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Welcome to the R Cookbook, 2nd Edition



R is a powerful tool for statistics, graphics, and statistical
programming. It is used by tens of thousands of people daily to perform
serious statistical analyses. It is a free, open source system whose
implementation is the collective accomplishment of many intelligent,
hard-working people. There are more than 10,000 available add-on
packages, and R is a serious rival to all commercial statistical
packages.


But R can be frustrating. It’s not obvious how to accomplish many tasks,
even simple ones. The simple tasks are easy once you know how, yet
figuring out that “how” can be maddening.


This book is full of how-to recipes, each of which solves a specific
problem. Each recipe includes a quick introduction to the solution
followed by a discussion that aims to unpack the solution and give you
some insight into how it works. We know these recipes are useful and we
know they work, because we use them ourselves.


The range of recipes is broad. It starts with basic tasks before moving
on to input and output, general statistics, graphics, and linear
regression. Any significant work with R will involve most or all of
these areas.


If you are a beginner, then this book will get you started faster. If
you are an intermediate user, this book will be useful for expanding your
horizons and jogging your memory (“How do I do that Kolmogorov–Smirnov
test again?”).


The book is not a tutorial on R, although you will learn something by
studying the recipes. It is not a reference manual, but it does contain
a lot of useful information. It is not a book on programming in R,
although many recipes are useful inside R scripts.


Finally, this book is not an introduction to statistics. Many recipes
assume that you are familiar with the underlying statistical procedure,
if any, and just want to know how it’s done in R.








The Recipes


Most recipes use one or two R functions to solve a specific problem.
It’s important to remember that we do not describe the functions in
detail; rather, we describe just enough to solve the immediate problem.
Nearly every such function has additional capabilities beyond those
described here, and some have amazing capabilities. We strongly urge you
to read the functions’ help pages. You will likely learn something
valuable.


Each recipe presents one way to solve a particular problem. Of course,
there are likely several reasonable solutions to each problem. When we
knew of multiple solutions, we generally selected the simplest one. For
any given task, you can probably discover several alternative solutions
yourself. This is a cookbook, not a bible.


In particular, R has literally thousands of downloadable add-on
packages, many of which implement alternative algorithms and statistical
methods. This book concentrates on the core functionality available
through the basic distribution combined with several important packages
known collectively as the tidyverse.


The most concise definition of the tidyverse comes from Hadley Wickham, its originator and one of its core maintainers:


The tidyverse is a set of packages that work in harmony because they
share common data representations and API design. The tidyverse package
is designed to make it easy to install and load core packages from the
tidyverse in a single command. The best place to learn about all the
packages in the tidyverse and how they fit together is
R for Data Science.


















A Note on Terminology


The goal of every recipe is to solve a problem and solve it quickly.
Rather than laboring in tedious prose, we occasionally streamline the
description with terminology that is correct but not precise. A good
example is the term generic function. We refer to print(x) and
plot(x) as generic functions because they work for many kinds of x,
handling each kind appropriately. A computer scientist would wince at
our terminology because, strictly speaking, these are not simply
“functions”; they are polymorphic methods with dynamic dispatching. But
if we carefully unpacked every such technical detail, the essential
solutions would be buried in the technicalities. So we just call them
functions, which we think is more readable.


Another example, taken from statistics, is the complexity surrounding
the semantics of statistical hypothesis testing. Using the strict
language of probability theory would obscure the practical application
of some tests, so we use more colloquial language when describing each
statistical test. See the introduction to Chapter 9 for more about how hypothesis tests are
presented in the recipes.


Our goal is to make the power of R available to a wide audience by
writing readably, not formally. We hope that experts in their respective
fields will understand if our terminology is occasionally informal.

















Software and Platform Notes


The base distribution of R has frequent and planned releases, but the
language definition and core implementation are stable. The recipes in
this book should work with any recent release of the base distribution.


Some recipes have platform-specific considerations, and we have
carefully noted them. Those recipes mostly deal with software issues,
such as installation and configuration. As far as we know, all other
recipes will work on all three major platforms for R: Windows, macOS,
and Linux/Unix.

















Other Resources


Here are a few suggestions for further reading, if oyu’d like to dig a little deeper:


	On the web

	
The mother ship for all things R is the R
project site. From there you can download R for your platform, add-on
packages, documentation, and source code as well as many other
resources.


Beyond the R project site, we recommend using an R-specific search
engine, such as RSeek, created by Sasha Goodman. You
can use a generic search engine, such as Google, but the “R” search
term brings up too much extraneous stuff. See Recipe 1.11 for more about
searching the web.


Reading blogs is a great way to learn about R and stay abreast of
leading-edge developments. There are surprisingly many such blogs, so
we recommend following two blogs-of-blogs:
R-bloggers, created by Tal Galili, and
PlanetR. By subscribing to their RSS
feeds, you will be notified of interesting and useful articles from
dozens of websites.



	R books

	
There are many, many books about learning and using R. Listed here are
a few that we have found useful. Note that the R project site contains
an extensive
bibliography of books related to R.


R for Data
Science, by Hadley Wickham and Garrett Grolemund (O’Reilly), is an
excellent introduction to the tidyverse packages, especially for using
them in data analysis and statistics. It is also available online.


We find the R
Graphics Cookbook, 2nd ed., by Winston Chang (O’Reilly),
indispensible for creating graphics. The book ggplot2: Elegant
Graphics for Data Analysis by Hadley Wickham (Springer) is the
definitive reference for the graphics package ggplot2, which we use
in this book.


Anyone doing serious graphics work in R will want R Graphics by Paul
Murrell (Chapman & Hall/CRC).


R in a Nutshell, by Joseph
Adler (O’Reilly), is the quick tutorial and reference you’ll keep by
your side. It covers many more topics than this cookbook.


New books on programming in R appear regularly. We suggest
Hands
On Programming with R by Garrett Grolemund (O’Reilly) for an
introduction, or The Art of R Programming by Normal Matloff (No
Starch Press). Hadley Wickham’s Advanced R (Chapman & Hall/CRC)  is available
either as a printed book or free online and
is a great deeper dive into advanced R topics.
Efficient R
Programming, by Colin Gillespie and Robin Lovelace (O’Reilly), is
another good guide to learning the deeper concepts about R
programming.


Modern Applied Statistics with S, 4th ed., by William Venables and
Brian Ripley (Springer), uses R to illustrate many advanced
statistical techniques. The book’s functions and datasets are
available in the MASS package, which is included in the standard
distribution of R.


Serious geeks can download the
R Language
Definition from the R Core Team. The Definition is a work in
progress, but it can answer many of your detailed questions regarding
R as a programming language.



	Statistics books

	
For learning statistics, a great choice is Using R for Introductory
Statistics by John Verzani (Chapman & Hall/CRC). It teaches
statistics and R together, giving you the necessary computer skills to
apply the statistical methods.


You will need a good statistics textbook or reference book to
accurately interpret the statistical tests performed in R. There are
many such fine books—far too many for us to recommend any one above
the others.


Increasingly, statistics authors are using R to illustrate their
methods. If you work in a specialized field, then you will likely find
a useful and relevant book in the
R project bibliography.





















Conventions Used in This Book


The following typographical conventions are used in this book:


	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file
extensions.



	Constant width

	
Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases,
packages, data types, environment variables, statements, and keywords.



	Constant width bold

	
Shows commands or other text that should be typed literally by the
user.



	Constant width italic

	
Shows text that should be replaced with user-supplied values or by
values determined by context.





Tip

This element signifies a tip or suggestion.



Note

This element signifies a general note.



Warning

This element indicates a warning or caution.



















Using Code Examples


Supplemental material (code examples, source code for the book,
exercises, etc.) is available for download at http://rc2e.com. The
Twitter account for content associated with this book is
@R_cookbook.


This book is here to help you get your job done. In general, you may use
the code in this book in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a
significant portion of the code. For example, writing a program that
uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.


We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “R
Cookbook, 2nd ed., by J.D. Long and Paul Teetor. Copyright 2019 J.D.
Long and Paul Teetor, 978-1-492-04068-2.”


If you feel your use of code examples falls outside fair use or the
permission just described, feel free to contact us at
permissions@oreilly.com.

















O’Reilly Online Learning

Note

For almost 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.




Our unique network of experts and innovators share their knowledge and expertise through books, articles, conferences, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, please visit http://oreilly.com.
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Please address comments and questions concerning this book to the publisher:


  	O’Reilly Media, Inc.

  	1005 Gravenstein Highway North

  	Sebastopol, CA 95472

  	800-998-9938 (in the United States or Canada)

  	707-829-0515 (international or local)

  	707-829-0104 (fax)




We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/RCookbook_2e.


To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.


For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.


Find us on Facebook: http://facebook.com/oreilly
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Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 1. Getting Started and Getting Help



This chapter sets the groundwork for the other chapters. It explains how
to download, install, and run R.


More importantly, it also explains how to get answers to your questions.
The R community provides a wealth of documentation and assistance. You are not
alone. Here are some common sources of help:


	Local, installed documentation

	
When you install R on your computer, a mass of documentation is also
installed. You can browse the local documentation (Recipe 1.7) and search
it (Recipe 1.9). We are amazed how often we search the web for an
answer only to discover it was already available in the installed
documentation.



	Task views

	
A task view describes packages that are specific to one area of
statistical work, such as econometrics, medical imaging,
psychometrics, or spatial statistics. Each task view is written and
maintained by an expert in the field. There are more than 35 such task
views, so there is likely to be one or more for your areas of
interest. We recommend that every beginner find and read at least one
task view in order to gain a sense of R’s possibilities (Recipe 1.12).



	Package documentation

	
Most packages include useful documentation. Many also include
overviews and tutorials, called vignettes in the R community. The
documentation is kept with the packages in package repositories such
as CRAN, and it is automatically
installed on your machine when you install a package.






	Question and answer (Q&A) websites

	
On a Q&A site, anyone can post a question, and knowledgeable people
can respond. Readers vote on the answers, so the best answers tend to
emerge over time. All this information is tagged and archived for
searching. These sites are a cross between a mailing list and a social
network; Stack Overflow is the canonical
example.



	The web

	
The web is loaded with information about R, and there are R-specific
tools for searching it (Recipe 1.11). The web is a moving target, so be on the lookout for new,
improved ways to organize and search information regarding R.



	Mailing lists

	
Volunteers have generously donated many hours of time to answer
beginners’ questions that are posted to the R mailing lists. The lists
are archived, so you can search the archives for answers to your
questions (Recipe 1.13).












1.1 Downloading and Installing R










Problem


You want to install R on your computer.

















Solution


Windows and macOS users can download R from CRAN, the Comprehensive R
Archive Network. Linux and Unix users can install R packages using their
package management tool.












Windows


	
Open http://www.r-project.org/ in your browser.



	
Click on “CRAN.” You’ll see a list of mirror sites, organized by
country.



	
Select a site near you or the top one listed as “0-Cloud,” which
tends to work well for most locations (https://cloud.r-project.org/).



	
Click on “Download R for Windows” under “Download and Install R.”



	
Click on “base.”



	
Click on the link for downloading the latest version of R (an .exe
file).



	
When the download completes, double-click on the .exe file and
answer the usual questions.






















macOS


	
Open http://www.r-project.org/ in your browser.



	
Click on “CRAN.” You’ll see a list of mirror sites, organized by
country.



	
Select a site near you or the top one listed as “0-Cloud,” which
tends to work well for most locations.



	
Click on “Download R for (Mac) OS X.”



	
Click on the .pkg file for the latest version of R, under “Latest
release:,” to download it.



	
When the download completes, double-click on the .pkg file and
answer the usual questions.






















Linux or Unix


The major Linux distributions have packages for installing R. Table 1-1 shows some examples.


Table 1-1. Linux distributions


	Distribution
	Package name





	Ubuntu or Debian

	r-base




	Red Hat or Fedora

	R.i386




	SUSE

	R-base







Use the system’s package manager to download and install the package.
Normally, you will need the root password or sudo privileges;
otherwise, ask a system administrator to perform the installation.






















Discussion


Installing R on Windows or macOS is straightforward because there are
prebuilt binaries (compiled programs) for those platforms. You need only
follow the preceding instructions. The CRAN web pages also contain links
to installation-related resources, such as frequently asked questions
(FAQs) and tips for special situations (“Does R run under Windows
Vista/7/8/Server 2008?”), that you may find useful.


The best way to install R on Linux or Unix is by using your Linux
distribution package manager to install R as a package. The distribution
packages greatly streamline both the initial installation and subsequent
updates.


On Ubuntu or Debian, use apt-get to download and install R. Run under
sudo to have the necessary privileges:

$ sudo apt-get install r-base



On Red Hat or Fedora, use yum:

$ sudo yum install R.i386



Most Linux platforms also have graphical package managers, which you
might find more convenient.


Beyond the base packages, we recommend installing the documentation
packages, too. We like to install r-base-html (because we like
browsing the hyperlinked documentation) as well as r-doc-html, which
installs the important R manuals locally:

$ sudo apt-get install r-base-html r-doc-html



Some Linux repositories also include prebuilt copies of R packages
available on CRAN. We don’t use them because we’d rather get software
directly from CRAN itself, which usually has the freshest versions.


In rare cases, you may need to build R from scratch. You might have an
obscure, unsupported version of Unix, or you might have special
considerations regarding performance or configuration. The build
procedure on Linux or Unix is quite standard. Download the tarball from
the home page of your CRAN mirror; it’ll be called something like
R-3.5.1.tar.gz, except the 3.5.1 will be replaced by the latest
version. Unpack the tarball, look for a file called INSTALL, and
follow the directions.

















See Also


R in a Nutshell by Joseph Adler (O’Reilly)
contains more details on downloading and installing R, including
instructions for building the Windows and macOS versions. Perhaps the
ultimate guide is the one entitled
“R Installation and
Administration”, available on CRAN, which describes building and
installing R on a variety of platforms.


This recipe is about installing the base package. See Recipe 3.10
for installing add-on packages from CRAN.
























1.2 Installing RStudio










Problem


You want a more comprehensive integrated development environment (IDE)
than the R default. In other words, you want to install RStudio Desktop.

















Solution


Over the past few years RStudio has become the most widely used IDE for
R. We are of the opinion that almost all R work should be done in the
RStudio Desktop IDE, unless there is a compelling reason to do otherwise.
RStudio makes multiple products, including RStudio Desktop, RStudio
Server, and RStudio Shiny Server, just to name a few. For this book we
will use the term RStudio to mean RStudio Desktop, though most
concepts apply to RStudio Server as well.


To install RStudio, download the latest installer for your platform from
the RStudio website.


The RStudio Desktop Open Source License version is free to download and
use.

















Discussion


This book was written and built using RStudio version 1.2.x and R
versions 3.5.x. New versions of RStudio are released every few months,
so be sure to update regularly. Note that RStudio works with whichever
version of R you have installed, so updating to the latest version of
RStudio does not upgrade your version of R. R must be upgraded
separately.


Interacting with R is slightly different in RStudio than in the built-in
R user interface. For this book, we’ve elected to use RStudio for all
examples.
























1.3 Starting RStudio










Problem


You want to run RStudio on your computer.

















Solution


A common mistake made by new users of R and RStudio is to accidentally
start R when they intended to start RStudio. The easiest way to ensure
you’re actually starting RStudio is to search for RStudio on your
desktop, then use whatever method your OS provides for pinning the
icon somewhere easy to find later:


	Windows

	
Click on the Start Screen menu in the lower-left corner of the screen.
In the search box, type RStudio.



	macOS

	
Look in your launchpad for the RStudio app or press Cmd-space (Cmd is the command or ⌘ key) and
type RStudio to search using Spotlight Search.



	Ubuntu

	
Press Alt-F1 and type RStudio to search for RStudio.





















Discussion


It’s easy to get confused between R and RStudio because, as you can see
in Figure 1-1, the icons look similar.



[image: rcbk 0101]
Figure 1-1. R and RStudio icons in macOS




If you click on the R icon, you’ll be greeted by something like Figure 1-2, which is the Base R interface on a Mac, but
certainly not RStudio.



[image: rcbk 0102]
Figure 1-2. The R console in macOS




When you start RStudio, by default it will reopen the last project you
were working on in RStudio.
























1.4 Entering Commands










Problem


You’ve started RStudio. Now what?

















Solution


When you start RStudio, the main window on the left is an R session.
From there you can enter commands interactively directly to R.

















Discussion


R prompts you with >. To get started, just treat R like a big
calculator: enter an expression, and R will evaluate the expression and
print the result:



[image: rcbk 01in01]





The computer adds 1 and 1, and displays the result, 2.


The [1] before the 2 might be confusing. To R, the result is a
vector, even though it has only one element. R labels the value with
[1] to signify that this is the first element of the vector… which
is not surprising, since it’s the only element of the vector.


R will prompt you for input until you type a complete expression. The
expression max(1,3,5) is a complete expression, so R stops reading
input and evaluates what it’s got:



[image: rcbk 01in02]





In contrast, max(1,3, is an incomplete expression, so R prompts you
for more input. The prompt changes from greater-than (>) to plus
(+), letting you know that R expects more:



[image: rcbk 01in03]





It’s easy to mistype commands, and retyping them is tedious and
frustrating. So R includes command-line editing to make life easier. It
defines single keystrokes that let you easily recall, correct, and
reexecute your commands. A typical command-line interaction goes like
this:


	
You enter an R expression with a typo.



	
R complains about your mistake.



	
You press the up arrow key to recall your mistaken line.



	
You use the left and right arrow keys to move the cursor back to the
error.



	
You use the Delete key to delete the offending characters.



	
You type the corrected characters, which inserts them into the command
line.



	
You press Enter to reexecute the corrected command.







That’s just the basics. R supports the usual keystrokes for recalling
and editing command lines, as listed in Table 1-2.


Table 1-2. R command shortcuts


	Labeled key
	Ctrl-key combo
	Effect





	Up arrow

	Ctrl-P

	Recall previous command by moving backward through
the history of commands.




	Down arrow

	Ctrl-N

	Move forward through the history of commands.




	Backspace

	Ctrl-H

	Delete the character to the left of the cursor.




	Delete (Del)

	Ctrl-D

	Delete the character to the right of the cursor.




	Home

	Ctrl-A

	Move the cursor to the start of the line.




	End

	Ctrl-E

	Move the cursor to the end of the line.




	Right arrow

	Ctrl-F

	Move the cursor right (forward) one character.




	Left arrow

	Ctrl-B

	Move the cursor left (back) one character.




	
	Ctrl-K

	Delete everything from the cursor
position to the end of the line.




	
	Ctrl-U

	Clear the whole darn line and start
over.




	Tab

	
	Complete the name (on some platforms).







On most operating systems, you can also use the mouse to highlight
commands and then use the usual copy and paste commands to paste text
into a new command line.

















See Also


See Recipe 2.12. From the Windows main menu, follow Help → Console
for a complete list of keystrokes useful for command-line editing.
























1.5 Exiting from RStudio










Problem


You want to exit from RStudio.

















Solution












Windows and most Linux distributions


Select File → Quit Session from the main menu, or click on the X in
the upper-right corner of the window frame.

















macOS


Select File → Quit Session from the main menu, or press Cmd-Q, or click on the red circle in the upper-left corner of the window
frame.


On all platforms, you can also use the q function (as in quit) to
terminate R and RStudio:


q()


Note the empty parentheses, which are necessary to call the function.






















Discussion


Whenever you exit, R typically asks if you want to save your workspace.
You have three choices:



	
Save your workspace and exit.



	
Don’t save your workspace, but exit anyway.



	
Cancel, returning to the command prompt rather than exiting.






If you save your workspace, R writes it to a file called .RData in the
current working directory. Saving the workspace saves any R objects you
have created. The next time you start R in the same directory, the
workspace will automatically load. Saving your workspace will overwrite
the previously saved workspace, if any, so don’t save if you don’t like
your changes (e.g., if you have accidentally erased critical data from
your workspace).


We recommend never saving your workspace when you exit and instead
always explicitly saving your project, scripts, and data. We also
recommend that you turn off the prompt to save and autorestore the
workspace in RStudio using the global options found in the menu Tools →
Global Options and shown in Figure 1-3. This way, when
you exit R and RStudio, you won’t be prompted to save your workspace.
But keep in mind that any objects created but not saved to disk will be
lost!



[image: rcbk 0103]
Figure 1-3. Save workspace options



















See Also


See Recipe 3.1 for more about the current working directory
and Recipe 3.3 for more about saving your workspace. Also see Chapter 2 of
R in a Nutshell.
























1.6 Interrupting R










Problem


You want to interrupt a long-running computation and return to the
command prompt without exiting RStudio.

















Solution


Press the Esc key on your keyboard, or click on the Session menu in
RStudio and select “Interrupt R.” You may also click on the stop sign icon
in the code console window.

















Discussion


Interrupting R means telling R to stop running the current command, but
without deleting variables from memory or completely closing RStudio.
That said, interrupting R can leave your variables in an indeterminate
state, depending upon how far the computation had progressed, so check
your workspace after interrupting.

















See Also


See Recipe 1.5.
























1.7 Viewing the Supplied Documentation










Problem


You want to read the documentation supplied with R.

















Solution


Use the help.start function to see the documentation’s table of
contents:


help.start()


From there, links are available to all the installed documentation. In
RStudio the help will show up in the help pane, which by default is on
the righthand side of the screen.


In RStudio you can also click Help → R Help to get a listing with help
options for both R and RStudio.

















Discussion


The base distribution of R includes a wealth of documentation—literally
thousands of pages. When you install additional packages, those packages
contain documentation that is also installed on your machine.


It is easy to browse this documentation via the help.start function,
which opens on the top-level table of contents. Figure 1-4 shows how help.start appears inside the help pane
in RStudio.



[image: rcbk 0104]
Figure 1-4. RStudio help.start




The two links in the Reference section are especially useful:


	Packages

	
Click here to see a list of all the installed packages—both the
base packages and the additional installed packages. Click on a
package name to see a list of its functions and datasets.



	Search Engine & Keywords

	
Click here to access a simple search engine that allows you to
search the documentation by keyword or phrase. There is also a list of
common keywords, organized by topic; click one to see the associated
pages.






The Base R documentation accessed via help.start is loaded on your
computer when you install R. The RStudio help, which you access by using
the menu option Help → R Help, presents a page with links to RStudio’s
website. So, you will need internet access to access the RStudio help
links.

















See Also


The local documentation is copied from the R
Project website, which may have updated documents.
























1.8 Getting Help on a Function










Problem


You want to know more about a function that is installed on your
machine.

















Solution


Use help to display the documentation for the function:

help(functionname)



Use args for a quick reminder of the function arguments:

args(functionname)



Use example to see examples of using the function:

example(functionname)


















Discussion


We present many R functions in this book. Every R function has more
bells and whistles than we can possibly describe. If a function catches
your interest, we strongly suggest reading the help page for that
function. One of its bells or whistles might be very useful to you.


