat or
repetition operators.

The easiest quantifier is the question mark, ?. It asserts that the preceding item shows
up zero or one times (or, in human speak, that item is optional). Suppose that some
people write Bamm-bamm while others write Bammbamm without the hyphen. You can
match either by making the - optional:

$_ = 'Bamm-bamm';

if (/Bamm-?bamm/) {

print "It matched!\n";
}

Try it with your test program using different ways to type Bamm-Bamm’s name:

$ perl try_a_pattern "Bamm-?bamm"
Bamm-bamm
Matches
Bammbamm
Matches
Are you Bammbamm or Bamm-bamm?
Matches

In that last line, which version of Bamm-Bamm’s name matches? Perl starts at the left
and shifts the pattern along the string until it matches. The first possible match is
Bammbamm. Once Perl matches that, it stops, even though there is a longer possible
match later in the string. Perl matches the leftmost substring; it doesn’t even know
about the later one because it didn't have to look that far ahead to know the string
matched.

The next quantifier is the star, *. It asserts that the preceding item shows up zero or
more times. That seems like a weird way to say it, but it means it can be there or not.
It’s optional, but it can be there as many times as it likes:

$_ = 'Bamm----- bamm';
if (/Bamm-*bamm/) {

print "It matched!\n";
}

Since you use the * after the hyphen, there can be any number of hyphens (including
zero!) in the string. This is more handy for a variable amount of whitespace. Suppose
you had the possibility of several spaces between the two parts of the name:

$_ = 'Bamm bamm' ;
if (/Bamm *bamm/) {

print "It matched!\n";
}

Quantifiers | 125

You could have another pattern to find a variable number of characters between the B
and an m:

$_ = 'Bamm bamm' ;
if (/B.*m/) {

print "It matched!\n";
}

The longest part of the leftmost longest rule shows up here. The . * can match zero or
more of any character except the newline, and so it does. In the process of matching,
the .* matches the rest of the string all the way to the end of the string. We say that
the quantifiers are greedy because they’ll match as much as they can right away. Perl
also has nongreedy matching, which you’ll see in Chapter 9.

In reality, perl employs various optimization tricks to make match-
ing faster, so a greedy .* might be slightly less greedy if the match
operator knows it can do a little less work.

But the next part of the pattern can’t match, because it is already at the end of the
string. Perl then starts backtracking (or unmatching) so that it can satisfy the rest of
the pattern. It only needs to back up one character for the rest of the pattern (just the
m) to match. Thus, the pattern matches from the first B to the very last m because that’s
the longest match it can make.

This also means that a pattern with a . * at the start or end does more work than it
needs to do. Since the .* can match zero characters, these patterns don’t need it:

$_ = 'Bamm bamm' ;
if (/B.*/) {

print "It matched!\n";
}

if (/.*8/) {
print "It matched!\n";
}
The .* can always match zero characters, so these patterns might as well match a
single B:

$_ = 'Bamm bamm' ;
if (/8/) {

print "It matched!\n";
}

126 | Chapter7: Regular Expressions

The Regexp: :Debugger module animates the process of matching
so that you can see what the regex engine is doing. We show you
how to install modules in Chapter 11. We show more of this in the
“Watch regexes with Regexp::Debugger” blog post.

Where the * matches zero or more times, the + quantifier matches one or more times.
If there must be at least one space, use the +:

$_ = 'Bamm bamm' ;
if (/Bamm +bamm/) {

print "It matched!\n";
}

Those repetition operators match “or more” repetitions. What if you want to match
an exact number? You can put that number in braces. Suppose you want to match
exactly three bs. You can note that with {3}:

$_ = "yabbbba dabbba doo.";
if (/ab{3}a/) {

print "It matched!\n";
}

That matches inside dabbba because that’s where exactly three bs are. This is a handy
way to avoid manually counting the characters yourself.

The situation is a bit different if the quantifier is at the end of the pattern:

$_ = "yabbbba dabbba doo.";
if (/ab{3}/) {

print "It matched!\n";
}

Now the pattern can match inside yabbbba even though there are more than three bs.
It doesn’t limit the number of characters in the string, just the number it will match in
the pattern.

If those aren’t enough for you, there’s the generalized quantifier where you get to
choose the minimum and maximum times something can repeat. You put the mini-
mum and maximum times to repeat in braces, such as {2,3}. Going back to an earlier
example, what if you wanted to allow for two to three bs inside the abba? You would
specify the minimum and maximum times:

$_ = "yabbbba dabbba doo.";
if (/ab{2,3}a/) {

print "It matched!\n";
}

Quantifiers | 127

https://www.learning-perl.com/2016/06/watch-regexes-with-regexpdebugger/

This pattern will first try to match the abbb in yabbbba, but after three bs there’s
another b. Perl has to move along to keep looking for a match, which it finds in
dabbba since it has at least two bs and at most three bs. Thats the leftmost longest
match.

You can specify a minimum number of repetitions with no maximum; just leave out
the maximum. This one matches in yabbbba because it has at least three bs and is the
leftmost match:

$_ = "yabbbba dabbba doo.";
if (/ab{3,}a/) {

print "It matched!\n";
}

Likewise, you can specify a maximum with no minimum by using @ as the least
number:

$_ = "yabbbba dabbba doo.";
if (/ab{0,5}a/) {
print "It matched!\n";

}

Perl v5.34 removes the requirement to literally specify 0, in the same way that you can
leave off the maximum. Now you can write the no-minimum case like {,n}:

use v5.34;

$_ = "yabbbba dabbba doo.";

if (/ab{,5}a/) { # will match
print "It matched!\n";

}

Using 999 will match because there’s a maximum of 999 bs but no minimum. Four or
three bs satisfy that:

use v5.34;

$_ = "yabbbba dabbba doo.";

if (/ab{,999}a/) { # will match
print "It matched!\n";

}

Perl v5.34 allows you to add spaces inside the meta-curlies in a
double-quoted context (which a pattern is one sort of), so {m,n}
canalsobe { m,n },{m , n}, and so on. This applies to quantifiers
as well as things like \x{}, \N{NAME}, and others.

Now you have more metacharacters to escape if you want the literal versions: ?, *, +,
and {. Before v5.26 you could get away with some instances of unescaped literal {, but
as Perl has expanded its regex features, the { has been pressed into service to mean

128 | Chapter7: Regular Expressions

more things. An unescaped literal } is fine because it doesn’t start anything and
doesn’t confuse Perl.

Perl v5.28 temporarily relaxed the requirement to escape a literal { to
give people more time to fix legacy code. Perl v5.30 re-added that
requirement.

You can rewrite all of the quantifiers in terms of the general one, as shown in
Table 7-1.

Table 7-1. Regular expression quantifiers and their generalized forms

Number to match Metacharacter Generalized form
Optional ? {0,1}

Zero or more * {0,}

One or more + {1,}

Minimum with no maximum {3,}

Minimum with maximum {3,5}

No minimum with maximum {0,5} or{,5} (v5.34)
Exactly {3}

Grouping in Patterns

You can use parentheses to group parts of a pattern. So, parentheses are also meta-
characters.

Remember that a quantifier only applies to the immediately preceding item. The pat-
tern /fred+/ matches strings like freddddddddd because the quantifier only applies to
the d. If you want to match repetitions of the entire fred, you can group with paren-
theses, as in /(fred)+/. The quantifier applies to the entire group, so it matches
strings like fredfredfred, which is more likely to be what you wanted.

The parentheses also give you a way to reuse part of the string directly in the match.
You can use back references to refer to text that you matched in the parentheses, called
a capture group. You denote a back reference as a backslash followed by a number, like
\1,\2, and so on. The number denotes the capture group.

You may also see “memories” or “capture buffers” in older docu-
mentation and earlier editions of this book, but the official name is
“capture group”

Grouping in Patterns | 129

When you use the parentheses around the dot, you match any nonnewline character.
You can match again whichever character you matched in those parentheses by using
the back reference \1:
$_ - "abba";
if (/(.)\1/) { # matches 'bb'
print "It matched same character next to itself!\n";

}

The (.)\1 says that you have to match a character right next to itself. On the first try,
the (.) matches an a, but when it looks at the back reference, which says the next
thing it must match is a, that fails. Perl moves over one position in the string and
starts the match over, using the (.) to match the next character, which is a b. The
back reference \1 now says that the next character in the pattern is b, which Perl can
match.

The back reference doesn’t have to be right next to the capture group. The next pat-
tern matches any four nonnewline characters after a literal y, and you use the \1 back
reference to denote that you want to match the same four characters after the d:

$_ = "yabba dabba doo";
if (Jy(....) d\1/) {

print "It matched the same after y and d!\n";
}

You can use multiple groups of parentheses, and each group gets its own back refer-
ence. Suppose you want to match a nonnewline character in a capture group, fol-
lowed by another nonnewline character in a capture group. After those two groups,
you use the back reference \2 followed by the back reference \1. In effect, you're
matching a palindrome such as abba:

$_ = "yabba dabba doo";

if (/y(.)()\2\1/) { # matches 'abba'
print "It matched after the y!\n";

}

How do you know which group gets which number? Just count the order of the open-
ing parentheses and ignore nesting:

$_ = "yabba dabba doo";
i ([y(C)CN\3\2) d\1/) {
print "It matched!\n";

}
You might be able to see this easier if you write out the regular expression to see the
different parts (although this isn't a valid regular expression until we show you the /x
flag in Chapter 8):

130 | Chapter7: Regular Expressions

(# first open parenthesis, \1
(.) # second open parenthesis, \2
(.) # third open parenthesis, \3
\3
\2
)
Perl 5.10 introduced a new way to denote back references. Instead of using the back-
slash and a number, you can use \g{N}, where N is the number of the back reference
that you want to use.

Consider the problem where you want to use a back reference next to a part of the
pattern that is a number. In this regular expression, you want to use \1 to repeat the
character you matched in the parentheses and follow that with the literal string 11:

$_ = "aallbb";

if (/(O\111/) {
print "It matched!\n";

}
Perl has to guess what you mean there. Is that the back reference \1, \11, or \111?
Perl will create as many back references as it needs, so it assumes that you meant the
octal escape \111. Per] only reserves \1 through \9 for back references. After that, it
does a bit of guessing to determine if it’s a back reference or an octal escape.

By using \g{1}, you disambiguate the back reference and the literal parts of the
pattern:

use v5.10;

$_ = "aalibb";

if (/(\g{1}11/) {
print "It matched!\n";

}

You could leave the curly braces off the \g{1} and just use \g1, but in this case you
need the braces. Instead of thinking about it, we recommend just using the braces all
the time, at least until youre more sure of yourself.

You can also use negative numbers. Instead of specifying the absolute number of the
capture group, you can specify a relative back reference. You can rewrite the last exam-
ple to use -1 as the number to do the same thing:

use v5.10;

$_ = "aalibb";

if (/(O\g{-1}11/) {
print "It matched!\n";

}

Grouping in Patterns | 131

If you add another capture group, you change the absolute numbering of all the back
references. The relative back reference, however, just counts from its own position
and refers to the group right before it no matter its absolute number, so it stays
the same:

use v5.10;

$_ = "xaallbb";

if (/C.)CO\g{-1}11/) {
print "It matched!\n";

}

Alternation

The vertical bar (|), often called “or” in this usage, means that either the left side may
match, or the right side. If the part of the pattern on the left of the bar fails, the part
on the right gets a chance to match:

foreach (qw(fred betty barney dino)) {
if (/fred|barney/) {
print "$_ matched\n";
}
}

This outputs two names. One matches the left alternative and one matches the right:

fred matched
barney matched

You can have more than one alternative:

foreach (qw(fred betty barney dino)) {
if (/fred|barney|betty/) {
print "$_ matched\n";
}
}

This outputs three names:

fred matched
betty matched
barney matched

The alternation divides the pattern into sides, which might not be what you want.
Suppose you want to match one of the Flintstones, but you don’t care if it’s Fred or
Wilma. You might try this:

$_ = "Fred Rubble";

if(/Fred|Wilma Flintstone/) { # unexpectedly matches
print "It matched!\n";

}

132 | Chapter7: Regular Expressions

It unexpectedly matches! The left alternative was simply Fred while the other alterna-
tive was Wilma Flintstone. Since Fred appears in $_, it matches. If you want to limit
the alternation, use parentheses to group it:

$_ = "Fred Rubble";
if(/(Fred|Wilma) Flintstone/) { # doesn't match
print "It matched!\n";
}
Perhaps your string has an annoying mix of tabs and spaces. Your alternation can
have either: (|\t). To get one or more of those characters, apply the + quantifier:

$_ = "fred \t \t barney"; # could be tabs, spaces, or both
if (/fred(|\t)+barney/) {
print "It matched!\n";
}
Applying the quantifier to the alternation as a group (created with the parentheses) is
different than applying the quantifier to each item inside the alternation:

$_ = "fred \t \t barney"; # could be tabs, spaces, or both
if (/fred(+|\t+)barney/) { # all tabs or all spaces
print "It matched!\n";

}
And note the difference without the parentheses. This pattern still matches even
though there’s no barney:

$_ = "fred \t \t wilma";

if (/fred |\tbarney/) {

print "It matched!\n";
}

The pattern matches fred followed by a space, or it matches a tab followed by
barney. It’s everything on the left side or everything on the right side. If you want to
limit the reach of the alternation, parentheses are the way to go.

Now consider a way to make your pattern case-insensitive. Maybe some people capi-
talize the second part of Bamm-Bamm’s name, but some people don’t. You can have
an alternation that matches either case:

$_ = "Bamm-Bamm";
if (/Bamm-?(B|b)amm/) {
print "The string has Bamm-Bamm\n";

}

Finally, consider an alternation to match any lowercase letter:
/(alblcldle[flglhli]ilk[LIm[n]olplalr|s|tlulv]w|x|y|z)/

That’s annoying, but we have a better way to do that. Keep reading!

Alternation | 133

Character Classes

Character classes are sets of characters that can match at a single location in the pat-
tern. You put those characters in square braces, like [abcwxyz]. At that position in the
pattern, it can match any one of those seven characters. It’s a little like alternations but
with individual characters.

For convenience, you can specify a range of characters with a hyphen (-), so that class
may also be written as [a-cw-z]. That didn’t save much typing, but it’s more usual to
make a character class like [a-zA-Z] to match any one letter out of that set of 52, or
[0-9] to match a digit:

$_ = "The HAL-9000 requires authorization to continue.";

if (/HAL-[0-9]+/) {

print "The string mentions some model of HAL computer.\n";

}
If you wanted to match a literal hyphen, you either escape it or put the hyphen at the
beginning or end:

[-a] # hyphen or an a

[a-] # hyphen or an a

[a\-z] # hyphen or an a or a z

[a-Z] # lowercase letters from a to z

Inside the character class, a dot is a literal dot:
[5.32] # matches a literal dot or a 5, 3, or 2

You may use the same character shortcuts in any double-quotish string to define a
character, so the class [\000-\177] matches any seven-bit ASCII character. Inside
those square braces, the \n and \t are still newlines and tabs. Remember that these
patterns have their own mini-language, so these rules only apply inside regular
expressions and not to other parts of Perl.

Now you have your second way to make a match case-insensitive. You can specify a
position that can have the uppercase or lowercase version of a letter:
$_ = "Bamm-Bamm";
if (/Bamm-?[BbJlamm/) {
print "The string has Bamm-Bamm\n";

}

Sometimes it’s easier to specify the characters you want to leave out rather than the
ones within the character class. A caret (*) at the start of the character class creates
the complement of it:

[~def] # anything not d, e, or f
[*n-2z] # not a lowercase letter from n to z
[~n\-z] # not an n, -, or z

134 | Chapter7: Regular Expressions

This is handy when the list of characters that you don’t want to match is shorter than
the list of ones you do want.

Character Class Shortcuts

Some character classes are so common that Perl provides shortcuts, shown in
Table 7-2. For example, you could rewrite the earlier example for spaces or tabs to
accept other sorts of whitespace between the names. The \s is a shortcut meaning
“whitespace” (although it doesn't match every Unicode whitespace character: see
\p{Space} later):

$_ = "fred \t \t barney";

if (/fred\s+barney/) { # whitespace

print "It matched!\n";

}
That’s not exactly what you had before, because whitespace includes more than just
tabs or spaces. That might not matter to you. If you only wanted horizontal white-
space, you could use the \h shortcut introduced in v5.10:

$_ = "fred \t \t barney";
if (/fred\h+barney/) { # any whitespace
print "It matched!\n";

}

In Perl versions before v5.18, the \s didn’t match the vertical tab:
see the blog post “Know your character classes under different
semantics” for more information.

You can abbreviate the character class for any digit as \d. Thus, you could write the
pattern from the example about HAL as /HAL-\d+/ instead:

$_ = 'The HAL-9000 requires authorization to continue.';
if (/HAL-\d+/) {
print "The string mentions some model of HAL computer.\n";

}

The shortcut \w is the so-called “word” character, although its idea of a word isn’t like
a normal word at all. The “word” was actually meant as an identifier character: the
ones that you can use to name a Perl variable or subroutine.

The \R shortcut, introduced in Perl 5.10, matches any sort of linebreak, meaning that
you don’t have to think about which operating system you're using and what it thinks
a linebreak is since \R will figure it out. This means you don’t have to sweat the differ-
ence between \r\n, \n, and the other sorts of line endings that Unicode allows. It
doesn’t matter to you if there are DOS or Unix line endings. The \R isn't strictly a

Character Classes | 135

https://www.effectiveperlprogramming.com/2011/01/know-your-character-classes/
https://www.effectiveperlprogramming.com/2011/01/know-your-character-classes/

character class shortcut even though we note it here. It can match the two-character
sequence \r\n, while real character classes match exactly one character.

You'll see more about these in Chapter 8. The story is a bit more complicated than
you've seen here.

Negating the Shortcuts

Sometimes you may want the opposite of one of these three shortcuts. That is, you
may want [\d], [*\w], or [*\s], meaning a nondigit character, a nonword charac-
ter, or a nonwhitespace character, respectively. That’s easy enough to accomplish by
using their uppercase counterparts: \D, \W, and \S. These match any character that
their counterpart would not match.

Table 7-2. ASCII character class shortcuts

Shortcut Matches

\d Decimal digits

\D Not a decimal digit

\s Whitespace

\S Not whitespace

\h Horizontal whitespace (v5.10 and later)
\H Not horizontal whitespace (v5.10 and later)
\v Vertical whitespace (v5.10 and later)

\V Not vertical whitespace (v5.10 and later)
\R Generalized line ending (v5.10 and later)
\w “word”

\W Not “word” characters

\n Newline (not really a shortcut)

N Nonnewlines (stable in v5.18)

Any of these shortcuts will work either in place of a character class or inside the
square brackets of a larger character class. For instance, [\s\d] will match whitespace
and digits. Another compound character class is [\d\D], which means any digit or
any nondigit. That is to say, any character at all! This is a common way to match any
character, including a newline.

Unicode Properties

Unicode characters know something about themselves; they aren’t just sequences of
bits. Every character knows not only what it is, but also what properties it has. Instead
of matching on a particular character, you can match a type of character.

136 | Chapter7: Regular Expressions

Each property has a name, which you can find in the perluniprops documentation.
To match a particular property, you put the name in \p{PROPERTY}. For instance,
some characters are whitespace, corresponding to the property name Space. To
match any sort of space, you use \p{Space}:

if (/\p{Space}/) { # 25 different possible characters in v5.34

print "The string has some whitespace.\n";

}

The \p{Space} is slightly more expansive than \s because the
property also matches NEXT LINE and NONBREAKING SPACE
characters. It also matches LINE TABULATION (vertical tab),
which \s did not match before v5.18.

If you want to match a digit, you use the Digit property, which matches the same
characters as \d:
if (/\p{Digit}/) { # 650 different possible characters in v5.34
print "The string has a digit.\n";
}
Those are both much more expansive than the sets of characters you may have run
into. Some properties are more specific, though. How about matching two hex digits,
[0-9A-Fa-f], next to each other:
if (/\p{AHex}\p{AHex}/) { # 22 different possible characters
print "The string has a pair of hex digits.\n";
}
You can also match characters that don’t have a particular Unicode property. Instead
of a lowercase p, you use an uppercase one to negate the property:
if (/\P{Space}/) { # Not space (many many characters!)
print "The string has one or more nonwhitespace characters.\n";
}
Perl uses the properties named by the Unicode Consortium (with a few exceptions)
and adds some of its own for convenience. They are listed in perluniprops.

Anchors

By default, if a pattern doesn’t match at the start of the string, it can “float” down the
string trying to match somewhere else. But there are a number of anchors that may
be used to hold the pattern at a particular point in a string.

The \A anchor matches at the absolute beginning of a string, meaning that your pat-
tern will not float down the string at all. This pattern looks for an https only at the
start of the string:

Anchors | 137

https://perldoc.perl.org/perluniprops
https://perldoc.perl.org/perluniprops

if (/\Ahttps?:/) {
print "Found a URL\n";
}

The anchor is a zero-width assertion, meaning that it matches a condition at the cur-
rent match position but doesn't match characters. In this case, the current match
position has to be the beginning of the string. This keeps Perl from initially failing,
moving over one character, and trying again.

If you want to anchor something to the end of the string, you use \z. This pattern
matches . png only at the absolute end of the string:

if (/\.png\z/) {
print "Found a URL\n";
}

Why “absolute end of string”? We have to emphasize that nothing can come after the
\z, because there is a bit of history here. There’s another end-of-string anchor, the \Zz,
which allows an optional newline after it. That makes it easy to match something at
the end of a single line without worrying about the trailing newline:

while (<STDIN>) {
print if /\.png\Z/;
}
If you had to think about the newline, youd have to remove it before the match and
put it back on for the output:

while (<STDIN>) {
chomp;
print "$_\n" if /\.png\z/;
}
Sometimes you’ll want to use both of these anchors to ensure that the pattern
matches an entire string. A common example is /\A\s*\Z/, which matches a blank
line. But this “blank” line may include some whitespace characters, like tabs and
spaces, which are invisible to us. Any line that matches that pattern looks just like any
other one on paper, so this pattern treats all blank lines as equivalent. Without the
anchors, it would match nonblank lines as well.

The \A, \Z, and \z are Perl 5 regular expression features, but not everyone uses them.
In Perl 4, where many people picked up their programming habits, the beginning-of-
string anchor was the caret (*) and the end-of-string anchor was $. Those still work
in Perl 5, but they morphed into the beginning-of-line and end-of-line anchors,
which are a bit different. We'll show more about those in Chapter 8.

138 | Chapter7: Regular Expressions

Word Anchors

Anchors aren't just at the ends of the string. The word-boundary anchor \b matches
at either end of a word. So you can use /\bfred\b/ to match the word fred but not
frederick or alfred or manfred mann. This is similar to the feature often called
something like “match whole words only” in a word processor’s search command.

Alas, these aren’t words as we are likely to think of them; they’re those \w-type words
made up of ordinary letters, digits, and underscores. The \b anchor matches at the
start or end of a group of \w characters. This is subject to the rules that \w is follow-
ing, as we showed you earlier in this chapter.

In Figure 7-2, there’s a line under each “word,” and the arrows show the correspond-
ing places where \b could match. There is always an even number of word bound-
aries in a given string, since there’s an end-of-word for every start-of-word.

The “words” are sequences of letters, digits, and underscores; that is, a word in this
sense is what’s matched by /\w+/. There are five words in that sentence: That, s, a,
word, and boundary. Notice that the quote marks around word don’t change the word
boundaries; these words are made of \w characters.

Each arrow points to the beginning or the end of one of the gray underlines, since the
word-boundary anchor \b matches only at the beginning or the end of a group of
word characters.

That ' s a "word" boundary!

Figure 7-2. Word-boundary matches with |b

The word-boundary anchor is useful to ensure that you don’t accidentally find cat in
delicatessen, dog in boondoggle, or fish in selfishness. Sometimes you’ll want
just one word-boundary anchor, as when using /\bhunt/ to match words like hunt or
hunting or hunter but not shunt, or when using /stone\b/ to match words like sand
stone or flintstone but not capstones.

The nonword-boundary anchor is \B; it matches at any point where \b would not
match. So the pattern /\bsearch\B/ will match searches, searching, and searched
but not search or researching.

Perl v5.22 and v5.24 added fancier anchors, but you need more matching skills to see
how they work. You'll see them in Chapter 9 when we talk about the substitution
operator.

Anchors | 139

Exercises

See “Answers to Chapter 7 Exercises” on page 307 for answers to exercises.

Remember, it's normal to be surprised by some of the things that regular expressions
do; that’s one reason that the exercises in this chapter are even more important than
the others. Expect the unexpected:

1.

[10] Make a program that prints each line of its input that mentions fred. (It
shouldn’t do anything for other lines of input.) Does it match if your input string
is Fred, frederick, or Alfred? Make a small text file with a few lines mentioning
“fred flintstone” and his friends, then use that file as input to this program and
the ones later in this section.

[6] Modify the previous program to allow Fred to match as well. Does it match
now if your input string is Fred, frederick, or Alfred? (Add lines with these
names to the text file.)

[6] Make a program that prints each line of its input that contains a period (.),
ignoring other lines of input. Try it on the small text file from the previous exer-
cise: does it notice Mr. Slate?

. [8] Make a program that prints each line that has a word that is capitalized but

not ALL capitalized. Does it match Fred but neither fred nor FRED?

. [8] Make a program that prints each line that has two of the same nonwhitespace

characters next to each other. It should match lines that contain words such as
Mississippi, Bamm-Bamm, or 1lama.

. [8] Extra-credit exercise: write a program that prints out any input line that men-

tions both wilma and fred.

140

| Chapter7: Regular Expressions

CHAPTER 8
Matching with Reqular Expressions

In Chapter 7, you visited the world of regular expressions. Now you’ll see how that
world fits into the world of Perl.

Matches with m//

You put patterns in pairs of forward slashes, like /fred/, but this is actually a shortcut
for m//, the pattern match operator. As you saw with the qw// operator, you may
choose any pair of delimiters to quote the contents. So you could write that same
expression as m(fred), m<fred>, m{fred}, or m[fred] using those paired delimiters,
orasm,fred,,m!fred!, mfred”, or many other ways using nonpaired delimiters.

Nonpaired delimiters are the ones that don't have a different “left”
and “right” variety; the same punctuation mark is used for both
ends.

If you choose the forward slash as the delimiter, you may omit the initial m. Since Perl
folks love to avoid typing extra characters, you'll see most pattern matches written
using slashes, as in /fred/.

Of course, you should wisely choose a delimiter that doesn’t appear in your pattern. If
you wanted to make a pattern match the beginning of an ordinary web URL, you
might start to write /http:\/\// to match the initial "http://". But that would be
easier to read, write, maintain, and debug if you used a better choice of delimiter:
m%http://%. I's common to use curly braces as the delimiter. If you use a programm-
er’s text editor, it probably has the ability to jump from an opening curly brace to the
corresponding closing one, which can be handy in maintaining code.

141

If you're using paired delimiters, you shouldnt generally have to worry about using
the delimiter inside the pattern, since that delimiter will usually be paired inside your
pattern. That is, m(fred(.*)barney) and m{\w{2,}} and m[wilma[\n \t]+betty] are
all fine, even though the pattern contains the quoting character, since each “left” has a
corresponding “right” But the angle brackets (< and >) aren’t regular expression
metacharacters, so they may not be paired; if the pattern were m{(\d+)\s*>=?\s*(\d
+)}, quoting it with angle brackets would mean having to backslash the greater-than
sign so that it wouldn’t prematurely end the pattern.

Match Modifiers

There are several modifier letters, sometimes called flags, which you can append as a
group right after the ending delimiter. Some flags apply to the pattern and some
change how the match operator behaves.

Case-Insensitive Matching with /i

To make a case-insensitive pattern match so that you can match FRED as easily as fred
or Fred, use the /1 modifier:
print "Would you like to play a game? ";
chomp($_ = <STDIN>);
if (/yes/i) { # case-insensitive match
print "In that case, I recommend that you go bowling.\n";

}

Matching Any Character with /s

By default, the dot (.) doesn’t match a newline, and this makes sense for most “look
within a single line” patterns. If you might have newlines in your strings, and you
want the dot to be able to match them, the /s modifier will do the job. It changes
every dot in the pattern to act like the character class [\d\D] does, which is to match
any character, even if it is a newline. Of course, you have to have a string with new-
lines for this to make a difference:

$_ = "I saw Barney\ndown at the bowling alley\nwith Fred\nlast night.\n";

if (/Barney.*Fred/s) {

print "That string mentions Fred after Barney!\n";

}
Without the /s modifier, that match would fail, since the two names aren’t on the
same line.

This sometimes leaves you with a problem, though. The /s modifier applies
to every . in the pattern. What if you wanted to still match any character except a

142 | Chapter 8: Matching with Regular Expressions

newline? You could use the character class [~\n], but that’s a bit much to type, so
v5.12 added the shortcut \N to mean the complement of \n.

If you don't like the /s modifier to make every . match any character, you can make
your own character class to match any character. Just include each side of a character
class shortcut pair: [\D\d] or [\S\s], for example. The combination of every
nondigit and digit should be everything.

Adding Whitespace with /x

The /x modifier makes most whitespace inside the pattern insignificant. That way,
you can spread out the pattern to more easily see what’s going on:

/-2[0-9]+\.?[0-9]*/ # what is this doing?

/ -7 [0-9]+ \.? [0-9]* /x # a little better
Since the /x allows whitespace inside the pattern, Perl ignores literal space or tab
characters within the pattern. You could use a backslashed space or \t (among many
other ways) to match these, but it's more common to use \s (or \s* or \s+) when you
want to match whitespace. You can also escape a literal space (although that’s hard to
show in text), or use \x{20} or \040.

Remember that Perl considers comments a type of whitespace, so you can put com-
ments into that pattern to tell other people what you are trying to do:

/
-? # an optional minus sign
[06-9]+ # one or more digits before the decimal point
\.? # an optional decimal point
[06-9]* # some optional digits after the decimal point

/x
Since the pound sign indicates the start of a comment, you need to use the escaped
character, \#, or the character class, [#], if you need to match a literal pound sign:

/
[06-9]+ # one or more digits before the decimal point
[#] # literal pound sign

/%

Also, be careful not to include the closing delimiter inside the comments, or it will
prematurely terminate the pattern. This pattern ends before you think it does:

/
-? # with / without - <--- OOPS!
[0-9]+ # one or more digits before the decimal point
\.? # an optional decimal point
[0-9]* # some optional digits after the decimal point
/X

Match Modifiers | 143

When we started this section, we wrote “most whitespace” and then didn’t tell you the
rest of the story. You can’t add insignificant whitespace inside a character class even
with /x. Any characters inside the brackets, including spaces and other whitespace,
can match in the string. We're about to fix that, though.

Whitespace in character classes

Perl v5.26 added another way to add whitespace to a pattern. The /xx modifier does
the same as /x but also allows you to add whitespace inside a character class without
those whitespace characters becoming part of the class.

Consider this character class that matches six possible characters:
/ [abc123] /x # matches a,b,c,1,2,3

That’s not so hard to understand because it’s short, but suppose those letters and
numbers meant different things. There’s a group of one sort of thing and there’s a
group of another sort of thing. You may want to separate those in the character class
to show that, but it doesn’t quite work because the space is now part of the character
class:

/ [abc 123] /x # matches a,b,c,1,2,3, or a space
To fix this, double up that /x:

use v5.26;
/ [abc 123] /xx # matches a,b,c,1,2,3
/ [a-z 0-9] /xx # matches lowercase letters or digits

Spread that over multiple lines if you like:

use v5.26;

/
[

abc
123
1

/xx

But there’s a limitation. While /xx lets you add that insignificant whitespace, it doesn’t
let you add comments. The comment in this example is really part of the character
class. This means you’ll also match characters that you didn’t expect:

use v5.26;

/
[

abc # not a comment!
123
1

/xx

144 | Chapter 8: Matching with Regular Expressions

Note that the /xx allows spaces in ranges. Put a space in there and it’s still a range:
use v5.26;

/[0 - 9]/xx # still 0-9

Combining Option Modifiers

If you want to use more than one modifier on the same match, just put them both at
the end (their order isn't significant):

if (/barney.*fred/is) { # both /i and /s
print "That string mentions Fred after Barney!\n";

}

Or as a more expanded version with comments:

if (m{
barney # the little guy
J* # anything in between

fred # the loud guy
}six) { # all three of /s and /i1 and /x
print "That string mentions Fred after Barney!\n";

}

Note the shift to curly braces here for the delimiters, allowing programmer-style edi-
tors to easily bounce from the beginning to the end of the regular expression.

Choosing a Character Interpretation

Perl v5.14 adds some modifiers that let you tell Perl how to interpret the characters in
a match for two important topics: case folding and character class shortcuts. Every-
thing in this section applies to v5.14 or later.

The /a tells Perl to use the ASCII interpretation of character classes, the /u tells Perl
to use Unicode, and the /1 tells Perl to respect the locale. Without these modifiers,
Perl does what it thinks is the right thing based on the situations described in the
perlre documentation. You use these modifiers to tell Perl exactly what you want
despite whatever else is going on in the program:

use v5.14;

/\w+/a # A-Z, a-z, 0-9, _

/\w+/u # any Unicode word character

/\w+/1 # The ASCII version, and word chars from the locale,
perhaps characters like G from Latin-9

Which one is right for you? We can't tell you, because we don’t know what you're try-
ing to do. Each of them might be right for you at different times. Of course, you can
always create your own character classes to get exactly what you want if the shortcuts
don’t work for you.

Match Modifiers | 145

https://perldoc.perl.org/perlre

Now on to a harder issue. Consider case folding, where you need to know which low-
ercase letter you should get from an uppercase letter. This is part of the “Unicode
bug” in Perl, where the internal representation decides what answer you get. See the
perlunicode documentation for the gory details.

If you want to match while ignoring case, Perl has to know how to produce lowercase
characters. In ASCII, you know a K’s (0x4B) partner is a k (0x6B). In ASCII, you also
know that a k’s uppercase partner is K (0x4B), which seems sensible but actually
is not.

You may like to peruse Unicode’s case-folding rules. We'll show
more in “Case Shifting” on page 166.

In Unicode, things are not as simple, but it’s still easy to deal with because the map-
ping is well defined. The Kelvin sign, A (U+212A), also has k (0x6B) as its lowercase
partner. Even though A"and K might look the same to you, they aren’t to the com-
puter. That is, lowercasing is not one-to-one. Once you get the lowercase k, you can't
go back to its uppercase partner, because there is more than one uppercase character
for it. Not only that, some characters, such as the ligature ff (U+FB00), have two char-
acters as their lowercase equivalent—in this case, ff. The letter § is ss in lowercase, but
maybe you don’t want to match that. A single /a modifier affects the character class
shortcuts, but if you have two /a modifiers, it also tells Perl to use ASCII-only case
folding:

/k/aal # only matches the ASCII K or k, not Kelvin sign

/k/aia # the /a's don't need to be next to each other

/ss/aal # only matches ASCII ss, SS, sS, Ss, not R

/ff/aal # only matches ASCII ff, FF, fF, Ff, not ff
With locales it’s not so simple. You have to know which locale you are using to know
what a character is. If you have the ordinal value 0xBC, is that Latin-9’s (E or Latin-1’s
% or something else in some other locale? You can’t know how to lowercase it until
you know what the locale thinks that value represents. We make the character with
chr() to ensure that we get the right bit pattern regardless of the encoding issues:

$_ = <STDIN>;
my SOE = chr(OxBC); # get exactly what we intend

if (/$OE/1) { # case-insensitive? Maybe not.
print "Found $OE\n";
}

146 | Chapter 8: Matching with Regular Expressions

https://perldoc.perl.org/perlunicode
https://unicode.org/Public/UNIDATA/CaseFolding.txt

In this case, you might get different results depending on how Perl treats the string in
$_ and the string in the match operator. If your source code is in UTF-8 but your
input is Latin-9, what happens? In Latin-9, the character (£ has ordinal value 0xBC
and its lowercase partner e has 0xBD. In Unicode, (E is code point U+0152 and c is
code point U+0153. In Unicode, U+00BC is % and doesn’t have a lowercase version. If
your input in $_ is 0xBD and Perl treats that regular expression as UTF-8, you won't
get the answer you expect. You can, however, add the /1 modifier to force Perl to
interpret the regular expression using the locale’s rules:

use v5.14;
my $OE = chr(OxBC); # get exactly what we intend

$_ = <STDIN>;
if (/$OE/11) { # that's better
print "Found $OE\n";
}
If you always want to use Unicode semantics (which is the same as Latin-1) for this
part, you can use the /u modifier:

use v5.14;

$_ = <STDIN>;
if (/&/ul) { # now uses Unicode
print "Found G\n";
}
If you think this is a big headache, you're right. No one likes this situation, but Perl
does the best it can with the input and encodings it has to deal with. If only we could
reset history and not make so many mistakes next time.

Beginning- and End-of-Line Anchors

Whats the difference between the beginning-of-line and beginning-of-string? It
comes down to the difference between how you think about lines and how the com-
puter thinks about lines. When you match against the string in $_, Perl doesn't care
what’s in it. To Perl, it’s just one big string, even if it looks like multiple lines to you
because you have newlines in the string. Lines matter to humans because we spatially
separate parts of the string:

$_ = 'This is a wilma line
barney is on another line
but this ends in fred

and a final dino line';

Suppose your task, however, is to find strings that have fred at the end of any line
instead of just at the end of the entire string. In Perl 5, you can do that with the

Match Modifiers | 147

$ anchor and the /m modifier to turn on multiline matching. This pattern matches
because in the multiline string, fred is at the end of a line:

/fredS/m

The addition of the /m changes how the old Perl 4 anchor works. Now it matches
fred anywhere as long as it’s either followed by a newline anywhere in the string or is
at the absolute end of the string.

The /m does the same for the ~ anchor, which then matches either at the absolute
beginning of the string or anywhere after a newline. This pattern matches because in
the multiline string, barney is at the beginning of a line:

/"~barney/m

Without the /m, the ~ and $ act just like \A and \Z. However, since someone might
come along later and add a /m switch, changing your anchors to something you didn’t
intend, it’s safer to use only the anchors that mean exactly what you want and nothing
more. But as we said, many programmers have habits they carried over from Perl 4,
so you'll still see many ~ and $ anchors that really should be \A and \Z. For the rest of
the book, we’ll use \A and \Z unless we specifically want multiline matching.

The re module has a flags mode that allows you to set default flags
for all match operators within its scope. Someone might make
the /m flag the default.

Other Options

There are many other modifiers available. We'll cover those as we get to them, or you
can read about them in the perlop documentation and in the descriptions of m// and
the other regular expression operators that you'll see later in this chapter.

The Binding Operator =~

Matching against $_ is merely the default; the binding operator (=~) tells Perl to match
the pattern on the right against the string on the left, instead of matching against $_.
For example:

my $some_other = "I dream of betty rubble.";
if ($some_other =~ /\brub/) {

print "Aye, there's the rub.\n";
}

The first time you see it, the binding operator looks like some kind of assignment
operator. But it's no such thing! It is simply saying, “This pattern match that would

148 | Chapter 8: Matching with Regular Expressions

https://perldoc.perl.org/perlop

attach to $_ by default—make it work with this string on the left instead.” If there’s no
binding operator, the expression uses $_ by default.

In the (somewhat unusual) next example, $likes_perl is set to a Boolean value
according to what the user typed at the prompt. This is a little on the quick-and-dirty
side because you discard the line of input itself. This code reads the line of input, tests
that string against the pattern, then discards the line of input. It doesn’t use or change
$_atall:

print "Do you like Perl? ";
my $likes_perl = (<STDIN> =~ /\byes\b/i);

Time passes...if (Slikes_perl) {
print "You saild earlier that you like Perl, so...\n";

Remember, Per]l doesn’'t automatically store the line of input in $_
unless the line-input operator (<STDIN>) is all alone in the condi-
tional expression of a while loop.

Because the binding operator has fairly high precedence, the parentheses around the
pattern test expression aren’t required, so the following line does the same thing as
the previous one—it stores the result of the test (and not the line of input) in the
variable:

my S$likes_perl = <STDIN> =~ /\byes\b/i;

The Match Variables

Parentheses normally trigger the regular expression engine’s capturing features. The
capture groups hold the part of the string matched by the part of the pattern inside
parentheses. If there is more than one pair of parentheses, there will be more than
one capture group. Each regular expression capture holds part of the original string,
not part of the pattern. You could refer to these groups in your pattern using back
references, but these groups also stick around after the match as the capture variables.

Since these variables hold strings, they are scalar variables; in Perl, they have names
like $1 and $2. There are as many of these variables as there are pairs of capturing
parentheses in the pattern. As youd expect, $4 means the string matched by the
fourth set of parentheses. This is the same string that the back reference \4 would
refer to during the pattern match. But these aren’t two different names for the same
thing; \4 refers back to the capture within the pattern while it is trying to match,
while $4 refers to the capture of an already completed pattern match. For more infor-
mation on back references, see the perlre documentation.

The Match Variables | 149

https://perldoc.perl.org/perlre

These match variables are a big part of the power of regular expressions because they
let you pull out the parts of a string:

$_ = "Hello there, neighbor";
if (/\s([a-zA-Z]+),/) { # capture the word between space and comma
print "the word was $1\n"; # the word was there

}

Or you could use more than one capture at once:

$_ = "Hello there, neighbor";

if (JO\S+) (\s+), (\s+)/) {
print "words were $1 $2 $3\n";

}

That tells you that the words were Hello there neighbor. Notice that there’s no
comma in the output. Because the comma is outside the capture parentheses in the
pattern, there is no comma in capture two. Using this technique, you can choose
exactly what you want in the captures as well as what you want to leave out.

You could even have an empty match variable, if that part of the pattern might be
empty. That is, a match variable may contain the empty string:

my $dino = "I fear that I'll be extinct after 1000 years.";
if ($dino =~ /([0-9]*) years/) {

print "That said '$1' years.\n"; # 1000
}

$dino = "I fear that I'll be extinct after a few million years.";
if ($dino =~ /([0-9]*) years/) {
print "That said '$1' years.\n"; # empty string
}
Remember that an empty string is different than an undefined one. If you have three
or fewer sets of parentheses in the pattern, $4 will be undef.

The Persistence of Captures

These capture variables generally stay around until the next successful pattern match.
That is, an unsuccessful match leaves the previous capture values intact, but a suc-
cessful one resets them all. This correctly implies that you shouldn’t use these match
variables unless the match succeeded; otherwise, you could be seeing a capture from
some previous pattern. The following (bad) example is supposed to print a word
matched from $wilma. But if the match fails, it’s using whatever leftover string hap-
pens to be found in $1:

my Swilma = '123';

Swilma =~ /([0-9]+)/; # Succeeds, $1 is 123

Swilma =~ /([a-zA-Z]+)/; # BAD! Untested match result
print "Wilma's word was $1... or was it?\n"; # Still 123!

150 | Chapter 8: Matching with Regular Expressions

This is another reason a pattern match is almost always found in the conditional
expression of an if or while:
if (Swilma =~ /([a-zA-Z]+)/) {
print "Wilma's word was $1.\n";

} else {
print "Wilma doesn't have a word.\n";

}
Since these captures don’t stay around forever, you shouldn’t use a match variable like
$1 more than a few lines after its pattern match. If your maintenance programmer
adds a new regular expression between your regular expression and your use of $1,
you'll be getting the value of $1 for the second match rather than the first. For this
reason, if you need a capture for more than a few lines, it’s generally best to copy it
into an ordinary variable. Doing this helps make the code more readable at the same
time:

if (Swilma =~ /([a-zA-2]+)/) {
my $wilma_word = $1;

}...

Later, in Chapter 9, you’ll see how to get the capture value directly into the variable at
the same time as the pattern match happens, without having to use $1 explicitly.

Captures in Alternations

Captures may show up in alternations, and the same rules apply to their numbering:
count the order of the opening parentheses. However, only one of the branches can
match. In the two captures here, which one has a value?

if ($name =~ /(F\w+)|(P\w+)/) { # Fred or Pebbles?
print "1: $1\n2: $2\n";
}
With warnings on, one of those capture variables will complain about an uninitialized
value.

To complicate it further, add a third capture outside the alternation, making that cap-
ture $4. Everything still works the same as what you already know:

/

(# 31
(F\w+) | # $2
(P\d+) # 43

)

\s+
(\w+) # $4

/x

The Match Variables | 151

What happens when the alternation gets another branch? That new branch becomes
$4 and the last capture moves up to $5:

/
(# 31
(F\w+) | # $2
(P\d+) | # 63
(Dino) # $4, new capture
)
\s+
(\w+) # S5 now
/%

That’s no good. What you probably want is to count that grouped alternation as a sin-
gle thing, and whichever capture matches gets the same number. That way, you know
the capture number (there’s only one) and new branches don’t disturb the rest of the
pattern.

Perl v5.10 added the branch reset operator, (?]...), to handle that:

/

7] # anything in here is $1
(F\w+) |
(P\d+) |
(Dino)

)

\s+

(\w+) # %2

/x

In that contrived example, we can get the same thing by capturing the entire alterna-
tion because each branch captures everything:

/

(# anything in here is $1
F\w+ |
P\d+ |
Dino

)

\s+

(\w+) # $2

/%

The branch reset is handy when some of the branches match extra text that they don't
capture:

/

(?] # anything in here is $1
(Fr)ed |
(Peb)\d+ |
(D)ino

)

\s+

152 | Chapter 8: Matching with Regular Expressions

(\w+) # 82

/x
There’s one more thing to note. Each branch can have a different number of captures,
and the entire branch reset group will take up the same number of captures as the
branch with the most. In this pattern, the third branch, (D) (.)no, has two captures,
so the entire branch reset operator will have two captures. That’s true even if the first
branch, with only one capture, matches:

/

?] # takes up $1 and $2 always
(Fr)ed |
(Peb)\d+ |
(D)(.)no # has two captures!

)

\s+

(\w+) # 43

/x

Noncapturing Parentheses

So far you've seen parentheses that capture parts of a matched string and store them
in the capture variables, but what if you just want to use the parentheses to group
things? Consider a regular expression where we want to make part of it optional but
only capture another part of it. In this example, you want “bronto” to be optional, but
to make it optional you have to group that sequence of characters with parentheses.
Later in the pattern, you use an alternation to get either “steak” or “burger,” and you
want to know which one you found:

if (/(bronto)?saurus (steak|burger)/) {
print "Fred wants a $2\n";
}
Even if “bronto” is not there, its part of the pattern goes into $1. Perl just counts the
order of the opening parentheses to decide what the capture variables will be. The
part that you want to remember ends up in $2. In more complicated patterns, this
situation can get quite confusing.

Fortunately, Perl’s regular expressions have a way to use parentheses to group things
but not trigger the capture groups, called noncapturing parentheses, and you write
them with a special sequence. You add a question mark and a colon after the opening
parenthesis, (?:), and that tells Perl you only want to use these parentheses for
grouping.

You change your regular expression to use noncapturing parentheses around
“bronto,” and the part that you want to remember now shows up in $1:

The Match Variables | 153

if (/(?:bronto)?saurus (steak|burger)/) {
print "Fred wants a $1\n";

}
Later, when you change your regular expression, perhaps to include a possible barbe-
cue version of the brontosaurus burger, you can make the added “BBQ ” (with a
space!) optional and noncapturing, so the part you want to remember still shows up
in $1. Otherwise, youd potentially have to shift all of your capture variable names
every time you add grouping parentheses to your regular expression:

if (/(?:bronto)?saurus (?:BBQ)?(steak|burger)/) {
print "Fred wants a $1\n";
}
Perl’s regular expressions have several other special parentheses sequences that do
fancy and complicated things, like look-ahead, look-behind, embed comments, or
even run code right in the middle of a pattern. You’ll have to check out the perlre doc-
umentation for the details.

If you want to do a lot of grouping but no capturing, you can use the /n flag added in
v5.22. It turns all parentheses into noncapturing groups:

if (/(bronto)?saurus (BBQ)?(steak|burger)/n) {

print "It matched\n"; # there is no $1 now

}

Named Captures

You can capture parts of the string with parentheses and then look in the number
variables $1, $2, and so on to get the parts of the string that matched. Keeping track of
those number variables and what should be in them can be confusing even for simple
patterns. Consider this regular expression that tries to match the two names in
$names:

use v5.10;

my $names = 'Fred or Barney';
if ($names =~ m/(\w+) and (\w+)/) { # won't match
say "I saw $1 and $2";

}
You don't see the message from say, because the string has an or where you were
expecting an and. Maybe you were supposed to have it both ways, so you change the
regular expression to have an alternation to handle both and and or, adding another
set of parentheses to group the alternation:

use v5.10;

my $names = 'Fred or Barney';
if (Snames =~ m/(\w+) (and|or) (\w+)/) { # matches now

154 | Chapter 8: Matching with Regular Expressions

https://perldoc.perl.org/perlre
https://perldoc.perl.org/perlre

say "I saw $1 and $2";
}
Oops! You see a message this time, but it doesn’t have the second name in it because
you added another set of capture parentheses. The value in $2 is from the alternation
and the second name is now in $3 (which we don’'t output):

I saw Fred and or

You could have used the noncapturing parentheses to get around this, but the real
problem is that you have to remember which numbered parentheses belong to which
data you are trying to capture. Imagine how much tougher this gets with many
captures.

Instead of remembering numbers such as $1, v5.10 or later lets you name the captures
directly in the regular expression. It saves the text it matches in the hash named %+:
the key is the label you used and the value is the part of the string that it matched. To
label a match variable, you use (?<LABEL>PATTERN) where you replace LABEL with
your own names. You label the first capture namel and the second one name2, and
look in $+{name1} and $+{name2} to find their values:

use v5.10;

my $names = 'Fred or Barney';
if ($names =~ m/(?<namel>\w+) (?:and|or) (?<name2>\w+)/) {
say "I saw $+{namel} and $+{name2}";

}
Now you see the right message:
I saw Fred and Barney

Once you label your captures, you can move them around and add additional capture
groups without disturbing the order of the captures:

use v5.10;

my $names = 'Fred or Barney';
if ($names =~ m/((?<name2>\w+) (and|or) (?<namel>\w+))/) {
say "I saw $+{namel} and $+{name2}";

}

Now that you have a way to label matches, you also need a way to refer to them for
back references. Previously, you used either \1 or \g{1} for this. With a labeled
group, you can use the label in \g{label}:

use v5.10;
my $names = 'Fred Flintstone and Wilma Flintstone';

if (Snames =~ m/(?<last_name>\w+) and \w+ \g{last_name}/) {

The Match Variables | 155

say "I saw $+{last_name}";
}
You can do the same thing with another syntax. Instead of using \g{label}, you use
\k<labels:

use v5.10;
my $names = 'Fred Flintstone and Wilma Flintstone';

if ($names =~ m/(?<last_name>\w+) and \w+ \k<last_name>/) {
say "I saw $+{last_name}";
}
The \k<label> is essentially the same as \g{label}, but you can also use the \g{}
syntax for a relative back reference such as \g{N}. In patterns that have two or more
labeled groups with the same label, \k<label> and \g{label} always refer to the left-
most group.

Perl also lets you use the Python syntax. The sequence (?P<LABEL>...) forms a cap-
ture and (?P=LABEL) refers to that capture:

use v5.10;
my $names = 'Fred Flintstone and Wilma Flintstone';

if (Snames =~ m/(?P<last_name>\w+) and \w+ (?P=last_name)/) {
say "I saw $+{last_name}";

)
The Automatic Match Variables

There are three more match variables that you get for free, whether the pattern has
capture parentheses or not. That’s the good news; the bad news is that these variables
have weird names.

Now, Larry probably would have been happy enough to have called these by slightly
less weird names, like perhaps $gazoo or $ozmodiar. But those are names that you
just might want to use in your own code. To keep ordinary Perl programmers from
having to memorize the names of all of Perl’s special variables before choosing their
first variable names in their first programs, Larry has given strange names to many of
Perl’s built-in variables—names that “break the rules” In this case, the names are
punctuation marks: $&, $°, and $'. They’re strange, ugly, and weird, but those are
their names. The part of the string that actually matched the pattern is automatically
stored in $&:

if ("Hello there, neighbor" =~ /\s(\w+),/) {
print "That actually matched 'S$&'.\n";
}

156 | Chapter 8: Matching with Regular Expressions

That tells you that the part that matched was " there," (with a space, a word, and a
comma). Capture one, in $1, has just the five-letter word there, but $& has the entire
matched section.

Whatever came before the matched section is in $°, and whatever was after itisin $'.
Another way to say that is that $* holds whatever the regular expression engine had
to skip over before it found the match, and $' has the remainder of the string that the
pattern never got to. If you glue these three strings together in order, you'll always get
back the original string:

if ("Hello there, neighbor" =~ /\s(\w+),/) {
print "That was ($°)($&)($').\n";
}
The message shows the string as (Hello)(there,)(neighbor), showing the three
automatic match variables in action. We'll show more of those variables in a moment.

Any or all of these three automatic match variables may be empty, of course, just like
the numbered capture variables. And they have the same scope as the numbered
match variables. Generally, that means they’ll stay around until the next successful
pattern match.

Now, we said earlier that these three are “free” Well, freedom has its price. In this
case, the price is that once you use any one of these automatic match variables any-
where in your program, every regular expression will run a little more slowly.

Granted, this isn't a giant slowdown, but it’s enough of a worry that many Perl pro-
grammers will simply never use these automatic match variables. Instead, they’ll use a
workaround. For example, if the only one you need is $&, just put parentheses around
the whole pattern and use $1 instead (you may need to renumber the pattern’s cap-
tures, of course).

If you are using v5.10 or later, though, you can have your cake and eat it too. The /p
modifier lets you have the same sort of variables while only suffering the penalty for
that particular regular expression. Instead of $°, $&, or $', you use ${*PREMATCH},
${~MATCH}, or ${"POSTMATCH}. The previous examples then turn into:

use v5.10;

if ("Hello there, neighbor" =~ /\s(\w+),/p) {
print "That actually matched 'S{"MATCH}'.\n";

}

if ("Hello there, neighbor" =~ /\s(\w+),/p) {
print "That was (${"PREMATCH})(${~MATCH})(${~POSTMATCH}).\n";
}
Those variable names look a bit odd since they have the braces around the name and
start with ~. As Perl evolves, it runs out of names it can use for special names. Starting

The Match Variables | 157

with a ~ means it won’t clash with names that you might create (the ~ is an illegal
character in a user-defined variable), but then it needs the braces to surround the
entire variable name.

