
Dean Wampler
Foreword by Seth Tisue

3rd Edition

Covers Scala 3

Programming
 Scala
Scalability = Functional Programming + Objects

Praise for Programming Scala, Third Edition

“Whether you’re new to entirely Scala or making the two to three transition, Dean
Wampler is the ideal traveling companion. Some Scala books make you feel like you’re

back in a classroom. This one makes you feel like you’re pair-programming
with a helpful expert by your side.”

—Seth Tisue, Senior Software Engineer,
Scala Compiler Team, Lightbend Inc.

“Dean leaves no question unanswered. Rather than telling you only what you need to
know to produce working code, he takes an extra step and explains exactly: How is this

feature implemented? Is there a more general idea behind it that can provide extra
context? Reading this book will enable you to make new connections between concepts

you couldn’t connect before. Which is to say, you’ll learn something.”
—Lutz Huehnken, Chief Architect,

Hamburg Süd, A Maersk Company

“Dean has succeeded in giving a complete and comprehensive overview of the third major
release of the Scala language by not only describing all the new features of the language,

but also covering what’s changed from Scala 2. Highly recommended for both newbies
and experienced Scala 2 programmers!”

—Eric Loots, CTO, Lunatech

“At his many Strata Data + AI talks and tutorials, Dean made the case for using Scala for
data engineering, especially with tools such as Spark and Kafka. He captures

his Scala expertise and practical advice here."
—Ben Lorica, Gradient Flow

“I’ve had the great pleasure of working with Dean in a few different roles over the past
several years. He is ever the strong advocate for pragmatic, effective approaches for data

engineering–especially using Scala as the ideal programming language in that work. This
book guides you through why Scala is so compelling and how to use it effectively.”

—Paco Nathan, Managing Partner at Derwen, Inc.

“An excellent update to the earlier edition that will help developers understand how to
harness the power of Scala 3 in a pragmatic and practical way.”

—Ramnivas Laddad, cofounder, Paya Labs, Inc.

Dean Wampler

Programming Scala
Scalability = Functional Programming + Objects

THIRD EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07789-3

[LSI]

Programming Scala
by Dean Wampler

Copyright © 2021 Dean Wampler. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Development Editor: Michele Cronin
Production Editor: Katherine Tozer
Copyeditor: Sonia Saruba
Proofreader: Athena Lakri

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

June 2021: Third Edition

Revision History for the Third Edition
2021-05-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492077893 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Programming Scala, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492077893

To Peggy Williams Hammond, September 10, 1933–May 11, 2018.
—Dean

Table of Contents

Foreword. xvii

Preface. xxi

1. Zero to Sixty: Introducing Scala. 1
Why Scala? 1

The Appeal of Scala 2
Why Scala 3? 3
Migrating to Scala 3 3

Installing the Scala Tools You Need 3
Building the Code Examples 4
More Tips 4

Using sbt 5
Running the Scala Command-Line Tools Using sbt 7

A Taste of Scala 9
A Sample Application 20
Recap and What’s Next 30

2. Type Less, Do More. 31
New Scala 3 Syntax—Optional Braces 31
Semicolons 33
Variable Declarations 33
Ranges 35
Partial Functions 36
Method Declarations 39

Method Default and Named Parameters 39
Methods with Multiple Parameter Lists 40
Nesting Method Definitions and Recursion 45

vii

Inferring Type Information 48
Repeated Parameter Lists 49
Language Keywords 51
Literal Values 54

Numeric Literals 54
Boolean Literals 55
Character Literals 56
String Literals 56
Symbol Literals 58
Function Literals 58

Tuples 58
Option, Some, and None: Avoiding Nulls 60

When You Really Can’t Avoid Nulls 61
Sealed Class Hierarchies and Enumerations 62
Organizing Code in Files and Namespaces 63
Importing Types and Their Members 64

Package Imports and Package Objects 65
Parameterized Types Versus Abstract Type Members 66
Recap and What’s Next 69

3. Rounding Out the Basics. 71
Defining Operators 71
Allowed Characters in Identifiers 76
Methods with Empty Parameter Lists 77
Operator Precedence Rules 78
Enumerations and Algebraic Data Types 79
Interpolated Strings 82
Scala Conditional Expressions 83
Conditional and Comparison Operators 85
for Comprehensions 86

for Loops 86
Generators 87
Guards: Filtering Values 87
Yielding New Values 87
Expanded Scope and Value Definitions 88

Scala while Loops 90
Using try, catch, and finally Clauses 90
Call by Name, Call by Value 94
Lazy Values 97
Traits: Interfaces and Mixins in Scala 99
When new Is Optional 102
Recap and What’s Next 103

viii | Table of Contents

4. Pattern Matching. 105
Safer Pattern Matching with Matchable 105
Values, Variables, and Types in Matches 107
Matching on Sequences 111
Pattern Matching on Repeated Parameters 114
Matching on Tuples 114

Parameter Untupling 116
Guards in Case Clauses 117
Matching on Case Classes and Enums 117
Matching on Regular Expressions 119
Matching on Interpolated Strings 121
Sealed Hierarchies and Exhaustive Matches 121
Chaining Match Expressions 122
Pattern Matching Outside Match Expressions 122
Problems in Pattern Bindings 124
Pattern Matching as Filtering in for Comprehensions 125
Pattern Matching and Erasure 126
Extractors 126

unapply Method 127
Alternatives to Option Return Values 129
unapplySeq Method 131
Implementing unapplySeq 133

Recap and What’s Next 134

5. Abstracting Over Context: Type Classes and Extension Methods. 137
Four Changes 138
Extension Methods 139

Build Your Own String Interpolator 142
Type Classes 142

Scala 3 Type Classes 143
Alias Givens 150
Scala 2 Type Classes 152

Scala 3 Implicit Conversions 154
Type Class Derivation 158
Givens and Imports 159
Givens Scoping and Pattern Matching 161
Resolution Rules for Givens and Extension Methods 162
The Expression Problem 163
Recap and What’s Next 163

6. Abstracting Over Context: Using Clauses. 165
Using Clauses 165

Table of Contents | ix

Context Bounds 167
Other Context Parameters 171
Context Functions 172
Constraining Allowed Instances 175

Implicit Evidence 178
Working Around Type Erasure with Using Clauses 179
Rules for Using Clauses 180
Improving Error Messages 182
Recap and What’s Next 183

7. Functional Programming in Scala. 185
What Is Functional Programming? 185

Functions in Mathematics 186
Variables That Aren’t 187

Functional Programming in Scala 189
Anonymous Functions, Lambdas, and Closures 190
Purity Inside Versus Outside 193

Recursion 193
Tail Calls and Tail-Call Optimization 194
Partially Applied Functions Versus Partial Functions 195
Currying and Uncurrying Functions 196
Tupled and Untupled Functions 197
Partial Functions Versus Functions Returning Options 198
Functional Data Structures 199

Sequences 200
Maps 202
Sets 203

Traversing, Mapping, Filtering, Folding, and Reducing 204
Traversing 204
Mapping 205
Flat Mapping 206
Filtering 208
Folding and Reducing 210
Left Versus Right Folding 215

Combinators: Software’s Best Component Abstractions 219
What About Making Copies? 222
Recap and What’s Next 224

8. for Comprehensions in Depth. 225
Recap: The Elements of for Comprehensions 225
for Comprehensions: Under the Hood 227
Translation Rules of for Comprehensions 230

x | Table of Contents

Options and Container Types 232
Option as a Container? 232
Either: An Alternative to Option 236
Try: When There Is No Do 239
Validated from the Cats Library 241

Recap and What’s Next 243

9. Object-Oriented Programming in Scala. 245
Class and Object Basics: Review 246
Open Versus Closed Types 247

Classes Open for Extension 250
Overriding Methods? The Template Method Pattern 251

Reference Versus Value Types 252
Opaque Types and Value Classes 253

Opaque Type Aliases 255
Value Classes 258

Supertypes 261
Constructors in Scala 262

Calling Supertype Constructors 263
Export Clauses 263
Good Object-Oriented Design: A Digression 265
Fields in Types 267

The Uniform Access Principle 268
Unary Methods 270

Recap and What’s Next 270

10. Traits. 271
Traits as Mixins 271
Stackable Traits 275
Union and Intersection Types 279
Transparent Traits 281
Using Commas Instead of with 282
Trait Parameters 282
Should That Type Be a Class or Trait? 284
Recap and What’s Next 284

11. Variance Behavior and Equality. 285
Parameterized Types: Variance Under Inheritance 285

Functions Under the Hood 286
Variance of Mutable Types 290
Improper Variance of Java Arrays 292

Equality of Instances 292

Table of Contents | xi

The equals Method 293
The == and != Methods 293
The eq and ne Methods 294
Array Equality and the sameElements Method 294

Equality and Inheritance 295
Multiversal Equality 296
Case Objects and hashCode 299
Recap and What’s Next 300

12. Instance Initialization and Method Resolution. 301
Linearization of a Type Hierarchy 301
Initializing Abstract Fields 305
Overriding Concrete Fields 307
Abstract Type Members and Concrete Type Aliases 308
Recap and What’s Next 309

13. The Scala Type Hierarchy. 311
Much Ado About Nothing (and Null) 312
The scala Package 315
Products, Case Classes, Tuples, and Functions 316

Tuples and the Tuple Trait 317
The Predef Object 319

Implicit Conversions 319
Type Definitions 321
Condition Checking Methods 321
Input and Output Methods 322
Miscellaneous Methods 322

Recap and What’s Next 323

14. The Scala Collections Library. 325
Different Groups of Collections 326
Abstractions with Multiple Implementations 326

The scala.collection.immutable Package 327
The scala.collection.mutable Package 329
The scala.collection Package 331
The scala.collection.concurrent Package 332
The scala.collection.convert Package 333
The scala.collection.generic Package 333

Construction of Instances 333
The Iterable Abstraction 334
Polymorphic Methods 336
Equality for Collections 337

xii | Table of Contents

Nonstrict Collections: Views 338
Recap and What’s Next 339

15. Visibility Rules. 341
Public Visibility: The Default 342
Visibility Keywords 342
Protected Visibility 343
Private Visibility 343
Scoped Private and Protected Visibility 343
Recap and What’s Next 345

16. Scala’s Type System, Part I. 347
Parameterized Types 347
Abstract Type Members and Concrete Type Aliases 348

Comparing Abstract Type Members Versus Parameterized Types 348
Type Bounds 349

Upper Type Bounds 349
Lower Type Bounds 350

Context Bounds 352
View Bounds 352
Intersection and Union Types 353

Intersection Types 353
Union Types 356

Phantom Types 359
Structural Types 362
Refined Types 367
Existential Types (Obsolete) 367
Recap and What’s Next 368

17. Scala’s Type System, Part II. 369
Match Types 369
Dependently Typed Methods 371
Dependent Method and Dependent Function Types 373
Dependent Typing 374
Path-Dependent Types 380

Using this 380
Using super 381
Stable Paths 381

Self-Type Declarations 382
Type Projections 385
More on Singleton Types 386
Self-Recursive Types: F-Bounded Polymorphism 387

Table of Contents | xiii

Higher-Kinded Types 388
Type Lambdas 391
Polymorphic Functions 393
Type Wildcard Versus Placeholder 394
Recap and What’s Next 395

18. Advanced Functional Programming. 397
Algebraic Data Types 397

Sum Types Versus Product Types 397
Properties of Algebraic Data Types 399
Final Thoughts on Algebraic Data Types 400

Category Theory 400
What Is a Category? 401
Functor 402
The Monad Endofunctor 404
The Semigroup and Monoid Categories 408

Recap and What’s Next 409

19. Tools for Concurrency. 411
The scala.sys.process Package 411
Futures 413
Robust, Scalable Concurrency with Actors 416

Akka: Actors for Scala 417
Actors: Final Thoughts 425

Stream Processing 426
Recap and What’s Next 427

20. Dynamic Invocation in Scala. 429
Structural Types Revisited 429
A Motivating Example: ActiveRecord in Ruby on Rails 432
Dynamic Invocation with the Dynamic Trait 433
DSL Considerations 437
Recap and What’s Next 437

21. Domain-Specific Languages in Scala. 439
Internal DSLs 440
External DSLs with Parser Combinators 446

About Parser Combinators 447
A Payroll External DSL 447

Internal Versus External DSLs: Final Thoughts 449
Recap and What’s Next 450

xiv | Table of Contents

22. Scala Tools and Libraries. 451
Scala 3 Versions 451
Command-Line Interface Tools 452

Coursier 453
Managing Java JDKs with Coursier 453
The scalac Command-Line Tool 454
The scala Command-Line Tool 455
The scaladoc Command-Line Tool 456
Other Scala Command-Line Tools 456

Build Tools 457
Integration with IDEs and Text Editors 457
Using Notebook Environments with Scala 457
Testing Tools 458
Scala for Big Data: Apache Spark 459
Typelevel Libraries 461
Li Haoyi Libraries 461
Java and Scala Interoperability 462

Using Java Identifiers in Scala Code 462
Scala Identifiers in Java Code 462
Java Generics and Scala Parameterized Types 463
Conversions Between Scala and Java Collections 463
Java Lambdas Versus Scala Functions 464
Annotations for JavaBean Properties and Other Purposes 464

Recap and What’s Next 465

23. Application Design. 467
Recap of What We Already Know 467
Annotations 468
Using @main Entry Points 469
Design Patterns 470

Creational Patterns 470
Structural Patterns 471
Behavioral Patterns 472

Better Design with Design by Contract 474
The Parthenon Architecture 477
Recap and What’s Next 483

24. Metaprogramming: Macros and Reflection. 485
Scala Compile Time Reflection 487
Java Runtime Reflection 488
Scala Reflect API 490
Type Class Derivation: Implementation Details 491

Table of Contents | xv

Scala 3 Metaprogramming 491
Inline 491
Macros 496
Staging 500

Wrapping Up and Looking Ahead 502

A. Significant Indentation Versus Braces Syntax. 503

Bibliography. 507

Index. 509

xvi | Table of Contents

Foreword

Foreword, Third Edition
Forward-looking programming languages don’t always make it. Yet Scala is not only
surviving but thriving. Some languages never get commercial adoption at all. Those
first few companies brave enough to bet their business on your language are hard to
find. Other languages get their time in the commercial sun but don’t manage to hang
on, like Common Lisp and Smalltalk. They live on as influences, their genes still dis‐
cernable in contemporary languages. That’s success of a kind, but not what the crea‐
tors wanted.

Scala has been defying these trends for well over a decade now. Circa 2008, compa‐
nies such as Twitter and Foursquare brought Scala out of academia and into the com‐
mercial world. Since then, the Scala job market and ecosystem have been sustained
not only by independent enthusiasts but by superstar open source projects, such as
Spark and Kafka, and companies like those on the Scala Center’s advisory board, who
collectively employ impressive numbers of Scala programmers.

Can Scala continue to pull it off? Its creator, Martin Odersky, thinks it can and I
agree. Scala 3, launching in 2021, is a bold leap into the future of programming.
Other languages will be playing catch-up for years to come.

And not for the first time, either. In the years since Scala’s initial success, Java
emerged from its long torpor with a parade of Scala-inspired language features. Swift
and Rust also show Scala’s influence. Direct competitors have appeared too. Kotlin
remains a contender, while others, such as Ceylon, have already fallen by the wayside.

How much innovation is too much? How much is too little? Explorers must be bold
but not foolhardy. Dangers lurk in new seas and on new lands, but you’ll never dis‐
cover anything if you just stay home.

Scala’s bet is that being a better Java isn’t enough to meet programmers’ needs—not
even if that better Java is Java itself. For one thing, competing with Java isn’t enough

xvii

anymore. If Scala’s growth has leveled off somewhat in recent years, perhaps it’s
because Java’s has too, and because we’ve already converted all the Java programmers
we can hope to convert. We need to show that Scala is also a more-than-worthy alter‐
native to now-mainstream languages, like Python and TypeScript, and insurgent lan‐
guages, like Rust and Haskell.

The big reason Scala still matters and is worth fighting for is that it fully embraces
functional programming. Yes, it’s wonderful that Java has added lambdas and pattern
matching, features that come from the functional tradition. But functional program‐
ming isn’t just a bag of disconnected individual features. It’s a paradigm shift, a fresh
way of thinking. Learning Scala, or any functional language, makes you wonder how
you ever programmed any other way.

Learning Scala doesn’t mean forgetting everything you already know. Scala fuses the
object-oriented and functional programming traditions into a single language you’ll
never grow out of. And though Scala offers its own vibrant ecosystem of libraries,
Scala programmers are also free to leverage vast worlds of Java and JavaScript.

The design of Scala 3 retains the same pragmatism that has been crucial to its success
all along. My teammates and I at Lightbend, along with our colleagues at the Scala
Center and in Martin’s lab, work hard to make migration to new versions smooth,
even as we bring you a Christmas-morning’s worth of new toys to play with.

It’s truly remarkable how much of the Scala ecosystem has already made the leap.
Scala 3 only just came out this month, but a rich array of libraries and tooling is
already available for it.

Whether you’re entirely new to Scala or making the 2 to 3 transition, Dean Wampler
is the ideal traveling companion. Some Scala books make you feel like you’re back in a
classroom. This one makes you feel like you’re pair-programming with a helpful
expert. The text is bristling with practical know-how, with all of the nuances and
need-to-knows for when you’re actually at the keyboard, trying to make something
run. Dean inspires with how programming in Scala ought to be and is candid about
what it is actually like. He gives you tomorrow, and today.

Whatever the future holds for Scala, it will always be known as the language that took
functional programming from a daring experiment to a practical, everyday reality.

My fondest wish for this book is that it will find its way into the hands of a new gen‐
eration of Scala programmers. This new crew will be younger and more diverse than
the old guard, and less encumbered by programming’s past. Professors: teach your
students Scala! I can’t wait to see what they’ll build.

— Seth Tisue
Senior Software Engineer, Scala Compiler Team, Lightbend, Inc.

Reno, Nevada, May 2021

xviii | Foreword

Foreword, First and Second Edition
If there has been a common theme throughout my career as a programmer, it has
been the quest for better abstractions and better tools to support the craft of writing
software. Over the years, I have come to value one trait more than any other: com‐
posability. If one can write code with good composability, it usually means that other
traits we software developers value—such as orthogonality, loose coupling, and high
cohesion—are already present. It is all connected.

When I discovered Scala some years ago, the thing that made the biggest impression
on me was its composability.

Through some very elegant design choices and simple yet powerful abstractions that
were taken from the object-oriented and functional programming worlds, Martin
Odersky has managed to create a language with high cohesion and orthogonal, deep
abstractions that invites composability in all dimensions of software design. Scala is
truly a SCAlable LAnguage that scales with usage, from scripting all the way up to
large-scale enterprise applications and middleware.

Scala was born out of academia, but it has grown into a pragmatic and practical lan‐
guage that is very much ready for real-world production use.

What excites me most about this book is that it’s so practical. Dean has done a fantas‐
tic job, not only by explaining the language through interesting discussions and sam‐
ples, but also by putting it in the context of the real world. It’s written for the
programmer who wants to get things done.

I had the pleasure of getting to know Dean some years ago when we were both part of
the aspect-oriented programming community. Dean holds a rare mix of deep analyti‐
cal academic thinking and a pragmatic, get-things-done kind of mentality.

You are about to learn how to write reusable components using mixin and function
composition; how to write distributed applications using Akka; how to make effective
use of advanced features in Scala, such as macros and higher-kinded types; how to
utilize Scala’s rich, flexible, and expressive syntax to build domain-specific languages;
how to effectively test your Scala code; how to let Scala simplify your big-data prob‐
lems; and much, much more.

Enjoy the ride. I sure did.

— Jonas Bonér
CTO & cofounder Typesafe

August 2014

Foreword | xix

Preface

Programming Scala introduces an exciting and powerful language that offers all the
benefits of a modern object-oriented programming (OOP) model, functional pro‐
gramming (FP), and an advanced type system. Originally targeted for the Java Virtual
Machine (JVM), it now also targets JavaScript and native execution as well. Packed
with code examples, this comprehensive book teaches you how to be productive with
Scala quickly and explains what makes this language ideal for today’s scalable, dis‐
tributed, component-based applications that run at any scale.

Learn more at http://programming-scala.org or at the book’s catalog page.

Welcome to Programming Scala, Third Edition
Dean Wampler, April 2021

Programming Scala, second edition was published six years ago, in the fall of 2014. At
that time, interest in Scala was surging, driven by two factors.

First, alternative languages for the JVM instead of Java were very appealing. Java’s
evolution was slow at the time, frustrating developers who wanted improvements like
more concise syntax for some constructs and features they saw in other languages,
like FP.

Second, big data was a hot sector of the software industry, and some of the most pop‐
ular tools in that sector, especially Apache Spark and Apache Kafka, were written in
Scala and offered concise and elegant Scala APIs.

A lot has changed in six years. Oracle deserves a lot of credit for reinvigorating Java
after acquiring it through the purchase of Sun Microsystems. The pace of innovation
has improved considerably, and many important features have been added, like
support for anonymous functions, called lambdas, that addressed the biggest missing
feature needed for FP.

xxi

http://programming-scala.org
https://oreil.ly/programming-scala-3
https://spark.apache.org
https://kafka.apache.org

Also, the Kotlin language was created by the tool vendor JetBrains, as a “better Java”
that isn’t as sophisticated as Scala. Kotlin received a big boost when Google endorsed
it as the preferred language for Android apps. Around the same time, Apple intro‐
duced a language called Swift, primarily for iOS development, that has a very Scala-
like syntax, although it does not target the JVM.

Big data drove the emergence of data science as a profession. Actually, this was just a
rebranding and refinement of what data analysts and statisticians had been doing for
years. The specialties of deep learning (i.e., using neural networks), reinforcement
learning, and artificial intelligence are currently the hottest topics in the data world.
All fit under the umbrella of machine learning. A large percentage of the popular
tools for data science and machine learning are written in Python (or expose Python
APIs on top of C++ kernels). As a result, interest in Python is growing strongly again,
while Scala’s growth in the data world has slowed.

But Scala hasn’t been sitting still. The Scala Center at École Polytechnique Fédérale de
Lausanne (EPFL) was created to drive the evolution of the language and the core
open source tooling for the ecosystem, like build tools and integrated development
environments, while Lightbend continues to be the major provider of commercial
support for Scala in the enterprise.

The fruits of these labors are many, but Scala version 3 is the most significant result to
date. It brings changes to improve the expressiveness and correctness of Scala and
remove deprecated and less useful features. Scala 3 is the focus of this edition,
whether you are experienced with Scala 2 or brand new to Scala.

Scala 3 continues Scala’s unparalleled track record of being a leading-edge language
research platform while also remaining pragmatic for widespread industrial use. Scala
3 reworks the industry-leading implicit system so that common idioms are easier to
use and understand. This system has propelled the creation of elegant, type-safe APIs
that go far beyond what’s possible with all other popular languages. The optional
braceless syntax makes already-concise Scala code even more pristine, while also
appealing to Python data scientists who work with Scala-based data engineering code.
Scala’s unique, thoughtful combination of FP and OOP is the best I have ever seen.
All in all, Scala 3 remains my favorite programming language, concise and elegant,
yet powerful when I need it.

Also, Scala is now a viable language for targeting JavaScript applications through
Scala.js. Support for Scala as a native language (compiled directly to machine object
code) is now available through Scala Native. I won’t discuss the details of using
Scala.js and Scala Native, but the Bibliography lists several resources, like
[LiHaoyi2020] and [Whaling2020], respectively.

xxii | Preface

https://scala.epfl.ch
https://scala.epfl.ch
https://www.scala-js.org
https://oreil.ly/Se0Xp

I currently split my time between the Python-based machine learning world and the
Scala-based JVM world. When I use Python, I miss the concision, power, and correct‐
ness of Scala. The heavy use of mutation and the incomplete collections lower my
productivity and make my code more verbose. However, when I use Scala, I miss the
wealth of data-centric libraries available in the Python world.

All things considered, interest in Scala is growing less quickly today, but developers
who want Scala’s power and elegance are keeping the community vibrant and grow‐
ing, especially in larger enterprises that are JVM-centered and cloud-based. Who
knows what the next five or six years will bring, when it’s time for Programming Scala,
fourth edition?

With each edition of this book, I have attempted to provide a comprehensive intro‐
duction to Scala features and core libraries, illustrated with plenty of pragmatic exam‐
ples and tips based on my years of experience in software development. This edition
posed unique challenges because the transition from Scala 2 to 3 requires under‐
standing old and new features, along with the plan for phasing out old features over
several Scala 3 releases. I have explained the most important Scala 2 features that
you’ll need for working with existing code bases, while ignoring some seldom-used
features that were dropped in Scala 3 (like procedure syntax). Note that when I refer
to Scala 2 features, I’ll mean the features as they existed in the last Scala 2 release,
2.13.X, unless otherwise noted.

I have also shortened the previous editions’ surveys of Scala libraries. I think this
makes the book more useful to you. A Google search is the best way to find the latest
and best library for working with JSON, for example. What doesn’t change so quickly
and what’s harder to find on Stack Overflow is the wisdom of how best to leverage
Scala for robust, real-world development. Hence, my goal in this edition is to teach
you how to use Scala effectively for a wide class of pragmatic problems, without cov‐
ering every corner case in the language or the most advanced idioms in Scala code.

Finally, I wrote this book for professional programmers. I’ll err on the side of tackling
deeper technical topics, rather than keeping the material light. There are great alter‐
native books if you prefer less depth. This is a book for if you are serious about mas‐
tering Scala professionally.

How to Read This Book
The first three chapters provide a fast tour of features without going into much depth.
If you are experienced with Scala, skim these chapters to find new Scala 3 features
that are introduced. The “3” icon in the lefthand margin makes it easy to find the
content specific to Scala 3 throughout the book. If you are new to Scala, make sure
you understand all the content in these chapters thoroughly.

Preface | xxiii

https://stackoverflow.com

Chapters 4–15 go back over the main features in depth. After learning this material,
you’ll be quite productive working with most Scala code bases. For you experienced
readers, Chapters 5 and 6 will be the most interesting because they cover the new
ways of abstracting over context (i.e., implicits). Chapters 7–12 are mostly the same
for Scala 2 and 3, especially the material that explores Scala as an OOP language.
However, you’ll find Scala 3 changes throughout all these chapters. Also, all examples
shown use the new, optional Scala 3 notation that omits most curly braces.

Chapters 16 and 17 explore the rest of Scala’s sophisticated type system. I tried to
cover the most important concepts you’ll encounter in Chapter 16, with more
advanced topics in Chapter 17. You’ll find plenty of new Scala 3 content in these
chapters.

Finally, pick and choose sections in Chapters 18–24 as you need to understand the
concepts they cover. For example, when you encounter the popular, but advanced,
subject of category theory, read Chapter 18. When you need to use concurrency and
distribution for scalability, read Chapter 19. If you want to balance dynamic and static
typing or you need to write domain-specific languages, read Chapter 20 or 21, respec‐
tively. If you want more information about tools in the Scala ecosystem and combin‐
ing Java with Scala code, Chapter 22 offers tips. In a sense, Chapter 23 is a summary
chapter that brings together my thoughts on using Scala effectively for long-term,
scalable application development. Lastly, Chapter 24 introduces the powerful meta‐
programming features of Scala, with significant changes in Scala 3.

For reference, an appendix summarizes optional new syntax conventions compared
with traditional syntax. A list of references and an index finish the book.

Welcome to Programming Scala, Second Edition
Dean Wampler, November 2014

Programming Scala, first edition was published five years ago, in the fall of 2009. At
the time, it was only the third book dedicated to Scala, and it just missed being the
second by a few months. Scala version 2.7.5 was the official release, with version 2.8.0
nearing completion.

A lot has changed since then. At the time of this writing, the Scala version is 2.11.2.
Martin Odersky, the creator of Scala, and Jonas Bonér, the creator of Akka, an actor-
based concurrency framework, cofounded Typesafe (now Lightbend) to promote the
language and tools built on it.

There are also a lot more books about Scala. So do we really need a second edition of
this book? Many excellent beginner’s guides to Scala are now available. A few
advanced books have emerged. The encyclopedic reference remains Programming in
Scala, second edition, by Odersky et al. (Artima Press).

xxiv | Preface

https://typesafe.com
https://lightbend.com

Yet, I believe Programming Scala, second edition remains unique because it is a com‐
prehensive guide to the Scala language and ecosystem, a guide for beginners to
advanced users, and it retains the focus on the pragmatic concerns of working profes‐
sionals. These characteristics made the first edition popular.

Scala is now used by many more organizations than in 2009 and most Java developers
have now heard of Scala. Several persistent questions have emerged. Isn’t Scala com‐
plex? Since Java 8 added significant new features found in Scala, why should I switch
to Scala?

I’ll tackle these and other, real-world concerns. I have often said that I was seduced by
Scala, warts and all. I hope you’ll feel the same way after reading Programming Scala,
second edition.

Welcome to Programming Scala, First Edition
Dean Wampler and Alex Payne, September 2009

Programming languages become popular for many reasons. Sometimes, program‐
mers on a given platform prefer a particular language, or one is institutionalized by a
vendor. Most macOS programmers use Objective-C. Most Windows programmers
use C++ and .NET languages. Most embedded-systems developers use C and C++.

Sometimes, popularity derived from technical merit gives way to fashion and fanati‐
cism. C++, Java, and Ruby have been the objects of fanatical devotion among pro‐
grammers.

Sometimes, a language becomes popular because it fits the needs of its era. Java was
initially seen as a perfect fit for browser-based, rich client applications. Smalltalk cap‐
tured the essence of object-oriented programming as that model of programming
entered the mainstream.

Today, concurrency, heterogeneity, always-on services, and ever-shrinking develop‐
ment schedules are driving interest in functional programming. It appears that the
dominance of object-oriented programming may be over. Mixing paradigms is
becoming popular, even necessary.

We gravitated to Scala from other languages because Scala embodies many of the
optimal qualities we want in a general-purpose programming language for the kinds
of applications we build today: reliable, high-performance, highly concurrent internet
and enterprise applications.

Scala is a multiparadigm language, supporting both object-oriented and functional
programming approaches. Scala is scalable, suitable for everything from short scripts
up to large-scale, component-based applications. Scala is sophisticated, incorporating
state-of-the-art ideas from the halls of computer science departments worldwide. Yet

Preface | xxv

Scala is practical. Its creator, Martin Odersky, participated in the development of Java
for years and understands the needs of professional developers.

We were seduced by Scala, by its concise, elegant, and expressive syntax and by the
breadth of tools it put at our disposal. In this book, we strive to demonstrate why all
these qualities make Scala a compelling and indispensable programming language.

If you are an experienced developer who wants a fast, thorough introduction to Scala,
this book is for you. You may be evaluating Scala as a replacement for or complement
to your current languages. Maybe you have already decided to use Scala, and you
need to learn its features and how to use it well. Either way, we hope to illuminate this
powerful language for you in an accessible way.

We assume that you are well versed in object-oriented programming, but we don’t
assume that you have prior exposure to functional programming. We assume that
you are experienced in one or more other programming languages. We draw parallels
to features in Java, C#, Ruby, and other languages. If you know any of these lan‐
guages, we’ll point out similar features in Scala, as well as many features that are new.

Whether you come from an object-oriented or functional programming background,
you will see how Scala elegantly combines both paradigms, demonstrating their com‐
plementary nature. Based on many examples, you will understand how and when to
apply OOP and FP techniques to many different design problems.

In the end, we hope that you too will be seduced by Scala. Even if Scala does not end
up becoming your day-to-day language, we hope you will gain insights that you can
apply regardless of which language you are using.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

xxvi | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does require per‐
mission. Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming Scala third edition by
Dean Wampler (O’Reilly). Copyright 2021 Dean Wampler, 978-1-492-07789-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

Getting the Code Examples
You can download the code examples from GitHub. Unzip the files to a convenient
location. See the README file in the distribution for instructions on building and
using the examples. I’ll summarize those instructions in the first chapter.

Some of the example files can be run as scripts using the scala command. Others
must be compiled into class files. A few files are only compatible with Scala 2, and a

Preface | xxvii

mailto:permissions@oreilly.com
mailto:bookquestions@oreilly.com
https://github.com/deanwampler/programming-scala-book-code-examples

few files are additional examples that aren’t built by sbt, the build tool. To keep these
groups separate, I have adopted the following directory structure conventions:

src/main/scala/…/*.scala
Are all Scala 3 source files built with sbt. The standard Scala file extension
is .scala.

src/main/scala-2/…/*.scala
Are all Scala 2 source files, some of which won’t compile with Scala 3. They are
not built with sbt.

src/test/…/*.scala
Are all Scala 3 test source files built and executed with sbt.

src/script/…/*.scala
Are all “Script” files that won’t compile with scalac. Instead, they are designed
for experimentation in the scala interactive command-line interface (CLI).

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/programming-scala-3.

xxviii | Preface

http://oreilly.com
http://oreilly.com
https://oreil.ly/programming-scala-3

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments for the Third Edition
Working with early builds of Scala 3, I often ran into unimplemented features and
incomplete documentation. The members of the Scala community have provided val‐
uable help while I learned what’s new. The Scala Center at EPFL documentation for
Dotty provided essential information. Since the second edition was published, the
Scala Center as become the flagship organization driving the evolution of the lan‐
guage and core open source tooling for the ecosystem, while Lightbend continues to
be the major provider of commercial support for Scala in the enterprise. I’m espe‐
cially grateful to the reviewers of this edition—Seth Tisue, who also wrote the won‐
derful foreword for this edition, Daniel Hinojosa, Eric Loots, Ramnivas Laddad, and
Lutz Hühnken—and for the advice and feedback from my editors at O’Reilly, Michele
Cronin, Katherine Tozer, and Suzanne McQuade.

And special thanks again to Ann, who allowed me to consume so much of our per‐
sonal time with this project. I love you!

Acknowledgments for the Second Edition
As I worked on this edition of the book, I continued to enjoy the mentoring and feed‐
back from many of my Typesafe colleagues, plus the valuable feedback from people
who reviewed the early-access releases. I’m especially grateful to Ramnivas Laddad,
Kevin Kilroy, Lutz Hühnken, and Thomas Lockney, who reviewed drafts of the
manuscript. Thanks to my longtime colleague and friend, Jonas Bonér, for writing an
updated Foreword for the book.

And special thanks to Ann, who allowed me to consume so much of our personal
time with this project. I love you!

Preface | xxix

mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia
https://scala.epfl.ch
https://dotty.epfl.ch/docs

Acknowledgments for the First Edition
As we developed this book, many people read early drafts and suggested numerous
improvements to the text, for which we are eternally grateful. We are especially grate‐
ful to Steve Jensen, Ramnivas Laddad, Marcel Molina, Bill Venners, and Jonas Bonér
for their extensive feedback.

Much of the feedback we received came through the Safari Rough Cuts releases and
the online edition. We are grateful for the feedback provided by (in no particular
order) Iulian Dragos, Nikolaj Lindberg, Matt Hellige, David Vydra, Ricky Clarkson,
Alex Cruise, Josh Cronemeyer, Tyler Jennings, Alan Supynuk, Tony Hillerson, Roger
Vaughn, Arbi Sookazian, Bruce Leidl, Daniel Sobral, Eder Andres Avila, Marek Kub‐
ica, Henrik Huttunen, Bhaskar Maddala, Ged Byrne, Derek Mahar, Geoffrey Wise‐
man, Peter Rawsthorne, Geoffrey Wiseman, Joe Bowbeer, Alexander Battisti, Rob
Dickens, Tim MacEachern, Jason Harris, Steven Grady, Bob Follek, Ariel Ortiz, Parth
Malwankar, Reid Hochstedler, Jason Zaugg, Jon Hanson, Mario Gleichmann, David
Gates, Zef Hemel, Michael Yee, Marius Kreis, Martin Süsskraut, Javier Vegas, Tobias
Hauth, Francesco Bochicchio, Stephen Duncan Jr., Patrik Dudits, Jan Niehusmann,
Bill Burdick, David Holbrook, Shalom Deitch, Jesper Nordenberg, Esa Laine, Gleb
Frank, Simon Andersson, Patrik Dudits, Chris Lewis, Julian Howarth, Dirk Kuzemc‐
zak, Henri Gerrits, John Heintz, Stuart Roebuck, and Jungho Kim. Many other read‐
ers for whom we only have usernames also provided feedback. We wish to thank
Zack, JoshG, ewilligers, abcoates, brad, teto, pjcj, mkleint, dandoyon, Arek, rue, acan‐
giano, vkelman, bryanl, Jeff, mbaxter, pjb3, kxen, hipertracker, ctran, Ram R., cody,
Nolan, Joshua, Ajay, Joe, and anonymous contributors. We apologize if we have over‐
looked anyone!

Our editor, Mike Loukides, knows how to push and prod gently. He’s been a great
help throughout this crazy process. Many other people at O’Reilly were always there
to answer our questions and help us move forward.

We thank Jonas Bonér for writing the Foreword for the book. Jonas is a longtime
friend and collaborator from the aspect-oriented programming community. For
years, he has done pioneering work in the Java community. Now he is applying his
energies to promoting Scala and growing that community.

Bill Venners graciously provided the quote on the back cover. The first published
book on Scala, Programming in Scala, that he cowrote with Martin Odersky and Lex
Spoon, is indispensable for the Scala developer. Bill has also created the wonderful
ScalaTest library.

We have learned a lot from fellow developers around the world. Besides Jonas and
Bill, Debasish Ghosh, James Iry, Daniel Spiewak, David Pollack, Paul Snively, Ola
Bini, Daniel Sobral, Josh Suereth, Robey Pointer, Nathan Hamblen, Jorge Ortiz, and

xxx | Preface

http://programmingscala.com

others have illuminated dark corners with their blog entries, forum discussions, and
personal conversations.

Dean thanks his colleagues at Object Mentor and several developers at client sites for
many stimulating discussions on languages, software design, and the pragmatic issues
facing developers in industry. The members of the Chicago Area Scala Enthusiasts
(CASE) group have also been a source of valuable feedback and inspiration.

Alex thanks his colleagues at Twitter for their encouragement and superb work in
demonstrating Scala’s effectiveness as a language. He also thanks the Bay Area Scala
Enthusiasts (BASE) for their motivation and community.

Most of all, we thank Martin Odersky and his team for creating Scala.

Preface | xxxi

CHAPTER 1

Zero to Sixty: Introducing Scala

Let’s start with a brief look at why you should investigate Scala. Then we’ll dive in and
write some code.

Why Scala?
Scala is a language that addresses the needs of the modern software developer. It is a
statically typed, object-oriented, and functional mixed-platform language with a suc‐
cinct, elegant, and flexible syntax, a sophisticated type system, and idioms that pro‐
mote scalability from small tools to large sophisticated applications. So let’s consider
each of those ideas in more detail:

A Java Virtual Machine (JVM), JavaScript, and native language
Scala started as a JVM language that exploits the performance and optimizations
of the JVM, as well as the rich ecosystem of tools and libraries built around Java.
More recently, Scala.js brings Scala to JavaScript, and Scala Native compiles Scala
to native machine code, bypassing the JVM and JavaScript runtimes.

Object-oriented programming
Scala fully supports object-oriented programming (OOP). Scala traits provide a
clean way to implement code using mixin composition. Scala provides convenient
and familiar OOP consistently for all types, even numeric types, while still ena‐
bling highly performant code generation.

Functional programming
Scala fully supports functional programming (FP). FP has emerged as the best tool
for thinking about problems of concurrency, big data, and general code correct‐
ness. Immutable values, first-class functions, code without side effects, and func‐
tional collections all contribute to concise, powerful, and correct code.

1

https://www.scala-js.org
https://oreil.ly/Se0Xp

A sophisticated type system with static typing
Scala’s rich, static type system goes a long way toward bug-free code where mis‐
takes are caught at compile time. With type inference, Scala code is often as con‐
cise as code in dynamically typed languages, yet inherently safer.

A succinct, elegant, and flexible syntax
Verbose expressions in other languages become concise idioms in Scala. Scala
provides several facilities for building domain-specific languages (DSLs), APIs
that feel native to users.

Scalable architectures
You can write tiny, single-file tools to large, distributed applications in Scala.

The name Scala is a contraction of the words scalable language. It is pronounced scah-
lah, like the Italian word for staircase. Hence, the two a’s are pronounced the same.

Scala was started by Martin Odersky in 2001. The first public release was January 20,
2004. Martin is a professor in the School of Computer and Communication Sciences
at the École Polytechnique Fédérale de Lausanne (EPFL). He spent his graduate years
working in the group headed by Niklaus Wirth, of Pascal fame. Martin worked on
Pizza, an early functional language on the JVM. He later worked on GJ, a prototype of
what later became generics in Java, along with Philip Wadler, one of the designers of
Haskell. Martin was recruited by Sun Microsystems to produce the reference imple‐
mentation of javac with generics, the ancestor of the Java compiler that ships with
the Java Developer Kit (JDK) today.

The Appeal of Scala
The growth of Scala users since it was introduced over 15 years ago confirms my view
that Scala is a language for our time. You can leverage the maturity of the JVM and
JavaScript ecosystems while enjoying state-of-the-art language features with a concise
yet expressive syntax for addressing today’s development challenges.

In any field of endeavor, the professionals need sophisticated, powerful tools and
techniques. It may take a while to master them, but you make the effort because mas‐
tery is the key to your productivity and success.

I believe Scala is a language for professional developers. Not all Scala users are profes‐
sionals, of course, but Scala is the kind of language a professional in our field needs,
rich in features, highly performant, and expressive for a wide class of problems. It will
take you a while to master Scala, but once you do, you won’t feel constrained by your
programming language.

2 | Chapter 1: Zero to Sixty: Introducing Scala

Why Scala 3?
If you used Scala before, you used Scala 2, the major version since March 2006! Scala
3 aims to improve Scala in several ways.

First, Scala 3 strengthens Scala’s foundations, especially in the type system. Martin
Odersky and collaborators have been developing the dependent object typing (DOT)
calculus, which provides a more sound foundation for Scala’s type system. Scala 3
integrates DOT.

Second, Scala 2 has many powerful features, but sometimes they can be hard to use.
Scala 3 improves the usability and safety of these features, especially implicits. Other
language warts and puzzlers are removed.

Third, Scala 3 improves the consistency and expressiveness of Scala’s language con‐
structs and removes unimportant constructs to make the language smaller and more
regular. Also, the previous experimental approach to macros is replaced with a new,
principled approach to metaprogramming.

We’ll call out these changes as we explore the corresponding language features.

Migrating to Scala 3
The Scala team has worked hard to make migration to Scala 3 from Scala 2 as painless
as possible, while still allowing the language to make improvements that require
breaking changes. Scala 3 uses the same standard library as Scala 2.13, eliminating a
class of changes you would otherwise have to make to your code when upgrading.
Hence, if necessary, I recommend upgrading to Scala 2.13 first to update your use of
the standard library as needed, then upgrade to Scala 3.

In addition, to make the transition to breaking language changes as painless as possi‐
ble, there are several ways to compile Scala 3 code that allows or disallows deprecated
Scala 2 constructs. There are even compiler flags that will do some code rewrites
automatically for you! See “Scala 3 Versions” on page 451 and “The scalac Command-
Line Tool” on page 454 in Chapter 22 for details.

For a complete guide to migrating to Scala 3, see the Scala Center’s Scala 3 Migration
Guide.

Installing the Scala Tools You Need
There are many options for installing tools and building Scala projects. See Chap‐
ter 22 and the Scala website’s Getting Started for more details on available tools and
options for starting with Scala. Here, I’ll focus on the simplest way to install the tools
needed for the book’s example code.

Installing the Scala Tools You Need | 3

https://oreil.ly/dap2o
https://oreil.ly/dap2o
https://oreil.ly/fXBOA

The examples target Scala 3 for the JVM. See the Scala.js and Scala Native websites for
information on targeting those platforms.

You only need to install two tools:

• A recent Java JDK, version 8 or newer. Newer long-term versions are recom‐
mended, like versions 11 or 15 (the latest release at the time of this writing).

• sbt, the de facto build tool for Scala.

Follow the instructions for installing the JDK and sbt on their respective websites.

When we use the sbt command in “Using sbt” on page 5, it will bootstrap everything
else needed, including the scalac compiler and the scala tool for running code.

Building the Code Examples
Now that you have the tools you need, you can download and build the code
examples:

Get the code
Download the code examples as described in “Getting the Code Examples” on
page xxvii.

Start sbt
Open a terminal and change to the root directory for the code examples. Type
the command sbt test to download all the library dependencies you need,
including the Scala compiler. This will take a while. Then sbt will compile the
code and run the unit tests. You’ll see lots of output, ending with a “success” mes‐
sage. If you run the command again, it should finish very quickly because it won’t
need to do anything again.

Congratulations! You are ready to get started.

For most of the book, we’ll use the Scala tools indirectly through
sbt, which automatically downloads the Scala library and tools we
need, including the required third-party dependencies.

More Tips
In your browser, it’s useful to bookmark the Scala standard library’s Scaladoc docu‐
mentation. For your convenience, when I mention a type in the library, I’ll often
include a link to the corresponding Scaladoc entry.

4 | Chapter 1: Zero to Sixty: Introducing Scala

https://www.scala-js.org
https://oreil.ly/Se0Xp
https://oreil.ly/zKr5Z
https://oreil.ly/iW0K5
https://oreil.ly/fMWtU
https://oreil.ly/fMWtU

Use the search field at the top of the page to quickly find anything in the docs. The
documentation page for each type has a link to view the corresponding source code
in Scala’s GitHub repository, which is a good way to learn how the library was imple‐
mented. Look for a “Source” link.

Any text editor or integrated development environment (IDE) will suffice for work‐
ing with the examples. Scala plug-ins exist for all the popular editors and IDEs, such
as IntelliJ IDEA and Visual Studio Code. Once you install the required Scala plug-in,
most environments can open your sbt project, automatically importing all the infor‐
mation they need, like the Scala version and library dependencies.

Support for Scala in many IDEs and text editors is now based on the Language Server
Protocol (LSP), an open standard started by Microsoft. The Metals project imple‐
ments LSP for Scala. The Metals website has installation details for your particular
IDE or editor. In general, the community for your favorite editor or IDE is your best
source of up-to-date information on Scala support.

If you like working with Scala worksheets, many of the code exam‐
ples can be converted to worksheets. See the code examples
README for details.

Using sbt
Let’s cover the basics of using sbt, which we’ll use to build and work with the code
examples.

When you start sbt, if you don’t specify a task to run, sbt starts an interactive shell.
Let’s try that now and see a few of the available tasks.

In the listing that follows, the $ is the shell command prompt (e.g., bash, zsh, or the
Window’s command shell), where you start the sbt command, the > is the default sbt
interactive prompt, and the # starts a comment. You can type most of these com‐
mands in any order:

$ sbt
> help # Describe commands.
> tasks # Show the most commonly used, available tasks.
> tasks -V # Show ALL the available tasks.
> compile # Incrementally compile the code.
> test # Incrementally compile the code and run the tests.
> clean # Delete all build artifacts.
> console # Start the interactive Scala environment.
> run # Run one of the "main" methods (applications) in the project.
> show x # Show the value of setting or task "x".
> exit # Quit the sbt shell (also control-d works).

More Tips | 5

https://oreil.ly/8mhul
https://jetbrains.com/idea
https://code.visualstudio.com
https://oreil.ly/Wt5a3
https://oreil.ly/Wt5a3
https://scalameta.org/metals

The sbt project for the code examples is actually configured to show the following as
the sbt prompt:

sbt:programming-scala-3rd-ed-code-examples>

To save space, I’ll use the more concise prompt, >, when showing sbt sessions.

A handy sbt technique is to add a tilde, ~, at the front of any com‐
mand. Whenever file changes are saved to disk, the command will
be rerun. For example, I use ~test all the time to keep compiling
my code and running my tests. Since, sbt uses an incremental
compiler, you don’t have to wait for a full rebuild every time. Break
out of these loops by hitting Return.

The scala CLI command has a built-in REPL (read, eval, print, loop). This is a his‐
torical term, going back to LISP. It’s more accurate than interpreter, which is some‐
times used. Scala code isn’t interpreted. It is always compiled and then run, even
when using the interactive REPL where bits of code at a time are entered and exe‐
cuted. Hence, I’ll use the term REPL when referring to this use of the scala CLI. You
can invoke it using the console command in sbt. We’ll do this a lot to work with the
book’s code examples. The Scala REPL prompt is scala>. When you see that prompt
in code examples, I’m using the REPL.

Before starting the REPL, sbt console will build your project and set up the class‐
path with your compiled artifacts and dependent libraries. This convenience means
it’s rare to use the scala REPL outside of sbt because you would have to set up the
classpath yourself.

To exit the sbt shell, use exit or Ctrl-D. To exit the Scala REPL, use :quit or Ctrl-D.

Using the Scala REPL is a very effective way to experiment with
code idioms and to learn an API, even non-Scala APIs. Invoking it
from sbt using the console task conveniently adds project depen‐
dencies and the compiled project code to the classpath for the
REPL.

I configured the compiler options for the code examples (in build.sbt) to pass
-source:future. This flag causes warnings to be emitted for constructs that are still
allowed in Scala 3.0, but it will be removed in Scala 3.1 or deprecated with planned
removal in a subsequent release. I’ll cite specific examples of planned transitions as
we encounter them. There are several language versions that can be used with the
-source option. See “Scala 3 Versions” on page 451 for details), especially when start‐
ing your own code migrations to Scala 3.

6 | Chapter 1: Zero to Sixty: Introducing Scala

Because I’m using the “aggressive” -source:future option, you’ll
see warnings when using sbt console that won’t appear in other
Scala 3 projects that don’t use this setting.

Running the Scala Command-Line Tools Using sbt
When the Scala 3 command-line tools are installed separately (see “Command-Line
Interface Tools” on page 452 for details), the Scala compiler is called scalac and the
REPL is called scala. We will let sbt run them for us, although I’ll show you how to
run them directly as well.

Let’s run a simple Scala program. Consider this “script” from the code examples:

// src/script/scala/progscala3/introscala/Upper1.scala

class Upper1:
 def convert(strings: Seq[String]): Seq[String] =
 strings.map((s: String) => s.toUpperCase)

val up = new Upper1()
val uppers = up.convert(List("Hello", "World!"))
println(uppers)

Most listings, like this one, start with a comment that contains the
file path in the code examples, so it’s easy for you to locate the file.
Not all examples have files, but if you see a listing with no path
comment, it often continues where the previous listing left off.

I’ll explain the details of this code shortly, but let’s focus now on running it.

Change your current working directory to the root of the code examples. Start sbt
and run the console task. Then, use the :load command to compile and run the con‐
tents of the file. In the next listing, the $ is the terminal’s prompt, > is the sbt prompt,
scala> is the Scala REPL’s prompt, and the ellipses (…) are for suppressed output:

$ sbt
...
> console
...
scala> :load src/script/scala/progscala3/introscala/Upper1.scala
List(HELLO, WORLD!)
...

And thus we have satisfied the prime directive of the Programming Book Authors
Guild, which states that our first program must print “Hello World!”

More Tips | 7

1 If you are unfamiliar with the JVM ecosystem, the classpath is a list of locations to search for compiled code,
like libraries.

All the code examples that we’ll use in the REPL will have paths that start with src/
script. However, in most cases you can copy and paste code from any of the source
files to the REPL prompt.

If you have the scala REPL for Scala installed separately, you can enter scala at the
terminal prompt, instead of the separate sbt and console steps. However, most of the
example scripts won’t run with scala outside of sbt because sbt console includes
the libraries and compiled code in the classpath, which most of the scripts need.1

Here is a more complete REPL session to give you a sense of what you can do. Here
I’ll combine sbt and console into one step (some output elided):

$ sbt console
...
scala> :help
The REPL has several commands available:

:help print this summary
:load <path> interpret lines in a file
:quit exit the REPL
:type <expression> evaluate the type of the given expression
:doc <expression> print the documentation for the given expression
:imports show import history
:reset reset the REPL to its initial state, ...

scala> val s = "Hello, World!"
val s: String = Hello, World!

scala> println("Hello, World!")
Hello, World!

scala> 1 + 2
val res0: Int = 3

scala> s.con<tab>
concat contains containsSlice contentEquals

scala> s.contains("el")
val res1: Boolean = true

scala> :quit
$ # back at the terminal prompt. "Control-D" also works.

The list of commands available and the output of :help may change between Scala
releases.

8 | Chapter 1: Zero to Sixty: Introducing Scala

2 Sometimes the type information is called an annotation, but this is potentially confusing with another concept
of annotations that we’ll see, so I’ll avoid using this term for types. Type ascriptions is another term.

We assigned a string, "Hello, World!", to a variable named s, which we declared as
an immutable value using the val keyword. The println method prints a string to
the console, followed by a line feed.

When we added two numbers, we didn’t assign the result to a variable, so the REPL
made up a name for us, res0, which we could use in subsequent expressions.

The REPL supports tab completion. The input shown is used to indicate that a tab
was typed after s.con. The REPL responded with a list of methods on String that
could be called. The expression was completed with a call to the contains method.

The type of something is given by its name, a colon, and then the type. We didn’t
explicitly specify any type information here because the types could be inferred.
When you provide types explicitly or when they are inferred and shown for you, they
are called type declarations.2 The output of the REPL shows several examples.

When a type is added to a declaration, the syntax name: String, for example, is used
instead of String name. The latter would be more ambiguous in Scala because of type
inference, where type information can be omitted from the code yet inferred by the
compiler.

Showing the types in the REPL is very handy for learning the types
that Scala infers for particular expressions. It’s one example of
exploration that the REPL enables.

See “Command-Line Interface Tools” on page 452 for more information about the
command-line tools, such as using the scala CLI to run compiled code outside of
sbt.

A Taste of Scala
We’ve already seen a bit of Scala as we discussed tools, including how to print “Hello
World!” The rest of this chapter and the two chapters that follow provide a rapid tour
of Scala features. As we go, we’ll discuss just enough of the details to understand
what’s going on, but many of the deeper background details will have to wait for later
chapters. Think of this tour as a primer on Scala syntax and a taste of what program‐
ming in Scala is like day to day.

A Taste of Scala | 9

https://oreil.ly/Sd2zG

When I introduce a type in the Scala library, find its entry in the
Scaladoc. Scala 3 uses the Scala 2.13 library with a few minor
additions.

Scala follows common comment conventions. A // comment goes to the end of a line,
while a /* comment */ can cross line boundaries. Comments intended to be included
in Scaladoc documentation use /** comment */.

Files named src/test/scala/…/*Suite.scala are tests written using MUnit (see “Testing
Tools” on page 458). To run all the tests, use the sbt command test. To run just one
particular test, use testOnly path, where path is the fully qualified type name for the
test:

> testOnly progscala3.objectsystem.equality.EqualitySuite
[info] Compiling 1 Scala source to ...
progscala3.objectsystem.equality.EqualitySuite:
 + The == operator is implemented with the equals method 0.01s
 + The != operator is implemented with the equals method 0.001s
 ...
[info] Passed: Total 14, Failed 0, Errors 0, Passed 14
[success] Total time: 1 s, completed Feb 29, 2020, 5:00:41 PM
>

The corresponding source file is src/test/scala/progscala3/objectsystem/equality/Equal‐
itySuite.scala. Note that sbt follows Apache Maven conventions that directories for
compiled source code go under src/main/scala and tests go under src/test/scala. After
that is the package definition, progscala3.objectsystem.equality, corresponding to file
path progscala3/objectsystem/equality. Packages organize code hierarchically. The test
inside of the file is defined as a class named EqualitySuite.

Scala packages, names, and file organization mostly follow Java
conventions. Java requires that the directory path and filename
must match the declared package and a single public class within
the file. Scala doesn’t require conformance to these rules, but it is
conventional to follow them, especially for larger code bases. The
code examples follow these conventions.

Finally, many of the files under src/main/scala define entry points (such as main
methods), the starting points for running those small applications. You can execute
them in one of several ways.

First, use sbt’s run command. It will find all the entry points and prompt you to pick
which one. Note that sbt will only search src/main/scala and src/main/java. When

10 | Chapter 1: Zero to Sixty: Introducing Scala

https://oreil.ly/ubm6m
https://scalameta.org/munit
https://maven.apache.org

3 I will periodically update the code examples as new Scala releases come out. The version will be set in the file
build.sbt, the scalaVersion string. The other way to tell is to just look at the contents of the target directory.

you compile and run tests, src/test/scala and src/test/java are searched. The src/script is
ignored by sbt.

Let’s use another example we’ll study later in the chapter, src/main/scala/progscala3/
introscala/UpperMain2.scala. Invoke run hello world, where run is the sbt task and
hello world are arbitrary arguments that will be passed to a program we’ll choose
from the list that is printed for us (over 50 choices!). Enter the number shown for
progscala3.introscala.Hello2:

> run hello world
...

Multiple main classes detected, select one to run:

 ...
 [38] progscala3.introscala.Hello2
 ...

38 <--- What you type!

[info] running progscala3.introscala.Hello2 hello world
HELLO WORLD
[success] Total time: 2 s, completed Feb 29, 2020, 5:08:18 PM

This program converts the input arguments to uppercase and prints them.

A second way to run this program is to use runMain and specify the same fully quali‐
fied path to the main class that was shown, progscala3.introscala.Hello2. This
skips the prompt:

> runMain progscala3.introscala.Hello2 hello world again!
...
[info] running progscala3.introscala.Hello2
HELLO WORLD AGAIN!
[success] Total time: 0 s, completed Feb 29, 2020, 5:18:05 PM
>

This code is already compiled, so you can also run it outside of sbt with the scala
command. Now the correct classpath must be provided, including all dependencies.
This example is easy; the classpath only needs the output root directory for all of the
compiled .class files. I’m using a shell variable here to fit the line in the space;
change the 3.0.0 to match the actual version of Scala used:3

A Taste of Scala | 11

$ cp="target/scala-3.0.0/classes/"
$ scala -classpath $cp progscala3.introscala.Hello2 Hello Scala World!
HELLO SCALA WORLD!

There’s one final alternative we can use. As we’ll see shortly, UpperMain2.scala
defines a single entry point. Because of this, the scala command can actually load the
source file directly, compile, and run it in one step, without a scalac step first. We
won’t need the -classpath argument now, but we will need to specify the file instead
of the fully qualified name used previously:

$ scala src/main/scala/progscala3/introscala/UpperMain2.scala Hello World!
HELLO WORLD!

Let’s explore the implementations of these examples. First, here is Upper1.scala
again:

// src/script/scala/progscala3/introscala/Upper1.scala

class Upper1:
 def convert(strings: Seq[String]): Seq[String] =
 strings.map((s: String) => s.toUpperCase)

val up = new Upper1()
val uppers = up.convert(List("Hello", "World!"))
println(uppers)

We declare a class, Upper1, using the class keyword, followed by a colon (:). The
entire class body is indented on the next two lines.

If you know Scala already, you might ask why are there no curly
braces {…} and why is a colon (:) after the name Upper1? I’m
using the new optional braces syntax that I’ll discuss in more depth
in “New Scala 3 Syntax—Optional Braces” on page 31.

Upper1 contains a method called convert. Method definitions start with the def key‐
word, followed by the method name and an optional parameter list. The method sig‐
nature ends with an optional return type. The return type can be inferred in many
cases, but adding the return type explicitly, as shown, provides useful documentation
for the reader and also avoids occasional surprises from the type inference process.

I’ll use parameters to refer to the list of things a method expects to
be passed when you call it. I’ll use arguments to refer to values you
actually pass to it when making the call.

12 | Chapter 1: Zero to Sixty: Introducing Scala

4 This method takes no arguments, so parentheses can be omitted.

Type definitions are specified using name: type syntax. The parameter list is
strings: Seq[String] and the return type of the method is Seq[String], after the
parameter list.

An equals sign (=) separates the method signature from the method body. Why an
equals sign?

One reason is to reduce ambiguity. If you omit the return type, Scala can infer it. If
the method takes no parameters, you can omit the parentheses too. So the equal sign
makes parsing unambiguous when either or both of these features are omitted. It’s
clear where the signature ends and the method body begins.

The convert method takes a sequence (Seq) of zero or more input strings and returns
a new sequence, where each of the input strings is converted to uppercase. Seq is an
abstraction for collections that you can iterate through. The actual kind of sequence
returned by this method will be the same kind that was passed into it as an argument,
like Vector or List (both of which are immutable collections).

Collection types like Seq[T] are parameterized types, where T is the type of the ele‐
ments in the sequence. Scala uses square brackets ([…]) for parameterized types,
whereas several other languages use angle brackets (<…>).

List[T] is an immutable linked list. Accessing the head of a List is O(1), while
accessing an arbitrary element at position N is O(N). Vector[T] is a subtype of Seq[T]
with almost O(1) for all access patterns.

Scala allows angle brackets to be used in identifiers, like method
and variable names. For example, defining a “less than” method
and naming it < is common. To avoid ambiguity, Scala reserves
square brackets for parameterized types so that characters like <
and > can be used as identifiers.

Inside the body of convert, we use the map method to iterate over the elements and
apply a transformation to each one and then construct a new collection with the
results.

The function passed to the map method to do the transformation is an unnamed
(anonymous) function literal of the form (parameters) => body:

(s: String) => s.toUpperCase

It takes a parameter list with a single String named s. The body of the function literal
is after the “arrow” =>. The body calls the toUpperCase method on s.4 The result of

A Taste of Scala | 13

https://oreil.ly/GR3u2
https://oreil.ly/XLUjj
https://oreil.ly/yiiF3

this call is automatically returned by the function literal. In Scala, the last expression
in a function, method, or other block is the return value. (The return keyword exists
in Scala, but it can only be used in methods, not in anonymous functions like this
one. It is only used for early returns in the middle of methods.)

Methods Versus Functions
Following the convention in most OOP languages, the term method is used to refer to
a function defined within a type. Methods have an implied this reference to the
object as an additional argument when they are called. Like most OOP languages, the
syntax used is this.method_name(other_args).

Functions, like the (s: String) => s.toUpperCase example, are not tied to a partic‐
ular type. Occasionally, I’ll use the term function to refer to methods and non-
methods generically, when the distinction doesn’t matter, to avoid the awkwardness of
saying “functions or methods.”

On the JVM, functions are implemented using JVM lambdas, as the REPL will indi‐
cate to you:

scala> (s: String) => s.toUpperCase
val res0: String => String = Lambda$7775/0x00000008035fc040@7673711e=

Note that the REPL treats this function like any other value and gives it a synthesized
name, res0, when you don’t provide one yourself (e.g., val f = (s: String) =>
s.toUpperCase). Read-only values are declared using the val keyword.

Back to Upper1.scala, the last two lines, which are outside the class definition, create
an instance of Upper1 named up, using new Upper1(). Then up is used to convert two
strings to uppercase. Finally, the resulting sequence uppers is printed with println.
Normally, println expects a single string argument, but if you pass it an object, like a
Seq, the toString method will be called. If you run sbt console, then copy and
paste the contents of the Upper1.scala file, the REPL will tell you that the actual type
of the Seq[String] is List[String] (a linked list).

So src/script/…/Upper1.scala is intended for copying and pasting (or using :load) in
the REPL. Let’s look at another implementation that is compiled and then run. I
added Main to the source filename. Note the path to the source file now contains
src/main instead of src/script:

// src/main/scala/progscala3/introscala/UpperMain1.scala
package progscala3.introscala

object UpperMain1:
 def main(params: Array[String]): Unit =
 print("UpperMain1.main: ")

14 | Chapter 1: Zero to Sixty: Introducing Scala

 params.map(s => s.toUpperCase).foreach(s => printf("%s ",s))
 println("")

def main(params: Array[String]): Unit =
 print("main: ")
 params.map(s => s.toUpperCase).foreach(s => printf("%s ",s))
 println("")

@main def Hello(params: String*): Unit =
 print("Hello: ")
 params.map(s => s.toUpperCase).foreach(s => printf("%s ",s))
 println("")

Declare the package location, progscala3.introscala.

Declare a main method, a program entry point, inside an object. I’ll explain what
an object is shortly.

Declare an alternative main entry point as a top-level method, outside any
object, but scoped to the current package, progscala3.introscala.

Declare an entry point method where we can use a different name and we have
more flexible options for the argument list.

Packages work much like they do in other languages. They provide a namespace for
scoping declarations and access to them. Here, the declarations exist in the progs
cala3.introscala package.

You have probably seen classes in other languages that encapsulate members, meaning
methods, fields (or attributes) that hold state, and so forth. In many languages, the
entry point where the program starts is a main method. In Java, this method is
defined inside a class and declared static, meaning it is not tied to any one instance.
You can reference any static definition with the syntax UpperMain1.main, to use our
example.

The pattern of static declarations in classes is so pervasive that Scala builds it into the
language. Instead, we declare an object UpperMain1, using the object keyword.
Then we declare main and other members using the same syntax we would use in
classes. There is no static keyword in Scala.

This file has three entry points. The first one, UpperMain1.main, is how you declare
entry points in Scala 2. Following Java conventions, the name main is required and it
is declared with an Array[String] parameter for the user-specified arguments, even
if the program takes no arguments or takes specific arguments in a specific order, like
an integer followed by two strings. You have to handle parsing the arguments. Also,
Arrays in Scala are mutable, which can be a source of bugs. Using immutable argu‐

A Taste of Scala | 15

5 This printf-style formatting is so common in programming languages, I’ll assume it needs no further
explanation. If it’s new to you, see the link in the paragraph for details.

ments is inherently safer. All these issues are addressed in the last entry point, Hello,
as we’ll discuss in a moment.

Inside UpperMain1.main, we print the name of the method first (without a newline),
which will be useful for contrasting how these three entry points are invoked. Then
we map over the input arguments (params), converting them to uppercase and
returning a new collection. Finally, we use another collections method called foreach
to iterate over the new collection and print each string using printf, which expects a
formatting string and arguments, s here, to compose the final string.5

Let’s run with UpperMain1.main:

> runMain progscala3.introscala.UpperMain1 Hello World!
UpperMain1.main: HELLO WORLD!
>

The method main itself is not part of the qualified path, just the enclosing object
UpperMain1.

Scala 3 introduces two new features for greater flexibility. First, you can declare meth‐
ods, variables, etc., outside objects and classes. This is how the second main method is
declared, but otherwise it works like UpperMain1.main. It is scoped differently, as we
can see when we use it:

> runMain progscala3.introscala.UpperMain1$package Hello World!
main: HELLO WORLD!
>

Note how the definition is scoped to the package plus source filename! If you rename
the file to something like FooBar.scala and recompile, then the command becomes
runMain progscala3.introscala.FooBar$package…. Adding the source file to the
scope avoids collisions with other definitions in the same package scope, but with
different source files. However, having $package in the name is inconvenient for
Linux and macOS shells like bash, so I don’t recommend defining an entry point this
way.

Instead, I recommend the second, new Scala 3 feature, an alternative way of defining
entry points, which is shown by our third entry point, the Hello method. The @main
annotation marks this method as an entry point. Note how we refer to it when we run
it:

16 | Chapter 1: Zero to Sixty: Introducing Scala

https://oreil.ly/bVeIA

> runMain progscala3.introscala.Hello Hello World!
Hello: HELLO WORLD!
>

Now the method name is used. Normally you don’t name methods starting with an
uppercase letter, but it’s useful for entry points if you want invocation commands to
look similar to Java invocations like java…progscala3.introscala.Hello…. Hello,
which is also declared outside an object, but this isn’t required.

The new @main entry points have several advantages. They reduce boilerplate when
defining them. They can be defined with parameter lists that match the expected
arguments, such as sequences, strings, and integers. Here, we want zero or more
string arguments. The * in params: String* means zero or more Strings (called
repeated parameters), which will be passed to the method body, where params is
implemented with an immutable Seq[String]. Mutable Arrays are avoided.

Note that the type of the return value of all three methods is Unit. For now, think of
Unit as analogous to void in other languages, meaning nothing useful is returned.

Because there are three entry points defined in this file, we can’t use
scala to parse and run this file in one step. That’s why I used Upper
Main2 earlier, instead. We’ll explore that file shortly, where we’ll see
it has one and only one entry point.

Declaring UpperMain1 as an object makes it a singleton, meaning there will always be
only one instance of it, which the Scala runtime will create for us. You can’t create
your own instances with new.

Scala makes the singleton design pattern a first-class member of the language. In most
ways, these object declarations are just like other class declarations, but they are
used when you need one and only one instance to hold some methods and fields, as
opposed to the situation where you need multiple instances, each with fields of
unique values per instance and methods that operate on a single instance at a time.

The singleton design pattern has drawbacks. It’s hard to replace a singleton instance
with a test double in unit tests, and forcing all computation through a single instance
raises concerns about thread safety and limits scalability options. However, we’ll see
plenty of examples in the book where objects are used effectively.

A Taste of Scala | 17

https://oreil.ly/5DLeU

To avoid confusion, I’ll use instance, rather than object, when I refer
to an instance created from a class with new or the single instance
of an object. Because classes and objects are so similar, I’ll use type
generically for them. All the types we’ll see, like String, are imple‐
mented as classes or objects.

Returning to the implementation details, note the function we passed to map:

s => s.toUpperCase

Our previous example used (s: String) => s.toUpper(s). Most of the time, Scala
can infer the types of parameters for function literals because the context provided by
map tells the compiler what type to expect. So the type declaration String isn’t
needed.

The foreach method is used when we want to process each element and perform
only side effects, without returning a new value. Here we print a string to standard
output (without a newline after each one). In contrast, map returns a new value for
each element (and side effects should be avoided). The last println call prints a new‐
line before the program exits.

The notion of side effects means that the function we pass to foreach does something
to affect the state outside the local context. We could write to a database or to a file, or
print to the console, or launch missiles…

Look again at the second line inside each method, how concise it is where we com‐
pose operations together. Sequencing transformations lets us create concise, powerful
programs, as we’ll see over and over again.

We haven’t needed to import any library items yet, but Scala imports operate much
like similar constructs in other languages. Scala automatically imports many com‐
monly used types and object members, like Seq, List, Vector, and the print* meth‐
ods we used, which are actually methods in an object called scala.Console. Most of
these things that are automatically imported are defined in a library object called
Predef.

For completeness, let’s discuss how to compile and run the example outside sbt. First
you use scalac to compile to a JVM-compatible .class file. Often, multiple class
files are generated. Then you use scala to run it.

If you installed the Scala command-line tools separately (see “Command-Line Inter‐
face Tools” on page 452 for details), run the following two commands (ignoring the $
shell prompt) in a terminal window at the root of the project:

18 | Chapter 1: Zero to Sixty: Introducing Scala

https://oreil.ly/i44Pb
https://oreil.ly/uxYB6

$ scalac src/main/scala/progscala3/introscala/UpperMain1.scala
$ scala -classpath . progscala3.introscala.Hello Hello compiled World!
Hello: HELLO COMPILED WORLD!

You should now have new directories progscala3/introscala with several .class
and .tasty files, including a file named UpperMain1.class. Class files are processed by
the JVM, and tasty files are an intermediate representation used by the compiler.
Scala must generate valid JVM byte code and files. For example, the directory struc‐
ture must match the package structure. The -classpath . option adds the current
directory to the search classpath, although . is the default.

Allowing sbt to compile it for us instead, we need a different -classpath argument
to reflect the directory where sbt writes class files:

$ scala -classpath target/scala-3.0.0/classes progscala3.introscala.Hello Bye!
BYE!

Let’s do one last version to see a few other useful ways of working with collections for
this scenario. This is the version we ran previously:

// src/main/scala/progscala3/introscala/UpperMain2.scala
package progscala3.introscala

@main def Hello2(params: String*): Unit =
 val output = params.map(_.toUpperCase).mkString(" ")
 println(output)

Instead of using foreach to print each transformed string as before, we map the
sequence of strings to a new sequence of strings and then call a convenience method,
mkString, to concatenate the strings into a final string. There are three mkString
methods. One takes no arguments. The second version takes a single parameter to
specify the delimiter between the elements (" " in our example). The third version
takes three parameters, a leftmost prefix string, the delimiter, and a rightmost suffix
string. Try changing the code to use mkString("[", ", ", "]").

Note the function passed to map. The following function literals are essentially the
same:

s => s.toUpperCase
_.toUpperCase

Rather than providing a name for the single argument, we can use _ as a placeholder.
This generalizes to functions with two or more arguments, where each use of _ takes
the place of one argument. This means that placeholders can’t be used if it’s necessary
to refer to any one of the arguments more than once.

A Taste of Scala | 19

https://oreil.ly/Sr23F

As before, we can run this code with sbt using runMain progscala3.intro

scala.Hello2… We also saw previously that we can use the scala command to com‐
pile and run it in one step because it has a single entry point:

$ scala src/main/scala/progscala3/introscala/UpperMain2.scala last Hello World!
LAST HELLO WORLD!

A Sample Application
Let’s finish this chapter by exploring several more seductive features of Scala using a
sample application. We’ll use a simplified hierarchy of geometric shapes, which we
will send to another object for drawing on a display. Imagine a scenario where a game
engine generates scenes. As the shapes in the scene are completed, they are sent to a
display subsystem for drawing.

To begin, we define a Shape class hierarchy:

// src/main/scala/progscala3/introscala/shapes/Shapes.scala
package progscala3.introscala.shapes

case class Point(x: Double = 0.0, y: Double = 0.0)

abstract class Shape():
 /**
 * Draw the shape.
 * @param f is a function to which the shape will pass a
 * string version of itself to be rendered.
 */
 def draw(f: String => Unit): Unit = f(s"draw: $this")

case class Circle(center: Point, radius: Double) extends Shape

case class Rectangle(lowerLeft: Point, height: Double, width: Double)
 extends Shape

case class Triangle(point1: Point, point2: Point, point3: Point)
 extends Shape

Declare a class for two-dimensional points. No members are defined, so we omit
the colon (:) at the end of the class signature.

Declare an abstract class for geometric shapes. It needs a colon because it defines
a method draw.

Implement a draw method for rendering the shapes. The comment uses the Sca‐
ladoc conventions for documenting the method, which are similar to Javadoc
conventions.

20 | Chapter 1: Zero to Sixty: Introducing Scala

A circle with a center and radius, which subtypes (extends) Shape.

A rectangle with a lower-left point, height, and width. To keep it simple, the sides
are parallel to the horizontal and vertical axes.

A triangle defined by three points.

Let’s unpack what’s going on.

The parameter list after the Point class name is the list of constructor parameters. In
Scala, the whole body of a class or object is the constructor, so you list the parame‐
ters for the constructor after the class name and before the class body.

The case keyword before the class declaration causes special handling. First, each
constructor parameter is automatically converted to a read-only (immutable) field for
Point instances. In other words, it’s as if we put val before each field declaration.
When you instantiate a Point instance named point, you can read the fields using
point.x and point.y, but you can’t change their values. Attempting to write point.y
= 3.0 causes a compilation error.

You can also provide default values for constructor and method parameters. The =
0.0 after each parameter definition specifies 0.0 as the default. Hence, the user
doesn’t have to provide them explicitly, but they are inferred left to right. This implies
that when you define a default value for one parameter, you must also do this for all
parameters to its right.

Finally, case-class instances are constructed without using new, such as val p =
Point(…). Scala 3 adds the ability to omit new when constructing instances for most
noncase classes too. We used new Upper1() previously, but omitting new would also
work. We’ll do that from now on, but there are situations we’ll see where new is still
necessary.

Let’s use sbt console to play with these types. I recommend you do this with most of
the book’s examples. Recall that scala> is the scala REPL prompt. When you see a
line starting with // src/script/, it’s not part of the session, but it shows you where
you can find this code in the examples distribution.

$ sbt
> console
...
// src/script/scala/progscala3/introscala/TryShapes.scala

scala> import progscala3.introscala.shapes.*

scala> val p00 = Point()
val p00: progscala3.introscala.shapes.Point = Point(0.0,0.0)

A Sample Application | 21

scala> val p20 = Point(2.0)
val p20: progscala3.introscala.shapes.Point = Point(2.0,0.0)

scala> val p20b = Point(2.0)
val p20b: progscala3.introscala.shapes.Point = Point(2.0,0.0)

scala> val p02 = Point(y = 2.0)
val p02: progscala3.introscala.shapes.Point = Point(0.0,2.0)

scala> p20 == p20b
val res0: Boolean = true

scala> p20 == p02
val res1: Boolean = false

Like many other languages, import statements use the * character as a wildcard to
import everything in the progscala3.introscala.shapes package. This is a change
from Scala 2, where _ was used as the wildcard. However, it is still allowed for back‐
ward compatibility, until a future release of Scala 3. Recall that we also saw _ used in
function literals as an anonymous placeholder for a parameter, instead of using an
explicit name.

In the definition of p00, no arguments are specified, so Scala uses 0.0 for both of
them. (However, you must provide the empty parentheses.) When one argument is
specified, Scala applies it to the leftmost argument, x, and uses the default value for
the remaining argument, as shown for p20 and p20b. We can even specify the argu‐
ments by name. The definition of p02 uses the default value for x but specifies the
value for y, using Point(y = 2.0).

I use named arguments like this a lot, even when it isn’t required,
because Point(x = 0.0, y = 2.0) makes my code much easier to
read and understand.

While there is no class body for Point, another feature of the case keyword is that the
compiler automatically generates several methods for us, including commonly used
toString, equals, and hashCode methods. The output shown for each point—e.g.,
Point(2.0,0.0)—is the default toString output. The equals and hashCode methods
are difficult for most developers to implement correctly, so autogeneration of these
methods is a real benefit. However, you can provide your own definitions for any of
these methods, if you prefer.

When we asked if p20 == p20b and p20 == p02, Scala invoked the generated equals
method, which compares the instances for equality by comparing the fields. (In some

22 | Chapter 1: Zero to Sixty: Introducing Scala

6 The name apply originated from early theoretical work on computation, specifically the idea of function
application.

languages, == just compares references. Do p20 and p20b point to the same spot in
memory?)

The last feature of case classes that we’ll mention now is that the compiler also gener‐
ates a companion object, a singleton object of the same name, for each case class. In
other words, we declared the class Point, and the compiler also created an object
Point.

You can define companions yourself. Any time an object and a
class have the same name and they are defined in the same file,
they are companions.

The compiler also adds several methods to the companion object automatically, one
of which is named apply. It takes the same parameter list as the constructor. When I
said earlier that it is unnecessary to use new to create instances of case classes like
Point, this works because the companion method Point.apply(…) gets called.

This is true for any instance, either a declared object or an instance of a class, not
just for case-class companion objects. If you put an argument list after it, Scala looks
for a corresponding apply method to call. Therefore, the following two lines are
equivalent:

val p1 = Point.apply(1.0, 2.0) // Point is the companion object here!
val p2 = Point(1.0, 2.0) // Same!

It’s a compilation error if no apply method exists for the instance, or the provided
argument list is incompatible with what apply expects.6

The Point.apply method is effectively a factory for constructing Points. The behav‐
ior is simple here; it’s just like calling the Point class constructor. The companion
object generated is equivalent to this:

object Point:
 def apply(x: Double = 0.0, y: Double = 0.0) = new Point(x, y)
 ...

Here’s our first example where new is still needed. Without it, the compiler would
think we are calling Point.apply again on the righthand side, creating an infinite
recursion!

A Sample Application | 23

You can add methods to the companion object, including overloaded apply methods.
Just declare object Point: explicitly and add the methods. The default apply
method will still be generated, unless you define it explicitly yourself.

A more sophisticated apply method might instantiate a different subtype with speci‐
alized behavior, depending on the argument supplied. For example, a data structure
might have an implementation that is optimal for a small number of elements and a
different implementation that is optimal for a larger number of elements. The apply
method can hide this logic, giving the user a single, simplified interface. Hence,
putting an apply method on a companion object is a common idiom for defining a
factory method for a class hierarchy, whether or not case classes are involved.

We can also define an instance apply method in any class. It has whatever meaning
we decide is appropriate for instances. For example, Seq.apply(index: Int)

retrieves the element at position index, counting from zero.

To recap, when an argument list is put after an object or class
instance, Scala looks for an apply method to call where the param‐
eter list matches the provided arguments. Hence, anything with an
apply method behaves like a function—e.g., Point(2.0, 3.0).
A companion object apply method is a factory method for the
companion class instances. A class apply method has whatever
meaning is appropriate for instances of the class; for example,
Seq.apply(index: Int) returns the item at position index.

Continuing with the example, Shape is an abstract class. We can’t instantiate an
abstract class, even if none of the members is abstract. Shape.draw is defined, but we
only want to instantiate concrete shapes: Circle, Rectangle, and Triangle.

The parameter f for draw is a function of type String => Unit. We saw Unit previ‐
ously. It is a real type, but it behaves roughly like void in other languages.

The idea is that callers of draw will pass a function that does the actual drawing when
given a string representation of the shape. For simplicity, we just use the string
returned by toString, but a structured format like JSON would make more sense in a
real application.

When a function returns Unit, it is totally side-effecting. There’s
nothing useful returned from the function, so it can only perform
side effects on some state, like performing input or output (I/O).

24 | Chapter 1: Zero to Sixty: Introducing Scala

Normally in FP, we prefer pure functions that have no side effects and return all their
work as their return value. These functions are far easier to reason about, test, com‐
pose, and reuse. Side effects are a common source of bugs, so they should be used
carefully.

Use side effects only when necessary and in well-defined places.
Keep the rest of the code pure.

Shape.draw is another example where a function is passed as an argument, just like
we might pass instances of Strings, Points, etc. We can also return functions from
methods and from other functions. Finally, we can assign functions to variables. This
means that functions are first class in Scala because they can be used just like strings
and other instances. This is a powerful tool for building composable yet flexible
software.

When a function accepts other functions as parameters or returns functions as val‐
ues, it is called a higher-order function (HOF).

You could say that draw defines a protocol that all shapes have to support, but users
can customize. It’s up to each shape to serialize its state to a string representation
through its toString method. The f method is called by draw, which constructs the
final string using an interpolated string.

An interpolated string starts with s before the opening double quote: s"draw:
${this.toString}". It builds the final string by substituting the result of the expres‐
sion this.toString into the larger string. Actually, we don’t need to call toString; it
will be called for us. So we can use just ${this}. However, now we’re just referring to
a variable, not a longer expression, so we can drop the curly braces and just write
$this. Hence, the interpolated string becomes s"draw: $this".

If you forget the s before the interpolated string, you’ll get the lit‐
eral output draw: $this, with no interpolation.

Continuing with the example, Circle, Rectangle, and Triangle are concrete sub‐
types (also called subclasses) of Shape. They have no class bodies because Shape and
the methods generated for case classes define all the methods we need, such as the
toString methods required by Shape.draw.

A Sample Application | 25

In our simple program, the f we will pass to draw will just write the string to the con‐
sole, but in a real application, f could parse the string and render the shape to a dis‐
play, write JSON to a web service, etc.

Even though this will be a single-threaded application, let’s anticipate what we might
do in a concurrent implementation by defining a set of possible Messages that can be
exchanged between modules:

// src/main/scala/progscala3/introscala/shapes/Messages.scala
package progscala3.introscala.shapes

sealed trait Message
case class Draw(shape: Shape) extends Message
case class Response(message: String) extends Message
case object Exit extends Message

Declare a trait called Message. A trait is similar to an abstract base class. (We’ll
explore the differences later.) All messages exchanged are subtypes of Message. I
explain the sealed keyword in a moment.

A message to draw the enclosed Shape.

A message with a response to a previous message received from a caller.

Signal termination. Exit has no state or behavior of its own, so it is declared a
case object, since we only need one instance of it. It functions as a signal to
trigger a state change, termination in this case.

The sealed keyword means that we can only define subtypes of Message in the same
file. This prevents bugs where users define their own Message subtypes that would
break the code we’re about to see in the next file! These are all the allowed messages,
known in advance.

Recall that Shape was not declared sealed earlier because we intend for people to cre‐
ate their own subtypes of it. There could be an infinite number of Shape subtypes, in
principle. So, use sealed hierarchies when all the possible variants are fixed.

Now that we have defined our shapes and messages types, let’s define an object for
processing messages:

// src/main/scala/progscala3/introscala/shapes/ProcessMessages.scala
package progscala3.introscala.shapes

object ProcessMessages:
 def apply(message: Message): Message =
 message match
 case Exit =>
 println(s"ProcessMessage: exiting...")

26 | Chapter 1: Zero to Sixty: Introducing Scala

 Exit
 case Draw(shape) =>
 shape.draw(str => println(s"ProcessMessage: $str"))
 Response(s"ProcessMessage: $shape drawn")
 case Response(unexpected) =>
 val response = Response(s"ERROR: Unexpected Response: $unexpected")
 println(s"ProcessMessage: $response")
 response

We only need one instance, so we use an object, but it would be easy enough to
make this a class and instantiate as many as we need for scalability and other
needs.

Define the apply method that takes a Message, processes it, then returns a new
Message.

Match on the incoming message to determine what to do with it.

The apply method introduces a powerful feature call: match expressions with pattern
matching:

message match
 case Exit =>
 expressions
 case Draw(shape) =>
 expressions
 case Response(unexpected) =>
 expressions

The whole message match:… is an expression, meaning it will return a value, a new
Message for us to return to the caller. A match expression consists only of case clau‐
ses, which do pattern matching on the message passed into the function, followed by
expressions to invoke for a match.

The match expressions work a lot like if/else expressions but are more powerful
and concise. When one of the patterns matches, the block of expressions after the
arrow (=>) is evaluated, up to the next case keyword or the end of the whole expres‐
sion. Matching is eager; the first match wins.

If the case clauses don’t cover all possible values that can be passed to the match
expression, a MatchError is thrown at runtime. Fortunately, the compiler can detect
and warn you that the case clauses are not exhaustive, meaning they don’t handle all
possible inputs. Note that our sealed hierarchy of messages is crucial here. If a user
could create a new subtype of Message, our match expression would no longer cover
all possibilities. Hence, a bug would be introduced in this code!

A powerful feature of pattern matching is the ability to extract data from the object
matched, sometimes called deconstruction (the inverse of construction). Here, when

A Sample Application | 27

https://oreil.ly/v89FW

the input message is a Draw, we extract the enclosed Shape and assign it to the vari‐
able shape. Similarly, if Response is detected, we extract the message as unexpected,
so named because ProcessMessages doesn’t expect to receive a Response!

Now let’s look at the expressions invoked for each case match:

def apply(message: Message): Message =
 message match
 case Exit =>
 println(s"ProcessMessage: exiting...")
 Exit
 case Draw(shape) =>
 shape.draw(str => println(s"ProcessMessage: $str"))
 Response(s"ProcessMessage: $shape drawn")
 case Response(unexpected) =>
 val response = Response(s"ERROR: Unexpected Response: $unexpected")
 println(s"ProcessMessage: $response")
 response

We’re done, so print a message that we’re exiting and return Exit to the caller.

Call draw on shape, passing it an anonymous function that knows what to do
with the string generated by draw. In this case, it just prints the string to the con‐
sole and sends a Response to the caller.

ProcessMessages doesn’t expect to receive a Response message from the caller,
so it treats it as an error. It returns a new Response to the caller.

One of the tenets of OOP is that you should never use if or match statements that
match on instance type because inheritance hierarchies evolve. When a new subtype
is introduced without also fixing these statements, they break. Instead, polymorphic
methods should be used. So, is the pattern-matching code just discussed an
antipattern?

Pattern Matching Versus Subtype Polymorphism
Pattern matching plays a central role in FP just as subtype polymorphism (i.e., overrid‐
ing methods in subtypes) plays a central role in OOP. The combination of functional-
style pattern matching with polymorphic dispatch, as used here, is a powerful
combination that is a benefit of a mixed paradigm language like Scala.

Our match expression only knows about Shape and draw. We don’t match on specific
subtypes of Shape. This means our code won’t break if a user adds a new Shape to the
hierarchy.

28 | Chapter 1: Zero to Sixty: Introducing Scala

In contrast, the case clauses match on specific subtypes of Message, but we protected
ourselves from unexpected change by making Message a sealed hierarchy. We know
by design all the possible Messages exchanged.

Hence, we have combined polymorphic dispatch from OOP with pattern matching, a
workhorse of FP. This is one way that Scala elegantly integrates these two program‐
ming paradigms!

Finally, here is the ProcessShapesDriver that runs the example:

// src/main/scala/progscala3/introscala/shapes/ProcessShapesDriver.scala
package progscala3.introscala.shapes

@main def ProcessShapesDriver =
 val messages = Seq(
 Draw(Circle(Point(0.0,0.0), 1.0)),
 Draw(Rectangle(Point(0.0,0.0), 2, 5)),
 Response(s"Say hello to pi: 3.14159"),
 Draw(Triangle(Point(0.0,0.0), Point(2.0,0.0), Point(1.0,2.0))),
 Exit)

 messages.foreach { message =>
 val response = ProcessMessages(message)
 println(response)
 }

An entry point for the application. It takes no arguments, and if you provide
arguments when you run this application, they will be ignored.

A sequence of messages to send, including a Response in the middle that will be
considered an error in ProcessMessages. The sequence ends with Exit.

Iterate through the sequence of messages, call ProcessMessages.apply() with
each one, then print the response.

Let’s try it. Some output elided:

> runMain progscala3.introscala.shapes.ProcessShapesDriver
[info] running progscala3.introscala.shapes.ProcessShapesDriver
ProcessMessage: draw: Circle(Point(0.0,0.0),1.0)
Response(ProcessMessage: Circle(Point(0.0,0.0),1.0) drawn)
ProcessMessage: draw: Rectangle(Point(0.0,0.0),2.0,5.0)
Response(ProcessMessage: Rectangle(Point(0.0,0.0),2.0,5.0) drawn)
ProcessMessage: Response(ERROR: Unexpected Response: Say hello to pi: 3.14159)
Response(ERROR: Unexpected Response: Say hello to pi: 3.14159)
ProcessMessage: draw: Triangle(Point(0.0,0.0),Point(2.0,0.0),Point(1.0,2.0))
Response(ProcessMessage: Triangle(Point(0.0,0.0), ...) drawn)
ProcessMessage: exiting...
Exit
[success] ...

A Sample Application | 29

Make sure you understand how each message was processed and where each line of
output came from.

Recap and What’s Next
We introduced many of the powerful and concise features of Scala. As you explore
Scala, you will find other useful resources. You will find links for libraries, tutorials,
and various papers that describe features of the language.

Next we’ll continue our introduction to Scala features, emphasizing the various con‐
cise and efficient ways of getting lots of work done.

30 | Chapter 1: Zero to Sixty: Introducing Scala

https://scala-lang.org

CHAPTER 2

Type Less, Do More

This chapter continues our tour of Scala features that promote succinct, flexible code.
We’ll discuss organization of files and packages, importing other types, variable and
method declarations, a few particularly useful types, and miscellaneous syntax
conventions.

New Scala 3 Syntax—Optional Braces
If you have prior Scala experience, Scala 3 introduces a new optional braces syntax
that makes it look a lot more like Python or Haskell, where curly braces, {…}, are
replaced with significant indentation. The examples in the previous chapter and
throughout the book use it.

This syntax is more concise and easier to read. It will also appeal to Python develop‐
ers who learn Scala because it will feel a little more familiar to them (and vice versa).
When data scientists who use Python and data engineers who use Scala work
together, this can help them collaborate. Also, since many new programmers learn
Python as a first language, learning Scala will be that much easier.

There is also a new syntax for control structures like for loops and if expressions.
For example, there is if condition then… instead of the older if (condition)….
Also, there is for…do println(…) instead of for {…} println(…).

The disadvantage of these changes is that they are strictly not necessary. Some break‐
ing changes in Scala 3 are necessary to move the language forward, but you could
argue these syntax changes aren’t essential. You also have to be careful to use spaces or
tabs consistently for indentation. I will mention other pros and cons as we explore
examples.

31

By default, you can mix the old and new syntax conventions. If you omit braces, then
indentation is significant. If you want to require use of braces and ignore indentation,
perhaps for consistency with an existing Scala 2 code base, use the -no-indent com‐
piler flag.

If you want to enforce parentheses around conditionals, as in Scala 2, use the flag
-old-syntax. If you want allow optional parentheses for conditionals and require the
new keywords then and do, use -new-syntax.

Finally, the compiler can rewrite your code to use whichever style you prefer. Add the
-rewrite compiler flag; for example, use -rewrite -new-syntax -indent.

These syntax conventions have been controversial among Scala veterans. I opposed
them at first, but now that I have worked with them, I believe the advantages out‐
weigh the disadvantages. I enjoy writing code this way. It makes my code look cleaner,
for a language that is already concise. Hence, I chose to use the new conventions
throughout this edition of the book.

Table A-1 provides examples of the old versus new syntax.

I’ll finish with one feature of the new syntax that you won’t use very often. When you
have a long method, type, conditional, match expression, etc., it might be hard to see
where it ends and subsequent definitions begin. You can add an optional end… at the
same indentation level as the opening tokens. Here are some examples, although they
are too small to need the end markers:

class Foo:
 def uppify(s: String): String =
 s.toUpperCase
 end uppify // Optional. Note the name of the method is used.
end Foo // Optional. The name of the type is used.

val i = 1
if i > 0 then
 println(sequence)
end if // Optional

while i < 10 do
 i += 1
end while // Optional

for j <- 0 to 10 do // Loop from 0 to 10, assign each one to "j".
 println(j)
end for // Optional

32 | Chapter 2: Type Less, Do More

1 The code examples file src/script/scala/progscala3/IndentationSyntax.scala has examples for all cases.

The end keyword is followed by the corresponding identifier or one of the following
keywords: if, while, for, match, try, new, this, val, given, or extension.1

Semicolons
Semicolons are expression delimiters and they are inferred. Scala treats the end of a
line as the end of an expression, except when it can infer that the expression contin‐
ues to the next line, such as in the following example that builds up a string:

val str = Seq("STILL", "MORE", "HELLO", "WORLD")
 .map(_.toLowerCase)
 .mkString("[", ", ", "]")

Conversely, you can put multiple expressions on the same line, separated by
semicolons.

Variable Declarations
Scala allows you to decide whether a variable is immutable (read-only) or not (read-
write) when you declare it. We’ve already seen that an immutable “variable” is
declared with the keyword val:

val seq: Seq[String] = Seq("This", "is", "Scala")
val array: Array[String] = Array("This", "is", "Scala")

In Scala, most variables are actually references to heap-allocated objects. Neither seq
nor array can be changed to refer to different objects. Also, the elements of seq can‐
not be modified, as Seq is immutable. However, Arrays are not immutable, so you can
modify the the array elements themselves:

scala> val array: Array[String] = Array("This", "is", "Scala")
val array: Array[String] = Array(This, is, Scala)

scala> array = Array("Bad!")
1 |array = Array("Bad!")
 |^^^^^^^^^^^^^^^^^^^^^
 |Reassignment to val array

scala> array(1) = "still is"

scala> array
val res1: Array[String] = Array(This, still is, Scala)

Semicolons | 33

Avoid using mutable types like Array, as mutation is a common
source of bugs in concurrent programs.

A val must be initialized when it is declared, except in certain contexts like abstract
fields in type declarations.

Similarly, a mutable variable is declared with the keyword var, and it must also be
initialized immediately (in most cases), even though it can be changed later:

scala> var seq2: Seq[String] = Seq("This", "is", "Scala")
var seq2: Seq[String] = List(This, is, Scala)

scala> seq2 = Seq("No", "longer", "Scala")
seq2: Seq[String] = List(No, longer, Scala)

We changed seq2 to refer to a different Seq object in memory, but both Seq objects
are still immutable and cannot be changed.

For performance reasons, some languages treat so-called primitive values differently
than reference objects. In Java for example, char, byte, short, int, long, float,
double, and boolean values are not heap-allocated, with a pointer to the location in
memory. Instead, they are in-place, such as inside the allocated memory for an
enclosing instance or part of method call stack frames. Indeed, there are no objects or
references for them, just the raw values.

However, Scala tries to be consistently object-oriented, so these types are actually
objects with methods in source code, just like reference types (see “Reference Versus
Value Types” on page 252). However, the code generated by the compiler uses under‐
lying primitives when possible, giving you the performance benefit they provide
without sacrificing the convenience of object orientation.

Consider the following REPL session, where we define a Human class with an immuta‐
ble name, but a mutable age (because people age, I guess). The parameters are
declared with val and var, respectively, making them both fields in Human:

// src/script/scala/progscala3/typelessdomore/Human.scala
scala> class Human(val name: String, var age: Int)
// defined class Human

scala> val p = Human("Dean Wampler", 29)
val p: Human = Human@165a128d

scala> p.name
val res0: String = Dean Wampler

scala> p.name = "Buck Trends"
1 |p.name = "Buck Trends"

34 | Chapter 2: Type Less, Do More

 |^^^^^^^^^^^^^^
 |Reassignment to val name

scala> p.name
val res1: String = Dean Wampler

scala> p.age
val res2: Int = 29

scala> p.age = 30

scala> p.age = 30; p.age // Use semicolon to join two expressions...
val res3: Int = 30

scala> p.age = 31; p.age
val res4: Int = 31

Recall that var and val only specify whether the reference can be
changed to refer to a different instance (var) or not (val). They
don’t specify whether or not the instance they reference is mutable.

Use immutable values whenever possible to eliminate a class of bugs caused by muta‐
bility. For example, a mutable instance is dangerous as a key in hash-based maps. If
the instance is mutated, the output of the hashCode method will change, so the corre‐
sponding value won’t be found at the original location.

More common is unexpected behavior when an instance you are using is being
changed by another thread. Borrowing a phrase from quantum physics, these bugs
are spooky action at a distance. Nothing you are doing locally accounts for the unex‐
pected behavior; it’s coming from somewhere else.

These are the most pernicious bugs in multithreaded programs, where synchronized
access to a shared, mutable state is required, but difficult to get right. Using immuta‐
ble values eliminates these issues.

Ranges
Sometimes we need a sequence of numbers from some start to finish. A Range is just
what we need. You can create ranges for several types: Int, Long, Char, BigInt, which
represent integers of arbitrary size, and BigDecimal, which represents floating-point
numbers of arbitrary size.

Float and Double ranges are not supported because truncation and rounding in
floating-point arithmetic makes range calculations error prone.

Ranges | 35

https://oreil.ly/V2WlZ
https://oreil.ly/jv0vj
https://oreil.ly/riMdB

You can create ranges with an inclusive or exclusive upper bound, and you can spec‐
ify an interval not equal to one (some output elided to fit):

scala> 1 to 10 // Int range inclusive, interval of 1, (1 to 10)
val res0: scala.collection.immutable.Range.Inclusive = Range 1 to 10

scala> 1 until 10 // Int range exclusive, interval of 1, (1 to 9)
val res1: Range = Range 1 until 10

scala> 1 to 10 by 3 // Int range inclusive, every third.
val res2: Range = inexact Range 1 to 10 by 3

scala> (1 to 10 by 3).foreach(println) // To see the value.
1
4
7
10

scala> 10 to 1 by -3 // Int range inclusive, every third, counting down.
val res3: Range = Range 10 to 1 by -3

scala> 1L to 10L by 3 // Long
val res4: ...immutable.NumericRange[Long] = NumericRange 1 to 10 by 3

scala> ('a' to 'g' by 3).foreach(println)
a
d
g

Try creating examples for BigInt and BigDecimal.

Partial Functions
A PartialFunction[A,B] is a special kind of function with its own literal syntax. A is
the type of the single parameter the function accepts and B is the return type.

The literal syntax for a PartialFunction consists of only case clauses, which we saw
in “A Sample Application” on page 20, that do pattern matching on the input to the
function. No function parameter is shown explicitly, but when each input is pro‐
cessed, it is passed to the body of the partial function.

For comparison, here is a regular function, func, that does pattern matching, and a
similar partial function, pfunc. Both are adapted from the example we explored in “A
Sample Application” on page 20, and I’ve elided a few details to fit the space:

// src/script/scala/progscala3/typelessdomore/FunctionVsPartialFunction.scala
scala> import progscala3.introscala.shapes.*

scala> val func: Message => String = message => message match
 | case Exit => "Got Exit"
 | case Draw(shape) => s"Got Draw($shape)"

36 | Chapter 2: Type Less, Do More

https://oreil.ly/Zl4HH

 | case Response(str) => s"Got Response($str)"
val func: progscala3.introscala.shapes.Message => String = Lambda$8843/0x...

scala> val pfunc: PartialFunction[Message, String] =
 | case Exit => "Got Exit"
 | case Draw(shape) => s"Got Draw($shape)"
 | case Response(str) => s"Got Response($str)"
val pfunc: PartialFunction[...shapes.Message, String] = <function1>

scala> func(Draw(Circle(Point(0.0,0.0), 1.0)))
 | pfunc(Draw(Circle(Point(0.0,0.0), 1.0)))
 | func(Response(s"Say hello to pi: 3.14159"))
 | pfunc(Response(s"Say hello to pi: 3.14159"))
val res0: String = Got Draw(Circle(Point(0.0,0.0),1.0))
val res1: String = Got Draw(Circle(Point(0.0,0.0),1.0))
val res2: String = Got Response(Say hello to pi: 3.14159)
val res3: String = Got Response(Say hello to pi: 3.14159)

I won’t always show the output printed by the REPL for definitions like func and
pfunc, but it’s useful to see the differences here.

Function definitions can be a little harder to read than method definition. The func‐
tion func is a named function of type Message => String. The equal sign starts the
body, message => message match…

The partial function, pfunc, is simpler. Its type is PartialFunction[Message,
String]. There is no argument list, just a set of case match clauses, which happen to
be identical to the clauses in func.

The concept of a partial function may sound fancy, but it is quite simple. A partial
function will handle only some of the possible inputs, not all possible inputs. So don’t
send it something it doesn’t know how to handle. A classic example from mathemat‐
ics is division, x/y, which is undefined when the denominator y is 0. Hence, division
is a partial function.

If a partial function is called with an input that doesn’t match one of the case clauses,
a MatchError is thrown at runtime. Both func and pfunc are actually total because
they handle all possible Message arguments. Try commenting out the case Exit
clauses in both func and pfunc. You’ll get a compiler warning for func because the
compiler can determine that the match clauses don’t handle all possible inputs. It
won’t complain about pfunc because partial matching is by design.

You can test if a PartialFunction will match an input using the isDefinedAt
method. This function avoids the risk of throwing a MatchError exception.

You can also chain PartialFunctions together: pf1.orElse(pf2).orElse(pf3)…. If
pf1 doesn’t match, then pf2 is tried, then pf3, etc. A MatchError is only thrown if
none of them matches.

Partial Functions | 37

https://oreil.ly/v89FW

Let’s explore these points with the following example:

// src/script/scala/progscala3/typelessdomore/PartialFunctions.scala

val pfs: PartialFunction[Matchable,String] =
 case s:String => "YES"
val pfd: PartialFunction[Matchable,String] =
 case d:Double => "YES"

val pfsd = pfs.orElse(pfd)

A partial function that only matches on strings.

A partial function that only matches on doubles.

Combine the two functions to construct a new partial function that matches on
strings and doubles.

Let’s try these functions. A helper function tryPF is used to try the partial function
and catch possible MatchError exceptions. So a string is returned for both success
and failure:

def tryPF(
 x: Matchable, f: PartialFunction[Matchable,String]): String =
 try f(x)
 catch case _: MatchError => "ERROR!"

assert(tryPF("str", pfs) == "YES")
assert(tryPF("str", pfd) == "ERROR!")
assert(tryPF("str", pfsd) == "YES")
assert(tryPF(3.142, pfs) == "ERROR!")
assert(tryPF(3.142, pfd) == "YES")
assert(tryPF(3.142, pfsd) == "YES")
assert(tryPF(2, pfs) == "ERROR!")
assert(tryPF(2, pfd) == "ERROR!")
assert(tryPF(2, pfsd) == "ERROR!")

assert(pfs.isDefinedAt("str") == true)
assert(pfd.isDefinedAt("str") == false)
assert(pfsd.isDefinedAt("str") == true)
assert(pfs.isDefinedAt(3.142) == false)
assert(pfd.isDefinedAt(3.142) == true)
assert(pfsd.isDefinedAt(3.142) == true)
assert(pfs.isDefinedAt(2) == false)
assert(pfd.isDefinedAt(2) == false)
assert(pfsd.isDefinedAt(2) == false)

Note that integers are not handled by any combination.

Finally, we can lift a partial function into a regular (total) function that returns an
Option or a Some(value) when the partial function is defined for the input argument

38 | Chapter 2: Type Less, Do More

https://oreil.ly/fxLMC

or None when it isn’t. This is a type-safe alternative to returning a value or null,
respectively. We can also unlift a single-parameter function. Here is a REPL session to
see them in action:

scala> val fs = pfs.lift
val fs: Any => Option[String] = <function1>

scala> fs("str")
val res0: Option[String] = Some(YES)

scala> fs(3.142)
val res1: Option[String] = None

scala> val pfs2 = fs.unlift
val pfs2: PartialFunction[Any, String] = <function1>

scala> pfs2("str")
val res3: String = YES

scala> tryPF(3.142, pfs2) // Use tryPF we defined above
val res4: String = ERROR!

Method Declarations
Let’s explore method definitions, using a modified version of our Shapes hierarchy
from before.

Method Default and Named Parameters
Here is an updated Point case class:

// src/main/scala/progscala3/typelessdomore/shapes/Shapes.scala
package progscala3.typelessdomore.shapes

case class Point(x: Double = 0.0, y: Double = 0.0):
 def shift(deltax: Double = 0.0, deltay: Double = 0.0) =
 copy(x + deltax, y + deltay)

Define Point with default initialization values (as before). For case classes, both x
and y are automatically immutable (val) fields.

A new shift method for creating a new Point instance, offset from the existing
Point.

A copy method is also created automatically for case classes. It allows you to con‐
struct new instances of a case class while specifying just the fields that are changing.
This is very handy for case classes with a lot of fields:

Method Declarations | 39

scala> val p1 = Point(x = 3.3, y = 4.4) // Used named arguments.
val p1: Point = Point(3.3,4.4)

scala> val p2 = p1.copy(y = 6.6) // Copied with a new y value.
val p2: Point = Point(3.3,6.6)

Named arguments make client code more readable. They also help avoid bugs when a
parameter list has several fields of the same type or it has a lot of parameters. It’s easy
to pass values in the wrong order. Of course, it’s better to avoid such parameter lists in
the first place.

Methods with Multiple Parameter Lists
Next, consider the following changes to Shape.draw():

abstract class Shape():
 def draw(offset: Point = Point(0.0, 0.0))(f: String => Unit): Unit =
 f(s"draw: offset = $offset, shape = ${this}")

Circle, Rectangle, and Triangle are unchanged and not shown.

Now draw has two parameter lists, each of which has a single parameter, rather than a
single parameter list with two parameters. The first parameter list lets you specify an
offset point where the shape will be drawn. It has a default value of Point(0.0, 0.0),
meaning no offset. The second parameter list is the same as in the original version of
draw, a function that does the drawing.

You can have as many parameter lists as you want, but it’s rare to use more than two.

So why allow more than one parameter list? Multiple lists promote a very nice block-
structure syntax when the last parameter list takes a single function. Here’s how we
might invoke this new draw method to draw a Circle at an offset:

val s = Circle(Point(0.0, 0.0), 1.0)
s.draw(Point(1.0, 2.0))(str => println(str))

Scala lets us replace parentheses with curly braces around a supplied argument (like a
function literal) for a parameter list that has a single parameter. So this line can also
be written this way:

s.draw(Point(1.0, 2.0)){str => println(str)}

Suppose the function literal is too long for one line or it has multiple expressions. We
can rewrite it this way:

s.draw(Point(1.0, 2.0)) { str =>
 println(str)
}

Or equivalently:

40 | Chapter 2: Type Less, Do More

s.draw(Point(1.0, 2.0)) {
 str => println(str)
}

If you use the traditional curly brace syntax for Scala, it looks like a typical block of
code we use with constructs like if and for expressions, method bodies, etc. How‐
ever, the {…} block is still a function literal we are passing to draw.

So this syntactic sugar of using {…} instead of (…) looks better with longer function
literals; they look more like the block structure syntax we know.

By default, the new optional braces syntax doesn’t work here:

scala> s.draw(Point(1.0, 2.0)):
 | str => println(str)
2 | str => println(str)
 | ^
 | parentheses are required around the parameter of a lambda
 | This construct can be rewritten automatically under -rewrite.
1 |s.draw(Point(1.0, 2.0)):
 |^
 |not a legal formal parameter
2 | str => println(str)

However, there is a compiler flag, -language:experimental.fewerBraces, that ena‐
bles this capability, but it is experimental because this feature is not fully mature, at
least in Scala 3.0.

Back to using parentheses or braces, if we use the default value for offset, the first set
of parentheses is still required. Otherwise, the function would be parsed as the off
set, triggering an error.

s.draw() {
 str => println(str)
}

To be clear, draw could just have a single parameter list with two values. If so, the cli‐
ent code would look like this:

s.draw(Point(1.0, 2.0), str => println(str))

It works, but it’s not as elegant. It would also be less convenient for using the default
value for the offset.

By the way, we can can simplify our expressions even more: str => println(str) is
an anonymous function that takes a single string argument and passes it to println.
Although println is implemented as a method in the Scala library, it can also be used
as a function that takes a single string argument! Hence, the following two lines
behave the same:

s.draw(Point(1.0, 2.0))(str => println(str))
s.draw(Point(1.0, 2.0))(println)

Method Declarations | 41

To be clear, these are not identical, but they do the same thing. In the first example,
we pass an anonymous function that calls println. In the second example, we use
println as a named function directly. Scala handles converting methods to functions
in situations like this.

Another advantage of allowing two or more parameter lists is that we can use one or
more lists for normal parameters and other lists for using clauses (formerly known as
implicit parameter lists). These are parameter lists declared with the using keyword.
When the methods are called, we can either explicitly specify arguments for these
parameters or we can let the compiler fill them in using suitable values that are in
scope. Using clauses provides a more flexible alternative to parameters with default
values. Let’s explore an example from the Scala library that uses this mechanism,
Futures.

A Taste of Futures
Our application in “A Sample Application” on page 20 was designed for concurrent
execution, drawing the shapes while computing more of them concurrently. However,
we made it synchronous for simplicity. Let’s look at one tool we could use for concur‐
rency, scala.concurrent.Future. A Future allows us to encapsulate some work to
do, start it running in parallel, then continue with other work. We process the
Future’s results when they are done. One way to process the results is to provide a
callback that will be invoked when the result is ready. We’ll defer discussion of the rest
of the API, as well as other ways of writing concurrent programs, until Chapter 19.

The following example fires off five work items concurrently and handles the results
as they finish:

// src/script/scala/progscala3/typelessdomore/Futures.scala
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Failure, Success}

def sleep(millis: Long) = Thread.sleep(millis)

(1 to 5).foreach { i =>
 val future = Future {
 val duration = (math.random * 1000).toLong
 sleep(duration)
 if i == 3 then throw RuntimeException(s"$i -> $duration")
 duration
 }
 future.onComplete {
 case Success(result) => println(s"Success! #$i -> $result")
 case Failure(throwable) => println(s"FAILURE! #$i -> $throwable")
 }
}

42 | Chapter 2: Type Less, Do More

https://oreil.ly/eCa1m

sleep(1000) // Wait long enough for the "work" to finish.
println("Finished!")

We’ll discuss this import later in this section.

A sleep method to simulate staying busy for an amount of time.

Pass a block of work to the scala.concurrent.Future.apply method. It calls
sleep with a duration, a randomly generated number of milliseconds between 0
and 1,000, which it will also return. However, if i equals 3, we throw an excep‐
tion to observe how failures are handled.

Use onComplete to assign a partial function to handle the computation result.
Notice that the expected output is either scala.util.Success wrapping a value
or scala.util.Failure wrapping an exception.

Success and Failure are subtypes of scala.util.Try, which encapsulates try {…}

catch {…} clauses with less boilerplate. We can handle successful code and possible
exceptions more uniformly. We’ll explore these classes further in “Try: When There Is
No Do” on page 239.

When we iterate through a Range of integers from 1 to 5, inclusive, we construct a
Future with a block of work to do. Future.apply returns a new Future instance
immediately. The body is executed asynchronously on another thread. The
onComplete callback we register will be invoked when the body completes.

A final sleep call waits before exiting to allow the futures to finish.

A sample run in the REPL might go like this, where the order of the results and the
numbers on the righthand side are nondeterministic:

Success! #2 -> 178
Success! #1 -> 207
FAILURE! #3 -> java.lang.RuntimeException: 3 -> 617
Success! #5 -> 738
Success! #4 -> 938
Finished!

You might wonder about the body of work we’re passing to Future.apply. Is it a
function or something else? Here is part of the declaration of Future.apply:

apply[T](body: => T)(/* explained below */): Future[T]

Note how the type of body is declared, => T. This is called a by-name parameter. We
are passing something that will return a T instance, but we want to evaluate body
lazily. Go back to the example body we passed to Future.apply. We did not want that
code evaluated before it was passed to Future.apply. We wanted it evaluated inside
the Future after construction. This is what by-name parameters do for us. We can

Method Declarations | 43

https://oreil.ly/vEGCM
https://oreil.ly/f0dOn
https://oreil.ly/f9GnM
https://oreil.ly/gDTqf
https://oreil.ly/V2WlZ

2 If you’re new to Scala, this duplication is confusing, but we’ll justify these changes starting in Chapter 5.

pass a block of code that will be evaluated only when needed, similar to passing a
function. The implementation of Future.apply evaluates this code.

OK, let’s finally get back to using clauses. Recall the second import statement:

import scala.concurrent.ExecutionContext.Implicits.global

Future methods use an ExecutionContext to run code in separate threads, providing
concurrency. This is a hook you could use to insert your own implementation, if
needed. Most Future methods take an ExecutionContext argument. Here’s the com‐
plete Future.apply declaration (using Scala 3 syntax, although the library is com‐
piled with Scala 2):

apply[T](body: => T)(using executor: ExecutionContext): Future[T]

In the actual Scala 2 library, the implicit keyword is used instead of using. The sec‐
ond parameter list is called a using clause in Scala 3. It was an implicit parameter list in
Scala 2.2

Because this parameter is in its own parameter list starting with using (or implicit),
users of Future.apply don’t have to pass a value explicitly. This reduces code boiler‐
plate. We imported the default ExecutionContext value, which is declared as given
(or implicit in Scala 2). A value declared with the given/implicit keyword means
it can be used automatically by the compiler for using/implicit parameters. In this
case, the given ExecutionContext.global uses a thread pool with a work-stealing
algorithm to balance the load and optimize performance.

We can tailor how threads are used by passing our own ExecutionContext explicitly:

Future(work)(using someCustomExecutionContext)

Alternatively, we can declare our own given value that will be used implicitly when
Future.apply is called:

given myEC = MyCustomExecutionContext(arguments)
...
val future = Future(work)

Our given value will take precedence over ExecutionContext.global.

The Future.onComplete method we used also has the same using clause:

abstract def onComplete[U](
 f: (Try[T]) => U)(using executor: ExecutionContext): Unit

So when ExecutionContext.global is imported into the current scope, the compiler
will use it when methods are called that have a using clause with an ExecutionCon

44 | Chapter 2: Type Less, Do More

https://oreil.ly/Wx8Xz
https://oreil.ly/vEGCM
https://oreil.ly/eCa1m

text parameter, unless we specify a value explicitly. For this to work, only given
instances that are type compatible with the parameter will be considered.

If this idea of using clauses, implicits, etc., was a little hard to grasp, know that we’ll
return to it in Chapter 5. We’ll work through the details along with examples of the
design problems they help us solve.

Nesting Method Definitions and Recursion
Method definitions can also be nested. This is useful when you want to refactor a
lengthy method body into smaller methods, but the helper methods aren’t needed
outside the original method. Nesting them inside the original method means they are
invisible to the rest of the code base, including other methods in the enclosing type.

Here is an example for a factorial calculator:

// src/script/scala/progscala3/typelessdomore/Factorial.scala

def factorial(i: Int): BigInt =
 def fact(i: Int, accumulator: BigInt): BigInt =
 if i <= 1 then accumulator
 else fact(i - 1, i * accumulator)

 fact(i, BigInt(1))

(0 to 5).foreach(i => println(s"$i: ${factorial(i)}"))

The last line prints the following:

0: 1
1: 1
2: 2
3: 6
4: 24
5: 120

The fact method calls itself recursively, passing an accumulator parameter, where
the result of the calculation is accumulated. Note that we return the accumulated
value when the counter i reaches 1. (We’re ignoring negative integer arguments,
which would be invalid. The function just returns 1 for i <= 1.) After the definition
of the nested method, factorial calls it with the passed-in value i and the initial
accumulator seed value of 1.

Notice that we use i as a parameter name twice, first in the factorial method and
again in the nested fact method. The use of i as a parameter name for fact shadows
the outer use of i as a parameter name for factorial. This is fine because we don’t
need the outer value of i inside fact. We only use it the first time we call fact, at the
end of factorial.

Method Declarations | 45

Like a local variable declaration in a method, a nested method is also only visible
inside the enclosing method.

Look at the return types for the two functions. I used scala.math.BigInt because
factorials grow in size quickly. We don’t need the return type declaration on
factorial because it will be inferred from the return type of fact.

However, we must declare the return type for fact. Scala provides local type inference,
meaning local to some scope, as opposed to global. This is sufficient to infer method
return types in most cases, but not when they are recursive.

You might be a little nervous about a recursive function. Aren’t we at risk of blowing
up the stack? The JVM and some other runtime environments don’t do tail-call opti‐
mizations, which would convert a tail recursive function into a loop. This would pre‐
vent stack overflow and also make execution faster by eliminating the overhead of
function invocations.

The term tail recursive means that the recursive call is the last thing done in an
expression. If we make the recursive call, then add something to the result, for exam‐
ple, that would not be a tail call. This doesn’t mean that a recursion that is not a tail
call is disallowed, just that we can’t optimize it into a loop.

Recursion is a hallmark of FP and a powerful tool for writing elegant implementa‐
tions of many algorithms. Hence, the Scala compiler does limited tail-call optimiza‐
tions itself. It will handle functions that call themselves, but not mutual recursion (i.e.,
“a calls b calls a calls b,” etc.).