Suppose you want to know more about the mean function. Use the help
function like this:


help(mean)


This will open the help page for the mean function in the help pane in
RStudio. A shortcut for the help command is to simply type ?
followed by the function name:


?mean


Sometimes you just want a quick reminder of the arguments to a function:
what are they, and in what order do they occur? For this case, use the
args function:


args(mean)
#> function (x, ...)
#> NULL


args(sd)
#> function (x, na.rm = FALSE)
#> NULL


The first line of output from args is a synopsis of the function call.
For mean, the synopsis shows one argument, x, which is a vector of
numbers. For sd, the synopsis shows the same vector, x, and an
optional argument called na.rm. (You can ignore the second line of
output, which is often just NULL.) In RStudio you will see the args
output as a floating tool tip over your cursor when you type a function
name, as shown in Figure 1-5.
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Figure 1-5. RStudio tool tip




Most documentation for functions includes example code near the end of
the document. A cool feature of R is that you can request that it
execute the examples, giving you a little demonstration of the
function’s capabilities. The documentation for the mean function, for
instance, contains examples, but you don’t need to type them yourself.
Just use the example function to watch them run:


example(mean)
#>
#> mean> x <- c(0:10, 50)
#>
#> mean> xm <- mean(x)
#>
#> mean> c(xm, mean(x, trim = 0.10))
#> [1] 8.75 5.50


Everything you see after example(mean) was produced by R, which
executed the examples from the help page and displayed the results.

















See Also


See Recipe 1.9 for searching for functions and Recipe 3.6 for more about the search path.
























1.9 Searching the Supplied Documentation










Problem


You want to know more about a function that is installed on your
machine, but the help function reports that it cannot find
documentation for any such function.


Alternatively, you want to search the installed documentation for a
keyword.

















Solution


Use help.search to search the R documentation on your computer:

help.search("pattern")



A typical pattern is a function name or keyword. Notice that it must be
enclosed in quotation marks.


For your convenience, you can also invoke a search by using two question
marks (in which case the quotes are not required). Note that searching
for a function by name uses one question mark, while searching for a
text pattern uses two:

> ??pattern


















Discussion


You may occasionally request help on a function only to be told R knows
nothing about it:


help(adf.test)
#> No documentation for 'adf.test' in specified packages and libraries:
#> you could try '??adf.test'


This can be frustrating if you know the function is installed on your
machine. Here the problem is that the function’s package is not
currently loaded, and you don’t know which package contains the
function. It’s kind of a catch-22 (the error message indicates the
package is not currently in your search path, so R cannot find the help
file; see Recipe 3.6 for more details).


The solution is to search all your installed packages for the function.
Just use the help.search function, as suggested in the error message:


help.search("adf.test")


The search will produce a listing of all packages that contain the
function:


Help files with alias or concept or title matching 'adf.test' using
regular expression matching:

tseries::adf.test       Augmented Dickey-Fuller Test

Type '?PKG::FOO' to inspect entry 'PKG::FOO TITLE'.


The preceding output indicates that the tseries package contains the
adf.test function. You can see its documentation by explicitly telling
help which package contains the function:


help(adf.test, package = "tseries")


or you can use the double colon operator to tell R to look in a specific
package:


?tseries::adf.test


You can broaden your search by using keywords. R will then find any
installed documentation that contains the keywords. Suppose you want to
find all functions that mention the Augmented Dickey–Fuller (ADF) test.
You could search on a likely pattern:


help.search("dickey-fuller")

















See Also


You can also access the local search engine through the documentation
browser; see Recipe 1.7 for how this is done. See Recipe 3.6 for more about the search path and Recipe 1.8 for getting
help on functions.
























1.10 Getting Help on a Package










Problem


You want to learn more about a package installed on your computer.

















Solution


Use the help function and specify a package name (without a function
name):

help(package = "packagename")


















Discussion


Sometimes you want to know the contents of a package (the functions and
datasets). This is especially true after you download and install a new
package, for example. The help function can provide the contents plus
other information once you specify the package name.


This call to help would display the information for the tseries
package, a standard package in the base distribution (try it!):


help(package = "tseries")


The information begins with a description and continues with an index of
functions and datasets. In RStudio, the HTML-formatted help page will
open in the help window of the IDE.


Some packages also include vignettes, which are additional documents
such as introductions, tutorials, or reference cards. They are installed
on your computer as part of the package documentation when you install
the package. The help page for a package includes a list of its
vignettes near the bottom.


You can see a list of all vignettes on your computer by using the
vignette function:


vignette()


In RStudio this will open a new tab listing every package installed on
your computer that includes vignettes as well as the vignette names and
descriptions.


You can see the vignettes for a particular package by including its
name:

vignette(package = "packagename")



Each vignette has a name, which you use to view the vignette:

vignette("vignettename")


















See Also


See Recipe 1.8 for getting help on a particular function in a package.
























1.11 Searching the Web for Help










Problem


You want to search the web for information and answers regarding R.

















Solution


Inside R, use the RSiteSearch function to search by keyword or phrase:

RSiteSearch("key phrase")



Inside your browser, try using these sites for searching:


	RSeek

	
This is a Google custom search engine that is focused on R-specific websites.



	Stack Overflow

	
Stack Overflow is a searchable Q&A site from Stack Exchange that is
oriented toward programming issues such as data structures, coding,
and graphics. Stack Overflow is a great “first stop” for all your
syntax questions.



	Cross Validated

	
Cross Validated is a Stack Exchange site focused on statistics,
machine learning, and data analysis rather than programming. It’s a good place for questions about what statistical method
to use.



	RStudio Community

	
The RStudio Community site is a discussion forum hosted by RStudio.
The topics include R, RStudio, and associated technology. Being an
RStudio site, this forum is often visited by RStudio staff and those
who use the software frequently. This is a good place for general
questions and questions that possibly don’t fit as well into the Stack
Overflow syntax-focused format.





















Discussion


The RSiteSearch function will open a browser window and direct it to
the search engine on the R Project
website. There you will see an initial search that you can refine. For
example, this call would start a search for “canonical correlation”:


RSiteSearch("canonical correlation")


This is quite handy for doing quick web searches without leaving R.
However, the search scope is limited to R documentation and the mailing
list archives.


RSeek provides a wider search. Its virtue is that it
harnesses the power of the Google search engine while focusing on sites
relevant to R. That eliminates the extraneous results of a generic
Google search. The beauty of RSeek is that it organizes the results in a
useful way.


Figure 1-6 shows the results of visiting RSeek and searching
for “correlation.” Note that the tabs across the top allow for drilling
in to different types of content:



	
All results



	
Packages



	
Books



	
Support



	
Articles



	
For Beginners
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Figure 1-6. RSeek




Stack Overflow is a Q&A site, which means
that anyone can submit a question and experienced users will supply
answers—often there are multiple answers to each question. Readers vote
on the answers, so good answers tend to rise to the top. This creates a
rich database of Q&A dialogues, which you can search. Stack Overflow is
strongly problem-oriented, and the topics lean toward the programming
side of R.


Stack Overflow hosts questions for many programming languages;
therefore, when entering a term into its search box, prefix it with
“[r]” to focus the search on questions tagged for R. For example,
searching for “[r] standard error” will select only the questions tagged
for R and will avoid the Python and C++ questions.


Stack Overflow also includes a
wiki about the R language that provides
an excellent community-curated list of online R resources.


Stack Exchange (the parent company of Stack Overflow) has a Q&A area for
statistical analysis called Cross
Validated. This area is more focused on statistics than programming, so
use it when seeking answers that are more concerned with
statistics in general and less with R in particular.


RStudio hosts its own discussion board as well. This is a great place to ask general questions and more
conceptual questions that may not work as well on Stack Overflow.

















See Also


If your search reveals a useful package, use Recipe 3.10 to install it on
your machine.
























1.12 Finding Relevant Functions and Packages










Problem


Of the 10,000+ packages for R, you have no idea which ones would be
useful to you.

















Solution



	
To discover packages related to a certain field, visit CRAN’s list of task views.
Select the task view for your area, which will give you links to
and descriptions of relevant packages. Or visit RSeek,
search by keyword, click on the Task Views tab, and select an applicable
task view.



	
Visit crantastic and search for packages by
keyword.



	
To find relevant functions, visit RSeek, search by
name or keyword, and click on the Functions tab.





















Discussion


This problem is especially vexing for beginners. You think R can solve
your problems, but you have no idea which packages and functions would
be useful. A common question on the mailing lists is: “Is there a
package to solve problem X?” That is the silent scream of someone
drowning in R.


As of this writing, there are more than 10,000 packages available for
free download from CRAN. Each package has a summary page with a short
description and links to the package documentation. Once you’ve located
a potentially interesting package, you would typically click on the
“Reference manual” link to view the PDF documentation with full details.
(The summary page also contains download links for installing the
package, but you’ll rarely install the package that way; see Recipe 3.10.)


Sometimes you simply have a generic interest—such as Bayesian analysis,
econometrics, optimization, or graphics. CRAN contains a set of task
view pages describing packages that may be useful. A task view is a
great place to start since you get an overview of what’s available. You
can see the list of task view pages at
CRAN Task Views or search for them
as described in the Solution. CRAN’s Task Views lists a number of broad
fields and shows packages that are used in each field. For example,
there are task views for high-performance computing, genetics, time
series, and social science, just to name a few.


Suppose you happen to know the name of a useful package—say, by seeing
it mentioned online. A complete alphabetical list of packages is
available at CRAN with links to
the package summary pages.

















See Also


You can download and install an R package called sos that provides
powerful other ways to search for packages; see the
vignette at
SOS.
























1.13 Searching the Mailing Lists










Problem


You have a question, and you want to search the archives of the mailing
lists to see whether your question was answered previously.

















Solution


Open Nabble in your browser. Search for
a keyword or other search term from your question. This will show
results from the support mailing lists.

















Discussion


This recipe is really just an application of Recipe 1.11. But it’s an important
application, because you should search the mailing list archives before
submitting a new question to the list. Your question has probably been
answered before.

















See Also


CRAN has a list of additional resources for searching the web; see
CRAN Search.
























1.14 Submitting Questions to Stack Overflow or Elsewhere in the Community










Problem


You have a question you can’t find the answer to online, so you want to
submit a question to the R community.

















Solution


The first step to asking a question online is to create a reproducible
example. Having example code that someone can run and see your exact
problem is the most critical part of asking for help online. A question
with a good reproducible example has three components:


	Example data

	
This can be simulated data or some real data that you
provide.



	Example code

	
This code shows what you have tried or an error you
are getting.



	Written description

	
This is where you explain what you have, what
you’d like to have, and what you have tried that didn’t work.






The details of writing a reproducible example are covered in the
Discussion. Once you have a reproducible example, you can post your
question on Stack Overflow. Be
sure to include the r tag in the Tags section of the ask page.


If your question is more general or related to concepts instead of
specific syntax, RStudio runs an RStudio Community
discussion forum. Note that the site is
broken into multiple topics, so pick the topic category that best fits
your question.


Or you may submit your question to the R mailing lists (but don’t submit
to multiple sites, the mailing lists, and Stack Overflow, as that’s
considered rude cross-posting).


The mailing lists page contains
general information and instructions for using the R-help mailing list.
Here is the general process:


	
Subscribe to the main R mailing list, R-help.



	
Write your question carefully and correctly and include your
reproducible example.



	
Mail your question to r-help@r-project.org.






















Discussion


The R-help mailing list, Stack Overflow, and the RStudio Community site are
great resources, but please treat them as a last resort. Read the help
pages, read the documentation, search the help list archives, and search
the web. It is most likely that your question has already been answered.
Don’t kid yourself: very few questions are unique. If you’ve exhausted
all other options, though, maybe it’s time to create a good question.


The reproducible example is the crux of a good help request. The first
component is example data. A good way to get this is to simulate the
data using a few R functions. The following example creates a data frame
called example_df that has three columns, each of a different data
type:


set.seed(42)
n <- 4
example_df <- data.frame(
  some_reals = rnorm(n),
  some_letters = sample(LETTERS, n, replace = TRUE),
  some_ints = sample(1:10, n, replace = TRUE)
)
example_df
#>   some_reals some_letters some_ints
#> 1      1.371            R        10
#> 2     -0.565            S         3
#> 3      0.363            L         5
#> 4      0.633            S        10


Note that this example uses the command set.seed at the beginning.
This ensures that every time this code is run, the answers will be the
same. The n value is the number of rows of example data you would like
to create. Make your example data as simple as possible to illustrate
your question.


An alternative to creating simulated data is to use example data that
comes with R. For example, the dataset mtcars contains a data frame
with 32 records about different car models:


data(mtcars)
head(mtcars)
#>                    mpg cyl disp  hp drat   wt qsec vs am gear carb
#> Mazda RX4         21.0   6  160 110 3.90 2.62 16.5  0  1    4    4
#> Mazda RX4 Wag     21.0   6  160 110 3.90 2.88 17.0  0  1    4    4
#> Datsun 710        22.8   4  108  93 3.85 2.32 18.6  1  1    4    1
#> Hornet 4 Drive    21.4   6  258 110 3.08 3.21 19.4  1  0    3    1
#> Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.0  0  0    3    2
#> Valiant           18.1   6  225 105 2.76 3.46 20.2  1  0    3    1


If your example is reproducible only with your own data, you can use
dput to put a bit of your own data in a string that you can use in
your example. We’ll illustrate that approach using two rows from the
mtcars dataset:


dput(head(mtcars, 2))
#> structure(list(mpg = c(21, 21), cyl = c(6, 6), disp = c(160,
#> 160), hp = c(110, 110), drat = c(3.9, 3.9), wt = c(2.62, 2.875
#> ), qsec = c(16.46, 17.02), vs = c(0, 0), am = c(1, 1), gear = c(4,
#> 4), carb = c(4, 4)), row.names = c("Mazda RX4", "Mazda RX4 Wag"
#> ), class = "data.frame")


You can put the resulting structure directly in your question:


example_df <- structure(list(mpg = c(21, 21), cyl = c(6, 6), disp = c(160,
160), hp = c(110, 110), drat = c(3.9, 3.9), wt = c(2.62, 2.875
), qsec = c(16.46, 17.02), vs = c(0, 0), am = c(1, 1), gear = c(4,
4), carb = c(4, 4)), row.names = c("Mazda RX4", "Mazda RX4 Wag"
), class = "data.frame")

example_df
#>               mpg cyl disp  hp drat   wt qsec vs am gear carb
#> Mazda RX4      21   6  160 110  3.9 2.62 16.5  0  1    4    4
#> Mazda RX4 Wag  21   6  160 110  3.9 2.88 17.0  0  1    4    4


The second part of a good reproducible example is the example
code. The code example should be as simple as possible and illustrate
what you are trying to do or have already tried. It should not be a
big block of code with many different things going on. Boil your example
down to only the minimal amount of code needed. If you use any packages,
be sure to include the library call at the beginning of your code.
Also, don’t include anything in your question that is potentially
harmful to someone running your code, such as rm(list=ls()), which
would delete all R objects in memory. Have empathy for the person trying
to help you, and realize that they are volunteering their time to help
you out and may run your code on the same machine they use to do their
own work.


To test your example, open a new R session and try running it. Once
you’ve edited your code, it’s time to give just a bit more information
to your potential respondents. In plain text, describe what you were
trying to do, what you’ve tried, and your question. Be as concise as
possible. As with the example code, your objective is to communicate as
efficiently as possible with the person reading your question. You may
find it helpful to include in your description which version of R you
are running as well as which platform (Windows, Mac, Linux). You can get
that information easily with the sessionInfo command.


If you are going to submit your question to the R mailing list, you
should know there are actually several mailing lists. R-help is the main
list for general questions. There are also many special interest group
(SIG) mailing lists dedicated to particular domains such as genetics,
finance, R development, and even R jobs. You can see the full list at
https://stat.ethz.ch/mailman/listinfo. If your question is specific to a
domain, you’ll get a better answer by selecting the appropriate list. As
with R-help, however, carefully search the SIG list archives before
submitting your question.

















See Also


We suggest that you read Eric Raymond and Rick Moen’s excellent essay
entitled “How to Ask
Questions the Smart Way” before submitting any question. Seriously.
Read it.


Stack Overflow has an excellent post that includes details about
creating a reproducible example. You can find that at
https://stackoverflow.com/q/5963269/37751.


Jenny Bryan has a great R package called reprex that helps in the
creation of a good reproducible example and provides helper functions
for writing the markdown text for sites like Stack Overflow. You can
find that package on her GitHub
page.



















Chapter 2. Some Basics



The recipes in this chapter lie somewhere between problem-solving ideas
and tutorials. Yes, they solve common problems, but the Solutions
showcase common techniques and idioms used in most R code, including the
code in this cookbook. If you are new to R, we suggest skimming this
chapter to acquaint yourself with these idioms.








2.1 Printing Something to the Screen










Problem


You want to display the value of a variable or expression.

















Solution


If you simply enter the variable name or expression at the command
prompt, R will print its value. Use the print function for generic
printing of any object. Use the cat function for producing custom-formatted output.

















Discussion


It’s very easy to ask R to print something—just enter it at the command
prompt:


pi
#> [1] 3.14
sqrt(2)
#> [1] 1.41


When you enter expressions like these, R evaluates the expression and
then implicitly calls the print function. So the previous example is
identical to this:


print(pi)
#> [1] 3.14
print(sqrt(2))
#> [1] 1.41


The beauty of print is that it knows how to format any R value for
printing, including structured values such as matrices and lists:


print(matrix(c(1, 2, 3, 4), 2, 2))
#>      [,1] [,2]
#> [1,]    1    3
#> [2,]    2    4
print(list("a", "b", "c"))
#> [[1]]
#> [1] "a"
#>
#> [[2]]
#> [1] "b"
#>
#> [[3]]
#> [1] "c"


This is useful because you can always view your data: just print it.
You need not write special printing logic, even for complicated data
structures.


The print function has a significant limitation, however: it prints
only one object at a time. Trying to print multiple items gives this
mind-numbing error message:


print("The zero occurs at", 2 * pi, "radians.")
#> Error in print.default("The zero occurs at", 2 * pi, "radians."):
#>     invalid 'quote' argument


The only way to print multiple items is to print them one at a time,
which probably isn’t what you want:


print("The zero occurs at")
#> [1] "The zero occurs at"
print(2 * pi)
#> [1] 6.28
print("radians")
#> [1] "radians"


The cat function is an alternative to print that lets you
concatenate multiple items into a continuous output:


cat("The zero occurs at", 2 * pi, "radians.", "\n")
#> The zero occurs at 6.28 radians.


Notice that cat puts a space between each item by default. You must
provide a newline character (\n) to terminate the line.


The cat function can print simple vectors, too:


fib <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
cat("The first few Fibonacci numbers are:", fib, "...\n")
#> The first few Fibonacci numbers are: 0 1 1 2 3 5 8 13 21 34 ...


Using cat gives you more control over your output, which makes it
especially useful in R scripts that generate output consumed by others.
A serious limitation, however, is that it cannot print compound data
structures such as matrices and lists. Trying to cat them only
produces another mind-numbing message:


cat(list("a", "b", "c"))
#> Error in cat(list("a", "b", "c")): argument 1 (type 'list') cannot
#>     be handled by 'cat'

















See Also


See Recipe 4.2 for controlling output format.
























2.2 Setting Variables










Problem


You want to save a value in a variable.

















Solution


Use the assignment operator (<-). There is no need to declare your
variable first:


x <- 3

















Discussion


Using R in “calculator mode” gets old pretty fast. Soon you will want to
define variables and save values in them. This reduces typing, saves
time, and clarifies your work.


There is no need to declare or explicitly create variables in R. Just
assign a value to the name and R will create the variable:


x <- 3
y <- 4
z <- sqrt(x^2 + y^2)
print(z)
#> [1] 5


Notice that the assignment operator is formed from a less-than character
(<) and a hyphen (-) with no space between them.


When you define a variable at the command prompt like this, the variable
is held in your workspace. The workspace is held in the computer’s main
memory but can be saved to disk. The variable definition remains in the
workspace until you remove it.


R is a dynamically typed language, which means that we can change a
variable’s data type at will. We could set x to be numeric, as just
shown, and then turn around and immediately overwrite that with (say) a
vector of character strings. R will not complain:


x <- 3
print(x)
#> [1] 3

x <- c("fee", "fie", "foe", "fum")
print(x)
#> [1] "fee" "fie" "foe" "fum"


In some R functions you will see assignment statements that use the
strange-looking assignment operator <<-:


x <<- 3


That forces the assignment to a global variable rather than a local
variable. Scoping is a bit, well, out of scope for this discussion,
however.


In the spirit of full disclosure, we will reveal that R also supports
two other forms of assignment statements. A single equals sign (=) can
be used as an assignment operator. A rightward assignment operator
(->) can be used anywhere the leftward assignment operator (<-) can
be used (but with the arguments reversed):


foo <- 3
print(foo)
#> [1] 3


5 -> fum
print(fum)
#> [1] 5


We recommend that you avoid these as well. The equals-sign assignment is
easily confused with the test for equality. The rightward assignment can
be useful in certain contexts, but it can be confusing to those not used
to seeing it.

















See Also


See Recipes 2.4, 2.14, and 3.3. See
also the help page for the assign function.
























2.3 Listing Variables










Problem


You want to know what variables and functions are defined in your
workspace.

















Solution


Use the ls function. Use ls.str for more details about each
variable. You can also see your variables and functions in the
Environment pane in RStudio, shown in the next recipe in Figure 2-1.

















Discussion


The ls function displays the names of objects in your workspace:


x <- 10
y <- 50
z <- c("three", "blind", "mice")
f <- function(n, p) sqrt(p * (1 - p) / n)
ls()
#> [1] "f" "x" "y" "z"


Notice that ls returns a vector of character strings in which each
string is the name of one variable or function. When your workspace is
empty, ls returns an empty vector, which produces this puzzling
output:


ls()
#> character(0)


That is R’s quaint way of saying that ls returned a zero-length vector
of strings; that is, it returned an empty vector because nothing is
defined in your workspace.


If you want more than just a list of names, try ls.str; this will also
tell you something about each variable:


x <- 10
y <- 50
z <- c("three", "blind", "mice")
f <- function(n, p) sqrt(p * (1 - p) / n)
ls.str()
#> f : function (n, p)
#> x :  num 10
#> y :  num 50
#> z :  chr [1:3] "three" "blind" "mice"


The function is called ls.str because it is both listing your
variables and applying the str function to them, showing their
structure (see Recipe 12.13).


Ordinarily, ls does not return any name that begins with a dot (.).
Such names are considered hidden and are not normally of interest to
users. (This mirrors the Unix convention of not listing files whose
names begin with a dot.) You can force ls to list everything by
setting the all.names argument to TRUE:


ls()
#> [1] "f" "x" "y" "z"
ls(all.names = TRUE)
#> [1] ".Random.seed" "f"            "x"            "y"
#> [5] "z"


The Environment pane in RStudio also hides objects with names that begin
with a dot.

















See Also


See Recipe 2.4
for deleting variables and Recipe 12.13 for
inspecting your variables.
























2.4 Deleting Variables










Problem


You want to remove unneeded variables or functions from your workspace
or to erase its contents completely.

















Solution


Use the rm function.

















Discussion


Your workspace can get cluttered quickly. The rm function removes,
permanently, one or more objects from the workspace:


x <- 2 * pi
x
#> [1] 6.28
rm(x)
x
#> Error in eval(expr, envir, enclos): object 'x' not found


There is no “undo”; once the variable is gone, it’s gone.


You can remove several variables at once:


rm(x, y, z)


You can even erase your entire workspace at once. The rm function has
a list argument consisting of a vector of names of variables to
remove. Recall that the ls function returns a vector of variable
names; hence, you can combine rm and ls to erase everything:


ls()
#> [1] "f" "x" "y" "z"
rm(list = ls())
ls()
#> character(0)


Alternatively, you could click the broom icon at the top of the
Environment pane in RStudio, shown in Figure 2-1.