Match variables (both the automatic ones and the numbered ones) are most often
used in substitutions, which you’ll see in Chapter 9.

Precedence

With all of these metacharacters in regular expressions, you may feel that you can’t
keep track of the players without a scorecard. That’s the precedence chart, which
shows us which parts of the pattern “stick together” the most tightly. Unlike the
precedence chart for operators, the regular expression precedence chart is simple,
with only five levels. As a bonus, this section will review all of the metacharacters that
Perl uses in patterns. Table 8-1 shows the precedence, described here:

1. At the top of the precedence chart are the parentheses, (), used for grouping
and capturing. Anything in parentheses will “stick together” more tightly than
anything else.

2. The second level is the quantifiers. These are the repeat operators—star (*), plus
(+), and question mark (?)—as well as the quantifiers made with curly braces,
like {5,15}, {3,}, {,3} (new in v5.34), and {5}. These always stick to the item
they follow.

3. The third level of the precedence chart holds anchors and sequence. The anchors
are the \A, \Z, \z, ~, $, \b, and \B anchors you've already seen. There’s a \G
anchor that we don’t cover in this book. Sequence (putting one item after
another) is actually an operator, even though it doesn't use a metacharacter. That
means that letters in a word will stick together just as tightly as the anchors stick
to the letters.

4. The next-to-lowest level of precedence is the vertical bar (|) of alternation. Since
this is near the bottom of the chart, it effectively cuts the pattern into pieces. It’s
here because you want the letters in the words in /fred|barney/ to stick together
more tightly than the alternation. If alternation were higher priority than
sequence, that pattern would mean to match fre, followed by a choice of d or b,
followed by arney. So, alternation is near the bottom of the chart, and the letters
within the names stick together.

5. At the lowest level are the so-called atoms that make up the most basic pieces
of the pattern. These are the individual characters, character classes, and back
references.

158 | Chapter 8: Matching with Regular Expressions

Table 8-1. Regular expression precedence

Regular expression feature Example

Parentheses (grouping or capturing) (...), (:...), (’<LABEL>...)
Quantifiers a* a+a?a{nm}

Anchors and sequence abc A $\A\b\B\z\Z
Alternation alb|c

Atoms a[abc] \d \1\g{2}
Examples of Precedence

When you need to decipher a complex regular expression, you'll need to do as Perl
does, and use the precedence chart to see what’s really going on.

For example, /\Afred|barney\z/ is probably not what the programmer intended.
That’s because the vertical bar of alternation is very low precedence; it cuts the pattern
in two. That pattern matches either fred at the beginning of the string or barney at
the end. Its much more likely that the programmer wanted /\A(fred|barney)\z/,
which will match if the whole line has nothing but fred or nothing but barney. And
what will /(wilma|pebbles?)/ match? The question mark applies to the previous
character, so that will match either wilma or pebbles or pebble, perhaps as part of a
larger string (since there are no anchors).

The pattern /\A(\w+)\s+(\w+)\z/ matches lines that have a “word,” some required
whitespace, and another “word,” with nothing else before or after. That might be used
to match lines like fred flintstone, for example. The parentheses around the words
aren’t needed for grouping, so they may be intended to save those substrings into the
regular expression captures.

When you're trying to understand a complex pattern, it may be helpful to add paren-
theses to clarify the precedence. That's OK, but remember that grouping parentheses
are also automatically capturing parentheses; use the noncapturing parentheses if you
just want to group things.

And There’s More

Although we've covered all of the regular expression features that most people are
likely to need for everyday programming, there are still even more features. A few are
covered in Intermediate Perl, but also check the perlre, perlrequick, and perlretut doc-
umentation for more information about what patterns in Perl can do.

Precedence | 159

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://perldoc.perl.org/perlre
https://perldoc.perl.org/perlrequick
https://perldoc.perl.org/perlretut
https://perldoc.perl.org/perlretut

A Pattern Test Program

When in the course of Perl events it becomes necessary for a programmer to write a
regular expression, it may be difficult to tell just what the pattern will do. It's normal
to find that a pattern matches more than you expected, or less. Or it may match ear-
lier in the string than you expected, or later, or not at all.

This program is useful to test out a pattern on some strings and see just what it
matches, and where:

while (<>) { # take one input line at a time
chomp;
if (/YOUR_PATTERN_GOES_HERE/) {
print "Matched: |$°<$&>$'|\n"; # the special match vars
} else {
print "No match: [$_|\n";
}
}

If you aren’t using the ebook (from which you can cut and paste
this code), you can get this from the Downloads section of the
book’s companion website.

This pattern test program is written for programmers to use, not end users; you can
tell because it doesn’t have any prompts or usage information. It will take any number
of input lines and check each one against the pattern that you’ll put in place of the
string saying YOUR_PATTERN_GOES_HERE. For each line that matches, it uses the three
special match variables ($°, $&, and $') to make a picture of where the match hap-
pened. What you’ll see is this: if the pattern is /match/ and the input is beforematch
after, the output will say |before<match>after|, using angle brackets to show you
just what part of the string was matched by your pattern. If your pattern matches
something you didn’t expect, you’ll be able to see that right away.

Exercises

See “Answers to Chapter 8 Exercises” on page 309 for answers to these exercises.

Several of these exercises ask you to use the test program from this chapter. You could
manually type up this program, taking great care to get all of the odd punctuation
marks correct, but you can also find it in the Downloads section of the book’s com-
panion website.

160 | Chapter 8: Matching with Regular Expressions

https://www.learning-perl.com/downloads_page/
https://www.learning-perl.com/downloads_page/

. [8] Using the pattern test program, make a pattern to match the string match. Try
the program with the input string beforematchafter. Does the output show the
three parts of the match in the right order?

. [7] Using the pattern test program, make a pattern that matches if any word (in
the \w sense of word) ends with the letter a. Does it match wilma but not barney?
Does it match Mrs. Wilma Flintstone? What about wilma&fred? Try it on the
sample text file from the Exercises in Chapter 7 (and add these test strings if they
weren't already in there).

. [5] Modify the program from the previous exercise so that the word ending with
the letter a is captured into $1. Update the code to display that variable’s contents
in single quotes, something like $1 contains 'Wilma'.

. [5] Modify the program from the previous exercise to use named captures
instead of relying on $1. Update the code to display that label name, something
like 'word' contains 'Wilma'.

. [5] Extra-credit exercise: modify the program from the previous exercise so that
immediately following the word ending in a it will also capture up to five charac-
ters (if there are that many characters, of course) in a separate capture variable.
Update the code to display both capture variables. For example, if the input string
says I saw Wilma yesterday, the up-to-five characters are “ yest” (with the
leading space). If the input is I, Wilma!, the extra capture should have just one
character. Does your pattern still match just plain wilma?

. [5] Write a new program (not the test program!) that prints out any input line

ending with whitespace (other than just a newline). Put a marker character at the
end of the output line so as to make the whitespace visible.

Exercises | 161

CHAPTER9
Processing Text with Reqular Expressions

You can use regular expressions to change text too. So far we've only shown you how
to match a pattern, and now we'll show you how to use patterns to locate the parts of
strings that you want to change.

Substitutions with s///

If you think of the m// pattern match as being like your word processor’s “search” fea-
ture, the “search and replace” feature would be Perl’s s/// substitution operator. This
simply replaces whatever part of a variable matches the pattern with a replacement
string:

$_ = "He's out bowling with Barney tonight.";
s/Barney/Fred/; # Replace Barney with Fred
print "$_\n";

Unlike m//, which can match against any string expression, s/// is
modifying data that must therefore be contained in what’s known
as an lvalue. This is nearly always a variable, but it could be any-
thing you can use on the left side of an assignment operator.

If the match fails, nothing happens, and the variable is untouched:

Continuing from previous; $_ has "He's out bowling with Fred tonight."
s/Wilma/Betty/; # Replace Wilma with Betty (fails)
Of course, both the pattern and the replacement string could be more complex. Here,
the replacement string uses the first capture variable, $1, which is set by the pattern
match:

163

s/with (\w+)/against $1's team/;

print "$_\n"; # says "He's out bowling against Fred's team tonight."
Here are some other possible substitutions. These are here only as samples; in the real
world, it would not be typical to do so many unrelated substitutions in a row:

$_ = "green scaly dinosaur";
s/(\w+) (\w+)/$2, $1/; # Now it's "scaly, green dinosaur"
s/\A/huge, /; # Now it's "huge, scaly, green dinosaur"
s/,.*een//; # Empty replacement: Now it's "huge dinosaur"
s/green/red/; # Failed match: still "huge dinosaur"
s/\w+S/($°1)%&/; # Now it's "huge (huge !)dinosaur"
s/\s+(!'\W+)/$1 /; # Now it's "huge (huge!) dinosaur"
s/huge/gigantic/; # Now it's "gigantic (huge!) dinosaur"
There’s a useful Boolean value from s///; it’s true if a substitution was successful,
otherwise it’s false:

$_ = "fred flintstone";
if (s/fred/wilma/) {
print "Successfully replaced fred with wilma!\n";

}

Global Replacements with /g

As you may have noticed in a previous example, s/// will make just one replacement,
even if others are possible. Of course, that’s just the default. The /g modifier tells s///
to make all possible nonoverlapping replacements; that is, each new match starts
looking just beyond the latest replacement:

$_ = "home, sweet home!";

s/home/cave/g;

print "$_\n"; # "cave, sweet cave!"
A fairly common use of a global replacement is to collapse whitespace; that is, to turn
any arbitrary whitespace into a single space:

$_ = "Input data\t may have extra whitespace.";

s/\s+/ /g; # Now it says "Input data may have extra whitespace."
Once we show collapsing whitespace, everyone wants to know about stripping lead-
ing and trailing whitespace. That’s easy enough, in two steps:

s/\A\s+//; # Replace leading whitespace with nothing
s/\s+\z//; # Replace trailing whitespace with nothing

We could do that in one step with an alternation and the /g modifier, but that turns
out to be a bit slower, at least when we wrote this. The regular expression engine is
always being tuned, but to learn more about that, you can get Mastering Regular
Expressions by Jeffrey Friedl and find out what makes regular expressions fast
(or slow):

164 | Chapter9: Processing Text with Regular Expressions

https://learning.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://learning.oreilly.com/library/view/mastering-regular-expressions/0596528124/

s/\A\s+|\s+\z//g; # Strip leading, trailing whitespace

Different Delimiters

Just as you did with m// and qw//, you can change the delimiters for s///. But the
substitution uses three delimiter characters, so things are a little different.

With ordinary (nonpaired) characters that don’t have a left and right variety, just use
three of them, as you did with the forward slash. Here, you use the octothorp (or
pound sign) as the delimiter:

s#\Ahttps://#http://#;

But if you use paired characters, which have a left and right variety, you have to use
two pairs: one to hold the pattern and one to hold the replacement string. In this case,
the delimiters don’t have to be the same kind around the string as they are around the
pattern. In fact, the delimiters of the string could even be nonpaired. These are all
the same:

s{fred}{barney};
s[fred](barney);
s<fred>#barney#;

Substitution Modifiers

In addition to the /g modifier, you can use the /1, /x, /m, and /s modifiers that you
saw in ordinary pattern matching (the order of modifiers isn’t significant):

s#twilma#Wilma#tgi; # replace every WilmA or WILMA with Wilma
s{__END__.*}{}s; # chop off the end marker and all following lines

The Binding Operator

Just as you saw with m//, we can choose a different target for s/// by using the bind-
ing operator:

$file_name =~ s#\A.*/##s; # In Sfile_name, remove any Unix-style path

Nondestructive Substitutions

What if you want to have the original and the modified versions of a string at the
same time? You could make a copy and work with that:

my Soriginal = 'Fred ate 1 rib';
my $copy = Soriginal;
$copy =~ s/\d+ ribs?/10 ribs/;

You could also write that as a single statement where you do the assignment and per-
form the substitution on the result:

(my $copy = Soriginal) =~ s/\d+ ribs?/10 ribs/;

Substitutions withs/// | 165

That can be a bit confusing because many people forget that the result of the assign-
ment is just as good as a string, so it’s really $copy that gets changed. Perl 5.14 adds
a /r modifier that changes how this works. Normally the result of a s/// is the num-
ber of substitutions it made, but with the /r, it leaves the original string alone and
returns a modified copy of it:

use v5.14;
my $copy = Soriginal =~ s/\d+ ribs?/10 ribs/r;

That looks almost the same as the previous example, just without the parentheses. In
this case, though, things happen in reverse order. You do the substitution first and the
assignment second. Chapter 2 (and the perlop documentation) has the precedence
chart; the =~ has higher precedence than the =.

Case Shifting

It often happens in a substitution that you'll want to make sure that a replacement
word is properly capitalized (or not, as the case may be). That’s easy to accomplish
with Perl, by using some backslash escapes. The \U escape forces what follows to all
uppercase:

$_ = "I saw Barney with Fred.";
s/(fred|barney)/\U$1/gi; # $_ is now "I saw BARNEY with FRED."

Remember all of our cautions in “Choosing a Character Interpretation” on page 145!
Similarly, the \L escape forces lowercase. Continuing from the previous code:
s/(fred|barney)/\L$1/gi; # $_ is now "I saw barney with fred."

By default, these affect the rest of the (replacement) string, or you can turn off case
shifting with \E:

s/(\w+) with (\w+)/\U$2\E with $1/i; # $_ is now "I saw FRED with barney."
When written in lowercase (\1 and \u), they affect only the next character:
s/(fred|barney)/\u$1/ig; # $_ is now "I saw FRED with Barney."

You can even stack them up. Using \u with \L means “all lowercase, but capitalize the
first letter”:

s/(fred|barney)/\u\L$1/ig; # $_ is now "I saw Fred with Barney."

As it happens, although were covering case shifting in relation to substitutions, these
escape sequences are available in any double-quotish string:

print "Hello, \L\u$name\E, would you like to play a game?\n";

166 | Chapter 9: Processing Text with Regular Expressions

https://perldoc.perl.org/perlop

The \L and \u may appear together in either order. Larry realized that people would
sometimes get those two backward, so he made Perl figure out that you want just the
first letter capitalized and the rest lowercase.

Not all lowercasing is the same. Normally, you will probably lowercase things to nor-
malize the string before you compare it:

my $input = 'fRed';

my $string = 'FRED';

if("\LSinput" eq "\LSstring") {
print "They are the same name\n";

}

However, not everything lowercases as you might expect, or there are equivalent
forms. The f§ is equivalent to ss, but:

use utf8;

my $input = 'SteilnerstraRe';

my $string = 'STEINERSTRASSE';

if ("\LSinput" eq "\LS$string") { # doesn't work!

print "They are the same name\n";

}
Those two don’t match in Perl, even though they do match logically. Perl’s lowercas-
ing doesn’t know the Unicode rules. If you have v5.16 or later and want proper Uni-
code case folding, you can use \F (for “foldcase”) escape:

use v5.16;

my $input = 'Steinerstrale';

my $string = 'STEINERSTRASSE';

if ("\F$input" eq "\F$string") { # works
print "They are the same name\n";

}

The new case-folding feature does not help with strings such as
Istanbul where the lowercase version of I is a dotted-i, but the
combining dot also shows up, like 1. You can use the Unicode: : Cas
ing module for something more sophisticated.

These case-shifting operators are also available as the functions 1c, uc, fc, lcfirst,
and ucfirst:

my $start = "Fred";

my Suncapp = lcfirst(S$start); # fred
my Suppered = uc(Suncapp); # FRED
my $lowered = lc(Suppered); # fred
my Scapped = ucfirst($lowered); # Fred
my $folded = fc(Scapped); # fred

Substitutions withs/// | 167

Metaquoting

There’s another escape that’s similar to case shifting. The \Q quotes any metacharacter
in the string. Suppose you start with this pattern where you want to remove literal
parentheses before a name:

if (s/(((Fred/Fred/) { # Does not compile!
print "Removed parens\n";

}

You have to quote those characters to make them literal parentheses:

if (s/\(\(\(Fred/Fred/) { # Compiles, but messy!
print "Removed parens\n";

}

That can be annoying. All of those backslashes clutter the pattern. You can use \Q,
which quotes everything after it. This makes the pattern a bit cleaner:

if (s/\Q(((Fred/Fred/) { # Less messy
print "Removed parens\n";

}
If you want the quoting to apply to only part of the pattern, you can use the \E:

if (s/\Q(((\E(Fred)/$1/) { # Even less messy
print "Cleansed $1\n";
}
This is useful if you want to interpolate a variable that you want to be literal charac-
ters. Since the interpolation happens, the \Q applies to the value in the variable:

if (s/\Q$prefix\E(Fred)/$1/) { # Compiles!
print "Cleansed $1\n";
}

You can do the same thing ahead of time with the quotemeta function:

my $prefix = quotemeta($input_pattern);

if (s/Sprefix(Fred)/$1/) { # Compiles!
print "Cleansed $1\n";

}

The split Operator

Another operator that uses regular expressions is split, which breaks up a string
according to a pattern. This is useful for tab-separated data, or colon-separated,
whitespace-separated, or anything-separated data, really. So long as you can specify
the separator with a regular expression (and generally, it’s a simple regular expres-
sion), you can use split. It looks like this:

my @fields = split /separator/, $string;

168 | Chapter9: Processing Text with Regular Expressions

Comma-separated values (CSV) files are a pain to do with split;
you're better off getting the Text: : CSV_XS module from CPAN.

The split drags the pattern through a string and returns a list of fields (substrings)
that were separated by the separators. Whenever the pattern matches, that’s the end of
one field and the start of the next. So, anything that matches the pattern never shows
up in the returned fields. Here’s a typical split pattern, splitting on colons:

my @fields = split /:/, "abc:def:g:h"; # gives ("abc", "def", "g", "h")
You could even have an empty field, if there were two delimiters together:
my @fields = split /:/, "abc:def::g:h"; # gives ("abc", "def", "", "g", "h")

Here’s a rule that seems odd at first, but it rarely causes problems—leading empty
fields are always returned, but trailing empty fields are discarded:

my @fields = split /:/, ":::a:b:c:::"; # gives ("", "", "", "a", "b", "c")
If you want the trailing empty fields, give split a third argument of -1:

my @fields = split /:/, ":::a:b:c:::", -1; # gives

(Hll, lll|, lI||’ I|all’ Hbl|’ I|CH’ |lll’ llll, lll|)
It’s also common to split on whitespace, using /\s+/ as the pattern. Under that pat-
tern, all whitespace runs are equivalent to a single space:

my $some_input = "This 1is a \t test.\n";
my @args = split /\s+/, $some_input; # ("This", "is", "a", "test.")

The default for split is to break up $_ on whitespace:
my @fields = split; # like split /\s+/, $_;

This is almost the same as using /\s+/ as the pattern, except that in this special case a
leading empty field is suppressed—so, if the line starts with whitespace, you won’t see
an empty field at the start of the list. If youd like to get the same behavior when split-
ting another string on whitespace, just use a single space in place of the pattern:
split ' ', Sother_string. Using a space instead of the pattern is a special kind
of split.

Generally, the patterns you use for split are as simple as the ones you see here. But if
the pattern becomes more complex, be sure to avoid using capturing parentheses in
the pattern since these trigger the (usually) unwanted “separator retention mode” (see
the perlfunc documentation for details). Use the noncapturing parentheses, (?:), in
splitif you need to group things.

The split Operator | 169

https://perldoc.perl.org/perlfunc

The join Function

The join function doesn’t use patterns; it performs the opposite function of split:
split breaks up a string into a number of pieces, and join glues together a bunch of
pieces to make a single string. The join function looks like this:

my $result = join $glue, @pieces;

The first argument to join is the glue, which may be any string. The remaining argu-
ments are a list of pieces. join puts the glue string between the pieces and returns the
resulting string:

my $x = join ":", 4, 6, 8, 10, 12; # Sx is "4:6:8:10:12"

In that example, you have five items, so there are only four colons. That is, there are
four pieces of glue. The glue shows up only between the pieces, never before or after
them. So, there will be one fewer piece of glue than the number of items in the list.

This means there may be no glue at all if the list doesn’t have at least two elements:

my Sy = join "foo", "bar"; # gives just "bar", since no foo glue is needed
my @empty; # empty array
my Sempty = join "baz", @empty; # no items, so it's an empty string
Using $x from earlier, you can break up a string and put it back together with a differ-
ent delimiter:
my @values = split /:/, $x; # @values is (4, 6, 8, 10, 12)
my $z = join "-", @values; # Sz is "4-6-8-10-12"
Although split and join work well together, don’t forget the first argument to join
is always a string, not a pattern.

m// in List Context

When you use split, the pattern specifies the separator: the part that isn’t the useful
data. Sometimes it’s easier to specify what you want to keep.

When a pattern match (m//) is used in a list context, the return value is a list of the
capture variables created in the match, or an empty list if the match failed:

$_ = "Hello there, neighbor!";

my ($first, $second, $third) = /(\S+) (\S+), (\S+)/;

print "$second is my $third\n";
This makes it easy to give the match variables easy-to-use names, and these names
may persist past the next pattern match. (Note also that, because there’s no =~ in that
code, the pattern matches against $_ by default.)

170 | Chapter 9: Processing Text with Regular Expressions

Perl v5.26 adds the special @{~CAPTURE} array variable that holds all
the capture variables. The first element is the same as $& (the entire
match); the rest of the elements align with the capture buffer num-
bers.

The /g modifier that you first saw on s/// also works with m//, which lets it match at
more than one place in a string. In this case, a pattern with a pair of parentheses will
return a capture from each time it matches:

my Stext = "Fred dropped a 5 ton granite block on Mr. Slate";
my @words = (Stext =~ /([a-z]+)/19);

print "Result: @words\n";

Result: Fred dropped a ton granite block on Mr Slate

This is like using split “inside out™: instead of specifying what we want to remove,
we specify what we want to keep.

In fact, if there is more than one pair of parentheses, each match may return more
than one string. Let’s say that we have a string that we want to read into a hash, some-
thing like this:

my Stext = "Barney Rubble Fred Flintstone Wilma Flintstone";

my %last_name = ($text =~ /(\w+)\s+(\w+)/g);
Each time the pattern matches, it returns a pair of captures. Those pairs of values
then become the key-value pairs in the newly created hash.

More Powerful Reqular Expressions

After already reading three (almost!) chapters about regular expressions, you know
that they’re a powerful feature in the core of Perl. But there are even more features
that the Perl developers have added; you'll see some of the most important ones in
this section. At the same time, you’ll see a little more about the internal operation of
the regular expression engine.

Nongreedy Quantifiers

So far Perl’s quantifiers have been greedy. They match as much text as they can using
the leftmost longest rule. Sometimes this means that you match too much.

Consider this example where you want to replace a name between tags with an all
uppercase version:

my Stext = 'Fred and Barney';
$text =~ s|(.*)|\U$1\E|g;
print "S$text\n";

More Powerful Regular Expressions | 171

It doesn’t work:
FRED AND BARNEY

What happened? You tried to do a global match and expected two matches? How
many actually matched?

my $text = 'Fred and Barney';

my S$match_count = $text =~ s|(.*)|\U$1|g;
print "$match_count: Stext\n";

You see that there was only one match:
1: FRED AND BARNEY

Since the .* is greedy, it matched everything from the first to the last . You
wanted it to match from a to the next . This is one of the problems with pars-
ing HTML with regular expressions.

Most Perlers will tell you that you can’t parse HTML with regexes,
but that's more about your skill and attention to detail than Perl’s
ability. Tom Christiansen shows that you can in an answer on
StackOverflow.

You don’t want the .* to match the longest portion it can. You want it to match just
enough. If you add a ? after any quantifier, that quantifier stops matching when it
first finds the part after the quantifier:

my $Stext = 'Fred and Barney';
my $match_count = Stext =~ s|(.*?)|\US1|g; # nongreedy
print "$match_count: $text\n";

Now it makes two matches and only the names are capitalized:
2: FRED and BARNEY

Instead of matching to the end of the string and backtracking until it finds a way to
match the rest of the pattern, the regex keeps checking that it hasn’t run into the next
part of the pattern (see Table 9-1).

Table 9-1. Regular expression quantifiers with the nongreedy modifier

Metacharacter Number to match

?7? Least of zero or one match

*? Zero or more, as few as possible

+? One or more, as few as possible

{3,}? At least three, but as few as possible

{3,5}? At least three, as many as five, but as few as possible

172 | Chapter 9: Processing Text with Regular Expressions

https://stackoverflow.com/a/4234491/2766176
https://stackoverflow.com/a/4234491/2766176

Fancier Word Boundaries

The \b matches between a “word” character and a non-“word” character. As you saw
in Chapter 7, Perl’s idea of a word is a bit different than ours. Suppose that you
wanted to capitalize the first letter of each word in a string. You might think that you
could substitute anything right after a word boundary:

my $string = "This doesn't capitalize correctly.";

$string =~ s/\b(\w)/\U$1/g;

print "S$string\n";
By Perl’s definition, that apostrophe is a word boundary even though it’s in the mid-
dle of a word (well, a contraction of two words, but still):

This Doesn'T Capitalize Correctly.

Unicode specifies levels of regular expression compliance in Uni-
code Technical Report #18, which includes sophisticated boundary
assertions. Per]l aims to be the most Unicode-compliant language
out there.

Perl v5.22 added a new sort of word boundary based on the Unicode definition. That
definition looks farther around the position to make a better guess about where a
word might start or end. The new boundary syntax builds on \b by adding curly
braces to denote the sort of boundary:

use v5.22;

my $string = "this doesn't capitalize correctly.";

$string =~ s/\b{wb}(\w)/\U$1/g;

print "$string\n";
The \b{wb} is smart enough to recognize that the t after the apostrophe is not the
start of a new word:

This Doesn't Capitalize Correctly.

The rules it uses are a bit convoluted and they aren’t perfect, but they do better than
the old \b.

There’s also a new sentence boundary in v5.22. The \b{sb} uses a set of rules to guess
if punctuation is at the end of a sentence or is internal punctuation, such as in “Mr.
Flintstone”

That’s not enough, though. Perl v5.24 adds a line boundary, which indicates a good
place to break text so that you don’t wrap a line in the middle of a word, at inappro-
priate punctuation, or at a nonbreaking space. The \b{1b} knows where to insert the
newlines:

More Powerful Regular Expressions | 173

https://unicode.org/reports/tr18/tr18-5.1.html
https://unicode.org/reports/tr18/tr18-5.1.html

$string =~ s/(.{50,75}\b{1b})/$1\n/g;

Like the other fancy word boundaries, this one guesses based on heuristics. In some
cases it might not break where you think it should.

Matching Multiple-Line Text

Classic regular expressions were used to match just single lines of text. But since Perl
can work with strings of any length, Perl’s patterns can match multiple lines of text as
easily as single lines. Of course, you have to include an expression that holds more
than one line of text. Here’s a string that’s four lines long:

$_ = "I'm much better\nthan Barney is\nat bowling,\nWilma.\n";

Now, the anchors ~ and $ are normally anchors for the start and end of the whole
string (Chapter 8). But the /m regular expression option lets them match at internal
newlines as well (think m for multiple lines). This makes them anchors for the start
and end of each line rather than the whole string. So this pattern can match:

print "Found 'wilma' at start of line\n" if /Awilma\b/im;

Similarly, you could do a substitution on each line in a multiline string. Here, we read
an entire file into one variable, then add the file’s name as a prefix at the start of
each line:

open FILE, $filename

or die "Can't open 'S$filename': $!";
my $lines = join '', <FILE>;
$lines =~ s/~/S$filename: /gm;

Updating Many Files

The most common way of programmatically updating a text file is by writing an
entirely new file that looks similar to the old one but making whatever changes we
need as we go along. As you'll see, this technique gives nearly the same result as
updating the file itself, but it has some beneficial side effects as well.

In this example, suppose you have hundreds of files with a similar format. One of
them is fred03.dat, and it’s full of lines like these:

Program name: granite
Author: Gilbert Bates
Company: RockSoft
Department: R&D

Phone: +1 503 555-0095
Date: Tues March 9, 2004
Version: 2.1

Size: 21k

Status: Final beta

174 | Chapter 9: Processing Text with Regular Expressions

You need to fix this file so that it has some different information. Here’s roughly what
this one should look like when you're done:

Program name: granite
Author: Randal L. Schwartz
Company: RockSoft
Department: R&D

Date: June 12, 2008 6:38 pm
Version: 2.1

Size: 21k

Status: Final beta

In short, you need to make three changes. The name of the Author should be
changed; the Date should be updated to today’s date; and the Phone should be
removed completely. And you have to make these changes in hundreds of similar files
as well.

Perl supports a way of in-place editing of files with a little extra help from the dia-
mond operator (<>). Here’s a program to do what you want, although it may not be
obvious how it works at first. This program’s only new feature is the special variable
$71; ignore that for now, and we’ll come back to it:

#!/usr/bin/perl -w
use strict;

chomp(my $date = ‘“date’);
$~T = ".bak";

while (<>) {
s/\AAuthor:.*/Author: Randal L. Schwartz/;
s/\APhone:.*\n//;
s/\ADate:.*/Date: $date/;
print;
}
Since you need today’s date, the program starts by using the system date command. A
better way to get the date (in a slightly different format) would almost surely be to use

Perl’s own localtime function in a scalar context:
my $date = localtime;
The next line sets $7I, but keep ignoring that for the moment.

The list of files for the diamond operator here is coming from the command line. The
main loop reads, updates, and prints one line at a time. With what you know so far,
that means that you’ll dump all of the files’ newly modified contents to your terminal,
scrolling furiously past your eyes, without the files being changed at all. But stick with
us. Note that the second substitution can replace the entire line containing the phone
number with an empty string—leaving not even a newline—so when that’s printed,

More Powerful Regular Expressions | 175

nothing comes out, and it’s as if the Phone never existed. Most input lines won’t match
any of the three patterns, and those will be unchanged in the output.

So this result is close to what you want, except that we haven't shown you how the
updated information gets back out onto the disk. The answer is in the variable $/I.
By default it’s undef, and everything is normal. But when it’s set to some string, it
makes the diamond operator (<>) even more magical than usual.

You already know about much of the diamond’s magic—it will automatically open
and close a series of files for you, or read from the standard-input stream if there
aren’t any filenames given. But when there’s a string in $1I, that string is used as a
backup filename’s extension. Let’s see that in action.

Let’s say it’s time for the diamond to open our file fred03.dat. It opens it like before,
but now it renames it, calling it fred03.dat.bak. You've still got the same file open, but
now it has a different name on the disk. Next, the diamond creates a new file and
gives it the name fred03.dat. That's OK; you weren’t using that name anymore. And
now the diamond selects the new file as the default for output so that anything that
we print will go into that file. Now the while loop will read a line from the old file,
update that, and print it out to the new file. This program can update thousands of
files in a few seconds on a typical machine. Pretty powerful, huh?

The diamond also tries to duplicate the original file’s permission
and ownership settings as much as possible. See the documentation
for your particular system for details.

Once the program has finished, what does the user see? The user says, “Ah, I see what
happened! Perl edited my file fred03.dat, making the changes I needed, and saved me
a copy of the original in the backup file fred03.dat.bak just to be helpful!” But you
now know the truth: Per]l didn’t really edit any file. It made a modified copy, said
“Abracadabra!”, and switched the files around while you were watching sparks come
out of the magic wand. Tricky.

Some folks use a tilde (~) as the value for $71, since that resembles what emacs does
for backup files. Another possible value for $~I is the empty string. This enables in-
place editing, but doesn’t save the original data in a backup file. Since a small typo in
your pattern could wipe out all of the old data though, using the empty string is rec-
ommended only if you want to find out how good your backup tapes are. It’s easy
enough to delete the backup files when youre done. And when something goes
wrong and you need to rename the backup files to their original names, you’ll be glad
that you know how to use Perl to do that (we’ll show you an example in “Renaming
Files” on page 233).

176 | Chapter 9: Processing Text with Regular Expressions

In-Place Editing from the Command Line

A program like the example from the previous section is fairly easy to write. But
Larry decided it wasn’t easy enough.

Imagine that you need to update hundreds of files that have the misspelling Randall
instead of the one-1 name Randal. You could write a program like the one in the pre-
vious section. Or you could do it all with a one-line program, right on the command
line:

$ perl -p -i.bak -w -e 's/Randall/Randal/g' fred*.dat

Perl has a whole slew of command-line options you can use to build a complete pro-
gram in a few keystrokes. Let’s see what these few do (and see perlrun for the rest).

Starting the command with perl does something like putting #! /usr/bin/per1l at the
top of a file: it says to use the program perl to process what follows.

The -p option tells Perl to write a program for you. It's not much of a program,
though; it looks something like this:

while (<>) {

print;

}
If you want even less, you could use -n instead; that leaves out the automatic print
statement, so you can print only what you wish. (Fans of awk will recognize -p and
-n.) Again, it’s not much of a program, but it’s pretty good for the price of a few key-
strokes.

The next option is -i.bak, which you might have guessed sets $*I to ".bak" before
the program starts. If you dont want a backup file, you can use -1 alone, with
no extension. If you don’t want a spare parachute, you can leave the airplane with
just one.

You've seen -w before—it turns on warnings.

The -e option says “executable code follows” That means that the s/Randall/
Randal/g string is treated as Perl code. Since you've already got a while loop (from
the -p option), this code is put inside the loop, before the print. For technical rea-
sons, the last semicolon in the -e code is optional. But if you have more than one -e,
and thus more than one chunk of code, you can safely omit only the semicolon at the
end of the last one.

The last command-line parameter is fred*.dat, which says that @RGV should hold
the list of filenames that match that filename pattern. Put the pieces all together, and
it's as if you had written a program like this, and put it to work on all of those
fred+*.dat files:

More Powerful Regular Expressions | 177

https://perldoc.perl.org/perlrun

#!/usr/bin/perl -w
$7°T = ".bak";

while (<>) {
s/Randall/Randal/g;
print;

}

Compare this program to the one you used in the previous section. It’s pretty similar.
These command-line options are pretty handy, aren’t they?

Exercises

See “Answers to Chapter 9 Exercises” on page 311 for answers to these exercises:

1.

[7] Make a pattern that will match three consecutive copies of whatever is cur-
rently contained in $what. That is, if $what is fred, your pattern should match
fredfredfred. If $what is fred|barney, your pattern should match fredfredbar
ney or barneyfredfred or barneybarneybarney or many other variations. (Hint:
you should set $what at the top of the pattern test program with a statement like
my Swhat = 'fred|barney';.)

[12] Write a program that makes a modified copy of a text file. In the copy, every
string Fred (case-insensitive) should be replaced with Larry. (So Manfred Mann
should become ManLarry Mann.) The input filename should be given on the com-
mand line (don't ask the user!), and the output filename should be the corre-
sponding filename ending with .out.

. [8] Modify the previous program to change every Fred to Wilma and every Wilma

to Fred. Now, input like fred&wilma should look like Wilma&Fred in the output.

. [10] Extra-credit exercise: write a program to add a copyright line to all of your

exercise answers so far, by placing a line like:
Copyright (C) 20XX by Yours Truly

in the file immediately after the “shebang” line. You should edit the files “in
place,” keeping a backup. Presume that the program will be invoked with the file-
names to edit already on the command line.

. [15] Extra extra-credit exercise: modify the previous program so that it doesn't

edit the files that already contain the copyright line. As a hint on that, you might
need to know that the name of the file being read by the diamond operator is in
$ARGV.

178

| Chapter 9: Processing Text with Regular Expressions

CHAPTER 10
More Control Structures

In this chapter, you’ll see some alternative ways to write Perl code. For the most part,
these techniques don’t make the language more powerful, but they do make it easier
or more convenient to get the job done. You don't have to use these techniques in
your own code, but don’t be tempted to skip this chapter—you're certain to see these
control structures in other people’s code sooner or later (in fact, you're absolutely cer-
tain to see these things in use by the time you finish reading this book).

The unless Control Structure

In an if control structure, the block of code is executed only when the conditional
expression is true. If you want to execute a block of code only when the conditional is
false, change if to unless:
unless ($fred =~ /\A[A-Z_]\w*\z/1i) {
print "The value of \$fred doesn't look like a Perl identifier name.\n";
}
Using un'less says to run the block of code unless this condition is true. It’s just like
using an if test with the opposite condition. Another way to say it is that it’s like hav-
ing the else clause on its own. That is, whenever you see an unless that you don’t
understand, you can rewrite it (either in your head or in reality) as an if test:
if ($fred =~ /\A[A-Z_]\w*\z/1) {
Do nothing
} else {
print "The value of \$fred doesn't look like a Perl identifier name.\n";
}
It's no more or less efficient, and it should compile to the same internal bytecodes. Or,
another way to rewrite it would be to negate the conditional expression by using the
negation operator (!):

179

if (! (Sfred =~ /\A[A-Z_1\w*\z/1)) {
print "The value of \$fred doesn't look like a Perl identifier name.\n";
}
Generally, you should pick the way of writing code that makes the most sense to you,
since that will probably make the most sense to your maintenance programmer. If it
makes the most sense to write i1f with a negation, do that. More often, however, you'll
probably find it natural to use unless.

The else Clause with unless

You could even have an else clause with an unless. While this syntax is supported,
it’s potentially confusing:
unless (Smon =~ /\AFeb/) {
print "This month has at least thirty days.\n";
} else {
print "Do you see what's going on here?\n";
}
Some people may wish to use this, especially when the first clause is very short (per-
haps only one line) and the second is several lines of code. But you could make this
one a negated if, or maybe simply swap the clauses to make a normal if:

if ($mon =~ /\AFeb/) {
print "Do you see what's going on here?\n";
} else {
print "This month has at least thirty days.\n";
}
It's important to remember that you're always writing code for two readers: the com-
puter that will run the code and the human being who has to keep the code working.
If the human can’t understand what you've written, pretty soon the computer won’t
be doing the right thing either.

The until Control Structure

Sometimes you want to reverse the condition of a while loop. To do that, just use
until:

until (83 > $i) {

$3 *= 2;

}
This loop runs until the conditional expression returns true. But it’s really just a
while loop in disguise, except that this one repeats as long as the conditional is false
rather than true. The conditional expression is evaluated before the first iteration, so
this is still a zero-or-more-times loop, just like the while loop. As with if and unless,

180 | Chapter 10: More Control Structures

you could rewrite any until loop to become a while loop by negating the condition.
But generally, you’ll find it simple and natural to use until from time to time.

Statement Modifiers

In order to have a more compact notation, a statement may be followed by a modifier

that controls it. For example, the if modifier works in a way analogous to an if
block:

print "$n is a negative number.\n" if $n < 0;

That gives exactly the same result as if you had used this code, except that you saved
some typing by leaving out the parentheses and curly braces:
if ($n < 0) {
print "$n is a negative number.\n";
}
As we've said, Perl folks generally like to avoid typing. And the shorter form reads
like in English: print this message if $n is less than zero.

Notice that the conditional expression is still evaluated first, even though it’s written
at the end. This is backward from the usual left-to-right ordering; in understanding
Perl code, you have to do as Perl’s internal compiler does, and read to the end of the
statement before you can tell what it’s really doing.

There are other modifiers as well:

&error("Invalid input") unless &valid(Sinput);

$1 *= 2 until $1 > $j;

print " ", (Sn += 2) while $n < 10;

&greet($_) foreach @person;
These all work just as (we hope) you would expect. That is, each one could be rewrit-
ten in a similar way to rewriting the 1f modifier example earlier. Here is one:

while ($n < 10) {

print " ", ($n += 2);

}
The expression in parentheses inside the print argument list is noteworthy because it
adds two to $n, storing the result back in $n. Then it returns that new value, which
will be printed.

These shorter forms read almost like a natural language: call the &greet subroutine
for each @person in the list. Double $1 until it’s larger than $j. One of the common
uses of these modifiers is in a statement like this one:

print "fred is 'Sfred', barney is 'Sbarney'\n" if $I_am_curious;

Statement Modifiers | 181

By writing the code “in reverse” like this, you can put the important part of the state-
ment at the beginning. The point of that statement is to monitor some variables; the
point is not to check whether youre curious. Of course, we made up the name
$I_am_curious; it’s not a built-in Perl variable. Generally, folks who use this techni-
que will either call their variable STRACING or will use a constant declared with the
constant pragma. Some people prefer to write the whole statement on one line, per-
haps with some tab characters before the if, to move it over toward the right margin
as you saw in the previous example, while others put the if modifier indented on a
new line:
print "fred is 'S$fred', barney is 'Sbarney'\n"
if $I_am_curious;

Although you can rewrite any of these expressions with modifiers as a block (the
“old-fashioned” way), the converse isn't necessarily true. Perl allows only a single
expression on either side of the modifier. So you can’t write something if something
while something until something unless something foreach something, which
would just be too confusing. And you can’t put multiple statements on the left of the
modifier. If you need more than just a simple expression on either side, just write the
code the old-fashioned way, with the parentheses and curly braces.

As we mentioned in relation to the if modifier, the control expression (on the right)
is always evaluated first, just as it would be in the old-fashioned form.

With the foreach modifier, there’s no way to choose a different control variable—it’s
always $_. Usually, that’s not a problem, but if you want to use a different variable,
you'll need to rewrite it as a traditional foreach loop.

The Naked Block Control Structure

The so-called “naked” block is one without a keyword or condition. That is, suppose
you start with a while loop, which looks something like this:

while (condition) {
body;
body;
body;

}

Now, take away the while keyword and the conditional expression, and you’ll have a
naked block:

{
body;
body;
body;
}

182 | Chapter 10: More Control Structures

The naked block is like a while or foreach loop, except that it doesn’t loop; it just
executes the body of the loop once, and it’s done. It’s an un-loop!

Later, you’ll see that there are other uses for the naked block, but one of its features is
that it provides a scope for temporary lexical variables:
{
print "Please enter a number: ";
chomp(my $n = <STDIN>);

my Sroot = sqrt Sn; # calculate the square root
print "The square root of $n is $root.\n";

}

In this block, $n and $root are temporary variables scoped to the block. As a general
guideline, all variables should be declared in the smallest scope available. If you need
a variable for just a few lines of code, you can put those lines into a naked block and
declare the variable inside that block. Of course, if you need the value of either $n or
$root later, you would need to declare them in a larger scope.

You may have noticed the sqrt function in that code and wondered about it—yes, it’s
a function we haven’t shown before. Perl has many built-in functions that are beyond
the scope of this book. When you’re ready, check the perlfunc documentation to learn
about more of them.

The elsif Clause

Every so often, you may need to check a number of conditional expressions, one after
another, to see which one of them is true. This can be done with the if control struc-
ture’s elsif clause, as in this example:

if (! defined $dino) {
print "The value is undef.\n";
} elsif ($dino =~ /~-2\d+\.?$/) {
print "The value is an integer.\n";
} elsif ($dino =~ /~-2\d*\.\d+$/) {
print "The value is a _simple_ floating-point number.\n";
} elsif ($dino eq '') {
print "The value is the empty string.\n";
} else {
print "The value is the string 'S$dino'.\n";

}
Perl will test the conditional expressions one after another. When one succeeds, the
corresponding block of code is executed, and then the whole control structure is done
and execution goes on to the rest of the program. If none has succeeded, the else
block at the end is executed. (Of course, the else clause is still optional, although in
this case it’s often a good idea to include it.)

Theelsif Clause | 183

https://perldoc.perl.org/perlfunc

There’s no limit to the number of elsif clauses, but remember that Perl has to evalu-
ate the first 99 tests before it can get to the 100th. If you’ll have more than half a
dozen elsifs, you should consider whether there’s a more efficient way to write it.

You may have noticed by this point that the keyword is spelled elsif, with only one
e. If you write it as elseif with a second e, Perl will tell you it is not the correct spell-
ing. Why? Because Larry says so.

Autoincrement and Autodecrement

You'll often want a scalar variable to count up or down by one. Since these are
frequent constructs, there are shortcuts for them, like nearly everything else we do
frequently.

The autoincrement operator (++) adds one to a scalar variable, like the same operator
in C and similar languages:

my $bedrock = 42;
$bedrock++; # add one to $bedrock; it's now 43

Just like other ways of adding one to a variable, the scalar will be created if necessary:

my @people = qw{ fred barney fred wilma dino barney fred pebbles };

my %count; # new empty hash

Scount{$_}++ foreach @people; # creates new keys and values as needed
The first time through that foreach loop, $count{$_} is incremented. Thats
$count{"fred"}, which thus goes from undef (since it didn’t previously exist in the
hash) up to 1. The next time through the loop, $count{"barney"} becomes 1; after
that, Scount{"fred"} becomes 2. Each time through the loop, you increment one
element in %count, and possibly create it as well. After that loop finishes,
$count{"fred"} is 3. This provides a quick and easy way to see which items are in a
list and how many times each one appears.

Similarly, the autodecrement operator (- -) subtracts one from a scalar variable:

$bedrock--; # subtract one from $bedrock; it's 42 again

The Value of Autoincrement

You can fetch the value of a variable and change that value at the same time. Put the
++ operator in front of the variable name to increment the variable first and then
fetch its value. This is a pre-increment:

my $m = 5;

my $n = ++$m; # increment Sm to 6, and put that value into $n

Or put the - - operator in front to decrement the variable first and then fetch its value.
This is a pre-decrement:

184 | Chapter 10: More Control Structures

my $c = --$m; # decrement Sm to 5, and put that value into S$c

Here’s the tricky part. Put the variable name first to fetch the value first, then do the
increment or decrement. This is called a post-increment or post-decrement:

my $d = Sm++; # $d gets the old value (5), then increment $m to 6

my $e = $m--; # Se gets the old value (6), then decrement $m to 5
Its tricky because youre doing two things at once. Youre fetching the value, and
youre changing it in the same expression. If the operator is first, you increment (or
decrement) first, then use the new value. If the variable is first, you return its (old)
value first, then do the increment or decrement. Another way to say it is that these
operators return a value, but they also have the side effect of modifying the variable’s
value.

If you write these in an expression on their own, not using the value but only the side
effect, there’s no difference whether you put the operator before or after the variable:

Sbedrock++; # adds one to $bedrock

++Sbedrock; # just the same; adds one to $bedrock
A common use of these operators is in connection with a hash, to identify an item
you have seen before:

my @people = qw{ fred barney bamm-bamm wilma dino barney betty pebbles };
my %seen;

foreach (@people) {
print "I've seen you somewhere before, $_!\n"
if $seen{$_}++;

}
When barney shows up for the first time, the value of $seen{$_}++ is false, since it’s
the value of $seen{$_}, which is $seen{"barney"}, which is undef. But that expres-
sion has the side effect of incrementing $seen{"barney"}. When barney shows up
again, $seen{"barney"} is now a true value, so you print the message.

The for Control Structure

Perl’s for control structure is like the common for control structure you may have
seen in other languages such as C. It looks like this:

for (initialization; test; increment) {
body;
body;

}

To Perl, though, this kind of loop is really a while loop in disguise, something like
this:

The for Control Structure | 185

initialization;
while (test) {
body;
body;
increment;

}
The most common use of the for loop, by far, is for making computed iterations:

for ($1 = 1; $1 <= 10; $i++) { # count from 1 to 10
print "I can count to $i!\n";

}
When you've seen these before, youw’ll know what the first line is saying even before
you read the comment. Before the loop starts, the control variable, $i, is set to 1.
Then the loop is really a while loop in disguise, looping while $1 is less than or equal
to 10. Between each iteration and the next is the increment, which here is a literal
increment, adding one to the control variable, which is $1.

The first time through this loop, $1 is 1. Since that’s less than or equal to 10, you see
the message. Although the increment is written at the top of the loop, it logically hap-
pens at the bottom of the loop, after printing the message. So, $1 becomes 2, which is
less than or equal to 10, so we print the message again, and $1 is incremented to 3,
which is less than or equal to 10, and so on.

Eventually, you print the message that your program can count to 9. Then you incre-
ment $1 to 10, which is less than or equal to 10, so you run the loop one last time and
print that your program can count to 10. Finally, you increment $1 for the last time,
to 11, which is not less than or equal to 10. So control drops out of the loop, and
you're on to the rest of the program.

All three parts are together at the top of the loop so that it’s easy for an experienced
programmer to read that first line and say, “Ah, it’s a loop that counts $1 from 1 to 10”

Note that after the loop finishes, the control variable has a value “after” the loop. That
is, in this case, the control variable has gone all the way to 11. This loop is very versa-
tile, since you can make it count in all sorts of ways. For example, you can count
down from 10 to I:

for ($1 = 10; $1 >= 1; $i--) {

print "I can count down to $i\n";

}
And this loop counts from -150 up to 1000 by threes:
for ($1 = -150; $1 <= 1000; $1 += 3) {

print "$i\n";
}

186 | Chapter 10: More Control Structures

It never gets to 1000 exactly. The last iteration uses 999, since each value of $1 is a
multiple of three.

In fact, you could make any of the three control parts (initialization, test, or incre-
ment) empty if you wish, but you still need the two semicolons. In this (quite
unusual) example, the test is a substitution, and the increment is empty:

for (S_ = "bedrock"; s/(.)//;) { # loops while the s/// is successful
print "One character is: $1\n";
}
The test expression (in the implied while loop) is the substitution, which returns a
true value if it succeeded. In this case, the first time through the loop, the substitution
removes the b from bedrock. Each iteration removes another letter. When the string
is empty, the substitution will fail, and the loop is done.

If the test expression (the one between the two semicolons) is empty, it’s automati-
cally true, making an infinite loop. But don’t make an infinite loop like this until you
see how to break out of such a loop, which we'll show later in this chapter:
for (55) {
print "It's an infinite loop!\n";
}
A more Perl-like way to write an intentional infinite loop, when you really want one,
is with while:
while (1) {
print "It's another infinite loop!\n";
}
If you somehow made an infinite loop that’s gotten away from you, try Ctrl-C to halt
your program.

Although C programmers are familiar with the first way, even a beginning Perl pro-
grammer should recognize that 1 is always true, making an intentional infinite loop,
so the second is generally a better way to write it. Perl is smart enough to recognize
a constant expression like that and optimize it away, so there’s no difference in
efficiency.

The Secret Connection Between foreach and for

It turns out that, inside the Perl parser, the keyword foreach is exactly equivalent to
the keyword for. That is, any time Perl sees one of them, it’s the same as if you had
typed the other. Perl can tell which you meant by looking inside the parentheses. If
you've got the two semicolons, it’s a computed for loop (like we've just been talking
about). If you don’t have the semicolons, it’s really a foreach loop:

The for Control Structure | 187

for (1..10) { # really a foreach loop from 1 to 10
print "I can count to $_!\n";

}
That’s really a foreach loop, but it’s written for. Perl figures it out based on what it
finds in the parentheses. If it finds the semicolons, it’s the C-style for. Except for this

one example, throughout this book we'll spell out foreach wherever it appears. How
you do it is an issue of your personal style.

In Perl, the true foreach loop is almost always a better choice. In the foreach loop
(written for) in that previous example, it’s easy to see at a glance that the loop will go
from 1 to 10. But do you see what’s wrong with this computed loop that’s trying to do
the same thing?

for ($1 = 1; $1 < 10; $i++) { # Oops! Something is wrong here!
print "I can count to $i!\n";
}
You're going to make this error, probably for the rest of your life. Do you see it yet?
You have the right numbers in the statement but your comparison is off. Since 10 is
not less than 10, this version actually counts up to 9. This is an off by one error. You
can fix that with a single character:
for (S1 = 1; $1 <= 10; Si++) { # OK now
print "I can count to $i!'\n";

}

Loop Controls

As you've surely noticed by now, Perl is one of the so-called “structured” program-
ming languages. In particular, there’s just one entrance to any block of code, which is
at the top of that block. But there are times when you may need more control or ver-
satility than what we've shown so far. For example, you may need to make a loop like
a while loop, but one that always runs at least once. Or maybe you need to occasion-
ally exit a block of code early. Perl has three loop control operators you can use in
loop blocks to make the loop do all sorts of tricks.

The last Operator

The last operator immediately ends execution of the loop. (If youve used the
“break” operator in C or a similar language, it’s like that.) It’s the “emergency exit” for
loop blocks. When you hit last, the loop is done.

For example:

Print all input lines mentioning fred, until the __END__ marker
while (<STDIN>) {
if (/__END__/) {

188 | Chapter 10: More Control Structures

No more input on or after this marker line
last;
} elsif (/fred/) {
print;
}
}

last comes here
Once an input line has the __END__ marker, that loop is done. Of course, that com-
ment line at the end is merely a comment—its not required in any way. We just threw
that in to make it clearer what’s happening.

There are five kinds of loop blocks in Perl. These are the blocks of for, foreach,
while, until, and the naked block. The curly braces of an if block or subroutine
don’t qualify. As you may have noticed in this example, the last operator applied to
the entire loop block.

The last operator will apply to the innermost currently running loop block. To jump
out of outer blocks, stay tuned; that’s coming up in a little bit.

The next Operator

Sometimes youre not ready for the loop to finish, but youre done with the current
iteration. That’s what the next operator is good for. It jumps to the inside of the bot-
tom of the current loop block. After next, control continues with the next iteration of
the loop (much like the continue operator in C or a similar language):

Analyze words in the input file or files

while (<>) {
foreach (split) { # break $_ into words, assign each to $_ in turn

Stotal++;

next if /\W/; # strange words skip the remainder of the loop
Svalid++;

Scount{$_}++; # count each separate word

next comes here

}
}

print "total things = $total, valid words = $valid\n";
foreach $word (sort keys %count) {
print "$word was seen $count{$word} times.\n";

}
This one is a little more complex than most of our examples up to this point, so lets
take it step by step. The while loop is reading lines of input from the diamond opera-
tor, one after another, into $_; you've seen that before. Each time through that loop,
another line of input will be in $_.

Loop Controls | 189

Inside that loop, the foreach loop iterates over the return value of split. Do you
remember the default for split with no arguments? That splits $_ on whitespace, in
effect breaking $_ into a list of words. Since the foreach loop doesn’t mention some
other control variable, the control variable will be $_. So, you’ll see one word after
anotherin §_.