Still, you might want to know if you got it right and the compiler did in fact perform
the optimization. No one wants a blown stack in production. Fortunately, the com‐
piler can tell you if you got it wrong if you add an annotation, tailrec, as shown in
this refined version of factorial:

46 | Chapter 2: Type Less, Do More

https://oreil.ly/jv0vj
https://oreil.ly/bQkNN

// src/script/scala/progscala3/typelessdomore/FactorialTailrec.scala
import scala.annotation.tailrec

def factorial(i: Int): BigInt =
 @tailrec
 def fact(i: Int, accumulator: BigInt): BigInt =
 if i <= 1 then accumulator
 else fact(i - 1, i * accumulator)

 fact(i, BigInt(1))

(0 to 5).foreach(i => println(s"$i: ${factorial(i)}"))

If fact is not actually tail recursive, the compiler will throw an error. Consider this
attempt to write a naïve recursive implementation of Fibonacci sequences:

// src/script/scala/progscala3/typelessdomore/FibonacciTailrec.scala
scala> import scala.annotation.tailrec

scala> @tailrec
 | def fibonacci(i: Int): BigInt =
 | if i <= 1 then BigInt(1)
 | else fibonacci(i - 2) + fibonacci(i - 1)
4 | else fibonacci(i - 2) + fibonacci(i - 1)
 | ^^^^^^^^^^^^^^^^
 | Cannot rewrite recursive call: it is not in tail position
4 | else fibonacci(i - 2) + fibonacci(i - 1)
 | ^^^^^^^^^^^^^^^^
 | Cannot rewrite recursive call: it is not in tail position

We are attempting to make two recursive calls, not one, and then do something with
the returned values, in this case add them. So this function is not tail recursive. (It is
naïve because it is possible to write a tail recursive implementation.)

Finally, the nested function can see anything in scope, including arguments passed to
the outer function. Note the use of n in count in the next example:

// src/script/scala/progscala3/typelessdomore/CountTo.scala
import scala.annotation.tailrec

def countTo(n: Int): Unit =
 @tailrec
 def count(i: Int): Unit =
 if (i <= n) then
 println(i)
 count(i + 1)
 count(1)

countTo(5)

Method Declarations | 47

3 If a bad string is used, like "x", a java.lang.NumberFormatException will be thrown by String.toDouble.

Inferring Type Information
Statically typed languages provide wonderful compile-time safety, but they can be
verbose if all the type information has to be explicitly provided. Scala’s type inference
removes most of this explicit detail, but where it is still required, it can provide an
additional benefit of documentation for the reader.

Some FP languages, like Haskell, can infer almost all types because they do global
type inference. Scala can’t do this, in part because it has to support subtype polymor‐
phism for object-oriented inheritance, which makes type inference harder.

We’ve already seen examples of Scala’s type inference. Here are two more examples,
showing different ways to declare a Map:

scala> val map1: Map[Int, String] = Map.empty
val map1: Map[Int, String] = Map()

scala> val map2 = Map.empty[Int, String]
val map1: Map[Int, String] = Map()

The second form is more idiomatic most of the time. Map is actually an abstract type
with concrete subtypes, so you’ll sometimes make declarations like this for a TreeMap:

scala> import scala.collection.immutable.TreeMap
scala> val map3: Map[Int, String] = TreeMap.empty
val map3: Map[Int, String] = Map()

We’ll explore Scala’s type hierarchy in Chapter 13.

Let’s look at a few examples of cases we haven’t seen yet where explicit types are
required. First, we look at overloaded methods:

// src/script/scala/progscala3/typelessdomore/MethodOverloadedReturn.scala

case class Money(value: BigDecimal)
case object Money:
 def apply(s: String): Money = apply(BigDecimal(s.toDouble))
 def apply(d: Double): Money = apply(BigDecimal(d))

While the Money constructor expects a BigDecimal, we want the user to have the con‐
venience of passing a String or a Double.3 Note that we have added two more apply
methods to the companion object. Both call the apply(value: BigDecimal) method
the compiler automatically generates for the companion object, corresponding to the
primary constructor Money(value: BigDecimal).

The two methods have explicit return types. If you try removing them, you’ll get a
compiler error, “Overloaded or recursive method apply needs return type.”

48 | Chapter 2: Type Less, Do More

https://oreil.ly/zsgSQ
https://oreil.ly/eE14Q
https://oreil.ly/riMdB

When Explicit Type Annotations Are Required
In practical terms, you have to provide explicit type declarations for the following sit‐
uations in Scala:

• Abstract var or val declarations in an abstract class or trait.
• All method parameters (e.g., def deposit(amount: Money) = …).
• Method return types in the following cases:

— When you explicitly call return in a method (even at the end).
— When a method is recursive.
— When two or more methods are overloaded (have the same name) and one of

them calls another. The calling method needs a return type declaration.
— When the inferred return type would be more general than you intended

(e.g., Any).

The last case is somewhat rare, fortunately.

The Any type is the root of the Scala type hierarchy. If a block
of code is inferred to return a value of type Any unexpectedly,
chances are good that the code is more general than you
intended so that Any is the only common supertype of all possi‐
ble values.

Repeated Parameter Lists
Scala supports methods that take repeated parameters. Other languages call them
variable argument lists (varargs for short) or refer to the methods that use them as
variadic methods. We briefly saw an example in “A Taste of Scala” on page 9 while dis‐
cussing @main entry points. Consider this contrived example that computes the mean
of Doubles:

// src/script/scala/progscala3/typelessdomore/RepeatedParameters.scala

object Mean1:
 def calc1a(ds: Double*): Double = calc1b(ds)
 def calc1b(ds: Seq[Double]): Double = ds.sum/ds.size

 def calc2a(ds: Double*): Double = ds.sum/ds.size
 def calc2b(ds: Seq[Double]): Double = calc2a(ds*)

Repeated Parameter Lists | 49

(We’ll ignore errors from an empty list.) The syntax ds: Double* means zero or more
Doubles. When calc1a calls calc1b, it just passes ds. The repeated parameters are
implemented with a Seq[Double]. The pair calc2a and calc2b shows how to pass a
sequence as a repeated parameter list, using the (ds*) syntax. Scala 2 code used the
syntax (ds: _*) to pass a sequence to a function expecting a repeated parameters list.
Scala 3.0 allows this syntax as well, for backward compatibility, but not Scala 3.1.

Why have two functions? Users can pick what’s most convenient to use. However,
there are disadvantages too. The API footprint is larger with two methods instead of
one. Is the convenience really worth it?

Assuming you want a pair of methods, why not use the same name? In particular,
apply would be more convenient than ad hoc names like calc1b. Let’s try it in the
REPL:

scala> object Mean2:
 | def apply(ds: Double*): Double = apply(ds)
 | def apply(ds: Seq[Double]): Double = ds.sum/ds.size
3 | def apply(ds: Seq[Double]): Double = ds.sum/ds.size
 | ^
 |Double definition:
 |def apply(ds: Double*): Double in object Mean2 at line 2 and
 |def apply(ds: Seq[Double]): Double in object Mean2 at line 3
 |have the same type after erasure.
 |
 |Consider adding a @targetName annotation to one of the conflicting definitions
 |for disambiguation.

Because ds: Double* is implemented with a sequence, the methods look identical at
the byte code level. The error message suggests one fix using the annotation @target
Name. I’ll discuss that option in “Defining Operators” on page 71. Here I’ll describe a
common idiom to break the ambiguity: add a first Double parameter in the first
apply, then use a repeated parameter list for the rest of the parameters:

object Mean:
 def apply(d: Double, ds: Double*): Double = apply(d +: ds)
 def apply(ds: Seq[Double]): Double = ds.sum/ds.size

The first version happens to fix a bug we have ignored—that the method fails badly if
an empty list of Doubles is provided. When calling the second apply, the first one
constructs a new sequence by prepending d to the ds sequence using d +: ds. You’ll
see this used a lot in Scala. We’ll explore it some more in “Operator Precedence Rules”
on page 78.

Finally, Nil is an object representing an empty sequence with any type of element. Try
1.1 +: Nil in the REPL, then prepend 2.2 to the returned sequence.

50 | Chapter 2: Type Less, Do More

https://oreil.ly/1XejK

Language Keywords
Table 2-1 lists the reserved keywords and symbols in Scala, which are used for defin‐
ing constructs like conditionals and declaring variables. Most of them are reserved
for exclusive use. Those that aren’t are marked with (soft), which means they can be
used as regular identifiers, such as method and variable names and type aliases, when
they are used outside a narrow context. All of the soft keywords are new in Scala 3,
but not all new keywords are soft, such as given and then. The reason for treating
most of them as soft is to avoid breaking older code that happens to use them as
identifiers.

Table 2-1. Reserved keywords and symbols

Word Description More details

abstract Make a declaration abstract. Chapter 9

as (soft) Provide an alias for an imported and exported
names.

“Importing Types and Their Members” on
page 64

case Start a case clause in a match expression. Define a case
class.

Chapter 4

catch Start a clause for catching thrown exceptions. “Using try, catch, and finally Clauses” on
page 90

class Start a class declaration. Chapter 9

def Start a method declaration. “Method Declarations” on page 39

do New syntax for while and for loops without braces.
Old Scala 2 do…while loop.

“Scala Conditional Expressions” on page 83

derives (soft) Used in type class derivation. “Type Class Derivation” on page 158

else Start an else clause for an if expression. “Scala Conditional Expressions” on page 83

end (soft) Optional marker for the end of a block when
using the braceless syntax.

“New Scala 3 Syntax—Optional Braces” on
page 31

enum Start an enumeration declaration. “Sealed Class Hierarchies and Enumerations”
on page 62

export Export members of private fields as part of a type’s
interface.

“Export Clauses” on page 263

extends Indicates that the class or trait that follows is the
supertype of the class or trait being declared.

“Supertypes” on page 261

extension (soft) Marks one or more extension methods for a type. “Extension Methods” on page 139

false Boolean false. “Boolean Literals” on page 55

final Apply to a type to prohibit creating subtypes from it.
Apply to a member to prohibit overriding it in a
subtype.

“Overriding Methods? The Template Method
Pattern” on page 251

finally Start a clause that is executed after the corresponding
try clause, whether or not an exception is thrown by
the try clause.

“Using try, catch, and finally Clauses” on
page 90

Language Keywords | 51

Word Description More details

for Start a for comprehension (loop). “for Comprehensions” on page 86

forSome Used in Scala 2 for existential type declarations to
constrain the allowed concrete types that can be used.
Dropped in Scala 3.

“Existential Types (Obsolete)” on page 367

given Mark a definition as eligible for a using clause. Chapter 5

if Start an if clause. “Scala Conditional Expressions” on page 83

implicit Legacy alternative to given and using constructs. Chapter 5

import Import one or more identifiers into the current scope. “Importing Types and Their Members” on
page 64

infix (soft) Mark a method or type as suitable for infix
notation.

“Defining Operators” on page 71

inline (soft) Tell the compiler to expand the definition inline. “Inline” on page 491

lazy Defer evaluation of a val. “Lazy Values” on page 97

match Start a pattern-matching expression. Chapter 4

new Create a new instance of a class. “When new Is Optional” on page 102

null Value of a reference variable that has not been assigned
a value.

“Option, Some, and None: Avoiding Nulls” on
page 60

object Start a singleton declaration: a class with only one
instance.

Chapter 9

opaque (soft) Declare a special type member with zero runtime
overhead.

“Opaque Types and Value Classes” on page
253

open (soft) Declare a concrete class open for subtyping. “Open Versus Closed Types” on page 247

override Override a concrete member of a type, as long as the
original is not marked final.

“Overriding Methods? The Template Method
Pattern” on page 251

package Start a package scope declaration. “Organizing Code in Files and Namespaces”
on page 63

private Restrict visibility of a declaration. Chapter 15

protected Restrict visibility of a declaration. Chapter 15

requires Dropped in Scala 3. Was used for self-typing. “Self-Type Declarations” on page 382

return Return from a method. “A Taste of Scala” on page 9

sealed Apply to a supertype to require all subtypes to be
declared in the same source file.

“Sealed Class Hierarchies and Enumerations”
on page 62

super Analogous to this, but binds to the supertype. “Linearization of a Type Hierarchy” on page
301

then New syntax for if expressions “Scala Conditional Expressions” on page 83

this Refer to the enclosing instance. The method name for
auxiliary constructors.

“Constructors in Scala” on page 262

throw Throw an exception. “Using try, catch, and finally Clauses” on
page 90

52 | Chapter 2: Type Less, Do More

Word Description More details

trait Start an abstract type declaration, used as a base type
for concrete types or as a mixin module that adds
additional state and behavior to other types.

Chapter 10

transparent (soft) Mark a trait to suppress including it as part of an
inferred type. Also used with inlining of code.

“Transparent Traits” on page 281, “Inline” on
page 491

true Boolean true. “Boolean Literals” on page 55

try Start a block that may throw exceptions to enable
catching them.

“Using try, catch, and finally Clauses” on
page 90

type Start a type member declaration. “Parameterized Types Versus Abstract Type
Members” on page 66

using (soft) Scala 3 alternative to implicit for using
clauses.

Chapter 5

val Start a read-only variable declaration. “Variable Declarations” on page 33

var Start a read-write variable declaration. “Variable Declarations” on page 33

while Start a while loop. “Scala while Loops” on page 90

with Include the trait that follows in the type being declared
or the instance being instantiated.

Chapter 10

yield Return an element in a for comprehension that
becomes part of a sequence.

“Yielding New Values” on page 87

: Separator between an identifier and a type declaration. “A Taste of Scala” on page 9

= Assignment. “A Taste of Scala” on page 9

? The wildcard for type parameters. “Givens and Imports” on page 159

* (soft) The wildcard for import and export statements, a
marker for repeated parameters.

“Importing Types and Their Members” on
page 64

+ (soft) Marks covariant types. “Parameterized Types Versus Abstract Type
Members” on page 66

- (soft) Marks contravariant types. “Parameterized Types Versus Abstract Type
Members” on page 66

_ The anonymous placeholder for function literal
arguments and a way to suppress some imports.

“Anonymous Functions, Lambdas, and
Closures” on page 190, “Importing Types and
Their Members” on page 64

<- Part of for comprehension generator expressions. “for Comprehensions” on page 86

<: Constrain a type parameter with an upper bound. “Type Bounds” on page 349

>: Constrain a type parameter with a lower bound. “Type Bounds” on page 349

Project a nested type. “Type Projections” on page 385

@ Mark use of an annotation. “Annotations” on page 468

=> In function literals, separates the parameter list from
the function body.

“Anonymous Functions, Lambdas, and
Closures” on page 190

=>> In type lambdas, separates the parameter list from the
body.

“Type Lambdas” on page 391

Language Keywords | 53

Word Description More details

?=> In context function types, separates the parameter list
from the body.

“Context Functions” on page 172

| (soft) Indicates alternatives in pattern matches. “Values, Variables, and Types in Matches” on
page 107

Some APIs written in other languages use names that are reserved keywords in Scala,
for example, java.util.Scanner.match. To avoid a compilation error, surround the
name with single back quotes (backticks) (e.g., java.util.Scanner.`match`).

Literal Values
We’ve seen a few literal values already, such as val book = "Programming Scala",
where we initialized a val book with a String literal, and (s: String) => s.toUp
perCase, an example of a function literal. Let’s discuss all the literals supported by
Scala.

Numeric Literals
Scala 3 expanded the ways that numeric literals can be written and used as initializers.
Consider these examples:

val i: Int = 123 // decimal
val x: Long = 0x123L // hexadecimal (291 decimal)
val f: Float = 123_456.789F // 123456.789
val d: Double = 123_456_789.0123 // 123456789.0123
val y: BigInt = 0x123_a4b // 1194571
val z: BigDecimal = 123_456_789.0123 // 123456789.0123

Scala allows underscores to make long numbers easier to read. They can appear any‐
where in the literal (except between 0x), not just between every third character.

Hexadecimal numbers start with 0x followed by one or more digits and the letters a
through f and A through F.

Indicate a negative number by prefixing the literal with a – sign.

For Long literals, you must append the L character at the end of the literal, unless you
are assigning the value to a variable declared to be Long. Otherwise, Int is inferred.
Lowercase l is allowed but discouraged because it’s easy to misread it as the number
1. The valid values for an integer literal are bounded by the type of the variable to
which the value will be assigned. Table 2-2 defines the limits, which are inclusive.

54 | Chapter 2: Type Less, Do More

4 “Internal DSLs” on page 440 shows an example for a custom Money type.

Table 2-2. Ranges of allowed values for integer literals (boundaries are inclusive)

Target type Minimum (inclusive) Maximum (inclusive)

Long −263 263 − 1

Int −231 231 − 1

Short −215 215 − 1

Char 0 216 − 1

Byte −27 27 − 1

A compile-time error occurs if an integer literal is outside these ranges.

Floating-point literals are expressions with an optional minus sign, zero or more dig‐
its and underscores, followed by a period (.), followed by one or more digits. For
Float literals, append the F or f character at the end of the literal. Otherwise, a
Double is assumed. You can optionally append a D or d for a Double.

Floating-point literals can be expressed with or without exponentials. The format of
the exponential part is e or E, followed by an optional + or –, followed by one or more
digits.

Here are some example floating-point literals where Double is inferred unless the
declared variable is Float, or an f or F suffix is used:

0.14 // leading 0 required
3.14, 3.14f, 3.14F, 3.14d, 3.14D
3e5, 3E5
3.14e+5, 3.14e-5, 3.14e-5f, 3.14e-5F, 3.14e-5d, 3.14e-5D

At least one digit must appear after the period, and 3. and 3.e5 are disallowed. Use
3.0 and 3.0e5 instead. Otherwise it would be ambiguous; do you mean some method
e5 on the Int value of 3 or do you mean floating point literal 3.0e5?

Float consists of all IEEE 754 32-bit, single-precision binary floating-point values.
Double consists of all IEEE 754 64-bit, double-precision binary floating-point values.

Scala 3 introduced a mechanism to allow using numeric literals for library and user-
defined types like BigInt and BigDecimal. It is implemented with a trait called From
Digits.4

Boolean Literals
The Boolean literals are true and false. The type of the variable to which they are
assigned is inferred to be Boolean:

Literal Values | 55

https://oreil.ly/iwbNz
https://oreil.ly/iwbNz

scala> val (t, f) = (true, false)
val t: Boolean = true
val f: Boolean = false

Character Literals
A character literal is either a printable Unicode character or an escape sequence, writ‐
ten between single quotes. A character with a Unicode value between 0 and 255 may
also be represented by an octal escape; that is, a backslash (\) followed by a sequence
of up to three octal characters. It is a compile-time error if a backslash character in a
character or string literal does not start a valid escape sequence.

Here are some examples:

'A', '\u0041' // 'A' in Unicode
'\n', '\012' // '\n' in octal
'\t'

Releases of Scala before 2.13 allowed three Unicode arrow characters to be used
instead of two-character ASCII equivalents. These alternatives are now deprecated:
⇒ for =>, → for ->, and ← for <-. You’ll see them used in older code, but I’ll avoid
them in the book’s examples.

The valid escape sequences are shown in Table 2-3.

Table 2-3. Character escape sequences

Sequence Meaning

\b Backspace (BS)

\t Horizontal tab (HT)

\n Line feed (LF)

\f Form feed (FF)

\r Carriage return (CR)

\" Double quote (")

\' Single quote (')

\\ Backslash (\)

\u{0000-FFFF} Unicode hex value

String Literals
A string literal is a sequence of characters enclosed in double quotes or triples of dou‐
ble quotes ("""…""").

For string literals in double quotes, the allowed characters are the same as the charac‐
ter literals. However, if a double quote (") character appears in the string, it must be
escaped with a \ character. Here are some examples:

56 | Chapter 2: Type Less, Do More

"Programming\nScala"
"He exclaimed, \"Scala is great!\""
"First\tSecond"

Triple-quoted string literals support multiline strings; the line feeds will be part of the
string. They can include any characters, including one or two double quotes together,
but not three together. They are useful for strings with backslash (\) characters that
don’t form valid Unicode or escape sequences (those listed in Table 2-3). Regular
expressions, which use lots of escaped characters with special meanings, are a good
example. Conversely, if escape sequences appear, they aren’t interpreted.

Here are four example strings:

"""Programming\nScala"""
"""He exclaimed, "Scala is great!""""
"""First line\n
Second line\t

Fourth line"""
"""^\s*(\d{4})-(\d{2})-(\d{2})\s+(\w*)\s*$"""

The last example describes a regular expression, which we’ll discuss in “Matching on
Regular Expressions” on page 119. Try converting the triple quotes to single quotes in
the REPL. What errors are reported?

When using multiline strings in code, you’ll want to indent the substrings for proper
code formatting, yet you probably don’t want that extra whitespace in the actual
string output. String.stripMargin solves this problem. It removes all whitespace in
the substrings up to and including the first occurrence of a vertical bar (|) character:

// src/script/scala/progscala3/typelessdomore/MultilineStrings.scala
scala> val welcome = s"""Welcome!
 | Hello!
 | * (Gratuitous Star character!!)
 | |This line has a margin indicator.
 | | This line has some extra whitespace.""".stripMargin
val welcome: String = Welcome!
 Hello!
 * (Gratuitous Star character!!)
This line has a margin indicator.
 This line has some extra whitespace.

Note on each line where leading whitespace is removed and where it isn’t.

If you want to use a different leading character than |, use the overloaded version of
stripMargin that takes a Char (character) parameter. If the whole string has a prefix
or suffix you want to remove (but not on individual lines), there are corresponding
stripPrefix and stripSuffix methods too:

scala> "<hello> <world>".stripPrefix("<").stripSuffix(">")
val res0: String = hello> <world

Literal Values | 57

The < and > inside the string are not removed.

Symbol Literals
Scala supports symbols, which are interned strings, meaning that two symbols with
the same character sequence will actually refer to the same object in memory. A Scala
2 literal syntax for them uses a leading, single quote, 'mysymbol, but this syntax is
deprecated in Scala 3. If you want to continue using this syntax, use the language
import import language.deprecated.symbolLiterals or use Symbol("mysymbol")
instead.

Function Literals
As we’ve seen already, (i: Int, d: Double) => (i+d).toString is a function literal.
It has the type Function2[Int,Double,String], where the last type is the return
type.

You can even use the literal syntax for a type declaration. The following declarations
are equivalent:

val f1: (Int, Double) => String = (i, d) => (i+d).toString
val f2: Function2[Int, Double, String] = (i, d) => (i+d).toString

Tuples
Often, declaring a class to hold instances with two or more values is more than you
need. You could put those values in a collection, but then you lose their specific type
information. Scala implements tuples of values, where the individual types are
retained. The tuple syntax uses a comma-separated list of values surrounded by
parentheses.

Here is an example of a tuple declaration and how we can access the elements inside
it. Starting with the declaration, we can use the syntax to construct a three-element
tuple. We can use the same syntax for the type too:

// src/script/scala/progscala3/typelessdomore/Tuples.scala

scala> val tup = ("Hello", 1, 2.3)
val tup: (String, Int, Double) = (Hello,1,2.3)

scala> val tup2: (String, Int, Double) = ("World", 4, 5.6)
val tup2: (String, Int, Double) = (World,4,5.6)

We can retrieve the first element with the _1 method and similarly for the rest of
them. Tuple indexing with these methods is one-based, by historical convention, not
zero-based. However, Scala 3 adds the ability to access the elements like we can access

58 | Chapter 2: Type Less, Do More

elements in arrays and sequences, with zero-based indexing, tup(0), etc. Let’s use
both approaches to retrieve the three elements:

scala> (tup._1, tup(0))
val res7: (String, String) = (Hello,Hello)

scala> (tup._2, tup(1))
val res8: (Int, Int) = (1,1)

scala> (tup._3, tup(2))
val res9: (Double, Double) = (2.3,2.3)

scala> (tup._4, tup(3))
1 |(tup._4, tup(3))
 | ^^^^^^
 | value _4 is not a member of (String, Int, Double) - did you mean tup._1?

The last line shows what happens if we ask for nonexistent elements.

Finally, we can grab all three elements separately with pattern matching:

scala> val (s, i, d) = tup
val s: String = Hello
val i: Int = 1
val d: Double = 2.3

Try removing the d in the first line. Try adding a fourth variable. What happens in
both cases?

Two-element tuples, sometimes called pairs for short, are so commonly used there is
a special way of creating them:

scala> 1 -> "one"
val res3: (Int, String) = (1,one)

scala> (1, "one") // Like all other tuples
val res4: (Int, String) = (1,one)

scala> Tuple2(1, "one") // Rarely used
val res5: (Int, String) = (1,one)

For example, maps are often constructed with key-value pairs as follows:

// src/script/scala/progscala3/typelessdomore/StateCapitalsSubset.scala

scala> val stateCapitals = Map(
 | "Alabama" -> "Montgomery",
 | "Alaska" -> "Juneau",
 | // ...
 | "Wyoming" -> "Cheyenne")
val stateCapitals: Map[String, String] =
 Map(Alabama -> Montgomery, Alaska -> Juneau, Wyoming -> Cheyenne)

Tuples | 59

Option, Some, and None: Avoiding Nulls
Let’s discuss three useful types that express a very useful concept, when we may or
may not have a value.

Most languages have a special keyword for reference variables when they are not
assigned a valid value. Scala uses null. Nulls are a giant source of nasty bugs across
most languages. What null signals is that we don’t have a value in a given situation. If
the value is not null, we do have a value. Why not express this situation explicitly
with the type system and exploit type checking to avoid NullPointerExceptions?

Option lets us express this situation explicitly without using null. Option is an
abstract class with two concrete subtypes: Some, for when we have a value, and None,
when we don’t. Think of an Option as a special kind of collection with zero or one
value.

You can see Option, Some, and None in action using the map of state capitals in the
United States that we declared in the previous section:

scala> stateCapitals.get("Alabama")
 | stateCapitals.get("Wyoming")
 | stateCapitals.get("Unknown")
val res6: Option[String] = Some(Montgomery)
val res7: Option[String] = Some(Cheyenne)
val res8: Option[String] = None

scala> stateCapitals.getOrElse("Alabama", "Oops1")
 | stateCapitals.getOrElse("Wyoming", "Oops2")
 | stateCapitals.getOrElse("Unknown", "Oops3")
val res9: String = Montgomery
val res10: String = Cheyenne
val res11: String = Oops3

Map.get returns an Option[T], where T is String in this case. Either a Some wrapping
the value is returned or a None when no value for the specified key is found.

In contrast, similar methods in other languages just return a T value, when found, or
null.

By returning an Option, we can’t “forget” that we have to verify that something was
returned. In other words, the fact that a value may not exist for a given key is
enshrined in the return type for the method declaration. This also provides clear doc‐
umentation for the user of Map.get about what can be returned.

The second group uses Map.getOrElse. This method returns either the value found
for the key or it returns the second argument passed in, which functions as the
default value to return.

60 | Chapter 2: Type Less, Do More

https://oreil.ly/v1BAs
https://oreil.ly/J2B5n
https://oreil.ly/Xq5QV
https://oreil.ly/5D493

So getOrElse is more convenient, as you don’t need to process the Option, as long as
a suitable default value exists.

To reiterate, because the Map.get method returns an Option, it automatically docu‐
ments for the reader that there may not be an item matching the specified key. The
map handles this situation by returning a None.

Also, thanks to Scala’s static typing, you can’t make the mistake of “forgetting” that an
Option is returned and attempting to call a method supported by the type of the value
inside the Option. You must extract the value first or handle the None case. Without
an option return type, when a method just returns a value, it’s easy to forget to check
for null before calling methods on the returned object.

Never write methods that can return null. Instead, return Option,
so the user learns the possible behavior through the type signature
and the user’s code must properly handle the Some and None cases.

When You Really Can’t Avoid Nulls
Because Scala runs on the JVM, JavaScript, and native environments, it must intero‐
perate with other libraries, which means Scala has to support null, as many of these
libraries have methods that can return null.

Scala has a Null type that is a subtype of all AnyRef types. Suppose you have a Java
HashMap to access:

// src/script/scala/progscala3/typelessdomore/Null.scala

import java.util.HashMap as JHashMap

val jhm = JHashMap[String,String]()
jhm.put("one", "1")

val one1: String = jhm.get("one")
val one2: String | Null = jhm.get("one")

val two1: String = jhm.get("two")
val two2: String | Null = jhm.get("two")

Import the Java HashMap, but give it an alias so it doesn’t shadow Scala’s HashMap.

Return the string "1".

Declare explicitly that one2 is of type String or Null. The value will still be "1"
in this case.

Option, Some, and None: Avoiding Nulls | 61

https://oreil.ly/ccwF8
https://oreil.ly/ccwF8

5 Union types are new to Scala 3. We’ll explore them in depth in “Union and Intersection Types” on page 279.

These two values will equal null.

The type String | Null is called a union type. It tells the reader that the value could
be either a String or null.5

There is an optional and experimental feature to enable aggressive null checking. It is
experimental because the Scala compiler team is still developing this feature, so avoid
it in production code. You can enable this feature with the compiler flag -Yexplicit-
nulls, after which the declarations of one1 and two1 will be disallowed because the
compiler knows you are referring to a Java library where null could be returned. For
more details, see the explicit nulls documentation. If you try this same code in a REPL
with this flag enabled, you’ll see the following:

$ scala -Yexplicit-nulls
...
scala> val one1: String = jhm.get("one")
1 |val one1: String = jhm.get("one")
 | ^^^^^^^^^^^^^^
 | Found: String | UncheckedNull
 | Required: String

...

Tony Hoare invented the null reference in 1965 while working on a language called
ALGOL W. He has called its invention his “billion dollar” mistake. Use Option
instead.

Sealed Class Hierarchies and Enumerations
While we’re discussing Option, let’s discuss a useful design feature it uses. A key point
about Option is that there are really only two valid subtypes. Either we have a value,
the Some case, or we don’t, the None case. There are no other subtypes of Option that
would be valid. So we would really like to prevent users from creating their own.

Scala 2 and 3 have a keyword sealed for this purpose. Option could be declared as
follows:

sealed abstract class Option[+A] {...}
case class Some[+A](a: A) extends Option[A] {...}
case object None extends Option[Nothing] {...}

The sealed keyword tells the compiler that all subtypes must be declared in the same
source file. Some and None are declared in the same file with Option in the Scala
library. This technique effectively prevents additional subtypes of Option.

62 | Chapter 2: Type Less, Do More

https://oreil.ly/uFvLK
https://oreil.ly/st8c8

None has an interesting declaration. It is a case class with only one instance, so it is
declared case object. The Nothing type along with the Null type are subtypes of all
other types in Scala. I’ll say something about Nothing, if you get what I mean, in
more detail in “Sequences” on page 200.

You can also declare a type final if you want to prevent users from subtyping it.

This same constraint on subtyping can now be achieved more concisely in Scala 3
with the new enum syntax that we’ll explore in “Enumerations and Algebraic Data
Types” on page 79. Here’s a teaser of what Option would look like defined as an enum:

enum Option[+A] {
 case Some(a: A) {...}
 case None {...}
 ...
}

We’ll see more examples of enums and sealed hierarchies, which help us carefully craft
our types for optimal utility, robustness, and type safety.

Organizing Code in Files and Namespaces
Scala has a package concept for namespaces. While inspired by packages in Java, file‐
names do not have to match the type names, and the package structure does not have
to match the directory structure. So you can define packages in files independent of
their “physical” location.

The following example defines a class MyClass in a package com.example.mypkg
using the most common syntax:

// src/main/scala/progscala3/typelessdomore/Package1.scala
package com.example.mypkg

class MyClass:
 def mymethod(s: String): String = s

Scala also supports a block-structured syntax for declaring package scope:

// src/main/scala/progscala3/typelessdomore/Package2.scala
package com:
 package example: // Subpackage of "com"
 package pkg1: // Subpackage of "example"
 class Class11: // Class inside "com.example.pkg1"
 def m = "m11"

 class Class12: // Class inside "com.example.pkg1"
 def m = "m12"

 package pkg2: // Subpackage of "example"
 class Class21: // Class inside "com.example.pkg2"

Organizing Code in Files and Namespaces | 63

 def m = "m21"
 def makeClass11 = pkg1.Class11()

 def makeClass12 = pkg1.Class12()

 package pkg3.pkg31.pkg311: // More concise nesting of packages
 class Class311:
 def m = "m21"

The comments explain the organization. The makeClass11 and makeClass12 meth‐
ods in Class21 illustrate how to reference a type in the sibling package, pkg1. You can
also reference these classes by their full paths, com.example.pkg1.Class11 and
com.example.pkg1.Class12, respectively.

Here the root package is the first one declared, com. The root package for Scala’s
library classes is named scala.

Although the package declaration syntax is flexible, one limitation is that packages
cannot be defined within classes and objects, which wouldn’t make much sense
anyway.

Importing Types and Their Members
To use declarations in packages, you have to import them. However, Scala offers flexi‐
ble options for how items are imported:

import scala.math.*
import scala.io.Source
import scala.io.Source.*
import scala.collection.immutable.{List, Map}
import scala.collection.immutable.Vector
import collection.immutable.Vector

Import everything in a package, using a star (*) as a wildcard.

Import an individual type.

Import all members of the Source object.

Selectively import two types.

This line and the next are effectively the same. You can omit scala.

I always write import scala… for Scala library imports. At a
glance, I can tell it is importing from the Scala library and not some
other library with a package path beginning with util,
collection, etc.

64 | Chapter 2: Type Less, Do More

Scala uses * as the wildcard for all items in the enclosing scope. What if you want to
import a method named * in a math package? Use backticks: import foo.math.`*`.

You can put import statements almost anywhere, so you can scope their visibility to
just where they are needed, you can rename types as you import them, and you can
suppress the visibility of unwanted types:

def stuffWithCollections() =
 import scala.collection.immutable.{
 BitSet as _,
 LazyList,
 HashMap as HMap }
 // Do stuff with LazyList, HMap...

Alias BitSet to _, which makes it invisible. Use this technique when you want to
import everything except a few items.

Import LazyList, so it can be referenced simply as LazyList without the package
prefix.

Import HashMap but give it an alias. Note the as keyword. Use this technique to
avoid shadowing other items with the same name. This is used a lot when mixing
Java and Scala types that have the same name, such as collection types.

Recall from Chapter 1 that Scala 2 uses _ as the import wildcard,
instead of *. Scala 2 also uses => instead of as for aliasing an impor‐
ted item. Both are still allowed in Scala 3.0, but they will be
removed in a future release.

Because this import statement is inside stuffWithBigInteger, the imported items
are not visible outside the method.

Package Imports and Package Objects
Sometimes it’s nice to give the user one import statement for a public API that brings
in all types, as well as constants and methods not attached to a type. For example:

import progscala3.typelessdomore.api.*

This is simple to do; just define anything you need under the package:

// src/main/scala/progscala3/typelessdomore/TopLevelDeclarations.scala
package progscala3.typelessdomore.api

val DefaulCount = 5
def countTo(limit: Int = DefaulCount) = (0 to limit).foreach(println)

class Class1:

Importing Types and Their Members | 65

 def m = "cm1"

object Object1:
 def m = "om1"

In Scala 2, definitions that aren’t types had to be declared inside a package object, like
this:

// src/main/scala-2/progscala3/typelessdomore/PackageObjects.scala
package progscala3.typelessdomore // Notice, no ".api"

package object api {
 val DefaultCount = 5
 def countTo(limit: Int = DefaultCount) = (0 to limit).foreach(println)

 class Class1 {
 def m = "cm1"
 }

 object Object1 {
 def m = "om1"
 }
}

Package objects are still supported in Scala 3, but they are deprecated.

Parameterized Types Versus Abstract Type Members
We mentioned in “A Taste of Scala” on page 9 that Scala supports parameterized types
where square brackets ([…]) enclose the type parameter, for example Seq[T].

Because we can plug in almost any type for a type parameter T, this feature is called
parametric polymorphism. Generic implementations of the List methods can be used
with instances of any type T (the parameter), causing polymorphic behavior (for all
List[T]).

Consider the declaration of Map, which is written as follows, where K is the keys type
and V is the values type.

trait Map[K, +V] extends Iterable[(K, V)] with ...

The + in front of the V means that Map[K, V2] is a subtype of Map[K, V1] for any V2
that is a subtype of V1. This is called covariant typing. It is a reasonably intuitive idea.
If we have a function f(map: Map[String, Any]), it makes sense that passing a
Map[String, Double] to it should work fine because the function has to assume val‐
ues of Any, a supertype of Double.

In contrast, the key K is invariant. We can’t pass Map[Any, Any] to f, nor any Map[S,
Any] for some subtype or supertype S of String.

66 | Chapter 2: Type Less, Do More

https://oreil.ly/zsgSQ

If there is a dash (–) in front of a type parameter, the relationship goes the other way;
Foo[B] would be a supertype of Foo[A] if B is a subtype of A and the declaration is
Foo[-A] (called contravariant typing). This is less intuitive, but also not as important
to understand now. We’ll see how it is important for function types in “Parameterized
Types” on page 347.

Scala supports another type of abstraction mechanism called abstract type members,
which can be applied to many of the same design problems for which parameterized
types are used. However, they are not redundant mechanisms. Each has strengths and
weaknesses for certain design problems.

Abstract type members are declared as members of other types, just like abstract
methods and fields. Here is an example that uses an abstract type member in a super‐
type, then makes the type concrete in subtypes, where it becomes an alias for other
types:

// src/main/scala/progscala3/typelessdomore/BulkReaderAbstractTypes.scala
package progscala3.typelessdomore
import scala.io.Source

abstract class BulkReader:
 type In
 /** The source of data to read. */
 val source: In
 /** Read source and return a sequence of Strings */
 def read: Seq[String]

case class StringBulkReader(source: String) extends BulkReader:
 type In = String
 def read: Seq[String] = Seq(source)

case class FileBulkReader(source: Source) extends BulkReader:
 type In = Source
 def read: Seq[String] = source.getLines.toVector

Abstract type member, similar to an abstract field or method.

Concrete subtype of BulkReader where In is defined as an alias for String. Note
that the type of the source parameter passed to StringBulkReader must match.

Concrete subtype of BulkReader where In is defined to be an alias for Source,
the Scala library type for reading sources like files. Source.getLines returns an
iterator, which we can read into a Vector with toVector.

Strictly speaking, we don’t need to declare the source field in the supertype, but I put
it there to show you that the concrete case classes can make it a constructor parame‐
ter, where the specific type is specified.

Parameterized Types Versus Abstract Type Members | 67

https://oreil.ly/o9ai3
https://oreil.ly/AeTgU

We’ve seen many other abstract types, such as traits. A type mem‐
ber, abstract or concrete, is declared with the type keyword.

Let’s try these readers:

// src/script/scala/progscala3/typelessdomore/BulkReader.scala

scala> import progscala3.typelessdomore.{StringBulkReader, FileBulkReader}
 | import scala.io.Source

scala> val strings = StringBulkReader("Hello Scala!").read
val strings: Seq[String] = List(Hello Scala!)

scala> val lines = FileBulkReader(Source.fromFile("README.md")).read
val lines: Seq[String] = Vector(# Programming Scala, 3rd Edition, ...)

scala> lines(0) // look at two lines...
 | lines(2)
val res2: String = # Programming Scala, 3rd Edition
val res3: String = ## README for the Code Examples

The abstract type member BulkReader.In is used in an analogous way to a type
parameter in a parameterized type. As an exercise, try rewriting the example to use
type parameters, BulkReader[In].

So what are the advantages of using abstract type members instead of parameterized
types? Parameterized types are best for when the type parameter has no relationship
with the parameterized type, like mapping over a Seq[A], which behaves uniformly
for when A is Int, String, Person, or anything else. A type member works best when
it evolves in parallel with the enclosing type, as in our BulkReader example, where
the type member must match the behaviors expressed by the enclosing type, specifi‐
cally the read method. Sometimes this characteristic is called family polymorphism or
covariant specialization.

All concrete type members are aliases for other types. In fact, it’s sometimes conve‐
nient to define a type member for a complicated type just to simplify using it. For a
simple example, suppose you use (String, Double) tuples a lot in some code. You
could either declare a class for it or use a type alias as a simple alternative:

// src/script/scala/progscala3/typelessdomore/Rec.scala

scala> type Rec = (String, Double)
// defined alias type Rec = (String, Double)

scala> def transform(record: Rec): Rec = (record._1.toUpperCase, 2*record._2)
def transform(record: Rec): Rec

68 | Chapter 2: Type Less, Do More

scala> val rec2 = transform(("hello", 10))
val rec2: Rec = (HELLO,20.0)

Notice that a tuple literal is used as the argument to transform.

Recap and What’s Next
We covered a lot of practical ground, such as literals, keywords, file organization, and
imports. We learned how to declare variables, classes, and member types and meth‐
ods. We learned about Option as a better tool than null, plus other useful techniques.
In the next chapter, we will finish our fast tour of the Scala basics before we dive into
more detailed explanations of Scala’s features.

Recap and What’s Next | 69

CHAPTER 3

Rounding Out the Basics

Let’s finish our survey of essential basics in Scala.

Defining Operators
Almost all operators are actually methods. Consider this most basic of examples:

1 + 2

The plus sign between the numbers is a method on the Int type.

Scala doesn’t have special primitives for numbers and Booleans that are distinct from
types you define. They are regular types: Float, Double, Int, Long, Short, Byte, Char,
and Boolean. Hence, they can have methods.

Therefore, + is actually a method implemented by Int. We can write 1.+(2), although
it looks strange.

Fortunately, Scala also supports infix operator notation. When a method takes one
argument and the name uses only nonalphanumeric characters, we can drop the
period and parentheses to write the expression we want, 1 + 2.

This is infix notation because + is between the object and argument. It is also called
operator notation because it is especially popular when writing libraries where mathe‐
matics operator notation is convenient.

Actually, they don’t always behave identically, due to operator prece‐
dence rules. While 1 + 2 * 3 = 7, 1.+(2)*3 = 9. When present,
the period binds before the star.

71

Recall in “Tuples” on page 58, we used x -> y to create a tuple (x, y). This is also
implemented as a method using a special library utility type called ArrowAssoc,
defined in Predef. We’ll explore this type in “Extension Methods” on page 139.

Infix operator notation isn’t limited to methods that look like operators, meaning
their names don’t have alphanumeric characters. It’s not uncommon to see
Seq(1,2,3) foreach println in code, for example.

Scala 2 imposed no constraints on using infix operator notation for any methods, but
excessive use of this feature can lead to code that is hard to read and sometimes hard
to parse. Therefore, Scala 3 deprecates the use of infix operator notation for methods
with alphanumeric names, meaning names that contain letters, numbers, $, and _
characters.

However, exceptions are allowed if one of the following is true:

• The method is declared with the infix keyword.
• The method was compiled with Scala 2.
• Use of the method is followed with an opening curly brace.
• The method is invoked with backticks.

A deprecation warning will be issued otherwise, but only starting with Scala 3.1, to
ease migration. Because the Scala 2 library is used by Scala 3.0, all the common uses
of infix notation, such as methods on collections like map and foreach, will work as
before, but the long-term goal is to greatly reduce this practice.

Here is an example of the rules where append is not declared infix, but combine is:

// src/script/scala/progscala3/rounding/InfixMethod.scala

case class Foo(str: String):
 def append(s: String): Foo = copy(str + s)
 infix def combine(s:String): Foo = append(s)

Foo("one").append("two")
Foo("one") append {"two"}
Foo("one") `append` "two"
Foo("one") append "two"

Foo("one") combine "two"

Normal usage.

This line and the next one are accepted, but the usage looks odd.

Triggers a deprecation warning starting with Scala 3.1.

72 | Chapter 3: Rounding Out the Basics

https://oreil.ly/uxYB6

No warning, because combine is declared infix.

The keyword infix is a soft modifier. As we learned in “Language Keywords” on
page 51, that means infix is treated as a regular identifier when used in any other
context.

You can also define your own operator methods with symbolic names. Suppose you
want to allow users to work with directory and file paths by appending strings
using /, the file separator for Unix-derived systems. Consider the following
implementation:

// src/main/scala/progscala3/rounding/Path.scala
package progscala3.rounding

import scala.annotation.targetName
import java.io.File

case class Path(
 value: String, separator: String = Path.defaultSeparator):
 val file = File(value)
 override def toString: String = file.getPath

 @targetName("concat") def / (node: String): Path =
 copy(value + separator + node)

 infix def append(node: String): Path = /(node)

object Path:
 val defaultSeparator = sys.props("file.separator")

Use the operating system default path separator string as the default separator
when constructing the actual path and a corresponding java.io.File instance.

How to override the default toString method. Here, I use the path string from
File.

I’ll explain the @targetName annotation in a moment.

Use the case-class copy method to create a new instance, changing only the
value.

A method that can be used with infix notation.

Now users can work with paths and create File instances as follows:

scala> import progscala3.rounding.Path

scala> val one = Path("one")
val one: progscala3.rounding.Path = one

Defining Operators | 73

scala> val three = one / "two" / "three"
val three: progscala3.rounding.Path = one/two/three

scala> three.file
val res0: java.io.File = one/two/three

scala> val threeb = one./("two")./("three")
val threeb: progscala3.rounding.Path = one/two/three

scala> three == threeb
val res1: Boolean = true

scala> one concat "two"
1 |one concat "two"
 |^^^^^^^^^^
 |value concat is not a member of progscala3.rounding.Path

scala> one append "two"
val res2: progscala3.rounding.Path = one/two

On Windows, the character \ would be used as the default separator. This method is
designed to be used with infix notation. It looks odd to use normal invocation syntax.

In Scala 3, the @targetName annotation is optional, but suggested for operator meth‐
ods that might be called from Java.

In this example, concat is the name the compiler will use internally when it generates
byte code. This is the name you would use if you wanted to call the method from
code in another language, like Java, which doesn’t support invoking methods with
symbolic names. However, the name concat can’t be used in Scala code, as shown in
the session. It only affects the byte code produced by the compiler that is visible to
other languages.

The infix keyword on append allows us to use it as an operator. The keyword is not
required for methods with names that only use operator characters, like * and /
because support for symbolic operators has always existed for the particular purpose
of allowing intuitive, infix expressions, like a * b and path1 / path2.

Types can also be written with infix notation, when useful. The same rules for when
to explicitly use the infix keyword apply:

// src/script/scala/progscala3/rounding/InfixType.scala
import scala.annotation.targetName

@targetName("TIEFighter") case class <+>[A,B](a: A, b: B)
val ab1: Int <+> String = 1 <+> "one"
val ab2: Int <+> String = <+>(1, "one")

infix case class tie[A,B](a: A, b: B)

74 | Chapter 3: Rounding Out the Basics

val ab3: Int tie String = 1 tie "one"
val ab4: Int tie String = tie(1, "one")

A type declaration inspired by Star Wars with two type parameters and an opera‐
tor name.

An attempt to use infix notation on both sides, but we get an error that <+> is not
a method on Int. We’ll solve this problem in Chapter 5.

This declaration works, with the noninfix notation on the righthand side.

These three lines behave the same, but we need infix now if we want to use the
type with infix notation because the name is alphanumeric.

To recap:

• Mark alphanumeric types and methods with infix if you want to allow their use
with infix notation, but limit your use of this feature.

• Annotate symbolic operator definitions with @targetName("some_name").

While dropping the punctuation for infix expressions can sometimes make your code
less cluttered, it quickly leads to expressions that are hard to understand. Use this fea‐
ture with discretion.

The @targetName annotation can also work around a problem with JVM type erasure.
Consider Seq[T]. For historical reasons, the specific parameter type for T is erased in
JVM byte code. This causes problems with definitions that differ only in type
parameters:

// src/script/scala/progscala3/rounding/TypeErasureProblem.scala

scala> object O:
 | def m(is: Seq[Int]): Int = is.sum
 | def m(ss: Seq[String]): Int = ss.length
 |
3 | def m(ss: Seq[String]): Int = ss.length
 | ^
 |Double definition:
 |def m(is: Seq[Int]): Int in object O at line 2 and
 |def m(ss: Seq[String]): Int in object O at line 3
 |have the same type after erasure.
 |
 |Consider adding a @targetName annotation to one of the conflicting definitions
 |for disambiguation.

The Int versus String type information is lost in the byte code. The last message tells
us what to do:

Defining Operators | 75

// src/script/scala/progscala3/rounding/TypeErasureTargetNameFix.scala

import scala.annotation.targetName
object O:
 @targetName("m_seq_int")
 def m(is: Seq[Int]): Int = is.sum
 @targetName("m_seq_string")
 def m(ss: Seq[String]): Int = ss.length

Now the two methods have unique names in the generated byte code. Only one
method needs to be annotated, or more generally, N – 1 of N overloaded methods.

Allowed Characters in Identifiers
Here is a summary of the rules for characters in identifiers:

Characters
Scala allows all the printable ASCII characters, including letters, digits, the
underscore (_), and the dollar sign ($), with the exceptions of the parenthetical
characters, (,), [,], {, and }, and the delimiter characters, `, ’, ', ", ., ,, and ;.
Scala allows the Unicode characters between \u0020 and \u007F that are not in
the sets just shown, such as mathematical symbols, the operator characters like /
and <, and some other symbols. This includes whitespace characters.

Keywords can’t be used
We listed the keywords in “Language Keywords” on page 51. Recall that some of
them are combinations of operator and punctuation characters. For example, a
single underscore (_) is a keyword!

Plain identifiers—combinations of letters, digits, $, _, and operators
A plain identifier can begin with a letter or underscore, followed by more letters,
digits, underscores, and dollar signs. Unicode-equivalent characters are also
allowed. Scala reserves the dollar sign for internal use, so you shouldn’t use it in
your own identifiers, although this isn’t prevented by the compiler. After an
underscore, you can have either letters and digits, or a sequence of operator char‐
acters. The underscore is important. It tells the compiler to treat all the characters
up to the next whitespace as part of the identifier. For example, val xyz_++= = 1
assigns the variable xyz_++= the value 1, while the expression val xyz++= = 1
won’t compile because the identifier could also be interpreted as xyz ++=, which
looks like an attempt to append something to xyz. Similarly, if you have operator
characters after the underscore, you can’t mix them with letters and digits. This
restriction prevents ambiguous expressions like this: abc_-123. Is that an identi‐
fier abc_-123 or an attempt to subtract 123 from abc_?

76 | Chapter 3: Rounding Out the Basics

Plain identifiers—operators
If an identifier begins with an operator character, the rest of the characters must
be operator characters.

Backtick literals
An identifier can also be an arbitrary string between two backtick characters. For
example, you could give your test methods names like this: def `test that
addition works` = assert(1 + 1 == 2). (Using this trick for literate test
names is the one use I can think of for this otherwise questionable technique for
using whitespace in identifiers.) Also use back quotes to invoke a method or vari‐
able in a non-Scala API when the name is identical to a Scala keyword—e.g.,
java.net.Proxy.`type`().

Pattern-matching identifiers
In pattern-matching expressions (for example, “A Sample Application” on page
20), tokens that begin with a lowercase letter are parsed as variable identifiers,
while tokens that begin with an uppercase letter are parsed as constant identifiers
(such as class names). This restriction prevents some ambiguities because of the
very succinct variable syntax that is used (e.g., no val keyword is present).

Once you know that all operators are methods, it’s easier to reason about unfamiliar
Scala code. You don’t have to worry about special cases when you see new operators.
We’ve seen several examples where infix expressions like matrix1 * matrix2 were
used, which are actually just ordinary method invocations.

This flexible method naming gives you the power to write libraries that feel like a nat‐
ural extension of Scala itself. You can write a new math library with numeric types
that accept all the usual mathematical operators. The possibilities are constrained by
just a few limitations for method names.

Avoid making up operator symbols when an established alphanu‐
meric name exists because the latter is easier to understand and
remember, especially for beginners reading your code.

Methods with Empty Parameter Lists
Scala is flexible about whether or not parentheses are defined for methods with no
parameters.

If a method takes no parameters, you can define it without parentheses. Callers must
invoke the method without parentheses. (Scala 2 was more forgiving about inconsis‐
tent invocation.) Conversely, if you add empty parentheses to your definition, callers
must add the parentheses.

Methods with Empty Parameter Lists | 77

For example, Seq.size has no parentheses, so you write Seq(1, 2, 3).size. If you
try Seq(1, 2, 3).size(), you’ll get an error.

However, exceptions are made for no-parameter methods in non-Scala libraries. For
example, the length method for java.lang.String is defined with parentheses
because Java requires them, but Scala lets you write either "hello".length() or
"hello".length.

A convention in the Scala community is to omit parentheses for methods that have
no side effects, like returning a field value. The size of a collection might be a precom‐
puted, immutable field in the object, but even if it is computed on demand, calling
size behaves like a reader method. However, when the method performs side effects
or does extensive work, the convention is to add parentheses to provide a hint to the
reader of nontrivial activity, for example myFileReader.readLines().

Operator Precedence Rules
So if an expression like 2.0 * 4.0 / 3.0 * 5.0 is actually a series of method calls
on Doubles, what are the operator precedence rules? Here they are in order from low‐
est to highest precedence:

1. All letters
2. |

3. ^

4. &

5. < >

6. = !

7. :

8. + -

9. * / %

10. All other special characters

Characters on the same line have the same precedence. An exception is = when it’s
used for assignment, in which case it has the lowest precedence.

Because * and / have the same precedence, the two lines in the following scala ses‐
sion behave the same:

scala> 2.0 * 4.0 / 3.0 * 5.0
res0: Double = 13.333333333333332

78 | Chapter 3: Rounding Out the Basics

scala> (((2.0 * 4.0) / 3.0) * 5.0)
res1: Double = 13.333333333333332

Usually, method invocations using infix operator notation simply bind in left-to-right
order (i.e., they are left-associative). However, not all methods work this way! Any
method with a name that ends with a colon (:) binds to the right when used in infix
notation, while all other methods bind to the left. For example, you can prepend an
element to a Seq using the +: method (sometimes called cons, which is short for “con‐
structor,” a term from Lisp):

scala> val seq = Seq('b', 'c', 'd')
val seq: Seq[Char] = List(b, c, d)

scala> val seq2 = 'a' +: seq
val seq2: Seq[Char] = List(a, b, c, d)

scala> val seq3 = 'z'.+:(seq2)
1 |val seq3 = 'z'.+:(seq2)
 | ^^^^^^
 | value +: is not a member of Char

scala> val seq3 = seq2.+:('z')
val seq3: Seq[Char] = List(z, a, b, c, d)

Note that if we don’t use infix notation, we have to put seq2 on the left.

Any method whose name ends with a : binds to the right, not the
left, in infix operator notation.

Enumerations and Algebraic Data Types
While it’s common to declare a type hierarchy to represent all the possible types of
some parent abstraction, sometimes we know the list of them is fixed.

Enumerations are very useful in this case. Here are simple and more advanced enu‐
merations for the days of the week:

// src/script/scala/progscala3/rounding/WeekDay.scala
enum WeekDaySimple:
 case Sun, Mon, Tue, Wed, Thu, Fri, Sat

enum WeekDay(val fullName: String):
 case Sun extends WeekDay("Sunday")
 case Mon extends WeekDay("Monday")
 case Tue extends WeekDay("Tuesday")
 case Wed extends WeekDay("Wednesday")
 case Thu extends WeekDay("Thursday")

Enumerations and Algebraic Data Types | 79

1 You can find an example that uses the Scala 2 syntax in the code examples, src/script/scala-2/progscala3/round‐
ing/WeekDay.scala.

 case Fri extends WeekDay("Friday")
 case Sat extends WeekDay("Saturday")

 def isWorkingDay: Boolean = ! (this == Sat || this == Sun)

import WeekDay.*

val sorted = WeekDay.values.sortBy(_.ordinal).toSeq
assert(sorted == List(Sun, Mon, Tue, Wed, Thu, Fri, Sat))

assert(Sun.fullName == "Sunday")
assert(Sun.ordinal == 0)
assert(Sun.isWorkingDay == false)
assert(WeekDay.valueOf("Sun") == WeekDay.Sun)

Declare an enumeration, similar to declaring a class. The allowed values are
declared with case.

An alternative declaration with a field fullName. Declare fields with val if you
want them to be accessible (e.g., WeekDay.Sun.fullName).

The values are declared using the case keyword, and fullName is set.

You can define methods.

The WeekDay.values order does not match the declaration order, so we sort by
the ordinal, a unique number for each case in declaration order, starting at 0.

Since Sun was declared first, its ordinal value is 0.

You can lookup an enumeration value by its name.

This is the new syntax for enumerations introduced in Scala 3.1 We also saw a teaser
example of an enumeration in “Sealed Class Hierarchies and Enumerations” on page
62, where we discussed an alternative approach, sealed type hierarchies. The new syn‐
tax lends itself to a more concise definition of algebraic data types (ADTs—not to be
confused with abstract data types). An ADT is “algebraic” in the sense that transfor‐
mations obey well-defined properties (think of addition with integers as an example).
For example, transforming an element or combining two of them with an operation
can only yield another element in the set.

Consider the following example that shows two ways to define an ADT for tree data
structures, one using a sealed type hierarchy and one using an enumeration:

80 | Chapter 3: Rounding Out the Basics

// src/script/scala/progscala3/rounding/TreeADT.scala

object SealedADT:
 sealed trait Tree[T]
 final case class Branch[T](
 left: Tree[T], right: Tree[T]) extends Tree[T]
 final case class Leaf[T](elem: T) extends Tree[T]

 val tree = Branch(
 Branch(
 Leaf(1),
 Leaf(2)),
 Branch(
 Leaf(3),
 Branch(Leaf(4),Leaf(5))))

object EnumADT:
 enum Tree[T]:
 case Branch(left: Tree[T], right: Tree[T])
 case Leaf(elem: T)

 import Tree.*
 val tree = Branch(
 Branch(
 Leaf(1),
 Leaf(2)),
 Branch(
 Leaf(3),
 Branch(Leaf(4),Leaf(5))))

SealedADT.tree
EnumADT.tree

Use a sealed type hierarchy. Valid for Scala 2 and 3.

One subtype, a branch with left and right children.

The other subtype, a leaf node.

Scala 3 syntax using the new enum construct. It is much more concise.

The elements of the enum, Branch, and Leaf need to be imported. They are nested
under Tree, which is under EnumADT. In SealedADT, all three types were at the
same level of nesting, directly under SealedADT.

Is the output the same for these two lines?

The enum syntax provides the same benefits as sealed type hierarchies, but with less
code.

Enumerations and Algebraic Data Types | 81

The types of the tree values are slightly different (note the Branch versus Tree):

scala> SealedADT.tree
val res1: SealedADT.Branch[Int] = Branch(...)

scala> EnumADT.tree
val res2: EnumADT.Tree[Int] = Branch(...)

One last point: you may have noticed that Branch and Leaf don’t extend Tree in Enu
mADT, while in WeekDay, each day extends WeekDay. For Branch and Leaf, extending
Tree is inferred by the compiler, although we could add this explicitly. For WeekDay,
each day must extend WeekDay to provide a value for the fullName field declared by
WeekDay.

Interpolated Strings
We introduced interpolated strings in “A Sample Application” on page 20. Let’s
explore them further.

A String of the form s"foo ${bar}" will have the value of expression bar, converted
to a String and inserted in place of ${bar}. If the expression bar returns an instance
of a type other than String, the appropriate toString method will be invoked, if one
exists. It is an error if it can’t be converted to a String.

If bar is just a variable reference, the curly braces can be omitted. For example:

val name = "Buck Trends"
println(s"Hello, $name")

The standard library provides two other kinds of interpolated strings. One provides
printf formatting and uses the prefix f. The other is called raw interpolated strings.
It doesn’t expand escape characters, like \n.

Suppose we’re generating financial reports and we want to show floating-point num‐
bers to two decimal places. Here’s an example:

val gross = 100000F
val net = 64000F
val percent = (net / gross) * 100
println(f"$$${gross}%.2f vs. $$${net}%.2f or ${percent}%.1f%%")

The output of the last line is the following:

$100000.00 vs. $64000.00 or 64.0%

Scala uses Java’s Formatter class for printf formatting. The embedded references to
expressions use the same ${…} syntax as before, but printf formatting directives
trail them with no spaces.

82 | Chapter 3: Rounding Out the Basics

https://oreil.ly/TJ1YB

Two dollar signs, $$, are used to print a literal US dollar sign, and two percent signs,
%%, are used to print a literal percent sign. The expression ${gross}%.2f formats the
value of gross as a floating-point number with two digits after the decimal point.

The types of variables used must match the format expressions, but some implicit
conversions are performed. An Int expression in a floating point context is allowed.
It just pads with zeros. However, attempting to use Double or Float in an Int context
causes a compilation error due to the truncation that would be required.

While Scala uses Java strings, in certain contexts the Scala compiler will wrap a Java
String with extra methods defined in scala.collection.StringOps. One of those
extra methods is an instance method called format. You call it on the format string
itself, then pass as arguments the values to be incorporated into the string. For
example:

scala> val s = "%02d: name = %s".format(5, "Dean Wampler")
val s: String = "05: name = Dean Wampler"

In this example, we asked for a two-digit integer, padded with leading zeros.

The final version of the built-in string interpolation capabilities is the raw format that
doesn’t expand escape sequences. Consider these examples:

scala> val name = "Dean Wampler"
val name: String = "Dean Wampler"

scala> val multiLine = s"123\n$name\n456"
val multiLine: String = 123
Dean Wampler
456

scala> val multiLineRaw = raw"123\n$name\n456"
val multiLineRaw: String = 123\nDean Wampler\n456

Finally, we can define our own string interpolators, but we’ll need to learn more
about context abstractions first. See “Build Your Own String Interpolator” on page 142
for details.

Scala Conditional Expressions
Scala conditionals start with the if keyword. They are expressions, meaning they
return a value that you can assign to a variable. In many languages, if conditionals
are statements, which can only perform side-effect operations.

Here is an example using the new Scala 3 optional syntax for conditionals:

// src/script/scala/progscala3/rounding/If.scala

(0 until 6).map { n =>
 if n%2 == 0 then

Scala Conditional Expressions | 83

https://oreil.ly/yItfq

 s"$n is even"
 else if n%3 == 0 then
 s"$n is divisible by 3"
 else
 n.toString
}

As discussed in “New Scala 3 Syntax—Optional Braces” on page 31, the then keyword
is required only if you pass the -new-syntax flag to the compiler or REPL. (This is
used in the code examples build.sbt file.) However, if you don’t use that flag, you
must wrap the predicate expressions, like n%2 == 0, in parentheses. If you use -old-
syntax instead, then parentheses are required and then is disallowed.

The bodies of each clause are so concise, we can write them on the same line as the if
or else expressions:

(0 until 6).map { n =>
 if n%2 == 0 then s"$n is even"
 else if n%3 == 0 then s"$n is divisible by 3"
 else n.toString
}

Here are the same examples using the original control syntax, with and without curly
braces:

// src/script/scala-2/progscala3/rounding/If.scala

(0 until 6).map { n =>
 if (n%2 == 0) {
 s"$n is even"
 } else if (n%3 == 0) {
 s"$n is divisible by 3"
 } else {
 n
 }
}

(0 until 6).map { n =>
 if (n%2 == 0) s"$n is even"
 else if (n%3 == 0) s"$n is divisible by 3"
 else n
}

What is the type of the returned value if objects of different types are returned by dif‐
ferent branches? The type will be the least upper bound of all the branches, the closest
supertype that matches all the potential values from each clause.

In the following example, the least upper bound is Option[String] because the three
branches return either Some[String] or None. The returned sequence is of type
IndexedSeq[Option[String]]:

84 | Chapter 3: Rounding Out the Basics

// src/script/scala/progscala3/rounding/IfTyped.scala

scala> val seq = (0 until 6) map { n =>
 | if n%2 == 0 then Some(n.toString)
 | else None
 | }
val seq: IndexedSeq[Option[String]] = Vector(Some(0), None, Some(2), ...)

Conditional and Comparison Operators
Table 3-1 lists the operators that can be used in conditional expressions.

Table 3-1. Conditional and comparison operators

Operator Operation Description

&& and The values on the left and right of the operator are true. The righthand side is only
evaluated if the lefthand side is true.

|| or At least one of the values on the left or right is true. The righthand side is only evaluated if
the lefthand side is false.

> greater than The value on the left is greater than the value on the right.

>= greater than or
equal to

The value on the left is greater than or equal to the value on the right.

< less than The value on the left is less than the value on the right.

<= less than or equal to The value on the left is less than or equal to the value on the right.

== equal to The value on the left is equivalent to the value on the right.

!= not equal to The value on the left is not equivalent to the value on the right.

The && and || operators are short-circuiting. They stop evaluating expressions as soon
as the answer is known. This is handy when you must work with null values:

scala> val s: String|Null = null
val s: String | Null = null

scala> val okay = s != null && s.length > 5
val okay: Boolean = false

Calling s.length would throw a NullPointerException without the s != null test
first. Note that we don’t use if here because we just want to know the Boolean value
of the expression.

The equivalence operators, == and its negation !=, check for logical equivalence
between instances, such as comparing field values. The equals method for the type
on the lefthand side is invoked for this purpose. You can implement this method
yourself, but it’s uncommon to do so because most of the time you compare case-class
instances where the compiler generated equals automatically for you! Most of the
Scala library types also define equals.

Conditional and Comparison Operators | 85

If you need to determine if two values are identical references, use the eq method or
its negation, ne.

See “Equality of Instances” on page 292 for more details.

for Comprehensions
Another familiar control structure that’s particularly feature rich in Scala is the for
loop, called for comprehension. They are expressions, not statements.

The term comprehension comes from set theory and has been used in several FP lan‐
guages. The term expresses the idea that we define a set or other collection by enu‐
merating the members explicitly or by specifying the properties that all members
satisfy. List comprehension in Python is a similar concept.

for Loops
Let’s start with a basic for expression. As for if expressions, I use the new format
options consistently in the code examples, except where noted:

// src/script/scala/progscala3/rounding/BasicFor.scala

for
 i <- 0 until 10 // Recall "until" means 10 is exclusive.
do println(i)

Since there is one expression inside the for…do, you can put the expression on the
same line after the for, and you can even put everything on one line:

for i <- 0 until 10
do println(i)

for i <- 0 until 10 do println(i)

As you might guess, this code says, “For every integer between 0 inclusive and 10
exclusive, print it on a new line.”

The do keyword indicates that nothing will be returned. Only side effects are per‐
formed. These kinds of for comprehensions are sometimes called for loops.

The original Scala 2 syntax is still supported, where parentheses or curly braces are
required and do is not used. The examples are written as follows:

// src/script/scala-2/progscala3/rounding/BasicFor.scala

for (i <- 0 until 10)
 println(i)

for (i <- 0 until 10) println(i)

86 | Chapter 3: Rounding Out the Basics

For all the for comprehension forms we’ll examine, neither the -new-syntax nor the
-old-syntax flag affect which syntax is allowed or restricted. Both are always
allowed.

From now on, I’ll only show Scala 3 syntax, but you can find Scala
2 versions of some examples in the code examples under the direc‐
tory src/*/scala-2/progscala3/… and a table of differences in
Table A-1.

Generators
The expression i <- 0 until 10 is called a generator, so named because it generates
individual values in some way. The left arrow operator (<-) is used to iterate through
any instance that supports iterative access to elements, such as Seq and Vector, and
also Set and Map, where order isn’t guaranteed:

scala> for i <- Set(0,2,1,2,3,4,4,5) do print(s"$i|")
0|5|1|2|3|4|

scala> for (key, value) <- Map("one" -> 1, "two" -> 2, "three" -> 3)
 | do println(s"$key -> $value")
one -> 1
two -> 2
three -> 3

Guards: Filtering Values
We can add if expressions, called guards, to filter elements:

// src/script/scala/progscala3/rounding/GuardFor.scala

for
 n <- 0 to 6 // Recall "to" means 6 is inclusive.
 if n%2 == 0
do println(n)

The output is the numbers 0, 2, 4, and 6. Note the sense of filtering; the guards
express what to keep, not remove.

Yielding New Values
So far our for loops have only performed side effects, writing to output. Usually, we
want to return a new collection, making our for expressions comprehensions rather
than loops. We use the yield keyword to express this intent:

// src/script/scala/progscala3/rounding/YieldingFor.scala

val evens = for

for Comprehensions | 87

 n <- 0 to 10
 if n%2 == 0
yield n

assert(evens == Vector(0, 2, 4, 6, 8, 10))

Each iteration through the for expression yields a new value held by n. These are
accumulated into a new collection that is assigned to the variable evens.

The type of collection returned by a for comprehension is inferred from the type of
collection being iterated over. Here, we started with a Range, but the comprehension
actually returns a Vector.

In the following example, a Vector[Int] is converted to a Vector[String]:

// src/script/scala/progscala3/rounding/YieldingForVector.scala

val odds = for
 number <- Vector(1,2,3,4,5)
 if number % 2 == 1
yield number.toString

assert(odds == Vector("1", "3", "5"))

Expanded Scope and Value Definitions
You can define immutable values inside the for expressions without using the val
keyword, like fn in the following example that uses the WeekDay enumeration we
defined earlier in this chapter:

// src/script/scala/progscala3/rounding/ScopedFor.scala

import progscala3.rounding.WeekDay

val days = for
 day <- WeekDay.values
 if day.isWorkingDay
 fn = day.fullName
yield fn

assert(days.toSeq.sorted ==
 Seq("Friday", "Monday", "Thursday", "Tuesday", "Wednesday"))

In this case, the for comprehension now returns an Array[String] because Week
Day.values returns an Array[WeekDay]. Because Arrays are Java Arrays and Java
doesn’t define a useful equals method, we convert to a Seq with toSeq and perform
the assertion check.

Now let’s consider a powerful use of Option with for comprehensions. Recall we dis‐
cussed Option as a better alternative to using null. It’s also useful to recognize that

88 | Chapter 3: Rounding Out the Basics

https://oreil.ly/AeTgU

Option behaves like a special kind of collection, limited to zero or one elements. In
fact, we can “comprehend” it too:

// src/script/scala/progscala3/rounding/ScopedOptionFor.scala

import progscala3.rounding.WeekDay
import progscala3.rounding.WeekDay.*

val dayOptions = Seq(
 Some(Mon), None, Some(Tue), Some(Wed), None,
 Some(Thu), Some(Fri), Some(Sat), Some(Sun), None)

val goodDays1 = for // First pass
 dayOpt <- dayOptions
 day <- dayOpt
 fn = day.fullName
yield fn
assert(goodDays1 ==
 Seq("Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday", "Sunday"))

Imagine that we call some services to return days of the week. The services return
Options because some of them can return a day of the week, while others can’t. Some
services can return a value like Some(Tue), for example, while others return None.
Now we want to remove and ignore the None values.

In the first expression of the for comprehension for goodDays1, each element extrac‐
ted is an Option, assigned to dayOpt. The next line uses the arrow to extract the value
in the option and assign it to day.

But wait! Doesn’t None throw an exception if you try to extract a value from it? Yes,
but the comprehension effectively checks for this case and skips the Nones. It’s as if we
added an explicit if dayOpt != None before the second line.

Hence, we construct a collection with only values from Some instances.

This can be written more concisely:

val goodDays2 = for // second, more concise pass
 case Some(day) <- dayOptions
 fn = day.fullName
yield fn
assert(goodDays2 ==
 Seq("Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday", "Sunday"))

This version makes the filtering even cleaner and more concise, using pattern match‐
ing. The expression case Some(day) <- dayOptions only succeeds when the
instance is a Some, skipping the None values, and it extracts the value into day, all in
one step. We’ll explore pattern matching in depth in Chapter 4.

for Comprehensions | 89

To recap, use a generator clause (with the left arrow, <-) when you are iterating
through a collection and extracting values. Use an assignment (with the equals sign,
=) when you are assigning a value from an expression that doesn’t involve iteration.
for comprehensions are required to start with a generator clause. If you really need to
define a value first, put it before the comprehension.

When working with loops in many languages, they provide break and continue key‐
words for breaking out of a loop completely or continuing to the next iteration,
respectively. Scala doesn’t have either of these keywords, but when writing idiomatic
Scala code, they aren’t missed. Use conditional expressions to test if a loop should
continue, or make use of recursion. Better yet, filter your collections ahead of time to
eliminate complex conditions within your loops.

Scala while Loops
The while loop is less frequently used. It executes a block of code while a condition is
true:

// src/script/scala/progscala3/rounding/While.scala

var count = 0
while count < 10
do
 count += 1
 println(count)

assert(count == 10)

Scala 3 dropped the do-while construct in Scala 2 because it was rarely used. It can be
rewritten using while, although awkwardly:

// src/script/scala/progscala3/rounding/DoWhileAlternative.scala

var count = 0
while
 count += 1
 println(count)
 count < 10
do {}
assert(count == 10)

Using try, catch, and finally Clauses
Through its use of functional constructs and strong typing, Scala encourages a coding
style that lessens the need for exceptions and exception handling. However, excep‐
tions are still supported, in part because they are common in non-Scala libraries.

90 | Chapter 3: Rounding Out the Basics

Unlike Java, Scala does not have checked exceptions. Java’s checked exceptions are
treated as unchecked by Scala. There is also no throws clause on method declarations.
However, there is a @throws annotation that is useful for Java interoperability. See
“Annotations” on page 468.

You throw an exception by writing throw MyException(…). To catch exceptions,
Scala uses pattern matching to specify the exceptions to be caught.

The following example implements a common application scenario—resource man‐
agement. We want to open files and process them in some way. In this case, we’ll just
count the lines. However, we must handle a few error scenarios. The file might not
exist, perhaps because the user misspelled the filenames. Also, something might go
wrong while processing the file. (We’ll trigger an arbitrary failure to test what hap‐
pens.) We need to ensure that we close all open file handles, whether or not we pro‐
cess the files successfully:

// src/main/scala/progscala3/rounding/TryCatch.scala
package progscala3.rounding
import scala.io.Source
import scala.util.control.NonFatal

/** Usage: scala rounding.TryCatch filename1 filename2 ... */
@main def TryCatch(fileNames: String*) =
 fileNames.foreach { fileName =>
 var source: Option[Source] = None
 try
 source = Some(Source.fromFile(fileName))
 val size = source.get.getLines.size
 println(s"file $fileName has $size lines")
 catch
 case NonFatal(ex) => println(s"Non fatal exception! $ex")
 finally
 for s <- source do
 println(s"Closing $fileName...")
 s.close
 }

Import scala.io.Source for reading input and scala.util.control.NonFatal
for matching on nonfatal exceptions (i.e., those where it’s reasonable to attempt
recovery).

Use the @main annotation to mark the method as the program entry point. The
arguments we expect are zero or more strings.

Declare the source to be an Option, so we can tell in the finally clause if we
successfully created an instance or not. We use a mutable variable, but it’s hidden
inside the implementation, and thread safety isn’t a concern in this code.

Using try, catch, and finally Clauses | 91

https://oreil.ly/o9ai3
https://oreil.ly/XNWJp

Start of the try clause.

Source.fromFile will throw a java.io.FileNotFoundException if the file
doesn’t exist. Otherwise, wrap the returned Source instance in a Some. Calling
get on the next line is safe because if we’re here, we know we have a Some. If
source were still a None, an exception would be thrown by get.

Catch nonfatal errors. For example, out of memory would be fatal.

Use a for comprehension to extract the Source instance from the Some and close
it. If source is None, then nothing happens.

Note the catch clause. Scala uses pattern matching to specify the exceptions you want
to catch. In this case, the clause case NonFatal(ex) =>… scala.util.control.Non
Fatal matches on and extracts any exception that isn’t considered fatal, binding the
exception instance to ex.

The finally clause is used to ensure proper resource cleanup in one place. Without
it, we would have to repeat the logic at the end of the try clause and the catch clause
to ensure our file handles are closed. Here we use a for comprehension to extract the
Source from the option. If the option is actually a None, nothing happens; the block
with the close call is not invoked. Note that since this is the main method, the han‐
dles would be cleaned up anyway on exit, but you’ll want to close resources in other
contexts.

When resources need to be cleaned up, whether or not the resource
is used successfully, put the cleanup logic in a finally clause.

This program is already compiled by sbt, and we can run it from the sbt prompt
using the runMain task, which lets us pass arguments. I have elided some output:

> runMain progscala3.rounding.TryCatch README.md foo/bar
file README.md has 148 lines
Closing README.md...
Non fatal exception! java.io.FileNotFoundException: foo/bar (...)

While I’ll rarely use null in this book, for reasons we saw in “Option, Some, and
None: Avoiding Nulls” on page 60, there are times when you might use null very
carefully instead of Option, like in the previous example, in order to simplify the
code:

// src/script/scala/progscala3/rounding/Uninitialized.scala
import scala.io.Source

92 | Chapter 3: Rounding Out the Basics

https://oreil.ly/5cqLV

2 Not to be confused with the keyword using that we discussed in “A Taste of Futures” on page 42.

import scala.compiletime.uninitialized

case class LineLoader(file: java.io.File):
 private var source: Source = uninitialized
 val lines = try
 source = Source.fromFile("README.md")
 source.getLines.toSeq
 finally
 if source != null then source.close

val ll = LineLoader(java.io.File("README.md"))
assert(ll.lines.take(1) == List("# Programming Scala, 3rd Edition"))

Import a special uninitialized value.

Use it when initializing a var field to null.

In Scala 2, _ was used for uninitialized var fields. This is deprecated in Scala 3
because uninitialized makes the intention more clear. For vars declared in meth‐
ods, you have to use null. Concrete vals must always be initialized.

Automatic resource management is a common pattern. Let’s use a Scala library
facility, scala.util.Using, for this purpose.2 Then we’ll actually implement our own
version to illustrate some powerful capabilities in Scala and better understand how
the library version works.

// src/main/scala/progscala3/rounding/FileSizes.scala
package progscala3.rounding

import scala.util.Using
import scala.io.Source

/** Usage: scala rounding.FileSizes filename1 filename2 ... */
@main def FileSizes(fileNames: String*) =
 val sizes = fileNames.map { fileName =>
 Using.resource(Source.fromFile(fileName)) { source =>
 source.getLines.size
 }
 }
 println(s"Returned sizes: ${sizes.mkString(", ")}")
 println(s"Total size: ${sizes.sum}")

This simple program also counts the number of lines in the files specified on the
command line. However, if a file is not readable or doesn’t exist, an exception is
thrown and processing stops. No other results are produced, unlike the preceding
TryCatch example, which continues processing the arguments specified.

Using try, catch, and finally Clauses | 93

https://oreil.ly/7Vg8i

See the scala.util.Using documentation for a few other ways this utility can be
used. For more sophisticated approaches to error handling, see “Retry Failing Tasks
with Cats and Scala”.

Call by Name, Call by Value
Now let’s implement our own application resource manager to learn a few powerful
techniques that Scala provides for us. This implementation will build on the TryCatch
example:

// src/main/scala/progscala3/rounding/TryCatchARM.scala
package progscala3.rounding
import scala.language.reflectiveCalls
import reflect.Selectable.reflectiveSelectable
import scala.util.control.NonFatal
import scala.io.Source

object manage:
 def apply[R <: { def close():Unit }, T](resource: => R)(f: R => T): T =
 var res: Option[R] = None
 try
 res = Some(resource) // Only reference "resource" once!!
 f(res.get) // Return the T instance
 catch
 case NonFatal(ex) =>
 println(s"manage.apply(): Non fatal exception! $ex")
 throw ex
 finally
 res match
 case Some(resource) =>
 println(s"Closing resource...")
 res.get.close()
 case None => // do nothing

/** Usage: scala rounding.TryCatchARM filename1 filename2 ... */
@main def TryCatchARM(fileNames: String*) =
 val sizes = fileNames.map { fileName =>
 try
 val size = manage(Source.fromFile(fileName)) { source =>
 source.getLines.size
 }
 println(s"file $fileName has $size lines")
 size
 catch
 case NonFatal(ex) =>
 println(s"caught $ex")
 0
 }
 println("Returned sizes: " + (sizes.mkString(", ")))

The output will be similar what we saw for TryCatch.

94 | Chapter 3: Rounding Out the Basics

https://oreil.ly/7Vg8i
https://oreil.ly/M8oP8
https://oreil.ly/M8oP8

This is a lovely little bit of separation of concerns, but to implement it, we used a few
new power tools.

First, we named our object manage rather than Manage. Normally, you follow the con‐
vention of using a leading uppercase letter for type names, but in this case we will use
manage like a function. We want client code to look like we’re using a built-in operator,
similar to a while loop. This is another example of Scala’s tools for building little
DSLs.

That manage.apply method declaration is hairy looking. Let’s deconstruct it. Here is
the signature again, spread over several lines and annotated:

def apply[
 R <: { def close():Unit },
 T]
 (resource: => R)
 (f: R => T) = ...

Two new things are shown here. R is the type of the resource we’ll manage. The
<: means R is a subtype of something else. In this case, any type used for R must
contain a close():Unit method. We declare this using a structural type defined
with the braces. What would be more intuitive, especially if you are new to struc‐
tural types, would be for all resources to implement a Closable interface that
defines a close():Unit method. Then we could say R <: Closable. Instead,
structural types let us use reflection and plug in any type that has a close():Unit
method (like Source). Reflection has a lot of overhead and structural types are a
bit scary, so reflection is an optional feature. Hence, we added the first two import
statements to tell the compiler to enable this feature.

T will be the type returned by the anonymous function passed in to do work with
the resource.

It looks like resource is a function with an unusual declaration. Actually,
resource is a by-name parameter, which we first encountered in “A Taste of
Futures” on page 42.

Finally we have a second parameter list containing a function for the work to do
with the resource. This function will take the resource as an argument and return
a result of type T.

Recapping point 1, here is how the apply method declaration would look if we could
assume that all resources implement a Closable abstraction:

object manage:
 def apply[R <: Closable, T](resource: => R)(f: R => T) =
 ...

Call by Name, Call by Value | 95

The line, res = Some(resource), is the only place resource is evaluated, which is
important because it is a by-name parameter. We learned in “A Taste of Futures” on
page 42 that they are lazily evaluated, only when used, but they are evaluated every
time they are referenced, just like a function call would be. The thing we pass as
resource inside TryCatchARM, Source.fromFile(fileName), should only be evalu‐
ated once inside apply to construct the Source for a file. The code correctly evaluates
it once.

So you have to use by-name parameters carefully, but their virtue is the ability to con‐
trol when and even if a block of code is evaluated. We’ll see another example shortly
where we will evaluate a by-name parameter repeatedly for a good reason.

To recap, it’s as if the res = … line is actually this:

res = Some(Source.fromFile(fileName))

After constructing res, it is passed to the work function f.

See how manage is used in TryCatchARM. It looks like a built-in control structure with
one parameter list that creates the Source, and a second parameter list that is a block
of code that works with the Source. So using manage looks something like a conven‐
tional while statement.

Like most languages, Scala normally uses call-by-value semantics. If we write val
source = Source.fromFile(fileName), it is evaluated immediately.

Supporting idiomatic code like our use of manage is the reason that Scala offers by-
name parameters, without which we would have to pass an anonymous function that
looks ugly:

manage(() => Source.fromFile(fileName)) { source =>

Then, within manage.apply, our reference to resource would now be a function call:

val res = Some(resource())

OK, that’s not a terrible burden, but call by name enables a syntax for building our
own control structures, like our manage utility.

Here is another example using call by name, this time repeatedly evaluating two by-
name parameters to implement a while-like loop construct called continue:

// src/script/scala/progscala3/rounding/CallByName.scala
import scala.annotation.tailrec

@tailrec
def continue(conditional: => Boolean)(body: => Unit): Unit =
 if conditional then
 body
 continue(conditional)(body)

96 | Chapter 3: Rounding Out the Basics

var count = 0
continue (count < 5) {
 println(s"at $count")
 count += 1
}
assert(count == 5)

Ensure the implementation is tail recursive.

Define a continue function that accepts two argument lists. The first list takes a
single, by-name parameter that is the conditional. The second list takes a single,
by-name value that is the body to be evaluated for each iteration.

Evaluate the condition. If true, evaluate the body and call continue recursively.

Try it!

So by-name parameters are evaluated every time they are referenced. In a sense, they
are lazy because evaluation is deferred, but possibly repeated over and over again.
Scala also provides lazy values, which are initialized once, but only when used.

Notice that our continue implementation shows how loop constructs can be replaced
with recursion.

Unfortunately, this ability to define our own control structures doesn’t work as nicely
with the new braceless syntax. We have to use parentheses and braces, as shown. If
continue really behaved like while or similar built-in constructs, we would be able to
use it with the same syntax while supports. However, a future release of Scala 3 may
support it.

By the way, by-name parameters are a less obvious example of type erasure, which we
discussed previously. Suppose we tried to add a second definition of continue that
stops if an integer by-name parameter goes negative:

def continue(conditional: => Boolean)(body: => Unit): Unit = ...
def continue(nonNegative: => Int)(body: => Unit): Unit = ...

These two definitions are considered identical because the implementation type of a
by-name parameter is a function type, Function0. The 0 is because these functions
take no arguments, but they return a value, of type Boolean or Int in our case. Hence,
they have a type parameter for the return type. You can remove the ambiguity here
using @targetName as before.

Lazy Values
By-name parameters show us that lazy evaluation is useful, but they are evaluated
every time they are referenced.

Lazy Values | 97

https://oreil.ly/J6G4M

There are times when you want to evaluate an expression once to initialize a field in
an instance, but you want to defer that invocation until the value is actually needed.
In other words, on-demand evaluation. This is useful when:

• The expression is expensive (e.g., opening a database connection) and you want
to avoid the overhead until the value is actually needed, which could be never.

• You want to improve startup times for modules by deferring work that isn’t
needed immediately.

• A field in an instance needs to be initialized lazily so that other initializations can
happen first.

We’ll explore the last scenario when we discuss “Initializing Abstract Fields” on page
305.

Here is a sketch of an example using a lazy val:

// src/script/scala/progscala3/rounding/LazyInitVal.scala

case class DBConnection():
 println("In constructor")
 type MySQLConnection = String
 lazy val connection: MySQLConnection =
 // Connect to the database
 println("Connected!")
 "DB"

The lazy keyword indicates that evaluation will be deferred until the value is
accessed.

Let’s try it. Notice when the println statements are executed:

scala> val dbc = DBConnection()
In constructor
val dbc: DBConnection = DBConnection()

scala> dbc.connection
Connected!
val res4: dbc.MySQLConnection = DB

scala> dbc.connection
val res5: dbc.MySQLConnection = DB

So how is a lazy val different from a method call? We see that “Connected!” was
only printed once, whereas if connection were a method, the body would be exe‐
cuted every time and we would see “Connected!” printed each time. Furthermore, we
didn’t see that message until we referenced connection the first time.

One-time evaluation makes little sense for a mutable field. Therefore, the lazy key‐
word is not allowed on vars.

98 | Chapter 3: Rounding Out the Basics

Lazy values are implemented with the equivalent of a guard. When client code refer‐
ences a lazy value, the reference is intercepted by the guard to check if initialization is
required. This guard step is really only essential the first time the value is referenced,
so that the value is initialized first before the access is allowed to proceed. Unfortu‐
nately, there is no easy way to eliminate these checks for subsequent calls. So lazy val‐
ues incur overhead that eager values don’t. Therefore, you should only use lazy values
when initialization is expensive, especially if the value may not actually be used.
There are also some circumstances where careful ordering of initialization dependen‐
cies is most easily implemented by making some values lazy (see “Initializing Abstract
Fields” on page 305).

There is a @threadUnsafe annotation you can add to a lazy val (in package
scala.annotation). It causes the initialization to use a faster mechanism that is not
thread-safe, so use it with caution.

Traits: Interfaces and Mixins in Scala
Until now, I have emphasized the power of FP in Scala. I waited until now to discuss
Scala’s features for OOP, such as how abstractions and concrete implementations are
defined and how inheritance is supported. We’ve seen some details in passing, like
abstract and case classes and objects, but now it’s time to cover these concepts.

Scala uses traits to define abstractions. We’ll explore most details in Chapter 10, but
for now, think of them as interfaces for declaring abstract member fields, methods,
and types, with the option of defining any or all of them, too.

Traits enable true separation of concerns and composition of behaviors (mixins).

Here is a typical enterprise developer task, adding logging. Let’s start with a service:

// src/script/scala/progscala3/rounding/Traits.scala
import util.Random

open class Service(name: String):
 def work(i: Int): (Int, Int) = (i, Random.between(0, 1000))

val service1 = new Service("one")
(1 to 3) foreach (i => println(s"Result: ${service1.work(i)}"))

This is a concrete class, but we intend to extend it—that is, to create subtypes
from it. In Scala 3, you declare such concrete classes with open.

The open keyword is optional in Scala 3.0. It indicates that subtypes can be derived
from this concrete class. See “Classes Open for Extension” on page 250 for details.

The output of the last line is the following:

Traits: Interfaces and Mixins in Scala | 99

Result: (1,975)
Result: (2,286)
Result: (3,453)

Now we want to mix in a standard logging library. For simplicity, we’ll just use
println.

Here is an enum for the logging level and two traits, one that defines the abstraction
and the other that implements the abstraction for logging to standard output:

enum Level:
 case Info, Warn, Error
 def ==(other: Level): Boolean = this.ordinal == other.ordinal
 def >=(other: Level): Boolean = this.ordinal >= other.ordinal

trait Logging:
 import Level.*

 def level: Level
 def log(level: Level, message: String): Unit

 final def info(message: String): Unit =
 if level >= Info then log(Info, message)
 final def warn(message: String): Unit =
 if level >= Warn then log(Warn, message)
 final def error(message: String): Unit =
 if level >= Error then log(Error, message)

trait StdoutLogging extends Logging:
 def log(level: Level, message: String) =
 println(s"${level.toString.toUpperCase}: $message")

For simplicity, just consider three levels and define two of the possible compari‐
son operators for them, relying on the built-in ordinal value for each case. Note
how concisely we could write the three cases with just one case keyword.

Implementers will need to define the current logging level and the log method.

The three methods info, warning, and error are declared final. If the current
logging level is less than or equal to the level for each method, then call the gen‐
eral log method, which subtypes must implement.

Log to standard output.

Finally, let’s declare a service that “mixes in” logging and use it:

case class LoggedService(name: String, level: Level)
 extends Service(name) with StdoutLogging:
 override def work(i: Int): (Int, Int) =
 info(s"Starting work: i = $i")
 val result = super.work(i)

100 | Chapter 3: Rounding Out the Basics

3 That’s not strictly true, in the sense that the extra I/O has changed the code’s interaction with the “world.”

 info(s"Ending work: result = $result")
 result

val service2 = LoggedService("two", Level.Info)
(1 to 3) foreach (i => println(s"Result: ${service2.work(i)}"))

Overriding the work method allows us to log when we enter and before we leave the
method. Scala requires the override keyword when you override a concrete method
in a supertype. This prevents mistakes when you didn’t know you were overriding a
method, for example from a library supertype. It also catches misspelled method
names that aren’t actually overrides! Note how we access the supertype work method,
using super.work.

Here is the output (the numbers will vary randomly):

INFO: Starting work: i = 1
INFO: Ending work: result = (1,737)
Result: (1,737)
INFO: Starting work: i = 2
INFO: Ending work: result = (2,310)
Result: (2,310)
INFO: Starting work: i = 3
INFO: Ending work: result = (3,273)
Result: (3,273)

Be very careful about overriding concrete methods! In this case, we
don’t change the behavior of the supertype method. We just log
activity, then call the supertype method, then log again. We are
careful to return the result unchanged that was returned by the
supertype method.

To mix in traits while constructing an instance as shown, we use the with keyword.
We can mix in as many as we want. Some traits might not modify existing behavior at
all and just add new useful, but independent, methods.

In this example, we modify the behavior of work, in order to inject logging, but we are
not changing its contract with clients, that is, its external behavior.3

There’s one more detail you might have noticed; the Logging.level method was not
defined in LoggedService, was it? In fact, it was defined, using the field level in the
constructor argument list. In Scala, an abstract method that takes no arguments can
be implemented by a val field in a subtype. The reason this is safe is because the
method signature only says that some instance of the declared type will be returned,
possibly a different instance on every invocation (like math.random works). However,

Traits: Interfaces and Mixins in Scala | 101

if we use a val, only a single instance will ever be returned, but that satisfies the
method’s “specification.”

A corollary is this; when declaring an abstract field in a supertype,
consider using a no-parameter method declaration instead. This
gives concrete implementations greater flexibility to use either a
val or a method to implement it.

There is a lot more to discuss about traits and mixin composition, as we’ll see.

When new Is Optional
In “A Sample Application” on page 20, we saw that new can be omitted when con‐
structing most instances, even for noncase classes. For case classes, the apply method
in the companion object is used. Other objects offer custom apply methods, like
Seq.apply, where Seq itself isn’t concrete. For all other types, you had to use new in
Scala 2.

Scala 3 extends the case-class scheme to all concrete classes. It generates a synthetic
object with apply methods corresponding to the constructors in the class, even for
library types compiled in other languages and Scala 2. Auxiliary (or secondary) con‐
structors are uncommon in Scala types, so we’ll wait until “Constructors in Scala” on
page 262 to discuss them in detail, but here is an example:

// src/script/scala/progscala3/typelessdomore/OptionalNew.scala

class Person(name: String, age: Int):
 def this() = this("unknown", 0)

Auxiliary constructors are named this. They must call another constructor.

This feature is called universal apply methods, in the sense of using apply to create
things. These apply methods are called constructor proxies. For example:

import java.io.File
val file = File("README.md") // No "new" needed, even for Java classes!

The motivation for this feature is to provide more uniform syntax.

A few rules to keep in mind:

• If a class already has a companion object (i.e., user-defined), the synthetic object
won’t be generated.

• If the object already has an apply method with a parameter list matching a con‐
structor, then a constructor proxy for it won’t be generated.

102 | Chapter 3: Rounding Out the Basics

• When a constructor takes no arguments, rewrite new Foo with Foo(). Omitting
the parentheses would be ambiguous for the compiler.

• For a type Foo with a companion object, you should still write new Foo(…)

inside the object’s apply methods when you want to call a constructor. Writing
Foo(…) without new will be interpreted as Foo.apply(…), if the arguments
match one of the apply method’s parameter lists, leading to infinite recursion!
This has always been necessary in Scala, of course, but it bears repeating in this
context.

• Anonymous classes require new.

An anonymous class is useful when you need just one instance of something, so
defining a named class is not necessary. It is created from a trait or a class, where any
abstract members are implemented within the declaration:

trait Welcome:
 def hello(name: String): Unit

val hello = new Welcome:
 def hello(name: String): Unit = println(s"Hello: $name")

There is no synthesized object for Welcome because it is not concrete, nor is one cre‐
ated for the anonymous class on the fly, so new is required.

For case-class companion objects, only the primary constructor
gets an autogenerated apply method, while in synthetic objects, all
constructors get a corresponding apply method (constructor
proxy). This difference is because it’s more common in Java libra‐
ries to define and use multiple constructors, and there is no con‐
cept of primary versus auxiliary constructors. Hence, all of them
need to be supported.

Recap and What’s Next
We’ve covered a lot of ground in these first three chapters. We learned how flexible
and concise Scala code can be. In this chapter, we learned some powerful constructs
for defining DSLs and for manipulating data, such as for comprehensions. Finally,
we learned more about enumerations and the basic capabilities of traits.

You should now be able to read quite a lot of Scala code, but there’s plenty more about
the language to learn. Next we’ll begin a deeper dive into Scala features.

Recap and What’s Next | 103

CHAPTER 4

Pattern Matching

Scala’s pattern matching provides deep inspection and decomposition of objects in a
variety of ways. It’s one of my favorite features in Scala. For your own types, you can
follow a protocol that allows you to control the visibility of internal state and how to
expose it to users. The terms extraction and destructuring are sometimes used for this
capability.

Pattern matching can be used in several code contexts, as we’ve already seen in “A
Sample Application” on page 20 and “Partial Functions” on page 36. We’ll start with a
change in Scala 3 for better type safety, followed by a quick tour of common and
straightforward usage examples, then explore more advanced scenarios. We’ll cover a
few more pattern-matching features in later chapters, once we have the background
to understand them.

Safer Pattern Matching with Matchable
Let’s begin with an important change in Scala 3’s type system that is designed to make
compile-time checking of pattern-matching expressions more robust.

Scala 3 introduced an immutable wrapper around Arrays called scala.IArray.
Arrays in Java are mutable, so this is intended as a safer way to work with them. In
fact, IArray is a type alias for Array to avoid the overhead of wrapping arrays, which
means that pattern matching introduces a hole in the abstraction. Using the Scala 3.0
REPL without the -source:future setting, observe the following:

// src/script/scala/progscala3/patternmatching/Matchable.scala
scala> val iarray = IArray(1,2,3,4,5)
 | iarray match
 | case a: Array[Int] => a(2) = 300 // Scala 3 warning!!
 | println(iarray)
val iarray: opaques.IArray[Int] = Array(1, 2, 300, 4, 5)

105

https://oreil.ly/0IdZ1

There are other examples where this can occur. To close this loophole, The Scala type
system now has a trait called Matchable. It fits into the type hierarchy as follows:

abstract class Any:
 def isInstanceOf
 def getClass
 def asInstanceOf // Cast to a new type: myAny.asInstanceOf[String]
 def ==
 def !=
 def ## // Alias for hashCode
 def equals
 def hashCode
 def toString

trait Matchable extends Any

class AnyVal extends Any, Matchable

class AnyRef extends Any, Matchable

Note that Matchable is a marker trait, as it currently has no members. However, a
future release of Scala may move getClass and isInstanceOf to Matchable, as they
are closely associated with pattern matching.

The intent is that pattern matching can only occur on values of type Matchable, not
Any. Since almost all types are subtypes of AnyRef and AnyVal, they already satisfy this
constraint, but attempting to pattern match on the following types will trigger warn‐
ings in future Scala 3 releases or when using -source:future with Scala 3.0:

• Type Any. Use Matchable instead, when possible.
• Type parameters and abstract types without bounds. Add <: Matchable.
• Type parameters and abstract types bounded only by universal traits. Add <:
Matchable.

We’ll discuss universal traits in “Value Classes” on page 258. We can ignore them for
now. As an example of the second bullet, consider the following method definition in
a REPL session with the -source:future flag restored:

scala> def examine[T](seq: Seq[T]): Seq[String] = seq map {
 | case i: Int => s"Int: $i"
 | case other => s"Other: $other"
 | }
2 | case i: Int => s"Int: $i"
 | ^^^
 | pattern selector should be an instance of Matchable,
 | but it has unmatchable type T instead

Now the type parameter T needs a bound:

106 | Chapter 4: Pattern Matching

https://oreil.ly/rNgJa

scala> def examine[T <: Matchable](seq: Seq[T]): Seq[String] = seq map {
 | case i: Int => s"Int: $i"
 | case other => s"Other: $other"
 | }
def examine[T <: Matchable](seq: Seq[T]): Seq[String]

scala> val seq = Seq(1, "two", 3, 4.4)
 | examine(seq)
val seq: Seq[Matchable] = List(1, two, 3, 4.4)
val res0: Seq[String] = List(Int: 1, Other: two, Int: 3, Other: 4.4)

Notice the inferred common supertype of the values in the sequence, seq. In Scala 2,
it would be Any.

Back to IArray, the example at the beginning now triggers a warning because the
IArray alias is not bounded by Matchable:

scala> val iarray = IArray(1,2,3,4,5)
 | iarray match
 | case a: Array[Int] => a(2) = 300
 |
3 | case a: Array[Int] => a(2) = 300
 | ^^^^^^^^^^
 | pattern selector should be an instance of Matchable,
 | but it has unmatchable type opaques.IArray[Int] instead

IArray is considered an abstract type by the compiler. Abstract types are not boun‐
ded by Matchable, which is why we now get the warning we want.

This is a significant change that will break a lot of existing code. Hence, warnings will
only be issued starting in a future Scala 3 release or when compiling with
-source:future.

Values, Variables, and Types in Matches
Let’s cover several kinds of matches. The following example matches on specific val‐
ues, all values of specific types, and it shows one way of writing a default clause that
matches anything:

// src/script/scala/progscala3/patternmatching/MatchVariable.scala

val seq = Seq(1, 2, 3.14, 5.5F, "one", "four", true, (6, 7))
val result = seq.map {
 case 1 => "int 1"
 case i: Int => s"other int: $i"
 case d: (Double | Float) => s"a double or float: $d"
 case "one" => "string one"
 case s: String => s"other string: $s"
 case (x, y) => s"tuple: ($x, $y)"
 case unexpected => s"unexpected value: $unexpected"
}

Values, Variables, and Types in Matches | 107

assert(result == Seq(
 "int 1", "other int: 2",
 "a double or float: 3.14", "a double or float: 5.5",
 "string one", "other string: four",
 "unexpected value: true",
 "tuple: (6, 7)"))

Because of the mix of values, seq is of type Seq[Matchable].

If one or more case clauses specify particular values of a type, they need to occur
before more general clauses that just match on the type. So we first check if the
anonymous value is an Int equal to 1. If so, we simply return the string "int 1".
If the value is another Int value, the next clause matches. In this case, the value is
cast to Int and assigned to the variable i, which is used to construct a string.

Match on any Double or Float value. Using | is convenient when two or more
cases are handled the same way. However, for this to work, the logic after the =>
must be type compatible for all matched types. In this case, the interpolated
string works fine.

Two case clauses for strings.

Match on a two-element tuple where the elements are of any type, and extract the
elements into the variables x and y.

Match all other inputs. The variable unexpected has an arbitrary name. Because
no type declaration is given, Matchable is inferred. This functions as the default
clause. The Boolean value from the sequence seq is assigned to unexpected.

We passed a partial function to Seq.map(). Recall that the literal syntax requires case
statements, and we have put the partial function inside parentheses or braces to pass
it to map. However, this function is effectively total, because the last clause matches any
Matchable. (It would be Any in Scala 2.) This means it wouldn’t match instances of
the few other types that aren’t Matchables, like IArray, but these types are no longer
candidates for pattern matching. From now on, I’ll just call partial functions like this
total.

Don’t use clauses with specific floating-point literal values because matching on
floating-point literals is a bad idea. Rounding errors mean two values that you might
expect to be the same may actually differ.

Matches are eager, so more specific clauses must appear before less specific clauses.
Otherwise, the more specific clauses will never get the chance to match. So the clauses
matching on particular values of types must come before clauses matching on the
type (i.e., on any value of the type). The default clause shown must be the last one.

108 | Chapter 4: Pattern Matching

Fortunately, the compiler will issue an “Unreachable case” warning if you make this
mistake. Try switching the two Int clauses to see what happens.

Match clauses are expressions, so they return a value. In this example, all clauses
return strings, so the return type of the match expression (and the partial function) is
String. Hence, the return type of the map call is List[String]. The compiler infers
the least upper bound, the closest supertype, for the types of values returned by all the
case clauses.

This is a contrived example, of course. When designing pattern-matching expres‐
sions, be wary of relying on a default case clause. Under what circumstances would
“none of the above” be the correct answer? It may indicate that your design could be
refined so you know more precisely all the possible matches that might occur, like a
sealed type hierarchy or enum, which we’ll discuss further. In fact, as we go through
this chapter, you’ll see more realistic scenarios and no default clauses.

Here is a similar example that passes an anonymous function to map, rather than a
partial function, plus some other changes:

// src/script/scala/progscala3/patternmatching/MatchVariable2.scala

val seq2 = Seq(1, 2, 3.14, "one", (6, 7))
val result2 = seq2.map { x => x match
 case _: Int => s"int: $x"
 case _ => s"unexpected value: $x"
}
assert(result2 == Seq(
 "int: 1", "int: 2", "unexpected value: 3.14",
 "unexpected value: one", "unexpected value: (6,7)"))

Use _ for the variable name, meaning we don’t capture it.

Catch-all clause that also uses x instead of capturing to a new variable.

The first case clause doesn’t need to capture the variable because it doesn’t exploit the
fact that the value is an Int. For example, it doesn’t call Int methods. Otherwise, just
using x wouldn’t be sufficient, as it has type Matchable.

Once again, braces are used around the whole anonymous function, but the optional
braces syntax is used inside the function for the match expression. In general, using a
partial function is more concise because we eliminate the need for x => x match.

When you use pattern matching with any of the collection meth‐
ods, like map and foreach, use a partial function.

Values, Variables, and Types in Matches | 109

There are a few rules and gotchas to keep in mind for case clauses. The compiler
assumes that a term that begins with a lowercase letter is the name of a variable that
will hold a matched value. If the term starts with a capital letter, it will expect to find a
definition already in scope.

This lowercase rule can cause surprises, as shown in the following example. The
intention is to pass some value to a method, then see if that value matches an element
in the collection:

// src/script/scala/progscala3/patternmatching/MatchSurprise.scala

def checkYBad(y: Int): Seq[String] =
 for x <- Seq(99, 100, 101)
 yield x match
 case y => "found y!"
 case i: Int => "int: "+i // Unreachable case!

The first case clause is supposed to match on the value passed in as y, but this is what
we actually get:

def checkBad(y: Int): Seq[String]
10 | case i: Int => "int: "+i // Unreachable case!
 | ^^^^^^
 | Unreachable case

We treat warnings as errors in our built.sbt settings, but if we didn’t, then calling
checkY(100) would return found y! for all three numbers.

The case y clause means “match anything because there is no type declaration, and
assign it to this new variable named y.” The y in the clause is not interpreted as a ref‐
erence to the method parameter y. Rather, it shadows that definition. Hence, this
clause is actually a default, match-all clause and we will never reach the second case
clause.

There are two solutions. First, we could use capital Y, although it looks odd to have a
method parameter start with a capital letter:

def checkYGood1(Y: Int): Seq[String] =
 for x <- Seq(99, 100, 101)
 yield x match
 case Y => "found y!"
 case i: Int => "int: "+i

Calling checkYGood1(100) returns List(int: 99, found y!, int: 101).

The second solution is to use backticks to indicate we really want to match against the
value held by y:

def checkYGood2(y: Int): Seq[String] =
 for x <- Seq(99, 100, 101)
 yield x match

110 | Chapter 4: Pattern Matching

 case `y` => "found y!"
 case i: Int => "int: "+i

In case clauses, a term that begins with a lowercase letter is
assumed to be the name of a new variable that will hold an extrac‐
ted value. To refer to a previously defined variable, enclose it in
backticks or start the name with a capital letter.

Finally, most match expressions should be exhaustive:

// src/script/scala/progscala3/patternmatching/MatchExhaustive.scala

scala> val seq3 = Seq(Some(1), None, Some(2), None)
val seq3: Seq[Option[Int]] = List(Some(1), None, Some(2), None)

scala> val result3 = seq3.map {
 | case Some(i) => s"int $i"
 | }
5 | case Some(i) => s"int $i"
 | ^
 | match may not be exhaustive.
 |
 | It would fail on pattern case: None

The compiler knows that the elements of seq3 are of type Option[Int], which could
include None elements. At runtime, a MatchError will be thrown if a None is encoun‐
tered. The fix is straightforward:

// src/script/scala/progscala3/patternmatching/MatchExhaustiveFix.scala

scala> val result3 = seq3.map {
 | case Some(i) => s"int $i"
 | case None => ""
 | }
val result3: Seq[String] = List(int 1, "", int 2, "")

“Problems in Pattern Bindings” on page 124 will discuss additional points about
exhaustive matching.

Matching on Sequences
Let’s examine the classic idiom for iterating through a Seq using pattern matching
and recursion and, along the way, learn some useful fundamentals about sequences:

// src/script/scala/progscala3/patternmatching/MatchSeq.scala

def seqToString[T](seq: Seq[T]): String = seq match
 case head +: tail => s"($head +: ${seqToString(tail)})"
 case Nil => "Nil"

Matching on Sequences | 111

https://oreil.ly/v89FW

Define a recursive method that constructs a String from a Seq[T] for some type
T, which will be inferred from the sequence passed in. The body is a single match
expression.

There are two match clauses and they are exhaustive. The first matches on any
nonempty Seq, extracting the first element as head and the rest of the Seq as
tail. These are common names for the parts of a Seq, which has head and tail
methods. However, here these terms are used as variable names. The body of the
clause constructs a String with the head followed by +: followed by the result of
calling seqToString on the tail, all surrounded by parentheses, (). Note this
method is recursive, but not tail recursive.

The only other possible case is an empty Seq. We can use the special case object
for an empty List, Nil, to match all the empty cases. This clause terminates the
recursion. Note that any type of Seq can always be interpreted as terminating
with a Nil, or we could use an empty instance of the actual type (examples
follow).

The operator +: is the cons (construction) operator for sequences. Recall that meth‐
ods that end with a colon (:) bind to the right, toward the Seq tail. However, +: in
this case clause is actually an object named +:, so we have a nice syntax symmetry
between construction of sequences, like val seq = 1 +: 2 +: Nil, and deconstruc‐
tion, like case 1 +: 2 +: Nil =>…. We’ll see later in this chapter how an object is
used to implement deconstruction.

These two clauses are mutually exclusive, so they could be written with the Nil clause
first.

Now let’s try it with various empty and nonempty sequences:

scala> seqToString(Seq(1, 2, 3))
 | seqToString(Seq.empty[Int])
val res0: String = (1 +: (2 +: (3 +: Nil)))
val res1: String = Nil

scala> seqToString(Vector(1, 2, 3))
 | seqToString(Vector.empty[Int])
val res2: String = (1 +: (2 +: (3 +: Nil)))
val res3: String = Nil

scala> seqToString(Map("one" -> 1, "two" -> 2, "three" -> 3).toSeq)
 | seqToString(Map.empty[String,Int].toSeq)
val res4: String = ((one,1) +: ((two,2) +: ((three,3) +: Nil)))
val res5: String = Nil

Note the common idiom for constructing an empty collection, like
Vector.empty[Int]. The empty methods are in the companion objects.

112 | Chapter 4: Pattern Matching

https://oreil.ly/1XejK
https://oreil.ly/DcRrP

Map is not a subtype of Seq because it doesn’t guarantee a particular order when you
iterate over it. Calling Map.toSeq creates a sequence of key-value tuples that happen
to be in insertion order, which is a side effect of the implementation for small Maps
and not true for arbitrary maps. The nonempty Map output shows parentheses from
the tuples as well as the parentheses added by seqToString.

Note the output for the nonempty Seq (actually List) and Vector. They show the
hierarchical structure implied by a linked list, with a head and a tail:

(1 +: (2 +: (3 +: Nil)))

So we process sequences with just two case clauses and recursion. This implies some‐
thing fundamental about all sequences: they are either empty or not. That sounds
trite, but once you recognize fundamental structural patterns like this, it gives you a
surprisingly general tool for “divide and conquer.” The idiom used by processSeq is
widely reusable.

To demonstrate the construction versus destruction symmetry, we can copy and paste
the output of the previous examples to reconstruct the original objects. However, we
have to add quotes around strings:

scala> val is = (1 +: (2 +: (3 +: Nil)))
val is: List[Int] = List(1, 2, 3)

scala> val kvs = (("one",1) +: (("two",2) +: (("three",3) +: Nil)))
val kvs: List[(String, Int)] = List((one,1), (two,2), (three,3))

scala> val map = Map(kvs*)
val map: Map[String, Int] = Map(one -> 1, two -> 2, three -> 3)

The Map.apply method expects a repeated parameter list of two-element tuples. In
order to use the sequence kvs, we use the * idiom so the compiler converts the
sequence to a repeated parameter list.

Try removing the parentheses that we added in the preceding string output.

For completeness, there is an analog of +: that can be used to process the sequence
elements in reverse, :+:

// src/script/scala/progscala3/patternmatching/MatchReverseSeq.scala

scala> def reverseSeqToString[T](l: Seq[T]): String = l match
 | case prefix :+ end => s"(${reverseSeqToString(prefix)} :+ $end)"
 | case Nil => "Nil"

scala> reverseSeqToString(Vector(1, 2, 3, 4, 5))
val res6: String = (((((Nil :+ 1) :+ 2) :+ 3) :+ 4) :+ 5)

Note that Nil comes first this time in the output. A Vector is used for the input
sequence to remind you that accessing a nonhead element is O(1) for a Vector, but

Matching on Sequences | 113

https://oreil.ly/DcRrP

O(N) for a List of size N! Hence, reverseSeqToString is O(N) for a Vector of size N
and O(N2) for a List of size N!

As before, you could use this output to reconstruct the collection:

scala> val revList1 = (((((Nil :+ 1) :+ 2) :+ 3) :+ 4) :+ 5)
val revList1: List[Int] = List(1, 2, 3, 4, 5) // but List is returned!

scala> val revList2 = Nil :+ 1 :+ 2 :+ 3 :+ 4 :+ 5 // unnecessary () removed
val revList2: List[Int] = List(1, 2, 3, 4, 5)

scala> val revList3 = Vector.empty[Int] :+ 1 :+ 2 :+ 3 :+ 4 :+ 5
val revList3: Vector[Int] = Vector(1, 2, 3, 4, 5) // how to get a Vector

Pattern Matching on Repeated Parameters
Speaking of repeated parameter lists, you can also use them in pattern matching:

// src/script/scala/progscala3/patternmatching/MatchRepeatedParams.scala

scala> def matchThree(seq: Seq[Int]) = seq match
 | case Seq(h1, h2, rest*) => // same as h1 +: h2 +: rest => ...
 | println(s"head 1 = $h1, head 2 = $h2, the rest = $rest")
 | case _ => println(s"Other! $seq")

scala> matchThree(Seq(1,2,3,4))
 | matchThree(Seq(1,2,3))
 | matchThree(Seq(1,2))
 | matchThree(Seq(1))
head 1 = 1, head 2 = 2, the rest = List(3, 4)
head 1 = 1, head 2 = 2, the rest = List(3)
head 1 = 1, head 2 = 2, the rest = List()
Other! List(1)

We see another way to match on sequences. If we don’t need rest, we can use the
placeholder, _, that is case Seq(h1, h2, _*). In Scala 2, rest* was written rest @
_*. The Scala 3 syntax is more consistent with other uses of repeated parameters.

Matching on Tuples
Tuples are also easy to match on, using their literal syntax:

// src/script/scala/progscala3/patternmatching/MatchTuple.scala

val langs = Seq(
 ("Scala", "Martin", "Odersky"),
 ("Clojure", "Rich", "Hickey"),
 ("Lisp", "John", "McCarthy"))

val results = langs.map {
 case ("Scala", _, _) => "Scala"

114 | Chapter 4: Pattern Matching

 case (lang, first, last) => s"$lang, creator $first $last"
}

Match a three-element tuple where the first element is the string “Scala” and we
ignore the second and third arguments.

Match any three-element tuple, where the elements could be any type, but they
are inferred to be Strings due to the input langs. Extract the elements into vari‐
ables lang, first, and last.

A tuple can be taken apart into its constituent elements. We can match on literal val‐
ues within the tuple, at any positions we want, and we can ignore elements we don’t
care about.

In Scala 3, tuples have enhanced features to make them more like linked lists, but
where the specific type of each element is preserved. Compare the following example
to the preceding implementation of seqToString, where *: replaces +: as the
operator:

scala> langs.map {
 | case "Scala" *: first *: last *: EmptyTuple =>
 | s"Scala -> $first -> $last"
 | case lang *: rest => s"$lang -> $rest"
 | }
val res0: Seq[String] = List(Scala -> Martin -> Odersky,
 Clojure -> (Rich,Hickey), Lisp -> (John,McCarthy))

The analog of Nil for tuples is EmptyTuple. The second case clause can handle any
tuple with one or more elements. Let’s create a new list by prepending EmptyTuple
itself and a one-element tuple:

scala> val l2 = EmptyTuple +: ("Indo-European" *: EmptyTuple) +: langs
val l2: Seq[Tuple] = List((), (Indo-European,), (Scala,Martin,Odersky),
 (Clojure,Rich,Hickey), (Lisp,John,McCarthy))

scala> l2.map {
 | case "Scala" *: first *: last *: EmptyTuple =>
 | s"Scala -> $first -> $last"
 | case lang *: rest => s"$lang -> $rest"
 | case EmptyTuple => EmptyTuple.toString
 | }
val res1: Seq[String] = List((), Indo-European -> (),
 Scala -> Martin -> Odersky, Clojure -> (Rich,Hickey), Lisp -> (John,McCarthy))

You might think that ("Indo-European") would be enough to construct a one-
element tuple, but the compiler just interprets the parentheses as unnecessary wrap‐
pers around the string! ("Indo-European" *: EmptyTuple) does the trick.

Just as we can construct pairs (two-element tuples) with ->, we can deconstruct them
that way too:

Matching on Tuples | 115

https://oreil.ly/GMHcJ

// src/script/scala/progscala3/patternmatching/MatchPair.scala

val langs2 = Seq("Scala" -> "Odersky", "Clojure" -> "Hickey")

val results = langs2.map {
 case "Scala" -> _ => "Scala"
 case lang -> last => s"$lang: $last"
}
assert(results == Seq("Scala", "Clojure: Hickey"))

Match on a tuple with the string “Scala” as the first element and anything as the
second element.

Match on any other, two-element tuple.

Recall that I said +: in patterns is actually an object in the scala.collection pack‐
age. Similarly, there is an *: object and a type alias for -> to Tuple2.type (effectively
the companion object for the Tuple2 case class) in the scala package.

Parameter Untupling
Consider this example using tuples:

// src/script/scala/progscala3/patternmatching/ParameterUntupling.scala

val tuples = Seq((1,2,3), (4,5,6), (7,8,9))
val counts1 = tuples.map { // result: List(6, 15, 24)
 case (x, y, z) => x + y + z
}

A disadvantage of the case syntax inside the anonymous function is the implication
that it’s not exhaustive, when we know it is for the tuples sequence. It is also a bit
inconvenient to add case. Scala 3 introduces parameter untupling that simplifies spe‐
cial cases like this. We can drop the case keyword:

val counts2 = tuples.map {
 (x, y, z) => x + y + z
}

We can even use anonymous variables:

val counts3 = tuples.map(_+_+_)

However, this untupling only works for one level of decomposition:

scala> val tuples2 = Seq((1,(2,3)), (4,(5,6)), (7,(8,9)))
 | val counts2b = tuples2.map {
 | (x, (y, z)) => x + y + z
 | }
 |
3 | (x, (y, z)) => x + y + z

116 | Chapter 4: Pattern Matching

https://oreil.ly/DcRrP

 | ^^^^^^
 | not a legal formal parameter

Use case for such, uh, cases.