[image: rcbk 0201]
Figure 2-1. Environment pane in RStudio



Warning

Never put rm(list=ls()) into code you share with others, such as a
library function or sample code sent to a mailing list or Stack
Overflow. Deleting all the variables in someone else’s workspace is
worse than rude and will make you extremely unpopular.



















See Also


See Recipe 2.3.
























2.5 Creating a Vector










Problem


You want to create a vector.

















Solution


Use the c(...) operator to construct a vector from given values.

















Discussion


Vectors are a central component of R, not just another data structure. A
vector can contain either numbers, strings, or logical values, but not a
mixture.


The c(...) operator can construct a vector from simple elements:


c(1, 1, 2, 3, 5, 8, 13, 21)
#> [1]  1  1  2  3  5  8 13 21
c(1 * pi, 2 * pi, 3 * pi, 4 * pi)
#> [1]  3.14  6.28  9.42 12.57
c("My", "twitter", "handle", "is", "@cmastication")
#> [1] "My"            "twitter"       "handle"        "is"
#> [5] "@cmastication"
c(TRUE, TRUE, FALSE, TRUE)
#> [1]  TRUE  TRUE FALSE  TRUE


If the arguments to c(...) are themselves vectors, it flattens them
and combines them into one single vector:


v1 <- c(1, 2, 3)
v2 <- c(4, 5, 6)
c(v1, v2)
#> [1] 1 2 3 4 5 6


Vectors cannot contain a mix of data types, such as numbers and strings.
If you create a vector from mixed elements, R will try to accommodate
you by converting one of them:


v1 <- c(1, 2, 3)
v3 <- c("A", "B", "C")
c(v1, v3)
#> [1] "1" "2" "3" "A" "B" "C"


Here, we tried to create a vector from both numbers and strings. R
converted all the numbers to strings before creating the vector, thereby
making the data elements compatible. Note that R does this without
warning or complaint.


Technically speaking, two data elements can coexist in a vector only if
they have the same mode. The modes of 3.1415 and "foo" are numeric
and character, respectively:


mode(3.1415)
#> [1] "numeric"
mode("foo")
#> [1] "character"


Those modes are incompatible. To make a vector from them, R converts
3.1415 to character mode so it will be compatible with "foo":


c(3.1415, "foo")
#> [1] "3.1415" "foo"
mode(c(3.1415, "foo"))
#> [1] "character"

Warning

c is a generic operator, which means that it works with many data
types and not just vectors. However, it might not do exactly what you
expect, so check its behavior before applying it to other data types and
objects.



















See Also


See the introduction to Chapter 5 for more about vectors
and other data structures.
























2.6 Computing Basic Statistics










Problem


You want to calculate basic statistics: mean, median, standard
deviation, variance, correlation, or covariance.

















Solution


Use one of these functions, assuming that x and y are vectors:



	
mean(x)



	
median(x)



	
sd(x)



	
var(x)



	
cor(x, y)



	
cov(x, y)





















Discussion


When you first use R you might open the documentation and begin
searching for material entitled “Procedures for Calculating Standard
Deviation.” It seems that such an important topic would likely require a
whole chapter.


It’s not that complicated.


Standard deviation and other basic statistics are calculated by simple
functions. Ordinarily, the function argument is a vector of numbers and
the function returns the calculated statistic:


x <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
mean(x)
#> [1] 8.8
median(x)
#> [1] 4
sd(x)
#> [1] 11
var(x)
#> [1] 122


The sd function calculates the sample standard deviation, and var
calculates the sample variance.


The cor and cov functions can calculate the correlation and
covariance, respectively, between two vectors:


x <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
y <- log(x + 1)
cor(x, y)
#> [1] 0.907
cov(x, y)
#> [1] 11.5


All these functions are picky about values that are not available (NA).
Even one NA value in the vector argument causes any of these functions
to return NA or even halt altogether with a cryptic error:


x <- c(0, 1, 1, 2, 3, NA)
mean(x)
#> [1] NA
sd(x)
#> [1] NA


It’s annoying when R is that cautious, but it is appropriate. You must
think carefully about your situation. Does an NA in your data invalidate
the statistic? If yes, then R is doing the right thing. If not, you can
override this behavior by setting na.rm=TRUE, which tells R to ignore
the NA values:


x <- c(0, 1, 1, 2, 3, NA)
sd(x, na.rm = TRUE)
#> [1] 1.14


In older versions of R, mean and sd were smart about data frames.
They understood that each column of the data frame is a different
variable, so they calculated their statistics for each column
individually. This is no longer the case and, as a result, you may read
confusing comments online or in older books (like the first edition of
this book). In order to apply the functions to each column of a data
frame we now need to use a helper function. The tidyverse family of
helper functions for this sort of thing is in the purrr package. As
with other tidyverse packages, this gets loaded when you run
library(tidyverse). The function we’ll use to apply a function to each
column of a data frame is map_dbl:


data(cars)

map_dbl(cars, mean)
#> speed  dist
#>  15.4  43.0
map_dbl(cars, sd)
#> speed  dist
#>  5.29 25.77
map_dbl(cars, median)
#> speed  dist
#>    15    36


Notice in this example that mean and sd each return two values, one
for each column defined by the data frame. (Technically, they return a
two-element vector whose names attribute is taken from the columns of
the data frame.)


The var function understands data frames without the help of a mapping
function. It calculates the covariance between the columns of the data
frame and returns the covariance matrix:


var(cars)
#>       speed dist
#> speed    28  110
#> dist    110  664


Likewise, if x is either a data frame or a matrix, then cor(x)
returns the correlation matrix and cov(x) returns the covariance
matrix:


cor(cars)
#>       speed  dist
#> speed 1.000 0.807
#> dist  0.807 1.000
cov(cars)
#>       speed dist
#> speed    28  110
#> dist    110  664

















See Also


See Recipe 2.14, Recipe 5.27, and Recipe 9.17.
























2.7 Creating Sequences










Problem


You want to create a sequence of numbers.

















Solution


Use an n:m expression to create the simple sequence n, n+1, n+2,
…, m:


1:5
#> [1] 1 2 3 4 5


Use the seq function for sequences with an increment other than 1:


seq(from = 1, to = 5, by = 2)
#> [1] 1 3 5


Use the rep function to create a series of repeated values:


rep(1, times = 5)
#> [1] 1 1 1 1 1

















Discussion


The colon operator (n:m) creates a vector containing the sequence n,
n+1, n+2, …, m:


0:9
#>  [1] 0 1 2 3 4 5 6 7 8 9
10:19
#>  [1] 10 11 12 13 14 15 16 17 18 19
9:0
#>  [1] 9 8 7 6 5 4 3 2 1 0


R was clever with the last expression (9:0). Because 9 is larger than
0, it counts backward from the starting to ending value. You can also
use the colon operator directly with the pipe to pass data to another
function:


10:20 %>% mean()


The colon operator works for sequences that grow by 1 only. The seq
function also builds sequences but supports an optional third argument,
which is the increment:


seq(from = 0, to = 20)
#>  [1]  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
seq(from = 0, to = 20, by = 2)
#>  [1]  0  2  4  6  8 10 12 14 16 18 20
seq(from = 0, to = 20, by = 5)
#> [1]  0  5 10 15 20


Alternatively, you can specify a length for the output sequence and then
R will calculate the necessary increment:


seq(from = 0, to = 20, length.out = 5)
#> [1]  0  5 10 15 20
seq(from = 0, to = 100, length.out = 5)
#> [1]   0  25  50  75 100


The increment need not be an integer. R can create sequences with
fractional increments, too:


seq(from = 1.0, to = 2.0, length.out = 5)
#> [1] 1.00 1.25 1.50 1.75 2.00


For the special case of a “sequence” that is simply a repeated value,
you should use the rep function, which repeats its first argument:


rep(pi, times = 5)
#> [1] 3.14 3.14 3.14 3.14 3.14

















See Also


See Recipe 7.13 for creating a sequence of Date objects.
























2.8 Comparing Vectors










Problem


You want to compare two vectors, or you want to compare an entire vector
against a scalar.

















Solution


The comparison operators (==, !=, <, >, <=, >=) can perform
an element-by-element comparison of two vectors. They can also compare a
vector’s element against a scalar. The result is a vector of logical
values in which each value is the result of one element-wise comparison.

















Discussion


R has two logical values, TRUE and FALSE. These are often called
Boolean values in other programming languages.


The comparison operators compare two values and return TRUE or
FALSE, depending upon the result of the comparison:


a <- 3
a == pi # Test for equality
#> [1] FALSE
a != pi # Test for inequality
#> [1] TRUE
a < pi
#> [1] TRUE
a > pi
#> [1] FALSE
a <= pi
#> [1] TRUE
a >= pi
#> [1] FALSE


You can experience the power of R by comparing entire vectors at once. R
will perform an element-by-element comparison and return a vector of
logical values, one for each comparison:


v <- c(3, pi, 4)
w <- c(pi, pi, pi)
v == w # Compare two 3-element vectors
#> [1] FALSE  TRUE FALSE
v != w
#> [1]  TRUE FALSE  TRUE
v < w
#> [1]  TRUE FALSE FALSE
v <= w
#> [1]  TRUE  TRUE FALSE
v > w
#> [1] FALSE FALSE  TRUE
v >= w
#> [1] FALSE  TRUE  TRUE


You can also compare a vector against a single scalar, in which case R
will expand the scalar to the vector’s length and then perform the
element-wise comparison. The previous example can be simplified in this
way:


v <- c(3, pi, 4)
v == pi # Compare a 3-element vector against one number
#> [1] FALSE  TRUE FALSE
v != pi
#> [1]  TRUE FALSE  TRUE


This is an application of the Recycling Rule discussed in Recipe 5.3.


After comparing two vectors, you often want to know whether any of the
comparisons were true or whether all the comparisons were true. The
any and all functions handle those tests. They both test a logical
vector. The any function returns TRUE if any element of the vector
is TRUE. The all function returns TRUE if all elements of the
vector are TRUE:


v <- c(3, pi, 4)
any(v == pi) # Return TRUE if any element of v equals pi
#> [1] TRUE
all(v == 0) # Return TRUE if all elements of v are zero
#> [1] FALSE

















See Also


See Recipe 2.9.
























2.9 Selecting Vector Elements










Problem


You want to extract one or more elements from a vector.

















Solution


Select the indexing technique appropriate for your problem:



	
Use square brackets to select vector elements by their position, such
as v[3] for the third element of v.



	
Use negative indexes to exclude elements.



	
Use a vector of indexes to select multiple values.



	
Use a logical vector to select elements based on a condition.



	
Use names to access named elements.





















Discussion


Selecting elements from vectors is another powerful feature of R. Basic
selection is handled just as in many other programming languages—use
square brackets and a simple index:


fib <- c(0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
fib
#>  [1]  0  1  1  2  3  5  8 13 21 34
fib[1]
#> [1] 0
fib[2]
#> [1] 1
fib[3]
#> [1] 1
fib[4]
#> [1] 2
fib[5]
#> [1] 3


Notice that the first element has an index of 1, not 0 as in some other
programming languages.


A cool feature of vector indexing is that you can select multiple
elements at once. The index itself can be a vector, and each element of
that indexing vector selects an element from the data vector:


fib[1:3] # Select elements 1 through 3
#> [1] 0 1 1
fib[4:9] # Select elements 4 through 9
#> [1]  2  3  5  8 13 21


An index of 1:3 means select elements 1, 2, and 3, as just shown. The
indexing vector needn’t be a simple sequence, however. You can select
elements anywhere within the data vector—as in this example, which
selects elements 1, 2, 4, and 8:


fib[c(1, 2, 4, 8)]
#> [1]  0  1  2 13


R interprets negative indexes to mean exclude a value. An index of –1,
for instance, means exclude the first value and return all other values:


fib[-1] # Ignore first element
#> [1]  1  1  2  3  5  8 13 21 34


You can extend this method to exclude whole slices by using an indexing
vector of negative indexes:


fib[1:3] # As before
#> [1] 0 1 1
fib[-(1:3)] # Invert sign of index to exclude instead of select
#> [1]  2  3  5  8 13 21 34


Another indexing technique uses a logical vector to select elements from
the data vector. Everywhere that the logical vector is TRUE, an
element is selected:


fib < 10 # This vector is TRUE wherever fib is less than 10
#>  [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
fib[fib < 10] # Use that vector to select elements less than 10
#> [1] 0 1 1 2 3 5 8
fib %% 2 == 0 # This vector is TRUE wherever fib is even
#>  [1]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
fib[fib %% 2 == 0] # Use that vector to select the even elements
#> [1]  0  2  8 34


Ordinarily, the logical vector should be the same length as the data
vector so you are clearly either including or excluding each element.
(If the lengths differ, then you need to understand the Recycling Rule,
discussed in Recipe 5.3.)


By combining vector comparisons, logical operators, and vector indexing,
you can perform powerful selections with very little R code.


For example, you can select all elements greater than the median:


v <- c(3, 6, 1, 9, 11, 16, 0, 3, 1, 45, 2, 8, 9, 6, -4)
v[ v > median(v)]
#> [1]  9 11 16 45  8  9


or select all elements in the lower and upper 5%:


v[ (v < quantile(v, 0.05)) | (v > quantile(v, 0.95)) ]
#> [1] 45 -4


The previous example uses the | operator, which means “or” when
indexing. If you wanted “and,” you would use the & operator.


You can also select all elements that exceed ±1 standard deviations from the mean:


v[ abs(v - mean(v)) > sd(v)]
#> [1] 45 -4


or select all elements that are neither NA nor NULL:


v <- c(1, 2, 3, NA, 5)
v[!is.na(v) & !is.null(v)]
#> [1] 1 2 3 5


One final indexing feature lets you select elements by name. It assumes
that the vector has a names attribute, defining a name for each
element. You can define the names by assigning a vector of character
strings to the attribute:


years <- c(1960, 1964, 1976, 1994)
names(years) <- c("Kennedy", "Johnson", "Carter", "Clinton")
years
#> Kennedy Johnson  Carter Clinton
#>    1960    1964    1976    1994


Once the names are defined, you can refer to individual elements by
name:


years["Carter"]
#> Carter
#>   1976
years["Clinton"]
#> Clinton
#>    1994


This generalizes to allow indexing by vectors of names; R returns every
element named in the index:


years[c("Carter", "Clinton")]
#>  Carter Clinton
#>    1976    1994

















See Also


See Recipe 5.3 for more about the Recycling Rule.
























2.10 Performing Vector Arithmetic










Problem


You want to operate on an entire vector at once.

















Solution


The usual arithmetic operators can perform element-wise operations on
entire vectors. Many functions operate on entire vectors, too, and
return a vector result.

















Discussion


Vector operations are one of R’s great strengths. All the basic
arithmetic operators can be applied to pairs of vectors. They operate in
an element-wise manner; that is, the operator is applied to
corresponding elements from both vectors:


v <- c(11, 12, 13, 14, 15)
w <- c(1, 2, 3, 4, 5)
v + w
#> [1] 12 14 16 18 20
v - w
#> [1] 10 10 10 10 10
v * w
#> [1] 11 24 39 56 75
v / w
#> [1] 11.00  6.00  4.33  3.50  3.00
w^v
#> [1] 1.00e+00 4.10e+03 1.59e+06 2.68e+08 3.05e+10


Observe that the length of the result here is equal to the length of the
original vectors. The reason is that each element comes from a pair of
corresponding values in the input vectors.


If one operand is a vector and the other is a scalar, then the operation
is performed between every vector element and the scalar:


w
#> [1] 1 2 3 4 5
w + 2
#> [1] 3 4 5 6 7
w - 2
#> [1] -1  0  1  2  3
w * 2
#> [1]  2  4  6  8 10
w / 2
#> [1] 0.5 1.0 1.5 2.0 2.5
2^w
#> [1]  2  4  8 16 32


For example, you can recenter an entire vector in one expression simply
by subtracting the mean of its contents:


w
#> [1] 1 2 3 4 5
mean(w)
#> [1] 3
w - mean(w)
#> [1] -2 -1  0  1  2


Likewise, you can calculate the z-score of a vector in one expression—subtract the mean and divide by the standard deviation:


w
#> [1] 1 2 3 4 5
sd(w)
#> [1] 1.58
(w - mean(w)) / sd(w)
#> [1] -1.265 -0.632  0.000  0.632  1.265


Yet the implementation of vector-level operations goes far beyond
elementary arithmetic. It pervades the language, and many functions
operate on entire vectors. The functions sqrt and log, for example,
apply themselves to every element of a vector and return a vector of
results:


w <- 1:5
w
#> [1] 1 2 3 4 5
sqrt(w)
#> [1] 1.00 1.41 1.73 2.00 2.24
log(w)
#> [1] 0.000 0.693 1.099 1.386 1.609
sin(w)
#> [1]  0.841  0.909  0.141 -0.757 -0.959


There are two great advantages to vector operations. The first and most
obvious is convenience. Operations that require looping in other
languages are one-liners in R. The second is speed. Most vectorized
operations are implemented directly in C code, so they are substantially
faster than the equivalent R code you could write.

















See Also


Performing an operation between a vector and a scalar is actually a
special case of the Recycling Rule; see Recipe 5.3.
























2.11 Getting Operator Precedence Right










Problem


Your R expression is producing a curious result, and you wonder if
operator precedence is causing problems.

















Solution


The full list of operators is shown in Table 2-1,
listed in order of precedence from highest to lowest. Operators of equal
precedence are evaluated from left to right except where indicated.


Table 2-1. Operator precedence


	Operator
	Meaning
	See also





	[ [[

	Indexing

	Recipe 2.9




	:: :::

	Access variables in a namespace (environment)

	



	$ @

	Component extraction, slot extraction

	



	^

	Exponentiation (right to left)

	



	- +

	Unary minus and plus

	



	:

	Sequence creation

	Recipe 2.7, Recipe 7.13




	%any% (including %>%)

	Special operators

	Discussion (this
recipe)




	* /

	Multiplication, division

	Discussion (this recipe)




	+ -

	Addition, subtraction

	



	== != < > <= >=

	Comparison

	Recipe 2.8




	!

	Logical negation

	



	& &&

	Logical “and,” short-circuit “and”

	



	| ||

	Logical “or,” short-circuit “or”

	



	~

	Formula

	Recipe 11.1




	-> ->>

	Rightward assignment

	Recipe 2.2




	=

	Assignment (right to left)

	Recipe 2.2




	<- <<-

	Assignment (right to left)

	Recipe 2.2




	?

	Help

	Recipe 1.8







It’s not important that you know what every one of these operators does,
or what they mean. The list here is intended simply to expose you to the
idea that different operators have different precedence.

















Discussion


Getting your operator precedence wrong in R is a common problem. It
certainly happens to us a lot. We unthinkingly expect that the
expression 0:n-1 will create a sequence of integers from 0 to n–1,
but it does not:


n <- 10
0:n - 1
#>  [1] -1  0  1  2  3  4  5  6  7  8  9


It creates the sequence from –1 to n–1 because R interprets it as
(0:n)-1.


You might not recognize the notation %any% in the table. R
interprets any text between percent signs (%…%) as a binary
operator. Several such operators have predefined meanings:


	%%

	
Modulo operator



	%/%

	
Integer division



	%*%

	
Matrix multiplication



	%in%

	
Returns TRUE if the left operand occurs in its right operand;
FALSE otherwise



	%>%

	
Pipe that passes results from the left to a function on the right






You can also define new binary operators using the %…% notation;
see Recipe 12.17. The point here is that all such operators have the
same precedence.

















See Also


See Recipe 2.10 for more about vector operations, Recipe 5.15
for more about matrix operations, and Recipe 12.17 to define your
own operators. See also the Arithmetic and Syntax topics in the R help pages
as well as Chapters 5 and 6 of
R in a Nutshell.
























2.12 Typing Less and Accomplishing More










Problem


You are getting tired of typing long sequences of commands, and
especially tired of typing the same ones over and over.

















Solution


Open an editor window and accumulate your reusable blocks of R commands
there. Then, execute those blocks directly from that window. Reserve the
console window for typing brief or one-off commands.


When you are done, you can save the accumulated code blocks in a script
file for later use.

















Discussion


The typical R beginner types an expression in the console window and
sees what happens. As he gets more comfortable, he types increasingly
complicated expressions. Then he begins typing multiline expressions.
Soon, he is typing the same multiline expressions over and over, perhaps
with small variations, in order to perform his increasingly complicated
calculations.


The experienced R user does not often retype a complex expression. She
may type the same expression once or twice, but when she realizes it is
useful and reusable she will cut and paste it into an editor window. To
execute the snippet thereafter, she selects the snippet in the editor
window and tells R to execute it, rather than retyping it. This
technique is especially powerful as her snippets evolve into long blocks
of code.


In RStudio, a few shortcuts in the IDE facilitate this work style.
Windows and Linux machines have slightly different keys than Mac
machines: Windows/Linux uses the Ctrl and Alt modifiers, whereas the
Mac uses Cmd and Opt.


	To open an editor window

	
From the main menu, select File → New File, then select the type of
file you want to create—in this case, an R script. Or if you know you
want an R script, you can press Shift-Ctrl-N (Windows) or Shift-Cmd-N
(Mac).



	To execute one line of the editor window

	
Position the cursor on the line and then press Ctrl-Enter (Windows) or
Cmd-Enter (Mac) to execute it.



	To execute several lines of the editor window

	
Highlight the lines using your mouse; then press Ctrl-Enter (Windows)
or Cmd-Enter (Mac) to execute them.



	To execute the entire contents of the editor window

	
Press Ctrl-Alt-R (Windows) or Cmd-Opt-R (Mac) to execute the whole
editor window. Or from the menu, click Code → Run Region → Run All.






You can find these keyboard shortcuts and dozens more within RStudio by
choosing the Tools → Keyboard Shortcuts Help menu item.


Reproducing lines from the console window in the editor window is simply
a matter of copy and paste. When you exit RStudio, it will ask if you
want to save the new script. You can either save it for future reuse or
discard it.
























2.13 Creating a Pipeline of Function Calls










Problem


Creating many intermediate variables in your code is tedious and overly
verbose, while nesting R functions makes the code nearly unreadable.

















Solution


Use the pipe operator (%>%) to make your expressions easier to read and
write. The pipe operator, created by Stefan Bache and found in
the magrittr package, is used extensively in many tidyverse
functions as well.


Use the pipe operator to combine multiple functions together into a
“pipeline” of functions without intermediate variables:


library(tidyverse)
data(mpg)

mpg %>%
  filter(cty > 21) %>%
  head(3) %>%
  print()
#> # A tibble: 3 x 11
#>   manufacturer model  displ  year   cyl trans drv     cty   hwy fl    class
#>   <chr>        <chr>  <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
#> 1 chevrolet    malibu   2.4  2008     4 auto~ f        22    30 r     mids~
#> 2 honda        civic    1.6  1999     4 manu~ f        28    33 r     subc~
#> 3 honda        civic    1.6  1999     4 auto~ f        24    32 r     subc~


Using the pipe is much cleaner and easier to read than using
intermediate temporary variables:


temp1 <- filter(mpg, cty > 21)
temp2 <- head(temp1, 3)
print(temp2)
#> # A tibble: 3 x 11
#>   manufacturer model  displ  year   cyl trans drv     cty   hwy fl    class
#>   <chr>        <chr>  <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>
#> 1 chevrolet    malibu   2.4  2008     4 auto~ f        22    30 r     mids~
#> 2 honda        civic    1.6  1999     4 manu~ f        28    33 r     subc~
#> 3 honda        civic    1.6  1999     4 auto~ f        24    32 r     subc~

















Discussion


The pipe operator does not provide any new functionality to R, but it
can greatly improve the readability of code. It takes the
output of the function or object on the left of the operator and passes
it as the first argument of the function on the right.