But didn’t we just say that $_ holds one line of input after another? Well, in the outer
loop, that’s what it holds. But inside the foreach loop, it holds one word after another.
It’s not a problem for Perl to reuse $_ for a new purpose; this happens all the time.

Now, inside the foreach loop, you're seeing one word at a time in $_. $total is incre-
mented, so it must be the total number of words. But the next line (which is the point
of this example) checks to see whether the word has any nonword characters—any-
thing but letters, digits, and underscores. So, if the word is Tom's, or if it is full-
sized, or if it has an adjoining comma, quote mark, or any other strange character, it
will match that pattern and you’ll skip the rest of the loop, going on to the next word.

But let’s say that it’s an ordinary word, like fred. In that case, you count $valid up by
one, and also $count{$_}, keeping a count for each different word. So, when you fin-
ish the two loops, you've counted every word in every line of input from every file the
user wanted you to use.

We're not going to explain the last few lines. By now, we hope you've got stuff like that
down already.

Like last, next may be used in any of the five kinds of loop blocks: for, foreach,
while, until, or the naked block. Also, if you nest loop blocks, next works with the
innermost one. You'll see how to change that at the end of this section.

The redo Operator

The third member of the loop control triad is redo. It says to go back to the top of the
current loop block, without testing any conditional expression or advancing to the
next iteration. (If you've used C or a similar language, you've never seen this one
before. Those languages don't have this kind of operator.) Here’s an example:

Typing test
my @words = gw{ fred barney pebbles dino wilma betty };
my $Serrors = 0;

foreach (@words) {
redo comes here
print "Type the word '$_': ";
chomp(my $try = <STDIN>);
if (Stry ne $_) {
print "Sorry - That's not right.\n\n";
Serrors++;

190 | Chapter10: More Control Structures

redo; # jump back up to the top of the loop
}
}

print "You've completed the test, with S$Serrors errors.\n";
Like the other two operators, redo will work with any of the five kinds of loop blocks,
and it will work with the innermost loop block when they’re nested.

The big difference between next and redo is that next will advance to the next itera-
tion, but redo will redo the current iteration. Here’s an example program that you can
play with to get a feel for how these three operators work:

foreach (1..10) {
print "Iteration number $_.\n\n";
print "Please choose: last, next, redo, or none of the above? ";
chomp(my $choice = <STDIN>);

print "\n";

last if $choice =~ [last/i;

next if Schoice =~ /next/i;

redo if Schoice =~ /[redo/i;

print "That wasn't any of the choices... onward!\n\n";
}

print "That's all, folks!\n";

If you just press Return without typing anything (try it two or three times), the loop
counts along from one number to the next. If you choose last when you get to num-
ber four, the loop is done, and you won't go on to number five. If you choose next
when youre on four, youre on to number five without printing the “onward” mes-
sage. And if you choose redo when you’re on four, youre back to doing number four
all over again.

Labeled Blocks

When you need to work with a loop block that’s not the innermost one, use a label.
Labels in Perl are like other identifiers—made of letters, digits, and underscores, but
they can’t start with a digit. However, since they have no prefix character, labels could
be confused with the names of built-in function names, or even with your own sub-
routines’ names. So it would be a poor choice to make a label called print or if.
Because of that, Larry recommends that they be all uppercase. That not only ensures
that the label won't conflict with another identifier but it also makes it easy to spot the
label in the code. In any case, labels are rare, only showing up in a small percentage of
Perl programs.

To label a loop block, just put the label and a colon in front of the loop. Then, inside
the loop, you may use the label after last, next, or redo, as needed:

Loop Controls | 191

LINE: while (<>) {
foreach (split) {
last LINE if /__END__/; # bail out of the LINE loop

}
}
For readability, it’s generally nice to put the label at the left margin, even if the current
code is at a higher indentation. Notice that the label names the entire block; it’s not
marking a target point in the code. In that previous snippet of sample code, the spe-
cial __END__ token marks the end of all input. Once that token shows up, the program
will ignore any remaining lines (even from other files).

It often makes sense to choose a noun as the name of the loop. That is, the outer loop
is processing a line at a time, so we called it LINE. If we had to name the inner loop,
we would have called it WORD, since it processes a word at a time. That makes it conve-
nient to say things like “(move on to the) next WORD” or “ redo (the current) LINE™:

LINE: while (<>) {
WORD: foreach (split) {
last LINE if /__END__/; # bail out of the LINE loop
last WORD if /EOL/; # skip the rest of the line

}...
}

The Conditional Operator

When Larry was deciding which operators to make available in Perl, he didn't want
former C programmers to miss something that C had and Perl didn’t, so he brought
over all of C’s operators to Perl. That meant bringing over C’s most confusing opera-
tor: the conditional operator ?:. While it may be confusing, it can also be quite use-
ful.

The “conditional operator” is like an if-then-else test, all rolled into an expression. It’s
sometimes called a “ternary operator” because it takes three operands. It looks like
this:

expression ? if_true_expr : if_false_expr

Some people call the “conditional operator” the “ternary operator.”
It does take three parts, and that’s enough to distinguish it from the
other Perl operators. Older Perlers will still say “ternary;” but it’s not
a good habit to develop if you don’t already have it.

First, Perl evaluates the expression to see whether it’s true or false. If it’s true, Perl
returns the second expression; otherwise, it returns the third expression. Every time,

192 | Chapter10: More Control Structures

one of the two expressions on the right is evaluated, and one is ignored. That is, if the
first expression is true, then the second expression is evaluated, and the third is
ignored. If the first expression is false, then the second is ignored, and the third is
evaluated as the value of the whole thing.

In this example, the result of the subroutine &is_weekend determines which string
expression you'll assign to the variable:

my S$location = &is_weekend($day) ? "home" : "work";

And here, you calculate and print out an average—or just a placeholder line of
hyphens, if there’s no average available:

my $average = $n ? (Stotal/$n) : "----- "
print "Average: $average\n";

You could always rewrite any use of the ?: operator as an if structure, often much
less conveniently and less concisely:

my Saverage;

if ($n) {

$average = $total / $n;
} else {

$average = "----- ";
}

print "Average: $average\n";
Here’s a trick you might see used to code up a nice multiway branch:

my $size =
($width < 10) ? "small"
(Swidth < 20) ? "medium" :
($width < 50) ? "large"
"extra-large"; # default

That is really just three nested ?: operators, and it works quite well once you get the
hang of it.

Of course, youre not obliged to use this operator. Beginners may wish to avoid it. But
you'll see it in others’ code sooner or later, and we hope that one day you'll find a
good reason to use it in your own programs.

Logical Operators

As you might expect, Perl has all of the necessary logical operators needed to work
with Boolean (true/false) values. For example, it’s often useful to combine logical tests
by using the logical AND operator (&&) and the logical OR operator (] |):

if (Sdessert{'cake'} && S$dessert{'ice cream'}) {

Both are true
print "Hooray! Cake and ice cream!\n";

Logical Operators | 193

} elsif (Sdessert{'cake'} || Sdessert{'ice cream'}) {
At least one is true
print "That's still good...\n";
} else {
Neither is true; do nothing (we're sad)
}
There may be a shortcut. If the left side of a logical AND operation is false, the whole
thing is false, since logical AND needs both sides to be true in order to return true. In
that case, there’s no reason to check the right side, so Perl doesn't evaluate it. Consider

what happens in this example if $hour is 3:

if ((9 <= $Shour) && (Shour < 17)) {
print "Aren't you supposed to be at work...?\n";
}
Similarly, if the left side of a logical OR operation is true, Perl doesn’t evaluate the
right side. Consider what happens here if $name is fred:

if (($name eq 'fred') || ($name eq 'barney')) {
print "You're my kind of guy!\n";
}
Because of this behavior, these operators are called “short-circuit” logical operators.
They take a short circuit to the result whenever they can. In fact, it’s fairly common to
rely on this short-circuit behavior. Suppose you need to calculate an average:

if (($n != 0) 8& (Stotal/sn < 5)) {
print "The average is below five.\n";
}
In that example, Perl evaluates the right side only if the left side is true so that you
can’t accidentally divide by zero and crash the program (and we’ll show you more
about that in “Trapping Errors” on page 283).

The Value of a Short-Circuit Operator

Unlike what happens in C (and similar languages), the value of a short-circuit logical
operator is the last part evaluated, not just a Boolean value. This provides the same
result, in that the last part evaluated is always true when the whole thing should be
true, and it’s always false when the whole thing should be false.

But it’s a much more useful return value. Among other things, the logical OR opera-
tor is quite handy for selecting a default value:

my $last_name = $last_name{Ssomeone} || '(No last name)';

If $someone is not listed in the hash, the left side will be undef, which is false. So the
logical OR will have to look to the right side for the value, making the right side the
default. In this idiom, the default value won’t merely replace undef; it would replace
any false value equally well. You could fix that with the conditional operator:

194 | Chapter 10: More Control Structures

my $last_name = defined $last_name{$someone} ?
Slast_name{$someone} : '(No last name)';
That’s too much work, and you had to say $last_name{$someone} twice. Perl 5.10
added a better way to do this, and it’s discussed in the next section.

The defined-or Operator

In the previous section, you used the | | operator to give a default value. That ignored
the special case where the defined value was false but perfectly acceptable as a value.
You then saw the uglier version using the conditional operator.

Perl 5.10 got around this sort of bug with the defined-or operator, //, which short-
circuits when it finds a defined value, no matter if that value on the lefthand side is
true or false. Even if someone’s last name is 0, this version still works because it won’t
replace defined values:

use v5.10;

my $last_name = $last_name{Ssomeone} // '(No last name)';

Sometimes you just want to give a variable a value if it doesn’t already have one, and if
it already has a value, to leave it alone. Suppose you want to only print messages if
you set the VERBOSE environment variable. You check the value for the VERBOSE key in
the %ENV hash. If it doesn’t have a value, you want to give it one:

use v5.10;

my $Verbose = SENV{VERBOSE} // 0; # off by default
print "I can talk to you!\n" if SVerbose;

You can see this in action by trying several values with // to see which ones pass
through to the default value:

use v5.10;

foreach my $try (0, undef, '0', 1, 25) {
print "Trying [$try] ---> ";
my $value = Stry // 'default';
say "\tgot [Svalue]";

}
The output shows that you only get the default string when $try is undef:

Trying [0] ---> got [0]

Trying [] ---> got [default]
Trying [0] ---> got [0]
Trying [1] ---> got [1]

Trying [25] ---> got [25]

Logical Operators | 195

Sometimes you want to set a value when there isn't one already. For instance, when
you have warnings enabled and try to print an undefined value, you get an annoying
error:

use warnings;

my $name; # no value, so undefined!

printf "%s", $name; # Use of uninitialized value in printf ...
Sometimes that error is harmless. You could just ignore it, but if you expect that you
might try to print an undefined value, you can use the empty string instead:

use v5.10;
use warnings;

my $name; # no value, so undefined!
printf "%s", S$name // '';

Control Structures Using Partial-Evaluation Operators

The four operators that you've just seen—&8&, ||, //, and ?:—all share a peculiar
property: depending on the value on the left side, they may or may not evaluate an
expression. Sometimes they evaluate the expression and sometimes they don't. For
that reason, these are sometimes called partial-evaluation operators, since they may
not evaluate all of the expressions around them. And partial-evaluation operators are
automatically control structures. It’s not as if Larry felt a burning need to add more
control structures to Perl. But once he had decided to put these partial-evaluation
operators into Perl, they automatically became control structures as well. After all,
anything that can activate and deactivate a chunk of code is, by that very fact, a con-
trol structure.

Fortunately, you’ll notice this only when the controlled expression has side effects,
like altering a variable’s value or causing some output. For example, suppose you ran
across this line of code:

($m < $n) && ($m = $n);
Right away, you should notice that the result of the logical AND isn’t being assigned
anywhere. Why not?

If $m is really less than $n, the left side is true, so the right side will be evaluated,
thereby doing the assignment. But if $m is not less than $n, the left side will be false,
and thus the right side would be skipped. So that line of code would do essentially the
same thing as this one, which is easier to understand:

if ($m < $n) { $m=$n}
Or maybe even:

Sm = $n if $m < $n;

196 | Chapter 10: More Control Structures

Or maybe you're fixing someone else’s program, and you see a line like this one:
($m > 10) || print "why is it not greater?\n";

If $m is really greater than 10, the left side is true and the logical OR is done. But if it’s
not, the left side is false, and this will go on to print the message. Once again, this
could (and probably should) be written in the traditional way, probably with if or
unless. You most often see this sort of expression from people coming from the shell
scripting world and transferring the idioms they know there into their new language.

If you have a particularly twisted brain, you might even learn to read these lines as if
they were written in English. For example: check that $m is less than $n, and if it is,
then do the assignment. Check that $m is more than 10, or if its not, then print the
message.

It’s generally former C programmers or old-time Perl programmers who most often
use these ways of writing control structures. Why do they do it? Some have the mis-
taken idea that these are more efficient. Some think these tricks make their code
cooler. Some are merely copying what they saw someone else do.

In the same way, you can use the conditional operator for control. In this case, you
want to assign $x to the smaller of two variables:

($m < $n) 2 ($m = $x) : ($n = $x);
If $m is smaller, it gets $x. Otherwise, $n does.

There is another way to write the logical AND and logical OR operators. You may
wish to write them out as words: and and or. These word operators have the same
behaviors as the ones written with punctuation, but the words are down at the bot-
tom of the precedence chart. Since the words don't “stick” so tightly to the nearby
parts of the expression, they may need fewer parentheses:

$m < Sn and Sm = $n; # but better written as the corresponding if

There are also the low-precedence not (like the logical-negation operator, !) and the
rare xor.

Then again, you may need more parentheses. Precedence is a bugaboo. Be sure to use
parentheses to say what you mean, unless you're sure of the precedence. Nevertheless,
since the word forms are very low precedence, you can generally understand that
they cut the expression into big pieces, doing everything on the left first, and then (if
needed) everything on the right.

Despite the fact that using logical operators as control structures can be confusing,
sometimes they’re the accepted way to write code. The idiomatic way of opening a file
in Perl looks like this:

open my $fh, '<', $filename
or die "Can't open 'S$filename': $!";

Logical Operators | 197

By using the low-precedence short-circuit or operator, you tell Perl that it should
“open this file...or die!” If the open succeeds, returning a true value, the or is com-
plete. But if it fails, the false value causes the or to evaluate the part on the right,
which will die with a message.

So, using these operators as control structures is part of idiomatic Perl—Perl as she is
spoken. Used properly, they can make your code more powerful; otherwise, they can
make your code unmaintainable. Don’t overuse them.

Exercises

See “Answers to Chapter 10 Exercises” on page 313 for answers to these exercises:

1. [25] Make a program that will repeatedly ask the user to guess a secret number
from 1 to 100 until the user guesses the secret number. Your program should pick
the number at random by using the magical formula int(1 + rand 100). See
what the perlfunc documentation says about int and rand if you're curious about
these functions. When the user guesses wrong, the program should respond “Too
high” or “Too low” If the user enters the word quit or extit, or if the user enters a
blank line, the program should quit. Of course, if the user guesses correctly, the
program should quit then as well!

2. [10] Modify the program from the previous exercise to print extra debugging
information as it goes along, such as the secret number it chose. Make your
change such that you can turn it off, but your program emits no warnings if you
turn it off. If you are using Perl 5.10 or later, use the // operator. Otherwise, use
the conditional operator.

3. [10] Modify the program from Exercise 3 in Chapter 6 (the environment lister)
to print (undefined value) for environment variables without a value. You can
set the new environment variables in the program. Ensure that your program
reports the right thing for variables with a false value. If you are using Perl 5.10 or
later, use the // operator. Otherwise, use the conditional operator.

198 | Chapter 10: More Control Structures

https://perldoc.perl.org/perlfunc

CHAPTER 11

Perl Modules

If there is a problem to solve, somebody has probably already solved it and made
their solution available on the Comprehensive Perl Archive Network (CPAN), which
is a worldwide collection of servers and mirrors containing thousands of modules of
reusable Perl code. Indeed, most of Perl 5 is in the modules, since Larry designed it as
an extensible language.

We're not going to teach you how to write modules here: you'll have to get that from
Intermediate Perl. In this chapter, we will show you how to use modules that already
exist. The idea is to get you started with CPAN rather than give you a survey on
modules.

Finding Modules

Modules come in two types: those that come with Perl and that you should already
have available to you, and those that you can get from CPAN to install yourself.
Unless we say otherwise, the modules that we show come with Perl.

Some vendors provide even more modules with their stock ver-
sions of Perl. Theres actually a third type: vendor modules, but
those are a bonus. Check your operating system to see what else
you might have.

To find modules that don’t come with Perl, start at MetaCPAN. You can also browse
the distribution and have a peek at the files without the bother of installing the mod-
ules. You can read the module documentation before you download the entire pack-
age. There are many other tools for inspecting a distribution too.

199

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://www.metacpan.org

But before you go looking for a module, you should check if it is already installed.
One way is to just try to read the documentation with perldoc. The Digest: :SHA
module comes with Perl (and we'll use it later), so you should be able to read its
documentation:

$ perldoc Digest::SHA
Try it with a module that does not exist and you’ll get an error message:

$ perldoc Llamas
No documentation found for "Llamas".

The documentation may be available in other formats (such as HTML) on your sys-
tem too. If the documentation is there, you have the module installed.

The cpan command that comes with Perl can give you details on a module:

$ cpan -D Digest::SHA

Installing Modules

When you want to install a module that you don’t already have, sometimes you can
simply download the distribution, unpack it, and run a series of commands from the
shell. There are two major build systems for Perl distributions, and you use them sim-
ilarly. Check for a README or INSTALL file that gives you more information.

If the module uses ExtUtils: :MakeMaker, which comes with Perl, the sequence will
be something like this:

$ perl Makefile.PL
$ make install

If you can’t install modules in the system-wide directories, you can specify another
directory with an INSTALL_BASE argument to Makefile.PL:

$ perl Makefile.PL INSTALL_BASE=/Users/fred/lib

Some Perl module authors use another module, Module: :Build, to build and install
their creations. That sequence will be something like this:

$ perl Build.PL
$./Build install

As before, you can specify an alternate installation directory:
$ perl Build.PL --install_base=/Users/fred/lib

Some modules depend on other modules, though, and they won’t work unless you
install yet more modules. Instead of doing all that work yourself, you can use one of
the modules that come with Perl, CPAN. pm. From the command line, you can start up
the CPAN. pm shell from which you can issue commands:

200 | Chapter 11: Perl Modules

$ perl -MCPAN -e shell

The “pm” file extension stands for “Per]l Module,” and some popu-
lar modules are pronounced with the “pm” to distinguish them
from something else. In this case, CPAN the archive is different
than CPAN the module, so we say “CPAN.pm”.

Even this can be a little complicated, so a while ago one of our authors wrote a little
script called cpan, which also comes with Perl and is usually installed with perl and its
tools. Just call the script with a list of the modules you want to install:

$ cpan Module::CoreList Mojolicious Business::ISBN

There’s another handy tool, cpanm (for cpanminus), although it doesn’t come with
perl (yet). It’s designed as a zero-conf, lightweight CPAN client that handles most of
what people want to do. You can download the single file from https://cpanmin.us to
get started.

Once you have cpanm, you simply tell it which modules you want to install:

$ cpanm DBI WWW::Mechanize

Using Your Own Directories

One of the common problems with Per]l module installation is that by default, the
CPAN tools want to install new modules into the same directories where perl is. You
might not have the proper permissions to create new files in those directories.

The easiest way for beginners to keep additional Per]l modules in their own directo-
ries is to use local::1ib, which youll have to get from CPAN since it doesn’t come
with perl (yet). This module sets the various environment variables that affect where
CPAN clients install modules. You can see what they set by loading the module on the
command line without anything else:

$ perl -Mlocal::lib

export PERL_LOCAL_LIB_ROOT="/Users/fred/perl5";

export PERL_MB_OPT="--install_base /Users/fred/perl5";
export PERL_MM_OPT="INSTALL_BASE=/Users/fred/perl5";
export PERLSLIB="...";

export PATH="/Users/fred/perl5/bin:$PATH";

We haven't told you about command-line switches yet, but they are
all in the perlrun documentation.

Installing Modules | 201

https://cpanmin.us
https://perldoc.perl.org/perlrun

The cpan client supports this if you use the -I switch to install modules:
$ cpan -I Set::CrossProduct

The cpanm tool is a bit smarter. If you've already set the same environment variables
local: : 1ib would set for you, it uses them. If not, it checks the default module direc-
tories for write permissions. If you don’t have write permissions, it automatically uses
local: : 1ib for you.

Advanced users can configure their CPAN clients to install into whatever directories
that they like too. You can set this in your CPAN.pm configuration so that modules
automatically install in your private library directory when you use the CPAN. pm shell.
You need to configure two settings, one each for the ExtUtils::MakeMaker and
Module: :Build systems:

$ cpan

cpan> o conf makepl_arg INSTALL_BASE=/Users/fred/perl5

cpan> o conf mbuild_arg "--install_base /Users/fred/perl5"

cpan> o conf commit
Notice these are the same settings that local::1ib created for you in the environ-
ment. By setting them in the CPAN. pm configuration, it adds them every time it tries to
install a module.

Once you've chosen where you want to put your Perl modules, you have to tell your
programs where to find them. If you are using local::1lib, you simply load that
module in your program:

inside your Perl program
use local::lib;

If you installed them in some other location, you can use the 1ib pragma with a list of
additional module directories:

also inside your Perl program

use lib qw(/Users/fred/perl5);
As of v5.26, the current directory is no longer part of the module search path. Prior to
that, Perl would look for modules in the current working directory (which might not
be where your program is!). If your program changed its working directory, loading
more modules would look in that directory instead of where you started. This was a
problem with security, so it’s no longer there.

Most people probably want to look for modules in the same directory as their pro-
gram—usually when they have written those modules instead of downloading them.
In that case, the FindBin module, which comes with Perl, can help. It knows how to
find the directory of your program, which you can then use to add your module
directory to the search path:

202 | Chapter 11: Perl Modules

https://www.effectiveperlprogramming.com/2017/01/v5-26-removes-dot-from-inc/

use FindBin qw($Bin);

use lib "$Bin/../lib";
This is just enough to get you started. We talk much more about this in Intermediate
Perl, where you also learn to make your own modules. You can also read the entries in
the perlfag8 documentation.

Using Simple Modules

Suppose that you've got a long filename like /usr/local/bin/perl in your program, and
you need to find out the basename without the directory portion. That’s easy enough,
since the basename is everything after the last slash (it’s just perl in this case):

my $name = "/usr/local/bin/perl";

(my Sbasename = $name) =~ s#.*/##;
As you saw earlier, first Perl will do the assignment inside the parentheses, then it will
do the substitution. The substitution is supposed to replace any string ending with a
slash (that is, the directory name portion) with an empty string, leaving just the base-
name. You can even do this with the /r switch for the substitution operator:

use v5.14;

my $name = "/usr/local/bin/perl";

my $basename = $name =~ s#.*/[#ir;
And if you try these, it seems to work. Well, it seems to, but actually, there are three
problems.

First, a Unix file or directory name could contain a newline character. (It’s not some-
thing thats likely to happen by accident, but it's permitted.) So, since the regular
expression dot (.) can’t match a newline, a filename like the string "/home/fred/
flintstone\n/brontosaurus" won't work right—that code would think the base-
name is "flintstone\n/brontosaurus". You could fix that with the /s option to the
pattern (if you remembered about this subtle and infrequent case), making the substi-
tution look like this: s#.* /##s.

The second problem is that this is Unix-specific. It assumes that the forward slash will
always be the directory separator, as it is on Unix, and not the backslash or colon that
some systems use. Although you might think that your work will never leak out from

your Unix-only environment, most useful scripts (and some not so useful) tend to
breed in the wild.

And the third (and biggest) problem with this is that we're trying to solve a problem
someone else has already solved. Perl comes with a number of modules, which are
smart extensions to Perl that add to its functionality. And if those aren’t enough, there
are many other useful modules available on CPAN, with new ones being added every
week. You (or, better yet, your system administrator) can install them if you need
their functionality.

Using Simple Modules | 203

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://perldoc.perl.org/perlfaq8

In the rest of this section, we'll show you how to use some features of a couple simple
modules that come with Perl. (There’s more that these modules can do; this is just an
overview to illustrate the general principles of how to use a simple module.)

Alas, we can’t show you everything youd need to know about using modules in gen-
eral, since youd have to understand advanced topics like references and objects in
order to use some modules. As we'll see in the next few pages, though, you may be
able to use a module that uses objects and references without having to understand
those advanced topics. Those topics, including how to create a module, will be cov-
ered in great detail in Intermediate Perl. But this section should prepare you for using
many simple modules. Further information on some interesting and useful modules
is included in Appendix B.

The File::Basename Module

In the previous example, you found the basename of a filename in a way that’s not
portable. Something that seemed straightforward was susceptible to subtle mistaken
assumptions (here, the assumption was that newlines would never appear in file or
directory names). And you were reinventing the wheel, solving a problem that others
have solved (and debugged) many times before you. Not to worry; it happens to all
of us.

Here’s a better way to extract the basename of a filename. Perl comes with a module
called File: :Basename. With the command perldoc File::Basename, or with your sys-
tem’s documentation, you can read about what it does. That’s always the first step
when using a new module. (It’s often the third and fifth steps, as well.)

Soon you're ready to use it, so you declare it with a use directive near the top of your
program:

use File::Basename;

It’s traditional to declare modules near the top of the file since that
makes it easy for the maintenance programmer to see which mod-
ules you'll be using. That greatly simplifies matters when it’s time to
install your program on a new machine, for example.

During compilation, Perl sees that line and loads the module. Now it’s as if Perl has
some new functions that you may use in the remainder of your program. The one we
wanted in the earlier example is the basename function itself:

use File::Basename;

my $name = "/usr/local/bin/perl";
my $basename = basename $name; # gives 'perl'

204 | Chapter 11: Perl Modules

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

Well, that worked for Unix. What if your program runs on MacPerl or Windows or
VMS, to name a few? There’s no problem—this module can tell which kind of
machine you're using, and it uses that machine’s filename rules by default. (Of course,
youd have that machine’s kind of filename string in $name, in that case.)

There are some related functions also provided by this module. One is the dirname
function, which pulls the directory name from a full filename. The module also lets
you separate a filename from its extension, or change the default set of filename rules.

Using Only Some Functions from a Module

Suppose you discovered that when you went to add the File::Basename module to
your existing program, you already have a subroutine called &dirname—that is, you
already have a subroutine with the same name as one of the module’s functions. Now
there’s trouble because the new dirname is also implemented as a Perl subroutine
(inside the module). What do you do?

In your use declaration, simply give File::Basename an import list showing exactly
which function names it should give you, and it'll supply those and no others. Here,
you’ll get nothing but basename:

use File::Basename qw/ basename /;
And here, you ask for no new functions at all:

use File::Basename qw/ /;

This is also frequently written as an empty set of parentheses:

use File::Basename ();

Why would you want to do that? Well, this directive tells Perl to load File::Base
name, just as before, but not to import any function names. Importing lets you use the
short, simple function names like basename and dirname. But even if you dont
import those names, you can still use the functions. When they’re not imported,
though, you have to call them by their full names:

use File::Basename qw/ /; # import no function names

my $betty = &dirname($wilma); # uses your own subroutine &dirname
(not shown)

my $name = "/usr/local/bin/perl”;

my $dirname = File::Basename::dirname $name; # dirname from the module
As you see, the full name of the dirname function from the module is File: :Base
name: :dirname. You can always use the function’s full name (once you've loaded the
module), whether you've imported the short name dirname or not.

Using Simple Modules | 205

Most of the time, you’ll want to use a module’s default import list. But you can always
override that with a list of your own, if you want to leave out some of the default
items. Another reason to supply your own list would be if you wanted to import some
function not on the default list, since most modules include some (infrequently
needed) functions that are not on the default import list.

As youd guess, some modules will, by default, import more symbols than others.
Each module’s documentation should make it clear which symbols it exports, if any,
but you are always free to override the default import list by specifying one of your
own, just as we did with File::Basename. Supplying an empty list imports no
symbols.

The File::Spec Module

Now you can find out a file’s basename. That’s useful, but you’ll often want to put that
together with a directory name to get a full filename. For example, here you want to
take a filename like /home/fred/ice-2.1.txt and add a prefix to the basename:

use File::Basename;

print "Please enter a filename: ";
chomp(my $old_name = <STDIN>);

my $dirname = dirname $old_name;
my $basename = basename $old_name;

$basename =~ s/~/not/; # Add a prefix to the basename
my $new_name = "$dirname/$basename";

rename($old_name, $new_name)
or warn "Can't rename '$Sold_name' to 'Snew_name': $!";
Do you see the problem here? Once again, youre making the assumption that file-
names will follow the Unix conventions and use a forward slash between the direc-
tory name and the basename. Fortunately, Per] comes with a module to help with this
problem too.

The File::Spec module is used for manipulating file specifications, which are the
names of files, directories, and the other things that are stored on filesystems. Like
File: :Basename, it understands what kind of system it’s running on, and it chooses
the right set of rules every time. But unlike File: :Basename, File: :Spec is an object-
oriented (often abbreviated “O0”) module.

If you've never caught the fever of OO, don't let that bother you. If you understand
objects, that’s great; you can use this OO module. If you don't understand objects,
that’s OK, too. You just type the symbols as we show you, and it works just as if you
knew what you were doing.

206 | Chapter 11: Perl Modules

In this case, you learn from reading the documentation for File: : Spec that you want
to use a method called catfile. What’s a method? It’s just a different kind of function,
as far as youre concerned here. The difference is that you’ll always call the methods
from File: :Spec with their full names, like this:

use File::Spec;
Get the values for $dirname and $basename as earlier

my $new_name = File::Spec->catfile($dirname, S$basename);

rename($old_name, $new_name)
or warn "Can't rename 'Sold_name' to 'Snew_name': $!";
As you can see, the full name of a method is the name of the module (called a class
here), a small arrow (->), and the short name of the method. It is important to use the
small arrow rather than the double-colon that we used with File: :Basename.

Since you're calling the method by its full name, though, what symbols does the mod-
ule import? None of them. That’s normal for OO modules. So you don’t have to worry
about having a subroutine with the same name as one of the many methods of
File::Spec.

Should you bother using modules like these? It’s up to you, as always. If youre sure
your program will never be run anywhere but on a Unix machine, say, and you’re sure
you completely understand the rules for filenames in Unix, then you may prefer to
hardcode your assumptions into your programs. But these modules give you an easy
way to make your programs more robust in less time—and more portable at no extra
charge.

Path::Class

The File::Spec module does work with file paths from just about any platform, but
the interface is a bit clunky. The Path: :Class module, which doesn’t come with Perl,
gives you a more pleasant interface:

my S$dir = dir(qw(Users fred 1ib));

my $subdir = $dir->subdir('perl5'); # Users/fred/lib/perl5
my $parent = $dir->parent; # Users/fred

my $Swindir = $dir->as_foreign('Win32'); # Users\fred\lib

Using Simple Modules | 207

Databases and DBI

The DBI (Database Interface) module doesn’t come with Perl, but it’s one of the most
popular modules since most people have to connect to a database of some sort. The
beauty of DBI is that it allows you to use the same interface for just about any database
server (or fake server, even), from simple comma-separated value files to enterprise
servers such as Oracle. It has ODBC drivers, and some of its drivers are even vendor-
supported. To get the full details, check out Programming the Perl DBI by Alligator
Descartes and Tim Bunce (O’Reilly). You can also take a look at the DBI website.

Once you install DBI, you also have to install a DBD (Database Driver). You can get a
long list of DBDs from MetaCPAN. Install the right one for your database server, and
ensure that you get the version that goes with the version of your server.

The DBI is an object-oriented module, but you don’t have to know everything about
OO programming to use it. You just have to follow the examples in the documenta-
tion. To connect to a database, you use the DBI module, then call its connect method:

use DBI;

$dbh = DBI->connect($data_source, Susername, $password);

The $data_source contains information particular to the DBD that you want to use,
so you'll get that from the DBD. For PostgreSQL, the driver is DBD::Pg, and the
$data_source is something like:

my $data_source = "dbi:Pg:dbname=name_of_database";

Once you connect to the database, you go through a cycle of preparing, executing,
and reading queries:

my $sth = $dbh->prepare("SELECT * FROM foo WHERE bla");
$sth->execute();

my @row_ary = $sth->fetchrow_array;

$sth->finish;

When you are finished, you disconnect from the database:
$dbh->disconnect();

The DBI can do all sorts of other things too. See its documentation for more details.
Although it’s a bit old, Programming the Perl DBI is still mostly a good introduction to
the module.

208 | Chapter 11: Perl Modules

http://shop.oreilly.com/product/9781565926998.do
http://dbi.perl.org
http://shop.oreilly.com/product/9781565926998.do

Dates and Times

There are many modules that can handle dates and times for you, but the most popu-
lar is the Time: :Moment module from Christian Hansen. It's a nearly complete solu-
tion for dates and times. You need to get this module from CPAN.

If Time::Moment isn't enough for you, check out the DateTime
module, which is a complete solution. Its a bit more heavyweight,
but that’s the price you pay.

Often, you will have the time as the system (or epoch) time, and you can easily con-
vert that to a Time: :Moment object:

use Time::Moment;
my $dt = Time::Moment->from_epoch(time);

Or skip the argument if you want the current time:
my $dt = Time::Moment->now;

From there, you can access various parts of the date to get what you need:
printf '%4d%02d%02d', $dt->year, $dt->month, $dt->day_of_month;

If you have two Time: :Moment objects, you can do date math with them:

my $dtl = Time::Moment->new(

year => 1987,
month = 12,
day => 18,
)5

my $dt2 = Time::Moment->now;

my Syears = S$dtl->delta_years($dt2);
my $months = $dtil->delta_months($dt2) % 12;

printf "%d years and %d months\n", $years, Smonths;
For those dates, this gives you the output:

32 years and 8 months

Using Simple Modules | 209

Exercises

See “Answers to Chapter 11 Exercises” on page 315 for answers to these exercises.
Remember, you have to install some modules from CPAN, and part of these exercises
require you to research the module by reading its documentation:

1. [15] Install the Module: :CoreList module from CPAN (if you don’t already have
it). Print a list of all the modules that came with v5.34. To build a hash whose
keys are the names of the modules that came with a given version of perl, use this
line:

my %modules = %{ S$Module::CorelList::version{5.034} };

2. [20] Write a program using Time: :Moment to compute the interval between now
and a date that you enter as the year and month on the command line:

$ perl duration.pl 1960 9
60 years, 2 months

210 | Chapter 11: Perl Modules

CHAPTER 12
File Tests

Earlier, we showed you how to open a filehandle for output. Normally, that creates a
new file, wiping out any existing file with the same name. Perhaps you want to check
that there isn’t a file by that name. Perhaps you need to know how old a given file is.
Or perhaps you want to go through a list of files to find which ones are larger than a
certain number of bytes and have not been accessed for a certain amount of time. Perl
has a complete set of tests you can use to find out information about files.

File Test Operators

Perl has a set of file test operators that let you get particular information about files.
They all take the form of -X, where the X represents the particular test (and there is a
literal -X file test operator too, to confuse things a bit). In most cases, these operators
return true or false. Although we call these things operators, you'll find their docu-
mentation in perlfunc.

To get the list, use the command line perldoc -f -X. That -X is literal
and not a command-line switch. It stands in for all the file test
operators since you can’t use perldoc to look them up individually.

Before you start a program that creates a new file, you might want to ensure that the
file doesn’t already exist so that you don’t accidentally overwrite a vital spreadsheet
datafile or that important birthday calendar. For this, you can use the -e file test, test-
ing a filename for existence:

die "Oops! A file called '$filename' already exists.\n"
if -e $filename;

PALI

https://perldoc.perl.org/perlfunc

Notice that you don't include $! in this die message, since youre not reporting that
the system refused a request in this case. Here’s an example of checking whether a file
is being kept up-to-date. In this case, youre testing an already-opened filehandle
instead of a string filename. Let’s say that your program’s configuration file should be
updated every week or two. (Maybe it’s checking for computer viruses.) If the file
hasn’t been modified in the past 28 days, something is wrong. The -M file test returns
the file modification time in days before the start of the program, which seems like a
mouthful until you see how convenient the code is:

warn "Config file is looking pretty old!\n"
if -M CONFIG > 28;

The third example is more complex. Here, say that disk space is filling up, and rather
than buy more disks, you decide to move any large, useless files to a backup. So let’s
go through our list of files to see which of them are larger than 100 K. But even if a
file is large, you shouldn’t warehouse it unless it hasn't been accessed in the last 90
days (so we know that it's not used too often). The -s file test operator, instead of
returning true or false, returns the file size in bytes (and an existing file might have
0 bytes):

my @original_files = qw/ fred barney betty wilma pebbles dino bamm-bamm /;

my @big_old_files; # The ones we want to put on backup tapes

foreach my $filename (@original_files) {

push @ig_old_files, S$filename
if -s $filename > 100_000 and -A S$filename > 90;

}
There’s a way to make this example more efficient, as you’ll see by the end of the
chapter.

The file tests all look like a hyphen and a letter, which is the name of the test, followed
by either a filename or a filehandle to test. Many of them return a true/false value, but
several give something more interesting. See Table 12-1 for the complete list, and read
the following explanation to learn more about the special cases.

Table 12-1. File tests and their meanings

File test Meaning

-r File or directory is readable by this (effective) user or group
-w File or directory is writable by this (effective) user or group
X File or directory is executable by this (effective) user or group
-0 File or directory is owned by this (effective) user

-R File or directory is readable by this real user or group

-W File or directory is writable by this real user or group

X File or directory is executable by this real user or group

-0 File or directory is owned by this real user

-e File or directory name exists

212 | Chapter 12:File Tests

File test Meaning

-z File exists and has zero size (always false for directories)

- File or directory exists and has nonzero size (the value is the size in bytes)
-f Entry is a plain file

-d Entry is a directory

-l Entry is a symbolic link

-S Entry is a socket

-p Entry is a named pipe (a “fifo”)

-b Entry is a block-special file (like a mountable disk)

-C Entry is a character-special file (like an I/0 device)

-u File or directory is setuid

-g File or directory is setgid

-k File or directory has the sticky bit set

-t The filehandle is a TTY (as reported by the isatty() system function; filenames can't be tested by this test)
-T File looks like a “text” file

-B File looks like a “binary” file

-M Modification age (measured in days)

-A Access age (measured in days)

-C Inode-modification age (measured in days)

The tests -, -w, -x, and -o tell whether the given attribute is true for the effective
user or group ID, which essentially refers to the person who is “in charge of” running
the program.

Note for advanced students: the corresponding -R, -W, -X, and -0
tests use the real user or group ID, which becomes important if
your program may be running set-ID; in that case, it’s generally the
ID of the person who requested running it. See any good book
about advanced Unix programming for an explanation of set-ID
programs.

These tests look at the “permission bits” on the file to see what is permitted. If your
system uses access control lists (ACLs), the tests will use those as well. These tests
generally tell whether the system would try to permit something, but it doesn’t mean
that it really would be possible. For example, -w may be true for a file on a CD-ROM,
even though you can't write to it, or -x may be true on an empty file, which can’t truly
be executed.

The -s test does return true if the file is nonempty, but it’s a special kind of true.
It’s the length of the file, measured in bytes, which evaluates as true for a nonzero
number.

File Test Operators | 213

On a Unix filesystem there are seven types of items, represented by the seven file tests
-f, -d, -1, -S, -p, -b, and -c. Any item should be one of those. But if you have a sym-
bolic link pointing to a file, that will report true for both -f and -1. So, if you want to
know whether something is a symbolic link, you should generally test that first.
(You'll learn more about symbolic links in “Links and Files” on page 235.)

The age tests, -M, -A, and -C (yes, they’re uppercase), return the number of days since
the file was last modified, accessed, or had its inode changed. (The inode contains all
the information about the file except for its contents—see the stat system call docu-
mentation or a good book on Unix internals for details.) This age value is a full
floating-point number, so you might get a value of 2.00001 if a file had been modified
two days and one second ago. (These “days” aren’t necessarily the same as a human
would count; for example, if it's 1:30 in the morning when you check a file modified
about an hour before midnight, the value of -M for this file would be around 0.1, even
though it was modified “yesterday.”)

When checking the age of a file, you might even get a negative value like -1.2, which
means that the file’s last-access timestamp is set at about 30 hours in the future! The
zero point on this timescale is the moment your program started running, so that
value might mean that a long-running program was looking at a file that had just
been accessed. Or a timestamp could be set (accidentally or intentionally) to a time in
the future.

The tests -T and -B take a try at telling whether a file is text or binary. But people who
know a lot about filesystems know that there’s no bit (at least in Unix-like operating
systems) to indicate that a file is a binary or text file—so how can Perl tell? The
answer is that Perl cheats: it opens the file, looks at the first few thousand bytes, and
makes an educated guess. If it sees a lot of null bytes, unusual control characters, and
bytes with the high bit set, then that looks like a binary file. If there’s not much weird
stuff then it looks like text. As you might guess, it sometimes guesses wrong. It’s not
perfect, but if you just need to separate your source code from compiled files or
HTML files from PNGs, these tests should do the trick.

Youd think that -T and -B would always disagree, since a text file isn't a binary and
vice versa, but there are two special cases where they’re in complete agreement. If the
file doesn’t exist or can’t be read, both are false, since it’s neither a text file nor a
binary. Alternatively, if the file is empty, it'’s an empty text file and an empty binary
file at the same time, so they’re both true.

The -t file test returns true if the given filehandle is a TTY—in short, if it’s interactive
because it’s not a simple file or pipe. When -t STDIN returns true, it generally means
that you can interactively ask the user questions. If it’s false, your program is probably
getting input from a file or pipe rather than a keyboard.

214 | Chapter 12:File Tests

The I0::Interactive module might be a better choice for this
because the situation is actually a bit more complicated. That mod-
ule explains this in its documentation.

Don’t worry if you don't know what some of the other file tests mean—if you've never
heard of them, you won't be needing them. But if you're curious, get a good book
about programming for Unix. On non-Unix systems, these tests all try to give results
analogous to what they do on Unix, or undef for an unavailable feature. Usually you’ll
be able to guess correctly what they’ll do.

If you omit the filename or filehandle parameter to a file test (that is, if you have just
-r or just -s, say), the default operand is the file named in $_. The -t file test is an
exception, because that test isn't useful with filenames (theyre never TTYs). By
default, it tests STDIN. So, to test a list of filenames to see which ones are readable, you
simply type:

foreach (@lots_of_filenames) {

print "$_ is readable\n" if -r; # same as -r $_

}
But if you omit the parameter, be careful that whatever follows the file test doesn’t
look like it could be a parameter. For example, if you wanted to find out the size of a
file in kilobytes rather than in bytes, you might be tempted to divide the result of -s
by 1000 (or 1024), like this:

The filename is in &_

my $size_in_K = -s / 1000; # Oops!
When the Perl parser sees the slash, it doesn’t think about division; since it’s looking
for the optional operand for -s, it sees what looks like the start of a regular expression
in the forward slash. One simple way to prevent this kind of confusion is to put
parentheses around the file test:

my $size_in_k = (-s) / 1024; # Uses $_ by default
Of course, it’s always safe to explicitly give a file test a parameter:

my $size_in_k = (-s S$filename) / 1024;

Testing Several Attributes of the Same File

You can use more than one file test on the same file to create a complex logical condi-
tion. Suppose you only want to operate on files that are both readable and writable;
you check each attribute and combine them with and:

if (-r $filename and -w $filename) {

-3

File Test Operators | 215

This is an expensive operation, though. Each time you perform a file test, Perl asks
the filesystem for all the information about the file (Perl’s actually doing a stat each
time, which we talk about in the next section). Although you already got that infor-
mation when you tested -r, Perl asks for the same information again so that it can
test -w. What a waste! This can be a significant performance problem if you're testing
many attributes on many files.

Perl has a special shortcut to help you not do so much work. The virtual filehandle _
(just the underscore) uses the information from the last file lookup that a file test
operator performed. Perl only has to look up the file information once now:

if (-r $filename and -w _) {
-}
You don’t have to use the file tests next to each other to use _. Here we have them in
separate i1f conditions:

if (-r $filename) {
print "The file is readable!\n";

}
if (-w) {

print "The file is writable!\n";
}

You have to watch out that you know what the last file lookup really was, though. If
you do something else between the file tests, such as call a subroutine, the last file you
looked up might be different. For instance, this example calls the lookup subroutine,
which has a file test in it. When you return from that subroutine and do another file
test, the _ filehandle isn’t for $filename, like you expect, but for $other_filename:

if (-r $filename) {
print "The file is readable!\n";

}

lookup($Sother_filename);

if (-w)|
print "The file is writable!\n";

}

sub lookup {
return -w $_[0];
}

216 | Chapter 12:File Tests

Stacked File Test Operators

Prior to Perl 5.10, if you wanted to test several file attributes at the same time, you
had to test them individually, even when using the _ filehandle to save some work.
Suppose you want to test if a file was readable and writable at the same time. You have
to test if it’s readable, then also test if it’s writable:

if (-r S$filename and -w _) {
print "The file is both readable and writable!\n";
}

It's much easier to do this all at once. Starting with Perl 5.10, you can “stack” your file
test operators by lining them all up before the filename:

use v5.10;

if (-w -r $filename) {
print "The file is both readable and writable!\n";
}

This stacked example is the same as the previous example with just a change in syn-

tax, although it looks like the file tests are reversed. Perl does the file test nearest the
filename first. Normally, this isn’t going to matter.

Stacked file tests are especially handy for complex situations. Suppose you want to list
all the directories that are readable, writable, executable, and owned by your user. You
just need the right set of file tests:

use v5.10;

if (-r -w -x -0 -d $filename) {
print "My directory is readable, writable, and executable!\n";

}

Stacked file tests aren’t good for those tests that return values other than true or false
that you would want to use in a comparison. You might think that this next bit of
code first tests that it’s a directory and then tests that it is less than 512 bytes, but it
doesn’t:

use v5.10;

if (-s -d $filename < 512) { # WRONG! DON'T DO THIS
say 'The directory is less than 512 bytes!';
}

Rewriting the stacked file tests as the previous notation shows us what is going

on. The result of the combination of the file tests becomes the argument for the
comparison:

if ((-d $filename and -s _) < 512) {
print "The directory is less than 512 bytes!\n";
}

File Test Operators | 217

When the -d returns false, Perl compares that false value to 512. That turns out to be
true since false will be 0, which just happens to be less than 512. Instead of worrying
about that sort of confusion, you just write it as separate file tests to be nice to the
maintenance programmers who come after you:

if (-d $filename and -s _ < 512) {
print "The directory is less than 512 bytes!\n";
}

The stat and Istat Functions

While these file tests are fine for testing various attributes regarding a particular file
or filehandle, they don’t tell you the whole story. For example, there’s no file test that
returns the number of links to a file or the owner’s user ID (uid). To get at the
remaining information about a file, merely call the stat function, which returns
pretty much everything that the stat Unix system call returns (hopefully more than
you want to know).

On a non-Unix system, both stat and lstat, as well as the file
tests, should return “the closest thing available” If stat or lstat
fails, it will return an empty list. If the system call underlying a file
test fails (or isn't available on the given system), that test will gener-
ally return undef. See the perlport documentation for the latest
about what to expect on different systems.

The operand to stat is a filehandle (including the _ virtual filehandle), or an expres-
sion that evaluates to a filename. The return value is either the empty list, indicating
that the stat failed (usually because the file doesn't exist), or a 13-element list of
numbers, most easily described using the following list of scalar variables:

my($dev, $ino, $mode, $nlink, $uid, $gid, $rdev,
Ssize, Satime, S$mtime, $ctime, $blksize, $blocks)
= stat($filename);

The names here refer to the parts of the stat structure, described in detail in the

stat(2) documentation. You should probably look there for the detailed descriptions.
But in short, here’s a quick summary of the important ones:

$dev and $ino
The device number and inode number of the file. Together they make up a
“license plate” for the file. Even if it has more than one name (hard link), the
combination of device and inode numbers should always be unique.

$mode
The set of permission bits for the file, and some other bits. If you've ever used the
Unix command Is -] to get a detailed (long) file listing, you'll see that each line of

218 | Chapter 12:File Tests

https://perldoc.perl.org/perlport

output contains something like - rwxr-xr-x. That information is wrapped up in
$mode.

$nlink
The number of (hard) links to the file or directory. This is the number of true
names that the item has. This number is always 2 or more for directories and
(usually) 1 for files. You'll see more about this when we talk about creating links
to files in Chapter 13. In the listing from Is -/, this is the number just after the
permission-bits string.

$uid and $gid
The numeric user-ID and group-ID showing the file’s ownership.

$size
The size in bytes, as returned by the -s file test.

$atime, $mtime, and $ctime
The three timestamps telling how many seconds have passed since the epoch, an
arbitrary starting point for measuring system time. Some filesystems, such as
ext2, may disable atime as a performance measure.

Invoking stat on the name of a symbolic link returns information on what the sym-
bolic link points at, not information about the symbolic link itself (unless the link just
happens to be pointing at nothing currently accessible). If you need the (mostly use-
less) information about the symbolic link itself, use lstat rather than stat (which
returns the same information in the same order). If the operand isn’t a symbolic link,
lstat returns the same things that stat would.

Like the file tests, the operand of stat or lstat defaults to $_, meaning the underly-
ing stat system call will be performed on the file named by the scalar variable $_.

The File: :stat module provides a friendlier interface to stat.

The localtime Function

When you have a timestamp number (such as the ones from stat), it will typically
look something like 1454133253. That’s not very useful for most humans, unless you
need to compare two timestamps by subtracting. You may need to convert it to some-
thing human-readable, such as a string like “Sat Jan 30 00:54:13 2016.” Perl can
do that with the localtime function in a scalar context:

The localtime Function | 219

my $timestamp = 1454133253;

my Sdate = localtime $timestamp;
In a list context, localtime returns a list of numbers, several of which may not be
quite what youd expect:

my($sec, $min, Shour, $mday, $mon, Syear, Swday, $yday, $isdst)

= localtime $timestamp;

The $mon is a month number, ranging from 0 to 11, which is handy as an index into
an array of month names. The $year is the number of years since 1900, oddly
enough, so add 1900 to get the real year number. The $wday ranges from @ (for Sun-
day) through 6 (for Saturday), and the $yday is the day of the year (ranging from @ for
January 1, through 364—or in the case of leap years, 365—for December 31).

There are two related functions that you'll also find useful. The gmtime function is
just the same as localtime, except that it returns the time in Universal Time. If you
need the current timestamp number from the system clock, just use the time func-
tion. Both localtime and gmtime default to using the current time value if you don’t
supply a parameter:

my $now = gmtime; # Get the current universal timestamp as a string

For more on manipulating dates and times, see Appendix B for information about
some useful modules.

Bitwise Operators

When you need to work with numbers bit-by-bit, as when working with the mode
bits returned by stat, you'll need to use the bitwise operators. These are the opera-
tors that perform binary math operations on values. The bitwise-and operator (&)
reports which bits are set in the left argument and in the right argument. For exam-
ple, the expression 10 & 12 has the value 8. The bitwise-and needs to have a one-bit
in both operands to produce a one-bit in the result. That means the bitwise-and oper-
ation on 10 (which is 1010 in binary) and 12 (which is 1100) gives 8 (which is 1000,
with a one-bit only where the left operand has a one-bit and the right operand also
has a one-bit). See Figure 12-1.

1010
&1100
1000

Figure 12-1. Bitwise-and addition

220 | Chapter 12:File Tests

The different bitwise operators and their meanings are shown in Table 12-2.

Table 12-2. Examples of bitwise operations

Expression Meaning

10&12 Bitwise-and—which bits are true in both operands (this gives 8)

10]12 Bitwise-or—which bits are true in one operand or the other (this gives 14)

10A12 Bitwise-xor—which bits are true in one operand or the other but not both (this gives 6)

6<<2 Bitwise shift left—shift the left operand the number of bits shown by the right operand, adding zero-bits at the
least-significant places (this gives 24)

25>>2 Bitwise shift right—shift the left operand the number of bits shown by the right operand, discarding the least-
significant bits (this gives 6)

~10 Bitwise negation, also called unary bit complement, returns the number with the opposite bit for each bit in the
operand (this gives ©xFFFFFFF5, but see the text)

So, here’s an example of some things you could do with the $mode returned by stat.
The results of these bit manipulations could be useful with chmod, which you’ll see in
Chapter 13:

Smode is the mode value returned from a stat of CONFIG
warn "Hey, the configuration file is world-writable!\n"

if Smode & 0002; # configuration security problem
my $classical_mode = 0777 & $mode; # mask off extra high-bits
my $u_plus_x = S$classical_mode | 0100; # turn one bit on

my $go_minus_r = Sclassical_mode & (~ 0044); # turn two bits off

Using Bitstrings

All the bitwise operators can work with bitstrings as well as with integers. If either
operand is an integer, the result will be an integer. (The integer will be at least a 32-bit
integer, but it may be larger if your machine supports that. That is, if you have a 64-
bit machine, ~10 may give the 64-bit result, @xFFFFFFFFFFFFFFF5, rather than the 32-
bit result, OxFFFFFFF5.)

But if both operands of a bitwise operator are strings, Perl will perform the operation
on those bitstrings. That is, "\xAA" | "\x55" will give the string "\xFF". Note that
these values are single-byte strings; the result is a byte with all eight bits set. Bitstrings
may be arbitrarily long.

This is one of the very few places where Perl distinguishes between strings and num-
bers. You can run into problems if you think you are doing number operations but
give one of these operators two strings. Perl v5.22 adds a feature to fix this, but first
you should understand the problem.