Guards in Case Clauses
Matching on literal values is very useful, but sometimes you need a little additional
logic:

// src/script/scala/progscala3/patternmatching/MatchGuard.scala

val results = Seq(1,2,3,4).map {
 case e if e%2 == 0 => s"even: $e"
 case o => s"odd: $o"
}
assert(results == Seq("odd: 1", "even: 2", "odd: 3", "even: 4"))

Match only if e is even.

Match the only other possibility, that o is odd.

Note that we didn’t need parentheses around the condition in the if expression, just
as we don’t need them in for comprehensions. In Scala 2, this was true for guard
clause syntax too.

Matching on Case Classes and Enums
It’s no coincidence that the same case keyword is used for declaring special classes
and for case expressions in match expressions. The features of case classes were
designed to enable convenient pattern matching. The compiler implements pattern
matching and extraction for us. We can use it with nested objects, and we can bind
variables at any level of the extraction, which we are seeing for the first time now:

// src/script/scala/progscala3/patternmatching/MatchDeep.scala

case class Address(street: String, city: String)
case class Person(name: String, age: Int, address: Address)

val alice = Person("Alice", 25, Address("1 Scala Lane", "Chicago"))
val bob = Person("Bob", 29, Address("2 Java Ave.", "Miami"))
val charlie = Person("Charlie", 32, Address("3 Python Ct.", "Boston"))

val results = Seq(alice, bob, charlie).map {
 case p @ Person("Alice", age, a @ Address(_, "Chicago")) =>
 s"Hi Alice! $p"
 case p @ Person("Bob", 29, a @ Address(street, city)) =>
 s"Hi ${p.name}! age ${p.age}, in ${a}"
 case p @ Person(name, age, Address(street, city)) =>

Guards in Case Clauses | 117

 s"Who are you, $name (age: $age, city = $city)?"
}
assert(results == Seq(
 "Hi Alice! Person(Alice,25,Address(1 Scala Lane,Chicago))",
 "Hi Bob! age 29, in Address(2 Java Ave.,Miami)",
 "Who are you, Charlie (age: 32, city = Boston)?"))

Match on any person named “Alice”, of any age at any street address in Chicago.
Use p @ to bind variable p to the whole Person, while also extracting fields inside
the instance, in this case age. Similarly, use a @ to bind a to the whole Address
while also binding street and city inside the Address.

Match on any person named “Bob”, age 29 at any street and city. Bind p the whole
Person instance and a to the nested Address instance.

Match on any person, binding p to the Person instance and name, age, street,
and city to the nested fields.

If you aren’t extracting fields from the Person instance, we can just write p: Person
=> …

This nested matching can go arbitrarily deep. Consider this example that revisits the
enum Tree[T] algebraic data type from “Enumerations and Algebraic Data Types” on
page 79. Recall the enum definition, which also supports “automatic” pattern
matching:

// src/main/scala/progscala3/patternmatching/MatchTreeADTEnum.scala
package progscala3.patternmatching

enum Tree[T]:
 case Branch(left: Tree[T], right: Tree[T])
 case Leaf(elem: T)

Here we do deep matching on particular structures:

// src/script/scala/progscala3/patternmatching/MatchTreeADTDeep.scala
import progscala3.patternmatching.Tree
import Tree.{Branch, Leaf}

val tree1 = Branch(
 Branch(Leaf(1), Leaf(2)),
 Branch(Leaf(3), Branch(Leaf(4), Leaf(5))))
val tree2 = Branch(Leaf(6), Leaf(7))

for t <- Seq(tree1, tree2, Leaf(8))
yield t match
 case Branch(
 l @ Branch(_,_),
 r @ Branch(rl @ Leaf(rli), rr @ Branch(_,_))) =>
 s"l=$l, r=$r, rl=$rl, rli=$rli, rr=$rr"

118 | Chapter 4: Pattern Matching

 case Branch(l, r) => s"Other Branch($l, $r)"
 case Leaf(x) => s"Other Leaf($x)"

The same extraction could be done for the alternative version we defined using a
sealed class hierarchy in the original example. We’ll try it in “Sealed Hierarchies and
Exhaustive Matches” on page 121.

The last two case clauses are relatively easy to understand. The first one is highly
tuned to match tree1, although it uses _ to ignore some parts of the tree. In particu‐
lar, note that it isn’t sufficient to write l @ Branch. We need to write l @

Branch(_,_). Try removing the (_,_) here and you’ll notice the first case no longer
matches tree1, without any obvious explanation.

If a nested pattern match expression doesn’t match when you think
it should, make sure that you capture the full structure, like l @
Branch(_,_) instead of l @ Branch.

It’s worth experimenting with this example to capture different parts of the trees, so
you develop an intuition about what works, what doesn’t, and how to debug match
expressions.

Here’s an example using tuples. Imagine we have a sequence of (String,Double)
tuples for the names and prices of items in a store, and we want to print them with
their index. The Seq.zipWithIndex method is handy here:

// src/script/scala/progscala3/patternmatching/MatchDeepTuple.scala

val itemsCosts = Seq(("Pencil", 0.52), ("Paper", 1.35), ("Notebook", 2.43))

val results = itemsCosts.zipWithIndex.map {
 case ((item, cost), index) => s"$index: $item costs $cost each"
}
assert(results == Seq(
 "0: Pencil costs 0.52 each",
 "1: Paper costs 1.35 each",
 "2: Notebook costs 2.43 each"))

Note that zipWithIndex returns a sequence of tuples of the form (element, index),
or ((name, cost), index) in this case. We matched on this form to extract the three
elements and construct a string with them. I write code like this a lot.

Matching on Regular Expressions
Regular expressions (or regexes) are convenient for extracting data from strings that
have a particular structure. Here is an example:

Matching on Regular Expressions | 119

// src/script/scala/progscala3/patternmatching/MatchRegex.scala

val BookExtractorRE = """Book: title=([^,]+),\s+author=(.+)""".r
val MagazineExtractorRE = """Magazine: title=([^,]+),\s+issue=(.+)""".r

val catalog = Seq(
 "Book: title=Programming Scala Third Edition, author=Dean Wampler",
 "Magazine: title=The New Yorker, issue=January 2021",
 "Unknown: text=Who put this here??"
)

val results = catalog.map {
 case BookExtractorRE(title, author) =>
 s"""Book "$title", written by $author"""
 case MagazineExtractorRE(title, issue) =>
 s"""Magazine "$title", issue $issue"""
 case entry => s"Unrecognized entry: $entry"
}
assert(results == Seq(
 """Book "Programming Scala Third Edition", written by Dean Wampler""",
 """Magazine "The New Yorker", issue January 2021""",
 "Unrecognized entry: Unknown: text=Who put this here??"))

Match a book string, with two capture groups (note the parentheses), one for the
title and one for the author. Calling the r method on a string creates a regex from
it. Also match a magazine string, with capture groups for the title and issue
(date).

Use the regular expressions much like using case classes, where the string
matched by each capture group is assigned to a variable.

Because regexes use backslashes for constructs beyond the normal ASCII control
characters, you should either use triple-quoted strings for them, as shown, or use raw
interpolated strings, such as raw"foo\sbar".r. Otherwise, you must escape these
backslashes; for example "foo\\sbar".r. You can also define regular expressions by
creating new instances of the Regex class, as in new Regex("""\W+""").

Using interpolation in triple-quoted strings doesn’t work cleanly
for the regex escape sequences. You still need to escape these
sequences (e.g., s"""$first\\s+$second""".r instead of
s"""$first\s+$second""".r). If you aren’t using interpolation,
escaping isn’t necessary.

scala.util.matching.Regex defines several methods for other manipulations, such
as finding and replacing matches.

120 | Chapter 4: Pattern Matching

https://oreil.ly/B2dgd

Matching on Interpolated Strings
If you know the strings have an exact format, such as a precise number of spaces, you
can even use interpolated strings for pattern matching. Let’s reuse the catalog:

// src/script/scala/progscala3/patternmatching/MatchInterpolatedString.scala

val results = catalog.map {
 case s"""Book: title=$t, author=$a""" => ("Book" -> (t -> a))
 case s"""Magazine: title=$t, issue=$d""" => ("Magazine" -> (t -> d))
 case item => ("Unrecognized", item)
}
assert(results == Seq(
 ("Book", ("Programming Scala Third Edition", "Dean Wampler")),
 ("Magazine", ("The New Yorker", "January 2020")),
 ("Unrecognized", "Unknown: text=Who put this here??")))

Sealed Hierarchies and Exhaustive Matches
Let’s revisit the need for exhaustive matches and consider the situation where we have
an enum or the equivalent sealed class hierarchy.

First, let’s use the enum Tree[T] definition from earlier. We can pattern match on the
leafs and branches knowing we’ll never be surprised to see something else:

// src/script/scala/progscala3/patternmatching/MatchTreeADTExhaustive.scala
import progscala3.patternmatching.Tree
import Tree.{Branch, Leaf}

val enumSeq: Seq[Tree[Int]] = Seq(Leaf(0), Branch(Leaf(6), Leaf(7)))
val tree1 = for t <- enumSeq yield t match
 case Branch(left, right) => (left, right)
 case Leaf(value) => value
assert(tree1 == List(0, (Leaf(6),Leaf(7))))

Because it’s not possible for a user of Tree to add another case to the enum, these
match expressions can never break. They will always remain exhaustive.

As an exercise, change the case Branch to recurse on left and right (you’ll need to
define a method), then use a deeper tree example.

Let’s try a corresponding sealed hierarchy:

// src/main/scala/progscala3/patternmatching/MatchTreeADTSealed.scala
package progscala3.patternmatching

sealed trait STree[T] // "S" for "sealed"
case class SBranch[T](left: STree[T], right: STree[T]) extends STree[T]
case class SLeaf[T](elem: T) extends STree[T]

The match code is essentially identical:

Matching on Interpolated Strings | 121

import progscala3.patternmatching.{STree, SBranch, SLeaf}

val sealedSeq: Seq[STree[Int]] = Seq(SLeaf(0), SBranch(SLeaf(6), SLeaf(7)))
val tree2 = for t <- sealedSeq yield t match
 case SBranch(left, right) => (left, right)
 case SLeaf(value) => value
assert(tree2 == List(0, (SLeaf(6),SLeaf(7))))

A corollary is to avoid using sealed hierarchies and enums when the type hierarchy
needs to evolve. Instead, use an “open” object-oriented type hierarchy with polymor‐
phic methods instead of match expressions. We discussed this trade-off in “A Sample
Application” on page 20.

Chaining Match Expressions
Scala 3 changed the parsing rules for match expressions to allow chaining, as in this
contrived example:

// src/script/scala/progscala3/patternmatching/MatchChaining.scala

scala> for opt <- Seq(Some(1), None)
 | yield opt match {
 | case None => ""
 | case Some(i) => i.toString
 | } match { // matches on the String returned from the previous match
 | case "" => false
 | case _ => true
 | }
val res10: Seq[Boolean] = List(true, false)

Pattern Matching Outside Match Expressions
Pattern matching is not restricted to match expressions. You can use it in assignment
statements, called pattern bindings:

// src/script/scala/progscala3/patternmatching/Assignments.scala

scala> case class Address(street: String, city: String, country: String)
scala> case class Person(name: String, age: Int, address: Address)

scala> val addr = Address("1 Scala Way", "CA", "USA")
scala> val dean = Person("Dean", 29, addr)
val addr: Address = Address(1 Scala Way,CA,USA)
val dean: Person = Person(Dean,29,Address(1 Scala Way,CA,USA))

scala> val Person(name, age, Address(_, state, _)) = dean
val name: String = Dean
val age: Int = 29
val state: String = CA

122 | Chapter 4: Pattern Matching

They work in for comprehensions:

scala> val people = (0 to 4).map {
 | i => Person(s"Name$i", 10+i, Address(s"$i Main Street", "CA", "USA"))
 | }
val people: IndexedSeq[Person] = Vector(Person(Name0,10,Address(...)), ...)

scala> val nas = for
 | Person(name, age, Address(_, state, _)) <- people
 | yield (name, age, state)
val nas: IndexedSeq[(String, Int, String)] =
 Vector((Name0,10,CA), (Name1,11,CA), ...)

Suppose we have a function that takes a sequence of doubles and returns the count,
sum, average, minimum value, and maximum value in a tuple:

// src/script/scala/progscala3/patternmatching/AssignmentsTuples.scala

/** Return the count, sum, average, minimum value, and maximum value. */
def stats(seq: Seq[Double]): (Int, Double, Double, Double, Double) =
 assert(seq.size > 0)
 val sum = seq.sum
 (seq.size, sum, sum/seq.size, seq.min, seq.max)

val (count, sum, avg, min, max) = stats((0 until 100).map(_.toDouble))

Pattern bindings can be used with interpolated strings:

// src/script/scala/progscala3/patternmatching/AssignmentsInterpStrs.scala

val str = """Book: "Programming Scala", by Dean Wampler"""
val s"""Book: "$title", by $author""" = str : @unchecked
assert(title == "Programming Scala" && author == "Dean Wampler")

I’ll explain the need for @unchecked in a moment.

Finally, we can use pattern bindings with a regular expression to decompose a string.
Here’s an example for parsing (simple!) SQL strings:

// src/script/scala/progscala3/patternmatching/AssignmentsRegex.scala

scala> val c = """*|[\w,]+""" // cols
 | val t = """\w+""" // table
 | val o = """.*""" // other substrings
 | val selectRE =
 | s"""SELECT\\s*(DISTINCT)?\\s+($c)\\s*FROM\\s+($t)\\s*($o)?;""".r

scala> val selectRE(distinct, cols, table, otherClauses) =
 | "SELECT DISTINCT col1 FROM atable WHERE col1 = 'foo';": @unchecked
val distinct: String = DISTINCT
val cols: String = "col1 "
val table: String = atable
val otherClauses: String = WHERE col1 = 'foo'

Pattern Matching Outside Match Expressions | 123

See the source file for other examples. Because I used string interpolation, I had to
add extra backslashes (e.g., \\s instead of \s) in the last regular expression.

Next I’ll explain why the @unchecked type annotation was used.

Problems in Pattern Bindings
In general, keep in mind that pattern matching will throw MatchError exceptions
when the match fails. This can make your code fragile when used in assignments
because it’s harder to make them exhaustive. In the previous interpolated string and
regex examples, the String type for the righthand side values can’t ensure that the
matches will succeed.

Assume I didn’t have the : @unchecked type declaration. In Scala 2 and 3.0, both
examples would compile and work without MatchErrors. Starting in a future Scala 3
release or when compiling with -source:future, the examples fail to compile, for
example:

scala> val selectRE(distinct, cols, table, otherClauses) =
 | "SELECT DISTINCT col1 FROM atable WHERE col1 = 'foo';"
 |
2 | "SELECT DISTINCT col1 FROM atable WHERE col1 = 'foo';"
 | ^^
 |pattern's type String is more specialized than the righthand side
 |expression's type String
 |
 |If the narrowing is intentional, this can be communicated by adding
 |`: @unchecked` after the expression.

This compile-time enforcement makes your code more robust, but if you know the
declaration is safe, you can add the @unchecked type declaration, as we did earlier,
and the compiler will not complain.

However, if we silence these warnings, we may get runtime MatchErrors. Consider
the following examples with sequences:

// src/script/scala/progscala3/patternmatching/AssignmentsFragile.scala

scala> val h4a +: h4b +: t4 = Seq(1,2,3,4) : @unchecked
val h4a: Int = 1
val h4b: Int = 2
val t4: Seq[Int] = List(3, 4)

scala> val h2a +: h2b +: t2 = Seq(1,2) : @unchecked
val h2a: Int = 1
val h2b: Int = 2
val t2: Seq[Int] = List()

scala> val h1a +: h1b +: t1 = Seq(1) : @unchecked // MatchError!

124 | Chapter 4: Pattern Matching

scala.MatchError: List(1) (of class scala.collection.immutable.$colon$colon)
 ...

Seq doesn’t constrain the number of elements, so the lefthand matches may work or
fail. The compiler can’t verify at compile time if the match will succeed or throw a
MatchError, so it will report a warning unless the @unchecked type annotation is
added as shown. Sure enough, while the first two cases succeed, the last one raises a
MatchError.

Pattern Matching as Filtering in for Comprehensions
However, in a for comprehension, matching that isn’t exhaustive functions as a filter
instead:

// src/script/scala/progscala3/patternmatching/MatchForFiltering.scala

scala> val elems = Seq((1, 2), "hello", (3, 4), 1, 2.2, (5, 6))
val elems: Seq[Matchable] = List((1,2), hello, (3,4), 1, 2.2, (5,6))

scala> val what1 = for (case (x, y) <- elems) yield (y, x)
 | val what2 = for case (x, y) <- elems yield (y, x)
val what1: Seq[(Any, Any)] = List((2,1), (4,3), (6,5))
val what2: Seq[(Any, Any)] = List((2,1), (4,3), (6,5))

The case keyword is required for matching and filtering. The parentheses are
optional.

Note that the inferred common supertype for the elements in elems is Matchable, not
Any. For what1 and what2, the inferred type is a tuple—a subtype of Matchable. The
tuple members can be Any.

The case keyword was not required for Scala 2 or 3.0. Starting with a future Scala 3
release or compiling with -source:future will trigger the “narrowing” warning if
you omit the case keyword:

scala> val nope = for (x, y) <- elems yield (y, x)
1 |val nope = for (x, y) <- elems yield (y, x)
 | ^^^^^^
 |pattern's type (Any, Any) is more specialized than the right hand side
 |expression's type Matchable
 |
 |If the narrowing is intentional, this can be communicated by writing `case`
 |before the full pattern.
[source,scala]

When we discussed exhaustive matching previously, we used an example of a
sequence of Option values. We can filter out values in a sequence using pattern
matching:

Pattern Matching as Filtering in for Comprehensions | 125

scala> val seq = Seq(None, Some(1), None, Some(2.2), None, None, Some("three"))
scala> val filtered = for case Some(x) <- seq yield x
val filtered: Seq[Matchable] = List(1, 2.2, three)

Pattern Matching and Erasure
Consider the following example, where we attempt to discriminate between the
inputs List[Double] and List[String]:

// src/script/scala/progscala3/patternmatching/MatchTypesErasure.scala

scala> val results = Seq(Seq(5.5,5.6,5.7), Seq("a", "b")).map {
 | case seqd: Seq[Double] => ("seq double", seqd) // Erasure warning
 | case seqs: Seq[String] => ("seq string", seqs) // Erasure warning
 | case other => ("unknown!", other)
 | }
2 | case seqd: Seq[Double] => ("seq double", seqd) // Erasure warning
 | ^^^^^^^^^^^^^^^^^
 | the type test for Seq[Double] cannot be checked at runtime
3 | case seqs: Seq[String] => ("seq string", seqs) // Erasure warning
 | ^^^^^^^^^^^^^^^^^
 | the type test for Seq[String] cannot be checked at runtime

These warnings result from type erasure, where the information about the actual
types used for the type parameters is not retained in the compiler output. Hence,
while we can tell at runtime that the object is a Seq, we can’t check that it is a Seq[Dou
ble] or a Seq[String]. In fact, if we neglect the warning, the second case clause for
Seq[String] is unreachable. The first clause matches for all Seqs.

One ugly workaround is to match on the collection first, then use a nested match on
the head element to determine the type. We now have to handle an empty sequence
too:

// src/script/scala/progscala3/patternmatching/MatchTypesFix.scala

def doSeqMatch[T <: Matchable](seq: Seq[T]): String = seq match
 case Nil => ""
 case head +: _ => head match
 case _ : Double => "Double"
 case _ : String => "String"
 case _ => "Unmatched seq element"

val results = Seq(Seq(5.5,5.6), Nil, Seq("a","b")).map(seq => doSeqMatch(seq))
assert(results == Seq("Double", "", "String"))

Extractors
So how does pattern matching and destructuring or extraction work? Scala defines a
pair of object methods that are implemented automatically for case classes and for

126 | Chapter 4: Pattern Matching

many types in the Scala library. You can implement these extractors yourself to cus‐
tomize the behavior for your types. When those methods are available on suitable
types, they can be used in pattern-matching clauses.

However, you will rarely need to implement your own extractors. You also don’t need
to understand the implementation details to use pattern matching effectively. There‐
fore, you can safely skip the rest of this chapter now and return to this discussion
later, when needed.

unapply Method
Recall that the companion object for a case class has at least one factory method
named apply, which is used for construction. Using symmetry arguments, we might
infer that there must be another method generated called unapply, which is used for
deconstruction or extraction. Indeed, there is an unapply method, and it is invoked
in pattern-match expressions for most types.

There are several ways to implement unapply, specifically what is returned from it.
We’ll start with the return type used most often: an Option wrapping a tuple. Then
we’ll discuss other options for return types.

Consider again Person and Address from before:

person match
 case Person(name, age, Address(street, city)) => ...
 ...

Scala looks for Person.unapply(…) and Address.unapply(…) and calls them. They
return an Option[(…)], where the tuple type corresponds to the number of values
and their types that can be extracted from the instance.

By default for case classes, the compiler implements unapply to return all the fields
declared in the constructor argument list. That will be three fields for Person, of types
String, Int, and Address, and two fields for Address, both of type String. So the
Person companion object has methods that would look like this:

object Person:
 def apply(name: String, age: Int, address: Address) =
 new Person(name, age, address)
 def unapply(p: Person): Some[(String,Int,Address)] =
 Some((p.name, p.age, p.address))

Why is an Option used if the compiler already knows that the object is a Person?
Scala allows an implementation of unapply to veto the match for some reason and
return None, in which case Scala will attempt to use the next case clause. Also, we
don’t have to expose all fields of the instance if we don’t want to. We could suppress
our age, if we’re embarrassed by it. We could even add additional values to the
returned tuples.

Extractors | 127

When a Some wrapping a tuple is returned by an unapply, the compiler extracts the
tuple elements for use in the case clause or assignment, such as comparison with lit‐
eral values, binding to variables, or dropping them for _ placeholders.

However, note that the simple compiler-generated Person.unapply never fails, so
Some[…] is used as the return type, rather than Option[…].

The unapply methods are invoked recursively when necessary, so the nested Address
instance is processed first, then Person.

Recall the head +: tail expression we used previously. Now let’s understand how it
actually works. We’ve seen that the +: (cons) operator can be used to construct a new
sequence by prepending an element to an existing sequence, and we can construct an
entire sequence from scratch this way:

val list = 1 +: 2 +: 3 +: 4 +: Nil

Because +: is a method that binds to the right, we first prepend 4 to Nil, then pre‐
pend 3 to that list, and so forth.

If the construction of sequences is done with a method named +:, how can extraction
be done with the same syntax, so that we have uniform syntax for construction and
deconstruction/extraction?

To do that, the Scala library defines a special singleton object named +:. Yes, that’s the
name. Like methods, types can have names with a wide variety of characters.

It has just one method, the unapply method the compiler needs for our extraction
case statement. The declaration of unapply is conceptually as follows (some details
removed):

def unapply[H, Coll](collection: Coll): Option[(H, Coll)]

The head is of type H, which is inferred, and some collection type Coll, which repre‐
sents the type of the tail collection. So an Option of a two-element tuple with the head
and tail is returned.

We learned in “Defining Operators” on page 71 that types can be used with infix
notation, so head +: tail is valid syntax, equivalent to +:(head, tail). In fact, we
can use the normal notation in a case clause:

scala> def seqToString2[T](seq: Seq[T]): String = seq match
 | case +:(head, tail) => s"($head +: ${seqToString2(tail)})"
 | case Nil => "Nil"

scala> seqToString2(Seq(1,2,3,4))
val res0: String = (1 +: (2 +: (3 +: (4 +: Nil))))

Here’s another example, just to drive home the point:

128 | Chapter 4: Pattern Matching

https://oreil.ly/DcRrP

// src/script/scala/progscala3/patternmatching/Infix.scala

infix case class And[A,B](a: A, b: B)

val and1: And[String,Int] = And("Foo", 1)
val and2: String And Int = And("Bar", 2)
// val and3: String And Int = "Baz" And 3 // ERROR

val results = Seq(and1, and2).map {
 case s And i => s"$s and $i"
}
assert(results == Seq("Foo and 1", "Bar and 2"))

We mentioned earlier that you can pattern match pairs with ->. This feature is imple‐
mented with a val defined in Predef, ->. This is an alias for Tuple2.type, which sub‐
types Product2, which defines an unapply method that is used for these pattern-
matching expressions.

Alternatives to Option Return Values
While it is common to return an Option from unapply, any type with the following
signature is allowed, which Option also implements:

def isEmpty: Boolean
def get: T

A Boolean can also be returned or a Product type, which is a supertype of tuples, for
example. Here’s an example using Boolean where we want to discriminate between
two kinds of strings and the match is really implementing a true versus false analysis:

// src/script/scala/progscala3/patternmatching/UnapplyBoolean.scala

object ScalaSearch:
 def unapply(s: String): Boolean = s.toLowerCase.contains("scala")

val books = Seq(
 "Programming Scala",
 "JavaScript: The Good Parts",
 "Scala Cookbook").zipWithIndex // add an "index"

val result = for s <- books yield s match
 case (ScalaSearch(), index) => s"$index: found Scala"
 case (_, index) => s"$index: no Scala"

assert(result == Seq("0: found Scala", "1: no Scala", "2: found Scala"))

Define an object with an unapply method that takes a string, converts to lower‐
case, and returns the result of a predicate; does it contain “scala”?

Extractors | 129

https://oreil.ly/uxYB6
https://oreil.ly/n9mQL
https://oreil.ly/48cHO

Try it on a list of strings, where the first case match succeeds only when the string
contains “scala.”

Empty parentheses required.

Other single values can be returned. Here is an example that converts a Scala Map to a
Java HashMap:

// src/script/scala/progscala3/patternmatching/UnapplySingleValue.scala

import java.util.{HashMap as JHashMap}

case class JHashMapWrapper[K,V](jmap: JHashMap[K,V])
object JHashMapWrapper:
 def unapply[K,V](map: Map[K,V]): JHashMapWrapper[K,V] =
 val jmap = new JHashMap[K,V]()
 for (k,v) <- map do jmap.put(k, v)
 new JHashMapWrapper(jmap)

In action:

scala> val map = Map("one" -> 1, "two" -> 2)
val map: Map[String, Int] = Map(one -> 1, two -> 2)

scala> map match
 | case JHashMapWrapper(jmap) => jmap
val res0: java.util.HashMap[String, Int] = {one=1, two=2}

However, it’s not possible to implement a similar extractor for Java’s HashSet and
combine them into one match expression (because there are two possible return val‐
ues, not one):

// src/script/scala/progscala3/patternmatching/UnapplySingleValue2.scala
scala> ...
scala> val map = Map("one" -> 1, "two" -> 2)
scala> val set = map.keySet
scala> for x <- Seq(map, set) yield x match
 | case JHashMapWrapper(jmap) => jmap
 | case JHashSetWrapper(jset) => jset
... errors ...

See the source file for the full details. The Scala collections already have tools for con‐
verting between Scala and Java collections. See “Conversions Between Scala and Java
Collections” on page 463 for details.

Another option for unapply is to return a Product, or more specifically an object that
mixes in this trait, which is an abstraction for types when it is useful to treat the
member fields uniformly, such as retrieving them by index or iterating over them.
Tuples implement Product. We can use it as a way to provide several return values
extracted by unapply:

130 | Chapter 4: Pattern Matching

https://oreil.ly/ccwF8
https://oreil.ly/Zaj7J
https://oreil.ly/0zdOi

// src/script/scala/progscala3/patternmatching/UnapplyProduct.scala

class Words(words: Seq[String], index: Int) extends Product:
 def _1 = words
 def _2 = index

 def canEqual(that: Any): Boolean = ???
 def productArity: Int = ???
 def productElement(n: Int): Any = ???

object Words:
 def unapply(si: (String, Int)): Words =
 val words = si._1.split("""\W+""").toSeq
 new Words(words, si._2)

val books = Seq(
 "Programming Scala",
 "JavaScript: The Good Parts",
 "Scala Cookbook").zipWithIndex // add an "index"

val result = books.map {
 case Words(words, index) => s"$index: count = ${words.size}"
}
assert(result == Seq("0: count = 2", "1: count = 4", "2: count = 2"))

Now we need a class Words to hold the results when a match succeeds. Words
implements Product.

Define two methods for retrieving the first and second items. Note the method
names are the same as for two-element tuples.

The Product trait declares these methods too, so we have to provide definitions,
but we don’t need working implementations. This is because Product is actually a
marker trait for our purposes. All we really need is for Words to mixin this type.
So we simply invoke the ??? method defined in Predef, which always throws
NotImplementedError.

Matches on a tuple of String and Int.

Split the string on runs of whitespace.

unapplySeq Method
When you want to return a sequence of extracted items, rather than a fixed number
of them, use unapplySeq. It turns out the Seq companion object implements apply
and unapplySeq, but not unapply:

Extractors | 131

https://oreil.ly/uxYB6
https://oreil.ly/5QkK1
https://oreil.ly/tFOll

def apply[A](elems: A*): Seq[A]
final def unapplySeq[A](x: Seq[A]): UnapplySeqWrapper[A]

UnapplySeqWrapper is a helper class.

Matching with unapplySeq is invoked in this variation of our previous example for
+:, where we examine a sliding window of pairs of elements at a time:

// src/script/scala/progscala3/patternmatching/MatchUnapplySeq.scala

// Process pairs
def windows[T](seq: Seq[T]): String = seq match
 case Seq(head1, head2, tail*) =>
 s"($head1, $head2), " + windows(seq.tail)
 case Seq(head, tail*) =>
 s"($head, _), " + windows(tail)
 case Nil => "Nil"

val nonEmptyList = List(1, 2, 3, 4, 5)
val emptyList = Nil
val nonEmptyMap = Map("one" -> 1, "two" -> 2, "three" -> 3)

val results = Seq(nonEmptyList, emptyList, nonEmptyMap.toSeq).map {
 seq => windows(seq)
}
assert(results == Seq(
 "(1, 2), (2, 3), (3, 4), (4, 5), (5, _), Nil",
 "Nil",
 "((one,1), (two,2)), ((two,2), (three,3)), ((three,3), _), Nil"))

It looks like we’re calling Seq.apply(…), but in a match clause, we’re actually
calling Seq.unapplySeq. We grab the first two elements separately, and the rest of
the repeated parameters list as the tail.

Format a string with the first two elements, then move the window by one (not
two) by calling seq.tail, which is also equivalent to head2 +: tail.

We also need a match for a one-element sequence, such as near the end, or we
won’t have exhaustive matching. This time we use the tail in the recursive call,
although we actually know that this call to windows(tail) will simply return Nil.

The Nil case terminates the recursion.

We could rewrite the second case statement to skip the final invocation of
windows(tail), but I left it as is for simplicity.

We could still use the +: matching we saw before, which is more elegant and what I
would do:

132 | Chapter 4: Pattern Matching

https://oreil.ly/tyhMV

// src/script/scala/progscala3/patternmatching/MatchWithoutUnapplySeq.scala

val nonEmptyList = List(1, 2, 3, 4, 5)
val emptyList = Nil
val nonEmptyMap = Map("one" -> 1, "two" -> 2, "three" -> 3)

// Process pairs
def windows2[T](seq: Seq[T]): String = seq match
 case head1 +: head2 +: _ => s"($head1, $head2), " + windows2(seq.tail)
 case head +: tail => s"($head, _), " + windows2(tail)
 case Nil => "Nil"

val results = Seq(nonEmptyList, emptyList, nonEmptyMap.toSeq).map {
 seq => windows2(seq)
}
assert(results == Seq(
 "(1, 2), (2, 3), (3, 4), (4, 5), (5, _), Nil",
 "Nil",
 "((one,1), (two,2)), ((two,2), (three,3)), ((three,3), _), Nil"))

Working with sliding windows is actually so useful that Seq gives us two methods to
create them:

scala> val seq = 0 to 5
val seq: scala.collection.immutable.Range.Inclusive = Range 0 to 5

scala> seq.sliding(2).foreach(println)
ArraySeq(0, 1)
ArraySeq(1, 2)
ArraySeq(2, 3)
ArraySeq(3, 4)

scala> seq.sliding(3,2).foreach(println)
ArraySeq(0, 1, 2)
ArraySeq(2, 3, 4)

Both sliding methods return an iterator, meaning they are lazy and don’t immedi‐
ately make a copy of the collection, which is desirable for large collections. The sec‐
ond method takes a stride argument, which is how many steps to go for the next
sliding window. The default is one step. Note that none of the sliding windows con‐
tain our last element, 5.

Implementing unapplySeq
Let’s implement an unapplySeq method adapted from the preceding Words example.
We’ll tokenize the words as before but also remove all words shorter than a specified
value:

// src/script/scala/progscala3/patternmatching/UnapplySeq.scala

object Tokenize:

Extractors | 133

 // def unapplySeq(s: String): Option[Seq[String]] = Some(tokenize(s))
 def unapplySeq(lim_s: (Int,String)): Option[Seq[String]] =
 val (limit, s) = lim_s
 if limit > s.length then None
 else
 val seq = tokenize(s).filter(_.length >= limit)
 Some(seq)

 def tokenize(s: String): Seq[String] = s.split("""\W+""").toSeq

val message = "This is Programming Scala v3"
val limits = Seq(1, 3, 20, 100)

val results = for limit <- limits yield (limit, message) match
 case Tokenize() => s"No words of length >= $limit!"
 case Tokenize(a, b, c, d*) => s"limit: $limit => $a, $b, $c, d=$d"
 case x => s"limit: $limit => Tokenize refused! x=$x"

assert(results == Seq(
 "limit: 1 => This, is, Programming, d=ArraySeq(Scala, v3)",
 "limit: 3 => This, Programming, Scala, d=ArraySeq()",
 "No words of length >= 20!",
 "limit: 100 => Tokenize refused! x=(100,This is Programming Scala v3)"))

If we didn’t match on the limit value, this is what the declaration would be.

We match on a tuple with the limit for word size and the string of words. If suc‐
cessful, we return Some(Seq(words)), where the words are filtered for those with
a length of at least limit. We consider it unsuccessful and return None when the
input limit is greater than the length of the input string.

Split on whitespace.

Capture the first three words returned and the rest of them as a repeated parame‐
ters list (d).

Try simplifying this example to not do length filtering. Uncomment the line for com‐
ment 1 and work from there.

Recap and What’s Next
Along with for comprehensions, pattern matching makes idiomatic Scala code con‐
cise, yet powerful. It provides a protocol for extracting data inside data structures in a
principled way, one you can control by implementing custom unapply and unapply
Seq methods. These methods let you extract that information while hiding other
details. In fact, the information returned by unapply might be a transformation of the
actual fields in the instance.

134 | Chapter 4: Pattern Matching

Pattern matching is a hallmark of many functional languages. It is a flexible and con‐
cise technique for extracting data from data structures. We saw examples of pattern
matching in case clauses and how to use pattern matching in other expressions too.

The next chapter discusses a unique, powerful, but controversial feature in Scala—
context abstractions, formerly known as implicits, which are a set of tools for building
intuitive DSLs, reducing boilerplate, and making APIs both easier to use and more
amenable to customization.

Recap and What’s Next | 135

1 Because this chapter and the next one are extensively devoted to new Scala 3 features, I won’t use the “3” icon
in the margins again until Chapter 7.

CHAPTER 5

Abstracting Over Context: Type Classes
and Extension Methods

In previous editions of this book, this chapter was titled “Implicits” after the mecha‐
nism used to implement many powerful idioms in Scala. Scala 3 begins the migration
to new language constructs that emphasize purpose over mechanism, to make both
learning and using these idioms easier and to address some shortcomings of the prior
implementation. The transition will happen over several 3.X releases of Scala to make
it easier, especially for existing code bases. Therefore, I will cover both the Scala 2 and
3 techniques, while emphasizing the latter.1

All of these idioms fall under the umbrella abstracting over context. We saw a few
examples already, such as the ExecutionContext parameters needed in many Future
methods, discussed in “A Taste of Futures” on page 42. We’ll see many more idioms
now in this chapter and the next. In all cases, the idea of context will be some situa‐
tion where an extension to a type, a transformation to a new type, or an insertion of
values automatically is desired for easier programming. Frankly, in all cases, it would
be possible to live without the tools described here, but it would require more work
on the user’s part. This raises an important point, though. Make sure you use these
tools judiciously; all constructs have pros and cons.

How we define and use context abstractions are the most significant changes intro‐
duced in Scala 3 that will impact how your Scala code looks in the future (assuming
you stick with brace syntax). They are designed to make the purpose and application
of these abstractions more clear. The underlying implicit mechanism is still there, but
it’s now easier to use for specific purposes. The changes not only make intention

137

2 Adapted from this Dotty documentation.

more clear but also eliminate some boilerplate previously required when using
implicits, as well as fix other drawbacks of the Scala 2 idioms.

Four Changes
If you know Scala 2 implicits, the changes in Scala 3 can be summarized as follows:2

Given instances
Instead of declaring implicit terms (i.e., vals or methods) to be used to resolve
implicit parameters, the new given clause specifies how to synthesize the
required term from a type. The change de-emphasizes the previous distinction
where we had to know when to declare a method, an instance, or a type. Now,
most of the time we will specify that a particular type should be used to satisfy
the need for a value, and the compiler will do the rest.

Using clauses
Instead of using the keyword implicit to declare an implicit parameter list for a
method, we use the keyword using, and now it is also used when providing
parameters explicitly. The changes eliminate several ambiguities, and they allow a
method definition to have more than one implicit parameter list, now called
using clauses.

Given imports
When we use wildcards in import statements, they no longer import given
instances along with everything else. Instead, we use the given keyword to spec‐
ify when givens should be imported.

Implicit conversions
For the special case of given terms that are used for implicit conversions between
types, they are now declared as given instances of a standard Conversion class.
All other forms of implicit conversions will be phased out.

This chapter explores the context abstractions for extending types with additional
state and behavior using extension methods and type classes, which are defined using
given instances. We’ll also cover given imports and implicit conversions. In Chap‐
ter 6, we’ll explore using clauses and the specific idioms they support.

138 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

https://oreil.ly/bVNPG
https://oreil.ly/OaJZw

Extension Methods
In Scala 2, if we wanted to simulate adding new methods to existing types, we had to
do an implicit conversion to a wrapper type that implements the method. Scala 3 adds
extension methods that allow us to extend a type with new methods without conver‐
sion. By themselves, extension methods only allow us to add one or more methods,
but not new fields for additional state, nor is there a mechanism for implementing a
common abstraction. We’ll revisit those limitations when we discuss type classes.

But first, why not just modify the original source code? You may not have that option,
for example if it’s a third-party library. Also, adding too many methods and fields to
classes makes them very difficult to maintain. Every modification to an existing type
forces users to recompile their code, at least. This is especially annoying if the changes
involve functionality they don’t even use.

Context abstractions help us avoid the temptation to create types that contain lots of
utility methods that are used only occasionally. Our types can avoid mixing concerns.
For example, if some users want toJSON methods on a hierarchy of types, like our
Shapes in “A Sample Application” on page 20, then only those users are affected.

Hence, the goal is to enable ad hoc additions to types in a principled way, where types
remain focused on their core abstractions, while additional behaviors are added sepa‐
rately and only where needed. Global modifications that affect all users are
minimized.

However, a drawback of this separation of concerns is that the separate functionality
needs to track the evolution of the type hierarchy. If a field is renamed, the compiler
will catch it for us. If a new field is added, for example, Shape.color, it will be easy to
miss.

Let’s explore an example. Recall that we used the pair construction idiom, a -> b, to
create tuples (a, b), which is popular for creating Map instances:

val map = Map("one" -> 1, "two" -> 2)

In Scala 2, this is done using an implicit conversion to a library type ArrowAssoc in
Predef (some details omitted for simplicity):

implicit final class ArrowAssoc[A](private val self: A) {
 def -> [B](y: B): (A, B) = (self, y)
}

When the compiler sees the expression "one" -> 1, it sees that String does not have
the -> method. However, ArrowAssoc[T] is in scope, it has this method, and the class
is declared implicit. So the compiler will emit code to create an instance of ArrowAs
soc[String], with the string "one" passed as the self argument. Then ->(1) is
called to construct and return the tuple ("one", 1).

Extension Methods | 139

https://oreil.ly/uxYB6

If ArrowAssoc were not declared implicit, the compiler would not attempt to use it
for this purpose.

Let’s reimplement this using a Scala 3 extension method, using two ways to define it.
To avoid ambiguity with ->, I’ll use ~> and ~~> instead, but they work identically:

// src/script/scala/progscala3/contexts/ArrowAssocExtension.scala

scala> extension [A] (a: A)
 | def ~>[B](b: B): (A, B) = (a, b)
def ~>[A](a: A): [B](b: B): (A, B)

scala> extension [A,B] (a: A)
 | def ~~>(b: B): (A, B) = (a, b)
def ~~>[A, B](a: A)(b: B): (A, B)

scala> "one" ~> 1
val res0: (String, Int) = (one,1)

scala> "two" ~~> 2
val res1: (String, Int) = (two,2)

scala> ~>("ONE")(1.1)
val res2: (String, Double) = (ONE,1.1)

scala> ~~>("TWO")(2.2)
val res3: (String, Double) = (TWO,2.2)

Note the method signatures returned by the REPL for both definitions.

The syntax for defining an extension method starts with the extension keyword, fol‐
lowed by type parameters, an argument list for the type being extended, and one or
more methods.

The difference between the two methods is where we specify the B type parameter.
The first definition for ~> is how type parameters are specified for regular type and
method definitions, where A is needed for the type being extended and B is only
needed on the method. The second syntax for ~~> is an alternative, where all the type
parameters are specified after the extension keyword. The value a is used to refer to
the instance of the extended type, A.

From the method signatures shown, we see that each method has two parameter lists.
The first list is for the target instance of type A. The second list is for the instance of B.
In fact, both methods can be called like any other method, as shown in the last two
examples.

So when the compiler sees "one" ~> 1, it finds the ~> method in scope and emits
code to call it. Using an implicit conversion to wrap the a value in a new instance, as

140 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

required in Scala 2, is no longer necessary. Extension methods are a more straightfor‐
ward mechanism than implicit conversions in Scala 2.

Let’s complete an example we started in “Defining Operators” on page 71, where we
showed that parameterized types with two parameters can be written with infix nota‐
tion. At the time, we didn’t know how to support using the same type name as an
operator for constructing instances. Specifically, we defined a type <+> allowing dec‐
larations like Int <+> String, but we couldn’t define a value of this type using the
same literal syntax, for example, 2 <+> "two". Now we can do this by defining an
extension method <+> as follows:

// src/script/scala/progscala3/contexts/InfixTypeRevisited.scala
import scala.annotation.targetName

@targetName("TIEFighter") case class <+>[A,B](a: A, b: B)
extension [A] (a: A) def <+>[B](b: B): A <+> B = new <+>(a, b)

val ab1: Int <+> String = 1 <+> "one"
val ab2: Int <+> String = <+>(1, "one")

The same case class defined in “Defining Operators” on page 71.

The extension method definition. When only one method is defined, you can
define it on the same line, as shown. Note that new must be used on the righthand
side to disambiguate between the type <+> and the method (but we’re pushing the
limits of readability).

This line failed to compile before, but now the extension method is applied to
Int and invoked with the String argument "one".

Constructing a case-class instance the old-fashioned way.

With extension methods, we get the ability to call methods like -> when we need
them, while keeping types as focused and uncluttered as possible.

So far we have extended classes. What about extension methods on objects? An
object can be thought of as a singleton. To get its type, use Foo.type:

// src/script/scala/progscala3/contexts/ObjectExtensionMethods.scala
scala> object Foo:
 | def one: Int = 1
 |
 | extension (foo: Foo.type)
 | def add(i: Int): Int = i + foo.one
def add(foo: Foo.type)(i: Int): Int

scala> Foo.one
 | Foo.add(10)

Extension Methods | 141

val res0: Int = 1
val res1: Int = 11

Note the method signature returned by the REPL. Foo.type, the Foo object’s type, is
being extended. Incidentally, the type of a case-class companion object is the case-
class name with .type, such as Person.type for the Person case class we used in
Chapter 4.

Build Your Own String Interpolator
The code examples contain another example of extension methods that are used to
implement a string interpolator for parsing simple SQL queries such as sql"SELECT
name, salary FROM employees;". See src/main/scala/progscala3/contexts/SQLStrin‐
gInterpolator.scala. It uses the same mechanism as Scala’s built-in interpolators, s"…",
f"…", and raw"…" (see “Interpolated Strings” on page 82). The sql method is
implemented as an extension method for the library type scala.StringContext.

The example illustrates two important points. First, we can use extension methods
(and type classes, which follow next) to enhance library code that we don’t own or
control! Second, string interpolators are not required to return a new string. They can
return any type we want.

Type Classes
The next step beyond extension methods is to implement an abstraction, so all type
extensions are done uniformly. A term that is popular for these kinds of extensions is
type class, which comes from the Haskell language, where this idea was pioneered.
The word class in this context is not the same as a Scala class, which can be confus‐
ing. For this reason, some people like to spell it typeclass, to reinforce the distinction
even more.

Type classes will also give us the ability to have state across all instances of a type, like
the state you might keep in a type’s companion object. I’ll call it type-level state for
convenience. We won’t gain the ability to add fields to individual instances of a class
(i.e., instance-level state). When that’s required, you’ll need to add the fields to the
original type definition or use mixin traits.

As an example, consider our Shape hierarchy from “A Sample Application” on page
20. We want the ability to call someShape.toJSON that returns a JSON representation
appropriate for each type. Let’s examine the pros and cons of using a type class to
implement this feature.

142 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

https://oreil.ly/yggfV

Scala 3 Type Classes
A type class is declared with a trait that defines the abstraction. It can have any exten‐
sion (instance) methods, as well as type-level members, meaning across all instances.
A type class provides another way to implement mixin composition (see “Traits:
Interfaces and Mixins in Scala” on page 99). The trait for the abstraction is valuable
for ensuring that all “instances” of the type class follow the same protocol uniformly.
We will define one instance of the type class for each type that needs the toJSON
method. Each instance will customize the implementation as required for the corre‐
sponding type.

To keep things simple, we’ll return JSON-formatted strings, not objects from some
JSON library:

// src/main/scala/progscala3/contexts/json/ToJSON.scala
package progscala3.contexts.json

trait ToJSON[T]:
 extension (t: T) def toJSON(name: String = "", level: Int = 0): String

 protected val indent = " "
 protected def indentation(level: Int): (String,String) =
 (indent * level, indent * (level+1))
 protected def handleName(name: String): String =
 if name.length > 0 then s""""$name": """ else ""

This is the Scala 3 type class pattern. We define a trait with a type parameter. It has
one extension method, toJSON, the public method users care about. This is an
instance method for instances of the target type T. The protected methods, indenta
tion and handleName, and the indent value, are implementation details. They are
type-level members, not instance-level members, which is why these two methods are
not extension methods.

Now create instances of the type class, one for Point and one each for the Shape
types, with implementations for Rectangle and Triangle omitted:

// src/main/scala/progscala3/contexts/typeclass/new1/ToJSONTypeClasses.scala
package progscala3.contexts.typeclass.new1

import progscala3.introscala.shapes.{Point, Shape, Circle, Rectangle, Triangle}
import progscala3.contexts.json.ToJSON

given ToJSON[Point] with
 extension (point: Point)
 def toJSON(name: String = "", level: Int = 0): String =
 val (outdent, indent) = indentation(level)
 s"""${handleName(name)}{
 |${indent}"x": "${point.x}",
 |${indent}"y": "${point.y}"
 |$outdent}""".stripMargin

Type Classes | 143

given ToJSON[Circle] with
 extension (circle: Circle)
 def toJSON(name: String = "", level: Int = 0): String =
 val (outdent, indent) = indentation(level)
 s"""${handleName(name)}{
 |${indent}${circle.center.toJSON("center", level + 1)},
 |${indent}"radius": ${circle.radius}
 |$outdent}""".stripMargin

The given keyword declares an instance of the type class, ToJSON[Point]. The
extension method for ToJSON is implemented. Note that with is used to start the
body where the abstract members of ToJSON are implemented.

A given for ToJSON[Circle].

Here is an entry point to try it:

@main def TryJSONTypeClasses() =
 println(s"summon[ToJSON[Point]] = ${summon[ToJSON[Point]]}")
 println(s"summon[ToJSON[Circle]] = ${summon[ToJSON[Circle]]}")
 println(Circle(Point(1.0,2.0), 1.0).toJSON("circle", 0))
 println(Rectangle(Point(2.0,3.0), 2, 5).toJSON("rectangle", 0))
 println(Triangle(
 Point(0.0,0.0), Point(2.0,0.0), Point(1.0,2.0)).toJSON("triangle", 0))

The summon method is described ahead.

Running TryJSONTypeClasses prints the following:

> runMain progscala3.contexts.typeclass.new1.TryJSONTypeClasses
...
summon[ToJSON[Point]] = ...given_ToJSON_Point...
summon[ToJSON[Circle]] = ...given_ToJSON_Circle...
"circle": {
 "center": {
 "x": "1.0",
 "y": "2.0"
 },
 "radius": 1.0
}
...

The first two lines of output show us the names generated by the compiler:
given_ToJSON_Point and given_ToJSON_Circle, respectively (with other details
omitted). Each of these given instances is an object. They can be used directly,
although because these naming conventions are a compiler implementation detail, it’s
more robust to use the Predef.summon method. If you know Scala 2 implicits, summon
works the same as the implicitly method. You specify a type parameter and it

144 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

https://oreil.ly/uxYB6

returns the given instance or implicit value in scope for that type. We’ll see more
examples where summon is used as we go.

Not all given instances are type class instances. We’ll see other examples in this chap‐
ter and the next.

There’s a problem with our current implementation. What if we have a Seq[Shape]
and we want to use toJSON?

Seq(Circle(Point(1.0,2.0), 1.0), Rectangle(Point(2.0,3.0), 2, 5)).map(
 shape => shape.toJSON("shape", 0))

We get an error for shape.toJSON("shape", 0)) that toJSON is not a member of
Shape. We didn’t explicitly define a given for ToJSON[Shape]. Even if we did, the
usual object-oriented method dispatch rules do not work for extension methods!

What if we add a given for Shape that pattern matches on the type of Shape?

given ToJSON[Shape] with
 extension (shape: Shape) def toJSON(name: String, level: Int): String =
 shape match
 case c: Circle => c.toJSON(name, level)
 case r: Rectangle => r.toJSON(name, level)
 case t: Triangle => t.toJSON(name, level)

This compiles, but we get an infinite recursion at runtime! This is because the same
ToJSON[Shape].toJSON method is called recursively, not the more specific methods
for Circle, and so forth.

Instead, let’s call the compiler generated toJSON implementations directly using the
summon method. We’ll use a completely new implementation, just showing what’s new:

// src/main/scala/progscala3/contexts/typeclass/new2/ToJSONTypeClasses.scala

given ToJSON[Shape] with
 extension (shape: Shape)
 def toJSON(name: String = "", level: Int = 0): String =
 shape match
 case c: Circle =>
 summon[ToJSON[Circle]].toJSON(c)(name, level)
 case r: Rectangle =>
 summon[ToJSON[Rectangle]].toJSON(r)(name, level)
 case t: Triangle =>
 summon[ToJSON[Triangle]].toJSON(t)(name, level)

@main def TryJSONTypeClasses() =
 val c = Circle(Point(1.0,2.0), 1.0)
 val r = Rectangle(Point(2.0,3.0), 2, 5)
 val t = Triangle(Point(0.0,0.0), Point(2.0,0.0), Point(1.0,2.0))
 println("==== Use shape.toJSON:")
 Seq(c, r, t).foreach(s => println(s.toJSON("shape", 0)))
 println("==== call toJSON on each shape explicitly:")

Type Classes | 145

 println(c.toJSON("circle", 0))
 println(r.toJSON("rectangle", 0))
 println(t.toJSON("triangle", 0))

The output of …contexts.typeclass.new2.TryJSONTypeClasses (not shown) veri‐
fies that calling shape.toJSON, and the more specific circle.toJSON, now both work
as desired.

An alternative to using summon or the compiler-generated name is to provide names
for the given instances. A final variant is shown next (just for Triangle) and the
updated ToJSON[Shape]:

// src/main/scala/progscala3/contexts/typeclass/new3/ToJSONTypeClasses.scala

given triangleToJSON: ToJSON[Triangle] with
 def toJSON2(
 tri: Triangle, name: String = "", level: Int = 0): String =
 val (outdent, indent) = indentation(level)
 s"""${handleName(name)}{
 |${indent}${tri.point1.toJSON("point1", level + 1)},
 |${indent}${tri.point2.toJSON("point2", level + 1)},
 |${indent}${tri.point3.toJSON("point3", level + 1)},
 |$outdent}""".stripMargin
 extension (tri: Triangle)
 def toJSON(name: String = "", level: Int = 0): String =
 toJSON2(tri, name, level)

given ToJSON[Shape] with
 extension (shape: Shape)
 def toJSON(name: String = "", level: Int = 0): String =
 shape match
 case c: Circle => circleToJSON.toJSON2(c, name, level)
 case r: Rectangle => rectangleToJSON.toJSON2(r, name, level)
 case t: Triangle => triangleToJSON.toJSON2(t, name, level)

The given instance is now named triangleToJSON, instead of the synthesized
name given_ToJSON_Triangle. Note the name: Type syntax, like normal variable
declarations.

A type-level helper method. Note the first argument is a Triangle instance.

The extension method now calls the helper method.

Cleaner syntax. The helper methods are used; however, the type-level toJSON2
method is now part of the public abstraction for each given instance, which could
be confusing.

146 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

Polymorphic dispatch (i.e., object-oriented method dispatch) does
not work for extension methods! This is problematic in all the
ToJSON[Shape] variants, which match on the particular subtype of
Shape. This code will break as soon as a new Shape subtype is
added (e.g., Polygon)!

This example illuminates the trade-offs between choosing type classes with extension
methods versus object-oriented polymorphic methods. A Shape.toJSON method is a
very good candidate for a regular method, declared abstract in Shape and imple‐
mented in the concrete subtypes. If you need this method frequently in your domain
classes, it might be worth the disadvantage of expanding the API footprint and the
implementation size of your types. Furthermore, the match expressions in the
ToJSON[Shape] implementations are very fragile. Because Shape is deliberately open
for extension, meaning it is designed to support whatever subtypes users desire, the
match expressions in the different ToJSON[Shape] implementations will break as soon
as new Shape subtypes are added!

Three Kinds of Polymorphism
To recap, here are the three kinds of polymorphism we have encountered:

1. Extension methods implement ad hoc polymorphism because the polymorphic
behavior of toJSON is not tied to the type system hierarchy. Point and the Shapes
are not related in the type hierarchy (ignoring Any and AnyRef at the top of the
type hierarchy), but we defined toJSON with consistent behavior for all of them.

2. Traditional overriding of methods in subtypes is subtype polymorphism, which
allows supertypes to declare abstractions that are defined in subtypes. We had to
hack around this missing feature for toJSON! This mechanism is also the only
way to support instance-level fields, either defined in the core type hierarchy or
using mixin composition with traits.

3. For completeness, we encountered parametric polymorphism in “Parameterized
Types Versus Abstract Type Members” on page 66, where types like Seq[A] and
methods like map behave uniformly for any type A.

Let’s explore another example that illustrates the differences between instance-level
extension methods and type-level members. A second example will also help us inter‐
nalize all the new details we’re learning about given instances and type classes.

It makes sense to think of type-level members as the analogs of companion object
members. Each given instance for some type T is an object, so in a way, T gets an
additional companion object for each type class instance created.

Type Classes | 147

3 Adapted from the Dotty documentation.

Let’s look at type classes for Semigroup and Monoid. Semigroup generalizes the notion
of addition or composition. You know how addition works for numbers, and even
strings can be “added.” Monoid adds the idea of a unit value. If you add zero to a
number, you get the number back. If you prepend or append an empty string to
another string, you get the second string back.

Here are the definitions for these types:3

// src/main/scala/progscala3/contexts/typeclass/MonoidTypeClass.scala
package progscala3.contexts.typeclass
import scala.annotation.targetName

trait Semigroup[T]:
 extension (t: T)
 infix def combine(other: T): T
 @targetName("plus") def <+>(other: T): T = t.combine(other)

trait Monoid[T] extends Semigroup[T]:
 def unit: T

given StringMonoid: Monoid[String] with
 def unit: String = ""
 extension (s: String) infix def combine(other: String): String = s + other

given IntMonoid: Monoid[Int] with
 def unit: Int = 0
 extension (i: Int) infix def combine(other: Int): Int = i + other

Define an instance extension method combine and an alternative operator
method <+> that calls combine. Note that combining one element with another of
the same type returns a new element of the same type, like adding numbers. For
given instances of the type class, we will only need to define combine, since <+> is
already concrete.

The definition for unit, such as zero for addition of numbers. It’s not defined as
an extension method but rather as a type-level or object method because we only
need one instance of the value for all instances of a particular type T.

Define Monoid instances as givens for String and Int.

Even though the abstract combine extension method in Semigroup
is declared infix, the concrete combine methods are not automati‐
cally infix. They must be declared infix too.

148 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

https://oreil.ly/3vpva

The combine operation is associative. Here are examples for Strings and Ints:

// src/script/scala/progscala3/contexts/typeclass/MonoidTypeClass.scala
import progscala3.contexts.typeclass.{Monoid, given}

"2" <+> ("3" <+> "4") // "234"
("2" <+> "3") <+> "4" // "234"
("2" combine "3") combine "4" // "234"
StringMonoid.unit <+> "2" // "2"
"2" <+> StringMonoid.unit // "2"

2 <+> (3 <+> 4) // 9
(2 <+> 3) <+> 4 // 9
(2 combine 3) combine 4 // 9
IntMonoid.unit <+> 2 // 2
2 <+> IntMonoid.unit // 2

Import Monoid and the defined givens. This use of given in the import statement
will be explained in “Givens and Imports” on page 159.

Notice how each unit is referenced. Easy to remember names for the given instances
are convenient here. Alternatively, we could have kept them anonymous and used
summon[Monoid[String]].unit, for example, as before.

Finally, we don’t actually need to define separate instances for each Numeric type.
Here is how to implement it once for a type T for which Numeric[T] exists:

given NumericMonoid[T : Numeric]: Monoid[T] with
 def unit: T = summon[Numeric[T]].zero
 extension (t: T)
 infix def combine(other: T): T = summon[Numeric[T]].plus(t, other)

2.2 <+> (3.3 <+> 4.4) // 9.9
(2.2 <+> 3.3) <+> 4.4 // 9.9
(2.2 combine 3.3) combine 4.4 // 9.9

BigDecimal(3.14) <+> NumericMonoid.unit
NumericMonoid[BigDecimal].unit <+> BigDecimal(3.14)
NumericMonoid[BigDecimal].unit combine BigDecimal(3.14)

The righthand side could be written NumericMonoid[BigDecimal].unit, but Big
Decimal can be inferred. This doesn’t work for the next two lines because the
Monoid.unit is the object on which the methods are called.

The type [T : Numeric] is a context bound, a shorthand way of writing the definition
this way:

given NumericMonoid[T](using num: Numeric[T]): Monoid[T] with
 def unit: T = num.zero
 extension (t: T)
 infix def combine(other: T): T = num.plus(t, other)

Type Classes | 149

https://oreil.ly/xTpXU

Note the using clause. If a given Numeric is in scope for a particular type T, then this
type class instance can be used. The bodies are slightly different too. In the previous
version, we used summon to get the anonymous using parameter, so we can reference
zero and plus. In this version, we have a name for the using parameter, num.

Finally, you can still make this Monoid anonymous. Take either version we just dis‐
cussed and drop the name. Here are both variants:

given [T : Numeric]: Monoid[T] with
 def unit: T = summon[Numeric[T]].zero
 extension (t: T)
 infix def combine(other: T): T = summon[Numeric[T]].plus(t, other)
// or
given [T](using num: Numeric[T]): Monoid[T] with
 def unit: T = summon[Numeric[T]].zero
 extension (t: T)
 infix def combine(other: T): T = summon[Numeric[T]].plus(t, other)

BigDecimal(3.14) <+> summon[Monoid[BigDecimal]].unit
summon[Monoid[BigDecimal]].unit <+> BigDecimal(3.14)
summon[Monoid[BigDecimal]].unit combine BigDecimal(3.14)

In both cases, summon[Monoid[BigDecimal]].unit is now required, as shown.

Note the colon, :, before Monoid[T] with in both alternatives. It will be easy to forget
that colon. Fortunately, the compiler error message will tell you it’s missing.

We will return to context bounds in “Context Bounds” on page 167 and using clauses
in Chapter 6.

Alias Givens
While we have our Monoid example, let’s learn about another feature. Look again at
what the REPL prints when we define one of the NumericMonoid instances. Compare
it to a new ByteMonoid definition:

scala> given NumericMonoid[T : Numeric]: Monoid[T] with
 | def unit: T = summon[Numeric[T]].zero
 | extension (t: T) infix def combine(other: T): T =
 | summon[Numeric[T]].plus(t, other)
// defined class NumericMonoid

scala> given ByteMonoid: Monoid[Byte] with
 | def unit: Byte = 0
 | extension (b: Byte) infix def combine(other: Byte): Byte =
 | (b + other).toByte
// defined object ByteMonoid

150 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

With the type parameter T, NumericMonoid must be a class for which instances will
be created by the compiler when T is specified. In contrast, an object is created for
ByteMonoid (as it was for IntMonoid and StringMonoid).

Suppose you don’t want a given instance constructed eagerly. Perhaps it is imple‐
mented with something expensive like a database connection that should only be ini‐
tialized when it’s actually used, if it is used.

An alias given declares a named or anonymous given instance in a way that superfi‐
cially looks like a more verbose syntax than what we used previously, but it actually
produces a different result. Consider the following definitions:

// src/script/scala/progscala3/contexts/typeclass/MonoidAliasGiven.scala
scala> import progscala3.contexts.typeclass.Monoid

scala> given NumericMonoid2[T : Numeric]: Monoid[T] = new Monoid[T]:
 | println("Initializing NumericMonoid2")
 | def unit: T = summon[Numeric[T]].zero
 | extension (t: T) infix def combine(other: T): T =
 | summon[Numeric[T]].plus(t, other)
def NumericMonoid2
 [T](using evidence$1: Numeric[T]): progscala3.contexts.typeclass.Monoid[T]

scala> given StringMonoid2: Monoid[String] = new Monoid[String]:
 | println("Initializing StringMonoid2")
 | def unit: String = ""
 | extension (s: String)
 | infix def combine(other: String): String = s + other
lazy val StringMonoid2: progscala3.contexts.typeclass.Monoid[String]

In both examples, the syntax new Monoid[…]: body creates an anonymous subtype
of the Monoid trait. Those println statements are in the bodies of the subtypes, so
they will be called each time an instance is created.

Note the returned types printed by the REPL. Now we have a method for Numeric
Monoid2 and a lazy val for StringMonoid2 (see “Lazy Values” on page 97). What are
the implications of these details?

scala> 2.2 <+> (3.3 <+> 4.4) // 9.9
Initializing NumericMonoid2
Initializing NumericMonoid2
val res0: Double = 9.9

scala> (2.2 <+> 3.3) <+> 4.4 // 9.9
Initializing NumericMonoid2
Initializing NumericMonoid2
val res1: Double = 9.9

scala> "2" <+> ("3" <+> "4") // "234"
Initializing StringMonoid2
val res2: String = 234

Type Classes | 151

scala> ("2" <+> "3") <+> "4" // "234"
val res3: String = 234

The method NumericMonoid2 is called every single time the <+> extension method is
used for a Numeric[T] value. The println output occurs twice for each example
because we construct two instances, one for each <+> invocation. So for given instan‐
ces with type parameters, be careful about using an alias given.

However, because StringMonoid2 is a lazy val, it will be initialized once and only
once, and initialization will be delayed until the first time we use it. Hence, this is a
good option when you need delayed initialization.

Scala 2 Type Classes
Scala 2 also has a syntax for implementing type classes and instances. For a while, it
will still be supported, and you’ll see it in Scala 2 code bases. Returning to the ToJSON
type class, you write an implicit conversion that wraps the Point and Shape instances
in new instances of a type that has the toJSON method, then call the method.

First, we need a slightly different ToJSON trait because the extension method code
used previously won’t work with Scala 2:

// src/main/scala/progscala3/contexts/typeclass/old/ToJSONTypeClasses.scala
package progscala3.contexts.typeclass.old

import progscala3.introscala.shapes.{Point, Shape, Circle, Rectangle, Triangle}

trait ToJSONOld[T]:
 def toJSON(name: String = "", level: Int = 0): String

 protected val indent = " "
 protected def indentation(level: Int): (String,String) =
 (indent * level, indent * (level+1))
 protected def handleName(name: String): String =
 if name.length > 0 then s""""$name": """ else ""

A regular instance method, not an extension method.

Here is implementations for Point and Circle of toJSON type class instances using
Scala 2 syntax:

implicit final class PointToJSON(
 point: Point) extends ToJSONOld[Point]:
 def toJSON(name: String = "", level: Int = 0): String =
 val (outdent, indent) = indentation(level)
 s"""${handleName(name)}{
 |${indent}"x": "${point.x}",
 |${indent}"y": "${point.y}"
 |$outdent}""".stripMargin

152 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

implicit final class CircleToJSON(
 circle: Circle) extends ToJSONOld[Circle]:
 def toJSON(name: String = "", level: Int = 0): String =
 val (outdent, indent) = indentation(level)
 s"""${handleName(name)}{
 |${indent}${circle.center.toJSON("center", level + 1)},
 |${indent}"radius": ${circle.radius}
 |$outdent}""".stripMargin

Classes are declared to define the type class instances. Because Scala 3 type class
instances are (usually) implemented as objects, they are more consistent with the
type class instance terminology. Note that an instance of PointToJSON is created every
time an instance of Point calls toJSON, for example.

Use sbt to run the following to try out the code:

@main def TryJSONTypeClasses() =
 val c = Circle(Point(1.0,2.0), 1.0)
 val r = Rectangle(Point(2.0,3.0), 2, 5)
 val t = Triangle(Point(0.0,0.0), Point(2.0,0.0), Point(1.0,2.0))
 println(c.toJSON("circle", 0))
 println(r.toJSON("rectangle", 0))
 println(t.toJSON("triangle", 0))

Because these classes are declared as implicit, when the compiler sees circle.to
JSON(), for example, it will find the implicit conversion in scope that returns some
wrapper type that has this method.

The output of TryJSONOldTypeClasses works as expected. However, we didn’t solve
the problem of iterating through some Shapes and calling toJSON polymorphically.
You can try that yourself.

We didn’t declare our implicit classes as cases classes. In fact, Scala doesn’t allow an
implicit class to also be a case class. It wouldn’t make much sense anyway, because the
extra, autogenerated code for the case class would never be used. Implicit classes have
a very narrow purpose. Similarly, declaring them final is recommended to eliminate
some potential surprises when the compiler resolves which type classes to use.

If you need to support Scala 2 code for a while, then using this type class pattern will
work for a few versions of Scala 3. However, in most cases, it will be better to migrate
to the new type class syntax because it is more concise and purpose-built, and it
doesn’t require the overhead of implicit conversions.

Type Classes | 153

Scala 3 Implicit Conversions
We saw that an implicit conversion called ArrowAssoc was used in the Scala 2 library
to implement the "one" -> 1 idiom, whereas we can use an extension method in
Scala 3. We also saw implicit conversions used for type classes in Scala 2, while Scala 3
combines extension methods and given instances to avoid doing conversions.

Hence, in Scala 3, the need to do implicit conversions is greatly reduced, but it hasn’t
disappeared completely. Sometimes you want to convert between types for other rea‐
sons. Consider the following example that defines types to represent Dollars, Per
centages, and a person’s Salary, where the gross salary and the percentage to deduct
for taxes are encapsulated. When constructing a Salary instance, we want to allow
users to enter Doubles, for convenience. First, let’s define the types for the problem:

// src/main/scala/progscala3/contexts/accounting/NewImplicitConversions.scala
package progscala3.contexts.accounting

case class Dollars(amount: Double):
 override def toString = f"$$$amount%.2f"
 def +(d: Dollars): Dollars = Dollars(amount + d.amount)
 def -(d: Dollars): Dollars = Dollars(amount - d.amount)
 def /(d: Double): Dollars = Dollars(amount / d)
 def *(p: Percentage): Dollars = Dollars(amount * p.toMultiplier)

object Dollars:
 val zero = Dollars(0.0)

/**
 * @param amount where 11.0 means 11%, so 11% of 100 == 11.0.
 */
case class Percentage(amount: Double):
 override def toString = f"${amount}%.2f%%"
 def toMultiplier: Double = amount/100.0
 def +(p: Percentage): Percentage = Percentage(amount + p.amount)
 def -(p: Percentage): Percentage = Percentage(amount - p.amount)
 def *(p: Percentage): Percentage = Percentage(toMultiplier * p.toMultiplier)
 def *(d: Dollars): Dollars = d * this

object Percentage:
 val hundredPercent = Percentage(100.0)
 val zero = Percentage(0.0)

case class Salary(gross: Dollars, taxes: Percentage):
 def net: Dollars = gross * (Percentage.hundredPercent - taxes)

154 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

4 These calculations are crude and insufficiently accurate for real accounting applications. For one thing, Big
Decimal would be a safer representation.

Math operations.4

The Dollars class encapsulates a Double for the amount, with toString overridden
to return the familiar “$dollars.cents” output. Similarly, Percentage wraps a Double
and overrides toString.

Implicit conversions is an optional language feature that we enable by importing
scala.language.implicitConversions to enable this language feature. You can also
set the global -language:implicitConversions compiler flag. The following entry
point adds this import inside the method:

@main def TryImplicitConversions() =
 import scala.language.implicitConversions

 given Conversion[Double,Dollars] = d => Dollars(d)
 given Conversion[Double,Percentage] = d => Percentage(d)

 val salary = Salary(100_000.0, 20.0)
 println(s"salary: $salary. Net pay: ${salary.net}")

 given Conversion[Int,Dollars] with
 def apply(i:Int): Dollars= Dollars(i.toDouble)

 val dollars: Dollars = 10
 println(s"Dollars created from an Int: $dollars")

An import to enable the implicit conversion language feature.

The most concise syntax for declaring a given conversion from Double to
Dollars, and a second conversion from Double to Percentage.

A longer form for defining a conversion as an alias given.

Conversions are invoked when doing assignments, not just method arguments.

Running this example prints the following:

salary: Salary($100000.00,20.00%). Net pay: $80000.00
Dollars created from an Int: $10.00

If you define a given conversions in the REPL, observe what the REPL prints for the
following different forms:

...
scala> import progscala3.contexts.accounting.Dollars

Scala 3 Implicit Conversions | 155

 | import scala.language.implicitConversions

scala> given Conversion[Double,Dollars] = d => Dollars(d)
lazy val given_Conversion_Double_Dollars:
 Conversion[Double, progscala3.contexts.accounting.Dollars]

scala> given id: Conversion[Int,Dollars] = i => Dollars(i.toDouble)
lazy val id: Conversion[Int, progscala3.contexts.accounting.Dollars]

scala> given Conversion[Float,Dollars] with
 | def apply(f: Float): Dollars = Dollars(f.toDouble)
// defined object given_Conversion_Float_Dollars

scala> given ld: Conversion[Long,Dollars] with
 | def apply(l: Long): Dollars = Dollars(l.toDouble)
// defined object ld

For the anonymous instances, note the naming convention given_Conversion_A_B.

Why are the resulting types different? Both given_Conversion_Double_Dollars and
id are alias givens (see “Alias Givens” on page 150), so they are implemented as lazy
vals. Conversely, given_Conversion_Float_Dollars and ld use the given…with

syntax and define apply explicitly. These two givens are objects. Either approach
works fine for conversions, but the alias given syntax is more concise:

scala> val fromDouble: Dollars = 10.1 // invoke conversions in assignments
 | val fromInt: Dollars = 20
 | val fromFloat: Dollars = 30.3F
 | val fromLong: Dollars = 40L
val fromDouble: progscala3.contexts.accounting.Dollars = $10.10
val fromInt: progscala3.contexts.accounting.Dollars = $20.00
val fromFloat: progscala3.contexts.accounting.Dollars = $30.30
val fromLong: progscala3.contexts.accounting.Dollars = $40.00

scala> summon[Conversion[Double,Dollars]](10.1) // summon them...
 | summon[Conversion[Int,Dollars]](20)
 | summon[Conversion[Float,Dollars]](30.3)
 | summon[Conversion[Long,Dollars]](40)
val res0: progscala3.contexts.accounting.Dollars = $10.10
val res1: progscala3.contexts.accounting.Dollars = $20.00
val res2: progscala3.contexts.accounting.Dollars = $30.30
val res3: progscala3.contexts.accounting.Dollars = $40.00

scala> given_Conversion_Double_Dollars(10.1) // call them directly
 | id(20)
 | given_Conversion_Float_Dollars(30.3)
 | ld(40)
val res4: progscala3.contexts.accounting.Dollars = $10.10
val res5: progscala3.contexts.accounting.Dollars = $20.00
val res6: progscala3.contexts.accounting.Dollars = $30.30
val res7: progscala3.contexts.accounting.Dollars = $40.00

156 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

Scala 3 still supports the Scala 2 mechanism of using an implicit method for
conversion:

scala> implicit def toDollars(s: String): Dollars = Dollars(s.toDouble)
def toDollars(s: String): progscala3.contexts.accounting.Dollars

scala> toDollars("3.14")
val res11: progscala3.contexts.accounting.Dollars = $3.14

scala> val fromString: Dollars = "3.14"
val fromString: progscala3.contexts.accounting.Dollars = $3.14

scala> summon[String => Dollars]
val res9: String => progscala3.contexts.accounting.Dollars = Lambda$8531/...

scala> summon[String => Dollars]("3.14")
val res10: progscala3.contexts.accounting.Dollars = $3.14

Ask for a given function. The compiler lifts toDollar to a function.

Trying to define an equivalent implicit val function won’t work. The compiler will
ignore it when searching for implicit conversions:

scala> implicit val b2D: Byte => Dollars = (b: Byte) => Dollars(b.toDouble)
val b2D: Byte => progscala3.contexts.accounting.Dollars = Lambda$8534/...

scala> val fromByte: Dollars = 0x1.toByte
1 |val fromByte: Dollars = 0x1.toByte
 | ^^^^^^^^^^
 | Found: Byte
 | Required: progscala3.contexts.accounting.Dollars

Why are we even allowed to define b2D? We might need an implicit value somewhere
that happens to be a function Byte => Dollars, but it won’t be considered for
implicit conversions.

Rules for Implicit Conversion Resolution
Let’s summarize the lookup rules used by the compiler when a method is called on a
target instance and it is necessary to find and apply either a new or old conversion. I’ll
refer to given instances, but the rules apply to both old and new conversions.

1. No conversion will be attempted if the target instance and method combination
type check successfully.

2. Only given instances for conversion are considered.
3. Only given instances in the current scope are considered, as well as givens

defined in the companion object of the target type.

Scala 3 Implicit Conversions | 157

4. Given conversions aren’t chained to get from the available type, through inter‐
mediate types, to the target type. Only one conversion will be considered.

5. No conversion is attempted if more than one possible conversion could be
applied and have the same scope. There must be one, and only one, unambigu‐
ous possibility.

Type Class Derivation
Type class derivation is the idea that we should be able to automatically generate type
class given instances as long as they obey a minimum set of requirements, further
reducing boilerplate. A type uses the new keyword derives, which works like
extends or with, to trigger derivation.

For example, Scala 3 introduces scala.CanEqual, which restricts use of the compari‐
son operators == and != for instances of arbitrary types. Normally, it is permitted to
do these comparisons, but when the compiler flag -language:strictEquality or the
import statement import scala.language.strictEquality is used, then the com‐
parison operators are only allowed in certain specific contexts. Here is an example:

// src/main/scala/progscala3/contexts/Derivation.scala

package progscala3.contexts
import scala.language.strictEquality

enum Tree[T] derives CanEqual:
 case Branch(left: Tree[T], right: Tree[T])
 case Leaf(elem: T)

@main def TryDerived() =
 import Tree.*
 val l1 = Leaf("l1")
 val l2 = Leaf(2)
 val b = Branch(l1,Branch(Leaf("b1"),Leaf("b2")))
 assert(l1 == l1)
 // assert(l1 != l2) // Compilation error!
 assert(l1 != b)
 assert(b == b)
 println(s"For String, String: ${summon[CanEqual[Tree[String],Tree[String]]]}")
 println(s"For Int, Int: ${summon[CanEqual[Tree[Int],Tree[Int]]]}")
 // Compilation error:
 // println(s"For String, Int: ${summon[CanEqual[Tree[String],Tree[Int]]]}")

Because of the derives CanEqual clause in the Tree declaration, the equality checks
in the assertions are allowed. The derives CanEqual clause has the effect of generat‐
ing the following given instance:

given CanEqual[Tree[T], Tree[T]] = CanEqual.derived

158 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

https://oreil.ly/Hlz1d

CanEqual.derived functions as a universal CanEqual given instance. It is defined as
follows:

object CanEqual:
 object derived extends CanEqual[Any, Any]
 ...

Furthermore, T will be constrained to types with given CanEqual[T, T] = Can
Equal.derived. What all this effectively means is that we can only compare Tree[T]
instances for the same T types.

The terminology used is Tree as the deriving type and the CanEqual instance is a
derived instance.

In general, any type T defined with a companion object that has the derived instance
or method can be used with derives T clauses. We’ll discuss more implementation
details in “Type Class Derivation: Implementation Details” on page 491. The reason
CanEqual and the strictEquality language feature were introduced is discussed in
“Multiversal Equality” on page 296.

If you want to enforce stricter use of comparison operators, use
-language:strictEquality, but expect to add derives CanEqual
to many of your types.

Givens and Imports
In “A Taste of Futures” on page 42, we imported an implicit ExecutionContext,
scala.concurrent.ExecutionContext.Implicits.global. The name of the enclos‐
ing object Implicits reflects a common convention in Scala 2 for making implicit
definitions more explicit in code that uses them, at least if you pay attention to the
import statements.

Scala 3 introduces a new way to control imports of givens and implicits, which pro‐
vides an effective alternative form of visibility, as well as allowing developers to use
wildcard imports frequently while retaining control over if and when givens and
implicits are also imported.

Consider the following example adapted from the Dotty documentation:

// src/script/scala/progscala3/contexts/GivenImports.scala

object O1:
 val name = "O1"
 def m(s: String) = s"$s, hello from $name"
 class C1
 class C2

Givens and Imports | 159

https://oreil.ly/pid5Q

 given c1: C1 = C1()
 given c2: C2 = C2()

Now consider these import statements:

import O1.* // Import everything EXCEPT the givens, c1 and c2
import O1.given // Import ONLY the givens (of type C1 and C2)
import O1.{given, *} // Import everything, givens and nongivens in O1
import O1.{given C1} // Import just the given of type C1
import O1.c2 // Import just the given c2 of type C2

The import foo.given selector also imports Scala 2 implicits. Note that when you
qualify what to import, a given import expects a type, not a name. You really
shouldn’t define more than one given of the same type in the same scope anyway, as
this would be ambiguous if you imported all of them. Since given and using clauses
support anonymous values (while implicits didn’t), anonymous values are frequently
sufficient. However, if you want to import a given by name, just use a regular import
statement, as shown in the last example.

What if you have parameterized given instances and you want to import only those,
not any others in the scope?

trait Marker[T]
object O2:
 class C1
 given C1 = C1()
 given Marker[Int] with {}
 given Marker[List[?]] with {}

import O2.{given Marker[?]} // Import all given Markers
import O2.{given Marker[Int]} // Import just the Marker[Int]

There is nothing to implement for Marker, but the with is required and {} pro‐
vides an empty body that is needed.

The ? is the wildcard for the type parameter.

The use of ? as a type wildcard is new to Scala 3. In Scala 2 you use
_, which is still allowed, but it will be deprecated in a future release.
The reason for the change is to reserve _ for type lambdas (see
“Type Lambdas” on page 391), just like the character is used for
anonymous function arguments.

The new rules for the behavior of wildcard imports are breaking changes. Hence, they
are being phased in gradually:

160 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

• In Scala 3.0, an old-style implicit definition will still be brought into scope using
foo.*, as well as when using foo.given.

• In Scala 3.1, an old-style implicit accessed through a * wildcard import will give a
deprecation warning.

• In some version after 3.1, old-style implicits accessed through a * wildcard
import will give a compiler error.

Givens Scoping and Pattern Matching
Givens can be scoped when you don’t want them globally visible in a source file. They
can also be used in pattern-matching expressions, which also scopes their visibility.
Consider the following definitions of ordinary objects:

// src/script/scala/progscala3/contexts/MatchGivens.scala

trait Witness
case object IntWitness extends Witness
case object StringWitness extends Witness

def useWitness(using Witness): String = summon[Witness].toString

A simple hierarchy of objects, none of which is declared as given instances.

A method with a using Witness clause, which will require a given Witness to
be in scope when called.

Let’s see how pattern matching can be used to treat the objects as givens dynamically
and also to scope their visibility:

scala> useWitness
1 |useWitness
 | ^
 |no implicit argument of type Witness was found...

scala> for given Witness <- Seq(IntWitness, StringWitness)
 | do println(useWitness)
IntWitness
StringWitness

scala> useWitness
 |...no implicit argument of type Witness was found...

Trying useWitness here shows that no given Witness is in scope.

Givens Scoping and Pattern Matching | 161

A loop over the objects, where the pattern given Witness types each object as a
given, but also scoped to the body of the for loop. We see that each pass through
the loop has one and only one given Witness, which it prints.

Still throws a no implicit error, confirming that the givens in the for loop were
scoped within its body.

Resolution Rules for Givens and Extension Methods
Extension methods and given definitions obey the same scoping rules as other decla‐
rations (i.e., they must be visible to be considered). The previous examples scoped the
extension methods to packages, such as the new1 and new2 packages. They were not
visible unless the package contents were imported or we were already in the scope of
that package.

Within a particular scope, there could be several candidate givens or extension meth‐
ods that the compiler might use for a type extension. The Dotty documentation has
the details for the Scala 3 resolution rules. I’ll summarize the key points here. Givens
are also used to resolve implicit parameters in method using clauses, which we’ll
explore in the next chapter. The same resolution rules apply.

Rules for Given Resolution
I’ll use the term “given” in the following discussion to include given instances, exten‐
sion methods, and Scala 2 implicits. Resolving to a particular given happens in the
following order:

1. Any type-compatible given that doesn’t require a prefix path, such as other
packages.

2. A given that was imported into the current scope.
3. Imported givens take precedence over the givens already in scope.
4. In some cases, several possible matches are type compatible. The most specific

match wins. Suppose a Foo given is needed and Foo and AnyRef givens are in
scope, then the Foo given will be chosen over the AnyRef given.

5. If two or more candidate givens are ambiguous, for example, they have the same
exact type, it triggers a compiler error.

The compiler always puts some library givens in scope, while other library givens
require an import statement. For example, Predef extends a type called LowPriority
Implicits, which makes the givens defined in Predef lower priority when potential
conflicts arise with other givens in scope. The rationale is that the other givens are

162 | Chapter 5: Abstracting Over Context: Type Classes and Extension Methods

https://oreil.ly/gN45W
https://oreil.ly/uxYB6

likely to be user defined or imported from special libraries, and hence more “impor‐
tant” to the user.

The Expression Problem
We learned in this chapter some powerful tools for adding new functionality to exist‐
ing types without editing their source code! This desire to extend modules without
modifying their source code is called the Expression Problem, a term coined by Philip
Wadler.

Object-oriented programming solves this problem with subtype polymorphism. We
program to abstractions and use derived classes to customize behavior. The
Expression Problem in OOP terms is the Open/Closed Principle, coined by Bertrand
Meyer. Base types declare the behaviors as abstract that should be open for extension
or variation in subtypes, while keeping invariant behaviors closed to modification.

Working through the ToJSON examples, we saw the pros and cons of using ad hoc
extension with type classes versus the OOP way of subtype polymorphism. Scala
easily supports both approaches. Mixin composition provides additional flexibility.
We have to decide what’s best in a given context. Is some functionality core to a type
hierarchy’s state and behavior or is it peripheral? Is it used pervasively or only in limi‐
ted contexts? What’s the burden on maintainers and users of that functionality, imple‐
mented one way or another?

Recap and What’s Next
We started our exploration of context abstractions in Scala 2 and 3, beginning with
tools to extend types with additional state and behavior, such as type classes, exten‐
sion methods, and implicit conversions.

The next chapter explores using clauses, which work with given instances to address
particular design scenarios and to simplify user code.

The Expression Problem | 163

https://oreil.ly/YvDp5
https://oreil.ly/YvDp5

1 A regular parameter list is also known as a normal parameter clause, but I have just used the more familiar
term parameter list in this book. Using clause is more of a formal term in Scala 3 documentation than implicit
parameter clause was, which is why I emphasize it here.

CHAPTER 6

Abstracting Over Context: Using Clauses

In Chapter 5, we began our discussion of the powerful tools and idioms in Scala 2 and
3 for abstracting over context. In particular, we discussed type classes, extension meth‐
ods, and implicit conversions as tools for extending the behaviors of existing types.

This chapter explores using clauses, which work with given instances to address par‐
ticular design scenarios and to simplify user code.

Using Clauses
The other major use of context abstractions is to provide method parameters implic‐
itly rather than explicitly. When a method argument list begins with the keyword
using (Scala 3) or implicit (Scala 2 and 3), the user does not have to provide values
explicitly for the parameters, as long as given instances or implicit values are in scope
that the compiler can use instead.

In Scala 2 terminology, those method parameters were called implicit parameters, and
the whole list of parameters was an implicit parameter list or implicit parameter clause.
Only one such list was allowed, and it held all the implicit parameters. In Scala 3, they
are context parameters and the whole parameter list is a using clause. There can be
more than one using clause.1 Here is an example:

class BankAccount(...):
 def debit(amount: Money)(using transaction: Transaction)
 ...

165

Here, the using clause starts with the using keyword and contains the context param‐
eter transaction.

The values in scope that can be used to fill in these parameters are called implicit val‐
ues in Scala 2. In Scala 3 they are the given instances, or givens for short.

I’ll mostly use the Scala 3 terminology in this book, but when I use Scala 2 terminol‐
ogy, it will usually be when discussing a Scala 2 library that uses implicit definitions
and parameters. Scala 3 more or less treats them interchangeably, although the Scala 2
implicits will be phased out eventually.

For each parameter in a using clause, a type-compatible given must exist in the
enclosing scope. Using Scala 2–style implicits, an implicit value or an implicit method
or class returning a compatible value must be in scope.

For comparison, recall you can also define default values for method parameters.
While sufficient in many circumstances, they are statically scoped to the method defi‐
nition at compile time and are defined by the implementer of the method. Using clau‐
ses, on the other hand, provide greater flexibility for users of a method.

As an example, suppose we implement a simple type that wraps sequences for conve‐
nient sorting (ignoring the fact that this capability is already provided by Seq). One
way to do this is for the user to supply an implementation of math.Ordering, which
knows how to sort elements of the particular type used in the sequence. That object
could be passed as an argument to the sort method, but the user might also like the
ability to specify the value once, as a given, and then have all sequences of the same
element type use it automatically.

This first implementation uses syntax valid for both Scala 2 and 3:

// src/script/scala-2/progscala3/contexts/ImplicitClauses.scala

case class SortableSeq[A](seq: Seq[A]) {
 def sortBy1[B](transform: A => B)(implicit o: Ordering[B]): SortableSeq[A]=
 SortableSeq(seq.sortBy(transform)(o))

 def sortBy2[B : Ordering](transform: A => B): SortableSeq[A] =
 SortableSeq(seq.sortBy(transform)(implicitly[Ordering[B]]))
}

val seq = SortableSeq(Seq(1,3,5,2,4))

def defaultOrdering() = {
 assert(seq.sortBy1(i => -i) == SortableSeq(Seq(5, 4, 3, 2, 1)))
 assert(seq.sortBy2(i => -i) == SortableSeq(Seq(5, 4, 3, 2, 1)))
}
defaultOrdering()

def oddEvenOrdering() = {

166 | Chapter 6: Abstracting Over Context: Using Clauses

https://oreil.ly/TBelN

 implicit val oddEven: Ordering[Int] = new Ordering[Int]:
 def compare(i: Int, j: Int): Int = i%2 compare j%2 match
 case 0 => i compare j
 case c => c

 assert(seq.sortBy1(i => -i) == SortableSeq(Seq(5, 3, 1, 4, 2)))
 assert(seq.sortBy2(i => -i) == SortableSeq(Seq(5, 3, 1, 4, 2)))
}
oddEvenOrdering()

Use braces because this is also valid Scala 2 code.

Wrap examples in methods to scope the use of implicits.

Use the default ordering provided by math.Ordering for Ints, which is already in
scope.

Define a custom oddEven ordering, which will be the implicit value that takes
precedence in the method’s scope for the following lines.

Implicitly use the custom oddEven ordering.

Let’s focus on sortBy1 for now. All the implicit parameters must be declared in their
own parameter list. Here we need two lists because we have a regular parameter, the
function transform. If we only had implicit parameters, we would need only one
parameter list.

The implementation of sortBy1 just uses the existing Seq.sortBy method. It takes a
function that transforms the values to affect the sorting, and an Ordering instance to
sort the values after transformation.

There is already a default implicit implementation in scope for math.Ordering[Int],
so we don’t need to supply one if we want the usual numeric ordering. The anony‐
mous function i => -1 transforms the integers to their negative values for the pur‐
poses of ordering, which effectively results in sorting from highest to lowest.

Next, let’s discuss the other method, sortBy2, and also explore new Scala 3 syntax for
this purpose.

Context Bounds
If you think about it, while SortableSeq is declared to support any element type A,
the two sortBy* methods bind the allowed types to those for which an Ordering
exists. Hence, the term context bound is used for the implicit value in this situation.

In SortableSeq.sortBy1, the implicit parameter o is a context bound. A major clue
is the fact that it has type Ordering[B], meaning it is parameterized by the output

167

https://oreil.ly/ClEZI

element type, B. So, while it doesn’t bind A explicitly, the result of applying transform
is to convert A to B and then B is context bound by Ordering[B].

Context bounds are so common that Scala 2 defined a more concise way of declaring
them in the types, as shown in sortBy2, where the syntax B : Ordering appears.
(Note that it’s not B : Ordering[B], as the [B] is omitted.) Also, they are sometimes
referred to as view types because they filter the allowed types for B.

In the generated byte code for Scala 2, this is just shorthand for the same code we
wrote explicitly for sortBy1, with one difference. In sortBy1, we defined a name for
the Ordering parameter, o, in the second argument list. We don’t have a name for it in
sortBy2, but we need it in the body of the method. The solution is to use the method
Predef.implicitly, as shown in the method body. It binds the implicit Ordering
that is in scope so it can be passed as an argument.

Let’s rewrite this code in Scala 3:

// src/script/scala/progscala3/contexts/UsingClauses.scala

case class SortableSeq[A](seq: Seq[A]):
 def sortBy1a[B](transform: A => B)(using o: Ordering[B]): SortableSeq[A] =
 SortableSeq(seq.sortBy(transform)(o))

 def sortBy1b[B](transform: A => B)(using Ordering[B]): SortableSeq[A] =
 SortableSeq(seq.sortBy(transform)(summon[Ordering[B]]))

 def sortBy2[B : Ordering](transform: A => B): SortableSeq[A] =
 SortableSeq(seq.sortBy(transform)(summon[Ordering[B]]))

The sortBy1a method is identical to the previous sortBy1 method with a using
clause instead of an implicit parameter list. In sortBy1b, the name is omitted, making
the parameter anonymous, and a new Predef method, summon, is used to bind the
value instead (summon is functionally identical to implicitly). The sortBy2 here is
written identically to the previous one in ImplicitClauses, but in Scala 3 it is imple‐
mented with a using clause.

The previously defined test methods, defaultOrdering and oddEvenOrdering, are
almost the same in this source file, but they are not shown here. There is an addi‐
tional test method in this file that uses a given instance instead of an implicit value:

def evenOddGivenOrdering() =
 given evenOdd: Ordering[Int] with
 def compare(i: Int, j: Int): Int = i%2 compare j%2 match
 case 0 => i compare j
 case c => -c

 val seq = SortableSeq(Seq(1,3,5,2,4))
 val expected = SortableSeq(Seq(4, 2, 5, 3, 1))
 assert(seq.sortBy1a(i => -i) == expected)

168 | Chapter 6: Abstracting Over Context: Using Clauses

https://oreil.ly/8pwNO

 assert(seq.sortBy1b(i => -i) == expected)
 assert(seq.sortBy2(i => -i) == expected)

 assert(seq.sortBy1a(i => -i)(using evenOdd) == expected)
 assert(seq.sortBy1b(i => -i)(using evenOdd) == expected)
 assert(seq.sortBy2(i => -i)(using evenOdd) == expected)

evenOddGivenOrdering()

Use the given evenOdd instance implicitly.

Use the given evenOdd instance explicitly with using.

The syntax given foo: Type[T] is used instead of implicit val foo: Type[T],
essentially the same way we used givens when discussing type classes.

If the using clause is provided explicitly, as marked with comment 2, the using key‐
word is required in Scala 3, whereas Scala 2 didn’t require or even allow the implicit
keyword here. The reason using is now required is twofold. First, it’s better docu‐
mentation for the reader that this second argument list is a using clause. Second, it
removes an occasional ambiguity that is illustrated in the following contrived Scala 2
example:

// src/script/scala-2/progscala3/contexts/ImplicitGotcha.scala

trait Context
implicit object SomeContext extends Context

case class Worker[T](seed: T)(implicit c: Context) {
 def apply(value: T): String = s"$seed, $value"
}

val i = Worker(-5)(2)

Some simple type to use as an implicit parameter.

A simple class that takes a regular parameter and an implicit parameter. It also
has an apply method, which is necessary for the ambiguity to occur.

Attempt to use the implicit SomeContext and apply, which doesn’t compile.

In the Scala 2 REPL, the last line is ambiguous:

.../ImplicitGotcha.scala:10: error: type mismatch;
 found : Int(2)
 required: this.Context
val i = Worker(-5)(2)
 ^

Context Bounds | 169

The 2 was not expected, even though it’s a valid argument for apply. Because a sec‐
ond argument list is provided, it’s assumed to be for the implicit value of type
Context, rather than what I meant, the argument to apply with the implicit value
SomeContext used automatically. We could use one of the following to work around
this ambiguity:

val w = Worker(-5)
val i1 = w(2)
val i2 = Worker(-5).apply(2)
val i3 = Worker(-5)(SomeContext)(2)

As written with an implicit, the same error occurs in Scala 3, but if you change
implicit c: Context to using c: Context, then the 2 is no longer ambiguous. The
compiler knows you want to use the in-scope implicit value SomeContext and pass 2
to apply. When you want to explicitly pass a Context, you must now write Work(5)
(using AnotherContext)(2).

The intent of the new given… syntax and the using… syntax is to
make their purpose more explicit, but they function almost identi‐
cally to Scala 2 implicit definitions and parameters.

Context parameters can be by-name parameters, providing the benefit of delayed
evaluation until it is actually used. Here is a sketch of an example using a by-name
context parameter for an expensive database connection:

// src/script/scala/progscala3/contexts/ByNameContextParameters.scala

type Status = String

case class Transaction(database: String):
 def begin(query: String): Status = s"$database: Starting transaction: $query"
 def rollback(): Status = s"$database: Rolling back transaction"
 def commit(): Status = s"$database: Committing transaction"

case class ConnectionManager(database: String):
 println(s"... expensive initialization for database $database")
 def createTransaction: Transaction = Transaction(database)

def doTransaction(query: => String)(
 using cm: => ConnectionManager): Seq[Status] =
 val trans = cm.createTransaction
 Seq(trans.begin(query), trans.commit())

def doPostgreSQL =
 println("Start of doPostgreSQL.")
 given ConnectionManager = ConnectionManager("PostgreSQL")

170 | Chapter 6: Abstracting Over Context: Using Clauses

 println("Start of doTransaction.")
 doTransaction("SELECT * FROM table")

Simple representation of the status returned by database commands.

Transactions. The methods just return strings.

A connection manager, intended to be expensive to create, so it’s better to delay
construction until needed.

A method that runs a transaction. Note the using clause has a by-name parame‐
ter for the connection manager.

A method to try a PostgreSQL transaction.

You get this output from doPostgreSQL:

scala> doPostgreSQL
Start of doPostgreSQL.
Start of doTransaction.
... expensive initialization for database PostgreSQL
val res2: Seq[Status] = List(
 PostgreSQL: Starting transaction: SELECT * FROM table,
 PostgreSQL: Committing transaction)

Note that the given instance isn’t constructed until doTransaction is called.

Other Context Parameters
In “A Taste of Futures” on page 42, we saw that Future.apply has a second, implicit
argument list that is used to pass an ExecutionContext:

object Future:
 apply[T](body: => T)(implicit executor: ExecutionContext): Future[T]
 ...

It is not a context bound because the ExecutionContext is independent of T.

We didn’t specify an ExecutionContext when we called these methods, but we
imported a global default that the compiler used:

import scala.concurrent.ExecutionContext.Implicits.global
Future(...) // Use the value implicitly
Future(...)(using global) // Pass the value explicitly with "using"

Future supports a lot of the operations like filter and map. Like Future.apply, all
have two parameter lists, where the second is a using clause for the ExecutionCon
text. The using clauses make the code much less cluttered than it would be if we had
to pass the arguments explicitly:

Other Context Parameters | 171

https://oreil.ly/fUNgE
https://oreil.ly/htPhv

given customExecutionContext: ExecutionContext = ...

val f1 = Future(...)(using customExecutionContext)
 .map(...)(using customExecutionContext)
 .filter(...)(using customExecutionContext)
// versus:
val f2 = Future(...).map(...).filter(...)

Similar using clauses might include transaction or web session identifiers, database
connections, etc.

The example shows that using contexts can make code more con‐
cise, but they can be overused too. When you see the same using
FooContext all over a code base, it feels more like a global variable
than pure FP.

Context Functions
Context functions are functions with context parameters only. Scala 3 introduces a
new context function type for them, indicated by ?=> T. Distinguishing context func‐
tions from regular functions is useful because of how they are invoked.

Consider this alternative for handling the ExecutionContext passed to
Future.apply(), using a wrapper FutureCF (for context function):

// src/script/scala/progscala3/contexts/ContextFunctions.scala

import scala.concurrent.{Await, ExecutionContext, Future}
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration.*

object FutureCF:
 type Executable[T] = ExecutionContext ?=> T

 def apply[T](body: => T): Executable[Future[T]] = Future(body)

def sleepN(dur: Duration): Duration =
 val start = System.currentTimeMillis()
 Thread.sleep(dur.toMillis)
 Duration(System.currentTimeMillis - start, MILLISECONDS)

val future1 = FutureCF(sleepN(1.second))
val future2 = FutureCF(sleepN(1.second))(using global)
val duration1 = Await.result(future1, 2.seconds)
val duration2 = Await.result(future2, 2.seconds)

Type member alias for a context function with an ExecutionContext.

172 | Chapter 6: Abstracting Over Context: Using Clauses

Compare this definition of apply() to Future.apply(). I discuss it in more
detail next.

Define some work that will be passed to futures; sleep for some scala.concur
rent.duration.Duration and return the actual elapsed time as a Duration.

Two futures are created in these two lines, one with an implicit Execution
Context and the second with an explicit one.

Await the results of the futures. Wait no longer than two seconds.

The last two lines print the following (your actual numbers may vary slightly):

val duration1: concurrent.duration.Duration = 1004 milliseconds
val duration2: concurrent.duration.Duration = 1002 milliseconds

Let’s understand what really happens when FutureCF.apply is called. First, I need to
explain a concept called partial application of argument lists.

Applying some but not all arguments for the parameters of a function or method is
partial application. For example, for a method def m(a: String)(b: Int), if I call
m("hello") without the second parameter list, a new function is returned that can be
called with the remaining parameters. In Scala all the arguments for a particular
parameter list have to be provided, but there is no limit to the number of parameter
lists you can have. You can partially apply as many as you want at a time, working
from the left. You can’t skip over parameter lists. The same mechanism happens here,
with slightly different details.

First, for future1, when FutureCF.apply(sleepN(1.second)) is called, the following
sequence happens:

1. Executable(Future(sleepN(1.second))) is supposed to be returned, which is
the same as (given ExecutionContext) ?=> Future(sleepN(1.second)) (from
the type member alias for Executable).

2. The compiler converts Executable(Future(sleepN(1.second))) to
Future(sleepN(1.second))(given ExecutionContext).

3. Then, it invokes the converted term to return the Future.

The same given ExecutionContext is passed implicitly to Future.apply(), which I
used to implement FutureCF.apply().

The only difference for future2 is that the ExecutionContext is provided explicitly,
but the effect is the same: (given ExecutionContext) ?=> Future(…).

Context Functions | 173

https://oreil.ly/GBO1M
https://oreil.ly/GBO1M

Context functions can be used to replace a common Scala 2 idiom, where parameters
to function literals are sometimes declared implicit. Consider the following example
that provides a convenient way to run simple code blocks asynchronously:

// src/script/scala/progscala3/contexts/ImplicitParams2ContextFunctions.scala

import scala.concurrent.{Await, ExecutionContext, Future}
import scala.concurrent.duration.*

val sameThreadExecutionContext = new ExecutionContext:
 def execute(runnable: Runnable): Unit =
 printf("start > ")
 runnable.run()
 printf("finish > ")
 def reportFailure(cause: Throwable): Unit =
 println(s"sameThreadExecutionContext failure: $cause")

object AsyncRunner2:
 def apply[T](body: ExecutionContext => Future[T]): T =
 val future = body(sameThreadExecutionContext)
 Await.result(future, 2.seconds)

val result2 = AsyncRunner2 {
 implicit executionContext =>
 Future(1).map(_ * 2).filter(_ > 0)
}

Create a simple ExecutionContext that just runs tasks in the same thread. It is
used to demonstrate replacing the use of the global implicit value with one we
control in scoped contexts.

The Scala 2 way of writing this logic. The user passes a function that takes an
ExecutionContext argument and returns a Future. AsyncRunner2.apply() calls
the function, passing our custom ExecutionContext, then waits up to two sec‐
onds for the results (arbitrary).

How it is used. The function takes a normal ExecutionContext, but if you add
the implicit keyword, it becomes an implicit value that will be passed to all the
Future methods called inside the function that take an implicit Execution
Context.

The value for result2 will be the integer 2.

In Scala 3, this idiom can still be used (obviously, because I just did!), but you can’t
replace the implicit keyword in the function literal with using. Instead, context
functions are the new way to implement this scenario:

object AsyncRunner3:
 type RunnerContext[T] = ExecutionContext ?=> Future[T]

174 | Chapter 6: Abstracting Over Context: Using Clauses

 def apply[T](body: => RunnerContext[T]): T =
 given ExecutionContext = sameThreadExecutionContext
 Await.result(body, 2.seconds)

val result3 = AsyncRunner3 {
 Future(1).map(_ * 2).filter(_ > 0)
}

Now a by-name parameter of type RunnerContext[T], aliased to Execution
Context ?=> Future[T], is passed as the body to execute. A given Execution
Context is declared in this scope, aliased to sameThreadExecutionContext (recall
the discussion in “Alias Givens” on page 150).

Now the user code is more concise. The required context function argument for
AsyncRunner3.apply() is passed implicitly, so all we need is the Future body.

So context functions can result in more concise code, both for library implementers
and users of those libraries. However, it takes a bit more work at first to understand
what’s going on.

The code examples contain a more extensive example where context functions are
used to build a mini-DSL for constructing JSON objects. See src/main/scala/progs‐
cala3/contexts/json/JSONBuilder.scala.

Constraining Allowed Instances
Sometimes a context bound is used as a witness, by which I mean that the mere exis‐
tence of a context bound is all we care about, but the instance is not actually needed
to do any work.

Let’s see an example of context-bound instances that witness allowed argument types
and are used to do work. Consider the following sketch of an API for data records
with ad hoc schemas, like in some NoSQL databases. Each row is encapsulated in a
Map[String,Any], where the keys are the field names and the column values are
unconstrained. However, the add and get methods, for adding column values to a
row and retrieving them, do constrain the allowed instance types.

Here is the example:

// src/main/scala/progscala3/contexts/NoSQLRecords.scala
package progscala3.contexts.scaladb

import scala.language.implicitConversions
import scala.util.Try

case class InvalidFieldName(name: String)
 extends RuntimeException(s"Invalid field name $name")

Constraining Allowed Instances | 175

object Record:
 def make: Record = new Record(Map.empty)
 type Conv[T] = Conversion[Any,T]

case class Record private (contents: Map[String,Any]):
 import Record.Conv
 def add[T : Conv](nameValue: (String, T)): Record =
 Record(contents + nameValue)
 def get[T : Conv](colName: String): Try[T] =
 Try {
 val conv = summon[Conv[T]]
 conv(col(colName))
 }
 private def col(colName: String): Any =
 contents.getOrElse(colName, throw InvalidFieldName(colName))

@main def TryScalaDB =
 import Record.Conv
 given Conv[Int] = _.asInstanceOf[Int]
 given Conv[Double] = _.asInstanceOf[Double]
 given Conv[String] = _.asInstanceOf[String]
 given ab[A : Conv, B : Conv]: Conv[(A, B)] = _.asInstanceOf[(A,B)]

 val rec = Record.make.add("one" -> 1).add("two" -> 2.2)
 .add("three" -> "THREE!").add("four" -> (4.4, "four"))
 .add("five" -> (5, ("five", 5.5)))

 val one = rec.get[Int]("one")
 val two = rec.get[Double]("two")
 val three = rec.get[String]("three")
 val four = rec.get[(Double, String)]("four")
 val five = rec.get[(Int, (String, Double))]("five")
 val bad1 = rec.get[String]("two")
 val bad2 = rec.get[String]("five")
 val bad3 = rec.get[Double]("five")
 // val error = rec.get[Byte]("byte")

 println(
 s"one, two, three, four, five ->\n $one, $two, $three, $four,\n $five")
 println(
 s"bad1, bad2, bad3 ->\n $bad1\n $bad2\n $bad3")

The companion object defines make to start safe construction of a Record. It also
defines a type member alias for Conversion, where we always use Any as the first
type parameter. This alias is necessary when we define the given ab inside the
method TryScalaDB.

Define Record with a single field Map[String,Any] to hold the user-defined
fields and values. Use of private after the type name declares the constructor

176 | Chapter 6: Abstracting Over Context: Using Clauses

https://oreil.ly/xdwaT

private, forcing users to create records using Record.make followed by add calls.
This prevents users from using an unconstrained Map to construct a Record!

A method to add a field with a particular type and value. The context bound,
Conv[T], is used only used as a witness to constrain the allowed values for T. Its
apply method won’t be used. Since Records are immutable, a new instance is
returned.

A method to retrieve a field value with the desired type T. Here the context
bound both constrains the allowed T types and handles conversion from Any to T.
On failure, an exception is returned in the Try. Hence, this example can’t catch all
type errors at compile time, as shown in the “bad” examples.

Only Int, Double, String, and pairs of them are supported. These definitions
work as witnesses for the allowed types in both the add and get methods, as well
as function as implicit conversions from Any to specific types when used in get.
Note that the given ab is for pairs, but the A and B types are themselves con‐
strained by Conv, which could also be other pairs. Hence, nested pairs are
allowed.

Failure[ClassCastException]s are returned for bad1, bad2, and bad3 because
we attempt to return a String or Double when the underlying values have
incompatible types.

Recall that the context bound can be written several ways. For add, the following are
equivalent:

def add[T : Conv](nameValue: (String, T)): Record = ...
def add[T](nameValue: (String, T))(using Conv[T]): Record = ...

Attempting to retrieve an unsupported column, like Byte, would cause a compilation
error.

Running this example with runMain progscala3.contexts.scaladb.TryScalaDB,
you get the following output (abbreviated):

one, two, three, four, five ->
 Success(1), Success(2.2), Success(THREE!), Success((4.4,four)),
 Success((5,(five,5.5)))
bad1, bad2, bad3 ->
 Failure(... java.lang.Double cannot be cast to class java.lang.String ...)
 Failure(... scala.Tuple2 cannot be cast to class java.lang.String ...)
 Failure(... scala.Tuple2 cannot be cast to class java.lang.Double ...)

Hence, the only failures we can’t prevent at compile time are attempts to retrieve a
column using the incorrect type.

Constraining Allowed Instances | 177

2 For a more general solution, see “Type Lambdas” on page 391.

The type member Conv[T] is necessary for the context bounds on A and B in ab
because context bounds always require one and only one type parameter, but Conver
sion[A,B] has two. Fortunately, the A is always Any in our case, so we were able to
define a type alias that has just one type parameter, as required. It also makes the code
more concise than using Conversion[Any,T].

Conversion[A,B] didn’t meet our needs for a parameterized type
with only one type parameter. We solved the problem with a type
alias that fixed A (to Any), leaving a single type parameter. This trick
is frequently useful.2

To recap, we limited (witnessed) the allowed types that can be passed to a parameter‐
ized method by passing a context bound and only defining given values for the types
we wanted to allow.

Implicit Evidence
In the previous example, the Record.add method showed one flexible way to con‐
strain the allowed types. The witnesses used also did some work for us. Now we’ll dis‐
cuss a special kind of witness historically called implicit evidence, which uses some
convenient features in the standard library.

A nice example of this technique is the toMap method available for all iterable collec‐
tions. Recall that the Map constructor wants key-value pairs (i.e., two-element tuples)
as arguments. If we have a Seq[(A,B)], a sequence of pairs, wouldn’t it be nice to cre‐
ate a Map out of them in one step? That’s what toMap does, but we have a dilemma. We
can’t allow the user to call Seq[X].toMap if the X is not (A,B).

The implementation of toMap constrains the allowed types. It is defined in
IterableOnceOps:

trait IterableOnceOps[+A]:
 def toMap[K, V](implicit ev: <:<[A, (K, V)]): immutable.Map[K, V]
 ...

The implicit parameter ev is the evidence we need to enforce our constraint. It uses a
type defined in Predef called <:<, named to resemble the type parameter constraint
<:. Effectively, it imposes the requirement that A <: (K,V). In other words, A must be
a subtype of (K,V).

178 | Chapter 6: Abstracting Over Context: Using Clauses

https://oreil.ly/qmWy7
https://oreil.ly/8pwNO
https://oreil.ly/sOddQ

Recall that types with two type parameters can be written with infix notation. So the
following two expressions are equivalent:

<:<[A, (T,U)]
A <:< (T,U)

So when we have a traversable collection that we want to convert to a Map with toMap,
the implicit evidence ev value will be synthesized by the compiler, but only if A <:
(T,U). If A is not a pair type, the code fails to compile. If successful, toMap passes the
pairs to the Map constructor.

Hence, evidence only has to exist to enforce a type constraint, which the compiler
generates for us. We don’t have to define a given or implicit value ourselves.

There is also a related type in Predef for providing evidence that two types are equiv‐
alent, called =:=. Here are a few simple examples of how you can do some simple type
checking in the REPL:

// src/script/scala/progscala3/contexts/ImplicitEvidence.scala

summon[Int <:< Int]
summon[Int <:< AnyVal]
summon[Int =:= Int]
summon[Int =:= AnyVal] // ERROR!

summon[(Int, String) <:< (Int, String)]
summon[(Int, String) <:< (AnyVal, AnyRef)]
summon[(Int, String) =:= (Int, String)]
summon[(Int, String) =:= (AnyVal, AnyRef)] // ERROR!

The two examples marked with ERROR! trigger compilation errors: “Cannot prove
that…”

Working Around Type Erasure with Using Clauses
We discussed type erasure in “Defining Operators” on page 71 and how to work
around it using @targetName. We can also work around erasure with a using clause.
This works with Scala 2 implicits, as well. We used the following example previously:

// src/script/scala/progscala3/rounding/TypeErasureProblem.scala

object O:
 def m(is: Seq[Int]): Int = is.sum
 def m(ss: Seq[String]): Int = ss.length

However, we can add an implicit parameter to disambiguate the methods:

// src/script/scala/progscala3/contexts/UsingTypeErasureWorkaround.scala

object O2:
 trait Marker[T]

Working Around Type Erasure with Using Clauses | 179

 given IntMarker: Marker[Int] with {}
 given StringMarker: Marker[String] with {}

 def m(is: Seq[Int])(using IntMarker.type): Int = is.sum
 def m(ss: Seq[String])(using StringMarker.type): Int = ss.length

Define a marker trait and two named givens that will be used to disambiguate the
methods affected by type erasure, for Ints and Strings.

Redefine the two methods to add using clauses with the markers. Because
IntMarker is an object, its type is IntMarker.type.

The Markers are very similar to the witnesses we discussed earlier. Let’s try it:

scala> import O2.{given, *}

scala> m(Seq(1,2,3))
 | m(Seq("one", "two", "three"))
val res0: Int = 6
val res1: Int = 3

Now the compiler considers the two m methods to be distinct after type erasure.

Why do the given instances have to be named? If the using clauses had using
Marker[Int], for example, I would still have the type erasure problem in the using
clauses, and the compiler would reject the definitions! So the instances have to be
used as shown.

You might also wonder why I didn’t just use given Int and String values, rather than
invent the Marker type. Using given values for very common types is not recom‐
mended. It would be too easy for one or more given String values, for example, to
show up in a particular scope. If you don’t expect a given String instance to be in
scope, you will be surprised when it gets used. If you do expect one to be in scope, but
there are several of them, you’ll get a compiler error because of the ambiguous
choices.

Avoid given instances and using clauses for very common types
like Int and String, as they are more likely to cause confusing
behavior or compilation errors. Stick with types created specifically
for this purpose.

Rules for Using Clauses
Here are the general rules for using clauses:

1. Zero or more argument lists can be using clauses.

180 | Chapter 6: Abstracting Over Context: Using Clauses

2. The implicit or using keyword must appear first and only once in the parame‐
ter list, and all the parameters are context parameters.

Hence, any one parameter list can’t mix context parameters with other parameters.
Here are a few more examples:

// src/script/scala/progscala3/contexts/UsingClausesLists.scala

case class U1[+T](t: T)
case class U2[+T](t: T)

def f1[T1,T2](name: String)(using u1: U1[T1], u2: U2[T2]): String =
 s"f1: $name: $u1, $u2"
def f2[T1,T2](name: String)(using u1: U1[T1])(using u2: U2[T2]): String =
 s"f2: $name: $u1, $u2"
def f3[T1,T2](name: String)(using u1: U1[T1])(u2: U2[T2]): String =
 s"f3: $name: $u1, $u2"

given u1i: U1[Int] = U1[Int](0)
given u2s: U2[String] = U2[String]("one")

One using clause with two parameters.

Two using clauses, each with one parameter.

One using clause sandwiched between two regular parameter lists.

In f3, we have a regular parameter list following a using clause. This is allowed in
Scala 3, but not in Scala 2. Let’s try them:

scala> f1("f1a") // These two are essentially the same.
 | f1("f1b")(using u1i, u2s)
val res0: String = f1: f1a: U1(0), U2(one)
val res1: String = f1: f1b: U1(0), U2(one)

scala> f2("f2a") // These two are essentially the same.
 | f2("f2b")(using u1i)(using u2s)
val res2: String = f2: f2a: U1(0), U2(one)
val res3: String = f2: f2b: U1(0), U2(one)

The results for calling f1 and f2 should make sense. Recall that when passing values
explicitly, the using keyword is required. Now try f3:

scala> f3("f3c")(using u1i)(u2s) // These two are essentially the same.
 | f3("f3c")(u2s)
val res4: String = f3: f3c: U1(0), U2(one)
val res5: String = f3: f3c: U1(0), U2(one)

The first call passes all parameter lists explicitly, while the second one fills in the sec‐
ond parameter list implicitly and interprets (u2s) as the third parameter list.

Rules for Using Clauses | 181

3 At the time of this writing, there is no givenNotFound or similar replacement annotation in Scala 3.

I don’t recommend putting a using clause between other parameter lists because it
looks strange, but it is allowed.

Improving Error Messages
Finally, you can improve the errors reported by the compiler when a context parame‐
ter isn’t found in scope. The compiler’s default messages are usually sufficiently
descriptive, but you can customize them with the implicitNotFound annotation,3 as
follows:

// src/script/scala/progscala3/contexts/ImplicitNotFound.scala

import scala.annotation.implicitNotFound

@implicitNotFound("No implicit found: Tagify[${T}]")
trait Tagify[T]:
 def toTag(t: T): String

case class Stringer[T : Tagify](t: T):
 override def toString: String =
 s"Stringer: ${summon[Tagify[T]].toTag(t)}"

object O:
 def makeXML[T](t: T)(
 using @implicitNotFound("makeXML: No Tagify[${T}] implicit found")
 tagger: Tagify[T]): String =
 s"<xml>${tagger.toTag(t)}</xml>"

Let’s try it:

scala> given Tagify[Int]:
 | def toTag(i: Int): String = s"<int>$i</int>"
 | given Tagify[String]:
 | def toTag(s: String): String = s"<string>$s</string>"

scala> Stringer("Hello World!")
 | Stringer(100)
 | O.makeXML("Hello World!")
 | O.makeXML(100)
val res0: Stringer[String] = Stringer: <string>Hello World!</string>
val res1: Stringer[Int] = Stringer: <int>100</int>
val res2: String = <xml><string>Hello World!</string></xml>
val res3: String = <xml><int>100</int></xml>

scala> Stringer(3.14569)
 | O.makeXML(3.14569)
1 |Stringer(3.14569)

182 | Chapter 6: Abstracting Over Context: Using Clauses

https://oreil.ly/9SDOn

 | ^
 | No implicit found: Tagify[Double]
2 |O.makeXML(3.14569)
 | ^
 | makeXML: No Tagify[Double] implicit found

You can only annotate types intended for use as givens. This is another reason for
creating custom types for context parameter uses, rather than reusing types with
other purposes, like Int, String, and Person. You can’t use this annotation with those
types.