Writing this:


x %>% head()


is functionally the same as writing this:


head(x)


In both cases x is the argument to head. We can supply additional
arguments, but x is always the first argument. These two lines are also
functionally identical:


x %>% head(n = 10)

head(x, n = 10)


This difference may seem small, but with a more complicated example, the
benefits begin to accumulate. If we had a workflow where we wanted to
use filter to limit our data to values, then select to keep only
certain variables, followed by ggplot to create a simple plot, we
could use intermediate variables:


library(tidyverse)

filtered_mpg <- filter(mpg, cty > 21)
selected_mpg <- select(filtered_mpg, cty, hwy)
ggplot(selected_mpg, aes(cty, hwy)) + geom_point()


This incremental approach is fairly readable but creates a number of
intermediate data frames and requires the user to keep track of the
state of many objects, which can add cognitive load. But the code does
produce the desired graph.


An alternative is to nest the functions together:


ggplot(select(filter(mpg, cty > 21), cty, hwy), aes(cty, hwy)) + geom_point()


While this is very concise since it’s only one line, this code requires
much more attention to read and understand what’s going on. Code that is
difficult for the user to parse mentally can introduce potential for
error, and can also be harder to maintain in the future. Instead, we can use pipes:


mpg %>%
  filter(cty > 21) %>%
  select(cty, hwy) %>%
  ggplot(aes(cty, hwy)) + geom_point()


The preceding code starts with the mpg dataset and pipes it to the
filter function, which keeps only records where the city mpg value (cty)
is greater than 21. Those results are piped into the select command,
which keeps only the listed variables cty and hwy, and in turn those
are piped into the ggplot command, which produces the point plot in
Figure 2-2.



[image: rcbk 0202]
Figure 2-2. Plotting with pipes example




If you want the argument going into your target (righthand side)
function to be somewhere other than the first argument, use the dot
(.) operator. So this:


iris %>% head(3)


is the same as:


iris %>% head(3, x = .)


However, in the second example we passed the iris data frame into the
second named argument using the dot operator. This can be handy for
functions where the input data frame goes in a position other than the
first argument.


Throughout this book we use pipes to hold together data transformations
with multiple steps. We typically format the code with a line break
after each pipe and then indent the code on the following lines. This
makes the code easily identifiable as parts of the same data pipeline.
























2.14 Avoiding Some Common Mistakes










Problem


You want to avoid some of the common mistakes made by beginning
users—and by experienced users, for that matter!

















Discussion


Here are some easy ways to make trouble for yourself.












Forgetting the parentheses after a function invocation


You call an R function by putting parentheses after the name. For
instance, this line invokes the ls function:


ls()


However, if you omit the parentheses, R does not execute the function.
Instead, it shows the function definition, which is almost never what
you want:


ls

# > function (name, pos = -1L, envir = as.environment(pos), all.names = FALSE,
# >     pattern, sorted = TRUE)
# > {
# >     if (!missing(name)) {
# >         pos <- tryCatch(name, error = function(e) e)
# >         if (inherits(pos, "error")) {
# >             name <- substitute(name)
# >             if (!is.character(name))
# >                 name <- deparse(name)
# > # etc.

















Mistyping “<-” as “<(space)-”


The assignment operator is <-, with no space between the < and the
-:


x <- pi # Set x to 3.1415926...


If you accidentally insert a space between < and -, the meaning
changes completely:


x < -pi # Oops! We are comparing x instead of setting it!
#> [1] FALSE


This is now a comparison (<) between x and -pi (negative

  π
). It does not change x. If you are lucky, x
is undefined and R will complain, alerting you that something is fishy:


x < -pi
#> Error in eval(expr, envir, enclos): object 'x' not found


If x is defined, R will perform the comparison and print a logical
value, TRUE or FALSE. That should alert you that something is wrong,
as an assignment does not normally print anything:


x <- 0 # Initialize x to zero
x < -pi # Oops!
#> [1] FALSE

















Incorrectly continuing an expression across lines


R reads your typing until you finish a complete expression, no matter
how many lines of input that requires. It prompts you for additional
input using the + prompt until it is satisfied. This example splits an
expression across two lines:


total <- 1 + 2 + 3 + # Continued on the next line
  4 + 5
print(total)
#> [1] 15


Problems begin when you accidentally finish the expression prematurely,
which can easily happen:


total <- 1 + 2 + 3 # Oops! R sees a complete expression
+ 4 + 5 # This is a new expression; R prints its value
#> [1] 9
print(total)
#> [1] 6


There are two clues that something is amiss: R prompted you with a
normal prompt (>), not the continuation prompt (+), and it printed
the value of 4 + 5.


This common mistake is a headache for the casual user. It is a nightmare
for programmers, however, because it can introduce hard-to-find bugs
into R scripts.

















Using = instead of ==


Use the double-equals operator (==) for comparisons. If you
accidentally use the single-equals operator (=), you will irreversibly
overwrite your variable:


v <- 1 # Assign 1 to v
v == 0 # Compare v against zero
#> [1] FALSE
v = 0 # Assign 0 to v, overwriting previous contents
print(v)
#> [1] 0

















Writing 1:n+1 when you mean 1:(n+1)


You might think that 1:n+1 is the sequence of numbers 1, 2, …, n,
n+1. It’s not. It is the sequence 1, 2, …, n with 1 added to every
element, giving 2, 3, …, n, n+1. This happens because R interprets
1:n+1 as (1:n)+1. Use parentheses to get exactly what you want:


n <- 5
1:n + 1
#> [1] 2 3 4 5 6
1:(n + 1)
#> [1] 1 2 3 4 5 6

















Getting bitten by the Recycling Rule


Vector arithmetic and vector comparisons work well when both vectors
have the same length. However, the results can be baffling when the
operands are vectors of differing lengths. Guard against this
possibility by understanding and remembering the Recycling Rule (see
Recipe 5.3).

















Installing a package but not loading it with library or require


Installing a package is the first step toward using it, but one more
step is required. Use library or require to load the package into
your search path. Until you do so, R will not recognize the functions or
datasets in the package (see Recipe 3.8):


x <- rnorm(100)
n <- 5
truehist(x, n)
#> Error in truehist(x, n): could not find function "truehist"


However, if you load the library first, then the code runs and you get the
chart shown in Figure 2-3:


library(MASS) # Load the MASS package into R
truehist(x, n)


We typically use library instead of require. The reason is that if
you create an R script that uses library and the desired package is
not already installed, R will return an error. In contrast, require
will simply return FALSE if the package is not installed.



[image: rcbk 0203]
Figure 2-3. Example truehist



















Writing lst[n] when you mean lst[[n]] or vice versa


If the variable lst contains a list, it can be indexed in two ways:
lst[[n]] is the nth element of the list, whereas lst[n] is a list
whose only element is the nth element of lst. That’s a big
difference. See Recipe 5.7.

















Using & instead of &&, or vice versa; same for | and ||


Use & and | in logical expressions involving the logical values
TRUE and FALSE. See Recipe 2.9.


Use && and || for the flow-of-control expressions inside if and
while statements.


Programmers accustomed to other programming languages may reflexively
use && and || everywhere because “they are faster.” But those
operators give peculiar results when applied to vectors of logical
values, so avoid them unless you are sure that they do what you want.

















Passing multiple arguments to a single-argument function


What do you think is the value of mean(9,10,11)? No, it’s not 10. It’s
9. The mean function computes the mean of the first argument. The
second and third arguments are being interpreted as other positional
arguments. To pass multiple items into a single argument, we put them in
a vector with the c operator. mean(c(9,10,11)) will return 10, as
you might expect.


Some functions, such as mean, take one argument. Other arguments, such
as max and min, take multiple arguments and apply themselves across
all arguments. Be sure you know which are which.

















Thinking that max behaves like pmax, or that min behaves like pmin


The max and min functions have multiple arguments and return one
value: the maximum or minimum of all their arguments.


The pmax and pmin functions have multiple arguments but return a
vector with values taken element-wise from the arguments. For more info,
see Recipe 12.8.

















Misusing a function that does not understand data frames


Some functions are quite clever regarding data frames. They apply
themselves to the individual columns of the data frame, computing their
result for each individual column. Sadly, not all functions are that
bright. This includes the mean, median, max, and min functions.
They will lump together every value from every column and compute their
result from the lump, or possibly just return an error. Be aware of which
functions are savvy to data frames and which are not. When in doubt,
read the documentation for the function you are considering.

















Using a single backslash (\) in Windows paths


It’s common to copy and paste filepaths
into your R scripts, but if you’re using R on Windows you need to take care. Windows File Explorer may show you that your path
is C:\temp\my_file.csv, but if you try to tell R to read that file,
you’ll get a cryptic message:


Error: '\m' is an unrecognized escape in character string starting "'.\temp\m"


This is because R sees backslashes as special characters. You can get
around this by using either forward slashes (/) or double backslashes
(\\):


read_csv(`./temp/my_file.csv`)
read_csv(`.\\temp\\my_file.csv`)


This is only an issue on Windows because both Mac and Linux use forward
slashes as path separators.

















Posting a question to Stack Overflow or the mailing list before searching for the answer


Don’t waste your time. Don’t waste other people’s time. Before you post
a question to a mailing list or to Stack Overflow, do your homework and
search the archives. Odds are, someone has already answered your
question. If so, you’ll see the answer in the discussion thread for the
question. See Recipe 1.13.






















See Also


See Recipes 1.13, 2.9, 3.8, 5.3, 5.7, and 12.8.



















Chapter 3. Navigating the Software



Both R and RStudio are big chunks of software, first and foremost. You
will inevitably spend time doing what one does with any big piece of
software: configuring it, customizing it, updating it, and fitting it
into your computing environment. This chapter will help you perform
those tasks. There is nothing here about numerics, statistics, or
graphics. This is all about dealing with R and RStudio as software.








3.1 Getting and Setting the Working Directory










Problem


You want to change your working directory, or you just want to know what
it is.

















Solution


	RStudio

	
Navigate to a directory in the Files pane. Then from the Files pane,
select More → Set As Working Directory, as shown in Figure 3-1.



	Console

	
Use getwd to report the working directory, and use setwd to change
it:


getwd()
#> [1] "/Volumes/SecondDrive/jal/DocumentsPersonal/R-Cookbook"


setwd("~/Documents/MyDirectory")







[image: rcbk 0301]
Figure 3-1. RStudio: Set As Working Directory



















Discussion


Your working directory is important because it is the default location
for all file input and output—including reading and writing data files,
opening and saving script files, and saving your workspace image. When
you open a file and do not specify an absolute path, R will assume that
the file is in your working directory.


If you’re using RStudio projects, your default working directory will be
the home directory of the project. See Recipe 3.2 for more about creating RStudio projects.

















See Also


See Recipe 4.5 for dealing with filenames in Windows.
























3.2 Creating a New RStudio Project










Problem


You want to create a new RStudio project to keep all your files related
to a specific project.

















Solution


Click File → New Project as in Figure 3-2.



[image: rcbk 0302]
Figure 3-2. Creating a new project




This will open the New Project dialog box and allow you to choose which
type of project you would like to create, as shown in Figure 3-3.



[image: rcbk 0303]
Figure 3-3. New Project dialog



















Discussion


Projects are a powerful concept that’s specific to RStudio. They help
you by doing the following:



	
Setting your working directory to the project directory.



	
Preserving window state in RStudio so when you return to a project
your windows are all as you left them. This includes opening any files
you had open when you last saved your project.



	
Preserving RStudio project settings.






To hold your project settings, RStudio creates a project file with an
.Rproj extension in the project directory. If you open the project
file in RStudio, it works like a shortcut for opening the project. In
addition, RStudio creates a hidden directory named .Rproj.user to
house temporary files related to your project.


Any time you’re working on something nontrivial in R we recommend
creating an RStudio project. Projects help you stay organized and make
your project workflow easier.
























3.3 Saving Your Workspace










Problem


You want to save your workspace and all variables and functions you have
in memory.

















Solution


Call the save.image function:


save.image()

















Discussion


Your workspace holds your R variables and functions, and it is created
when R starts. The workspace is held in your computer’s main memory and
lasts until you exit from R. You can easily view the contents of your
workspace in RStudio in the Environment tab, as shown in Figure 3-4.



[image: rcbk 0304]
Figure 3-4. RStudio Environment pane




However, you may want to save your workspace without exiting R, because
you know bad things mysteriously happen when you close your laptop to
carry it home. In this case, use the save.image function.


The workspace is written to a file called .RData in the working
directory. When R starts, it looks for that file and, if it finds it,
initializes the workspace from it.


Sadly, the workspace does not include your open graphs: for example,
that cool graph on your screen disappears when you exit R. The workspace
also does not include the positions of your windows or your RStudio
settings. This is why we recommend using RStudio projects and writing
your R scripts so that you can reproduce everything you’ve created.

















See Also


See Recipe 3.1 for setting the working directory.
























3.4 Viewing Your Command History










Problem


You want to see your recent sequence of commands.

















Solution


Depending on what you are trying to accomplish, you can use a few
different methods to access your prior command history. If you are in
the RStudio console pane, you can press the up arrow to interactively
scroll through past commands.


If you want to see a listing of past commands, you can either execute
the history function or access the History pane in RStudio to view
your most recent input:


history()


In RStudio typing history() into the console simply activates the
History pane (Figure 3-5). You could also make
that pane visible by clicking on it with your cursor.
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Figure 3-5. RStudio History pane



















Discussion


The history function displays your most recent commands. In RStudio
the history command will activate the History pane. If you’re
running R outside of RStudio, history shows the most recent 25 lines,
but you can request more like so:


history(100)          # Show 100 most recent lines of history
history(Inf)          # Show entire saved history


From within RStudio, the History tab shows an exhaustive list of past
commands in chronological order, with the most recent at the bottom of
the list. You can highlight past commands with your cursor, then click
on “To Console” or “To Source” to copy past commands into the console or
source editor, respectively. This can be terribly handy when you’ve done
interactive data analysis and then decide you want to save some past
steps to a source file for later use.


From the console you can see your history by simply pressing the up
arrow to scroll backward through your input, which causes your previous
typing to reappear, one line at a time.


If you’ve exited from R or RStudio, you can still see your command
history. R saves the history in a file called .Rhistory in the working
directory. Open the file with a text editor and then scroll to the
bottom; you will see your most recent typing.
























3.5 Saving the Result of the Previous Command










Problem


You typed an expression into R that calculated a value, but you forgot
to save the result in a variable.

















Solution


A special variable called .Last.value saves the value of the most
recently evaluated expression. Save it to a variable before you type
anything else.

















Discussion


It is frustrating to type a long expression or call a long-running
function but then forget to save the result. Fortunately, you needn’t
retype the expression nor invoke the function again—the result was saved
in the .Last.value variable:


aVeryLongRunningFunction()  # Oops! Forgot to save the result!
x <- .Last.value            # Capture the result now


A word of caution here: the contents of .Last.value are overwritten
every time you type another expression, so capture the value
immediately. If you don’t remember until another expression has been
evaluated, it’s too late!

















See Also


See Recipe 3.4 to recall your command history.
























3.6 Displaying Loaded Packages via the Search Path










Problem


You want to see the list of packages currently loaded into R.

















Solution


Use the search function with no arguments:


search()

















Discussion


The search path is a list of packages that are currently loaded into
memory and available for use. Although many packages may be installed on
your computer, only a few of them are actually loaded into the R
interpreter at any given moment. You might be wondering which packages
are loaded right now.


With no arguments, the search function returns the list of loaded
packages. It produces output like this:


search()
#>  [1] ".GlobalEnv"        "package:knitr"     "package:forcats"
#>  [4] "package:stringr"   "package:dplyr"     "package:purrr"
#>  [7] "package:readr"     "package:tidyr"     "package:tibble"
#> [10] "package:ggplot2"   "package:tidyverse" "package:stats"
#> [13] "package:graphics"  "package:grDevices" "package:utils"
#> [16] "package:datasets"  "package:methods"   "Autoloads"
#> [19] "package:base"


Your machine may return a different result, depending on what’s
installed there. The return value of search is a vector of strings.
The first string is ".GlobalEnv", which refers to your workspace. Most
strings have the form "package:packagename", which indicates that
the package called packagename is currently loaded into R. In the
preceding example, you can see many tidyverse packages installed,
including purrr, ggplot2, and tibble.


R uses the search path to find functions. When you type a function name,
R searches the path—in the order shown—until it finds the function in a
loaded package. If the function is found, R executes it. Otherwise, it
prints an error message and stops. (There is actually a bit more to it:
the search path can contain environments, not just packages, and the
search algorithm is different when initiated by an object within a
package; see the R Language Definition for details.)


Since your workspace (.GlobalEnv) is first in the list, R looks for
functions in your workspace before searching any packages. If your
workspace and a package both contain a function with the same name, your
workspace will “mask” the function; this means that R stops searching
after it finds your function and so never sees the package function.
This is a blessing if you want to override the package function…and a
curse if you still want access to it. If you find yourself feeling
cursed because you (or some package you loaded) overrode a function (or
other object) from an existing loaded package, you can use the full
environment::name form to call an object from a loaded package
environment. For example, if you wanted to call the dplyr function
count, you could do so using dplyr::count. Using the full explicit
name to call a function will work even if you have not loaded the
package, so if you have dplyr installed but not loaded, you can still
call dplyr::count.

Note

It is becoming increasingly common with online
examples to show the full packagename::function in examples. While
this removes ambiguity about where a function comes from, it makes
example code very wordy.




Note that R will include only loaded packages in the search path. So
if you have installed a package but not loaded it by using
library(packagename), then R will not add that package to the search
path.


R also uses the search path to find R datasets (not files) or any other
object via a similar procedure.


Unix and Mac users: don’t confuse the R search path with the Unix search
path (the PATH environment variable). They are conceptually similar
but two distinct things. The R search path is internal to R and is used
by R only to locate functions and datasets, whereas the Unix search path
is used by the OS to locate executable programs.

















See Also


See Recipe 3.8 for loading packages into R and Recipe 3.7 for viewing the list of installed packages (not just loaded
packages).
























3.7 Viewing the List of Installed Packages










Problem


You want to know what packages are installed on your machine.

















Solution


Use the library function with no arguments for a basic list. Use
installed.packages to see more detailed information about the
packages.

















Discussion


The library function with no arguments prints a list of installed
packages:


library()


The list can be quite long. In RStudio, it is displayed in a new tab in the editor window.


You can get more details via the installed.packages function, which
returns a matrix of information regarding the packages on your machine.
Each row corresponds to one installed package. The columns contain
information such as the package name, library path, and version. The
information is taken from R’s internal database of installed packages.


To extract useful information from this matrix, use normal indexing
methods. The following snippet calls installed.packages and extracts
both the Package and Version columns for the first five packages,
letting you see what version of each package is installed:


installed.packages()[1:5, c("Package", "Version")]
#>           Package     Version
#> abind     "abind"     "1.4-5"
#> ade4      "ade4"      "1.7-13"
#> adegenet  "adegenet"  "2.1.1"
#> analogsea "analogsea" "0.6.6.9110"
#> ape       "ape"       "5.3"

















See Also


See Recipe 3.8 for loading a package into memory.
























3.8 Accessing the Functions in a Package










Problem


A package installed on your computer is either a standard package or a
package you’ve downloaded. When you try using functions in the package,
however, R cannot find them.

















Solution


Use either the library function or the require function to load the
package into R:

library(packagename)


















Discussion


R comes with several standard packages, but not all of them are
automatically loaded when you start R. Likewise, you can download and
install many useful packages from CRAN or GitHub, but they are not
automatically loaded when you run R. The MASS package comes standard
with R, for example, but you could get this message when using the lda
function in that package:


lda(x)
#> Error in lda(x): could not find function "lda"


R is complaining that it cannot find the lda function among the
packages currently loaded into memory.


When you use the library function or the require function, R loads
the package into memory and its contents become immediately available to
you:


my_model <-
  lda(cty ~ displ + year, data = mpg)
#> Error in lda(cty ~ displ + year, data = mpg): could not find function "lda"

library(MASS)                          # Load the MASS library into memory
#>
#> Attaching package: 'MASS'
#> The following object is masked from 'package:dplyr':
#>
#>     select
my_model <-
  lda(cty ~ displ + year, data = mpg)  # Now R can find the function


Before you call library, R does not recognize the function name.
Afterward, the package contents are available and calling the lda
function works.


Notice that you needn’t enclose the package name in quotes.


The require function is nearly identical to library, but it has two
features that are useful for writing scripts. It returns TRUE if the
package was successfully loaded and FALSE otherwise. It also generates
a mere warning if the load fails—unlike library, which generates an
error.


Both functions have a key feature: they do not reload packages that are
already loaded, so calling twice for the same package is harmless. This
is especially nice for writing scripts. The script can load needed
packages while knowing that loaded packages will not be reloaded.


The detach function will unload a package that is currently loaded:


detach(package:MASS)


Observe that the package name must be qualified, as in package:MASS.


One reason to unload a package is that it contains a function whose name
conflicts with a same-named function lower on the search list. When such
a conflict occurs, we say the higher function masks the lower function.
You no longer “see” the lower function because R stops searching when it
finds the higher function. Hence, unloading the higher package unmasks
the lower name.

















See Also


See Recipe 3.6.
























3.9 Accessing Built-in Datasets










Problem


You want to use one of R’s built-in datasets, or you want to access one
of the datasets that comes with another package.

















Solution


The standard datasets distributed with R are already available to you,
since the datasets package is in your search path. If you’ve loaded
any other packages, datasets that come with those loaded packages will
also be available in your search path.


To access datasets in other packages, use the data function while
giving the dataset name and package name:

data(dsname, package = "pkgname")


















Discussion


R comes with many built-in datasets. Other packages, such as dplyr and
ggplot2, also come with example data that’s used in the examples found
in their help files. These datasets are useful when you are learning
about R, since they provide data with which to experiment.


Many datasets are kept in a package called (naturally enough)
datasets, which is distributed with R. That package is in your search
path, so you have instant access to its contents. For example, you can
use the built-in dataset called pressure:


head(pressure)
#>   temperature pressure
#> 1           0   0.0002
#> 2          20   0.0012
#> 3          40   0.0060
#> 4          60   0.0300
#> 5          80   0.0900
#> 6         100   0.2700


If you want to know more about pressure, use the help function to
learn about it:


help(pressure)      # Bring up help page for pressure dataset


You can see a table of contents for datasets by calling the data
function with no arguments:


data()              # Bring up a list of datasets


Any R package can elect to include datasets that supplement those
supplied in  datasets. The MASS package, for example, includes many
interesting datasets. Use the data function with the package argument to load a dataset from a
specific package. MASS includes a
dataset called Cars93, which you can load into memory in this way:


data(Cars93, package = "MASS")


After this call to data, the Cars93 dataset is available to you;
then you can execute summary(Cars93), head(Cars93), and so forth.


When attaching a package to your search list (e.g., via
library(MASS)), you don’t need to call data. Its datasets become
available automatically when you attach it.