If Perl thinks either of the operands is a number, it does a numeric operation. Con-
sider this code where you have $number_str that looks like a number but it’s quoted

Bitwise Operators | 221

like a string. So far, Perl thinks that’s a string because we haven’t done anything with
it yet:

use v5.10;

my $number = 137;

my Snumber_str = '137';

my $string = 'Amelia’;

say "number_str & string: ", Snumber_str & $string;
say "number & string: ", Snumber & S$string;

say "number & number_str: ", Snumber & $number_str;
say "number_str & string: ", S$number_str & S$string;

Notice that the first and last say statements are the same. You haven't explicitly done
anything to change the variables, and if you printed their values youd see what you
expected. But then why is this output so weird?

number_str & string: (!%

number & string: 0

number & number_str: 137
number_str & string: 0

The first line of the output shows some gobbledygook from '137' & 'Amelia’.
That’s a string operation because both sides are strings.

The second output line shows that 137 & 'Amelia’ is zero. Since one of the operands
is a number, Perl converts the other operand’s value to its number form, which is 0.
No bits are set in 0, so there are no bits set in common. The result is zero.

The same thing happens for the third line. The string '137"' converts to the number
137, which is the same as the other argument. Since all of their set bits are the same,
137 is the answer.

Now it gets weird. When you redo the same operation you did for the first line of
output you get a different answer! You didn't explicitly do anything to either value,
but along the way Perl had to convert the values of $number_str and $string to a
numeric form. When it did that, it secretly stored the result in case it had to do that
again. When Perl does the last operation, it looks at the variables and sees that they
have a numeric version, concludes that they are both numbers, and does a numeric
bit operation. The numeric value of $string is 0 like the previous time we used it, so
the answer is zero.

Perl has the idea of a dualvar. A scalar can have separate numeric
and string values at the same time. In most cases this is not a prob-
lem, and in some cases it’s useful. For instance, the system error
variable $! is a human-meaningful message as a string, but the sys-

tem error number as a number. See the Scalar: :Util module.

222 | Chapter 12:File Tests

Perl v5.22 adds an experimental feature (Appendix D) to solve part of this problem.
When you use an operator, you want to know what it’s going to do no matter what
path your operands took to get there. If you want a numeric bitwise operation, the
bitwise feature makes the bitwise operations treat all operands as numbers:

use v5.22.0;

use feature qw(bitwise);
no warnings qw(experimental::bitwise);

my $number = 137;

my $number_str = '137';

my $string = 'Amelia’;

say "number_str & string: ", $number_str & S$string;

say "number & string: ", $number & S$string;

say "number & number_str: ", $Snumber & Snumber_str;
say "number_str & string: ", Snumber_str & $string;

No gobbledygook in the first line of the output. Even though both operands are
strings, Perl treats them as numbers:

number_str & string: 0
number & string: 0
number & number_str: 137
number_str & string: ©

If you wanted string bit operations instead, the bitwise feature adds new operators
that look like the bitwise operators with a . after them:
use v5.22.0;

use feature qw(bitwise);
no warnings qw(experimental::bitwise);

my $number = 137;

my $number_str = '137';

my $string = 'Amelia’;

say "number_str &. string: ", $number_str &. S$string;

say "number &. string: ", $number &. $string;

say "number &. number_str: ", Snumber &. Snumber_str;
say "number_str &. string: ", $number_str &. S$string;

Now each of those is a string operation and each operand is converted to a string. The
only result that seems to make sense is the one in the third line since it has '137' on
each side of the &. operation:

number_str &. string: ¢!%

number &. string: %

number &. number_str: 137
number_str &. string: ¢!%

Bitwise Operators | 223

Exercises

See “Answers to Chapter 12 Exercises” on page 316 for answers to these exercises:

1.

[15] Make a program that takes a list of files named on the command line and
reports for each one whether it’s readable, writable, executable, or doesn't exist.
(Hint: it may be helpful to have a function that will do all the file tests for one file
at a time.) What does it report about a file that has been chmoded to 0? (That is, if
youre on a Unix system, use the command chmod 0 some_file to mark that file
as being neither readable, writable, nor executable.) In most shells, use a star as
the argument to mean all the normal files in the current directory. That is, you
could type something like ./ex12-1 * to ask the program for the attributes of
many files at once.

. [10] Make a program to identify the oldest file named on the command line and

report its age in days. What does it do if the list is empty (that is, if no files are
mentioned on the command line)?

. [10] Make a program that uses stacked file test operators to list all files named on

the command line that are readable, writable, and owned by you.

224

| Chapter 12: File Tests

CHAPTER 13
Directory Operations

The files you created in Chapter 12 were generally in the same place as your program.
But modern operating systems let you organize files into directories. Perl lets you
manipulate these directories directly, in ways that are even fairly portable from one
operating system to another.

Perl tries very hard to act the same no matter which system it runs on. Despite that,
this chapter certainly shows Perl’s preference toward its Unix history. If you are using
Windows, you should look at the Win32 distribution. Those modules provide hooks
to the Win32 APIL.

The Current Working Directory

Your program runs with a working directory. This is the default directory for every-
thing your program does.

With the Cwd module (part of the Standard Library), you can see what that directory
is. Try this program, which we'll call show_my_cwd:

use v5.10;

use Cwd;

say "The current working directory is ", getcwd();
This should be the same directory that youd get if you ran pwd in the Unix shell or cd
(with no argument) in the Windows command shell. While you're practicing Perl
with this book, youre most likely working in the same directory that holds your
program.

When you open a file using a relative path (one that does not give the complete path
from the top of the filesystem tree), Perl interprets that relative path starting at the

225

current directory. Say that your current working directory is /home/fred. When you
run this line of code to read a file, Perl looks for /home/fred/relative/path.txt:

relative to the current working directory

open my $fh, '<:utf8', 'relative/path.txt'
If you aren’t using a shell or terminal program, the thing that runs your program
might have a different idea about its current working directory. If you can run a pro-
gram from your editor, that application might have a current working directory that
is different from the one in which you've saved the file. Scheduling your program
with something like cron probably does the same thing.

The current working directory is not necessarily the directory that holds the pro-
gram. Both of these commands look for my_program in the current directory:

$./show_my_cwd
$ perl show_my_cwd

But you can run that program from another directory by giving it the full path to the
program:

$ /home/fred/show_my_cwd
$ perl /home/fred/show_my_cwd

If you put your program in one of the directories your shell will search to find a pro-
gram, you can run your program without any path hints from any directory you like:

$ show_my_cwd

You can use the File::Spec module (part of the Standard Library)
to convert between relative and absolute paths.

Changing the Directory

You may not want the current working directory that your program starts with. The
chdir operator changes the working directory. It’s just like the shell’s cd command:

chdir '/etc' or die "cannot chdir to /etc: $!";

Because this is a system request, Perl sets the value of $! if an error occurs. You
should normally check $! when chdir returns a false value since that indicates that
something has not gone as requested.

The working directory is inherited by all processes that Perl starts (we’ll talk more
about that in Chapter 15). However, the change in working directory cannot affect
the process that invoked Perl, such as the shell. You can change the current working
directory for the currently running program and set that directory for processes you

226 | Chapter 13: Directory Operations

start, but you can’t change it for the process that started your program. You can affect
things at your level and below. This isn't a limitation on Perl’s part; it’s actually a fea-
ture of Unix, Windows, and other systems.

If you call chdir without an argument, Perl determines your home directory as best
as possible and attempts to set the working directory to your home directory, similar
to using the Unix cd command at the shell without a parameter. This is one of the few
places where omitting the parameter doesn’t use $_ as the default. Instead, it looks in
the environment variables $ENV{HOME} and $ENV{LOGDIR}, in that order. If neither is
set, it does nothing.

Some environments don't set these environment variables for you.
The File: :HomeDir module can help you set the environment vari-
ables that chdir will examine.

Older Perls let you use the empty string or undef (both false) as an argument to
chdir, but that was deprecated with v5.12. If you want to change to the home direc-
tory, don’t give chdir any argument.

Some shells permit you to use a tilde-prefixed path with cd to use another user’s home
directory as a starting point (like cd ~fred). This is a function of the shell, not the
operating system, and Perl is calling the operating system directly. Thus, a tilde prefix
will not work with chdir.

You might try the File::HomeDir module to get the user’s home
directory in a mostly portable fashion.

Globbing

Normally, the shell expands any filename patterns on the command line into the
matching filenames. This is called globbing. For example, if you give a filename pat-
tern of *.pm to the Unix echo command, the shell expands this list to a list of names
that match:

$ echo *.pm

barney.pm dino.pm fred.pm wilma.pm
The echo command doesn’t have to know anything about expanding *.pm, because
the shell has already expanded it. This works even for your Perl programs. Here’s a
program that simply prints its arguments:

Globbing | 227

foreach $arg (@ARGV) {
print "one arg is $arg\n";

}
When you run this program with a glob as the single argument, the shell expands the
glob before it sends the result to your program. Thus, you think you got many
arguments:

$ perl show-args *.pm

one arg is barney.pm

one arg is dino.pm

one arg is fred.pm
one arg is wilma.pm

Note that show-args didn’t need to know anything about globbing—the names were
already expanded in @ARGV.

But sometimes you end up with a pattern like *. pm inside your Perl program. Can we
expand this pattern into the matching filenames without working very hard? Sure—
just use the glob operator:

my @ll_files = glob '*';

my @pm_files = glob '*.pm';
Here, @all_f1iles gets all the files in the current directory, alphabetically sorted, but
doesn’t get the files beginning with a period—just like the shell. And @pm_files gets
the same list you got before by using *. pm on the command line.

In fact, anything you can say on the command line, you can also put as the (single)
argument to glob, including multiple patterns separated by spaces:

my @ll_files_including_dot = glob '.* *';

Here, you include an additional “dot star” parameter to get the filenames that begin
with a dot as well as the ones that don't. Please note that the space between these two
items inside the quoted string is significant, as it separates two different items you
want to glob.

Windows users may be accustomed to using a glob of *.* to mean “all files” But that
actually means “all files with a dot in their names,” even in Perl in Windows.

The reason this works exactly as the shell works is that prior to v5.6, the glob opera-
tor simply called /bin/csh behind the scenes to perform the expansion. Because of
this, globs were time consuming and could break in large directories, or in some
other cases. Conscientious Perl hackers avoided globbing in favor of directory han-
dles, which we will show later in this chapter. However, if you're using a modern ver-
sion of Perl, you should no longer be concerned about such things.

228 | Chapter 13: Directory Operations

Perl’s built-in glob isn’'t your only option. The File: :Glob module
provides other forms that handle edge cases.

An Alternate Syntax for Globbing

Although we use the term globbing freely, and we talk about the glob operator, you
might not see the word glob in very many of the programs that use globbing. Why
not? Well, a lot of legacy code was written before the Perl developers gave the glob

operator its name. Instead, it used the angle-bracket syntax, similar to reading from a
filehandle:

my @all_files = <*>; # exactly the same as my @all_files = glob "*";

Perl interpolates the value between the angle brackets similarly to a double-quoted
string, which means that Perl expands variables to their current Perl values before
being globbed:

my $dir = '/Jetc';

my @dir_files = <$dir/* $dir/.*>;
Here, you fetch all the nondot and dot files from the designated directory because
$dir has been expanded to its current value.

So, if using angle brackets means both filehandle reading and globbing, how does Perl
decide which of the two operators to use? Well, a filehandle has to be a Perl identifier
or a variable. So, if the item between the angle brackets is strictly a Perl identifier, its a
filehandle read; otherwise, it’s a globbing operation. For example:

my @files = <FRED/*>; # a glob
my @lines = <FRED>; # a filehandle read
my @lines = <S$fred>; # a filehandle read

my $name = 'FRED';

my @files = <Sname/*>; # a glob
The one exception is if the contents are a simple scalar variable (not an element of a
hash or array) that’s not a filehandle object, then it’s an indirect filehandle read, where
the variable contents give the name of the filehandle you want to read:

my $name = 'FRED';

my @lines = <$name>; # an indirect filehandle read of FRED handle
The determination of whether it’s a glob or a filehandle read happens at compile time,
and thus it is independent of the content of the variables.

If you want, you can get the operation of an indirect filehandle read using the read
line operator, which also makes it clearer:

An Alternate Syntax for Globbing | 229

my $name = 'FRED';
my @lines = readline FRED; # read from FRED
my @lines = readline $name; # read from FRED

But Perlers rarely use the readline operator, as indirect filehandle reads are uncom-
mon and are generally performed against a simple scalar variable anyway.

Directory Handles

Another way to get a list of names from a given directory is with a directory handle. A
directory handle looks and acts like a filehandle. You open it (with opendir instead of
open), you read from it (with readdir instead of readline), and you close it (with
closedir instead of close). But instead of reading the contents of a file, you're read-
ing the names of files (and other things) in a directory. For example:

my $dir_to_process = '/etc';

opendir my $dh, $dir_to_process or die "Cannot open $dir_to_process: $!";

foreach $file (readdir $dh) {

print "one file in $dir_to_process is $file\n";

}

closedir $dh;
Like filehandles, directory handles are automatically closed at the end of the program
or if the directory handle is reopened onto another directory.

You can also use a bareword directory handle, just like you could with a filehandle,
but this has the same drawbacks we wrote about earlier:

opendir DIR, $dir_to_process
or die "Cannot open $dir_to_process: $!";
foreach $file (readdir DIR) {
print "one file in $dir_to_process is $file\n";

}

closedir DIR;
This is a lower-level operation and we have to do more of the work ourselves. For
example, the names are returned in no particular order. And the list includes all files,
not just those matching a particular pattern (like *.pm from our globbing examples).
So, if you wanted only the pm-ending files, you could use a skip-over function inside
the loop:

while ($name = readdir $dh) {
next unless $name =~ /\.pm\z/;
. more processing ...

}

Note here that the syntax is that of a regular expression, not a glob. And if you wanted
all the nondot files, you could say that:

next if $name =~ /\A\./;

230 | Chapter 13: Directory Operations

Or if you wanted everything but the common dot (current directory) and dot-dot
(parent directory) entries, you could explicitly say that:

next if $name eq or $name eq '..';

Here’s another part that gets most people mixed up, so pay close attention. The file-
names returned by the readdir operator have no pathname component. It’s just the
name within the directory. So, instead of /etc/hosts, you get just hosts. And because
this is another difference from the globbing operation, it’s easy to see how people get
confused.

So you need to patch up the name to get the full name:

opendir my S$Ssomedir, $dirname or die "Cannot open $dirname: S$!";
while (my $name = readdir $somedir) {
next if Sname =~ /\A\./; # skip over dot files
Sname = "$dirname/$name"; # patch up the path
next unless -f $name and -r Sname; # only readable files

}...

For portability, you might want to use the File::Spec::Functions module that
knows how to construct paths appropriate for the local system:

use File::Spec::Functions;

opendir my Ssomedir, $dirname or die "Cannot open $dirname: S$!";
while (my $name = readdir $somedir) {
next if Sname =~ /\A\./; # skip over dot files
Sname = catfile($dirname, Sname); # patch up the path
next unless -f $name and -r Sname; # only readable files

The Path: :Class module is a nicer interface to the same thing, but
it doesn’t come with Perl.

Without the patch, the file tests would have been checking files in the current direc-
tory rather than in the directory named in $dirname. This is the single most common
mistake when using directory handles.

Directory Handles | 231

Manipulating Files and Directories

Perl is commonly used to wrangle files and directories. Because Perl grew up in a
Unix environment and still spends most of its time there, most of the description in
this chapter may seem Unix centric. But the nice thing is that to whatever degree pos-
sible, Per]l works exactly the same way on non-Unix systems.

Removing Files

Most of the time, you make files so that the data can stay around for a while. But
when the data has outlived its usefulness, it’s time to make the file go away. At the
Unix shell level, you type an rm command to remove a file or files:

$ rm slate bedrock lava
In Perl, you use the unlink operator with a list of the files that you want to remove:

unlink 'slate', 'bedrock', 'lava';

unlink qw(slate bedrock lava);

This sends the three named files away to bit heaven, never to be seen again.

The link is between a filename and something stored on the disk, but some filesys-
tems allow multiple “hard” links to the data. The data is freed once all of those links
disappear. unlink dissociates a file entry from the data. If that happens to be the last
link, the filesystem can reuse that space.

Now, since unlink takes a list and the glob function returns a list, you can combine
the two to delete many files at once:

unlink glob '*.0';

This is similar to rm *.o at the shell, except that you didn't have to fire off a separate
rm process. So you can make those important files go away that much faster!

The return value from unlink tells you how many files have been successfully deleted.
So, back to the first example, you can check its success:

my $successful = unlink "slate", "bedrock", "lava";

print "I deleted $successful file(s) just now\n";
Sure, if this number is 3, you know it removed all the files, and if it’s 0, it removed
none of them. But what if it’s 1 or 22 Well, there’s no clue which ones had problems. If
you need to know, do them one at a time in a loop:

foreach my $file (qw(slate bedrock lava)) {

unlink $file or warn "failed on $file: $!\n";

}

232 | Chapter 13: Directory Operations

Here, each file being deleted one at a time means the return value will be 0 (failed) or
1 (succeeded), which happens to look like a nice Boolean value, controlling the exe-
cution of warn. Using or warn is similar to or die, except that it’s not fatal, of course
(as we said back in Chapter 5). In this case, you put the newline on the end of the
message to warn because it’s not a bug in your program that causes the message.

When a particular unlink fails, Per] sets the $! variable to something related to the
operating system error, which you can include in the message. This makes sense to
use only when you're checking one filename at a time because the next operating sys-
tem failed request resets the variable. You can’t remove a directory with unlink, just
like you can’t remove a directory with the simple rm invocation either. Look for the
rmdir function coming up shortly for that.

Now, here’s a little-known Unix fact. It turns out that you can have a file that you can’t
read, you can’t write, you can’t execute—maybe you don’t even own the file—but you
can still delete that file. The permission to unlink a file doesn’t depend on the permis-
sion bits on the file itself; it’s the permission bits on the directory that contains the file
that matter.

We mention this because it's normal for a beginning Perl programmer, in the course
of trying out unlink, to make a file, to chmod it to 0 (so that it’s not readable or writa-
ble), and then to see whether this makes unlink fail. But instead it vanishes without
so much as a whimper. If you really want to see a failed unlink, though, just try to
remove /etc/hosts or a similar system file. Since that’s a file controlled by the system
administrator, you won't be able to remove it.

Renaming Files

Giving an existing file a new name is simple with the rename function:
rename 'old', 'new';

This is similar to the Unix mv command, taking a file named old and giving it the
name new in the same directory. You can even move things around:

rename 'over_there/some/place/some_file', 'some_file';

Some people like to use the fat arrow that you saw in Chapter 6 (“The Big Arrow” on
page 111), so they remind themselves which way the rename happens:

rename 'over_there/some/place/some_file' => 'some_file';

This moves a file called some_file from another directory into the current directory,
provided the user running the program has the appropriate permissions and you
aren’t trying to copy files to another disk partition. This merely renames the file
entry; it doesn’t move any data.

RenamingFiles | 233

Like most functions that request something of the operating system, rename returns
false if it fails, and sets $! with the operating system error, so you can (and often
should) use or die (or or warn) to report this to the user.

One frequent question is how to batch-rename a list of files, perhaps from those that
end with .old to the same name with .new. Here’s how to do it nicely in Perl:

foreach my $file (glob "*.old") {
my Snewfile = $file;
Snewfile =~ s/\.old\z/.new/;
if (-e Snewfile) {
warn "can't rename $file to S$newfile: $Snewfile exists\n";
} elsif (rename $file => Snewfile) {
success, do nothing
} else {
warn "rename $file to Snewfile failed: S$!\n";

}
}
The check for the existence of $newfile is needed because rename will happily
rename a file right over the top of an existing file, presuming the user has permission
to remove the destination filename. You put the check in so that it’s less likely that
you’'ll lose information this way. Of course, if you wanted to replace existing files like
wilma.new, you wouldn't bother testing with -e first.

Those first two lines inside the loop can be combined (and often are) to simply:
(my Snewfile = $file) =~ s/\.old\z/.new/;

This works to declare $newfile, copy its initial value from $file, then modify
$newfile with the substitution. You can read this as “transform $file to $newfile
using this replacement on the right” And yes, because of precedence, those parenthe-
ses are required.

That’s a bit easier in Perl 5.14 with the /r flag to the s/// operator. This line looks
almost the same but lacks the parentheses:

use v5.14;

my $newfile = $file =~ s/\.old\z/.new/r;

Also, some programmers seeing this substitution for the first time wonder why the
backslash is needed on the left but not on the right. The two sides aren’t symmetrical:
the left part of a substitution is a regular expression, and the right part is a double-
quoted string. So you use the pattern /\.old$/ to mean “.old anchored at the end of
the string” (anchored at the end because you don't want to rename the first occur-
rence of .old in a file called betty.old.old), but on the right you can simply write . new
to make the replacement.

234 | Chapter 13: Directory Operations

Links and Files

To understand more about whats going on with files and directories, it helps to
understand the Unix model of files and directories, even if your non-Unix system
doesn’t work in exactly this way. As usual, there’s more to the story than we’re able to
explain here, so check any good book on Unix internal details if you need the full
story.

A mounted volume is a hard disk drive (or something else that works more or less like
that, such as a disk partition, a solid state device, a floppy disk, a CD-ROM, or a
DVD-ROM). It may contain any number of files and directories. Each file is stored in
a numbered inode, which we can think of as a particular piece of disk real estate. One
file might be stored in inode 613, while another is in inode 7033.

To locate a particular file, though, you look it up in a directory. A directory is a spe-
cial kind of file maintained by the system. Essentially, it is a table of filenames and
their inode numbers. Along with the other things in the directory, there are always
two special directory entries. One is . (called “dot”), which is the name of that very
directory; and the other is .. (“dot-dot”), which is the directory one step higher in the
hierarchy (i.e., the directory’s parent directory). Figure 13-1 provides an illustration
of two inodes. One is for a file called chicken and the other is Barney’s directory of
poems, /home/barney/poems, which contains that file. The file is stored in inode 613,
while the directory is stored in inode 919. (The directory’s own name, poems, doesn’t
appear in the illustration, because it’s stored in another directory.) The directory con-
tains entries for three files (including chicken) and two directories (one of which is
the reference back to the directory itself, in inode 919), along with each item’s inode
number.

inode 613 inode 919

A Jurassic chicken named Meg

With two beaks, three wings,and o
.. 8002
oneleg, _) dodgson 7033
As her third eye she winked, chicken 613

Quoth”I'll soon go extinct,

ButI'll lay first a cubical egg” abacus 11320

Figure 13-1. The chicken before the egg

When it’s time to make a new file in a given directory, the system adds an entry with
the file’s name and the number of a new inode. How can the system tell that a particu-
lar inode is available, though? Each inode holds a number called its link count. The
link count is always 0 if the inode isn’t listed in any directory, so any inode with a link
count of 0 is available for new file storage. When the inode is added to a directory, the

Linksand Files | 235

link count is incremented; when the listing is removed, the link count is decremented.
For the file chicken illustrated in Figure 13-1, the inode count of 1 is shown in the box
above the inode’s data.

But some inodes have more than one listing. For example, you've already seen that
each directory entry includes ., which points back to that directory’s own inode. So
the link count for a directory should always be at least two: its listing in its parent
directory and its listing in itself. In addition, if it has subdirectories, each of those will
add a link, since each will contain .. . In Figure 13-1, the directory’s inode count of 2 is
shown in the box above its data. A link count is the number of true names for the
inode. Could an ordinary file inode have more than one listing in the directory? It
certainly could. Suppose that, working in the directory shown in the figure, Barney
uses the Perl 1ink function to create a new link:
link 'chicken', 'egg'
or warn "can't link chicken to egg: $!";

This is similar to typing ln chicken egg at the Unix shell prompt. If 1ink succeeds,
it returns true. If it fails, it returns false and sets $!, which Barney is checking in the
error message. After this runs, the name egg is another name for the file chicken, and
vice versa; neither name is “more real” than the other, and (as you may have guessed)
it would take some detective work to find out which came first. Figure 13-2 shows a
picture of the new situation, where there are two links to inode 613.

inode 613 inode 919
A Jurassic chicken named Meg : 919
With two beaks, three wings,and 2 8002
oneleg, dodgson 7033
As her third eye she winked, chicken 613
Quoth*I'll soon go extinct, abacus 11320
ButI'll lay first a cubical egg” egg 613

Figure 13-2. The egg is linked to the chicken

These two filenames are thus talking about the same place on the disk. If the file
chicken holds 200 bytes of data, egg holds the same 200 bytes, for a total of 200 bytes
(since it’s really just one file with two names). If Barney appends a new line of text to
the file egg, that line will also appear at the end of chicken. Now, if Barney were to
accidentally (or intentionally) delete chicken, that data would not be lost—it’s still
available under the name egg. And vice versa: if he were to delete egg, he would still
have chicken. Of course, if he were to delete both of them, the data would be lost.
There’s another rule about the links in directory listings: the inode numbers in a given
directory listing all refer to inodes on that same mounted volume. This rule ensures
that if you move the physical medium (a thumb drive, perhaps) to another machine,

236 | Chapter 13: Directory Operations

all the directories stick together with their files. That's why you can use rename to
move a file from one directory to another, but only if both directories are on the same
filesystem (mounted volume). If they were on different disks, the system would have
to relocate the inode’s data, which is too complex an operation for a simple system
call.

And yet another restriction on links is that they can’t make new names for directories.
That's because the directories are arranged in a hierarchy. If you were able to change
that, utility programs like find and pwd could easily become lost trying to find their
way around the filesystem.

So you can’'t add links to directories, and they can’'t cross from one mounted volume
to another. Fortunately, there’s a way to get around these restrictions on links, by
using a new and different kind of link: a symbolic link. A symbolic link (also called a
soft link to distinguish it from the true or hard links that we've been talking about up
to now) is a special entry in a directory that tells the system to look elsewhere. Let’s
say that Barney (working in the same directory of poems as before) creates a symbolic
link with Perl’s symlink function, like this:

symlink 'dodgson', 'carroll'
or warn "can't symlink dodgson to carroll: $!";

This is similar to what would happen if Barney used the command In -s dodgson car-
roll from the shell. Figure 13-3 shows a picture of the result, including the poem in
inode 7033.

inode 7033 l inode 919

Yet what are all such gaieties . 919
tome . 8002
Whose thoughts are full of dodgson 7033
indices and surds? chicken 613

) abacus 11320
Xé+7x+53 egg 613
=113 carroll -> dodgson

Figure 13-3. A symlink to inode 7033

Now if Barney chooses to read /home/barney/poems/carroll, he gets the same data as if
he had opened /home/barney/poems/dodgson because the system follows the symbolic
link automatically. But that new name isn't the “real” name of the file because (as you
can see in the diagram) the link count on inode 7033 is still just one. That’s because
the symbolic link simply tells the system, “If you got here looking for carroll, now you
want to go off to find something called dodgson instead”

Linksand Files | 237

A symbolic link can freely cross mounted filesystems or provide a new name for a
directory, unlike a hard link. In fact, a symbolic link could point to any filename, one
in this directory or in another one—or even to a file that doesn’t exist! But that also
means that a soft link can’t keep data from being lost as a hard link can, since the
symlink doesn’t contribute to the link count. If Barney were to delete dodgson, the
system would no longer be able to follow the soft link. Even though there would still
be an entry called carroll, trying to read from it would give an error like file not
found. The file test -1 'carroll' would report true, but -e 'carroll' would be
false: it’s a symlink, but its target doesn't exist. Deleting carroll would merely remove
the symlink, of course.

Since a soft link could point to a file that doesn’t yet exist, it could be used when creat-
ing a file as well. Barney has most of his files in his home directory, /home/barney, but
he also needs frequent access to a directory with a long name that is difficult to
type: /usr/local/opt/system/httpd/root-dev/users/staging/barney/cgi-bin. So he sets up a
symlink named /home/barney/my_stuff, which points to that long name, and now it’s
easy for him to get to it. If he creates a file (from his home directory) called my_stuff/
bowling, that file’s real name is /ust/local/opt/system/httpd/root-dev/users/staging/
barney/cgi-bin/bowling. Next week, when the system administrator moves these files
of Barney’s to /usr/local/opt/internal/httpd/www-dev/users/staging/barney/cgi-bin,
Barney just repoints the one symlink, and now he and all of his programs can still
find his files with ease.

It's normal for either /usr/bin/perl or /usr/local/bin/perl (or both) to be symbolic links
to the true Perl binary on your system. This makes it easy to switch to a new version
of Perl. Say you're the system administrator, and you’ve built the new Perl. Of course,
your older version is still running and you don’t want to disrupt anything. When
you're ready for the switch, you simply move a symlink or two, and now every pro-
gram that begins with #//usr/bin/perl will automatically use the new version. In the
unlikely case that there’s some problem, it’s a simple thing to replace the old symlinks
and have the older Perl running the show again. (But like any good admin, you noti-
fied your users to test their code with the new /usr/bin/perl-7.2 well in advance of the
switch, and you told them they can keep using the older one during the next month’s
grace period by changing their programs’ first lines to #!//usr/bin/perl-6.1, if they
need to.)

Perhaps surprisingly, both hard and soft links are very useful. Many non-Unix operat-
ing systems have neither, and the lack is sorely felt. On some non-Unix systems, sym-
bolic links may be implemented as a “shortcut” or an “alias”—check the perlport
documentation for the latest details.

To find out where a symbolic link is pointing, use the readlink function. This will tell
you where the symlink leads, or it will return undef if its argument wasn’t a symlink:

238 | Chapter 13: Directory Operations

https://perldoc.perl.org/perlport
https://perldoc.perl.org/perlport

my $where = readlink 'carroll'; # Gives "dodgson"

my $perl = readlink '/usr/local/bin/perl'; # Maybe tells where perl is

You can remove either kind of link with unlink—and now you see where that opera-
tion gets its name. unlink simply removes the directory entry associated with the
given filename, decrementing the link count and thus possibly freeing the inode.

Making and Removing Directories

Making a directory inside an existing directory is easy. Just invoke the mkdir
function:

mkdir 'fred', 0755 or warn "Cannot make fred directory: $!";

Again, true means success, and Perl sets $! on failure.

But what’s that second parameter, ©755¢? That's the initial permission setting on the
newly created directory (you can always change it later). The value here is specified as
an octal because the value will be interpreted as a Unix permission value, which has a
meaning based on groups of three bits each, and octal values represent that nicely.
Yes, even in Windows or MacPerl, you still need to know a little about Unix permis-
sion values to use the mkdir function. Mode 0755 is a good one to use because it gives
you full permission, but lets everyone else have read access but no permission to
change anything.

The mkdir function doesn’t require you to specify this value in octal—it’s just looking
for a numeric value (either a literal or a calculation). But unless you can quickly fig-
ure that 0755 octal is 493 decimal in your head, it's probably easier to let Perl calculate
that. And if you accidentally leave off the leading zero, you get 755 decimal, which is
1363 octal, a strange permission combination indeed.

As you saw earlier (in Chapter 2), a string value being used as a number is never
interpreted as octal, even if it starts with a leading zero. So this doesn’t work:

my $name = "fred";

my Spermissions = "0755"; # danger...this isn't working

mkdir $name, Spermissions;
Oops, you just created a directory with the bizarre 01363 permissions because 8755
was treated as a decimal. To fix that, use the oct() function, which forces octal inter-
pretation of a string whether or not there’s a leading zero:

mkdir $name, oct($permissions);

Of course, if you are specifying the permission value directly within the program, just
use a number instead of a string. The need for the extra oct() function shows up

Making and Removing Directories | 239

most often when the value comes from user input. For example, suppose you take the
arguments from the command line:

my (Sname, Sperm) = @ARGV; # first two args are name, permissions
mkdir $name, oct($perm) or die "cannot create $name: $!";

The value here for $perm is initially interpreted as a string, and thus the oct() func-
tion interprets the common octal representation properly.

To remove empty directories, use the rmdir function in a manner similar to the
unlink function, although it can only remove one directory per call:

foreach my $dir (qw(fred barney betty)) {
rmdir $dir or warn "cannot rmdir $dir: $!\n";

}

The rmdir operator fails for nonempty directories. As a first pass, you can attempt to
delete the contents of the directory with unlink, then try to remove what should now
be an empty directory. For example, suppose you need a place to write many tempo-
rary files during the execution of a program:

my Stemp_dir = "/tmp/scratch_S$$"; # based on process ID; see the text
mkdir $temp_dir, 0700 or die "cannot create S$temp_dir: $!";

use Stemp_dir as location of all temporary files

unlink glob "$temp_dir/* Stemp_dir/.*"; # delete contents of Stemp_dir
rmdir Stemp_dir; # delete now-empty directory

If you really need to create temporary directories or files, check out
the File: : Temp module, which comes with Perl.

The initial temporary directory name includes the current process ID, which is
unique for every running process and is accessed with the $$ variable (similar to the
shell). You do this to avoid colliding with any other processes, as long as they also
include their process IDs as part of their pathnames. (In fact, it's common to use the
program’s name as well as the process ID, so if the program is called quarry, the direc-
tory would probably be something like /tmp/quarry_$$.)

At the end of the program, that last unlink should remove all the files in this tempo-
rary directory, and then the rmdir function can delete the now-empty directory.
However, if you've created subdirectories under that directory, the unlink operator
fails on those, and the rmdir also fails. For a more robust solution, check out
the remove_tree function provided by the File::Path module of the standard
distribution.

240 | Chapter 13: Directory Operations

Modifying Permissions

The Unix chmod command changes the permissions on a file or directory. Similarly,
Perl has the chmod function to perform this task:

chmod 0755, 'fred', 'barney';

As with many of the operating system interface functions, chmod returns the number
of items successfully altered, and when used with a single argument, sets $! in a sen-
sible way for error messages when it fails. The first parameter is the Unix permission
value (even for non-Unix versions of Perl). For the same reasons we presented earlier
in describing mkdir, this value is usually specified in octal.

Symbolic permissions (like +x or go=u-w) accepted by the Unix chmod command are

not valid for the chmod function.

The File::chmod module from CPAN can upgrade the chmod
operator to understand symbolic mode values.

Changing Ownership

If the operating system permits it, you may change the ownership and group mem-
bership of a list of files (or filehandles) with the chown function. The user and group
are both changed at once, and both have to be the numeric user ID and group ID
values. For example:

my Suser = 1004;

my $group = 100;

chown $user, $group, glob '*.0';
What if you have a username like merlyn instead of the number? Simple. Just call the
getpwnam function to translate the name into a number, and the corresponding
getgrnam to translate the group name into its number:

defined(my $Suser = getpwnam 'merlyn') or die 'bad user';

defined(my Sgroup = getgrnam 'users') or die 'bad group';

chown $user, $group, glob '/home/merlyn/*';
The defined function verifies that the return value is not undef, which will be
returned if the requested user or group is not valid.

The chown function returns the number of files affected, and it sets $! on error.

Modifying Permissions | 241

Changing Timestamps

In those rare cases when you want to lie to other programs about when a file was
most recently modified or accessed, you can use the utime function to fudge the
books a bit. The first two arguments give the new access time and modification time,
while the remaining arguments are the list of filenames to alter those timestamps.
The times are specified in internal timestamp format (the same type of values
returned from the stat function that we mentioned in “The stat and Istat Functions”
on page 218).

One convenient value to use for the timestamps is “right now;” returned in the proper
format by the time function. To update all the files in the current directory to look
like they were modified a day ago, but accessed just now, you could simply do this:

my $now = time;

my $ago = Snow - 24 * 60 * 60; # seconds per day

utime now, Sago, glob '*'; # set access to now, mod to a day ago
Of course, nothing stops you from creating a file that is arbitrarily stamped far in the
future or past (within the limits of the Unix timestamp values of 1970 to 2038, or
whatever your non-Unix system uses, unless you have 64-bit timestamps). Maybe you
could use this to create a directory where you keep your notes for that time-travel
novel you're writing.

The third timestamp (the ctime value) is always set to “now” whenever anything
alters a file, so there’s no way to set it (it would have to be reset to “now” after you set
it) with the utime function. That’s because its primary purpose is for incremental
backups: if the file’s ctime is newer than the date on the backup tape, it’s time to back
it up again.

Exercises

The programs here are potentially dangerous! Be careful to test them in a mostly
empty directory to make it difficult to accidentally delete something useful.

See “Answers to Chapter 13 Exercises” on page 319 for answers to these exercises:

1. [12] Write a program to ask the user for a directory name, then change to that
directory. If the user enters a line with nothing but whitespace, change to their
home directory as a default. After changing, list the ordinary directory contents
(not the items whose names begin with a dot) in alphabetical order. (Hint: will
that be easier to do with a directory handle or with a glob?) If the directory
change doesn't succeed, just alert the user—but don’t try showing the contents.

2. [4] Modify the program to include all files, not just the ones that don’t begin with
a dot.

242 | Chapter 13: Directory Operations

. [5] If you used a directory handle for the previous exercise, rewrite it to use a
glob. Or if you used a glob, try it now with a directory handle.

. [6] Write a program that works like rm, deleting any files named on the com-
mand line. (You don’t need to handle any of the options of rm.)

. [10] Write a program that works like mv, renaming the first command-line argu-
ment to the second command-line argument. (You don't need to handle any of
the options of mv or additional arguments.) Remember to allow for the destina-
tion to be a directorys; if it is, use the same original basename in the new direc-
tory.

. [7] If your operating system supports it, write a program that works like /n, mak-
ing a hard link from the first command-line argument to the second. (You don’t
need to handle options of In or more arguments.) If your system doesn’t have
hard links, just print out a message telling which operation you would perform if
it were available. Hint: this program has something in common with the previous
one—recognizing that could save you time in coding.

. [7] If your operating system supports it, fix up the program from the previous
exercise to allow an optional -s switch before the other arguments to indicate that
you want to make a soft link instead of a hard link. (Even if you don't have hard
links, see whether you can at least make soft links with this program.)

. [7] If your operating system supports it, write a program to find any symbolic
links in the current directory and print out their values (like s -/ would: name ->
value).

Exercises | 243

CHAPTER 14
Strings and Sorting

As we mentioned near the beginning of this book, Perl is designed to be good at solv-
ing programming problems that are about 90% working with text and 10% every-
thing else. So its no surprise that Perl has strong text-processing abilities, even
without all that you've done with regular expressions. Sometimes the regular expres-
sion engine is too fancy and you need a simpler way of working with a string, as you'll
see in this chapter.

Finding a Substring with index

Finding a substring depends on where you lost it. If you happen to have lost it within
a bigger string, youre in luck because the index function can help you out. Here’s
how it looks:

my $where = index($big, $small);

Perl locates the first occurrence of the small string within the big string, returning an
integer location of the first character. The character position returned is a zero-based
value: if the substring is found at the very beginning of the string, index returns 0; if
it's one character later, the return value is 1, and so on. If index can’t find the sub-
string at all, it returns -1 to indicate that. In this example, $where gets 6 because that’s
the position where wor starts:

my $stuff
my S$where

"Howdy world!";
index($stuff, "wor");

Another way you could think of the position number is the number of characters to
skip over before getting to the substring. Since $where is 6, you know that you have to
skip over the first six characters of $stuff before you find wor.

245

The index function will always report the location of the first found occurrence of the
substring. But you can tell it to start searching at a later point than the start of
the string by using the optional third parameter, which tells index to start at that
position:

my $stuff = "Howdy world!";

my Swherel = index($stuff, "w"); # Swherel gets 2

my $where2 = index($stuff, "w", Swherel + 1); # Swhere2 gets 6

my Swhere3 = index($stuff, "w", Swhere2 + 1); # Swhere3 gets -1 (not found)
That third parameter is effectively giving a minimum value for the return value; if the
substring isn't at that position or later, index returns -1. You probably wouldn't do
this without a loop, though. In this example, we use an array to store the positions:

use v5.10;
my $stuff = "Howdy world!";

my @where = ();

my $where = -1;

while(1) {
Swhere = index($stuff, 'w', Swhere + 1);
last if $where == -1;
push @where, Swhere;

}

say "Positions are @where";
We initialize $where to -1 because we'll add 1 to it before we pass the starting position
to index. This means that the first pass is not a special case.

Once in a while, you might prefer to have the last occurrence of the substring. You
can get that with the rindex function, which starts scanning from the end of the
string. In this example, you can find the last slash, which turns out to be at position 4
in the string, still counting from the left, just like index:

my $last_slash = rindex("/etc/passwd", "/"); # value is 4

The rindex function also has an optional third parameter, but in this case, it effec-
tively gives the maximum permitted return value:

my $fred = "Yabba dabba doo!";

my Swherel = rindex($fred, "abba"); # Swherel gets 7
my $where2 = rindex($fred, "abba", $wherel - 1); # Swhere2 gets 1
my $Swhere3 = rindex($fred, "abba", $where2 - 1); # S$Swhere3 gets -1

And here is its loop form. In this example, instead of starting at -1, we start at the
position one beyond the last position. The length of the string is one greater than the
zero-based last position:

use v5.10;

246 | Chapter 14: Strings and Sorting

my $fred = "Yabba dabba doo!";

my @where = ();

my Swhere = length $fred;

while(1) {
Swhere = rindex($fred, "abba", Swhere - 1);
last if $where == -1;
push @where, Swhere;

}

say "Positions are @where";

Manipulating a Substring with substr

The substr function works with only a part of a larger string. It looks like this:
my Spart = substr($string, $initial_position, $length);

It takes three arguments: a string value, a zero-based initial position (such as
the return value of index), and a length for the substring. The return value is the
substring:

my $mineral = substr("Fred J. Flintstone", 8, 5); # gets "Flint"

my $rock = substr "Fred J. Flintstone", 13, 1000; # gets "stone"
The third argument to substr is the length of the substring you want. It’s always
going to be the length no matter how badly we want it to be the end position.

As you may have noticed in the previous example, if the requested length (1000 char-
acters, in this case) would go past the end of the string, Perl won’t complain, but you
get a shorter string than you might have expected. But if you want to be sure to go to
the end of the string, however long or short it may be, just omit that third parameter
(the length), like this:

my $pebble = substr "Fred J. Flintstone", 13; # gets "stone"

The initial position of the substring in the larger string can be negative, counting
from the end of the string (that is, position -1 is the last character). In this example,
position -3 is three characters from the end of the string, which is the location of the
letter i:

my $out = substr("some very long string", -3, 2); # Sout gets "in

As you might expect, index and substr work well together. In this example, you can
extract a substring that starts at the location of the letter 1:

my $long = "some very very long string";
my $right = substr($long, index($long, "1"));

Now here’s something really cool—you can change the selected portion of the string if
the string is a variable:

Manipulating a Substring with substr | 247

my $string = "Hello, world!";

substr($string, 0, 5) = "Goodbye"; # "Goodbye, world!"
As you can see, the assigned (sub)string doesn’t have to be the same length as the sub-
string it’s replacing. The string’s length is adjusted to fit.

If you give it a length of 0, you can insert text without removing anything:
substr($string, 9, 0) = "cruel "; # "Goodbye, cruel world!";

Or if that wasn't cool enough to impress you, you could use the binding operator (=~)
to restrict an operation to work with just part of a string. This example replaces fred
with barney wherever possible within just the last 20 characters of a string:

substr($string, -20) =~ s/fred/barney/g;

Much of the work that you do with substr and index you could also do with regular
expressions. Use those where they’re appropriate. But substr and index can often be
faster, since they don’t have the overhead of the regular expression engine: theyre
never case-insensitive, they have no metacharacters to worry about, and they don’t set
any of the capture variables.

Besides assigning to the substr function (which looks a little weird at first glance,
perhaps), you can also use substr in a slightly more traditional manner with the
four-argument version, in which the fourth argument is the replacement substring:

my $previous_value = substr($string, 0, 5, "Goodbye");

The previous value comes back as the return value, although as always, you can use
this function in a void context to simply discard it.

Formatting Data with sprintf

The sprintf function takes the same arguments as printf (except for the optional
filehandle, of course), but it returns the requested string instead of printing it. This is
handy if you want to store a formatted string in a variable for later use, or if you want
more control over the result than printf alone would provide:
my $date_tag = sprintf

"%4d/%02d/%02d %2d:%02d:%02d",

$yr, Smo, $da, $h, $m, $s;
In that example, $date_tag gets something like "2038/01/19 3:00:08". The format
string (the first argument to sprintf) used a leading zero on the format width num-
ber, which we didn’t mention when we talked about printf formats in Chapter 5. The
leading zero on the format number means to use leading zeros as needed to make the
number as wide as requested. Without a leading zero in the formats, the resulting
date-and-time string would have unwanted leading spaces instead of zeros, looking
like "2038/ 1/19 3: 0: 8".

248 | Chapter 14: Strings and Sorting

Using sprintf with “Money Numbers”

One popular use for sprintf is when you want to format a number with a certain
number of places after the decimal point, such as when you want to show an amount
of money as 2.50 and not 2.5—and certainly not as 2.49997! That’s easy to accom-
plish with the "%.2f" format:

my $money = sprintf "%.2f", 2.49997;

The full implications of rounding are numerous and subtle, but in most cases you
should keep numbers in memory with all of the available accuracy, rounding oft only
for output.

If you have a “money number” that may be large enough to need commas to show its
size, you might find it handy to use a subroutine like this one:

sub big_money {
my Snumber = sprintf "%.2f", shift @_;
Add one comma each time through the do-nothing loop
1 while $number =~ s/A(-?\d+)(\d\d\d)/$1,52/;
Put the dollar sign in the right place
$number =~ s/7(-?)/$1\$/;
Snumber;

}
This subroutine uses some techniques you haven't seen yet, but they logically follow
from what we've shown you. The first line of the subroutine formats the first (and
only) parameter to have exactly two digits after the decimal point. That is, if the
parameter were the number 12345678.9, now your S$number is the string
"12345678.90".

The next line of code uses a while modifier. As we mentioned when we covered that
modifier in Chapter 10, that can always be rewritten as a traditional while loop:

while ($number =~ s/A(-?\d+)(\d\d\d)/$1,$2/) {
1;
}

In this example, we hardcoded the comma as the thousands separa-
tor. The Number::Format and CLDR::Number modules are more
interesting to people who really care about these things.

What does that say to do? It says that as long as the substitution returns a true value
(signifying success), the loop body should run. But the loop body does nothing!
That's OK with Perl, but it tells us that the purpose of that statement is to do the con-
ditional expression (the substitution) rather than the useless loop body. The value 1 is

Formatting Data with sprintf | 249

traditionally used as this kind of a placeholder, although any other value would be
equally useful. This works just as well as the loop from before:

'keep looping' while $number =~ s/A(-?\d+)(\d\d\d)/s$1,52/;

So, now you know that the substitution is the real purpose of the loop. But what is the
substitution doing? Remember that $number is some string like "12345678.90" at this
point. The pattern will match the first part of the string, but it can’t get past the deci-
mal point. (Do you see why it can't?) Memory $1 will get "12345", and $2 will get
"678", so the substitution will make $number into "12345,678.90" (remember, it
couldn’t match the decimal point, so the last part of the string is left untouched).

Do you see what the dash is doing near the start of that pattern? (Hint: the dash is
allowed at only one place in the string.) We'll tell you at the end of this section, in case
you haven't figured it out.

Youre not done with that substitution statement yet. Since the substitution succee-
ded, the do-nothing loop goes back to try again. This time, the pattern can’t match
anything from the comma onward, so $number becomes "12,345,678.90". The sub-
stitution thus adds a comma to the number each time through the loop.

Speaking of the loop, it’s still not done. Since the previous substitution was a success,
you’re back around the loop to try again. But this time, the pattern can’t match at all,
since it has to match at least four digits at the start of the string, so now that is the end
of the loop.

Why couldn’t you have simply used the /g modifier to do a “global” search-and-
replace, to save the trouble and confusion of the 1 while? You couldn’t use that
because youre working backward from the decimal point rather than forward from
the start of the string. You can’t put the commas in a number like this simply with the
s///g substitution alone. So, did you figure out the dash? It allows a possible minus
sign at the start of the string. The next line of code makes the same allowance, putting
the dollar sign in the right place so that $number is something like "$12,345,678.90",
or perhaps "-$12,345,678.90" if it’s negative. Note that the dollar sign isn't necessar-
ily the first character in the string, or that line would be a lot simpler. Finally, the last
line of code returns your nicely formatted “money number;” which you can print in
the annual report.

Advanced Sorting

In Chapter 3, we showed that you could sort a list in ascending order by using the
built-in sort operator. What if you want a numeric sort? Or a case-insensitive sort?
Or maybe you want to sort items according to information stored in a hash. Well,
Perl lets you sort a list in whatever order youd need; you'll see all of those examples
by the end of the chapter.

250 | Chapter 14: Strings and Sorting

You'll tell Perl what order you want by making a sort-definition subroutine, or sort
subroutine for short. Now, when you first hear the term “sort subroutine,” if you've
been through any computer science courses, visions of bubble sort and shell sort and
quick sort race through your head, and you say, “No, never again!” Don’t worry; it’s
not that bad. In fact, it’s pretty simple. Perl already knows how to sort a list of items; it
merely doesn't know which order you want. So the sort-definition subroutine simply
tells it the order.

Why is this necessary? Well, if you think about it, sorting is putting a bunch of things
in order by comparing them all. Since you can’t compare them all at once, you need
to compare two at a time, eventually using what you find out about each pair’s order
to put the whole kit and caboodle in line. Perl already understands all of those steps
except for the part about how youd like to compare the items, so that’s all you have
to write.

This means that the sort subroutine doesn’t need to sort many items after all. It
merely has to be able to compare two items. If it can put two items in the proper
order, Perl will be able to tell (by repeatedly consulting the sort subroutine) what
order you want for your data.

The sort subroutine is defined like an ordinary subroutine (well, almost). This rou-
tine will be called repeatedly, each time checking on a pair of elements from the list
you’re sorting.

Now, if you were writing a subroutine that’s expecting to get two parameters that
need sorting, you might write something like this to start:
sub any_sort_sub { # It doesn't really work this way

my($a, $b) = @_; # Get and name the two parameters
start comparing $a and $b here

}...

But you're going to call that sort subroutine again and again, often hundreds or thou-
sands of times. Declaring the variables $a and $b and assigning them values at the top
of the subroutine will take just a little time, but multiply that by the thousands of
times you will call the routine and you can see that it contributes significantly to the
overall execution speed.

You don't do it like that. (In fact, if you did it that way, it wouldn’t work.) Instead, it is
as if Perl has done this for you, before your subroutine’s code has even started. You'll
really write a sort subroutine without that first line; both $a and $b have been
assigned for you. When the sort subroutine starts running, $a and $b are two ele-
ments from the original list.

The subroutine returns a coded value describing how the elements compare (like C’s
gsort(3) does, but it’s Perl's own internal sort implementation). If $a should appear

Advanced Sorting | 251

before $b in the final list, the sort subroutine returns -1 to say so. If $b should appear
before $a, it returns 1.

If the order of $a and $b doesn’t matter, the subroutine returns 6. Why would it not
matter? Perhaps you're doing a case-insensitive sort and the two strings are fred and
Fred. Or perhaps you're doing a numeric sort and the two numbers are equal.

You could now write a numeric sort subroutine like this:

sub by_number {
a sort subroutine, expect $a and $b
if ($a < $b) { -1 } elsif ($a >3%b) {1} else { 0}
}
To use the sort subroutine, just put its name (without an ampersand) between the
keyword sort and the list youre sorting. This example puts a numerically sorted list
of numbers into @result:

my @result = sort by_number @some_numbers;

You can call this subroutine by_number to describe how it sorts. But more impor-
tantly, you can read the line of code that uses it with sort as saying “sort by number;
as you would in English. Many people start their sort-subroutine names with by_ to
describe how they sort. Or you could have called this one numerically for a similar
reason, but that's more typing and more chance to mess up something.

Notice that you don’t have to do anything in the sort subroutine to declare $a and $b
and set their values—and if you did, the subroutine wouldn’t work right. We just let
Perl set up $a and $b for us, so all you need to write is the comparison.

In fact, you can make it even simpler (and more efficient). Since this kind of three-
way comparison is frequent, Perl has a convenient shortcut to use to write it. In this
case, you use the spaceship operator (<=>). This operator compares two numbers and
returns -1, 0, or 1 as needed to sort them numerically. So you could write that sort
subroutine better, like this:

sub by_number { $a <=> $b }

Since the spaceship compares numbers, you may have guessed that there’s a corre-
sponding three-way string-comparison operator: cmp. These two are easy to remem-
ber and keep straight. The spaceship has a family resemblance to the numeric
comparison operators like >=, but it’s three characters long instead of two because it
has three possible return values instead of two. And cmp has a family resemblance to
the string comparison operators like ge, but it’s three characters long instead of two
because it also has three possible return values instead of two. Of course, cmp by itself
provides the same order as the default sort. Youd never need to write this subroutine,
which yields merely the default sort order:

252 | Chapter 14: Strings and Sorting

sub by_code_point { $a cmp Sb }

my @strings = sort by_code_point @any_strings;
But you can use cmp to build a more complex sort order, like a case-insensitive sort:
sub case_insensitive { "\F$a" cmp "\F$b" }

In this case, youre comparing the string from $a (case-folded) against the string from
$b (case-folded), giving a case-insensitive sort order.

But remember that Unicode has the concept of canonical and compatible equiva-
lence, which we cover in Appendix C. To sort equivalent forms next to each other,
you need to sort the decomposed form. If you are dealing with Unicode strings, this is
probably what you want most of the time:

use Unicode::Normalize;

sub equivalents { NFKD($a) cmp NFKD(Sb) }

Note that youre not modifying the elements themselves in any of these; you're merely
using their values. That’s actually important: for efficiency reasons, $a and $b aren't
copies of the data items. They’re actually new, temporary aliases for elements of the
original list, so if you change them, you mangle the original data. Don’t do that—it’s
neither supported nor recommended.

When your sort subroutine is as simple as the ones you see here (and most of the
time, it is), you can make the code even simpler yet, by replacing the name of the sort
routine with the entire sort routine “inline,” like so:

my @numbers = sort { $a <=> $b } @some_numbers;

In fact, in modern Perl, you’ll hardly ever see a separate sort subroutine; you’ll fre-
quently find sort routines written inline as we've done here.