Recap and What’s Next
We completed our exploration into the details of abstracting over context in Scala 2
and 3. I hope you can appreciate their power and utility, but also the need to use them
wisely. Unfortunately, because the old implicit idioms are still supported for backward
compatibility, at least for a while, it will be necessary to understand how to use both
the old and new constructs, even though they are redundant.

Now we’re ready to dive into the principles of FP. We’ll start with a discussion of the
core concepts and why they are important. Then we’ll look at the powerful functions
provided by most container types in the library. We’ll see how we can use those func‐
tions to construct concise, yet powerful, programs.

Recap and What’s Next | 183

CHAPTER 7

Functional Programming in Scala

It is better to have 100 functions operate on 1 data structure than 10 functions on 10
data structures.

—Alan J. Perlis

This chapter introduces functional programming (FP). Even if you have prior experi‐
ence with FP in other languages, you should still skim the chapter for Scala-specific
details. I’ll start with an explanation of the origin and value of FP and then discuss in
depth the many ways functions can be used and manipulated in Scala. I’ll finish with
a discussion of the power and flexibility of functional data structures and their com‐
posable operations. Chapter 18 discusses more advanced concepts in FP.

What Is Functional Programming?
Every decade or two, a major computing idea goes mainstream. The idea may have
lurked in the background of academic computer science research or in obscure cor‐
ners of industry, perhaps for decades. The transition to mainstream acceptance
comes in response to a perceived problem for which the idea is well suited. Object-
oriented programming (OOP), which was invented in the 1960s, went mainstream in
the 1980s, arguably in response to the emergence of graphical user interfaces (GUIs),
for which the OOP paradigm is a natural fit.

FP experienced a similar breakout over the last 15 years or so. FP is actually much
older than OOP, going back to theoretical work in the 1930s! FP offers effective tech‐
niques for three major challenges that became pressing in the 2000s and remain
pressing today:

185

• The need for pervasive concurrency, so we can scale our applications horizontally
and improve their resiliency against service disruptions. Concurrent program‐
ming is now an essential skill for every developer to master.

• The need to write data-centric (e.g., big data) applications. Of course, at some
level all programs are about data, but the growth of big data highlighted the
importance of effective techniques for working with large data sets.

• The need to write bug-free applications. This old problem has grown more press‐
ing as software has become more pervasive and bugs have become more poten‐
tially disruptive to society. FP gives us new tools from mathematics that move us
further in the direction of provably bug-free programs.

Immutability eliminates the hardest problem in concurrency, coordinating access to
shared, mutable state. We’ll explore concurrency in Chapter 19.

The benefits of FP for data-centric applications will become apparent as we master
the functional operations discussed in this and subsequent chapters. We’ll explore the
connection in depth in “Scala for Big Data: Apache Spark” on page 459.

Finally, embracing FP combines mathematical rigor with immutability to create pro‐
grams with fewer flaws.

Scala is a mixed-paradigm language, supporting both FP and OOP. It encourages you
to use both programming models to get the best of both of them.

All programming languages have functions of some sort. Functional programming is
based on the rules of mathematics for the behavior of functions and values. This
starting point has far-reaching implications for software.

Functions in Mathematics
In mathematics, functions have no side effects. Consider the classic function
y = sin x . No matter how much work sin x does, all the results are returned and
assigned to y. No global state of any kind is modified internally by the sin x algo‐
rithm. Also, all the data it needs to compute the value is passed in through x. Hence,
we say that such a function is free of side effects, or pure.

Purity drastically simplifies the challenge of analyzing, testing, debugging, and reus‐
ing a function. You can do all these things without having to know anything about the
context in which the function is invoked.

This obliviousness to the surrounding context provides referential transparency,
which has two implications. First, you can call such a function anywhere and be con‐
fident that it will always behave the same way, independent of the calling context.
Because no global state is modified, concurrent invocation of the function is also
straightforward and reliable. No tricky thread-safe coding is required.

186 | Chapter 7: Functional Programming in Scala

The second sense of the term is that you can substitute the value computed by an
expression in place of invocations of the expression. Consider, for example, the equa‐
tion sin pi/2 = 1 . 0. A code analyzer could replace repeated calls to sin pi/2 with
1.0 with no loss of correctness, as long as sin is truly pure.

Conversely, a function that returns Unit can only perform side effects. It can only
modify mutable states somewhere. A simple example is a function that just does input
or output, which modifies “the world.”

Note that there is a natural uniformity between values and functions, due to the way
we can substitute one for the other. What about substituting functions for values, or
treating functions as values?

In fact, functions are first-class values in FP, just like data values. You can compose
functions from other functions (for example, tan x = sin x /cos x). You can assign
functions to variables. You can pass functions to other functions as arguments. You
can return functions as values from other functions.

A function that takes another function as a parameter or returns a function is called a
higher-order function. In calculus, two examples of higher-order functions are deriva‐
tion and integration. We pass an expression, like a function, to the derivation opera‐
tion, which returns a new function, the derivative.

We’ve seen many examples of higher-order functions already, such as the map method
on collections, which takes a single function parameter that is applied to each
element.

Variables That Aren’t
In most programming languages, variables are mutable. In FP, variables are immuta‐
ble, as they are in mathematics.

This is another consequence of the mathematical orientation. In the expression
y = sin x , once you pick x, then y is fixed. Similarly, values are immutable; if you
increment the integer 3 by 1, you don’t modify the 3 object, you create a new value to
represent 4. I have been using the term value as a synonym for immutable instances.

Immutability is difficult to work with at first when you’re not used to it. If you can’t
change a variable, then you can’t have loop counters, you can’t have objects that
change their state when methods are called on them, and you can’t do input and out‐
put, which changes the state of the world!

More practically, you limit the use of mutation, reserving it for specific situations and
staying pure the rest of the time.

What Is Functional Programming? | 187

Why Aren’t Input and Output Pure?
It’s easy to grasp that idea that sin(x) is a pure function without side effects. Why are
input and output considered side effects and therefore not pure? They modify the
state of the world around us, such as the contents of files or what we see on the
screen. They aren’t referentially transparent either. Every time I call readline
(defined in Predef), I get a different input. Every time I call println (also defined in
Predef), I pass a different argument, but Unit is always returned.

This does not mean that FP is stateless. If so, it would also be useless. Instead of
mutating in place, state changes are handled with new instances.

Recall this example from Chapter 2:

// src/script/scala/progscala3/typelessdomore/Factorial.scala

def factorial(i: Int): BigInt =
 def fact(i: Int, accumulator: BigInt): BigInt =
 if i <= 1 then accumulator
 else fact(i - 1, i * accumulator)

 fact(i, BigInt(1))

(0 to 5).foreach(i => println(s"$i: ${factorial(i)}"))

We calculate factorials using recursion. Updates to the accumulator are pushed on
the stack. We don’t modify a running value in place. At the end of the example, we
mutate the world by printing the results.

Almost all the constructs we have invented in the history of programming have been
attempts to manage complexity. Higher-order, pure functions are called combinators
because they compose together very well as flexible, fine-grained building blocks for
constructing larger, more complex programs.

Encapsulation is another tool for complexity management, but a mutable state often
breaks it. When a mutable object is shared between modules, a change made in one of
the modules is unexpected by the other modules, causing a phenomenon known as
spooky action at a distance.

Purity simplifies designs by eliminating a lot of the defensive boilerplate required in
object-oriented code where mutation is used freely. It’s common to encapsulate access
to mutable data structures because we can’t risk sharing them with clients unprotec‐
ted. Such accessors increase code size and the ad hoc quality of code. Copies of muta‐
ble objects are given to accessors to avoid the risk of uncontrolled mutation. All this
boilerplate increases the testing and maintenance burden. It broadens the footprint of
APIs, which increases the learning burden for users.

188 | Chapter 7: Functional Programming in Scala

https://oreil.ly/8pwNO

With immutable data structures, most of these problems simply vanish. We can make
internal data public without fear of data loss or corruption. Encapsulation is still use‐
ful to minimize coupling and to expose coherent abstractions, but there is less fear
about data access.

What about performance? If you can’t mutate an object, then you must copy it when
the state changes, right? Fortunately, functional data structures minimize the overhead
of making copies by sharing the unmodified parts of the data structures between the
two copies.

Another useful idea inspired by mathematics is lazy evaluation. We talk about the set
of natural numbers, the set of prime numbers, etc., even though they are infinite. We
only pay the cost of computing values when we need them. In Scala’s LazyList, evalu‐
ation is delayed until an element is required, allowing infinite sets to be represented,
like this definition of the natural numbers:

// src/script/scala/progscala3/fp/datastructs/LazyListNaturals.scala

scala> val natNums = LazyList.from(0)
val natNums: LazyList[Int] = LazyList(0, 1, 2, ... 999, <not computed>)

scala> natNums.take(100).toList
val res0: List[Int] = List(0, 1, 2, ..., 99)

Take the first (100) elements, returning another LazyList, then convert to a reg‐
ular List.

Scala uses eager or strict evaluation by default, but lazy evaluation avoids work that
isn’t necessary now and may never be necessary. A LazyList can be used for process‐
ing a very large stream of incoming data, yielding results as values become available,
rather than waiting until all the data has been received.

So why isn’t Scala lazy by default? There are many scenarios where lazy evaluation is
less efficient and it is harder to predict the performance of lazy evaluation. Hence,
most functional languages use eager evaluation, but most also provide lazy data struc‐
tures for when laziness is needed.

The rest of this chapter covers the essentials that every new Scala programmer needs
to know. Functional programming is a large and rich field. In Chapter 18, we’ll cover
some of the more advanced topics that are less essential for people new to FP.

Functional Programming in Scala
As a hybrid object-functional language, Scala does not require functions to be pure,
nor does it require variables to be immutable. It does encourage you to write your
code this way whenever possible.

Functional Programming in Scala | 189

https://oreil.ly/iwhiP

Let’s quickly recap a few things we’ve seen already.

Here are several higher-order functions that we compose together to iterate through a
list of integers, filter for the even ones, map each one to its value multiplied by two,
and finally multiply them together using reduce:

// src/script/scala/progscala3/fp/basics/HOFsComposition.scala

val result = (1 to 10).filter(_ % 2 == 0).map(_ * 2).reduce(_ * _)
assert(result == 122880)

Recall that _ % 2 == 0, _ * 2, and _ * _ are function literals. The first two functions
take a single parameter assigned to the placeholder _. The last function, which is
passed to reduce, takes two parameters.

The reduce method is new for us. It’s used here to multiply all the elements together,
two pairs of numbers at a time. That is, it reduces the collection of integers to a single
value. As reduce works through the collection, it could process the values from the
left, from the right, or as parallel trees. This choice is unspecified for reduce. By
implication, the function passed to reduce must be associative, like multiplication or
addition of integers (a + b + c = a + b + c), because we are not guaranteed that the
collection elements will be processed in a particular order.

Back to our example, we use the _ placeholder for both parameters, _ * _ is equiva‐
lent to (x,y) => x * y for the function passed to reduce.

So, with a single line of code, we successfully looped through the list without the use
of a mutable counter to track iterations, nor did we require mutable accumulators for
the reduction as it was performed.

Anonymous Functions, Lambdas, and Closures
Consider the following modifications of the previous example:

// src/script/scala/progscala3/fp/basics/HOFsClosures.scala

scala> var factor = 2
var factor: Int = 2

scala> val multiplier = (i: Int) => i * factor
val multiplier: Int => Int = Lambda$...

scala> val result1 =
 | (1 to 10).filter(_ % 2 == 0).map(multiplier).reduce(_ * _)
val result1: Int = 122880

scala> factor = 3
 | val result2 =
 | (1 to 10).filter(_ % 2 == 0).map(multiplier).reduce(_ * _)

190 | Chapter 7: Functional Programming in Scala

https://oreil.ly/ClEZI

factor: Int = 3
val result2: Int = 933120

We define a variable, factor, to use as the multiplication factor, and we extract the
previous anonymous function _ * 2 into a function val called multiplier that uses
factor.

Running the same expression with different values for factor changes the results.
Even though multiplier was an immutable function value, its behavior changes
when factor changes.

Of the two variables in multiplier, i and factor, i is called a formal parameter to
the function. It is bound to a new value each time multiplier is called.

Conversely, factor is not a formal parameter but a free variable, a reference to a vari‐
able in the enclosing scope. Hence, the compiler creates a closure that encompasses
(or closes over) multiplier and the external context of the unbound variables that
multiplier references, thereby binding those variables as well.

If a function has no external references, it is trivially closed over itself. No external
context is required.

This works even if factor is a local variable in some scope, like a method, and we
passed multiplier to another scope, like another method. The free variable factor
would be carried along for the ride.

This is illustrated in the following refactoring of the example, where mult returns a
function of type Int => Int. That function references the local variable factor
value, which goes out of scope once mult returns. That’s OK because the 2 is captured
in the returned function:

scala> def mult: Int => Int =
 | val factor = 2
 | (i: Int) => i * factor
def mult: Int => Int

scala> val result3= (1 to 10).filter(_ % 2 == 0).map(mult).reduce(_ * _)
val result3: Int = 122880

Functional Programming in Scala | 191

There are a few partially overlapping terms that are used a lot:

Function
An operation that is named or anonymous. Its code is not evaluated until the
function is called. It may or may not have free (unbound) variables in its
definition.

Lambda
An anonymous (unnamed) function. It may or may not have free (unbound)
variables in its definition.

Closure
A function, anonymous or named, that closes over its environment to bind vari‐
ables in scope to free variables within the function.

Why the Term Lambda?
The term lambda for anonymous functions originated in lambda calculus, where the
Greek letter lambda (λ) is used to represent anonymous functions. First studied by
Alonzo Church in lambda calculus, his research in the mathematics of computability
theory formalizes the properties of functions as abstractions of calculations. Func‐
tions can be evaluated or applied when we bind values (or expressions) for the func‐
tion parameters. (The term applied here is the origin of the default method name
apply we’ve already seen.) Lambda calculus also defines rules for simplifying expres‐
sions, variable substitution, etc.

Different programming languages use these and other terms to mean slightly differ‐
ent things. In Scala, we typically just say anonymous function or function literal for
lambdas. Java and Python use the term lambda. Also, we don’t distinguish closures
from other functions unless it’s important for the discussion.

I discussed the concept of free variables like factor in multiplier,
so you’ll understand this capability. However, factor is really an
example of a shared mutable state, so avoid doing this unless you
have a good reason for it! You won’t see any more examples like
this in the book.

Methods as Functions
While discussing variable capture in the preceding section, we defined the function
multiplier as a value:

val multiplier = (i: Int) => i * factor

However, you can also use a method:

192 | Chapter 7: Functional Programming in Scala

1 Even in the REPL, the compiler has an internal object it uses to hold method and other member definitions,
for JVM compatibility.

2 I’m ignoring the tricky fact that comparing floating points numbers for equality is fraught with peril.

// src/script/scala/progscala3/fp/basics/HOFsClosures2.scala

var factor2 = 2
def multiplier2(i: Int) = i * factor2

val result3 =
 (1 to 10).filter(_ % 2 == 0).map(multiplier2).reduce(_ * _)
assert(result3 == 122880)

factor2 = 3
val result4 =
 (1 to 10).filter(_ % 2 == 0).map(multiplier2).reduce(_ * _)
assert(result4 == 933120)

Now multiplier2 is a method like the function multiplier. However, we can use
multiplier2 just like a function because it doesn’t reference this.1 When a method is
used where a function is required, Scala lifts the method to be a function. I’ve been
using function to refer to methods or functions generically. This was not wrong!

Purity Inside Versus Outside
If we called sin x thousands of times with the same value of x, it would be wasteful if
it performed the calculation every single time.2 Even in pure functional libraries, it is
acceptable to perform internal optimizations like caching previously computed val‐
ues. This is called memoization.

Caching is a side effect, as the cache has to be modified, of course. If the performance
benefits are worth it and caching is implemented in a thread-safe way, fully encapsu‐
lated from the user, then the function is effectively referentially transparent.

Recursion
Recursion plays a larger role in FP than in imperative programming. Recursion is the
pure way to implement looping without mutable loop counters.

Calculating factorials provides a good example, which we saw in “Nesting Method
Definitions and Recursion” on page 45:

// src/script/scala/progscala3/typelessdomore/FactorialTailrec.scala
import scala.annotation.tailrec

def factorial(i: Int): BigInt =
 @tailrec
 def fact(i: Int, accumulator: BigInt): BigInt =

Recursion | 193

 if i <= 1 then accumulator
 else fact(i - 1, i * accumulator)

 fact(i, BigInt(1))

(0 to 5).foreach(i => println(s"$i: ${factorial(i)}"))

There are no mutable variables, and the implementation is tail recursive.

Tail Calls and Tail-Call Optimization
Tail-call self-recursion is the best kind of recursion because the compiler can optimize
it into a loop (see “Nesting Method Definitions and Recursion” on page 45). This
eliminates the function call for each iteration, thereby improving performance and
eliminating the potential for a stack overflow, while still letting us use the purity of
recursion in source code. You should use the @tailrec annotation to trigger a compi‐
lation error if the annotated method is not actually tail recursive.

The tail-call optimization won’t be applied when the method can be
overridden in a derived type. Hence, the recursive method must be
declared private or final, or it must be defined inside another
method.

A trampoline is a loop that works through a list of functions, calling each one in turn.
Its main purpose is to avoid stack overflow situations. The metaphor of bouncing the
functions back and forth off a trampoline is the source of the name.

Consider a mutual recursion where a function f1 doesn’t call itself recursively, but
instead it calls another function f2, which then calls f1, which calls f2, etc. This is
obviously not self-recursion, but it can also be converted into a loop using a trampo‐
line data structure. The Scala library has a scala.util.control.TailCalls object for
this purpose.

The following example defines an inefficient way of determining if a number is even
or odd (adapted from the TailCalls Scaladoc):

// src/script/scala/progscala3/fp/recursion/Trampoline.scala

scala> import scala.util.control.TailCalls.*
 |
 | def isEven(xs: Seq[Int]): TailRec[Boolean] =
 | if xs.isEmpty then done(true) else tailcall(isOdd(xs.tail))
 |
 | def isOdd(xs: Seq[Int]): TailRec[Boolean] =
 | if xs.isEmpty then done(false) else tailcall(isEven(xs.tail))
 |
 | val eo = (1 to 5).map(i => (i, isEven(1 to i).result))

194 | Chapter 7: Functional Programming in Scala

https://oreil.ly/bQkNN
https://oreil.ly/rFaaU

...
val eo: IndexedSeq[(Int, Boolean)] =
 Vector((1,false), (2,true), (3,false), (4,true), (5,false))

The code bounces back and forth between isOdd and isEven for each list element
until the end of the list. If it hits the end of the list while it’s in isEven, it returns true.
If it’s in isOdd, it returns false.

Partially Applied Functions Versus Partial Functions
We learned in “Context Functions” on page 172 that applying some, but not all argu‐
ment lists for a function is called partial application, where a new function is returned
that can be called with the remaining parameter lists.

All the arguments for a single parameter list have to be provided, but there is no limit
to the number of parameter lists you can have, and you can partially apply as many of
the lists at a time as you want. You have to work from left to right, though. You can’t
“skip over” parameter lists. Consider the following session where we define and use
different string concatenation methods:

// src/script/scala/progscala3/fp/basics/PartialApplication.scala

scala> def cat1(s1: String)(s2: String) = s1 + s2
 | def cat2(s1: String) = (s2: String) => s1 + s2
def cat1(s1: String)(s2: String): String
def cat2(s1: String): String => String

scala> cat1("hello")("world") // Call with both parameter lists.
val res0: String = helloworld

scala> val fcat1 = cat1("hello") // One applied argument list
val fcat1: String => String = Lambda$...

scala> fcat1("world") // Second argument list applied
val res2: String = helloworld

scala> cat2("hello")("world") // Same usage as cat1!
val res3: String = helloworld

// ... Same results using cat2 instead of cat1 ...

When used, it appears that cat1 and cat2 are the same, but while cat1 has two
parameter lists, cat2 has one parameter list, but it returns a function that takes the
equivalent of the second parameter list.

Partially Applied Functions Versus Partial Functions | 195

Note the function type for fcat1. This conversion from partially applied methods to
functions is called automatic eta expansion (from lambda calculus). In Scala 2, you
have to append an underscore, val fcat1 = cat1("hello") _ to trigger eta
expansion.

Let’s look at a function definition that is equivalent to cat2:

scala> val cat2F = (s1: String) => (s2: String) => s1+s2
val cat2F: String => String => String = Lambda$...

It takes a bit of practice to read signatures like this. Here is the same function with the
type signature added explicitly (which means now we don’t need the types on the
righthand side):

scala> val cat2F: String => String => String = s1 => s2 => s1+s2
 | (s1: String) => (s2: String) => s1+s2
val cat2F: String => String => String = Lambda$...

The type binding is right to left, which means that arguments are applied left first. To
see this, note that the definition is equivalent to the following, which uses parentheses
to emphasize that precedence:

scala> val cat2Fc: String => (String => String) = s1 => s2 => s1+s2
val cat2Fc: String => String => String = Lambda$...

Again, if we pass a string to cat2Fc, it returns a function that takes another string and
returns a final string. The REPL prints all three function types as String => String
=> String.

We can use all three functions exactly the way we used cat2 previously. I’ll let you try
that yourself.

A partially applied function is an expression with some but not all
of a function’s parameter lists applied, returning a new function
that takes the remaining parameter lists.
In contrast, a partial function is a single-parameter function that is
not defined for all values of the type of its parameter. The literal
syntax for a partial function is one or more case clauses (see “Par‐
tial Functions” on page 36).

Currying and Uncurrying Functions
Methods and functions with multiple parameter lists have a fundamental property
called currying, which is named after the mathematician Haskell Curry (for whom the
Haskell language is named). Actually, Curry’s work was based on an original idea of
Moses Schönfinkel, but Schönfinkeling or maybe Schönfinkelization never caught on.

196 | Chapter 7: Functional Programming in Scala

Currying is the transformation of a function that takes multiple parameters into a
chain of functions, each taking a single parameter. Scala provides ways to convert
between curried and uncurried functions:

scala> def mcat(s1: String, s2: String) = s1 + s2
 | val mcatCurried = mcat.curried
def mcat(s1: String, s2: String): String
val mcatCurried: String => String => String = scala.Function2$$Lambda$...

scala> val fcat = (s1: String, s2: String) => s1 + s2
 | val fcatCurried = fcat.curried
val fcat: (String, String) => String = Lambda$...
val fcatCurried: String => String => String = scala.Function2$$Lambda$...

scala> mcat("hello", "world")
 | fcat("hello", "world")
 | mcatCurried("hello")("world")
 | fcatCurried("hello")("world")
val res0: String = helloworld
... // Same result for the other three.

Whether we start with a method or function, curried returns a function that is a sub‐
type of a Scala trait scala.Function2 (2 for the number of parameters).

We can also uncurry a function or method:

scala> def mcat2(s1: String) = (s2: String) => s1 + s2 // "Curried" method
def mcat2(s1: String): String => String

scala> val mcat2Uncurried = Function.uncurried(mcat2)
 | val mcatUncurried = Function.uncurried(mcatCurried)
val mcat2Uncurried: (String, String) => String = scala.Function$$$Lambda$...
val mcatUncurried: (String, String) => String = scala.Function$$$Lambda$...

A practical use for currying and partial application is to specialize functions for par‐
ticular types of data. For example, suppose we always pass "hello" as the first argu‐
ment to mcat:

scala> val hcat = mcat.curried("hello")
 | val uni = hcat("universe!")
val hcat: String => String = scala.Function2$$Lambda$...
val uni: String = hellouniverse!

Tupled and Untupled Functions
One scenario you’ll encounter occasionally is when you have data in a tuple, let’s say
an N-element tuple, and you need to call an N-parameter function:

// src/script/scala/progscala3/fp/basics/Tupling.scala

scala> def mult(d1: Double, d2: Double) = d1 * d2
scala> val d23 = (2.2, 3.3)

Tupled and Untupled Functions | 197

https://oreil.ly/9eyWI

 | val d = mult(d23._1, d23._2)
val d23: (Double, Double) = (2.2,3.3)
val d: Double = 7.26

It’s tedious extracting the tuple elements like this.

Because of the literal syntax for tuples, like (2.2, 3.3), there seems to be a natural
symmetry between tuples and function parameter lists. We would love to have a new
version of mult that takes the tuple itself as a single parameter. Fortunately, the
scala.Function object provides tupled and untupled methods for us. There is also a
tupled method available for methods like mult:

scala> val multTup1 = Function.tupled(mult) // Scala 2: Function.tuples(mult _)
 | val multTup2 = mult.tupled // Scala 2:(mult _).tupled
val multTup1: ((Double, Double)) => Double = scala.Function...
val multTup2: ((Double, Double)) => Double = scala.Function2...

scala> val d2 = multTup1(d23)
 | val d3 = multTup2(d23)
val d2: Double = 7.26
val d3: Double = 7.26

The comments show that Scala 2 required the _ when using the two tupled methods.

There is a Function.untupled:

scala> val mult2 = Function.untupled(multTup2) // Go back...
 | val d4 = mult2(d23._1, d23._2)
val mult2: (Double, Double) => Double = scala.Function$$$Lambda$...
val d4: Double = 7.26

However, there isn’t a corresponding multTup2.untupled available. Also, Func
tion.tupled and Function.untupled only work for arities between two and five,
inclusive, an arbitrary limitation. Above arity five, you can call myfunc.tupled up to
arity 22.

Partial Functions Versus Functions Returning Options
In “Partial Functions” on page 36, we discussed the synergy between partial functions
and total functions that return an Option, either Some(value) or None, corresponding
to the case where the partial function can return a value and when it can’t, respec‐
tively. Scala provides transformations between partial functions and total functions
returning options:

// src/script/scala/progscala3/fp/basics/PartialFuncOption.scala

scala> val finicky: PartialFunction[String,String] =
 | case "finicky" => "FINICKY"
val finicky: PartialFunction[String, String] = <function1>

198 | Chapter 7: Functional Programming in Scala

https://oreil.ly/ln9j4
https://oreil.ly/J2B5n

scala> finicky("finicky")
val res0: String = FINICKY

scala> finicky("other")
scala.MatchError: other (of class java.lang.String)
 at scala.PartialFunction$$anon$1.apply(PartialFunction.scala:344)
 ...

Now “lift” it to a total function returning Option[String]:

scala> val finickyOption = finicky.lift
val finickyOption: String => Option[String] = <function1>

scala> finickyOption("finicky")
 | finickyOption("other")
val res1: Option[String] = Some(FINICKY)
val res2: Option[String] = None

We can go from a total function returning an option using unlift:

scala> val finicky2 = Function.unlift(finickyOption)
val finicky2: PartialFunction[String, String] = <function1>

scala> finicky("finicky")
val res3: String = FINICKY

scala> finicky("other")
scala.MatchError: other (of class java.lang.String)
 at scala.PartialFunction$$anon$1.apply(PartialFunction.scala:344)
 ...

Note that unlift only works on single parameter functions returning an option.

Lifting a partial function is especially useful when we would prefer to handle optional
values instead of dealing with thrown MatchErrors. Conversely, unlifting is useful
when we want to use a regular function returning an option in a context where we
need a partial function.

Functional Data Structures
Functional programming emphasizes the use of a core set of data structures and algo‐
rithms that are maintained separately from the data structures. This enables algo‐
rithms to be added, changed, or even removed without having to edit the data
structure source code. As we’ll see, this approach leads to flexible and composable
libraries, leading to concise applications.

The minimum set of data structures includes sequential collections, like lists, vectors,
and arrays, unordered maps and sets, and trees. Each collection supports a subset of
the same higher-order, side effect–free functions, called combinators, such as map,
filter, and fold. Once you learn these combinators, you can pick the appropriate

Functional Data Structures | 199

collection to meet your requirements for data access and performance, then apply the
same familiar combinators to manipulate that data. These collections are the most
successful tools for code reuse and composition that we have in all of software
development.

Let’s look at a few of the most common data structures in Scala, focusing on their
functional characteristics. Other details, like the organization of the library, will be
discussed in Chapter 14. Unless otherwise noted, the particular collections we’ll dis‐
cuss are automatically in scope without requiring import statements.

Sequences
Many data structures are sequential, where the elements can be traversed in a predict‐
able order, which might be the order of insertion or sorted in some way, like a priority
queue. The collection.Seq trait is the abstraction for all mutable and immutable
sequential types. Child traits collection.mutable.Seq and collection.immuta
ble.Seq represent mutable and immutable sequences, respectively. The default Seq
type is immutable.Seq. You have to import the other two if you want to use them.

When we call Seq.apply(), it constructs a linked List, the simplest concrete imple‐
mentation of Seq. When adding an element to a list, it is prepended to the existing
list, becoming the head of a new list that is returned. The existing tail list remains
unchanged. Lists are immutable, so the tail list is unaffected by prepending elements
to construct a new list.

Figure 7-1 shows two lists, List(1,2,3,4,5) and List(2,3,4,5), where the latter is
the tail of the former.

Figure 7-1. Two linked lists

Note that we created a new list from an existing list using an O(1) operation. (Access‐
ing the head is also O(1).) We shared the tail with the original list and just construc‐
ted a new link from the new head element to the old list. This is our first example of
an important idea in functional data structures, sharing a structure to minimize the
cost of making copies. To support immutability, we need the ability to make copies
with minimal cost.

Any operation that requires list traversal, such as computing the size or accessing an
arbitrary element—e.g., mylist(5)) is O(N), where N is the size.

The following example demonstrates ways to construct Lists:

200 | Chapter 7: Functional Programming in Scala

https://oreil.ly/a1qPL
https://oreil.ly/YTjvp
https://oreil.ly/ClEZI
https://oreil.ly/ClEZI
https://oreil.ly/yiiF3

// src/script/scala/progscala3/fp/datastructs/Sequence.scala
scala> val seq1 = Seq("Programming", "Scala")
 | val seq2 = "Programming" +: "Scala" +: Nil
val seq1: Seq[String] = List(Programming, Scala)
val seq2: List[String] = List(Programming, Scala)

scala> val seq3 = "People" +: "should" +: "read" +: seq1
val seq3: Seq[String] = List(People, should, read, Programming, Scala)

scala> seq3.head
 | seq3.tail
val res0: String = People
val res1: Seq[String] = List(should, read, Programming, Scala)

Seq.apply() takes a repeated parameters list and constructs a List.

The +: method on Seq used in infix notation, with Nil as the empty list. Note the
different inferred types for seq1 and seq2. This is because Nil is of type
List[Nothing], so the whole sequence will be a List at each step.

You can start with a nonempty sequence on the far righthand side.

Getting the head and tail of the sequence.

We discussed the cons (for construct) method, +:, in “Operator Precedence Rules” on
page 78. It binds to the right because the name ends with :. If we used regular method
syntax, we would write list.+:(element).

The case object Nil is a subtype of List that is a convenient object when an empty list
is required. Note that the chain of cons operators requires a list on the far right,
empty or nonempty. Nil is equivalent to List.empty[Nothing], where Nothing is the
subtype of all other types in Scala.

The construction of seq2 is parsed as follows, with parentheses added to make the
ordering of construction explicit. Each set of parentheses encloses an immutable list:

val seq2b = ("Programming" +: ("Scala" +: (Nil)))

How can we start with List[Nothing], the type of Nil, and end up with
List[String] after "Scala" is prepended to Nil? It is because +: is typed so that the
new type parameter of the output Seq will be the least upper bound of the input ele‐
ments. Since Nothing is a subtype of all types, including String, then String is the
new least upper bound after "Scala" +: Nil.

There are many more methods available on Seq for concatenation of sequences,
transforming them, etc.

Functional Data Structures | 201

https://oreil.ly/1XejK
https://oreil.ly/WkZB1
https://oreil.ly/ClEZI

What about other types that implement Seq? Let’s consider immutable.Vector, which
is important because random access operations are O(log(N)), and some operations
like head, tail, +: (prepend), and :+ (append) are O(1) to O(log(N)), worst case:

// src/script/scala/progscala3/fp/datastructs/Vector.scala
scala> val vect1 = Vector("Programming", "Scala")
 | val vect2 = "People" +: "should" +: "read" +: Vector.empty
 | val vect3 = "People" +: "should" +: "read" +: vect1
val vect1: Vector[String] = Vector(Programming, Scala)
val vect2: Vector[String] = Vector(People, should, read)
val vect3: Vector[String] = Vector(People, should, read, Programming, Scala)

scala> val vect4 = Vector.empty :+ "People" :+ "should" :+ "read"
val vect4: Vector[String] = Vector(People, should, read)

scala> vect3.head
 | vect3.tail
val res0: String = People
val res1: Vector[String] = Vector(should, read, Programming, Scala)

scala> val seq1 = Seq("Programming", "Scala")
 | val vect5 = seq1.toVector
val seq1: Seq[String] = List(Programming, Scala)
val vect5: Vector[String] = Vector(Programming, Scala)

Use Vector.empty instead of Nil so that the whole sequence is constructed as a
Vector from the beginning.

Use the append method, :+. This is worst case O(log(N)) for Vector, but O(N) for
list.

An alternative; take an existing sequence and convert it to a Vector. This is inef‐
ficient, if the Seq is not already a Vector, as a copy of the collection has to be
constructed.

Maps
Another common data structure is the Map, used to hold pairs of keys and values,
where the keys must be unique. Maps and the common map method reflect a similar
concept, associating a key with a value and associating an input element with an out‐
put element, respectively:

// src/script/scala/progscala3/fp/datastructs/Map.scala

scala> val stateCapitals = Map(
 | "Alabama" -> "Montgomery",
 | "Alaska" -> "Juneau",
 | "Wyoming" -> "Cheyenne")

202 | Chapter 7: Functional Programming in Scala

https://oreil.ly/AeTgU
https://oreil.ly/zsgSQ

val stateCapitals: Map[String, String] =
 Map(Alabama -> Montgomery, Alaska -> Juneau, Wyoming -> Cheyenne)

The order of traversal is undefined for Map, but it may be defined by particular sub‐
types, such as SortedMap (import required).

You can add new key-value pairs, possibly overriding an existing definition, or add
multiple key-value pairs. All of these operations return a new Map:

scala> val stateCapitals2a = stateCapitals + ("Virginia" -> "Richmond")
val stateCapitals2a: Map[String, String] = Map(..., Virginia -> Richmond)

scala> val stateCapitals2b = stateCapitals + ("Alabama" -> "MONTGOMERY")
val stateCapitals2b: Map[String, String] = Map(Alabama -> MONTGOMERY, ...)

scala> val stateCapitals2c = stateCapitals ++ Seq(
 | "Virginia" -> "Richmond", "Illinois" -> "Springfield")
val stateCapitals2c: Map[String, String] = HashMap(
 Alaska -> Juneau, Illinois -> Springfield, Wyoming -> Cheyenne,
 Virginia -> Richmond, Alabama -> Montgomery)

Map is a trait, like Seq. We used the companion object method, Map.apply, to con‐
struct an instance of a concrete implementation class that is optimal for the data set,
usually based on size. In fact, there are concrete map classes for one, two, three, and
four key-value pairs! Why? For very small instances, it’s more efficient to use custom
implementations, like an array lookup, rather than use a hash-based implementation,
HashMap, which is the default used for larger maps. (SortedMap uses a tree structure.)

Sets
Like Maps, Sets are unordered collections, so they aren’t sequences. Like Map keys,
they also enforce uniqueness among the elements they hold:

// src/script/scala/progscala3/fp/datastructs/Set.scala

scala> val states = Set("Alabama", "Alaska", "Wyoming")

scala> val states2 = states + "Virginia"
val states2: Set[String] = Set(Alabama, Alaska, Wyoming, Virginia)

scala> val states3 = states ++ Seq("New York", "Illinois", "Alaska")
val states3: Set[String] = HashSet(
 Alaska, Alabama, New York, Illinois, Wyoming) // Alaska already present

Functional Data Structures | 203

https://oreil.ly/fOxiU
https://oreil.ly/lZFjF
https://oreil.ly/X7wqt

Traversing, Mapping, Filtering, Folding, and Reducing
Traversing a collection is a universal operation for working with the contents. Most
collections are traversable by design, like List and Vector, where the ordering is
defined. LazyList is also traversable, but potentially infinite! Other traversable collec‐
tions don’t guarantee a particular order, such as hash-based Set and Map types. Other
types may have a toSeq method, which returns a new collection that is traversable.
Option is a collection with zero or one element, implemented by the None and Some
subtypes. Even Product, an abstraction implemented by tuples and case classes, has
the notion of iterating through its elements. Your own container types can and should
be designed for traversability, when possible.

This protocol is one of the most reusable, flexible, and powerful concepts in all of
programming. Scala programs use this capability extensively. In the sense that all pro‐
grams boil down to “data in, data out,” traversing is a superpower.

Traversing
The method for traversing a collection and performing only side effects is foreach. It
is declared in collection.IterableOnce. The operations we’ll discuss are defined in
“mixin” traits like this. See Chapter 14 for more details.

This is the signature for foreach:

trait IterableOnce[A] { // Some details omitted.
 ...
 def foreach[U](f: A => U): Unit
 ...
}

The return type of the function U is not important, as the output of foreach is always
Unit. Hence, it can only perform side effects. This means foreach isn’t consistent
with the FP principle of writing pure, side effect–free code, but it is useful for writing
output and other tasks. Because it takes a function parameter, foreach is a higher-
order function, as are all the operations we’ll discuss.

Performance is at best O(N) in the number of elements. Here are examples using it
with our stateCapitals Map:

scala> var str1 = ""
 | stateCapitals.foreach { case (k, v) => str1 += s"${k}: ${v}, " }
scala> str1
val res0: String = "Alabama: Montgomery, Alaska: Juneau, Wyoming: Cheyenne, "

Since nothing is returned, you could say that foreach transforms each element into
zero elements, or one to zero for short.

204 | Chapter 7: Functional Programming in Scala

https://oreil.ly/iwhiP
https://oreil.ly/0zdOi
https://oreil.ly/kRurH

Mapping
One of the most useful operations, which we have used many times already, is map.
Mapping is one to one, where for each input element an output element is returned.
Hence, an invariant is the size of the input and output collections and must be equal.
For any collection C[A] for elements of type A, map has the following logical signature:

class C[A]:
 def map[B](f: (A) => B): C[B]

The real signature is more involved, in part because of the need to construct the cor‐
rect collection for the result, but the details don’t concern us now. This will be true for
all the combinators we explore later too. I’ll simplify the signatures to focus on the
concepts, then return to more of the implementation details in Chapter 14.

Note the signature for f. It must transform an A to a B. Usually the type B is inferred
from this function, while A is known from the original collection:

scala> val in = Seq("one", "two", "three")
val in: Seq[String] = List(one, two, three)

scala> val out1 = in.map(_.length)
val out1: Seq[Int] = List(3, 3, 5)

scala> val out2 = in.map(s => (s, s.length))
val out2: Seq[(String, Int)] = List((one,3), (two,3), (three,5))

When calling Map.map, the anonymous function must accept a pair (two-element
tuple) for each key and value:

// src/script/scala/progscala3/fp/datastructs/Map.scala

scala> val lengths = stateCapitals.map(kv => (kv._1, kv._2.length))
val lengths: Map[String, Int] = Map(Alabama -> 10, Alaska -> 6, Wyoming -> 8)

Sometimes it’s more convenient to pattern match on the key and value:

scala> val caps = stateCapitals.map { case (k, v) => (k, v.toUpperCase) }
val caps: Map[String, String] = Map(Alabama -> MONTGOMERY, ...)

We can also use parameter untupling here (see “Parameter Untupling” on page 116):

scala> val caps = stateCapitals.map((k, v) => (k, v.toUpperCase))
val caps: Map[String, String] = Map(Alabama -> MONTGOMERY, ...)

Another way to think of map is that it transforms Seq[A] => Seq[B]. This fact is
obscured by the object syntax—e.g., myseq.map(f). If instead we had a separate mod‐
ule of functions that take Seq instances as parameters, it would look something like
this:

// src/script/scala/progscala3/fp/combinators/MapF.scala

Traversing, Mapping, Filtering, Folding, and Reducing | 205

object MapF:
 def map[A,B](f: (A) => B)(seq: Seq[A]): Seq[B] = seq.map(f)

MapF.map used to avoid conflict with the built-in Map.

A map that takes the transforming function as the first parameter list, then the
collection. I’m cheating and using Seq.map to implement the transformation for
simplicity.

Now try it. Note the type of the value returned from MapF.map:

scala> val intToString = (i:Int) => s"N=$i"
 | val input = Seq(1, 2, 3, 4)

scala> val ff = MapF.map(intToString)
val ff: Seq[Int] => Seq[String] = Lambda$...

scala> val seq = ff(input)
val seq: Seq[String] = List(N=1, N=2, N=3, N=4)

Partial application of MapF.map lifts a function Int => String into a new function
Seq[Int] => Seq[String], the type of ff. We call this new function with a collection
argument and it returns a new collection.

Put another way, partial application of MapF.map is a transformer of functions. There
is a symmetry between the idea of mapping over a collection with a function to create
a new collection versus mapping a function to a new function that is able to trans‐
form one collection into another.

Flat Mapping
A generalization of the Map operation is flatMap, where we generate zero or more
new elements for each element in the original collection. In other words, while map is
one to one, flatMap is one to many.

Here the logical signature, with map for comparison, for some collection C[A]:

class C[A]:
 def flatMap[B](f: A => Seq[B]): C[B]
 def map[B](f: (A) => B): C[B]

We pass a function that returns a collection, instead of a single element, and flatMap
flattens those collections into one collection, C[B]. It’s not required for f to return
collections of the same type as C.

Consider this example that compares flatMap and map. First we map over a Range. In
the function passed to map, for each integer, we construct a new range from that value
until 5:

206 | Chapter 7: Functional Programming in Scala

// src/script/scala/progscala3/fp/datastructs/FlatMap.scala

scala> val seq = 0 until 5
val seq: Range = Range 0 until 5 // i.e., 0, 1, 2, 3, 4, but not 5

scala> val seq1 = seq.map(i => i until 5)
val seq1: IndexedSeq[Range] = Vector(Range 0 until 5, Range 1 until 5, ...)

Vector was used by Scala itself because of its efficient append operation. Now use
another method, flatten:

scala> val seq2 = seq1.flatten
val seq2: IndexedSeq[Int] = Vector(0, 1, 2, 3, 4, 1, 2, 3, 4, 2, 3, 4, 3, 4, 4)

Finally, use flatMap instead. It effectively combines map followed by flatten (but it is
more efficient):

scala> val seq3 = seq.flatMap(i => i until 5)
val seq3: IndexedSeq[Int] = Vector(0, 1, 2, 3, 4, 1, 2, 3, 4, 2, 3, 4, 3, 4, 4)

If we had nested sequences returned from the function passed to flatMap, they would
not be flattened beyond one level.

So far, flatMap might not seem like a particularly useful operation, but it has far
greater benefit than first appears. As a teaser for what’s to come, consider the follow‐
ing example using Options where we simulate validating account information a user
might provide in a form:

// src/script/scala/progscala3/fp/datastructs/FlatMapValidate.scala

scala> case class Account(name: String, password: String, age: Int)

scala> val validName: Account => Option[Account] =
 | a => if a.name.length > 0 then Some(a) else None
 |
 | val validPwd: Account => Option[Account] =
 | a => if a.password.length > 0 then Some(a) else None
 |
 | val validAge: Account => Option[Account] =
 | a => if a.age > 18 then Some(a) else None

scala> val accounts = Seq(
 | Account("bucktrends", "1234", 18),
 | Account("", "1234", 29),
 | Account("bucktrends", "", 29),
 | Account("bucktrends", "1234", 29))

scala> val validated = accounts.map { account =>
 | Some(account).flatMap(validName).flatMap(validPwd).flatMap(validAge)
 | }
val validated: Seq[Option[Account]] =
 List(None, None, None, Some(Account(bucktrends,1234,29)))

Traversing, Mapping, Filtering, Folding, and Reducing | 207

Define a case class for Account form data.

Define separate validation functions for each field in an Account instance. Note
that each has exactly the same signature, other than the name.

Disallow minors.

Map over the accounts, testing each one with the validators.

Note that the last account passes validation. None is returned for the rest.

How did this work? Take the third Account object, which has an invalid password.
Let’s assume we assigned it to a val named acc3. Now Some(acc3).flatMap(valid
Name) succeeds, so it returns Some(acc3) again. Try checking this yourself in the
REPL if you’re not sure. Now, calling acc3.flatMap(validPwd) returns None, and all
subsequent calls to None.flatMap will always just return None.

If we didn’t care about the three bad ones, we could use accounts.flatMap instead to
filter out the Nones. Try it!

Using Options and flatMap this way might seem like overkill. We could just call sim‐
pler validation methods that don’t return Option. But if we made the list of validators
more configurable, perhaps defined in an external library, then using this protocol
lets us sequence together the separate tests without having to add logic to handle each
success or failure (“if this passes, try that…”). As shown, the first three instances fail
at one validator, while the last one passes all of them.

What’s missing here is information about which validator failed and why for each
case, which you would want to show to the user in a form. We’ll see alternatives in
Chapter 8 that fill in this gap but still leverage the same flatMap approach.

Using flatMap in this way is extremely common in Scala code. Any time a value is
“inside a box,” flatMap is the easy way to extract that value, do something with it,
then put it back inside a new box, as long as Box.flatMap is defined. We’ll see many
more examples.

Filtering
It is common to traverse a collection and extract a new collection from it with ele‐
ments that match certain criteria.

For any collection C[A]:

class C[A]:
 def filter(f: A => Boolean): C[A]

Hence, filtering is one to zero or one. For example:

208 | Chapter 7: Functional Programming in Scala

scala> val numbers = Map("one" -> 1, "two" -> 2, "three" -> 3)

scala> val tnumbers = numbers filter { case (k, v) => k.startsWith("t") }
val tnumbers: Map[String, Int] = Map(two -> 2, three -> 3)

Most collections that support filter have a set of related methods to retrieve the
subset of a collection. Note that some of these methods won’t return for infinite col‐
lections, and some might return different results for different invocations unless the
collection type is ordered. The descriptions are adapted from the Scaladoc:

def drop(n: Int): C[A]

Return a new collection without the first n elements. The returned collection will
be empty if this collection has less than n elements.

def dropWhile (p: (A) => Boolean): C[A]

Drop the longest prefix of elements that satisfy the predicate p. The new collec‐
tion returned starts with the first element that doesn’t satisfy the predicate.

def exists (p: (A) => Boolean): Boolean

Return true if the predicate holds for at least one of the elements of this collec‐
tion. Return false, otherwise.

def filter (p: (A) => Boolean): C[A]

Return a collection with all the elements that satisfy a predicate. The order of the
elements is preserved.

def filterNot (p: (A) => Boolean): C[A]

The negation of filter; select all elements that do not satisfy the predicate.

def find (p: (A) => Boolean): Option[A]

Find the first element of the collection that satisfies the predicate, if any. Return
an Option containing that first element, or None if no element exists satisfying the
predicate.

def forall (p: (A) => Boolean): Boolean

Return true if the predicate holds for all elements of the collection. Return false,
otherwise.

def partition (p: (A) => Boolean): (C[A], C[A])

Partition the collection into two new collections according to the predicate.
Return the pair of new collections where the first one consists of all elements that
satisfy the predicate and the second one consists of all elements that don’t. The
relative order of the elements in the resulting collections is the same as in the
original collection.

Traversing, Mapping, Filtering, Folding, and Reducing | 209

def take (n: Int): C[A]

Return a collection with the first n elements. If n is greater than the size of the
collection, return the whole collection.

def takeWhile (p: (A) => Boolean): C[A]

Take the longest prefix of elements that satisfy the predicate.

def withFilter (p: (A) => Boolean): WithFilter[A]

Works just like filter, but it is used by for comprehensions to reduce the num‐
ber of collection copies created (see Chapter 8).

Note that concatenating the results of take and drop yields the original collection.
Same for takeWhile and dropWhile. Also, the same predicate used with partition
would return the same two collections:

// src/script/scala/progscala3/fp/datastructs/FilterOthers.scala

val seq = 0 until 10
val f = (i: Int) => i < 5

for i <- 0 until 10 do
 val (l1,r1) = (seq.take(i), seq.drop(i))
 val (l2,r2) = (seq.takeWhile(f), seq.dropWhile(f))
 val (l3,r3) = seq.partition(f)
 assert(seq == l1++r1)
 assert(seq == l2++r2)
 assert(seq == l3++r3)
 assert(l2 == l3 && r3 == r3)

Folding and Reducing
Let’s discuss folding and reducing together because they’re similar. Both are opera‐
tions for shrinking a collection down to a smaller collection or a single value, so they
are many-to-one operations.

Folding starts with an initial seed value and processes each element in the context of
that value. In contrast, reducing doesn’t start with a user-supplied initial value.
Rather, it uses one of the elements as the initial value, usually the first or last element:

// src/script/scala/progscala3/fp/datastructs/Reduce.scala

scala> val int1 = Seq(1,2,3,4,5,6).reduceLeft (_ + _)
 |
 | val int2 = Seq(1,2,3,4,5,6).foldLeft(0)(_ + _))
val int1: Int = 21
val int2: Int = 21

scala> val int3 = Seq.empty[Int].reduceLeft(_ + _))
java.lang.UnsupportedOperationException: empty.reduceLeft
...

210 | Chapter 7: Functional Programming in Scala

scala> val int4 = Seq(1).reduceLeft(_ + _))
val int4: Int = 1

scala> val opt1 = Seq.empty[Int].reduceLeftOption(_ + _)
val opt1: Option[Int] = None

scala> val opt2 = Seq(1,2,3,4,5,6).reduceLeftOption(_ * _)
val opt2: Option[Int] = Some(720)

Reduce a sequence of integers by adding them together, going left to right,
returning 21.

Do the same calculation with foldLeft, which takes a seed value, 0 in this case.

An attempt to reduce an empty sequence causes an exception because there
needs to be at least one element for the reduction.

Having one element is sufficient. The returned value is just the single element.

A safer way to reduce if you aren’t sure if the collection is empty. Some(value) is
returned if the collection is not empty. Otherwise, None is returned.

There are similar foldRight and reduceRight methods for traversing right to left, as
well as fold and reduce, where traversal order is undefined.

If you think about it, reducing can only return the least upper bound, the closest
common supertype of the elements. If the elements all have the same type, the final
output will have that type. In contrast, because folding takes a seed value, it offers
more options for the final result. Here are fold examples that implement mapping,
flat mapping, and filtering:

// src/script/scala/progscala3/fp/datastructs/Fold.scala

scala> val vector = Vector(1, 2, 3, 4, 5, 6)

scala> val vector2 = vector.foldLeft(Vector.empty[String]) {
 | (vector, x) => vector :+ ("[" + x + "]")
 | }
val vector2: Vector[String] = Vector([1], [2], [3], [4], [5], [6])

scala> val vector3 = vector.foldLeft(Vector.empty[Int]) {
 | (vector, x) => if x % 2 == 0 then vector else vector :+ x
 | }
val vector3: Vector[Int] = Vector(1, 3, 5)

scala> val vector4a = vector.foldLeft(Vector.empty[Seq[Int]]) {
 | (vector, x) => vector :+ (1 to x)
 | }

Traversing, Mapping, Filtering, Folding, and Reducing | 211

val vector4a: Vector[Seq[Int]] =
 Vector(Range 1 to 1, Range 1 to 2, Range 1 to 3, Range 1 to 4, ...)

scala> val vector4 = vector4a.flatten
val vector4: Vector[Int] =
 Vector(1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6)

scala> val vector2b = vector.foldRight(Vector.empty[String]) {
 | (x, vector) => ("[" + x + "]") +: vector
 | }
val vector2b: Vector[String] = Vector([1], [2], [3], [4], [5], [6])

scala> vector2 == vector2b
val res0: Boolean = true

Map over a vector, creating strings [1], [2], etc. While fold doesn’t guarantee a
particular traversal order, foldLeft traverses left to right. Note the anonymous
function. For foldLeft, the first parameter is the accumulator, the new vector we
are building, and the second parameter is an element. We return a new vector
with the element string appended to it, using :+. This returned vector will be
passed in as the new accumulator on the next iteration or returned to vector2.

Filter a vector, returning just the odd values. Note that for even values, the
anonymous function just returns the current accumulator.

A map that creates a vector of ranges.

Flattening the previous output vector, thereby implementing flatMap.

Traverse from the right. Note the parameters are reversed in the anonymous
function and we prepend to the accumulator. Hence vector2 and vector2b are
equal.

Folding really is the universal operator because it can be used to implement all the
others, where map, filter, and flatMap implementations are shown here. (Try doing
foreach yourself.)

Here are the signatures and descriptions for the various fold and reduce operations
available on the iterable collections. The descriptions are paraphrased from the Scala‐
doc. Where you see the type parameter A1 >: A, recall that it means that the final
output type A1 must be a supertype of A, although they will often be the same types:

def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1

Fold the elements of this collection using the specified associative binary opera‐
tor op. The order in which operations are performed on elements is unspecified

212 | Chapter 7: Functional Programming in Scala

and may be nondeterministic. However, for most ordered collections like Lists,
fold is equivalent to foldLeft.

def foldLeft[B](z: B)(op: (B, A) => B): B

Apply op to the start value z and all elements of this collection, going left to right.
For the function op, the first argument is the accumulator.

def foldRight[B](z: B)(op: (A, B) => B): B

Apply op to all elements of this collection and a start value, going right to left. For
the function op, the second argument is the accumulator.

def reduce[A1 >: A](op: (A1, A1) => A1): A1

Reduce the elements of this collection using the specified associative binary oper‐
ator op. The order in which operations are performed on elements is unspecified
and may be nondeterministic. However, for most ordered collections like Lists,
reduce is equivalent to reduceLeft. An exception is thrown if the collection is
empty.

def reduceLeft[A1 >: A](op: (A1, A1) => A1): A1

Apply op to all elements of this collection, going left to right. An exception is
thrown if the collection is empty. For the function op, the first argument is the
accumulator.

def reduceRight[A1 >: A](op: (A1, A1) => A1): A1

Apply op to all elements of this collection going right to left. An exception is
thrown if the collection is empty. For the function op, the second argument is the
accumulator.

def optionReduce[A1 >: A](op: (A1, A1) => A1): Option[A1]

Like reduce, but return None if the collection is empty or Some(…) if not.

def reduceLeftOption[B >: A](op: (B, A) => B): Option[B]

Like reduceLeft, but return None if the collection is empty or Some(…) if not.

def reduceRightOption[B >: A](op: (A, B) => B): Option[B]

Like reduceRight, but return None if the collection is empty or Some(…) if not.

def scan[B >: A](z: B)(op: (B, B) => B): C[B]

Compute a prefix scan of the elements of the collection. Note that the neutral ele‐
ment z may be applied more than once. (I’ll show a following example.)

def scanLeft[B >: A](z: B)(op: (B, B) => B): C[B]

Produce a collection containing cumulative results of applying the operator op
going left to right.

Traversing, Mapping, Filtering, Folding, and Reducing | 213

def scanRight[B >: A](z: B)(op: (B, B) => B): C[B]

Produce a collection containing cumulative results of applying the operator op
going right to left.

def product[B >: A](implicit num: math.Numeric[B]): B

Multiply the elements of this collection together, as long as the elements have an
implicit conversion to type Numeric, which effectively means Int, Long, Float,
Double, BigInt, etc. We discussed such conversions in “Constraining Allowed
Instances” on page 175.

def sum[B >: A](implicit num: math.Numeric[B]): B

Similar to product; add the elements together.

def mkString: String

Display all elements of this collection in a string. This is a custom implementa‐
tion of fold used for conveniently generating a custom string from the collec‐
tion. There will be no delimiter between elements in the string.

def mkString(sep: String): String

Display all elements of this collection in a string using the specified separator
(sep) string.

def mkString(start: String, sep: String, end: String): String

Display all elements of this collection in a string using the specified start (pre‐
fix), sep (separator), and end (suffix) strings.

Pay careful attention to the parameters passed to the anonymous functions for vari‐
ous reduce, fold, and scan methods. For the Left methods (e.g., foldLeft), the first
parameter is the accumulator and the collection is traversed left to right. For the
Right functions (e.g., foldRight), the second parameter is the accumulator and the
collection is traversed right to left. For the methods like fold and reduce that aren’t
left- or right-biased, the traversal order and which parameter is the accumulator are
undefined, but usually they delegate to the left-biased methods.

The fold and scan methods can output a completely different type, based on the seed
value, while the reduce methods always return the same element type or a supertype.

None of these functions will terminate for infinite collections. Also, they might return
different results for different runs if the collection is not a sequence (i.e., the elements
are not stored in a defined order) or the operation isn’t associative.

The scan methods are useful for processing successive subsets of a collection. Con‐
sider the following example:

scala> val ints = Seq(1,2,3,4,5,6)

scala> val plus = ints.scan(0)(_ + _)

214 | Chapter 7: Functional Programming in Scala

https://oreil.ly/xTpXU

val plus: Seq[Int] = List(0, 1, 3, 6, 10, 15, 21)

scala> val mult = ints.scan(1)(_ * _)
val mult: Seq[Int] = List(1, 1, 2, 6, 24, 120, 720)

For the plus example, first the seed value 0 is emitted, followed by the first element
plus the seed, 1 + 0 = 1, followed by the second element plus the previous value, 1 +
2 = 3, and so on. Try rewriting scan using foldLeft.

Finally, the three mkString methods are quite handy when the default toString for a
collection isn’t what you want.

Left Versus Right Folding
There are nonobvious differences going from left to right when folding or reducing.
We’ll focus on folding, but the same remarks apply to reducing too.

Recall that fold does not guarantee a particular traversal order and the function
passed to it must be associative, while foldLeft and foldRight guarantee traversal
order. Consider the following examples:

// src/script/scala/progscala3/fp/datastructs/FoldLeftRight.scala

scala> val seq6 = Seq(1,2,3,4,5,6)
 | val int1 = seq6.fold(0)(_ + _)
 | val int2 = seq6.foldLeft(0)(_ + _)
 | val int3 = seq6.foldRight(0)(_ + _)
val seq6: Seq[Int] = List(1, 2, 3, 4, 5, 6)
val int1: Int = 21
val int2: Int = 21
val int3: Int = 21

All yield the same result, which is hopefully not surprising. It doesn’t matter in what
order we traverse the sequence, as addition is associative and also commutative.

Let’s explore examples where order matters, meaning noncommutative. First, recall
that for many sequences, fold just calls foldLeft. So we’ll focus on foldLeft and
foldRight. Second, while we used the same anonymous function previously _ + _,
recall that the parameters passed to this function are actually reversed for foldLeft
versus foldRight. To spell it out:

val int4 = seq6.foldLeft(0)((accum: Int, element: Int) => accum + element)
val int5 = seq6.foldRight(0)((element: Int, accum: Int) => element + accum)

For addition, the names are meaningless. Suppose instead that we build up a string
from the sequence by folding. We’ll add parentheses to show the order of evaluation:

scala> val left = (accum: String, element: Int) => s"($accum $element)"
 | val right = (element: Int, accum: String) => s"($accum $element)"
 | val right2 = (element: Int, accum: String) => s"($element $accum)"
 |

Traversing, Mapping, Filtering, Folding, and Reducing | 215

 | val strLeft = seq6.foldLeft("(0)")(left)
 | val strRight = seq6.foldRight("(0)")(right)
 | val strRight2 = seq6.foldRight("(0)")(right2)
val strLeft: String = (((((((0) 1) 2) 3) 4) 5) 6)
val strRight: String = (((((((0) 6) 5) 4) 3) 2) 1)
val strRight2: String = (1 (2 (3 (4 (5 (6 (0)))))))

Note that the bodies of left and right are the same, while the parameter list is
reversed. I wrote them this way so all the parentheses would line up the same way.
Clearly the numbers are different. However, right2 reverses the way the arguments
are used in the body, so the parentheses come out very different, but the order of the
numbers is almost the same in strLeft and strRight2. It’s worth studying these
examples to be sure you understand how we got the output.

It turns out that foldLeft has an important advantage over foldRight; left traversals
are tail recursive, so they can benefit from Scala’s tail-call optimization.

Recall that a tail call must be the last operation in a recursion. Looking at the output
for strRight2, the outermost string construction (1…) can’t be performed until all
of the nested strings are constructed, shown as “…” Hence, right folding is not tail
recursive and it can’t be converted to a loop.

In contrast, for the reduceLeft example, we can construct the first substring ((0)
1), then the next outer string (((0) 1) 2), etc. In other words, we can convert this
process to a loop because it is tail recursive.

Another way to see this is to implement our own simplified reduceLeft and reduce
Right for Seqs using recursion:

// src/main/scala/progscala3/fp/datastructs/FoldLeftRight.scala
package progscala3.fp.datastructs

import scala.annotation.tailrec

/**
 * Simplified implementations of foldLeft and foldRight.
 */
object FoldLeftRight:
 def foldLeft[A,B](s: Seq[A])(seed: B)(f: (B,A) => B): B =
 @tailrec
 def fl(accum: B, s2: Seq[A]): B = s2 match
 case head +: tail => fl(f(accum, head), tail)
 case _ => accum
 fl(seed, s)

 def foldRight[A,B](s: Seq[A])(seed: B)(f: (A,B) => B): B =
 s match
 case head +: tail => f(head, foldRight(tail)(seed)(f))
 case _ => seed

216 | Chapter 7: Functional Programming in Scala

Using them, we should get the same results as before:

scala> import progscala3.fp.datastructs.FoldLeftRight.*

scala> val strLeft3 = foldLeft(seq6)("(0)")(left)
 | val strRight3 = foldRight(seq6)("(0)")(right)
 | val strRight4 = foldRight(seq6)("(0)")(right2)
val strLeft3: String = (((((((0) 1) 2) 3) 4) 5) 6)
val strRight3: String = (((((((0) 6) 5) 4) 3) 2) 1)
val strRight4: String = (1 (2 (3 (4 (5 (6 (0)))))))

These implementations are simplified in the sense that they don’t attempt to construct
the correct subtype of the input Seq for the output. For example, if you pass in a Vec
tor, you’ll get a List back instead. The Scala collections handle this correctly.

You should learn these two recursion patterns well enough to always remember the
behaviors and trade-offs of left versus right recursion, even though in practice you’ll
almost always use Scala’s built-in functions instead of writing your own.

Because we are processing a Seq, we should normally work with the elements left to
right. It’s true that Seq.apply(index: Int) returns the element at position index
(counting from zero). However, for a linked list, this would require an O(N) traversal
for each call to apply, yielding an O(N2) algorithm rather than O(N), which we want.
So the implementation of foldRight “suspends” prefixing the value to the rest of the
new Seq until the recursive invocation of foldRight returns. Hence, foldRight is not
tail recursive.

For foldLeft, we use a nested function rl to implement the recursion. It carries
along an accum parameter that accumulates the new Seq[B]. When we no longer
match on head +: tail, we’ve hit the empty tail Seq, at which point we return accum,
which has the completed Seq[B] we’ll return. When we make a recursive call to rl, it
is the last thing we do (the tail call) because we prepend the new element to accum
before passing its updated value to rl. Hence, foldLeft is tail recursive.

In contrast, when we hit the end of the input Seq in foldRight, we return an empty
Seq[B] and then the new elements are prefixed to it as we “pop the stack.”

However, right recursion has one advantage over left recursion. Consider the case
where you have a potentially infinite stream of data coming in. You can’t conceivably
put all that data into a collection in memory, but perhaps you only need to process
the first N elements, for some N, and then discard the rest. The library’s LazyList is
designed for this purpose. LazyList only evaluates the head and tail on demand. We
discussed it briefly near the beginning of this chapter.

This on-demand evaluation is the only way to define an infinite stream, and the
assumption is that we’ll never ask for all of it! That evaluation could be reading from
an input channel, like a socket, a Kafka topic, or a social media “firehose.” Or it could

Traversing, Mapping, Filtering, Folding, and Reducing | 217

https://oreil.ly/iwhiP
https://kafka.apache.org

3 To be clear, our foldRight, as well as the standard library implementations, do not provide a way to terminate
the recursion. You would have to write this recursion yourself, stopping after a desired level.

be a function that generates a sequence of numbers. For example, LazyList.from(0)
can generate all the natural numbers.

How is it useful here? Let’s develop an intuition for it by reviewing the output we just
generated for strLeft3 and strRight4:

val strLeft3: String = (((((((0) 1) 2) 3) 4) 5) 6)
val strRight4: String = (1 (2 (3 (4 (5 (6 (0)))))))

Suppose we only care about the first four numbers. Visually, we could grab the prefix
string (1 (2 (3 (4 from strRight4 and then stop. (We might add right parentheses
for aesthetics.) We’re done! In contrast, assume we could generate a string like
strLeft3 with an infinite sequence. To get the first four numbers, we would have to
traverse the infinite left parentheses to reach them.3

Let’s consider an interesting example of using LazyList to define a famous infinite
Fibonacci sequence.

Recall that a Fibonacci number fib(n) is defined as follows for natural numbers:

f(n) =
 0 if n = 0
 1 if n = 1
 f(n-1) + f(n-2) otherwise

Like any good recursion, n equals 0 or 1 provides the termination condition we need,
in which case f(n) = n. Otherwise, f(n) = f(n-1) + f(n-2). We saw a tail recur‐
sive implementation in “Nesting Method Definitions and Recursion” on page 45.

Now consider this definition using LazyList and described in its documentation:

// src/main/scala/progscala3/fp/datastructs/LazyListFibonacci.scala
package progscala3.fp.datastructs

import scala.math.BigInt

object Fibonacci:
 val fibs: LazyList[BigInt] =
 BigInt(0) #:: BigInt(1) #:: fibs.zip(fibs.tail).map(n12 => n12._1 + n12._2)

Let’s try it:

scala> import progscala3.fp.datastructs.Fibonacci

scala> Fibonacci.fibs.take(10).toList
val res0: List[BigInt] = List(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)

218 | Chapter 7: Functional Programming in Scala

https://oreil.ly/iwhiP

4 Two colons are used because List defines cons operator ::, for historical reasons. I haven’t mentioned it
before because it is now the convention in Scala to always use +: for prepending elements to all sequences,
including Lists.

LazyList defines #::, its own lazy version of the cons operation.4 We construct the
first two values of the sequence eagerly for the special case of n equals 0 and 1, then
we define the rest of the stream with a recursive definition. It is right recursive, but
we’ll only take the first n elements and discard the rest.

Note that we are both defining fibs and defining the tail portion using fibs itself:
fibs.zip(fibs.tail).map(…). This tail expression pairs up all elements of fibs
with the successor elements because you always calculate a Fibonacci number by
adding its two predecessors together. For example, we have tuple elements like
(f(2), f(3)), (f(3), f(4)), etc., going on to infinity (at least lazily). Note that the
tuples are then mapped to an integer, the sum of their values, since f(4) = f(2) +
f(3).

This is a clever and powerful recursive definition of the Fibonacci sequence. It helps
to play with the pieces of the expression to understand what each one does and then
work out the first several values by hand.

It’s important to note that the structure of fibs is very similar to our implementation
of FoldLeftRight.foldRight, f(0) + f(1) + tail. Because it is effectively a right
recursion, we can stop evaluating tail when we have as many head elements as we
want. In contrast, trying to construct a left recursion that is also lazy is not possible
because it would look conceptually like this: f(0 + f(1 + f(tail)). (Compare our
implementation of FoldLeftRight.foldLeft.) Hence, a right recursion lets us work
with infinite, lazy streams, truncating them where we want, while a left recursion
does not, but at least it is tail recursive!

Left recursions are tail recursive. Right recursions let us use trunca‐
tion to handle potentially infinite streams.

Combinators: Software’s Best Component Abstractions
When OOP went mainstream in the late ’80s and early ’90s, there was great hope that
it would usher in an era of reusable software components, even an industry of com‐
ponent libraries. It didn’t work out that way, except in special cases, like various GUI
libraries.

Combinators: Software’s Best Component Abstractions | 219

Why wasn’t OOP more successful at promoting reuse? There are many factors, but
the fundamental reason is that OOP provided the wrong abstractions to create reusa‐
ble modules. It’s a paradox that the richness of class hierarchies, polymorphic meth‐
ods, etc., actually undermined modularization into reusable components because they
were too open ended. They didn’t constrain innovation in the right ways to cause the
abstractions and protocols to emerge at the right level of abstraction.

In the larger world, component models that succeeded are all based on very simple
foundations. Digital integrated circuits plug into buses with 2n signaling wires, each
of which is Boolean, either on or off. Upon the foundation of this extremely simple
protocol, an industry was born with the most explosive growth of any industry in
human history.

HTTP is another successful example of a component model. Services interact
through a narrow, well-defined interface, involving a handful of message types, a
naming standard (URLs), and simple standards for message content.

In both cases, these foundations were quite restrictive, but flexible enough for higher-
level protocols to emerge from them, protocols that enabled composition to generate
more complex structures. In digital circuits, some binary patterns are interpreted as
CPU instructions, others as memory addresses, and others as data values. REST, data
formats like JSON, and other higher-level standards are built upon the foundation
elements of HTTP.

In this chapter, we discussed sets of collections, Seq (List), Vector, Map, etc. All share
a set of uniform operations that work consistently across them, yet because they are
higher-order functions, they provide the flexibility needed to do almost any data
manipulation required. Except for foreach, all are pure and composable. Their com‐
posability can be described by combinatory logic, from which we get the term
combinators.

We can chain these combinators together to build up nontrivial computations with
relatively little code. This is why the chapter started with the Alan J. Perlis quote.

Let’s finish this discussion with a final example using both OOP and FP features, a
simplified payroll calculator:

// src/test/scala/progscala3/fp/combinators/PayrollSuite.scala
package progscala3.fp.combinators

import munit.*

class PayrollSuite extends FunSuite:

 case class Employee (name: String, title: String, annualSalary: Double,
 taxRate: Double, insurancePremiumsPerWeek: Double)

 val employees = List(

220 | Chapter 7: Functional Programming in Scala

 Employee("Buck Trends", "CEO", 200000, 0.25, 100.0),
 Employee("Cindy Banks", "CFO", 170000, 0.22, 120.0),
 Employee("Joe Coder", "Developer", 130000, 0.20, 120.0))

 val weeklyPayroll = employees map { e =>
 val net = (1.0 - e.taxRate) * (e.annualSalary / 52.0) -
 e.insurancePremiumsPerWeek
 (e, net)
 }

 test("weeklyPayroll computes pay for each employee") {
 val results1 = weeklyPayroll map {
 case (e, net) => (e.name, f"${net}%.2f")
 }
 assert(results1 == List(
 ("Buck Trends", "2784.62"),
 ("Cindy Banks", "2430.00"),
 ("Joe Coder", "1880.00")))
 }

 test("from weeklyPayroll, the totals can be calculated") {
 val report = weeklyPayroll.foldLeft((0.0, 0.0, 0.0)) {
 case ((totalSalary, totalNet, totalInsurance), (e, net)) =>
 (totalSalary + e.annualSalary/52.0,
 totalNet + net, totalInsurance + e.insurancePremiumsPerWeek)
 }
 assert(f"${report._1}%.2f" == "9615.38", "total salary")
 assert(f"${report._2}%.2f" == "7094.62", "total net")
 assert(f"${report._3}%.2f" == "340.00" , "total insurance")
 }

We could have implemented this logic in many ways, but let’s consider a few of the
design choices.

OOP encapsulation of some domain concepts, like Employee, is useful for code com‐
prehension and concision. Meaningful names is an old principle of good software
design. Although I’ve emphasized the virtues of fundamental collections, FP does not
say that custom types are bad. As always, design trade-offs should be carefully
considered.

However, Employee could be called anemic. It is a structure with minimal behavior—
only the methods generated by the compiler for all case classes. In classic object-
oriented design, we might add a lot of behavior to Employee to help with the payroll
calculation or other domain logic. I believe the design chosen here provides optimal
separation of concerns. It’s also so concise that the maintenance burden is small if the
structure of Employee changes and this code has to change.

Note also that the logic was implemented in small code snippets rather than defined
in lots of classes spread over many files. Of course, it’s a toy example, but hopefully
you can appreciate that nontrivial applications don’t always require large code bases.

Combinators: Software’s Best Component Abstractions | 221

There is a counterargument for using a dedicated type—the overhead of constructing
instances. Here, this overhead is unimportant. What if we have billions of records?
We’ll return to this question when we explore big data in “Scala for Big Data: Apache
Spark” on page 459.

What About Making Copies?
Let’s finish this chapter by considering a practical problem. Making copies of func‐
tional collections is necessary to preserve immutability, but suppose I have a Vector
of 100,000 items and I need a copy with the item at index 8 replaced. It would be ter‐
ribly inefficient to construct a completely new, 100,000-element copy.

Fortunately, we don’t have to pay this penalty, nor must we sacrifice immutability. The
secret is to realize that 99,999 elements are not changing. If we can share the parts of
the original Vector that aren’t changing, while representing the change in some way,
then creating the new vector can still be very efficient. This idea is called structure
sharing.

If other code on a different thread is doing something different with the original vec‐
tor, it is unaffected by the copy operation because the original vector is not modified.
In this way, a history of vectors is preserved, as long as there are references to one or
more older versions. No version will be garbage-collected until there are no more ref‐
erences to it.

Because this history is maintained, a data structure that uses structure sharing is
called a persistent data structure.

Let’s start with an easier example, prepending an element to a List, which is defined
by its head element and tail List. All we need to do is return a new List with the new
element as the head and the old List as the tail. No copying required!

Vector is more challenging. We have to select an implementation data structure that
lets us expose Vector semantics, while providing efficient operations that exploit
structure sharing. Let’s sketch the underlying data structure and how the copy opera‐
tion works. We won’t cover all the details in depth. For more information, start with
the Wikipedia page on persistent data structures.

The tree data structure with a branching factor of 32 is used. The branching factor is
the maximum number of child nodes each parent node is allowed to have. We said
earlier in this chapter that some Vector search and modification operations are
O(log(N)), but with 32 as the branching factor, that becomes O(log32(N)), effectively a
constant for even large values of N!

Figure 7-2 shows an example for Vector(1,2,3,4,5). For legibility, a branching fac‐
tor of 2 or 3 is used instead of 32.

222 | Chapter 7: Functional Programming in Scala

https://oreil.ly/yiiF3
https://oreil.ly/sAWbr

Figure 7-2. A Vector represented as a tree

When you reference the Vector, you’re actually referencing the root of this tree,
marked by #1. As an exercise, you might work through how operations, such as
accessing a particular element by its index, map, flatMap, etc., would work on a tree
implementation of a Vector.

Now suppose we want to insert 2.5 between 2 and 3. To create a new copy, we don’t
mutate the original tree, but instead create a new tree. Figure 7-3 shows one way to
add 2.5 between 2 and 3.

Figure 7-3. Two states of a Vector, before and after element insertion

Note that the original tree (#1) remains, but we have created a new root (#2), new
nodes between it, and the child holding the new element. A new left subtree was cre‐
ated. With a branching factor of 32, we will have to copy up to 32 child references per
level, but this number of copy operations is far less than the number required for all
references in the original tree.

Deletion and other operations work similarly. A good textbook on data structures will
describe the standard algorithms for tree operations.

Therefore, it is possible to use large, immutable data structures if their implementa‐
tions support an efficient copy operation. There is extra overhead compared to a
mutable vector, where you can simply modify an entry in place very quickly. Ironi‐
cally, that doesn’t mean that object-oriented and other procedural programs are nec‐
essarily simpler and faster.

What About Making Copies? | 223

Because of the dangers of mutability, it’s common for OOP classes to wrap mutable
collections they hold in accessor methods. This increases the code footprint, testing
burden, etc. Worse, if the collection itself is exposed through a getter method, the
defensive class author might make a copy of the collection to return, so that the inter‐
nal copy can’t be modified. Because collection implementations in nonfunctional lan‐
guages often have inefficient copy operations and more complex surrounding code,
the net effect can be less efficient and more complex programs, compared to equiva‐
lent functional programs. Immutable collections can be efficient and eliminate defen‐
sive programming.

There are other kinds of functional data structures that are optimized for efficient
copying, optimized for modern hardware, such as minimizing cache misses. Many of
these data structures were invented as alternatives to mutable data structures that are
commonly discussed in classic textbooks on data structures and algorithms.

Recap and What’s Next
We discussed the basic concepts of FP and argued for their importance for solving
modern problems in software development. We saw how the fundamental collections
and their common higher-order functions, combinators, yield concise, powerful,
modular code.

Typical functional programs are built on this foundation. At the end of the day, all
programs input data, perform transformations on it, then output the results. Much of
the ceremony in typical programs just obscures this essential purpose.

Since FP is still relatively new for many people, let’s finish this chapter with some ref‐
erences for more information (see the Bibliography for more details):
[Alexander2017] is a gentle introduction to FP, while [Chiusano2013] and
[Volpe2020] provide in-depth introductions. For more on functional data structures,
see [Okasaki1998], [Bird2010], and [Rabhi1999]. See [Vector2020] for details on the
standard library’s Vector implementation. To practice using combinators, see
“Ninety-Nine Scala Problems”.

Next, we’ll return to for comprehensions and use our new knowledge of FP to under‐
stand how for comprehensions are implemented, how we can implement our own
data types to exploit them, and how the combination of for comprehensions and
combinator methods yield concise, powerful code. Along the way, we’ll deepen our
understanding of functional concepts.

We’ll dive into more of the implementation details of Scala collections in Chapter 14.
We’ll return to more advanced features of FP in Chapter 18.

224 | Chapter 7: Functional Programming in Scala

https://oreil.ly/MRVaY

CHAPTER 8

for Comprehensions in Depth

“for Comprehensions” on page 86 described the syntax for for comprehensions,
including lots of examples. At this point, they look like a nice, more flexible version of
the venerable for loop, but not much more. In fact, lots of sophistication lies below
the surface. This chapter explores how for comprehension syntax is a more concise
way to use foreach, map, flatMap, and withFilter, some of the functional combina‐
tors we discussed in the previous chapter. You can write concise code with elegant sol‐
utions to a number of design problems.

We’ll finish with some practical design problems implemented using for comprehen‐
sions, such as error handling during the execution of a sequence of processing steps.

Recap: The Elements of for Comprehensions
A for comprehension contains one or more generator expressions, optional guard
expressions for filtering, and optional value definitions. The output can be yielded to
create a new collection, or a side-effecting block of code can be executed on each
pass, such as printing output. The following example demonstrates all these features.
It removes blank lines from a text file. This is a full program with an example of how
to parse input arguments (although there are libraries available for this purpose),
handle help messages, etc.:

// src/main/scala/progscala3/forcomps/RemoveBlanks.scala
package progscala3.forcomps

object RemoveBlanks:
 def apply(path: String, compress: Boolean, numbers: Boolean): Seq[String] =
 for
 (line, i) <- scala.io.Source.fromFile(path).getLines.toSeq.zipWithIndex
 if line.matches("""^\s*$""") == false
 line2 = if compress then line.trim.replaceAll("\\s+", " ")

225

 else line
 numLine = if numbers then "%4d: %s".format(i+1, line2)
 else line2
 yield numLine

 protected case class Args(
 compress: Boolean = false,
 numbers: Boolean = false,
 paths: Vector[String] = Vector.empty)

 def main(params: Array[String]): Unit =

 val Args(compress, numbers, paths) = parseParams(params.toSeq, Args())
 for
 path <- paths
 seq = s"\n== File: $path\n" +: RemoveBlanks(path, compress, numbers)
 line <- seq
 do println(line)

 protected val helpMessage = """
 |usage: RemoveBlanks [-h|--help] [-c|--compress] [-n|--numbers] file ...
 |where:
 | -h | --help Print this message and quit.
 | -c | --compress Compress whitespace.
 | -n | --numbers Print original line numbers, meaning output numbers will
 | skip the removed blank lines.
 | file ... One or more files to process.
 |""".stripMargin

 protected def help(messages: Seq[String], exitCode: Int) =
 messages.foreach(println)
 println(helpMessage)
 sys.exit(exitCode)

 protected def parseParams(params2: Seq[String], args: Args): Args =
 params2 match
 case ("-h" | "--help") +: tail =>
 println(helpMessage)
 sys.exit(0)
 case ("-c" | "--compress") +: tail =>
 parseParams(tail, args.copy(compress = true))
 case ("-n" | "--number") +: tail =>
 parseParams(tail, args.copy(numbers = true))
 case flag +: tail if flag.startsWith("-") =>
 println(s"ERROR: Unknown option $flag")
 println(helpMessage)
 sys.exit(1)
 case path +: tail =>
 parseParams(tail, args.copy(paths = args.paths :+ path))
 case Nil => args

226 | Chapter 8: for Comprehensions in Depth

Start with a generator. Use scala.io.Source to open the file and get the lines,
where getLines returns an Iterator, which we must convert to a sequence
because we can’t return an Iterator from the for comprehension and the return
type is determined by the initial generator. Using zipWithIndex adds line num‐
bers (zero based).

A guard. Filters out blank lines using a regular expression. This will result in line
number gaps.

Value definition for the nonblank line, with or without whitespace compression.

Another value definition for the line with the one-based line number, if enabled,
or just the line.

Convenience class to hold parsed command-line arguments, including the files to
process and flags for whether or not to compress the whitespace in lines and
whether or not to print line numbers.

The main method to process the argument list.

A second for comprehension to process the files. Note that we prepend a line to
print with the filename.

Try running it at the sbt prompt:

> runMain progscala3.forcomps.RemoveBlanks --help
> runMain progscala3.forcomps.RemoveBlanks README.md build.sbt -n -c

Try different files and different command-line options.

for Comprehensions: Under the Hood
Having a second way to invoke foreach, map, flatMap, and withFilter aims for eas‐
ier comprehension and concision, especially for nontrivial processing. After a while,
you develop an intuition about when to use comprehensions and when to use the
combinator methods directly.

The method withFilter is used for filtering elements instead of filter. The com‐
piler uses it with neighboring combinators so that one less new collection is gener‐
ated. Like filter, withFilter restricts the domain of the elements allowed to pass
through subsequent combinators like map, flatMap, foreach, and other withFilter
invocations.

To see what the for comprehension sugar encapsulates, let’s walk through several
informal comparisons first, then we’ll discuss the details of the precise mapping. As

for Comprehensions: Under the Hood | 227

https://oreil.ly/o9ai3
https://oreil.ly/w4GQV

you look at the examples that follow, ask yourself which syntax is easier to understand
in each case, the for comprehension or the corresponding method calls.

Consider this example of a simple for comprehension and the equivalent use of fore
ach on a collection:

// src/script/scala/progscala3/forcomps/ForForeach.scala

scala> val states = Vector("Alabama", "Alaska", "Virginia", "Wyoming")

scala> var lower1 = Vector.empty[String]
scala> for
 | s <- states
 | do lower1 = lower1 :+ s.toLowerCase
var lower1: Vector[String] = Vector(alabama, alaska, virginia, wyoming)

scala> var lower2 = Vector.empty[String]
 | for s <- states do lower2 = lower2 :+ s.toLowerCase // same output

scala> var lower3 = Vector.empty[String]
 | states.foreach(s => lower3 = lower3 :+ s.toLowerCase) // same output

When there is just one generator (the s <- states) in a for comprehension, it can
be written on a single line, as shown for lower1. You can still put the do clause on the
next line, if you prefer.

A single generator with a do statement corresponds to an invocation of foreach on
the collection.

What happens if we use yield instead?

// src/script/scala/progscala3/forcomps/ForMap.scala

scala> val upper1 = for
 | s <- states
 | yield s.toUpperCase
val upper1: Vector[String] = Vector(ALABAMA, ALASKA, VIRGINIA, WYOMING)

scala> val upper2 = for s <- states yield s.toUpperCase // same output
scala> val upper3 = states.map(_.toUpperCase) // same output

A single generator followed by a yield expression corresponds to an invocation of
map. When yield is used to construct a new container, its type is determined by the
first generator. This is consistent with how map works.

What if we have more than one generator?

// src/script/scala/progscala3/forcomps/ForFlatmap.scala

scala> val results1 = for
 | s <- states
 | c <- s

228 | Chapter 8: for Comprehensions in Depth

 | yield s"$c-${c.toUpper}"
val results1: Vector[String] = Vector(A-A, l-L, a-A, b-B, a-A, m-M, a-A, ...)

scala> val results2 = states.
 | flatMap(s => s.toSeq).
 | map(c => s"$c-${c.toUpper}") // same output

The second generator iterates through each character in the string s. The contrived
yield statement returns the character and its uppercase equivalent, separated by a
dash.

When there are multiple generators, all but the last are converted to flatMap invoca‐
tions. The last is a map invocation. Already, you may find the for comprehension
more concise and easier to understand.

What if we add a guard to remove the capital letters?

// src/script/scala/progscala3/forcomps/ForGuard.scala

scala> val results1 = for
 | s <- states
 | c <- s
 | if c.isLower
 | yield s"$c-${c.toUpper}"
val results1: Vector[String] = Vector(l-L, a-A, b-B, a-A, m-M, a-A, l-L, ...)

scala> val results2 = states.
 | flatMap(s => s.toSeq).
 | withFilter(c => c.isLower).
 | map(c => s"$c-${c.toUpper}") // same output

Note that the withFilter invocation is injected before the final map invocation.

Try rewriting this example using do println(s"…") instead of yield…

Finally, defining a variable works as follows:

// src/script/scala/progscala3/forcomps/ForVariable.scala

scala> val results1 = for
 | s <- states
 | c <- s
 | if c.isLower
 | c2 = s"$c-${c.toUpper}"
 | yield (c, c2)
val results1: Vector[(Char, String)] = Vector((l,l-L), (a,a-A), (b,b-B), ...)

scala> val results2 = states.
 | flatMap(s => s.toSeq).
 | withFilter(c => c.isLower).
 | map(c => (c, s"$c-${c.toUpper}")) // same output

for Comprehensions: Under the Hood | 229

This time I output tuples to illustrate how the variable definition is handled when
translating the for comprehension to the corresponding sequence of methods. We
only need c and c2 here, so s isn’t carried forward into the map call.

Translation Rules of for Comprehensions
Now that we have an intuitive understanding of how for comprehensions are trans‐
lated to collection methods, let’s define the details more precisely.

First, in a generator such as pat <- expr, pat is a pattern expression. For example,
(x, y) <- Seq((1,2),(3,4)). Similarly, in a value definition like pat2 = expr, pat2
is also interpreted as a pattern. For example, (x, y) = aPair.

Because these lefthand expressions are interpreted as patterns, the compiler translates
them using partial functions. The first step in the translation is to convert a simple
comprehension with a generator, pat <- expr. The translation is similar to the fol‐
lowing example comprehensions (yield) and loops (do):

// src/script/scala/progscala3/forcomps/ForTranslated.scala

scala> val seq = Seq(1,2,3)

scala> for i <- seq yield 2*i
val res0: Seq[Int] = List(2, 4, 6)

scala> seq.map { case i => 2*i }
val res1: Seq[Int] = List(2, 4, 6)

scala> var sum1 = 0
scala> for i <- seq do sum1 += 1
var sum1: Int = 3

scala> var sum2 = 0
scala> seq.foreach { case i => sum2 += 1 }
var sum2: Int = 3

A conditional is translated to withFilter conceptually, as shown next:

scala> for
 | i <- seq
 | if i%2 != 0
 | yield 2*i
val res2: Seq[Int] = List(2, 6)

scala> for
 | i <- seq if i%2 != 0
 | yield 2*i
val res3: Seq[Int] = List(2, 6)

scala> seq.withFilter {

230 | Chapter 8: for Comprehensions in Depth

 | case i if i%2 != 0 => true
 | case _ => false
 | }.map { case i => 2*i }
val res4: Seq[Int] = List(2, 6)

You can write the guard on the same line as the previous generator.

After this, the translations are applied repeatedly until all comprehension expressions
have been replaced. Note that some steps generate new for comprehensions that sub‐
sequent iterations will translate.

First, a for comprehension with two generators and a yield expression:

scala> for
 | i <- seq
 | j <- (i to 3)
 | yield j
val res5: Seq[Int] = List(1, 2, 3, 2, 3, 3)

scala> seq.flatMap { case i => for j <- (i to 3) yield j }
val res6: Seq[Int] = List(1, 2, 3, 2, 3, 3)

scala> seq.flatMap { case i => (i to 3).map { case j => j } }
val res7: Seq[Int] = List(1, 2, 3, 2, 3, 3)

One level of translation. Note the nested for…yield.

Completed translation.

A for loop, with do, again translating in two steps:

scala> var sum3=0
scala> for
 | i <- seq
 | j <- (i to 3)
 | do sum3 += j
var sum3: Int = 14

scala> var sum4=0
scala> seq.foreach { case i => for j <- (i to 3) do sum4 += j }
var sum4: Int = 14

scala> var sum5=0
scala> seq.foreach { case i => (i to 3).foreach { case j => sum5 += j } }
var sum5: Int = 14

A generator followed by a value definition has a surprisingly complex translation.
Here I show complete for…yield… expressions:

scala> for
 | i <- seq
 | i10 = i*10

Translation Rules of for Comprehensions | 231

 | yield i10
val res8: Seq[Int] = List(10, 20, 30)

scala> for
 | (i, i10) <- for
 | x1 @ i <- seq
 | yield
 | val x2 @ i10 = x1*10
 | (x1, x2)
 | yield i10
val seq9: Seq[Int] = List(10, 20, 30)

Recall from Chapter 4 that x1 @ i means assign to variable x1 the value corre‐
sponding to the whole expression on the righthand side of @, which is trivially i
in this case, but it could be an arbitrary pattern with nested variable bindings to
the constituent parts.

Assign to x2 the value of i10.

Return the tuple.

Yield i10, which will be equivalent to x2.

Here is another example of what x @ pat = expr does for us:

scala> val z @ (x, y) = (1 -> 2)
val z: (Int, Int) = (1,2)
val x: Int = 1
val y: Int = 2

This completes the translation rules. Whenever you encounter a for comprehension,
you can apply these rules to translate it into method invocations on containers. You
won’t need to do this often, but sometimes it’s a useful skill for debugging problems.

Options and Container Types
We used collections like Lists, Arrays, and Maps for our examples, but any types that
implement foreach, map, flatMap, and withFilter (or filter) can be used in for
comprehensions and not just the obvious collection types. In the general case, these
are containers and eligible for use in for comprehensions.

Let’s consider several other types that are similar to containers. We’ll see how exploit‐
ing for comprehensions can transform your code in unexpected ways.

Option as a Container?
Option is like a container that has a single item or it doesn’t. It implements the four
methods we need.

232 | Chapter 8: for Comprehensions in Depth

https://oreil.ly/J2B5n

Here is a simplified version of the Option abstract class in the Scala library; the full
source is on GitHub:

sealed abstract class Option[+A] { self =>
 ...
 def isEmpty: Boolean = this eq None

 final def foreach[U](f: A => U): Unit =
 if (!isEmpty) f(this.get)

 final def map[B](f: A => B): Option[B] =
 if (isEmpty) None else Some(f(this.get))

 final def flatMap[B](f: A => Option[B]): Option[B] =
 if (isEmpty) None else f(this.get)

 final def filter(p: A => Boolean): Option[A] =
 if (isEmpty || p(this.get)) this else None

 final def withFilter(p: A => Boolean): WithFilter = new WithFilter(p)

 class WithFilter(p: A => Boolean) {
 def map[B](f: A => B): Option[B] = self filter p map f
 def flatMap[B](f: A => Option[B]): Option[B] = self filter p flatMap f
 def foreach[U](f: A => U): Unit = self filter p foreach f
 def withFilter(q: A => Boolean): WithFilter =
 new WithFilter(x => p(x) && q(x))
 }
}

Option[+A] means it is covariant in A, so Option[String] is a subtype of
Option[AnyRef]. The self => expression defines an alias for this for the Option
instance. It is used inside WithFilter below to refer to the Option instance (see
“Self-Type Declarations” on page 382).

Test if this is actually the None instance, not value equality.

The WithFilter, which is used by withFilter combined with the other opera‐
tions to avoid creation of an intermediate collection when filtering.

Here’s where the self reference we defined earlier is used to operate on the
enclosing Option instance. Using this would refer to the instance of WithFilter
itself.

The final keyword prevents subtypes from overriding the implementation. It might
be surprising to see the supertype refer to subtypes. Normally, in object-oriented
design this would be considered bad. However, with sealed type hierarchies, this file

Options and Container Types | 233

https://oreil.ly/Vuq0R
https://oreil.ly/Vuq0R

knows all the possible subtypes. Referring to subtypes makes the implementation
more concise and efficient overall, as well as safe.

The crucial feature about these Option methods shown is that the function arguments
are only applied if the Option isn’t empty. This feature allows us to address a common
design problem in an elegant way.

Let’s recap an idea we explored in “Pattern Matching as Filtering in for Comprehen‐
sions” on page 125. Say for example that we want to distribute some tasks around a
cluster and then gather the results together. We want a simple way to ignore any
returned results that are empty. Let’s wrap each task return value in an Option, where
None is used for an empty result and Some wraps a nonempty result. We want an easy
way to filter out the None results. Here is an example, where we have the returned
Options in a Vector:

// src/script/scala/progscala3/forcomps/ForOptionsFilter.scala

scala> val options: Seq[Option[Int]] = Vector(Some(10), None, Some(20))
val options: Seq[Option[Int]] = Vector(Some(10), None, Some(20))

scala> val results = for
 | case Some(i) <- options
 | yield (2 * i)
val results: Seq[Int] = Vector(20, 40)

case Some(i) <- options pattern matches on each element in results and extracts
the integers inside the Some values. Since a None won’t match, all of them are skipped.
We then yield the final expression we want. The reason partial functions are used by
Scala to implement for comprehensions is so we don’t get MatchErrors because we’re
not matching on None.

In Scala 2, you can omit the case keyword, but Scala 3 requires it to make it more
explicit that pattern matching and filtering are being performed.

As an exercise, let’s work through the translation rules. First, convert each pat <-
expr expression to a withFilter expression:

scala> val results2 = for
 | case Some(i) <- options.withFilter {
 | case Some(i) => true
 | case None => false
 | }
 | yield (2 * i)
val results2: Seq[Int] = Vector(20, 40)

Finally, we convert the outer for x <- y yield (z) expression to a map call:

scala> val results3 = options.withFilter {
 | case Some(i) => true
 | case None => false

234 | Chapter 8: for Comprehensions in Depth

 | } map {
 | case Some(i) => (2 * i)
 | case None => -1 // hack
 | }
val results3: Seq[Int] = Vector(20, 40)

The hack is there because we don’t actually need the case None clause, because the
withFilter has already removed all Nones. However, the compiler doesn’t understand
this, so it warns us we’ll risk a MatchError without the clause. Try removing this
clause and observe the warning you get.

Consider another design problem. Instead of independent tasks where we ignore the
empty results and combine the nonempty results, consider the case where we run a
sequence of dependent steps and want to stop the whole process as soon as we
encounter a None.

Note that we have a limitation that using None means we receive no feedback about
why the step returned nothing, such as a failure. We’ll address this limitation when
we discuss alternatives starting with Either in the next section.

We could write tedious conditional logic that tries each case, one at a time, and
checks the results, but a for comprehension is more concise:

// src/script/scala/progscala3/forcomps/ForOptionsSeq.scala

scala> def positiveOption(i: Int): Option[Int] =
 | if i > 0 then Some(i) else None

scala> val resultSuccess = for
 | i1 <- positiveOption(5)
 | i2 <- positiveOption(10 * i1)
 | i3 <- positiveOption(25 * i2)
 | i4 <- positiveOption(2 * i3)
 | yield (i1 + i2 + i3 + i4)
val resultSuccess: Option[Int] = Some(3805)

scala> val resultFail = for
 | i1 <- positiveOption(5)
 | i2 <- positiveOption(-1 * i1)
 | i3 <- positiveOption(25 * i2)
 | i4 <- positiveOption(-2 * i3)
 | yield (i1 + i2 + i3 + i4)
val resultFail: Option[Int] = None

None is returned. The subsequent generators don’t call positiveOption, they just
pass the None through.

At each step, the integer in the Some returned by positiveOption is extracted and
assigned to a variable. Subsequent generators use those values. It appears we assume
the “happy path” always works, which is true for the first for comprehension. It also

Options and Container Types | 235

works fine for the second for comprehension because once a None is returned, the
subsequent generators simply propagate the None and don’t call positiveOption.

Let’s look at three more container types with similar properties, Either and Try from
the Scala library, and Validated from Typelevel Cats. Validated is a sophisticated
tool for sequencing validation steps.

Either: An Alternative to Option
We noted that the use of Option has the disadvantage that None carries no informa‐
tion that could tell us why no value is available. Did an error occur? What kind?
Using Either instead is one solution. As the name suggests, Either is a container that
holds one and only one of two things. In other words, where Option handled the case
of zero or one items, Either handles the case of one item or another.

Either is a parameterized type with two parameters, Either[+A, +B], where the A
and B are the two possible types of the element contained in an Either instance.

Either is also a sealed abstract class with two subtypes defined, Left and Right.
That’s how we distinguish between the two possible elements.

The concept of Either predates Scala. It has been used for a long time as an alterna‐
tive to throwing exceptions. By historical convention, the Left value is used to hold
the error indicator, such as a message string or thrown exception, and the normal
return value is returned in a Right.

Let’s port our Option example. It’s almost identical:

// src/script/scala/progscala3/forcomps/ForEithers.scala

scala> def positiveEither(i: Int): Either[String,Int] =
 | if i > 0 then Right(i) else Left(s"nonpositive number $i")

scala> val result1 = for
 | i1 <- positiveEither(5)
 | i2 <- positiveEither(10 * i1)
 | i3 <- positiveEither(25 * i2)
 | i4 <- positiveEither(2 * i3)
 | yield (i1 + i2 + i3 + i4)
val result1: Either[String, Int] = Right(3805)

scala> val result2 = for
 | i1 <- positiveEither(5)
 | i2 <- positiveEither(-1 * i1)
 | i3 <- positiveEither(25 * i2)
 | i4 <- positiveEither(-2 * i3)
 | yield (i1 + i2 + i3 + i4)
val result2: Either[String, Int] = Left(nonpositive number -5)

236 | Chapter 8: for Comprehensions in Depth

https://oreil.ly/vIslV
https://oreil.ly/gDTqf
https://oreil.ly/6J0UJ
https://oreil.ly/Qj1hm
https://oreil.ly/vIslV
https://oreil.ly/UqGtK
https://oreil.ly/UMRkc

A Left is returned here, stopping the process.

Note how Left and Right objects are constructed in positiveEither. Note the types
for result1 and result2. In particular, result2 now tells us where the first negative
number was encountered, but not the second occurrence of one.

Either isn’t limited to this error-handling idiom. It could be used for any scenario
where you want to hold an object of one or another type. Recall we also have union
types, like String | Int, which aren’t limited to two types! However, union types
don’t have the combinators map, flatMap, etc., so they can’t be used conveniently in
for comprehensions.

That raises some questions, though. Why do Lefts stop the for comprehension and
Rights don’t? It’s because Either isn’t really symmetric in the types. Since it is almost
always used for this error-handling idiom, the implementations of Left and Right
bias toward the right as the “happy path.”

Let’s look at how the combinators and some other methods work for these two types,
using result1 and result2:

scala> result1 // Reminder of these values:
 | result2
val res6: Either[String, Int] = Right(3805)
val res7: Either[String, Int] = Left(nonpositive number -5)

scala> var r1 = 0
 | result1.foreach(i => r1 = i * 2)
 | var r2 = 0
 | result2.foreach(i => r2 = i * 2)
var r1: Int = 7610
var r2: Int = 0

scala> val r3 = result1.map(_ * 2)
 | val r4 = result2.map(_ * 2)
 |
val r3: Either[String, Int] = Right(7610)
val r4: Either[String, Int] = Left(nonpositive number -5)

scala> val r5a = result1.flatMap(i => Right(i * 2))
 | val r5b = result1.flatMap(i => Left("hello"))
 | val r5c = result1.flatMap(i => Left[String,Double]("hello"))
 | val r5d: Either[String,Double] = result1.flatMap(i => Left("hello"))
 | val r6 = result2.flatMap(i => Right(i * 2))
 |
val r5a: Either[String, Int] = Right(7610)
val r5b: Either[String, Nothing] = Left(hello)
val r5c: Either[String, Double] = Left(hello)
val r5d: Either[String, Double] = Left(hello)
val r6: Either[String, Int] = Left(nonpositive number -5)

Options and Container Types | 237

No change is made to r2 after initialization.

Note the second type for r5b versus r5c and r5d. Using Left("hello") alone
provides no information about the desired second type, so Nothing is used.

The filter and withFilter methods aren’t supported. They are somewhat redun‐
dant in this case.

You can infer that the Left method implementations ignore the function and just
return their value. Right.map extracts the value, applies the function, then constructs
a new Right, while Right.flatMap simply returns the value that the function returns.

Finally, here is a for comprehension that uses Eithers:

// src/script/scala/progscala3/forcomps/ForEithersSeq.scala

scala> val seq: Seq[Either[RuntimeException,Int]] =
 | Vector(Right(10), Left(RuntimeException("boo!")), Right(20))
 |
 | val results3 = for
 | case Right(i) <- seq
 | yield 2 * i
val results3: Seq[Int] = Vector(20, 40)

Throwing exceptions versus returning either values

Just as Either encourages handling of errors as normal return values, avoiding
thrown exceptions is also valuable for uniform handling of errors and normal return
types. Thrown exceptions violate referential transparency; you can’t replace the func‐
tion invocation with a “value”! To see this, consider the following contrived example:

// src/script/scala/progscala3/forcomps/RefTransparency.scala

scala> def addInts(s1: String, s2: String): Int = s1.toInt + s2.toInt

scala> def addInts2(s1: String, s2: String): Either[String,Int] =
 | try
 | Right(s1.toInt + s2.toInt)
 | catch
 | case nfe: NumberFormatException => Left("NFE: "+nfe.getMessage)

scala> val add12a = addInts("1", "2")
 | val add12b = addInts2("1", "2")
val add12a: Int = 3
val add12b: Either[String, Int] = Right(3)

scala> val add1x = addInts2("1", "x")
 | val addx2 = addInts2("x", "2")
 | val addxy = addInts2("x", "y")
val add1x: Either[String, Int] = Left(NFE: For input string: "x")

238 | Chapter 8: for Comprehensions in Depth

val addx2: Either[String, Int] = Left(NFE: For input string: "x")
val addxy: Either[String, Int] = Left(NFE: For input string: "x")

We would like to believe that addInts is referentially transparent, so we could replace
calls to it with values from a cache of previous invocations, for example. However,
addInts will throw an exception if we pass a String that can’t be parsed as an Int.
Hence, we can’t replace the function call with values that can be returned for all
parameter lists.

Also, the type signature of addInts provides no indication that trouble lurks.

Using Either as the return type of addInts2 restores referential transparency, and the
type signature is explicit about potential errors. It is referentially transparent because
we could replace all calls with a value, even using Lefts for bad string input.

Also, instead of grabbing control of the call stack by throwing the exception, we’ve
reified the error by returning the exception as a Left value.

So Either lets us maintain control of calling the stack in the event of a wide class of
failures. It also makes the behavior more explicit to users of your APIs, through type
signatures.

However, look at the implementation of addInts2 again. Handling exceptions is quite
common, so the try…catch… boilerplate shown appears a lot in code.

So for handling exceptions, we should encapsulate this boilerplate with types and use
names for these types that express more clearly when we have either a failure or a
success. While Either does that for the general case, the Try type does that for the
special case where the error is an exception.

Try: When There Is No Do
When failure is caused by an exception, use scala.util.Try. It is structurally similar
to Either. It is a sealed abstract class with two subtypes, Success and Failure.

Success is analogous to the conventional use of Right. It holds the normal return
value. Failure is analogous to Left, but Failure always holds a Throwable, which is
why Try has one type parameter, for the value held by Success.

Here are the signatures of the three Try types (omitting some unimportant details):

sealed abstract class Try[+T] extends AnyRef {...}
final case class Success[+T](value: T) extends Try[T] {...}
final case class Failure[+T](exception: Throwable) extends Try[T] {...}

Try is clearly asymmetric, unlike Either, where the asymmetry isn’t clear from the
type signature.

Options and Container Types | 239

https://oreil.ly/gDTqf
https://oreil.ly/f0dOn
https://oreil.ly/f9GnM

Let’s see how Try is used, again porting our previous example. First, if you have a list
of Try values and just want to discard the Failures, a simple for comprehension
does the trick:

// src/script/scala/progscala3/forcomps/ForTries.scala

scala> import scala.util.{Try, Success, Failure}

scala> def positiveTries(i: Int): Try[Int] = Try {
 | assert (i > 0, s"nonpositive number $i")
 | i
 | }

scala> val result4 = for
 | i1 <- positiveTries(5)
 | i2 <- positiveTries(10 * i1)
 | i3 <- positiveTries(25 * i2)
 | i4 <- positiveTries(2 * i3)
 | yield (i1 + i2 + i3 + i4)
val result4: scala.util.Try[Int] = Success(3805)

scala> val result5 = for
 | i1 <- positiveTries(5)
 | i2 <- positiveTries(-1 * i1) // FAIL!
 | i3 <- positiveTries(25 * i2)
 | i4 <- positiveTries(-2 * i3)
 | yield (i1 + i2 + i3 + i4)
 |
val result5: scala.util.Try[Int] =
 Failure(java.lang.AssertionError: assertion failed: nonpositive number -5)

Note the concise definition of positiveTries. If the assertion fails, the Try block will
catch the thrown java.lang.AssertionError and return a Failure wrapping it.
Otherwise, the result of the Try expression is wrapped in a Success.

The for comprehensions look exactly like those for the original Option example.
With type inference, there is very little boilerplate here too. You can focus on the
“happy path” logic and let Try capture errors.

When striving to write pure functions and methods, a thrown exception breaks refer‐
ential transparency because you are no longer always returning something. Instead,
the flow of control jumps one or more stack frames, until the exception is caught.
Furthermore, the return-type signature doesn’t cover all cases now! Try reifies excep‐
tions. The normal return mechanism is always used, but the value could either be a
successful result or a Throwable. Referential transparency is preserved, as you can
even substitute the Throwable that is returned for an invocation with bad input. The
return type is correct too.

240 | Chapter 8: for Comprehensions in Depth

Returning Try also forces you to think carefully about your design, rather than just
give up and throw an exception, hoping someone will catch it and know what to do
with it. Can you prevent possible errors in the first place? If not, can you handle the
exception locally? If not, should you move the code somewhere else where better
handling is possible?

Avoid throwing exceptions. Return a Try instead.

Validated from the Cats Library
While using Option, Either, or Try meets most needs, there is one common scenario
where using any of them remains tedious. Consider the case of form validation,
where a user submits a form with several fields, all of which need to be validated. Ide‐
ally, we would validate all at once and report all errors, rather than doing one at a
time, which is not a friendly user experience. Using Option, Either, or Try in a for
comprehension doesn’t support this need because processing is short-circuited as
soon as a failure occurs. This is where cats.datatypes.Validated from the Cats
library provides several useful approaches.

We’ll consider one approach here. First, start with some domain-specific classes:

// src/main/scala/progscala3/forcomps/LoginFormValidation.scala

package progscala3.forcomps

case class ValidLoginForm(userName: String, password: String)

sealed trait LoginValidation:
 def error: String

case class Empty(name: String) extends LoginValidation:
 val error: String = s"The $name field can't be empty"

case class TooShort(name: String, n: Int) extends LoginValidation:
 val error: String = s"The $name field must have at least $n characters"

case class BadCharacters(name: String) extends LoginValidation:
 val error: String = s"The $name field has invalid characters"

A case class with the form fields to validate.

A sealed trait used by the case classes that encapsulate the possible errors.

Options and Container Types | 241

Now we use them in the following code, where the acronym Nec stands for nonempty
chain. In this context, that means that a failed validation will have a sequence (chain)
of one or more error objects:

// src/main/scala/progscala3/forcomps/LoginFormValidatorNec.scala
package progscala3.forcomps

import cats.implicits.*
import cats.data.*
import cats.data.Validated.*

/**
 * Nec variant, where NEC stands for "non empty chain".
 * @see https://typelevel.org/cats/datatypes/validated.html
 */
object LoginFormValidatorNec:

 type V[T] = ValidatedNec[LoginValidation, T]

 def nonEmpty(field: String, name: String): V[String] =
 if field.length > 0 then field.validNec
 else Empty(name).invalidNec

 def notTooShort(field: String, name: String, n: Int): V[String] =
 if field.length >= n then field.validNec
 else TooShort(name, n).invalidNec

 /** For simplicity, just disallow whitespace. */
 def goodCharacters(field: String, name: String): V[String] =
 val re = raw".*\s..*".r
 if re.matches(field) == false then field.validNec
 else BadCharacters(name).invalidNec

 def apply(
 userName: String, password: String): V[ValidLoginForm] =
 (nonEmpty(userName, "user name"),
 notTooShort(userName, "user name", 5),
 goodCharacters(userName, "user name"),
 nonEmpty(password, "password"),
 notTooShort(password, "password", 5),
 goodCharacters(password, "password")).mapN {
 case (s1, _, _, s2, _, _) => ValidLoginForm(s1, s2)
 }
end LoginFormValidatorNec

@main def TryLoginFormValidatorNec =
 import LoginFormValidatorNec.*
 assert(LoginFormValidatorNec("", "") ==
 Invalid(Chain(
 Empty("user name"), TooShort("user name", 5),
 Empty("password"), TooShort("password", 5))))

242 | Chapter 8: for Comprehensions in Depth

 assert(LoginFormValidatorNec("1234", "6789") ==
 Invalid(Chain(
 TooShort("user name", 5),
 TooShort("password", 5))))

 assert(LoginFormValidatorNec("12345", "") ==
 Invalid(Chain(
 Empty("password"), TooShort("password", 5))))

 assert(LoginFormValidatorNec("123 45", "678 90") ==
 Invalid(Chain(
 BadCharacters("user name"), BadCharacters("password"))))

 assert(LoginFormValidatorNec("12345", "67890") ==
 Valid(ValidLoginForm("12345", "67890")))
end TryLoginFormValidatorNec

Shorthand type alias. ValidationNec will encapsulate errors or successful results.

Several functions to test that fields meet desired criteria. When successful, an
appropriate ValidationNec is constructed by calling either of the extension
methods on String, validNec, or invalidNec.

The apply method uses a Cats function mapN for mapping over the N elements of
a tuple. It returns a final ValidationNec instance with all the accumulated errors
in an Invalid(Chain(…)), or if all validation criteria were met, a Valid(Valid
LoginForm(…)) holding the passed-in field values.

For comparison, see also in the example code src/main/scala/progscala3/forcomps/
LoginFormValidatorSingle.scala, which handles single failures using Either, but fol‐
lowing a similar implementation approach.

Without a tool like Cats Validated, we would have to manage the chain of errors
ourselves.

Recap and What’s Next
Either, Try, and Validated express through types a fuller picture of how the pro‐
gram actually behaves. All three say that a valid value or values will (hopefully) be
returned, but if not, they also encapsulate the failure information needed. Similarly,
Option encapsulates the presence or absence of a value explicitly in the type
signature.

Using these types instead of thrown exceptions keeps control of the call stack, signals
to the reader the kinds of errors that might occur, and allows error conditions to be
less exceptional and more amenable to programmatic handling, just like the “happy
path” scenarios.

Recap and What’s Next | 243

Another benefit we haven’t mentioned yet is a benefit for asynchronous (concurrent)
code. Because asynchronous code isn’t guaranteed to be running on the same thread
as the caller, it might not be possible to catch and handle an exception. However, by
returning errors the same way normal results are returned, the caller can more easily
intercept and handle the problem. We’ll explore the details in Chapter 19.

You probably expected this chapter to be a perfunctory explanation of Scala’s fancy
for loops. Instead, we broke through the facade to find a surprisingly powerful set of
tools. We saw how a set of functions, map, flatMap, foreach, and withFilter, plug
into for comprehensions to provide concise, flexible, yet powerful tools for building
nontrivial application logic.

We saw how to use for comprehensions to work with collections, but we also saw
how useful they are for other container types, specifically Option, Either, Try, and
Cats Validated.

Now we have finished our exploration of the essential parts of FP and their support in
Scala. We’ll learn more concepts when we discuss the type system in Chapter 16 and
Chapter 17 and explore advanced concepts in Chapter 18.

Let’s now turn to Scala’s support for OOP. We’ve already covered many of the details
in passing. Now we’ll complete the picture.

244 | Chapter 8: for Comprehensions in Depth

CHAPTER 9

Object-Oriented Programming in Scala

One reason Scala is a superb OOP language is because Martin Odersky and his col‐
laborators have thought long and hard about how to make OOP best practices as
concise as possible. While we already know many of Scala’s features for OOP, now we
will explore them more systematically. We’ll see more examples of Scala’s concise syn‐
tax and how it enables effective OOP in combination with FP.

I’ve waited until now to explore Scala as an OOP language for two reasons.

First, I wanted to emphasize that FP has become an essential skill set for modern
problems, a skill set that may be new to you. When you start with Scala, it’s easy to
use it as a better OOP language, a “better Java,” and neglect the power of its FP side.

Second, a common architectural approach with Scala has been to use FP for program‐
ming in the small and OOP for programming in the large. Using FP for implementing
algorithms, manipulating data, and managing state in a principled way is our best
way to minimize bugs, the amount of code we write, and the risk of schedule delays.
On the other hand, Scala’s OOP model provides tools for designing composable, reus‐
able, and encapsulated modules, which are essential for building larger applications.
Hence, Scala gives us the best of both worlds.

I’ve assumed you already know the basics of OOP from other languages, so many
concepts were defined quickly and informally throughout the book. This chapter
starts with a quick review of class and object basics, then fills in the details, such as
the mechanics of creating type hierarchies, how constructors work for Scala classes,
and runtime-efficient types using opaque type aliases (new to Scala 3) and value
classes. The next chapter will dive into traits, and then we’ll spend a few chapters fill‐
ing in additional details on Scala’s object model and the standard library.

245

Class and Object Basics: Review
Classes are declared with the class keyword, while singleton objects are declared
with the object keyword. For this reason, I have used the term instance in this book
to refer to objects generically, whether they are class instances or declared objects. In
most OOP languages, instance and object are synonymous.

An instance can refer to itself using the this keyword, although it’s somewhat rare in
Scala code. One reason is that constructor boilerplate is absent in Scala. Consider the
following Java code:

// src/main/java/progscala3/basicoop/JavaPerson.java
package progscala3.basicoop;

public class JavaPerson {
 private String name;
 private int age;

 public JavaPerson(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public void setName(String name) { this.name = name; }
 public String getName() { return this.name; }

 public void setAge(int age) { this.age = age; }
 public int getAge() { return this.age; }
}

Other OOP languages are similar. Now compare it with the following equivalent
Scala declaration, in which all the boilerplate disappears:

class Person(var name: String, var age: Int)

Prefixing a constructor parameter with a var makes it a mutable field of the class, also
called an instance variable or attribute in other languages. Prefixing a constructor
parameter with a val makes it an immutable field. Using the case keyword infers the
val keyword and also adds additional methods, as we’ve learned:

case class Person(name: String, age: Int)

This is just one example of how concise OOP can be in Scala. You can also declare
other val and var fields inside the type body.

The term member refers to a field, method, or type in a generic way. The term method
refers to a function that is tied to an instance. Its parameter list has an implied this.
Method definitions start with the def keyword.

246 | Chapter 9: Object-Oriented Programming in Scala

Scala allows overloaded methods. Two or more methods can have the same name as
long as their full signatures are unique. The signature includes the enclosing type
name, method name, and the types of all the parameters. The parameter names are
not part of the signature for typing purposes, but they are significant because you can
provide them when calling the method—e.g., log(message = "Error!"). Also, dif‐
ferent return types alone are not sufficient to distinguish methods.

In Scala 2, only the parameters in the first parameter list were con‐
sidered when determining the method signature for the purposes
of overloading. In Scala 3, all parameter lists are considered.

Member types are declared using the type keyword. They are used to provide shorter
names for complex types and to provide a complementary mechanism to type param‐
eterization (see “Parameterized Types Versus Abstract Type Members” on page 66).

A field and method can have the same name, but only if the method has a parameter
list:

scala> trait Good:
 | def x(suffix: String): String
 | val x: String

scala>
 | trait Bad:
 | def x: String
 | val x: String
4 | val x: String
 | ^
 | Double definition...

Open Versus Closed Types
Scala encourages us to think carefully about what types should be abstract versus
concrete, what types should be singletons, what types should be mixins, and what
types should be open versus closed for extension, meaning allowed to be subtyped or
not. OOP languages also use the terms subclassing or deriving from a supertype. I’ve
used subtyping to emphasize the more general type system in Scala’s combination of
FP and OOP.

Mixins promote composition over inheritance, discussed in “Good Object-Oriented
Design: A Digression” on page 265. Traits are used to define mixins, while abstract
classes or traits are used as base classes in a hierarchy. Here is a sketch of a hierarchy
of services with logging mixed in. First, define a basic logging trait:

Open Versus Closed Types | 247

// src/main/scala/progscala3/basicoop/Abstract.scala
package progscala3.basicoop

enum LoggingLevel:
 case Info, Warn, Error

trait Logging:
 import LoggingLevel.*
 final def info(message: String): Unit = log(Info, message)
 final def warn(message: String): Unit = log(Warn, message)
 final def error(message: String): Unit = log(Error, message)
 final def log(level: LoggingLevel, message: String): Unit =
 write(s"${level.toString.toUpperCase}: $message")

 protected val write: String => Unit

trait ConsoleLogging extends Logging:
 protected val write = println

Define a simple logging abstraction with three levels.

Do as much as possible in the Logging mixin trait. The protected abstract func‐
tion value write is implemented by subtypes for actually writing to the log. Every
other method is declared final to prevent overriding.

ConsoleLogger just uses println.

Now, define an abstract base class for services that mixin logging:

abstract class Service(val name: String) extends Logging:
 import Service.*
 final def handle(request: Request): Response =
 info(s"($name) Starting handle for request: $request")
 val result = process(request)
 info(s"($name) Finishing handle with result $result")
 result

 protected def process(request: Request): Response

object Service:
 type Request = Map[String,Any]
 type Response = Either[String,Map[String,Any]]

open class HelloService(override val name: String)
 extends Service(name) with ConsoleLogging:
 import Service.*

 protected def process(request: Request): Response =
 request.get("user") match
 case Some(user) => Right(Map("message" -> s"Hello, $user"))
 case None => Left("No user field found!")