You can see a list of available datasets in MASS, or any other
package, by using the data function with a package argument and no
dataset name:

data(package = "pkgname")


















See Also


See Recipe 3.6 for more about the search path and
Recipe 3.8 for more about packages and the library function.
























3.10 Installing Packages from CRAN










Problem


You found a package on CRAN, and now you want to install it on your
computer.

















Solution


	R code

	
Use the install.packages function, putting the name of the package
in quotes:

install.packages("packagename")




	RStudio

	
The Packages pane in RStudio helps make installing new R packages
straightforward. All packages that are installed on your machine are
listed in this pane, along with description and version
information. To load a new package from CRAN, click on the Install
button near the top of the Packages pane, shown in Figure 3-6.







[image: rcbk 0306]
Figure 3-6. RStudio Packages pane



















Discussion


Installing a package locally is the first step toward using it. If you
are installing packages outside of RStudio, the installer may prompt you
for a mirror site from which it can download the package files. It will
then display a list of CRAN mirror sites. The top CRAN mirror is
0-Cloud. This is typically the best option, as it connects you to a
globally mirrored content delivery network (CDN) sponsored by RStudio.
If you want to select a different mirror, choose one geographically
close to you.


The official CRAN server is a relatively modest machine generously
hosted by the Department of Statistics and Mathematics at WU Wien,
Vienna, Austria. If every R user downloaded from the official server, it
would buckle under the load, so there are numerous mirror sites around
the globe. In RStudio the default CRAN server is set to be the RStudio
CRAN mirror. The RStudio CRAN mirror is accessible to all R users, not
just those running the RStudio IDE.


If the new package depends upon other packages that are not already
installed locally, then the R installer will automatically download and
install those required packages. This is a huge benefit that frees you
from the tedious task of identifying and resolving those dependencies.


There is a special consideration when you are installing on Linux or
Unix. You can install the package either in the systemwide library or in
your personal library. Packages in the systemwide library are available
to everyone; packages in your personal library are (normally) used only
by you. So, a popular, well-tested package would likely go in the
systemwide library, whereas an obscure or untested package would go into
your personal library.


By default, install.packages assumes you are performing a systemwide
install. If you do not have sufficient user permissions to install in
the systemwide library location, R will ask if you would like to install
the package in a user library. The default that R suggests is typically
a good choice. However, if you would like to control the path for your
library location, you can use the lib argument of the
install.packages function:

install.packages("packagename", lib = "~/lib/R")



Or you can change your default CRAN server as described in Recipe 3.12.

















See Also


See Recipe 1.12 for ways to find relevant packages and Recipe 3.8 for using a package after installing it.


See also Recipe 3.12.
























3.11 Installing a Package from GitHub










Problem


You’ve found an interesting package you’d like to try. However, the
author has not yet published the package on CRAN, but has published it
on GitHub. You’d like to install the package directly from GitHub.

















Solution


Ensure you have the devtools package installed and loaded:


install.packages("devtools")
library(devtools)


Then use install_github and the name of the GitHub repository to
install directly from GitHub. For example, to install Thomas Lin
Pederson’s tidygraph package, you would execute the following:


install_github("thomasp85/tidygraph")

















Discussion


The devtools package contains helper functions for installing R
packages from remote repositories, like GitHub. If a package has been
built as an R package and then hosted on GitHub, you can install the
package using the install_github function by passing the GitHub
username and repository name as a string parameter. You can determine
the GitHub username and repo name from the GitHub URL, or from the top
of the GitHub page, as in the example shown in Figure 3-7.



[image: rcbk 0307]
Figure 3-7. Example GitHub project page


























3.12 Setting or Changing a Default CRAN Mirror










Problem


You are downloading packages. You want to set or change your default
CRAN mirror.

















Solution


In RStudio, you can change your default CRAN mirror from the RStudio
Preferences menu shown in Figure 3-8.



[image: rcbk 0308]
Figure 3-8. RStudio package preferences




If you are running R without RStudio, you can change your CRAN mirror
using the following solution. This solution assumes you have an
.Rprofile, as described in Recipe 3.16:


	
Call the chooseCRANmirror function:


chooseCRANmirror()


R will present a list of CRAN mirrors.



	
Select a CRAN mirror from the list and press OK.



	
To get the URL of the mirror, look at the first element of the
repos option:


options("repos")[[1]][1]



	
Add this line to your .Rprofile file. If you want the RStudio CRAN
mirror, you would do the following:


options(repos = c(CRAN = "http://cran.rstudio.com"))


Or you could use the URL of another CRAN mirror.






















Discussion


When you install packages, you probably use the same CRAN mirror each
time (namely, the mirror closest to you or the RStudio mirror) because
RStudio does not prompt you every time you load a package; it simply
uses the setting from the Preferences menu. You may want to change that
mirror to use a different mirror that’s closer to you or controlled by
your employer. Use this solution to change your repo so that every time
you start R or RStudio, you will be using your desired repo.


The repos option is the name of your default mirror. The
chooseCRANmirror function has the important side effect of setting the
repos option according to your selection. The problem is that R
forgets the setting when it exits, leaving no permanent default. By
setting repos in your .Rprofile, you restore the setting every time
R starts.

















See Also


See Recipe 3.16 for more about the .Rprofile file and the options
function.
























3.13 Running a Script










Problem


You captured a series of R commands in a text file. Now you want to
execute them.

















Solution


The source function instructs R to read the text file and execute its
contents:


source("myScript.R")

















Discussion


When you have a long or frequently used piece of R code, capture it
inside a text file. That lets you easily rerun the code without having
to retype it. Use the source function to read and execute the code,
just as if you had typed it into the R console.


Suppose the file hello.R contains this one familiar greeting:


print("Hello, World!")


Then sourcing the file will execute the file’s contents:


source("hello.R")
#> [1] "Hello, World!"


Setting echo=TRUE will echo the script’s lines before they are executed,
with the R prompt shown before each line:


source("hello.R", echo = TRUE)
#>
#> > print("Hello, World!")
#> [1] "Hello, World!"

















See Also


See Recipe 2.12 for running blocks of R code inside the GUI.
























3.14 Running a Batch Script










Problem


You are writing a command script, such as a shell script in Unix or
macOS or a BAT script in Windows. Inside your script, you want to
execute an R script.

















Solution


Run the R program with the CMD BATCH subcommand, giving the script
name and the output filename:

R CMD BATCH scriptfile outputfile



If you want the output sent to stdout or if you need to pass
command-line arguments to the script, consider the Rscript command
instead:

Rscript scriptfile arg1 arg2 arg3


















Discussion


R is normally an interactive program, one that prompts the user for
input and then displays the results. Sometimes you want to run R in
batch mode, reading commands from a script. This is especially useful
inside shell scripts, such as scripts that include a statistical
analysis.


The CMD BATCH subcommand puts R into batch mode, reading from
scriptfile and writing to outputfile. It does not interact with
a user.


You will likely use command-line options to adjust R’s batch behavior to
your circumstances. For example, using --quiet silences the startup
messages that would otherwise clutter the output:


R CMD BATCH --quiet myScript.R results.out


Other useful options in batch mode include the following:


	--slave

	
Like --quiet, but it makes R even more silent by inhibiting echo of
the input.



	--no-restore

	
At startup, do not restore the R workspace. This is important if your
script expects R to begin with an empty workspace.



	--no-save

	
At exit, do not save the R workspace. Otherwise, R will save its
workspace and overwrite the .RData file in the working directory.



	--no-init-file

	
Do not read either the .Rprofile or the ~/.Rprofile file.






The CMD BATCH subcommand normally calls proc.time when your script
completes, showing the execution time. If this annoys you, then end your
script by calling the q function with runLast=FALSE, which will
prevent the call to proc.time.


The CMD BATCH subcommand has two limitations: the output always goes
to a file, and you cannot easily pass command-line arguments to your
script. If either limitation is a problem, consider using the Rscript
program that comes with R. The first command-line argument is the script
name, and the remaining arguments are given to the script:

Rscript scriptfile.R arg1 arg2 arg3



Inside the script, you can access the command-line arguments by calling
 commandArgs, which returns the arguments as a vector of strings:


argv <- commandArgs(TRUE)


The Rscript program takes the same command-line options as
CMD BATCH, which were just described.


Output is written to stdout, which R inherits from the calling shell
script, of course. You can redirect the output to a file by using the
normal redirection:

Rscript --slave scriptfile.R arg1 arg2 arg3 >results.out



Here is a small R script, arith.R, that takes two command-line
arguments and performs four arithmetic operations on them:


argv <- commandArgs(TRUE)
x <- as.numeric(argv[1])
y <- as.numeric(argv[2])

cat("x =", x, "\n")
cat("y =", y, "\n")
cat("x + y = ", x + y, "\n")
cat("x - y = ", x - y, "\n")
cat("x * y = ", x * y, "\n")
cat("x / y = ", x / y, "\n")


The script is invoked like this:


Rscript arith.R 2 3.1415


which produces the following output:


x = 2
y = 3.1415
x + y = 5.1415
x - y = -1.1415
x * y = 6.283
x / y = 0.6366385


On Linux, Unix, or Mac, you can make the script fully self-contained by
placing a #! line at the head with the path to the Rscript program.
Suppose that Rscript is installed in /usr/bin/Rscript on your
system. Adding this line to arith.R makes it a self-contained script:


#!/usr/bin/Rscript --slave

argv <- commandArgs(TRUE)
x <- as.numeric(argv[1])
.
. (etc.)
.


At the shell prompt, we mark the script as executable:


chmod +x arith.R


Now we can invoke the script directly without the Rscript prefix:


arith.R 2 3.1415

















See Also


See Recipe 3.13
for running a script from within R.
























3.15 Locating the R Home Directory










Problem


You need to know the R home directory, which is where the configuration
and installation files are kept.

















Solution


R creates an environment variable called R_HOME that you can access by
using the Sys.getenv function:


Sys.getenv("R_HOME")
#> [1] "/Library/Frameworks/R.framework/Resources"

















Discussion


Most users will never need to know the R home directory. But system
administrators or sophisticated users must know it in order to check or
change the R installation files.


When R starts, it defines a system environment variable (not an R
variable) called R_HOME, which is the path to the R home directory.
The Sys.getenv function can retrieve the system environment variable
value. Here are examples by platform. The exact value reported will
almost certainly be different on your own computer:



	
On Windows:


> Sys.getenv("R_HOME")
[1] "C:/PROGRA~1/R/R-34~1.4"



	
On macOS:


> Sys.getenv("R_HOME")
[1] "/Library/Frameworks/R.framework/Resources"



	
On Linux or Unix:


> Sys.getenv("R_HOME")
[1] "/usr/lib/R"






The Windows result looks funky because R reports the old, DOS-style
compressed pathname. The full, user-friendly path would be
C:\Program Files\R\R-3.4.4 in this case.


On Unix and macOS, you can also run the R program from the shell and use
the RHOME subcommand to display the home directory:


R RHOME
# /usr/lib/R


Note that the R home directory on Unix and macOS contains the
installation files but not necessarily the R executable file. The
executable could be in /usr/bin while the R home directory is, for
example, /usr/lib/R.
























3.16 Customizing R Startup










Problem


You want to customize your R sessions by, for instance, changing
configuration options or preloading packages.

















Solution


Create a script called .Rprofile that customizes your R session. R
will execute the .Rprofile script when it starts. The placement of
.Rprofile depends upon your platform:


	macOS, Linux, or Unix

	
Save the file in your home directory (~/.Rprofile).



	Windows

	
Save the file in your Documents directory.





















Discussion


R executes profile scripts when it starts allowing you to tweak the R configuration options.


You can create a profile script called .Rprofile and place it in your
home directory (macOS, Linux, Unix) or your Documents directory
(Windows). The script can call functions to customize your sessions,
such as this simple script that sets two environment variables and sets
the console prompt to R>:


Sys.setenv(DB_USERID = "my_id")
Sys.setenv(DB_PASSWORD = "My_Password!")
options(prompt = "R> ")


The profile script executes in a bare-bones environment, so there are
limits on what it can do. Trying to open a graphics window will fail,
for example, because the graphics package is not yet loaded. Also, you
should not attempt long-running computations.


You can customize a particular project by putting an .Rprofile file in
the directory that contains the project files. When R starts in that
directory, it reads the local .Rprofile file; this allows you to do
project-specific customizations (e.g., setting your console prompt to a
specific project name). However, if R finds a local profile, then it
does not read the global profile. That can be annoying, but it’s
easily fixed: simply source the global profile from the local profile.
On Unix, for instance, this local profile would execute the global
profile first and then execute its local material:


source("~/.Rprofile")
#
# ... remainder of local .Rprofile ...
#












Setting options


Some customizations are handled via calls to the options function,
which sets the R configuration options. There are many such options, and
the R help page for options lists them all:


help(options)


Here are some examples:


	browser="path"

	
Path of default HTML browser



	digits=n

	
Suggested number of digits to print when printing numeric values



	editor="path"

	
Default text editor



	prompt="string"

	
Input prompt



	repos="url"

	
URL for default repository for packages



	warn=n

	
Controls display of warning messages





















Reproducibility


Many of us use certain packages over and over in our scripts (for
example, the tidyverse packages). It
is tempting to load these packages in your .Rprofile so that they are
always available without you typing anything. As a matter of fact, this
advice was given in the first edition of this book. However, the
downside of loading packages in your .Rprofile is reproducibility. If
someone else (or you, on another machine) tries to run your script, they
may not realize that you had loaded packages in your .Rprofile. Your
script might not work for them, depending on which packages they load.
So while it might be convenient to load packages in .Rprofile, you
will play better with collaborators (and your future self) if you
explicitly call library(packagename) in your R scripts.


Another issue with reproducibility is when users
change default behaviors of R inside their .Rprofile. An
example of this would be setting options(stringsAsFactors = FALSE).
This is appealing, as many users would prefer this default. However, if
someone runs the script without this option being set, they will get
different results or not be able to run the script at all. This can lead
to considerable frustration.


As a guideline, you should primarily put things in the .Rprofile that:



	
Change the look and feel of R (e.g., digits).



	
Are specific to your local environment (e.g., browser).



	
Specifically need to be outside of your scripts (i.e., database
passwords).



	
Do not change the results of your analysis.





















Startup sequence


Here is a simplified overview of what happens when R starts (type
help(Startup) to see the full details):


	
R executes the Rprofile.site script. This is the site-level
script that enables system administrators to override default options
with localizations. The script’s full path is
R_HOME/etc/Rprofile.site. (R_HOME is the R home directory; see
Recipe 3.15.)


The R distribution does not include an Rprofile.site file. Rather, the
system administrator creates one if it is needed.



	
R executes the .Rprofile script in the working directory; or, if
that file does not exist, executes the .Rprofile script in your home
directory. This is the user’s opportunity to customize R for their own purposes. The .Rprofile script in the home directory is used for
global customizations. The .Rprofile script in a lower-level directory
can perform specific customizations when R is started there—for
instance, customizing R when started in a project-specific directory.



	
R loads the workspace saved in .RData, if that file exists in the
working directory. R saves your workspace in the file called .RData
when it exits. It reloads your workspace from that file, restoring
access to your local variables and functions. You can disable this
behavior in RStudio through Tools → Global Options. We recommend you
disable this option and always explicitly save and load your work.



	
R executes the .First function, if you defined one. The .First
function is a useful place for users or projects to define startup
initialization code. You can define it in your .Rprofile or in your
workspace.



	
R executes the .First.sys function. This step loads the default
packages. The function is internal to R and not normally changed by
either users or administrators.







Note that R does not load the default packages until the final step,
when it executes the .First.sys function. Before that, only the base
package has been loaded. This is a key point, because it means the
previous steps cannot assume that packages other than the base are
available. It also explains why trying to open a graphics window in
your .Rprofile script fails: the graphics packages aren’t loaded yet.






















See Also


See the R
help page for Startup (help(Startup)) and the R help page for
options (help(options)). See Recipe 3.8 for more about loading packages. 
























3.17 Using R and RStudio in the Cloud










Problem


You want to run R and RStudio in a cloud environment.

















Solution


The most straightforward way to use R in the cloud is to use the
RStudio.cloud web service. To use the service, point your web browser to
http://rstudio.cloud and set up an account, or log in with your Google
or GitHub credentials.

















Discussion


After you log in, click New Project to begin a new RStudio session in a
new workspace. You’ll be greeted by the familiar RStudio interface shown
in Figure 3-9.


Keep in mind that as of this writing the RStudio.cloud service is in
alpha testing and may not be 100% stable. Your work will persist after
you log off. However, as with any system, it is a good idea to ensure
you have backups of all the work you do. A common work pattern is to
connect your project in RStudio.cloud to a GitHub repository and
push your changes frequently from Rstudio.cloud to GitHub. This workflow
has been used significantly in the writing of this book.


Use of Git and GitHub is beyond the scope of this book, but if you
are interested in learning more, we highly recommend Jenny Bryan’s web
book Happy Git and GitHub for the useR.


In its current alpha state, RStudio.cloud limits each session to 1 GB of
RAM and 3 GB of drive space—so it’s a great platform for learning and
teaching but might not (yet) be the platform on which you want to build
a commercial data science laboratory. RStudio has expressed its intent
to offer greater processing power and storage as part of a paid tier of
service as the platform matures.



[image: rcbk 0309]
Figure 3-9. RStudio.cloud




If you need more computing power than offered by RStudio.cloud and you
are willing to pay for the services, both Amazon Web Services (AWS) and Google Cloud Platform offer cloud-based RStudio offerings. Other cloud platforms that
support Docker, such as Digital Ocean, are also reasonable options for
cloud-hosted RStudio.



















Chapter 4. Input and Output



All statistical work begins with data, and most data is stuck inside
files and databases. Dealing with input is probably the first step of
implementing any significant statistical project.


All statistical work ends with reporting numbers back to a client, even
if you are the client. Formatting and producing output is probably the
climax of your project.


Casual R users can solve their input problems by using basic readr
package functions such as read_csv to read CSV files and read_delim
to read more complicated, tabular data. They can use print, cat, and
format to produce simple reports.


Users with heavy-duty input/output (I/O) needs are strongly encouraged
to read the R Data Import/Export guide,
available on CRAN.
This manual includes important information on reading data from sources
such as spreadsheets, binary files, other statistical systems, and
relational databases.








4.1 Entering Data from the Keyboard










Problem


You have a small amount of data—too small to justify the overhead of
creating an input file. You just want to enter the data directly into
your workspace.

















Solution


For very small datasets, enter the data as literals using the c
constructor for vectors:


scores <- c(61, 66, 90, 88, 100)

















Discussion


When working on a simple problem, you may not want the hassle of
creating and then reading a data file outside of R. You may just want to
enter the data into R. The easiest way to do so is by using the c
constructor for vectors, as shown in the Solution.


You can use this approach for data frames, too, by entering each
variable (column) as a vector:


points <- data.frame(
  label = c("Low", "Mid", "High"),
  lbound = c(0, 0.67,   1.64),
  ubound = c(0.67, 1.64,   2.33)
)

















See Also


For cutting and pasting data from another application into R, be sure to
look at datapasta, a package
that provides RStudio add-ins that make pasting data into your scripts
easier.
























4.2 Printing Fewer Digits (or More Digits)










Problem


Your output contains too many digits, or too few digits. You want to
print fewer, or more.

















Solution


For print, the digits parameter can control the number of printed
digits.


For cat, use the format function (which also has a digits
parameter) to alter the formatting of numbers.

















Discussion


R normally formats floating-point output to have seven digits. This
works well most of the time but can become annoying when you have lots
of numbers to print in a small space. It gets downright misleading when
there are only a few significant digits in your numbers and R still
prints seven.


The print function lets you vary the number of printed digits using
the digits parameter:


print(pi, digits = 4)
#> [1] 3.142
print(100 * pi, digits = 4)
#> [1] 314.2


The cat function does not give you direct control over formatting.
Instead, use the format function to format your numbers before calling
cat:


cat(pi, "\n")
#> 3.14
cat(format(pi, digits = 4), "\n")
#> 3.142


This is R, so both print and format will format entire vectors at
once:


print(pnorm(-3:3), digits = 2)
#> [1] 0.0013 0.0228 0.1587 0.5000 0.8413 0.9772 0.9987
format(pnorm(-3:3), digits = 2)
#> [1] "0.0013" "0.0228" "0.1587" "0.5000" "0.8413" "0.9772" "0.9987"


Notice that both print and format format the vector elements
consistently, finding the number of significant digits necessary to
format the smallest number and then formatting all numbers to have the
same width (though not necessarily the same number of digits). This is
extremely useful for formatting an entire table:


q <- seq(from = 0, to = 3, by = 0.5)
tbl <- data.frame(Quant = q,
                  Lower = pnorm(-q),
                  Upper = pnorm(q))
tbl                                # Unformatted print
#>   Quant   Lower Upper
#> 1   0.0 0.50000 0.500
#> 2   0.5 0.30854 0.691
#> 3   1.0 0.15866 0.841
#> 4   1.5 0.06681 0.933
#> 5   2.0 0.02275 0.977
#> 6   2.5 0.00621 0.994
#> 7   3.0 0.00135 0.999
print(tbl, digits = 2)             # Formatted print: fewer digits
#>   Quant  Lower Upper
#> 1   0.0 0.5000  0.50
#> 2   0.5 0.3085  0.69
#> 3   1.0 0.1587  0.84
#> 4   1.5 0.0668  0.93
#> 5   2.0 0.0228  0.98
#> 6   2.5 0.0062  0.99
#> 7   3.0 0.0013  1.00


As you can see, when an entire vector or column is formatted, each
element in the vector or column is formatted the same way.


You can also alter the format of all output by using the options
function to change the default for digits:


pi
#> [1] 3.14
options(digits = 15)
pi
#> [1] 3.14159265358979


But this is a poor choice in our experience, since it also alters the
output from R’s built-in functions, and that alteration will likely be
unpleasant.

















See Also


Other functions for formatting numbers include sprintf and formatC;
see their help pages for details.
























4.3 Redirecting Output to a File










Problem


You want to redirect the output from R to a file instead of your
console.

















Solution


You can redirect the output of the cat function by using its file
argument:


cat("The answer is", answer, "\n", file = "filename.txt")


Use the sink function to redirect all output from both print and
cat. Call sink with a filename argument to begin redirecting
console output to that file. When you are done, use sink with no
argument to close the file and resume output to the console:

sink("filename")          # Begin writing output to file

# ... other session work ...

sink()                    # Resume writing output to console


















Discussion


The print and cat functions normally write their output to your
console. The cat function writes to a file if you supply a file
argument, which can be either a filename or a connection. The print
function cannot redirect its output, but the sink function can force
all output to a file. A common use for sink is to capture the output
of an R script:


sink("script_output.txt")   # Redirect output to file
source("script.R")          # Run the script, capturing its output
sink()                      # Resume writing output to console


If you are repeatedly cating items to one file, be sure to set
append=TRUE. Otherwise, each call to cat will simply overwrite the
file’s contents:


cat(data, file = "analysisReport.out")
cat(results, file = "analysisRepart.out", append = TRUE)
cat(conclusion, file = "analysisReport.out", append = TRUE)


Hardcoding filenames like this is a tedious and error-prone process. Did
you notice that the filename is misspelled in the second line? Instead
of hardcoding the filename repeatedly, we suggest opening a connection
to the file and writing your output to the connection:


con <- file("analysisReport.out", "w")
cat(data, file = con)
cat(results, file = con)
cat(conclusion, file = con)
close(con)


(You don’t need append=TRUE when writing to a connection because
append is the default with connections.) This technique is especially
valuable inside R scripts because it makes your code more reliable and
more maintainable.
