Suppose you want to sort in descending numeric order. That’s easy enough to do with
the help of reverse:

my @descending = reverse sort { $a <=> $b } @some_numbers;

But here’s a neat trick. The comparison operators (<=> and cmp) are very nearsighted;
that is, they can’t see which operand is $a and which is $b, but only which value is on
the left and which is on the right. So if $a and $b were to swap places, the comparison
operator would get the results backward every time. That means that this is another
way to get a reversed numeric sort:

my @descending = sort { $b <=> $a } @some_numbers;

You can (with a little practice) read this at a glance. It’s a descending-order compari-
son (because $b comes before $a, which is descending order), and it’s a numeric com-
parison (because it uses the spaceship instead of cmp). So it is sorting numbers in

Advanced Sorting | 253

reverse order. (In modern Perl versions, it doesn’t matter much which one of those
you do, because reverse is recognized as a modifier to sort, and special shortcuts are
taken to avoid sorting it one way just to have to turn it around the other way.)

Sorting a Hash by Value

Once you've been sorting lists happily for a while, you’ll run into a situation where
you want to sort a hash by value. For example, three of our characters went out bowl-
ing last night, and you have their bowling scores in the following hash. You want to
be able to print out the list in the proper order, with the game winner at the top, so
you have to sort the hash by score:

my %score = ("barney" => 195, "fred" => 205, "dino" => 30);

my @winners = sort by_score keys %score;
Of course, you aren’t really going to be able to sort the hash by score; that’s just a ver-
bal shortcut. You can’t sort a hash! But when you used sort with hashes before now,
you sorted the keys of the hash (in code point order). Now, you're still going to sort
the keys of the hash, but the order is now defined by their corresponding values from
the hash. In this case, the result should be a list of our three characters names, in
order according to their bowling scores.

Writing this sort subroutine is fairly easy. What you want is to use a numeric compar-
ison on the scores rather than the names. That is, instead of comparing $a and $b (the
players’ names), you want to compare $score{$a} and $score{$b} (their scores). If
you think of it that way, it almost writes itself, as in:

sub by_score { $score{$b} <=> $score{$a} }

Step through this to see how it works. Imagine that the first time it’s called, Perl has
set $a to barney and $b to fred. So the comparison is $score{"fred"} <=>
$score{"barney"}, which (as you can see by consulting the hash) is 205 <=> 195.
Remember, now, the spaceship is nearsighted, so when it sees 205 before 195, it says,
in effect: “No, that’s not the right numeric order; $b should come before $a.” So it tells
Perl that fred should come before barney.

Maybe the next time the routine is called, $a is barney again but $b is now dino. The
nearsighted numeric comparison sees 30 <=> 195 this time, so it reports that they’re
in the right order; $a does indeed sort in front of $b. That is, barney comes before
dino. At this point, Perl has enough information to put the list in order: fred is the
winner, then barney in second place, then dino.

Why did the comparison use the $score{$b} before the $score{$a}, instead of the
other way around? That’s because you want bowling scores arranged in descending
order, from the highest score of the winner down. So you can (again, after a little

254 | Chapter 14: Strings and Sorting

practice) read this one at sight as well: $score{$b} <=> $score{$a} means to sort
according to the scores, in reversed numeric order.

Sorting by Multiple Keys

We forgot to mention that there was a fourth player bowling last night with the other
three, so the hash really looked like this:

my %score = (
"barney" => 195, "fred" => 205,
"dino" => 30, "bamm-bamm" => 195,
);
Now, as you can see, bamm-bamm has the same score as barney. So which one will
be first in the sorted list of players? There’s no telling, because the comparison opera-
tor (seeing the same score on both sides) will have to return zero when checking
those two.

Maybe that doesn’t matter, but you generally prefer to have a well-defined sort. If sev-
eral players have the same score, you want them to be together in the list, of course.
But within that group, the names should be in code point order. How can you write
the sort subroutine to say that? Again, this turns out to be pretty easy:

my @winners = sort by_score_and_name keys %score;

sub by_score_and_name {
$score{Sb} <=> $score{$a} # by descending numeric score
or

$a cmp $b # code point order by name

}
How does this work? Well, if the spaceship sees two different scores, thats the com-
parison you want to use. It returns -1 or 1, a true value, so the low-precedence short-
circuit or will mean the rest of the expression will be skipped, and the comparison
you want is returned. (Remember, the short-circuit or returns the last expression
evaluated.) But if the spaceship sees two identical scores, it returns 0, a false value,
and thus the cmp operator gets its turn at bat, returning an appropriate ordering value
considering the keys as strings. That is, if the scores are the same, the string-order
comparison breaks the tie.

You know that when you use the by_score_and_name sort subroutine like this, it will
never return 0, because no two hash keys are equal. So you know that the sort order is
always well defined; that is, you know that the result today will be the same as the
result with the same data tomorrow.

There’s no reason that your sort subroutine has to be limited to two levels of sorting,
of course. Here the Bedrock Library program puts a list of patron ID numbers in
order according to a five-level sort. This example sorts according to the amount of

Advanced Sorting | 255

each patrons outstanding fines (as calculated by a subroutine &fines, not shown
here), the number of items they currently have checked out (from %items), their
name (in order by family name, then by personal name, both from hashes), and
finally by the patron’s ID number, in case everything else is the same:

@patron_IDs = sort {
&fines($b) <=> &fines($a) or
Sitems{$b} <=> $items{$a} or
Sfamily_name{$a} cmp $family_name{$b} or
Spersonal_name{$a} cmp Spersonal_name{Sb} or
$a <=> $b

} @patron_IDs;

Exercises

See “Answers to Chapter 14 Exercises” on page 322 for answers to these exercises:

1. [10] Write a program to read in a list of numbers and sort them numerically,
printing out the resulting list in a right-justified column. Try it out on this sample
data:

17 1000 04 1.50 3.14159 -10 1.5 4 2001 90210 666

2. [15] Make a program that will print the following hash’s data sorted in case-
insensitive alphabetical order by last name. When the last names are the same,
sort those by first name (again, without regard for case). That is, the first name in
the output should be Fred’s, while the last one should be Betty’s. All of the people
with the same family name should be grouped together. Don't alter the data. The
names should be printed with the same capitalization as shown here:

my %last_name = qw{
fred flintstone Wilma Flintstone Barney Rubble
betty rubble Bamm-Bamm Rubble PEBBLES FLINTSTONE

IH
3. [15] Make a program that looks through a given string for every occurrence of a
given substring, printing out the positions where the substring is found. For
example, given the input string "This is a test." and the substring "is", it
should report positions 2 and 5. If the substring were "a", it should report 8.
What does it report if the substring is "t"?

256 | Chapter 14: Strings and Sorting

CHAPTER 15
Process Management

One of the best parts of being a programmer is launching someone else’s code so that
you don’t have to write it yourself. It’s time to learn how to manage your children—
child processes, that is—by launching other programs directly from Perl.

And like everything else in Perl, There’s More Than One Way To Do It, with lots of
overlap, variations, and special features. So, if you don’t like the first way, just read on
for another page or two for a solution more to your liking.

Perl is very portable; most of the rest of this book doesn’t need many notes saying that
it works this way in Unix systems and that way in Windows and some other way on
VMS. But when you're starting other programs on your machine, different programs
are available on a Macintosh than what you’ll likely find on an old Cray (which used
to be a “super” computer). The examples in this chapter are primarily Unix based; if
you have a non-Unix system, you can expect to see some differences.

The system Function

The simplest way to launch a child process in Perl to run a program is with the sys
tem function. For example, to invoke the Unix date command from within Perl, you
tell system that’s the program you want to run:

system 'date';

These commands depend on your system, what it provides, and how it implements
those commands. They aren’t Perl, but something Perl asks the system to do for your
program. The same Unix command might have different calling conventions and
options on different versions of that operating system.

257

If you are using Windows, that code will show you the date but also prompt you to
enter a new date. Your program will wait for you to enter a new date. You probably
want the /T switch to suppress that:

system 'date /T';

You run that from the parent process. When it runs, the system command creates an
identical copy of your Perl program, called the child process. The child process imme-
diately changes itself into the command that you want to run, such as date, sharing
Perl’s standard input, standard output, and standard error. This means that the nor-
mal short date-and-time string generated by date ends up wherever Perl's STDOUT was
already going.

The parameter to the system function is generally whatever you normally type at the
shell. So, if it were a more complicated command, like Is -] $HOME to list the con-
tents of your home directory, you could put all that into the parameter:

system 'ls -1 SHOME';

That $HOME is a shell variable that knows the path to your home directory. It’s not a
Perl variable and you don’t want to interpolate it. If you had it in double quotes, youd
have to escape the $ to prevent the interpolation:

system "1s -1 \$HOME";

On Windows, the same task uses the dir command. The % signs belong to the com-
mand, not a Perl variable. But hashes don’t interpolate in double-quoted strings, so
you don’t need to escape them:

system "cmd /c dir %userprofile%"

If you have Cygwin or MinGW installed, some of the Windows
command shell commands may run something different than what
you expect. Using cmd /c ensures that you get the Windows ver-
sion.

Now, the normal Unix date command is output-only, but let’s say it’s a chatty com-
mand, asking first “for which time zone do you want the time?”, or that the Windows
version prompts you for the new date. That message ends up on standard output and
the program listens on standard input (inherited from Perl’s STDIN) for the response.
You see the question, and type in the answer (like “Zimbabwe time”), and then date
will finish its duty.

While the child process is running, Perl patiently waits for it to finish. So if the date
command takes 37 seconds, Perl pauses for those 37 seconds. You can use the shell’s
facility to launch a background process, however:

system "long_running_command with parameters &";

258 | Chapter 15: Process Management

Here, the shell gets launched, which then notices the ampersand at the end of the
command line, causing the shell to put long_running_command into the background.
And then the shell exits rather quickly; Perl notices this and moves on. In this case,
the long_running_command is really a grandchild of the Perl process, to which Perl
really has no direct access or knowledge.

Windows doesn’t have a backgrounding mechanism, but start can run the command
without your program waiting for it:

system 'start /B long_running_command with parameters'

»

When a command is “simple enough,” no shell gets involved. So for the date and Is
commands earlier, Perl directly launched your requested command, which searches
the inherited PATH to find the command, if necessary. But if there’s anything weird in
the string (such as shell metacharacters like the dollar sign, semicolon, or vertical
bar), Perl invokes the standard Bourne Shell (/bin/sh) in Unix or the shell set in the
PERL5SHELL environment variable in Windows (by default, that's cmd /x/d/c).

The PATH is the list of directories your system searches to find pro-
grams. You can change PATH by adjusting SENV{'PATH'} at any
time.

For example, you can write an entire little shell script in the argument. This one
prints the contents of all the (nonhidden) files in the current directory:

system 'for 1 in *; do echo == $1 ==; cat $i; done';

Here, again, you're using single quotes because the dollar signs are for the shell and
not for Perl. Double quotes would allow Perl to interpolate $1i to its current Perl value
and not let the shell expand it to its own value.

On Windows you don’t have those interpolation issues. The /R works recursively, so
you might end up with a long list of files:

system 'for /R %i in (*) DO echo %i & type %i'

Note that your ability to do this doesn't mean it’s wise for you to do this. You know it’s
possible, but often there’s a pure Perl solution that will do the same thing. On the
other hand, Perl is a glue language meant to work in the ugly spaces between pro-
grams that need to coordinate with each other.

The system Function | 259

Avoiding the Shell

The system operator may also be invoked with more than one argument, in which
case a shell doesn’t get involved, no matter how complicated the text:

my Starfile = 'something*wicked.tar';
my @irs = qw(fred|flintstone <barney&rubble> betty);
system 'tar', 'cvf', Starfile, @dirs;

system can use an indirect object, such as system { 'fred' }
'barney';, which runs the program barney, but lies to it so that it
thinks it’s called 'fred'. See the perlsec documentation or Master-
ing Perl’s security chapter for more details.

In this case, the first parameter ('tar' here) gives the name of a command found in
the normal PATH-searching way, while Perl passes the remaining arguments one by
one, directly to that command. Even if the arguments have shell-significant charac-
ters, such as the name in $tarfile or the directory names in @dirs, the shell never
gets a chance to mangle the string. That tar command will get precisely five parame-
ters. Compare that with this security problem:

system "tar cvf Starfile @dirs"; # Oops!

Here, you've now piped a bunch of stuff into a flintstone command, put it into the
background, and opened betty for output. That’s a relatively tame effect, but what if
@dirs was something more interesting, such as:

my @irs = qw(; rm -rf /);

It doesn’t matter that @dirs is a list, because Perl simply interpolates it into the single
string to pass to system.

And that’s a bit scary, especially if those variables are from user input—such as from a
web form or something. So if you can arrange things so that you can use the multiple-
argument version of system, you probably should use that way to launch your sub-
process. You'll have to give up the ability to have the shell do the work for you to set
up I/O redirection, background processes, and the like, though. There’s no such thing
as a free lunch.

Note that redundantly, a single-argument invocation of system is nearly equivalent to

the proper multiple-argument version of system:

system $command_line;
system '/bin/sh', '-c', $command_line;

But nobody writes the latter since that's what Perl does already. If you want things
processed by a different shell, like the C-shell, you can specify that:

260 | Chapter 15: Process Management

https://perldoc.perl.org/perlsec
https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/
https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/

system '/bin/csh', '-fc', $command_line;

This is also handy for handling whitespace in filenames since the shell doesn’t step in
to break up the arguments. This command sees exactly one filename:

system 'touch', 'name with spaces.txt';
See Mastering Perl for a longer discussion of the security features of

the list form of system. The perlsec documentation comes in handy
too.

On Windows, you can set the $ENV{PERL5SHELL} value to be the shell that you want.
You'll see environment variables in the next section, so keep reading.

The return value of the system operator is based on the exit status of the child
command:

unless (system 'date') {
Return was zero, meaning success
print "We gave you a date, OK!\n";
}
An exit value of 0 usually means that everything is OK, and a nonzero exit value usu-
ally indicates that something went wrong. This is part of the “0 but true” notion that
the value of zero is a good thing. This is backward from the normal “true is good—
false is bad” strategy for most of the operators, so to write a typical “do this or die”
style, we'll need to flip false and true. The easiest way is to simply prefix the system
operator with a bang (the logical-not operator):

Isystem 'rm -rf files_to_delete' or die 'something went wrong';

In this case, including $! in the error message is not appropriate, because the failure
is most likely somewhere within the experience of the external rm command, and its
not a system-related error within Perl that $! can reveal.

Don't rely on this behavior, though. It’s up to each command to decide what it wants
to return. Some values may be nonzero but also indicate success. If that’s the case, you
need to inspect the return value more closely.

The system return value is two octets. The “high” octet has the exit value of the pro-
gram. If you want that, you need to shift the bits down eight bits (remember the bit
operators from Chapter 12):

my $return_value = system(...);
my $child_exit_code = Sreturn_value >> 8;

The system Function | 261

https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/
https://perldoc.perl.org/perlsec

The “low” octet combines several things. The highest bit notes if a core dump hap-
pened. The hexadecimal and binary representations (recall them from Chapter 2) can
help mask out the parts you don’t want:

Sreturn_value & OxFF; # mask out high octet
$low_octet & 0b1_0000000; # 128
Slow_octet & 0b0111_1111; # Ox7f, or 127

my Slow_octet
my $dumped_core
my S$signal_number

Since Windows doesn’t have signals, the bits in these positions may have other
meanings.

Your system may have a more specific error message in the variable
$~E or ${~CHILD_ERROR_NATIVE}. See perlrun and the POSIX mod-
ule (especially the W* macros to decode signals).

The Environment Variables

When you're starting another process (with any of the methods we show here), you
may need to set up its environment in one way or another. As we mentioned earlier,
you could start the process with a certain working directory, which it inherits from
your process. Another common configuration detail is the environment variables.

One of the best-known environment variables is PATH. (If you've never heard of it,
you probably haven’t used a system that has environment variables.) On Unix and
similar systems, PATH is a colon-separated list of directories that may hold programs.
When you type a command like rm fred, the system will look for the rm command in
that list of directories, in order. Perl (or your system) will use PATH whenever it needs
to find the program to run. If the program in turn runs other programs, those may
also be found along the PATH. (Of course, if you give a complete name for a com-
mand, such as /bin/echo, there’s no need to search PATH. But that’s generally much less
convenient.)

In Perl, the environment variables are available via the special ¥ENV hash; each key in
this hash represents one environment variable. At the start of your program’s execu-
tion, %ENV holds values it has inherited from its parent process (generally the shell).
Modifying this hash changes the environment variables, which will then be inherited
by new processes and possibly used by Perl as well. For example, suppose you wished
to run the system’s make utility (which typically runs other programs), and you want
to use a private directory as the first place to look for commands (including make
itself). And let’s say that you don’t want the IFS environment variable to be set when
you run the command, because that might cause make or some subcommand to do
the wrong thing. Here we go:

262 | Chapter 15: Process Management

https://perldoc.perl.org/perlrun

SENV{'PATH'} = "/home/rootbeer/bin:SENV{'PATH'}";

delete SENV{'IFS'};

my $make_result = system 'make';
Different systems construct their paths differently. Unix uses colons, but Windows
uses semicolons, for instance. This is your constant headache of working with exter-
nal programs. You have to know a lot that isn't Perl. But Perl knows about the system
it runs on, and you can find out what it knows with the Config module through its
%Config variable. Instead of assuming the PATH separator as you did in the previous
example, you could use join with a glue string you get from %Config:

use Config;
SENV{'PATH'} = join $Config{'path_sep'},
' [home/rootbeer/bin', SENV{'PATH'};

Newly created processes will generally inherit from their parent the environment
variables, the current working directory, the standard input, output, and error
streams, and a few more esoteric items. See the documentation about programming
on your system for more details. (But on most systems, your program can’t change
the environment for the shell or other parent process that started it.)

The exec Function

Everything we've just said about system syntax and semantics is also true about the
exec function, except for one (very important) thing. The system function creates a
child process, which then scurries off to perform the requested action while Perl naps.
The exec function causes the Perl process itself to perform the requested action.
Think of it as more like a “goto” than a subroutine call.

For example, suppose you wanted to run the bedrock command in the /tmp directory,
passing it arguments of -0 argsl followed by whatever arguments your own program
was invoked with. Thatd look like this:

chdir '/tmp' or die "Cannot chdir /tmp: $!";

exec 'bedrock', '-o', 'argsl', @ARGV;
When you reach the exec operation, Perl locates bedrock and “jumps into it” At that
point, there is no Perl process anymore, even though it’s the same process, having
performed the Unix exec system call (or equivalent). The process ID remains the
same, but it’s now just the process running the bedrock command. When bedrock fin-
ishes, there’s no Perl to come back to.

Why is this useful? Sometimes you want to use Perl to set up the environment for a
program. You can affect environment variables, change the current working direc-
tory, and change the default filehandles:

SENV{PATH} '/bin:/usr/bin';
SENV{DEBUG} 1;

The execFunction | 263

SENV{ROCK} = 'granite';

chdir '/Users/fred';
open STDOUT, 's>', '/tmp/granite.out';

exec 'bedrock';

If you use system instead of exec, you have a Perl program just standing around tap-
ping its toes, waiting for the other program to complete just so Perl could finally
immediately exit as well, and that wastes a resource.

Having said that, it’s actually quite rare to use exec, except in combination with fork
(which you'll see later). If you are puzzling over system versus exec, just pick system,
and nearly all of the time you’ll be just fine.

Because Perl is no longer in control once the requested command has started, it
doesn’t make any sense to have any Perl code following the exec, except for handling
the error when the requested command cannot be started:

exec 'date';
die "date couldn't run: $!";

Using Backquotes to Capture Output

With both system and exec, the output of the launched command ends up wherever
Perl’s standard output is going. Sometimes it’s interesting to capture that output as a
string value to perform further processing. And thats done simply by creating a
string using backquotes instead of single or double quotes:

my $now = ‘date’; # grab the output of date

print "The time is now Snow"; # newline already present
Normally, this date command spits out a string approximately 30 characters long to
its standard output, giving the current date and time followed by a newline. When
you've placed date between backquotes, Perl executes the date command, arranging
to capture its standard output as a string value, and in this case assigning it to the
$now variable.

This is very similar to the Unix shell’s meaning for backquotes. However, the shell
also performs the additional job of ripping off the final end-of-line to make it easier
to use the value as part of other things. Perl is honest; it gives the real output. To get
the same result in Perl, you can simply add an additional chomp operation on the
result:

chomp(my $no_newline_now = ‘date’);

print "A moment ago, it was $no_newline_now, I think.\n";
The value between backquotes is just like the single-argument form of system and is
interpreted as a double-quoted string, meaning that backslash-escapes and variables

264 | Chapter 15: Process Management

are expanded appropriately. For example, to fetch the Perl documentation on a list of
Perl functions, we might invoke the perldoc command repeatedly, each time with a
different argument:

my @functions = gqw{ int rand sleep length hex eof not exit sqrt umask };
my %about;

foreach (@functions) {
Sabout{$_} = ‘perldoc -t -f $_°;
}
Note that $_ has a different value for each invocation, letting you grab the output of a
different command that varies in only one of its parameters. Also note that if you
haven’t seen some of these functions yet, it might be useful to look them up in the
documentation to see what they do!

Instead of the backquotes, you can use the generalized quoting operator, qx(), that
does the same thing:

foreach (@functions) {
Sabout{$_} = gx(perldoc -t -f $_);

}
As with the other generalized quotes, you mainly use this when the stuff inside the
quotes also contains the default delimiter. If you want to have a literal backquote in
your command, you can use the gx() mechanism to avoid the hassle of escaping the
offending character. There’s another benefit to generalized quoting: if you use the sin-
gle quote as the delimiter, the quoting does not interpolate anything. If you want to
use the shell’s process ID variable, $$, instead of Perls, you use qx'' to avoid the
interpolation:

my Soutput = gqx'echo $$';

At the risk of actually introducing the behavior by demonstrating how not to do it,
wed also like to suggest that you avoid using backquotes in a place where the value
isn’t being captured. For example:

print "Starting the frobnitzigator:\n";

‘frobnitz -enable’; # no need to do this if you ignore the string

print "Done!\n";
The problem is that Perl has to work a bit harder to capture the output of this com-
mand, even if you don't use it. This is known as void context and you should generally
avoid asking Perl to do work when you won’t use the result. You also lose the option
to use multiple arguments to system to precisely control the argument list. So from
both a security standpoint and an efficiency viewpoint, just use system instead,
please.

Using Backquotes to Capture Output | 265

Standard error of a backquoted command goes to the same place as Perl’s current
standard error output. If the command spits out error messages to the default stan-
dard error, you’ll probably see them on the terminal, which could be confusing to the
user who hasn't personally invoked the frobnitz command but still sees its errors.
If you want to capture error messages with standard output, you can use the shell’s
normal “merge standard error to the current standard output,” which is spelled 2>&1
in the normal Unix and Windows shells:

my Soutput_with_errors = “frobnitz -enable 2>&1°;

Note that this will intermingle the standard error output with the standard output,
much as it appears on the terminal (although possibly in a slightly different sequence
because of buffering). If you need the output and the error output separated, there are
many more flexible solutions, such as IPC::0pen3 in the standard Perl library, or
writing your own forking code, as you will see later. Similarly, standard input is inher-
ited from Perl’s current standard input. Most commands you typically use with back-
quotes do not read standard input, so that’s rarely a problem. However, let’s say the
date command asked which time zone (as we imagined earlier). That’ll be a problem
because the prompt for “which time zone” will be sent to standard output, which is
being captured as part of the value, and then the date command will start trying to
read from standard input. But since the user has never seen the prompt, they don’t
know they should be typing anything! Pretty soon, the user calls you up and tells you
your program is stuck.

So, stay away from commands that read standard input. If youre not sure whether
something reads from standard input, add a redirection from /dev/null for input, like
this for Unix:

my $result = ‘some_guestionable_command arg arg argh </dev/null’;
and like this for Windows:
my $result = ‘some_gquestionable_command arg arg argh < NUL";

Then the child shell will redirect input from the “null device,” and the questionable
grandchild command will, at worst, try to read and immediately get an end-of-file.

The Capture::Tiny and IPC::System::Simple modules can cap-
ture the output while handling the system-specific details for you.
Install them from CPAN.

266 | Chapter 15: Process Management

Using Backquotes in a List Context

The scalar context use of backquotes returns the captured output as a single long
string, even if it looks to you like there are multiple “lines” because it has newlines.
Computers don't care about lines, really. Thats something we care about and tell
computers to interpret for us. Those newlines are just another character as far as a
computer is concerned. However, using the same backquoted string in a list context
yields a list containing one line of output per element.

For example, the Unix who command normally spits out a line of text for each cur-
rent login on the system as follows:

merlyn tty/42 Dec 7 19:41
rootbeer console Dec 2 14:15
rootbeer tty/12 Dec 6 23:00

The left column is the username, the middle column is the TTY name (that is, the
name of the user’s connection to the machine), and the rest of the line is the date and
time of login (and possibly remote login information, but not in this example). In
a scalar context, we get all that at once, which we would then need to split up on
our own:

my $who_text = ‘who";
my @who_lines = split /\n/, $who_text;

But in a list context, we automatically get the data broken up by lines:
my @who_lines = ‘who";

You'll have a number of separate elements in @who_lines, each one terminated by a
newline. Of course, adding a chomp around the outside of that will rip off those new-
lines, but you can go in a different direction. If you put that as part of the value for a
foreach, you'll iterate over the lines automatically, placing each one in $_:

foreach (“who) {
my($user, Stty, $date) = /(\S+)\s+(\S+)\s+(.*)/;
Sttys{Suser} .= "$Stty at Sdate\n";
}
This loop will iterate three times for the sample who output. (Your system will proba-
bly have more than three active logins at any given time.) Notice that you have a reg-
ular expression match, and in the absence of the binding operator (=~), it matches
against $_—which is good, because that’s where the data is.

Also notice the regular expression looks for a nonblank word, some whitespace, a
nonblank word, some whitespace, and then the rest of the line up to, but not includ-
ing, the newline (since dot doesn’t match newline by default). Thats also good,
because that’s what the data looks like each time in $_. That'll make $1 be merlyn, $2

Using Backquotes to Capture Output | 267

be tty/42, and $3 be Dec 7 19:41, as a successful match on the first time through
the loop.

Now you can see why dot (or \N) doesn’t match newline by default.
It makes it easy to write patterns like this one, in which we don’t
have to worry about a newline at the end of the string.

However, this regular expression match is in a list context, so you get the list of mem-
ories instead of the true/false “did it match” value, as you saw in Chapter 8. So, Suser
ends up being merlyn, and so on.

The second statement inside the loop simply stores away the TTY and date informa-
tion, appending to a (possibly undef) value in the hash, because a user might be
logged in more than once, as user rootbeer was in that example.

External Processes with IPC::System::Simple

Running or capturing output from external commands is tricky business, especially
since Perl aims to work on so many diverse platforms, each with its own way of doing
things. Paul Fenwick’s IPC: :System: :Simple module fixes that by providing a sim-
pler interface that hides the complexity of the operating system-specific stuff. It
doesn’t come with Perl (yet), so you have to get it from CPAN.

There’s really not that much to say about this module, because it is truly simple. You
can use it to replace the built-in system with its own, more robust version:

use IPC::System::Simple qw(system);

my $tarfile = 'something*wicked.tar';

my @irs = gqw(fred|flintstone <barney&rubble> betty);

system 'tar', 'cvf', $tarfile, @dirs;
It also provides a systemx that never uses the shell, so you should never have the
problem of unintended shell actions:

systemx 'tar', 'cvf', Starfile, @dirs;

If you want to capture the output, you change the system or systemx to capture or
capturex, both of which work like backquotes (but better):

my @output = capturex 'tar', 'cvf', Starfile, @dirs;

Paul put in a lot of work to ensure that these subroutines do the right thing under
Windows. There’s a lot more that this module can do to make your life easier,
although we'll refer you to the module documentation for that since some of
the fancier features require references, which we don’t show you until you read

268 | Chapter 15: Process Management

Intermediate Perl. If you can use this module, we recommend it over the built-in Perl
operators for the same thing.

Processes as Filehandles

So far, you've seen ways to deal with synchronous processes, where Perl stays in
charge, launches a command, (usually) waits for it to finish, then possibly grabs its
output. But Perl can also launch a child process that stays alive, communicating to
Perl on an ongoing basis until the task is complete.

The syntax for launching a concurrent (parallel) child process is to put the command
as the “filename” for an open call, and either precede or follow the command with a
vertical bar, which is the “pipe” character. For that reason, this is often called a piped
open. In the two-argument form, the pipe goes before or after the command that you
want to run:

open DATE, 'date|' or die "cannot pipe from date: $!";

open MAIL, '|mail merlyn' or die "cannot pipe to mail: $!";
In the first example, with the vertical bar on the right, Perl launches the command
with its standard output connected to the DATE filehandle opened for reading, similar
to the way that the command date | your_program would work from the shell. In the
second example, with the vertical bar on the left, Perl connects the command’s stan-
dard input to the MAIL filehandle opened for writing, similar to what happens with
the command your_program | mail merlyn. In either case, the command continues
independently of the Perl process. The open fails if Perl can’t start the child process. If
the command itself does not exist or exits erroneously, Per]l will not see this as an
error when opening the filehandle, but as an error when closing it. We'll get to that in
a moment.

If the Perl process exits before the command is complete, a com-
mand that’s been reading will see end-of-file, while a command
that’s been writing will get a “broken pipe” error signal on the next
write, by default.

The three-argument form is a bit tricky, because for the read filehandle, the pipe

character comes after the command. There are special modes for that, though. For

the filehandle mode, if you want a read filehandle, you use - |, and if you want a write

filehandle, you use | - to show which side of the pipe you want to place the command:
open my $date_fh, '-|', 'date' or die "cannot pipe from date: $!";

open my $mail_fh, '|-', 'maill merlyn'
or die "cannot pipe to mail: S$!";

Processes as Filehandles | 269

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

The pipe open can also take more than three arguments. The fourth and subsequent
arguments become the arguments to the command, so you can break up that com-
mand string to separate the command name from its arguments:
open my $mail_fh, '|-', 'mail', 'merlyn’'
or die "cannot pipe to mail: $!";
Sadly, the list form of the piped open doesn’t work in Windows. You’ll have to settle
for a module to do that for you.

Either way, for all intents and purposes, the rest of the program doesn’t know, doesn't
care, and would have to work pretty hard to figure out that this is a filehandle opened
on a process rather than on a file. So, to get data from a filehandle opened for reading,
you read the filehandle normally:

my $Snow = <$date_fh>;

And to send data to the mail process (waiting for the body of a message to deliver to
merlyn on standard input), a simple print-with-a-filehandle will do:

print $mail_fh "The time is now Snow"; # presume $now ends in newline

In short, you can pretend that these filehandles are hooked up to magical files, one
that contains the output of the date command, and one that will automatically be
mailed by the mail command.

If a process is connected to a filehandle that is open for reading, and then exits, the
filehandle returns end-of-file, just like reading up to the end of a normal file. When
you close a filehandle open for writing to a process, the process will see end-of-file.
So, to finish sending the email, close the handle:

close $mail_fh;

die "maill: nonzero exit of $?" if $?;
When closing a filehandle attached to a process, Perl waits for the process to com-
plete so that it can get the process’s exit status. The exit status is then available in the
$? variable (reminiscent of the same variable in the Bourne Shell) and is the same
kind of number as the value returned by the system function: zero for success, non-
zero for failure. Each new exited process overwrites the previous value, though, so
save it quickly if you want it. (The $? variable also holds the exit status of the most
recent system or backquoted command, if you're curious.)

The processes are synchronized just like a pipelined command. If you try to read and
no input is available, the process is suspended (without consuming additional CPU
time) until the sending program has started speaking again. Similarly, if a writing
process gets ahead of the reading process, the writing process is slowed down until
the reader starts to catch up. There’s a buffer (usually 8 KB or so) in between, so they
don’t have to stay precisely in lockstep.

270 | Chapter 15: Process Management

Why use processes as filehandles? Well, it’s the only easy way to write to a process
based on the results of a computation. But if you're just reading, backquotes are often
much easier to manage, unless you want to have the results as they come in.

For example, the Unix find command locates files based on their attributes, and it can
take quite a while if used on a fairly large number of files (such as starting from the
root directory). You can put a find command inside backquotes, but it’s often nicer to
see the results as they are found:

open my $find_fh, '-|',
'find', qw(/ -atime +90 -size +1000 -print)
or die "cannot pipe from find: $!";
while (<$find_fh>) {
chomp;
printf "%s size %dK last accessed %.2f days ago\n",
$_, (1023 + -s $_)/1024, -A $_;
}

That find command looks for all the files that have not been accessed within the past
90 days and that are larger than 1,000 blocks (these are good candidates to move to
longer-term storage). While find is searching and searching, Perl can wait. As it finds
each file, Perl responds to the incoming name and displays some information about
that file for further research. Had this been written with backquotes, you would not
see any output until the find command had completely finished, and it’s comforting
to see that it’s actually doing the job even before it’s done.

Getting Down and Dirty with fork

In addition to the high-level interfaces already described, Perl provides nearly direct
access to the low-level process management system calls of Unix and some other sys-
tems. If you've never done this before, you will probably want to skip this section.
While it’s a bit much to cover all that stuff in a chapter like this, let’s at least look at a
quick reimplementation of this:

system 'date’;
You can do that using the low-level system calls:

defined(my $pid = fork) or die "Cannot fork: $!";
unless ($pid) {
Child process is here
exec 'date';
die "cannot exec date: $!";
}
Parent process is here
wailtpid($pid, 0);

Getting Down and Dirty withfork | 271

Windows does not support a native fork, but Perl tries to fake it. If
you want to do this sort of thing, you can use Win32::Process or a
similar module for native process management.

Here, you check the return value from fork, which is undef if it failed. Usually it suc-
ceeds, causing two separate processes to continue to the next line, but only the parent
process has a nonzero value in $pid, so only the child process executes the exec func-
tion. The parent process skips over that and executes the waitpid function, waiting
for that particular child to finish (if others finish in the meantime, they are ignored).
If that all sounds like gobbledygook, just remember that you can continue to use the
systenm function without being laughed at by your friends.

When you go to this extra trouble, you also have full control over creating arbitrary
pipes, rearranging filehandles, and noticing your process ID and your parent’s pro-
cess ID (if knowable). But again, that’s all a bit complicated for this chapter, so see the
details in the perlipc documentation (and in any good book on application program-
ming for your system) for further information.

Sending and Receiving Signals

A Unix signal is a tiny message sent to a process. It can’t say much; it’s like a car horn
honking. Does that honk you hear mean “look out—the bridge collapsed” or “the
light has changed—get going” or “stop driving—you've got a baby on the roof” or
“hello, world”? Well, fortunately, Unix signals are a little easier to interpret than that
because there’s a different one for each of these situations. Well, not exactly these sit-
uations, but analogous Unix-like ones. For these, the signals are SIGHUP, SIGCONT,
SIGINT, and the fake SIGZERO (signal number zero).

Windows implements a subset of POSIX signals, so much of this
might not be true on that system.

Different signals are identified by a name (such as SIGINT, meaning “interrupt sig-
nal”) and a corresponding small integer (in the range from 1 to 16, 1 to 32, or 1 to 63,
depending on your Unix flavor). Programs or the operating system typically send sig-
nals to another program when a significant event happens, such as pressing the inter-
rupt character (typically Ctrl-C) on the terminal, which sends a SIGINT to all the
processes attached to that terminal. Some signals are sent automatically by the sys-
tem, but they can also come from another process.

272 | Chapter 15: Process Management

https://perldoc.perl.org/perlipc

You can send signals from your Perl process to another process, but you have to know
the target’s process ID number. How you figure that out is a bit complicated, but let’s
say you know that you want to send a SIGINT to process 4201. That’s easy enough if
you know that SIGINT corresponds to the number 2:

kill 2, 4201 or die "Cannot signal 4201 with SIGINT: $!";

It's named “kill” because one of the primary purposes of signals is to stop a process
that’s gone on long enough. You can also use the string 'INT' in place of the 2, so you
don’t have to know the number:

kill "INT', 4201 or die "Cannot signal 4201 with SIGINT: $!";
You can even use the => operator to automatically quote the signal name:
kill INT => 4201 or die "Cannot signal 4201 with SIGINT: $!";

On a Unix system, the kill command (not the Perl built-in) can translate between the
signal number and the name:

$ kill -1 2
INT

Or, given a name, it can give you the number:

$ kill -1 INT
2

With no argument to -1, it prints all the numbers and names:

$ kill -1

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGEMT 8) SIGFPE
9) SIGKILL 10) SIGBUS 11) SIGSEGV 12) SIGSYS

13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGURG
17) SIGSTOP 18) SIGTSTP 19) SIGCONT 20) SIGCHLD
21) SIGTTIN 22) SIGTTOU 23) SIGIO 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGINFO 30) SIGUSR1 31) SIGUSR2

If you try to interrupt a process that no longer exists or isn’t yours, you’ll get a false
return value.

You can also use this technique to see whether a process is still alive. A special signal
number of 0 says, “Just check to see whether I could send a signal if I wanted to, but I
don’t want to, so don’t actually send anything” So a process probe might look like:

unless (kill 0, $pid) {
warn "$pid has gone away!";
}
Perhaps a little more interesting than sending signals is catching signals. Why might
you want to do this? Well, suppose you have a program that creates files in /tmp, and

Sending and Receiving Signals | 273

you normally delete those files at the end of the program. If someone presses Ctrl-C
during the execution, that leaves trash in /tmp, a very impolite thing to do. To fix this,
you can create a signal handler that takes care of the cleanup:

my Stemp_directory = "/tmp/myprog.$$"; # create files below here
mkdir $temp_directory, 0700 or die "Cannot create $temp_directory: S$!";

sub clean_up {
unlink glob "$temp_directory/*";
rmdir Stemp_directory;

}

sub my_int_handler {
&clean_up();
die "interrupted, exiting...\n";

}

SSIG{'INT'} = 'my_int_handler';
some unspecified code here
Time passes, the program runs, creates some temporary
files in the temp directory, maybe someone presses Ctrl-C
Now it's the end of normal execution
&clean_up();

The File: :Temp module, which comes with Perl, can automatically
clean up temporary files and directories.

The assignment into the special %SIG hash activates the handler (until revoked). The
key is the name of the signal (without the constant SIG prefix), and the value is a
string naming the subroutine, without the ampersand. From then on, if a SIGINT
comes along, Perl stops whatever it’s doing and jumps immediately to the subroutine.
Your subroutine cleans up the temp files and then exits. (And if nobody presses Ctrl-
C, we'll still call &clean_up() at the end of normal execution.)

If the subroutine returns rather than exiting, execution resumes right where the sig-

nal interrupted it. This can be useful if the signal needs to actually interrupt some-

thing rather than causing it to stop. For example, suppose processing each line of a

file takes a few seconds, which is pretty slow, and you want to abort the overall pro-

cessing when an interrupt is processed—but not in the middle of processing a line.

Just set a flag in the signal procedure and check it at the end of each lin€’s processing:
my $int_$flag = 0;

SSIG{'"INT'} = 'my_1int_handler';
sub my_int_handler { $int_flag = 1; }

274 | Chapter 15: Process Management

while(... doing stuff ..) {
last if $int_flag;

}...

exit();

For the most part, Perl will only handle a signal once it reaches a safe point to do
so. For instance, Perl will not deliver most signals in the middle of allocating memory
or rearranging its internal data structures. Perl delivers some signals, such as
SIGILL, SIGBUS, and SIGSEGV, right away, so those are still unsafe. See the perlipc
documentation.

Exercises

See “Answers to Chapter 15 Exercises” on page 325 for answers to these exercises:

1. [6] Write a program that changes to some particular (hardcoded) directory, like
the system’s root directory, then executes the Is -/ command to get a long-format
directory listing in that directory. (If you use a non-Unix system, use your own
system’s command to get a detailed directory listing.)

2. [10] Modify the previous program to send the output of the command to a file
called Is.out in the current directory. The error output should go to a file called
Is.err. (You don’t need to do anything special about the fact that either of these
files may end up being empty.)

3. [8] Write a program to parse the output of the date command to determine the
current day of the week. If the day of the week is a weekday, print get to work;
otherwise, print go play. The output of the date command begins with Mon on a
Monday. If you don’t have a date command on your non-Unix system, make a
fake little program that simply prints a string like date might print. We'll even
give you this two-line program if you promise not to ask us how it works:

#! fusr/bin/perl
print localtime() . "\n";

4. [15] (Unix only) Write an infinite loop program that catches signals and reports
which signal it caught and how many times it has seen that signal before. Exit
if you catch the INT signal. If you can use the command-line kill, you can send
signals like so:

$ kill -USR1 12345

If you can’t use the command-line kill, write another program to send signals to
it. You might be able to get away with a Perl one-liner:

$ perl -e 'kill HUP => 12345’

Exercises | 275

https://perldoc.perl.org/perlipc
https://perldoc.perl.org/perlipc

CHAPTER 16
Some Advanced Perl Techniques

What you've seen so far is the core of Perl, the part that you as a Perl user should
understand. But there are many other techniques that, while not obligatory, are still
valuable tools to have in your toolbox. We've gathered the most important of those
for this chapter. This also segues into the continuation of this book, Intermediate Perl,
which is your next step in Perl.

Don’t be misled by the title of the chapter, though; the techniques here aren't espe-
cially more difficult to understand than those that you've already seen. They are
“advanced” merely in the sense that they aren’t necessary for beginners. The first time
you read this book, you may want to skip (or skim) this chapter so you can get right
to using Perl. Come back to it a month or two later, when you’re ready to get even
more out of Perl. Consider this entire chapter a huge footnote.

Slices

It often happens that you need to work with only a few elements from a given list. For
example, the Bedrock Library keeps information about its patrons in a large file. Each
line in the file describes one patron with six colon-separated fields: a person’s name,
library card number, home address, home phone number, work phone number, and
number of items currently checked out. A little bit of the file looks something
like this:

fred flintstone:2168:301 Cobblestone Way:555-1212:555-2121:3
barney rubble:709918:299 Cobblestone Way:555-3333:555-3438:0

One of the library’s applications needs only the card numbers and number of items
checked out; it doesn’t use any of the other data. You could use something like this to
get only the fields you need:

277

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

while (<$fh>) {
chomp;
my @items = split /:/;
my($card_num, $count) = ($items[1], $items[5]);
now work with those two variables

}

But you don’t need the array @items for anything else; it seems like a waste. Maybe it
would be better for you to assign the result of split to a list of scalars, like this:

my($name, Scard_num, $addr, S$home, S$Swork, Scount) = split /:/;

That avoids the unneeded array @items—but now you have four scalar variables that
you don't really need. For this situation, some people make up a number of dummy
variable names, like $dummy_1, that shows they really don't care about that element
from the split. But Larry thought that was too much trouble, so he added a special
use of undef. If you use undef as an item in a list youre assigning to, Perl simply
ignores the corresponding element of the source list:

my(undef, $card_num, undef, undef, undef, $count) = split /:/;

Is this any better? Well, it has the advantage that you don't use any unneeded vari-
ables. But it has the disadvantage that you have to count undefs to tell which element
is $count. And this becomes quite unwieldy if there are more elements in the list. For

example, some people who wanted just the mtime value from stat would write code
like this:

my(undef, undef, undef, undef, undef, undef, undef,
undef, undef, Smtime) = stat $some_file;

If you use the wrong number of undefs, you get the atime or ctime by mistake, and
that’s a tough one to debug. There’s a better way: Perl can index into a list as if it were
an array. This is a list slice. Here, since the mtime is item 9 in the list returned by stat,
you can get it with a subscript:

my $mtime = (stat $some_file)[9];

It’s the 10th item, but the index number is 9, since the first item is
at index 0. This is the same kind of zero-based indexing that we've
used already with arrays. The perlfunc documentation helpfully
numbers the list for you so you don’t have to count them yourself.

Those parentheses are required around the list of items (in this case, the return value
from stat). If you wrote it like this, it wouldn’t work:

my $mtime = stat($some_file)[9]; # Syntax error!

A list slice has to have a subscript expression in square brackets after a list in paren-
theses. The parentheses holding the arguments to a function call don’t count.

278 | Chapter 16: Some Advanced Perl Techniques

https://perldoc.perl.org/perlfunc

Going back to the Bedrock Library, the list you work with is the return value from
split. You can now use a slice to pull out item 1 and item 5 with subscripts:

my $card_num = (split /:/)[1];

my $count = (split /:/)[5];
Using a scalar-context slice like this (pulling just a single element from the list) isn’t
bad, but it would be more efficient and simpler if you didn’t have to do the split

twice. So let’s not do it twice; let’s get both values at once by using a list slice in list
context:

my($card_num, $count) = (split /:/)[1, 5];

The indices pull out element 1 and element 5 from the list, returning those as a two-
element list. When you assign that to the two my variables, you get exactly what we
wanted. You do the slice just once, and you set the two variables with a simple
notation.

A slice is often the simplest way to pull a few items from a list. Here, you can pull just
the first and last items from a list, using the fact that index -1 means the last element:

my($first, $last) = (sort @names)[0, -1];

This way to get the minimum or maximum from a list is a bit wasteful, but this isn't a
chapter about sorting. For a better way, see the functions in the List: :Util module.

The subscripts of a slice may be in any order and may even repeat values. This exam-
ple pulls five items from a list of 10:

my @names = qw{ zero one two three four five six seven eight nine };
my @numbers = (@names)[9, 0, 2, 1, 0];
print "Bedrock @numbers\n"; # says Bedrock nine zero two one zero

Array Slice

That previous example could be made even simpler. When slicing elements from an
array (as opposed to a list), the parentheses aren’t needed. So we could have done the
slice like this:

my @numbers = @names[9, 0, 2, 1, 0];

This isn't merely a matter of omitting the parentheses; this is actually a different nota-
tion for accessing array elements: an array slice. In Chapter 3, we said that the at sign
on @names meant “all of the elements” Actually, in a linguistic sense, it's more like a
plural marker, much like the letter “s” in words like “cats” and “dogs.” In Perl, the dol-
lar sign means theres just one of something, but the at sign means there’s a list

of items.

A slice is always a list, so the array slice notation uses an at sign to indicate that.
When you see something like @names[...] in a Perl program, you need to do just

Slices | 279

as Perl does and look at the at sign at the beginning as well as the square brackets at
the end. The square brackets mean that you're indexing into an array, and the at sign
means that you're getting a whole list of elements, not just a single one (which is what
the dollar sign would mean). See Figure 16-1.

one element
$names [...]
fromanarray

@names [...]

alist of elements

Figure 16-1. Array slices versus single elements

The punctuation mark at the front of the variable reference (either the dollar sign or
the at sign) determines the context of the subscript expression. If there’s a dollar sign
in front, the subscript expression is evaluated in a scalar context to get an index. But if
there’s an at sign in front, the subscript expression is evaluated in a list context to get a
list of indices.

So you see that @names[2, 5] means the same list as ($names[2], $names[5])
does. If you want that list of values, you can simply use the array slice notation. Any
place you might want to write the list, you can instead use the simpler array slice.

But you can use the slice in one place where you can't use a list. You can interpolate a
slice directly into a string:

my @names = qw{ zero one two three four five six seven eight nine };

print "Bedrock @names[9, 0, 2, 1, 0]\n";
If you were to interpolate @names, youd get all of the items from the array, separated
by spaces. If instead you interpolate @names[9, 0, 2, 1, 0], that gives just those
items from the array, separated by spaces. Let’s go back to the Bedrock Library for a
moment. Maybe now your program is updating Mr. Slate’s address and phone num-
ber in the patron file because he just moved into a large new place in the Hollyrock
Hills. If you have a list of information about him in @items, you could do something
like this to update just those two elements of the array:

my $new_home_phone = "555-6099";
my $new_address = "99380 Red Rock West";
@items[2, 3] = (Snew_address, $new_home_phone);

280 | Chapter 16: Some Advanced Perl Techniques

Once again, the array slice makes a more compact notation for a list of elements. In
this case, that last line is the same as an assignment to ($items[2], $items[3]), but
more compact and efficient.

Hash Slice

In a way exactly analogous to an array slice, you can also slice some elements from a
hash in a hash slice. Remember when three of your characters went bowling, and you
kept their bowling scores in the %score hash? You could pull those scores with a list
of hash elements or with a slice. These two techniques are equivalent, although the
second is more concise and efficient:

my @three_scores = ($score{"barney"}, $score{"fred"}, $score{"dino"});

my @three_scores = @score{ qw/ barney fred dino/ };

A slice is always a list, so the hash slice notation uses an at sign to indicate that. If it
sounds as if were repeating ourselves here, it's because we want to emphasize that
hash slices are homologous to array slices. When you see something like
@score{ ... }in a Perl program, you need to do just as Perl does and look at the at
sign at the beginning as well as the curly braces at the end. The curly braces mean that
youre indexing into a hash; the at sign means that youre getting a whole list of ele-
ments, not just a single one (which is what the dollar sign would mean). See
Figure 16-2.

one element
$score {...}
fromahash

@score {...}

alist of elements

Figure 16-2. Hash slices versus single elements

As you saw with the array slice, the punctuation mark at the front of the variable ref-
erence (either the dollar sign or at sign) determines the context of the subscript
expression. If there’s a dollar sign in front, the subscript expression is evaluated in a
scalar context to get a single key. But if there’s an at sign in front, the subscript expres-
sion is evaluated in a list context to get a list of keys.

Slices | 281

It's normal at this point to wonder why there’s no percent sign (%) here, when were
talking about a hash. Thats the marker that means there’s a whole hash; a hash slice
(like any other slice) is always a list, not a hash. In Perl, the dollar sign means there’s
just one of something, but the at sign means there’s a list of items, and the percent
sign means there’s an entire hash.

As you saw with array slices, a hash slice may be used instead of the corresponding
list of elements from the hash, anywhere within Perl. So you can set your friends’
bowling scores in the hash (without disturbing any other elements in the hash) in this
simple way:

my @players = qw/ barney fred dino /;
my @bowling_scores = (195, 205, 30);
@score{ @players } = @bowling_scores;

That last line does the same thing as if you had assigned to the three-element list

($score{"barney"}, $score{"fred"}, $score{"dino"}).

A hash slice may be interpolated too. Here, you print out the scores for your favorite
bowlers:

print "Tonight's players were: @players\n";

print "Their scores were: @score{@players}\n";

Key-Value Slices

Perl v5.20 introduced the key-value slice as a way to get out, well, the keys and values
that go together. So far, in a hash slice, you got a list of values:

my @values = @score{@players};

You used an at sign in front of the hash’s name because you get out a list of values.
After that, @values is just the values. If you wanted to remember which keys they
went with, youd have to do extra work:

my %new_hash;
@new_hash{ @players } = @values;

Or you might try a map (coming up later in this chapter):
my %new_hash = map { $_ => $score{$_} } @players;

If that’s what you want, v5.20 gives you a convenient syntax for it. This time, precede
the hash name with a %:

use v5.20;

my %new_hash = %score{@players};

Remember that sigils do not denote variable type; they communicate what you are
doing with the variable. In this case, you want key-value pairs. Thats a hashy sort of
operation, so it gets % in front of it.

282 | (Chapter 16: Some Advanced Perl Techniques

You can do this with arrays too. Think about the array indices as the keys:
my %first_last_scores = %bowling_scores[0,-1];

You still use a %, because it’s still a hashy sort of operation even though it’s an array
variable. You can tell it's an array because you use the [] as the subscripting brackets.

Trapping Errors

Sometimes things don’t always work out in your programs, but that doesn’t mean you
want your programs to merely complain before they stop themselves dead. Dealing
with errors is a major part of the work of programming, and although we could fill a
book on just that, were still going to give you the introduction. See the third book in
this series, Mastering Perl, for an in-depth examination of error handling in Perl.

Using eval

Sometimes your ordinary, everyday code can cause a fatal error in your program.
Each of these typical statements could crash a program:

my $barney = $fred / $dino; # divide-by-zero error?

my $wilma = '[abc';
print "match\n" if /\A($wilma)/; # illegal regular expression error?

open my $caveman, '<', $fred # user-generated error from die?
or die "Can't open file 'Sfred' for input: $!";
You could go to some trouble to catch some of these, but it's hard to get them all.
How could you check the string $wilma to ensure it makes a valid regular expression?
Fortunately, Perl provides a simple way to catch fatal errors—you can wrap the code
in an eval block:

eval { $barney = $fred / $dino };

Now, even if $dino is zero, that line won't crash your program. As soon as the eval
encounters a normally fatal error, it stops the entire block and continues with the rest
of the program. Notice that semicolon after the eval block. The eval is actually an
expression (not a control structure, like while or foreach), so you need that semico-
lon at the end of the block.

The return value of the eval is the last evaluated expression, just like a subroutine.
Instead of putting $barney on the inside of the eval, you could assign it the result of
the eval, which allows you to declare $barney in the scope outside the eval:

my $barney = eval { $fred / $dino };

If that eval catches an error, it returns undef. You can use the defined-or operator to
set a default value, such as NaN (“Not a Number”):

Trapping Errors | 283

https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/

use v5.10;

my Sbarney = eval { $fred / $dino } // 'NaN';
When a normally fatal error happens during the execution of an eval block, the
block is done running, but the program doesn’t crash.

When an eval finishes, you want to know whether it exited normally or whether it
caught a fatal error. If the eval caught a fatal error, it returns undef and puts the error
message in the $@ special variable, perhaps something like: I1legal division by
zero at my_program line 12.If there was no error, $@ will be empty. Of course, that
means $@ is a useful Boolean (true/false) value, true if there was an error. You some-
times see code like this after an eval block:

use v5.10;

my $barney = eval { $fred / $dino } // 'NaN';

print "I couldn't divide by \$dino: $@" if $@;
You can also check the return value, but only if you expect it to be defined if it works.
In fact, you should prefer this form to the previous example if it works for your
situation:

unless(defined eval { $fred / $dino }) {
print "I couldn't divide by \$dino: $@" if $@;
}
Sometimes the part that you want to test has no meaningful return value even on suc-
cess, so you can add one yourself. If the eval catches a failure, it won't get the final
statement, which is just 1 in this case:

unless(eval { some_sub(); 1}) {
print "I couldn't divide by \$dino: $@" if $@;
}
In list context, a failed eval returns an empty list. In this line, @averages only gets
two elements if the eval fails, because the eval doesn’t contribute anything to the list:

my @averages = (2/3, eval { $fred / $dino }, 22/7);

The eval block is just like every other Perl block, so it makes a new scope for lexical
(my) variables and you can have as many statements as you like. Here’s an eval block
hard at work guarding against many potential fatal errors:

foreach my $person (qw/ fred wilma betty barney dino pebbles /) {
eval {
open my $fh, '<', Sperson
or die "Can't open file 'Sperson': S$!";

my($total, Scount);

while (<$fh>) {
Stotal += $_;
Scount++;

284 | Chapter 16: Some Advanced Perl Techniques

}

my $average = $total/$count;
print "Average for file $person was S$Saverage\n";

&do_something($person, $average);

3
if (@) {

print "An error occurred ($@), continuing\n";
}
}
How many possible fatal errors can that eval trap? If there is an error in opening the
file, you catch it. Calculating the average may divide by zero, but that won’t prema-
turely stop your program. The eval even protects the call to the mysteriously named
&do_something subroutine against fatal errors. This feature is handy if you have to
call a subroutine written by someone else, and you don’'t know whether they’ve coded
defensively enough to avoid crashing your program. Some people purposedly use die
to signal problems because they expect you to use eval to handle it. We'll talk about
that more in a moment.