248 | Chapter 9: Object-Oriented Programming in Scala

A service abstraction. It uses the Logging trait as the supertype because there isn’t
another supertype (other than AnyRef), but really this is mixin composition.
Concrete subtypes of Service must implement write themselves or mixin a sub-
trait of Logging that does this. The way handle is implemented is discussed later
on.

Define convenient type aliases for Request and Response. The choices are
inspired by typical web service APIs, where maps of key-value pairs are often
used. Note that errors are handled by returning an Either. The logging of service
requests is handled in the final method handle, so users of this trait only need to
worry about the specific logic of processing a request, by defining the protected
method process.

A concrete class that extends Service and mixes in the implementation trait Con
soleLogging. The process method expects to find a key user in the map. The
open keyword is discussed later on.

Finally, an entry point:

@main def HelloServiceMain(name: String, users: String*): Unit =
 val hs = HelloService("hello")
 for
 user <- users
 request = Map("user" -> user)
 do hs.handle(request) match
 case Left(error) => println(s"ERROR! $error")
 case Right(map) => println(map("message"))

 println("Try an empty map:")
 println(hs.handle(Map.empty))

Let’s run HelloServiceMain in sbt:

> runMain progscala3.basicoop.HelloServiceMain hello Dean Buck
...
INFO: (hello) Starting handle for request: Map(user -> Dean)
INFO: (hello) Finishing handle with result Right(Map(message -> Hello, Dean))
Hello, Dean
INFO: (hello) Starting handle for request: Map(user -> Buck)
INFO: (hello) Finishing handle with result Right(Map(message -> Hello, Buck))
Hello, Buck
Try an empty map:
INFO: (hello) Starting handle for request: Map()
INFO: (hello) Finishing handle with result Left(No user field found!)
Left(No user field found!)
[success] Total time: 1 s, completed Aug 21, 2020, 1:37:05 PM

Let’s explore the key ideas in this example.

Open Versus Closed Types | 249

Classes Open for Extension
Scala 2 constrained subtyping when a type was declared final or an abstract super‐
type was declared sealed, but otherwise you could create subtypes of concrete types.
Scala 3 tightens the default rules by adding the open keyword. It says that it is permis‐
sible to define a subtype from this concrete type. Without this keyword, the compiler
now issues a warning when a subtype is created from a concrete type.

In the preceding HelloService, we left open the possibility that someone might want
to use HelloService as a supertype for another Service. As a practical matter, the
Scaladoc for such a type should provide details about how to extend the type, includ‐
ing what not to do. Whether or not open is used is a deliberate design decision.

There are two exceptions to the rule that open is now required for extension:

1. Subtypes in the same source file, like how sealed hierarchies work.
2. Use of the adhocExtensions language feature.

The adhocExtensions language feature is enabled globally by adding the compiler
flag, -language:adhocExtensions, or in single scopes using import scala.lan

guage.adhocExtensions.

Because this is a breaking change, it is being introduced gradually. In Scala 3.0, the
feature warning is only emitted when you compile with -source:future. The warn‐
ing will occur by default in a subsequent Scala 3 release.

A type that is neither open nor final now has similar subtyping behavior as a sealed
type. The difference is that you can still subtype a closed type by enabling the lan‐
guage feature, while sealed type hierarchies can’t be reopened. An important exam‐
ple of this advantage is when you need a test double in a unit test, where you create a
subtype to stub out certain members. The test source file imports the language feature
to enable this subtyping, but subtyping is disallowed in the rest of the code.

As a rule, I try to use only abstract types as supertypes and treat all concrete types as
final, except for the testing scenario. The main reason for this rule is because it’s diffi‐
cult to get the semantics and implementations correct for hashCode, equals, and
user-defined members. For example, if Manager is a subtype of Employee (assuming
this is a good design), when should a Manager instance be considered equal to an
Employee instance? If the common subset of fields is equal, is that good enough? The
answer depends on the context and other factors. This is one reason why Scala simply
prohibits case classes from being subtypes of other case classes.

A few other points. First, open is a soft modifier, meaning it can be used as a normal
identifier when it’s not in the modifier position. Hence, you don’t need to rename all
your open methods! Second, open can’t be used with final or sealed because that

250 | Chapter 9: Object-Oriented Programming in Scala

would be a contradiction. Finally, traits and abstract classes are by definition already
open, so the keyword is redundant for them.

Because composition is usually more robust than inheritance, use
open rarely.

Overriding Methods? The Template Method Pattern
Notice how I declared and implemented the methods in the Logging and Service
types previously.

Just as you should avoid subtyping concrete types, you should avoid overriding con‐
crete methods. It is a common source of subtle behavioral bugs. Should the subtype
implementation call the supertype method? If so, when should it call it: at the begin‐
ning or end of the overriding implementation? The correct answers depend on the
context. It is too easy to make mistakes. Unfortunately, we are so accustomed to over‐
riding the concrete toString method that we consider it normal practice. It should
not be normal.

The preceding example uses the template method pattern ([GOF1995]) to eliminate
the need to override concrete methods. The supertypes Logging and Service define
final, concrete methods that are publicly visible. Service.handle is a template that
calls abstract methods, which are the points of allowed variance for subtypes to
define. The Logger concrete methods are simple templates. They just call the pro
tected, abstract function Logger.write. It’s easy to implement this correctly because
it does only one thing: write a formatted string somewhere. ConsoleLogger.write
writes the string to the console.

Similarly, Service.handle was implemented carefully to add logging while correctly
handling the result of the computation. The protected, abstract method
Service.process is agnostic to logging. It focuses on processing the request.

However, we can’t completely eliminate overriding concrete methods, like toString.
Fortunately, Scala requires the override keyword, which you should treat as a
reminder to be careful. When you need to call a supertype method foo, use
super().foo(…). See also “Self-Type Declarations” on page 382 for handling the
special case when multiple supertypes implement the same method and you need a
way to specify a particular one of them.

Open Versus Closed Types | 251

Avoid overriding concrete methods, except when replacing default
implementations like toString, mixing in orthogonal behavior, or
stubbing for tests. Be careful to preserve the contract of the method.
Otherwise, use the template method pattern to provide extensibil‐
ity without overrides. To prevent overrides, declare methods final.

Reference Versus Value Types
While Scala is now a cross-platform language, its roots as a JVM language are reflec‐
ted in the top-level types.

For performance reasons, the JVM implements a set of special primitive types: short,
int, long, float, double, boolean, char, and byte. When used by themselves, mean‐
ing not enclosed in other objects, they can be used without the overhead of allocating
space for them on the heap and reading and writing the memory location. For exam‐
ple, the compiler-generated byte code or runtime processing could push these values
directly onto stack frames or store them in CPU registers. Arrays of these values
require only one heap allocation, for the array itself. The values can be inlined in the
array. These primitives are called value types because the byte code works with these
values directly.

All other types are called reference types because all instances of them are allocated on
the heap, and variables for these instances refer to the corresponding heap locations.

Scala source code blurs this distinction between primitives and reference types to
provide a more consistent programming model, but without sacrificing performance
where possible.

In Scala, all reference types are subtypes of scala.AnyRef on the JVM and js.Object
in Scala.js. AnyRef is a subtype of Any, the root of the Scala type hierarchy. For Scala.js,
js.Any is the equivalent supertype of js.Object. Note that Java’s root type, Object, is
actually equivalent to AnyRef, not Any. You will sometimes see documentation refer to
Object instead of AnyRef, but it can be confusing to see them used interchangeably.
I’ve used AnyRef in this book, but keep in mind that you’ll see both in documentation.

The Scala types Short, Int, Long, Float, Double, Boolean, Char, Byte, and Unit are
value types. They correspond to the JVM primitives short, int, long, float, double,
boolean, char, byte, and the void keyword. All value types are subtypes of
scala.AnyVal, which is also a subtype of Any. For Scala.js, the JavaScript primitives
are used, including String, with a rough correspondence to the AnyVal types. In the
Java and JavaScript object models, primitives don’t have a common supertype.

To avoid confusion, I have used Any, AnyRef, and AnyVal consistently with a bias
toward the JVM implementations. See the Scala.js Type Correspondence guide for

252 | Chapter 9: Object-Oriented Programming in Scala

https://oreil.ly/e4CKH
https://oreil.ly/InIsa
https://oreil.ly/EkDLt
https://oreil.ly/ywc3g
https://oreil.ly/LvwRL
https://oreil.ly/hlwKC

1 Scala 3 adds an actual EmptyTuple type, which is different than Unit.

more details about Scala.js types. The Scala Native documentation discusses its han‐
dling of Scala types.

Unit is an AnyVal type, but it involves no storage at all. Loosely speaking, Unit is
analogous to the void keyword in many languages. This is only true in the sense that
a method returning Unit or void doesn’t return anything you can use. Otherwise,
Unit or void are quite different. While void is a keyword, Unit is a real type with one
literal value, (), and we rarely use that value explicitly. This means that all functions
and methods in Scala return a value, whereas languages with void have a separate
idea of functions that return a value and procedures that don’t.

Why Is Unit’s Literal Value ()?
Unit really behaves like a tuple with zero elements, written as ().1 If there are no
elements, it contains no useful information. The name unit comes from algebra,

where adding the unit to any value returns the original value, such as 0 for integers.
For multiplication, 1 is the unit value. So if I add () to (1, 2.2), I get back (1, 2.2),
but if I add (3L) to (1, 2.2), I get back (3L, 1, 2.2), or (1, 2.2, 3L). We’ll
explore this idea more precisely in “Algebraic Data Types” on page 397.

As an aside, consider a sequence of AnyVals. What is the least upper bound? For the
special case where a sequence of numbers contains Floats and Ints, like Seq(1,
2.2F, 3), the inferred type is Seq[Float]. The Ints are converted to Floats. Simi‐
larly if Ints and Doubles are mixed, you get Seq[Double]. For all other combinations
of AnyVals, the inferred type is Seq[AnyVal], even when all the values are Doubles
and Floats.

Opaque Types and Value Classes
In “Scala 3 Implicit Conversions” on page 154, we defined some wrapper types for
Dollars and Percentages:

// src/main/scala/progscala3/contexts/accounting/NewImplicitConversions.scala
package progscala3.contexts.accounting
import scala.language.implicitConversions

case class Dollars(amount: Double):
 ...
case class Percentage(amount: Double):
 ...

Opaque Types and Value Classes | 253

https://oreil.ly/ikqXt

Now imagine you are writing a big-data application that creates millions or more
instances of these types. The extra overhead of heap allocations and memory accesses
for these wrapper types becomes very expensive. They can be quite stressful for the
garbage collector. Fundamentally, these types just wrap Doubles, so we would prefer
to keep the efficiency of primitive doubles, without giving up the convenience of
object orientation and custom types.

Let’s consider three potential solutions to this issue: regular member types, opaque
types, and value classes. First, we could define member type aliases for Dollars and
Percentage:

// src/script/scala/progscala3/basicoop/DollarsPercentagesTypes.scala

object Accounting:
 type Dollars = Double
 type Percentage = Double

import Accounting.*
case class Salary(gross: Dollars, taxes: Percentage):
 def net: Dollars = gross * (1.0 - (taxes/100.0))
 override def toString =
 f"Salary(gross = $$$gross%.2f, taxes = $taxes%.2f%%)"

Now let’s try it:

scala> import Accounting.*
 | val gross: Dollars = 10000.0
 | val taxes: Percentage = 0.1
val gross: Accounting.Dollars = 10000.0
val taxes: Accounting.Percentage = 0.1

scala> val salary1 = Salary(gross, taxes)
 | val net1 = salary1.net
val salary1: Salary = Salary(gross = $10000.00, taxes = 10.00%)
val net1: Accounting.Dollars = 9000.0

scala> val salary2 = Salary(taxes, gross) // Error, but it compiles!!
 | val net2 = salary2.net
val salary2: Salary = Salary(gross = $0.10, taxes = 1000000.00%)
val net2: Accounting.Dollars = -999.9000000000001

This is a simple solution, but it has some problems that impact users of the API. The
type aliases are just new names for the same type, so the compiler doesn’t catch the
mistake of mixing up the arguments. Hence, type aliases provide no additional type
safety. Furthermore, we can’t define custom methods for Dollars and Percentage.
Attempting to use extension methods will add them to Double, not separately for the
two types.

254 | Chapter 9: Object-Oriented Programming in Scala

Opaque Type Aliases
Scala 3 introduces opaque type aliases, which are declared like regular member type
aliases, but with the opaque keyword. They preserve type safety and have zero run‐
time overhead beyond the value they wrap, but they provide some of the benefits of
using richer types. Here is the same example rewritten with opaque type aliases:

// src/script/scala/progscala3/basicoop/DollarsPercentagesOpaque.scala

object Accounting:
 opaque type Dollars = Double
 opaque type Percentage = Double

 object Dollars:
 def apply(amount: Double): Dollars = amount

 extension (d: Dollars)
 def +(d2: Dollars): Dollars = d + d2
 def -(d2: Dollars): Dollars = d - d2
 def *(p: Percentage): Dollars = d*p
 def toDouble: Double = d
 // override def toString = f"$$$d%.2f"
 // override def equals(other: AnyRef): Boolean = ???

 object Percentage:
 def apply(amount: Double): Percentage = amount

 extension (p: Percentage)
 def +(p2: Percentage): Percentage = p + p2
 def -(p2: Percentage): Percentage = p - p2
 def *(d: Dollars): Dollars = d*p
 def toDouble: Double = p
 // override def toString = f"${(p*100.0)}%.2f%%"
 // override def equals(other: AnyRef): Boolean = ???

import Accounting.*
case class Salary(gross: Dollars, taxes: Percentage):
 def net: Dollars = gross - (gross * taxes)

Like regular member type aliases, but prefixed with the opaque keyword.

For each opaque type alias, define an object that looks like a companion object
for factory methods like apply, so they behave similar to user expectations for
other types. All instance methods for an opaque type are defined as extension
methods.

Our original wrapper types for Dollars and Percentage had nice toString
methods, and we could have implemented equals methods that incorporate

Opaque Types and Value Classes | 255

accounting rules. We don’t have the option to override concrete methods for opa‐
que type aliases.

The companion for Percentage.

A case class that uses these types.

The opaque keyword is soft. It is only treated as a keyword in a declaration as shown.
Otherwise, it can be used as a regular identifier.

Compared to case classes, opaque type aliases have most of the limitations of regular
member type aliases. You can’t override concrete methods like equals and toString
for opaque type aliases, nor pattern match on them. You can only pattern match on
the underlying type.

You can define an object with the same name for factory methods like apply, but they
aren’t generated automatically like they are for case classes.

Note that regular Double methods, like those for arithmetic and comparisons, are not
automatically available for users of these types. We have to define extension methods
for the operations we want or call toDouble first.

However, this only applies for users of an opaque type outside the scope where the
type is defined. This is why they are called opaque. Inside the scope, the type looks
like a Double. Note how the bodies are implemented using Double methods.

Outside the defining scope, an opaque type is considered abstract, even though the
definition inside the scope is concrete. Note how Dollars and Percentage are used
in the next code snippet. When we construct Dollars, we call the Dollars object
method apply. Everywhere else, like arguments to Salary, there’s nothing to require
Dollars to be concrete, just like using Seq everywhere, even though it is not a con‐
crete type:

scala> import Accounting.*
scala> val gross = Dollars(10000.0)
 | val taxes = Percentage(0.1)
val gross: Accounting.Dollars = 10000.0
val taxes: Accounting.Percentage = 0.1

scala> val salary1 = Salary(gross, taxes)
 | val net1 = salary1.net
val salary1: Salary = Salary(10000.0,0.1)
val net1: Accounting.Dollars = 9000.0

scala> val salary2 = Salary(taxes, gross) // Won't compile!
5 |val salary2 = Salary(taxes, gross) // Won't compile!
 | ^^^^^
 | Found: (taxes : Accounting.Percentage)
 | Required: Accounting.Dollars

256 | Chapter 9: Object-Oriented Programming in Scala

2 Some of the SIP-35 details are obsolete. The Scala 3 documentation is correct.

5 |val salary2 = Salary(taxes, gross) // Won't compile!
 | ^^^^^
 | Found: (gross : Accounting.Dollars)
 | Required: Accounting.Percentage

When printing the values, we no longer have the dollar and percentage signs. If we
still want them, we would have to implement an ad hoc print method of some kind
and use that instead of relying on toString.

However, as desired, we get the type checking for Dollars versus Percentages that
we want, and we don’t pay a runtime penalty for wrapping these types.

The inability to override the equality methods–equals, ==, and !=–means the under‐
lying type’s methods are used. This can cause surprises:

scala> val dollars = Dollars(100.0)
 | val percentage = Percentage(100.0)

scala> dollars == percentage
val res0: Boolean = true

However, you can define extension methods for <=, >=, etc.

When comparing instances of different opaque types that alias the
same underlying type, the underlying type’s equality operations are
used, even if the instances should not be considered comparable!
Avoid using these methods. Define other, ad hoc extension meth‐
ods to fine-tune the behavior and use them instead.

At compile time, opaque types work like regular types, but the byte code generated
only uses the overhead of the aliased type, Double in this case. For all three
approaches we are discussing here, you aren’t limited to aliasing AnyVal types either.
Even wrapping Strings, for example, means one less heap allocation and fewer mem‐
ory accesses.

Opaque types can also have type parameters. The code examples contain two varia‐
tions of an example that I won’t discuss here. They are adapted from an example in
the Scala Improvement Process proposal for opaque types, SIP-35, which shows a no-
overhead way to tag values with metadata. In this case, units like meters versus feet
are the tags. The implementations are a bit advanced, but worth studying to appreci‐
ate both the idea of tagging data with metadata in a type-safe way and how it is imple‐
mented with no runtime overhead. See src/main/scala/progscala3/basicoop/tagging/
Tags.scala and Tags2.scala. SIP-35 contains other nontrivial examples too.2

Opaque Types and Value Classes | 257

https://oreil.ly/1eW9p

Opaque type aliases and matchable
In “Safer Pattern Matching with Matchable” on page 105, we saw that pattern match‐
ing is now restricted to subtypes of the trait Matchable, which fixes a “hole” when
pattern matching on certain type aliases like the new IArray. I explained that pattern
matching on abstract types requires them to be bound by Matchable, which solves
the issue with IArray discussed there. In fact, the library’s IArray is an opaque type
alias for Array, so now I can fill in a few more details. Consider the following exam‐
ple with our own Array aliases:

scala> // src/script/scala/progscala3/basicoop/MatchableOpaque.scala
 |
 | object Obj:
 | type Arr[T] = Array[T]
 | opaque type OArr[T] = Array[T]

scala> summon[Obj.Arr[Int] <:< Matchable] // Okay
val res2: Array[Int] =:= Array[Int] = generalized constraint

scala> summon[Obj.OArr[Int] <:< Matchable] // Doesn't work
1 |summon[Obj.OArr[Int] <:< Matchable] // Doesn't work
 | ^
 | Cannot prove that Obj.OArr[Int] <:< Matchable.

Recall that we used summon like this in “Implicit Evidence” on page 178 to check type
relationships. So why is it that our type alias Arr is considered a Matchable, but not
our opaque alias OArr? It’s because OArr is considered abstract outside of Obj, as we
discussed earlier. Recall from the discussion of Matchable that abstract types must be
declared bounded by Matchable. In contrast, Arr is not abstract and it aliases the
concrete type Array, which subtypes Matchable.

If you change the definition of OArr to opaque type OArr[T] <: Matchable =
Array[T], the last summon will succeed. Try it!

Value Classes
Scala 2 and 3 offer value classes, our third and final mechanism to eliminate the run‐
time overhead of wrapper types. They have some advantages and drawbacks com‐
pared to opaque type aliases.

Here is an example value class for North American phone numbers (excluding the
country code):

// src/main/scala/progscala3/basicoop/ValueClassPhoneNumber.scala
package progscala3.basicoop

class NAPhoneNumber(val s: String) extends AnyVal:
 override def toString =
 val digs = digits(s)

258 | Chapter 9: Object-Oriented Programming in Scala

3 Because of Scala’s richer type system, not all types can be referenced in normal variable and method declara‐
tions. (However, all the examples we’ve seen so far work fine.) In Chapter 16, we’ll explore new kinds of types
and learn the rules for what it means to say that a type can or can’t be referenced.

 val areaCode = digs.substring(0,3)
 val exchange = digs.substring(3,6)
 val subnumber = digs.substring(6,10) // "subscriber number"
 s"($areaCode) $exchange-$subnumber"

 private def digits(str: String): String = str.replaceAll("""\D""", "")

Note that it extends AnyVal. For simplicity, validation of the input string is not
shown.

Now we have the convenience of a domain-specific type, with customized methods,
but instances don’t require additional memory management beyond what the String
requires.

To be a valid value class, the following rules must be followed:

• The value class has one and only one val parameter.
• The type of the parameter must not be a value class itself.
• The value class doesn’t define secondary constructors (see “Constructors in

Scala” on page 262).
• The value class defines only methods, but no other vals and no vars.
• The value class defines no nested traits, classes, or objects.
• The value class can’t be subtyped.
• The value class can only inherit from universal traits (more on that in a

moment).
• The value class must be a top-level type or a member of an object that can be

referenced.3

The compiler provides good error messages when we break the rules.

At compile time, the type is the outer type, NAPhoneNumber. The runtime type is the
wrapped type, String. The wrapped type can be any other type, as long as the rules
are followed.

A value class can be a case class, but the many extra methods and the companion
object generated are less likely to be used and hence more likely to waste space in the
output class file.

A universal trait has the following properties:

Opaque Types and Value Classes | 259

• It subtypes Any (but not from other universal traits).
• It defines only methods.
• It does no initialization of its own.

Here is a refined version of NAPhoneNumber that mixes in two universal traits:

// src/main/scala/progscala3/basicoop/ValueClassUniversalTraits.scala
package progscala3.basicoop

trait Digitizer extends Any:
 def digits(s: String): String = s.replaceAll("""\D""", "")

trait Formatter extends Any:
 def format(
 areaCode: String, exchange: String, subnumber: String): String =
 s"($areaCode) $exchange-$subnumber"

case class NAPhoneNumberUT(s: String)
 extends AnyVal with Digitizer with Formatter:
 override def toString =
 val digs = digits(s)
 val areaCode = digs.substring(0,3)
 val exchange = digs.substring(3,6)
 val subnumber = digs.substring(6,10)
 format(areaCode, exchange, subnumber)

Digitizer is a trait that contains the digits method we originally had in
NAPhoneNumber.

Formatter formats the phone number the way we want it.

Use Formatter.format.

Formatter actually solves a design problem. We might like to specify a second
parameter to NAPhoneNumber for a format string to use in toString because there are
many popular format conventions for phone numbers. However, we’re only allowed
to pass one argument to the NAPhoneNumber constructor and it can’t have any other
fields. We can solve this problem by mixing in a universal trait to do the configura‐
tion we want. We could define a different Formatter trait and build a different Phone
Number value class that uses it.

The biggest drawback of value classes is that some nonobvious circumstances can
trigger instantiation of the wrapper type, defeating the purpose of using value classes.
One situation involves universal traits. Here’s a summary of the circumstances requir‐
ing instantiation:

260 | Chapter 9: Object-Oriented Programming in Scala

• When a function expects a universal trait instance and it is passed an instance of
a value class that implements the trait. However, if a function expects an instance
of the value class itself, instantiation isn’t required.

• An Array or another collection of value class instances.
• The type of a value class is used as a type parameter.

For example, when the following method is called with a NAPhoneNumber, an instance
of it will be allocated on the heap:

def toDigits(d: Digitizer, str: String) = d.digits(str)
...
val digs = toDigits(NAPhoneNumber("987-654-3210"), "123-Hello!-456")
// Result: digs: String = 123456

Similarly, when the following parameterized method is passed a NAPhoneNumber:

def print[T](t: T) = println(t.toString)
print(NAPhoneNumber("987-654-3210"))
// Result: (987) 654-3210

Opaque type aliases work around these scenarios, although they bring their own limi‐
tations, like inability to override toString and equals for them.

To clarify terminology, value type refers to the Short, Int, Long,
Float, Double, Boolean, Char, Byte, and Unit types. Value class
refers to user-defined classes that subtype AnyVal.

To summarize the three approaches for avoiding wrapper type overhead, regular
member type aliases are a very simple approach, but don’t provide any extra type
safety. Both value classes and opaque type aliases provide better type safety and
semantics. Use opaque types when performance is the highest priority, when avoiding
all extra heap allocation and memory accesses is important. Use value classes if you
want types that behave more like real types, such as the ability to override toString
and equals, and you can tolerate some situations where heap allocation is necessary.

Supertypes
Throughout the book, I have mostly used the terms supertype and subtype, both as
nouns and verbs. Subtyping creates a subtype from a supertype. Other common OOP
terms for subtyping include derivation, extension, and inheritance. Scala documenta‐
tion describes type class derivation, so I used that terminology in “Type Class Deriva‐
tion” on page 158. The keywords open and extension are often used together, as I used
them in “Classes Open for Extension” on page 250.

Supertypes | 261

Supertypes are also called parent or base types. Subtypes are also called child or
derived types.

Scala only supports single inheritance, but most of the benefits of multiple inheritance
are achieved using mixins. All types have a supertype, except for the root of the Scala
class hierarchy, Any. When declaring a type and when a parent type is omitted, the
type implicitly subtypes AnyRef. In other words, it is automatically a reference type
and instances will be heap allocated.

The keyword extends indicates the supertype class or trait. If other traits are mixed
in, the with keyword is used.

Constructors in Scala
Scala distinguishes between the primary constructor and zero or more auxiliary con‐
structors, also called secondary constructors. In Scala, the primary constructor is the
entire body of the type. Any parameters that the constructor requires are listed after
the type name.

Here is an example with auxiliary constructors. The type represents US zip codes,
which have five digits and an optional extension of four digits:

// src/script/scala/progscala3/basicoop/people/ZipCodeAuxConstructors.scala

case class ZipCodeAuxCtor(zip: Int, extension: Int = 0):
 override def toString =
 if extension != 0 then s"$zip-$extension" else zip.toString

 def this(zip: String, extension: String) =
 this(zip.toInt, if extension.length == 0 then 0 else extension.toInt)
 def this(zip: String) = this(zip, "")

The two auxiliary constructors, named this, allow users to provide string arguments.
They are converted to integers, where 0 is interpreted as “no extension.” All auxiliary
constructors are required to call the primary constructor or another auxiliary con‐
structor as the first expression. The compiler also requires that a constructor called is
one that appears earlier in the source code. So we must order secondary constructors
carefully in our code.

Forcing all construction to go through the primary constructor eliminates duplica‐
tion of constructor logic and the risk of inconsistent initialization of instances.

We haven’t discussed auxiliary constructors before now because it’s rare to use them.
It’s far more common to overload object apply methods instead when multiple invo‐
cation options are desired:

// src/script/scala/progscala3/basicoop/people/ZipCodeApply.scala

262 | Chapter 9: Object-Oriented Programming in Scala

case class ZipCodeApply(zip: Int, extension: Int = 0):
 override def toString =
 if extension != 0 then s"$zip-$extension" else zip.toString

object ZipCodeApply:
 def apply(zip: String, extension: String): ZipCodeApply =
 apply(zip.toInt, if extension.length == 0 then 0 else extension.toInt)
 def apply(zip: String): ZipCodeApply = apply(zip, "")

This has the nice benefit of keeping the case class very simple. The complexity of
invocation is moved to the companion object. There are actually three apply methods
in the companion object. The compiler generates the apply method with two Int
parameters, matching the constructor. The source code adds two more.

The following invocations all work:

ZipCodeApply(12345)
ZipCodeApply(12345, 6789)
ZipCodeApply("12345")
ZipCodeApply("12345", "6789")

Calling Supertype Constructors
The primary constructor in a subtype must invoke one of the supertype constructors:

class Person(name: String, age: Int)
class Employee(name: String, age: Int, salary: Float) extends Person(name, age)
class Manager(name: String, age: Int, salary: Float, minions: Seq[Employee])
 extends Employee(name, age, salary)

Export Clauses
In the next section, we’ll discuss the benefits of composition over inheritance. There
are times when you want a type to be composed of other types, but you also want
members of those other types to be part of the public interface of the composed type.
This happens automatically with public members of inherited types, including mix‐
ins. However, if dependencies are passed in as constructor arguments (also known as
dependency injection) or local instances are created, and you would like some of the
members of those instances to be part of the composed type’s interface, you have to
write forwarding methods. To see this, consider these types for authentication that
some service might want to provide:

// src/script/scala/progscala3/basicoop/Exports.scala

import java.net.URL

case class UserName(value: String):
 assert(value.length > 0)
case class Password(value: String):
 assert(value.length > 0)

Export Clauses | 263

trait Authenticate:
 final def apply(
 username: UserName, password: Password): Boolean =
 authenticated = auth(username, password)
 authenticated
 def isAuthenticated: Boolean = authenticated

 private var authenticated = false
 protected def auth(username: UserName, password: Password): Boolean

class DirectoryAuthenticate(location: URL) extends Authenticate:
 protected def auth(username: UserName, password: Password): Boolean = true

Types to encapsulate valid usernames and passwords (encryption needed!).

An abstraction for authentication with a stub implementation that uses a direc‐
tory service available at some URL.

Now let’s compose a service that declares a private field for an instance of Directory
Authenticate, then defines boilerplate methods to expose the two public methods
provided by dirAuthenticate:

object ServiceWithoutExports:
 private val dirAuthenticate =
 DirectoryAuthenticate(URL("https://directory.wtf"))

 def authenticate(username: UserName, password: Password): Boolean =
 dirAuthenticate(username, password)
 def isAuthenticated: Boolean = dirAuthenticate.isAuthenticated

Scala 3 gives us a way to avoid the boilerplate methods using a new export clause:

object Service:
 private val dirAuthenticate =
 DirectoryAuthenticate(URL("https://directory.wtf"))

 export dirAuthenticate.{isAuthenticated, apply as authenticate}

Before explaining the export clause, let’s see Service in action:

scala> Service.isAuthenticated
val res0: Boolean = false

scala> Service.authenticate(UserName("Buck Trends"), Password("1234"))
val res1: Boolean = true

scala> Service.isAuthenticated
val res1: Boolean = true

Export clauses are similar to import clauses and use the same syntax. We gave the
apply method an alias; using Service.apply to authenticate would be weird. We can

264 | Chapter 9: Object-Oriented Programming in Scala

export any members, not just methods. We can exclude items. For example, export
dirAuthenticate.{*, apply => _} would export all public members except for
apply.

The following rules describe what members are eligible for exporting:

• The member can’t be owned by a supertype of the type with the export clause.
• The member can’t override a concrete definition in a supertype, but it can be

used to implement an abstract member in a supertype.
• The member is accessible at the export clause.
• The member is not a constructor.
• The member is not the synthetic (compiler-generated) class part of an object.
• If the member is a given instance or implicit value, then the export must be tag‐

ged with given.

All exports are final. They can’t be overridden in subtypes.

Export clauses can also appear outside types, meaning they are defined at the package
level. Hence, one way to provide a very controlled view of what’s visible in a package
is to declare everything package private, then use export clauses to expose only those
items you want publicly visible. See Chapter 15 for more details on public, protected,
private, and more fine-grained visibility controls.

Good Object-Oriented Design: A Digression
Consider the preceding example where Person was a supertype of Employee, which
was a supertype of Manager. It has several code smells.

First, there’s a lot of boilerplate in the constructor argument lists, like name: String,
age: Int repeated three times. Second, it seems like all three should be case classes,
right?

We can create a regular subtype from a case class or the other way around, but we
can’t subtype one case class to create another. This is because the autogenerated
implementations of toString, equals, and hashCode do not work properly for sub‐
types, meaning they ignore the possibility that an instance could actually be a subtype
of the case-class type.

This limitation is by design. It reflects the problematic aspects of subtyping. For
example, should Manager, Employee, and Person instances be considered equal if they
all have the same name and age? A more flexible interpretation of object equality
might say yes, while a more restrictive version would say no. Also, the mathematical
definition of equality requires commutative behavior: somePerson == someEmployee

Good Object-Oriented Design: A Digression | 265

should return the same result as someEmployee == somePerson, but you would never
expect the Employee.equals method to return true in this case.

The real problem is that we are subtyping the state of these instances. We are using
subtyping to add additional fields that contribute to the instance state. In contrast,
subtyping behavior (methods) with the same state is easier to implement robustly. It
avoids the problems with equals and hashCode just described, for example.

Of course, these problems with inheritance have been known for a long time. Today,
good object-oriented design favors composition over inheritance, where we compose
units of functionality rather than build class hierarchies, when possible.

Mixin composition with traits makes composition straightforward. The code exam‐
ples mostly use type hierarchies with few levels and mixins to enhance them. When
bits of cleanly separated state and behavior are combined, mixin composition is
robust.

When subtyping is used, I recommend the following rules:

• Use only one level of subtyping from a supertype, if at all possible.
• Concrete classes are never subtyped, except for two cases:

— Classes that mix in other behaviors defined in traits (see Chapter 10). Ideally,
those behaviors should be orthogonal (i.e., not overlapping).

— Test-only versions to promote automated unit testing.
• When subtyping seems like the right approach, consider partitioning behaviors

into traits, and mixin those traits instead. Recall our NAPhoneNumber design ear‐
lier in this chapter.

• Never build up logical state across supertype-subtype boundaries.
• Only use case classes for leaf nodes in a type hierarchy. That is, don’t subtype case

classes.
• Make your intentions explicit by marking types open, final, or sealed, as

appropriate.

By logical state in the fourth bullet, I mean the fields and methods, which together
define a state machine for the logical behavior. There might have some private,
implementation-specific state that doesn’t affect this external behavior, but be very
careful that the internals don’t leak through the type’s abstraction. For example, a
library might include private subtypes for special cases. Types might have private
fields to implement caching, auditing, or other concerns that aren’t part of the public
abstraction.

So what about our Person hierarchy? What should we do instead? The answer really
depends on the context of use. If we’re implementing a Human Resources application,

266 | Chapter 9: Object-Oriented Programming in Scala

do we need a separate concept of Person or can Employee just be the only type,
declared as a case class? Do we even need any types for this at all? If we’re processing
a result set from a database query, is it sufficient to use tuples or maps to hold the
values returned from the query for each unique use case? Can we dispense with the
ceremony of declaring a type altogether?

Here is an alternative with just a single Employee case class that embeds the assump‐
tion that nonmanagers will have an empty set of subordinates:

// src/script/scala/progscala3/basicoop/people/Employee.scala

case class Employee(
 name: String,
 age: Int,
 title: String,
 manages: Set[Employee] = Set.empty)

val john = Employee("John Smith", 35, "Accountant")
val jane = Employee("Jane Doe", 28, "Full Stack Developer")
val tom = Employee("Tom Tired", 22, "Junior Minion")
val minions = Set(john, jane, tom)
val ceo = Employee("John Smith", 60, "CEO", minions)

Fields in Types
We started the chapter with a reminder that the primary constructor parameters
become instance fields if they are prefixed with the val or var keyword. For case
classes, val is implied. This convention greatly reduces source-code boilerplate, but
how does it translate to byte code?

Actually, Scala just does implicitly what Java code does explicitly. There is a private
field created internal to the class, and the equivalents of getter and optional setter
accessor methods are generated. Consider this simple Scala class:

class Name(var value: String)

Conceptually, it is equivalent to this code:

class Name(s: String):
 private var _value: String = s

 def value: String = _value
 def value_=(newValue: String): Unit = _value = newValue

Invisible field, declared mutable in this case.

The getter (reader) and the setter (writer) methods.

Fields in Types | 267

Note the convention used for the value_= method name. When the compiler sees a
method named like this, it will allow client code to drop the _, effectively enabling
infix notation as if we were setting a bare field in the object:

scala> val n = Name("Dean")
val n: Name = Name@333f6b2d

scala> n.value
val res0: String = Dean

scala> n.value = "Buck"

scala> n.value
val res1: String = Buck

If we declare a field immutable with the val keyword, the field is declared with val
and the writer method is not synthesized, only the reader method.

You can use these conventions yourself if you want to expose a field implemented
with custom logic for reading and writing.

Constructor parameters in noncase classes without the val or var don’t become
fields. It’s important to note that the value is still in the scope of the entire class body.
Let’s fill in a bit more detail that might be required for a real DirectoryAuthenticate
implementation:

class DirectoryAuthenticate(location: URL) extends Authenticate:
 protected def auth(username: UserName, password: Password): Boolean =
 directory.auth(username, password)

 protected val directory = connect(location) // we can use location!
 protected def connect(location:URL) = ???

While connect refers to location, it is not a field. It is just in scope!

Why not always make these parameters fields with val? Unless these parameters are
really part of the logical state exposed to users, they shouldn’t be exposed as fields.
Instead, they are effectively private to the class body.

The Uniform Access Principle
In the Name example, it appears that users can read and write the bare value field
without going through accessor methods, but in fact they are calling methods. On the
other hand, we could just declare a field in the class body with the default public visi‐
bility and then access it as a bare field:

class Name2(s: String):
 var value: String = s

268 | Chapter 9: Object-Oriented Programming in Scala

This uniformity is called the uniform access principle. The user experience is identical.
We are free to switch between bare field access and accessor methods as needed. For
example, if we want to add some sort of validation on writes or lazily construct the
field value on reads, then methods are better. Conversely, bare field access is faster
than a method call, although some simple method invocations will be inlined by the
compiler or runtime environment anyway.

Therefore, the uniform access principle has an important benefit in that it minimizes
coupling between user code and implementation details. We can change that imple‐
mentation without forcing client code changes, although a recompilation is required.

Because of the flexibility provided by uniform access, a common convention is to
declare abstract, constant fields as methods instead:

// src/main/scala/progscala3/basicoop/AbstractFields.scala
package progscala3.basicoop

trait Logger:
 def loggingLevel: Int
 def log(message: String): Unit

case class ConsoleLogger(loggingLevel: Int) extends Logger:
 def log(message: String): Unit = println(s"$loggingLevel: $message")

Declare the logging level as a method with no parentheses, rather than a val.

Implement loggingLevel with a val constructor parameter instead of a concrete
method.

Implementers have the choice of using a concrete method or using a val. Using a val
is legal here because the contract of loggingLevel is that it returns some Int. If the
same value is always returned, that satisfies the contract. Conversely, if we declared
loggingLevel to be a field in Logger, then using a concrete method implementation
would not be allowed because the compiler can’t confirm that the method would
always return a single value consistently.

I have used this convention in earlier examples. Did you notice it?

When declaring an abstract field, consider declaring an abstract
method instead. That gives implementers the freedom to use a
method or a field.

Fields in Types | 269

Unary Methods
We saw earlier how to define an assignment method foo_= for field foo, which ena‐
bles the intuitive syntax myinstance.foo = bar. How can we implement unary
operators?

An example is negation. If we implement a complex number class, we want to sup‐
port the negation of some instance c with -c:

// src/main/scala/progscala3/basicoop/Complex.scala
package progscala3.basicoop

import scala.annotation.targetName

case class Complex(real: Double, imag: Double):
 @targetName("negate") def unary_- : Complex =
 Complex(-real, imag)
 @targetName("minus") def -(other: Complex) =
 Complex(real - other.real, imag - other.imag)

The method name is unary_X, where X is the prefix operator character we want to
use, - in this case. Note that the space between the - and the : is necessary to tell
the compiler that the method name ends with - and not with :!

For comparison, we also implement the minus infix operator for subtraction.
Here is an example:

scala> import progscala3.basicoop.Complex
scala> val c = Complex(1.1, 2.2)
scala> assert(-c == Complex(-1.1, 2.2))

Recap and What’s Next
We filled in more details for OOP in Scala, including constructors versus object apply
methods, inheritance, and some tips on good object-oriented design.

We also set the stage for diving into traits, Scala’s powerful tool for composing
behaviors from constituent parts. In the next chapter we’ll complete our understand‐
ing of traits and how to use them to solve various design problems.

270 | Chapter 9: Object-Oriented Programming in Scala

CHAPTER 10

Traits

Scala traits function as interfaces, abstract declarations of members (methods, fields,
and types) that together express state and behavior. Traits can also provide concrete
definitions (implementations) of some or all of those declarations.

A trait with concrete definitions works best when those definitions provide state and
behavior that are well encapsulated and loosely coupled or even orthogonal to the rest
of the state and behavior in the types that use the trait. The term mixin is used for
such traits because we should be able to “mix together” such traits to compose differ‐
ent concrete types.

Traits as Mixins
We first discussed traits as mixins in “Traits: Interfaces and Mixins in Scala” on page
99, where we explored an example that mixes logging into a service. Logging is a good
example of mixin behavior that can be well encapsulated and orthogonal to the state
and behavior of the rest of a service.

Let’s revisit and expand on what we learned with a new example. First, consider the
following code for a button in a GUI toolkit, which uses callbacks to notify clients
when clicks occur:

// src/main/scala/progscala3/traits/ui/ButtonCallbacks.scala
package progscala3.traits.ui

abstract class ButtonWithCallbacks(val label: String,
 val callbacks: Seq[() => Unit] = Nil) extends Widget:

 def click(): Unit =
 updateUI()
 callbacks.foreach(f => f())

271

 protected def updateUI(): Unit

The class is abstract because updateUI is abstract. For now, Widget is defined as
abstract class Widget in the same package.

When the button is clicked, invoke the list of callback functions of type () =>
Unit, which can only perform side effects, like sending a message to a backend
service.

Update the user interface (UI).

This class has two responsibilities: updating the visual appearance and handling call‐
back behavior, including the management of a list of callbacks and calling them
whenever the button is clicked. Separation of concerns would be better, achieved
through composition.

So let’s separate the button-specific logic from the callback logic, such that each part
becomes simpler, more modular, easier to test and modify, and more reusable. The
callback logic is a good candidate for a mixin.

Callbacks are a special case of the Observer Design Pattern [GOF1995]. So let’s create
two traits that declare and partially implement the Subject and Observer logic in this
pattern, then use them to handle callback behavior. To simplify things, we’ll start with
a single callback that counts the number of button clicks:

// src/main/scala/progscala3/traits/observer/Observer.scala
package progscala3.traits.observer

trait Observer[State]:
 def receiveUpdate(state: State): Unit

trait Subject[State]:
 private var observers: Vector[Observer[State]] = Vector.empty

 def addObserver(observer: Observer[State]): Unit =
 observers.synchronized { observers :+= observer }

 def notifyObservers(state: State): Unit =
 observers foreach (_.receiveUpdate(state))

The trait for clients who want to be notified of state changes. They must imple‐
ment the receiveUpdate message.

The trait for subjects who will send notifications to observers.

A mutable vector of observers to notify.

272 | Chapter 10: Traits

A method to add observers.

Since observers is mutable, we use observers.synchronized to ensure thread-
safe updates. The update expression is equivalent to observers = observer +:
observers.

A method to notify observers of state changes.

Often, the most convenient choice for the State type parameter is just the type of the
class mixing in Subject. Hence, when the notifyObservers method is called, the
instance just passes itself (i.e., this).

Traits with abstract members don’t have to be declared abstract by
adding the abstract keyword before the trait keyword. However,
if a class has abstract members, it must be declared abstract.

Now, we can define a simple Button type:

// src/main/scala/progscala3/traits/ui/Button.scala
package progscala3.traits.ui

abstract class Button(val label: String) extends Widget:
 def click(): Unit = updateUI()
 protected def updateUI(): Unit

Button is considerably simpler. It has only one concern, handling clicks. At the
moment, it seems trivial now to have a public method click that does nothing except
delegate to a protected method updateUI, but we’ll see next why this is still useful.

Now we construct ObservableButton, which subtypes Button and mixes in Subject:

// src/main/scala/progscala3/traits/ui/ObservableButton.scala
package progscala3.traits.ui
import progscala3.traits.observer.*

abstract class ObservableButton(name: String)
 extends Button(name) with Subject[Button]:

 override def click(): Unit =
 super.click()
 notifyObservers(this)

A subtype of Button that mixes in observability.

Extends Button, mixes in Subject, and uses Button as the Subject type parame‐
ter, named State in the declaration of Subject.

Traits as Mixins | 273

In order to notify observers, we have to override the click method.

First, call the supertype click to perform the normal GUI update logic.

Notify the observers, passing this as the State. In this case, there isn’t any state
other than the event that a button click occurred.

So we modified click, but kept it simple for future subtypes to correctly implement
updateUI, without having to worry about correct handling of the observer logic. This
is why we kept both click and updateUI in Button. Note that ObservableButton is
still abstract.

Let’s try it. First, let’s define an observer to count button clicks:

// src/main/scala/progscala3/traits/ui/ButtonCountObserver.scala
package progscala3.traits.ui
import progscala3.traits.observer.*

class ButtonCountObserver extends Observer[Button]:
 var count = 0
 def receiveUpdate(state: Button): Unit =
 count.synchronized { count += 1 }

Now try it:

// src/script/scala/progscala3/traits/ui/ButtonCountObserver1.scala
import progscala3.traits.ui.*
import progscala3.traits.observer.*

val button = new ObservableButton("Click Me!"):
 def updateUI(): Unit = println(s"$label clicked")

val bco1 = ButtonCountObserver()
val bco2 = ButtonCountObserver()

button.addObserver(bco1)
button.addObserver(bco2)

(1 to 5) foreach (_ => button.click())

assert(bco1.count == 5)
assert(bco2.count == 5)

The script declares an observer type, ButtonCountObserver, that counts clicks. Then
it creates an anonymous subtype of ObservableButton with a definition of updateUI.
Next it creates and registers two observers with the button, clicks the button five
times, and then verifies that the counts for each observer equals five. You’ll also see
the string Click Me! clicked printed five times.

274 | Chapter 10: Traits

Suppose we only need one instance of an ObservableButton. We don’t need to
declare a class that mixes in the traits we want. Instead, we can declare a Button and
mix in the Subject trait in one step (the rest of the example is unchanged):

// src/script/scala/progscala3/traits/ui/ButtonCountObserver2.scala
val button = new Button("Click Me!") with Subject[Button]:
 override def click(): Unit =
 super.click()
 notifyObservers(this)
 def updateUI(): Unit = println(s"$label clicked")

When declaring a class that only mixes in traits and doesn’t extend
another class, you must use the extends keyword anyway for the
first trait listed and the with keyword for the rest of the traits.
However, when instantiating a class and mixing in traits with the
declaration, use the with keyword with all the traits.

In “Good Object-Oriented Design: A Digression” on page 265, I recommended that
you avoid method overrides. We didn’t have a choice for click, but we proceeded
carefully. In the click override, we added invocation of the subject-observer logic but
didn’t modify the UI update logic. Instead, we left in place the protected method
updateUI to keep that logic separated from observation logic. Our click logic follows
the examples in “Overriding Methods? The Template Method Pattern” on page 251.

Stackable Traits
There are several further refinements we can do to improve the reusability of our
code and to make it easier to use more than one trait at a time (i.e., to stack traits).

First, clicking is not limited to buttons in a GUI. We should make that logic abstract
too. We could put it in Widget, the so-far empty supertype of Button, but it may not
be true that all GUI widgets accept clicks. Instead, let’s introduce another trait,
Clickable:

// src/main/scala/progscala3/traits/ui2/Clickable.scala
package progscala3.traits.ui2

trait Clickable:
 def click(): String = updateUI()
 protected def updateUI(): String

Use a new package because we’re reimplementing types in traits.ui.

Essentially just like the previous Button definition, except now we return a
String from click.

Stackable Traits | 275

Having click return a String is useful for discussing the stacking of method calls.

Here is the refactored button, which uses the trait:

// src/main/scala/progscala3/traits/ui2/Button.scala
package progscala3.traits.ui2
import progscala3.traits.ui.Widget

abstract class Button(val label: String) extends Widget with Clickable

It is still abstract, little more than a name for a convenient GUI concept that is imple‐
mented with a composition of reusable types!

Observation should now be tied to Clickable and not Button, as it was before. When
we refactor the code this way, it becomes clear that we don’t really care about observ‐
ing buttons. We really care about observing events, such as clicks. Here is a trait that
focuses solely on observing Clickable:

// src/main/scala/progscala3/traits/ui2/ObservableClicks.scala
package progscala3.traits.ui2
import progscala3.traits.observer.*

trait ObservableClicks extends Clickable with Subject[Clickable]:
 abstract override def click(): String =
 val result = super.click()
 notifyObservers(this)
 result

Note the abstract override keyword combination, discussed next.

The implementation is very similar to the previous ObservableButton example. The
important difference is the abstract keyword. We had just override before.

Look closely at this method. It calls super.click(), but what is super in this case? At
this point, it could only appear to be Clickable, which declares but does not define
the click method, or it could be Subject, which doesn’t have a click method. So
super can’t be bound to a real instance, at least not yet. This is why abstract is
required here.

In fact, super will be resolved when this trait is mixed into a concrete instance that
defines the click method, such as Button. The abstract keyword tells the compiler
(and the reader) that click is not yet fully implemented, even though Observable
Clicks.click has a body.

The abstract keyword is only required on a method in a trait
when the method has a body, but it invokes another method in
super that doesn’t have a concrete implementation in supertypes of
the trait.

276 | Chapter 10: Traits

Let’s use this trait with Button and its concrete click method. First we’ll define an
observer that does counting, whether from clicks or anything else:

// src/main/scala/progscala3/traits/ui2/CountObserver.scala
package progscala3.traits.ui2
import progscala3.traits.observer.*

trait CountObserver[State] extends Observer[State]:
 var count = 0
 def receiveUpdate(state: State): Unit = count.synchronized { count += 1 }

Now use it:

// src/script/scala/progscala3/traits/ui2/ClickCountObserver.scala
import progscala3.traits.ui2.*
import progscala3.traits.observer.*

// No override of "click" in Button required.
val button = new Button("Button") with ObservableClicks:
 def updateUI(): String = s"$label clicked"

val cco = new CountObserver[Clickable] {}
button.addObserver(cco)

(1 to 5) foreach (_ => assert("Button clicked" == button.click()))
assert(cco.count == 5)

CountObserver is a trait, so we have to provide a body. However, the body is
empty because all the members are concrete. I used a trait so that this type could
also be used as a mixin when needed.

Note that we can now declare a Button instance and mix in ObservableClicks
without having to override the click method ourselves. We have also gained a reusa‐
ble mixin for click handling, Clickable.

Let’s finish our example by adding a second trait, where an observer can veto a click
after a certain number has been received:

// src/main/scala/progscala3/traits/ui2/VetoableClicks.scala
package progscala3.traits.ui2

trait VetoableClicks(val maxAllowed: Int = 1) extends Clickable:
 private var count = 0

 abstract override def click(): String =
 count.synchronized { count += 1 }
 if count <= maxAllowed then
 super.click()
 else
 s"Max allowed clicks $maxAllowed exceeded. Received $count clicks!"

 def resetCount(): Unit = count.synchronized { count = 0 }

Stackable Traits | 277

Also extends Clickable.

Use a private variable to avoid collision with any other fields named count from
other mixins.

The maximum number of allowed clicks. Once the number of clicks exceeds the
allowed value (counting from zero), no further clicks are sent to super.

A method to reset the count.

Note that this count should be different from the count used in ClickCountObserver.
Keeping this one private prevents confusion. The compiler will flag collisions.

In this use of both traits, we limit the number of handled clicks to 2:

// src/script/scala/progscala3/traits/ui2/VetoableClickCountObserver.scala
import progscala3.traits.ui2.*
import progscala3.traits.observer.*

val button = new Button("Button!")
 with ObservableClicks with VetoableClicks(maxAllowed = 2):
 def updateUI(): String = s"$label clicked"

val cco = new CountObserver[Clickable] {}
button.addObserver(cco)

(1 to 5) map (_ => button.click())
assert(cco.count == 2)

The map with calls to click returns the following sequence of strings:

Vector("Button! clicked", "Button! clicked",
 "Max allowed clicks 2 exceeded. Received 3 clicks!",
 "Max allowed clicks 2 exceeded. Received 4 clicks!",
 "Max allowed clicks 2 exceeded. Received 5 clicks!")

Try this experiment. Switch the order of the traits in the declaration of button to this:

val button = new Button("Click Me!")
 with VetoableClicks(maxAllowed = 2) with ObservableClicks:
 def updateUI(): String = s"$label clicked"

What happens when you run this code now? The strings returned will be the same,
but the assertion that cco.count == 2 will now fail. The count is actually 5, so the
extra clicks are not actually vetoed!

We have three versions of click wrapped like an onion. The question is which ver‐
sion of click gets called first when we mix in VetoableClicks and Observable
Clicks? The answer is determined by the declaration order, from right to left.

278 | Chapter 10: Traits

This means that ObservableClicks will be notified before VetoableClicks has the
chance to prevent calling up the chain, super.click(). Hence, declaration order
matters.

An algorithm called linearization is used to resolve the priority of traits and classes in
the inheritance tree when resolving which overridden method to call for
super.method(). However, it can get confusing quickly, so avoid complicated mixin
structures! We’ll cover the full details of how linearization works in “Linearization of
a Type Hierarchy” on page 301.

This fine-grained composition through mixin traits is quite powerful, but it can be
overused:

• It can be difficult to understand and debug code if many mixin traits are used.
• When method overrides are required, as in this sequence of examples, resolving

the correct order can get confusing quickly.
• Lots of traits can slow down compile times.

Union and Intersection Types
Now is a good time to revisit union types and introduce intersection types, both of
which are new in Scala 3.

We encountered union types in “When You Really Can’t Avoid Nulls” on page 61,
where we discussed using T | Null as a type declaration for the value returned by
calling a method that will return either a value of type T or null.

Here’s another example, where Int | String is used as an alternative to
Either[String,Int] (note the different order) as a conventional way to return either
a success (Int) or a failure described by a String:

// src/script/scala/progscala3/traits/UnionTypes.scala
scala> def process(i: Int): Int | String =
 | if (i < 0) then "Negative integer!" else i

scala> val result1a: Int | String = process(-1)
 | val result2a: Int | String = process(1)
val result1a: Int | String = Negative integer!
val result2a: Int | String = 1

scala> val result1b = process(-1)
 | val result2b = process(1)
val result1b: Int | String = Negative integer!
val result2b: Int | String = 1

scala> Seq(process(-1), process(1)).map {
 | case i: Int => "integer"

Union and Intersection Types | 279

 | case s: String => "string"
 | }
val res0: Seq[String] = List(string, integer)

Note the types for the values. These types are unions in the sense that any Int or
String value can be used. Hence, the type is the union of the set of all Int and String
values.

I didn’t mention it in the previous sections, but perhaps you noticed the type printed
for this declaration (removing the package prefixes for clarity):

scala> val button = new Button("Button!")
 | with ObservableClicks with VetoableClicks(maxAllowed = 2):
 | def updateUI(): String = s"$label clicked"
val button: Button & ObservableClicks & VetoableClicks = ...

The type Button & ObservableClicks & VetoableClicks is an intersection type,
which results when we construct instances with mixins. In Scala 2, the returned type
signature would use the same with and extends keywords as the definition, Button
with ObservableClicks with VetoableClicks. It’s perhaps a little confusing that
we get back something different. Unfortunately, you can’t use & instead of with or
extends in the definition. However, we can use & in a type declaration:

scala> val button2: Button & ObservableClicks & VetoableClicks =
 | new Button("Button!")
 | with ObservableClicks with VetoableClicks(maxAllowed = 2):
 | def updateUI(): String = s"$label clicked"
val button2: Button & ObservableClicks & VetoableClicks = ...

These types are intersections in the sense that the only allowed values that you can
assign to button2 are those that belong to Button and ObservableClicks and Vetoa
bleClicks, which won’t include values of each of those types separately. Note this
compilation error (some output omitted again):

scala> val button3: Button & ObservableClicks & VetoableClicks =
 | new Button("Button!"):
 | def updateUI(): String = s"$label clicked"
2 | def updateUI(): String = s"$label clicked"
 | ^
 |Found: Button {...}
 |Required: Button & ObservableClicks & VetoableClicks
 |)

Most of the time, this won’t be an issue, but imagine a scenario where you have a var
for a button that you want to observe now but eventually replace with an instance
without observation:

scala> var button4 = new Button("Button!")
 | with ObservableClicks with VetoableClicks(maxAllowed = 2):
 | def updateUI(): String = s"$label clicked"

280 | Chapter 10: Traits

scala> // later...
scala> button4 = new Button("New Button!"):
 | def updateUI(): String = s"$label clicked"
2 | def updateUI(): String = s"$label clicked"
 | ^
 |Found: Button {...}
 |Required: Button & ObservableClicks & VetoableClicks

Not convenient. One easy workaround is to use a type declaration, var button4:
Button = …. Then the reassignment will work.

But wait, isn’t that a type error, based on how I just described intersection types? It’s
not, because the type restriction declared for button4 allows any Button, but the ini‐
tial assignment happens to be a more restricted instance, a Button that also mixes in
other types.

Scala 3 offers a new option for handling this scenario, discussed next.

Transparent Traits
Note that ObservableClicks and VetoableClicks are implementation details and
not really part of the core domain types of a UI. A familiar example from Scala 2 is
the way that several common traits are automatically added as mixins for case classes
and objects. Here’s an example:

// Use the Scala 2 REPL to try this example!
scala> trait Base
scala> case object Obj1 extends Base
scala> case object Obj2 extends Base
scala> val condition = true
scala> val x = if (condition) Obj1 else Obj2
x: Product with Serializable with Base = Obj1

The inferred type is the supertype Base, but with scala.Product and
java.lang.Serializable. Usually, we only care about Base.

Scala 3 lets you add a keyword transparent to the declaration of a trait so that it isn’t
part of the inferred type:

scala>
 | open class Text(val label: String, value: String) extends Widget
 |
 | trait Flag
 | val t1 = new Text("foo", "bar") with Flag
val t1: Text & Flag = anon$1@28f8a295

scala> transparent trait TFlag
 | val t2 = new Text("foo", "bar") with TFlag
val t2: Text = anon$2@4a2219d

Note the different inferred types for t1 and t2.

Transparent Traits | 281

Common traits, like scala.Product, java.lang.Serializable, and java.lang.Com
parable, are now treated as transparent. In the Scala 3 REPL, the preceding Base
example will have the inferred type Base without Product and Serializable for x.

If you need to cross-compile code for Scala 2.13 and 3 for a while,
use the new annotation scala.annotation.transparentTrait

instead of the transparent keyword.

Using Commas Instead of with
Scala 3 also allows you to substitute a comma (,) instead of with, but only when
declaring a type:

scala> class B extends Button("Button!"),
 | ObservableClicks, VetoableClicks(maxAllowed = 2):
 | def updateUI(): String = s"$label clicked"

scala> var button4b: Button = new Button("Button!"),
 | ObservableClicks, VetoableClicks(maxAllowed = 2):
 | def updateUI(): String = s"$label clicked"
 |
1 |var button4b: Button = new Button("Button!"), ObservableClicks, ...
 | ^
 | end of statement expected but ',' found
1 | ...

If this substitution worked for all situations where with is used, it would be more use‐
ful, but it is confusing to remember when it is allowed and when it isn’t.

Trait Parameters
Scala 3 allows traits to have parameters, just like class constructor parameters,
whereas in Scala 2, you had to declare fields in the trait body. We used this feature in
VetoableClicks.

Here is a logging abstraction that uses a trait parameter for the level:

// src/main/scala/progscala3/traits/Logging.scala
package progscala3.traits.logging

enum LoggingLevel:
 case Debug, Info, Warn, Error, Fatal

trait Logger(val level: LoggingLevel):
 def log(message: String): Unit

trait ConsoleLogger extends Logger:

282 | Chapter 10: Traits

https://oreil.ly/rlssM

 def log(message: String): Unit =
 println(s"${level.toString.toUpperCase}: $message")

class Service(val name: String, level: LoggingLevel)
 extends ConsoleLogger with Logger(level)

Define logging levels.

The level is a trait parameter. This will also be a field in concrete types that use
this trait.

A concrete type or one of its supertypes must pass a LoggingLevel value to
Logger.

Note that we have to mix in both Logging and ConsoleLogger, even though the latter
extends the former, because we must specify the level parameter for Logger explic‐
itly. ConsoleLogger can’t be declared as follows, like we might see in a hierarchy of
classes:

trait ConsoleLogger(level: LoggingLevel) extends Logger(level) // ERROR

Note that the name argument for Service is declared to be a field (with val), but if we
try declaring level as a field, it will conflict with the definition already provided by
Logger. (Try it!) However, as shown, we can use the same name for a nonfield
parameter.

Here is the Scala 2–compatible approach without trait parameters:

// src/main/scala/progscala3/traits/LoggingNoParameters.scala
package progscala3.traits.logging

trait LoggerNP:
 def level: LoggingLevel
 def log(message: String): Unit

trait ConsoleLoggerNP extends LoggerNP:
 def log(message: String): Unit = println(s"$level: $message")

class ServiceNP(val name: String, val level: LoggingLevel)
 extends ConsoleLoggerNP

NP for “no parameters.” Note that the abstract level is now a method. It could be
an abstract field, but using a method provides more flexibility for the imple‐
menter (see “The Uniform Access Principle” on page 268).

The implementation of level is a ServiceNP constructor parameter.

The same LoggingLevel enumeration is used here.

Trait Parameters | 283

It’s convenient that we can now declare parameters for traits, but clearly it has limita‐
tions. If a hierarchy of classes mix in a parameterized trait, only one can pass argu‐
ments to it. Also, if Service were declared as a case class, the level argument would
now be a field, which would conflict with level defined by Logging. (Try adding
case and recompile.) We would need to use a different name, adding a redundant
field!

However, to be fair, types like this that are composed of other types aren’t good candi‐
dates for case classes. For example, if two service instances differ only by the logging
level, should they still be considered equivalent?

Also, LoggingNP uses the technique I recommended earlier that abstract fields should
be declared as methods, so implementers have the freedom to use a field or a method.
This option isn’t possible if the field is a parameter for the trait.

Trait parameters fix some scenarios with the order of initialization. Scala 2 had a fea‐
ture to handle these cases called early initializers. This feature was dropped in Scala 3
because trait parameters now address these scenarios. Chapter 12 discusses construc‐
tion of types with mixins and a hierarchy of supertypes.

On balance, I think parameterized traits will be best in some scenarios, while embed‐
ding the fields inside the traits, either as abstract methods or fields, will be best in
other scenarios. Parameterized traits won’t completely replace the older idioms.

Should That Type Be a Class or Trait?
When considering whether a type should be a trait or a class, keep in mind that traits
are best for pure interfaces and when used as mixins for complementary state and
behavior. If you find that a particular trait is used most often as a supertype of other
types, then consider defining the type as a class instead to make this logical relation‐
ship more clear.

Recap and What’s Next
In this chapter, we learned how to use traits to encapsulate cross-cutting concerns
between classes with reusable mixins. We covered when and how to use traits, how to
correctly stack multiple traits, and the rules for initializing values within traits versus
using trait parameters.

In the next few chapters, we explore Scala’s object system and class hierarchy, with
particular attention to the collections. We also revisit construction of complex types,
like our stacked traits example.

284 | Chapter 10: Traits

CHAPTER 11

Variance Behavior and Equality

An important concept in object-oriented type systems goes by the name variance
under inheritance. More specifically, we need well-defined rules for when an instance
of one type can be substituted for an instance of another type. This chapter begins
with an exploration of these concepts.

A logical follow-on is the subject of instance equality, which is trickier than it might
seem in object-oriented languages.

Parameterized Types: Variance Under Inheritance
Suppose a val is declared of type Seq[AnyRef]. Are you allowed to assign a
Seq[String] to it? In other words, is Seq[String] considered substitutable for
Seq[AnyRef]? The Liskov substitution principle (LSP) was the first to define formally
what this means. In OOP, LSP is defined using type hierarchies. Instances of one type
A are substitutable for instances of another type B if A is a subtype of B. Since AnyRef is
a supertype of all reference types, like String, instances of String are substitutable
where instances of AnyRef are required. (We’ll discuss the Scala type hierarchy in
depth in Chapter 13.)

So what about parameterized types, such as collections like Seq[AnyRef] and
Seq[String]? Let’s look at immutable parameterized types first.

The type parameter A is declared like this, Seq[+A], where +A means that Seq is cova‐
riant in the A parameter. Since String is substitutable for AnyRef, then Seq[String]
is substitutable for a Seq[AnyRef]. Covariance means the supertype-subtype relation‐
ship of the container (the parameterized type) goes in the same direction as the rela‐
tionship between the type parameters.

285

1 Similar implementation techniques are used for tuples. See “Products, Case Classes, Tuples, and Functions”
on page 316.

We can also have types that are contravariant. A declaration X[-A] means that
X[String] is a supertype of X[AnyRef]. The substitutability goes in the opposite
direction of the type parameter values. This behavior is less intuitive, but we’ll study
an important example shortly.

If a parameterized type is neither covariant nor contravariant, it is called invariant.
Any type parameter without a + or - is therefore invariant.

We first encountered these concepts in “Parameterized Types Versus Abstract Type
Members” on page 66. Now we’ll explore them in more depth.

The three kinds of variance notations and their meanings are summarized in
Table 11-1. Tsup is a supertype of T and Tsub is a subtype of T.

Table 11-1. Type variance annotations and their meanings

Type Description

+T Covariant (e.g., Seq[Tsub] is a subtype of Seq[T])

-T Contravariant (e.g., X[Tsup] is a subtype of X[T])

T Invariant (e.g., can’t substitute Y[Tsup] or Y[Tsub] for Y[T])

When a type like Seq[+A] has only one covariant type parameter, you’ll often hear the
shorthand expression “Seqs are covariant,” for example.

Covariant and invariant types are reasonably easy to understand. What about contra‐
variant types?

Functions Under the Hood
Let’s dive into functions a bit more and then explore how they combine contravariant
and covariant behavior.

A function literal with two arguments implements the trait Function2[-T1,-T2,+R],
where the two type parameters for the function inputs, T1 and T2, are contravariant
and the return type R is covariant. Therefore, functions have mixed variance behavior.
We’ll explore why shortly.

There are corresponding FunctionN types for arity N between 0 and 22, inclusive.
New for Scala 3, for arity greater than 22, functions are instantiated with scala.Func
tionXXL, which encodes the parameters in an array.1

286 | Chapter 11: Variance Behavior and Equality

https://oreil.ly/93ndB
https://oreil.ly/DVpVx
https://oreil.ly/DVpVx

We’ve been using anonymous functions, also known as function literals, throughout
the book. For example:

scala> Seq(1, 2, 3, 4).foldLeft(0)((result,i) => result+i)
val res0: Int = 10

The function expression (result,i) => result+i is actually syntactic sugar that the
compiler converts to the following instantiation of an anonymous subtype of
Function2:

scala> val f: (Int,Int) => Int = new Function2[Int,Int,Int]:
 | def apply(i: Int, j: Int): Int = i + j
 |
val f: (Int, Int) => Int = <function2>

scala> Seq(1, 2, 3, 4).foldLeft(0)(f)
val res1: Int = 10

Note that I declared f with the literal type signature syntax (Int,Int) => Int
between the colon and equal sign.

The function instance has an apply method that the compiler uses when the function
is invoked. Therefore f(1,2) is actually f.apply(1,2).

Now let’s return to contravariance. The best example of it is the types of the parame‐
ters passed to a function’s apply method. We’ll use scala.Function1[-T,+R]. The
same arguments apply for the other functions with more parameters.

Let’s look at an example to understand what the variance behavior really means. It
will also help us think about what substitutability really means, which is the key term
to remember when you try to sort out these behaviors:

// src/script/scala/progscala3/objectsystem/variance/FunctionVariance.scala

class CSuper
class C extends CSuper
class CSub extends C

val f1: C => C = (c: C) => C()
val f2: C => C = (c: CSuper) => CSub()
val f3: C => C = (c: CSuper) => C()
val f4: C => C = (c: C) => CSub()
// Compilation errors!
// val f5: C => C = (c: CSub) => CSuper()
// val f6: C => C = (c: CSub) => C()
// val f7: C => C = (c: C) => CSuper()

Define a three-type inheritance hierarchy, CSub <: C <: CSuper.

Four different valid assignments for functions of the same type C => C.

Parameterized Types: Variance Under Inheritance | 287

Three invalid assignments, which would trigger compilation errors. (Try them!)

All valid function instances must be substitutable or type compatible with C => C
(i.e., Function1[C,C]). The values we assign must satisfy the constraints of variance
under inheritance for functions. Let’s work through each example. First, we’ll confirm
that the covariant and contravariant requirements are satisfied in each case, then we’ll
develop the intuition for why these requirements exist in the first place.

The assignment for f1 is (c: C) => C(). It matches the types exactly so this one is
easy. All the examples ignore the parameter c; it’s the type of c that matters. All of
them return a constructed instance. For f1, a C instance is returned.

The assignment for f2 is (c: CSuper) => CSub(). It is valid, because the function
parameter C is contravariant, so CSuper is a valid substitution. The return value is
covariant, so CSub is a valid replacement for C.

The assignments for f3 and f4 are like f2, but we just use C for the return and the
parameter, respectively. In other words, f2 is really the most important test of the
rules.

Similarly, f5 through f7 are analogous to f2 through f4, but using invalid substitu‐
tions. So let’s just discuss f5, where both type substitutions fail. Using CSub for the
parameter type is invalid because the parameter must be C or a supertype. Using
CSuper for the return type is invalid because C or a subtype is required.

Let’s try to understand intuitively why these variance behaviors are required.

The key insight is to know that the function type signature C => C is a contract. Any
function proposed must promise to accept any valid C instance and it must promise
to return any valid C instance.

So consider the return type covariance first. If the function is actually of type C =>
CSub, which always returns an instance of the subtype CSub, that satisfies the contract
because a CSub instance is always substitutable for a C instance. As the user of the
function, my part of the contract is that I have to accept any C instance the function
returns, so I can easily accept the fact I only ever receive instances of type CSub. In
this sense, the function is more restrictive than it needs to be for return values, but
that’s OK with me.

In contrast, if the function is CSuper => C, it is more permissive about what argu‐
ments it will accept. Here my part of the contract is that I will only pass C instances to
the function because that’s what I said I will do with the C => C type. However, the
actual function is able to handle the wider set of all CSuper instances, including
instances of C and even CSub. So a CSuper => C function is more permissive than it
needs to be, but that’s also OK with me.

288 | Chapter 11: Variance Behavior and Equality

I said that f5, of type CSub => CSuper, breaks the contract for both types. Let’s con‐
sider what would happen if this substitution were allowed.

For the inputs, the function only knows how to handle CSub instances passed to it,
but the contract C => C says I’m allowed to pass C instances to it. Hence the function
would be “surprised” when it has to handle a C instance. Similarly, because the func‐
tion returns CSuper instances, I will be “surprised” because I only expect to receive C
return values.

This is why function parameters must be contravariant, while the return values must
be covariant.

When thinking about variance under inheritance, ask yourself
what substitutions are valid given the contract defined by the types.
This is true for all types, not just functions.

When defining your own parameterized types, the compiler checks the use of var‐
iance annotations. Here’s what happens if you attempt to define your own function
with the wrong annotations:

scala> class MyFunction2[+T1, +T2, -R]:
 | def apply(v1:T1, v2:T2): R = ???
2 | def apply(v1:T1, v2:T2): R = ???
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 |contravariant type R occurs in covariant position in type
 | (v1: T1, v2: T2): R of method apply

If we change -R to +R, we see the other errors:

scala> class MyFunction2[+T1, +T2, +R]:
 | def apply(v1:T1, v2:T2): R = ???
2 | def apply(v1:T1, v2:T2): R = ???
 | ^^^^^
 | covariant type T1 occurs in contravariant position in type T1 of value v1
...

Finally, variance annotations only make sense on the type parameters for parameter‐
ized types, not for methods with type parameters. The annotations affect the behavior
of subtyping. Methods aren’t subtyped themselves, only their enclosing types. For
example, the signature for the Seq.map method looks conceptually like this:

abstract class Seq[+A](...):
 ...
 def map[B](f: A => B): Seq[B] = ...

There is no variance annotation on B, and if you tried to add one, the compiler would
throw an error. However, you will sometimes see type bounds on a method parameter.
Here’s what fold looks like:

Parameterized Types: Variance Under Inheritance | 289

abstract class Seq[+A](...):
 ...
 def reduce[B >: A](op: (B,B) => B): B = ...

This has nothing to do with substitutability for subtyping. It just says that when
reducing a collection with elements of type A, you might end up with a result of
supertype B.

Variance of Mutable Types
What about the variance behavior of type parameters for mutable types? The short
answer is that only invariance is allowed when fields in instances of the type are
mutable. Consider the following class definitions:

// src/script/scala/progscala3/objectsystem/variance/MutableVariance.scala

scala> class Invariant[A](var mut: A)
// defined class Invariant

scala> class Covariant[+A](var mut: A)
1 |class Covariant[+A](var mut: A)
 | ^
 |covariant type A occurs in contravariant position in type A of value mut_=

scala> class Contravariant[-A](var mut: A)
1 |class Contravariant[-A](var mut: A)
 | ^^^^^^^^^^
 |contravariant type A occurs in covariant position in type A of variable mut

Only the invariant definition compiles. When mut is declared as a mutable field, it
behaves like a private field with public read and write methods, each of which limits
the allowed variance. Here are logically equivalent definitions of the second and third
classes:

scala> class Covariant[+A](val mutInit: A):
 | private var _mut: A = mutInit
 | def mut_=(a: A): Unit = _mut = a
 | def mut: A = _mut
 |
3 | def mut_=(a: A): Unit = _mut = a
 | ^^^^
 | covariant type A occurs in contravariant position in type A of value a

scala> class Contravariant[-A](val mutInit: A):
 | private var _mut: A = mutInit
 | def mut_=(a: A): Unit = _mut = a
 | def mut: A = _mut
 |
1 |class Contravariant[-A](val mutInit: A):
 | ^^^^^^^^^^^^^^
 |contravariant type A occurs in covariant position in type A of value mutInit

290 | Chapter 11: Variance Behavior and Equality

4 | def mut: A = _mut
 | ^^^^^^^^^^^^^^^^^
 |contravariant type A occurs in covariant position in type => A of method mut

Recall from our earlier discussion about function variance that the types for function
parameters have to be contravariant. That’s why we get an error for Covariant.mut_=.
We are attempting to use a covariant type A in a parameter list, which always requires
a contravariant type.

Similarly, we learned that function return types need to be covariant, yet Contravar
iant.mut_ attempts to return a value of a contravariant type A.

The mutable field type is used both as a return value type and a parameter type, each
of which has conflicting variance requirements. The only thing that doesn’t break is
invariance, meaning no variance for A is allowed.

As for functions, valid substitution drives the requirement. Let’s pretend these classes
compile and reason about what would happen if we used them. We’ll work with the
same CSuper, C, and CSub used previously. First, let’s check Invariant:

val obj: Invariant[C] = Invariant(C())
val c: C = obj.mut // Type checks correctly
obj.mut = C() // Type checks correctly

Now try Covariant. Recall that we are attempting to prove that Covariant[CSub] is
substitutable for Covariant[C], since CSub is substitutable for C:

val obj: Covariant[C] = Covariant(CSub()) // Okay??
val c:C = obj.mut // Type checks correctly, because CSub <: C
obj.mut = C() // ERROR, because obj.mut requires CSub, not C!!

The actual type of obj is Covariant[CSub]. When we read obj.mut, we get a CSub
instance, but that’s OK because CSub is a subtype of C. However, if we attempt to
assign a C instance to obj.mut, we get an error, because a C is not a subtype of CSub, it
is a supertype. Hence, a C value isn’t substitutable for a CSub. This is consistent with
the error message we got when we attempted to compile Covariant.

Finally, let’s try Contravariant. Recall that we are attempting to prove that Contravar
iant[CSuper] is substitutable for Covariant[C], if CSuper is substitutable for C:

val obj: Contravariant[C] = Contravariant(CSuper()) // Okay??
val c:C = obj.mut // ERROR, because c:C, but we return a CSuper!
obj.mut = C() // Type checks correctly, because C <: CSuper

Now obj is of type Covariant[CSuper]. We can assign a C to obj.mut, but if we read
obj.mut, we get an instance of CSuper, a superclass of C, and therefore not substituta‐
ble for a C, the type of the variable c.

Hence, if you think of a mutable field’s type in terms of the corresponding getter and
setter methods, it appears in both covariant position when read and contravariant

Parameterized Types: Variance Under Inheritance | 291

position when written. There is no such thing as a type parameter that is both contra‐
variant and covariant, so invariance is the only option for the type.

Improper Variance of Java Arrays
Scala Arrays are Java Arrays. Unfortunately, Java declares Arrays to be covariant in
the type T, but Arrays are also mutable. We just learned this shouldn’t be allowed.
Instead, the Java compiler compiles code like the following example without error:

// src/main/java/progscala3/objectsystem/JavaArrays.java
package progscala3.objectsystem;

public class JavaArrays {
 public static void main(String[] args) {
 Integer[] array1 = new Integer[] {
 Integer.valueOf(1), Integer.valueOf(2), Integer.valueOf(3) };
 Number[] array2 = array1; // Compiles fine, but shouldn't!!
 array2[2] = Double.valueOf(3.14); // Compiles, but throws a runtime error!
 }
}

However, when you run it with sbt, hilarity ensues:

scala> runMain progscala3.objectsystem.JavaArrays
[info] Running progscala3.objectsystem.JavaArrays
[error] (runMain-4) java.lang.ArrayStoreException: java.lang.Double
java.lang.ArrayStoreException: java.lang.Double
 at progscala3.objectsystem.JavaArrays.main(JavaArrays.java:10)
 ...

Because Java arrays are covariant, we’re allowed by the compiler to assign a Java Dou
ble to an Array[Integer] location. The compiler thinks this is OK, but in fact the
array can only accept Integer values, so an exception is thrown.

Even though Scala wraps Java Arrays, the Scala class scala.Array is invariant in the
type parameter, so the equivalent Scala program would not compile. Furthermore,
Scala 3 introduced an immutable wrapper around Arrays called scala.IArray that
we discussed in “Safer Pattern Matching with Matchable” on page 105.

See [Naftalin2006] for more details of Java’s generics and arrays, from which this
example was adapted.

Equality of Instances
Implementing a reliable equality test for instances is difficult to do correctly.
[Bloch2008] and the Scaladoc page for AnyRef.eq describe the requirements for a
good equality test. [Odersky2009] is a very good article on writing equals and hash
Code methods correctly.

292 | Chapter 11: Variance Behavior and Equality

https://oreil.ly/UidYC
https://oreil.ly/0IdZ1
https://oreil.ly/RzNAS

Since these methods are created automatically for case classes, tuples, and enumera‐
tions, I never write my own equals and hashCode methods anymore. I recommend
the following practice:

Any types you write that might be tested for equality or used as
keys in a Set or a Map (where hashCode is used) should be case
classes or enumerations. Tuples work well too.

Let’s explore equality of instances in Scala, which can be tricky because of inheritance.

Some of the equality methods have the same names as equality
methods in other languages, but the semantics are sometimes
different!

The equals Method
We’ll use a case class to demonstrate how the different equality methods work:

// src/script/scala/progscala3/objectsystem/equality/Equality.scala

case class Person(firstName: String, lastName: String, age: Int)

val p1a = Person("Dean", "Wampler", 29)
val p1b = Person("Dean", "Wampler", 29)
val p2 = Person("Buck", "Trends", 30)

The equals method tests for value equality. That is, obj1 equals obj2 is true if both
obj1 and obj2 have the same value. Usually this is implemented by comparing their
field values. They do not need to refer to the same instance:

assert((p1a.equals(p1a)) == true)
assert((p1a.equals(p1b)) == true)
assert((p1a.equals(p2)) == false)
assert((p1a.equals(null)) == false)

The == and != Methods
Whereas == is an operator in many languages, it is a method in Scala that delegates to
equals. Similarly, != calls == and returns the opposite value:

assert((p1a == p1a) == true)
assert((p1a == p1b) == true)
assert((p1a == p2) == false)
assert((p1a == null) == false)

Equality of Instances | 293

assert((p1a != p1a) == false)
assert((p1a != p1b) == false)
assert((p1a != p2) == true)
assert((p1a != null) == true)

Comparing to null behaves as you might expect:

assert((null == p1a) == false)
assert((p1a == null) == false)
assert((null != p1a) == true)
assert((p1a != null) == true)

The eq and ne Methods
The eq method tests for reference equality. That is, obj1 eq obj2 is true if and only if
both obj1 and obj2 point to the same location in memory. These methods are only
defined for AnyRef:

assert((p1a eq p1a) == true)
assert((p1a eq p1b) == false) // But p1a == p1b
assert((p1a eq p2) == false)
assert((p1a eq null) == false)
assert((null eq p1a) == false)
assert((null eq null) == true)

In many languages, such as Java, C++, and C#, == behaves like eq
instead of equals.

The ne method is the negation of eq. It is equivalent to !(obj1 eq obj2).

Array Equality and the sameElements Method
Because Arrays are defined by Java, equals does reference comparison, like eq, rather
than value comparison:

val a1 = Array(1, 2)
val a2 = Array(1, 2)
assert((a1.equals(a1)) == true)
assert((a1.equals(a2)) == false)

Instead, you have to use the sameElements method:

assert((a1.sameElements(a1)) == true)
assert((a1.sameElements(a2)) == true)

Because Arrays are mutable and have this behavior when comparing them, consider
when it’s better to use another collection instead. However, arrays do have perfor‐
mance benefits over most other collections. For example, an array of Doubles is a

294 | Chapter 11: Variance Behavior and Equality

single block of memory, rather than having the elements scattered over the heap, as
they would be for most other collections. This can greatly improve performance
when fetching data into the CPU cache.

In contrast, Seqs, Maps, and most other collections work as you would expect:

val s1 = Seq(1, 2)
val s2 = Seq(1, 2)
assert((s1 == s1) == true)
assert((s1 == s2) == true)
assert((s1.sameElements(s2)) == true)

val m1 = Map("one" -> 1, "two" -> 2)
val m2 = Map("one" -> 1, "two" -> 2)
assert((m1 == m1) == true)
assert((m1 == m2) == true)
assert((m1.toSeq.sameElements(m2.toSeq)) == true)

Equality and Inheritance
We learned previously that case classes can’t subclass other case classes. This would
break equals and hashCode. The generated versions don’t account for subtyping,
where additional fields might be added. Consider this questionable example:

// src/script/scala/progscala3/objectsystem/equality/InheritanceEquality.scala

class Employee(val name: String, val annualSalary: Double)
class Manager(name: String, annualSalary: Double, val minions: Seq[Employee])
 extends Employee(name, annualSalary)

val e1 = new Employee("Buck Trends", 50000.0)
val e1b = new Employee("Buck Trends", 50000.0)
val e2 = new Employee("Jane Doe", 50000.0)
val m1 = new Manager("Jane Doe", 50000.0, Seq(e1, e2))
val all = Seq(e1, e1b, e2, m1)

Note that e2 and m1 have the same name and annualSalary.

This is a questionable use of inheritance, as we discussed in Chapter 9. I didn’t use
case classes to avoid the decision of which one of the two would be a good case class. I
didn’t define equality methods either, which means that reference equality, the default
for objects on the JVM, will be used:

assert((e1 == e1) == true)
assert((e1 == e1b) == false) // Different references, so == returns false.
assert((e1 == e2) == false)
assert((e2 == m1) == false)

Suppose we decided to add equals methods? In particular, what should happen with
e2 == m1, since they have the same name and annualSalary fields? For example, if I
filter the list of all employees for those that are equal to e2:

Equality and Inheritance | 295

2 These methods may be moved to Matchable in a future release of Scala.

val same = all.filter(e => e2 == e)

I might be tempted to argue that I’m just comparing e2 to each Employee, so I only
care about the name and annualSalary. When two objects have the same values for
these two fields, I consider them equal, so I should consider e2 == m1 equal. Cer‐
tainly the Employee.equals method I might implement will only compare those two
fields.

What if I write m1 == e2 instead? Am I now thinking about whether two managers
are equal? Now the Manager.equals method I might write will compare all three
fields and return false for this comparison. In mathematics, equality is usually consid‐
ered symmetric or commutative, where a == b means b == a.

The point is that equality might be contextual. If we really only care about employee
fields, then maybe it’s OK if e2 == m1 returns true, but most of the time this creates
ambiguities we should avoid. It reflects a poor design.

The resources mentioned at the beginning of this section all point out that a good
equals method obeys the following rules for an equivalence relation (using ==):

• It is reflexive: For any x of type Any, x == x.
• It is symmetric: For any x and y of type Any, x == y returns the same value as y
== x.

• It is transitive: For any x, y, and z of type Any, if x == y and y == z, then x == z.

Never use equality with instances in a type hierarchy where fields
are spread between supertypes and subtypes. Only allow equality
when comparing instances of the same concrete type. Obey the
rules of an equivalence relation.

Multiversal Equality
The only reason I could even discuss the possibilities in the previous section is
because Scala has historically followed Java’s model of equality checking, which is
called universal equality. This means the compiler allows us to compare any values to
any other values, no matter what their types might be. In the previous section, I used
Any as the type in the list of rules for equivalence relations, following the documenta‐
tion for Any.equals.2

In Scala, universal equality translates to the following declarations for equals:

296 | Chapter 11: Variance Behavior and Equality

https://oreil.ly/CAKuk

abstract class Any:
 def equals(other: Any): Boolean
 ...
abstract class AnyRef:
 def equals(other: AnyRef): Boolean
 ...

For implementation reasons, AnyRef can’t use Any as the type for other, but other‐
wise, Any.equals defines how all equals methods work.

Scala 3 introduces multiversal equality, a mechanism for limiting what types can be
compared to provide more rigorous type safety while also supporting backward com‐
patibility. Instead of a “universe,” we have a “multiverse,” where equality checking is
only allowed within each part of the multiverse.

Multiversal equality uses the scala.CanEqual type class first encountered in “Type
Class Derivation” on page 158. There, we used an example enum Tree[T] derives
CanEqual to only allow comparisons between trees with the same type T.

The derives CanEqual clause generates the following given instance:

given CanEqual[Tree[T], Tree[T]] = CanEqual.derived

The allowed types T must have their own given instance, given CanEqual[T, T] =
CanEqual.derived.

For backward compatibility, this language feature must be turned on with the com‐
piler flag -language:strictEquality or import statement import scala.lan

guage.strictEquality.

Scala 3 automatically derives CanEqual for the primitive types Byte, Short, Char, Int,
Long, Float, Double, Boolean, Unit, java.lang.Number, java.lang.Boolean,
java.lang.Character, scala.collection.Seq, and scala.collection.Set.

Additional given instances are defined as necessary to permit the following
comparisons:

• Primitive numeric types can be compared with each other and with subtypes of
java.lang.Number.

• Boolean can be compared with java.lang.Boolean.
• Char can be compared with java.lang.Character.
• Two arbitrary subtypes of Seq can be compared with each other if their element

types can be compared. The two sequence types need not be the same. The same
applies for Set. (This is a compromise with pragmatism.)

• Any subtype of AnyRef can be compared with null.

All these comparisons are symmetric, of course.

Multiversal Equality | 297

https://oreil.ly/Hlz1d

How does this feature improve type safety? Consider this contrived example:

// src/script/scala/progscala3/objectsystem/equality/CanEqualBug.scala

case class X(name: String)

def findMarkers[T](seq: Seq[T]): Seq[T] =
 seq.filter(_ == X("marker"))

findMarkers(Seq(X("one"), X("two"), X("marker"), X("three")))

case class Y(name: String)
findMarkers(Seq(Y("one"), Y("two"), Y("marker"), Y("three")))

Define a method to locate all the special instances of the class X.

Use it, returning List(X(marker)).

Introduce a new class Y as part of some enhancement.

Reuse the same findMarkers code as before, but now it returns Nil.

The flaw is that findMarkers still uses the old value for the “marker.” Because of uni‐
versal equality, the compiler happily allows us to do the comparison X("marker") ==
Y(…), which always returns false, and hence the filtering will always return Nil!

Enabling multiversal equality forces us to use a better design:

// src/script/scala/progscala3/objectsystem/equality/CanEqualBugFix.scala

import scala.language.strictEquality

case class X(name: String) derives CanEqual

def findMarkers[T](marker: T, seq: Seq[T])(
 using CanEqual[T,T]): Seq[T] = seq.filter(_ == marker)

findMarkers(X("marker"), Seq(X("one"), X("two"), X("marker"), X("three")))

// Refactoring
case class Y(name: String) derives CanEqual
findMarkers(Y("marker"), Seq(Y("one"), Y("two"), Y("marker"), Y("three")))

Enable the language feature.

Derive from CanEqual.

298 | Chapter 11: Variance Behavior and Equality

Pass in a type-compatible marker for filtering. The using clause limits allowed T
values to those that derive CanEqual. Without this clause, you’ll get a compilation
error for _ == marker in findMarkers.

Now the last line will return the desired List(Y(marker)).

For advanced details and examples, see the multiversal equality documentation.

Case Objects and hashCode
The notion of equality goes hand in hand with the results of hashing an object, as
done by hashCode, which is used in hash-based data structures, like the default Map
and Set implementations. There is one gotcha with the implementation of hashCode
for case objects, as demonstrated here:

// src/script/scala/progscala3/objectsystem/hashcode/CaseObjectHashCode.scala

scala> case object O1 // case object with no members
 |
 | case object O2: // case object with two members
 | val f = "O2"
 | def m(i:Int): String = i.toString
 |
 | object O3:
 | case object O4 // nested in another type

scala> println(s"O1: ${O1.hashCode} == ${"O1".hashCode}")
 | println(s"O2: ${O2.hashCode} == ${"O2".hashCode}")
 | println(s"O3: ${O3.hashCode} != ${"O3".hashCode}")
 | println(s"O3.O4: ${O3.O4.hashCode} != ${"O3.O4".hashCode}")
 | println(s"03.04 vs. 04: ${O3.O4.hashCode} == ${"O4".hashCode}")
 | println(s"03.04 vs. 03: ${O3.O4.hashCode} == ${"O3".hashCode}")
O1: 2498 == 2498
O2: 2499 == 2499
O3: 1595193154 != 2500
O3.O4: 2501 != 74524207
03.04 vs. 04: 2501 == 2501
03.04 vs. 03: 2501 == 2500

The compiler-generated hashCode for a case object simply hashes the object’s name,
without considering its members or its nesting inside other objects or packages. O3
behaves better, but it’s not a case object.

Avoid using case objects as keys in maps and sets or other con‐
texts where hashCode is used.

Case Objects and hashCode | 299

https://oreil.ly/uu6oD

Recap and What’s Next
We discussed covariance and contravariance for parameterized types. We explored
comparison methods for Scala types and how careful design is required to correctly
implement equivalence relations. We explored a new Scala 3 feature, multiversal
equality, which makes equality checking more type safe. Finally, we noted a limitation
of hashCode for case objects.

Next we’ll continue our discussion of the object system by examining the behavior of
field initialization during construction and member overriding and resolution in a
type with multiple supertypes.

300 | Chapter 11: Variance Behavior and Equality

CHAPTER 12

Instance Initialization and
Method Resolution

A type has a directed acyclic graph (DAG) of dependencies with its supertypes. When
the fields in a type are spread over this DAG, initialization order can become impor‐
tant to prevent accessing a field before it is initialized. When one or more types in the
DAG define and override the same method, then method resolution rules need to be
understood. This chapter explores these concepts. As we’ll see, they are closely
related, governed by a concept called linearization.

Linearization of a Type Hierarchy
Because of single inheritance, if we ignored mixed-in traits, the inheritance hierarchy
would be a simple linear relationship, one ancestor after another. When traits are
considered, each of which may be a subtype of other traits and classes, the inheritance
hierarchy forms a DAG.

The term linearization refers to the algorithm used to flatten this graph to determine
the order of construction of the types in the graph, as well as the ordering of method
invocations, including binding of super to invoke a supertype method. Think of the
linearized traversal path flowing left to right with the supertypes to the left and the
subtypes to the right. Construction follows this left-to-right ordering, meaning super‐
types are constructed before subtypes. In contrast, when resolving which overloaded
method to call in a hierarchy, the traversal goes right to left, where nearest super class
definitions of the method take precedence over definitions farther away in the graph.

We saw an example of these behaviors in “Stackable Traits” on page 275. The Vetoa
bleClickCountObserver example required us to declare the two mixin traits in the
order Button(…) with ObservableClicks with VetoableClicks(maxAllowed =

301

2). All three types defined a click method. We wanted to invoke the Vetoable
Clicks.click() method first, which would only call the supertype click methods if
we had not already exceeded the maximum number of allowed clicks. If not, it would
call ObservableClicks.click(), which would first call Button.click() and then
notify observers. Switching the order of declaration to VetoableClicks with Observ
ableClicks would mean that Button.click() is still only called up to an allowed
number of invocations, but all invocations would trigger observation because Observ
ableClicks.click() would be called before Vetoable.clicks().

Figure 12-1 diagrams a complicated hierarchy for a class C3A.

Figure 12-1. Type hierarchy example

Here is the corresponding code:

// src/script/scala/progscala3/objectsystem/linearization/Linearization.scala
trait Base:
 var str = "Base"
 def m(): String = "Base"

trait T1 extends Base:
 str = str + " T1"
 override def m(): String = "T1 " + super.m()

trait T2 extends Base:
 str = str + " T2"
 override def m(): String = "T2 " + super.m()

trait T3 extends Base:
 str = str + " T3"
 override def m(): String = "T3 " + super.m()

class C2 extends T2:
 str = str + " C2"
 override def m(): String = "C2 " + super.m()

class C3A extends C2 with T1 with T2 with T3:

302 | Chapter 12: Instance Initialization and Method Resolution

 str = str + " C3A"
 override def m(): String = "C3A " + super.m()

class C3B extends C2 with T3 with T2 with T1:
 str = str + " C3B"
 override def m(): String = "C3B " + super.m()

Use str to track construction ordering.

Use m to track method invocation ordering.

The only difference between C3A and C3B is the order of T1, T2, and T3.

The diagram doesn’t draw a line from C3A to T2, even though it explicitly mixes it in,
because it also gets mixed in through C2. C3B would have the same diagram, which
doesn’t capture composition ordering.

Let’s see what happens:

scala> val c3a = new C3A
 | val c3b = new C3B
val c3a: C3A = C3A@4f0208a7
val c3b: C3B = C3B@7c6e67a6

scala> val c3c = new C2 with T1 with T2 with T3
scala> val c3d = new C2 with T3 with T2 with T1
val c3c: C2 & T1 & T3 = anon$1@75fcb651
val c3d: C2 & T3 & T1 = anon$2@2ae4d49a

scala> c3a.str // Look at construction precedence.
 | c3b.str
val res0: String = Base T2 C2 T1 T3 C3A
val res1: String = Base T2 C2 T3 T1 C3B

scala> c3c.str
 | c3d.str
val res2: String = Base T2 C2 T1 T3
val res3: String = Base T2 C2 T3 T1

scala> c3a.m() // Look at method invocation precedence.
 | c3b.m()
val res4: String = C3A T3 T1 C2 T2 Base
val res5: String = C3B T1 T3 C2 T2 Base

scala> c3c.m()
 | c3d.m()
val res6: String = T3 T1 C2 T2 Base
val res7: String = T1 T3 C2 T2 Base

Linearization of a Type Hierarchy | 303

Note the types reported for c3c and c3d. Only the order of T1 and T3 differ. Neither
shows T2 because it is a parent of C2. Was it redundant for us to include T2 explicitly
in the declaration of these anonymous objects?

The first four assertions show how the constructors are invoked, essentially left to
right.

Consider the case of c3a. Before we can invoke the C3A constructor body, we have to
construct the supertypes. The first one is C2, but it is a subtype of T2, which is a sub‐
type of Base, so the construction order starts with Base, then T2, then C2. Next we
move to T1, which depends on Base. We’ve already constructed Base, so we can
immediately construct T1. Next is T2, but we’ve already constructed it. So it was
redundant to include T2 in the declaration explicitly. Next is T3, which we can con‐
struct immediately. Finally, the C3A constructor body is invoked.

C3B just flips the order of the three traits, but note that T2 is always the first trait con‐
structed because C2 goes first, but it requires Base and T2.

The output for c3c is very similar to c3a because it just constructs an anonymous
type instead of the named type C3A, but with the exact same supertypes. The same
argument applies for c3d and c3b.

Construction of Any and AnyRef happen before Base, but this isn’t shown in
Base.str.

The invocations of m show how method invocation precedence is implemented for
overridden methods. It traverses the linearization in the opposite direction, right to
left. You can see this when you compare c3a.str to c3a.m(), for example.

Working through c3a.m(), the C3A.m() method is called first. Then, to determine
what to call for super.m() inside C3A.m(), we go right to left. T3 is a right-most type,
so T3.m() is called next. You might think that the call to super.m() inside T3.m()
should invoke Base.m(), but the precedence rules are evaluated globally for the
instance, not by the static declaration of the trait. Hence, we go back to the declara‐
tion of C3A and see that T2 is next, but T2 is also a supertype dependency of C2, so we
have to wait until C2.m() can be called. We keep going and arrive at T1; we can call its
m() immediately, then we reach C2. C2 overrides m(), so we call it, then the super.m()
call in C2.m() resolves to T2.m(). The super.m() call in T2.m() resolves to Base.m().

304 | Chapter 12: Instance Initialization and Method Resolution

Linearization Algorithm
Here is the algorithm for calculating the linearization:

1. Put the actual type of the instance as the first element.
2. Starting with the rightmost supertype, work left, computing the linearization of

each type, appending its linearization to the cumulative linearization. (Ignore Any
Ref and Any for now.)

3. Working from left to right, remove any type if it appears again to the right of the
current position.

4. Append AnyRef (or AnyVal for value classes), followed by Any.

Overly complex type hierarchies can result in method lookup sur‐
prises. If you have to work through this algorithm to figure out
what’s going on in your code, simplify it instead.

Initializing Abstract Fields
Initializing abstract fields in supertypes requires attention to initialization order.
Consider this example that uses an undefined field before it is properly initialized:

// src/script/scala/progscala3/objectsystem/init/BadFieldInitOrder.scala

trait T1:
 val denominator: Int
 val inverse = 1.0/denominator

val obj1 = new T1:
 val denominator = 10

println(s"obj1: denominator = ${obj1.denominator}, inverse = ${obj1.inverse}")

What is denominator when inverse is initialized?

Construct an instance of an anonymous class where T1 is the supertype.

This script prints obj1: denominator = 10, inverse = Infinity.

So denominator was 0, the default value for an Int, when inverse was calculated in
T1. Afterward, denominator was initialized. Specifically, the trait body (constructor)
was executed before the anonymous class body. A divide-by-zero exception wasn’t
thrown, but the compiler recognized the value as infinite.

Initializing Abstract Fields | 305

Scala 3 adds a new experimental compiler flag -Ysafe-init that will issue a warning
for common initialization problems like this. Pasting the previous example in a REPL
with -Ysafe-init enabled prints the following:

...
9 | val denominator = 10
 | ^
 |Access non-initialized field denominator. Calling trace:
 | -> val inverse = 1.0/denominator [rs$line$1:6]

The code examples don’t use this flag because it rejects some safe code, such as the
LazyList examples in “Left Versus Right Folding” on page 215. This may work once
the feature is no longer experimental. Also, checking can be disabled for specific sec‐
tions of code using the @unchecked annotation.

Scala provides three solutions to this ordering problem, the first two of which work
for Scala 2.

The first solution is lazy values, which we discussed in “Lazy Values” on page 97:

// src/script/scala/progscala3/objectsystem/init/LazyValInit.scala

trait T2:
 val denominator: Int
 lazy val inverse = 1.0/denominator

val obj2 = new T2:
 val denominator = 10

println(s"obj2: denominator = ${obj2.denominator}, inverse = ${obj2.inverse}")

Added the keyword lazy.

This time, the print statement is obj2: denominator = 10, inverse = 0.1. Hence,
inverse is initialized to a valid value, 0.1, after denominator is initialized.

However, lazy only helps if the inverse isn’t used too soon. For example, if you put a
print statement at the beginning of the body of T2 that references inverse, you’ll
force evaluation too soon!

The second solution is to define inverse as a method, which also delays evaluation,
but only as long as someone doesn’t ask for it:

// src/script/scala/progscala3/objectsystem/init/DefValInit.scala

trait T3:
 val denominator: Int
 def inverse = 1.0/denominator // Use a method
...

306 | Chapter 12: Instance Initialization and Method Resolution

https://oreil.ly/iwhiP
https://oreil.ly/uYT1k

While a lazy val is only evaluated once, a method is evaluated every time you
invoke it. Recall that a lazy val also has some internal logic to check if initialization
has already happened, which adds a bit of overhead on each invocation.

Finally, Scala 3 introduced parameters for traits, which is the most robust solution to
initialization ordering issues and avoids the drawbacks of using lazy fields and
methods:

// src/script/scala/progscala3/objectsystem/init/TraitParamValInit.scala

trait T4(val denominator: Int):
 val inverse = 1.0/denominator

val obj4 = new T4(10) {}

println(s"obj4: denominator = ${obj4.denominator}, inverse = ${obj4.inverse}")

Pass a parameter to the trait, just as you do for classes.

Use a regular, eager value for inverse.

We have to provide a body, even though it is empty, when instantiating a trait.

To recap, the bad initialization showed us that the supertype’s constructors are evalu‐
ated before the subtype, so inverse prematurely referenced denominator. We can
either ensure that denominator is initialized first using a trait parameter or we can
delay evaluation of inverse by making it either lazy or a method.

Overriding Concrete Fields
The same order of construction rules apply for concrete fields and accessing them.
Here is an example with both a val that is overridden in a subtype and a var that is
reassigned in the subtype:

// src/script/scala/progscala3/objectsystem/overrides/ClassFields.scala

trait T5:
 val name = "T5"
 var count = 0

class ClassT5 extends T5:
 override val name = "ClassT5"
 count = 1

Trying it:

scala> val c = ClassT5()
 | c.name
 | c.count

Overriding Concrete Fields | 307

val res0: String = ClassT5
val res1: Int = 1

Just as for methods, the override keyword is required for the concrete val field name
when it is overridden. ClassT5 doesn’t override the definition of the var field count.
It just changes the assignment.

Use caution when overriding concrete fields, for the same reasons
you should use caution when overriding concrete methods (see
“Overriding Methods? The Template Method Pattern” on page
251).

When designing supertypes, resist the urge the define a default field value unless it is
likely to be used most of the time. Consider using the following idiom, where the use
of DEFAULT indicates to the reader that overriding the value is sometimes expected:

scala> trait Alarm:
 | val panicLevel: String = Alarm.DEFAULT_PANIC_LEVEL
 |
 | object Alarm:
 | val DEFAULT_PANIC_LEVEL = "PANIC!!"

scala> val a = new Alarm:
 | override val panicLevel: String = "Chillax"
val a: Alarm = anon$1@28361771

scala> a.panicLevel
val res2: String = Chillax

This is a contrived example. Use a trait parameter for panicLevel instead.

Abstract Type Members and Concrete Type Aliases
Recall that abstract type members become type aliases when they are given a concrete
definition. Do they have similar initialization behavior compared to fields?

// src/script/scala/progscala3/objectsystem/init/TypeInitOrder.scala

trait TT1:
 type TA
 type TB = Seq[TA]
 val seed: TA
 val seq: TB = Seq.fill(5)(seed)

class TT2 extends TT1:
 type TA = Int
 val seed: TA = 1

308 | Chapter 12: Instance Initialization and Method Resolution

This will work fine, even though TA is abstract at this point!

Use TB to create a value.

TA is initialized here, but TB will still be correctly initialized to Seq[Int].

Does it work?

scala> val obj = TT2()
 | obj.seq
val res3: obj.TB = List(0, 0, 0, 0, 0) // Should be 1s!

Not quite, but not because of the abstract type member TA. In this case, the seed is
prematurely initialized to 0, so the sequence has five zeros instead of five ones.
Changing seq to a method or lazy val would fix this bug. Otherwise, the types work
fine. You can even move the definition of seed before TA inside TT2 without changing
the behavior.

Unlike fields and methods, it is not possible to override a concrete type alias in a
subtype.

Recap and What’s Next
We walked through the details of Scala’s linearization algorithm for type construction
and method lookup resolution. We explored a few fine points of defining abstract
members and overriding concrete members in subtypes.

In the next chapter, we’ll learn about Scala’s type hierarchy.

Recap and What’s Next | 309

CHAPTER 13

The Scala Type Hierarchy

We’ve already seen many of the types available in Scala’s library. Now, we’ll fill in the
details about the hierarchy of types. Chapter 14 will discuss the collections.
Figure 13-1 shows the large-scale structure of the hierarchy for Scala types.

Figure 13-1. Scala’s type hierarchy

311

At the root of the type hierarchy is Any. It has no supertypes and four subtypes:

• Matchable, the supertype of all types that support pattern matching, which we
discussed in “Safer Pattern Matching with Matchable” on page 105. Matchable is
also a supertype of AnyVal and AnyRef.

• AnyVal, the supertype of value types and value classes.
• AnyRef, the supertype of all reference types.
• Universal traits, which we discussed in “Value Classes” on page 258.

AnyVal has nine concrete subtypes, called the value types. They don’t require heap
allocation of instances. Seven of them are numeric value types: Byte, Char, Short,
Int, Long, Float, and Double. The remaining two are nonnumeric: Unit and
Boolean.

Value classes also extend AnyVal (see “Value Classes” on page 258).

In contrast, all the other types are reference types, because instances of them are allo‐
cated in the heap and managed by reference. They are subtypes of AnyRef.

Because AnyVal and AnyRef subtype Matchable, all their subtypes can be used in pat‐
tern matching. The only types for which values can’t be used in pattern matching are
Any, method type parameters and abstract types that are unbounded (i.e., don’t have a
<: Foo constraint), and type parameters and abstract types that are bounded only by
universal traits, as discussed in “Safer Pattern Matching with Matchable” on page 105.

Let’s discuss a few of the widely used types.

Much Ado About Nothing (and Null)
Nothing and Null are two unusual types at the bottom of the type system. Specifically,
Nothing is a subtype of all other types, while Null is a subtype of all reference types.

Null is the familiar concept from most programming languages, although other lan‐
guages may not define a Null type. It exists in Scala’s type hierarchy because of the
need to interoperate with Java and JavaScript libraries that support null values. How‐
ever, Scala provides ways to avoid using nulls, discussed in “Option, Some, and
None: Avoiding Nulls” on page 60.

Null has the following definition:

abstract final class Null extends AnyRef

How can it be both final and abstract? This declaration disallows subtyping and
creating your own instances, but the runtime environment provides one instance,
null, our old nemesis.

312 | Chapter 13: The Scala Type Hierarchy

https://oreil.ly/JZMUx
https://oreil.ly/kNwNZ
https://oreil.ly/ZlV0n
https://oreil.ly/oXa8V
https://oreil.ly/HudtI
https://oreil.ly/gOlNZ
https://oreil.ly/WFMxf
https://oreil.ly/OrLtp
https://oreil.ly/Nc7BD
https://oreil.ly/WkZB1
https://oreil.ly/mXK1R

Null is defined as a subtype of AnyRef, but it is also treated by the compiler as a sub‐
type of all AnyRef types. This is the type system’s formal way of allowing you to assign
null to references for any reference type. On the other hand, because Null is not a
subtype of AnyVal, it is not possible to assign null in place of an Int, for example.

Nothing has the following definition:

abstract final class Nothing extends Any

In contrast to Null, Nothing is a subtype of all other types, value types as well as ref‐
erence types.

Nothing and Null are called bottom types because they reside at the bottom of the
type hierarchy, so they are subtypes of all or a subset of the rest of the types.

Unlike Null, Nothing has no instances. We say the type is uninhabited. It is still useful
because it provides two capabilities in the type system that contribute to robust, type-
safe design.

The first capability is best illustrated with the List[+A] class. We now understand
that List is covariant in A, so List[Nothing] must be a subtype of List[X] for any X.
This is useful for the special case of an empty list, Nil, which is declared like this
(omitting a few details):

package scala.collection.immutable
case object Nil extends List[Nothing]

Covariance of List and Nothing allows us to define just one object that works for all
List[X] when we need an empty list. We don’t need separate Nil[A] instances for
each A. Just one will do.

The other use for Nothing is to represent expressions that terminate the program,
such as by throwing an exception. An example is the special ??? method. It can be
called in a temporary method definition so the method is concrete, allowing an
enclosing, concrete type to compile:

object Foo:
 def bar(str: String): String = ???

However, if Foo.bar is called, an exception is thrown. Here is the definition of ???
inside scala.Predef:

def ??? : Nothing = throw NotImplementedError()

Because ??? “returns” Nothing, it can be called by any other method, no matter what
type it returns.

Use Nothing as the return type of any method that always throws an exception,
like ??? and sys.error, or terminates the application by calling sys.exit.

Much Ado About Nothing (and Null) | 313

https://oreil.ly/yiiF3
https://oreil.ly/1XejK
https://oreil.ly/8pwNO
https://oreil.ly/rtxr7
https://oreil.ly/6gkSn

1 Or use the scopt or mainargs libraries.

This means that a method can declare that it returns a “normal” type, yet choose to
call sys.exit if necessary, and still type check. Consider this example that processes
command-line arguments but exits if an unrecognized argument is provided:1

// src/main/scala/progscala3/objectsystem/CommandArgs.scala
package progscala3.objectsystem

object CommandArgs:

 val help = """
 |Usage: progscala3.objectsystem.CommandArgs arguments
 |Where the allowed arguments are:
 | -h | --help Show help
 | -i | --in | --input path Path for input (required)
 | -o | --on | --output path Path for output (required)
 |""".stripMargin

 def quit(status: Int = 0, message: String = ""): Nothing =
 if message.length > 0 then println(s"ERROR: $message")
 println(help)
 sys.exit(status)

 case class Args(inputPath: Option[String], outputPath: Option[String])

 def parseArgList(params: Array[String]): Args =
 def pa(params2: Seq[String], args: Args): Args = params2 match
 case Nil => args
 case ("-h" | "--help") +: Nil => quit()
 case ("-i" | "--in" | "--input") +: path +: tail =>
 pa(tail, args.copy(inputPath = Some(path)))
 case ("-o" | "--out" | "--output") +: path +: tail =>
 pa(tail, args.copy(outputPath = Some(path)))
 case _ => quit(1, s"Unrecognized argument ${params2.head}")

 val argz = pa(params.toList, Args(None, None))
 if argz.inputPath == None || argz.outputPath == None then
 quit(1, "Must specify input and output paths.")
 argz

 def main(params: Array[String]): Unit =
 val argz = parseArgList(params)
 println(argz)

Print an optional message, followed by the help message, then exit with the speci‐
fied error status. Following Unix conventions, 0 is used for normal exits and non‐
zero values are used for abnormal termination. Note that quit returns Nothing.

314 | Chapter 13: The Scala Type Hierarchy

https://oreil.ly/SwUSE
https://oreil.ly/8zRAn

Parse the argument list, returning an instance of Args, which holds the specified
input and output paths determined from the argument list.

A nested, recursively invoked function to process the argument list. We use the
idiom of passing an Args instance to accumulate new settings by making a copy
of it.

End of input, so return the accumulated Args.

Process options for help (where quit is invoked), input, and output. There are
three ways the input and output flags can be specified.

Handle the error of an unrecognized argument, calling quit.

Call pa to process the arguments with a seed value for Args.

Verify that the input and output arguments were provided.

I find this example of pattern matching particularly elegant and concise. It is fully
type safe, even though an error or help request triggers termination.

Try it in sbt with various combinations of arguments: runMain progscala3.object
system.CommandArgs…

The scala Package
The top-level scala package defines many of the types we’ve discussed in this book,
including most of the ones in Figure 13-1. This package is automatically in scope
when compiling, so it’s unnecessary to import it.

Table 13-1 describes the most interesting packages under scala.

Table 13-1. Interesting packages under scala

Name Description

annotation Where most annotations are defined. (Others are in scala.)

collection All the collection types. See Chapter 14.

concurrent Tools for concurrent programming. See Chapter 19.

io A limited set of tools for input and output, such as io.Source.

math Mathematical operations and definitions, including numeric comparisons.

reflect Introspection on types. See Chapter 24.

sys Access to underlying system resources, like properties and environment variables, along with operations like
terminating the program.

util Miscellaneous useful types, like Either, Left, Right, Try, Success, Failure, and Using.

The scala Package | 315

https://oreil.ly/gbEZz
https://oreil.ly/lCgv2
https://oreil.ly/zUVYB
https://oreil.ly/uBH5y
https://oreil.ly/gib1i
https://oreil.ly/o9ai3
https://oreil.ly/DdXMe
https://oreil.ly/gRrco
https://oreil.ly/x4yRK
https://oreil.ly/rGVM7

The scala package defines aliases to popular types in other packages, so they are
easily accessible. Examples include scala.math types like Numeric, Ordering, and
Ordered; java.lang exceptions like Throwable and NullPointerException; and
some of the collections types, like Iterable, List, Seq, and Vector.

Some annotations are also defined here, mostly those that signal information to the
compiler, such as @main for marking a method as an entry point (“main” routine).

Finally, there are several types for case classes, tuples, and functions, discussed next.

Products, Case Classes, Tuples, and Functions
Case classes mix in the scala.Product trait, which provides a few generic methods
for working with the fields of type and case-class instances:

scala> case class Person(name: String, age: Int)
scala> val p: Product = Person("Dean", 29)

scala> p.productArity // Number of fields. For (1,2.2,3L), it would be 3.
val res0: Int = 2

scala> p.productIterator.foreach(println)
Dean
29

scala> (p.productElement(0), p.productElementName(0))
val res1: (Any, String) = (Dean,name)

scala> (p.productElement(1), p.productElementName(1))
val res2: (Any, String) = (29,age)

scala> (p.productElement(0), p.productElement(1))
val res3: (Any, Any) = (Dean,29) // Note Any types.

scala> (p.productElementName(0), p.productElementName(1))
val res4: (String, String) = (name,age)

scala> val tup = ("Wampler", 39, "hello")
val tup: (String, Int, String) = (Wampler,39,hello)

scala> (tup.productArity, tup.productElement(2), tup.productElementName(2))
val res5: (Int, Any, String) = (3,hello,_3)

The tuple element name is the same as the method used to extract the value, _3 here.

While having generic ways of accessing fields can be useful, its value is limited by the
fact that Any is used for the fields’ types, not their actual types.

There are also subtypes of Product for specific arities, up to 22. They are supertypes
of the corresponding TupleN types. For example, Product3[+T1,+T2,+T3] is defined

316 | Chapter 13: The Scala Type Hierarchy

https://oreil.ly/0zdOi
https://oreil.ly/Qh4ic

2 See “More on Singleton Types” on page 386 for more details.

for three-element products. These types add methods for selecting particular ele‐
ments with the correct type information preserved. For example,
Product3[+T1,+T2,+T3] adds these methods:

package scala
trait Product3[+T1, +T2, +T3] extends Product {
 abstract def _1: T1
 abstract def _2: T2
 abstract def _3: T3
 ...
}

For tuples and functions with 22 elements or less, there are corresponding TupleN
and FunctionN types, for example Tuple3[+T1,+T2,+T3] and Function3[-T1,-T2,-
T3,+R], which were discussed in “Functions Under the Hood” on page 286.

In Scala 2, tuples and functions were limited to 22 elements, but Scala 3 removes this
limitation. For more than 22 elements, the compiler generates an instance of
scala.TupleXXL and scala.FunctionXXL, respectively. In this case, an immutable
array alias, scala.IArray, is used to store the elements for tuples and the arguments
for functions.

While it may seem that 22 elements should be more than enough, especially when
considering human comprehension, think about the case of a SQL query. It’s com‐
mon to want to put each record returned into a tuple or case class, but the number of
columns can easily exceed 22.

Tuples and the Tuple Trait
Tuples are also subtypes of a new Scala 3 trait called Tuple, which adds several useful
operations that make it easy to use tuples like collections or convert to collections.
First, you can construct new tuples by prepending an element or concatenation:

// src/script/scala/progscala3/basicoop/Tuple.scala
scala> val t1 = (1, "two", 3.3)
 | val t2 = (4.4F, (5L, 6.6))
val t1: (Int, String, Double) = (1,two,3.3)
val t2: (Float, (Long, Double)) = (4.4,(5,6.6))

scala> val t01 = 0L *: t1 // Prepend an element
 | val t12 = t1 ++ t2 // Concatenate tuples
val t01: (Long, Int, String, Double) = (0,1,two,3.3)
val t12: Int *: String *: Double *: t2.type = (1,two,3.3,4.4,(5,6.6))

Note the last type for t12, t2.type. This is the singleton type for the particular
instance (4.4,(5,6.6)).2

Products, Case Classes, Tuples, and Functions | 317

https://oreil.ly/lx9Pu
https://oreil.ly/LISPv
https://oreil.ly/LISPv
https://oreil.ly/mPePZ
https://oreil.ly/DVpVx
https://oreil.ly/ErVNG
https://oreil.ly/59Qkw

You can pattern match with *:, like we did with sequences and +: before:

scala> val one *: two *: three *: four *: EmptyTuple = t01
val one: Long = 0
val two: Int = 1
val three: String = two
val four: Double = 3.3

You can drop or take elements or split a tuple:

scala> val t12d3 = t12.drop(3) // Drop leading 3 elements
 | val t12d4 = t12.drop(4) // Drop leading 4 elements
 | val t12t3 = t12.take(3)
 | val t12s3 = t12.splitAt(3) // Like take and drop combined
val t12d3: (Float, (Long, Double)) = (4.4,(5,6.6))
val t12d4: (Long, Double) *: scala.Tuple$package.EmptyTuple.type = ((5,6.6),)
val t12t3: Int *: String *: Double *: EmptyTuple = (1,two,3.3)
val t12s3: (scala.Tuple.Take[Int *: String *: Double *: t2.type, 3],
 scala.Tuple.Drop[Int *: String *: Double *: t2.type, 3]
) = ((1,two,3.3),(4.4,(5,6.6)))

Look carefully at the type signature for t12s3. The Take and Drop types have a depen‐
dent type value 3, based on the argument to splitAt(3). We’ll discuss dependent
types in “Dependent Typing” on page 374.