4.4 Listing Files










Problem


You want an R vector that is a listing of the files in your working
directory.

















Solution


The list.files function shows the contents of your working directory:


list.files()
#>  [1] "_book"                            "_bookdown_files"
#>  [3] "_bookdown.yml"                    "_common.R"
#>  [5] "_main.log"                        "_main.rds"
#>  [7] "_output.yml"                      "01_GettingStarted_cache"
#>  [9] "01_GettingStarted.md"             "01_GettingStarted.Rmd"
#> # etc.

















Discussion


This function is terribly handy to grab the names of all files in a
subdirectory. You can use it to refresh your memory of your filenames
or, more likely, as input into another process, like importing data
files.


You can pass list.files a path and a pattern to show files in a
specific path and matching a specific regular expression pattern:


list.files(path = 'data/') # show files in a directory
#>  [1] "ac.rdata"               "adf.rdata"
#>  [3] "anova.rdata"            "anova2.rdata"
#>  [5] "bad.rdata"              "batches.rdata"
#>  [7] "bnd_cmty.Rdata"         "compositePerf-2010.csv"
#>  [9] "conf.rdata"             "daily.prod.rdata"
#> [11] "data1.csv"              "data2.csv"
#> [13] "datafile_missing.tsv"   "datafile.csv"
#> [15] "datafile.fwf"           "datafile.qsv"
#> [17] "datafile.ssv"           "datafile.tsv"
#> [19] "datafile1.ssv"          "df_decay.rdata"
#> [21] "df_squared.rdata"       "diffs.rdata"
#> [23] "example1_headless.csv"  "example1.csv"
#> [25] "excel_table_data.xlsx"  "get_USDA_NASS_data.R"
#> [27] "ibm.rdata"              "iris_excel.xlsx"
#> [29] "lab_df.rdata"           "movies.sas7bdat"
#> [31] "nacho_data.csv"         "NearestPoint.R"
#> [33] "not_a_csv.txt"          "opt.rdata"
#> [35] "outcome.rdata"          "pca.rdata"
#> [37] "pred.rdata"             "pred2.rdata"
#> [39] "sat.rdata"              "singles.txt"
#> [41] "state_corn_yield.rds"   "student_data.rdata"
#> [43] "suburbs.txt"            "tab1.csv"
#> [45] "tls.rdata"              "triples.txt"
#> [47] "ts_acf.rdata"           "workers.rdata"
#> [49] "world_series.csv"       "xy.rdata"
#> [51] "yield.Rdata"            "z.RData"
list.files(path = 'data/', pattern = '\\.csv')
#> [1] "compositePerf-2010.csv" "data1.csv"
#> [3] "data2.csv"              "datafile.csv"
#> [5] "example1_headless.csv"  "example1.csv"
#> [7] "nacho_data.csv"         "tab1.csv"
#> [9] "world_series.csv"


To see all the files in your subdirectories, too, use:


list.files(recursive = T)


A possible “gotcha” of list.files is that it ignores hidden
files—typically, any file whose name begins with a dot. If you don’t
see the file you expected to see, try setting all.files=TRUE:


list.files(path = 'data/', all.files = TRUE)
#>  [1] "."                      ".."
#>  [3] ".DS_Store"              ".hidden_file.txt"
#>  [5] "ac.rdata"               "adf.rdata"
#>  [7] "anova.rdata"            "anova2.rdata"
#>  [9] "bad.rdata"              "batches.rdata"
#> [11] "bnd_cmty.Rdata"         "compositePerf-2010.csv"
#> [13] "conf.rdata"             "daily.prod.rdata"
#> [15] "data1.csv"              "data2.csv"
#> [17] "datafile_missing.tsv"   "datafile.csv"
#> [19] "datafile.fwf"           "datafile.qsv"
#> [21] "datafile.ssv"           "datafile.tsv"
#> [23] "datafile1.ssv"          "df_decay.rdata"
#> [25] "df_squared.rdata"       "diffs.rdata"
#> [27] "example1_headless.csv"  "example1.csv"
#> [29] "excel_table_data.xlsx"  "get_USDA_NASS_data.R"
#> [31] "ibm.rdata"              "iris_excel.xlsx"
#> [33] "lab_df.rdata"           "movies.sas7bdat"
#> [35] "nacho_data.csv"         "NearestPoint.R"
#> [37] "not_a_csv.txt"          "opt.rdata"
#> [39] "outcome.rdata"          "pca.rdata"
#> [41] "pred.rdata"             "pred2.rdata"
#> [43] "sat.rdata"              "singles.txt"
#> [45] "state_corn_yield.rds"   "student_data.rdata"
#> [47] "suburbs.txt"            "tab1.csv"
#> [49] "tls.rdata"              "triples.txt"
#> [51] "ts_acf.rdata"           "workers.rdata"
#> [53] "world_series.csv"       "xy.rdata"
#> [55] "yield.Rdata"            "z.RData"


If you just want to see which files are in a directory and not use the
filenames in a procedure, the easiest way is to open the Files pane in
the lower-right corner of RStudio. But keep in mind that the RStudio
Files pane hides files that start with a dot, as you can see in
Figure 4-1.



[image: rcbk 0401]
Figure 4-1. RStudio Files pane



















See Also


R has other handy functions for working with files; see help(files).
























4.5 Dealing with “Cannot Open File” in Windows










Problem


You are running R on Windows, and you are using filenames such as
C:\data\sample.txt. R says it cannot open a file, but you know the
file does exist.

















Solution


The backslashes in the filepath are causing trouble. You can solve this
problem in one of two ways:



	
Change the backslashes to forward slashes: "C:/data/sample.txt".



	
Double the backslashes: "C:\\data\\sample.txt".





















Discussion


When you open a file in R, you give the filename as a character string.
Problems arise when the name contains backslashes (\) because
backslashes have a special meaning inside strings. You’ll probably get
something like this:


samp <- read_csv("C:\Data\sample-data.csv")
#> Error: '\D' is an unrecognized escape in character string starting ""C:\D"


R escapes every character that follows a backslash and then removes the
backslashes. That leaves a meaningless filepath, such as
C:Datasample-data.csv in this example.


The simple solution is to use forward slashes instead of backslashes. R
leaves the forward slashes alone, and Windows treats them just like
backslashes. Problem solved:


samp <- read_csv("C:/Data/sample-data.csv")


An alternative solution is to double the backslashes, since R replaces
two consecutive backslashes with a single backslash:


samp <- read_csv("C:\\Data\\sample-data.csv")
























4.6 Reading Fixed-Width Records










Problem


You are reading data from a file of fixed-width records: records whose
data items occur at fixed boundaries.

















Solution


Use the read_fwf function from the readr package (which is part of the
tidyverse). The main arguments are the filename and the description of
the fields:


library(tidyverse)
records <- read_fwf("myfile.txt",
                    fwf_cols(col1 = 10,
                             col2 = 7))
records


This form uses the fwf_cols parameter to pass column names and widths
to the function. You can also pass column parameters in other ways, as
discussed next.

















Discussion


For reading data into R, we highly recommend the readr package. There
are Base R functions for reading in text files, but readr improves on
these base functions with faster performance, better defaults, and more
flexibility.


Suppose we want to read an entire file of fixed-width records, such as
fixed-width.txt, shown here:


Fisher    R.A.      1890 1962
Pearson   Karl      1857 1936
Cox       Gertrude  1900 1978
Yates     Frank     1902 1994
Smith     Kirstine  1878 1939


We need to know the column widths. In this case the columns are:



	
Last name, 10 characters



	
First name, 10 characters



	
Year of birth, 5 characters



	
Year of death, 5 characters






There are five different ways to define the columns using read_fwf.
Pick the one that’s easiest to use (or remember) in your situation:



	
read_fwf can try to guess your column widths if there is empty space
between the columns, with the fwf_empty option:


file <- "./data/datafile.fwf"
t1 <- read_fwf(file,
          fwf_empty(file,
          col_names = c("last", "first", "birth", "death")))
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )



	
You can define each column by a vector of widths followed by a vector
of names with fwf_widths:


t2 <- read_fwf(file, fwf_widths(c(10, 10, 5, 4),
                                c("last", "first", "birth", "death")))
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )



	
The columns can be defined with fwf_cols, which takes a series of
column names followed by the column widths:


t3 <-
  read_fwf("./data/datafile.fwf",
           fwf_cols(
             last = 10,
             first = 10,
             birth = 5,
             death = 5
           ))
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )



	
Each column can be defined by a beginning position and ending position
with fwf_cols:


t4 <- read_fwf(file, fwf_cols(
  last = c(1, 10),
  first = c(11, 20),
  birth = c(21, 25),
  death = c(26, 30)
))
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )



	
You can also define the columns with a vector of starting positions, a
vector of ending positions, and a vector of column names, with
fwf_positions:


t5 <- read_fwf(file, fwf_positions(
  c(1, 11, 21, 26),
  c(10, 20, 25, 30),
  c("first", "last", "birth", "death")
))
#> Parsed with column specification:
#> cols(
#>   first = col_character(),
#>   last = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )






The read_fwf function returns a tibble, which is a tidyverse flavor of data
frame. As is common with tidyverse packages, read_fwf has a good
selection of default assumptions that make it less tricky to use than
some Base R functions for importing data. For example, read_fwf will,
by default, import character fields as characters, not factors, which
prevents much pain and consternation for users.

















See Also


See Recipe 4.7 for more discussion of reading text files.
























4.7 Reading Tabular Data Files










Problem


You want to read a text file that contains a table of
whitespace-delimited data.

















Solution


Use the read_table2 function from the readr package, which returns a
tibble:


library(tidyverse)

tab1 <- read_table2("./data/datafile.tsv")
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )
tab1
#> # A tibble: 5 x 4
#>   last    first    birth death
#>   <chr>   <chr>    <dbl> <dbl>
#> 1 Fisher  R.A.      1890  1962
#> 2 Pearson Karl      1857  1936
#> 3 Cox     Gertrude  1900  1978
#> 4 Yates   Frank     1902  1994
#> 5 Smith   Kirstine  1878  1939

















Discussion


Tabular data files are quite common. They are text files with a simple
format:



	
Each line contains one record.



	
Within each record, fields (items) are separated by a whitespace
delimiter, such as a space or tab.



	
Each record contains the same number of fields.






This format is more free-form than the fixed-width format because fields
needn’t be aligned by position. Here is the data file from Recipe 4.6 in
tabular format, using a tab character between fields:


last    first   birth   death
Fisher  R.A.    1890    1962
Pearson Karl    1857    1936
Cox Gertrude    1900    1978
Yates   Frank   1902    1994
Smith   Kirstine    1878    1939


The read_table2 function is designed to make some good guesses about
your data. It assumes your data has column names in the first row, it
guesses your delimiter, and it imputes your column types based on the
first 1,000 records in your dataset. Next is an example with
space-delimited data.


The source file looks like this:


last first birth death
Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978
Yates Frank 1902 1994
Smith Kirstine 1878 1939


And read_table2 makes some rational guesses:


t <- read_table2("./data/datafile1.ssv")
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )
print(t)
#> # A tibble: 5 x 4
#>   last    first    birth death
#>   <chr>   <chr>    <dbl> <dbl>
#> 1 Fisher  R.A.      1890  1962
#> 2 Pearson Karl      1857  1936
#> 3 Cox     Gertrude  1900  1978
#> 4 Yates   Frank     1902  1994
#> 5 Smith   Kirstine  1878  1939


read_table2 often guesses correctly. But as with other readr import
functions, you can overwrite the defaults with explicit parameters:


t <-
  read_table2(
    "./data/datafile1.ssv",
    col_types = c(
      col_character(),
      col_character(),
      col_integer(),
      col_integer()
    )
  )


If any field contains the string "NA", then read_table2 assumes that
the value is missing and converts it to NA. Your data file might employ
a different string to signal missing values, in which case use the na
parameter. The SAS convention, for example, is that missing values are
signaled by a single period (.). We can read such text files using the
na="." option. If we have a file named datafile_missing.tsv that has
a missing value indicated with a . in the last row:


last    first     birth   death
Fisher  R.A.      1890    1962
Pearson Karl      1857    1936
Cox     Gertrude  1900    1978
Yates   Frank     1902    1994
Smith   Kirstine  1878    1939
Cox     David     1924    .


we can import it like so:


t <- read_table2("./data/datafile_missing.tsv", na = ".")
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )
t
#> # A tibble: 6 x 4
#>   last    first    birth death
#>   <chr>   <chr>    <dbl> <dbl>
#> 1 Fisher  R.A.      1890  1962
#> 2 Pearson Karl      1857  1936
#> 3 Cox     Gertrude  1900  1978
#> 4 Yates   Frank     1902  1994
#> 5 Smith   Kirstine  1878  1939
#> 6 Cox     David     1924    NA


We’re huge fans of self-describing data: data files that describe
their own contents. (A computer scientist would say the file contains
its own metadata.) The read_table2 function makes the default
assumption that the first line of your file contains a header line with
column names. If your file does not have column names, you can turn this
off with the parameter col_names = FALSE.


An additional type of metadata supported by read_table2 is comment
lines. Using the comment parameter you can tell read_table2 which
character distinguishes comment lines. The following file has a comment
line at the top that starts with #:


# The following is a list of statisticians
last first birth death
Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978
Yates Frank 1902 1994
Smith Kirstine 1878 1939


so we can import this file as follows:


t <- read_table2("./data/datafile.ssv", comment = '#')
#> Parsed with column specification:
#> cols(
#>   last = col_character(),
#>   first = col_character(),
#>   birth = col_double(),
#>   death = col_double()
#> )
t
#> # A tibble: 5 x 4
#>   last    first    birth death
#>   <chr>   <chr>    <dbl> <dbl>
#> 1 Fisher  R.A.      1890  1962
#> 2 Pearson Karl      1857  1936
#> 3 Cox     Gertrude  1900  1978
#> 4 Yates   Frank     1902  1994
#> 5 Smith   Kirstine  1878  1939


read_table2 has many parameters for controlling how it reads and
interprets the input file. See the help page (?read_table2) or the
readr vignette (vignette("readr")) for more details. If you’re
curious about the difference between read_table and read_table2,
it’s in the help file… but the short answer is that read_table is
slightly less forgiving in file structure and line length.

















See Also


If your data items are separated by commas, see Recipe 4.8 for
reading a CSV file.
























4.8 Reading from CSV Files










Problem


You want to read data from a comma-separated values (CSV) file.

















Solution


The read_csv function from the readr package is a fast (and,
according to the documentation, fun) way to read CSV files. If your CSV
file has a header line, use this:


library(tidyverse)

tbl <- read_csv("datafile.csv")


If your CSV file does not contain a header line, set the col_names
option to FALSE:


tbl <- read_csv("datafile.csv",  col_names = FALSE)

















Discussion


The CSV file format is popular because many programs can import and
export data in that format. This includes R, Excel, other spreadsheet
programs, many database managers, and most statistical packages. A CSV file is a
flat file of tabular data, where each line in the file is a row of data,
and each row contains data items separated by commas. Here is a very
simple CSV file with three rows and three columns. The first line is a
header line that contains the column names, also separated by commas:


label,lbound,ubound
low,0,0.674
mid,0.674,1.64
high,1.64,2.33


The read_csv function reads the data and creates a tibble. The function
assumes that your file has a header line unless told otherwise:


tbl <- read_csv("./data/example1.csv")
#> Parsed with column specification:
#> cols(
#>   label = col_character(),
#>   lbound = col_double(),
#>   ubound = col_double()
#> )
tbl
#> # A tibble: 3 x 3
#>   label lbound ubound
#>   <chr>  <dbl>  <dbl>
#> 1 low    0      0.674
#> 2 mid    0.674  1.64
#> 3 high   1.64   2.33


Observe that read_csv took the column names from the header line for
the tibble. If the file did not contain a header, then we would specify
col_names=FALSE and R would synthesize column names for us (X1,
X2, and X3 in this case):


tbl <- read_csv("./data/example1.csv", col_names = FALSE)
#> Parsed with column specification:
#> cols(
#>   X1 = col_character(),
#>   X2 = col_character(),
#>   X3 = col_character()
#> )
tbl
#> # A tibble: 4 x 3
#>   X1    X2     X3
#>   <chr> <chr>  <chr>
#> 1 label lbound ubound
#> 2 low   0      0.674
#> 3 mid   0.674  1.64
#> 4 high  1.64   2.33


Sometimes it’s convenient to put metadata in files. If this metadata
starts with a common character, such as a pound sign (#), we can use
the comment=FALSE parameter to ignore metadata lines.


The read_csv function has many useful bells and whistles. A few of
these options and their default values include:


	na = c("", "NA")

	
Indicates what values represent missing or NA values



	comment = ""

	
Indicates which lines to ignore as comments or metadata



	trim_ws = TRUE

	
Indicates whether to drop whitespace at the beginning and/or end of
fields



	skip = 0

	
Indicates the number of rows to skip at the beginning of the file



	guess_max = min(1000, n_max)

	
Indicates the number of rows to consider when imputing column types






See the R help page, help(read_csv), for more details on all the
available options.


If you have a data file that uses semicolons (;) for separators and
commas for the decimal mark, as is common outside of North America, you
should use the function read_csv2, which is built for that very
situation.

















See Also


See Recipe 4.9. See also the vignette for readr: vignette(readr).
























4.9 Writing to CSV Files










Problem


You want to save a matrix or data frame in a file using the
comma-separated values format.

















Solution


The write_csv function from the tidyverse readr package can write a
CSV file:


library(tidyverse)

write_csv(df, path = "outfile.csv")

















Discussion


The write_csv function writes tabular data to an ASCII file in CSV
format. Each row of data creates one line in the file, with data items
separated by commas (,). We can start with the data frame tab1 we
created previously in Recipe 4.7:


library(tidyverse)

write_csv(tab1, "./data/tab1.csv")


This example creates a file called tab1.csv in the data directory,
which is a subdirectory of the current working directory. The file looks
like this:


last,first,birth,death
Fisher,R.A.,1890,1962
Pearson,Karl,1857,1936
Cox,Gertrude,1900,1978
Yates,Frank,1902,1994
Smith,Kirstine,1878,1939


write_csv has a number of parameters with typically very good
defaults. Should you want to adjust the output, here are a few
parameters you can change, along with their defaults:


	col_names = TRUE

	
Indicates whether or not the first row contains column names.



	col_types = NULL

	
write_csv will look at the first 1,000 rows (changeable with
guess_max) and make an informed guess as to what data types to use for
the columns. If you’d rather explicitly state the column types, you can
do so by passing a vector of column types to the parameter col_types.



	na = c("", "NA")

	
Indicates what values represent missing or NA values.



	comment = ""

	
Indicates which lines to ignore as comments or metadata.



	trim_ws = TRUE

	
Indicates whether to drop whitespace at the beginning and/or end of
fields.



	skip = 0

	
Indicates the number of rows to skip at the beginning of the file.



	guess_max = min(1000, n_max)

	
Indicates the number of rows to consider when guessing column types.





















See Also


See Recipe 3.1 for more about the current working directory
and Recipe 4.18 for other ways to save data to files. For more
info on reading and writing text files, see the readr vignette:
vignette(readr).
























4.10 Reading Tabular or CSV Data from the Web










Problem


You want to read data directly from the web into your R workspace.

















Solution


Use the read_csv or read_table2 functions from the readr package,
using a URL instead of a filename. The functions will read directly from
the remote server:


library(tidyverse)

berkley <- read_csv('http://bit.ly/barkley18', comment = '#')
#> Parsed with column specification:
#> cols(
#>   Name = col_character(),
#>   Location = col_character(),
#>   Time = col_time(format = "")
#> )


You can also open a connection using the URL and then read from the
connection, which may be preferable for complicated files.

















Discussion


The web is a gold mine of data. You could download the data into a file
and then read the file into R, but it’s more convenient to read directly
from the web. Give the URL to read_csv, read_table2, or another read
function in readr (depending upon the format of the data), and the
data will be downloaded and parsed for you. No fuss, no muss.


Aside from using a URL, this recipe is just like reading from a CSV file
(see Recipe 4.8) or a complex file (Recipe 4.15), so all
the comments in those recipes apply here, too.


Remember that URLs work for FTP servers, not just HTTP servers. This
means that R can also read data from FTP sites using URLs:


tbl <- read_table2("ftp://ftp.example.com/download/data.txt")

















See Also


See Recipe 4.8 and Recipe 4.15.
























4.11 Reading Data from Excel










Problem


You want to read data in from an Excel file.

















Solution


The openxlsx package makes reading Excel files easy:


library(openxlsx)
df1 <- read.xlsx(xlsxFile = "file.xlsx",
                 sheet = 'sheet_name')

















Discussion


The package openxlsx is a good choice for both reading and writing
Excel files with R. If we’re reading in an entire sheet, using the read.xlsx function is a simple
option. We need only pass in a filename and, if desired, the name of the
sheet we want imported:


library(openxlsx)

df1 <- read.xlsx(xlsxFile = "data/iris_excel.xlsx",
                 sheet = 'iris_data')
head(df1, 3)
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 3          4.7         3.2          1.3         0.2  setosa


But openxlsx supports more complex workflows.


A common pattern is to read a named table out of an Excel file and into
an R data frame. This is trickier because the sheet we’re reading from
may have values outside of the named table, but we want to only read in
the named table range. We can use the functions in openxlsx to get the
location of a table, then read that range of cells into a data frame.


First we load the entire workbook into R:


library(openxlsx)
wb <- loadWorkbook("data/excel_table_data.xlsx")


Then we can use the getTables function to get the names and ranges of
all the Excel tables in the input_data sheet and select the one
table we want. In this example the Excel table we are after is named
example_table:


tables <- getTables(wb, 'input_data')
table_range_str <- names(tables[tables == 'example_table'])
table_range_refs <- strsplit(table_range_str, ':')[[1]]

# use a regex to extract out the row numbers
table_range_row_num <- gsub("[^0-9.]", "", table_range_refs)

# extract out the column numbers
table_range_col_num <- convertFromExcelRef(table_range_refs)


Now the vector table_range_col_num contains the column numbers of our named table,
while table_range_row_num contains the row numbers of our named table.
We can then use the read.xlsx function to pull in only the rows and
columns we are after:


df <- read.xlsx(
  xlsxFile = "data/excel_table_data.xlsx",
  sheet = 'input_data',
  cols = table_range_col_num[1]:table_range_col_num[2],
  rows = table_range_row_num[1]:table_range_row_num[2]
)


While this may seem complicated, this design pattern can save a lot of
hassle when sharing data with analysts who are using highly structured
Excel files that include named tables.

















See Also


You can see the vignette for openxlsx by installing openxlsx and running
vignette('Introduction', package='openxlsx').


The readxl package is part of the
tidyverse and provides fast, simple reading of Excel files. However,
readxl does not currently support named Excel tables.


The writexl
package is a fast and lightweight (no dependencies) package for writing
Excel files (discussed in Recipe 4.12).
























4.12 Writing a Data Frame to Excel










Problem


You want to write an R data frame to an Excel file.

