If an error occurs during the processing of one of the files you have in the foreach
list, you get an error message but your program will go on to the next file without
further complaint.

You can also nest eval blocks inside other eval blocks without Perl getting confused.
The inner eval traps errors in its block, keeping them from reaching the outer blocks.
Of course, after the inner eval finishes, if it caught an error you may wish to repost
the error by using die, thereby letting the outer eval catch it. You could change the
code to catch an error in the division separately:

foreach my $person (qw/ fred wilma betty barney dino pebbles /) {
eval {
open my $fh, '<', Sperson
or die "Can't open file 'Sperson': $!";

my($total, Scount);

while (<$fh>) {
Stotal += $_;
Scount++;

}

my $average = eval { $total/Scount } // 'NaN'; # Inner eval
print "Average for file $person was Saverage\n";

&do_something($person, $average);

1

Trapping Errors | 285

if (5@ {

print "An error occurred ($@), continuing\n";
}
}

There are four kinds of problems that eval can’t trap. The first group are syntax

errors in the literal source, such as mismatched quotes, missing semicolons, missing
operands, or invalid literal regular expressions:

eval {

print "There is a mismatched quote';

my Ssum = 42 +;

/Tabc/

print "Final output\n";

I
The perl compiler catches those errors as it parses the source and stops its work
before it starts to run the program. The eval can only catch errors once your Perl
code is actually running.

The second group are the very serious errors that crash per! itself, such as running
out of memory or getting an untrapped signal. This sort of error abnormally shuts
down the perl interpreter itself, and since perl isn’t running, there’s no way it can trap
these errors. Some of these errors are listed with an (X) code in the perldiag docu-
mentation, if you’re curious.

The third problem group that an eval block can’t trap are warnings, either user-
generated ones (from warn), or Perls internally generated warnings from the -w
command-line option or the use warnings pragma. There’s a separate mechanism
apart from eval for trapping warnings; see the explanation of the __WARN__ pseudo-
signal in the perlvar documentation for the details.

The last sort of error isn’t really an error, but this is a good place to note it. The exit
operator terminates the program at once, even if you call it from a subroutine inside
an eval block. When you call exit, you expect and intend for your program to stop.
That’s what's supposed to happen, and as such, eval doesn’t prevent it from doing
its work.

We should also mention that there’s another form of eval that can be dangerous if it’s
mishandled. In fact, you sometimes run across someone who will say that you
shouldn’t use eval in your code for security reasons. Theyre (mostly) right that you
should use eval only with great care, but they’re talking about the other form of eval,
sometimes called “eval of a string” That eval takes a string, compiles it as Perl code,
then executes that code just as if you had typed it directly into your program. Notice
that the result of any string interpolation has to be valid Perl code:

my $operator = 'unlink';
eval "Soperator \@files;";

286 | Chapter 16: Some Advanced Perl Techniques

https://perldoc.perl.org/perldiag
https://perldoc.perl.org/perldiag
https://perldoc.perl.org/perlvar

If the keyword eval comes directly before a block of code in curly braces, as you saw
for most of this section, there’s no need to worry—that’s the safe kind of eval.

More Advanced Error Handling

Different languages naturally handle errors in their own way, but a popular concept is
the exception. You try some code and if anything goes wrong, the program throws an
exception that it expects you to catch. With just basic Perl, you throw an exception
with die and catch it with eval. You can inspect the value of $@ to figure out what
happened:

eval {

cey

die "An unexpected exception message" if Sunexpected;

die "Bad denominator" if $dino == 0;
Sbarney = $fred / $dino;
}

if ($@ =~ /unexpected/) {
}
elsif($@ =~ /denominator/) {

}

There are many subtle problems with this sort of code, mostly based on the dynamic
scope of the $@ variable. In short, since $@ is a special variable and your use of eval
might be wrapped in a higher-level eval (even if you don’t know about it), you need
to ensure that an error you catch doesn't interfere with errors at the higher level:

We use local here even though we never showed it to you. It repla-
ces a variable’s value everywhere in the program until the scope
ends. At the end of the scope, the variable has its original value.

{

local $@; # don't stomp on higher-level errors

eval {

“ey

die "An unexpected exception message" if Sunexpected;

die "Bad denominator" if $dino == 0;
Sbarney = $fred / $dino;
I

if ($@ =~ /unexpected/) {
}
elsif($@ =~ /denominator/) {

“ey

Trapping Errors | 287

}
}
That’s not the whole story, though, and it’s a really tricky problem that’s easy to get
wrong. The Try::Tiny module solves most of this problem for you (and explains it
too, if you really need to know). It’s not included in the Standard Library, but you can
get it from CPAN. The basic form looks like this:

use Try::Tiny;

try {
..; # some code that might throw errors

}
catch {
...; # some code to handle the error
}
finally {

}

The try acts like the eval you just saw. The construct runs the catch block only if
there was an error. It always runs the finally block, allowing you to do any cleanup
youd like to do. You don’t need to have the catch or the finally, either. To simply
ignore errors, you can just use the try:

my $barney = try { $fred / Sdino };

You can use catch to handle the error. Instead of messing with $@, Try::Tiny puts
the error message in $_. You can still access $@, but part of Try: : Tiny’s purpose is to
prevent the abuse of $@:

use v5.10;

my Sbarney =
try { $fred / Sdino }
catch {
say "Error was $_"; # not $@

i
The finally block runs in either case: if there was an error or not. If it has arguments
in @_, there was an error:

use v5.10;

my $barney =
try { $fred / $dino }
catch {
say "Error was $_"; # not $@
}
finally {
say @_ ? 'There was an error' : 'Everything worked';

b

288 | Chapter 16: Some Advanced Perl Techniques

Picking Items from a List with grep

Sometimes you want only certain items from a list; maybe it’s only the odd numbers
from a list of numbers, or maybe it’s only the lines mentioning Fred from a file of
text. As you see in this section, picking some items from a list can be done simply
with the grep operator.

Try this first one and get the odd numbers from a large list of numbers. You don't
need anything new to do that:

my @odd_numbers;

foreach (1..1000) {
push @odd_numbers, $_ if $_ % 2;
}
That code uses the modulus operator (%), which you saw in Chapter 2. If the number
is even, that number “mod two” gives zero, which is false. But an odd number will
give one; since that’s true, you only push the odd numbers onto @odd_numbers.

Now, there’s nothing wrong with that code as it stands—except that it’s a little longer
to write and slower to run than it might be, since Perl provides the grep operator to
act as a filter:

my @odd_numbers = grep { $_ % 2 } 1..1000;

That line gets a list of 500 odd numbers in one quick line of code. How does it work?
The first argument to grep is a block that uses $_ as a placeholder for each item in the
list, and returns a Boolean (true/false) value. The remaining arguments are the list of
items to search through. The grep operator will evaluate the expression once for each
item in the list, much as your original foreach loop did. For the ones where the last
expression of the block returns a true value, that element is included in the list that
results from grep.

While the grep is running, Perl aliases $_ to one element of the list after another. You
saw this behavior before, in the foreach loop. It’s generally a bad idea to modify $_
inside the grep expression because this will change the original data too.

The grep operator shares its name with a classic Unix utility that picks matching lines
from a file by using regular expressions. You can do that with Perl’s grep, which is
much more powerful. Here you select only the lines mentioning fred from a file:

my @matching_lines = grep { /\bfred\b/i } <$fh>;

There’s a simpler syntax for grep too. If all you need for the selector is a simple
expression (rather than a whole block), you can just use that expression, followed by
a comma, in place of the block. Here’s the simpler way to write that latest example:

my @matching_lines = grep /\bfred\b/i, <$fh>;

Picking Items from a List withgrep | 289

The grep operator also has a special scalar context mode in which it can tell you how
many items it selected. What if you only wanted to count the matching lines from a
file and you didn’t care about the lines yourself? You could do that after you created
the @matching_lines array:

my @matching_lines = grep /\bfred\b/i, <$fh>;

my $line_count = @matching_lines;
You can skip the intermediate array though (so you don’t have to create that array and
take up memory) by assigning to the scalar directly:

my $line_count = grep /\bfred\b/i, <$fh>;

Transforming Items from a List with map

Instead of a filter, you might want to change every item in a list. For example, suppose
you have a list of numbers that should be formatted as “money numbers” for output,
as with the subroutine big_money from Chapter 14. You don’t want to modify the

original data; you need a modified copy of the list just for output. Here’s one way to
do that:

my @data = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);
my @formatted_data;

foreach (@data) {
push @formatted_data, big_money($_);
}
That looks similar in form to the example code used at the beginning of the previous
section on grep, doesn’t it? So it may not surprise you that the replacement code
resembles the first grep example:

my @data = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);

my @formatted_data = map { big_money($_) } @data;

The map operator looks much like grep because it has the same kind of arguments: a
block that uses $_, and a list of items to process. And it operates in a similar way, eval-
uating the block once for each item in the list, with $_ aliased to a different original
list element each time. But map uses the last expression of the block differently;
instead of giving a Boolean value, the final value actually becomes part of the result-
ing list. One other important difference is that the expression used by map is evaluated
in a list context and may return any number of items, not necessarily one each time.

You can rewrite any grep or map statement as a foreach loop pushing items onto a
temporary array. But the shorter way is typically more efficient and more convenient.
Since the result of map or grep is a list, it can be passed directly to another function.

290 | Chapter 16: Some Advanced Perl Techniques

Here we can print that list of formatted “money numbers” as an indented list under a
heading:
print "The money numbers are:\n",
map { sprintf("%25s\n", $_) } @formatted_data;
Of course, you could have done that processing all at once, without even the tempo-
rary array @formatted_data:

my @data = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);
print "The money numbers are:\n",
map { sprintf("%25s\n", big_money($_)) } @data;

As you saw with grep, there’s also a simpler syntax for map. If all you need for the
selector is a simple expression (rather than a whole block), you can just use that
expression, followed by a comma, in place of the block:

print "Some powers of two are:\n",
map "\t" . (2 *$_) . "\n", 0..15;

Fancier List Utilities

There are a couple of modules that you can use if you need fancier list handling in
Perl. After all, many programs really are just a series of instructions moving lists
around in various ways.

The List::Util module comes with the Standard Library and provides high-
performance versions of common list processing utilities. These are implemented at
the C level.

Suppose you wanted to know if a list contains an item that matches some condition.
You don’t need to get all of the elements, and you want to stop once you find the first
matching element. You can’t use grep, because it always scans the entire list, and if
your list is very long, the grep might do a lot of extra, unnecessary work:

my $first_match;
foreach (@characters) {
if (/\bPebbles\b/i) {
S$first_match = $_;
last;
}
}

That’s a lot of code. Instead, you can use the first subroutine from List: :Util:

use List::Util qw(first);
my $first_match = first { /\bPebbles\b/i } @characters;

In the Exercises for Chapter 4, you created the &total subroutine. If you knew about
List::Util, you wouldn't have done so much work:

Fancier List Utilities | 291

use List::Util gw(sum);

my Stotal = sum(1..1000); # 500500
Also in Chapter 4, the &max subroutine did a lot of work to select the largest item
from a list. You don’t actually need to create that yourself since List: :Util’s version
can do it for you:

use List::Util qw(max);

my $max = max(3, 5, 10, 4, 6);
That max deals with numbers only. If you want to do it with strings (using string com-
parisons), you use maxstr instead:

use List::Util qw(maxstr);
my $max = maxstr(@strings);

If you want to randomize the order of elements in a list, you can use shuffle:

use List::Util qw(shuffle);
my @shuffled = shuffle(1..1000); # randomized order of elements

There’s another module, List: :MoreUtils, that has even more fancy subroutines.
This one does not come with Perl, so you need to install it from CPAN. You can check
if no, any, or all elements of a list match a condition. Each of these subroutines has
the same block syntax of grep:

use List::MoreUtils qw(none any all);

if (none { $_ < 0 } @numbers) {
print "No elements less than 0\n"

} elsif (any { $_ > 50 } @numbers) {
print "Some elements over 50\n";

} elsif (all { $_ < 10 } @numbers) {
print "All elements are less than 10\n";

}

If you want to deal with the list in groups of items, you can use the natatime (N at a
time) to handle that for you:

use List::MoreUtils gw(natatime);

my $iterator = natatime 3, @array;

while(my @triad = $iterator->()) {
print "Got @triad\n";

}

If you need to combine two or more lists, you can use mesh to create the large list that
interweaves all of the elements, even if the small arrays are not the same length:

use List::MoreUtils qw(mesh);

my @bc = 'a L'z
my @numbers = 1 .. 20;

292 | Chapter 16: Some Advanced Perl Techniques

my @dinosaurs = qw(dino);

my @large_array = mesh @abc, @numbers, @dinosaurs;

This takes the first element of @abc and makes it the first element of @large_array,
then takes the first element of @humbers to make it the next element of @large_array,
and then does the same with @dinosaurs. It then goes back to @abc to get its next
element, and so on through all of the elements. The start of the resulting list in
@large_array is:

aldinob2 c3 ...

In that output, you should notice that there’s an empty element between 2 and c (so
there are two consecutive spaces after 2). When mesh runs out of elements from one
of its input arrays, it fills in spots with undef. If you had warnings enabled, youd get
several of them.

There are many more useful and interesting subroutines in List: :MoreUtils. Before
you try to re-create what it already does, check its documentation.

Exercises

See “Answers to Chapter 16 Exercises” on page 327 for answers to these exercises:

1. [30] Make a program that reads a list of strings from a file, one string per line,
and then lets the user interactively enter patterns that may match some of the
strings. For each pattern, the program should tell how many strings from the file
matched, then which ones those were. Don'’t reread the file for each new pattern;
keep the strings in memory. The filename may be hardcoded in the file. If a pat-
tern is invalid (for example, if it has unmatched parentheses), the program
should simply report that error and let the user continue trying patterns. When
the user enters a blank line instead of a pattern, the program should quit. (If you
need a file full of interesting strings to try matching, try the file sample_text in
the files you've surely downloaded by now from the O’Reilly website; see the
Preface.)

2. [15] Write a program to make a report of the access and modification times (in
the epoch time) of the files in the current directory. Use stat to get the times,
using a list slice to extract the elements. Report your results in three columns,
like this:

fred.txt 1294145029 1290880566
barney.txt 1294197219 1290810036
betty.txt 1287707076 1274433310

Exercises | 293

3. [15] Modify your answer to Exercise 2 to report the times using the YYYY-MM-
DD format. Use a map with localtime and a slice to turn the epoch times into the
date strings that you need. Note the localtime documentation about the year
and month values it returns. Your report should look like this:

fred.txt 2011-10-15 2011-09-28
barney.txt 2011-10-13 2011-08-11
betty.txt 2011-10-15 2010-07-24

294 | Chapter 16: Some Advanced Perl Techniques

APPENDIX A
Exercise Answers

This appendix contains the answers to the exercises that appear throughout the book.

Answers to Chapter 1 Exercises

1. This exercise is easy since we already gave you the program. Your job was to
make it work:

print "Hello, world!\n";
If you have v5.10 or later, you can try say:

use v5.10;
say "Hello, world!";

If you want to try it from the command line without creating a file, you can spec-
ify your program on the command line with the -e switch:

$ perl -e 'print "Hello, World\n"'
There’s another switch, -1, that automatically adds the newline for you:
$ perl -le 'print "Hello, World"'

The quoting in Windows in command.exe (or cmd.exe) needs the double quotes
on the outside, so you switch them:

C:\> perl -le "print 'Hello, World'"

You can save yourself some headaches with quoting by using the generalized
quotes inside the shell quoting:

C:\> perl -le "print q(Hello, World)"

With v5.10 and later, you can use the -E switch to enable new features. That
allows you to use say:

295

3.

$ perl -E 'say q(Hello, World)'

We didn’t expect you to try this on the command line, because we didn't tell you
about that yet. Still, it’s another way to do it. See perlrun for a complete listing of
command-line switches and features.

. The perldoc command should come with your perl, so you should be able to run

it directly. If you cant find perldoc, you may have to install another package on
your system. Ubuntu, for instance, puts it in the perl-doc package.

This program is easy too, as long as you got the previous exercise to work:

@lines = ‘“perldoc -u -f atan2';
foreach (@lines) {
s/\w<(.+2)>/\U$1/g;
print;

}

Answers to Chapter 2 Exercises

1. Here’s one way to do it:
#!/usr/bin/perl
use warnings;
$pil = 3.141592654;
Scirc = 2 * $pi * 12.5;
print "The circumference of a circle of radius 12.5 is Scirc.\n";
As you see, we started this program with a typical #! line; your path to Perl may
vary. We also turned on warnings.
The first real line of code sets the value of $pi to our value of . There are several
reasons a good programmer will prefer to use a constant value like this: it takes
time to type 3.141592654 into your program if you ever need it more than once.
It may be a mathematical bug if you accidentally used 3.141592654 in one place
and 3.14159 in another. There’s only one line to check on to make sure you didn’t
accidentally type 3.141952654 and send your space probe to the wrong planet.
Modern Perls allow you to use fancier characters as variable names. We could
have used the m character as the name if we told Perl that the source code
included Unicode characters (see Appendix C):
#!/usr/bin/perl
use utf8;
use warnings;
$n = 3.141592654;
Scirc = 2 * $m * 12.5;
print "The circumference of a circle of radius 12.5 is Scirc.\n";
Next we calculate the circumference, storing it in $circ, and we print it out in a
nice message. The message ends with a newline character, because every line of a
296 | Appendix A: Exercise Answers

https://perldoc.perl.org/perlrun

good program’s output should end with a newline. Without it, you might end up
with output looking something like this, depending on your shell’s prompt:

The circumference of a circle of radius 12.5
is 78.53981635.bash-2.01$

Since the circumference isn't really 78.53981635.bash-2.01$, this should proba-
bly be construed as a bug. So, use \n at the end of each line of output.

. Here’s one way to do it:

#! fusr/bin/perl

use warnings;

$pl = 3.141592654;

print "What is the radius? ";

chomp($radius = <STDIN>);

Scirc = 2 * $pi * Sradius;

print "The circumference of a circle of radius S$Sradius is $circ.\n";
This is just like the last one, except now we ask the user for the radius, and then
we use $radius in every place where we previously used the hardcoded value
12.5. If we had written the first program with more foresight, in fact, we would
have a variable named $radius in that one as well. Note that if we hadn't used
chomp, the mathematical formula would still have worked because a string like
"12.5\n" is converted to the number 12.5 without any problem. But when we
print out the message, it would look like this:

The circumference of a circle of radius 12.5 is 78.53981635.

Notice that the newline character is still in $radius, even though we've used that
variable as a number. Since we had a space between $radius and the word is in
the print statement, there’s a space at the beginning of the second line of output.
The moral of the story is: chomp your input unless you have a reason not to.
. Here’s one way to do it:
#!/usr/bin/perl
use warnings;
$pil = 3.141592654;
print "What is the radius? ";
chomp($radius = <STDIN>);
Scirc = 2 * $pi * Sradius;
if (Sradius < 0) {
Scirc = 0;
}

print "The circumference of a circle of radius Sradius is $circ.\n";

Here we added the check for a bogus radius. Even if the given radius was impos-
sible, the returned circumference would at least be nonnegative. You could have
changed the given radius to be zero, and then calculated the circumference too;
there’s more than one way to do it. In fact, that’s the Perl motto: There Is More

Exercise Answers | 297

Than One Way To Do It. And that’s why each exercise answer starts with “Here’s
one way to do it...”

. Here’s one way to do it:

print "Enter first number: ";
chomp($Sone = <STDIN>);
print "Enter second number: ";
chomp($two = <STDIN>);
Sresult = Sone * $two;
print "The result is S$result.\n";

Notice that we've left off the #! line for this answer. In fact, from here on, we'll
assume that you know it’s there, so you don’t need to read it each time.

Perhaps those are poor choices for variable names. In a large program, a mainte-
nance programmer might think that $two should have the value of 2. In this short
program, it probably doesn’t matter, but in a large one we could have called them
something more descriptive, with names like $first_response.

In this program, it wouldn't make any difference if we forgot to chomp the two
variables $one and $two, since we never use them as strings once they’ve been set.
But if next week our maintenance programmer edits the program to print a mes-
sage like: The result of multiplying Sone by $two is $result.\n, those
pesky newlines will come back to haunt us. Once again, chomp unless you have a
reason not to chomp—Iike in the next exercise.

. Here’s one way to do it:

print "Enter a string: ";
$str = <STDIN>;

print "Enter a number of times: ";
chomp($num = <STDIN>);

Sresult = $str x $num;

print "The result is:\nSresult";

This program is almost the same as the last one, in a sense. We're “multiplying” a
string by a number of times, so we've kept the structure of the previous exercise.
In this case, though, we didn’t want to chomp the first input item—the string—
because the exercise asked for the strings to appear on separate lines. So, if the
user entered fred and a newline for the string, and 3 for the number, wed get a
newline after each fred, just as we wanted.

In the print statement at the end, we put the newline before $result because we
wanted to have the first fred printed on a line of its own. That is, we didn’t want
output like this, with only two of the three freds aligned in a column:

The result is: fred

fred
fred

298

| Appendix A: Exercise Answers

At the same time, we didn’t need to put another newline at the end of the print
output because $result should already end with a newline.

In most cases, Perl won't mind where you put spaces in your program; you can
put in spaces or leave them out. But it's important not to accidentally spell the
wrong thing! If the x runs up against the preceding variable name $str, Perl will
see $strx, which won’t work.

Answers to Chapter 3 Exercises

1. Here’s one way to do it:

print "Enter some lines, then press Ctrl-D:\n";
@lines = <STDIN>;

@reverse_lines = reverse @lines;

print @reverse_lines;

...0r, even more simply:

print "Enter some lines, then press Ctrl-D:\n";

print reverse <STDIN>;
Most Perl programmers would prefer the second one, as long as they don’t need
to keep the list of lines around for later use.

2. Here’s one way to do it:

@names = qw/ fred betty barney dino wilma pebbles bamm-bamm /;

print "Enter some numbers from 1 to 7, one per line, then press Ctrl-D:\n";

chomp(@numbers = <STDIN>);

foreach (@numbers) {

print "$names[$_ - 1]J\n";

}
We have to subtract one from the index number so that the user can count from
1 to 7, even though the array is indexed from 0 to 6. Another way to accomplish

this would be to have a dummy item in the @names array, like this:
@names = gw/ dummy_item fred betty barney dino wilma pebbles bamm-bamm /;

Give yourself extra credit if you checked to make sure that the user’s choice of
index was in fact in the range 1 to 7.

3. Here’s one way to do it if you want the output all on one line:

chomp(@lines = <STDIN>);
@sorted = sort @lines;
print "@sorted\n";

...0r, to get the output on separate lines:

print sort <STDIN>;

Exercise Answers | 299

Answers to Chapter 4 Exercises

1.

Here’s one way to do it:

sub total {
my $sum; # private variable
foreach (@) {
Ssum += $_;

}

Ssum;
}
This subroutine uses $sum to keep a running total. At the start of the subroutine,
$sum is undef, since it's a new variable. Then the foreach loop steps through the
parameter list (from @_), using $_ as the control variable. (Note: once again,
there’s no automatic connection between @_, the parameter array, and $_, the
default variable for the foreach loop.)

The first time through the foreach loop, the first number (in $_) is added to
$sum. Of course, $sum is undef, since nothing has been stored in there. But since
were using it as a number, which Perl sees because of the numeric operator +=,
Perl acts as if it’s already initialized to 0. Perl thus adds the first parameter to 0
and puts the total back in $sum.

The next time through the loop, the next parameter is added to $sum, which is no
longer undef. The sum is placed back in $sum, and on through the rest of the
parameters. Finally, the last line returns $sum to the caller.

There’s a potential bug in this subroutine, depending on how you think of things.
Suppose this subroutine was called with an empty parameter list (as we consid-
ered with the rewritten subroutine &max in the chapter text). In that case, $sum
would be undef, and that would be the return value. But in this subroutine, it
would probably be “more correct” to return 0 as the sum of the empty list, rather
than undef. (Of course, if you wish to distinguish the sum of an empty list from
the sum of, say, (3, -5, 2), returning undef would be the right thing to do.)

If you don’t want a possibly undefined return value, though, it’s easy to remedy.
Simply initialize $sum to zero rather than using the default of undef:

my $sum = 0;

Now the subroutine will always return a number, even if the parameter list was
empty.

300

| Appendix A: Exercise Answers

2. Here’s one way to do it:

Remember to include &total from previous exercise!
print "The numbers from 1 to 1000 add up to ", total(1..1000), ".\n";

Note that we can't call the subroutine from inside the double-quoted string, so
the subroutine call is another separate item being passed to print. The total
should be 500500, a nice round number. And it shouldn’t take any noticeable
time at all to run this program; passing a parameter list of 1,000 values is an
everyday task for Perl.
3. Here’s one way to do it:
sub average {
if (@_ == 0) { return }
my $Scount = @_;
my $sum = total(@_); # from earlier exercise
sum/SScount;

}

sub above_average {
my $average = average(@_);
my @list;
foreach my Selement (@) {
if (Selement > $average) {
push @list, $element;

}
}
@list;
}

In average, we return without giving an explicit return value if the parameter list
is empty. That gives the caller undef as the way to report that there’s no average
for an empty list. If the list wasn't empty, using &total makes it simple to calcu-
late the average. We didn't even need to use temporary variables for $sum and
$count, but doing so makes the code easier to read.

The second sub, above_average, simply builds up and returns a list of the desired
items. (Why is the control variable named $element, instead of using Perl’s favor-
ite default, $_?) Note that this second sub uses a different technique for dealing
with an empty parameter list.

4. To remember the last person that greet spoke to, use a state variable. It starts
out as undef, which is how we figure out Fred is the first person it greets. At the
end of the subroutine, we store the current $name in $last_name so we remember
what it is next time:

use v5.10;

greet('Fred');

Exercise Answers | 301

greet('Barney');

sub greet {
state $last_person;

my $name = shift;

print "Hi $name! ";

if(defined $last_person) {
print "$last_person is also here!\n";

}
else {

print "You are the first one here!\n";
}

$last_person = $name;

}

5. This answer is similar to that for the preceding exercise, but this time we store all
the names we have seen. Instead of using a scalar variable, we declare @names as a
state variable and push each name onto it:

use v5.10;

greet('Fred');

greet('Barney');
greet('Wilma');
greet('Betty');

sub greet {
state @names;

my $name = shift;

print "Hi $name! ";

if(@names) {
print "I've seen: @names\n";

}
else {

print "You are the first one here!\n";
}

push @names, S$name;

302

Appendix A: Exercise Answers

Answers to Chapter 5 Exercises

1. Here’s one way to do it:

print reverse <>;

Well, that’s pretty simple! But it works because print is looking for a list of
strings to print, which it gets by calling reverse in a list context. And reverse is
looking for a list of strings to reverse, which it gets by using the diamond opera-
tor in a list context. So, the diamond returns a list of all the lines from all the files
of the user’s choice. That list of lines is just what cat would print out. Now
reverse reverses the list of lines, and print prints them out.

2. Here’s one way to do it:

print "Enter some lines, then press Ctrl-D:\n"; # or Ctrl-Z
chomp(my @lines = <STDIN>);

print "1234567890" x 7, "12345\n"; # ruler line to column 75

foreach (@lines) {
printf "%20s\n", $_;

}
Here we start by reading in and chomping all of the lines of text. Then we print
the ruler line. Since that’s a debugging aid, wed generally comment out that line
when the program is done. We could have typed "1234567890" again and again,
or even used copy-and-paste to make a ruler line as long as we needed, but we
chose to do it this way because it’s kind of cool.

Now the foreach loop iterates over the list of lines, printing each one with the
%20s conversion. If you chose to do so, you could have created a format to print
the list all at once, without the loop:

my $format = "%20s\n" x @lines;

printf $format, @lines;
It's a common mistake to get 19-character columns. That happens when you say
to yourself, “Hey, why do we chomp the input if we're only going to add the new-
lines back on later?” So you leave out the chomp and use a format of "%20s"
(without a newline). And now, mysteriously, the output is off by one space. So,
what went wrong?

The problem happens when Perl tries to count the spaces needed to make the
right number of columns. If the user enters hello and a newline, Perl sees six
characters, not five, since newline is a character. So it prints 14 spaces and a six-
character string, sure that it gives the 20 characters you asked for in "%20s".
Oops.

Exercise Answers | 303

Of course, Perl isn't looking at the contents of the string to determine the width;
it merely checks the raw number of characters. A newline (or another special
character, such as a tab or a null character) will throw things off.

. Here’s one way to do it:

print "What column width would you like? ";
chomp(my $Swidth = <STDIN>);

print "Enter some lines, then press Ctrl-D:\n"; # or Ctrl-Z
chomp(my @lines = <STDIN>);

print "1234567890" x ((Swidth+9)/10), "\n"; # ruler line as needed

foreach (@lines) {
printf "%${width}s\n", $_;
}

Instead of interpolating the width into the format string, we could have used this:

foreach (@lines) {

printf "%*s\n", Swidth, $_;

}
This is much like the previous one, but we ask for a column width first. We ask
for that first because we can't ask for more input after the end-of-file indicator, at
least on some systems. Of course, in the real world you’ll generally have a better
end-of-input indicator when getting input from the user, as we’ll see in later exer-
cise answers.

Another change from the previous exercise’s answer is the ruler line. We used
some math to cook up a ruler line that’s at least as long as we need, as suggested
as an extra-credit part of the exercise. Proving that our math is correct is an addi-
tional challenge. (Hint: consider possible widths of 50 and 51, and remember that
the right side operand to x is truncated, not rounded.)

To generate the format this time, we used the expression "%${width}s\n", which
interpolates $width. The curly braces are required to “insulate” the name from
the following s; without the curly braces, wed be interpolating $widths, the
wrong variable. If you forgot how to use curly braces to do this, though, you
could have written an expression like '%' . $width . "s\n" to get the same
format string.

The value of $width brings up another case where chomp is vital. If you don’t
chomp the width, the resulting format string would resemble "%30\ns\n". That’s
not useful.

People who have seen printf before may have thought of another solution.
Because printf comes to us from C, which doesn't have string interpolation, we
can use the same trick that C programmers use. If an asterisk (*) appears in place

304

| Appendix A: Exercise Answers

of a numeric field width in a conversion, a value from the list of parameters will
be used:

printf "%*s\n", Swidth, $_;

Answers to Chapter 6 Exercises

1. Here’s one way to do it:

my %last_name = qw{
fred flintstone
barney rubble
wilma flintstone

grint "Please enter a first name: ";

chomp(my $name = <STDIN>);

print "That's $name $last_name{$name}.\n";
In this one, we used a qw// list (with curly braces as the delimiter) to initialize the
hash. That’s fine for this simple data set, and it’s easy to maintain because each
data item is a simple given name and simple family name, with nothing tricky.
But if your data might contain spaces—for example, if robert de niro or mary
kay place were to visit Bedrock—this simple method wouldn’t work so well.

You might have chosen to assign each key-value pair separately, something like
this:

my %last_name;

$last_name{"fred"} = "flintstone";

$last_name{"barney"} = "rubble";
$last_name{"wilma"} = "flintstone";

Note that (if you chose to declare the hash with my, perhaps because use strict
was in effect) you must declare the hash before assigning any elements. You can't
use my on only part of a variable, like this:

my $last_name{"fred"} = "flintstone"; # Oops!

The my operator works only with entire variables, never with just one element of
an array or hash. Speaking of lexical variables, you may have noticed that the lex-
ical variable $name is being declared inside the chomp function call; it is fairly
common to declare each my variable as you need it, like this.

This is another case where chomp is vital. If someone enters the five-character
string "fred\n" and we fail to chomp it, we'll be looking for "fred\n" as an ele-
ment of the hash—and it’s not there. Of course, chomp alone won’t make this bul-
letproof; if someone enters "fred \n" (with a trailing space), with what we've
seen so far, we don’'t have a way to tell that they meant fred.

Exercise Answers | 305

If you added a check for whether the given key exists in the hash so that you'll
give the user an explanatory message when they misspell a name, give yourself
extra points for that.

. Here’s one way to do it:

my(@words, %count, Sword); # (optionally) declare our variables
chomp(@words = <STDIN>);

foreach $word (@words) {
Scount{$word} += 1; # or Scount{$word} = Scount{$word} + 1;
}

foreach $word (keys %count) { # or sort keys %count
print "$word was seen $count{$word} times.\n";

}
In this one, we declared all of the variables at the top. People who come to Perl
from a background in languages like Pascal (where variables are always declared
“at the top”) may find that way more familiar than declaring variables as they are
needed. Of course, were declaring these because were pretending that use
strict may be in effect; by default, Perl won’t require such declarations.

Next we use the line-input operator, <STDIN>, in a list context to read all of the
input lines into @words, and then we chomp those all at once. So @words is our list
of words from the input (if the words were all on separate lines, as they should
have been, of course).

Now the first foreach loop goes through all the words. That loop contains the
most important statement of the entire program, the statement that says to add
one to $count{$word} and put the result back in $count{Sword}. Although you
could write it either the short way (with the += operator) or the long way, the
short way is just a little bit more efficient, since Perl has to look up $word in the
hash just once. For each word in the first foreach loop, we add one to
Scount{$word}. So, if the first word is fred, we add one to $count{"fred"}. Of
course, since this is the first time we've seen $count{"fred"}, it’s undef. But since
we're treating it as a number (with the numeric += operator, or with + if you
wrote it the long way), Perl converts undef to @ for us automatically. The total is
1, which is then stored back in $count{"fred"}.

The next time through that foreach loop, let’s say the word is barney. So, we add
one to $count{"barney"}, bumping it up from undef to 1 as well.

Now let’s say the next word is fred again. When we add one to $count{"fred"},
which is already 1, we get 2. This goes back in $count{"fred"}, meaning that
we've now seen fred twice.

306

| Appendix A: Exercise Answers

When we finish the first foreach loop, then, we've counted how many times each
word has appeared. The hash has a key for each (unique) word from the input,
and the corresponding value is the number of times that word appeared.

So now, the second foreach loop goes through the keys of the hash, which are
the unique words from the input. In this loop, we'll see each different word once.
For each one, it says something like “fred was seen 3 times.”

If you want the extra credit on this problem, you could put sort before keys to
print out the keys in order. If there will be more than a dozen items in an output
list, it’s generally a good idea for them to be sorted so that a human being who is
trying to debug the program will fairly quickly be able to find the item they want.

3. Here’s one way to do it:

my $longest = 0;

foreach my $Skey (keys %ENV) {
my S$key_length = length($Skey);
Slongest = $Skey_length if Skey_length > $longest;
}

foreach my $key (sort keys %ENV) {
printf "%-${longest}s %s\n", Skey, SENV{Skey};
}

In the first foreach loop, we go through all of the keys and use length to get
their lengths. If the length we just measured is greater than the one we stored in
$longest, we put the longer value in $longest.

Once we've gone through all of the keys, we use printf to print the keys and val-
ues in two columns. We use the same trick we used in Exercise 3 from Chapter 5
by interpolating $longest into the template string.

Answers to Chapter 7 Exercises

1. Here’s one way to do it:

while (<>) {
if (/fred/) {
print;
}
}
This is pretty simple. The more important part of this exercise is trying it out on
the sample strings. It doesn’t match Fred, showing that regular expressions are
case-sensitive. (We'll see how to change that later.) It does match frederick and
Alfred, since both of those strings contain the four-letter string fred. (Matching
whole words only, so that frederick and Alfred wouldn’'t match, is another fea-
ture we'll see later.)

Exercise Answers | 307

. Here’s one way to do it: change the pattern used in the first exercise’s answer

to /[fF]red/. You could also have tried /(f|F)red/ or /fred|Fred/, but the
character class is more efficient.

. Here’s one way to do it: change the pattern used in the first exercise’s answer

to /\./. The backslash is needed because the dot is a metacharacter, or you could
use a character class: /[.]/.

. Here’s one way to do it: change the pattern used in the first exercise’s answer

to /[A-Z][a-z]+/.

. Here’s one way to do it: change the pattern used in the first exercise’s answer

to /(\S)\1/. The \S character class matches the nonwhitespace character, and
the parentheses allow you to use the back reference \1 to match the same charac-
ter immediately following it.
Here’s one way to do it:
while (<>) {
if (/wilma/) {
if (/fred/) {
print;
}

}
}

This tests /fred/ only after we find /wilma/ matches, but fred could appear
before or after wilma in the line; each test is independent of the other.

If you wanted to avoid the extra nested if test, you might have written something
like this:

while (<>) {
if (/wilma.*fred|fred.*wilma/) {
print;
}
}

This works because you’ll either have wilma before fred or fred before wilma. If
we had written just /wilma.*fred/, that wouldn't have matched a line like fred
and wilma flintstone, even though that line mentions both of them.

Folks who know about the logical-and operator, which we showed in Chapter 10,
could do both tests /fred/ and /wilma/ in the same if conditional. That’s more
efficient, more scalable, and an all-around better way than the ones given here.
But we haven't seen logical-and yet:
while (<>) {
if (/wilma/ && /fred/) {
print;

308

| Appendix A: Exercise Answers

}
}

The low-precedence short-circuit version works too:

while (<>) {
if (/wilma/ and /fred/) {
print;
}
}
We made this an extra-credit exercise because many folks have a mental block
here. We showed you an “or” operation (with the vertical bar, |), but we never
showed you an “and” operation. That’s because there isn’t one in regular expres-
sions. Mastering Perl revisits this example by using a regular expression look-
ahead, something even a bit too advanced for Intermediate Perl.

Answers to Chapter 8 Exercises

1. There’s one easy way to do it, and we showed it back in the chapter body. But if
your output isn’t saying before<match>after as it should, you've chosen a hard
way to do it.

2. Here’s one way to do it:
/a\b/
(Of course, that’s a pattern for use inside the pattern test program!) If your pat-
tern mistakenly matches barney, you probably needed the word-boundary
anchor.
3. Here’s one way to do it:

#!/usr/bin/perl
while (<STDIN>) {
chomp;
if (/(\b\w*a\b)/) {
print "Matched: |$°<$&>$'|\n";

print "\$1 contains '$1'\n"; # The new output line
} else {

print "No match: |$_|\n";
}

}

This is the same test program (with a new pattern), except that the one marked
line has been added to print out $1.

The pattern uses a pair of \b word-boundary anchors inside the parentheses,
although the pattern works the same way when they are placed outside. That’s
because anchors correspond to a place in the string but not to any characters in
the string: anchors have “zero width”

Exercise Answers | 309

https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

Admittedly, the first \b anchor isn’t really needed, due to details about greediness
that we won't go into here. But it may help a tiny bit with efficiency, and it cer-
tainly helps with clarity—and in the end, that one wins out.

4. This exercise answer is the same as the previous exercise answer, but with a
slightly different regular expression:
#!/usr/bin/perl
use v5.10;
while (<STDIN>) {
chomp;
if (/(?<word>\b\w*a\b)/) {
print "Matched: [$'<$&$'[\n";
print "'word' contains 'S+{word}'\n"; # The new output line
} else {
print "No match: |$_|\n";
}
}
5. Here’s one way to do it:
m!
(\b\w+a\b) # $1: a word ending in a
(.{0,5}) # $2: up to five characters following
Ixs # [x and /s modifiers
(Don't forget to add code to display $2, now that you have two memory variables.
If you change the pattern to have just one again, you can simply comment out the
extra line.) If your pattern doesn’t match just plain wilma anymore, perhaps you
require zero or more characters instead of one or more. You may have omitted
the /s modifier, since there shouldn’t be newlines in the data. (Of course, if there
are newlines in the data, the /s modifier could make for different output.)
6. Here’s one way to do it:
while (<>) {
chomp;
if (J\s\z/) {
print "$_#\n";
}
}
We used the pound sign (#) as the marker character.
310 | Appendix A: Exercise Answers

Answers to Chapter 9 Exercises

1. Here’s one way to do it:
/($what){3}/

Once $what has been interpolated, this gives a pattern resembling /(fred|
barney){3}/. Without the parentheses, the pattern would be something
like /fred|barney{3}/, which is the same as /fred|barneyyy/. So the parenthe-
ses are required.
2. Here’s one way to do it:
my $in = SARGV[O];
if (! defined $in) {

die "Usage: $0 filename";

}

my Sout = $in;

Sout =~ s/(\.\w+)?$/.0ut/;

if (! open $in_fh, '<', $in) {
die "Can't open 'Sin': $!";

}

if (! open Sout_fh, 's', Sout) {
die "Can't write 'Sout': $!";

}

while (<$in_fh>) {
s/Fred/Larry/gi;
print Sout_fh $_;
}
This program begins by naming its one and only command-line parameter, and
complaining if it didn’t get it. Then it copies that to $out and does a substitution
to change the file extension, if any, to .out. (It would be sufficient, though, to
merely append .out to the filename.)

Once the filehandles $in_fh and $out_fh are opened, the real program can
begin. If you didn’t use both options /g and /1, take oft half a point, since every
fred and Fred should be changed.

3. Here’s one way to do it:
while (<$in_fh>) {

chomp;

s/Fred/\n/gi; # Replace all FREDs
s/Wilma/Fred/gi; # Replace all WILMAs
s/\n/Wilma/g; # Replace the placeholder

Exercise Answers | 311

print Sout_fh "$_\n";
}
This replaces the loop from the previous program, of course. To do this kind of a
swap, we need to have some “placeholder” string that doesn’t otherwise appear in
the data. By using chomp (and adding the newline back for the output), we ensure
that a newline (\n) can be the placeholder. (You could choose some other
unlikely string as the placeholder. Another good choice would be the NUL char-
acter, \0.)

4. Here’s one way to do it:
$AT = ".bak"; # make backups
while (<>) {
if (/\a#!/) { # is 1t the shebang line?
$S_ .= "## Copyright (C) 20XX by Yours Truly\n";
}
print;
}
Invoke this program with the filenames you want to update. For example, if
youve been naming your exercises ex0I-1, ex0I-2, and so on, so that they all
begin with ex. . ., you would use:
./fix_my_copyright ex*

5. To keep from adding the copyright twice, we have to make two passes over the
files. First, we'll make a “set” with a hash where the keys are the filenames and the
values don’t matter (although we’ll use 1 for convenience):

my %do_these;
foreach (@ARGV) {
Sdo_these{$_} = 1;
}
Next, we'll examine the files and remove from our to-do list any file that already
contains the copyright. The current filename is in $ARGV, so we can use that as the
hash key:
while (<>) {
if (/\A## Copyright/) {
delete $do_these{$ARGV};
}
}
Finally, it’s the same program as before, once we've reestablished a reduced list of
names in @QARGV:
@ARGV = sort keys %do_these;
$AT = ".bak"; # make backups
exit unless @ARGV; # no arguments reads from standard input!
while (<>) {
312 | Appendix A: Exercise Answers

if (J\A#!/) { # is 1t the shebang line?
$_ .= "## Copyright (c) 20XX by Yours Truly\n";
}

print;

}

Answers to Chapter 10 Exercises

1. Here’s one way to do it:

my $secret = int(1 + rand 100);
This next line may be uncommented during debugging
print "Don't tell anyone, but the secret number is $secret.\n";

while (1) {
print "Please enter a guess from 1 to 100: ";
chomp(my $guess = <STDIN>);
if (Sguess =~ [quit|exit|\A\s*\z/1) {
print "Sorry you gave up. The number was $secret.\n";
last;
} elsif (Sguess < S$secret) {
print "Too small. Try again!\n";
} elsif (Sguess == $secret) {
print "That was it!\n";
last;
} else {
print "Too large. Try again!\n";
}
}

The first line picks out our secret number from 1 to 100. Here’s how it works.
First, rand is Perl’s random number function, so rand 100 gives us a random
number in the range from 0 up to (but not including) 100. That is, the largest
possible value of that expression is something like 99.999. Adding one gives a
number from 1 to 100.999, then the int function truncates that, giving a result
from 1 to 100, as we needed.

The commented-out line can be helpful during development and debugging, or if
you like to cheat. The main body of this program is the infinite while loop. That
will keep asking for guesses until we execute last.

It's important that we test the possible strings before the numbers. If we didn’t, do
you see what would happen when the user types quit? That would be interpreted
as a number (probably giving a warning message, if warnings were turned on),
and since the value as a number would be zero, the poor user would get the
message that their guess was too small. We might never get to the string tests, in
that case.

Exercise Answers | 313

Another way to make the infinite loop here would be to use a naked block with
redo. It's not more or less efficient; merely another way to write it. Generally, if
you expect to mostly loop, it’s good to write while, since that loops by default. If
looping will be the exception, a naked block may be a better choice.

2. This program is a slight modification to the previous answer. We want to print
the secret number while we are developing the program, so we print the secret
number if the variable $Debug has a true value. The value of $Debug is either the
value that we already set as an environment variable, or 1 by default. By using
the // operator, we won'’t set it to 1 unless the SENV{DEBUG} is undefined:

use v5.10;
my $Debug = $ENV{DEBUG} // 1;
my $secret = int(1 + rand 100);

print "Don't tell anyone, but the secret number is $secret.\n"
if SDebug;

To do this without features introduced in v5.10, we just have to do a little more
work:

my $Debug = defined $ENV{DEBUG} ? $ENV{DEBUG} : 1;
3. Here’s one way to do it, which steals from the answer to Exercise 3 in Chapter 6.

At the top of the program, we set some environment variables. The keys ZERO and
EMPTY have false but defined values, and the key UNDEFINED has no value.

Later, in the printf argument list, we use the // operator to select the string
(undefined value) only when $ENV{$key} is not a defined value:

use v5.10;
SENV{ZERO}

SENV{EMPTY} "
SENV{UNDEFINED}

I
(<)
.o

1
c
=]
a ..
™
-+
..

my $longest = 0;
foreach my Skey (keys %ENV) {

my $key_length = length($key);

$longest = Skey_length if Skey_length > S$longest;
}

foreach my $key (sort keys %ENV) {
printf "%-${longest}s %s\n", Skey, SENV{Skey} // "(undefined value)";
}

314 | Appendix A: Exercise Answers

By using // here, we don’t disturb false values such as those in the keys ZERO and
EMPTY.

To do this without Perl 5.10, we use the ternary operator instead:

printf "%-${longest}s %s\n", Skey,
defined $ENV{$key} ? SENV{Skey} : "(undefined value)";

Answers to Chapter 11 Exercises

1. This answer uses a hash reference (which you’ll have to read about in Intermedi-
ate Perl), but we gave you the part to get around that. You don’t have to know
how it all works as long as you know it does work. You can get the job done and
learn the details later.

Here’s one way to do it:

use Module::CorelList;
my %modules = %{ $Module::CorelList::version{5.034} };

print join "\n", keys %modules;
And here’s a bonus. With Perl’s postderef feature, you could write this:

use v5.20;
use feature qw(postderef);
no warnings qw(experimental::postderef);

use Module::CorelList;
my %modules = SModule::CorelList::version{5.034}->%*;

print join "\n", keys %modules;

See the blog post “Use postfix dereferencing” for more information. Or wait until
we release the third edition of Intermediate Perl, which we will update with this
new feature. We'll start working on it right after we finish this book.

2. Once you install Time: :Moment from CPAN, you just have to create two dates and
subtract them from each other. Remember to get the date order correct:

use Time::Moment;
my $now = Time::Moment->now;

my $then = Time::Moment->new(

year => SARGV[0O],
month => $ARGV[1],
)

my Syears = S$then->delta_years($Snow);

Exercise Answers | 315

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://www.effectiveperlprogramming.com/2014/09/use-postfix-dereferencing/
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

my $months = $then->delta_months($now) % 12;

printf "%d years and %d months\n", Syears, $months;

Answers to Chapter 12 Exercises

1. Here’s one way to do it:
foreach my $file (@ARGV) {
my Sattribs = &attributes($file);
print "'Sfile' Sattribs.\n";
}
sub attributes {
report the attributes of a given file
my $file = shift @_;
return "does not exist" unless -e $file;
my @attrib;
push @attrib, "readable" if -r $file;
push @attrib, "writable" if -w $file;
push @attrib, "executable" if -x $file;
return "exists" unless @attrib;
'i{s ' . join " and ", @attrib; # return value
}
In this solution, once again it’s convenient to use a subroutine. The main loop
prints one line of attributes for each file, perhaps telling us that 'cereal-killer'
is executable or that 'sasquatch' does not exist.
The subroutine tells us the attributes of the given filename. Of course, if the file
doesn’t even exist, there’s no need for the other tests, so we test for that first. If
there’s no file, we'll return early.
If the file does exist, we'll build a list of attributes. (Give yourself extra-credit
points if you used the special _ filehandle instead of $file on these tests, to keep
from calling the system separately for each new attribute.) It would be easy to add
additional tests like the three we show here. But what happens if none of the
attributes is true? Well, if we can't say anything else, at least we can say that the
file exists, so we do. The unless clause uses the fact that @attrib will be true (in a
Boolean context, which is a special case of a scalar context) if its got any
elements.
But if we've got some attributes, we'll join them with " and " and put "is " in
front, to make a description like is readable and writable. This isn’t perfect,
however; if there are three attributes, it says the file is readable and writable
and executable, which has too many ands, but we can get away with it. If you
wanted to add more attributes to the ones this program checks for, you should
316 | Appendix A: Exercise Answers

probably fix it to say something like is readable, writable, executable, and
nonempty. If that matters to you.

Note that if you somehow didn’t put any filenames on the command line, this
produces no output. This makes sense; if you ask for information on zero files,
you should get zero lines of output. But let’s compare that to what the next pro-
gram does in a similar case, in the explanation that follows.

. Here’s one way to do it:

die "No file names supplied!\n" unless @ARGV;
my Soldest_name = shift @ARGV;
my $oldest_age = -M S$oldest_name;

foreach (@ARGV) {
my $age = -M;
(Soldest_name, Soldest_age) = ($_, $age)
if Sage > $Soldest_age;
}

printf "The oldest file was %s, and it was %.1f days old.\n",
Soldest_name, Soldest_age;

This one starts right out by complaining if it didn’t get any filenames on the com-
mand line. That’s because it's supposed to tell us the oldest filename—and there
ain’t one if there aren’t any files to check.

Once again, were using the “high-water mark” algorithm. The first file is cer-
tainly the oldest one seen so far. We have to keep track of its age as well so that’s
in $oldest_age.

For each of the remaining files, we'll determine the age with the -M file test, just as
we did for the first one (except that here well use the default argument of $_ for
the file test). The last-modified time is generally what people mean by the “age” of
a file, although you could make a case for using a different one. If the age is more
than $oldest_age, we'll use a list assignment to update both the name and age.
We didn't have to use a list assignment, but it’s a convenient way to update several
variables at once.

We stored the age from -M in the temporary variable $age. What would have hap-
pened if we had simply used -M each time, rather than using a variable? Well,
first, unless we used the special _ filehandle, we would have been asking the oper-
ating system for the age of the file each time, a potentially slow operation (not
that youd notice unless you have hundreds or thousands of files, and maybe not
even then). More importantly, though, we should consider what would happen if
someone updated a file while we were checking it. That is, first we see the age of
some file, and it’s the oldest one seen so far. But before we can get back to use -M
a second time, someone modifies the file and resets the timestamp to the current

Exercise Answers | 317

time. Now the age that we save into $oldest_age is actually the youngest age pos-
sible. The result would be that wed get the oldest file among the files tested from
that point on, rather than the oldest overall; this would be a tough problem to
debug!

Finally, at the end of the program, we use printf to print out the name and age,
with the age rounded off to the nearest tenth of a day. Give yourself extra credit if
you went to the trouble to convert the age to a number of days, hours, and
minutes.

3. Here’s one way to do it:
use v5.10;
say "Looking for my files that are readable and writable";
die "No files specified!\n" unless @ARGV;
foreach my $file (QARGV) {
say "$file is readable and writable" if -o -r -w $file;
}
To use stacked file test operators, we need to use Perl 5.10 or later, so we start
with the use statement to ensure that we have the right version of Perl. We die if
there are no elements in @ARGV, and go through them with foreach otherwise.
We have to use three file test operators: -o to check if we own the file, -r to check
that it is readable, and -w to check if it is writable. Stacking them as -0 -r -w
creates a composite test that only passes if all three of them are true, which is
exactly what we want.
If we wanted to do this with a version before Perl 5.10, it’s just a little more code.
The says become prints with added newlines, and the stacked file tests become
separate tests combined with the && short-circuit operator:
print "Looking for my files that are readable and writable\n";
die "No files specified!\n" unless @ARGV;
foreach my $file (QARGV) {
print "$file is readable and writable\n"
if(-w $file && -r _ && -0 _);
}
318 | Appendix A: Exercise Answers

Answers to Chapter 13 Exercises

1. Here’s one way to do it, with a glob:

print "Which directory? (Default is your home directory) ";
chomp(my $dir = <STDIN>);
if (Sdir =~ /\A\s*\z/) { # A blank line
chdir or die "Can't chdir to your home directory: $!";
} else {
chdir $dir or die "Can't chdir to 'Sdir': $!";
}

my @files = <*>;
foreach (@files) {
print "$_\n";

}
First, we show a simple prompt, read the desired directory, and chomp it.
(Without a chomp, wed be trying to head for a directory that ends in a newline—
legal in Unix, and therefore cannot be presumed to simply be extraneous by the
chdir function.)