You can convert to a few collection types and use the Tuple companion object to con‐
vert them to a tuple, but note that the element type returned is the least upper bound:

scala> val a = t1.toArray // Convert to collections
 | val ia = t1.toIArray
 | val l = t1.toList
val a: Array[Object] = Array(1, two, 3.3) // You may see Array[AnyRef]
val ia: opaques.IArray[Object] = Array(1, two, 3.3)
val l: List[Tuple.Union[t1.type]] = List(1, two, 3.3)

scala> val ta = Tuple.fromArray(a) // Convert to collections
 | val tia = Tuple.fromIArray(ia)
 | // val tl = Tuple.fromList(l) // Doesn't exist
val ta: Tuple = (1,two,3.3)
val tia: Tuple = (1,two,3.3)

scala> case class Person(name: String, age: Int)
 | val tp = Tuple.fromProduct(Person("Dean", 29))
val tp: Tuple = (Dean,29)

The last example extracted the elements of a case-class instance, an example of a Prod
uct, into a tuple. Finally, you can zip tuples:

scala> val z1 = t1.zip(t2) // Note that t1's "3.3" is dropped
 | val z2 = t1.zip((4.4,5,6.6)) // Two, three-element tuples zipped
val z1: (Int, Float) *: (String, (Long, Double)) *: EmptyTuple =
 ((1,4.4),(two,(5,6.6)))

318 | Chapter 13: The Scala Type Hierarchy

val z2: (Int, Double) *: (String, Int) *: (Double, Double) *: EmptyTuple =
 ((1,4.4),(two,5),(3.3,6.6))

Many other definitions can be found in the scala package, but we’ll spend the rest of
this chapter discussing the definitions in Predef.

The Predef Object
Some of the widely used definitions are in scala.Predef. Like the scala package, it is
automatically in scope when you compile code, so you don’t need to import it.

Let’s summarize the contents of Predef. We’ll wait to discuss some of them until
Chapter 24.

Some useful definitions we’ve discussed before, like summon and implicit for working
with anonymous given and implicit instances, and <:< and =:= for type comparisons,
and ???, discussed previously.

Implicit Conversions
First, Predef adds extension methods to some common JVM types by wrapping them
with implicit conversions. The conversions have existed in Scala for a long time, so
Scala 2 implicit conversions are used instead of Scala 3 extension methods, since Scala
3 uses the Scala 2 library. I provide examples here, but I won’t list all the methods. See
the Predef documentation for all the details.

First are conversions from scala.Array for specific AnyVal types and all AnyRef
types. They can be converted to corresponding wrappers of type scala.collec
tion.mutable.ArraySeq, providing all the methods from sequential collections for
arrays:

implicit def wrapBooleanArray(
 xs: Array[Boolean]): scala.collection.mutable.ArraySeq.ofBoolean
...
implicit def wrapRefArray[T <: AnyRef](
 xs: Array[T]): scala.collection.mutable.ArraySeq.ofRef[T]

Having separate types for each of the AnyVal types exploits the fact that Java arrays of
primitives are more efficient than arrays of boxed elements.

There are similar conversions to scala.collection.ArrayOps, which are similar to
ArraySeqs, but the methods return Array instances instead of ArraySeq instances.
Using ArraySeq is better when calling a chain of ArraySeq transformations.

Similarly, for Strings, which are effectively character arrays, there are WrappedString
and StringOps conversions:

The Predef Object | 319

https://oreil.ly/8pwNO
https://oreil.ly/UidYC
https://oreil.ly/dC3ON
https://oreil.ly/dC3ON
https://oreil.ly/fZOsf
https://oreil.ly/8vANc
https://oreil.ly/BHsRs

3 We’ll see corresponding conversions between collections in Chapter 14.

implicit def wrapString(s: String): WrappedString
implicit def augmentString(x: String): StringOps

Having pairs of similar wrapper types, like ArraySeq/ArrayOps and
WrappedString/StringOps, is confusing, but fortunately the
implicit conversions are invoked automatically, selecting the cor‐
rect wrapper type for the method you need.

Several conversions add methods to AnyVal types. For example:

implicit def booleanWrapper(b: Boolean): RichBoolean
implicit def byteWrapper(b: Byte): RichByte
...

The Rich* types add methods like comparison methods, such as <= and compare.

Why have two separate types for bytes, for example? Why not put all the methods in
Byte itself? The reason is that the extra methods would force boxing of the value and
allocation on the heap, due to implementation requirements for byte code. Recall that
AnyVal instances are not heap allocated but are represented as the corresponding
JVM primitives. So having separate Rich* types avoids the heap allocation except for
those times when the extra methods are needed.

There are methods for converting between JVM boxed types for primitives and Scala
AnyVal types, which make JVM interoperability easier:3

implicit def boolean2Boolean(x: Boolean): java.lang.Boolean
...
implicit def Boolean2boolean(x: java.lang.Boolean): Boolean
...

Finally, recall ArrowAssoc from “Extension Methods” on page 139. It is defined in
Predef. For pattern matching on tuples, there is a definition in Predef val ->:
Tuple2.type that supports using the same syntax:

scala> val x -> y = (1, 2)
val x: Int = 1
val y: Int = 2

scala> (1, 2) match:
 | case x -> y => println(s"$x and $y")
 | case _ => println("Error!!")
1 and 2

320 | Chapter 13: The Scala Type Hierarchy

Type Definitions
Predef defines several types and type aliases for convenience.

To encourage the use of immutable collections, Predef defines aliases for the most
popular, immutable collection types:

type Map[A, +B] = collection.immutable.Map[A, B]
type Set[A] = collection.immutable.Set[A]
type Function[-A, +B] = (A) => B

Several convenient aliases point to JVM types:

type Class[T] = java.lang.Class[T]
type String = java.lang.String

Condition Checking Methods
Sometimes you want to assert a condition is true, perhaps to “fail fast” and especially
during testing. Predef defines a number of methods that assist in this goal. The fol‐
lowing methods come in pairs. One method takes a Boolean value. If false, an excep‐
tion is thrown. The second version of the method takes the Boolean value and an
error string to include in the exception’s message. All the methods behave similarly,
but the names convey different meanings, as shown in this example for a factorial
method:

// src/script/scala/progscala3/hierarchy/Asserts.scala

scala> val n = 5
scala> assert(n > 0, s"Must assign a positive number. $n given.")
...
scala> def factorial(n: Long): Long = { // Should really return BigDecimal.
 | require(n >= 0, s"factorial($n): Must pass a positive number!")
 | if n == 1 then n
 | else n*factorial(n-1)
 | } ensuring(_ > 0, "BUG!!")
def factorial(n: Long): Long

scala> factorial(-1)
java.lang.IllegalArgumentException: requirement failed: factorial(-1):
 Must pass a positive number!
 ...

scala> factorial(5)
val res1: Long = 120

Many languages provide some form of assert. The require and assume (not shown)
methods behave identically, but require is meant to convey that an input failed to
meet the requirements, while assume verifies that assumptions are true. There is also

The Predef Object | 321

assertFail(), which behaves like assert(false), and a corresponding assert
Fail(message).

Notice how ensuring is used to perform a final verification on the result and then
return it if the assertion passes. Another Predef implicit conversion class, Ensur
ing[A], is invoked on the value returned from the block. It provides four variants of
an ensuring method:

def ensuring(cond: (A) => Boolean, msg: => Any): A
def ensuring(cond: (A) => Boolean): A
def ensuring(cond: Boolean, msg: => Any): A
def ensuring(cond: Boolean): A

If the condition cond is true, the A value is returned. Otherwise an exception is
thrown.

I’ll discuss an approach to using these methods for writing robust code in “Better
Design with Design by Contract” on page 474.

In Scala 2, if you wanted to turn the assertions off in production, passing -Xelide-
below 2001 to the compiler would suppress compilation of them, except for the two
require methods, because their definitions are annotated with @elidable(ASSER
TION), where @elidable.ASSERTION is 2000. However, at the time of this writing, this
feature is not implemented in Scala 3.

Input and Output Methods
We’ve enjoyed the convenience of writing println("foo"). Predef gives us four var‐
iants for writing strings to stdout:

def print(x: Any): Unit // Print x as a String to stdout; no line feed
def printf(format: String, xs: Any*): Unit // Printf-formatted string
def println(x: Any): Unit // Print x as a String to stdout, with a line feed
def println(): Unit // Print a blank line

All delegate to the corresponding scala.Console methods. For the printf format
syntax, see java.util.Formatter.

Miscellaneous Methods
Finally, there are a few more methods defined in Predef you’ll find useful that we
haven’t discussed before.

First, identity simply returns the argument. When using some of the combinator
methods we discussed in Chapter 7, sometimes you’ll apply a combinator, but no
actual change is required for the inputs. Pass identity to the combinator for the
function, which simply returns the input value.

322 | Chapter 13: The Scala Type Hierarchy

https://oreil.ly/mS4YC
https://oreil.ly/mS4YC
https://oreil.ly/i44Pb
https://oreil.ly/TJ1YB

In any context, if there is one unique value for a type that you want to get, use
valueOf[T] to fetch it. For example:

scala> valueOf[EmptyTuple]
val res0: EmptyTuple.type = ()

scala> object Foo
 | valueOf[Foo.type]
val res1: Foo.type = Foo$@7210586e

Finally, locally works around some rare parsing ambiguities. See its documentation
for details.

Recap and What’s Next
We introduced the Scala type hierarchy and explored several definitions in the top-
level package scala and the object scala.Predef. I encourage you to browse the
scala-lang.org/api library documentation to learn more.

In the next chapter, we’ll learn about Scala collections.

Recap and What’s Next | 323

https://oreil.ly/rYNjw

CHAPTER 14

The Scala Collections Library

This chapter finishes our discussion of the standard library with a discussion of the
collections. They are organized in an object-oriented hierarchy with extensive use of
mixins, yet their abstractions emphasize FP.

The whole Scala 2.13 standard library is reused in Scala 3 with some additions, but
with no changes to the 2.13 content. The collections documentation provides a com‐
prehensive discussion of the Scala collections. This chapter provides a succinct
summary.

The collections were significantly redesigned for Scala 2.13. Nonetheless, most code
from Scala 2 before 2.13 recompiles without change when upgrading to Scala 2.13. If
deprecated features were used, most are now removed. See the collections migration
documentation for details on moving from Scala 2.12 to 2.13 collections. Here, I’ll
focus on collections as they exist in Scala 2.13 and 3.

To migrate from Scala 2 to Scala 3, I recommend first upgrading to
Scala 2.13 to fix any issues with your use of collections and a few
other changes, then upgrade to Scala 3.

We’ll discuss how the collections are organized and some of the key types. We have
used many of them in earlier chapters. In particular, Chapter 7 discussed most of the
combinator methods like map, flatMap, and filter.

325

https://oreil.ly/E9baF
https://oreil.ly/LMZc2
https://oreil.ly/LMZc2

Different Groups of Collections
Table 14-1 lists the collection-related packages and their purposes.

Table 14-1. The collection-related packages and objects

Name Description

scala.collection Defines the base traits and objects needed to use and extend Scala
collections.

scala.collection.concurrent Defines a Map trait and TrieMap class with atomic, concurrent, and lock-
free access operations.

scala.collection.convert Defines types for wrapping Scala collections with Java collection abstractions
and wrapping Java collections with Scala collection abstractions.

scala.collection.generic Defines reusable components used to build collections in other packages.

scala.collection.immutable Defines the immutable collections, the ones you’ll use most frequently.

scala.collection.mutable Defines mutable collections. Most of the specific collection types are available
in mutable and immutable forms, but not all.

scala.collection.parallel Parallelized versions of some collections.

scala.jdk.CollectionConverters Implicit conversions for converting between Scala and Java collections.

The parallel collections were distributed in the Scala library before Scala 2.13, but
they are now provided as a separate, community-maintained library. I won’t discuss
them further here.

There is also a separate “contrib” project available on GitHub. It has experimental
extensions to the collections library, some of which may be added to the Scala library
in a future release. These extensions include new types and new operations for exist‐
ing types.

The rest of this chapter will focus on the most important types and idioms, but we’ll
also peek into the design of the library for useful tips you can apply in your own code.
I encourage you to browse all these packages yourself. Look at the collections source
code too. It is advanced but contains lots of useful design ideas.

Abstractions with Multiple Implementations
If you search the Scaladoc for Map, you get four types named Map and a page full of
related types. This is typical for the most common abstractions. Fortunately, these
four Maps are traits that declare or implement the same core abstractions but have
some additional behaviors or different implementation details. For example,
scala.collection.Map defines the common read-only operations, which are
implemented by scala.collection.immutable.Map, while scala.collection.muta
ble.Map adds self-modification methods that don’t exist in the other two types. Other
types are handled similarly.

326 | Chapter 14: The Scala Collections Library

https://oreil.ly/ziJzx
https://oreil.ly/oVn88
https://oreil.ly/zUVYB
https://oreil.ly/Yqror
https://oreil.ly/Yqror

To emphasize using immutable collections, the immutable versions of Seq, Indexed
Seq, List, Map, and Set are in scope without explicit import statements. When you
want to use mutable collections or other immutable ones, you have to import them
explicitly.

All the collections have companion objects with apply methods and other methods
for creating instances. For the abstract types, like Map, Seq, and Set, instances of con‐
crete subtypes are created.

For example, calling Map("one" -> 1,…) will return a HashMap if more than four
key-value pairs are specified. However, for less than four key-value pairs, it’s more
efficient to do linear search of the keys when retrieving values! Hence, there are final
classes called EmptyMap (for no elements) and Map1 through Map4 that Map.apply uses
when given zero through four key-value pairs, respectively. When five or more pairs
are specified to the apply method, a HashMap is returned. Immutable sets are imple‐
mented the same way.

Similarly, if a key-value pair is added to a four-element Map4 instance, a new HashMap
instance is returned. If a key-value pair is added to a Map3 instance, a Map4 is
returned, and so forth.

This is a good pattern for your code. All the subtypes of immutable.Map behave
exactly the same (ignoring performance differences). They differ in the implementa‐
tion, which is optimized for the data they hold.

Define an abstraction with implementations that optimize for dif‐
ferent contexts, but with identical user-visible behavior. In the
abstraction’s companion object, let the apply methods choose the
best implementation to instantiate for a given context.

Hence, most of the time you’ll only think about immutable.Map or maybe muta
ble.Map. You’ll concern yourself with concrete implementations when performance
or other considerations requires a more careful choice.

Let’s discuss each package, starting with the most important, immutable and mutable.

The scala.collection.immutable Package
You’ll work with collections in the scala.collection.immutable package most of
the time. Because they are immutable, they are thread-safe. Table 14-2 provides an
alphabetical list of the most commonly used types.

Abstractions with Multiple Implementations | 327

https://oreil.ly/lZFjF
https://oreil.ly/wjbti

Table 14-2. Most commonly used immutable collections

Name Description

ArraySeq[+A] Wrap arrays with Seq operations and covariance in the type parameter A. It is effectively
immutable, even though the underlying array is mutable.

BitSet Memory-efficient sets of nonnegative integers. The entries are represented as variable-size arrays
of bits packed into 64-bit words. The largest entry determines the memory footprint of the set.

HashMap[K, +V] Maps implemented with a compressed hash-array mapped prefix tree.

HashSet[A] Sets implemented with a compressed hash-array mapped prefix tree.

IndexedSeq[+A] Indexed sequences with efficient (O(1)) apply (indexing) and length.

Iterable[+A] General abstraction for iterating through the collection with different operations.

LazyList[+A] Final class for a linked list whose elements are evaluated in order and only when needed, thereby
supporting potentially infinite sequences. It replaces the deprecated Stream type.

List[+A] Sealed abstract class for linked lists, with O(1) head and tail access, and O(N) access to interior
elements.

ListMap[K, +V] A map backed by a list that preserves the insertion order.

ListSet[+A] A set backed by a list that preserves the insertion order.

Map[K, +V] Unordered, iterable collection of key-value pairs, with O(1) random access. The companion object
factory methods construct instances depending on the input key-value pairs, as discussed
previously.

Nil An object for empty lists. Subtype of List.

NumericRange[+A] A more generic version of the Range class that works with arbitrary numeric types.

Queue[+A] A FIFO (first-in, first-out) queue.

Range Integer values in a range between a start and end point with nonzero step size.

Seq[+A] Immutable sequences. The companion object apply methods construct Lists.

SeqMap[K, +V] Abstraction for maps that preserve the insertion order.

Set[A] Unordered, iterable collection of unique elements, with O(1) random access. The companion object
factory methods construct instances depending on the input key-value pairs, as discussed
previously.

SortedMap[K, +V] Maps with an iterator that traverses the elements in sorted order according to math.Ordering
on the keys.

SortedSet[A] Sets with an iterator that traverses the elements in sorted order according to math.Ordering
on the keys.

TreeMap[K, +V] A map with underlying red-black tree storage with O(log(N)) operations.

TreeSet[A] A set with underlying red-black tree storage with O(log(N)) operations.

Vector[+A] An indexed sequence with O(1) operations.

VectorMap[K, +V] A map with an underlying vector implementation that preserves insertion order.

LazyList was introduced in Scala 2.13, replacing the now-deprecated Stream type.
LazyList is fully lazy, while Stream is lazy in the tail, but not the head element. We
discussed an example of LazyList in “Left Versus Right Folding” on page 215.

328 | Chapter 14: The Scala Collections Library

https://oreil.ly/UIjZJ

1 Technically, O(log32(N)) which is very close to constant.

Vector is implemented using a tree-based, persistent data structure, as discussed in
“What About Making Copies?” on page 222. It provides excellent performance, with
amortized, nearly O(1) operations.1

The scala.collection.mutable Package
There are times when you’ll need a mutable collection. The mutation operations on
these collections are not thread-safe. However, careful use of mutable data can be
appropriate for performance and other reasons.

Table 14-3 lists the most commonly used collections unique to the mutable package.
Many of the collections in scala.collection.immutable have mutable alternatives,
but they aren’t shown here, for brevity.

Table 14-3. Most commonly used mutable collections

Name Description

AnyRefMap[K <: AnyRef, V] Map for AnyRef keys, implemented with a hash table and open addressing. Most
operations are faster than for HashMap.

ArrayBuffer[A] A buffer class that uses an array for internal storage. Append, update, and random
access take O(1) (amortized) time. Prepends and removes are O(N).

ArrayBuilder[A] A builder class for arrays.

ArrayDeque[A] A double-ended queue. It uses a resizable circular buffer. Operations like append,
prepend, removeFirst, removeLast, and random-access lookup and
replacement take amortized O(1) time.

Buffer[A] Sequences that can be expanded and contracted.

Clearable Collections that can be cleared with a clear() method.

Cloneable[+C <: AnyRef] Collections that can be cloned.

LinkedHashMap[K, V] A hash-table based map where the elements can be traversed in their insertion
order.

LinkedHashSet[A] A hash-table based set where the elements can be traversed in their insertion order.

ListBuffer[A] A Buffer implementation backed by a list.

MultiMap[K, V] A map where multiple values can be assigned to the same key.

PriorityQueue[A] A heap-based, mutable priority queue. For the elements of type A, there must be an
implicit Ordering[A] instance.

Stack[A] A LIFO (last-in, first-out) stack.

WeakHashMap[K, V] A mutable hash map with references to entries that are weakly reachable. Entries are
removed from this map when the key is no longer (strongly) referenced. This class
wraps java.util.WeakHashMap.

Abstractions with Multiple Implementations | 329

Whereas immutable collections are usually covariant in their element types, these col‐
lections are invariant because the elements are written as well as read. See “Variance
of Mutable Types” on page 290 for a discussion of why this is necessary.

MultiMap is useful when you want an easy way to add more values for a given key,
whereas the normal map operations like + will overwrite an older value. Here is an
example:

// src/script/scala/progscala3/collections/MultiMap.scala
scala> import collection.mutable.{HashMap, MultiMap, Set}

scala> val mm = HashMap[Int, Set[String]] with MultiMap[Int, String]

scala> mm.addBinding(1, "a")
 | mm.addBinding(2, "b")
 | mm.addBinding(1, "c")
...
val res3: collection.mutable.HashMap[Int, collection.mutable.Set[String]] &
 collection.mutable.MultiMap[Int, String] =
 HashMap(1 -> HashSet(a, c), 2 -> HashSet(b))

scala> mm.entryExists(1, _ == "a") == true
 | mm.entryExists(1, _ == "b") == false
 | mm.entryExists(2, _ == "b") == true

scala> mm.removeBinding(1, "a")
 | mm.entryExists(1, _ == "a") == false
 | mm.entryExists(1, _ == "c") == true

Import the types we need.

Create a mutable HashMap that mixes in MultiMap.

Use addBinding to add all key-value pairs. The values are actually stored in a Set.

Add a second binding for key 1.

Use entryExists to test if a binding is defined.

Use removeBinding to remove a value. A binding to c remains for 1.

A few other types of collections are found here, but don’t have immutable equivalents,
including PriorityQueue and Stack.

The mutable collections have methods for adding and removing elements. Consider
the following example (with some detailed elided) that uses scala.collection.muta
ble.ArrayBuffer, which is also the concrete class that scala.collection.muta
ble.Seq(…) instantiates.

330 | Chapter 14: The Scala Collections Library

https://oreil.ly/uNOnh
https://oreil.ly/uNOnh

// src/script/scala/progscala3/collections/MutableCollections.scala
import collection.mutable.ArrayBuffer

val seq = ArrayBuffer(0)

seq ++= Seq(1, 2) // Alias for appendAll
seq.appendAll(Seq(3, 4)) // Append a sequence
seq += 5 // Alias for addOne
seq.addOne(6) // Append one element
seq.append(7) // Append one element
assert(seq == ArrayBuffer(0, 1, 2, 3, 4, 5, 6, 7))

Seq(-2, -1) ++=: seq // Alias for prependAll
seq.prependAll(Seq(-4, -3)) // Prepend a sequence
-5 +=: seq // Alias for prepend
seq.prepend(-6) // Prepend one element
assert(seq == ArrayBuffer(-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7))

seq -= -6 // Alias for subtractOne
seq.subtractOne(7) // Remove the element
seq --= Seq(-2, -4) // Alias for subtractAll
seq.subtractAll(Seq(2, 4)) // Remove a sequence
assert(seq == ArrayBuffer(-5, -3, -1, 0, 1, 3, 5, 6))

The assertions show the state after each block has finished. Note that the operator
forms have equals signs in their names, which is a clue that they modify the collection
in place.

When subtracting, if an element doesn’t exist in the collection, no change is made and
no error is raised.

It can be confusing which methods modify a mutable collection versus return a new
collection. Read the Scaladoc carefully to determine what happens. For example,
append and addOne modify the collection, while appended returns a new collection.

Also, most of the mutable collections have in-place alternative implementations for
many of the common methods, like mapInPlace instead of map and takeInPlace
instead of take. They are designed to be more efficient by modifying the collection
rather than returning a new copy. Note that supertype traits like scala.collec
tion.mutable.Seq don’t declare these methods, but you can search the Scaladoc for
InPlace to find all of them.

The scala.collection Package
Let’s briefly discuss the other packages, all of which you will use rarely. They mostly
support implementing collections.

The types defined in scala.collection declare the abstractions shared in common
by the immutable, mutable, concurrent, and parallel collections. A few types in this

Abstractions with Multiple Implementations | 331

https://oreil.ly/jVXfU
https://oreil.ly/jVXfU

package are concrete, as are many methods in the abstract classes and traits.
Table 14-4 lists several of the core types in this package.

Table 14-4. Most important core scala.collection types

Name Description

ArrayOps[A] Wrap arrays to add many of the indexed sequence operations. Discussed in “Implicit Conversions”
on page 319.

Factory[-A,+C] Build a collection of type C with elements of type A.

IndexedSeq[+A] Indexed sequences with efficient (O(1)) apply (indexing) and length operations.

Iterable[+A] General abstraction for iterating through the collection with different operations.

Iterator[+A] Data structure for iterating over a sequence of elements.

LinearSeq[+A] Sequences with efficient (O(1)) head and tail operations.

Map[K, +V] Unordered, iterable collection of key-value pairs, with O(1) random access.

Seq[+A] Ordered, iterable sequences of elements, with O(N) random access.

Set[A] Unordered, iterable collection of unique elements, with O(1) random access.

SortedMap[K, +V] Maps sorted by the keys according to math.Ordering.

SortedSet[A] Sorted sets.

StringOps Wraps strings to add many of the indexed sequence operations.

StringView Similar to StringOps, but most of the methods return View[Char] instead of Strings or
IndexedSeqs.

View[+A] Collections whose transformation operations are nonstrict, meaning the elements are evaluated
only when the view is traversed or when the view is converted to a strict collection type using the
to operation.

For traits like Iterable, you’ll find *Ops traits that implement many of the methods.

Iterator provides two methods, hasNext, which returns true if more elements exist
to visit or false otherwise, and next, which returns the next available element. Hence,
it is lazy. It only does work when you ask for the next element.

Map and SortedMap are invariant in their key types, but covariant in the value types.
The element types for Set, SortedSet, and SortedOps are also invariant. Why the
invariance? It’s because hashCode is used to test for uniqueness of these keys. We
learned in “Equality and Inheritance” on page 295 that you don’t want to mix equals/
hashCode and subtypes!

The purpose of Factory is discussed in “Polymorphic Methods” on page 336.

The scala.collection.concurrent Package
This package defines only two types, a scala.collection.concurrent.Map trait and
one implementation of it—a hash-trie scala.collection.concurrent.TrieMap.

332 | Chapter 14: The Scala Collections Library

https://oreil.ly/7j8NE
https://oreil.ly/FfR9N
https://oreil.ly/dJ6Io

Map extends scala.collection.mutable.Map, but it makes the operations atomic, so
they support thread-safe, concurrent access.

TrieMap is a concurrent, lock-free implementation of a hash-array mapped trie data
structure. It aims for scalable concurrent insert and remove operations and memory
efficiency.

The scala.collection.convert Package
The types defined in the scala.collection.convert package are used to implement
converters wrappers of Scala collections as Java collections and vice versa. There have
been several iterations of converters over various releases of Scala. All but the latest
are deprecated.

Don’t use this package directly. Instead, access the conversions using jdk.Collection
Converters. The jdk package also provides conversions between other types, as well
as other utilities to support JDK interoperability. The conversions are usually wrap‐
pers, to avoid copying. Because most Java collections are mutable, the returned Scala
collection will usually be a scala.collection type. The types in this package don’t
have mutation methods, to encourage immutable programming, which is why a
scala.collection.mutable type is not returned. See “Conversions Between Scala
and Java Collections” on page 463 for more details.

The scala.collection.generic Package
Whereas scala.collection declares abstractions for all collections, scala.collec
tion.generic provides reusable components for implementing the specific mutable,
immutable, parallel, and concurrent collections. Most of the types are only of interest
to implementers of collections, so I won’t discuss them further.

Construction of Instances
Let’s now explore some of the key concepts and idioms in the collections.

Companion object apply methods are used as factories for all the collections. Even
the abstract types, like Seq and IndexedSeq, have companion objects and apply
methods that construct concrete subtypes:

scala> val seq = Seq(1,2,3)
val seq: Seq[Int] = List(1, 2, 3)

scala> val iseq = IndexedSeq(1,2,3)
val iseq: IndexedSeq[Int] = Vector(1, 2, 3)

Construction of Instances | 333

https://oreil.ly/Vorzd
https://oreil.ly/P8XAr
https://oreil.ly/AErGe
https://oreil.ly/AErGe
https://oreil.ly/txSnn

Note that a Vector is created for IndexedSeq, rather than a List, because Indexed
Seqs require efficient fetching of elements by index, for which apply is used, and
length methods. For Vector, both are O(1), while they are O(N) for List.

The companion objects may also have special-purpose factory methods. Here are a
few examples for scala.collection.immutable.Seq. Other collection types have
similar methods:

scala> Seq.empty[Int]
val res0: Seq[Int] = List()

scala> Seq.concat(0 until 3, 3 until 6, 6 until 9)
val res1: Seq[Int] = List(0, 1, 2, 3, 4, 5, 6, 7, 8)

scala> Seq.fill(5)(math.random)
val res2: Seq[Double] = List(0.6292941497613453, ..., 0.3902341382377057)

scala> Seq.tabulate(5)(index => index*2)
val res47: Seq[Int] = List(0, 2, 4, 6, 8)

scala> Seq.range(10, 15)
val res48: Seq[Int] = NumericRange 10 until 15

scala> Seq.iterate(2, 5)(index => index*2)
val res49: Seq[Int] = List(2, 4, 8, 16, 32)

Return an empty sequence of integers. Note that res0 == Nil is true.

Concatenate zero or more sequences, three in this case.

Fill an N-element sequence with values returned from the expression.

Fill an N-element sequence with the values returned when the index is passed to
the function.

Return a numeric range.

For each index i, f is called i times; for example, for i=3, f(f(f(seed))). 2 is the
seed in this case.

The Iterable Abstraction
The trait scala.collection.Iterable is a supertype of all the collections. Almost all
the methods that are common to immutable and mutable collections, including the
functional operators (see Chapter 7), are defined here and implemented by
scala.collection.IterableOps.

334 | Chapter 14: The Scala Collections Library

https://oreil.ly/rGRgp
https://oreil.ly/Pf8vm

For some methods that suggest an ordering, the results have undefined behaviors
when called for unordered collections, like HashSets:

scala> val seq2 = Seq(1,2,3,4,5,6).drop(2)
val seq2: Seq[Int] = List(3,4,5,6)

scala> val set = Set(1,2,3,4,5,6)
val set: Set[Int] = HashSet(5, 1, 6, 2, 3, 4)

scala> val set2 = set.drop(2)
val set2: Set[Int] = HashSet(6, 2, 3, 4)

scala> val orderedSet = collection.immutable.TreeSet(1,2,3,4,5,6)
val orderedSet: ...immutable.TreeSet[Int] = TreeSet(1, 2, 3, 4, 5, 6)

scala> val orderedSet2 = orderedSet.drop(2)
val orderedSet2: ...immutable.TreeSet[Int] = TreeSet(3, 4, 5, 6)

While the default Set is unordered, TreeSet is one of the ordered implementations of
Set.

Note that the element order shown by set2.toString is at least consistent with the
result of dropping the first two elements.

All the Iterable members are concrete except for a single abstract method def iter
ator: Iterator[A], where Iterator is a data structure supporting traversal through
the collection. Concrete subtypes define this method for their particular data
structure.

The signature of Iterable.map is the following:

trait Iterable[+A] extends ... :
 def map[B](f: A => B): Iterable[B]
 ...

However, if we use it, notice what happens:

scala> val doubles = Seq(1,2,3).map(2 * _)
val doubles: Seq[Int] = List(2, 4, 6)

scala> val doubles2 = Map("one" -> 1.1, "two" -> 2.2).map((k,v) => (k,2*v))
val doubles2: Map[String, Double] = Map(one -> 2.2, two -> 4.4)

The return types are List and Map, respectively, not Iterable. We prefer getting back
a new List and Map, but how is map implemented so that the correct subtype is
returned, rather than a more generic Iterable?

The Iterable Abstraction | 335

https://oreil.ly/w4GQV
https://oreil.ly/XS1BK

2 Recall that use of _ as the wildcard is being replaced with ? in Scala 3, but we’re still using the Scala 2.13
library.

Polymorphic Methods
A challenge with object-oriented type hierarchies is defining reusable methods in
supertypes, like map, yet returning a more appropriate concrete subtype. Let’s explore
how the collections solve this design problem.

The implementation details here are quite technical, but you can
skip the rest of this section without missing any essential informa‐
tion about using collections.

The implementation of map is defined by scala.collection.IterableOps, which
Iterable mixes in. Here is the signature and implementation (simplified slightly):

trait IterableOps[+A, +CC[_], +C]:
 def map[B](f: A => B): CC[B] =
 iterableFactory.from(new View.Map(filtered, f))
 ...

The CC[B] type is the new type to instantiate. For List, it will be List, for HashMap it
will be HashMap, etc., although it could vary from the input type. CC is technically
called the type constructor of the collection in this context. The underscore wildcard is
needed in the first line because the specific element type won’t be known until a
method like map is invoked, where the element type will be some B, whatever the
function f: A => B returns.2 The C type is the current concrete type of the collection,
which is fully known.

For example, for a Map[K,V], we have effectively IterableOps[(K, V), Map, Map[K,
V]]. The element type is the tuple (K, V).

The method iterableFactory is abstract in IterableOps. Concrete collections cor‐
responding to C define this method to return a suitable scala.collection.Iterable
Factory instance that can construct a new instance of the appropriate output
collection type. For example, if CC is List, then the factory will construct a new List.
The new instance might be a different type, though. Recall that a Map could be an
instance of EmptyMap, Map1 through Map4, or HashMap. So if I have a Map4 and I call a
flatMap(…) that returns a new Map with five or more elements, I’ll actually get a
HashMap back.

336 | Chapter 14: The Scala Collections Library

https://oreil.ly/Pf8vm
https://oreil.ly/r1wWf
https://oreil.ly/r1wWf

Sometimes you may see a type returned by the REPL annotated
with @uncheckedVariance. The mechanism we just described
requires CC and C to have the same variance behavior (recall “Para‐
meterized Types: Variance Under Inheritance” on page 285) to pre‐
serve sound behavior of the types. However, Scala’s type system has
no mechanism to enforce this constraint, so the annotation is
added to the element types to indicate that this constraint was
unchecked by the compiler. It is perfectly safe; the standard library
implements the correct behavior for all its collection types.

Equality for Collections
When are two collections considered equal? First, the library divides the collections
into groups for this purpose: maps, sequences, and sets. Two instances from different
groups are never considered equal, even if both contain the same elements.

Within the same group, two instances are considered equal if they have the same ele‐
ments, even if the specific collection type is different. This is a pragmatic choice, but
rarely problematic, because when comparing collections, you are less likely to be
interested in their implementations and more likely to be interested in their contents.
Sequences have the additional requirement that the elements must be in the same
order:

scala> List(1,2,3) == Vector(1,2,3)
val res0: Boolean = true

scala> List(1,2,3) == Vector(3,2,1)
val res1: Boolean = false

scala> Set(1,2,3) == Set(3,2,1)
val res2: Boolean = true

scala> import collection.immutable.VectorMap
scala> Map("one" -> 1, "two" -> 2) == Map("two" -> 2, "one" -> 1)
 | Map("one" -> 1, "two" -> 2) == VectorMap("two" -> 2, "one" -> 1)
 | VectorMap("one" -> 1, "two" -> 2) == Map("two" -> 2, "one" -> 1)
 | VectorMap("one" -> 1, "two" -> 2) == VectorMap("two" -> 2, "one" -> 1)
 |
val res36: Boolean = true
val res37: Boolean = true
val res38: Boolean = true
val res39: Boolean = true

It doesn’t matter that VectorMaps are ordered because the contract of a map repre‐
sents key-value pairs where the order is not guaranteed. However, an ordered map
can be useful in contexts other than equality checking.

Equality for Collections | 337

Nonstrict Collections: Views
In general, many of the collection operations are called transformers because they
transform the input collection to something new. By default, these operations are
strict, meaning they run when called and create output collections.

If we plan to perform a sequence of transformations, it’s inefficient to create all those
intermediate collections. Lazy evaluation could help us avoid this overhead. We saw
LazyList before, a sequence where all operations are performed lazily, including
evaluation of the elements.

For other collections, calling the view method returns a special kind of wrapper col‐
lection, called a scala.collection.View, which makes all the transformer operations
lazy by default, rather than strict. Some of the other operations will still be strict when
it’s unavoidable. This means that instead of returning a new collection immediately, a
new View is returned by a transformer operation. When these operations are
sequenced together, the net result is that no intermediate collections are created.
Instantiation only happens when a step requires a concrete collection as output.

Consider the following example that uses groupBy methods:

// src/script/scala/progscala3/collections/GroupBy.scala

scala> val ints = (1 until 100).toVector
val ints: Vector[Int] = Vector(1, 2, 3, ..., 97, 98, 99)

scala> val thirds = ints.groupBy(_%3)
val thirds: Map[Int, Vector[Int]] = HashMap(
 0 -> Vector(3, 6, ..., 99), ... 2 -> Vector(2, 5, ..., 98))

scala> val thirds1a = thirds.view.mapValues(ns => ns.map(n => (n,2*n)))
val thirds1a: scala.collection.MapView[Int, Vector[(Int, Int)]] =
 MapView(<not computed>)

scala> val thirds1b = thirds1a.toMap
val thirds1b: Map[Int, Vector[(Int, Int)]] = Map(
 0 -> Vector((3,6), (6,12), ...), ..., 2 -> Vector((2,4), (5, 10), ...))

scala> val thirds2 = ints.groupMap(_%3)(n => (n,2*n))
val thirds2: Map[Int, Vector[(Int, Int)]] = Map(
 0 -> Vector((3,6), (6,12), ...), ..., 2 -> Vector((2,4), (5, 10), ...))

Split the integers into groups, modulo 3. Note the three keys.

Map over the integer values, converting them into tuples. The keys are
unchanged. We first convert to a scala.collection.MapView.

Convert to a strict map, forcing evaluation.

338 | Chapter 14: The Scala Collections Library

https://oreil.ly/KjKGF
https://oreil.ly/1XGUs

For reference, groupMap combines groupBy and the element-wise mapValue into
one operation.

The performance advantages of nonstrict evaluation become important when work‐
ing with large collections, for example, data processing applications.

Be careful when strict behavior is actually required. Don’t be sur‐
prised when the following doesn’t actually start any work!

(0 until 100).view.map { i => doAsynchronousWork(i) }

Recap and What’s Next
We rounded out our understanding of the Scala collections, including the distinctions
between the mutable and immutable variants. We also discussed common idioms
used in the collections, such as views for nonstrict evaluation and how instances of
the correct collection subtypes are output by methods implemented in supertype
mixin traits. You can apply those techniques to your own type hierarchies.

The next chapter covers a topic with practical benefits for encapsulation and modu‐
larity: Scala’s rich support for fine-grained control over visibility. Scala goes well
beyond Java’s public, protected, private, and default package scoping capabilities.

Recap and What’s Next | 339

CHAPTER 15

Visibility Rules

Encapsulation of information in modules is a hallmark of good software design. Used
well, it exposes logically consistent abstractions to users and hides implementation
details. The latter is necessary to prevent unwanted access to internal details and to
enable easier evolution of those details without impacting users. This chapter dis‐
cusses Scala’s visibility rules for specifying encapsulation.

Many languages provide a few scopes of visibility for definitions, often tied to subtype
relationships (object-oriented inheritance). Java is typical, with four visibility scopes:

Public
Visible everywhere

Protected
Visible only inside the type and subtypes

Private
Visible only inside the type where declared or defined

Default package
Visible to any other type in the same package

Scala changes Java’s visibility rules in two major ways. First, public is the default and
there is no public keyword. Second, protected and private can be qualified by a
scope, either a type or a package; for example, protected[mypackage] for scoping to
some package mypackage.

The qualified scopes are underutilized in Scala code, in my opinion. They give library
developers careful control over visibility inside and outside a library’s API.

Scala 3 adds another tool for fine-grained visibility control, export clauses, which we
explored in “Export Clauses” on page 263.

341

Public Visibility: The Default
Scala uses public visibility by default. It is common to declare members of types pri‐
vate when you want to limit their visibility to the type only, or to declare them pro‐
tected to limit visibility to subtypes only.

Visibility Keywords
When used, private and protected appear at the beginning of a declaration. An
exception is when you want nonpublic visibility for the primary constructor of a
class. Here it is put after the type name and the optional type parameter list, but
before the constructor’s parameter list. Here is an example:

class Restricted[+A] private (name: String) {...}

Here, Restricted is still a public class, but the constructor is private.

Why do this? It forces users to call a factory instead of instantiating types directly,
such as companion object apply methods. (Those factories must have access to the
constructor, which is true by default for companion objects.) This idiom can be useful
for separating concerns, the class itself stays focused on implementation logic, while
the factory imposes controls like input parameter validation.

Table 15-1 summarizes the visibility scopes.

Table 15-1. Visibility scopes

Name Keyword Description
public none Public members and types are visible everywhere, across all boundaries.

protected protected Protected members are visible to the defining type, to subtypes, and to nested
types. Protected types are visible only within the same package and subpackages.

private private Private members are visible only within the defining type and nested types.
Private types are visible only within the same package.

scoped
protected

protected[scope] Visibility is limited to scope, which can be a package or type.

scoped
private

private[scope] Synonymous with scoped protected visibility, except under inheritance.

In Scala 2, this could also be used as a scope for protected and private, meaning
visibility is restricted to the same instance of the type, but not other instances. Sup‐
port for this is dropped in Scala 3, as the compiler can infer cases where it is useful.

342 | Chapter 15: Visibility Rules

You can’t apply any of the visibility scope modifiers to packages.
Therefore, a package is always public, even when it contains no
publicly visible types.

The rest of this chapter discusses some of the high-level details for visibility. In the
book’s code examples, see the directory src/main/scala/progscala3/visibility/ where
there are many examples that demonstrate the rules. We’ll show one of these exam‐
ples ahead.

Let’s summarize the rules of private and protected access, starting with no scope
qualifications.

Protected Visibility
Protected visibility is for the benefit of implementers of subtypes, who need a little
more access to the details of their supertypes. Any member declared with the pro
tected keyword is visible only to the defining type, including other instances of the
same type, and any subtypes.

When a type is declared protected, visibility is limited to the enclosing package. This
also means that type can’t be subtyped outside the package.

Private Visibility
Private visibility completely hides implementation details, even from the implement‐
ers of subtypes. Any member declared with the private keyword is visible only to the
defining type, including other instances of the same type. When applied to a type,
private limits visibility to the enclosing package.

Just as for protected type declarations, the private types can’t be subtyped outside
the same package.

Scoped Private and Protected Visibility
Unique to Scala is the ability to specify a scope for private or protected visibility.
Because a scope qualifier effectively overrides the default boundaries for private and
protected, these declarations become interchangeable because they behave identi‐
cally, except under inheritance when they are applied to members.

Protected Visibility | 343

The following example shows the effects on visibility for different scoped
declarations:

// src/main/scala/progscala3/visibility/ScopeInheritance.scala

package progscala3.visibility.scopeinheritance:

 package scopeA:
 class Class1:
 private[scopeA] val scopeA_privateField = 1
 protected[scopeA] val scopeA_protectedField = 2
 private[Class1] val class1_privateField = 3
 protected[Class1] val class1_protectedField = 4
 private val class1_privateField2 = 5
 protected val class1_protectedField2 = 6

 class Class2 extends Class1:
 val field1 = scopeA_privateField
 val field2 = scopeA_protectedField
 // Scope error:
 // val field3 = class1_privateField
 // val field4 = class1_privateField2
 val field5 = class1_protectedField
 val field6 = class1_protectedField2

 package scopeB:
 class Class2B extends scopeA.Class1:
 // Scope error:
 // val field1 = scopeA_privateField
 val field2 = scopeA_protectedField
 // Scope error:
 // val field3 = class1_privateField
 // val field4 = class1_privateField2
 val field5 = class1_protectedField
 val field6 = class1_protectedField2

Some possible declarations are commented out because they would fail to compile,
indicating the differences between private[scope] and protected[scope].

To summarize the differences in this example, all fields declared protected[scopeA]
are visible to clients of scopeA, such as scopeB. That’s why it’s OK for Class2B inside
scopeB to reference the field scopeA_protectedField, a field in the class it subtypes,
scopeA.Class1.

However, the fields declared private[scopeA] and private[Class1] can’t be seen
inside scopeB.

The declarations private[Class1] class1_privateField and protected[Class1]
class1_protectedField are actually equivalent to unscoped private and protected

344 | Chapter 15: Visibility Rules

declarations, as illustrated by the class1_privateField2 and class1_protected
Field2 declarations, which behave the same in terms of visibility.

Recap and What’s Next
Scala visibility declarations are very flexible, and they behave consistently. They pro‐
vide fine-grained control over visibility at a wide variety of possible scopes, allowing
you to design APIs with optimal abstractions and minimal exposure of implementa‐
tion details.

Now we turn to a tour of Scala’s type system. We already know quite a lot about it, but
to really exploit the type system’s power, we need a systematic understanding of it.

Recap and What’s Next | 345

CHAPTER 16

Scala’s Type System, Part I

By now, you know quite a lot about Scala’s type system. This chapter and the next fill
in some details and introduce more advanced constructs.

Scala is a statically typed language. Its sophisticated type system combines FP and
OOP. The type system tries to be logically comprehensive, complete, and consistent.

Ideally, a type system is expressive enough to prevent your applications from ever
inhabiting an invalid state. It lets you enforce these constraints at compile time, so
runtime failures never occur. In practice, we’re far from that goal, but Scala’s type sys‐
tem pushes the boundaries of what’s possible.

However, Scala’s type system can be intimidating. When people claim that Scala is
complex, they usually have the type system in mind.

Fortunately, type inference hides many of the details. Mastery of the more arcane
aspects of the type system is not required to use Scala effectively, although you’ll
eventually need to be familiar with most constructs.

Now let’s begin by revisiting familiar ground, parameterized types.

Parameterized Types
In “Parameterized Types: Variance Under Inheritance” on page 285, we explored var‐
iance under subtyping. Recapping, a declaration like Seq[+A] means that Seq is para‐
meterized by a single type, represented by A. The + is a variance annotation,
indicating that Seq is covariant in the type parameter. This means that Seq[String] is
considered a subtype of Seq[AnyRef] because String is a subtype of AnyRef.

Similarly, the - variance annotation indicates that the type is contravariant in the type
parameter. One example is the types for the N parameters for the FunctionN types.

347

Consider Function2, which has the type signature Function2[-T1, -T2, +R]. We
saw in “Functions Under the Hood” on page 286 why the types for the function
parameters must be contravariant.

Abstract Type Members and Concrete Type Aliases
Parameterized types are common in statically typed, object-oriented languages, while
type members are common in many functional languages. Scala supports both. We
first discussed abstract and concrete type members in “Parameterized Types Versus
Abstract Type Members” on page 66, where we also discussed the advantages and dis‐
advantages of each approach. We explored the following example (some details not
repeated):

abstract class BulkReader:
 type In
 def source: In
 def read: Seq[String]

case class StringBulkReader(source: String) extends BulkReader:
 type In = String
 def read: Seq[String] = Seq(source)

import scala.io.Source
case class FileBulkReader(source: Source) extends BulkReader:
 type In = Source
 def read: Seq[String] = source.getLines.toVector

BulkReader declares the abstract type member In, which is made concrete in the sub‐
types StringBulkReader and FileBulkReader, where it becomes an alias for String
and Source, respectively. Note that the user no longer specifies a type through a type
parameter. Instead, as implementers rather than users of the readers, we have total
control over the type member In and its enclosing class, so the implementation keeps
them consistent.

Comparing Abstract Type Members Versus Parameterized Types
Many abstraction idioms can be implemented using parameterized types or abstract
type members. In practice, each feature is a natural fit for different design problems.

Parameterized types work nicely for containers, like collections, where there is little
connection between the element types, which are represented by the type parameter
and the container itself. For example, an Option works the same for a String, a
Double, etc. Option is agnostic about the element’s type.

What about using a type member instead? Consider the declaration of Some from the
standard library:

case final class Some[+A](val value : A) { ... }

348 | Chapter 16: Scala’s Type System, Part I

https://oreil.ly/93ndB

If we try to convert this to use abstract types, we might start with the following:

case final class Some(val value : ???) {
 type A
 ...
}

What should be the type of the parameter value? We can’t use A because it’s not in
scope at the point of the constructor parameter. We could use Any, but that defeats the
purpose of type safety.

Compare this attempt to the BulkReader example, where all the subtypes we defined
for BulkReader were able to provide a concrete type for the In and source members.
Abstract type members are most useful for type families like this, where the outer and
inner types are closely linked.

Type Bounds
When defining a parameterized type or method, it may be necessary to specify
bounds on the type parameter. For example, a container might assume that certain
methods exist on all types used for the type parameter.

Upper Type Bounds
Upper type bounds specify that a type must be a subtype of another type. For a moti‐
vating example, we saw in “Implicit Conversions” on page 319 that Predef defines
implicit conversions to wrap arrays in collection.mutable.ArraySeq instances,
where the latter provides the sequence operations we know and love.

Several of these conversions are defined. Most are for the specific AnyVal types, like
Long, but one handles conversions of Array[AnyRef] instances:

implicit def wrapRefArray[T <: AnyRef](xs: Array[T]): ArraySeq.ofRef[T] = ...
implicit def wrapBooleanArray(xs: Array[Boolean]): Array.ofBoolean = ...
... // Methods for the other AnyVal types.

The ofRef[T] and ofBoolean types are convenient subtypes of ArraySeq. The type
parameter T <: AnyRef means “any type T that is a subtype of AnyRef.” Hence, wrap
RefArray won’t be called for an array of Ints, for example, removing any potential
ambiguity with the other AnyVal-related methods.

These bounds are called upper type bounds, following the de facto convention that
type hierarchies are drawn with subtypes below their supertypes. We followed this
convention in Figure 13-1 in Chapter 13.

Type Bounds | 349

https://oreil.ly/dC3ON

Type bounds and variance annotations cover unrelated issues. A
type bound specifies constraints on allowed types that can be used
for a type parameter. A variance annotation specifies when an
instance of a subtype of a parameterized type can be substituted
where a supertype instance is expected.

Lower Type Bounds
Similarly, a lower type bound expresses that one type must be a supertype (or the same
type) as another. An example is the getOrElse method in Option:

sealed abstract class Option[+A] extends ... {
 ...
 final def getOrElse[B >: A](default: => B): B = {...}
 ...
}

If the Option instance is Some[A], the value it contains is returned. Otherwise, the by-
name parameter default is evaluated and returned. It is allowed to be a supertype of
A (meaning it could also be A). Let’s consider an example that illustrates why this
requirement is necessary:

// src/script/scala/progscala3/typesystem/bounds/LowerBounds.scala
scala> class Super(val value: Int):
 | override def toString = s"${this.getClass.getSimpleName}($value)"
 | class Sub(value: Int) extends Super(value)

scala> val optSub: Option[Sub] = Some(Sub(1))
val optSub: Option[Sub] = Some(Sub(1))

scala> var optSuper: Option[Super] = optSub
var optSuper: Option[Super] = Some(Sub(1))

scala> val super1: Super = optSuper.getOrElse(Sub(0))
val super1: Super = Sub(1)

scala> optSuper = None
optSuper: Option[Super] = None

scala> val super2: Super = optSuper.getOrElse(Super(0))
val super2: Super = Super(0)

A simple type hierarchy for demonstration purposes.

The reference optParent only knows it’s an Option[Super], but it actually refer‐
ences a subtype, Option[Sub].

Calling getOrElse on optSuper returns a Super instance. In this case, it happens
to be Sub(1).

350 | Chapter 16: Scala’s Type System, Part I

https://oreil.ly/J2B5n

Set the reference to None.

This time the default value Super(0) is returned. This is fine, since our refer‐
ence super2 expects a Super.

The last line illustrates the crucial point. Because Option is covariant in the parameter
type, it’s possible for an Option[Super] reference to point to an Option[Sub]
instance, so getOrElse needs to support the case where the user provides a default
value that is a supertype of Sub. Put another way, inside optChild, it doesn’t know
that references to it are actually of type Option[Super]. Outside, the user only cares
about getting a Super instance out of the Option. The user provides a default value of
type Super, if it is needed.

When attempting to understand why variance annotations and
type bounds work the way they do, remember to study what hap‐
pens with instances of types from the perspective of code that uses
them, where that code might have a reference to a supertype, but
the actual instance is a subtype.

The fact that Option[+T] is covariant leads to the requirement that getOrElse must
accept a default value that might be a supertype of T.

This behavior is true for any parameterized type that is covariant in the type parame‐
ter. It must have contravariant behavior in methods that provide new elements to add
to a collection or default values for getOrElse and similar methods.

Consider the Seq.+: method for prepending an element to a sequence, creating a
new sequence. Its signature is similar to Option.getOrElse:

final def +:[B >: A](elem: B): Seq[B]

The B parameter needs to be contravariant. Consider this example:

scala> val seq = 1 +: Seq(2.2, 3.3)
val seq: Seq[AnyVal] = List(1, 2.2, 3.3)

The type parameter inferred is the least upper bound, meaning the closest supertype
of the original type A (Double) and the type of the new element (Int). Hence, B in the
resulting Seq[B] is inferred to be AnyVal.

To recap, there is an intimate relationship between parameterized types that are cova‐
riant in their parameters and lower type bounds in method parameters, which are
often contravariant in the collection’s type parameter.

Finally, you can combine upper and lower type bounds:

Type Bounds | 351

class Upper
class Middle1 extends Upper
class Middle2 extends Middle1
class Lower extends Middle2
case class C[A >: Lower <: Upper](a: A)
// case class C1[A <: Upper >: Lower](a: A)
// case class C2[A >: Upper <: Lower](a: A)

The type parameter, A, must appear first.

Does not compile because the compiler requires the lower bound to be specified
before the upper bound.

Does not compile because there are no types in existence that satisfy A >: Upper
and A <: Lower. In other words, the specified range is outside the range of Lower
<: Upper.

Everything we’ve said about type bounds applies to abstract type members too.
What’s not allowed on type members are variance indicators, + and -, because type
members are inside the outer type, where any variance behavior is defined via type
parameters.

Context Bounds
We discussed context bounds in “Context Bounds” on page 167, another way to con‐
strain allowed types. We saw four functionally equivalent ways to declare them:

trait SortableSeq[+A]:
 def sortBy1[B : Ordering](transform: A => B): SortableSeq[A]
 def sortBy2[B](transform: A => B)(using o: Ordering[B]): SortableSeq[A]
 def sortBy3[B](transform: A => B)(using Ordering[B]): SortableSeq[A]
 def sortBy4[B](transform: A => B)(implicit o: Ordering[B]): SortableSeq[A]

The only allowed types for B are those for which a given Ordering[B] exists in scope.
The type expression B : Ordering is equivalent to just using B with an explicit using
or implicit parameter list. In sortBy3, the using instance is anonymous, while it’s
named in sortBy2 and sortBy4.

View Bounds
In older Scala code, you may see view bounds, which are a special case of context
bounds. They can be declared in either of the following ways:

class C[A]:
 def m1[B](x: Int)(given view: A => B): C[B] = ???
 def m2[A <% B](x: Int): C[B] = ???

352 | Chapter 16: Scala’s Type System, Part I

While a context bound A : B corresponds to the type B[A], a view bound A <% B
corresponds to a function that converts an A to a B. The idea is that “B is a view onto
A.” Also, compared to an upper bound expression A <: B, which says that A is a sub‐
type of B, a view bound is a looser requirement. It says that A must be convertible to B.

View bounds are deprecated. Instead, use a context bound, a given
instance of a function from A => B, or use an implicit conversion.

Intersection and Union Types
Intersection and union types are new to Scala 3, introduced by the dependent object
typing calculus that Scala 3’s type system is based on. They make the type system
more robust, based on the mathematical properties of intersection and union of sets.
If we think of the possible instances for a type as the members of a set, what happens
when we apply set operations like intersection and union to sets for different types?

Intersection Types
Intersection types replace compound types in Scala 2. These are anonymous types cre‐
ated by composing (or compounding) types while creating instances, instead of
declaring a named type first that subtypes and mixes in other types. In Scala 2 and 3,
the with keyword is used in definitions, the righthand side of the equals sign. In Scala
2, the resulting compound type also uses with. However, for Scala 3, the type is an
intersection type, which uses & between the input types instead of with. This is also
the syntax used in explicit type declarations, meaning the type on the lefthand side of
an assignment.

scala> trait T1
 | trait T2
 | class C
 | class CC extends C with T1 with T2

scala> val c12a = new C with T1 with T2
val c12a: C & T1 & T2 = anon$1@6261a04c // Scala 2: C with T1 with T2

scala> val c12b: C & T1 & T2 = new C with T1 with T2
val c12b: C & T1 & T2 = anon$1@bb0c81c

scala> val c12c: C with T1 with T2 = new C with T1 with T2
val c12c: C & (T1 & T2) = anon$1@49d149a7

scala> val bad = new C & T1 & T2
1 |val bad = new C & T1 & T2
 | ^^^^^^^

Intersection and Union Types | 353

 | value & is not a member of C
1 |val bad = new C & T1 & T2
 | ^^
 | Not found: T1

The declarations shown for c12a and c12c would be written the same in Scala 2, but
the resulting type of both would be C with T1 with T2.

In Scala 3, with and extends are still used when declaring types, like CC, and instanti‐
ating anonymous instances, as shown. However, the resulting type is now the inter‐
section type, C & T1 & T2. Precedence rules are left to right by default, so C & T1 &
T2 is equivalent to (C & T1) & T2.

Notice what happens with c12c. Because we specify the type declaration explicitly
using with, the precedence grouping is right to left, reflecting the convention of right-
to-left binding of with from Scala 2. Hence val c12c: C with T1 with T2 is equiv‐
alent to the grouping val c12c: (C & (T1 & T2)). Future versions of Scala 3 will
deprecate and remove the use of the with keyword in type declarations, making the
c12c declaration invalid.

Finally, note that we can’t construct an anonymous instance using &, as shown for
bad.

When resolving overridden method calls, the precedence rules specified by lineariza‐
tion (“Linearization of a Type Hierarchy” on page 301) apply for both Scala 2 and 3.
Consider this expanded example:

// src/script/scala/progscala3/typesystem/intersectionunion/Intersection.scala
trait M:
 def m(s: String): String = s
trait T1 extends M:
 override def m(s: String): String = s"[${super.m(s)}]"
trait T2 extends M:
 override def m(s: String): String = s"(${super.m(s)})"
open class C extends M:
 override def m(s: String): String = s"{ ${super.m(s)} }"

In which order are the m methods invoked?

val c12 = new C with T1 with T2
val c21 = new C with T2 with T1

assert(c12.m("hello") == "([{ hello }])")
assert(c21.m("hello") == "[({ hello })]")

For c12.m(), the order is T2.m(), T1.m(), C.m(), then M.m(). For c21.m(), the order
of T2.m() and T1.m() are reversed. Hence the precedence order is right to left.

However, the change from compound types using with to intersection types using &
is more than just a trivial renaming. Intersection types support reasoning about types

354 | Chapter 16: Scala’s Type System, Part I

as sets and instances as members of a particular (type) set. Crucially, set intersection
commutes: A & B == B & A. Scala 2 compound types did not commute this way.
Hence, all six of the type declaration permutations in the following declarations are
valid:

val c12a: C & T1 & T2 = c12
val c12b: C & T2 & T1 = c12
val c12c: T1 & C & T2 = c12
val c12d: T2 & C & T1 = c12
val c12e: T1 & T2 & C = c12
val c12f: T2 & T1 & C = c12

Finally, recall from set theory that if an item is a member of set 1 and set 2, then it is
also a member of the intersection of set 1 and set 2. Hence, the following declarations
are all valid:

val t1a: T1 = c12
val t2a: T2 = c12
val c2a: C = c12

val t12: T1 & T2 = c12
val ct1: C & T1 = c12
val ct2: C & T2 = c12

You can specify intersection types as type parameters for function parameters:

def f(t12: T1 & T2): String = t12.m("hello!")
val list12: Seq[T1 & T2] = Seq(c12, c21)
assert(list12.map(f) == List("([{ hello! }])", "[({ hello! })]"))

Rules for intersection types
Here is a summary of the rules for intersection types.

For subtyping, if T <: A and T <: B, then T <: A & B. For example, C is a subtype of
T1 in our example and it’s also a subtype of T2. Hence, it is a subtype of T1 & T2.

Similarly, if T <: A, then T & T2 <: A. For example, C is a subtype of T1, so if we
create a new subtype of C that mixes in a new trait, say T3, then C & T3 is also a sub‐
type of T1.

A formal way of writing the commutativity is A & B <: B & A and vice versa.

Intersection types are also associative. A & (B & C) is equivalent to (A & B) & C.

Let’s consider variance under subtyping for parameterized types. Suppose that C[A] is
covariant in A. If so, then C[A & B] is substitutable for C[A] & C[B]. Here is an
example:

val listt1t2: Seq[T1 & T2] = Seq(c12, c21)
val list1: Seq[T1] = listt1t2

Intersection and Union Types | 355

val list2: Seq[T2] = listt1t2
val list3: Seq[T1] & Seq[T2] = listt1t2

We declare list1 to Seq[T1] but assign the subtype listt1t2, which is of type
Seq[T1 & T2], and similarly for list2. The type declarations for listt1t2 and list3
might be hard to understand at first, but remember that a type declaration is specify‐
ing a constraint; what values are allowed to be used here? Seq[T1] & Seq[T2] says
(1) only sequences are allowed, (2) only elements of type A are allowed, and (3) only
elements of type B are allowed. We can use listt1t2 because it is a Seq and its ele‐
ments, c12 and c21, are of both type T1 and T2.

Union Types
Union types follow the rules for unions of sets. If an element a is in set 1 and b is in
set 2, then the union of those sets contains both a and b.

A value of type A | B is an instance of type A or an instance of type B. One useful
example is to use a union type as an alternative to Either[A,B] for error handling
(see “Either: An Alternative to Option” on page 236):

// src/script/scala/progscala3/typesystem/intersectionunion/Union.scala
scala> case class Bad(message: String)
 | case class Good(i: Int)
 |
 | val error = Bad("Failed!")
 | val result = Good(0)

scala> val seq1 = Seq(error, result)
val seq1: Seq[Object] = List(Bad(Failed!), Good(0))

scala> val seq: Seq[Good | Bad] = Seq(error, result)
val seq: Seq[Good | Bad] = List(Bad(Failed!), Good(0))

The type declaration for the definition of seq says it is sequence holding instances of
either Good or Bad. However, for seq1, the least upper bound is inferred for the type
parameter, yielding Seq[Object]. The union type isn’t inferred here; you have to pro‐
vide it explicitly for seq.

Pattern matching is required to determine the type of instance you have and process
it:

scala> def work(i: Int): Good | Bad =
 | if i > 0 then Bad(s"$i must be <= 0") else Good(i)
 |
 | def process(result: Good | Bad): String = result match
 | case Bad(message) => message
 | case Good(value) => s"Success! value = $value"

scala> val results = Seq(0, 1).map(work)
val results: Seq[Good | Bad] = List(Good(0), Bad(1 must be <= 0))

356 | Chapter 16: Scala’s Type System, Part I

scala> val strings = results.map(process)
val strings: Seq[String] = List(Success! value = 0, 1 must be <= 0)

For results, the union type is inferred from the output of map. The value computed
for strings is List("Success! value = 0", "1 must be <= 0").

Rules for union types

Scala 2 pattern-matching syntax supported expressions like A | B, which does not
mean a union type expression. The following case clauses are equivalent and work the
same way in Scala 2 and 3, for backward compatibility, meaning match on a value is
either a Good or a Bad instance:

case _: Good | Bad => ...
case (_: Good) | Bad => ...

In Scala 3, if you want to match a value of union type A | B, you must use explicit
parentheses:

case _: (Good | Bad) => ...

Concerning subtyping, A is a subtype of A | B for all A and all B. Similarly, if A <: C
and B <: C, then A | B <: C.

Like intersection types, union types are commutative and associative: A | B is equiva‐
lent to B | A, and A | (B | C) is equivalent to (A | B) | C.

Rules for union and intersection types together

Union and intersection types are distributive: A & (B | C) is equivalent to (A & B) |
(A & C), while A | (B & C) is equivalent to (A | B) & (A | C):

trait A; trait B; trait C

summon[(A & (B | C)) =:= ((A & B) | (A & C))]
summon[(A | (B & C)) =:= ((A | B) & (A | C))]

val x1: A & (B | C) = new A with B {}
val x2: A & (B | C) = new A with C {}
val x3: A & (B | C) = new A with B with C {}
val x4: (A & B) | (A & C) = new A with B {}
val x5: (A & B) | (A & C) = new A with C {}
val x6: (A & B) | (A & C) = new A with B with C {}

val x7: A | (B & C) = new A {}
val x8: A | (B & C) = new B with C {}
val x9: A | (B & C) = new A with B with C {}
val x10: (A | B) & (A | C) = new A {}
val x11: (A | B) & (A | C) = new B with C {}
val x12: (A | B) & (A | C) = new A with B with C {}

Intersection and Union Types | 357

The two summon expressions show that the compiler considers the types equivalent
under the distributive law. The six example declarations that follow, x1 through x6,
have equivalent types with valid example instances on the righthand side. The same
applies for x7 through x12. While studying these examples, remember that type dec‐
larations are constraints. What righthand-side values satisfy the constraints?

What about covariance and contravariance of parameterized types? We saw earlier
how intersection types work for covariant parameterized types, like Seq[T]. This isn’t
the same for union types:

val tABCs: Seq[A | B | C] = Seq(new A {}, new B {}, new C {})
val tAs: Seq[A] = tABCs // ERROR
val tBs: Seq[B] = tABCs // ERROR
val tCs: Seq[C] = tABCs // ERROR

We can’t assign tABCs to a Seq[A] value, for example. This makes sense because the
declaration val tAs: Seq[A] is a constraint that the only elements found in the
sequence will be As, but tABCs contains an A, a B, and a C:

However, the following works:

val seqAs: Seq[A] = Seq(new A {})
val seqBs: Seq[B] = Seq(new B {})
val seqCs: Seq[C] = Seq(new C {})
val seqABCs1: Seq[A | B | C] = seqAs
val seqABCs2: Seq[A | B | C] = seqBs
val seqABCs3: Seq[A | B | C] = seqCs

For Scala 3, the union type A | B | C is the true least upper bound for the types A, B,
and C, even when the compiler infers AnyRef. When we define val seqABCs1: Seq[A
| B | C], for example, we are saying the sequence can have instances of any or all of
these types. Convince yourself that the last three assignments are valid.

In the discussion of intersection types, I didn’t mention what happens with parame‐
terized types that have contravariant type parameters, like the types for function
parameters. There is a relationship between intersection and union types here. For a
contravariant type C[-A], C[A | B] is substitutable for C[A] & C[B].

To understand this, recall the type signature for A => B, Function1[-A, +R]. Let’s
now see that Function1[A | B, R] is substitutable for Function1[A, R] & Func
tion1[B, R] . That is, (A | B) => R <: (A => R) & (B => R).

val fABC1: (A | B | C) => String = _ match
 case t1: A => "A"
 case t2: B => "B"
 case t3: C => "C"
val fABC2: (A => String) & (B => String) & (C => String) = fABC1

val seqABCs: Seq[A | B | C] = Seq(new A {}, new B {}, new C {})
seqABCs.map(fABC1)

358 | Chapter 16: Scala’s Type System, Part I

seqABCs.map(fABC2)
seqABCs.map((x: AnyRef) => s"<$x>")

The functions fABC1 and fABC2 have equivalent types. When mapping over seqABCs
with both functions, List("A", "B", "C") is returned.

A type signature like (A => String) & (B => String) & (C => String) is hard to
grasp, but once again, it is a constraint on set membership. This signature says that
the only allowed function values we can use are those that can take an A and return a
String, and take a B and return a String, and take a C and return a String. The only
kind of function we can write like that is one that takes an argument of type A | B |
C, meaning it can handle instances of any of these three types.

However, since AnyRef is the parent of A, B, and C, we can also use a function of type
AnyRef => String, as shown in the last example.

Phantom Types
A phantom type is useful in situations where the mere existence of a type is all that’s
required. No actual instances are needed. Contrast this scenario to some of the idi‐
oms we explored that use given instances, where an instance must exist.

For example, phantom types are useful for defining workflows that must proceed in a
particular order. Consider a simplified payroll calculator. In US tax law, payroll
deductions for insurance premiums and contributions to certain retirement savings
(401k) accounts can be subtracted before calculating taxes on the remaining pay
amount. So a payroll calculator must process these pre-tax deductions first, then cal‐
culate the tax deductions, then calculate post-tax deductions, if any, to determine the
net pay.

Here is one possible implementation, where a lot of details are elided to focus on the
key elements. The full implementation is in the code examples:

// src/main/scala/progscala3/typesystem/payroll/PhantomTypesPayroll.scala
package progscala3.typesystem.payroll
import progscala3.contexts.accounting.*

sealed trait Step
trait PreTaxDeductions extends Step
trait PostTaxDeductions extends Step
trait Final extends Step

case class Employee(
 name: String,
 annualSalary: Dollars,
 taxRate: Percentage, // Assume one rate covers all taxes
 insurancePremiums: Dollars,
 _401kDeductionRate: Percentage, // Pre-tax retirement plans in the US

Phantom Types | 359

 postTaxDeductions: Dollars): // Other "after-tax" deductions
 override def toString: String = ...

case class Pay[S <: Step](
 employee: Employee,
 grossPay: Dollars, // This pay period's gross, before taxes
 netPay: Dollars, // This pay period's net, after taxes
 taxes: Dollars = Dollars(0.0),
 preTaxDeductions: Dollars = Dollars(0.0),
 postTaxDeductions: Dollars = Dollars(0.0)):
 override def toString: String = ...

object Payroll:
 def start(employee: Employee): Pay[PreTaxDeductions] =
 val gross = employee.annualSalary / 12 // Compute monthly
 Pay[PreTaxDeductions](employee, gross, gross) // net == gross to start

 def deductInsurance(pay: Pay[PreTaxDeductions]): Pay[PreTaxDeductions] = ...
 def deduct401k(pay: Pay[PreTaxDeductions]): Pay[PreTaxDeductions] = ...
 def deductTax(pay: Pay[PreTaxDeductions]): Pay[PostTaxDeductions] = ...
 def deductFinalDeductions(pay: Pay[PostTaxDeductions]): Pay[Final] = ...

@main def TryPhantomTypes =
 import Payroll.*
 val e = Employee("Buck Trends", 100000.0, 0.25, 200, 0.10, 100.0)
 val pay1 = start(e)
 val pay2 = deduct401k(pay1)
 val pay3 = deductInsurance(pay2)
 val pay4 = deductTax(pay3)
 val pay = deductFinalDeductions(pay4)
 println(e); println(pay) // Nice +toString+ formatting not shown above

Use the Dollars and Percentage types from “Scala 3 Implicit Conversions” on
page 154.

Closed hierarchy of phantom types for the steps in the workflow. They have no
members and aren’t even concrete types.

Hold the computed data for this pay period. Note the type parameter.

Note how the return value is created. The type parameter is used to indicate the
correct state in the workflow. Compare the type parameter used for Pay in all
these methods.

We can call deduct401K and deductInsurance in either order.

You can run it at the sbt prompt:

> runMain progscala3.typesystem.payroll.TryPhantomTypes
...

360 | Chapter 16: Scala’s Type System, Part I

1 This example is adapted from James Iry, “Phantom Types in Haskell and Scala”. See also the standard library’s
util.chaining for an implicit conversion to add a pipe method.

Employee: Buck Trends
 annual salary: $100000.00
 tax rate: 25.00%
 per pay period deductions:
 insurance premiums: $200.00
 401K deductions: 10.00%
 post tax deductions: $100.00

Pay for employee: Buck Trends
 gross pay: $8333.33
 net pay: $5375.00
 taxes: $1825.00
 pre-tax deductions: $1033.33
 post-tax deductions: $100.00

The Step traits are used as type parameters for the Pay type, which is passed through
the Payroll methods that implement each step. Each method in Payroll takes a
Pay[S <: Step] object with a particular type for the S parameter. This constrains
when we can call each method. The TryPhantomTypes method demonstrates the use
of the API. We can’t call steps out of order, like calling deduct401k with a Pay[Post
TaxDeductions] object. You can try it, but it will be easier to try with the next
example.

Hence, the tax rules are enforced by the API and user errors are avoided. Instances of
the Step traits are never created, hence the term phantom type.

Actually, TryPhantomTypes is not very elegant. Let’s fix that by borrowing a pipelining
operator from the F# language:1

// src/main/scala/progscala3/typesystem/payroll/PhantomTypesPayrollPipes.scala
package progscala3.typesystem.payroll
import progscala3.contexts.accounting.*
import scala.annotation.targetName

object Pipeline:
 extension [V,R](value: V)
 @targetName("pipe") def |> (f : V => R) = f(value)

@main def TryPhantomTypesPipeline =
 import Pipeline.*
 import Payroll.*

 val e = Employee("Buck Trends", Dollars(100000.0), Percentage(25.0),
 Dollars(200), Percentage(10.0), Dollars(100.0))
 val pay = start(e) |>
 deduct401k |>

Phantom Types | 361

https://oreil.ly/q6Tt9
https://oreil.ly/9gC4R

 deductInsurance |>
 deductTax |>
 deductFinalDeductions
 println(e); println(pay)

Now, TryPhantomTypesPipeline contains a more elegant sequencing of steps. The
pipeline operator |> may look fancy, but all it really does is reorder expressions.

Write APIs that do as much as possible to prevent users from mak‐
ing mistakes! Phantom types can be used to enforce proper
sequencing of steps.

Structural Types
Occasionally, we miss the benefits of dynamic typing. Consider a SQL query that
returns a result set of Records that have an ad hoc set of columns corresponding to
the query. Suppose the Records returned by a user query of an Employees table
include name (String) and age (Int) columns. The user would like to write type-safe
code like val name: String = record.name and val age: Int = record.age
rather than the more typical val name: String = record.get[String]("name"),
for example. (However, the internals of the query API might have to do mapping like
this.) The user would like the convenience of type-safe field access, without the need
to define ad hoc case classes for all the possible query results.

The Scala 3 trait scala.reflect.Selectable balances type safety with many of the
benefits of dynamic typing. Consider this example:

// src/script/scala/progscala3/typesystem/selectable/Selectable.scala

trait Record extends reflect.Selectable:
 def id: Long // Id of the record in the database

val persons = Seq("Dean" -> 29, "Dean" -> 29, "Dean" -> 30, "Fred" -> 30)
 .map { case (name1, age1) =>
 new Record:
 def id: Long = 0L
 val name: String = name1
 def age: Int = age1
}

persons.map(p => s"<${p.id}, ${p.name}, ${p.age}>")
assert(persons(0) == persons(0))
assert(persons(0) != persons(1))
assert(persons(0) != persons(2))
assert(persons(0) != persons(3))

362 | Chapter 16: Scala’s Type System, Part I

https://oreil.ly/8iypx

Subclass (or mix in) the Selectable trait for query results.

Simulate an actual query returning tuples.

Return the Records using an anonymous type. The same id value is used, so we
can test comparisons without the id values being trivially different.

Arbitrarily use either a field or method for name and age.

Equality checks don’t compare member fields, like they would for case classes.
Instead, equals returns true only for the same instance.

The type of persons shown in the REPL is Seq[Record{name: String; age: =>
Int}], showing the additional members in the returned Record subtype. We can
access name and age like regular type members.

However, using Selectable is not a good approach if you want to compare instances
of the returned records. The default equals only returns true if the two instances are
the same; it does not otherwise compare their fields. Use a case class instead when
field comparisons are needed. You’ll also want to make id and age fields, so the com‐
piler uses them in the equals implementation, but if you don’t want comparisons to
use id, then leave it implemented with a method.

You could do something similar in Scala 2, without a parent trait for Record, but you
had to enable the reflectiveCalls language feature, either by importing scala
.language.reflectiveCalls or globally by using the compiler flag
-language:reflectiveCalls. Enabling the language feature is a reminder that
reflection is expensive and less type safe. See the Scala 2 version of the example: src/
script/scala-2/progscala3/typesystem/selectable/Reflection.scala.

In Chapter 20, we’ll explore another fully dynamic mechanism that is available in
both Scala 2 and 3, the trait scala.Dynamic.

The Selectable companion object defines an implicit conversion called reflective
Selectable. It supports runtime reflection over types that have a particular structure,
meaning their member types, fields, and methods, independent of the types’ names.
Normally we work with types by name, called nominal typing (like Shape and Seq),
and when we require types to have certain members, we require them to implement
the same trait or abstract class.

Let’s use structural types to implement the Observer Design Pattern. Compare what
follows with the implementation in “Traits as Mixins” on page 271.

The minimum requirement for an observer is that it implements a method we can
call with updates. We’ll require a method named update but not impose any

Structural Types | 363

https://oreil.ly/qyvuL

requirements on the enclosing types used as observers. Specifically, we won’t require
these observers to implement a particular trait. Here is an implementation using a
structural type for the observer:

// src/main/scala/progscala3/typesystem/structuraltypes/Subject.scala
package progscala3.typesystem.structuraltypes
import reflect.Selectable.reflectiveSelectable

private type Observer = {
 def update(): Unit
}

trait Subject:
 protected var observers: Vector[Observer] = Vector.empty
 def addObserver(observer: Observer): Unit =
 observers :+= observer
 def notifyObservers(): Unit =
 observers foreach (_.update())

Required import of the implicit conversion. Use reflection wisely because of the
runtime overhead. Also, named types are easier to work with in IDEs, for
example.

A type alias that references an anonymous structure for observation. To empha‐
size that this alias is only used in this file for clarity and not used in client code,
the alias is declared private.

A normal mixin trait for subjects that manages the list of observers and updates
them when changes occur.

A method to notify all observers of a state change.

Any instance with an update method of this signature, no matter the type of the
instance, can be used as an observer. Observer is just a private, convenient alias, not a
trait or abstract class that observers must subtype. For simplicity, I’m assuming that
concrete observers will keep a reference to their subjects and rely on update to know
when to query the subjects for actual changes.

Let’s try it:

// src/script/scala/progscala3/typesystem/structuraltypes/Observer.scala
import progscala3.typesystem.structuraltypes.Subject
import scala.reflect.Selectable.reflectiveSelectable

case class Counter(start: Int = 0) extends Subject:
 var count = start
 def increment(): Unit =
 count += 1
 notifyObservers()

364 | Chapter 16: Scala’s Type System, Part I

case class CounterObserver(counter: Counter):
 var updateCount = 0
 def update(): Unit = updateCount += 1

val c = Counter()
c.increment()
val observer1 = CounterObserver(c)
c.addObserver(observer1)
c.increment()
val observer2 = CounterObserver(c)
c.addObserver(observer2)
c.increment()
assert(c.count == 3)
assert(observer1.updateCount == 2)
assert(observer2.updateCount == 1)

A type that increments an internal counter and mixes in Subject for the benefit
of observation.

A concrete observer for Counter. Note that it doesn’t implement some sort of
observer trait, but it does provide the update method required. The constructor
argument gives the observer the subject to watch, a Counter, although it isn’t
used in the update implementation. Instead, the observer tracks how many times
update has been called.

The second observer was added after the Counter had already been incremented
once.

Despite the disadvantages of reflection, structural types have the virtue of minimizing
the coupling between things. In this case, the coupling consists of only a single
method signature, rather than a type, such as a trait.

We still couple to a particular name—the method update. In a sense, we’ve only
moved the problem of coupling from a type name to a method name. The name is
still arbitrary, so let’s push the decoupling to the next level: omit any definition of
Observer and just use a function. It turns out that this change also makes it easier to
use a custom State type for information passed to observers. Here is the final form of
the example:

// src/main/scala/progscala3/typesystem/structuraltypes/SubjectFunc.scala
package progscala3.typesystem.structuraltypes

trait SubjectFunc:
 type State

 private var observers: Vector[State => Unit] = Vector.empty
 def addObserver(observer: State => Unit): Unit =

Structural Types | 365

 observers :+= observer
 def notifyObservers(state: State): Seq[Unit] =
 observers map (o => o(state))

An abstract type member for the state sent with updates.

No more Observer definition. Now it’s just a function State => Unit.

Notifying each observer now means calling the function.

Here is the test script:

// src/script/scala/progscala3/typesystem/structuraltypes/ObserverFunc.scala
import progscala3.typesystem.structuraltypes.SubjectFunc

case class Counter(start: Int = 0) extends SubjectFunc:
 type State = Int
 var count = start
 def increment(): Unit =
 count += 1
 notifyObservers(count)

case class CounterObserver(var updateCalledCount: Int = 0) {
 def apply(count: Int): Unit = updateCalledCount += 1
}
val observer1 = CounterObserver()
val observer2 = CounterObserver()

val c = Counter()
c.increment()
c.addObserver(observer1.apply)
c.increment()
c.addObserver(observer2.apply)
c.increment()
assert(c.count == 3)
assert(observer1.updateCalledCount == 2)
assert(observer2.updateCalledCount == 1)

No need to import reflectiveSelectable because there’s no reflection used
now!

Nearly identical to the previous Counter, but now we define the State type as
Int and pass the current count as the state to notifyObservers.

Because we track how many updates we’ve received, we define a case class to hold
this state information and use CounterObserver.apply as the function registered
with Counter instances.

366 | Chapter 16: Scala’s Type System, Part I

Pass the apply method as the function expected by the subject c when registering
an observer.

This has several advantages. All structure-based coupling is gone. Hence, we elimi‐
nate the overhead of reflection calls. It’s also easier to use specific types for the State
passed to observers. Hence, while structural typing can be useful, most of the time
there are alternatives.

Refined Types
In the Selectable example in the previous section, we saw that our actual Record
instances had the type Record{name: String; age: => Int}, not just Record. This
is an example of a refined type because it has more specific details than Record alone.

Similarly, a refined type is created when we use mixin traits to create an anonymous
instance:

scala> trait Logging:
 | def log(message: String): Unit = println(s"Log: $message")

scala> abstract class Service:
 | def start(): Unit

scala> val subject = new Service with Logging:
 | def start(): Unit = log("starting!")
val subject: Service & Logging = anon$1@6429095e

scala> subject.start()
Log: starting!

Note the intersection type of subject, Service & Logging. Put another way, refine‐
ments are subtyping without naming the subtype.

Existential Types (Obsolete)
Scala 2 supported existential types, a way of abstracting over types. They let you assert
that some type exists without specifying exactly what it is, usually because you don’t
know what it is and you don’t need to know it in the current context.

For example, Seq[_ <: A] was really shorthand for Seq[T forSome {type T <: A}]
in Scala 2 syntax.

However, existential types are incompatible with the stronger soundness principles of
the type system in Scala 3. In Scala 2, they also interacted in negative ways with some
other language features.

Refined Types | 367

An expression like Seq[? <: A] is still supported (where ? replaces _ for type wild‐
cards), but now this is considered a refined type. The forSome construct is no longer
supported.

Recap and What’s Next
This chapter filled in some details of type system features that we encountered before
and it introduced new concepts. I focused on topics I think you’ll encounter sooner
rather than later. The next chapter continues the exploration of type system features,
covering those that you are less likely to encounter except in more advanced Scala
code.

368 | Chapter 16: Scala’s Type System, Part I

CHAPTER 17

Scala’s Type System, Part II

This chapter continues the type system survey that we started in the previous chapter,
covering more advanced constructs. You can skip this chapter until you need to
understand the concepts discussed here.

Let’s begin with match types and the broad subject of dependent typing.

Match Types
Scala 3 extends pattern matching to work at the type level for match types. Let’s look
at an example adapted from the Scala documentation. The following match type defi‐
nition returns a type that is the type parameter of another type with one type parame‐
ter. For example, for Seq[Int] it will return Int:

// src/script/scala/progscala3/typesystem/matchtypes/MatchTypes.scala

type Elem[X] = X match
 case String => Char
 case IterableOnce[t] => t
 case Array[t] => t
 case ? => X

Define a match type. It uses a match expression with case clauses to resolve the
type.

Special case handling of Strings, which are actually Array[Char].

scala.collection.IterableOnce is a supertype of all collection types (and
Option[T]), except for Array. Hence, we also need a clause for Arrays.

369

https://oreil.ly/kRurH

Use ? as a wildcard for all other types, including primitives and nonparameter‐
ized types. In this case, just return the type.

Let’s try it:

val char: Elem[String] = 'c'
val doub: Elem[List[Double]] = 1.0
val tupl: Elem[Option[(Int,Double)]] = (1, 2.0)

val bad1: Elem[List[Double]] = "1.0" // ERROR
val bad2: Elem[List[Double]] = (1.0, 2.0) // ERROR

The last two examples fail to compile because the righthand sides are not Doubles.

There is another way to check our work:

summon[Elem[String] =:= Char] // ...: Char =:= Char = generalized constraint
summon[Elem[List[Int]] =:= Int]
summon[Elem[Nil.type] =:= Nothing]
summon[Elem[Array[Float]] =:= Float]
summon[Elem[Option[String]] =:= String]
summon[Elem[Some[String]] =:= String]
summon[Elem[None.type] =:= Nothing]
summon[Elem[Float] =:= Float]

summon[Elem[Option[List[Long]]] =:= Long]
summon[Elem[Option[List[Long]]] =:= List[Long]]

Use Nil.type when type matching on the type for an object. Same for
None.type ahead.

This one fails because our match expression doesn’t recurse into nested types. The
correct result is List[Long].

The type =:= functions like a type equality test. It is defined in Predef along with the
<:< type we saw in “Implicit Evidence” on page 178. It is normally used with infix
notation, as shown here. The following two expressions are equivalent:

scala> summon[Elem[String] =:= Char]
scala> summon[=:=[Elem[String], Char]]

This type is actually a sealed abstract class that the compiler alone can instantiate if it
is possible to construct an instance implicitly, which can only happen if the lefthand-
side type is equivalent to the righthand-side type. This is what we see in the REPL:

scala> summon[Elem[String] =:= Char]
val res0: Char =:= Char = generalized constraint

...
scala> summon[Elem[Option[List[Long]]] =:= Long]
 |

370 | Chapter 17: Scala’s Type System, Part II

https://oreil.ly/F6sA5
https://oreil.ly/8pwNO
https://oreil.ly/sOddQ

1 |summon[Elem[Option[List[Long]]] =:= Long]
 | ^
 | Cannot prove that List[Long] =:= Long.

scala> summon[Elem[Option[List[Long]]] =:= List[Long]]
val res8: List[Long] =:= List[Long] = generalized constraint

match type expressions can’t have guard clauses because they are evaluated at compile
time. Also, only types are allowed in the lefthand and righthand sides of the case
clauses.

Dependently Typed Methods
Match types can be used to implement dependently typed methods, meaning the
return type of a method depends on the arguments or the enclosing type. In what fol‐
lows, you’ll notice a structural similarity between the match type definition and the
match expression used in the corresponding method.

The following example defines a recursive version of the previous match type exam‐
ple and uses it as the return type of a method. This method returns the first element
in the parameterized type instance. For other types, it just returns the input value:

// src/script/scala/progscala3/typesystem/matchtypes/DepTypedMethods.scala

type ElemR[X] = X match // "R" for "recursive"
 case String => Char
 case Array[t] => ElemR[t]
 case Iterable[t] => ElemR[t]
 case Option[t] => ElemR[t]
 case AnyVal => X

import compiletime.asMatchable
def first[X](x: X): ElemR[X] = x.asMatchable match
 case s: String => s.charAt(0)
 case a: Array[t] => first(a(0))
 case i: Iterable[t] => first(i.head)
 case o: Option[t] => first(o.get)
 case x: AnyVal => x

Recursively evaluate ElemR[X] on the nested type.

In Elem[X], we matched on IterableOnce to support both Option and Iterable
collections. Here, we need different handling of these types in the first method,
so we match separately on Iterable and Option in the match type.

An import required for the next match expression.

Dependently Typed Methods | 371

The first method. Notice the structure is very similar to the definition of ElemR,
but why is asMatchable required?

The asMatchable method works around a limitation involving pattern matching for
dependently typed methods and Matchable. If you remove the asMatchable, that is
you just use x match, you get errors like this in each of the case clauses:

10 | case s: String => s.charAt(0)
 | ^^^^^^
 | pattern selector should be an instance of Matchable,
 | but it has unmatchable type X instead

A future release of Scala 3 may remove the need for this workaround.

Let’s try first. Notice the return type in each case:

scala> case class C(name: String) // definitions used below
 | object O

scala> first("one")
val res1: Char = o

scala> first(Array(2.2, 3.3))
val res2: Double = 2.2

scala> first(Seq("4", "five"))
val res3: Char = 4

scala> first(6)
val res4: Int = 6

scala> first(true)
val res5: Boolean = true

scala> first(O)
val res6: O.type = O$@46a55811

scala> first(C("Dean"))
val res7: ElemR[C] = C(Dean)

The definitions of ElemR and first look structurally similar for a reason. Besides the
requirements discussed previously for match types, dependently typed methods must
have the same number of case clauses as the match type, the lefthand sides of these
clauses must be typed patterns, meaning of the form x: X, and each case clause must
be type equivalent (satisfying =:=) with its corresponding case clause in the match
type.

372 | Chapter 17: Scala’s Type System, Part II

Dependent Method and Dependent Function Types
A related concept is called dependent method types (which is confusing). In this case
the return type of a method depends exclusively on one or more of its arguments.
New for Scala 3 is support for dependent function types. Previously it was not possible
to lift a method with a dependent type to a corresponding function. Now it is.

Consider another linked-list implementation that uses an abstract type member for
the elements of the list:

// src/script/scala/progscala3/typesystem/deptypes/DepMethodFunc.scala
trait LinkedList:
 type Item
 def head: Item
 def tail: Option[LinkedList]

def head(ll: LinkedList): ll.Item = ll.head
val h: (ll: LinkedList) => ll.Item = _.head
def tail(ll: LinkedList): Option[LinkedList] = ll.tail
val t: (ll: LinkedList) => Option[LinkedList] = _.tail

Element type, analogous to a parameterized type List[Item].

Methods to return the head and tail. In this implementation, I use an optional
tail to signal the end of the list.

A head method and corresponding h function defined outside LinkedList. Both
more clearly show that the dependent return type, ll.item, depends on the input
type of the LinkedList, ll. Corresponding tail and t are also defined, but they
don’t return dependent types, just Option[LinkedList] instances.

Let’s try it for Ints. Note that we implement head and tail methods with vals:

scala> case class IntLinkedList(head: Int, tail: Option[IntLinkedList])
 | extends LinkedList:
 | type Item = Int
 |
 | val ill = IntLinkedList(0,
 | Some(IntLinkedList(1, Some(IntLinkedList(2, None)))))
val ill: IntLinkedList =
 IntLinkedList(0,Some(IntLinkedList(1,Some(IntLinkedList(2,None)))))

scala> head(ill)
 | tail(ill)
 | head(tail(ill).get) // get retrieves the list from the option
 | head(tail(tail(ill).get).get)
val res0: ill.Item = 0
val res1: Option[LinkedList] =
 Some(IntLinkedList(1,Some(IntLinkedList(2,None))))
val res2: LinkedList#Item = 1

Dependent Method and Dependent Function Types | 373

val res3: LinkedList#Item = 2

scala> h(ill)
 | t(ill)
 | h(t(ill).get)
 | h(t(t(ill).get).get)
... same output ...

The head method and h function have dependent return types, specifically the Item
member of LinkedList, which will depend on the actual type used for Item. The Link
edList#Item types shown for the returned values from head are actually Ints.

Dependent Typing
Another sense of dependent typing are types that depend on values. It is a powerful
concept for more precise type checking and enforcement of desired behaviors. Con‐
sider the following examples. First, we can be more specific than Int, Double, etc.:

// src/script/scala/progscala3/typesystem/deptypes/DependentTypesSimple.scala

scala> val one: 1 = 1
 | val two: 2.2 = 2.2
val one: 1 = 1
val two: 2.2 = 2.2

scala> val two: 2.2 = 2.21
1 |val two: 2.2 = 2.21
 | ^^^^
 | Found: (2.21 : Double)
 | Required: (2.2 : Double)
 | ...

Note the types printed. For example, the type of one is 1. These are singleton types
because only a single value is possible, just as objects are singleton types. The types 1
and 2.2 are considered subtypes of Int and Double, respectively:

scala> summon[1 <:< Int]
 | summon[2.2 <:< Double]
val res1: Int =:= Int = generalized constraint
val res2: Double =:= Double = generalized constraint

scala> summon[2 <:< Double]
1 |summon[2 <:< Double]
 | ^
 | Cannot prove that (2 : Int) <:< Double.

Comparisons at the type level can be used to determine true or false. This is compu‐
ted at compile time. I’ll just show the expressions, not the REPL results. For details on
the operations shown, see the packages under scala.compiletime.ops, which are
imported as shown:

374 | Chapter 17: Scala’s Type System, Part II

https://oreil.ly/NR4fF

def opsAny =
 import scala.compiletime.ops.any.*

 val any1: 2 == 2 = true
 val any2: 1 == 2 = false
 val any3: 1 != 2 = true
 val any4: "" == "" = true
 val any5: "" != "" = false
 val any6: "" != "boo" = true

 valueOf[2 == 2] == true
 valueOf[1 == 2] == false
 valueOf[1 != 2] == true

opsAny

Use a method to scope the import statement. In this case type-level comparisons
are enabled.

The type is computed from 2 == 2, which is true, the only allowed value for the
assignment.

We can also play with these examples using valueOf, which returns the value cor‐
responding to a singleton type.

Try it!

Integer arithmetic is possible on types. Only some of the possibilities are shown here.
See the DependentTypesSimple.scala file for more examples:

def opsInt =
 import scala.compiletime.ops.int.*

 val i1: 0 + 1 = 0 + 1
 val i2: 1 + 1 = 1 + 1
 val i3: 1 + 2 = 1 + 2
 val i4: 3 * 2 - 1 = 3 * 2 - 1
 val i5: 12 / 3 = 4
 val i6: 11 % 4 = 3

 val lshift: 1 << 2 = 4
 val rshift: 8 >> 2 = 2
 val rshift2: 8 >>> 2 = 2

 val b2: 1 < 2 = true
 val b3: 1 <= 2 = true
 val b4: 2 < 1 = false
 val b5: 1 > 2 = false
 val b6: 1 >= 2 = false
 val b7: 2 > 1 = true

Dependent Typing | 375

https://oreil.ly/8pwNO

 val xor: 14 ^ 5 = 11 // 14 xor 5 => 1110 ^ 0101 => 1011 => 11
 val and: BitwiseAnd[5, 4] = 4 // 5 & 4 => 101 & 100 == 100 => 4
 val or: BitwiseOr[5, 3] = 7 // 5 | 3 => 101 | 011 == 111 => 7

 val abs: Abs[-1] = 1
 val neg: Negate[2] = -2
 val min: Min[3, 5] = 3
 val max: Max[3, 5] = 5
 val s: ToString[123] = "123"

opsInt

Import to enable integer type arithmetic.

Left-shift 1 by 2 bits, yielding 4.

Right-shift, filling with zeros on the left.

More ways to compute Booleans, but only using integers. If you want to use ==
and !=, then import scala.compiletime.ops.any.*

One way to encode nonnegative integers is Peano numbers, which define a zero and a
successor function used to compute all other values. Let’s use the type-level
scala.compiletime.ops.int.S, an implementation of the successor function:

def tryS =
 import scala.compiletime.ops.int.S

 val s1: S[0] = 1
 val s2a: S[S[0]] = 2
 val s2b: S[1] = 2
 val s3a: S[S[S[0]]] = 3
 val s3b: S[2] = 3

tryS

The successor of 0 is 1.

The successor of the successor of 0 is 2.

However, you don’t have to start at 0.

Boolean singletons and Boolean logic are supported:

def opsBoolean =
 import scala.compiletime.ops.boolean.*

 val t1: true = true
 val f1: ![true] = false

376 | Chapter 17: Scala’s Type System, Part II

 val tt1: true && true = true
 val tf1: true && false = false
 val ft1: false && true = false
 val ff1: false && false = false
 val tt2: true || true = true
 val tf2: true || false = true
 val ft2: false || true = true
 val ff2: false || false = false
 val tt3: true ^ true = false
 val tf3: true ^ false = true
 val ft3: false ^ true = true
 val ff3: false ^ false = false

opsBoolean

Negation. The brackets are required.

Exclusive or (xor).

String singleton types and string concatenation are supported:

def opsString =
 import scala.compiletime.ops.string.*

 val s1: "ab" + "cd" = "abcd"
 val bad2: "ab" + "cd" = "abcdef" // ERROR

opsString

OK, but how is all this useful? One use is to ensure that allowed state transitions are
checked at compile time. For example, if I add an element to a collection the size
must increase by one (zero or one for Sets!). Similarly, if I remove an element, the
size must decrease by one. If I concatenate two sequences, the length of the resulting
sequence is the sum of the two original sequences.

Let’s consider a more detailed example. Here is yet another implementation of linked
lists. It has a few advantages over the library’s List type. It remembers the type of
each element and carries its size as part of the type. On the other hand, it doesn’t
implement all the useful methods like map and flatMap. Also, for big-list literals, it
will be somewhat expensive at compile time. The implementation uses some
advanced constructs, but I’ll walk you through it. I call it DTList, for dependently
typed list, where the dependency is the value of the size of the list:

// src/script/scala/progscala3/typesystem/deptypes/DependentTypes.scala

import scala.compiletime.ops.int.*

sealed trait DTList[N <: Int]:
 inline def size: N = valueOf[N]

Dependent Typing | 377

https://oreil.ly/yiiF3

 def +:[H <: Matchable](h: H): DTNonEmptyList[N, H, this.type] =
 DTNonEmptyList(h, this)

case object DTNil extends DTList[0]

case class DTNonEmptyList[N <: Int, H <: Matchable, T <: DTList[N]](
 head: H, tail: T) extends DTList[S[N]]

The base trait for empty and nonempty lists. While Scala’s List uses a type
parameter for the least upper bound (closest supertype) of the elements’ types,
DTList will retain each element’s type. Instead, the type parameter here is the size
of the list.

Return the size of the list. The inline modifier tells the compiler to inline the
method implementation (see Chapter 24 for more details). This method is
dependently typed because the return type will be 0, 1, etc., depending on the
particular list and the value of N. The value is obtained from the type using
valueOf. For example, valueOf[2] returns 2.

A method like Seq.+: to construct a new DTList by prepending an element to
this list. By definition, the result is nonempty list.

The analog of Nil for empty lists with the size type parameter of 0.

The type for nonempty lists. Its size is actually N + 1; it passes S[N] as the param‐
eter to DTList. It also has a type parameter for the new head element, H, and a
type T for the tail that must be one of our DTList types.

The parameter N for DTNonEmptyList is actually one less than its actual size, which is
why S[N] is passed to DTList. Hence, the size will be N + 1.

Let’s try it:

scala> val list = 1 +: "two" +: DTNil
val list: DTNonEmptyList[1, Int, ? <: DTNonEmptyList[0, String, DTNil.type]] =
 DTNonEmptyList(1,DTNonEmptyList(two,DTNil))

scala> list.size
 | list.head
 | list.tail
val res0: Int = 2
val res1: Int = 1 // head element correctly typed as Int
val res2: list.T = DTNonEmptyList(two,DTNil)

scala> list.tail.size
 | list.tail.head
 | list.tail.tail
 | list.tail.tail.size

378 | Chapter 17: Scala’s Type System, Part II

https://oreil.ly/1XejK

val res3: Int = 1
val res4: String = two // head element correctly typed as String
val res5: DTNil.type = DTNil
val res6: Int = 0

scala> list.tail.tail.head // list.tail.tail is res5 == DTNil
 | list.tail.tail.tail
1 |list.tail.tail.head
 |^^^^^^^^^^^^^^^^^^^
 |value head is not a member of object DTNil
2 |list.tail.tail.tail
 |^^^^^^^^^^^^^^^^^^^
 |value tail is not a member of object DTNil

Note the type returned for list. It retains the types of each element, unlike Scala’s
List, which only knows the least upper bound. When we call head, we get the correct
type for the value returned.

Because DTList retains the type information for each element, it is similar to tuples.
In fact, Scala 3 expands what you can do with tuples, as we saw in “Tuples and the
Tuple Trait” on page 317, which makes them work more like lists with full typing of
the elements. Scala 3 tuples now support many of the features of the advanced library
HList in Shapeless.

You can verify that each of the types and values returned are what we expect,
although list.T for res2 reflects how we constructed it.

It’s also notable that the head and tail accessors don’t exist on the DTList trait nor on
DTNil. Attempts to call them are caught at compile time. In contrast, Scala’s List
implementation has to declare these methods on the base trait because you don’t
always know the type of a List, whether you have a Nil or a nonempty List. This
means these methods have to throw runtime exceptions if called on Nil. Instead, we
can catch such errors at compile time.

The example source file also has a similar SList (for “simple”) definition that is a
stripped-down version of Scala’s List, so it’s easier to compare the two list implemen‐
tations. To be honest, SList is easier to understand than DTList, and it’s also very
challenging to implement most of the Seq[T] combinator methods on DTList.

The same directory in the code examples has a few other examples using dependent
types that I won’t discuss here.

In practical terms, I think we’ll see the use of dependent typing grow, squeezing out
potential bugs and limitations of more conventional APIs, but the challenges of using
dependent typing mean that growth will be slow and deliberate.

Dependent Typing | 379

https://oreil.ly/qVo7V

Path-Dependent Types
You can access nested types using a path expression and those path contexts differen‐
tiate between similar types. Consider this example:

// src/script/scala/progscala3/typesystem/typepaths/TypePath.scala

open class Service:
 class Logger:
 def log(message: String): Unit = println(s"log: $message")

 val logger: Logger = Logger()

val s1 = new Service
val s2 = new Service:
 override val logger: Logger = s1.logger

Define a class Service with a nested class Logger.

Attempt to override logger in s2, reusing s1.logger, but this causes a compila‐
tion error.

scala> val s2 = new Service:
 | override val logger: Logger = s1.logger
2 | override val logger: Logger = s1.logger
 | ^^^^^^^^^
 | Found: (s1.logger : s1.Logger)
 | Required: Logger

The s1.Logger and s2.Logger types are considered different because they are path
dependent, starting from different paths, s1 and s2, respectively. Let’s discuss the
kinds of type paths.

Using this
For a class C1, you can use the familiar this inside the body to refer to the current
instance, but this is actually a shorthand for C1.this in Scala:

// src/main/scala/progscala3/typesystem/typepaths/PathExpressions.scala
package progscala3.typesystem.typepaths

open class C1:
 var x = "1"
 def setX1(x:String): Unit = this.x = x
 def setX2(x:String): Unit = C1.this.x = x

Inside a type body, this can refer to the type itself when referencing a nested type
definition:

trait T1:
 class C

380 | Chapter 17: Scala’s Type System, Part II

 val c1: C = C()
 val c2: C = this.C()

Here, this in the expression this.C refers to the trait T1.

Using super
You can refer to the supertype of a type with super:

trait X:
 var xx = "xx"
 def setXX(x:String): Unit = xx = x

open class C2 extends C1
open class C3 extends C2 with X:
 def setX3(x:String): Unit = super.setX1(x)
 def setX4(x:String): Unit = C3.super.setX1(x)
 def setX5(x:String): Unit = C3.super[C2].setX1(x)
 def setX6(x:String): Unit = C3.super[X].setXX(x)
 // def setX7(x:String): Unit = C3.super[C1].setX1(x) // ERROR
 // def setX8(x:String): Unit = C3.super.super.setX1(x) // ERROR

C3.super is equivalent to super in this example. You can qualify which supertype
using super[T], as shown for setX5 and setX6. However, you can’t refer to super
supertypes (setX7). You can’t chain super, either (setX8). I’ll discuss a workaround
in “Self-Type Declarations” on page 382.

If you call super without qualification in a type with several ancestors, to which type
does super bind? The rules of linearization determine the target of super (see “Linea‐
rization of a Type Hierarchy” on page 301).

Just as for this, you can use super to refer to the supertype to access a nested type:

open class C4:
 class C5

open class C6 extends C4:
 val c5a: C5 = C5()
 val c5b: C5 = super.C5()

Stable Paths
You can reach a nested type with a period-delimited path expression. All but the last
elements of a type path must be stable, which roughly means they must be packages,
singleton objects, or type declarations that alias the same. The last element in the path
can be unstable, including classes, traits, and type members. Consider this example:

package P1:
 object O1:
 object O2:
 val name = "name"

Path-Dependent Types | 381

 class C1:
 val name = "name"

open class C7:
 val name1 = P1.O1.O2.name // Okay - a reference to a field
 type C1 = P1.O1.C1 // Okay - a reference to a "leaf" class
 val c1 = P1.O1.C1() // Okay - same reason
 // val name2 = P1.O1.C1.name // ERROR - P1.O1.C1 isn't stable.

The C7 members name1, C1, and c1 all use stable elements until the last position, while
name2 has an unstable element (C1) before the last position. You can see this if you
uncomment the name2 declaration, leading to the following compilation error:

[error] 55 | val name2 = P1.O1.C1.name // ERROR - P1.O1.C1 isn't stable.
[error] | ^^^^^^^^
[error] |value C1 is not a member of object ...typepaths.P1.O1

Of course, avoiding complex paths in your code is a good idea for clarity and
comprehension.

Self-Type Declarations
You can use this in a method to refer to the enclosing instance, which is useful for
referencing another member of the instance. Explicitly using this is not usually nec‐
essary for this purpose, but it’s occasionally useful for disambiguating a reference
when several items are in scope with the same name.

Self-type declarations (also called self-type annotations) support two objectives. First,
they let you specify additional type expectations for this. Second, they can be used to
create aliases for this, which solves the limitation we saw earlier that you can’t use
super to refer to types beyond the parent types.

To illustrate specifying additional type expectations, let’s implement a SubjectOb
server class to combine the concepts of Subject and Observer we’ve seen before:

// src/main/scala/progscala3/typesystem/selftype/SubjectObserver.scala
package progscala3.typesystem.selftype

abstract class SubjectObserver:
 type S <: Subject
 type O <: Observer

 trait Subject:
 self: S =>
 private var observers = List[O]()

 def addObserver(observer: O) = observers ::= observer

 def notifyObservers() = observers.foreach(_.receiveUpdate(self))

382 | Chapter 17: Scala’s Type System, Part II

 trait Observer:
 def receiveUpdate(subject: S): Unit

Use abstract type members for the specific Subject and Observer types, subtypes
of the traits defined next in SubjectObserver.

Declare a self-type declaration for Subject, which is self: S. This means that we
can now assume that a Subject will really be an instance of the subtype S, which
will be whatever concrete types we define that mix in Subject. The name self is
completely arbitrary.

Pass self rather than this to receiveUpdate.

It’s not obvious why the self-type declaration is necessary, but if you remove it and try
passing this to receiveUpdate instead of self, you’ll get a type error. This is because
this is of type Subject, but it needs to be of the more specific type, SubjectOb
server.this.S. Note that S is declared to be a subtype of Subject, so the more spe‐
cific type is required when passing an instance to receiveUpdate.

Let’s see how the types might be used to observe button clicks:

// src/main/scala/progscala3/typesystem/selftype/ButtonSubjectObserver.scala
package progscala3.typesystem.selftype

case class Button(label: String):
 def click(): Unit = {}

object ButtonSubjectObserver extends SubjectObserver:
 type S = ObservableButton
 type O = Observer

 class ObservableButton(label: String) extends Button(label) with Subject:
 override def click() =
 super.click()
 notifyObservers()

 class ButtonClickObserver extends Observer:
 val clicks = scala.collection.mutable.HashMap[String,Int]()

 def receiveUpdate(button: ObservableButton): Unit =
 val count = clicks.getOrElse(button.label, 0) + 1
 clicks.update(button.label, count)

@main def TryButtonSubjectObserver() =
 import ButtonSubjectObserver.*

 val button1 = ObservableButton("one")
 val button2 = ObservableButton("two")
 val observer = ButtonClickObserver()

Self-Type Declarations | 383

 button1.addObserver(observer)
 button2.addObserver(observer)
 button1.click()
 button2.click()
 button1.click()
 println(observer.clicks)

A simple Button class.

A concrete subtype of SubjectObserver for buttons, where Subject and
Observer are both subtyped to the more specific types we want.

ObservableButton overrides Button.click to notify the observers after calling
Button.click.

Implement ButtonObserver to track the number of clicks for each button
in a UI.

If you run progscala3.typesystem.selftype.TryButtonSubjectObserver, the last
line prints HashMap(one -> 2, two -> 1).

So we can use self-type declarations to solve a typing problem when using abstract
type members.

A related use is an old Scala design pattern called the Cake Pattern, which was a way
of specifying components to wire together for an application. This pattern is seldom
used now, due to typing challenges that I won’t discuss here. See SelfTypeCake
Pattern.scala in the code examples for more details.

The second usage of self-type declarations is to alias this in narrow contexts so it can
be referenced elsewhere:

// src/script/scala/progscala3/typesystem/selftype/ThisAlias.scala

class C1:
 c1this =>

 def talk(message: String): String = "C1.talk: " + message
 class C2:
 class C3:
 def talk(message: String) = c1this.talk("C3.talk: " + message)
 val c3 = C3()
 val c2 = C2()

val c1 = C1()
assert(c1.talk("Hello") == "C1.talk: Hello")
assert(c1.c2.c3.talk("World") == "C1.talk: C3.talk: World")

384 | Chapter 17: Scala’s Type System, Part II

Define c1this to be an alias of this in the context of C1. There is nothing on the
righthand side of the arrow.

Use c1this to call C1.talk.

Call C1.talk via the c1 instance.

Call C3.talk via the c1.c2.c3 instance, which will itself call C1.talk.

We could also define self-type declarations inside C2 and C3, if we needed them.

Without the self-type declaration, we can’t invoke C1.talk directly from within
C3.talk because the latter shadows the former, since they share the same name. C3 is
not a subtype of C1 either, so super.talk can’t be used. This use of self-type declara‐
tions is also a workaround that you can’t use super beyond one supertype level.

You can think of the self-type declaration in this context as a generalized this
reference.

Type Projections
Let’s revisit our Service design problem in “Path-Dependent Types” on page 380.
First, let’s rewrite Service to extract some abstractions that would be more typical in
real applications:

// src/main/scala/progscala3/typesystem/valuetypes/TypeProjection.scala
package progscala3.typesystem.valuetypes

trait Logger:
 def log(message: String): Unit

class ConsoleLogger extends Logger:
 def log(message: String): Unit = println(s"log: $message")

trait Service:
 type Log <: Logger
 val logger: Log

class ConsoleService extends Service:
 type Log = ConsoleLogger
 val logger: ConsoleLogger = ConsoleLogger()

A Logger trait.

A concrete Logger that logs to the console, for simplicity.

Type Projections | 385

A Service trait that defines an abstract type member for the Logger and declares
a field for it.

A concrete service that uses ConsoleLogger.

Suppose we want to reuse the Log type defined in ConsoleService. We can project
the type we want with #:

// src/script/scala/progscala3/typesystem/valuetypes/TypeProjection.scala
scala> import progscala3.typesystem.valuetypes.*

scala> val l1: Service#Log = ConsoleLogger()
1 |val l1: Service#Log = ConsoleLogger()
 | ^^^^^^^^^^^^^^^
 | Found: progscala3.typesystem.valuetypes.ConsoleLogger
 | Required: progscala3.typesystem.valuetypes.Service#Log

scala> val l2: ConsoleService#Log = ConsoleLogger()
val l2: ...ConsoleService#Log = ...ConsoleLogger@2287b06a

The first attempt doesn’t type check. Although both Service.Log and ConsoleLogger
are both subtypes of Logger, Service.Log is abstract so we don’t yet know if it will
actually be a supertype of ConsoleLogger. In other words, the final concrete defini‐
tion could be another subtype of Logger that isn’t compatible with ConsoleLogger.
The only one that works is the second definition because the types check statically.

In Scala 3, a type projection T#A is not permitted if the type T is abstract. This was
permitted in Scala 2, but it undermined type safety.

More on Singleton Types
Singleton objects define both an instance and a corresponding type. You can access
the latter using .type. Even other instances have a singleton type:

// src/script/scala/progscala3/typesystem/valuetypes/SingletonTypes.scala

case object Foo:
 override def toString = "Foo says Hello!"

def fooString(foo: Foo.type) = s"Foo.type: $foo"

case class C(s: String)
val c1 = C("c1")
println(c1)
val c1b: c1.type = c1
println(c1b)
val c1c: c1.type = C("c1")

386 | Chapter 17: Scala’s Type System, Part II

Use Foo.type to reference the type of the object Foo.

The singleton type for the specific instance c1 is c1.type.

This doesn’t compile because the type of the new instance C("c1") is not the
same as c1.type. It will have its own unique singleton type.

Self-Recursive Types: F-Bounded Polymorphism
Self-recursive types, technically called F-bounded polymorphic types, are types that
refer to themselves. A classic Java example, which has confused generations of pro‐
grammers, is the Enum abstract class, the basis for all Java enumerations:

public abstract class Enum<E extends Enum<E>>
 extends Object implements Comparable<E>, Serializable

Where this recursion is useful is to constrain method arguments or return values in
subtypes to have exactly the same type as the subtype, not a more generic type. Let’s
look at a Scala example, where a supertype will declare a custom factory method,
make, that must return the same type as a subtype caller’s actual type:

// src/script/scala/progscala3/typesystem/recursivetypes/FBound.scala

trait Super[T <: Super[T]]:
 def make: T

case class Sub1(s: String) extends Super[Sub1]:
 def make: Sub1 = Sub1(s"Sub1: make: $s")

case class Sub2(s: String) extends Super[Sub2]:
 def make: Sub2 = Sub2(s"Sub2: make: $s")

// case class Foo(str:String)
// case class Odd(s: String) extends Super[Foo]:
// def make: Foo = Foo(s"Foo: make: $s")

Super has a recursive type. This syntax is the Scala equivalent for the preceding
Java syntax for Enum.

Whatever subtype of Super, T, is used, that’s what implementations of make
should return.

Subtypes must follow the signature idiom X extends Super[X].

It’s disallowed for Odd to pass Foo to the parent Super. It also can’t return Foo
from make.

Self-Recursive Types: F-Bounded Polymorphism | 387

http://bit.ly/1wN98XJ

Let’s try it:

scala> val s1 = Sub1("s1")
 | val s2 = Sub2("s2")
val s1: Sub1 = Sub1(s1)
val s2: Sub2 = Sub2(s2)

scala> val s11 = s1.make
 | val s22 = s2.make
val s11: Sub1 = Sub1(Sub1: make: s1)
val s22: Sub2 = Sub2(Sub2: make: s2)

Notice that s11 is of type Sub1, and s22 is of type Sub2, not Super.

If we didn’t declare the type parameter T to be a subtype of Super[T], then a subclass
could pass any arbitrary type Super[T], as in the Odd comment. F-bounded polymor‐
phism constrains the T type parameter to be one of the types in the Super hierarchy,
the exact same subtype in this example, so that make always returns an instance of the
type we want.

Higher-Kinded Types
Sometimes you’ll see the term type constructor used for a parameterized type because
such types are used to construct other types by providing specific types for the type
parameters. This is analogous to how a class without type parameters is an instance
constructor, where values are provided for the fields to create instances. For example,
Seq[T] is used to construct the type Seq[String], which can then be used to con‐
struct instances of Seq[String], while String is used to construct instances like
“hello world.”

What if we want to abstract over all types that take one type parameter or two? The
term higher-kinded types refers to all such parameterized types, such as F[_] and
G[_,_] for one-parameter and two-parameter types. Scala provides tools for abstract‐
ing over higher-kinded types.

To get started, recall that the collections provide several fold methods, like foldLeft,
which we first examined in “Folding and Reducing” on page 210. Here’s one way you
could sum a collection of numbers:

def add(seed: Int, seq: Seq[Int]): Int = seq.foldLeft(seed)(_ + _)

add(5, Vector(1,2,3,4,5)) // Result: 20

(Seq.sum also exists for all Numeric types.) Let’s suppose that the collections didn’t
already provide fold methods. How might we implement them? We’ll just worry
about foldLeft and implement it as a separate module, not an extension method.
Here’s one possible approach that works for any subtype of Seq[T]:

388 | Chapter 17: Scala’s Type System, Part II

// src/script/scala/progscala3/typesystem/higherkinded/FoldLeft.scala

object FoldLeft:
 def apply[IN, OUT](seq: Seq[IN])(seed: OUT)(f: (OUT, IN) => OUT): OUT =
 var accumulator = seed
 seq.foreach(t => accumulator = f(accumulator, t))
 accumulator

 def apply[IN, OUT](opt: Option[IN])(seed: OUT)(f: (OUT, IN) => OUT): OUT =
 opt match
 case Some(t) => f(seed, t)
 case None => seed

FoldLeft defines apply methods for two kinds of collections, Seq and Option. We
could add an apply method for Arrays and other types too. Following the convention
of the built-in foldLeft methods, the functions passed to the apply methods take
two arguments, the accumulated output and each element. Hence the types for f are
(OUT, IN) => OUT.

Let’s verify that they work:

scala> FoldLeft(List(1, 2, 3))(0)(_+_)
val res0: Int = 6

scala> FoldLeft(List(1, 2, 3))("(0)")((s, i) => s"($s $i)")
val res1: String = ((((0) 1) 2) 3)

scala> FoldLeft(Array(1, 2, 3).toSeq)(0)(_+_)
val res2: Int = 6

scala> FoldLeft(Vector(1 -> "one", 2 -> "two", 3 -> "three"))(0 -> "(0)"){
 | case ((xs, ys), (x,y)) => (xs+x, s"($ys $y)")
 | }
val res3: (Int, String) = (6,((((0) one) two) three))

scala> FoldLeft(Some(1.1))(0.0)(_+_)
 | FoldLeft(Option.empty[Int])(0.0)(_+_)
val res4: Double = 1.1
val none: Option[Int] = None
val res5: Double = 0.0

Use Array.toSeq so the Seq-version of apply can be used.

If we passed None here, the type can’t be inferred. Using Option.empty[Int]
returns None, but with the necessary type information. Try None instead and see
what happens.

This implementation works, but it’s unsatisfactory having to write multiple apply
methods for the different cases, and we didn’t cover all types we might care about, like

Higher-Kinded Types | 389

Arrays. We might not always have a suitable, common supertype where we can add
such methods. Furthermore, we have to edit this code to broaden the support.