Solution


The openxlsx package makes writing to Excel files relatively easy.
While there are lots of options in openxlsx, a typical pattern is to
specify an Excel filename and a sheet name:


library(openxlsx)
write.xlsx(df,
           sheetName = "some_sheet",
           file = "out_file.xlsx")

















Discussion


The openxlsx package has a huge number of options for controlling many
aspects of the Excel object model. We can use it to set cell colors,
define named ranges, and set cell outlines, for example. It also has a
few helper functions like write.xlsx that make simple tasks super
easy.


When businesses work with Excel, it’s a good practice to keep all input
data in an Excel file in a named Excel table, which makes accessing the
data easier and less error prone. However, if you use openxlsx to
overwrite an Excel table in one of the sheets, you run the risk that the
new data may contain fewer rows than the Excel table it replaces. That
could cause errors, as you would end up with old data and new data in
contiguous rows. The solution is to first delete the existing Excel
table, then add the new data back into the same location and assign the new
data to a named Excel table. To do this we need to use the more advanced
Excel manipulation features of openxlsx.


First we use loadWorkbook to read the Excel workbook into R in its
entirety:


library(openxlsx)

wb <- loadWorkbook("data/excel_table_data.xlsx")


Before we delete the table, we want to extract the table’s starting row
and column:


tables <- getTables(wb, 'input_data')
table_range_str <- names(tables[tables == 'example_table'])
table_range_refs <- strsplit(table_range_str, ':')[[1]]

# use a regex to extract out the starting row number
table_row_num <- gsub("[^0-9.]", "", table_range_refs)[[1]]

# extract out the starting column number
table_col_num <- convertFromExcelRef(table_range_refs)[[1]]


Then we can use the removeTable function to remove the existing named
Excel table:


removeTable(wb = wb,
            sheet = 'input_data',
            table = 'example_table')


Now we can use writeDataTable to write the iris data frame (which
comes with R) back into our workbook object in R:


writeDataTable(
  wb = wb,
  sheet = 'input_data',
  x = iris,
  startCol = table_col_num,
  startRow = table_row_num,
  tableStyle = "TableStyleLight9",
  tableName = 'example_table'
)


At this point we could save the workbook and our table would be updated.
However, it’s a good idea to save some metadata in the workbook to let
others know exactly when the data was refreshed. We can do this with the
writeData function, then save the workbook to a file and overwrite the
original file. In this example, we’ll put the metadata text in cell
B:5, then save the workbook back to a file, overwriting the original:


writeData(
  wb = wb,
  sheet = 'input_data',
  x = paste('example_table data refreshed on:', Sys.time()),
  startCol = 2,
  startRow = 5
)

# then save the workbook
saveWorkbook(wb = wb,
             file = "data/excel_table_data.xlsx",
             overwrite = TRUE)


The resulting Excel sheet is shown in Figure 4-2.



[image: rcbk 0402]
Figure 4-2. Excel table and metadata text



















See Also


You can see the vignette for openxlsx by installing openxlsx and running
vignette('Introduction', package='openxlsx').


The readxl package is part of the
tidyverse and provides fast, simple reading of Excel files (discussed in Recipe 4.11).


The writexl package is a fast and lightweight (no dependencies) package for writing
Excel files.
























4.13 Reading Data from a SAS File










Problem


You want to read a Statistical Analysis Software (SAS) dataset into an R data frame.

















Solution


The sas7bdat package supports reading .sas7bdat files into R:


library(haven)

sas_movie_data <- read_sas("data/movies.sas7bdat")

















Discussion


SAS V7 and beyond all support the .sas7bdat file format. The read_sas
function in haven supports reading the .sas7bdat file format,
including variable labels. If your SAS file has variable labels, when
they are imported into R they will be stored in the label attributes
of the data frame. These labels will not be printed by default. You can
see the labels by opening the data frame in RStudio, or by calling the
attributes Base R function on each column:


sapply(sas_movie_data, attributes)
#> $Movie
#> $Movie$label
#> [1] "Movie"
#>
#>
#> $Type
#> $Type$label
#> [1] "Type"
#>
#>
#> $Rating
#> $Rating$label
#> [1] "Rating"
#>
#>
#> $Year
#> $Year$label
#> [1] "Year"
#>
#>
#> $Domestic__
#> $Domestic__$label
#> [1] "Domestic $"
#>
#> $Domestic__$format.sas
#> [1] "F"
#>
#>
#> $Worldwide__
#> $Worldwide__$label
#> [1] "Worldwide $"
#>
#> $Worldwide__$format.sas
#> [1] "F"
#>
#>
#> $Director
#> $Director$label
#> [1] "Director"

















See Also


The sas7bdat package is much slower on large files than haven, but
it has more elaborate support for file attributes. If the SAS metadata
is important to you, then you should investigate
sas7bdat::read.sas7bdat.
























4.14 Reading Data from HTML Tables










Problem


You want to read data from an HTML table on the web.

















Solution


Use the read_html and html_table functions in the rvest package.
To read all tables on the page, do the following:

library(rvest)
library(tidyverse)

all_tables <-
  read_html("url") %>%
  html_table(fill = TRUE, header = TRUE)



Note that rvest is installed when you run
install.packages('tidyverse'), but it is not a core tidyverse
package. So, you must explicitly load the package.

















Discussion


Web pages can contain several HTML tables. Calling read_html(url)
and then piping that to html_table reads all tables on the page and
returns them in a list. This can be useful for exploring a page, but
it’s annoying if you want just one specific table. In that case, use
extract2(n) to select the nth table.


For example, here we extract all tables from a Wikipedia article:


library(rvest)

all_tables <-
  read_html("https://en.wikipedia.org/wiki/Aviation_accidents_and_incidents") %>%
  html_table(fill = TRUE, header = TRUE)


read_html puts all the tables from the HTML document into the output list.
To pull a single table from that list, you can use the function
extract2 from the magrittr package:


out_table <-
  all_tables %>%
  magrittr::extract2(2)

head(out_table)
#>   Year Deaths[53] # of incidents[54]
#> 1 2018      1,040            113[55]
#> 2 2017        399                101
#> 3 2016        629                102
#> 4 2015        898                123
#> 5 2014      1,328                122
#> 6 2013        459                138


Two common parameters for the html_table function are fill=TRUE,
which fills in missing values with NA, and header=TRUE, which
indicates that the first row contains the header names.


The following example loads all tables from the Wikipedia page entitled
“World population”:


url <- 'http://en.wikipedia.org/wiki/World_population'
tbls <- read_html(url) %>%
  html_table(fill = TRUE, header = TRUE)


As it turns out, that page contains 23 tables (or things that
html_table thinks might be tables):


length(tbls)
#> [1] 23


In this example we care only about the sixth table (which lists the
largest populations by country), so we can either access that element
using brackets—tbls[[6]]—or we can pipe it into the extract2
function from the magrittr package:


library(magrittr)
tbl <- tbls %>%
  extract2(6)

head(tbl, 2)
#>   Rank Country / Territory    Population         Date % of world population
#> 1    1       China[note 4] 1,397,280,000 May 11, 2019                 18.1%
#> 2    2               India 1,347,050,000 May 11, 2019                 17.5%
#>   Source
#> 1   [84]
#> 2   [85]


The extract2 function is a “pipe-friendly” version of the R [[i]]
syntax: it pulls out a single list element from a list. The extract
function is analogous to [i], which returns element i from the
original list into a list of length 1.


In that table, columns 2 and 3 contain the country name and population,
respectively:


tbl[, c(2, 3)]
#>    Country / Territory    Population
#> 1        China[note 4] 1,397,280,000
#> 2                India 1,347,050,000
#> 3        United States   329,181,000
#> 4            Indonesia   265,015,300
#> 5             Pakistan   212,742,631
#> 6               Brazil   209,889,000
#> 7              Nigeria   188,500,000
#> 8           Bangladesh   166,532,000
#> 9       Russia[note 5]   146,877,088
#> 10               Japan   126,440,000


Right away, we can see problems with the data: China and Russia have [note 4] and [note 5] appended to their names. On the Wikipedia website those were footnote references, but now they’re just bits of unwanted text. Adding
insult to injury, the population numbers have embedded commas, so you
cannot easily convert them to raw numbers. All these problems can be
solved by some string processing, but each problem adds at least one
more step to the process.


This illustrates the main obstacle to reading HTML tables. HTML was
designed for presenting information to people, not to computers. When
you “scrape” information off an HTML page, you get stuff that’s useful
to people but annoying to computers. If you ever have a choice, choose
instead a computer-oriented data representation such as XML, JSON, or
CSV.

Note

The read_html(url) and html_table functions are part of the
rvest package, which (by necessity) is large and complex. Any time you
pull data from a site designed for human readers, not machines, expect
that you will have to do post-processing to clean up the bits and pieces
the machine leaves messy.



















See Also


See Recipe 3.10 for downloading and installing packages such as the rvest
package.
























4.15 Reading Files with a Complex Structure










Problem


You are reading data from a file that has a complex or irregular
structure.

















Solution


Use the readLines function to read individual lines; then process
them as strings to extract data items.


Alternatively, use the scan function to read individual tokens and
use the argument what to describe the stream of tokens in your file.
The function can convert tokens into data and then assemble the data
into records.

















Discussion


Life would be simple and beautiful if all our data files were organized
into neat tables with cleanly delimited data. We could read those files
using one of the functions in the readr package and get on with
living.


Unfortunately, we don’t live in a land of rainbows and unicorn kisses.


You will eventually encounter a funky file format, and your job is to read the file’s contents into R.


The read.table and read.csv functions are file-oriented and probably
won’t help. However, the readLines and scan functions are useful
here because they let you process the individual lines and even tokens
of the file.


The readLines function is pretty simple. It reads lines from a file
and returns them as a list of character strings:


lines <- readLines("input.txt")


You can limit the number of lines by using the n parameter, which
gives the maximum number of lines to be read:


lines <- readLines("input.txt", n = 10)       # Read 10 lines and stop


The scan function is much richer. It reads one token at a time and
handles it according to your instructions. The first argument is either
a filename or a connection. The second argument is called what, and it
describes the tokens that scan should expect in the input file. The
description is cryptic but quite clever:


	what=numeric(0)

	
Interprets the next token as a number



	what=integer(0)

	
Interprets the next token as an integer



	what=complex(0)

	
Interprets the next token as a complex number



	what=character(0)

	
Interprets the next token as a character string



	what=logical(0)

	
Interprets the next token as a logical value






The scan function will apply the given pattern repeatedly until all
data is read.


Suppose your file is simply a sequence of numbers, like this:


2355.09 2246.73 1738.74 1841.01 2027.85


Use what=numeric(0) to say, “My file is a sequence of tokens, each of
which is a number”:


singles <- scan("./data/singles.txt", what = numeric(0))
singles
#> [1] 2355.09 2246.73 1738.74 1841.01 2027.85


A key feature of scan is that the what can be a list containing
several token types. The scan function will assume your file is a
repeating sequence of those types. Suppose your file contains triplets
of data, like this:


15-Oct-87 2439.78 2345.63 16-Oct-87 2396.21 2207.73
19-Oct-87 2164.16 1677.55 20-Oct-87 2067.47 1616.21
21-Oct-87 2081.07 1951.76


Use a list to tell scan that it should expect a repeating, three-token
sequence:


triples <-
  scan("./data/triples.txt",
       what = list(character(0), numeric(0), numeric(0)))
triples
#> [[1]]
#> [1] "15-Oct-87" "16-Oct-87" "19-Oct-87" "20-Oct-87" "21-Oct-87"
#>
#> [[2]]
#> [1] 2439.78 2396.21 2164.16 2067.47 2081.07
#>
#> [[3]]
#> [1] 2345.63 2207.73 1677.55 1616.21 1951.76


Give names to the list elements, and scan will assign those names to
the data:


triples <- scan("./data/triples.txt",
                what = list(
                  date = character(0),
                  high = numeric(0),
                  low = numeric(0)
                ))
triples
#> $date
#> [1] "15-Oct-87" "16-Oct-87" "19-Oct-87" "20-Oct-87" "21-Oct-87"
#>
#> $high
#> [1] 2439.78 2396.21 2164.16 2067.47 2081.07
#>
#> $low
#> [1] 2345.63 2207.73 1677.55 1616.21 1951.76


This can easily be turned into a data frame with the data.frame
command:


df_triples <- data.frame(triples)
df_triples
#>        date    high     low
#> 1 15-Oct-87 2439.78 2345.63
#> 2 16-Oct-87 2396.21 2207.73
#> 3 19-Oct-87 2164.16 1677.55
#> 4 20-Oct-87 2067.47 1616.21
#> 5 21-Oct-87 2081.07 1951.76


The scan function has many bells and whistles, but the following are
especially useful:


	n=number

	
Stop after reading this many tokens. (Default: stop at end of file.)



	nlines=number

	
Stop after reading this many input lines. (Default: stop at end of
file.)



	skip=number

	
Number of input lines to skip before reading data.



	na.strings=list

	
A list of strings to be interpreted as NA.





















An Example


Let’s use this recipe to read a dataset from StatLib, the repository of
statistical data and software maintained by Carnegie Mellon University.
Jeff Witmer contributed a dataset called wseries that shows the
pattern of wins and losses for every World Series since 1903. The
dataset is stored in an ASCII file with 35 lines of comments followed by
23 lines of data. The data itself looks like this:


1903  LWLlwwwW    1927  wwWW      1950  wwWW      1973  WLwllWW
1905  wLwWW       1928  WWww      1951  LWlwwW    1974  wlWWW
1906  wLwLwW      1929  wwLWW     1952  lwLWLww   1975  lwWLWlw
1907  WWww        1930  WWllwW    1953  WWllwW    1976  WWww
1908  wWLww       1931  LWwlwLW   1954  WWww      1977  WLwwlW
.
. (etc.)
.


The data is encoded as follows: L = loss at home, l = loss on the road,
W = win at home, w = win on the road. The data appears in column order,
not row order, which complicates our lives a bit.


Here is the R code for reading the raw data:


# Read the wseries dataset:
#     - Skip the first 35 lines
#     - Then read 23 lines of data
#     - The data occurs in pairs: a year and a pattern (char string)
#
world.series <- scan(
  "http://lib.stat.cmu.edu/datasets/wseries",
  skip = 35,
  nlines = 23,
  what = list(year = integer(0),
              pattern = character(0)),
)


The scan function returns a list, so we get a list with two elements:
year and pattern. The function reads from left to right, but the
dataset is organized by columns and so the years appear in a strange
order:


world.series$year
#>  [1] 1903 1927 1950 1973 1905 1928 1951 1974 1906 1929 1952 1975 1907 1930
#> [15] 1953 1976 1908 1931 1954 1977 1909 1932 1955 1978 1910 1933 1956 1979
#> [29] 1911 1934 1957 1980 1912 1935 1958 1981 1913 1936 1959 1982 1914 1937
#> [43] 1960 1983 1915 1938 1961 1984 1916 1939 1962 1985 1917 1940 1963 1986
#> [57] 1918 1941 1964 1987 1919 1942 1965 1988 1920 1943 1966 1989 1921 1944
#> [71] 1967 1990 1922 1945 1968 1991 1923 1946 1969 1992 1924 1947 1970 1993
#> [85] 1925 1948 1971 1926 1949 1972


We can fix that by sorting the list elements according to year:


perm <- order(world.series$year)
world.series <- list(year    = world.series$year[perm],
                     pattern = world.series$pattern[perm])


Now the data appears in chronological order:


world.series$year
#>  [1] 1903 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
#> [15] 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
#> [29] 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
#> [43] 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
#> [57] 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
#> [71] 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
#> [85] 1988 1989 1990 1991 1992 1993

world.series$pattern
#>  [1] "LWLlwwwW" "wLwWW"    "wLwLwW"   "WWww"     "wWLww"    "WLwlWlw"
#>  [7] "WWwlw"    "lWwWlW"   "wLwWlLW"  "wLwWw"    "wwWW"     "lwWWw"
#> [13] "WWlwW"    "WWllWw"   "wlwWLW"   "WWlwwLLw" "wllWWWW"  "LlWwLwWw"
#> [19] "WWwW"     "LwLwWw"   "LWlwlWW"  "LWllwWW"  "lwWLLww"  "wwWW"
#> [25] "WWww"     "wwLWW"    "WWllwW"   "LWwlwLW"  "WWww"     "WWlww"
#> [31] "wlWLLww"  "LWwwlW"   "lwWWLw"   "WWwlw"    "wwWW"     "WWww"
#> [37] "LWlwlWW"  "WLwww"    "LWwww"    "WLWww"    "LWlwwW"   "LWLwwlw"
#> [43] "LWlwlww"  "WWllwLW"  "lwWWLw"   "WLwww"    "wwWW"     "LWlwwW"
#> [49] "lwLWLww"  "WWllwW"   "WWww"     "llWWWlw"  "llWWWlw"  "lwLWWlw"
#> [55] "llWLWww"  "lwWWLw"   "WLlwwLW"  "WLwww"    "wlWLWlw"  "wwWW"
#> [61] "WLlwwLW"  "llWWWlw"  "wwWW"     "wlWWLlw"  "lwLLWww"  "lwWWW"
#> [67] "wwWLW"    "llWWWlw"  "wwLWLlw"  "WLwllWW"  "wlWWW"    "lwWLWlw"
#> [73] "WWww"     "WLwwlW"   "llWWWw"   "lwLLWww"  "WWllwW"   "llWWWw"
#> [79] "LWwllWW"  "LWwww"    "wlWWW"    "LLwlwWW"  "LLwwlWW"  "WWlllWW"
#> [85] "WWlww"    "WWww"     "WWww"     "WWlllWW"  "lwWWLw"   "WLwwlW"
























4.16 Reading from MySQL Databases










Problem


You want access to data stored in a MySQL database.

















Solution


Follow these steps:


	
Install the RMySQL package on your computer and add a user and
password.



	
Open a database connection using the DBI::dbConnect function.



	
Use dbGetQuery to initiate a SELECT and return the result sets.



	
Use dbDisconnect to terminate the database connection when you are
done.






















Discussion


This recipe requires that the RMySQL package be installed on your
computer. That package requires, in turn, the MySQL client software. If
that software is not already installed and configured on your system,
consult the MySQL documentation or your system administrator.


Use the dbConnect function to establish a connection to the MySQL
database. It returns a connection object that is used in subsequent
calls to RMySQL functions:

library(RMySQL)

con <- dbConnect(
    drv = RMySQL::MySQL(),
    dbname = "your_db_name",
    host = "your.host.com",
    username = "userid",
    password = "pwd"
  )



The username, password, and host parameters are the same parameters used
for accessing MySQL through the mysql client program. The example
given here shows them hardcoded into the dbConnect call, but actually that is an ill-advised practice. It puts your password in a plain-text
document, creating a security problem. It also creates a major headache
whenever your password or host changes, requiring you to hunt down the
hardcoded values. We strongly recommend using the security mechanism of
MySQL instead. Version 8 of MySQL introduces even more advanced security
options, but currently these have not been built into the RMySQL
client. So, we recommend you use MySQL native passwords by setting
default-authentication-plugin=mysql_native_password in your MySQL
configuration file, which is $HOME/.my.cnf on Unix and C:\my.cnf on
Windows. We use loose-local-infile=1 to ensure that we have
permissions to write to the database. Make sure the file is unreadable
by anyone except you. The file is delimited into sections with markers
such as [mysqld] and [client]. Put connection parameters into the
[client] section, so that your config file will contain something like
this:


[mysqld]
default-authentication-plugin=mysql_native_password
loose-local-infile=1

[client]
loose-local-infile=1
user="jdl"
password="password"
host=127.0.0.1
port=3306


Once the parameters are defined in the config file, you no longer need
to supply them in the dbConnect call, which then becomes much simpler:

con <- dbConnect(
  drv = RMySQL::MySQL(),
  dbname = "your_db_name")



Use the dbGetQuery function to submit your SQL to the database and
read the result sets. Doing so requires an open database connection:


sql <- "SELECT * from SurveyResults WHERE City = 'Chicago'"
rows <- dbGetQuery(con, sql)


You are not restricted to SELECT statements. Any SQL that generates a
result set is OK. It is common to use CALL statements, for example, if
your SQL is encapsulated in stored procedures and those stored
procedures contain embedded SELECT statements.


Using dbGetQuery is convenient because it packages the result set into
a data frame and returns the data frame. This is the perfect
representation of a SQL result set. The result set is a tabular data
structure of rows and columns, and so is a data frame. The result set’s
columns have names given by the SQL SELECT statement, and R uses them
for naming the columns of the data frame.


Call dbGetQuery repeatedly to perform multiple queries. When you are
done, close the database connection using dbDisconnect:


dbDisconnect(con)


Here is a complete session that reads and prints three rows from a
database of stock prices. The query selects the price of IBM stock for
the last three days of 2008. It assumes that the username, password,
dbname, and host parameters are defined in the my.cnf file:


con <- dbConnect(RMySQL::MySQL())
sql <- paste(
  "select * from DailyBar where Symbol = 'IBM'",
  "and Day between '2008-12-29' and '2008-12-31'"
)
rows <- dbGetQuery(con, sql)

dbDisconnect(con)
print(rows)


##   Symbol        Day       Next OpenPx HighPx LowPx ClosePx AdjClosePx
## 1    IBM 2008-12-29 2008-12-30  81.72  81.72 79.68   81.25      81.25
## 2    IBM 2008-12-30 2008-12-31  81.83  83.64 81.52   83.55      83.55
## 3    IBM 2008-12-31 2009-01-02  83.50  85.00 83.50   84.16      84.16
##   HistClosePx  Volume OpenInt
## 1       81.25 6062600      NA
## 2       83.55 5774400      NA
## 3       84.16 6667700      NA

















See Also


See Recipe 3.10 and the documentation for RMySQL, which contains more
details about configuring and using the package.


See Recipe 4.17 for information about how to get data from a SQL database without writing any SQL.


R can read from several other RDBMSs, including Oracle, Sybase,
PostgreSQL, and SQLite. For more information, see the R Data
Import/Export guide, which is supplied with the base distribution
(Recipe 1.7) and is also available on
CRAN.
























4.17 Accessing a Database with dbplyr










Problem


You want to access a database, but you’d rather not write SQL code in
order to manipulate data and return results to R.

















Solution


In addition to being a grammar of data manipulation, the tidyverse
package dplyr can, in connection with the dbplyr package, turn
dplyr commands into SQL for you.


Let’s set up an example database using RSQLite. Then we’ll connect to
it and use dplyr and the dbplyr backend to extract data.


We’ll first set up the example table by loading the msleep example data into an
in-memory SQLite database:


con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
sleep_db <- copy_to(con, msleep, "sleep")


Now that we have a table in our database, we can create a reference to
it from R:


sleep_table <- tbl(con, "sleep")


The sleep_table object is a type of pointer or alias to the table on
the database. However, dplyr will treat it like a regular tidyverse
tibble or data frame, so you can operate on it using dplyr and other
R commands. Let’s select all animals from the data who sleep less than
three hours:


little_sleep <- sleep_table %>%
  select(name, genus, order, sleep_total) %>%
  filter(sleep_total < 3)


The dbplyr backend does not go fetch the data when we do the preceding
commands. But it does build the query and get ready. To see the query
built by dplyr, you can use show_query:


show_query(little_sleep)
#> <SQL>
#> SELECT *
#> FROM (SELECT `name`, `genus`, `order`, `sleep_total`
#> FROM `sleep`)
#> WHERE (`sleep_total` < 3.0)


To bring the data back to your local machine, use collect:


local_little_sleep <- collect(little_sleep)
local_little_sleep
#> # A tibble: 3 x 4
#>   name        genus         order          sleep_total
#>   <chr>       <chr>         <chr>                <dbl>
#> 1 Horse       Equus         Perissodactyla         2.9
#> 2 Giraffe     Giraffa       Artiodactyla           1.9
#> 3 Pilot whale Globicephalus Cetacea                2.7

















Discussion


When you use dplyr to access SQL databases by writing only dplyr
commands, you can be more productive by not having to switch from one
language to another and back. The alternative is to have large chunks of
SQL code stored as text strings in the middle of an R script, or have
the SQL in separate files that are read in by R.