Then, if the directory name is nonempty, we'll change to that directory, aborting
on a failure. If empty, the home directory is selected instead.

Finally, a glob on “star” pulls up all the names in the (new) working directory,
automatically sorted in alphabetical order, and they’re printed one at a time.

. Here’s one way to do it:

print "Which directory? (Default is your home directory) ";
chomp(my $dir = <STDIN>);

if (Sdir =~ /\A\s*\z/) { # A blank line
chdir or die "Can't chdir to your home directory: $!";
} else {
chdir $dir or die "Can't chdir to 'Sdir': $!";
}
my @files = <.* *>; ## now includes .*
foreach (sort @files) { ## now sorts
print "$_\n";
}

Two differences from previous one. First, the glob now includes “dot star;” which
matches all the names that do begin with a dot. And second, we now must sort
the resulting list because some of the names that begin with a dot must be inter-
leaved appropriately, either before or after the list of things, without a beginning
dot.

Exercise Answers | 319

3. Here’s one way to do it:
print 'Which directory? (Default is your home directory) ';
chomp(my $dir = <STDIN>);
if (Sdir =~ /\A\s*\z/) { # A blank line
chdir or die "Can't chdir to your home directory: $!";
} else {
chdir $dir or die "Can't chdir to 'Sdir': $!";
}

opendir DOT, or die "Can't opendir dot: $!";
foreach (sort readdir DOT) {
next if /\A\./; ## if we were skipping dot files
print "$_\n";
}
Again, same structure as the previous two programs, but now we've chosen to
open a directory handle. Once we've changed the working directory, we want to
open the current directory, and we've shown that as the DOT directory handle.

Why DOT? Well, if the user asks for an absolute directory name, like /etc, there’s
no problem opening it. But if the name is relative, like fred, let’s see what would
happen. First, we chdir to fred, and then we want to use opendir to open it. But
that would open fred in the new directory, not fred in the original directory.
The only name we can be sure will mean “the current directory” is “.”, which
always has that meaning (in Unix and similar systems, at least).

The readdir function pulls up all the names of the directory, which are then
sorted and displayed. If we had done the first exercise this way, we would have
skipped over the dot files—and that's handled by uncommenting the
commented-out line in the foreach loop.

You may find yourself asking, “Why did we chdir first? You can use readdir and
friends on any directory, not merely on the current directory” Primarily, we
wanted to give the user the convenience of being able to get to their home direc-
tory with a single keystroke. But this could be the start of a general file-
management utility program; maybe the next step would be to ask the user which
of the files in this directory should be moved to offline tape storage, say.

4. Here’s one way to do it:
unlink @ARGV;
...or, if you want to warn the user of any problems:

foreach (@ARGV) {
unlink $_ or warn "Can't unlink 'S$_': $!, continuing...\n";

}

320 | Appendix A: Exercise Answers

Here, each item from the command-invocation line is placed individually into

$_, which is then used as the argument to unlink. If something goes wrong, the
warning gives a clue about why.

5. Here’s one way to do it:

use File::Basename;
use File::Spec;

my($source, $dest) = @ARGV;

if (-d $dest) {
my $basename = basename $source;

Sdest = File::Spec->catfile(Sdest, $basename);
}

rename $source, S$dest
or die "Can't rename 'S$source' to 'Sdest': S$!\n";

The workhorse in this program is the last statement, but the remainder of the
program is necessary when we are renaming into a directory. First, after declar-
ing the modules we’re using, we name the command-line arguments sensibly. If
$dest is a directory, we need to extract the basename from the $source name

and append it to the directory ($dest). Finally, once $dest is patched up if
needed, the rename does the deed.

6. Here’s one way to do it:
use File::Basename;
use File::Spec;

my($source, $dest) = @ARGV;

if (-d S$dest) {

my S$basename = basename $source;

Sdest = File::Spec->catfile(Sdest, $basename);
}

link $source, S$Sdest
or die "Can't link 'S$source' to 'Sdest': $!'\n";

As the hint in the exercise description said, this program is much like the previ-
ous one. The difference is that we’ll link rather than rename. If your system
doesn’'t support hard links, you might have written this as the last statement:

print "Would link 'S$source' to '$dest'.\n";
7. Here’s one way to do it:

use File::Basename;
use File::Spec;

Exercise Answers | 321

my $symlink = SARGV[O] eq '-s';
shift @ARGV if $symlink;

my($source, Sdest) = @ARGV;
if (-d Sdest) {

my $basename = basename $source;

Sdest = File::Spec->catfile($dest, $basename);
}

if (Ssymlink) {
symlink $source, $dest
or die "Can't make soft link from 'Ssource' to 'Sdest': $!\n";
} else {
1ink $source, S$dest
or die "Can't make hard link from '$source' to 'S$dest': $!\n";

}

The first few lines of code (after the two use declarations) look at the first
command-line argument, and if it’s -s, were making a symbolic link, so we note
that as a true value for $symlink. If we saw that -s, we then need to get rid of it
(in the next line). The next few lines are cut-and-pasted from the previous exer-
cise answers. Finally, based on the truth of $symlink, we’ll choose to create either
a symbolic link or a hard link. We also updated the dying words to make it clear
which kind of link we were attempting.

. Here’s one way to do it:

foreach (glob('.* *')) {

my $dest = readlink $_;

print "$_ -> Sdest\n" if defined $dest;
}

Each item resulting from the glob ends up in $_ one by one. If the item is a sym-
bolic link, then readlink returns a defined value, and the location is displayed. If
not, the condition fails and we skip over it.

Answers to Chapter 14 Exercises

1. Here’s one way to do it:
my @numbers;
push @numbers, split while <>;
foreach (sort { $a <=> $b } @numbers) {
printf "%20g\n", $_;
}
That second line of code is too confusing, isn't it? Well, we did that on purpose.
Although we recommend that you write clear code, some people like writing
322 | Appendix A: Exercise Answers

code that’s as hard to understand as possible, so we want you to be prepared for
the worst. Someday you’ll need to maintain confusing code like this.

Since that line uses the while modifier, it’s the same as if it were written in a loop
like this:

while (<>) {
push @numbers, split;

}
That’s better, but maybe it’s still a little unclear. (Nevertheless, we don't have a
quibble about writing it this way. This one is on the correct side of the “too hard
to understand at a glance” line.) The while loop is reading the input one line at a
time (from the user’s choice of input sources, as shown by the diamond opera-
tor), and split is, by default, splitting that on whitespace to make a list of words
—or in this case, a list of numbers. The input is just a stream of numbers separa-
ted by whitespace, after all. Either way you write it, then, that while loop will put
all of the numbers from the input into @umbers.

The foreach loop takes the sorted list and prints each item on its own line, using
the %209 numeric format to put them in a right-justified column. You could have
used %20s instead. What difference would that make? Well, that’s a string format,
so it would have left the strings untouched in the output. Did you notice that our
sample data included both 1.50 and 1.5, and both 04 and 4? If you printed those
as strings, the extra zero characters will still be in the output; but %20g is a
numeric format, so equal numbers will appear identically in the output. Either
format could potentially be correct, depending on what you're trying to do.

2. Here’s one way to do it:

don't forget to incorporate the hash %last_name,
either from the exercise text or the downloaded file

my @keys = sort {
"\L$last_name{$a}" cmp "\LSlast_name{$b}" # by last name
or
"\L$a" cmp "\LSb" # by first name
} keys %last_name;

foreach (@keys) {
print "$last_name{S$_}, $_\n"; # Rubble,Bamm-Bamm
}

There’s not much to say about this one; we put the keys in order as needed, then
print them out. We chose to print them in last-name-comma-first-name order
just for fun; the exercise description left that up to you.

Exercise Answers | 323

3.

Here’s one way to do it:

print "Please enter a string: ";
chomp(my $string = <STDIN>);

print "Please enter a substring: ";
chomp(my $Ssub = <STDIN>);

my @places;

for (my $pos = -1; ;) { # tricky use of three-part for loop
$pos = index($string, $sub, Spos + 1); # find next position
last if $pos == -1;
push @places, $pos;

}

print "Locations of '$sub' in '$string' were: @places\n";

This one starts out simply enough, asking the user for the strings and declaring
an array to hold the list of substring positions. But once again, as we see in the
for loop, the code seems to have been “optimized for cleverness,” which should
be done only for fun, never in production code. But this actually shows a valid
technique, which could be useful in some cases, so let’s see how it works.

The my variable $pos is declared private to the scope of the for loop, and it starts
with a value of -1. So as not to keep you in suspense about this variable, we'll tell
you right now that it's going to hold a position of the substring in the larger
string. The test and increment sections of the for loop are empty, so this is an
infinite loop. (Of course, we'll eventually break out of it, in this case with last.)

The first statement of the loop body looks for the first occurrence of the substring
at or after position $pos + 1. That means that on the first iteration, when $pos is
still -1, the search will start at position 0, the start of the string. The location of
the substring is stored back in $pos. Now, if that was -1, were done with the for
loop, so last breaks out of the loop in that case. If it wasn’t -1, then we save the
position into @places and go around the loop again. This time, $pos + 1 means
that well start looking for the substring just after the previous place where we
found it. And so we get the answers we wanted and the world is once again a

happy place.

If you didn’t want that tricky use of the for loop, you could accomplish the same
result as shown here:

{
my $pos = -1;
while (1) {
. # Same loop body as the for loop used earlier
}
}

324

| Appendix A: Exercise Answers

The naked block on the outside restricts the scope of $pos. You don’t have to do
that, but it's often a good idea to declare each variable in the smallest possible
scope. This means we have fewer variables “alive” at any given point in the pro-
gram, making it less likely that we’ll accidentally reuse the name $pos for some
new purpose. For the same reason, if you don’t declare a variable in a small scope,
you should generally give it a longer name that’s thereby less likely to be reused
by accident. Maybe something like $substring_position would be appropriate
in this case.

On the other hand, if you were trying to obfuscate your code (shame on you!),
you could create a monster like this (shame on us!):
for (my $pos = -1; -1 !=
($pos = index
+$string,
+$sub,
+$pos
+1
);
push @laces, ((((+$pos))))) {
"for (Spos != 1; # ;Spos++) {
print "position S$pos\n";#;';#' } pop @places;
}
That even trickier code works in place of the original tricky for loop. By now,
you should know enough to be able to decipher that one on your own, or to
obfuscate code in order to amaze your friends and confound your enemies. Be
sure to use these powers only for good, never for evil.

Oh, and what did you get when you searched for t in This is a test.? It’s at
positions 10 and 13. It’s not at position 0; since the capitalization doesn’t match,
the substring doesn’t match.

Answers to Chapter 15 Exercises

1. Here’s one way to do it:

chdir '/' or die "Can't chdir to root directory: $!";

exec 'ls', "-1' or die "Can't exec ls: $!";
The first line changes the current working directory to the root directory, as our
particular hardcoded directory. The second line uses the multiple-argument exec
function to send the result to standard output. We could have used the single-
argument form just as well, but it doesn’t hurt to do it this way.

2. Here’s one way to do it:

open STDOUT, 's>', 'ls.out' or die "Can't write to ls.out: $!";
open STDERR, '>', 'ls.err' or die "Can't write to ls.err: $!";

Exercise Answers | 325

chdir '/' or die "Can't chdir to root directory: $!";

exec 'ls', '-1' or die "Can't exec 1s: $!";
The first and second lines reopen STDOUT and STDERR to a file in the current
directory (before we change directories). Then, after the directory change, the
directory listing command executes, sending the data back to the files opened in
the original directory.

Where would the message from the last die go? Well, it would go into Is.err, of
course, since that's where STDERR is going at that point. The die from chdir
would go there too. But where would the message go if we can’t reopen STDERR
on the second line? It goes to the old STDERR. When reopening the three standard
filehandles (STDIN, STDOUT, and STDERR), the old filehandles are still open.

3. Here’s one way to do it:

if (“date’ =~ /\AS/) {
print "go play!\n";
} else {
print "get to work!\n";
}
Well, since both Saturday and Sunday start with an S, and the day of the week is
the first part of the output of the date command, this is pretty simple. Just check
the output of the date command to see if it starts with S. There are many harder
ways to do this program, and we've seen most of them in our classes.

If we had to use this in a real-world program, though, wed probably use the pat-
tern /\A(Sat|Sun)/. It’s a tiny bit less efficient, but that hardly matters; besides,
it’s so much easier for the maintenance programmer to understand.

4. To catch some signals, we set up signal handlers. Just with the techniques we
show in this book, we have a bit of repetitive work to do. In each handler subrou-
tine, we set up a state variable so we can count the number of times we call that
subroutine. We use a foreach loop to then assign the right subroutine name to
the appropriate key in %SIG. At the end, we create an infinite loop so the program
runs indefinitely:

use v5.10;

sub my_hup_handler { state $n; say 'Caught HUP: ', ++$n }
sub my_usr1_handler { state $n; say 'Caught USR1: ', ++Sn }
sub my_usr2_handler { state $n; say 'Caught USR2: ', ++$n }
sub my_int_handler { say 'Caught INT. Exiting.'; exit }

say "I am $$";
foreach my $signal (qw(int hup usrl usr2)) {

$SIG{ uc Ssignal } = "my_S${signal}_handler";
}

326 | Appendix A: Exercise Answers

while(1) { sleep 1 };
We need another terminal session to run a program to send the signals:

$ kill -HUP 61203
$ perl -e 'kill HUP => 61203’
$ perl -e 'kill USR2 => 61203'

The output shows the running count of signals as we catch them:

$ perl signal_catcher
I am 61203

Caught HUP: 1

Caught HUP: 2

Caught USR2: 1

Caught HUP: 3

Caught USR2: 2

Caught INT. Exiting.

Answers to Chapter 16 Exercises

1. Here’s one way to do it:

my $filename = 'path/to/sample_text';
open my $fh, '<', $filename
or die "Can't open 'S$filename': $!";
chomp(my @strings = <$fh>);
while (1) {
print 'Please enter a pattern: ';
chomp(my Spattern = <STDIN>);
last if $pattern =~ /\A\s*\Z/;
my @matches = eval {
grep /$pattern/, @strings;
};
if (@) {
print "Error: $Q@";
} else {
my $count = @matches;
print "There were $count matching strings:\n",
map "$_\n", @matches;
}
print "\n";

}

This one uses an eval block to trap any failure that might occur when using the
regular expression. Inside that block, a grep pulls the matching strings from the
list of strings.

Exercise Answers | 327

Once the eval is finished, we can report either the error message or the matching
strings. Note that we “unchomped” the strings for output by using map to add a
newline to each string.

. This program is simple. There are many ways that we can get a list of files, but

since we only care about the ones in the current working directory we can just
use a glob. We use foreach to put each filename in the default variable $_ since
we know that stat uses that variable by default. We surround the entire stat
before we perform the slice:
foreach (glob('*')) {

my(Satime, $Smtime) = (stat)[8,9];

printf "%-20s %10d %10d\n", $_, Satime, S$mtime;

}

We know to use the indices 8 and 9 because we look at the documentation for
stat. The documentation writers have been quite kind to us by showing us a

table that maps the index of the list item to what it does, so we don’t have to
count over ourselves.

If we don’t want to use $_, we can use our own control variable:

foreach my $file (glob('*')) {
my($atime, Smtime) = (stat $file)[8,9];
printf "%-20s %10d %10d\n", $file, Satime, $mtime;
}

. This solution builds on the previous one. The trick now is to use localtime to

turn the epoch times into date strings in the form YYYY-MM-DD. Before we
integrate that into the full program, let’s look at how we would do that, assuming
that the time is in $_ (which is the map control variable).
We get the indices for the slice from the localtime documentation:

my($Syear, S$month, $day) = (localtime)[5,4,3];
We note that localtime returns the year minus 1900 and the month minus 1 (at
least minus 1 how we humans count), so we have to adjust that:

Syear += 1900; $Smonth += 1;
Finally, we can put it all together to get the format we want, padding the month
and day with zeros if necessary:

sprintf '%4d-%02d-%02d', Syear, Smonth, S$day;
To apply this to a list of times, we use a map. Note that localtime is one of the
operators that doesn’t use $_ by default, so you have to supply it as an argument
explicitly:

my @times = map {
my($year, $month, $day) = (localtime($_))[5.4,31;
$year += 1900; $month += 1;

328

| Appendix A: Exercise Answers

sprintf '%4d-%02d-%02d', Syear, Smonth, $day;
} @epoch_times;

This, then, is what we have to substitute in our stat line in the previous pro-
gram, finally ending up with:
foreach my $file (glob('*')) {
my(Satime, Smtime) = map {
my($year, $month, $day) = (localtime(S$_))[5,4,3];
Syear += 1900; Smonth += 1;
sprintf '%4d-%02d-%02d', Syear, Smonth, $day;
} (stat $file)[8,9];

printf "%-20s %10s %10s\n", $file, Satime, $mtime;
}

Most of the point of this exercise was to use the particular techniques we covered
in Chapter 16. There’s another way to do this, though, and it's much easier. The
POSIX module, which comes with Perl, has a strftime subroutine that takes a
sprintf-style format string and the time components in the same order that
localtime returns them. That makes the map much simpler:

use POSIX gw(strftime);

foreach my $file (glob('*')) {
my($atime, $mtime) = map {
strftime('%Y-%m-%d', localtime($_));
} (stat $file)[8,9];

printf "%-20s %10s %10s\n", $file, Satime, $mtime;
}

Exercise Answers | 329

APPENDIX B
Beyond the Llama

We've covered a lot in this book, but there’s even more. In this appendix, we'll tell you
a little more about what Perl can do, and give some references on where to learn the
details. Some of what we mention here is on the bleeding edge and may have changed
by the time you're reading this book, which is one reason we frequently send you to
the documentation for the full story. We dont expect many readers to read every
word of this appendix, but we hope you’ll at least skim the headings so that you'll be
prepared to fight back when someone tells you, “You just can’t use Perl for project X
because Perl can’t do Y

The most important thing to keep in mind (so that were not repeating it in every
paragraph) is that the most important part of what were not covering here is covered
in Intermediate Perl, also known as “the Alpaca” You should definitely read the
Alpaca, especially if you'll be writing programs that are longer than 100 lines (either
alone or with other people). Especially if you're tired of hearing about Fred and Bar-
ney and want to move on to another fictional universe featuring seven people who
got to spend a lot of time on an isolated island after a cruise!

After Intermediate Perl, you’ll be ready to move on to Mastering Perl, also known as
“the Vicufna” It covers the everyday tasks that you’ll want to do while programming
Perl, such as benchmarking and profiling, program configuration, and logging. It also
goes through the work you’ll need to do to deal with code written by other people
and how to integrate that into your own applications.

In Perl New Features, brian covers the features added to Perl starting with v5.10 up to
the current version. As an ebook, it’s easy to update this book for new versions
of Perl.

331

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/
https://leanpub.com/perl_new_features

There are many other good books to explore. Depending on your version of Perl,
look in either perlfaq2 or perlbook for many recommendations, especially before you
spend your money on a book that might be rubbish or out of date.

Further Documentation

The documentation that comes with Perl may seem overwhelming at first. Fortu-
nately, you can use your computer to search for keywords in the documentation.
When searching for a particular topic, it’s often good to start with the perltoc (table of
contents) and perlfaq (frequently asked questions) sections. On most systems, the
perldoc command should be able to track down the documentation for Perl, installed
modules, and related programs (including perldoc itself). You can read the same doc-
umentation online, although that is always for the latest version of Perl.

Regular Expressions

Yes, there’s even more about regular expressions than we mentioned. Mastering Regu-
lar Expressions by Jeffrey Friedl is one of the best technical books we've ever read. It’s
half about regular expressions in general, and half about Perl’s regular expressions,
which many other languages incorporate as Perl-Compatible Regular Expressions
(PCRE). It goes into great detail about how the regular expression engine works inter-
nally, and why one way of writing a pattern may be much more efficient than another.
Anyone who is serious about Perl should read this book. Also see the perlre docu-
mentation (and its companion perlretut and perlrequick in newer versions of Perl).
And there’s more about regular expressions in Intermediate Perl and Mastering Perl
as well.

Packages

Packages allow you to compartmentalize namespaces. Imagine that you have 10 pro-
grammers all working on one big project. If someone uses the global names $fred,
@barney, %betty, and &wilma in their part of the project, what happens when you
accidentally use one of those same names in your part? Packages let you keep them
separate; I can access your $fred, and you can access mine, but not by accident. You
need packages to make Perl scalable so that you can manage large programs. We
cover packages in great detail in Intermediate Perl.

332 | Appendix B: Beyond the Llama

https://perldoc.perl.org/perlfaq2
https://perldoc.perl.org/perlbook
https://perldoc.perl.org/perltoc
https://perldoc.perl.org/perlfaq
https://perldoc.perl.org
https://perldoc.perl.org
https://learning.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://learning.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://perldoc.perl.org/perlre
https://perldoc.perl.org/perlre
https://perldoc.perl.org/perlretut
https://perldoc.perl.org/perlrequick
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

Extending Perl’s Functionality

One of the most common pieces of good advice heard in the Perl discussion forums is
that you shouldn't reinvent the wheel. Other folks have written code that you can put
to use. The most frequent way to add to what Perl can do is by using a library or
module. Many of these come with Perl, while others are available from CPAN. Of
course, you can even write your own libraries and modules.

Modules such as Inline: :C allow you to easily hook up C code to Perl.

Writing Your Own Modules

In the rare case that there’s no module to do what you need, you can write a new one,
either in Perl or in another language (often C). Intermediate Perl covers how to write,
test, and distribute modules.

Databases

If you've got a database, Perl can work with it. We've already seen the DBI module
briefly in Chapter 11.

Perl can directly access some system databases, sometimes with the help of a module.
These are databases like the Windows Registry (which holds machine-level settings),
or the Unix password database (which lists which username corresponds to which
number, and related information), as well as the domain-name database (which lets
you translate an IP number into a machine name, and vice versa).

Mathematics

Perl can do just about any kind of mathematics you can dream up. The PDL module
(for Perl Data Language) provides high-powered ways to do tricky math.

All of the basic mathematical functions (square root, cosine, logarithm, absolute
value, and many others) are available as built-in functions; see the perlfunc documen-
tation for details. Some others (like tangent or base-10 logarithm) are omitted, but
those may be easily created from the basic ones, or loaded from a simple module that
does so. (See the POSIX module for many common math functions.)

Although the core of Perl doesn't directly support complex numbers, there are mod-
ules available for working with them. These overload the normal operators and func-
tions so that you can still multiply with * and get a square root with sqrt, even when
using complex numbers. See the Math: : Complex module.

Beyondthellama | 333

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://perldoc.perl.org/perlfunc
https://perldoc.perl.org/perlfunc

You can do math with arbitrarily large numbers with an arbitrary number of digits of
accuracy. For example, you could calculate the factorial of two thousand, or deter-
mine 7 to ten-thousand digits. See the Math: :BigInt and Math: :BigFloat modules.

Lists and Arrays

Perl has a number of features that make it easy to manipulate an entire list or array.

In Chapter 16, we mentioned the map and grep list-processing operators. They can do
more than we could include here; see the perlfunc documentation for more informa-
tion and examples. And check out Intermediate Perl for more ways to use map and

grep.

Bits and Pieces

You can work with an array of bits (a bitstring) with the vec operator, setting bit
number 123, clearing bit number 456, and checking to see the state of bit 789.
Bitstrings may be of arbitrary size. The vec operator can also work with chunks
of other sizes, as long as the size is a small power of two, so it’s useful if you need to
view a string as a compact array of nybbles, say. See the perlfunc documentation or
Mastering Perl.

Formats

Perl’s formats are an easy way to make fixed-format, template-driven reports with
automatic page headers. In fact, they are one of the main reasons Larry developed
Perl in the first place: as a Practical Extraction and Report Language. But, alas, they’re
limited. The heartbreak of formats happens when someone discovers that they need a
little more than what formats provide. This usually means ripping out the program’s
entire output section and replacing it with code that doesn’t use formats. Still, if
you're sure that formats do what you need, all that you’ll need, and all that you'll ever
need, they are pretty cool. See the perlform documentation.

Networking and IPC

If there’s a way that programs on your machine can talk with other programs, Perl can
probably do it. This section shows some common ways.

System V IPC

All of the standard functions for System V IPC (interprocess communication) are
supported by Perl, so you can use message queues, semaphores, and shared memory.
Of course, an array in Perl isn’t stored in a chunk of memory in the same way that an

334 | Appendix B: Beyond the Llama

https://perldoc.perl.org/perlfunc
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://perldoc.perl.org/perlfunc
https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/
https://perldoc.perl.org/perlform

array is stored in C, so shared memory can’t share Perl data as is. But there are mod-
ules that will translate data so that you can pretend your Perl data is in shared mem-
ory. See the perlfunc and the perlipc documentation.

Sockets

Perl has full support for TCP/IP sockets, which means you could write a web server
in Perl, or a web browser, Usenet news server or client, finger daemon or client, FTP
daemon or client, SMTP or POP or SOAP server or client, or either end of pretty
much any other kind of protocol in use on the internet. You'll find low-level modules
for these in the Net: : namespace, and many of them come with Perl.

Of course, there’s no need to get into the low-level details yourself; there are modules
available for all of the common protocols. For example, you can make a web server or
client with the LWP, WWW: :Mechanize, or Mojo: :UserAgent modules.

Security

Perl has a number of strong, security-related features that can make a program writ-
ten in Perl more secure than the corresponding program written in C. Probably the
most important of these is data-flow analysis, better known as taint checking. When
this is enabled, Perl keeps track of which pieces of data seem to have come from the
user or environment (and are therefore untrustworthy). Generally, if any such piece
of so-called “tainted” data is used to affect another process, file, or directory, Perl will
prohibit the operation and abort the program. It’s not perfect, but it’s a powerful way
to prevent some security-related mistakes. There’s more to the story; see the perlsec
documentation or Mastering Perl.

Debugging

There’s a very good debugger that comes with Perl and supports breakpoints, watch-
points, single-stepping, and generally everything youd want in a command-line Perl
debugger. It’s actually written in Perl (so if there are bugs in the debugger, we’re not
sure how they get those out). But that means that, in addition to all the usual debug-
ger commands, you can actually run Perl code from the debugger—calling your sub-
routines, changing variables, even redefining subroutines—while your program is
running. See the perldebug documentation for the latest details. Intermediate Perl
gives a detailed walkthrough of the debugger.

Another debugging tactic is to use the B: :Lint module, which can warn you about
potential problems that even the -w switch misses.

Beyondthellama | 335

https://perldoc.perl.org/perlfunc
https://perldoc.perl.org/perlipc
https://perldoc.perl.org/perlsec
https://perldoc.perl.org/perlsec
https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/
https://perldoc.perl.org/perldebug
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

Command-Line Options

There are many different command-line options available in Perl; many let you write
useful programs directly from the command line. See the perlrun documentation.

Built-in Variables

Perl has dozens of built-in variables (like @ARGV and $0), which provide useful infor-
mation or control the operation of Perl itself. See the perlvar documentation.

References

Perl’s references are similar to C’s pointers, but in operation, they’re more like what
you have in Pascal or Ada. A reference “points” to a memory location, but because
there’s no pointer arithmetic or direct memory allocation and deallocation, you can
be sure that any reference you have is a valid one. References allow object-oriented
programming and complex data structures, among other nifty tricks. See the perlref-
tut and perlref documentation. Intermediate Perl covers references in great detail.

Complex Data Structures

References allow you to make complex data structures in Perl. For example, suppose
you want a two-dimensional array. You can do that, or you can do something much
more interesting, like have an array of hashes, a hash of hashes, or a hash of arrays of
hashes. See the perldsc (data-structures cookbook) and perllol (lists of lists) docu-
mentation. Again, Intermediate Perl covers this quite thoroughly, including techni-
ques for complex data manipulation, like sorting and summarizing.

Object-Oriented Programming

Yes, Perl has objects; it's buzzword compatible with all of those other languages.
Object-oriented (OO) programming lets you create your own user-defined datatypes
with associated abilities, using inheritance, overriding, and dynamic method lookup.
Unlike some object-oriented languages, though, Perl doesn’t force you to use objects.

If your program is going to be larger than N lines of code, it may be more efficient (if
a tiny bit slower at runtime) for the programmer to make it object oriented. No one
knows the precise value of N, but we estimate it’s around a few thousand or so. See
the perlobj and perlootut documentations for a start, and Damian Conway’s excellent
Object Oriented Perl (Manning Press) for more advanced information. Intermediate
Perl covers objects thoroughly as well.

As we write this, the Moose meta-object system is very popular in Perl. It sits atop the
bare-metal Perl objects to provide a much nicer interface.

336 | Appendix B: Beyond the Llama

https://perldoc.perl.org/perlrun
https://perldoc.perl.org/perlvar
https://perldoc.perl.org/perlreftut
https://perldoc.perl.org/perlreftut
https://perldoc.perl.org/perlref
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://perldoc.perl.org/perldsc
https://perldoc.perl.org/perllol
https://perldoc.perl.org/perllol
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://perldoc.perl.org/perlobj
https://perldoc.perl.org/perlootut
https://www.manning.com/books/object-oriented-perl
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

Anonymous Subroutines and Closures

Odd as it may sound at first, it can be useful to have a subroutine without a name.
Such subroutines can be passed as parameters to other subroutines, or they can be
accessed via arrays or hashes to make jump tables. Closures are a powerful concept
that comes to Perl from the world of Lisp. A closure is (roughly speaking) an anony-
mous subroutine with its own private data. Again, we cover these in Intermediate Perl
and in Mastering Perl.

Tied Variables

A tied variable may be accessed like any other, but uses your own code behind the
scenes. So you could make a scalar that is really stored on a remote machine, or an
array that always stays sorted. See the perltie documentation or Mastering Perl.

Operator Overloading

You can redefine operators like addition, concatenation, comparison, or even the
implicit string-to-number conversion with the overload module. This is how a mod-
ule implementing complex numbers (for example) can let you multiply a complex
number by 8 to get a complex number as a result.

Using Other Languages Inside Perl

Through the Inline modules, you can embed C and other languages inside a Perl
program. The module takes care of connecting the external language to your Perl
program in a seamless way that you won’t notice. This is especially handy when a
vendor provides a library in another language but you want to use Perl.

Embedding

The reverse of dynamic loading (in a sense) is embedding.

Suppose you want to make a really cool word processor, and you start writing it in
(say) C++. Now you decide you want your users to be able to use Perl’s regular
expressions for an extra-powerful search-and-replace feature, so you embed Perl into
your program. Then you realize that you could open up some of the power of Perl to
your users. A power user could write a subroutine in Perl that could become a menu
item in your program. Users can customize the operation of your word processor by
writing a little Per]. Now you open up a little space on your website where users can
share and exchange these Perl snippets, and you've got thousands of new program-
mers extending what your program can do at no extra cost to your company. And

Beyondthellama | 337

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/
https://perldoc.perl.org/perltie
https://learning.oreilly.com/library/view/mastering-perl-2nd/9781449364946/

how much do you have to pay Larry for all this? Nothing—see the licenses that came
with Perl. Larry is a really nice guy. You should at least send him a thank-you note.

Although we don’t know of such a word processor, some folks have already used this
technique to make other powerful programs. One such example is Apache’s
mod_per1, which embeds Perl into an already-powerful web server. If you're thinking
about embedding Perl, you should check out mod_per1; since it’s all open source, you
can see how it works.

Converting find Command Lines to Perl

A common task for a system administrator is to recursively search the directory tree
for certain items. On Unix, this is typically done with the find command. We can do
that directly from Perl too.

The find2perl command, which comes with Per] up to v5.20 (and in App: : find2perl
now), takes the same arguments that find does. Instead of finding the requested
items, however, the output of find2perl is a Perl program that finds them. Since it’s a
program, you can edit it for your own needs.

One useful argument that’s available in find2perl but not in the standard find is the
-eval option. This says that what follows it is actual Perl code that should be run each
time that a file is found. When it’s run, the current directory will be the directory in
which some item is found, and $_ will contain the item’s name.

Here’s an example of how you might use find2perl. Suppose that youre a system
administrator on a Unix machine, and you want to find and remove all the old files in
the /tmp directory. Here’s the command that writes the program to do that:

$ find2perl /tmp -atime +14 -eval unlink >Perl-program

That command says to search in /tmp (and recursively in subdirectories) for items
whose atime (last access time) is at least 14 days ago. For each item, the program
should run the Perl code unlink, which will use $_ by default as the name of a file to
remove. The output (redirected to go into the file Perl-program) is the program that
does all of this. Now you merely need to arrange for it to be run as needed.

Command-Line Options in Your Programs

If youd like to make programs that take command-line options (like Perl’s own -w for
warnings, for example), there are modules that let you do this in a standard way. See
the documentation for the Getopt: :Long and Getopt: :Std modules.

338 | Appendix B: Beyond the Llama

Embedded Documentation

Perl's own documentation is written in pod (plain-old documentation) format. You
can embed this documentation in your own programs, and it can then be translated
to text, HTML, or many other formats as needed. See the perlpod documentation.
Intermediate Perl covers this too.

More Ways to Open Filehandles

There are other modes to use in opening a filehandle; see the perlopentut documenta-
tion. The open built-in is so feature-full that it gets its own documentation page.

Graphical User Interfaces (GUIs)

There are several GUI toolkits with Perl interfaces. See CPAN for Tk, Wx, and others.

And More...

If you check out the module list on CPAN, you’ll find modules for even more pur-
poses, from generating graphs and other images to downloading email, from figuring
the amortization of a loan to figuring the time of sunset. New modules are added all
the time, so Perl is even more powerful today than it was when we wrote this book.
We can't keep up with it all, so we'll stop here.

Beyondthellama | 339

https://perldoc.perl.org/perlpod
https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/
https://perldoc.perl.org/perlopentut
https://perldoc.perl.org/perlopentut

APPENDIX C
A Unicode Primer

This isn't a complete or comprehensive introduction to Unicode; it’s just enough for
you to understand the parts of Unicode that we present in this book. Unicode is
tricky not only because its a new way to think about strings, with lots of adjusted
vocabulary, but also because computer languages in general have implemented it so
poorly. Each version since v5.6 has brought Perl closer to full compliance. Perl has,
arguably, the best Unicode support that you will find, though.

Unicode

The Universal Character Set (UCS) is an abstract mapping of characters to code
points. It has nothing to do with a particular representation in memory, which means
we can agree on at least one way to talk about characters no matter which platform
we're on. An encoding turns the code points into a particular representation in mem-
ory, taking the abstract mapping and representing it physically within a computer.
You probably think of this storage in terms of bytes, although when talking about
Unicode, we use the term octets (see Figure C-1). Different encodings store the char-
acters differently. To go the other way, interpreting the octets as characters, you
decode them. You don’t have to worry too much about these because Perl can handle
most of the details for you.

When we talk about a code point, we specify its number in hexadecimal like so:
(U+0158); that’s the character R. Code points also have names, and that code point is
“LATIN CAPITAL LETTER R WITH CARON? Not only that, but code points know
certain things about themselves. They know if they are an uppercase or lowercase
character, a letter or digit or whitespace, and so on. They know what their uppercase,
title case, or lowercase partner is, if appropriate. This means that not only can we
work with the particular characters, but we now have a way to talk about types of
characters. All of this is defined in Unicode datafiles that come with perl. Look for a

34

unicore directory in your Perl library directory; that's how Perl knows everything it
needs to know about characters.

Characters Octets

UTF-8
(1]

a kncode | o

LATIN SMALL LETTER A WITH DIAERESIS

U+00E4 <...Decode |y

Figure C-1. The code point of a character is not its storage. The encoding transforms
characters into storage.

UTF-8 and Friends

The preferred encoding in Perl is UTF-8, which is short for UCS Transformation For-
mat 8-bit. Rob Pike and Ken Thompson defined this encoding one night on the back
of a paper placemat in a New Jersey diner. It’s just one possible encoding, although a
very popular one since it doesn’t have the drawbacks of some other encodings. If
you're using Windows, you're likely to run into UTF 16. We don’t have anything nice
to say about that encoding, so we'll just keep quiet like our mothers told us.

Read about the invention of UTF-8 from Rob Pike himself.

Getting Everyone to Agree

Getting everything set up to use Unicode can be frustrating because every part of the
system needs to know which encoding to expect so it can display it properly. Mess up
on any part of that and you might see gibberish, with no clue which part isn't working
correctly. If your program outputs UTF-8, your terminal needs to know that so it dis-
plays the characters correctly. If you input UTF-8, your Perl program needs to know
that so it interprets the input strings correctly. If you put data into a database, the
database server needs to store it correctly and return it correctly. You have to set up
your editor to save your source in UTF-8 if you want perl to interpret your typing as
UTE-8.

342 | Appendix C: A Unicode Primer

https://www.cl.cam.ac.uk/~mgk25/ucs/utf-8-history.txt

We don’t know which terminal you are using and were not going to list instructions
for every (or any) terminal here. For modern terminal programs, you should find a
setting in the preferences or properties for the encoding.

Beyond the encoding, various programs need to know how to output the encoding
that you want. Some look at the LC_* environment variables and some have their
own:

LESSCHARSET=utf-8
LC_ALL=en_US.UTF-8

If something is not displaying correctly through your pager (i.e., less, more, type),
read their documentation to see what they expect you to set to give encoding hints.

Fancy Characters

Thinking in Unicode requires a different mindset if you are used to ASCII. For
instance, what’s the difference between ¢é and é? You probably can't tell just by looking
at those, and even if you have the digital version of this book, the publication process
might have “fixed” the difference. You might not even believe us that there is a differ-
ence, but there is. The first one is a single character but the second one is two charac-
ters. How can that be? To humans, those are the same thing. To us, they are the same
grapheme (or glyph) because the idea is the same no matter how the computer deals
with either of them. We mostly care about the end result (the grapheme) since that’s
what imparts information to our readers.

Before Unicode, common character sets defined characters such as ¢ as an atom, or
single entity. That’s the first of our examples in the previous paragraph (just trust us).
However, Unicode also introduces the idea of mark characters—the accents and other
flourishes and annotations that combine with another character (called nonmarks).
That second é is actually the nonmark character e (U+0065, LATIN SMALL LETTER
E) and the mark character ~ (U+0301, COMBINING ACUTE ACCENT) that is the
pointy part over the letter. These two characters together make up the grapheme.
Indeed, this is why you should stop calling the overall representation a character and
call it a grapheme instead. One or more characters can make up the final grapheme.
Its a bit pedantic, but it makes it much easier to discuss Unicode without going
insane.

If the world were starting fresh, Unicode probably wouldn’t have to deal with the
single-character version of ¢, but the single-character version exists historically, so
Unicode does handle it to be somewhat backward compatible and friendly with the
text that’s already out there. Unicode code points have the same ordinal values for the
ASCII and Latin-1 encodings, which are all the code points from 0 to 255. That way,
treating your ASCII strings as UTF-8 should work out just fine (but not UTF-16,
where every character takes up at least two bytes).

AUnicode Primer | 343

The single-character version of é is a composed character because it represents two (or
more) characters as one code point. It composes the nonmark and mark into a single
character (U+00E9, LATIN SMALL LETTER E WITH ACUTE) that has its own code
point. The alternative is the decomposed version that uses two characters.

So, why do you care? How can you properly sort text if what you think of as the same
thing is actually different characters? Perl's sort cares about characters, not
graphemes, so the strings "\x{E9}" and "\x{65}\x{301}", which are both logically ¢,
do not sort to the same position. Before you sort these strings, you want to ensure
that both é’s sort next to each other no matter how you represent them. Computers
don’t sort in the same way that humans want to sort items. You don’t care about com-
posed or decomposed characters. We'll show you the solution in a moment, and you
should check Chapter 14.

Using Unicode in Your Source

If you want to have literal UTF-8 characters in your source code, you need to tell perl
to read your source as UTF-8. You do that with the utf8 pragma, whose only job is to
tell perl how to interpret your source. This example has Unicode characters in
a string:

use utfs8;
my $string = "Here is my & résumé";
You can also use some characters in variable and subroutine names:

use utfs8;

my %résumés = (
Fred => 'fred.doc',
);
sub n () { 3.14159 }
The only job of the utf8 pragma is to tell per! to interpret your source code as UTF-8.
It doesn’'t do anything else for you. As you decide to work with Unicode, it’s a good

idea to always include this pragma in your source unless you have a good reason
not to.

344 | Appendix C: A Unicode Primer

Typing characters you don’t see on your keyboard may be difficult.
Services such as r12a’s Unicode code converter and UniView 9.0.0
or a program such as UnicodeChecker can help.

Fancier Characters

It gets worse, though, although not as many of you probably care about this one.
What's the difference between fi and fi? Unless the typesetter “optimized” this, the
first one has the fand the i separated while the second one combines those in a liga-
ture, which generally sets the graphemes in a way that makes it easier for people to
read. The overhanging part of the f appears to impose on the personal space of the
dot on the i, which is a bit ugly. We don't actually read each letter in a word and
instead recognize it as a whole; the ligature is a slight improvement in our pattern
recognition. So typographers combine the two graphemes. You may have never
noticed it, but you’ll find several examples in this paragraph, and you’ll find them
often in typeset books (but usually not ebooks, which typically don’t care as much
about looking nice).

O'Reilly’s automated typesetting system doesn’t turn our fi’s into
their ligature forms unless we type the ligatures ourselves. It's prob-
ably a faster document workflow that way, even if we do have to
shuftle some graphemes manually. Fingers crossed that it shows up
the way we wanted!

The difference is similar to the composed and decomposed forms of ¢, but slightly
different. The €’s were canonically equivalent because no matter which way you made
it, the result was the same visual appearance and the same idea. The fi and fi don't
have the same visual appearance, so they are merely compatibility equivalent. You
don’t need to know too much about that other than knowing that you can decompose
both canonically and compatibility equivalent forms to a common form that you can
use to sort (Figure C-2). See Unicode Standard Annex #15, “Unicode Normalization
Forms” for the gory details.

AUnicode Primer | 345

https://r12a.github.io/app-conversion/
https://r12a.github.io/uniview/
https://earthlingsoft.net/UnicodeChecker/

Composed Decomposed

[X [1)
NFD decompose
>
LATIN SMALL LETTER A WITH DIAERESIS LATIN SMALL LETTER A, U+0061
NFC compose
U+00E4 < DIAERESIS, U+0308

ﬁ NFKD decompose f f

LATIN SMALL LIGATURE FF 2x LATIN SMALL LETTER F

U+FB0OO U+0066

Figure C-2. You can decompose and recompose canonical equivalent forms, but you can
only decompose compatible forms.

Suppose that you want to check if a string has an ¢ or an fi and you don’t care about
which form it has. To do that, you decompose the strings to get them in a common
form. To decompose Unicode strings, use the Unicode: :Normalize module, which
comes with Perl. It supplies two subroutines for decomposition. You use the NFD sub-
routine (Normalization Form Decomposition), which turns canonically equivalent
forms into the same decomposed form. You use the NFKD subroutine (Normalization
Form Kompatibility Decomposition) to convert to compatible forms that represent the
same thing but aren’t the same thing (for example, ss for f8). This example has a string
with composed characters that you decompose and match in various ways. The
“oops” messages shouldn’t print, while the “yay” messages should:

use utfs8;
use Unicode::Normalize;

U+FBO1 - fi ligature
U+0065 U+0301 - decomposed é
U+0OE9 - composed é

binmode STDOUT, ':utf8';

my $string =
"Can you \x{FBO1}nd my r\x{E9}sum\x{E9}?";

if($string =~ /\x{65}\x{301}/) {

print "Oops! Matched a decomposed é\n";
}

if($string =~ /\x{E9}/) {
print "Yay! Matched a composed é\n";

346 | Appendix C: A Unicode Primer

}

my $nfd = NFD($string);
if($nfd =~ /\x{E9}/) {
print "Oops! Matched a composed é\n";

}
if($nfd =~ /i)) {
print "Oops! Matched a decomposed fi\n";

}

my $nfkd = NFKD($string);
if($string =~ /fi/) {
print "Oops! Matched a decomposed fi\n";

}
if($nfkd =~ /fi/) {
print "Yay! Matched a decomposed fi\n";

}
if($nfkd =~ /\x{65}\x{301}/) {
print "Yay! Matched a decomposed é\n";

}

As you can see, the NFKD forms always match the decompositions because NFKD()
decomposes both canonical and compatible equivalents. The NFD forms miss the
compatible equivalents:

Yay! Matched a composed é
Yay! Matched a decomposed fi
Yay! Matched a decomposed é

There’s a caution here, though: you can decompose and recompose canonical forms,
but you cannot necessarily recompose compatible forms. If you decompose the liga-
ture fi, you get the separate graphemes f and i. The recomposer has no way to know
if those came from a ligature or started separately. (This is why were ignoring NFC
and NFKC. Those forms decompose then recompose, but NFKC can’t necessarily
recompose to the original form.) Again, thats the difference in canonical and com-
patible forms: the canonical forms look the same either way.

Dealing with Unicode in Perl

This section is a quick summary of the most common ways you’ll incorporate Uni-
code into your Perl programs. This is not a definitive guide, and even for the things
we do show there are some details that we ignore. It’s a big subject, and we don’t want
to scare you off. Learn a little at first (this appendix), but when you run into prob-
lems, reach for the detailed documentation we list at the end of the appendix.

AUnicode Primer | 347

Fancier Characters by Name

Unicode characters also have names. If you can't easily type the character with your
keyboard and you can’t easily remember the code points, you can use its name
(although it is a lot more typing). The charnames pragma, which comes with Perl,
gives you access to those names. Put the name inside \N{...} in a double-quotish
context:

my $string = "\N{THAI CHARACTER KHOMUT}"; # U+OE5B

Note that the pattern portions of the match and substitution operators are also
double-quoted context, but there’s also a character class shortcut \N that means “not a
newline” (see Chapter 8). It usually works out just fine because there are only some
weird cases where Perl might get confused. For a detailed discussion of the \N prob-
lem, see the blog post “Use the /N regex character class to get not a newline” for
more information.

Reading from STDIN or Writing to STDOUT or STDERR

At the lowest level, your input and output is just octets. Your program needs to know
how to decode or encode them. We've mostly covered this in Chapter 5, but here’s a
summary.

You have two ways to use a particular encoding with a filehandle. The first one uses
binmode:

binmode STDOUT, ':encoding(UTF-8)';
binmode $fh, ':encoding(UTF-16LE)';

You can also specify the encoding when you open the filehandle:
open my $fh, '>:encoding(UTF-8)', $filename;

If you want to set the encoding for all filehandles that you will open, you can use the
open pragma. You can affect all input or all output filehandles:

use open IN => ':encoding(UTF-8)';
use open OUT => ':encoding(UTF-8)';

You can do both with a single pragma:
use open IN => ":crlf", OUT => ":bytes";

If you want to use the same encoding for both input and output, you can set them at
the same time, either using IO or omitting it:

use open I0 => ":encoding(iso-8859-1)";
use open ':encoding(UTF-8)';

Since the standard filehandles are already open, you can apply your previously stated
encoding by using the :std subpragma:

348 | Appendix C: A Unicode Primer

https://www.effectiveperlprogramming.com/2011/01/use-the-n-regex-character-class-to-get-not-a-newline/

use open ':std';

This last one has no effect unless you've already explicitly declared an encoding. In
that case, add the encoding as the second import item:

use open qw(:std :encoding(UTF-8));

You can also set these on the command line with the -C switch, which will set the
encodings on the standard filehandles according to the arguments you give to it:

STDIN is assumed to be in UTF-8

STDOUT will be in UTF-8

STDERR will be in UTF-8

I+0+E

UTF-8 is the default PerlIO layer for input streams
1 UTF-8 is the default PerlIO layer for output streams
24 1+ o0

OO0 AU MmMmOH
0N BN

See the perlrun documentation for more information about command-line switches,
including the details for -C.

Reading from and Writing to Files

We cover this in Chapter 5, but here’s the summary. When you open a file, use the
three-argument form and specify the encoding so you know exactly what you are
getting:

open my(Sread_fh), '<:encoding(UTF-8)', S$filename;

open my(Swrite_fh), 's:encoding(UTF-8)', $file_name;

open my(Sappend_fh), 's>>:encoding(UTF-8)', $file_name;
Remember, though, that you don't get to pick the encoding of the input (at least not
from inside your program). Don't choose an encoding for the input unless you are
sure that’s the encoding the input actually is. Notice that although you're really decod-
ing input, you still use :encoding.

If you don’t know what sort of input you’ll get (and one of the Laws of Programming
is that run enough times, you’ll see every possible encoding), you can also just read
the raw stream and guess the encoding, perhaps with Encode: : Guess. There are many
gotchas there, though, and we won’t go into them here.

Once you get the data into your program, you don’t need to worry about the encod-
ing anymore. Perl stores it smartly and knows how to manipulate it. It’s not until you
want to store it in a file (or send it down a socket, and so on) that you need to encode
it again.

AUnicode Primer | 349

https://perldoc.perl.org/perlrun

Dealing with Command-Line Arguments

As we have said before, you need to be careful about the source of any data when you
want to treat it as Unicode. The @ARGV array is a special case since it gets its values
from the command line, and the command line uses the locale:

use I18N::Langinfo qw(langinfo CODESET);
use Encode qw(decode);

my $codeset = langinfo(CODESET);

foreach my $arg (QARGV) {
push @new_ARGV, decode $codeset, $arg;
}

Dealing with Databases

Our editor tells us that we are running out of space, and it's almost the end of the
book! We don’t have that much space to cover this topic, but that's OK because it’s not
really about Perl. Still, hes allowing us a couple of sentences. It’s really too bad that we
can’t go into all the ways that database servers make life so hard, or how they all do it
in different ways.

Eventually you’ll want to store some of your information in a database. The most
popular Perl module for database access, DBI, is Unicode-transparent, meaning it
passes the data it gets directly to the database server without messing with it. Check
its various drivers (for example, DBD: :mysql) to see which driver-specific settings
you’ll need. You also have to set up your database server, schemas, tables, and col-
umns correctly. Now you can see why were glad we've run out of space!

Further Reading

There are several parts of the Perl documentation that will help you with the
language-specific parts, including the perlunicode, perlunifaq, perluniintro, perluni-
props, and perlunitut documentation. Don't forget to check the documentation for
any of the Unicode modules that you use.

The official Unicode site has almost everything youd ever want to know about Uni-
code, and is a good place to start.

There’s also a Unicode chapter in Effective Perl Programming (Addison-Wesley), also
by one of the authors of this book.

350 | Appendix C: A Unicode Primer

https://perldoc.perl.org/perlunicode
https://perldoc.perl.org/perlunifaq
https://perldoc.perl.org/perluniintro
https://perldoc.perl.org/perluniprops
https://perldoc.perl.org/perluniprops
https://perldoc.perl.org/perlunitut
https://www.unicode.org
https://www.effectiveperlprogramming.com/

APPENDIXD
Experimental Features

You can completely skip this appendix and the experimental features we show and
not suffer for it. Or you can blindly follow the examples we show in the chapters and
not worry about what is happening. But we think you’ll want to use them and under-
stand them because we want to use and understand them too.

Many of the new features in Perl aren’t really “new.” They’re experimental. You have to
do something to enable them, they might change, and they might disappear alto-
gether. In fact, v5.24 removed two experimental features.

This is quite clever. People can install the latest perl and start using these new fea-
tures. They can test them, see how they interact with other features, and best of all,
develop unexpected idioms for them. Or they can completely ignore them and not
worry about backward compatibility. The Perl 5 Porters, the people who develop and
maintain the Perl code base, get to see how people use and react to a feature before
they commit to making it permanent.

Learning Perl should show you the best and most exciting ways of working in Perl,
but we also don’t want you to rely on experimental features that might disappear a
year after you buy this book. We show you some of the new features, but when we do,
we point to this appendix so you can get the background we don’t want to explain
each time.

The feature module documentation lists most of the new features and gives a brief
description of their use. You can also read the perldelta documentation in each
release of Perl to learn about new developments. We show the state of most new fea-
tures in Table D-1. Before we tell you about that, we give you some background.

351

https://perldoc.perl.org/perldelta

A Short History of Perl Development

Perl has gone through several eras of development, each with its own story. Knowing
what’s come before can help you appreciate where Perl is now.

In the late 1980s, Larry Wall created the Perl language (although that was not the first
name he tried to use). He mostly worked on his own with some feedback from the
Usenet community. Kids today probably have never seen a newsgroup, but it was the
social media of the time, and that’s where he first released Perl in 1987.

Eventually Perl was interesting enough to have books about it (this book in particular,
and Programming perl, with pink covers before our publisher moved Perl books to
blue covers). Perl was promoted to version 4. That’s also around the time Perl’s popu-
larity exploded, and when many people learned (or stopped learning) Perl. Quite
frankly, it’s this era that set most of the world’s expectations of Perl, and more disap-
pointedly, Per]l programmers. But that’s spilt milk.

But Perl 4 didn’t have object-oriented features, good ways to make complex data
structures, or lexical scoping. Around 1993, Larry started working on Perl 5, the cur-
rent major version and the one we write about in this book.

To move from Perl 4 to Perl 5, a gang of Perlers created the Perl 5 Porters to ensure
that Perl 5 was ported to hundreds of different platforms. Today the group is still
there, although the people have changed. You can read more about their process in
perlpolicy.

The perlhist documentation lists each Perl release, including its date and maintainer.
After Larry released Perl 5.0 in 1994, other people took responsibility for some relea-
ses. After a new version release, other people typically came in to maintain the old
version. It was a bit haphazard and ad hoc, but it worked for a while.

The Porters made big changes in Perl 5.6, and again in Perl 5.8. Perl was going
through some growing pains, including the switch to handling Unicode. From Perl
5.004 to 5.005 was a little over a year, but from 5.005 to 5.6 was almost two years. The
lag time from Perl 5.6 to 5.8 was over two years. However, the time between releases
was increasing.

Notice how differently we write the version numbers between 5.005
and v5.6. A Perler who has been around for a while will say “five
double-oh five” but “five point six” for those. We started talking
about the second (or minor) number as the release version. It’s a
quirk of history.