Now let’s leverage the abstraction over higher-kinded types to write one apply
method with a more composable and broadly applicable implementation:

// src/script/scala/progscala3/typesystem/higherkinded/HKFoldLeft.scala

object HKFoldLeft: // "HK" for "higher-kinded"

 trait Folder[-M[_]]:
 def apply[IN, OUT](m: M[IN], seed: OUT, f: (OUT, IN) => OUT): OUT

 given Folder[Iterable] with
 def apply[IN, OUT](iter: Iterable[IN],
 seed: OUT, f: (OUT, IN) => OUT): OUT =
 var accumulator = seed
 iter.foreach(t => accumulator = f(accumulator, t))
 accumulator

 given Folder[Option] with
 def apply[IN, OUT](opt: Option[IN],
 seed: OUT, f: (OUT, IN) => OUT): OUT = opt match
 case Some(t) => f(seed, t)
 case None => seed

 def apply[IN, OUT, M[IN]](m: M[IN])(
 seed: OUT)(f: (OUT, IN) => OUT)(using Folder[M]): OUT =
 summon[Folder[M]](m, seed, f)

Define a helper trait, Folder, that abstracts over higher-kinded types with one
type parameter. We’ll implement given instances for different types of higher-
kinded types. These instances will do most of the work. I’ll explain why the type
parameter is contravariant later on.

Define a given instance that works for all subtypes of Iterable, such as all Seq
subtypes. I could cheat and use iter.foldLeft, but I’ll just assume that foreach
is available, like before.

Define a given instance for Option, which isn’t an Iterable. New given instances
can be defined elsewhere to support more higher-kinded types, as we’ll see ahead.

The apply method users will call. It has three parameter lists: the instance of a
higher-kinded type M[IN]; the seed value of type OUT for the fold, the function
that performs the fold for each element; and a using clause for the Folder[M]
that does the real work.

390 | Chapter 17: Scala’s Type System, Part II

1 In Scala 2, you had to use the Typelevel compiler plug-in kind-projector for similar capabilities.

The Folder type parameter -M[_] is contravariant because we implemented a given
for the supertype Iterable, but users will pass types like List and Map. While
Map[K,V] has two type parameters, it implements Iterable[(K,V)], so our imple‐
mentation works for maps too.

The Scala collections use a more sophisticated and general approach for implement‐
ing methods like flatMap, while returning the correct concrete subtype.

Using HKFoldLeft instead of FoldLeft in the previous examples returns the same
results. Here are some of the details:

scala> import HKFoldLeft.{given, *} // Required everything

scala> summon[Folder[Iterable]] // Verify the givens exist
 | summon[Folder[Option]]
val res0: HKFoldLeft.given_Folder_Iterable.type = ...
val res1: HKFoldLeft.given_Folder_Option.type = ...

scala> HKFoldLeft(List(1, 2, 3))(0)(_+_)
 | HKFoldLeft(List(1, 2, 3))("(0)")((s, i) => s"($s $i)")
val res2: Int = 6
val res3: String = ((((0) 1) 2) 3)

scala> HKFoldLeft(Some(1.1))(0.0)(_+_)
 | HKFoldLeft(Option.empty[Int])(0.0)(_+_)
val res4: Double = 1.1
val res5: Double = 0.0

What if we want to add support for a type with two or more type parameters, but we
only need to fold over one of them? That’s where type lambdas help.

Type Lambdas
A type lambda is the type analog of a function. Scala 3 introduces a syntax for them.1

Suppose we want a type alias for Either where the first type is always String. We’ll
call it Trial for something that may fail or succeed:

type Trial[X] = Either[String,X] // Syntax we've used before.
type Trial = [X] =>> Either[String,X] // Type lambda syntax.

The second version shows the new type lambda syntax, which is deliberately like a
corresponding function type: X => Either[String,X]. The term lambda is another
name for function. One advantage of the lambda syntax is that you can use it most
places where a type is expected, whereas the older type alias syntax requires you to
define an alias like Trial[X] first and then use it.

Type Lambdas | 391

https://oreil.ly/iWVvX

Let’s use this same type to add support for Either[String,X] to HKFoldLeft:

scala> given Folder[[X] =>> Either[String, X]]:
 | def apply[IN, OUT](err: Either[String, IN],
 | seed: OUT, f: (OUT, IN) => OUT): OUT = err match
 | case Right(t) => f(seed, t)
 | case _ => seed

scala> summon[Folder[[X] =>> Either[String, X]]]
val res10: given_Folder_Either.type = given_Folder_Either$@709c5def

scala> val bad: Either[String,Int] = Left("error")
 | val good: Either[String,Int] = Right(11)
 | HKFoldLeft(bad)(0.0)(_+_)
 | HKFoldLeft(good)(2.0)(_+_)
val bad: Either[String, Int] = Left(error)
val good: Either[String, Int] = Right(11)
val res11: Double = 0.0
val res12: Double = 13.0

We had to provide type declarations for bad and good to specify both types. Other‐
wise, the using clause when we call HKFoldLeft.apply wouldn’t find the given Folder
for Either[String,X].

Type lambdas can have bounds, <: and >:, but can’t use context bounds, like T:
Numeric, nor can they be marked covariant + or contravariant -. Despite the latter
limitation, the rules are enforced by the compiler when a type alias refers to a type
that has covariant or contravariant behavior or both:

type Func1 = [A, B] =>> Function1[A, B] // i.e., Function1[-A, +B]

Type lambdas can be curried:

type Func1Curried = [A] =>> [B] =>> Function1[A, B]

Finally, here’s an example using a type lambda with a Functor type class so we can
create a given instance that works over the values of a map:

// src/main/scala/progscala3/typesystem/typelambdas/Functor.scala
package progscala3.typesystem.typelambdas

trait Functor[M[_]]:
 extension [A] (m: M[A]) def map2[B](f: A => B): M[B]

object Functor:
 given Functor[Seq] with
 extension [A] (seq: Seq[A]) def map2[B](f: A => B): Seq[B] = seq map f

 type MapKV = [K] =>> [V] =>> Map[K,V]

 given [K]: Functor[MapKV[K]] with
 extension [V1] (map: MapKV[K][V1])
 def map2[V2](f: V1 => V2): MapKV[K][V2] = map.view.mapValues(f).toMap

392 | Chapter 17: Scala’s Type System, Part II

A curried type lambda to allow us to use the Functor over a map’s values.

The key type K is fixed, and we map from value type V1 to V2.

Let’s try it:

// src/script/scala/progscala3/typesystem/typelambdas/Functor.scala
scala> import progscala3.typesystem.typelambdas.Functor.given

scala> Seq(1,2,3).map2(_ * 2.2)
 | Nil.map2(_.toString)
val res0: Seq[Double] = List(2.2, 4.4, 6.6000000000000005)
val res1: Seq[String] = List()

scala> Map("one" -> 1, "two" -> 2, "three" -> 3).map2(_ * 2.2)
 | Map.empty[String,Int].map2(_.toString)
val res2: progscala3.typesystem.typelambdas.Functor.MapK[String][Double] =
 Map(one -> 2.2, two -> 4.4, three -> 6.6000000000000005)
val res3: progscala3.typesystem.typelambdas.Functor.MapK[String][String] = Map()

Import the givens using the new given import syntax.

Polymorphic Functions
Methods have always supported polymorphism using a type parameter. Scala 3
extends this to functions. Let’s start with a simple example, which maps over a
sequence and returns tuples:

// src/script/scala/progscala3/typesystem/poly/PolymorphicFunctions.scala

val seq = Seq(1,2,3,4,5)

def m1[A <: AnyVal](seq: Seq[A]) = seq.map(e => (e,e))
val pf1 = [A <: AnyVal] => (seq: Seq[A]) => seq.map(e => (e,e))
val pf2: [A <: AnyVal] => Seq[A] => Seq[(A,A)] =
 [A] => (seq: Seq[A]) => seq.map(e => (e,e))
m1(seq) // List((1,1), (2,2), (3,3), (4,4), (5,5))
pf1(seq) // same
pf2(seq) // same

A polymorphic method. We’ve seen many of them already.

The equivalent polymorphic function.

With an explicit type signature. Note that [A] => is also required on the right-
hand side.

The syntax resembles type lambdas, but with the regular function arrow, =>. We have
a type parameter, which can have upper and lower bounds, followed by the

Polymorphic Functions | 393

2 This is most likely a temporary limitation. Subsequent 3.X releases may support this ability.

arguments, and ending with the literal body of the function. Note that we don’t have a
simple equals sign = before the body because the body is also used to infer the return
type.

At the time of this writing, context bounds aren’t supported:2

def m2[A : Numeric](seq: Seq[A]): A = // Okay
 seq.reduce((a,b) => summon.times(a,b))
val pf2 = [A] => (seq: Seq[A]) => (using n: Numeric[A]) => // ERROR
 seq.reduce((a,b) => n.times(a,b))
val pf2 = [A : Numeric] => (seq: Seq[A]) => // ERROR
 seq.reduce((a,b) => n.times(a,b))

The method syntax is more familiar and easier to read, so why have polymorphic
functions? They will be most useful when you need to pass a polymorphic function to
a method and you want to implement function instances for a set of suitable types.

trait Base:
 def id: String
case object O1 extends Base:
 def id: String = "object O1"
case object O2 extends Base:
 def id: String = "object O2"

def work[B <: Base](b: B)(f: [B <: Base] => B => String) = s"<${f(b)}>"
val fas = [B <: Base] => (b: B) => s"found: $b"
work(O1)(fas) // Returns: "<found: O1>"
work(O2)(fas) // Returns: "<found: O2>"

See other examples in this source file that discuss two or more type parameters.

Type Wildcard Versus Placeholder
I mentioned in several places, starting with “Givens and Imports” on page 159, that
Scala 3 has changed the wildcard for types from _ to ?. For example, when you don’t
need to know the type of a sequence’s parameters:

def length(l: Seq[?]) = l.size

The rationale for this change is to reserve use of _ to be the placeholder for argu‐
ments passed to types and functions. (The use of _ for imports is also being replaced
with *.) Specifically, f(_) is equivalent to x => f(x) and C[_] is equivalent to X =>>
C[X].

This change will be phased in gradually. In Scala 3.0, either character can be used for
wild cards. In 3.1, using _ as a wildcard will trigger a deprecation warning. After 3.1, _

394 | Chapter 17: Scala’s Type System, Part II

will be the placeholder character and ? will be the wildcard character, exclusively.
Note that Java also uses ? as the wildcard for type parameters.

Recap and What’s Next
Shapeless is the Scala project that has pushed the limits of Scala’s type system and led
to several improvements in Scala 3. It is part of the Typelevel ecosystem of advanced,
powerful libraries. While many of the techniques we surveyed in this chapter require
a bit more work to understand and use, they can also greatly reduce subtle bugs and
code boilerplate, while still providing wide reuse and composability.

While you don’t have to master all the intricacies of Scala’s rich type system to use
Scala effectively, the more you learn the details, the easier it will be to understand and
use advanced code.

Next we’ll explore more advanced topics in FP. In particular, we’ll see how higher-
kinded types enable the powerful concepts of category theory.

Recap and What’s Next | 395

https://oreil.ly/qVo7V
https://typelevel.org

CHAPTER 18

Advanced Functional Programming

Let’s return to functional programming (FP) and discuss some more advanced con‐
cepts. You can skip this chapter if you are a beginner, but come back to it if you hear
people using terms like algebraic data types, category theory, functors, monads, semi‐
groups, and monoids.

The goal here is to give you a sense of what these concepts are and why they are use‐
ful without getting bogged down in too much theory and notation.

Algebraic Data Types
There are two common uses for the acronym ADT, abstract data types and algebraic
data types. Abstract data types are familiar from object-oriented programming
(OOP). An example is Seq, an abstraction for all the sequential collections in the
library.

In contrast, algebraic data types, for which we’ll use ADT from now on, are algebraic
in the sense that they obey well-defined mathematical properties. This is important
because if we can prove properties about our types, it raises our confidence that they
are bug free.

Sum Types Versus Product Types
Scala types divide into sum types and product types. The names sum and product are
associated with the number of instances possible for a particular type.

Most of the classes you know are product types. For example, when you define a case
class or a tuple, how many unique instances can you have? Consider this simple
example:

case class Person(name: Name, age: Age) // or (Name, Age) tuples

397

You can have as many instances of Person as the allowed values for Name times the
allowed values for age. Let’s say that Name encapsulates nonempty strings and disal‐
lows nonalphabetic characters (for some alphabet). There will effectively still be
infinitely many values, but let’s suppose it is N. Similarly, Age limits integer values,
let’s say between 0 and 130.

Because we can combine any Name value with any Age value to create a Person, the
number of possible Person instances is N × 131. For this reason, such types are called
product types. Here product refers to the number of possible instances of the type.
Replace Person with the (Name, Age) tuple type, and the same argument applies.

It’s also the source of the name for Scala’s Product type, a supertype of tuple types and
case classes (see “Products, Case Classes, Tuples, and Functions” on page 316).

We learned in “Reference Versus Value Types” on page 252 that the single instance of
Unit has the mysterious name (). This odd-looking name actually makes sense if we
think of it as a zero-element tuple. Whereas a two-element tuple of (Name, Age) val‐
ues can have N × 131 values, a no-element tuple can have just one instance because it
can’t carry any state.

Consider what happens if we start with a two-element tuple, (Name, Age), and con‐
struct a new type by adding Unit:

type unitTimesTuple2 = (Unit, Name, Age)

How many instances does this type have? It’s exactly the same as the number of types
that (Name, Age) has. In product terms, it’s as if we multiplied the number of
(Name,Age) values by 1. This is the origin of the name Unit, just as one is the unit of
integer multiplication.

The zero for product types is scala.Nothing. Combining Nothing with any other
type to construct a new type must have zero instances because we don’t have an
instance to inhabit the Nothing field, just as 0 × N = 0 in integer multiplication.

Now consider sum types. Enumerations are an example of sum types. Recall this Log
gingLevel example from “Trait Parameters” on page 282:

// src/main/scala/progscala3/traits/Logging.scala
package progscala3.traits.logging

enum LoggingLevel:
 case Debug, Info, Warn, Error, Fatal

There are exactly five LoggingLevel values, which are mutually exclusive. We can’t
have combinations of them.

398 | Chapter 18: Advanced Functional Programming

https://oreil.ly/0zdOi

1 Option could also be implemented as an enum, but Scala 3.0 uses the Scala 2.13 library implementation with a
sealed trait, for example.

Another way to implement a sum type is to use a sealed hierarchy of objects. Option
is a good example, which looks like the following, ignoring most implementation
details:1

sealed trait Option[+T]
case class Some[T](value: T) extends Option[T]
case object None extends Option[Nothing]

Even though the number of instances of T itself might vary, the ADT Option only has
two allowed values, Some[T] and None. We saw in “Sealed Class Hierarchies and Enu‐
merations” on page 62 that Option could also be implemented with an enum. This cor‐
respondence between enumerations and sealed hierarchies is not accidental.

Properties of Algebraic Data Types
In mathematics, algebra is defined by three aspects:

A set of objects
Not to be confused with our OOP notion of objects. They could be numbers,
Persons, or anything.

A set of operations
How elements are combined to create new elements that are still a member of the
set.

A set of laws
These are rules that define the relationships between operations and objects. For
example, for numbers, (x × (y × z)) == ((x × y) × z) (associativity law).

Let’s consider product types first. The informal arguments we made about the num‐
bers of instances are more formally described by operations and laws. Consider again
the product of Unit and (Name, Age). Because we are counting instances, this prod‐
uct obeys commutativity and associativity. Using a pseudocode for this arithmetic:

Unit * (Name * Age) == (Name * Age) * Unit
Unit * (Name * Age) == (Unit * Name) * Age

This generalizes to combinations with non-Unit types:

Trees * (Name * Age) == (Name * Age) * Trees
Trees * (Name * Age) == (Trees * Name) * Age

Similarly, multiplication with zero (Nothing) trivially works because the counts are all
zero:

Algebraic Data Types | 399

Nothing * (Name * Age) == (Name * Age) * Nothing
Nothing * (Name * Age) == (Nothing * Name) * Age

Turning to sum types, it’s useful to recall that sets have unique members. Hence we
could think of our allowed values as forming a set. That implies that adding Nothing
to the set returns the same set. Adding Unit to the set creates a new set with all the
original elements plus one, Unit. Similarly, adding a non-Unit type to the set yields a
new set with all the original members and all the new members. The same algebraic
laws apply that we expect for addition:

Nothing + (Some + None) == (Some + None) + Nothing
Unit + (Some + None) == (Some + None) + Unit
FooBar + (Some + None) == (Some + None) + FooBar
FooBar + (Some + None) == (FooBar + Some) + None

Finally, there is even a distributive law of the form x(a + b) = x × a + x × b:

Name * (Some + None) = Name * Some + Name * None

I’ll let you convince yourself that it actually works.

Final Thoughts on Algebraic Data Types
What does all this have to do with programming? This kind of precise reasoning
encourages us to examine our types. Do they have precise meanings? Do they con‐
strain the allowed values to just those that make sense? Do they compose to create
new types with precise behaviors? Do they prevent ad hoc extensions that break the
rules?

Category Theory
In one sense, the Scala community divides into two camps, those who embrace cate‐
gory theory, a branch of mathematics, as their foundation for programming, and
those who rely less heavily on this approach. You could argue that this book falls into
the latter grouping, but that’s only because category theory is advanced and this book
is aimed at a wide audience with different backgrounds.

This section introduces you to the basic ideas of category theory and to a few of the
concepts most commonly used in FP. They are very powerful tools, but they require
some effort to master.

In mathematics, category theory generalizes all aspects of mathematics in ways that
enable reasoning about global properties. Hence, it offers deep and far-reaching
abstractions. However, when it is applied to code, many developers struggle with the
level of abstraction encountered. It’s easier for most people to understand concrete
examples, rather than abstractions. You may have felt this way while reading “Higher-
Kinded Types” on page 388. Striking the right balance between concrete and abstract
can be very hard in programming tasks. It’s one of the most difficult trade-offs to get

400 | Chapter 18: Advanced Functional Programming

right. It is important to remember that even abstractions have costs, as well as many
virtues.

Nevertheless, category theory now occupies a central place in advanced FP. Its use
was pioneered in Haskell to solve various design problems and to push the envelope
of functional thinking, especially around principled use of mutable versus immutable
constructs.

If you are an advanced Scala developer, you should learn the rudiments of category
theory as applied to programming, then decide whether or not it is right for your
team and project. Unfortunately, I’ve seen situations where libraries written by talen‐
ted proponents of category theory have failed in their organizations because the rest
of the team found the libraries too difficult to understand and maintain. If you
embrace category theory, make sure you consider the full life cycle of your code and
the social aspects of software development.

Typelevel Cats is the most popular library in Scala for functional abstractions, includ‐
ing categories. It is a good vehicle for learning and experimentation. I’ll use simplified
category implementations in this chapter to minimize what’s new to learn, overlook‐
ing details that Cats properly handles.

In a sense, this section continues where “Higher-Kinded Types” on page 388 left off.
There, we discussed abstracting over parameterized types. For example, generalizing
from specific type constructors like Seq[A] to all M[A], where M is itself a parameter.
We focused on folding there. Now we’ll see how the functional combinators, like map,
flatMap, fold, and so forth, are modeled by categories.

What Is a Category?
Let’s start with the general definition of a category, which contains three entities that
generalize what we said earlier about algebraic properties:

• A class consisting of a set of objects. These terms are used more generally than in
OOP.

• A class of morphisms, also called arrows. A generalization of functions and writ‐
ten f: A → B. Morphisms connect objects in the category. For each morphism, f,
object A is the domain of f and object B is the codomain.

• A binary operation called morphism composition with the property that for f: A →
B and g: B → C, the composition g ◦ f: A → C exists. Note that f is applied first,
then g (i.e., right to left). It helps to say g follows f.

Two axioms are satisfied by morphism composition:

Category Theory | 401

https://typelevel.org/cats

• Each object x has one and only one identity morphism, IDx. That is, the domain
and codomain are the same. Composition with identity has the following prop‐
erty: f ◦ IDx = IDx ◦ f.

• Associativity: for f: A → B, g: B → C, h: C → D, (h ◦ g) ◦ f = h ◦ (g ◦ f).

Now let’s look at a few concepts from category theory that are used in software devel‐
opment (of the many categories known to mathematics): functor (and the special
cases of monad and arrow), semigroup, monoid, and applicative.

Functor
Functor maps one category to another. In Scala terms, it abstracts the map operation.
Let’s define the abstraction and then implement it for two concrete types, Seq and
Option, to understand these ideas:

// src/main/scala/progscala3/fp/categories/Functor.scala
package progscala3.fp.categories

trait Functor[F[_]]:
 def map[A, B](fa: F[A])(f: A => B): F[B]

object SeqF extends Functor[Seq]:
 def map[A, B](seq: Seq[A])(f: A => B): Seq[B] = seq map f

object OptionF extends Functor[Option]:
 def map[A, B](opt: Option[A])(f: A => B): Option[B] = opt map f

The Scala library defines map as a method on most of the parameterized types.
This implementation of Functor is a separate module. An instance of a parame‐
terized type is passed as the first argument to map.

The map parameters are the F[A] and a function A => B. An F[B] is returned.

Define implementations for Seq and Option. For simplicity, just call the map
methods on the collections!

Let’s try these types:

// src/script/scala/progscala3/fp/categories/Functor.scala
scala> import progscala3.fp.categories.*

scala> val fid: Int => Double = i => 1.5 * i

scala> SeqF.map(Seq(1,2,3,4))(fid)
 | SeqF.map(Seq.empty[Int])(fid)
val res0: Seq[Double] = List(1.5, 3.0, 4.5, 6.0)
val res1: Seq[Double] = List()

402 | Chapter 18: Advanced Functional Programming

scala> OptionF.map(Some(2))(fid)
 | OptionF.map(Option.empty[Int])(fid)
val res2: Option[Double] = Some(3.0)
val res3: Option[Double] = None

So why is the parameterized type with a map operation called a functor? Let’s look at
the map declaration again. We’ll redefine map with Seq for simplicity (and rename it),
then define a second version with the parameter lists switched:

def map1[A, B](seq: Seq[A])(f: A => B): Seq[B] = seq map f
def map2[A, B](f: A => B)(seq: Seq[A]): Seq[B] = seq map f

Now note the type of the new function returned when we use partial application on
the second version:

scala> val fm = map2((i: Int) => i * 2.1)
val fm: Seq[Int] => Seq[Double] = Lambda...

So map2 lifts a function A => B to a new function Seq[A] => Seq[B]! In general,
Functor.map morphs A => B, for all types A and B, to F[A] => F[B] for any category
F. Put another way, Functor allows us to apply a pure function (f: A => B) to a con‐
text (like a collection) holding one or more A values. We don’t have to extract those
values ourselves to apply f, then put the results into a new instance of the context.

In category theory terms, a Functor is a mapping between categories. It maps both
the objects and the morphisms. For example, List[Int] and List[String] are two
different categories, and so are all Ints and all Strings.

Functor has two additional properties that fall out of the general properties and axi‐
oms for category theory:

• A functor F preserves identity; that is, the identity of the domain maps to the
identity of the codomain.

• A functor F preserves composition: F(f ◦ g) = F(f) ◦ F(g).

For an example of the first property, an empty list is the unit of lists; think of what
happens when you concatenate it with another list. Mapping over an empty list
always returns a new empty list, possibly with a different list element type.

Are the common and Functor-specific axioms satisfied? Let’s try an example for
associativity:

val f1: Int => Int = _ * 2
val f2: Int => Int = _ + 3
val f3: Int => Int = _ * 5

val l = List(1,2,3,4,5)

import progscala3.fp.categories.SeqF

Category Theory | 403

val m12a = SeqF.map(SeqF.map(l)(f1))(f2)
val m23a = (seq: Seq[Int]) => SeqF.map(SeqF.map(seq)(f2))(f3)
assert(SeqF.map(m12a)(f3) == m23a(SeqF.map(l)(f1)))

Take the time to understand what each expression is doing. Verify that we are really
checking associativity. Scala syntax is nice and concise, but sometimes the simple way
of writing associativity in mathematics doesn’t translate as concisely to code.

For a more extensive version of this example, see the code examples src/test/scala/
progscala3/fp/categories/FunctorPropertiesSuite.scala, which use the property testing
framework ScalaCheck to verify the properties for randomly generated collections.

It turns out that all the functions of f: A => B also form a category. Suppose I have a
rich library of math functions for Doubles (A =:= B here). Can I use a functor to
transform them into a set of functions for BigDecimals? Yes, but it can get tricky. See
the code examples file Functor2.scala (in the same directory as Functor.scala) for
several variations that support different scenarios.

Is it practical to have a separate abstraction for map? Abstractions with mathematically
provable properties enable us to reason about program structure and behavior. For
example, once we had a generalized abstraction for mapping, we could apply it to
many different data structures, even functions. This reasoning power of category
theory is why many people are so enthusiastic about it.

The Monad Endofunctor
If Functor is an abstraction for map, is there a corresponding abstraction for flatMap?
Yes, Monad, which is named after the term monas used by the Pythagorean philoso‐
phers of ancient Greece, roughly translated as “the Divinity from which all other
things are generated.”

Technically, monads are specific kinds of functors, called endofunctors, that transform
a category into itself.

Here is our definition of a Monad type, this time using a ScalaCheck property test:

// src/main/scala/progscala3/fp/categories/Monad.scala
package progscala3.fp.categories
import scala.annotation.targetName

trait Monad[M[_]]:
 def flatMap[A, B](fa: M[A])(f: A => M[B]): M[B]
 def unit[A](a: => A): M[A]

object SeqM extends Monad[Seq]:
 def flatMap[A, B](seq: Seq[A])(f: A => Seq[B]): Seq[B] =
 seq flatMap f
 def unit[A](a: => A): Seq[A] = Seq(a)

404 | Chapter 18: Advanced Functional Programming

https://www.scalacheck.org

object OptionM extends Monad[Option]:
 def flatMap[A, B](opt: Option[A])(f: A => Option[B]):Option[B]=
 opt flatMap f
 def unit[A](a: => A): Option[A] = Option(a)

Use M[_] for the type representing a data structure with monadic properties. As
for Functor, it takes a single type parameter.

Note that the function f passed to flatMap has the type A => M[B], not A => B,
as it was for Functor.

Monad has a second function that takes a by-name value and returns it inside a
Monad instance. In other words, it is a factory method for creating a Monad.

The name unit is conventional, but it works like our familiar apply methods. In fact,
an abstraction with just unit is called Applicative, which is an abstraction over
construction.

Let’s try our Monad implementation. I’ll explain the Monad Laws shortly.

// src/test/scala/progscala3/fp/categories/MonadPropertiesSuite.scala
package progscala3.fp.categories

import munit.ScalaCheckSuite
import org.scalacheck.*

class MonadPropertiesSuite extends ScalaCheckSuite:
 import Prop.forAll

 // Arbitrary function:
 val f1: Int => Seq[Int] = i => 0 until 10 by ((math.abs(i) % 10) + 1)

 import SeqM.*
 val unitInt: Int => Seq[Int] = (i:Int) => unit(i)
 val f2: Int => Seq[Int] = i => Seq(i+1)

 property("Monad law for unit works for Sequence Monads") {
 forAll { (i: Int) =>
 val seq: Seq[Int] = Seq(i)
 flatMap(unit(i))(f1) == f1(i) &&
 flatMap(seq)(unitInt) == seq
 }
 }

 property("Monad law for function composition works for Sequence Monads") {
 forAll { (i: Int) =>
 val seq = Seq(i)
 flatMap(flatMap(seq)(f1))(f2) ==
 flatMap(seq)(x => flatMap(f1(x))(f2))

Category Theory | 405

 }
 }

One way to describe flatMap is that it extracts an element of type A from the context
on the left and binds it to a new kind of element in a new context instance. Like map,
it removes the burden of knowing how to extract an element from M[A]. However, it
looks like the function parameter now has the burden of knowing how to construct a
new M[B]. Actually, this is not an issue because unit can be called to do this.

The Monad Laws are as follows.

unit behaves like an identity (so it’s appropriately named):

flatMap(unit(x))(f) == f(x) Where x is a value
flatMap(m)(unit) == m Where m is a Monad instance

Like morphism composition for Functor, flat mapping with two functions in succes‐
sion behaves the same as flat mapping over one function that is constructed from the
two functions:

flatMap(flatMap(m)(f))(g) == flatMap(m)(x => flatMap(f(x))(g))

Monad’s practical importance in software is the principled way it lets us wrap context
information around a value, then propagate and evolve that context as the value
evolves. Hence, it minimizes coupling between the values and contexts while the
presence of the monad wrapper informs the reader of the context’s existence.

This pattern is used frequently in Scala, inspired by the pioneer usage in Haskell.
Examples include most of the collections, Option, and Try, which we discussed in
“Options and Container Types” on page 232.

All are monadic because they support flatMap and unit construction with compan‐
ion object apply methods. All can be used in for comprehensions. All allow us to
sequence operations.

For example, the signature for Try.flatMap looks like this:

sealed abstract class Try[+A] {
 ...
 def flatMap[B](f: A => Try[B]): Try[B]
 ...
}

Now consider processing a sequence of steps where the previous outcome is fed into
the next step, but we stop processing at the first failure:

// src/script/scala/progscala3/fp/categories/ForTriesSteps.scala
import scala.util.{ Try, Success, Failure }

type Step = Int => Try[Int]

val fail = RuntimeException("FAIL!")

406 | Chapter 18: Advanced Functional Programming

2 Philip Wadler’s home page has many of his pioneering papers on monad theory and applications.

val successfulSteps: Seq[Step] = List(
 (i:Int) => Success(i + 5),
 (i:Int) => Success(i + 10),
 (i:Int) => Success(i + 25))
val partiallySuccessfulSteps: Seq[Step] = List(
 (i:Int) => Success(i + 5),
 (i:Int) => Failure(fail),
 (i:Int) => Success(i + 25))

def sumCounts(countSteps: Seq[Step]): Try[Int] =
 val zero: Try[Int] = Success(0)
 (countSteps foldLeft zero) {
 (sumTry, step) => sumTry.flatMap(i => step(i))
 }

assert(sumCounts(successfulSteps).equals(Success(40)))
assert(sumCounts(partiallySuccessfulSteps).equals(Failure(fail)))

Type alias for step functions.

Two sequences of steps, one successful, one with a failed step.

A method that works through a step sequence, passing the result of a previous
step to the next step.

The logic of sumCounts handles sequencing, while flatMap handles the Try contain‐
ers. Note that subtypes are actually returned, either Success or Failure.

The use of monads was pioneered in Haskell,2 where functional purity is more
strongly emphasized. For example, monads are used to compartmentalize input and
output (I/O) from pure code. The IO Monad handles this separation of concerns.
Also, because it appears in the type signature of functions that use it, the reader and
compiler know that the function isn’t pure. Similarly, Reader and Writer monads
have been defined in many languages for the same purposes. The more general term
now used is effects for these applications of monads for state management.

Cats Effect is a Scala effects library. FS2 and Zio use effects for robust, distributed
computation.

A generalization of monad is arrow. Whereas monad lifts a value into a context (i.e.,
the function passed to flatMap is A => M[B]), an arrow lifts a function into a context,
(A => B) => C[A => B]. Composition of arrows makes it possible to reason about
sequences of processing steps (i.e., A => B, then B => C, etc.) in a referentially

Category Theory | 407

https://oreil.ly/d6ck3
https://typelevel.org/cats-effect
https://fs2.io
https://github.com/zio/zio

transparent way, outside the context of actual use. In contrast, a function passed to
flatMap is explicitly aware of its context, as expressed in the return type!

The Semigroup and Monoid Categories
We first encountered Semigroup and Monoid in “Scala 3 Type Classes” on page 143.
Semigroup is the abstraction of addition, a category where there is a single morphism
that is associative. Monoid is a Semigroup with an identity value, which we called unit
previously. The obvious examples are numbers with addition, where 0 is the identity,
and numbers with multiplication, where 1 is the identity.

It turns out that a lot of computation problems can be framed as monoids, especially
in data analytics. This makes it possible to write infrastructure that knows how to add
things, and specific problems are solved by defining a monoid that implements the
computation.

For a great talk on this idea, see the Strange Loop 2013 talk by Avi Bryant called Add
All the Things!. Avi discusses how Twitter and Stripe used monoids to solve many
large-scale data problems in a generic and reusable way.

We saw an implementation of Monoid already in “Scala 3 Type Classes” on page 143,
with examples. Let’s see another example to refresh our memories.

A utility I often want is one that will merge two maps. Where the keys are unique in
each one, it performs the union of the key-value pairs, but where the keys appear in
both maps, it merges the values in some way. Merging of maps and the values for a
given key are nicely modeled with monoids. The following MapMergeMonoid is
defined to expect a Monoid instance for the values. The code is concise, yet general-
purpose and flexible:

// src/main/scala/progscala3/fp/categories/MapMerge.scala
package progscala3.fp.categories
import progscala3.contexts.typeclass.Monoid

given MapMergeMonoid[K, V : Monoid]: Monoid[Map[K, V]] with
 def unit: Map[K, V] = Map.empty
 extension (map1: Map[K, V]) def combine(map2: Map[K, V]): Map[K, V] =
 val kmon = summon[Monoid[V]]
 (map1.keySet union map2.keySet).map { k =>
 val v1 = map1.getOrElse(k, kmon.unit)
 val v2 = map2.getOrElse(k, kmon.unit)
 k -> (v1 combine v2)
 }.toMap

Require a Monoid for the values too.

408 | Chapter 18: Advanced Functional Programming

https://oreil.ly/btcF7
https://oreil.ly/btcF7

We map over the union of the key sets, and for each key, extract the corresponding
value or use the Monoid[V].unit as the default. Then all we have to do is combine the
two values and return a new key-value pair. Finally, we convert back to a map.

Let’s merge some maps. We’ll use the given StringMonoid and IntMonoid we saw in
Chapter 5:

// src/script/scala/progscala3/fp/categories/MapMerge.scala

scala> import progscala3.fp.categories.MapMergeMonoid
 | import progscala3.contexts.typeclass.given

scala> val map1i = Map("one" -> 1, "two" -> 2)
 | val map2i = Map("two" -> 2, "three" -> 3)
 | val map1s = map1i.map{ (k,v) => (k, v.toString) }
 | val map2s = map2i.map{ (k,v) => (k, v.toString) }

scala> map1i.combine(map2i)
 | map1s.combine(map2s)
 | map1s <+> map2s // Recall this operator is defined too.
val res0: Map[String, Int] = Map(one -> 1, two -> 4, three -> 3)
val res1: Map[String, String] = Map(one -> 1, two -> 22, three -> 3)
val res2: Map[String, String] = Map(one -> 1, two -> 22, three -> 3)

Recall that when importing a named given, you just specify the name, MapMerge
Monoid in this case, but you use given when importing all givens in a package.

Note the differences for key two when we merge the integer 2 versus a string.

Recap and What’s Next
I hope this brief introduction to more advanced concepts, especially category theory,
will help when you encounter these concepts in the Scala community. They are pow‐
erful, if also challenging to master.

Scala’s standard library uses object-oriented conventions to add functions like map
and flatMap as methods to many types, rather than implementing them as separate
utilities. We learned in Chapter 8 that flatMap, along with map and filter, make for
comprehensions so concise. Now we see that flatMap comes from monad, giving us
monadic behaviors.

Unfortunately, categories have been steeped in mystery because of the mathematical
formalism and their abstract names. However, they are abstractions of familiar con‐
cepts, with powerful implications for program correctness, reasoning, concision, and
expressiveness.

I consider functor, monad, arrow, applicative, and monoid examples of Functional
Design Patterns. The term Design Patterns has a bad connotation for some functional

Recap and What’s Next | 409

programmers, but really this confuses specific examples of patterns with the concept
of patterns. Some of the classic OOP patterns are still valuable in FP or OOP. We’ve
discussed Observer several times already, which is widely used in asynchronous tool‐
kits. Other classic OOP patterns are less useful today. Now we have patterns from cat‐
egory theory too. They fit the definition of design patterns as reusable constructs
within a context, where the context of use helps you decide when a pattern is useful
and when it isn’t.

For an exploration of category theory in Scala using Cats, see [Welsh2017]. The rec‐
ommendations in “Recap and What’s Next” on page 224 provide additional FP con‐
tent. For a general introduction to category theory for programmers, see
[Milewski2019].

The next chapter explores another practical subject, the important challenge of writ‐
ing scalable, concurrent, and distributed software with Scala.

410 | Chapter 18: Advanced Functional Programming

CHAPTER 19

Tools for Concurrency

Nearly twenty years ago, in the early 2000s, we hit the end of Moore’s Law for the per‐
formance growth of single-core CPUs. We’ve continued to scale performance through
increasing numbers of cores and servers, trading vertical scaling for horizontal scal‐
ing. The multicore problem emerged as developers struggled to write robust applica‐
tions that leverage concurrency across CPU cores and across a cluster of machines.

Concurrency isn’t easy because it usually requires coordinated access to shared, muta‐
ble state. Low-level libraries provide locks, mutexes, and semaphores for use on the
same machine, while other tools enable distribution across a cluster. Failure to prop‐
erly coordinate access to mutable state often leads to state corruption, race condi‐
tions, and lock contention. For cluster computing, you need to add networking
libraries and coding idioms that are efficient and easy to use.

These problems drove interest in FP when we learned that embracing immutability
and purity largely bypasses the problems of multithreaded programming. We also
saw a renaissance of other mature approaches to concurrency, like the actor model,
which lend themselves to cluster-wide distribution of work.

This chapter explores concurrency tools for Scala. You can certainly use any multi‐
threading API, external message queues, etc. We’ll just discuss Scala-specific tools,
starting with an API for a very old approach, using separate operating system
processes.

The scala.sys.process Package
Sometimes it’s sufficient to coordinate state through database transactions, message
queues, or simple pipes from one operating system process to another.

411

Using operating system processes, like the Linux/Unix shell tools, is straightforward
with the scala.sys.process package. Here’s a REPL session that demonstrates some
of the features. Note that a bash-compatible shell is used for the commands:

scala> import scala.sys.process.*
 | import java.net.URL
 | import java.io.File

scala> "ls -l src".!
total 0
drwxr-xr-x 6 deanwampler staff 192 Jan 2 10:53 main
drwxr-xr-x 4 deanwampler staff 128 Jan 13 14:34 script
drwxr-xr-x 3 deanwampler staff 96 Jan 2 10:53 test
val res0: Int = 0

scala> Seq("ls", "-l", "src").!!
val res1: String = "total 0
drwxr-xr-x 6 deanwampler staff 192 Jan 2 10:53 main
drwxr-xr-x 4 deanwampler staff 128 Jan 13 14:34 script
drwxr-xr-x 3 deanwampler staff 96 Jan 2 10:53 test
"

The single ! method prints the output and returns the command’s exit status, 0 in this
case. The double !! method returns the output as a string.

We can also connect processes. Consider the following methods:

// src/main/scala/progscala3/concurrency/process/Process.scala

scala> def findURL(url: String, filter: String) =
 | URL(url) #> s"grep $filter" #>> File(s"$filter.txt")
 |
 | def countLines(fileName: String) =
 | s"ls -1 $fileName" #&& s"wc -l $fileName"
def findURL(url: String, filter: String): scala.sys.process.ProcessBuilder
def countLines(fileName: String): scala.sys.process.ProcessBuilder

The findURL method builds a process sequence that opens a URL, redirects the out‐
put to the command grep $filter, where filter is a parameter to the method, and
finally appends the output to a file. It doesn’t overwrite the file because we used #>>.
The countLines method runs ls -l on a file. If it exists, then it also counts the lines.

The #> method overwrites a file or pipes into stdin for a second process. The #>>
method appends to a file. The #&& method only runs the process to its right if the pro‐
cess to its left succeeds, meaning that the lefthand process returns exit code zero.

Both methods return a scala.sys.process.ProcessBuilder. They don’t actually run
the commands. For that we need to invoke their ! or !! method:

scala> findURL("https://www.scala-lang.org", "scala").!
val res2: Int = 0

412 | Chapter 19: Tools for Concurrency

https://oreil.ly/y9QDx
https://oreil.ly/6ar20

1 scala.concurrent.Promise is also useful for working with Futures, but I won’t discuss it further here.

scala> countLines("scala.txt").!
-rw-r--r-- 1 deanwampler staff 12236 Jan 13 15:50 scala.txt
 128 scala.txt
val res3: Int = 0

Run the two commands again and you’ll see that the file size doubles because we
append text to it each time findURL executes.

When it’s an appropriate design solution, small, synchronous processes can be imple‐
mented in Scala or any other language, then glued together using the process pack‐
age API.

For an alternative to sys.process, see Li Haoyi’s Ammonite.

Futures
For many needs, process boundaries are too coarse-grained. We need easy-to-use
concurrency APIs that use multithreading within a single process.

Suppose you have units of work that you want to run asynchronously, so you don’t
block while they are running. They might need to do I/O, for example. The simplest
mechanism is scala.concurrent.Future.

When you construct a Future, control returns immediately to the caller, but the value
is not guaranteed to be available yet. Instead, the Future instance is a handle to
retrieve a result that will be available eventually. You can continue doing other work
until the future completes, either successfully or unsuccessfully. There are different
ways to handle this completion.1

We saw a simple example in “A Taste of Futures” on page 42. An instance of
scala.concurrent.ExecutionContext is required to manage and run futures. We
used the default value, ExecutionContext.global, which manages a thread pool for
running tasks inside Futures, without locking up a thread per future. As users, we
don’t need to care about how our asynchronous processing is executed, except for
special circumstances like performance tuning, when we might implement our own
ExecutionContext.

To explore Futures, first consider the case where we need to do 10 things in parallel,
then combine the results:

// src/main/scala/progscala3/concurrency/futures/FutureFold.scala
package progscala3.concurrency.futures

import scala.concurrent.{Await, Future}

Futures | 413

https://oreil.ly/BKUsC
https://ammonite.io
https://oreil.ly/eCa1m
https://oreil.ly/htPhv
https://oreil.ly/huy6M

import scala.concurrent.duration.*
import scala.concurrent.ExecutionContext.Implicits.global

@main def TryFutureFold =
 var accumulator = ""
 def update(s:String) = accumulator.synchronized { accumulator += s}

 val futures = (0 to 9) map {
 i => Future {
 val s = i.toString
 update(s)
 s
 }
 }

 val f = Future.reduceLeft(futures)((s1, s2) => s1 + s2)
 println(f)

 val n = Await.result(f, 2.seconds)
 assert(n == "0123456789")

 println(s"accumulator: $accumulator")

To see asynchrony at work, append to a string, but do so using the low-level
synchronized primitive for thread safety.

Create 10 asynchronous futures, each performing some work.

Future.apply takes two parameter lists. The first has a single, by-name body to
execute asynchronously. The second list has the implicit ExecutionContext.
We’re allowing the global implicit value to be used. The body converts the inte‐
ger to a string s, appends it to accumulator, and returns s. The type of futures is
IndexedSeq[Future[String]]. In this contrived example, the Futures complete
very quickly.

Reduce the sequence of Future instances into a single Future[String] by con‐
catenating the strings. Note that we don’t need to extract the strings from the
futures because reduceLeft handles this for us. Afterward, it constructs a new
Future for us.

Block until the Future f completes using scala.concurrent.Await. The
scala.concurrent.duration.Duration parameter says to wait up to two sec‐
onds, timing out if the future hasn’t completed by then. Using Await is the prefer‐
red way to block the current thread when you need to wait for a Future to
complete. Adding a time-out prevents deadlock!

414 | Chapter 19: Tools for Concurrency

https://oreil.ly/KoZ7X
https://oreil.ly/vtD5w

Because the futures are executed concurrently, the list of integers in the accumulator
will not be in numerical order; for example, 0123574896, 1025438967, and
0145678932 are the outputs of three of my runs. However, because fold walks
through the Futures in the same order in which they were constructed, the string it
produces always has the digits in strict numerical order, 0123456789.

Future.fold and similar methods execute asynchronously themselves; they return a
new Future. Our example only blocks when we called Await.result.

Well, not exactly. We did use accumulator.synchronized to
update the string safely. Sometimes this low-level construct is all
you need for safely updating a value, but be aware of how it intro‐
duces blocking into your application!

While the required time-out passed to Await.result avoids the potential of deadlocks
in production, we still block the thread! Instead of using Await, let’s register a call‐
back that will be invoked when the Future completes, so our current thread isn’t
blocked. Here is a simple example:

// src/main/scala/progscala3/concurrency/futures/FutureCallbacks.scala
package progscala3.concurrency.futures

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Try, Success, Failure}

case class ThatsOdd(i: Int) extends RuntimeException(
 s"odd $i received!")

val doComplete: Try[String] => Unit =
 case s: Success[String] => println(s)
 case f: Failure[String] => println(f)

@main def TryFuturesCallbacks =
 val futures = (0 to 9).map {
 case i if i % 2 == 0 => Future.successful(i.toString)
 case i => Future.failed(ThatsOdd(i))
 }
 futures.map(_.onComplete(doComplete))

An exception we’ll throw for odd integers.

Define a callback handler for both successful and failed results. Its type must be a
function, Try[A] => B, because the callback will be passed a Try[A], where A is
String here, encapsulating success or failure. The function’s return type can be
anything, but note that onComplete returns Unit; nothing can be returned from

Futures | 415

the handler, since it runs asynchronously. In real application, like a web server, a
response could be sent to the caller at this point.

If the Future succeeds, the Success clause will match. Otherwise the Failure
will match. We just print either result.

Create the Futures where odd integers are immediately completed as failures,
while even integers are successes. We use two methods on the Future companion
object for this purpose.

Traverse over the futures to attach the callback, which will be called immedi‐
ately since our Futures have already completed by this point.

Running the TryFuturesCallbacks produces output like the following, where the
order will vary from run to run:

Failure(progscala3.concurrency.futures.ThatsOdd: odd 1 received!)
Success(2)
Success(0)
Success(4)
Failure(progscala3.concurrency.futures.ThatsOdd: odd 5 received!)
Failure(progscala3.concurrency.futures.ThatsOdd: odd 7 received!)
Failure(progscala3.concurrency.futures.ThatsOdd: odd 9 received!)
Success(8)
Failure(progscala3.concurrency.futures.ThatsOdd: odd 3 received!)
Success(6)

Future is monadic like Option, Try, Either, and the collections. We can use them in
for comprehensions and manipulate the results with our combinator friends, map,
flatMap, filter, and so forth.

When working with graphs of futures, use of callbacks can get complicated quickly.
For Scala 2, the separate scala-async project provides a more concise DSL for work‐
ing with futures. At the time of this writing, this library hasn’t been ported to Scala 3,
but it may be available by the time you read this section.

Robust, Scalable Concurrency with Actors
The actor model provides a reasonably intuitive and robust way to build, distributed
applications with evolving state, where both the state and the computation can be dis‐
tributed and parallelized. Fundamentally, an actor is an object that receives messages
and takes action on those messages, one at a time and without preemption, thereby
ensuring thread safety when local state is modified. The order in which messages
arrive is unimportant in some actor systems, but not all. An actor might process a
message itself, or it might forward the message or send a new message to another
actor. An actor might create new actors as part of handling a message. A message

416 | Chapter 19: Tools for Concurrency

https://oreil.ly/OyX3i

might trigger the actor to change how it handles future messages, in effect imple‐
menting a state transition in a state machine.

Unlike traditional object systems that use method calls, actor message sending is usu‐
ally asynchronous, so the global order of actions is nondeterministic. Like traditional
objects, an actor may control some state that it evolves in response to messages. A
well-designed actor system will prevent any other code from accessing and mutating
this state directly.

These features allow actors to run in parallel, even across a cluster. They provide a
principled approach to managing global state, mostly avoiding all the problems of
low-level, multithreaded concurrency.

The two most important, production-ready implementations of the actor model are
the Erlang implementation and Akka, which drew its inspiration from Erlang. Both
implement an important innovation over the core actor model, a robust model of
error handling and recovery, based on the idea of actor supervision.

Akka: Actors for Scala
In the Actor Model of Concurrency, independent software entities called actors share
no mutable state access with each other. Instead, they communicate by exchanging
messages, and each actor modifies its local state in a thread-safe way. By eliminating
the need to synchronize access to shared, mutable state, it is far easier to write robust,
concurrent applications without using tedious and error-prone synchronization
primitives.

Akka is the popular concurrency library for Scala and Java that implements the actor
model. Let’s work through an example. You might find the Akka Scaladoc useful as
we go.

Not only are actors created to do the routine work of the system, supervisors are cre‐
ated to watch the life cycle of one or more actors. Should an actor fail, perhaps
because an exception is thrown, the supervisor follows a strategy for recovery that
can include restarting, shutting down, ignoring the error, or delegating to its own
supervisor for handling. See the Akka supervision documentation for details.

This architecture cleanly separates error-handling logic from normal processing. It
enables an architecture-wide strategy for error handling. Most importantly, it pro‐
motes a principle of “let it crash.”

In most software, it is common to mix error-handling logic with normal processing
code, resulting in a complicated mess, which often fails to implement a complete,
comprehensive strategy. Inevitably, some production scenarios will trigger a failed
recovery that leaves the system in an inconsistent state. When the inevitable crash

Robust, Scalable Concurrency with Actors | 417

https://akka.io
https://oreil.ly/q360r
https://oreil.ly/GQznd

happens, service is compromised and diagnosing the root cause of the problem
proves difficult. Akka actors cleanly separate error handling from normal processing.

The example we’ll use simulates a client interface invoking a service, which delegates
tasks to workers. This client interface (and location of the main entry point) is called
ServiceClient. It passes user commands to a single ServerActor, which in turn del‐
egates work to several WorkerActors, so that it never blocks. Each worker simulates a
sharded data store. It maintains a map of keys (Longs) and values (Strings), and it
supports CRUD (create, read, update, and delete) semantics. ServiceClient also pro‐
vides a simple command-line interface to the user.

The following example uses the newer typed actor version of Akka. The classic API,
where messages are effectively untyped (Any) will be difficult to use with the new
Matchable feature in Scala 3 because pattern matching on Any is effectively depre‐
cated. If your applications use the classic Akka API, plan to convert them to the new
API!

Before walking through ServiceClient, let’s look at Messages, which defines all the
messages exchanged between the actors:

// src/main/scala/progscala3/concurrency/akka/Messages.scala
package progscala3.concurrency.akka
import scala.util.Try
import akka.actor.typed.ActorRef

object Messages:
 sealed trait Request:
 val replyTo: ActorRef[Response]

 enum AdminRequest extends Request:
 case Start(numberOfWorkers: Int = 1, replyTo: ActorRef[Response])
 case Crash(whichOne: Int, replyTo: ActorRef[Response])
 case Dump(whichOne: Int, replyTo: ActorRef[Response])
 case DumpAll(replyTo: ActorRef[Response])

 enum CRUDRequest extends Request:
 val key: Long
 case Create(key: Long, value: String, replyTo: ActorRef[Response])
 case Read(key: Long, replyTo: ActorRef[Response])
 case Update(key: Long, value: String, replyTo: ActorRef[Response])
 case Delete(key: Long, replyTo: ActorRef[Response])

 case class Response(
 result: Try[String], replyTo: ActorRef[Response])

Use a Messages object to hold all the message types.

418 | Chapter 19: Tools for Concurrency

https://oreil.ly/mmZCh

A common supertype for two groups of messages. All the messages will carry a
reference to the actor to which replies should be sent. (This will always be Serv
iceClient.)

A group of messages for administration purposes: start processing (where the
number of workers is specified), simulate a crash of a worker, dump the current
state of a worker, and dump the states of all workers.

Enumeration for all CRUD requests: create, read, update (or create), and delete
records. All of them have a record key.

Wrap responses in a common message. A Try wraps the result of the correspond‐
ing request, indicating either success or failure.

ServiceClient constructs the akka.actor.typed.ActorSystem, which controls
everything, and one instance of ServerActor. The file is quite long because of all the
code for the command-line interface. I will elide most of it here, as it is less relevant
to the discussion. See the full listing in the code examples. Here’s the first part of
ServiceClient:

// src/main/scala/progscala3/concurrency/akka/ServiceClient.scala
package progscala3.concurrency.akka

import akka.actor.typed.scaladsl.Behaviors
import akka.actor.typed.{ActorRef, ActorSystem, Behavior}
import java.lang.NumberFormatException as NFE
import scala.util.{Try, Success, Failure}

object ServiceClient:
 import Messages.*

 private var server: ActorRef[Request] = null
 private var client: ActorRef[Response] = null

 def main(params: Array[String]): Unit =
 ActorSystem(ServiceClient(), "ServiceClient")
 processUserInput()

 def apply(): Behavior[Response] =
 Behaviors.setup { context =>
 client = context.self
 server = context.spawn(ServerActor(), "ServerActor")
 assert(client != null && server != null)
 val numberOfWorkers =
 context.system.settings.config.getInt("server.number-workers")
 server ! AdminRequest.Start(numberOfWorkers, client)
 Behaviors.receiveMessage { message =>
 message match

Robust, Scalable Concurrency with Actors | 419

https://oreil.ly/XkBma

2 If you know the classic API, Behavior plus an ActorContext replaces the Actor type.

 case Response(Success(s), _) =>
 printResult(s"$s\n")
 Behaviors.same
 case Response(Failure(th), _) =>
 printResult(s"ERROR! $th")
 Behaviors.same
 }
 }

 protected def printResult(message: String) =
 println(s"<< $message")
 prompt()
 protected def prompt() = print(">> ")

The client is an object with the main entry point.

After initializing the server and client ActorRefs, these won’t be null. An
akka.actor.typed.ActorRef is a handle for the actual actor. The latter can be
restarted, while the ActorRef remains durable. Hence, all interaction with an
actor goes through the ActorRef.

The single ActorSystem is passed to the top-level Behavior, which encapsulates
the message handling logic of the client actor.2 In idiomatic Akka, this Behavior
is returned by calling the object’s apply.

After setting up the actors, process user command-line input. This method,
which is very long, is not shown.

Create the message handling Behavior for the client. Note that it is typed to
accept only Messages.Response objects, meaning it doesn’t handle
Messages.Request messages, even though it sends them!

Remember the client’s ActorRef using context.self. Then use context.spawn
and ServerActor.apply to construct the server actor.

Send the Start message to the ServerActor to begin processing. Determine from
the following configuration how many workers to use.

Each match clause ends with Behaviors.same, which means the next message
received will be handled exactly the same way. You can change the handling logic
between messages to create a state machine.

420 | Chapter 19: Tools for Concurrency

https://oreil.ly/6tSLn
https://oreil.ly/Auz11

Here is where all results are printed to the console, followed by the prompt for
the next command.

Akka uses the Lightbend Config library, which allows us to configure many aspects of
the application in text files, rather than hardcoding information in the code:

// src/main/resources/application.conf
akka {
 loggers = [akka.event.slf4j.Slf4jLogger]
 loglevel = debug

 actor {
 debug {
 unhandled = on
 lifecycle = on
 }
 }
}

server {
 number-workers = 5
}

Configure properties for the Akka system as a whole.

Configure logging. The sbt build includes the akka-slf4j module required.
There is a corresponding logback.xml in the same directory. By default, all
debug and higher messages are logged.

Configure properties for every actor. In this case, enable debug logging of occur‐
rences when an actor receives a message it doesn’t handle and any life cycle
events.

The ServerActor instance will be given the identifier server. Here is where
properties for each kind of actor are specified, in this case the number of workers
to create.

Next, let’s look at ServerActor, sections at a time, omitting some details:

// src/main/scala/progscala3/concurrency/akka/ServerActor.scala
package progscala3.concurrency.akka
import akka.actor.typed.scaladsl.Behaviors
import akka.actor.typed.{ActorRef, Behavior, SupervisorStrategy}
import scala.util.Success

object ServerActor:
 import Messages.*

 var workers = Vector.empty[ActorRef[Request]]

Robust, Scalable Concurrency with Actors | 421

https://oreil.ly/i42AO

 def apply(): Behavior[Request | Response] =
 Behaviors.supervise(processRequests)
 .onFailure[RuntimeException](SupervisorStrategy.restart)

Keep track of the workers. Note that they are expected to only receive and handle
Requests.

The apply method returns a behavior than can process both Request messages
from ServiceClient and Response messages from the workers. This is a nice use
of union types. A custom akka.actor.SupervisorStrategy is also defined, over‐
riding the default strategy, “let it crash.”

Continuing with the definition of ServerActor:

 protected def processRequests: Behavior[Request | Response] =
 Behaviors.receive { (context, message) =>
 message match
 case AdminRequest.Start(numberOfWorkers, replyTo) =>
 workers = (1 to numberOfWorkers).toVector.map { i =>
 val name = s"worker-$i"
 context.spawn(WorkerActor(context.self, name), name)
 }
 replyTo ! Response(
 Success(s"Starting $numberOfWorkers workers"), replyTo)
 Behaviors.same
 case c @ AdminRequest.Crash(n, replyTo) =>
 val n2 = n % workers.size
 workers(n2) ! c
 replyTo ! Response(
 Success(s"Crashed worker $n2 (from n=$n)"), replyTo)
 Behaviors.same
 case AdminRequest.DumpAll(replyTo) =>
 (0 until workers.length).foreach { n =>
 workers(n) ! AdminRequest.DumpAll(replyTo)
 }
 Behaviors.same
 case AdminRequest.Dump(n, replyTo) =>
 val n2 = n % workers.size
 workers(n2) ! AdminRequest.Dump(n2, replyTo)
 Behaviors.same
 case request: CRUDRequest =>
 val key = request.key.toInt
 val index = key % workers.size // in case key >= workers.size
 workers(index) ! request
 Behaviors.same
 case resp @ Response(_, replyTo) =>
 replyTo ! resp
 Behaviors.same
 }

422 | Chapter 19: Tools for Concurrency

https://oreil.ly/BpCA1

 end processRequests
end ServerActor

The message handler can be defined by implementing one of two methods. Here
we use receive, which takes a context, needed to spawn workers, and a message
argument. Contrast with the simpler receiveMessage method implemented in
ServiceClient.

Spawn the workers and reply to the client (replyTo) with a success message,
which is optimistic, since it doesn’t confirm success first!

Deliberately crash a worker by forwarding c to it. It will be restarted (see the fol‐
lowing example).

Most of the clauses look like this one; forward or send one or more messages to
workers. Responses from them are handled by the Response clause at the end.

All the CRUD requests are simply forwarded to the correct worker.

Handle responses from workers and forward to the replyTo actor, which is
always ServiceClient.

Finally, here is WorkerActor, where many details are similar to what we saw in the
preceding example:

// src/main/scala/progscala3/concurrency/akka/WorkerActor.scala
package progscala3.concurrency.akka
import scala.util.{Try, Success, Failure}
import akka.actor.typed.scaladsl.Behaviors
import akka.actor.typed.{ActorRef, Behavior, SupervisorStrategy}
import Messages.*

object WorkerActor:

 def apply(
 server: ActorRef[Request | Response],
 name: String): Behavior[Request] =
 val datastore = collection.mutable.Map.empty[Long,String]
 def processRequests(
 server: ActorRef[Request | Response],
 name: String): Behavior[Request] =
 Behaviors.receiveMessage {
 case CRUDRequest.Create(key, value, replyTo) =>
 datastore += key -> value
 server ! Response(Success(s"$name: $key -> $value added"), replyTo)
 Behaviors.same
 case CRUDRequest.Read(key, replyTo) =>
 server ! Response(
 Try(s"$name: key = $key, ${datastore(key)} found"), replyTo)

Robust, Scalable Concurrency with Actors | 423

 Behaviors.same
 case CRUDRequest.Update(key, value, replyTo) =>
 datastore += key -> value
 server ! Response(Success(s"$name: $key -> $value updated"), replyTo)
 Behaviors.same
 case CRUDRequest.Delete(key, replyTo) =>
 datastore -= key
 server ! Response(Success(s"$name: $key deleted"), replyTo)
 Behaviors.same
 case AdminRequest.Crash(n, replyTo) =>
 val ex = CrashException(name)
 server ! Response(Failure(ex), replyTo)
 throw ex
 Behaviors.stopped
 case AdminRequest.Dump(n, replyTo) =>
 server ! Response(
 Success(s"$name: Dump($n): datastore = $datastore"), replyTo)
 Behaviors.same
 case AdminRequest.DumpAll(replyTo) =>
 server ! Response(
 Success(s"$name: DumpAll: datastore = $datastore"), replyTo)
 Behaviors.same
 case req: Request =>
 server ! Response(
 Failure(UnexpectedRequestException(req)),req.replyTo)
 Behaviors.same
 }
 Behaviors.supervise(processRequests(server, name))
 .onFailure[RuntimeException](SupervisorStrategy.restart)
 end apply

 case class CrashException(name: String)
 extends RuntimeException(s"$name: forced to crash!")
 case class UnexpectedRequestException(request: Request)
 extends RuntimeException(s"Did not expect to receive $request!")

Keep a mutable map of key-value pairs for this worker. Because the Behavior
handler is thread-safe (enforced by Akka itself) and because this mutable state is
private to the actor, it is safe to use a mutable object.

This nested method will return the Behavior[Request] needed. It will be wrap‐
ped in a supervisor strategy ahead.

The CRUD operation that adds a new key-value pair to the map and then sends a
Response to the server. The other CRUD operations are very similar.

Crash the actor by throwing a CrashException. It will be restarted automatically
due to the supervisor strategy.

424 | Chapter 19: Tools for Concurrency

This clause is undesirable, but workers don’t handle all the Request messages.
The message hierarchy could be fine-tuned to prevent the need for this clause.

Restart the actor if it fails, such as the deliberate crashes.

After all this buildup, let us now run the application using sbt:

runMain progscala3.concurrency.akka.ServiceClient

Enter h or help to see the list of commands and try several. Try dump to see the actors
and their contents, then crash one of them and use dump again. The actor should
restart. Use q to exit. There is also a file of commands that can run through the pro‐
gram and copy and paste the contents of misc/run-akka-input.txt to the >> prompt.

You might be concerned that the ServerActor’s list of workers would become invalid
when an actor crashes. This is why all access to an actor goes through the ActorRef
handle, and direct access to the underlying actor is prevented. ActorRefs are very sta‐
ble. When a supervisor restarts an actor, it resets the ActorRef to point to the new
instance. If the actor is not restarted or resumed, all messages sent to the correspond‐
ing ActorRef are forwarded to the ActorSystem.deadLetters, which is the place
where messages from dead actors go to die.

Actors: Final Thoughts
Our application demonstrates a common pattern for handling a high volume of con‐
current input traffic, delegating results to asynchronous workers, then returning the
results (or just printing them in this case).

We only scratched the surface of what Akka offers. Still, you now have a sense for
how a typical, nontrivial Akka application works. Akka has excellent documentation
at https://akka.io. [Roestenburg2014] is one of several books on Akka.

Akka actors are lightweight. You can easily create millions of them in a single, large
JVM instance. Keeping track of that many autonomous actors would be a challenge,
but if most of them are stateless workers, they can be managed. Akka also supports
clustering across thousands of nodes for very high scalability and availability
requirements.

The actor model is criticized for not being an FP model. Message sending is used
instead of function calls with returned values. Effectively, everything is done through
side effects! Furthermore, the model embraces mutable state when useful, as in our
example, although it is encapsulated and handled in a thread-safe way.

Robust, Scalable Concurrency with Actors | 425

https://akka.io
https://oreil.ly/WEFPF

Actors and OOP
The actor model is closely aligned with the vision of OOP espoused by Alan Kay, the
coinventor of Smalltalk and the person who probably coined the term object-oriented
programming. He argued that objects should be autonomous encapsulations of state,
which only communicate through message passing. In fact, invoking a method in
Smalltalk was called “sending a message.”

Finally, the actor model is one approach to large-scale, highly available, event-driven
applications. A few other concurrency and distribution models and corresponding
libraries are worth investigating.

Stream Processing
If you think about how our collections methods work, they are like stream process‐
ors, working through the elements of a collection to map, filter, fold, etc. This idea
generalizes to a more sophisticated model of distributed concurrent event or data
stream processing. For many problems, the streaming model is more intuitive than
the actor model, which is slightly biased toward state machines.

At very large scales, where data sharding over a cluster is essential to meet the
demands for scalability, resiliency, and performance, the following tools have become
the most popular for big-data stream processing:

• Apache Spark started as a batch-oriented tool for processing massive data sets.
Now Spark also offers a streaming API. We’ll revisit Spark in “Scala for Big Data:
Apache Spark” on page 459.

• Apache Flink is an alternative to Spark that has always emphasized streaming
more than batch-mode processing. It appears to be gaining popularity over Spark
for stream processing.

• Apache Kafka is a distributed streaming platform. It provides durable stream
storage, while applications can process the streams any way they want, including
with Spark, Flink, and Kafka’s own streaming API.

All three systems provide Scala APIs. Spark and Kafka are written in Scala. You can
think of Kafka as the streaming analog of storage, while Spark, Flink, and Kafka
streams are the processors that process the stored streams.

Not all applications are extreme scale, however. The streaming metaphor is still use‐
ful, and not just for data processing. For smaller-scale problems, where
single-machine scalability is sufficient, the following libraries provide powerful
streaming semantics:

426 | Chapter 19: Tools for Concurrency

https://oreil.ly/dLnn7
https://spark.apache.org
https://oreil.ly/q2rrz
https://flink.apache.org
https://kafka.apache.org
https://oreil.ly/kEs8g

• Functional Streams for Scala (FS2) is a more pure functional approach to stream
processing.

• Zio is a more purely functional alternative to Akka actors, with a streaming com‐
ponent.

• Akka Streams is a layer on top of the actor model that provides streaming seman‐
tics without the need for writing actor boilerplate.

Recap and What’s Next
We learned how to build scalable, robust, concurrent applications using Akka actors
for large-scale systems. We also learned about Scala’s support for process manage‐
ment and futures. We discussed streaming systems and their applications and even
using shell tools from Scala.

The next chapter examines how to simulate a feature found in some dynamically
typed languages, methods that don’t actually exist but can be interpreted as such
dynamically.

Recap and What’s Next | 427

https://fs2.io
https://zio.dev
https://oreil.ly/MPYk3

CHAPTER 20

Dynamic Invocation in Scala

Most of the time, Scala’s static typing is a virtue. It adds safety constraints that are use‐
ful for ensuring correctness at runtime and easier comprehension when browsing
code. Many errors are caught at compile time. These benefits are especially useful in
large-scale systems.

Occasionally, you might miss the benefits of dynamic typing, however. For example,
in “Structural Types” on page 362, we discussed a scenario where we would like to
process SQL query result sets without necessarily defining a custom type, like a case
class, for each and every query’s returned record type. We’ll explore this scenario in
this chapter. We’ll also avoid the completely untyped alternative of holding the col‐
umn names and values as key-value pairs in a map or using a generic record type that
requires casting column values to the correct type.

We’ll leverage two mechanisms in Scala 3 that fall in the gap between specific types
and generic records. The first is the new Scala 3 feature called structural types that I
introduced in “Structural Types” on page 362. This chapter will start with a more
sophisticated example for the query scenario. Then we’ll discuss a less type-safe but
more flexible mechanism that exists in both Scala 2 and 3, the scala.Dynamic trait.
The Dynamic trait provides greater flexibility, but structural types provide better type
safety.

Structural Types Revisited
Scala 3 structural types provide type-safe dynamic invocation. We saw a short exam‐
ple that uses the new reflect.Selectable trait in “Structural Types” on page 362.
Here is a more extensive example adapted from the Dotty documentation. It treats
SQL query records as a sequence of name-value pairs, while also providing a way to
refer to the fields with “dot” notation and even handle updates:

429

https://oreil.ly/qyvuL
https://oreil.ly/x3RtH
https://oreil.ly/iwGAI

// src/script/scala/progscala3/dynamic/SelectableSQL.scala

import reflect.ClassTag
import collection.mutable.HashMap as HMap

object SQL:
 open class Record(elems: (String, Any)*) extends Selectable:
 private val fields = HMap.from(elems.toMap)

 def selectDynamic(name: String): Any = fields(name)

 def applyDynamic(
 operation: String, paramTypes: ClassTag[?]*)(args: Any*): Any =
 val fieldName = operation.drop("update".length) // remove prefix
 val fname = fieldName.head.toLower +: fieldName.tail
 fields += fname -> args.head

 override def toString: String = s"Record($fields)"

type Person = SQL.Record {
 val name: String
 val age: Int
 def updateName(newName: String): Unit
 def updateAge(newAge: Int): Unit
}

Use a mutable map to show how to update variables.

Selectable.selectDynamic is used to retrieve a value for a given name.

Selectable.applyDynamic is used to find methods to call.
scala.reflect.ClassTag is used to retain type information that is otherwise
erased. See Chapter 24.

The dynamic methods supported will be updateFooBar, etc. This line converts
FooBar into fooBar, which should be a field name.

Specify the fields for a Person. These will be accessed using Record.select
Dynamic.

Specify the methods for updating a Person field. These will be accessed using
Record.applyDynamic.

Let’s try it:

scala> val person = SQL.Record(
 | "name" -> "Buck Trends", "age" -> 29,
 | "famous" -> false).asInstanceOf[Person]
val person: Person = Record(HashMap(

430 | Chapter 20: Dynamic Invocation in Scala

https://oreil.ly/24RUa

 name -> Buck Trends, famous -> false, age -> 29))

scala> person.name
 | person.age
 | person.selectDynamic("name")
val res0: String = Buck Trends
val res1: Int = 29
val res2: Any = Buck Trends

scala> person.famous // ERROR
1 |person.famous
 |^^^^^^^^^^^^^
 |value famous is not a member of Person

scala> person.selectDynamic("famous")
val res3: Any = false

scala> person.updateName("Dean Wampler")
 | person.updateAge(30)
 | person
val res4: Person = Record(HashMap(
 name -> Dean Wampler, famous -> false, age -> 30))

scala> person.updateFamous(true) // ERROR
1 |person.updateFamous(true) // ERROR
 |^^^^^^^^^^^^^^^^^^^
 |value updateFamous is not a member of Person

scala> person.applyDynamic("updateFamous", summon[ClassTag[Boolean]])(true)
val res5: Any = HashMap(name -> Buck Trends, famous -> true, age -> 29)

scala> person
val res6: Person = Record(HashMap(
 name -> Buck Trends, famous -> true, age -> 29))

The idiom for constructing instances of Person.

The alternative for finding a field in the internal HashMap, but note the return
type, Any.

Person doesn’t define famous, but we can use selectDynamic to return the value
(of type Any).

We can’t use updateFamous either, but applyDynamic works. It isn’t intended to be
invoked directly, so it’s ugly to pass the summoned ClassTag.

Note that the types for the columns are what we want. When we type person.name,
the compiler generates person.selectDynamic("name").asInstanceOf[String]

Structural Types Revisited | 431

and similarly for age. The update* methods are type-safe too, for the fields we
defined.

Now let’s explore a more general, but less type-safe, mechanism: scala.Dynamic,
which will appear superficially similar to Selectable. Dynamic was also available in
Scala 2.

A Motivating Example: ActiveRecord in Ruby on Rails
Our motivating example is the popular ActiveRecord API in the Ruby on Rails web
framework. ActiveRecord is the original object-relational mapping (ORM) library
integrated with Rails. Most of the details don’t concern us here, but one of the useful
features it offers is a DSL for composing queries that consist of chained method calls
on a domain object.

However, the methods aren’t actually defined explicitly. Instead, invocations are
routed to Ruby’s catch-all method for handling undefined methods, method_missing.
Normally, this method throws an exception, but it can be overridden in classes to do
something else. ActiveRecord does this to interpret the missing method as a directive
for constructing a SQL query.

Suppose we have a simple database table of states in the USA (for some dialect of
SQL):

CREATE TABLE states (
 name TEXT, -- Name of the state.
 capital TEXT, -- Name of the capital city.
 year INTEGER -- Year the state entered the union (USA).
);

With ActiveRecord you can construct queries as follows, where the Ruby domain
object State is the analog of the table states:

Find all states named "Alaska"
State.find_by_name("Alaska")
Find all states named "Alaska" that entered the union in 1959
State.find_by_name_and_year("Alaska", 1959)
...

For a table with lots of columns, statically defining all permutations of the find_by_*
methods would be unworkable. However, the protocol defined by the naming con‐
vention is easy to automate, so no explicit definitions are required. ActiveRecord
automates all the boilerplate needed to parse the name, generate the corresponding
SQL query, and construct in-memory objects for the results.

Hence, ActiveRecord implements an embedded or internal DSL, where the language
is an idiomatic dialect of the host language Ruby rather than a separate language with
its own grammar and parser.

432 | Chapter 20: Dynamic Invocation in Scala

https://oreil.ly/qyvuL
https://oreil.ly/OJmt1
https://rubyonrails.org

Dynamic Invocation with the Dynamic Trait
Normally, a similar DSL in Scala would require all such methods to be defined explic‐
itly. Dynamic works in an analogous way to Ruby’s method_missing, allowing us to
use methods but route the invocations through helper methods. It’s a generalization
of what we did earlier with Selectable.

The Dynamic trait is a marker trait; it has no method definitions. Instead, the com‐
piler sees that this trait is used and follows a protocol described in the trait’s Scaladoc
page. For some Foo type that extends Dynamic, the protocol then works as follows:

What you write: What the compiler generates:

foo.method1("blah") foo.applyDynamic("method1")("blah")

foo.method2(x="hi") foo.applyDynamicNamed("method2")(("x","hi"))

foo.method3(x=1,2) foo.applyDynamicNamed("method3")(("x",1),("",2))

foo.field1 foo.selectDynamic("field1")

foo.field2 = 10 foo.updateDynamic("field2")(10)

foo.array1(10) = 13 foo.selectDynamic("array1").update(10,13)

foo.array2(10) foo.applyDynamic("array2")(10)

Foo must implement any of these methods that might be called. The applyDynamic
method is used for calls that don’t use named parameters. If the user names any of the
parameters, applyDynamicNamed is called. Note that the first parameter list has a sin‐
gle parameter for the method name invoked. The second parameter list has the actual
parameters passed to the method.

You can declare these second parameter lists to allow a variable number of arguments
to be supplied, or you can declare a specific set of typed parameters. It all depends on
how you expect users to call the methods.

The methods selectDynamic and updateDynamic are for reading and writing fields
that aren’t arrays. The second to last example shows the special form used for array
elements. For reading array elements, the invocation is indistinguishable from a
method call with a single parameter. So, for this case, applyDynamic has to be used.

Let’s create a simple query DSL in Scala using Dynamic. Actually, our example is closer
to a query DSL in .NET languages called language-integrated query, or LINQ. LINQ
enables SQL-like queries to be embedded into .NET programs and used with collec‐
tions, database tables, etc. LINQ is one inspiration for Slick, a Scala functional-
relational mapping library.

We’ll implement just a few possible operators, so we’ll call it CLINQ, for cheap
language-integrated query. Also, we’ll assume we only want to query in-memory data

Dynamic Invocation with the Dynamic Trait | 433

https://oreil.ly/4Hva9
https://scala-slick.org

structures. The implementation is compiled with the code examples, so let’s first try a
script that both demonstrates the syntax we want and verifies that the implementa‐
tion works (some output omitted):

// src/script/scala/progscala3/dynamic/CLINQ.scala
scala> import progscala3.dynamic.CLINQ

scala> def makeMap(
 | name: String, capital: String, year: Int): Map[String,Any] =
 | Map("name" -> name, "capital" -> capital, "year" -> year)

scala> val data = List(
 | makeMap("Alaska", "Juneau", 1959),
 | makeMap("California", "Sacramento", 1850),
 | makeMap("Illinois", "Springfield", 1818)))

scala> val states = CLINQ(data)

We’ll study the imported dynamic.CLINQ case class in a moment. The data to query is
a sequence of maps, representing records of fields and values.

Now write SELECT-like queries:

scala> states.name
 | states.capital
 | states.year
val res0: progscala3.dynamic.CLINQ[Any] =
 Map(name -> Alaska)
 Map(name -> California)
 Map(name -> Illinois)
val res1: progscala3.dynamic.CLINQ[Any] =
 Map(capital -> Juneau)
 Map(capital -> Sacramento)
 Map(capital -> Springfield)
val res2: progscala3.dynamic.CLINQ[Any] =
 Map(year -> 1959)
 Map(year -> 1850)
 Map(year -> 1818)

scala> states.name_and_capital
val res3: progscala3.dynamic.CLINQ[Any] =
 Map(name -> Alaska, capital -> Juneau)
 Map(name -> California, capital -> Sacramento)
 Map(name -> Illinois, capital -> Springfield)

scala> states.name_and_year
 | states.capital_and_year
...similar output...

scala> states.name_and_capital_and_year // same as "states.all"
val res6: progscala3.dynamic.CLINQ[Any] =
 Map(name -> Alaska, capital -> Juneau, year -> 1959)

434 | Chapter 20: Dynamic Invocation in Scala

 Map(name -> California, capital -> Sacramento, year -> 1850)
 Map(name -> Illinois, capital -> Springfield, year -> 1818)

Finally, use where clauses for filtering:

scala> states.all.where("year").EQ(1818)
 | states.all.where("name").NE("Alaska")
val res7: progscala3.dynamic.CLINQ[Any] =
 Map(name -> Illinois, capital -> Springfield, year -> 1818)
val res8: progscala3.dynamic.CLINQ[Any] =
 Map(name -> California, capital -> Sacramento, year -> 1850)
 Map(name -> Illinois, capital -> Springfield, year -> 1818)

scala> states.name_and_capital.where("capital").EQ("Sacramento")
 | states.name_and_capital.where("name").NE("Alaska")
 | states.name_and_year.where("year").EQ(1818)
val res9: progscala3.dynamic.CLINQ[Any] =
 Map(name -> California, capital -> Sacramento)
val res10: progscala3.dynamic.CLINQ[Any] =
 Map(name -> California, capital -> Sacramento)
 Map(name -> Illinois, capital -> Springfield)
val res11: progscala3.dynamic.CLINQ[Any] =
 Map(name -> Illinois, year -> 1818)

CLINQ knows nothing about the keys in the maps, but the Dynamic trait allows us to
support methods constructed from them. Here is the implementation of CLINQ:

// src/main/scala/progscala3/dynamic/CLINQ.scala
package progscala3.dynamic
import scala.language.dynamics

case class CLINQ[T](records: Seq[Map[String,T]]) extends Dynamic:

 def selectDynamic(name: String): CLINQ[T] =
 if name == "all" || records.length == 0 then this
 else
 val fields = name.split("_and_")
 val seed = Seq.empty[Map[String,T]]
 val newRecords = records.foldLeft(seed) {
 (results, record) =>
 val projection = record.filter {
 case (key, _) => fields.contains(key)
 }
 // Drop records with no projection.
 if projection.size > 0 then results :+ projection
 else results
 }
 CLINQ(newRecords)

 def applyDynamic(name: String)(field: String): Where = name match
 case "where" => Where(field)
 case _ => throw CLINQ.BadOperation(field, """Expected "where".""")

Dynamic Invocation with the Dynamic Trait | 435

 protected class Where(field: String) extends Dynamic:
 def filter(op: T => Boolean): CLINQ[T] =
 val newRecords = records.filter {
 _ exists {
 case (k, v) => field == k && op(v)
 }
 }
 CLINQ(newRecords)

 def applyDynamic(op: String)(value: T): CLINQ[T] = op match
 case "EQ" => filter(x => value == x)
 case "NE" => filter(x => !(value == x))
 case _ => throw CLINQ.BadOperation(field, """Expected "EQ" or "NE".""")

 override def toString: String = records.mkString("\n")

object CLINQ:
 case class BadOperation(name: String, msg: String) extends RuntimeException(
 s"Unrecognized operation $name. $msg")

Dynamic is an optional language feature, so we use an import to enable it.

Use selectDynamic for the projections of fields.

Return all the fields for the keyword all. Also return immediately if there are no
records. Otherwise, if two or more fields are joined by _and_, then split the name
into an array of field names.

Filter the maps to return just the named fields.

Use applyDynamic for operators that follow projections. We will only implement
where for the equivalent of SQL where clauses. A new Where instance is returned,
which also extends Dynamic.

The Where class is used to filter the records for particular values of the field
named field. The helper method provides the ability to use different operators
(op function).

If EQ is the operator, call filter to return only records where the value for the
given field is equal to the user-specified value. Also support NE (not equals).
Note that supporting greater than, less than, etc., would require more careful
handling of the types because not all possible value types support such
expressions.

CLINQ is definitely cheap in several ways. It doesn’t implement other useful operations
from SQL, like the equivalent of groupBy. Nor does it implement other where-clause

436 | Chapter 20: Dynamic Invocation in Scala

operators like greater than and less than. They are actually tricky to support because
not all possible value types support them.

DSL Considerations
The Selectable and Dynamic traits are part of Scala’s tools for implementing embed‐
ded DSLs (also called internal DSLs). We’ll explore DSLs in depth in the next chapter.
For now, note a few things.

First, the implementation is not easy to understand, which means it’s hard to main‐
tain, debug, and extend. It’s very tempting to use a “cool” tool like this and live to
regret the effort you’ve taken on. So use Dynamic judiciously, as well as any other DSL
feature.

Second, a related challenge that plagues all DSLs is the need to provide meaningful,
helpful error messages to users. Try experimenting with the examples we used in the
previous section and you’ll easily write something the compiler can’t parse and the
error messages won’t be very helpful. (Hint: try using infix notation, where some
periods and parentheses are removed.)

Third, a good DSL should prevent the user from writing something that’s logically
invalid. This simple example doesn’t really have that problem, but it becomes a chal‐
lenge for more advanced DSLs.

Recap and What’s Next
We explored Scala’s hooks for writing code with dynamically defined methods and
values, which are familiar to users of dynamically typed languages like Ruby and
Python. We used it to implement a query DSL that “magically” offered methods based
on data values

However, we also summarized some of the challenges of writing DSLs with features
like this. Fortunately, we have many tools at our disposal for writing DSLs, as we’ll
explore in the next chapter.

DSL Considerations | 437

CHAPTER 21

Domain-Specific Languages in Scala

A domain-specific language (DSL) is a programming language that mimics the terms,
idioms, and expressions used among experts in the targeted domain. Code written in
a DSL reads like structured prose for the domain. Ideally, a domain expert with little
experience in programming can read, understand, and validate this code, if not also
write code in the DSL.

We will just scratch the surface of this large topic and Scala’s support for it. For more
in-depth coverage, see the DSL references in the Bibliography.

Well-crafted DSLs offer several benefits:

Encapsulation
A DSL hides implementation details and exposes only those abstractions relevant
to the domain.

Productivity
Because implementation details are encapsulated, a DSL optimizes the effort
required to write or modify code for application features.

Communication
A DSL helps developers understand the domain and domain experts to verify
that the implementation meets the requirements.

439

However, DSLs also have several drawbacks:

DSLs are difficult to create
Although writing a DSL has been trendy, the effort shouldn’t be underestimated.
The implementation techniques can be nontrivial. It’s difficult to account for all
possible user errors and provide appropriate error handling and intuitive feed‐
back. Good DSLs are harder to design than traditional APIs. The latter tend to
follow language idioms for API design, where uniformity is important and easy
to follow. In contrast, because each DSL is a unique language, the freedom to cre‐
ate code idioms that reflect the domain is hard to do well.

DSLs are hard to maintain
DSLs can require more maintenance over the long term as the domain changes
because of the nontrivial implementation techniques used. Implementation sim‐
plicity is often sacrificed for a better user experience.

It is hard to hide the implementation
DSLs are often leaky abstractions. Especially when errors occur, it’s difficult to
hide the details from the user.

However, a well-designed DSL can be a powerful tool for accelerating user
productivity.

From the implementation point of view, DSLs are classified as internal and external.
An internal (or embedded) DSL is an idiomatic way of writing code in a general-
purpose programming language, like Scala. No special-purpose parser is needed. In
contrast, an external DSL is a custom language with its own custom grammar and
parser.

Internal DSLs can be easier to create because they don’t require a special-purpose
parser. On the other hand, the constraints of the underlying language limit the
options for expressing domain concepts, and it is harder to hide the underlying
implementation. External DSLs remove this constraint. You can design the language
any way you want, as long as you can write a reliable parser for it. Using a custom
parser can be challenging too. Returning good error messages to the user has always
been a challenge for parser writers.

Internal DSLs
Several features of Scala syntax support creation of internal (embedded) DSLs:

Flexible rules for names
Because you can use almost any characters in a name, it’s easy to create names
that fit the domain, like algebraic symbols for types with corresponding proper‐
ties. For example, if you have a Matrix type, you can implement matrix multipli‐
cation with a * method.

440 | Chapter 21: Domain-Specific Languages in Scala

1 There is also support for postfix expressions, like 50 dollars, where dollars would be a method that takes
no arguments. You must enable the postfixOps language feature to use it (e.g., import scala.language.post
fixOps). Postfix expressions are often confusing and ambiguous, so they are strongly discouraged. Support
for them may be removed in a future Scala 3 release.

Infix notation
Defining a * method wouldn’t make much sense if you couldn’t use infix nota‐
tion; for example, matrix1 * matrix2.1

Using clause parameters, context functions, and default parameter values
Three features that reduce boilerplate and hide complex details, such as a context
that has to be passed to every method in the DSL, can be handled instead with a
using clause or context function. Recall that many Future methods take an
implicit ExecutionContext. Context functions, new to Scala 3, help eliminate
boilerplate and provide flexible ways to build concise functionality. See “Context
Functions” on page 172 for details.

Type classes and extension methods
The ability to add methods to existing types. For example, the scala.concur
rent.duration package has implicit conversions for numbers that allow you to
write 1.25.minutes, which returns a FiniteDuration instance equal to 75
seconds.

Dynamic method invocation
As we discussed in Chapter 20, the Selectable (for structural typing) and
Dynamic traits make it possible for an object to accept almost any apparent
method or field invocation, even when the type has no such method or field
defined with that name.

Higher-order functions and by-name parameters
Both enable custom DSLs to look like native control constructs, like the examples
we saw in “Call by Name, Call by Value” on page 94.

Self-type declarations
Nested parts of a DSL implementation can refer to an instance in an enclosing
scope if the latter has a self-type declaration visible to the nested parts. This could
be used to update a state object in the enclosing scope, for example.

Macros
Some advanced scenarios can be implemented using the new macros facility,
which we’ll discuss in Chapter 24.

Let’s create an internal DSL for a payroll application that computes an employee’s pay‐
check every pay period (two weeks). The DSL will compute the net salary by

Internal DSLs | 441

https://oreil.ly/LbUL1
https://oreil.ly/LbUL1
https://oreil.ly/JmWV6

subtracting the deductions from the gross salary, such as taxes, insurance premiums
and retirement fund contributions.

Let’s begin with some common types we’ll use in both the internal and external DSLs.
First, a collection of types for dollars and percentages:

// src/main/scala/progscala3/dsls/payroll/Money.scala
package progscala3.dsls.payroll
import progscala3.contexts.accounting.*
import scala.util.FromDigits.Floating

given Floating[Dollars] with
 def fromDigits(digits: String): Dollars = Dollars(digits.toDouble)

given Floating[Percentage] with
 def fromDigits(digits: String): Percentage = Percentage(digits.toDouble)

implicit class dsc(sc: StringContext):
 def $(tokens: Any*) =
 val str = StringContextUtil.foldTokens(tokens.toSeq, sc.parts)
 Dollars(str.toDouble)

extension (amount: Double)
 def dollars: Dollars = Dollars(amount)
 def percent: Percentage = Percentage(amount)

object StringContextUtil:
 def foldTokens(tokens: Seq[Any], parts: Seq[String]): String =
 val (str, toks) = parts.foldLeft("" -> tokens.toSeq){
 case ((s, toks), s2) =>
 if s2 == null || s2.length == 0 then s+toks.head -> toks.tail
 else s+s2 -> toks
 }
 assert(toks.size == 0)
 str

Reuse the Dollars and Percentage types from “Scala 3 Implicit Conversions” on
page 154.

scala.util.FromDigits is a new Scala 3 feature for converting numeric literals
to types. Discussed briefly in “Numeric Literals” on page 54.

Two given instances for converting floating-point literals to Dollars and
Percentages.

Define a string interpolator that converts strings like $"123.40" to Dollars. We
could try doing one for %"12.0" for percentages, but we run into parse issues
with %.

442 | Chapter 21: Domain-Specific Languages in Scala

https://oreil.ly/iwbNz

Extension methods on Double to convert to Dollars and Percentages .

A utility for interpolated strings. It handles cases like $"$dollars.$cents",
where those values for $dollars and $cents are passed in as tokens and the
fixed parts of the interpolated string are passed in as parts strings. To recon‐
struct values, you take a part when it’s not empty or you take a token.

I won’t actually use the floating-point literal initialization supported using the new
FromDigits feature, but I added them here to show more tools you can use for your
DSLs.

The rest of the shared code is for deductions:

// src/main/scala/progscala3/dsls/payroll/Deductions.scala
package progscala3.dsls.payroll
import progscala3.contexts.accounting.*

sealed trait Deduction:
 def name: String
 def amount(basis: Dollars): Dollars

case class PercentageDeduction(
 name: String, percentage: Percentage) extends Deduction:
 def amount(basis: Dollars): Dollars = basis * percentage
 override def toString = s"$name: $percentage"

case class DollarsDeduction(name: String, dollars: Dollars) extends Deduction:
 def amount(basis: Dollars): Dollars = dollars
 override def toString = s"$name: $dollars"

case class Deductions(
 name: String,
 annualPayPeriods: Int = 1,
 deductions: Vector[Deduction] = Vector.empty):

 def gross(annualSalary: Dollars): Dollars =
 annualSalary / annualPayPeriods

 def net(annualSalary: Dollars): Dollars =
 val g = gross(annualSalary)
 deductions.foldLeft(g) {
 (total, deduction) => total - deduction.amount(g)
 }

 override def toString =
 s"$name Deductions:" + deductions.mkString("\n ", "\n ", "")

A sealed trait for a single deduction, with case classes for dollar-based and
percentage-based deductions. The basis for calculating the amount is ignored for

Internal DSLs | 443

Dollars because the amount is independent of gross salary and such. Really,
basis is a hack for calculating a Dollars value from a Percentage.

All the deductions for a given payroll period.

The gross for the pay period is the total pay before any deductions, such as taxes.

The net pay for the pay period is the total after deductions.

Here is the start of the internal DSL, including a main that demonstrates the DSL
syntax:

// src/main/scala/progscala3/dsls/payroll/internal/DSL.scala
package progscala3.dsls.payroll.internal
import progscala3.dsls.payroll.*
import progscala3.contexts.accounting.*

@main def TryPayroll =
 import dsl.*
 val biweeklyDeductions = biweekly { deduct =>
 deduct federal_tax 25.0.percent
 deduct state_tax 5.0.percent
 deduct insurance_premiums 500.0.dollars
 deduct retirement_savings 10.0.percent
 }

 println(biweeklyDeductions)
 val annualGross = Dollars(100000.0)
 val gross = biweeklyDeductions.gross(annualGross)
 val net = biweeklyDeductions.net(annualGross)
 print(f"Biweekly pay (annual: $annualGross): ")
 println(f"Gross: $gross, Net: $net")

object dsl:
 def biweekly(
 db: DeductionsBuilder => DeductionsBuilder): Deductions =
 db(DeductionsBuilder("Biweekly", 26)).deductions

 case class DeductionsBuilder(
 name: String,
 annualPayPeriods: Int):

 private var all: Vector[Deduction] = Vector.empty

 def deductions: Deductions = Deductions(name, annualPayPeriods, all)

 infix def federal_tax(amount: Percentage): DeductionsBuilder =
 all = all :+ PercentageDeduction("federal taxes", amount)
 this

 infix def state_tax(amount: Percentage): DeductionsBuilder =

444 | Chapter 21: Domain-Specific Languages in Scala

 all = all :+ PercentageDeduction("state taxes", amount)
 this

 infix def insurance_premiums(amount: Dollars): DeductionsBuilder =
 all = all :+ DollarsDeduction("insurance premiums", amount)
 this

 infix def retirement_savings(amount: Percentage): DeductionsBuilder =
 all = all :+ PercentageDeduction("retirement savings", amount)
 this
end dsl

Import the DSL code in the following dsl object.

The DSL in action. The idea is that a nonprogrammer could easily understand
the rules expressed here and perhaps even write them without assistance. To be
clear, this is Scala syntax.

Print the deductions, then compute the net pay for the biweekly payroll.

The method biweekly is the entry point for defining deductions. It constructs an
empty DeductionsBuilder object that will be mutated in place (the easiest design
choice) to add new Deduction instances.

A builder for Deductions. The end user only sees the Deductions object, but the
builder has extra methods for sequencing expressions.

The first of the four kinds of deductions supported. It updates the Deductions
instance in place. We declare these methods infix to support the DSL, but in
general, you should limit use of infix for nonoperator methods.

The output of progscala3.dsls.payroll.internal.TryPayroll is the following:

Biweekly Deductions:
 federal taxes: 25.00%
 state taxes: 5.00%
 insurance premiums: $500.00
 retirement savings: 10.00%
Biweekly pay (annual: $100000.00): Gross: $3846.15, Net: $1807.69

The DSL works as written, but I would argue that it’s far from perfect. Here are some
issues:

It relies heavily on Scala syntax tricks
It exploits infix notation, function literals, etc., to provide the DSL, but it would
be easy for a user to break the code by adding periods, parentheses, and other
changes that seem harmless.

Internal DSLs | 445

The syntax uses arbitrary conventions
Why are the curly braces and parentheses where they are? Why is the deduct
parameter needed in the anonymous function for the example?

Poor error messages
If the user enters invalid syntax, Scala error messages are presented, not domain-
centric error messages.

The DSL doesn’t prevent the user from doing the wrong thing
Ideally, the DSL would not let the user invoke any construct in the wrong con‐
text. Here, too many constructs are visible in the dsl object. Nothing prevents the
user from calling things out of order, constructing instances of internal imple‐
mentation types (like Percentage), etc.

It uses mutable instances
A DSL like this is not designed to be high performance nor would you run it in a
multithreading context. The mutability simplifies the implementation without
serious compromises.

Most of these issues could be fixed with more effort.

Examples of internal DSLs can be found in most of the Scala testing libraries, like
ScalaTest, Specs2, and ScalaCheck. We are about to use another example of a nice
internal DSL for parsing to write an external DSL!

External DSLs with Parser Combinators
When you write a parser for an external DSL, you can use a parser generator tool like
ANTLR. However, several parser combinator libraries for Scala provide intuitive
internal DSLs that make parser definitions look very similar to Extended Backus-
Naur Form. Hence, they provide a very nice example of an internal DSL!

Some of the general-purpose parsing libraries include Fastparse, which aims for high
performance and understandable error messages; Atto, a lightweight and fast library;
a cats-parse a Typelevel project; and the parser combinators library that was origi‐
nally part of the Scala library but is now packaged separately. I’ll use the latter for the
example. The sbt build dependencies for the code examples have been configured to
use it.

446 | Chapter 21: Domain-Specific Languages in Scala

http://scalatest.org
https://oreil.ly/qhSAh
http://scalacheck.org
https://www.antlr.org
https://oreil.ly/Sv2rv
https://oreil.ly/nonkH
https://oreil.ly/pkSOE
https://oreil.ly/tLNfN

About Parser Combinators
Just as the collection combinators we already know construct data transformations,
parser combinators are building blocks for parsers. Parsers that handle specific bits of
input, such as floating-point numbers, integers, whitespace, etc., are combined
together to form parsers for larger expressions. A good parser library supports
sequential and alternative cases, repetition, optional terms, etc.

A Payroll External DSL
We’ll reuse the previous example, but with a simpler grammar because our external
DSL does not have to be valid Scala syntax. Other changes will make parser construc‐
tion easier, such as adding commas between each deduction declaration.

As before, let’s start with the imports and main routine:

// src/main/scala/progscala3/dsls/payroll/parsercomb/DSL.scala
package progscala3.dsls.payroll.parsercomb
import scala.util.parsing.combinator.*
import progscala3.dsls.payroll.*
import progscala3.contexts.accounting.*

@main def TryPayroll =
 import dsl.PayrollParser
 val input = """biweekly {
 federal tax 20.0 percent,
 state tax 3.0 percent,
 insurance premiums 250.0 dollars,
 retirement savings 15.0 percent
 }"""
 val parser = PayrollParser()
 val biweeklyDeductions = parser.parseAll(parser.biweekly, input).get

 println(biweeklyDeductions)
 val annualGross = Dollars(100000.0)
 val gross = biweeklyDeductions.gross(annualGross)
 val net = biweeklyDeductions.net(annualGross)
 print(f"Biweekly pay (annual: $annualGross): ")
 println(f"Gross: $gross, Net: $net")
end TryPayroll

object dsl:
 class PayrollParser extends JavaTokenParsers:

 /** @return Parser[(Deductions)] */
 def biweekly = "biweekly" ~> "{" ~> deductions <~ "}" ^^ { ds =>
 Deductions("Biweekly", 26, ds)
 }

 /** @return Parser[Vector[Deduction]] */
 def deductions = repsep(deduction, ",") ^^ { ds =>

External DSLs with Parser Combinators | 447

 ds.toVector
 }

 /** @return Parser[Deduction] .*/
 def deduction =
 federal_tax | state_tax | insurance | retirement

 /** @return Parser[Deduction] */
 def federal_tax = parsePercentageDeduction("federal", "tax")
 def state_tax = parsePercentageDeduction("state", "tax")
 def retirement = parsePercentageDeduction("retirement", "savings")
 def insurance = parseDollarsDeduction("insurance", "premiums")

 private def parsePercentageDeduction(word1: String, word2: String) =
 word1 ~> word2 ~> percentage ^^ {
 percentage => PercentageDeduction(s"${word1} ${word2}", percentage)
 }
 private def parseDollarsDeduction(word1: String, word2: String) =
 word1 ~> word2 ~> dollars ^^ {
 dollars => DollarsDeduction(s"${word1} ${word2}", dollars)
 }

 /** @return Parser[Dollars] */
 def dollars = doubleNumber <~ "dollars" ^^ { d => Dollars(d) }

 /** @return Parser[Percentage] */
 def percentage = doubleNumber <~ "percent" ^^ { d => Percentage(d) }

 def doubleNumber = floatingPointNumber ^^ (_.toDouble)
 end PayrollParser
end dsl

A test program. Note how the input is defined as a multiline string, with slightly
different values than the previous example. This choice means you don’t get
compile-time checking of the string, but it nicely supports loading definitions
from a file at runtime.

The class defining the grammar and parser. JavaTokenParsers provides some
convenient utilities for parsing numbers and such.

The top-level parser, created by building up smaller parsers. The entry method
biweekly returns a Parser[Deductions], which is a parser for a complete deduc‐
tions specification. It returns a Deductions object. We’ll discuss the syntax in a
moment.

Parse a comma-separated list of deductions. Adding the requirement to use a
comma simplifies the parser implementation. (Notice the commas in the preced‐

448 | Chapter 21: Domain-Specific Languages in Scala

ing input string.) The repsep method parses an arbitrary number of deduction
expressions.

Recognize four possible deductions.

Call one of two helper functions to construct the four deduction parsers.

Parse Dollars and such.

The output of progscala3.dsls.payroll.parsercomb.TryPayroll is the same as
before, with slightly different numbers.

Let’s look at biweekly more closely. Here it is rewritten a bit to aid the discussion:

"biweekly" ~> "{" ~> deductions <~ "}"
 ^^ { ds => Deductions("Biweekly", 26, ds) }

The first line finds three terminal tokens, biweekly, {, and }, with the results of evalu‐
ating the deductions production between the {…}. The arrow-like operators
(actually methods, as always), ~> and <~, mean drop the token on the side of the ~. So
the literals are dropped and only the result of deductions is retained.

In the second line, the ^^ separates the left side reduction from the right side gram‐
mar rule for the production. The grammar rule takes as parameters the tokens
retained. If there is more than one, a partial function literal is used of the form
{ case t1 ~ t2 ~ t2 =>…}, for example. In our case, ds is a Vector of Deduction
instances, which is used to construct a Deductions instance.

Note that DeductionsBuilder in the internal DSL is not needed here.

Internal Versus External DSLs: Final Thoughts
Let’s compare the internal and external DSL logic the end user writes. Here is the
internal DSL example again:

val biweeklyDeductions = biweekly { deduct =>
 deduct federal_tax (25.0 percent)
 deduct state_tax (5.0 percent)
 deduct insurance_premiums (500.0 dollars)
 deduct retirement_savings (10.0 percent)
}

Here is the external DSL example again:

val input = """biweekly {
 federal tax 20.0 percent,
 state tax 3.0 percent,
 insurance premiums 250.0 dollars,

Internal Versus External DSLs: Final Thoughts | 449

 retirement savings 15.0 percent
}"""

You’ll have to weigh which trade-offs make the most sense for your situation. The
external DSL is simpler, but the user must embed the DSL in strings. Hence, compile-
time checking, as well as niceties like IDE code completion, refactoring and color
coding aren’t available.

On the other hand, the external DSL is easier and actually more fun to implement. It
should also be less fragile compared to relying on Scala parsing tricks.

Recall that we can implement our own string interpolators (see “Build Your Own
String Interpolator” on page 142). This is a useful way to encapsulate a parser built
with combinators behind a slightly easier syntax. For example, if you implement a
SQL parser of some sort, let the user invoke it with sql"SELECT * FROM table
WHERE…;", rather than having to use the parser API calls explicitly like we did here.

Recap and What’s Next
It’s tempting to create DSLs with abandon. DSLs in Scala can be quite fun to work
with, but don’t underestimate the effort required to create robust DSLs that meet your
clients’ usability needs, while at the same time requiring reasonable effort for long-
term maintenance and support.

In the next chapter, we’ll explore the ecosystem of Scala tools and libraries.

450 | Chapter 21: Domain-Specific Languages in Scala

CHAPTER 22

Scala Tools and Libraries

This chapter fills in some details about the Scala command-line tools, build tool
options, IDE and text editor integration, and a look at some popular third-party
libraries for Scala. Finally, this chapter explores mixing Java and Scala code.

Libraries and tools change quickly. I will avoid some details that are likely to change
over time, focusing instead of suggestions for finding the best options for your needs,
with some current examples. For the latest library options, search the Scala Library
Index.

Scala 3 Versions
To better support migration of code bases from Scala 2 to 3, Scala 3 introduces a lan‐
guage version construct that allows the user to specify which version should be used,
either with a command-line option or an import statement.

Here is the currently defined list of versions, adapted from the documentation on lan‐
guage versions:

Version 3.0
The current default version. Some Scala 2 idioms are deprecated but still
supported.

Version 3.0-migration
Identical to 3.0 but with a Scala 2 compatibility mode enabled that helps migra‐
tion of Scala 2.13 sources over to Scala 3. In particular:

451

https://index.scala-lang.org
https://index.scala-lang.org
https://oreil.ly/uJZF4
https://oreil.ly/uJZF4

• Flags some Scala 2 constructs that are disallowed in Scala 3 as migration warn‐
ings instead of hard errors.

• Changes some rules to be more lenient and backward compatible with Scala 2.13.
• Gives some additional warnings where the semantics have changed between

Scala 2.13 and 3.0.
• Offers code rewrites from Scala 2.13 to 3.0, when used with the -rewrite flag.

Version future
A preview of changes to be introduced in future releases of Scala 3, when depre‐
cated Scala 2 idioms will be dropped and new Scala 3 features that break Scala 2
code will be enforced.

Version future-migration
The same as future but with additional helpers to migrate from 3.0, including
migration warnings and optional rewrites (using the -rewrite flag).

There are two ways to specify a language version:

• With a -source option for scalac (e.g., -source:future or -source future).
• With a scala.language import at the top of a compilation unit, as in the follow‐

ing example:

import scala.language.future
package p

class C { ... }

Language imports supersede command-line settings in the compilation units where
they are specified. Only one language version import is allowed in a compilation unit,
and it must come before all other definitions in that unit.

Command-Line Interface Tools
I rarely use the Scala CLI tools directly because it’s easier to use them indirectly
through build tools and IDEs. However, you’ll need to configure compiler flags in
your build.sbt.

“Installing the Scala Tools You Need” on page 3 described how to install a Java JDK
and sbt using the instructions on their respective websites. The Scala website’s Get‐
ting Started page discusses many options for installing and using Scala. Here, I’ll dis‐
cuss one of the newer options, using Coursier. Then I’ll discuss the various Scala CLI
tools themselves.

452 | Chapter 22: Scala Tools and Libraries

https://oreil.ly/fXBOA
https://oreil.ly/fXBOA

Coursier
Coursier is a new dependency resolver and tool manager. It replaces Maven and Ivy,
the traditional dependency resolvers for Java and Scala projects. Written in Scala, it is
fast and easy to embed in other applications. Coursier is embedded in sbt.

Installing the Coursier CLI is useful for managing other command-line tools, as well
as libraries. Coursier can be used to install sbt, the various Scala tools, and it can
even manage installations of different JDK versions.

Start with the Coursier installation instructions. See also Alex Archambault’s very
good blog post on using Coursier.

After installing Coursier, run the cs or coursier command to install sbt and several
of the Scala CLI tools. Here’s an example:

cs install sbt scala scalac scaladoc

I’ll discuss these and other scala* tools. Use the --help option to show you how to
configure where tools are installed and more.

Managing Java JDKs with Coursier
You can use Coursier to install and manage multiple JVMs. To see the list of available
JVMs, run this command:

cs java --available

For example, to install the AdoptOpenJDK version 15.0.1:

cs java --jvm adopt:1.15.0-1

To pick a JVM to use, you can run the following command:

cs java --jvm 15.0.1 --setup

If you would rather print a definition for JAVA_HOME for the JVM specified, replace --
setup with --env. Then put the definition in your shell initialization file (e.g.,
~/.bashrc or ~/.zshrc on macOS or Linux). Also modify your PATH to begin with
$JAVA_HOME/bin (or %JAVA_HOME%\bin for Windows). Putting this setting at the
beginning of the PATH prevents other JVMs on your path from being used instead.

To switch between versions in the current shell environment, use these commands
(macOS or Linux):

eval $(cs java --jvm 15.0.1 --env) # Actually set JAVA_HOME
export PATH=$JAVA_HOME/bin:$PATH # Put $JAVA_HOME/bin first on the PATH

Command-Line Interface Tools | 453

https://oreil.ly/ZlxYN
https://oreil.ly/fu9V7
https://oreil.ly/i2k1I

The scalac Command-Line Tool
The scalac command compiles Scala source files and generates JVM class files. You
invoke scalac like this:

scalac <options> <source files>

Recall from “A Taste of Scala” on page 9 that source filenames don’t have to match the
public class name in the file. You can define multiple public classes in a Scala source
file too. Similarly, package declarations don’t have to match the directory structure.

However, in order to conform to JVM requirements, a separate .class file is gener‐
ated for each top-level type with a name that corresponds to the type’s name. The
class files are written to directories corresponding to the package declarations. Scala 3
also outputs .tasty files with an intermediate representation between source code and
JVM byte code files. For teams with mixed Scala 2.13 and Scala 3 libraries, TASTy
Reader was shipped in Scala 2.13.4, so the compiler can use Scala 3 libraries by read‐
ing their .tasty files. Scala 3 can already use Scala 2 libraries. For details, see the Scala
3 Migration Guide and Chapter 24.

Run scalac -help to see all the main options supported. Use scalac -X to see
advanced options, and scalac -Y to see private (experimental) options, mostly of use
to the language development team itself, and experimental options.

Here I’ll just discuss some of the more interesting options, including those used for
the code examples in build.sbt. Table 22-1 shows these options. The ones that aren’t
marked as used are actually commented out in build.sbt, for reasons I’ll explain
shortly.

Table 22-1. The scalac command options used in the code examples

Option Used? Description

-d… X Specify the output directory for build artifacts (set by sbt to target/
scala-3.X.Y/classes).

-encoding utf-8 X Specify character encoding used by source files.

-deprecation X Emit warnings and location for usages of deprecated APIs.

-unchecked X Enable additional warnings where generated code depends on assumptions.

-feature X Emit warnings and locations for usages of features that should be imported explicitly.

-explain X Explain errors in more detail.

-explain-types Explain type errors in more detail.

-indent X Allow significant indentation.

-noindent Require the classic {…} syntax, indentation is not significant.

-new-syntax X Require then in conditional expressions.

-old-syntax Require (…) around conditional expressions.

454 | Chapter 22: Scala Tools and Libraries

https://oreil.ly/dap2o
https://oreil.ly/dap2o

Option Used? Description

-language:Scala2 Compile Scala 2 code, highlight what needs updating.

-migration Emit warning and location for migration issues from Scala 2.

-rewrite Attempt to fix code automatically.

-source:future X Enforce deprecation rules for future Scala 3 releases and such.

-Xfatal-warnings X Treat warnings as compilation errors.

-Yexplicit-nulls Make reference types nonnullable. Nullable types can be expressed with unions (e.g.,
String|Null). (All -Y flags are experimental or internal! They are subject to
change.)

-classpath foo:bar Add to the classpath.

The options -deprecation, -unchecked, and -feature are recommended for main‐
taining good quality code. I like -Xfatal-warnings too. Scala 2 had the -Xlint
option that was useful for flagging legal but questionable constructs.

Use -noindent and -old-syntax if you prefer to require Scala 2 syntax for condition‐
als and use of braces. (Omitting these flags, along with -indent and -new-syntax,
allows old and new syntax.) For this book, I chose to use the new syntax conventions,
more like Python-style syntax. Hence, I use the flags -new-syntax and -indent.

The three flags -language:Scala2, -migration, and -rewrite are very handy for
migrating from Scala 2. I used them when I started migrating the code examples from
the previous edition of this book.

The scala Command-Line Tool
The scala command runs a program, if specified. Otherwise, it starts the REPL. You
invoke scala like this:

scala <options> [<file|class|jar> <arguments>]

The options are the same as for scalac.

The file argument is a source file to interpret. It must have a single @main or main
method entry point:

$ scala src/main/scala/progscala3/introscala/UpperMain2.scala Hello World
HELLO WORLD

Note that none of the files in the code examples’ src/script directory have entry points
because these files are designed for interactive use in the REPL.

The Scala 2 scala command worked like a noninteractive REPL when given a file of
Scala statements and expressions. It just executed them as if they were typed or pasted
into the REPL. The Scala 3 scala command expects the file to contain an entry point
it will run after compiling the file’s contents.

Command-Line Interface Tools | 455

The Scala 2 and 3 REPLs treat input files differently!

You can specify a compiled class or jar file. In the following example, note the use of
the -classpath argument to specify the root location of the sbt-generated .class
files:

$ scala -classpath target/scala-3.0.0/classes progscala3.introscala.Hello Dean
Hello: DEAN

If no file, class, or jar is specified, the interactive REPL is started. See “Running the
Scala Command-Line Tools Using sbt” on page 7 for a discussion of the :help and
other options inside the REPL.

The scaladoc Command-Line Tool
The scaladoc tool is used to generate documentation from code. It was re-
implemented for Scala 3 with the ability to generate a range of static website content,
not just documentation from Scala source files.

The easiest way to use scaladoc for your project is to run the sbt doc task. For more
information, see the new Scaladoc documentation.

Other Scala Command-Line Tools
The Coursier install command can install other useful tools, including the
following:

scalafix

Refactoring and linting tool for Scala.

scalafmt

Code formatter for Scala.

scalap

Class file decompiler.

scalap may be ported to Scala 3 or replaced with a new tool focused on TASTy
Inspection, where TASTy is the new intermediate format used by the compiler for
Scala object code. The Java decompiler CFR is also very useful for this purpose.

456 | Chapter 22: Scala Tools and Libraries

https://oreil.ly/nCu2a
https://oreil.ly/rO8Gj
https://oreil.ly/GTZDT
https://oreil.ly/NdJ0d
https://oreil.ly/PCM7z
https://oreil.ly/PCM7z
https://oreil.ly/KuiVC

Build Tools
sbt is the most common build tool for Scala projects. It also builds Java code.
Table 22-2 lists popular alternatives:

Table 22-2. Build tools for Scala

Name URL Description
Maven (mvn) https://maven.apache.org JVM build tool with an available Scala plug-in.

Gradle https://www.gradle.org JVM build tool with an available Scala plug-in.

Bazel https://bazel.build A cross-language tool that is popular with large enterprises.

Mill https://github.com/lihaoyi/mill Li Haoyi’s Java, Scala, and Scala.js build tool.

Maven and Gradle are widely used in enterprises for JVM-based projects. However,
there are several reasons for choosing sbt as your build tool:

• Nobody gets fired for picking sbt. It’s the ubiquitous, tried and true choice.
• The Scala plug-ins for most IDEs understand sbt projects, which they can

import quickly and easily.
• There are lots of sbt plug-ins for different tasks, like publishing releases to

Maven repositories.

Personally, I would not accept an alternative without the equivalent of sbt console
and sbt ~test. Worst case, consider supporting two build systems, one for the cor‐
porate build and sbt for your development builds.

Integration with IDEs and Text Editors
Scala plug-ins exist for all the major IDEs, providing features like code completion,
refactoring, navigation, and building. In most cases, they rely on your build tool to
provide project-level information, such as dependencies and compiler flags.

Some IDE plug-ins and most text editor plug-ins are based on the Language Server
Protocol (LSP), an open standard started by Microsoft. The Metals project imple‐
ments LSP for Scala. The Metals website provides instructions for installing and using
Metals in many IDEs and text editors.

Using Notebook Environments with Scala
The concept of an interactive notebook has become popular in the data science com‐
munity. The most popular example is Jupyter, formerly known as iPython. Notebooks
integrate nicely formatted documentation written in Markdown, executable code in
many different languages, and the ability to graph data, all intermixed as needed.

Build Tools | 457

https://www.scala-sbt.org/
https://maven.apache.org
https://www.gradle.org
https://bazel.build
https://github.com/lihaoyi/mill
https://oreil.ly/jbEeT
https://oreil.ly/jbEeT
https://oreil.ly/GgBPL
https://jupyter.org
https://oreil.ly/8xQf3

1 At the time of this writing, this environment has not yet been upgraded to Scala 3.

Scala is one language option for most notebook environments. Notebooks are a better
option than Scala worksheets for more permanent yet interactive work because they
integrate documentation, graphing of data, and other tools. They are ideal for tutori‐
als, for example.

One way to work with Scala in Jupyter is to use a Docker image that combines Jupyter
with all the tools you need to run Spark, including Scala. The all-spark-notebook
image is one example. It bundles Apache Toree to provide Spark and Scala support.1

Table 22-3 lists other notebook options you might consider.

Table 22-3. Notebook environments for Scala

Name URL Description
Polynote https://polynote.org A cross-language notebook environment with built-in Scala support, developed by

Netflix.

BeakerX http://beakerx.com Extensions for Jupyter that add Spark and Scala support, graphing libraries, etc. It is
developed by Two Sigma.

Zeppelin https://zeppelin-project.org A popular notebook environment that focuses on big-data environments.

Databricks https://databricks.com A feature-rich, commercial, cloud-based service for Spark with a notebook UI.

For an example that uses notebooks, see my spark-scala-tutorial on Apache Spark
with Scala 2.

Testing Tools
In functional languages with rich type systems, like Scala, specifying the types is seen
as a regression-testing capability, one that’s exercised every time the compiler is
invoked. The goal is to define types that eliminate the possibility of invalid states,
when possible.

Still, tests are required. By now everyone should be using test-driven development, in
some form. Table 22-4 lists some testing libraries to consider.

Table 22-4. Test libraries for Scala

Name URL Description
ScalaTest https://www.scalatest.org The most popular test library for Scala. It provides a rich set of

DSL options, so you can use the style you want for writing
tests.

Specs2 https://github.com/etorreborre/specs2 A testing library that emphasizes tests as specifications of
correct behavior.

458 | Chapter 22: Scala Tools and Libraries

https://docker.com
https://oreil.ly/Eo4wA
https://toree.apache.org
https://polynote.org
https://netflix.com
http://beakerx.com
https://ipython.org
https://www.twosigma.com
https://zeppelin-project.org
https://databricks.com
https://oreil.ly/dgeJa
https://www.scalatest.org
https://github.com/etorreborre/specs2

Name URL Description
MUnit https://scalameta.org/munit A new, lightweight library with basic syntax. (Used for this

edition’s code examples.)

ScalaCheck https://scalacheck.org A property-based testing library.

Hedgehog https://github.com/hedgehogqa/scala-hedgehog A property-based testing library.

I prefer a lightweight library with a minimal feature set. I chose MUnit for the code
examples, which includes built-in support for ScalaCheck.

Types should have well-defined properties. Property-based testing is another angle on
testing popularized by Haskell’s QuickCheck and now ported to many languages.
Conditions for a type are specified that should be true for all instances of the type.
Recall our discussion in “Algebraic Data Types” on page 397. A property-based testing
tool tries the conditions using a representative sample of instances that are automati‐
cally generated. It verifies that the conditions are satisfied for all the instances and
reports when it finds instances that trigger failures. ScalaCheck and Hedgehog are
Scala examples. One or both of them are integrated with the other general-purpose
libraries.

Scala for Big Data: Apache Spark
I mentioned in Chapter 19 that the need to write concurrent programs has been a
driver for adoption of FP. However, good concurrency models, like actors, make it
easier for developers to continue using OOP techniques and avoid the effort of learn‐
ing FP. So perhaps the multicore problem isn’t driving change as fast as many of us
originally thought.

Big data has been another driver of FP adoption. Around the time the second edition
of this book was published, Scala adoption was growing rapidly, driven by exploding
interest in big-data tools like Apache Spark and Apache Kafka, which are written in
Scala.

In particular, the functional combinators in Scala’s collection library, such as map,
flatMap, filter, and fold, shine as tools for manipulating data sets with concise,
composable expressions, many of which have logical mappings to SQL idioms.

I mentioned Spark in the context of stream processing in “Stream Processing” on
page 426. Now we’ll explore the original batch-mode RDD (resilient distributed
dataset) API in a little more detail. Spark’s RDD API was largely inspired by Scala’s
collection library, extending it to be an abstraction for processing massive, partition‐
ing data sets in a cluster.

During this period, many Java developers I spoke with who had big-data experience
and little prior interest in Scala would light up when they saw how concise their code
could be if they made the switch to Scala. For this reason, Scala emerged as the de

Scala for Big Data: Apache Spark | 459

https://scalameta.org/munit
https://scalacheck.org
https://github.com/hedgehogqa/scala-hedgehog
https://oreil.ly/VMzyi
https://spark.apache.org
https://kafka.apache.org
https://oreil.ly/QQptX
https://oreil.ly/QQptX

2 Adapted from my spark-scala-tutorial.

facto programming language for data engineering. Data scientists then and now
mostly used their favorite languages, such as Python.