After Perl 5.8, people knew the code needed drastic changes for continued develop-
ment. Chip Salzenberg tried rewriting Perl in C++ in a secret project he had dubbed

352 | Appendix D: Experimental Features

http://www.programmingperl.org/
https://perldoc.perl.org/perlpolicy
https://perldoc.perl.org/perlhist

“Topaz” It didn’'t work out, although he learned interesting lessons in the process.
Around the same time, Larry and a few others had the idea to start Perl 6, a complete
rewrite of the code base to allow easier development and modern features.

Perl 5.10 and Beyond

Now were going to ignore half of the fork that happens at this point, and rather than
spark historical debates, we'll merely write that Per]l 6 (now called “Raku”) did not
become the next major version of Perl. It became a mostly separate language in its
own right, but that’s another book, Learning Perl 6. For a few years it did distract
some people from Perl 5 development, but then, suddenly, Perl 5 resuscitated itself.
At the end of 2007, over five years since the previous Perl 5 release, Rafael Garcia-
Suarez released v5.10. This release had some features stolen from the ongoing Perl 6
development, mostly say (Chapter 5), state (Chapter 4), given-when, and smart
matching (those last two are experimental features we have since removed from this
book).

Larry had moved on to Perl 6 development. For the first time, Larry was not in
charge of Perl 5 development. Jesse Vincent stepped up to take on that role and
started putting a post-Larry process in order, including a regular release cycle for
development versions and yearly releases for stable versions.

Ricardo Signes later took over for Jesse and put more policies into place. New features
would start as “experimental” features until they had proven themselves. After two
stable releases, a new feature could move to a permanent feature. These experimental
features won't disturb your program if you don’t enable them, so you have backward
compatibility at the same time. Or you can enable them at your own risk if you want
to play with the latest stuff.

The Perl 5 Porters applied the same process to removing features. Perl has several
warts (admit it, we all know it does) and a list of deprecated features and variables.
Did you know that there was a variable to control the starting index of an array? You
didn’t? Don’t worry, it’s gone now (but it’s not, because there’s an experimental feature
that restores it). Through the new process, Perl marks a feature deprecated and warns
about its use. After two stable releases (so, two years), the Porters could remove the
feature safe in the knowledge that theyd given abundant warnings. And they are
actually removing features now. They still support backward compatibility, but within
reason.

You can read the official Perl support policy in perlpolicy. Basically,
the Porters offer official support for the previous two stable relea-
ses. If v5.34 is the latest release, they support v5.34 and v5.32 offi-
cially. They might update v5.30 or some other earlier version at
their discretion.

Experimental Features | 353

http://www.learningraku.com/
https://perldoc.perl.org/perlpolicy

Suppose you have something that needs the old features. What do you do? Simple—
keep the old perl around! It’s the same perl you've been using for years and no one is
taking it away from you. Oh, you are using the system perl and your system wants
to upgrade it? Well, now you know one of the reasons you shouldn’t rely on the sys-
tem perl. Thats for the system, not you! Install your own perl for your important
applications.

Installing your own perl not only guards you from the whims of
your system upgrades, but it can also be faster. The system perl isn't
tuned for your use. It's compiled to be the least hassle for everyone.
If you don’t want features such as debugging systems or threads,
you can compile your own perl without those for a small speedup.
You could even compile another perl with those features.

Installing a Recent Perl

Before you think about installing a new Perl, check if the one that you have is good
enough. The -v command-line switch tells you which version you have:

$ perl -v

This is perl 5, version 34, subversion 0 (v5.34.0)

If you have a recent enough version, you don't have to do any more work. What you
do next depends on how much work youd like to do.

If you are stuck on a system without a compiler, you can try precompiled versions,
including Strawberry Perl (Windows) or ActivePer] Community Edition (macOS,
Windows, Linux, and others).

You can compile your own perl. We think that everyone should try compiling it
themselves at least once in their lives. Part of being a programmer is understanding
how actual computers work, and compiling source, managing libraries, and such are
part of that. You can download the perl source from CPAN. We tend to have them all
installed so we can play with any version we like.

You may have to install development tools to compile code. We
can't tell you exactly what that is since systems have so many ways
of managing that. Figure out how to install gcc (the GNU C com-
piler) and you’ll probably get the rest of the tools you need. For
macOS users, install the “Command Line Tools for Xcode” from
Apple. Cygwin for Windows provides a Unix-like environment.

354 | Appendix D: Experimental Features

http://www.cpan.org/src/README.html
https://developer.apple.com/downloads/
https://developer.apple.com/downloads/
http://www.cygwin.com

Once you unpack the source, you can configure the installation to tell it where you
want to install it. You don’t need special privileges to do this since you can install it
into any directory you control:

$./Configure -des -Dprefix=/path/where/you/want/perl

We like to install several perls, so we create version-specific directories for each one:
$./Configure -des -Dprefix=/usr/local/perls/perl-5.34.0

From there, tell make to install it—this might take a bit:
$ make install

You might want to test the result before you install it. If the test step fails, make will
not run the install step:

$ make test install
Once installed, we can use the new perl by specifying it in the shebang line:
#!/usr/local/perls/perl-5.34.0/bin/perl

You can also use the perlbrew application to install and manage several Perls.
Its doing the same thing you did in the previous step, but automated. See
http://perlbrew.pl for details.

Experimental Features

Let’s get down to the actual features and how you use them. We aren’t going to list
every feature or fully explain the features we highlight. We want to show you how to
use any new feature, not particular new features.

You can enable experimental features in several ways. The first is the -E command-
line switch, introduced in v5.10. Like the -e switch, it specifies the program as an
argument, but -E also enables all new features:

$ perl -E "say q(Hello World)"

Inside a program, you can enable new features with use and the version number in
any format:

use v5.34;
use 5.34.0;
use 5.034;

Remember that since v5.12, specifying the version with use also implicitly turns on
strict.

You can also specify the minimum version without loading new features; do it with
require:

require v5.34;

Experimental Features | 355

http://perlbrew.pl

The feature module allows you to load features when you want them. In the use
example, Perl was doing this for you by implicitly calling it to load the tag associated
with that version:

use feature qw(:5.10);

Instead of loading all the new features for a particular version, you can load them
individually. In Chapter 4 we showed you state (a stable feature that showed up in
v5.10) and signatures (an experimental feature introduced in v5.20):

use feature gqw(state signatures);

If you want to turn off all new features, perhaps because you have an old script that
doesn’t work with the newer Perls, you can disable them:

no feature qw(:all);

Of course, you need a version of Perl that has the feature module for this to work.
That probably means that you are running an old program on a new perl, or perhaps
you're still getting used to the new features and don’t want to accidentally use them.

We don’t cover the complexities of no in this book, but its the
opposite of use. You're actually un-importing something.

Turning Off Experimental Warnings

Having turned on some experimental features, you'll get some warnings when you
use those features. perl doesn’t emit the warning when you enable the features. This
simple program enables signatures but has no warnings:

use v5.20;
use feature qw(signatures);

This program uses a subroutine signature:

use v5.20;
use feature gw(signatures);

sub division ($m, $n) {
eval { $m / $n }
}

You get the warning even though you don’t call the subroutine:
The signatures feature is experimental at features.pl line 4.
To turn off these warnings, prefix the feature name with experimental: :, like this:

no warnings qw(experimental::signatures);

356 | Appendix D: Experimental Features

If you want to turn off all experimental warnings, leave off the name of the feature:
no warnings qw(experimental);

Starting with v5.18, the experimental pragma enables the feature and disables its
warnings in one step. This is a bit tidier:

use experimental qw(current_sub);

Enable or Disable Features Lexically

If you are a bit skittish about experimental features, you can enable them lexically and
give them the smallest (or largest) scope that makes you comfortable.

Here’s a program where you've defined your own version of say. Perhaps you did that
before v5.10 existed. You want to add some new code to use the built-in version of
say. The feature pragma enables it only for the block where you declare it:

require v5.10;
sub say {
print "Someone said \"@ \"\n";

}
say("Hello Fred!");

{ # use the built-in say in here
use feature qw(say);
say "Hello Barney!";

}

say("Hello Dino!");
The output shows you using both versions in the same program:

Someone said "Hello Fred!"

Hello Barney!

Someone said "Hello Dino!"
This also means you have to enable the features per file since Perl treats a file as a
scope as if it had virtual braces around it. However, you'll have to keep reading in
Intermediate Perl to learn more about multifile programs.

Don’t Rely on Experimental Features

Experimental features are bright and shiny, novel, and expectedly attractive. But they
might disappear and we don't quite know what they are going to do in the next
version.

For code that won’t make it to the outside world (even if that world is outside your
group but still in your company), experiment all that you want. Remember, however,

Experimental Features | 357

https://learning.oreilly.com/library/view/intermediate-perl-2nd/9781449343781/

that virtually everything leaks out even if you try to contain it. You might have to rip
out the shiny bits when the Porters decide to remove those experimental features.

If you know your code is destined for the outside world, realize that experimental fea-
tures require a recent version of Perl. As much as everyone might wish that everyone
used the latest version of Perl, we know that’s not the case. If your creation is exciting
enough, people may be motivated to migrate. The rest will complain that they are
limited by local policy. You can’t win.

No matter which situation you are in, try the experimental features. Learn what they
do, see how they work, and tell people what you've found. That’s why they are there
for you, and feedback helps the Porters fix or adjust their behavior.

Table D-1 provides a breakdown of major new features and the version of perl that
you will need.

Table D-1. Perl’s new features

Feature Introduced in Experimental Stablein Documentedin Covered in
array_base v5.10 v5.10 perlvar

bitwise v5.22 5.28 perlop Chapter 12
current_sub v5.16 v5.20 perlsub
declared_refs v5.26 v perlref

evalbytes v5.16 v5.20 perlfunc

fc v5.16 v5.20 perlfunc

isa v5.32 v perlfunc

lexical_subs v5.18 5.26 perlsub

postderef v5.20 v5.24 perlref

postderef_qq v5.20 v5.24 perlref

refaliasing v5.22 v perlref

regex_sets v5.18 v perlrecharclass

say v5.10 v5.10 perlfunc Chapter 5
signatures v5.20 v perlsub Chapter 4
state v5.10 v5.10 perlfunc, perlsub Chapter 4
switch v5.10 v perlsyn

try-catch v5.34 v perlsyn

unicode_eval v5.16 perlfunc
unicode_strings v5.12 perlunicode

vlb v5.30 v perlre

358 | Appendix D: Experimental Features

https://perldoc.perl.org/perlvar
https://perldoc.perl.org/perlop
https://perldoc.perl.org/perlsub
https://perldoc.perl.org/perlref
https://perldoc.perl.org/perlfunc
https://perldoc.perl.org/perlfunc
https://perldoc.perl.org/perlfunc
https://perldoc.perl.org/perlsub
https://perldoc.perl.org/perlref
https://perldoc.perl.org/perlref
https://perldoc.perl.org/perlref
https://perldoc.perl.org/perlrecharclass
https://perldoc.perl.org/perlfunc
https://perldoc.perl.org/perlsub
https://perldoc.perl.org/perlfunc
https://perldoc.perl.org/perlsub
https://perldoc.perl.org/perlsyn
https://perldoc.perl.org/perlsyn
https://perldoc.perl.org/perlfunc
https://perldoc.perl.org/perlunicode
https://perldoc.perl.org/perlre

Symbols

! (negation operator), 179

(pound sign), 13, 143

#! (shebang) line, 13

$ (dollar sign), 11, 29, 33

$! special variable, 98, 212, 226

$" special variable, 87

$$ special variable, 265

$' special variable, 157

$= special variable, 78

$? special variable, 270

$@ special variable, 287

$HOME shell variable, 258

$_ special variable, 53, 120, 147

$" special variable, 157

$| special variable, 100

% (modulus operator), 22

% (percent sign), 89, 90, 109

& (ampersand), 61, 72-73

& (bitwise-and operator), 220

&& (logical AND operator), 193

' (apostrophe), 116

' (single quote), 23

() parentheses
capture groups, 129-132
match variables and, 149-158
noncapturing, 153, 169
order of precedence, 34, 158
print() function and, 88
prototypes and, 79

* (star) metacharacter, 125, 158

** (exponentiation operator), 22

+ (plus) metacharacter, 127, 158

++ (autoincrement operator), 184-185

Index

- (hyphen), 134
-- (autodecrement operator), 184
_(dot), 123
.. (range operator), 45
... (yada yada operator), 53
./ (dot-slash), 12
/ (forward slash), 141
// (defined-or operator), 195
:: (double colon), 116
; (semicolon), 14, 177
<<>> (double diamond operator), 85
<> (diamond operator), 83-85, 86, 175
= (binding operator), 148, 165, 248
=> (big arrow), 111, 233
? (question mark) metacharacter, 125, 158
?: (conditional operator), 192-193
@ (at sign), 48
@_ special variable, 64
\ (backslash), 24, 33, 116
_ (underscore), 20, 30, 70
* (backquote), 16, 264-268
{} (curly braces)
as delimiters, 141, 145
hashes and, 108
if control structure and, 37
repetition operators, 127, 158
usage considerations, 116
variable names and, 33
while control structure and, 40
| (vertical bar of alternation), 132-133, 158
|| (logical OR operator), 193

A

\A anchor, 137

359

-A file test, 213
/a modifier, 145
ampersand (&), 61, 72-73
anchors for patterns
about, 137-139
beginning-of-line, 147
end-of-line, 147
order of precedence, 158
word anchors, 139
anonymous subroutines, 337
Apache web servers, 338
apostrophe ('), 116
append operator, 31
arguments in subroutines, 64-66
ARGV filehandle, 92
$ARGYV special variable, 84
@ARGV special variable, 84, 350
ARGVOUT filehandle, 92
arrays
about, 43
accessing elements of, 44
additional functionality, 334
context of the expression, 55-58
elements of, 43
empty list, 57, 70
foreach control structure and, 52-55
interpolating into strings, 51, 86
list assignment, 47-51
print() function and, 86
printf() function and, 91
referencing entire, 48
slicing elements from, 279-281
special indices, 45
subscripting, 44
vec operator and, 334
array_base feature, 358
assignment operators, 31
associativity of operators, 34-36
at sign (@), 48
atoms, 158
autodecrement operator (--), 184
autodecrimenting scalar variables, 184
autodie pragma, 99
autoincrement operator (++), 184-185

autoincrementing scalar variables, 184-185

automatic match variables, 156-158
autovivification feature, 109
awk language, 106

B

\b (word-boundary) anchor, 139, 173
-b file test, 213

-B file test, 213

B::Lint module, 335

back references, 129-132
backquote (), 16, 264-268
backslash (\), 24, 33, 116
backslash escapes, 24, 124, 166
barewords, 91, 112, 230
BBEdit editor, 10
beginning-of-line anchors, 147
big arrow (=>), 111, 233
binary literals, 21

binding operator (=), 148, 165, 248
binmode() function, 96, 348
bitstrings, 221-223

bitwise feature, 223, 358
bitwise operators, 220-223
bitwise-and (&) operator, 220
Boolean values, 37, 113, 164
bug reporting in Perl, 10
built-in variables, 336

built-in warnings, 27-29
bytecodes, 15

C
-c file test, 213
-C file test, 213
canonically equivalent characters, 345
@{"CAPTURE} array variable, 171
capture groups
grouping in patterns, 129-132
match variables, 149-158
Capture:Tiny module, 266
carriage-return/linefeed (CR-LF), 95
case folding, Unicode bug, 146
case shifting, 166-167
cat Unix command, 88, 93
catch block, 288
cd Unix command, 227
character classes, 134-136
charnames pragma, 348
chdir() function, 226
chmod Unix command, 11
chmod() function, 233, 241
chomp() function, 39, 59, 297
chown() function, 241
chr() function, 34, 146

360 | Index

CLDR:Number module, 249
close() function, 97
closures, 337
cmp comparison operator, 252
code points
creating characters by, 34
mapping characters to, 341
Unicode considerations, 343
comma-separated values (CSV) files, 169
comments, 13, 143
comparison operators, 36, 252
compatibility equivalent characters, 345
compiling Perl programs, 15
composed characters, 344
compound assignment operators, 31
Comprehensive Per]l Archive Network (see
CPAN)
concatenation operator, 25, 31
conditional operator (?:), 192-193
Config module, 263
context of the expression, 55-58
Control-Z bug, 58
converting between numbers and strings, 26
CPAN (Comprehensive Perl Archive Network)
about, 9, 199
module list, 339
Text:CSV_XS module, 169
cpan command, 200
CPAN.pm module, 200
cpanm tool, 201
CR-LF (carriage-return/linefeed), 95
CSV (comma-separated values) files, 169
curly braces ({})
as delimiters, 141, 145
hashes and, 108
if control structure and, 37
repetition operators, 127, 158
usage considerations, 116
variable names and, 33
while control structure and, 40
current working directory, 225-226
current_sub feature, 358
Cwd module, 225

D

\d (digit) shortcut, 135
-d file test, 213

%d format, 90

DATA filehandle, 92

data-flow analysis, 335
Database Driver (DBD), 208
databases
additional information, 350
Perl support, 333
date and time modules, 209
date Unix command, 257, 264
DateTime module, 209
DBD (Database Driver), 208
DBI module, 208, 333, 350
debugging
about, 335
print() function and, 63
declared_refs feature, 358
decoding, 341
defined() function, 41, 241
defined-or operator (//), 195
delete() function, 115
delimiters for pattern matching, 141, 145, 165
diagnostics pragma, 27
diamond operator (<>), 83-85, 86, 175
die() function, 97-99
Digest:SHA module, 200
Digit property, 137
dir command (Windows), 258
directory handles, 230-231
directory operations, 225-242
alternate syntax for globbing, 229
changing directories, 226-227
changing file ownership, 241
changing file timestamps, 242
current working directory, 225-226
directory handles, 230-231
globbing, 227-230
links and files, 235-239
making directories, 239-240
manipulating directories, 232
modifying permissions, 241
removing directories, 239-240
removing files, 232-233
renaming files, 233-234
specifying installation location, 200,
201-203
documentation
embedded, 339
perldebug, 335
perldelta, 351
perldiag, 14
perldsc, 48, 336

Index | 361

perlfaq, 11, 11, 332
perlform, 334
perlfunc, 89, 183, 333, 335
perlhist, 352
perlipc, 272, 335
perllol, 336
perlobj, 336
perlootut, 336
perlop, 35
perlopentut, 339
perlpod, 339
perlpolicy, 353
perlport, 218
perlre, 145, 332
perlref, 336
perlrun, 336, 349
perlsec, 260, 335
perlstyle, 13, 30
perlsub, 78
perltie, 337
perltoc, 332
perlunicode, 146
perluniprops, 137
perlvar, 30
dollar sign ($), 11, 29, 33
dot (.), 123
double colon (::), 116
double diamond operator (<<>>), 85
double-quote interpolation, 25, 32
double-quoted string literals, 24, 121
dualvar, 222

E
\E escape, 166, 168
-e file test, 212
each() function, 54, 113-114
echo Unix command, 227
else clause
if control structure, 37, 180, 183
unless control structure, 180
elsif clause (if control structure), 183
emacs editor, 10
email addresses in strings, 51
embedded documentation, 339
embedding Perl, 337
empty list, 57, 70
empty parameter lists, 68
empty string, 23, 33
Encode::Guess module, 349

encoding
about, 341
open() function specifying, 95
UTEF-16, 95, 342
UTEF-8, 23, 95, 342, 344
__END__ token, 189, 192
end-of-file, 58, 96
end-of-line anchors, 147
%ENYV hash, 116, 195
$ENV special variable, 227, 261
environment variables
encoding support, 343
%ENYV hash, 116, 195
setting, 201, 227, 262-263
VERBOSE, 195
eq string comparison operator, 36
error handling, 283-287
eval() function, 283-287
evalbytes feature, 358
exec() function, 263
exists() function, 115
exit() function, 286
experimental features, 355-358
exponential notation, 21
exponentiation operator (**), 22

ExtUtils::MakeMaker module, 200, 202

F

\F escape, 167

-f file test, 213

%f format, 90

fat arrow (=>), 111, 233

fc() function, 167, 358

feature module, 351, 356

feature pragma, 357

file management
alternate syntax for globbing, 229
changing file ownership, 241
changing file timestamps, 242
globbing, 227-230
in-place editing of files, 175-176
links and files, 235-239

manipulating file specifications, 206-207

manipulating files, 232
modifying permissions, 241
reading from files, 349
removing files, 232-233
renaming files, 233-234
updating multiple files, 174-178

362 | Index

writing to files, 349

file tests, 211-223
bitwise operators, 220-223
localtime() function, 219
Istat() function, 218-219

multiple attributes for files, 215

operators supported, 211-218
stacked operators, 217-218
stat() function, 218-219

File:
File:
File:
File:
File:
File:
File:
File:
File:

Basename module, 204-206
chmod module, 241

Glob module, 229

HomeDir module, 227

Path module, 240

Spec module, 206-207, 226
Spec::Functions module, 231
stat module, 219

:Temp module, 240, 274

filehandles, 91-97
about, 91-97
bad, 96
binmoding, 96, 348
changing default output, 100
closing, 97
in scalar variables, 102-104
indirect filehandle read, 229

0
p

pening, 93-97, 339
rocesses as, 269-271

reopening, 101
Unicode considerations, 348

u

sage considerations, 100

finally block, 288

find

Unix command, 271, 338

find2perl command, 338

Find

Bin module, 202

floating-point literals, 21
for control structure, 185-188
foreach control structure
about, 52-55
example of, 300
for control structure and, 187
grep operator and, 289
lexical variables in, 69
loop controls, 189
map operator and, 290
statement modifiers and, 182
fork() function, 271
formats
about, 334

formatted output, 89-91
formatting data with sprintf() function,
248-250
forward slash (/), 141

G

\G anchor, 158

-g file test, 213

%g format, 89

/g modifier, 164, 171

Garcia-Suarez, Rafael, 353

gcc compiler, 354

ge string comparison operator, 36, 252
Getopt::Long module, 86, 338
Getopt::Std module, 86, 338
getpwnam() function, 241

glob() function, 228, 232

global variables, 62

globbing, 227-230

glyph (grapheme), 343

gmtime() function, 220

grapheme (glyph), 343

graphical user interfaces (GUIs), 339
greedy quantifiers, 126

grep list-processing operator, 289, 334
grep Unix command, 93, 289

gt string comparison operator, 36
GUIs (graphical user interfaces), 339

H
\h (horizontal whitespace) shortcut, 135
hard links, 237
hash keys, 105-107, 255
hashes
about, 105-107
accessing elements of, 108-112
assigning to one another, 110
converting into lists, 109
functions, 112-114
interpolating elements into strings, 116
referencing entire, 112-114
slicing elements from, 281-282
sorting by multiple keys, 255
sorting by value, 254
typical applications, 107, 115-116
unwinding, 110
Hello, world program, 11-15
hex() function, 28
hexadecimal literals, 21

Index |

363

hyphen (-), 134

|
/i modifier, 142, 165
1/0 (see input/output)
if control structure
about, 37-38
conditional operator and, 193
else clause, 37, 180, 183
elsif clause, 183
lexical variables in, 69
pattern matching and, 151
statement modifiers and, 181-182
in-place editing of files, 175-176
indents in Perl programs, 13
index() function, 245-246
indirect filehandle read, 229
infinite loops, 187
Inline modules, 337
inode, 235-239
input/output (I/0), 81-104
backquotes to capture output, 264-268
fatal errors with die() function, 97-99
filehandles and, 91-93, 100-101, 102-104
formatted output with printf() function,
89-91
input from diamond operator, 83-85
input from standard input, 81-83
invocation arguments, 85
output to standard output, 86-89
output with print() function, 32
output with say() function, 101
installing
modules, 200-203
Perl, 354-355
integer literals, 20
interprocess communication, 334
invocation arguments, 83, 85
10 module, 348
IPC::Open3 module, 266
IPC::System::Simple module, 266, 268
isa feature, 358
isatty() function, 213

J

join() function, 170, 263

K

-k file test, 213
key-value slices, 282
keys() function, 112

kill Unix command, 273
Komodo Edit editor, 11

L

\l escape, 166
\L escape, 166
-1 file test, 213
labeled blocks, 191
last() function, 188
lc() function, 167
Icfirst() function, 167
LC_* environment variables, 343
le string comparison operator, 36
leading zero indicator, 21
length() function, 117
lexical variables, 66, 69, 74-76
lexical_subs feature, 358
lib pragma, 202
ligature, 345
line-input operator
diamond operator, 83-85, 86
<STDIN>, 38, 58, 81-83
link count, 235
list context
about, 56
backquotes in, 267-268
m// in, 170
reverse() function and, 56, 303
scalar-producing expressions in, 57
<STDIN> operator in, 58, 82
list literals, 45-47
List::MoreUtils module, 292
List::Util module, 279, 291
lists
about, 43
additional functionality, 334
advanced sorting, 250-256
assigning values to variables, 47-51
context of the expression, 56
converting hashes into, 109
elements of, 43
empty, 57, 70
fancier handling, 291-293
foreach control structure and, 52-55
picking items with grep operator, 289

364 | Index

qw() function and, 46

slicing elements from, 277-279

transforming items with map operator, 290
literals

dollar sign as, 33

floating-point, 21

integer, 20

list, 45-47

string, 23-25, 121
localtime() function, 175, 219
logical AND operator (&&), 193
logical comparison operators, 36
logical operators, 193-198
logical OR operator (||), 193
loop controls, 188-192

about, 188

intentional infinite loops, 187

labeled blocks, 191

last() function, 188

next() function, 189

redo() function, 190
Ipr Unix command, 93
Is Unix command, 259
Istat() function, 218-219
It string comparison operator, 36
lvalue, 163
LWP module, 335

M
-M file test, 213
/m modifier, 147, 165, 174
m// (pattern match operator), 141-142, 170
make utility, 98, 262
map list-processing operator, 290, 334
mark characters, 343
match operator, 120
match variables, 149-158
about, 149
automatic, 156-158
captures in alternations, 151-153
named captures, 154-156
noncapturing parentheses, 153
persistence of captures, 150
matching with regular expressions
binding operator, 148
match modifiers, 142-148
match variables, 149-158
pattern match operator, 141-142
pattern test program, 160

precedence, 158-159
Math::BigFloat module, 334
Math::BigInt module, 334
Math::Complex module, 333
metacharacters, 123, 168
metaquoting, 168
mkdir() function, 239
Module::Build module, 200, 202
Module::CoreList module, 210
modules, 199-209

(see also specific modules)

finding, 199

installing, 200-203

using only some functions from, 205

using simple, 203-209
modulus operator (%), 22
mod_perl module (Apache server), 338
Mojo::UserAgent module, 335
money numbers, 249
Moose meta-object system, 336
mounted volumes, 235
multiple files, updating, 174-178
multiple-line text, matching, 174
mv Unix command, 233
my() function, 66, 69

N

/n (noncapturing parentheses) flag, 154
naked block control structure, 182, 189
named captures, 154-156

ne string comparison operator, 36
negation operator (!), 179

negative numbers, 22

Net:: namespace, 335

networking considerations, 334
newline character, 14, 24, 124, 203
next() function, 189

NFD subroutine, 346

NFKD subroutine, 346

noncapturing parentheses, 153, 169
nondecimal integer literals, 20
nondecimal numerals, interpreting, 28
nongreedy quantifiers, 171

nonmark characters, 343

nonpaired delimiters, 141

nonscalar return values, 74

not operator, 197

Number::Format module, 249
numbers

Index

365

converting to strings, 26
internal formatting, 20
money, 249-249
negative, 22
nondecimal, 28
numeric operators and, 22
radix of, 29

numeric operators, 22, 36

0
-o file test, 212
-O file test, 212
%o format, 90
object-oriented programming (OOP), 336
oct() function, 28
octal literals, 20
octets, Unicode and, 341
OOP (object-oriented programming), 336
opaque binary, 8
open pragma, 348
open() function, 93-97, 269, 339
opendir() function, 230
operators
about, 22
append, 31
assignment, 31
associativity of, 34-36
autodecrement, 184
autoincrement, 184-185
binding, 148, 165, 248
bitwise, 220-223
comparison, 36, 252
compound assignment, 31
concatenation, 26, 31
conditional, 192-193
file test, 211-218
logical, 193-198
loop controls, 188-192
negation, 179
numeric, 22, 36
overloading, 337
partial-evaluation, 196-198
pattern match, 141-142, 170
precedence of, 34-36
range, 45
repeat, 125, 158
string, 25, 31
string repetition, 26
vec, 334

word, 197
ord() function, 34
output (see input/output)
overload module, 337

P
-p file test, 213
/p modifier, 157
packages, 332
parameter lists, 67-69
parentheses ()
capture groups, 129-132
match variables and, 149-158
noncapturing, 153, 169
order of precedence, 34, 158
print() function and, 88
prototypes and, 79
partial-evaluation operators, 196-198
PATH environment variable, 259
Path::Class module, 207, 231
pattern match operator (m//), 141-142, 170
pattern matching (see matching with regular
expressions)
PDL module, 333
percent sign (%), 89, 90, 109
Perl
availability of, 8
background information, 4-8
built-in warnings, 27-29
compiling programs, 15
development history, 352-354
embedding, 337
experimental features, 355-358
extending functionality, 333
installing, 354-355
programming considerations, 13-15
reference sources, 2, 9
reporting bugs, 10
sample program, 15-16
support provided, 9
Unicode considerations, 23, 347-350
writing programs, 10-15
Perl identifier, 29, 61
perl interpreter
-C switch, 349
-e switch, 295
-E switch, 355
-M option, 28
-p option, 177

366 | Index

-w option, 27, 96, 286
compiling Perl programs, 15
installing, 354-355
specifying command, 12
Perl Mongers, 9
Perl Power Tools project, 88
PERL5SHELL environment variable, 259
perlbrew application, 355
perlbug utility, 10
perldebug, 335
perldelta, 351
perldiag, 14
perldoc command
about, 332
backquotes in, 16, 265
file test operators and, 211
finding modules, 200
perldsc, 48, 336
perlfaq, 11, 11, 332
perlform, 334
perlfunc, 89, 183, 333, 335
perlhist, 352
perlipc, 272, 335
perllol, 336
perlobj, 336
perlootut, 336
perlop, 35
perlopentut, 339
perlpod, 339
perlpolicy, 353
perlport, 218
perlre, 145, 332
perlref, 336
perlrun, 336, 349
perlsec, 260, 335
perlstyle, 13, 30
perlsub, 78
perltie, 337
perltoc, 332
perlunicode, 146
perluniprops, 137
perlvar, 30
permissions, file and directory, 241
PFE (Programmer's File Editor), 11
Pike, Rob, 342
piped open, 269
plus (+) metacharacter, 127, 158
.pm file extension, 200, 227, 230
pop() function, 49

POSIX module, 262, 333
postderef feature, 358
postderef_qq feature, 358
pound sign (#), 13, 143
pragmas, 23, 27
precedence
in matching with regular expressions,
158-159
of operators, 34-36
print() function
debugging and, 63
output with, 32, 85
return value, 63
printf() function, 89-91, 248, 304
private variables in subroutines, 66, 69, 74-76
process management, 257-275
about, 257
backquotes to capture output, 264-268
environment variables, 262-263
exec() function, 263
external processes, 268
low-level system calls, 271
processes as filehandles, 269-271
sending and receiving signals, 272-275
system() function, 257-262
processing text with regular expressions
in-place editing, 175-176
join() function, 170
m// in list context, 170
multiple-line text, 174
nongreedy quantifiers, 171
split operator, 168-169
substitutions with s///, 163-168
updating multiple files, 174-178
word boundaries, 173
programmer's text editors, 10, 141
prototypes, 78
push() function, 49

Q
\Q escape, 168
quantifiers in regular expressions
about, 125-129
greedy, 126
nongreedy, 171
order of precedence, 158
question mark (?) metacharacter, 125, 158
quotation marks
in list quoting with qw(), 46

Index | 367

string literals, 23-25

variable interpolation and, 33
quotemeta() function, 168
qw()() function, 46
qx() function, 265

R
\R (linebreak) shortcut, 135
-r file test, 212
-R file test, 212
/r modifier, 166
radix of numbers, 29
range operator (..), 45
readdir() function, 231
readline() function, 229
readlink() function, 238
redo() function, 190
refaliasing feature, 358
references
about, 48, 336
anonymous subroutines, 337
back, 129-132
closures, 337
complex data structures, 336
object-oriented programming, 336
Regexp::Debugger module, 127
regex_sets feature, 358
regular expressions, 119-139
about, 119
additional sources, 332
alternation, 132-133
anchors for, 137-139, 158
character classes, 134-136
grouping in patterns, 129-132
matching with, 141-160
pattern practice examples, 121-123
processing text with, 163-178
quantifiers in, 125-129, 158
sequences, 119-121, 158
Unicode properties, 137
wildcards in, 123
relative back reference, 131
relative path (file), 225
rename() function, 233-234
repeat operators, 125, 158
reporting bugs in Perl, 10
return values in subroutines
about, 62-64
nonscalar, 74

return() function and, 71-73
return() function, 71-73
reverse() function

about, 53

hash assignment and, 110

list context and, 56, 303

sort subroutine and, 253
rindex() function, 246
rm Unix command, 232, 262
rmdir() function, 240

S
-s file test, 213
-S file test, 213
%s format, 90
/s modifier, 142, 165
\s (whitespace) shortcut, 135
s/// (substitution operator)
about, 163
binding operator, 165
case shifting, 166-167
different delimiters, 165
global replacements with /g, 164
metaquoting, 168
nondestructive substitutions, 165
/r switch, 203, 234
substitution modifiers, 165
substitutions with, 163-168
Salzenberg, Chip, 352
say feature, 358
say() function, 101
scalar context
about, 56
forcing, 58
list-producing expressions in, 56
sort() function and, 56
<STDIN> operator in, 81
scalar data
about, 19
built-in warnings, 27-29
getting user input, 38
if control structure, 37-38
numbers, 19-22
output with print() function, 32
strings, 23-27
while control structure, 40
scalar variables, 29-32
about, 19, 29
assigning list values to, 47-51

368 | Index

autodecrementing, 184
autoincrementing, 184-185
Boolean values, 37
built-in, 336
chomp() function, 39
choosing good names, 30
compound assignment operators, 31
defined() function, 41
filehandles in, 102-104
interpolating into strings, 25, 32
scalar assignment, 31
sigil and, 29
tied, 337
undef value, 40
scalar() function, 58
Scalar::Util module, 222
SciTE editor, 11
security considerations, 335
select() function, 100
semicolon (;), 14, 177
sentence boundary, 173
sequence patterns, 119-121, 158
shebang (#!) line, 13
shell commands, 11, 21
shift() function, 49, 68
short-circuit logical operators, 194
%SIG hash, 274
SIGBUS signal, 275
SIGCONT signal, 272
SIGHUP signal, 272
sigil ($), 29
SIGILL signal, 275
SIGINT signal, 272
signals, sending and receiving, 272-275
signatures feature, 356, 358
Signes, Ricardo, 353
SIGSEGV signal, 275
SIGZERO signal, 272
single quote ('), 23
single-quoted string literals, 23
slices, 277-283
about, 277-279
array, 279-281
hash, 281-282
key-value, 282
list, 277-279
sockets, TCP/IP, 335
soft links, 237-238
sort subroutine

advanced examples, 250-256
sorting hashes by multiple keys, 255
sorting hashes by value, 254
sort Unix command, 88, 93
sort() function, 54, 56
Space property, 137
splice() function, 50
split operator, 168-169
sprintf() function, 248-250
sqrt() function, 183
square brackets, 33, 116, 136
standard error stream, 93
standard input stream, 92
standard output stream, 92
star (*) metacharacter, 125, 158
stat() function, 216, 218-219, 242
state feature, 353, 358
state() function, 74-76
statement modifiers, 181-182
:std pragma, 348
STDERR filehandle
about, 93
reopening, 101
Unicode considerations, 348
<STDIN> (line-input operator)
getting user input, 38
in list context, 58, 82
in scalar context, 81
STDIN filehandle
about, 38, 92
reopening, 101
Unicode considerations, 348
STDOUT filehandle
about, 92
reopening, 101
Unicode considerations, 348
strict pragma, 70-71, 305
string literals
about, 23
double-quoted, 24, 121
single-quoted, 23
string operators, 25, 31
string repetition operator, 26
strings
about, 23
bitstrings, 221-223
comparison operators, 36
converting to numbers, 26
creating characters by code point, 34

Index

369

empty, 23, 33

finding substrings with index() function,
245-246

formatting data with sprintf() function,
248-250

hash keys as, 105

interpolating arrays into, 51, 86

interpolating hash elements into, 116

joining, 170

manipulating substrings with substr() func-

tion, 247-248
match variables and, 149-158
qw() function and, 46
splitting, 168-169
variable interpolation into, 25, 32
Sublime Text editor, 11
subroutine signatures, 76-79
subroutines
about, 61
ampersands and, 61, 72-73
anonymous, 337
arguments in, 64-66
defining, 61
invoking, 62
lexical variables, 74-76
lexical variables in, 69
private variables in, 66
prototypes and, 78
return values, 62-64, 74
return() function and, 71-73
Unicode support, 346
use strict pragma, 70-71
variable-length parameter lists, 67-69
substr() function, 247-248
substrings
finding with index() function, 245-246
manipulating with substr() function,
247-248
switch feature, 358
symbolic links, 237-238
symlink() function, 237
System V IPC (interprocess communication),
334
system() function, 257-262

T

-t file test, 213

-T file test, 213
taint checking, 335

tar Unix command, 260
TCP/IP sockets, 335

text editors, 10, 141
Text::CSV_XS module, 169
TextMate editor, 10
Thompson, Ken, 342

tied variables, 337

time and date modules, 209
Time::Moment module, 209
timestamps, file, 242
try-catch feature, 358
Try::Tiny module, 288

]
\U escape, 166
\u escape, 166
-u file test, 213
uc() function, 167
ucfirst() function, 167
UCS (Universal Character Set), 341
UltraEdit editor, 10
undef value
about, 40
array elements, 44
end-of-file and, 96
remedy for, 300
underscore (_), 20, 30, 70
Unicode
about, 341
case-folding bug, 146
creating characters by code point, 34
fancy characters, 343-347
Perl support, 23, 347-350
regular expressions and, 137
setting up usage, 342
using in source code, 344
UTF-8 encoding, 23, 342, 344
Unicode Consortium, 137
Unicode::Casing module, 167
Unicode::Normalize module, 346
unicode_eval feature, 358
unicode_strings feature, 358
unicore directory, 341
Universal Character Set (UCS), 341
unless control structure, 179-180
unlink() function, 232-233, 240
unshift() function, 49
until control structure, 180, 189
unwinding hashes, 110

370 | Index

updating multiple files, 174-176
use() function
diagnostics pragma, 28
strict pragma, 70-71, 305
warnings pragma, 96, 286
user input, getting, 38
UTF-16 encoding, 95, 342
UTF-8 encoding, 23, 95, 342, 344
utf8 pragma, 23, 29, 344
utime() function, 242

v

values() function, 112

variable interpolation, 25, 32, 123

vec operator, 334

VERBOSE environment variable, 195
vertical bar (|) of alternation, 132-133, 158
vi editor, 10

Vincent, Jesse, 353

vlb feature, 358

W

\w (word) shortcut, 135
-w file test, 212
-W file test, 212
waitpid() function, 272
Wall, Larry, 4, 352
wantarray() function, 74
warn() function, 99
warnings
bad filehandles, 96
built-in, 27-29
experimental, 356
print() function, 96
warn() function and, 99
warnings pragma, 96, 286
while control structure
about, 40
each() function and, 113-114

infinite loops, 187
lexical variables in, 69
loop controls, 189
pattern matching and, 151
until control structure and, 180
whitespace
/x modifier and, 143
character class shortcuts and, 135
character classes and, 144
collapsing, 164
qw() function and, 46
splitting on, 169
who Unix command, 267
wildcards in regular expressions, 123
Win32::Process module, 272
word anchors, 139, 173
word operators, 197
word processors, 11
working directory, 225-226
WWW::Mechanize module, 335

X

-x file test, 212

-X file test, 212

%x format, 90

/x modifier, 143, 165
xor operator, 197
/xx modifier, 144

Y

yada yada operator (...), 53

L

\z anchor, 138

\Z anchor, 138

-z file test, 213

zero, indexing elements of lists/arrays, 43
zero-width assertions, 138

Index

3N

About the Authors

Randal L. Schwartz is a multidecade veteran of the software industry. He is skilled in
software design, system administration, security, technical writing, and training. Ran-
dal has coauthored the “must-have” standards: Programming Perl, Learning Perl, and
Learning Perl on Win32 Systems (all from O’Reilly); and Effective Perl Programming
(Addison-Wesley). He was a regular columnist for WebTechniques, PerformanceCom-
puting, SysAdmin, and Linux Magazine.

He was also a frequent contributor to the Perl newsgroups, and has moderated
comp.lang.perl.announce since its inception. His oftbeat humor and technical mastery
have reached legendary proportions worldwide (but he probably started some of
those legends himself). Randal’s desire to give back to the Perl community inspired
him to help create and provide initial funding for The Perl Institute. He is also a
founding board member of the Perl Mongers (perl.org), the worldwide Perl grassroots
advocacy organization. Since 1985, Randal has owned and operated Stonehenge Con-
sulting Services, Inc. He can be reached for comment at merlyn@stonehenge.com, and
welcomes questions on Perl and other related topics.

brian d foy is a prolific Perl trainer and writer, and runs The Perl Review to help peo-
ple use and understand Perl through education, consulting, code review, and more.
He’s a coauthor of Learning Perl, Intermediate Perl, and Effective Perl Programming
(Addison-Wesley), and the author of Mastering Perl and Learning Perl 6. For Perl
School, he’s written Learning Perl Exercises, Perl New Features, and Mojolicious Web
Clients. He has been a Perl user since he was a physics graduate student and a die-
hard Mac user since he first owned a computer. He founded the first Perl user group,
the New York Perl Mongers, as well as the Perl advocacy nonprofit Perl Mongers, Inc.,
which helped form more than 200 Perl user groups across the globe.

Tom Phoenix has been working in the field of education since 1982. After more than
13 years of dissections, explosions, work with interesting animals, and high-voltage
sparks during his work at a science museum, he started teaching Perl classes for
Stonehenge Consulting Services, where he’s worked since 1996. Since then, he has
traveled to many interesting locations, so you might see him soon at a Perl Mongers
meeting. When he has time, he answers questions on Usenet’s comp.lang.perl.misc and
comp.lang.perl.moderated newsgroups, and contributes to the development and use-
fulness of Perl. Besides his work with Perl, Perl hackers, and related topics, Tom
spends his time on amateur cryptography and speaking Esperanto. His home is in
Portland, Oregon.

http://oreilly.com/catalog/9780596000271/
http://oreilly.com/catalog/9781449303587/
http://oreilly.com/catalog/9781565923249/
https://www.effectiveperlprogramming.com/
https://www.perl.org
https://www.learning-perl.com
https://www.intermediateperl.com/
https://www.effectiveperlprogramming.com/
https://www.masteringperl.org
https://www.learningraku.com
https://leanpub.com/learning_perl_exercises
https://leanpub.com/perl_new_features
https://leanpub.com/mojo_web_clients
https://leanpub.com/mojo_web_clients

Colophon

The animal on the cover of Learning Perl, Eighth Edition, is a llama (Lama glama), a
relation of the camel and native to the Andean range. Also included in this llamoid
group is the domestic alpaca and their wild ancestors, the guanaco and the vicuia.
Bones found in ancient human settlements suggest that domestication of the alpaca
and the llama dates back about 4,500 years. In 1531, when Spanish conquistadors
overran the Inca Empire in the high Andes, they found both animals present in great
numbers. These llamas are suited for high mountain life; their hemoglobin can take
in more oxygen than that of other mammals.

Llamas can weigh up to 300 pounds and are mostly used as beasts of burden. A pack
train may contain several hundred animals and can travel up to 20 miles per day. Lla-
mas will carry loads up to 50 pounds, but they have a tendency to be short-tempered
and resort to spitting and biting to demonstrate displeasure. To other people of the
Andes, llamas also provide meat, wool for clothing, hides for leather, and fat for can-
dles. Their wool can also be braided into ropes and rugs, and their dried dung is used
for fuel.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

O'REILLY"

There's much more
where this came from.

Experience books, videos, live online
training courses, and more from O'Reilly
and our 200+ partners—all in one place.

Learn more at oreillycom/online-learning

©2019 O'Reilly Media, Inc. O'Reilly

	Cover
	Copyright
	Table of Contents
	Preface
	Typographical Conventions
	Code Examples
	O’Reilly Online Learning
	How to Contact Us
	History of This Book
	Changes from the Previous Edition
	Acknowledgments
	From Randal
	From brian
	From Tom
	From All of Us

	Chapter 1. Introduction
	Questions and Answers
	Is This the Right Book for You?
	What About the Exercises and Their Answers?
	What If I’m a Perl Course Instructor?

	What Does “Perl” Stand For?
	Why Did Larry Create Perl?
	Why Didn’t Larry Just Use Some Other Language?
	Is Perl Easy or Hard?
	How Did Perl Get to Be So Popular?
	What’s Happening with Perl Now?
	What’s Perl Really Good For?
	What Is Perl Not Good For?

	How Can I Get Perl?
	What Is CPAN?
	Is There Any Kind of Support?
	What If I Find a Bug in Perl?

	How Do I Make a Perl Program?
	A Simple Program
	What’s Inside That Program?
	How Do I Compile My Perl Program?

	A Whirlwind Tour of Perl
	Exercises

	Chapter 2. Scalar Data
	Numbers
	All Numbers Have the Same Format Internally
	Integer Literals
	Nondecimal Integer Literals
	Floating-Point Literals
	Numeric Operators

	Strings
	Single-Quoted String Literals
	Double-Quoted String Literals
	String Operators
	Automatic Conversion Between Numbers and Strings

	Perl’s Built-in Warnings
	Interpreting Nondecimal Numerals

	Scalar Variables
	Choosing Good Variable Names
	Scalar Assignment
	Compound Assignment Operators

	Output with print
	Interpolation of Scalar Variables into Strings
	Creating Characters by Code Point
	Operator Precedence and Associativity
	Comparison Operators

	The if Control Structure
	Boolean Values

	Getting User Input
	The chomp Operator
	The while Control Structure
	The undef Value
	The defined Function
	Exercises

	Chapter 3. Lists and Arrays
	Accessing Elements of an Array
	Special Array Indices
	List Literals
	The qw Shortcut

	List Assignment
	The pop and push Operators
	The shift and unshift Operators
	The splice Operator

	Interpolating Arrays into Strings
	The foreach Control Structure
	Perl’s Favorite Default: $_
	The reverse Operator
	The sort Operator
	The each Operator

	Scalar and List Context
	Using List-Producing Expressions in Scalar Context
	Using Scalar-Producing Expressions in List Context
	Forcing Scalar Context

	<STDIN> in List Context
	Exercises

	Chapter 4. Subroutines
	Defining a Subroutine
	Invoking a Subroutine
	Return Values
	Arguments
	Private Variables in Subroutines
	Variable-Length Parameter Lists
	A Better &max Routine
	Empty Parameter Lists

	Notes on Lexical (my) Variables
	The use strict Pragma
	The return Operator
	Omitting the Ampersand

	Nonscalar Return Values
	Persistent, Private Variables
	Subroutine Signatures
	Prototypes

	Exercises

	Chapter 5. Input and Output
	Input from Standard Input
	Input from the Diamond Operator
	The Double Diamond

	The Invocation Arguments
	Output to Standard Output
	Formatted Output with printf
	Arrays and printf

	Filehandles
	Opening a Filehandle
	Binmoding Filehandles
	Bad Filehandles
	Closing a Filehandle

	Fatal Errors with die
	Warning Messages with warn
	Automatically die-ing

	Using Filehandles
	Changing the Default Output Filehandle

	Reopening a Standard Filehandle
	Output with say
	Filehandles in a Scalar
	Exercises

	Chapter 6. Hashes
	What Is a Hash?
	Why Use a Hash?

	Hash Element Access
	The Hash as a Whole
	Hash Assignment
	The Big Arrow

	Hash Functions
	The keys and values Functions
	The each Function

	Typical Use of a Hash
	The exists Function
	The delete Function
	Hash Element Interpolation

	The %ENV Hash
	Exercises

	Chapter 7. Regular Expressions
	Sequences
	Practice Some Patterns
	The Wildcard
	Quantifiers
	Grouping in Patterns
	Alternation
	Character Classes
	Character Class Shortcuts
	Negating the Shortcuts

	Unicode Properties
	Anchors
	Word Anchors

	Exercises

	Chapter 8. Matching with Regular Expressions
	Matches with m//
	Match Modifiers
	Case-Insensitive Matching with /i
	Matching Any Character with /s
	Adding Whitespace with /x
	Combining Option Modifiers
	Choosing a Character Interpretation
	Beginning- and End-of-Line Anchors
	Other Options

	The Binding Operator =~
	The Match Variables
	The Persistence of Captures
	Captures in Alternations
	Noncapturing Parentheses
	Named Captures
	The Automatic Match Variables

	Precedence
	Examples of Precedence
	And There’s More

	A Pattern Test Program
	Exercises

	Chapter 9. Processing Text with Regular Expressions
	Substitutions with s///
	Global Replacements with /g
	Different Delimiters
	Substitution Modifiers
	The Binding Operator
	Nondestructive Substitutions
	Case Shifting
	Metaquoting

	The split Operator
	The join Function
	m// in List Context
	More Powerful Regular Expressions
	Nongreedy Quantifiers
	Fancier Word Boundaries
	Matching Multiple-Line Text
	Updating Many Files
	In-Place Editing from the Command Line

	Exercises

	Chapter 10. More Control Structures
	The unless Control Structure
	The else Clause with unless

	The until Control Structure
	Statement Modifiers
	The Naked Block Control Structure
	The elsif Clause
	Autoincrement and Autodecrement
	The Value of Autoincrement

	The for Control Structure
	The Secret Connection Between foreach and for

	Loop Controls
	The last Operator
	The next Operator
	The redo Operator
	Labeled Blocks

	The Conditional Operator
	Logical Operators
	The Value of a Short-Circuit Operator
	The defined-or Operator
	Control Structures Using Partial-Evaluation Operators

	Exercises

	Chapter 11. Perl Modules
	Finding Modules
	Installing Modules
	Using Your Own Directories

	Using Simple Modules
	The File::Basename Module
	Using Only Some Functions from a Module
	The File::Spec Module
	Path::Class
	Databases and DBI
	Dates and Times

	Exercises

	Chapter 12. File Tests
	File Test Operators
	Testing Several Attributes of the Same File
	Stacked File Test Operators

	The stat and lstat Functions
	The localtime Function
	Bitwise Operators
	Using Bitstrings

	Exercises

	Chapter 13. Directory Operations
	The Current Working Directory
	Changing the Directory
	Globbing
	An Alternate Syntax for Globbing
	Directory Handles
	Manipulating Files and Directories
	Removing Files
	Renaming Files
	Links and Files
	Making and Removing Directories
	Modifying Permissions
	Changing Ownership
	Changing Timestamps
	Exercises

	Chapter 14. Strings and Sorting
	Finding a Substring with index
	Manipulating a Substring with substr
	Formatting Data with sprintf
	Using sprintf with “Money Numbers”

	Advanced Sorting
	Sorting a Hash by Value
	Sorting by Multiple Keys

	Exercises

	Chapter 15. Process Management
	The system Function
	Avoiding the Shell

	The Environment Variables
	The exec Function
	Using Backquotes to Capture Output
	Using Backquotes in a List Context

	External Processes with IPC::System::Simple
	Processes as Filehandles
	Getting Down and Dirty with fork
	Sending and Receiving Signals
	Exercises

	Chapter 16. Some Advanced Perl Techniques
	Slices
	Array Slice
	Hash Slice
	Key-Value Slices

	Trapping Errors
	Using eval
	More Advanced Error Handling

	Picking Items from a List with grep
	Transforming Items from a List with map
	Fancier List Utilities
	Exercises

	Appendix A. Exercise Answers
	Answers to Chapter 1 Exercises
	Answers to Chapter 2 Exercises
	Answers to Chapter 3 Exercises
	Answers to Chapter 4 Exercises
	Answers to Chapter 5 Exercises
	Answers to Chapter 6 Exercises
	Answers to Chapter 7 Exercises
	Answers to Chapter 8 Exercises
	Answers to Chapter 9 Exercises
	Answers to Chapter 10 Exercises
	Answers to Chapter 11 Exercises
	Answers to Chapter 12 Exercises
	Answers to Chapter 13 Exercises
	Answers to Chapter 14 Exercises
	Answers to Chapter 15 Exercises
	Answers to Chapter 16 Exercises

	Appendix B. Beyond the Llama
	Further Documentation
	Regular Expressions
	Packages
	Extending Perl’s Functionality
	Writing Your Own Modules

	Databases
	Mathematics
	Lists and Arrays
	Bits and Pieces
	Formats
	Networking and IPC
	System V IPC
	Sockets

	Security
	Debugging
	Command-Line Options
	Built-in Variables
	References
	Complex Data Structures
	Object-Oriented Programming
	Anonymous Subroutines and Closures

	Tied Variables
	Operator Overloading
	Using Other Languages Inside Perl
	Embedding
	Converting find Command Lines to Perl
	Command-Line Options in Your Programs
	Embedded Documentation
	More Ways to Open Filehandles
	Graphical User Interfaces (GUIs)
	And More…

	Appendix C. A Unicode Primer
	Unicode
	UTF-8 and Friends
	Getting Everyone to Agree
	Fancy Characters
	Using Unicode in Your Source
	Fancier Characters

	Dealing with Unicode in Perl
	Fancier Characters by Name
	Reading from STDIN or Writing to STDOUT or STDERR
	Reading from and Writing to Files
	Dealing with Command-Line Arguments
	Dealing with Databases

	Further Reading

	Appendix D. Experimental Features
	A Short History of Perl Development
	Perl 5.10 and Beyond

	Installing a Recent Perl
	Experimental Features
	Turning Off Experimental Warnings
	Enable or Disable Features Lexically
	Don’t Rely on Experimental Features

	Index
	About the Authors
	Colophon