Another problem Spark has solved is how to optimize memory usage for very large
data sets. The memory models for most languages that support garbage collection are
ideal for graphs of heterogenous objects in memory with complex dependencies on
each other. However, their overhead becomes suboptimal when you have billions of
objects that are essentially homogeneous records in collections with few or no inter‐
dependencies. Spark’s newer Dataset API stores the data off heap in a custom format
that is highly optimized for space and access efficiency.

Let’s see an example of Spark’s RDD API used to implement a popular algorithm
called Word Count. We load a corpus of documents, tokenize them (we’ll just split on
nonalphanumeric characters for simplicity), then count the occurrences of each
unique word across the data set, which could be arbitrarily large:2

// src/script/scala-2/progscala3/bigdata/SparkWordCount.scala

val file = "README.md"
val input = sc.textFile(file).map(_.toLowerCase)
input
 .flatMap(line => line.split("""\W+"""))
 .map(word => (word, 1))
 .reduceByKey((count1, count2) => count1 + count2)
 .saveAsTextFile(file+".wordcount")

Just use the code example README as the corpus.

The spark-shell REPL wraps the Scala REPL and automatically defines an
instance of a class called SparkContext, with the instance name sc. We use it to
load the corpus of text, converting to lowercase. The type of input is RDD in
Spark.

Split on nonalphanumeric sequences of characters, flat-mapping from lines to
words.

Map each word to the tuple (word, 1) (i.e., a count of 1).

Use reduceByKey, which functions like a SQL groupBy followed by a reduction,
in this case summing the values in the tuples, all the 1s. The output is the total
count for each unique word. In Spark, the first element of a tuple is the default
key for operations like this, and the rest of the tuple is the value.

460 | Chapter 22: Scala Tools and Libraries

https://oreil.ly/dgeJa
https://oreil.ly/5yW8d

Write the results to the path specified as the second input parameter. Spark fol‐
lows Hadoop conventions and actually treats the path as a directory to which it
writes one partition file per final task (with naming convention part-n, where n
is a five-digit number, counting from 00000).

See the code example README for details on how to run this example with the Spark
REPL, spark-shell. This program is just seven lines of code! This concision is one
reason Spark remains very popular.

Typelevel Libraries
Most of the state-of-the-art FP libraries for Scala under the Typelevel umbrella.
Table 22-5 lists a few of these libraries. See the projects page for the full list.

Table 22-5. Typelevel libraries

Name URL Description
Cats https://github.com/typelevel/cats The most popular Scala library for pure-FP abstractions, including

categories. It was discussed in “Category Theory” on page 400. See
also subprojects like cats-effect.

Doobie https://github.com/tpolecat/doobie A pure, functional JDBC layer.

FS2 https://fs2.io Functional streams for Scala. Mentioned in “Stream Processing” on
page 426.

http4s https://http4s.org Functional, streaming HTTP.

Monix https://monix.io Composition of high-performance, asynchronous, event-based
programs.

ScalaCheck https://scalacheck.org Property-based testing. Discussed previously.

Shapeless https://github.com/milessabin/shapeless Pushing the envelope of generic programming using type classes and
dependent types.

Spire https://github.com/typelevel/spire Numerics library.

Squants https://github.com/typelevel/squants Quantities, units of measure, and dimensional analysis.

Li Haoyi Libraries
Li Haoyi is one of the most prolific Scala developers in our community. I mentioned a
few of his tools previously. Table 22-6 lists several of his libraries.

Table 22-6. Li Haoyi’s libraries for Scala

Name URL Description
Mill https://github.com/lihaoyi/mill Build tool. Discussed previously.

Ammonite https://ammonite.io/#Ammonite A set of libraries for scripting, including
an excellent replacement for the default
Scala REPL.

Typelevel Libraries | 461

https://typelevel.org
https://typelevel.org/projects
https://github.com/typelevel/cats
https://oreil.ly/QwNu0
https://github.com/tpolecat/doobie
https://fs2.io
https://http4s.org
https://monix.io
https://scalacheck.org
https://github.com/milessabin/shapeless
https://github.com/typelevel/spire
https://github.com/typelevel/squants
https://github.com/lihaoyi/mill
https://ammonite.io/#Ammonite

Name URL Description
Fastparse https://www.lihaoyi.com/post/Fastparse2EvenFasterScalaParserCombi

nators.html
Parser combinators library (see “External
DSLs with Parser Combinators” on page
446).

See his GitHub page for more projects. I also recommend his book, Hands-on Scala
Programming (self-published). It’s a fast introduction to Scala and to all his excellent
libraries and tools.

Java and Scala Interoperability
It’s common for organizations to mix Java and Scala code. This chapter finishes with a
discussion of interoperability between code written in Java and Scala. The Scala.js and
Scala Native websites discuss interoperability concerns for their target platforms.

Invoking Java APIs from Scala “just works” (with one exception). Going the other
direction requires that you understand how some Scala features are encoded in byte
code while still satisfying the JVM specification.

Using Java Identifiers in Scala Code
Java’s rules for identifiers, the names of types, methods, fields, and variables, are more
restrictive than Scala’s rules. In almost all cases, you can just use the Java names in
Scala code. You can create new instances of Java types, call methods, and access fields.

The exception is when a Java name is actually a Scala keyword. As we saw in “Lan‐
guage Keywords” on page 51, you can escape the name with single backticks. For
example, if you want to invoke the match method on java.util.Scanner, then use
myScanner.`match`.

Scala Identifiers in Java Code
On the JVM, identifiers are restricted to alphanumeric characters, underscores (_),
and dollar signs ($). Scala encodes identifiers with operator characters, as shown in
Table 22-7.

Table 22-7. Encoding of operator characters

Operator Encoding Operator Encoding Operator Encoding Operator Encoding

= $eq > $greater < $less

+ $plus - $minus * $times / $div

\ $bslash | $bar ! $bang ? $qmark

: $colon % $percent ^ $up & $amp

462 | Chapter 22: Scala Tools and Libraries

https://www.lihaoyi.com/post/Fastparse2EvenFasterScalaParserCombinators.html
https://www.lihaoyi.com/post/Fastparse2EvenFasterScalaParserCombinators.html
https://github.com/lihaoyi
https://www.handsonscala.com
https://www.handsonscala.com
https://www.scala-js.org
https://oreil.ly/Se0Xp
https://oreil.ly/ibQj6

For your own operator definitions, use the @targetName(…) annotation to specify
the desired name that can be called from Java code.

Java Generics and Scala Parameterized Types
All along, we’ve been using Java types in Scala code, like String and Array. You can
use any Java generic class, including all of the Java collections.

You can also use Scala parameterized types in Java. Consider the following example
using a two-element Scala tuple. You can’t use Scala’s literal syntax for tuples, but you
can still create them:

// src/main/java/progscala3/javainterop/JavaWithScalaTuples.java
import scala.Tuple2;
...
Tuple2<String,Integer> si = new Tuple2<String,Integer>("one", 2);

Table 22-8 repeats Table 11-1 with an added column showing the equivalent Java syn‐
tax for covariant, contravariant, and invariant type specifications.

Table 22-8. Type variance annotations in Scala and Java

Scala Java Description

+T ? extends T Covariant (e.g., Seq[Tsub] is a subtype of Seq[T]).

-T ? super T Contravariant (e.g., X[Tsup] is a subtype of X[T]).

T T Invariant (e.g., can’t substitute Y[Tsup] or Y[Tsub] for Y[T]).

An important difference between Java and Scala is that Java generics are not specified
with variance behavior when they are defined. Instead, the variance behavior is speci‐
fied when the type is used (i.e., at the call site), when instances are declared. Scala
makes it the responsibility of the type designer to specify the correct behavior, rather
than the user’s responsibility to specify the correct variance.

Conversions Between Scala and Java Collections
A common occurrence when using Java libraries from Scala is the need to work with
Java collections. Similarly, using a Scala API from Java may require working with
Scala collections. Since most people will want to work with the native collections for
each language, the Scala library provides conversion utilities.

Unfortunately, there are a number of deprecated converters in the library, so it can be
confusing which group to use. The scala.jdk.CollectionConverters should be
used when using Java collections (including Java Streams) in Scala code, so they feel
native. The collections are actually wrapped, not converted, to avoid copying when
possible.

Java and Scala Interoperability | 463

https://oreil.ly/AErGe

When programming in Java and you want Java collection wrappers around instances
of Scala collections, use the scala.jdk.javaapi.CollectionConverters API.

Some of these utilities leverage types in scala/collection/convert and may be useful for
you to work with directly.

Java Lambdas Versus Scala Functions
When compiling for the JVM, Scala functions are implemented with Java lambdas in
the generated byte code. This means that when calling a Scala library method from
Java code where a function is required, you can pass a lambda. Similarly, when calling
a Java library method from Scala code where a lambda is required, you can pass a
Scala function.

Annotations for JavaBean Properties and Other Purposes
We saw in Chapter 9 that Scala does not follow the JavaBeans conventions for field
reader and writer methods in order to support the more useful Uniform Access Prin‐
ciple. However, if you need these methods for use with dependency injection frame‐
works and other tools, there is an annotation that you can apply to fields,
@scala.beans.BeanProperty, which tells the compiler to generate JavaBeans-style
getter and setter methods.

Here is an example:

// src/main/scala/progscala3/javainterop/ComplexBean.scala
package progscala3.javainterop
import scala.annotation.targetName

/**
 * See also this Scala 2 version:
 * src/main/scala-2/progscala3/javainterop/ComplexBean2.scala
 */
case class ComplexBean(
 @scala.beans.BeanProperty var real: Double,
 @scala.beans.BeanProperty var imaginary: Double):

 @targetName("plus") def +(that: ComplexBean) =
 ComplexBean(real + that.real, imaginary + that.imaginary)
 @targetName("minus") def -(that: ComplexBean) =
 ComplexBean(real - that.real, imaginary - that.imaginary)

Java requires checked exceptions to be declared in method signatures. In Scala code
that will be used from Java, use the @throws annotation to indicate that a particular
exception type may be thrown.

464 | Chapter 22: Scala Tools and Libraries

https://oreil.ly/yRmyf
https://oreil.ly/dgaQH
https://oreil.ly/MUY5a
https://oreil.ly/Sa2U2

Recap and What’s Next
This chapter filled in some details about the Scala command-line tools, build tools,
and integration with IDEs and text editors. I also discussed a few of the third-party
libraries and tools available, but I just scratched the surface. To search for the latest
library options for your particular needs, see the Scala Library Index. Finally, I dis‐
cussed mixing Scala and Java code.

Our next chapter covers application design considerations essential for truly succeed‐
ing with Scala.

Recap and What’s Next | 465

https://index.scala-lang.org

CHAPTER 23

Application Design

Until now, we have mostly discussed language features. Most of the examples we’ve
studied have been small, although I tried to make them realistic and useful. Actually,
small is a very good thing. Drastic reduction in code size means all the problems of
software development diminish in significance.

Not all applications can be small, however. This chapter considers the concerns of
large, evolving APIs and applications. We’ll discuss a few Scala language and API fea‐
tures that we haven’t covered yet, consider a few design patterns and idioms, discuss
architecture concepts, and balance object-oriented versus functional design
techniques.

Recap of What We Already Know
Let’s recap a few of the concepts we’ve covered already that make small design prob‐
lems easier to solve and thereby provide a stable foundation for applications.

Functional composition
Most of the book examples have been tiny in large part because we’ve used the
concise, powerful combinators provided by collections and other containers.
They allow us to compose logic with a minimum amount of code.

Types, especially parametric polymorphism
Types enforce constraints. Ideally, they express as much information as possible
about the behavior of our programs. For example, using Option[T] can eliminate
the use of nulls. Parameterized types and abstract type members are tools for
abstraction and code reuse.

Mixin traits
Traits enable modularized and composable behaviors.

467

for comprehensions
for comprehensions provide a convenient DSL for working with types using
flatMap, map, and filter/withFilter.

Pattern matching
Pattern matching makes quick work of data extraction.

Givens, extension methods, and implicit conversions
Givens, extension methods, and implicit conversions solve many design prob‐
lems, including boilerplate reduction, threading context through method calls,
implicit conversions, ad hoc modifications of types, and even some type
constraints.

Fine-grained visibility rules and exports
Scala’s fine-grained visibility rules and the Scala 3 export ability enable precise
control over the visibility of implementation details in APIs, only exposing the
public abstractions that clients should use. It takes discipline to do this, but doing
so prevents avoidable coupling to the API internals, which makes evolution more
difficult.

Open, sealed, enum, and final types
By default, concrete classes are closed for extension unless they are declared open
or the adhocExtensions language feature is enabled. Sealed type hierarchies and
enums can’t be extended outside their definition file. Types, methods, etc., that
are marked final are closed for extension too. All contribute to careful design
with fewer bugs, especially as a code base evolves.

Error handling strategies
Option, Either, Try, and cats.data.Validated help us reify exceptions and
other errors, making them part of the normal result returned from functions and
preserving referential transparency. The type signature also tells the user what
successful or error results to expect.

Future exploits Try for the same purpose. The actor model implemented in Akka
has a robust, strategic model for supervision of actors and handling failures
(Chapter 19).

Let’s consider other application-level concerns, starting with annotations.

Annotations
Annotations to tag elements with metadata are used in many languages. Some Scala
annotations provide directives to the compiler or external tools.

Table 23-1 lists some the most common annotations, most of which we have already
seen. Some of them are in the scala.annotation package, while others are in scala.

468 | Chapter 23: Application Design

Table 23-1. Common Scala annotations

Name Description

@tailrec Assert to the compiler that the annotated method is tail recursive. If it isn’t, a compilation error is
thrown.

@targetName Define an alphanumeric name for an operator identifier.

@unchecked Don’t issue a warning for potential pattern binding errors, usually related to typing.

@unchecked
Variance

Don’t check type variance.

@deprecated Mark a declaration as deprecated. Issue a warning when used in code.

The deprecated annotation and related ones in the scala package are useful as your
APIs evolve, allowing you to create a transition period for your users between the
point when an alternative is implemented or planned and when the old construct is
removed. These annotations take arguments for a message to the user about alterna‐
tive choices, when the feature was deprecated, etc.

In “Annotations for JavaBean Properties and Other Purposes” on page 464, we dis‐
cussed annotations that enable better interoperability with Java by changing how byte
code is generated. In “Lazy Values” on page 97, we discussed @threadUnsafe.

Declaring an annotation in Scala doesn’t require a special syntax. You declare a nor‐
mal class as follows:

import scala.annotation.StaticAnnotation

final class marker(msg: String) extends StaticAnnotation

@marker("Hello!")
case class FooBar(name: String)

Using @main Entry Points
All applications need an entry point. A nice feature of @main is that Scala will parse
the supplied argument list into whatever types we expect to see. Consider this exam‐
ple where some nonstring arguments are expected:

// src/main/scala/progscala3/appdesign/IntDoubleStringMain.scala
package progscala3.appdesign

@main def IntDoubleStringMain(i: Int, d: Double, s: String): Unit =
 println(s"i = $i")
 println(s"d = $d")
 println(s"s = $s")

Let’s try it:

Using @main Entry Points | 469

https://oreil.ly/bQkNN
https://oreil.ly/cUNfC
https://oreil.ly/uYT1k
https://oreil.ly/sj91p
https://oreil.ly/sj91p
https://oreil.ly/RZ353

> runMain progscala3.appdesign.IntDoubleStringMain 1 2.2 three
...
i = 1
d = 2.2
s = three

> runMain progscala3.appdesign.IntDoubleStringMain three 2.2 1
Illegal command line: java.lang.NumberFormatException: For input string: "three"

> runMain progscala3.appdesign.IntDoubleStringMain
Illegal command line: more arguments expected

Scala parses the argument strings into the expected types. However, the error mes‐
sages produced for invalid input are terse and may not be as user friendly as you
want. Currently, there is no mechanism to plug in custom help messages, although
hopefully this will change in a future release of Scala. So consider using a regular main
method and parsing the strings yourself when you need more user-friendly error
messages. Behind the scenes, Scala uses scala.util.CommandLineParser, which you
can use too.

Design Patterns
Design patterns document reusable solutions to common design problems. Patterns
become a useful part of the vocabulary that developers use to communicate.

Design patterns have taken a beating lately. Critics dismiss them as workarounds for
missing language features. Newer languages like Scala provide built-in implementa‐
tions or better alternatives for some of the popular Gang of Four ([GOF1995]) pat‐
terns, for example. Patterns are frequently misused or overused, becoming a panacea
for every design problem, but that’s not the fault of the patterns themselves.

I argued in “Category Theory” on page 400 that categories are FP design patterns
adopted from mathematics.

Let’s discuss ways in which the Gang of Four patterns occur in Scala as built-in fea‐
tures or common idioms. I’ll follow the categories in the [GOF1995] book.

Creational Patterns
This section describes patterns for creating instances of types.

Abstract factory
An abstraction for constructing instances from a type family without explicitly
specifying the types. Seq.apply and Map.apply are examples where apply meth‐
ods in objects are used for this purpose. They instantiate an instance of an
appropriate subtype based on the parameters to the method.

470 | Chapter 23: Application Design

https://oreil.ly/LKewk

Builder
Separate construction of a complex object from its representation so the same
process can be used for different representations. We discussed in “Polymorphic
Methods” on page 336 how a common method like map can be defined in a
generic mixin trait, but specific instances of the correct collection type can be
constructed using a pluggable builder object. Also, idioms like
seq.view.map(…)…filter(…).force() build new sequences.

Factory method
Define an abstraction for instantiating objects and let subtypes implement the
logic for what type to instantiate and how. An example of this pattern that we
used in “Internal DSLs” on page 440 to convert from Doubles to Dollars and
Percentages is scala.util.FromDigits. In this case, given instances are used,
rather than subtyping.

Prototype
Start with a prototypical instance and copy it with optional modifications to con‐
struct new instances. Case class copy methods are the most common example I
use, which permit cloning an instance while specifying just the arguments
needed for changes.

Singleton
Ensure that a type has only one instance and all users of the type can access that
instance. Scala implements this pattern as a first-class feature of the language
with objects.

Structural Patterns
This section describes patterns for organizing types to minimize coupling while ena‐
bling collaboration.

Adapter
Create an interface a client expects around another abstraction, so the latter can
be used by the client. Scala offers many mechanisms to implement this, including
givens, extension methods, exports, and mixins.

Bridge
Decouple an abstraction from its implementation, so they can vary independ‐
ently. Extension methods and type classes provide techniques that take this idea
to a logical extreme. Not only is the abstraction removed from types that might
need it, only to be added back in when needed, but the implementation of an
extension method or type class can also be defined separately.

Design Patterns | 471

https://oreil.ly/iwbNz

Composite
Tree structures of instances that represent part-whole hierarchies with uniform
treatment of individual instances or composites. Functional code tends to avoid
ad hoc hierarchies of types, preferring to use generic structures like trees instead,
providing uniform access and the full suite of combinators for manipulation of
the tree. We also saw a simple enum declaration of tree structure in “Enumera‐
tions and Algebraic Data Types” on page 79.

Decorator
Attach additional responsibilities to an object dynamically. Extension methods
and type classes provide a principled way to do this.

Facade
Provide a uniform interface to a set of interfaces in a subsystem, making the sub‐
system easier to use. The fine-grained visibility controls (see Chapter 15) and
exports allow the developer to expose only the types and methods that should be
visible without the need for separate facade code.

Flyweight
Use sharing to support a large number of fine-grained objects efficiently. The
emphasis on immutability in FP makes this straightforward to implement, as
instances can be shared safely. An important set of examples are the persistent
data structures, like Vector (see “What About Making Copies?” on page 222).

Proxy
Provide a surrogate to another instance to control access to it. Immutability elim‐
inates concerns about data corruption by clients.

Behavioral Patterns
This section describes patterns for collaboration between types to implement com‐
mon interaction scenarios.

Chain of responsibility
Avoid coupling a sender and receiver. Allow a sequence of potential receivers to
try handling the request until the first one succeeds. Pattern matching and chain‐
ing partial functions support this pattern. Akka is great example of decoupling
the sender and receiver.

Command
Reify a request for service. This enables requests to be queued and supports
undo, replay, etc. Event-driven and message-driven systems elevate this idea to an
architectural principle. See, for example, the Reactive Manifesto. On a more
“local” level, monadic collections are a good way to process commands sequen‐
tially using for comprehensions.

472 | Chapter 23: Application Design

https://oreil.ly/AeTgU
https://reactivemanifesto.org

Interpreter
Define a language and a way of interpreting expressions in the language. The
term DSL emerged after the Gang of Four book. We discussed several approaches
in Chapter 21.

Iterator
Allow traversal through a collection without exposing implementation details.
Almost all work with collections and other containers is done this way now, a tri‐
umph of functional thinking.

Mediator
Avoid having instances interact directly by using a mediator to implement the
interaction, allowing that interaction to evolve separately. Given instances is an
interesting option here, where the value can be changed without forcing lots of
other code changes. Similarly, message passing between Akka actors is mediated
by the runtime system with minimal connections between the actors. While a
specific ActorRef is needed to send a message, it can be determined through a
query at runtime, without the need to hardcode dependencies programmatically,
and it provides a level of indirection between actors.

Memento
Capture an instance’s state so it can be stored and used to restore the state later.
Memoization is made easier by pure functions that are referentially transparent.
A decorator could be used to add memoization, with the additional benefit that
reinvocation of the function can be avoided when it is called with arguments pre‐
viously used; the memo is returned instead.

Observer
Set up a one-to-many dependency between a subject and observers of its state.
When state changes occur, notify the observers. One of the more pervasive and
successful patterns today, several variants are discussed throughout this book.

State
Allow an instance to alter its behavior when its state changes. Functional pro‐
gramming provides deep, principled guidance about state management. Most of
the time, values are immutable, so new instances are constructed to represent the
new state. In principle, the new instance could exhibit different behaviors,
although usually these changes are carefully constrained by a common supertype
abstraction. The more general case is a state machine. We discussed in “Robust,
Scalable Concurrency with Actors” on page 416 that Akka actors and the actor
model in general can implement state machines in a principled, thread-safe way.
Finally, monads are often used to encapsulate state.

Design Patterns | 473

Strategy
Reify a family of related algorithms so that they can be used interchangeably.
Higher-order functions make this easy. For example, when calling fold or
reduce, the actual accumulator used to aggregate elements is specified by the
caller using a function.

Template method
Define the skeleton of an algorithm as a final method, with calls to other meth‐
ods that can be overridden in subtypes to customize the behavior. This is one of
my favorite patterns because it is far more principled and safe than overriding
concrete methods, as discussed in “Overriding Methods? The Template Method
Pattern” on page 251. Note that an alternative to defining abstract methods for
overriding is to make the template method a higher-order function and then pass
in functions to do the customization.

Visitor
Insert a protocol into an instance so that other code can access the internals for
operations that aren’t supported by the type. This is the worst pattern in the cata‐
log because it breaks a type’s abstraction and complicates the implementation.
Fortunately, we have far better options now. Defining an unapply or unapplySeq
method lets the type designer define a low-overhead protocol for exposing only
the internal state that is appropriate. Pattern matching uses this feature to extract
these values and implement new functionality. Extension methods and type
classes are another way of adding new behaviors to existing types in a principled
way, although they don’t provide access to internals that might be needed in spe‐
cial cases.

Better Design with Design by Contract
Our types make statements about allowed states for our programs. We use test-driven
development (TDD) or other test approaches to verify behaviors that our types can’t
specify. Well before TDD and FP went mainstream, Bertrand Meyer described an
approach called Design by Contract (DbC), which he implemented in the Eiffel lan‐
guage. TDD largely replaced interest in DbC, but the idea of contracts between clients
and services is a very useful metaphor for thinking about design. We’ll mostly use
DbC terminology in what follows.

A contract of a module can specify three types of conditions:

Preconditions
What constraints exist for inputs passed to a module in order for it to success‐
fully perform its purpose? Preconditions constrain what clients of the module can
do.

474 | Chapter 23: Application Design

https://oreil.ly/kwxqW
https://oreil.ly/kwxqW

1 I speak from experience here.

Postconditions
What guarantees does the module make to the client about its results, assuming
the preconditions were satisfied? Postconditions constrain the module.

Invariants
What must be true before and after an invocation of the module?

These contractual constraints must be specified as code so they can be enforced auto‐
matically at runtime. If a condition fails, the system terminates immediately, forcing
you to find and fix the underlying cause before continuing. If that sounds harsh,
relaxing this requirement means contract failures are easy to ignore, undermining
their value.1

It’s been conventional to only test the conditions during testing, but not production,
both to remove the extra overhead and to avoid crashing in production if a condition
fails. Note that the “let it crash” philosophy of the actor model turns this on its head.
If a condition fails at runtime, shouldn’t it crash and let the runtime trigger recovery?

Scala provides several variants of assert that can be used to support Design by Con‐
tract in Predef: assert, assume, require, and ensuring. The following example
shows how to use require and ensuring for contract enforcement:

// src/main/scala/progscala3/appdesign/dbc/BankAccount.scala
package progscala3.appdesign.dbc

import scala.annotation.targetName

case class Money(val amount: Double):
 require(amount >= 0.0, s"Negative amount $amount not allowed")

 @targetName("plus") def + (m: Money): Money = Money(amount + m.amount)
 @targetName("minus") def - (m: Money): Money = Money(amount - m.amount)
 @targetName("ge") def >= (m: Money): Boolean = amount >= m.amount

 override def toString = "$"+amount

case class BankAccount(balance: Money):
 def debit(amount: Money) =
 require(balance >= amount,
 s"Overdrafts are not permitted, balance = $balance, debit = $amount")
 (BankAccount(balance - amount)).ensuring(
 newBA => newBA.balance == this.balance - amount)

 def credit(amount: Money) = BankAccount(balance + amount)

import scala.util.Try

Better Design with Design by Contract | 475

https://oreil.ly/8pwNO

@main def TryBankAccount: Unit =
 Seq(-10, 0, 10) foreach (i => println(f"$i%3d: ${Try(Money(i.toDouble))}"))

 val ba1 = BankAccount(Money(10.0))
 val ba2 = ba1.credit(Money(5.0))
 val ba3 = ba2.debit(Money(8.5))
 val ba4 = Try(ba3.debit(Money(10.0)))

 println(s"""
 |Initial state: $ba1
 |After credit of $$5.0: $ba2
 |After debit of $$8.5: $ba3
 |After debit of $$10.0: $ba4""".stripMargin)

Encapsulate money, only allowing positive amounts using require, a precondi‐
tion. Money and BankAccount could also be implemented as opaque type aliases
or value classes if we were concerned about the overhead of these wrapper
classes.

Don’t allow the balance to go negative. This is really an invariant condition of
BankAccount, which is verified on entry with require and indirectly on output
when a new Money instance is created for the changed balance. The deduction
math is verified with ensuring, which takes the return value of the preceding
block as an argument and returns it unchanged, unless the predicate fails.

No contract violations are expected to occur, at least in this simple example
without transactions, and so forth.

Running runMain progscala3.appdesign.dbc.TryBankAccount, we get the follow‐
ing output:

-10: Failure(java.lang.IllegalArgumentException: requirement failed:
 Negative amount -10.0 not allowed)
 0: Success($0.0)
 10: Success($10.0)

Initial state: BankAccount($10.0)
After credit of $5.0: BankAccount($15.0)
After debit of $8.5: BankAccount($6.5)
After debit of $10.0: Failure(...: requirement failed:
 Overdrafts are not permitted, balance = $6.5, debit = $10.0)

Each of the assert, assume, require, and ensuring methods have two overloaded
versions, like this pair for assert:

final def assert(assertion: Boolean): Unit
final def assert(assertion: Boolean, message: => Any): Unit

476 | Chapter 23: Application Design

2 At the time of this writing, Scala 3 does not support Scala 2’s -Xelide-below, but this should be implemented
in a subsequent release.

In the second version, if the predicate argument is false, the message is converted to a
String and used as part of the exception message.

The assert and assume methods behave identically. The names signal different
intent. Both throw AssertionError on failure, and both can be completely removed
from the byte code if you compile with the option -Xelide-below assertion.2

assertion and other integer values are defined in the corresponding companion
object. The ensuring methods call assert, so their conditional logic will be removed
if assertions are elided. However, the body of code for which ensuring is invoked will
not be elided.

The require methods are intended for testing method parameters (including con‐
structors). They throw IllegalArgumentException on failure, and their code genera‐
tion is not affected by the -Xelide-below option. Therefore, in our Money and
BankAccount types, the require checks will never be turned off, even in production
builds that turn off assert and assume. If that’s not what you want, use one of those
methods instead.

Since calls to assert and assume can be completely removed by the
compiler, do not put any logic in the conditional argument that
must always be evaluated at runtime.

You can mark your own methods with the annotation scala.annotation.elidable
and a constant value like assertion to suppress code generation. See the example src/
main/scala/progscala3/appdesign/dbc/Elidable.scala in the code repo. See also a macro
implementation of an invariant construct in “Macros” on page 496.

Type system enforcement is ideal, but the Scala type system can’t enforce all con‐
straints we might like. Hence, TDD (or variants) and assertion checks inspired by
Design by Contract will remain useful tools for building correct software.

The Parthenon Architecture
Object-oriented programming emphasized the idea of mimicking domain language
in code. A shared domain language is essential for discussions between all team
members—business stakeholders as well as developers. However, faithfully imple‐
menting all domain concepts in code makes the applications bloated and harder to
evolve. Some ideas should be expressed in code, while other concepts should be

The Parthenon Architecture | 477

https://oreil.ly/UxwSq

expressed in data, where the code remains agnostic. When I’m calculating payroll, do
I really need to know I’m working with an Employee or is it sufficient to have Money
instances for their salary and Percentages for their tax deductions?

Functional programming provides useful guidance. While some domain types are
useful for programmer comprehension, the real benefits come from contract enforce‐
ment, like the Dollars, Money, and Percentage types we’ve seen previously. Concepts
with precise algebraic properties and other well-defined behaviors are good candi‐
dates for types.

The problem with implementing many real-world domain concepts is their inherent
contextual nature, meaning, for example, that your idea of an Employee is different
from mine because you have different use cases to implement than I do. Also, these
domain concepts are fragile, subject to frequent change, especially as use cases are
added and evolve.

If we boil our problems down to their essence, we have a bunch of numbers, dates,
strings, and other fundamental types that we need to ingest from a data store, process
according to some specific rules governed by tax law or other requirements, and then
output the results. All programs are CRUD (create, read, update, and delete). I’m
exaggerating, but only a little bit. Too many applications have far too many layers for
the conceptually simple work they actually do.

The rules I follow for deciding whether or not to implement a domain concept in
code are the following:

• The concept clarifies human understanding of the code.
• The concept improves encapsulation significantly.
• The concept has well-defined properties and behaviors.
• The concept improves overall correctness.

Otherwise, I’m much more likely to use generic container types like tuples, maps, and
sequences.

Money is a good candidate type because it has well-defined properties. With a Money
type, I can do algebra and enforce rules that the enclosed Double or BigDecimal is
nonnegative, that arithmetic and rounding are done according to standard account‐
ing rules, that toString shows the currency symbol, and so forth.

I might use opaque type aliases or value classes for types where efficiency is highly
important.

I resist adding too many methods to my types. Instead, I use extension methods or
type classes when extra behavior is needed in limited contexts. Or, I’ll do pattern
matching on instances with custom handling for the intended purpose.

478 | Chapter 23: Application Design

But is there more we can do to gain the benefits of the domain language without the
drawbacks? I’ve been thinking about an architectural style that tries to do just that.

The following discussion is a sketch of an idea that is mostly theo‐
retical and untested.

It combines four layers:

A DSL for the ubiquitous language
It is used to specify use cases. The UI design is here, too, because it is also a tool
for communication and hence a language.

A library for the DSL
The implementation of the DSL, including the types implemented for some
domain concepts, the UI, etc.

Use case logic
Functional code that implements each use case. It remains as focused and concise
as possible, relying primarily on standard library types, and a bare minimum of
the domain-oriented types. Because this code is so concise, most of the code for
each use case is a single vertical slice through the system. I don’t worry too much
about duplication here, but some extraction of reusable code occurs organically.
If the code is concise and quick to write, I can easily throw it away when I want to
rewrite it or I no longer need it.

Core libraries
The Scala standard library, Typelevel libraries, Akka, and APIs for logging, data‐
base access, etc., plus a growing library of reusable code extracted from the use
case implementations.

The picture that emerges reminds me of classical buildings because of the columns of
code that implement each use case. So I’ll be pretentious and call it The Parthenon
Architecture (see Figure 23-1).

The Parthenon Architecture | 479

Figure 23-1. The Parthenon Architecture

Working from the top down, end users implement each use case using the DSL, the
pediment. Next, the entablature represents the library of domain concepts, including
the DSL implementation and UI. Below that, the columns represent the use case
implementations created by users. Finally, the temple foundation represents the reusa‐
ble core libraries.

The functional code for each use case should be very small, like many of the examples
in this book, so that trivial duplication is not worth the cost of removal. Instead, the
simple, in-place data flow logic is easy to understand, test, and evolve, or completely
replace when that’s easiest. It won’t always work out that way, but places where dupli‐
cation should be removed will suggest themselves, gradually building up the core
libraries.

Finally, you could deploy each use case implementation in its own container, Kuber‐
netes pod, etc. This is especially useful when you need to migrate from one version of
the code to another, but you can’t migrate all at once. If there is minimal coupling
between use cases, such as a stable REST API, then it’s easier to upgrade some use
case deployments while others remain unchanged. You can even have concurrent ver‐
sions of the same use case, when necessary.

Let’s sketch an example that builds upon the payroll DSL from “External DSLs with
Parser Combinators” on page 446. This time, we’ll read comma-separated records for
a list of employees, create strings from each record in the DSL format, then parse
each DSL string to process the data. It feels a little convoluted going through the DSL
string format, but the DSL is how stakeholders will provide the data. Finally, we’ll
implement two separate use cases: a report with each employee’s pay and a report
showing the totals for the pay period.

First, here is the code that implements the domain library, to use my terminology in
the temple image:

// src/main/scala/progscala3/appdesign/parthenon/PayrollCalculator.scala
package progscala3.appdesign.parthenon

480 | Chapter 23: Application Design

import progscala3.dsls.payroll.parsercomb.dsl.PayrollParser
import progscala3.dsls.payroll.*
import progscala3.contexts.accounting.*

object PayrollCalculator:
 val dsl = """biweekly {
 federal tax %f percent,
 state tax %f percent,
 insurance premiums %f dollars,
 retirement savings %f percent
 }"""

 case class Pay(
 name: String, salary: Dollars, deductions: Deductions)

 def fromFile(inputFileName: String): Seq[Pay] =
 val data = readData(inputFileName)
 for
 (name, salary, ruleString) <- data
 yield Pay(name, salary, toDeductions(ruleString))

 case class BadInput(message: String, input: String)
 extends RuntimeException(s"Bad input data, $message: $input")

 private type Record = (String, Dollars, String)

 private def readData(inputFileName: String): Seq[Record] =
 for
 line <- scala.io.Source.fromFile(inputFileName).getLines.toVector
 if line.matches("\\s*#.*") == false // skip comments
 yield toRule(line)

 private def toRule(line: String): Record =
 line.split("""\s*,\s.*""") match
 case Array(name, salary, fedTax, stateTax, insurance, retirement) =>
 val ruleString = dsl.format(
 fedTax.toDouble, stateTax.toDouble,
 insurance.toDouble, retirement.toDouble)
 (name, Dollars(salary.toDouble), ruleString)
 case array => throw BadInput("expected six fields", line)

 private val parser = PayrollParser()
 private def toDeductions(rule: String): Deductions =
 parser.parseAll(parser.biweekly, rule).get

An object to hold the library code for payroll calculation. Note we use the string-
based (external) DSL.

A case class for each person’s pay. The only new domain type we define here,
where it’s convenient to have good names for the three fields (versus using a
tuple). We’re reusing Dollars, Percentage, and Deductions from before.

The Parthenon Architecture | 481

A utility function to read data from a comma-separated data file, skipping com‐
ment lines that start with #. It uses the private helper methods readData and
toRule.

An internal type definition for making the code more concise.

The helper method that converts a comma-separated string of data into the
expected DSL format. (It is not very forgiving about input errors!)

The PayrollParser from the DSL chapter, used to convert a DSL-formatted rule
string into a Deductions object.

Now we can use this library code to implement two use cases: calculate biweekly pay‐
roll for each employee and a report of biweekly totals (put in one file for
convenience):

// src/main/scala/progscala3/appdesign/parthenon/PayrollUseCases.scala
package progscala3.appdesign.parthenon
import progscala3.dsls.payroll.parsercomb.dsl.PayrollParser
import progscala3.contexts.accounting.*

object PayrollUseCases:
 import PayrollCalculator.{fromFile, Pay}
 val fmt = "%-10s %8.2f %8.2f %5.2f\n"
 val head = "%-10s %-8s %-8s %s\n"

 def biweeklyPayrollPerEmployee(data: Seq[Pay]): Unit =
 println("\nBiweekly Payroll:")
 printf(head, "Name", " Gross", " Net", "Deductions")
 println("---")
 for
 Pay(name, salary, deductions) <- data
 gross = deductions.gross(salary)
 net = deductions.net(salary)
 do printf(fmt, name, gross.amount, net.amount, (gross - net).amount)

 def biweeklyPayrollTotalsReport(data: Seq[Pay]): Unit =
 val (gross, net) = data.foldLeft(Dollars.zero -> Dollars.zero) {
 case ((gross, net), Pay(_, salary, deductions)) =>
 val g = deductions.gross(salary)
 val n = deductions.net(salary)
 (gross + g, net + n)
 }
 println("---")
 printf(fmt, "Totals", gross.amount, net.amount, (gross - net).amount)

 @main def RunPayroll(inputFileNames: String*): Unit =
 val files =
 if inputFileNames.length == 0 then Seq("misc/parthenon-payroll.txt")
 else inputFileNames

482 | Chapter 23: Application Design

 for (file <- files) do
 println(s"Processing input file: $file")
 val data = fromFile(file)
 biweeklyPayrollPerEmployee(data)
 biweeklyPayrollTotalsReport(data)

The two use cases are implemented by biweeklyPayrollPerEmployee and
biweeklyPayrollTotalsReport, respectively.

By default, it loads a data file in the misc directory, but you can pass another file as a
parameter. If you run it in sbt, you get the following output:

> runMain progscala3.appdesign.parthenon.RunPayroll
...
Biweekly Payroll:
Name Gross Net Deductions

Joe CEO 7692.31 5184.62 2507.69
Jane CFO 6923.08 4457.69 2465.38
Phil Coder 4615.38 3080.77 1534.62

Totals 19230.77 12723.08 6507.69

This rough sketch illustrates how the actual use case implementations can be small,
independent columns of code. They use a few domain concepts from the entablature
domain library and the foundation core Scala collections.

Recap and What’s Next
We examined several pragmatic issues for application development, including Design
Patterns and Design by Contract. We explored an architecture model I’ve been con‐
sidering, which I pretentiously called The Parthenon Architecture.

Now it’s time to look at Scala’s facilities for reflection and metaprogramming.

Recap and What’s Next | 483

CHAPTER 24

Metaprogramming: Macros and Reflection

Metaprogramming is programming that manipulates programs as data. In some lan‐
guages, the difference between programming and metaprogramming isn’t all that sig‐
nificant. Lisp dialects, for example, use the same S-expression representation for code
and data, a property called homoiconicity. Dynamically typed languages like Python
and Ruby make it easy to manipulate the program with other code, sometimes deri‐
sively called monkey patching. In statically typed languages like Java and Scala, meta‐
programming is more constrained and less common. It’s still useful for solving many
advanced design problems, but more formality is required to separate compile-time
versus runtime manipulation.

Metaprogramming comes in many forms. The word reflection refers to introspection
of code at runtime, such as asking a value or type for metadata about itself. The meta‐
data typically includes details about the type, methods and fields, etc.

Scala macros work like constrained compiler plug-ins because they manipulate the
abstract syntax tree (AST) produced from the parsed source code. Macros are invoked
to manipulate the AST before the final compilation phases leading to byte-code
generation.

While Scala 2 had a metaprogramming system, called Scalameta, it was always con‐
sidered experimental, even though it was widely used by library writers for advanced
scenarios. Scala 3 introduces a new macro system, which is not considered experi‐
mental. Replacing Scala 2 macros with Scala 3 implementations is the biggest chal‐
lenge some library maintainers face when migrating. If this affects you, see the
guidance in the Scala 3 Migration Guide.

The Scala 3 metaprogramming documentation describes five fundamental features
that support metaprogramming:

485

https://scalameta.org
https://oreil.ly/dap2o
https://oreil.ly/ZhEgP

Inline
The inline modifier directs the compiler to inline the definition at the point of
use. Inlining reduces the overhead of method or function invocation and access‐
ing values, but it can also greatly expand the overall size of the byte code, if the
definition is used in many places. However, when used with conditionals and
match clauses involving compile-time constants, inlining will remove the unused
branches. Inlining happens early in the compilation process, in the typer phase,
so that the logic can be used in subsequent phases for type-level programming
(such as match types) and macro expansion.

Macros
A combination of quotation, where sections of code are converted to a tree-like
data structure, and splicing, which goes the other way, converting quotations back
to code. Used with inline so the macros are applied at compile time.

Staging
The runtime analog of macro construction of code. Staging also uses quotes and
splices, but not inline. The term staging comes from the idea that manipulating
the code at runtime breaks execution into multiple stages, intermixing stages of
normal processing and metaprogramming.

TASTy reflection
TASTy is the intermediate representation Scala 3 compilers generate. It enables
richer introspection of code, better interoperation among modules compiled with
different versions of Scala, and other benefits. TASTy reflection yields a typed
abstract syntax tree (the origin of the name), which is a “white-box” representa‐
tion of code versus the “black-box” view provided by quotations.

TASTy inspection
When the syntax trees are serialized to binary files, they are given the exten‐
sion .tasty. TASTy inspection provides a way to inspect the contents of those files.

These features are complemented by other constructs we’ve already explored, like
match types (“Match Types” on page 369) and by-name context parameters (“Context
Bounds” on page 167). It’s a good idea to use metaprogramming to solve design prob‐
lems as a last resort.

This chapter provides a brief introduction to the inline, macros, and staging features.
For TASTy reflection and introspection, as well as additional documentation on Scala
3 metaprogramming, see the metaprogramming section of the Scala 3 Migration
Guide.

However, let’s first begin with some of the other compile-time and runtime reflection
tools available.

486 | Chapter 24: Metaprogramming: Macros and Reflection

https://oreil.ly/WmIkU

Scala Compile Time Reflection
The scala.compiletime package, new in Scala 3, provides compile-time tools. We
looked in depth at the scala.compiletime.ops operations in “Dependent Typing” on
page 374. We met uninitialized in “Using try, catch, and finally Clauses” on page
90.

The summonFrom and summonAll methods extend the capabilities of Predef.summon
that we’ve used before. First, summonFrom:

// src/script/scala/progscala3/meta/compiletime/SummonFrom.scala
import scala.compiletime.summonFrom

trait A; trait B

inline def trySummonFrom(label: String, expected: Int): Unit =
 val actual = summonFrom {
 case given A => 1
 case given B => 2
 case _ => 0
 }
 printf("%-9s trySummonFrom(): %d =?= %d\n", label, expected, actual)

def tryNone = trySummonFrom("tryNone:", 0)

def tryA =
 given A with {}
 trySummonFrom("tryA:", 1)

def tryB =
 given B with {}
 trySummonFrom("tryB:", 2)

def tryAB =
 given A with {}
 given B with {}
 trySummonFrom("tryAB:", 1)

tryNone; tryA; tryB; tryAB

Example of summonFrom. You pattern match to determine which given instances
are in scope, with a default cause to avoid a match error if none is in scope.

Test the case where no given is in scope.

Three methods to test when a given A or B is in scope, or both of them.

Scala Compile Time Reflection | 487

https://oreil.ly/gGvHJ

The last line prints the following:

scala> tryNone; tryA, tryB, tryAB
tryNone: trySummonFrom(): 0 =?= 0
tryA: trySummonFrom(): 1 =?= 1
tryB: trySummonFrom(): 2 =?= 2
tryAB: trySummonFrom(): 1 =?= 1 // Matched A first.

Similarly, summonAll returns all givens corresponding to types in a tuple:

// src/script/scala/progscala3/meta/compiletime/SummonAll.scala
scala> import scala.compiletime.summonAll

scala> trait C; trait D; trait E
 | given c: C with {}
 | given d: D with {}

scala> summonAll[C *: D *: EmptyTuple]
val res0: C *: D *: EmptyTuple = (...c...,...d...) // "REPL noise" omitted.

scala> summonAll[C *: D *: E *: EmptyTuple]
1 |summonAll[C *: D *: E *: EmptyTuple]
 |^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 |cannot reduce summonFrom with
 | patterns : case t @ _:E
 | ...

The last line fails to compile because no given is found for E.

In the code examples, the src/script/scala/progscala3/meta/compiletime directory has a
few other scripts demonstrating other scala.compiletime features that I won’t dis‐
cuss here. Some of those features are especially useful when working with inline
code, discussed ahead.

Java Runtime Reflection
On the JVM, Java reflection is also available. First, here are types we can analyze:

// src/main/scala/progscala3/meta/reflection/JReflect.scala
package progscala3.meta.reflection

object JReflect:
 trait T[A]:
 val vT: A
 def mT = vT

 case class C[B](b: B) extends T[String]:
 val vT = "T"
 val vC = "C"
 def mC = vC
 class C2

488 | Chapter 24: Metaprogramming: Macros and Reflection

Note that Java syntax is used for method names and such:

// src/script/scala/progscala3/meta/reflection/JReflect.scala

scala> import progscala3.meta.reflection.JReflect

scala> def as(array: Array[?]): String = array.mkString("[", ", ", "]")

scala> val clazz = classOf[JReflect.C[Double]]
val clazz: Class[progscala3.meta.reflection.JReflect.C[Double]] =
 class progscala3.meta.reflection.JReflect$C

scala> clazz.getName
 | clazz.getModifiers
val res0: String = ...JReflect$C
val res1: Int = 9

scala> val sup = clazz.getSuperclass
val sup: Class[? >: ...JReflect.C[Double]] = class java.lang.Object
scala> as(clazz.getTypeParameters)
 | as(clazz.getClasses)
 | as(clazz.getInterfaces)
val res2: String = [B]
val res3: String = [class ...JReflectCC2]
val res4: String = [interface ...JReflect$T,
 interface scala.Product, interface java.io.Serializable]

scala> as(clazz.getConstructors)
 | as(clazz.getMethods)
val res5: String = [public ...JReflect$C(java.lang.Object)]
val res6: String = [...]

scala> as(clazz.getFields)
 | as(clazz.getAnnotations)
val res7: String = []
val res8: String = []

A helper method to convert an array to a readable string.

Predef.classOf[T] retrieves the Java Class object. Java syntax is T.getClass().

The package prefixes are shown here but elided in the subsequent output.

Decode this value using java.lang.reflect.Modifier.

A long list of elided methods, including mT and mC.

It doesn’t recognize the fields in T or C!

Java Runtime Reflection | 489

https://oreil.ly/Petey

Scala Reflect API
The scala.reflect package expands on Java runtime reflection. We encountered a
few members of this package already. In “Structural Types” on page 362, we used
scala.reflect.Selectable. All Scala 3 enums are subtypes of scala.reflect.Enum.

Sometimes we need a context bound to provide a factory for a specific type. In “Con‐
straining Allowed Instances” on page 175, we used given Conversion instances to
convert from one type to another.

Another example is used by the standard library to allow us to construct arrays using
parameterized methods—e.g., makeArray[T](elems: T*): Array[T]. This is trickier
than it might look because Scala arrays are Java arrays, which don’t permit abstracting
over the type. In Scala, we can work around this limitation using
scala.reflect.ClassTag. Here is an example adapted from the ClassTag

documentation:

// src/script/scala/progscala3/meta/reflection/MakeArray.scala

scala> import scala.reflect.ClassTag

scala> def makeArray[T : ClassTag](elems: T*) = Array[T](elems*)

scala> makeArray(1, 2, 3)
 | makeArray(1.1, 2.2, 3.3)
 | makeArray("one", "two", "three")
 | makeArray("one" -> 1, "two" -> 2, "three" -> 3)
 | make(1, 2.2, 3L)
val res0: Array[Int] = Array(1, 2, 3)
val res1: Array[Double] = Array(1.1, 2.2, 3.3)
val res2: Array[String] = Array(one, two, three)
val res3: Array[(String, Int)] = Array((one,1), (two,2), (three,3))
val res4: Array[AnyVal] = Array(1, 2.2, 3)

T must have a context-bound ClassTag[T] in scope.

The method calls one of the overloaded Array.apply methods, where there is one for
each of the AnyVal types and one for all AnyRef types. These methods also require a
ClassTag context bound on T, which they use to construct the array exactly as Java
expects. For example, for Ints, an int[] is constructed with no boxing of the ele‐
ments and hence no heap allocation for them. For an AnyRef type like String, a
String[] is constructed where each element String is allocated on the heap.

However, this technique only works when constructing a new array (or a similar data
structure) from elements. When a method is passed a previously constructed instance
of a parameterized type, the crucial type information is already “erased.” This is an
issue if you’re passing collections around and somewhere deep in the stack some

490 | Chapter 24: Metaprogramming: Macros and Reflection

https://oreil.ly/gRrco
https://oreil.ly/tJzFA
https://oreil.ly/NJs0u
https://oreil.ly/24RUa
https://oreil.ly/Ld9Ss

method wants to use a ClassTag for introspection. Unless the collection and a corre‐
sponding ClassTag were passed around together, you’re out of luck. However, we’ll
come back to this issue a little later.

Hence, ClassTags can’t resurrect type information from byte code, but they can be
used to capture and exploit type information before it is erased.

Type Class Derivation: Implementation Details
A specific form of reflection is the scala.deriving.Mirror trait that can be used for
type class derivation, first discussed in “Type Class Derivation” on page 158, where
we saw that the derives keyword causes the compiler to automatically instantiate cer‐
tain type classes for us, such as CanEqual.

For the compiler to be able to generate a type class TC instance for some specific type
A, the compiler needs the ability to introspect the structure of A and use that informa‐
tion to construct the TC instance for A. This information can be provided using the
Mirror trait and its subtypes. Mirror is implemented as a type class itself, and the
compiler can generate instances of it automatically for enums and enum cases, case
classes and case objects, and sealed classes or traits that have only case classes and
case objects as subtypes.

For information about how Mirror is used in derivation, along with a concrete exam‐
ple, see the derivation documentation.

Scala 3 Metaprogramming
Let’s now return to three of the five features listed at the start of this chapter for Scala
3 metaprogramming: inline, macros, and staging. We’ll evolve an example, a tool for
enforcing invariants. In “Better Design with Design by Contract” on page 474, we
mentioned one aspect of a contract is the invariants that should hold before and after
evaluation of a block of code. Let’s implement invariant enforcement.

Inline
The inline modifier directs the compiler to inline the definition at the point of use.
Let’s use it for our first version of an invariant enforcer:

// src/main/scala/progscala3/meta/Invariant1.scala
package progscala3.meta

object invariant1:
 inline val ignore = false

 /**
 * Throw an exception if the predicate is false before the block is

Type Class Derivation: Implementation Details | 491

https://oreil.ly/BPKBK
https://oreil.ly/aOg7I

 * evaluated, then evaluate the block, then check the predicate again.
 * If all predicate checks pass, then return the block's value.
 */
 inline def apply[T](
 inline predicate: => Boolean)(
 inline block: => T): T =
 inline if !ignore then
 if !predicate then throw InvariantFailure("before")
 val result = block
 if !predicate then throw InvariantFailure("after")
 result
 else
 block

 case class InvariantFailure(beforeAfter: String) extends RuntimeException(
 s"FAILURE! predicate failed $beforeAfter evaluation!")

@main def TryInvariant1 =
 var i = 0
 invariant1(i >= 0)(i += 1)
 println(s"success: $i")
 println(s"Will now fail:")
 invariant1(i >= 0)(i -= 2)

When not testing and you want to eliminate the overhead of the two predicate
checks, compile with this global flag to true.

Pass a predicate that is checked twice, before and after the block is evaluated.
Note that both are by-name parameters.

Only evaluate the predicate around the block if not ignored. The reason for the
inline here will be discussed.

Otherwise, just evaluate the block.

Raises an InvariantFailure exception with the message “…after evaluation!”

The inline modifier on the value ignore means true or false and is inlined wher‐
ever it is used. The byte code won’t contain the ignore field.

Furthermore, because we inline the conditional if !ignore then…, the whole con‐
ditional expression itself will be replaced with either the then or else branch,
depending on whether the expression is true or false, because the compiler knows at
compile time which branch will be taken.

Finally, the apply method body is also inlined where invoked, since ignore and the
conditional are both inlined. Therefore, if !ignore then…else… reduces to either

492 | Chapter 24: Metaprogramming: Macros and Reflection

the then clause or the else clause. Specifically, if ignore is false, the entire
invariant1(…)(…) is inlined to the following:

if !predicate then throw InvariantFailure("before")
val result = block
if !predicate then throw InvariantFailure("after")
result

This is further transformed because both the predicate and block are themselves
declared inline. For example:

var i=0
invariant(i >= 0)(i += 1)

This finally results in this code:

if !(i >= 0) then throw InvariantFailure("before")
val result = i += 1
if !(i >= 0) then throw InvariantFailure("after")
result // The type is Unit in this case

If ignore is true, then the whole body reduces to the content of block.

If we declared ignore as a var (which can’t be inlined), it would enable convenient
change at runtime. However, we would lose most of the inlining. We’re giving up the
convenience of runtime change for the smaller code footprint and better performance
made possible with extensive inlining.

Actually, I’m not certain that inlining predicate and block are always beneficial. If
they are large blocks of code, probably not. In your code base, you might experiment
with inlining and not inlining these expressions to see what differences you observe,
if any, in compile times, output byte code sizes, and runtime performance.

This is a nice tool already, but if an invariant test fails at runtime, we get a not very
informative error message:

[error] ...$InvariantFailure: FAILURE! predicate failed after evaluation!
[error] ...

Sure, we’ll have the stack trace from the thrown exception, but we’ll really want to see
a lot more information about what actually failed and why. That’s were macros come
in, as we’ll see shortly, but first let’s finish our discussion of inline.

The inline keyword is a soft modifier, so the word can be used as an identifier in
other contexts.

Inline methods can be recursive, but care is required when invoking them:

// src/script/scala/progscala3/meta/inline/Recursive.scala

scala> inline def repeat(s: String, count: Int): String =
 | if count == 0 then ""

Scala 3 Metaprogramming | 493

 | else s + repeat(s, count-1)

scala> repeat("hello", 3)
val res0: String = hellohellohello

scala> var n=3
var n: Int = 3

scala> repeat("hello", n)
1 |repeat("hello", n)
 |^^^^^^^^^^^^^^^^^^
 |Maximal number of successive inlines (32) exceeded,
 |Maybe this is caused by a recursive inline method?
 |You can use -Xmax-inlines to change the limit.
 | This location contains code that was inlined from rs$line$14:1
 | This location contains code that was inlined from rs$line$11:3
 ...

All invocations of repeat must pass a compile-time constant for count!

Inline methods can override or implement noninline methods:

// src/script/scala/progscala3/meta/inline/Overrides.scala

trait T:
 def m1: String
 def m2: String = m1

object O extends T:
 inline def m1 = "O.m1"
 override inline def m2 = m1 + " called from O.m2"

val t: T = O
assert(O.m1 == t.m1)
assert(O.m2 == t.m2)

Method dispatch works normally as it does for noninlined methods. Even though t is
of type T, the inlined implementations of O.m1 and O.m2 are invoked.

Abstract methods can be declared inline, but the implementations must also be inline.
However, the abstract method can’t be invoked directly, unlike the previous example:

trait T2:
 inline def m: String

object O2 extends T2:
 inline def m: String = "O2.m"

val t2: T2 = O2
O2.m
t2.m // ERROR

494 | Chapter 24: Metaprogramming: Macros and Reflection

The last line produces the error “Deferred inline method m in trait T2 cannot be
invoked.”

If an inline declaration is also declared transparent, the compiler can return a more
specific type than the code is declared to return:

// src/script/scala/progscala3/meta/inline/Transparent.scala

scala> open class C1
 | class C2 extends C1:
 | def hello = "hello from C2"

scala> transparent inline def make(b: Boolean): C1 = if b then C1() else C2()

scala> val c1: C1 = make(true)
 | // c1.hello // C1.hello doesn't exist!
val c1: C1 = C1@28548fae

scala> val c2: C2 = make(false)
 | c2.hello // Allowed!
val c2: C2 = C2@7bdea065
val res0: String = hello from C2

The declared type and actual type are both C1, as would be the case for nontrans‐
parent and noninline code.

Even though make is declared to return a C1, the compiler allows us to declare the
returned value to be C2 because this is in fact true and determined at compile
time. This lets us call c2.hello. A compilation type error would result for the
declaration of c2 if make weren’t declared transparent.

We saw in Chapter 17 several other ways to declare methods that return specific types
based on dependent typing. Using transparent is another way to achieve this goal
for the specific case of subtypes in a hierarchy.

Recall from the preceding repeat example that we encountered an error exceeding
the maximum number of inlines allowed. Note what happens if we define a new ver‐
sion that adds inline before the conditional expression:

// src/script/scala/progscala3/meta/inline/ConditionalMatch.scala

scala> inline def repeat2(s: String, count: Int): String =
 | inline if count == 0 then "" // <-- inline added here.
 | else s + repeat2(s, count-1)

scala> repeat2("hello", 3) // Okay
val res0: String = hellohellohello

scala> var n=3
 | repeat2("hello", n) // ERROR!

Scala 3 Metaprogramming | 495

9 |repeat2("hello", n) // ERROR!
 |^^^^^^^^^^^^^^^^^^^
 |Cannot reduce `inline if` because its condition is not a constant value:
 ...

This is a little better than the previous error.

Finally, match expressions can be marked inline, if there is enough static information
to decide which branch to take. Only the code for that branch will be inlined in the
generated byte code:

scala> inline def repeat3(s: String, count: Int): String =
 | inline count match
 | case 0 => ""
 | case _ => s + repeat3(s, count-1)
 |

scala> repeat3("hello", 3) // Okay
val res13: String = hellohellohello

scala> var n=3
 | repeat3("hello", n) // ERROR!
1 |repeat3("hello", n) // ERROR!
 |^^^^^^^^^^^^^^^^^^^
 |Maximal number of successive inlines (32) exceeded,
 |Maybe this is caused by a recursive inline method?
 |You can use -Xmax-inlines to change the limit.
 | This location contains code that was inlined from rs$line$29:1
 ...

If you’re unsure when an expression is constant or not, you can use one of the
scala.compiletime.{constValue, constValueOpt, constValueTuple} methods.
(See examples in the code repo in src/script/scala/progscala3/meta/compiletime.)

So you can see that inline is a powerful tool, but it requires some care to use it effec‐
tively. It works at compile time, which constrains inlined methods to accept only con‐
stant arguments, inlined if statements to evaluate only constant predicates, and
inlined match clauses to match only on constant values. Also, remember that inlining
code can create byte code bloat. For many more details on inline, including other
uses for the scala.compiletime features, see the Dotty documentation for inline.
The book’s examples contain additional inline (and macro) examples in src/main/
scala/progscala3/meta.

Macros
Scala’s previous, experimental macro system was used to implement clever solutions
to difficult design problems in many advanced libraries. However, to use it required
advanced knowledge. The new Scala 3 macro system offers nearly the same level of
power but is more approachable.

496 | Chapter 24: Metaprogramming: Macros and Reflection

https://oreil.ly/VDP46

Macros are built using two complementary operations: quotation and splicing. Quo‐
tation converts a code expression into a typed abstract syntax tree representing the
expression, an instance of type scala.quoted.Expr[T], where T is the type of the
expression. For a type T itself, quotation returns a type structure for it of type
scala.quoted.Type[T]. These trees and type structures can be manipulated to build
new expressions and types.

Splicing goes the opposite direction, converting a syntax tree Expr[T] to an expres‐
sion of type T and a type structure Type[T] to a type T.

The syntax for expression quotation is '{…}. For types, it is '[…]. The splicing syn‐
tax is ${…}, analogous to the way we do string interpolation. Identifiers can be
quoted ('expr) or spliced ($expr) within larger quote or splice expressions.

Let’s return to our invariant example and use quotes and splices to create a better
error message:

// src/main/scala/progscala3/meta/Invariant.scala
package progscala3.meta
import scala.quoted.*

object invariant:
 inline val ignore = false

 inline def apply[T](
 inline predicate: => Boolean, message: => String = "")(
 inline block: => T): T =
 inline if !ignore then
 if !predicate then fail(predicate, message, block, "before")
 val result = block
 if !predicate then fail(predicate, message, block, "after")
 result
 else
 block

 inline private def fail[T](
 inline predicate: => Boolean,
 inline message: => String,
 inline block: => T,
 inline beforeAfter: String): Unit =
 ${ failImpl('predicate, 'message, 'block, 'beforeAfter) }

 case class InvariantFailure(msg: String) extends RuntimeException(msg)

 private def failImpl[T](
 predicate: Expr[Boolean], message: Expr[String],
 block: Expr[T], beforeAfter: Expr[String])(
 using Quotes): Expr[String] =
 '{ throw InvariantFailure(
 s"""FAILURE! predicate "${${showExpr(predicate)}}" """

Scala 3 Metaprogramming | 497

 + s"""failed ${$beforeAfter} evaluation of block:"""
 + s""" "${${showExpr(block)}}". Message = "${$message}". """)
 }

 private def showExpr[T](expr: Expr[T])(using Quotes): Expr[String] =
 val code: String = expr.show
 Expr(code)

Import the reflection and macro features required.

Add an optional message, analogous to the optional messages the assert meth‐
ods support.

Call another inline method fail to process the error.

Splice the Expr[String] returned by failImpl. This will insert the string as
code.

Quote the expression we want to insert, including string representations of the
Exprs for predicate and block, which have to be converted to Expr[String].
The nested expressions like ${${showExpr(…)}} are required to first return the
Expr[String] and then splice it into the large String.

Note that expr.show returns a String, which is then lifted to an Expr[String].

Quoting and splicing are combined with inline to cause this macro implementation
to do compile-time metaprogramming.

If you think of each quote or splice as a stage change, they have to sum to zero in a
program, meaning for a given expression or type, the number of quotes has to equal
the number of splices. This should make intuitive sense because the purpose of the
macro system is to transform code from one valid form to a final form, such as
inserting logic automatically that would otherwise have to be written explicitly.

For the line marked with “4,” we splice a quoted expression returned by failImpl.
The body of failImpl is a little harder to understand. Consider the example of $
{$beforeAfter}, where beforeAfter is an Expr[String]. Calling $beforeAfter
returns a string, then normal string interpolation is used, ${…}, to insert this string
into the larger string. Similarly, showExpr(predicate) returns an Expr[String], is
spliced with the innermost ${…}, and then is interpolated into the string with the
outermost ${…}. Finally, finalImpl returns a quote of the code throw Invariant
Failure("…"), which fail will splice back into the source code stream.

Recall that Invariant1.scala had a TryInvariant1 entry point in the same file that
demonstrated invariant1 in action. It is not possible to use a compile-time macro

498 | Chapter 24: Metaprogramming: Macros and Reflection

definition in the same compilation unit where it is defined. Therefore, TryInvariant
is defined in a separate file:

// src/main/scala/progscala3/meta/TryInvariant.scala
package progscala3.meta

@main def TryInvariant =
 var i = 0
 invariant(i >= 0, s"i = $i")(i += 1)
 println(s"success: $i")
 println(s"Will now fail:")
 invariant(i >= 0, s"i = $i")(i -= 2)

The last line now results in a much more informative error message (wrapped to fit):

> runMain progscala3.meta.TryInvariant
[info] running progscala3.meta.TryInvariant
...
[error] progscala3.meta.invariant$InvariantFailure:
 FAILURE! predicate "i.>=(0)" failed after evaluation of block: "i = i.-(2)".
 Message = "i = -1".
[error] at ...InvariantFailure$.apply(Invariant.scala:26)
[error] at ...TryInvariant(TryInvariant.scala:9)
[error] ...

Note how the user-supplied message is used to show the actual value that i had at
failure. This argument to invariant.apply is a by-name parameter, so it is evaluated
after the failure occurs, not when apply is called. If it were a regular string parameter,
the message would be “i = 1,” which would be confusing with the rest of the error
message. (The built-in assert and related Predef methods also do this.) Another
advantage of using a by-name parameter is that you won’t waste cycles building an
interpolated string that rarely gets used.

I really love the fact that this output stack trace doesn’t show a lot of uninteresting
levels for the implementation of invariant because almost all of it was inlined. There
is just the one line for constructing the exception. The second line is where the failure
actually happened, the line you really care about.

Finally, note that invariant will always evaluate the block, even when ignore is true,
but the predicate will not be evaluated. Recall the discussion in “Better Design with
Design by Contract” on page 474 about how assert and related Predef methods
behave.

The Dotty macro documentation discusses far more details, including pattern-
matching support, as well as additional examples.

Scala 3 Metaprogramming | 499

https://oreil.ly/e5W3u

Staging
In the previous section, I said that the number of quote versus splice stages needs to
be equal, but that’s not quite correct. If you want to apply quoting and splicing at run‐
time, your code constructs an Expr[T] (or Type[T]) at compile time and evaluates at
runtime. Hence, the compiled code has one more quote than splice stage. This is use‐
ful when some information, like a data structure, is dynamic rather than known at
compile time. Note that inline is not used.

In principle, you can also have more splices than quotes, which will be purely
compile-time evaluation. The term multistage programming covers the general case of
N additional quote versus splice stages. We’ll discuss only N = 1.

Consider the following program that folds over a list of integers, multiplying or
adding them, with a starting seed value. It is loosely based on an example in the docu‐
mentation, which you should visit for additional details and examples:

// src/main/scala/progscala3/meta/Staging.scala
package progscala3.meta
import scala.quoted.*
import scala.quoted.staging.*

object Fold:
 given Compiler = Compiler.make(getClass.getClassLoader)

 /**
 * Fold operation:
 * @param operation for folding, + or *
 * @param the seed value
 * @param the array to fold.
 */
 val f: (String, Int, Array[Int]) => Int = run {
 val stagedFold: Expr[(String, Int, Array[Int]) => Int] = '{
 (op: String, seed: Int, arr: Array[Int]) =>
 val combine = if op == "*" then (x:Int, y:Int) => x*y
 else (x:Int, y:Int) => x+y
 ${ fold[Int]('seed, 'arr)('combine) }
 }
 println(s"\nStaged fold code after expansion:\n\n${stagedFold.show}")
 stagedFold
 }

 def fold[T](seed: Expr[T], arr: Expr[Array[T]])(
 combine: Expr[(T,T) => T])(
 using Type[T], Quotes): Expr[T] = '{
 var accum: T = ($seed)
 var i = 0
 while i < ($arr).length do {
 val element: T = ($arr)(i)
 i += 1

500 | Chapter 24: Metaprogramming: Macros and Reflection

https://oreil.ly/6Nb49
https://oreil.ly/6Nb49

 accum = ${combine}(accum, element)
 }
 accum
 }

@main def TryStaging(operator: String, seed: Int, args: Int*) =

 val result = Fold.f(operator, seed, args.toArray)
 println(s"fold of ($args) with operator $operator and seed $seed: $result")

Import staging support.

The necessary toolbox for runtime code generation.

The user provides these arguments when running the program: the operator,
either * or +, a seed value, and an array of integers. The run method from
scala.quoted.staging has this signature: def run[T](expr: Quotes ?=>

Expr[T])(using Compiler): T. We pass it a context function (see “Context
Functions” on page 172) that returns an Expr[T].

Construct a function, combine, that either multiplies or adds Ints.

After printing the expanded source code, return it.

A generic implementation of folding using a while loop. Note how the Expr
arguments are spliced into this code block. A using Type[T] is needed since we
use a generic type T.

The entry point expects either * or +, a seed value, and one or more integers to
fold over.

This program uses a library already in the sbt build, org.scala-lang.scala3-
staging.

Try running it with a command like this:

> runMain progscala3.meta.TryStaging + 10 1 2 3 4 5

Try using * instead of + and a different seed value (the first argument).

If you are not sure what code gets inlined at compile time, use the
compiler option -Xprint:typer to print the code after compile-
time macro expansion.

Scala 3 Metaprogramming | 501

Wrapping Up and Looking Ahead
Scala 3 metaprogramming is powerful but takes more effort to master. Fortunately,
Scala 3 macros are no longer experimental, so any investment you make in learning
the macro system and writing macros should provide benefits for a long time. How‐
ever, make sure that other Scala idioms aren’t sufficient for your requirements before
using these techniques.

Congratulations, you have now completed all the main chapters in Programming
Scala, third edition! The appendix compares old versus new syntax in a concise way.
This is followed by a bibliography of references I hope you’ll investigate to learn
more. At this point, you have learned about all the major features of the language and
how to use them. I hope you’ll find the code examples useful as templates for your
own projects.

I’m grateful to you for reading Programming Scala, third edition. Best wishes in your
Scala journey!

502 | Chapter 24: Metaprogramming: Macros and Reflection

APPENDIX A

Significant Indentation Versus
Braces Syntax

In “New Scala 3 Syntax—Optional Braces” on page 31, I introduced the new, optional
braces syntax in Scala 3, which is also called significant indentation. This appendix
provides concise examples of both forms. The examples are available as scripts in the
code examples folder src/script/scala/progscala3/: BracesSyntax.scala and Indentation‐
Syntax.scala. They demonstrate more details than are shown here, such as how to use
the optional end markers for significant indentation syntax.

Table A-1 shows examples of each form. Under the “Indentation” column, the for
and while loops, and the if expression examples also demonstrate the optional,
alternative control syntax. If you don’t pass the flag -new-syntax to the compiler or
REPL, you can omit the keywords then and do and use parentheses around the con‐
ditions, as shown in the corresponding braces examples.

Also shown are the changes to the import syntax.

For the braces examples, all braces around single expressions can be omitted, but they
are shown here to emphasize where they are used in the general case.

Table A-1. Significant indentation versus braces and other syntax changes

Construct Indentation Braces
Package definition package mypkg:

 // ...
package mypkg {
 // ...
}

Import statements import foo.bar.{given, *}
import foo.X as FooX
import baz.{A as _, *}

import foo.bar._
import foo.{X => FooX}
import baz.{A => _, _}

503

Construct Indentation Braces

for
comprehension

val evens = for
 i <- 0 until 10
 if i%2 == 0
yield i

val evens = for {
 i <- 0 until 10
 if i%2 == 0
} yield { i }

for loop for
 i <- 0 until 10
 if i%2 == 0
do println(i)

for {
 i <- 0 until 10
 if i%2 == 0
} { println(i) }

if expression if 8 < 10 then
 println(true)
else
 println(false)

if (8 < 10) {
 println(true)
} else {
 println(false)
}

while loop var i = 0
while i < 10 do i+=1

var i = 0
while (i < 10) { i+=1 }

match expression 0 match
 case 0 => "zero"
 case _ => "other value"

0 match {
 case 0 => "zero"
 case _ => "other value"
}

Partially defined
function

val o: Option[Int] => Int =
 case Some(i) => i
 case None => 0

val o: Option[Int] => Int = {
 case Some(i) => i
 case None => 0
}

try, catch,
finally
expressions

import scala.io.Source
import scala.util.control.NonFatal
var source: Option[Source] = None
try
 source =
 Some(Source.fromFile("..."))
 // ...
catch
 case NonFatal(ex) => println(ex)
finally
 if source != None then
 source.get.close

import scala.io.Source
import scala.util.control.NonFatal
var source: Option[Source] = None
try {
 source =
 Some(Source.fromFile("..."))
 // ...
} catch {
 case NonFatal(ex) => println(ex)
} finally {
 if (source != None) {
 source.get.close
 }
}

Multiline method
definition

def m(s: String): String =
 println(s"input: $s")
 val result = s.toUpperCase
 println(s"output: $result")
 result

def m(s: String): String = {
 println(s"input: $s")
 val result = s.toUpperCase
 println(s"output: $result")
 result
}

Trait, class, object
definitions

trait Monoid[A]:
 def add(a1: A, a2: A): A
 def zero: A

trait Monoid[A] {
 def add(a1: A, a2: A): A
 def zero: A
}

504 | Appendix A: Significant Indentation Versus Braces Syntax

Construct Indentation Braces
Instantiate an
anonymous
instance

val mon = new Monoid[Int]:
 def add(i1: Int, i2: Int): Int =
 i1+i2
 def zero: Int = 0

val mon = new Monoid[Int] {
 def add(i1: Int, i2: Int): Int =
 i1+i2
 def zero: Int = 0
}

New type class
definition

given intMonoid: Monoid[Int] with
 def add(i1: Int, i2: Int): Int =
 i1+i2
 def zero: Int = 0

given intMonoid: Monoid[Int] with {
 def add(i1: Int, i2: Int): Int =
 i1+i2
 def zero: Int = 0
}

Alias given given Monoid[Int] = new Monoid[Int]:
 def add(i1: Int, i2: Int): Int =
 i1+i2
 def zero: Int = 0

given Monoid[Int] = new Monoid[Int] {
 def add(i1: Int, i2: Int): Int =
 i1+i2
 def zero: Int = 0
}

Extension method
definition

extension (s: String)
 def bold: String =
 s.toUpperCase + "!"
 def meek: String =
 s"(${s.toLowerCase}, maybe?)"

extension (s: String) {
 def bold: String =
 s.toUpperCase + "!"
 def meek: String =
 s"(${s.toLowerCase}, maybe?)"
}

If you know Python, you’ll notice that semicolons are not used in if and for expres‐
sions and method definitions like they are used in Python, but they are used in a sim‐
ilar way for trait, class, and object declarations.

Most of the remaining uses for curly braces are for passing anonymous functions to
collections methods, like seq.map{ item => …}. A future release of Scala 3 will
probably offer support for passing anonymous functions while using the braceless
syntax.

Significant Indentation Versus Braces Syntax | 505

Bibliography

[Abelson1996] Harold Abelson, Gerald Jay Sussman, and Julie Sussman, Structure
and Interpretation of Computer Programs. The MIT Press, 1996.

[Agha1986] Gul Agha, Actors. The MIT Press, 1986.
[Alexander2013] Alvin Alexander, Scala Cookbook: Recipes for Object-Oriented and

Functional Programming 2nd edition. O’Reilly Media, 2021.
[Alexander2017] Alvin Alexander, Functional Programming Simplified. CreateSpace

Independent Publishing Platform, 2017.
[Bird2010] Richard Bird, Pearls of Functional Algorithm Design. Cambridge Univer‐

sity Press, 2010.
[Bloch2008] Joshua Bloch, Effective Java 2nd edition. Addison-Wesley, 2008.
[Bryant2013] Avi Bryant, “Add All the Things!” Strange Loop, 2013. https://oreil.ly/

3PTcM.
[Chiusano2013] Paul Chiusano and Rúnar Bjarnason, Functional Programming in

Scala. Manning Publications, 2013.
[DesignByContract] “Building Bug-Free O-O Software: An Introduction to Design by

Contract™.” Eiffel Software. https://oreil.ly/kwxqW.
[Dzilums2014] Lauris Dzilums, “Awesome Scala.” GitHub. https://github.com/lauris/

awesome-scala.
[Ghosh2010] Debasish Ghosh, DSLs in Action. Manning Press, 2010.
[GOF1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (“Gang

of Four”), Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[Hewitt1973] Carl Hewitt, Peter Bishop, and Richard Steiger, “A Universal Modular
Actor Formalism for Artificial Intelligence.” IJCAI ’73, August 20–23, 1973, Stan‐
ford, California.

[Hewitt2014] Carl Hewitt, “Actor Model of Computation: Scalable Robust Informa‐
tion Systems.” 2014. https://arxiv.org/pdf/1008.1459.pdf.

[Lawvere2009] F. William Lawvere and Stephen H. Schanuel, Conceptual Mathemat‐
ics: A First Introduction to Categories. Cambridge University Press, 2009.

507

https://oreil.ly/3PTcM
https://oreil.ly/kwxqW
https://oreil.ly/kwxqW
https://github.com/lauris/awesome-scala
https://arxiv.org/pdf/1008.1459.pdf
https://arxiv.org/pdf/1008.1459.pdf

[LiHaoyi2020] Li Haoyi, Hands-on Scala Programming. Self-published, 2020. See also
“Hands-on Scala.js”.

[Meyer1997] Meyer, Bertrand, Object-Oriented Software Construction, 2nd edition.
Prentice Hall, 1997.

[Milewski2019] Bartosz Milewski, Category Theory for Programmers. Blurb, (GitHub).
A version with Scala examples is also available.

[Naftalin2006] Maurice Naftalin and Philip Wadler, Java Generics and Collections.
O’Reilly Media, 2006.

[Nedelcu2020] Alexandru Nedelcu, “Retry Failing Tasks with Cats and Scala.” August
2020. https://oreil.ly/Cuo44.

[Odersky2009] Martin Odersky, Lex Spoon, and Bill Venners, “How to Write an
Equality Method in Java.” June 2009. https://oreil.ly/XDqBz.

[Odersky2019] Martin Odersky, Lex Spoon, and Bill Venners, Programming in Scala,
4th edition. Artima Press, 2019.

[Okasaki1998] Chris Okasaki, Purely Functional Data Structures. Cambridge Univer‐
sity Press, 1998.

[Patryshev2020] Vlad Patryshev, A Brief Course in Modern Math for Programmers.
Gumroad, 2020. https://gumroad.com/l/lcbk02.

[Pierce2002] Benjamin C. Pierce, Types and Programming Languages. MIT Press,
2002.

[Rabhi1999] Fethi Rabhi and Guy Lapalme, Algorithms: A Functional Programming
Approach. Addison-Wesley, 1999.

[Roestenburg2014] Raymond Roestenburg, Rob Bakker, and Rob Williams, Akka in
Action. Manning, 2014.

[Scala3Migration] Scala 3 Migration Guide. https://oreil.ly/dap2o.
[Vector2020] “Rewrite Vector (now ‘radix-balanced finger tree vectors'), for perfor‐

mance.” GitHub. https://oreil.ly/WOB7e.
[Volpe2020] Gabriel Volpe, Practical FP in Scala, A Hands-on Approach. LeanPub,

2020.
[Welsh2017] Noel Welsh and Dave Gurnell, Scala with Cats 2. Underscore, April

2020. https://www.scalawithcats.com.
[Whaling2020] Richard Whaling, Modern Systems Programming with Scala Native.

Pragmatic Programmer, 2020.

508 | Bibliography

https://www.handsonscala.com
https://oreil.ly/JyJzd
https://www.blurb.com/b/9621951-category-theory-for-programmers-new-edition-hardco
https://oreil.ly/dkOyL
https://oreil.ly/Cuo44
https://oreil.ly/XDqBz
https://oreil.ly/XDqBz
https://gumroad.com/l/lcbk02
https://oreil.ly/dap2o
https://oreil.ly/WOB7e
https://oreil.ly/WOB7e
https://www.scalawithcats.com

Index

Symbols
! (exclamation point), 412
!! (exclamation points), 412
!= (not equals), 85, 293
" (double quotes), 56
(pound sign)

with nested types, 53
$ (dollar sign)

terminal prompt, 7
with interpolated strings, 82

&& (ampersand) operator, 85
() (parentheses)

methods with empty parameter lists, 77
Unit's literal value, 253

* (asterisk)
for import/export statements, 53
as wildcard, 22, 65

+ (plus sign)
for covariant types, 53

, (comma)
using when declaring a type, 282

/ (forward slash), 10
: (colon)

class declaration, 12
as separator for type declarations, 53

; (semicolon), 33
< (less than), 85
<- (left arrow), 87

for comprehension generator expressions,
53

<= (less than or equals), 85
<> (less than, greater than)

identifiers and, 13
= (equals sign)

assignment, 53
method signature and, 13

== (equals)
generated equals method, 22
logical equivalence, 85
as method, 293

=> (arrow)
for function literal, 13

> (greater than), 85
sbt prompt, 7

>= (greater than or equals), 85
? (question mark)

wildcard for type parameters, 53
@ (at sign)

for annotations, 53
[] (square brackets)

parameterized types, 13
\ (backslash)

escape character in strings, 56
_ (underscore)

anonymous placeholder, 53
plain identifiers and, 76

` (backtick), 65, 77
| (vertical bar), 54, 57
|| (vertical bars), 85
~ (tilde), 6
– (minus sign)

for contravariant types, 53
… (ellipses), 7

A
Abstract Factory pattern, 470
abstract fields, initializing, 305-307
abstract keyword, 51

509

abstract syntax tree (AST), 485
abstract types, 348

abstract type members and concrete type
aliases, 308

parameterized types versus, 66-69
abstracting over context, 137-163

(see also implicits)
Expression Problem, 163
extension methods, 139-142
given instances, 138
givens and imports, 159-161
givens scoping and pattern matching, 161
improving error messages, 182
resolution rules for givens and extension

methods, 162
Scala 3 changes, 138
Scala 3 implicit conversions, 154-158
type class derivation, 158
type classes, 142-153
using clauses, 165-183

ActiveRecord API, 432
Actor Model of Concurrency, 417
Actors, 416-426

Akka, 417-425
object-oriented programming and, 426

ad hoc polymorphism, 147
Adapter pattern, 471
Akka model, 417-425
Akka Streams, 427
algebraic data types (ADTs), 80-82, 397-400

enumerations and, 79-82
properties, 399
sum types versus product types, 397-399

alias givens, 150-152
aliases, concrete type aliases, 348
annotations, 468
anonymous class, 103
anonymous functions, 190-193
Any, 106
AnyRef, 106
AnyVal, 106, 253
Apache Flink, 426
Apache Kafka, 426
Apache Spark, 426, 459-461
application design, 467-483

annotations, 468
Design by Contract, 474-477
design patterns, 470-474
@main entry points, 469

Parthenon Architecture, 477-483
application resource manager, 94-97
Applicative, 405
apply methods, 23
arrays

array equality and sameElements method,
294

improper variance of Java arrays, 292
Arrow, 407
as keyword, 51
automatic eta expansion, 196

B
behavioral patterns, 472-474
big data

Apache Spark and, 459-461
functional programming and, 1, 186
opaque types and, 254
stream processing and, 426

boolean literals, 55
braces syntax

optional braces syntax, 31-33
significant indentation versus, 503-505

Bridge pattern, 471
Bryant, Avi, 408
Builder pattern, 471
by-name parameters, 43, 94-97
by-value parameters, 94-97

C
caching, 193
Cake pattern, 384
call-by-name parameters, 94-97
call-by-value parameters, 94-97
case classes, 117-119, 316-319
case clauses, guards in, 117
case keyword, 51
case objects, hashCode and, 299
catch clause, 90-94
catch keyword, 51
category theory, 400-409

Applicative, 405
Arrow, 407
Functor, 402-404
general definition of category, 401
Monad endofunctor, 404-408
Semigroup and Monoid categories, 148, 408

Cats library, 241-243, 401
Chain of Responsibility pattern, 472

510 | Index

chaining, match expressions, 122
character, 56
character literals, 56
characters, 76
class keyword, 12, 51
classes, 15, 246
CLI tools (see command-line interface tools)
closed types, 247-252
closures, 190-193
code examples, downloading and building, 4
code, organizing in files and namespaces, 63
collection types, 13
collections

conversions between Scala and Java collec‐
tions, 463

filtering, 208-210
collections libraries, 325-339

abstractions with multiple implementations,
326-333

collection-related packages, 326
construction of instances, 333
equality for collections, 337
Iterable abstraction, 334
nonstrict collections, 338
polymorphic methods, 336
scala.collection package, 331
scala.collection.concurrent package, 332
scala.collection.convert package, 333
scala.collection.generic package, 333
scala.collection.immutable package, 327
scala.collection.mutable package, 329-331

combinators, 188, 219-222
Command pattern, 472
command-line interface (CLI) tools, 452-456

Coursier, 453
running with sbt, 7-9
scala command, 455
scalac command, 454
scaladoc tool, 456

comment conventions, 10
companion objects, 23
comparison operators, 85
composability, xix
Composite pattern, 472
compound types, 353
comprehension, defined, 86
comprehensions (see for comprehensions)
concrete fields, 307
concrete methods, 251

concurrency
actor model, 416-426
Akka, 417-425
Futures, 413-416
scala.sys.process package, 411-413
stream processing, 426
tools for, 411-427

conditional expressions, 83-84
conditional operators, 85
container, Option as, 232-236
context abstractions, 137-163
context bounds, 167-171, 352

constraining allowed instances, 175-179
view bounds, 352

context functions, 172-175
contracts, 474-477
contravariant behavior, 286-290
copies, of functional collections, 222-224
Coursier

about, 453
managing Java JDKs with, 453

covariant behavior, 286-290
covariant specialization, 68
creational pattern, 470
curly braces

function literals and, 41
significant indentation versus braces syntax,

31-33, 503-505
Curry, Haskel, 196
currying functions, 196

D
data structures, functional, 199-203
deconstruction, 27, 127
Decorator pattern, 472
def keyword, 51
dependent function types, 373
dependent method types, 373
dependent object typing (DOT), 3, 353
dependent typing, 374-379
dependently typed methods, 371
derives keyword, 51
Design by Contract (DbC), 474-477
design patterns, 470-474

behavioral patterns, 472-474
creational patterns, 470
structural patterns, 471

directed acyclic graph (DAG), 301
do keyword, 51

Index | 511

domain-specific languages (DSLs), 439-450
benefits, 439
drawbacks, 440
dynamic invocation and, 437
external DSLs with parser combinators,

446-449
internal DSLs, 440-446
internal versus external, 449

DOT (dependent object typing), 3, 353
dynamic invocation, 429-437

ActiveRecord in Ruby on Rails, 432
DSL considerations, 437
with Dynamic trait, 433-437
structural types, 429-432

Dynamic trait, 433-437

E
Either type, 236-239
else clauses, 51
embedded (internal) DSLs, 440-446
encapsulation, 188
end keyword, 51
endofunctor, 404-408
entry point

@main entry point versus main method,
16-20

enum keyword, 51
enumerations, 63, 79-82
enums, 63

exhaustive matches and, 121
pattern matching on, 118-119

eq (reference equality) method, 294
equality

== and != methods, 293
array equality and sameElements method,

294
case objects and hashCode, 299
eq and ne methods, 294
equals method, 293
for collections, 337
inheritance and, 295
multiversal, 296-299
of instances, 292-295

equals method, 22, 293
error messages, improving, 182
error-handling strategies, 468
escape sequences, 56
exception handling

improving error messages, 182

throwing exceptions versus returning Either
values, 238

try/catch/finally clauses, 90-94
exhaustive matches, sealed hierarchies and, 121
existential types, 367
explicit type declarations, 49
export clauses, 263
export keyword, 51
Expression Problem, 163
extends keyword, 51
extension keyword, 51
extension methods, 139-142

building your own string interpolator, 142
resolution rules for, 162

external DSLs
internal DSLs versus, 449
parser combinators and, 446-449
payroll example, 447-449

extractors
alternatives to option return values, 129-131
pattern matching and, 126-134
unapply method, 127-129
unapplySeq method, 131-134

F
F-bounded polymorphic types (self-recursive

types), 387
Facade pattern, 472
Factory Method pattern, 471
false keyword, 51
family polymorphism, 68
fields

in types, 267-270
unary methods, 270
Uniform Access Principle and, 268

files, organizing code in, 63
filtering

functional programming and, 208-210
guards, 87
pattern matching as filtering in for compre‐

hensions, 125
final declarations, 51
finally clause, 90-94
finally keyword, 51
flat mapping, 206-208
flatMap, 404
Flink, 426
Flyweight pattern, 472
folding, 210-219

512 | Index

for comprehensions, 86-90, 225-244, 468
elements of, 225-227
expanded scope and value definitions, 88-90
for loops, 86
generators, 87
guards, 87
options and container types, 232-243
pattern matching as filtering in, 125
translation rules, 230-232
yielding new values, 87

for keyword, 52
for loops, 86
foreach method, 18
formal parameter, 191
forSome keyword, 52
FP (see functional programming)
FS2 (Functional Streams for Scala), 427
function literals, 58
functional collections, making copies of,

222-224
functional composition, 467
functional data structures, 199-203

maps, 202
sequences, 200-202
sets, 203

functional programming (FP), xviii, 185-224,
397-410
advanced, 397-410
algebraic data types, 397-400
anonymous functions, lambdas, and clo‐

sures, 190-193
basics, 185-189
category theory, 400-409
combinators, 219-222
currying/uncurrying functions, 196
filtering, 208-210
flat mapping, 206-208
folding and reducing, 210-215
functional data structures, 199-203
functions in mathematics, 186
immutable variables in, 187-189
making copies of functional collections,

222-224
mapping, 205-208
methods as functions, 192
object-oriented programming and, 245
partial functions versus functions returning

Options, 198

partially applied functions versus partial
functions, 195

purity inside versus outside, 193
recursion and, 193
Scala and, 1, 189-193
tail calls and tail-call optimization, 194
traversing, 204
tupled/untupled functions, 197

Functional Streams for Scala (FS2), 427
functions, 317

contravariant/covariant behavior, 286-290
Java lambdas versus Scala functions, 464
mathematical, 186
methods as, 192
methods versus, 14
partial, 36-39

Functor category, 402-404
Futures, 42-45, 413-416

G
Gang of Four pattern, 470
generators, 87
generics, 463
given keyword, 52
givens

given instances, 138
imports of, 159-161
resolution rules for, 162
scoping and pattern matching, 161

guards
in case clauses, 117
in for comprehensions, 87

H
hashCode, 22

for case objects, 299
higher-kinded types, 388-391
higher-order function (HOF), 25, 187
Hoare, Tony, 62

I
IDE (integrated development environment),

plug-ins for, 457
identifiers, rules for characters in, 76
if expressions, 52, 87
if keyword, 83
immutable values, 88-90
immutable variables, 187-189

Index | 513

implicit conversions
definitions in Predef, 319-320
resolution rules, 157
Scala 3, 154-158

implicit evidence, 178
implicit keyword, 44, 52
implicit parameter lists (see using clauses)
implicits

imports of, 159-161
Scala 3 changes, 138

import keyword, 52
import statements, 65
imports, of givens and implicits, 159-161
indentation, significant, 31, 503-505
infix keyword, 52
infix operator notation, 71
inheritance

equality and, 295
variance under, 285-292

initialization, of abstract fields, 305-307
inline keyword, 52
inline modifier, 486, 491-496
input, as side effect, 188
instances

construction of, 333
equality of, 292-295
objects versus, 18

integrated development environment (IDE),
plug-ins for, 457

interfaces, 99-102
internal (embedded) DSLs, 440-446
interpolated strings, 25, 82, 121
Interpreter pattern, 473
intersection types, 280, 353-356

rules for, 355
rules for union and intersection types

together, 357
invariants, 475
Iterable abstraction, 334
Iterator pattern, 473

J
Java

annotations for JavaBean properties, 464
conversions between Scala and Java collec‐

tions, 463
Java generics and Scala parameterized types,

463
Java identifiers in Scala code, 462

Java lambdas versus Scala functions, 464
managing Java JDKs with Coursier, 453
runtime reflection, 488
Scala identifiers in Java code, 462
tools for Java–Scala interoperability,

462-464
Java Virtual Machine (JVM), 1, 14
JavaBeans, 464
Jupyter, 457

K
Kafka, 426
Kay, Alan, 426
keywords, 51-54

L
lambdas, 190-193

Java lambdas versus Scala functions, 464
origin of term, 192

language keywords, 51-54
Language Server Protocol (LSP), 5, 457
lazy evaluation, 43, 52, 189
lazy keyword, 52
lazy values, 97-99, 306
let it crash, 417, 475
Li Haoyi libraries, 461
libraries (see collections libraries; specific libra‐

ries)
linearization

algorithm for calculating, 305
of type hierarchy, 301-305

Liskov substitution principle, 285
literal values, 54-58

boolean literals, 55
character literals, 56
function literals, 58
numeric literals, 54
string literals, 56
symbol literals, 58

lookup rules, 157
lower type bounds, 350-352
LSP (Language Server Protocol), 5, 457

M
macros, 486, 496-499
@main, 16, 469
main method, 14
Map types, 326

514 | Index

mapping, 205-208
maps, functional data structures and, 202
match expression, 27
match keyword, 52
match types, 369-371
Matchable, 105-107, 258
Mediator pattern, 473
Memento pattern, 473
memoization, 193
Metals project, 5
metaprogramming, 485-502

defined, 485
inline modifier, 491-496
Java runtime reflection, 488
macros, 496-499
programming versus, 485
quotation and splicing, 497
Scala 3, 491-502
Scala compile time reflection, 487
Scala reflect API, 490
staging, 500
type class derivation, 491

method declarations, 39-47
method default and named parameters, 39
methods with multiple parameter lists,

40-45
nesting method definitions and recursion,

45-47
rules for method return types, 49

method definitions, 12, 45-47
method resolution, 301-309
methods

empty parameter lists, 77
functions and, 14, 192

mixins, 99-102, 271-275, 467
Monad category, 404-408
Monoid category, 148, 408
multicore problem, 411
multiversal equality, 296-299
mutable collections, 329-331
mutable types, variance of, 290-292

N
namespaces, 63
ne (negation of eq) method, 294
nesting, 45-47
new keyword, 52, 102
None subclass, 60
notebooks, 457

Nothing subtype, 312-315
null keyword, 52
Null type, 61, 312-315
nulls

avoiding, 60-62
instead of Option, 92

numeric literals, 54

O
object keyword, 52
object system (Scala)

Any, AnyRef, and AnyVal, 106
Matchable, 105-107, 258
Nothing and Nulls, 312-315
Predef object, 319-323
products, case classes, tuples, and functions,

316-319
Scala type hierarchy, 311-323

object-oriented programming (OOP), 245-270
Actors and, 426
class and object basics, 246
classes open for extension, 250
constructors in Scala, 262
export clauses, 263
fields in types, 267-270
good design in, 265
methods versus functions in, 14
opaque types, 253-258
open versus closed types, 247-252
reference versus value types, 252
Scala and, 1
supertypes, 261
Template Method pattern, 251
value classes, 258-261

objects
instances versus, 18
object-oriented programming and, 246

Observer pattern, 272, 473
Odersky, Martin, xix, 2, 245
OOP (see object-oriented programming)
opaque keyword, 52
opaque type aliases, 255-258
opaque types, 253-258
open keyword, 52
open types

classes open for extension, 250
closed types versus, 247-252

Open/Closed Principle, 163
operator notation, 71

Index | 515

operators
conditional expressions and, 85
defining, 71-76
precedence rules, 78

Option class, 60
alternatives to option return values, 129-131
as container, 232-236
Either as alternative to, 236-239
flat mapping and, 207
for comprehensions and, 232-243
with for comprehensions, 88
partial functions versus functions returning

Options, 198
sealed class hierarchies, 62
Try type and, 239-241
Validated from Cats library, 241-243

optional braces, 31-33, 41
output, as side effect, 188
overloaded methods, 247
override keyword, 52

P
package keyword, 52
packages, 15

namespaces and, 63
package imports and package objects, 65

parameter lists
methods with empty lists, 77
methods with multiple lists, 40-45
pattern matching on repeated parameters,

114
repeated, 49

parameter untupling, 116
parameterized types, 13, 347

abstract type members versus, 66-69, 348
higher-kinded types, 388-391
Scala types in Java code, 463
variance under inheritance, 285-292

parameters, traits and, 282-284
parametric polymorphism, 66, 147
parser combinators

basics, 447
external DSLs with, 446-449
payroll external DSL example, 447-449

Parthenon Architecture, The, 477-483
partial functions, 36-39

functions returning Options versus, 198
partially applied functions versus, 195

path-dependent types, 380-382

stable paths, 381
using super, 381
using this, 380

pattern bindings
pattern matching, 122-124
problems in, 124

pattern matching, 27, 105-135, 468
chaining match expressions, 122
erasure and, 126
extractors, 126-134
as filtering in for comprehensions, 125
givens scoping and, 161
guards in case clauses, 117
identifiers in, 77
Matchable and, 105-107
matching on case classes and enums,

117-119
matching on interpolated strings, 121
matching on regular expressions, 119
matching on sequences, 111-114
outside match expressions, 122-124
partial functions and, 36
problems in pattern bindings, 124
repeated parameters and, 114
sealed hierarchies and exhaustive matches,

121
subtype polymorphism versus, 28
tuples and, 114-117
values/variables/types in matches, 107-111

Peano numbers, 376
Perlis, Alan J., 185
persistent data structure, 222
phantom types, 359-362
placeholders, type wildcards versus, 394
plain identifiers, 76
polymorphic functions, 393
polymorphic methods, 336
polymorphism, 147
postconditions, 475
precedence rules, for operators, 78
preconditions, 474
Predef object, 319-323

condition checking methods, 321
implicit conversions, 319-320
input/output methods, 322
miscellaneous methods, 322
type definitions, 321

primitive types, 252
primitive values, 34

516 | Index

private keyword, 52
private visibility, 343
product types, sum types versus, 397-399
Products, 316
protected keyword, 52
protected visibility, 343
Prototype pattern, 471
Proxy pattern, 472
public visibility, 342
pure functions, 25
Python, Scala versus, xxiii

Q
quotation, in macros, 497

R
ranges, 35
recursion, 46

functional programming and, 193
tail-call self-recursion, 194

reduce method, 190
reducing, 210-215
reference equality, 294
reference types, value types versus, 252
referential transparency, 186
refined types, 367
reflection

defined, 485
Java runtime reflection, 488
Scala compile time reflection, 487
Scala reflect API, 490
type class derivation, 491

regular expressions, 57, 119
repeated parameters, 49
REPL (read, eval, print, loop), 6
requires keyword, 52
reserved keywords, 51-54
resolution rules, givens, 162
return keyword, 52
Ruby on Rails, 432

S
sameElements method, 294
sbt, 457

basics of using, 5-7
running Scala command-line tools, 7-9
starting, 4

Scala (generally)

appeal of, 2
basics, 1-30
building the code examples, 4
functional programming in, 189-193
installing tools, 3
origins of name, 2
overview of features, 9-20
reasons to use, 1-3
sample application, 20-30
tips for using, 4-9
tools for Java–Scala interoperability,

462-464
Scala 3

givens and imports, 159-161
implicit conversions, 154-158
implicits, 138
inline modifier, 491-496
language version construct, 451
macros, 496-499
metaprogramming, 491-502
migrating to, 3
optional braces syntax, 31-33
reasons to use, 3
staging, 500
type classes, 143-150
using clauses, 44

scala command-line tool, 455
Scala reflect API, 490
scala.collection package, 331
scala.collection.concurrent package, 332
scala.collection.convert package, 333
scala.collection.generic package, 333
scala.collection.immutable package, 327
scala.collection.Iterable supertype, 334
scala.collection.mutable package, 329-331
scala.sys.process package, 411-413
scalac command-line tool, 454
scaladoc command-line tool, 456
Scalameta, 485
Schönfinkel, Moses, 196
scoping, givens, 161
sealed hierarchies, 26, 121
sealed keyword, 52, 62
self-recursive types (F-bounded polymorphic

types), 387
self-type declarations, 382-385
Semigroup category, 148, 408
separation of concerns

application resource manager and, 95

Index | 517

callbacks and, 272
combinators and, 221
extension methods and, 139
IO Monad and, 407
traits and, 99

sequences
functional data structures and, 200-202
matching on, 111-114

sets, functional data structures and, 203
Shapeless, 379, 395
side effects, 18

functions in math and, 186
input and output as, 188

significant indentation, 31, 503-505
Singleton pattern, 17, 471
singleton types, 17, 374, 386
Some subclass, 60
Spark, 459-461
splicing, in macros, 497
spooky action at a distance, 35
stack frame, 34
stackable traits, 275-279
staging, in macros, 500
state machine, 473
State pattern, 473
static declarations, 15
static type system, 2
Strategy pattern, 474
stream processing, 426
string interpolation, 25, 82
string interpolator, building your own, 142
string literals, 56

interpolated, 82
pattern matching on interpolated strings,

121
structural patterns, 471
structural types, 362-367, 429-432
structure sharing, 222
substitutability, 287-290
subtype polymorphism, 28, 147
subtyping, 261

classes open for extension, 250
rules for, 266

sum types, 397-399
super keyword, 52, 381
supertypes, 261

calling supertype constructors, 263
initializing abstract fields in, 305-307
path-dependent types with super, 381

symbol literals, 58
symbols, reserved, 51-54
syntactic sugar, 41, 287

T
tail-call self-recursion, 194
@targetName annotation, 74
TASTy inspection, 486
TASTy reflection, 486
Template Method pattern, 251, 474
testing, tools for, 458
text editors, 457
then keyword, 52, 84
this keyword, 52, 380
throw keyword, 52
throwing exceptions, 321
tools, Scala, 451-465

Apache Spark, 459-461
build tools, 457
command-line interface tools, 452-456
installing, 3
integration with IDEs/text editors, 457
Java–Scala interoperability, 462-464
Li Haoyi libraries, 461
Scala 3 versions, 451
testing tools, 458
Typelevel libraries, 461
using notebook environments with, 457

trait keyword, 53
traits, 99-102, 271-284

as mixins, 271-275
parameters, 282-284
stackable, 275-279
transparent, 281
union and intersection types, 279-281
universal, 259-261
using commas instead of with, 282

trampoline, 194
translation rules, 230-232
transparent keyword, 53
transparent traits, 281
traversing, 204
true keyword, 53
try clause, 90-94
try keyword, 53
Try type, 239-241
Tuple trait, 317-319
tupled functions, 197
tuples, 58

518 | Index

parameter untupling, 116
pattern matching on, 114-117

type aliases, 308
type bounds, 349-352

lower, 350-352
upper, 349

type class derivation, 158, 491
type classes, 142-153

alias givens, 150-152
Scala 2 syntax for implementing, 152
Scala 3, 143-150

type constructors, 388
type declarations, 9
type definitions, 321
type erasure

@targetName annotation and, 75
by-name parameters and, 97
pattern matching and, 126
using clauses for working around, 179

type hierarchies
Any, AnyRef, and AnyVal, 106
linearization of, 301-305
Matchable, 105-107, 258
Nothing and Nulls, 312-315
Predef object, 319-323
products, case classes, tuples, and functions,

316-319
Scala, 311-323
scala package and, 315

type inference, 48-48
type keyword, 53
type lambdas, 391-393
type parameters, 290-292
type projections, 385
type system (Scala), 347-368, 369-395

abstract type members and concrete type
aliases, 348

context bounds, 352
dependent method/dependent function

types, 373
dependent typing, 374-379
dependently typed methods, 371
existential types (obsolete), 367
higher-kinded types, 388-391
intersection types, 353-356
match types, 369-371
opaque type aliases, 255-258
parameterized types, 347
path-dependent types, 380-382

phantom types, 359-362
polymorphic functions, 393
refined types, 367
self-recursive (F-bounded polymorphic)

types, 387
self-type declarations, 382-385
singleton types, 386
structural types, 362-367
type bounds, 349-352
type lambdas, 391-393
type projections, 385
type wildcard versus placeholder, 394
union types, 356-359
value classes, 258-261
view bounds, 352

Typelevel libraries, 461
types

abstract type members and concrete type
aliases, 348

abstract type members versus parameterized
types, 66-69

class versus trait, 284
fields in, 267-270
importing, 64-66
inference, 48-48
opaque, 253-258
open versus closed, 247-252
package imports and package objects, 65
pattern matching and, 107-111
situations calling for explicit declarations,

49
union and intersection, 279-281
variance of mutable types, 290-292

U
unapply method, 127-129
unapplySeq method, 131-134
unary operators, 270
uncurrying functions, 197
Uniform Access Principle, 268, 464
union types, 62, 279-281, 356-359

rules for, 357
rules for union and intersection types

together, 357
Unit (value), 17, 253
universal equality, 296
universal traits, 259-261
untupled functions, 197
upper type bounds, 349

Index | 519

using clauses, 42, 44, 165-183
basics, 165-167
constraining allowed instances, 175-179
context bounds, 167-171
context functions, 172-175
improving error messages, 182
rules for, 180
various context parameters, 171
working around type erasure with, 179

using keyword, 53

V
val keyword, 53
Validated, 241-243
value classes, 258-261
value types, reference types versus, 252
values, pattern matching and, 107-111
var keyword, 53
variable argument lists (varargs) (see repeated

parameters)
variable declarations, 33-35
variables

immutable, 187-189
pattern matching and, 107-111

variance, 285-300
improper variance of Java arrays, 292
mutable types, 290-292
under inheritance, 285-292

view bounds, 352
view method, 338
visibility rules, 341-345, 468

default, 342
keywords, 342
private visibility, 343
protected visibility, 343
public visibility, 342
scoped private and protected visibility, 343

Visitor pattern, 474

W
Wadler, Philip, 2
while loops, 53, 90
wildcards, placeholder versus, 394
Wirth, Niklaus, 2
with keyword, 53
witnesses

constraining allowed instances, 175-179
implicit evidence, 178

Word Count algorithm, 460

Y
yield keyword, 53, 87

Z
Zio, 427

520 | Index

About the Author
Dean Wampler is an expert in data engineering for scalable streaming data systems
and applications of machine learning and artificial intelligence. He is a principal soft‐
ware engineer at Domino Data Lab. Previously he worked at Anyscale and Lightbend,
where he worked on scalable machine learning with Ray and distributed streaming
data systems with Apache Spark, Apache Kafka, Kubernetes, and other tools. Besides
Programming Scala, Dean is also the author of What Is Ray?, Distributed Computing
Made Simple, Fast Data Architectures for Streaming Applications, and Functional Pro‐
gramming for Java Developers, as well as the coauthor of Programming Hive, all from
O’Reilly. He is a contributor to several open source projects and a frequent confer‐
ence speaker, and he co-organizes several conferences around the world and several
user groups in Chicago. Dean has a PhD in physics from the University of Washing‐
ton. Find Dean on Twitter: @deanwampler.

Colophon
The animal on the cover of Programming Scala is a Malayan tapir (Tapirus indicus),
also called an Asian tapir. It is a black-and-white hoofed mammal with a round,
stocky body similar to that of a pig. At 6–8 feet long and 550–700 pounds, the
Malayan is the largest of the four tapir species. It lives in tropical rain forests in
Southeast Asia.

The Malayan tapir’s appearance is striking: its front half and hind legs are solid black,
and its midsection is marked with a white saddle. This pattern provides perfect cam‐
ouflage for the tapir in a moonlit jungle. Other physical characteristics include a thick
hide, a stumpy tail, and a short, flexible snout. Despite its body shape, the Malayan
tapir is an agile climber and a fast runner.

The tapir is a solitary and mainly nocturnal animal. It tends to have very poor vision,
so it relies on smell and hearing as it roams large territories in search of food, track‐
ing other tapirs’ scents and communicating via high-pitched whistles. The Malayan
tapir’s predators are tigers, leopards, and humans, and it is considered endangered
due to habitat destruction and overhunting.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from the Dover Pictorial Archive. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

http://oreilly.com

	Copyright
	Table of Contents
	Foreword
	Foreword, Third Edition
	Foreword, First and Second Edition

	Preface
	Welcome to Programming Scala, Third Edition
	How to Read This Book

	Welcome to Programming Scala, Second Edition
	Welcome to Programming Scala, First Edition
	Conventions Used in This Book
	Using Code Examples
	Getting the Code Examples

	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments for the Third Edition
	Acknowledgments for the Second Edition
	Acknowledgments for the First Edition

	Chapter 1. Zero to Sixty: Introducing Scala
	Why Scala?
	The Appeal of Scala
	Why Scala 3?
	Migrating to Scala 3

	Installing the Scala Tools You Need
	Building the Code Examples
	More Tips
	Using sbt
	Running the Scala Command-Line Tools Using sbt

	A Taste of Scala
	A Sample Application
	Recap and What’s Next

	Chapter 2. Type Less, Do More
	New Scala 3 Syntax—Optional Braces
	Semicolons
	Variable Declarations
	Ranges
	Partial Functions
	Method Declarations
	Method Default and Named Parameters
	Methods with Multiple Parameter Lists
	Nesting Method Definitions and Recursion

	Inferring Type Information
	Repeated Parameter Lists
	Language Keywords
	Literal Values
	Numeric Literals
	Boolean Literals
	Character Literals
	String Literals
	Symbol Literals
	Function Literals

	Tuples
	Option, Some, and None: Avoiding Nulls
	When You Really Can’t Avoid Nulls

	Sealed Class Hierarchies and Enumerations
	Organizing Code in Files and Namespaces
	Importing Types and Their Members
	Package Imports and Package Objects

	Parameterized Types Versus Abstract Type Members
	Recap and What’s Next

	Chapter 3. Rounding Out the Basics
	Defining Operators
	Allowed Characters in Identifiers
	Methods with Empty Parameter Lists
	Operator Precedence Rules
	Enumerations and Algebraic Data Types
	Interpolated Strings
	Scala Conditional Expressions
	Conditional and Comparison Operators
	for Comprehensions
	for Loops
	Generators
	Guards: Filtering Values
	Yielding New Values
	Expanded Scope and Value Definitions

	Scala while Loops
	Using try, catch, and finally Clauses
	Call by Name, Call by Value
	Lazy Values
	Traits: Interfaces and Mixins in Scala
	When new Is Optional
	Recap and What’s Next

	Chapter 4. Pattern Matching
	Safer Pattern Matching with Matchable
	Values, Variables, and Types in Matches
	Matching on Sequences
	Pattern Matching on Repeated Parameters
	Matching on Tuples
	Parameter Untupling

	Guards in Case Clauses
	Matching on Case Classes and Enums
	Matching on Regular Expressions
	Matching on Interpolated Strings
	Sealed Hierarchies and Exhaustive Matches
	Chaining Match Expressions
	Pattern Matching Outside Match Expressions
	Problems in Pattern Bindings
	Pattern Matching as Filtering in for Comprehensions
	Pattern Matching and Erasure
	Extractors
	unapply Method
	Alternatives to Option Return Values
	unapplySeq Method
	Implementing unapplySeq

	Recap and What’s Next

	Chapter 5. Abstracting Over Context: Type Classes and Extension Methods
	Four Changes
	Extension Methods
	Build Your Own String Interpolator

	Type Classes
	Scala 3 Type Classes
	Alias Givens
	Scala 2 Type Classes

	Scala 3 Implicit Conversions
	Type Class Derivation
	Givens and Imports
	Givens Scoping and Pattern Matching
	Resolution Rules for Givens and Extension Methods
	The Expression Problem
	Recap and What’s Next

	Chapter 6. Abstracting Over Context: Using Clauses
	Using Clauses
	Context Bounds
	Other Context Parameters
	Context Functions
	Constraining Allowed Instances
	Implicit Evidence

	Working Around Type Erasure with Using Clauses
	Rules for Using Clauses
	Improving Error Messages
	Recap and What’s Next

	Chapter 7. Functional Programming in Scala
	What Is Functional Programming?
	Functions in Mathematics
	Variables That Aren’t

	Functional Programming in Scala
	Anonymous Functions, Lambdas, and Closures
	Purity Inside Versus Outside

	Recursion
	Tail Calls and Tail-Call Optimization
	Partially Applied Functions Versus Partial Functions
	Currying and Uncurrying Functions
	Tupled and Untupled Functions
	Partial Functions Versus Functions Returning Options
	Functional Data Structures
	Sequences
	Maps
	Sets

	Traversing, Mapping, Filtering, Folding, and Reducing
	Traversing
	Mapping
	Flat Mapping
	Filtering
	Folding and Reducing
	Left Versus Right Folding

	Combinators: Software’s Best Component Abstractions
	What About Making Copies?
	Recap and What’s Next

	Chapter 8. for Comprehensions in Depth
	Recap: The Elements of for Comprehensions
	for Comprehensions: Under the Hood
	Translation Rules of for Comprehensions
	Options and Container Types
	Option as a Container?
	Either: An Alternative to Option
	Try: When There Is No Do
	Validated from the Cats Library

	Recap and What’s Next

	Chapter 9. Object-Oriented Programming in Scala
	Class and Object Basics: Review
	Open Versus Closed Types
	Classes Open for Extension
	Overriding Methods? The Template Method Pattern

	Reference Versus Value Types
	Opaque Types and Value Classes
	Opaque Type Aliases
	Value Classes

	Supertypes
	Constructors in Scala
	Calling Supertype Constructors

	Export Clauses
	Good Object-Oriented Design: A Digression
	Fields in Types
	The Uniform Access Principle
	Unary Methods

	Recap and What’s Next

	Chapter 10. Traits
	Traits as Mixins
	Stackable Traits
	Union and Intersection Types
	Transparent Traits
	Using Commas Instead of with
	Trait Parameters
	Should That Type Be a Class or Trait?
	Recap and What’s Next

	Chapter 11. Variance Behavior and Equality
	Parameterized Types: Variance Under Inheritance
	Functions Under the Hood
	Variance of Mutable Types
	Improper Variance of Java Arrays

	Equality of Instances
	The equals Method
	The == and != Methods
	The eq and ne Methods
	Array Equality and the sameElements Method

	Equality and Inheritance
	Multiversal Equality
	Case Objects and hashCode
	Recap and What’s Next

	Chapter 12. Instance Initialization and Method Resolution
	Linearization of a Type Hierarchy
	Initializing Abstract Fields
	Overriding Concrete Fields
	Abstract Type Members and Concrete Type Aliases
	Recap and What’s Next

	Chapter 13. The Scala Type Hierarchy
	Much Ado About Nothing (and Null)
	The scala Package
	Products, Case Classes, Tuples, and Functions
	Tuples and the Tuple Trait

	The Predef Object
	Implicit Conversions
	Type Definitions
	Condition Checking Methods
	Input and Output Methods
	Miscellaneous Methods

	Recap and What’s Next

	Chapter 14. The Scala Collections Library
	Different Groups of Collections
	Abstractions with Multiple Implementations
	The scala.collection.immutable Package
	The scala.collection.mutable Package
	The scala.collection Package
	The scala.collection.concurrent Package
	The scala.collection.convert Package
	The scala.collection.generic Package

	Construction of Instances
	The Iterable Abstraction
	Polymorphic Methods
	Equality for Collections
	Nonstrict Collections: Views
	Recap and What’s Next

	Chapter 15. Visibility Rules
	Public Visibility: The Default
	Visibility Keywords
	Protected Visibility
	Private Visibility
	Scoped Private and Protected Visibility
	Recap and What’s Next

	Chapter 16. Scala’s Type System, Part I
	Parameterized Types
	Abstract Type Members and Concrete Type Aliases
	Comparing Abstract Type Members Versus Parameterized Types

	Type Bounds
	Upper Type Bounds
	Lower Type Bounds

	Context Bounds
	View Bounds
	Intersection and Union Types
	Intersection Types
	Union Types

	Phantom Types
	Structural Types
	Refined Types
	Existential Types (Obsolete)
	Recap and What’s Next

	Chapter 17. Scala’s Type System, Part II
	Match Types
	Dependently Typed Methods
	Dependent Method and Dependent Function Types
	Dependent Typing
	Path-Dependent Types
	Using this
	Using super
	Stable Paths

	Self-Type Declarations
	Type Projections
	More on Singleton Types
	Self-Recursive Types: F-Bounded Polymorphism
	Higher-Kinded Types
	Type Lambdas
	Polymorphic Functions
	Type Wildcard Versus Placeholder
	Recap and What’s Next

	Chapter 18. Advanced Functional Programming
	Algebraic Data Types
	Sum Types Versus Product Types
	Properties of Algebraic Data Types
	Final Thoughts on Algebraic Data Types

	Category Theory
	What Is a Category?
	Functor
	The Monad Endofunctor
	The Semigroup and Monoid Categories

	Recap and What’s Next

	Chapter 19. Tools for Concurrency
	The scala.sys.process Package
	Futures
	Robust, Scalable Concurrency with Actors
	Akka: Actors for Scala
	Actors: Final Thoughts

	Stream Processing
	Recap and What’s Next

	Chapter 20. Dynamic Invocation in Scala
	Structural Types Revisited
	A Motivating Example: ActiveRecord in Ruby on Rails
	Dynamic Invocation with the Dynamic Trait
	DSL Considerations
	Recap and What’s Next

	Chapter 21. Domain-Specific Languages in Scala
	Internal DSLs
	External DSLs with Parser Combinators
	About Parser Combinators
	A Payroll External DSL

	Internal Versus External DSLs: Final Thoughts
	Recap and What’s Next

	Chapter 22. Scala Tools and Libraries
	Scala 3 Versions
	Command-Line Interface Tools
	Coursier
	Managing Java JDKs with Coursier
	The scalac Command-Line Tool
	The scala Command-Line Tool
	The scaladoc Command-Line Tool
	Other Scala Command-Line Tools

	Build Tools
	Integration with IDEs and Text Editors
	Using Notebook Environments with Scala
	Testing Tools
	Scala for Big Data: Apache Spark
	Typelevel Libraries
	Li Haoyi Libraries
	Java and Scala Interoperability
	Using Java Identifiers in Scala Code
	Scala Identifiers in Java Code
	Java Generics and Scala Parameterized Types
	Conversions Between Scala and Java Collections
	Java Lambdas Versus Scala Functions
	Annotations for JavaBean Properties and Other Purposes

	Recap and What’s Next

	Chapter 23. Application Design
	Recap of What We Already Know
	Annotations
	Using @main Entry Points
	Design Patterns
	Creational Patterns
	Structural Patterns
	Behavioral Patterns

	Better Design with Design by Contract
	The Parthenon Architecture
	Recap and What’s Next

	Chapter 24. Metaprogramming: Macros and Reflection
	Scala Compile Time Reflection
	Java Runtime Reflection
	Scala Reflect API
	Type Class Derivation: Implementation Details
	Scala 3 Metaprogramming
	Inline
	Macros
	Staging

	Wrapping Up and Looking Ahead

	Appendix A. Significant Indentation Versus Braces Syntax
	Bibliography
	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