By allowing dplyr to transparently create the SQL in the background,
you are freed from having to maintain separate SQL code to extract data.


The dbplyr package uses DBI to connect to your database, so you’ll
need a DBI backend package for whichever database you want to access.


Some commonly used DBI backend packages are:


	odbc

	
Uses the Open Database Connectivity (ODBC) protocol to connect to many
different databases. This is typically the best choice when you are
connecting to Microsoft SQL Server. ODBC is typically straightforward
on Windows machines but may require some considerable effort to get
working in Linux or macOS.



	RPostgreSQL

	
For connecting to Postgres and Redshift.



	RMySQL

	
For MySQL and MariaDB.



	RSQLite

	
For connecting to SQLite databases on disk or in memory.



	bigrquery

	
For connections to Google’s BigQuery.





Tip

Each DBI backend package discussed here is listed on CRAN and can be
installed with the typical install.packages('packagename') command.



















See Also


For more information about connecting the databases with R and RStudio,
see https://db.rstudio.com/.


For more detail on SQL translation in dbplyr, see the sql-translation
vignette at vignette("sql-translation") or
http://bit.ly/2wVCOKe.
























4.18 Saving and Transporting Objects










Problem


You want to store one or more R objects in a file for later use, or you
want to copy an R object from one machine to another.

















Solution


Write the objects to a file using the save function:


save(tbl, t, file = "myData.RData")


Read them back using the load function, either on your computer or on
any platform that supports R:


load("myData.RData")


The save function writes binary data. To save in an ASCII format, use
dput or dump instead:


dput(tbl, file = "myData.txt")
dump("tbl", file = "myData.txt")    # Note quotes around variable name

















Discussion


Suppose you’ve found yourself with a large, complicated data object that you want
to load into other workspaces, or you want to move R objects between
a Linux box and a Windows box. The load and save functions let you do
all this: save will store the object in a file that is portable across
machines, and load can read those files.


When you run load, it does not return your data per se; rather, it
creates variables in your workspace, loads your data into those
variables, and then returns the names of the variables (in a vector).
The first time you run load, you might be tempted to do this:


myData <- load("myData.RData")     # Achtung! Might not do what you think


Let’s look at what myData is:


myData
#> [1] "tbl" "t"
str(myData)
#>  chr [1:2] "tbl" "t"


This might be puzzling, because myData will not contain your data at
all. This can be perplexing and frustrating the first time you encounter it.


There are a few other things to keep in mind, too. First, the save function writes in a binary format to keep the file small.
Sometimes you want an ASCII format instead. When you submit a question
to a mailing list or to Stack Overflow, for example, including an ASCII
dump of the data lets others re-create your problem. In such cases use
dput or dump, which write an ASCII representation.


You must also be careful when you save and load objects created by a particular R
package. When you load the objects, R does not automatically load the
required packages, too, so it will not “understand” the object unless
you previously loaded the package yourself. For instance, suppose we
have an object called z created by the zoo package, and we
save the object in a file called z.RData. The following sequence of
functions will create some confusion:


load("./data/z.RData")   # Create and populate the z variable
plot(z)                  # Does not plot as expected: zoo pkg not loaded


The plot in Figure 4-3 shows the resulting plot,
which is just points.



[image: rcbk 0403]
Figure 4-3. Plot without zoo loaded




We should have loaded the zoo package before printing or plotting
any zoo objects, like this:


library(zoo)           # Load the zoo package into memory
load("./data/z.RData") # Create and populate the z variable
plot(z)                # Ahhh. Now plotting works correctly


You can see the resulting plot in Figure 4-4.



[image: rcbk 0404]
Figure 4-4. Plotting with zoo



















See Also


If you are just saving and loading a single data frame or other R
object, you should consider write_rds and read_rds. These functions
don’t have “side effects” like load.



















Chapter 5. Data Structures



You can get pretty far in R just using vectors. That’s what Chapter 2 is all about. This chapter moves beyond vectors to
recipes for matrices, lists, factors, data frames, and tibbles (which
are a special kind of data frame). If you have preconceptions about
data structures, we suggest you put them aside. R does data structures
differently than many other languages. Before we get to the recipes in this chapter, we’ll take a quick look at different data structures in R.


If you want to study the technical aspects of R’s data structures, we
suggest reading R in a
Nutshell and the R Language Definition. The notes here are
more informal. These are things we wish we’d known when we started using
R.










Vectors


Here are some key properties of vectors:


	Vectors are homogeneou.s

	
All elements of a vector must have the same type or, in R terminology,
the same mode.



	Vectors can be indexed by position.

	
So v[2] refers to the second element of v.



	Vectors can be indexed by multiple positions, returning a subvector.

	
So v[c(2,3)] is a subvector of v that consists of the second and
third elements.



	Vector elements can have names.

	
Vectors have a names property, the same length as the vector itself,
that gives names to the elements:


v <- c(10, 20, 30)
names(v) <- c("Moe", "Larry", "Curly")
print(v)
#>   Moe Larry Curly
#>    10    20    30



	If vector elements have names, then you can select them by name.

	
Continuing the previous example:


v[["Larry"]]
#> [1] 20





















Lists


Here are some key properties of lists:


	Lists are heterogeneous.

	
Lists can contain elements of different types—in R terminology, list
elements may have different modes. Lists can even contain other
structured objects, such as lists and data frames; this allows you to
create recursive data structures.



	Lists can be indexed by position.

	
So lst[[2]] refers to the second element of lst. Note the double
square brackets. Double brackets means that R will return the element
as whatever type of element it is.



	Lists let you extract sublists.

	
So lst[c(2,3)] is a sublist of lst that consists of the second and
third elements. Note the single square brackets. Single brackets means
that R will return the items in a list. If you pull a single element
with single brackets, like lst[2], R will return a list of length 1
with the first item being the desired item.



	List elements can have names.

	
Both lst[["Moe"]] and lst$Moe refer to the element named “Moe.”






Since lists are heterogeneous and since their elements can be retrieved
by name, a list is like a dictionary or hash or lookup table in other
programming languages (discussed in Recipe 5.9).


What’s surprising (and cool) is that in R, unlike most of those other
programming languages, lists can also be indexed by position.

















Mode: Physical Type


In R, every object has a mode, which indicates how it is stored in
memory: as a number, as a character string, as a list of pointers to
other objects, as a function, and so forth (see Table 5-1).


Table 5-1. R object-mode mapping


	Object
	Example
	Mode





	Number

	3.1415

	Numeric




	Vector of numbers

	c(2.7.182, 3.1415)

	Numeric




	Character string

	"Moe"

	Character




	Vector of character strings

	c("Moe", "Larry", "Curly")

	Character




	Factor

	factor(c("NY", "CA", "IL"))

	Numeric




	List

	list("Moe", "Larry", "Curly")

	List




	Data frame

	data.frame(x=1:3, y=c("NY", "CA", "IL"))

	List




	Function

	print

	Function







The mode function gives us this information:


mode(3.1415)                        # Mode of a number
#> [1] "numeric"
mode(c(2.7182, 3.1415))             # Mode of a vector of numbers
#> [1] "numeric"
mode("Moe")                         # Mode of a character string
#> [1] "character"
mode(list("Moe", "Larry", "Curly")) # Mode of a list
#> [1] "list"


A critical difference between a vectors and lists can be summed up this
way:



	
In a vector, all elements must have the same mode.



	
In a list, the elements can have different modes.





















Class: Abstract Type


In R, every object also has a class, which defines its abstract type.
The terminology is borrowed from object-oriented programming. A single
number could represent many different things: a distance, a point in
time, or a weight, for example. All those objects have a mode of
"numeric" because they are stored as a number, but they could have
different classes to indicate their interpretation.


For example, a Date object consists of a single number:


d <- as.Date("2010-03-15")
mode(d)
#> [1] "numeric"
length(d)
#> [1] 1


But it has a class of Date, telling us how to interpret that
number—namely, as the number of days since January 1, 1970:


class(d)
#> [1] "Date"


R uses an object’s class to decide how to process the object. For
example, the generic function print has specialized versions (called
methods) for printing objects according to their class: data.frame,
Date, lm, and so forth. When you print an object, R calls the
appropriate print function according to the object’s class.

















Scalars


The quirky thing about scalars is their relationship to vectors. In some
software, scalars and vectors are two different things. In R, they are
the same thing: a scalar is simply a vector that contains exactly one
element. In this book we often use the term “scalar,” but that’s just
shorthand for “vector with one element.”


Consider the built-in constant pi. It is a scalar:


pi
#> [1] 3.14


Since a scalar is a one-element vector, you can use vector functions on
pi:


length(pi)
#> [1] 1


You can index it. The first (and only) element is π, of
course:


pi[1]
#> [1] 3.14


If you ask for the second element, there is none:


pi[2]
#> [1] NA

















Matrices


In R, a matrix is just a vector that has dimensions. It may seem strange
at first, but you can transform a vector into a matrix simply by giving
it dimensions.


A vector has an attribute called dim, which is initially NULL, as
shown here:


A <- 1:6
dim(A)
#> NULL
print(A)
#> [1] 1 2 3 4 5 6


We give dimensions to the vector when we set its dim attribute. Watch
what happens when we set our vector dimensions to 2 × 3 and print it:


dim(A) <- c(2, 3)
print(A)
#>      [,1] [,2] [,3]
#> [1,]    1    3    5
#> [2,]    2    4    6


Voilà! The vector was reshaped into a 2 × 3 matrix.


A matrix can be created from a list, too. Like a vector, a list has a
dim attribute, which is initially NULL:


B <- list(1, 2, 3, 4, 5, 6)
dim(B)
#> NULL


If we set the dim attribute, it gives the list a shape:


dim(B) <- c(2, 3)
print(B)
#>      [,1] [,2] [,3]
#> [1,] 1    3    5
#> [2,] 2    4    6


Voilà! We have turned this list into a 2 × 3 matrix.

















Arrays


The discussion of matrices can be generalized to three-dimensional or
even n-dimensional structures: just assign more dimensions to the
underlying vector (or list). The following example creates a
three-dimensional array with dimensions 2 × 3 × 2:


D <- 1:12
dim(D) <- c(2, 3, 2)
print(D)
#> , , 1
#>
#>      [,1] [,2] [,3]
#> [1,]    1    3    5
#> [2,]    2    4    6
#>
#> , , 2
#>
#>      [,1] [,2] [,3]
#> [1,]    7    9   11
#> [2,]    8   10   12


Note that R prints one “slice” of the structure at a time, since it’s
not possible to print a three-dimensional structure on a two-dimensional
medium.


It strikes us as very odd that we can turn a list into a matrix just by
giving the list a dim attribute. But wait: it gets stranger.


Recall that a list can be heterogeneous (mixed modes). We can start with
a heterogeneous list, give it dimensions, and thus create a
heterogeneous matrix. This code snippet creates a matrix that is a mix
of numeric and character data:


C <- list(1, 2, 3, "X", "Y", "Z")
dim(C) <- c(2, 3)
print(C)
#>      [,1] [,2] [,3]
#> [1,] 1    3    "Y"
#> [2,] 2    "X"  "Z"


To us, this is strange because we ordinarily assume a matrix is purely
numeric, not mixed. R is not that restrictive.


The possibility of a heterogeneous matrix may seem powerful and
strangely fascinating. However, it creates problems when you are doing
normal, day-to-day stuff with matrices. For example, what happens when
the matrix C (from the previous example) is used in matrix
multiplication? What happens if it is converted to a data frame? The
answer is that odd things happen.


In this book, we generally ignore the pathological case of a
heterogeneous matrix. We assume you’ve got simple, vanilla matrices. Some
recipes involving matrices may work oddly (or not at all) if your matrix
contains mixed data. Converting such a matrix to a vector or data frame,
for instance, can be problematic (see Recipe 5.29).

















Factors


A factor looks like a character vector, but it has special properties. R
keeps track of the unique values in a vector, and each unique value is
called a level of the associated factor. R uses a compact
representation for factors, which makes them efficient for storage in
data frames. In other programming languages, a factor would be
represented by a vector of enumerated values.


There are two key uses for factors:


	Categorical variables

	
A factor can represent a categorical variable. Categorical variables
are used in contingency tables, linear regression, analysis of
variance (ANOVA), logistic regression, and many other areas.



	Grouping

	
This is a technique for labeling or tagging your data items according
to their group. See Chapter 6.





















Data Frames


A data frame is a powerful and flexible structure. Most serious R
applications involve data frames. A data frame is intended to mimic a
dataset, such as one you might encounter in SAS or SPSS, or a table in
an SQL database.


A data frame is a tabular (rectangular) data structure, which means that
it has rows and columns. It is not implemented by a matrix, however.
Rather, a data frame is a list with the following characteristics:



	
The elements of the list are vectors and/or factors.1



	
Those vectors and factors are the columns of the data frame.



	
The vectors and factors must all have the same length; in other words,
all columns must have the same height.



	
The equal-height columns give a rectangular shape to the data frame.



	
The columns must have names.






Because a data frame is both a list and a rectangular structure, R
provides two different paradigms for accessing its contents:



	
You can use list operators to extract columns from a data frame, such
as df[i], df[[i]], or df$name.



	
You can use matrix-like notation, such as df[i,j], df[i,], or
df[,j].






Your perception of a data frame likely depends on your background:


	To a statistician

	
A data frame is a table of observations. Each row contains one
observation. Each observation must contain the same variables. These
variables are called columns, and you can refer to them by name. You
can also refer to the contents by row number and column number, just
as with a matrix.



	To a SQL programmer

	
A data frame is a table. The table resides entirely in memory, but you
can save it to a flat file and restore it later. You needn’t declare
the column types because R figures that out for you.



	To an Excel user

	
A data frame is like a worksheet, or perhaps a range within a
worksheet. It is more restrictive, however, in that each column has a
type.



	To an SAS user

	
A data frame is like an SAS dataset for which all the data resides in
memory. R can read and write the data frame on disk, but the data
frame must be in memory while R is processing it.



	To an R programmer

	
A data frame is a hybrid data structure, part matrix and part list. A
column can contain numbers, character strings, or factors, but not a
mix of them. You can index the data frame just like you index a
matrix. The data frame is also a list, where the list elements are the
columns, so you can access columns by using list operators.



	To a computer scientist

	
A data frame is a rectangular data structure. The columns are typed,
and each column must contain numeric values, character strings, or factors. Columns must have labels; rows may have labels. The table can
be indexed by position, column name, and/or row name. It can also be
accessed by list operators, in which case R treats the data frame as a
list whose elements are the columns of the data frame.



	To a corporate executive

	
You can put names and numbers into a data frame. A data frame is like
a little database. Your staff will enjoy using data frames.





















Tibbles


A tibble is a modern reimagining of the data frame, introduced by
Hadley Wickham in the tibble package, which is a core package in the
tidyverse. Most of the common functions you would use with data frames
also work with tibbles. However, tibbles typically do less than data
frames and complain more. This idea of complaining and doing less may
remind you of your least favorite coworker; however, we think tibbles
will be one of your favorite data structures. Doing less and complaining
more can be a feature, not a bug.


Unlike data frames, tibbles:



	
Do not give you row numbers by default.



	
Do not give you strange, unexpected column names.



	
Don’t coerce your data into factors (unless you explicitly ask for
that).



	
Recycle vectors of length 1 but not other lengths.






In addition to basic data frame functionality, tibbles:



	
Print only the top four rows and a bit of metadata by default.



	
Always return a tibble when subsetting.



	
Never do partial matching: if you want a column from a tibble, you
have to ask for it using its full name.



	
Complain more by giving you more warnings and chatty messages to make
sure you understand what the software is doing.






All these extras are designed to give you fewer surprises and help you
make fewer mistakes.















5.1 Appending Data to a Vector










Problem


You want to append additional data items to a vector.

















Solution


Use the vector constructor (c) to construct a vector with the
additional data items:


v <- c(1, 2, 3)
newItems <- c(6, 7, 8)
c(v, newItems)
#> [1] 1 2 3 6 7 8


For a single item, you can also assign the new item to the next vector
element. R will automatically extend the vector:


v <- c(1, 2, 3)
v[length(v) + 1] <- 42
v
#> [1]  1  2  3 42

















Discussion


If you ask us about appending a data item to a vector, we will likely
suggest that maybe you shouldn’t.

Tip

R works best when you think about entire vectors, not single data items.
Are you repeatedly appending items to a vector? If so, then you are
probably working inside a loop. That’s OK for small vectors, but for
large vectors your program will run slowly. The memory management in R
works poorly when you repeatedly extend a vector by one element. Try to
replace that loop with vector-level operations. You’ll write less code,
and R will run much faster.




Nonetheless, one does occasionally need to append data to vectors. Our
experiments show that the most efficient way of doing so is to create a
new vector using the vector constructor (c) to join the old and new
data. This works for appending single elements or multiple elements:


v <- c(1, 2, 3)
v <- c(v, 4) # Append a single value to v
v
#> [1] 1 2 3 4

w <- c(5, 6, 7, 8)
v <- c(v, w) # Append an entire vector to v
v
#> [1] 1 2 3 4 5 6 7 8


You can also append an item by assigning it to the position past the end
of the vector, as shown in the Solution. In fact, R is very liberal
about extending vectors. You can assign to any element and R will expand
the vector to accommodate your request:


v <- c(1, 2, 3)   # Create a vector of three elements
v[10] <- 10       # Assign to the 10th element
v                 # R extends the vector automatically
#>  [1]  1  2  3 NA NA NA NA NA NA 10


Note that R did not complain about the out-of-bounds subscript. It just
extended the vector to the needed length, filling it with NA.


R includes an append function that creates a new vector by appending
items to an existing vector. However, our experiments show that this
function runs more slowly than both the vector constructor and the
element assignment.
























5.2 Inserting Data into a Vector










Problem


You want to insert one or more data items into a vector.

















Solution


Despite its name, the append function inserts data into a vector by
using the after parameter, which gives the insertion point for the new
item or items:


  	append(vec, newvalues, after = n)



















Discussion


The new items will be inserted at the position given by after. This
example inserts 99 into the middle of a sequence:


append(1:10, 99, after = 5)
#>  [1]  1  2  3  4  5 99  6  7  8  9 10


The special value of after=0 means insert the new items at the head
of the vector:


append(1:10, 99, after = 0)
#>  [1] 99  1  2  3  4  5  6  7  8  9 10


The comments in Recipe 5.1 apply here, too. If you are inserting single items
into a vector, you might be working at the element level when working at
the vector level would be easier to code and faster to run.
























5.3 Understanding the Recycling Rule










Problem


You want to understand the mysterious Recycling Rule that governs how R
handles vectors of unequal length.

















Discussion


When you do vector arithmetic, R performs element-by-element operations.
That works well when both vectors have the same length: R pairs the
elements of the vectors and applies the operation to those pairs.


But what happens when the vectors have unequal lengths?


In that case, R invokes the Recycling Rule. It processes the vector
elements in pairs, starting at the first elements of both vectors. At a
certain point, the shorter vector is exhausted while the longer vector
still has unprocessed elements. R then returns to the beginning of the
shorter vector, “recycling” its elements, while it continues taking elements from
the longer vector until it completes the operation. It will recycle the
shorter vector’s elements as often as necessary until the operation is
complete.


It’s useful to visualize the Recycling Rule. Here is a diagram of two
vectors, 1:6 and 1:3:


   1:6   1:3
  ----- -----
    1     1
    2     2
    3     3
    4
    5
    6


Obviously, the 1:6 vector is longer than the 1:3 vector. If we try to
add the vectors using (1:6) + (1:3), it appears that 1:3 has too few
elements. However, R recycles the elements of 1:3, pairing the two
vectors like this and producing a six-element vector:


   1:6   1:3   (1:6) + (1:3)
  ----- ----- ---------------
    1     1         2
    2     2         4
    3     3         6
    4               5
    5               7
    6               9


Here is what you see in the R console:


(1:6) + (1:3)
#> [1] 2 4 6 5 7 9


It’s not only vector operations that invoke the Recycling Rule;
functions can, too. The cbind function can create column vectors, such
as the following column vectors of 1:6 and 1:3. The two columns have
different heights, of course:


cbind(1:6)

cbind(1:3)


If we try binding these column vectors together into a two-column
matrix, the lengths are mismatched. The 1:3 vector is too short, so
cbind invokes the Recycling Rule and recycles the elements of 1:3:


cbind(1:6, 1:3)
#>      [,1] [,2]
#> [1,]    1    1
#> [2,]    2    2
#> [3,]    3    3
#> [4,]    4    1
#> [5,]    5    2
#> [6,]    6    3


If the longer vector’s length is not a multiple of the shorter vector’s
length, R gives a warning. That’s good, since the operation is highly
suspect and there is likely a bug in your logic:


(1:6) + (1:5) # Oops! 1:5 is one element too short
#> Warning in (1:6) + (1:5): longer object length is not a multiple of shorter
#> object length
#> [1]  2  4  6  8 10  7


Once you understand the Recycling Rule, you will realize that operations
between a vector and a scalar are simply applications of that rule. In
this example, the 10 is recycled repeatedly until the vector addition is
complete:


(1:6) + 10
#> [1] 11 12 13 14 15 16
























5.4 Creating a Factor (Categorical Variable)










Problem


You have a vector of character strings or integers. You want R to treat
them as a factor, which is R’s term for a categorical variable.

















Solution


The factor function encodes your vector of discrete values into a
factor:

f <- factor(v)   # v can be a vector of strings or integers



If your vector contains only a subset of possible values and not the
entire universe, then include a second argument that gives the possible
levels of the factor:

f <- factor(v, levels)


















Discussion


In R, each possible value of a categorical variable is called a level.
A vector of levels is called a factor. Factors fit very cleanly into
the vector orientation of R, and they are used in powerful ways for
processing data and building statistical models.


Most of the time, converting your categorical data into a factor is a
simple matter of calling the factor function, which identifies the
distinct levels of the categorical data and packs them into a factor:


f <- factor(c("Win", "Win", "Lose", "Tie", "Win", "Lose"))
f
#> [1] Win  Win  Lose Tie  Win  Lose
#> Levels: Lose Tie Win


Notice that when we printed the factor, f, R did not put quotes around
the values. They are levels, not strings. Also notice that when we
printed the factor, R displayed the distinct levels below the
factor.


If your vector contains only a subset of all the possible levels, then R
will have an incomplete picture of the possible levels. Suppose you have
a string-valued variable wday that gives the day of the week on which
your data was observed:


wday <- c("Wed", "Thu", "Mon", "Wed", "Thu",
          "Thu", "Thu", "Tue", "Thu", "Tue")
f <- factor(wday)
f
#>  [1] Wed Thu Mon Wed Thu Thu Thu Tue Thu Tue
#> Levels: Mon Thu Tue Wed


R thinks that Monday, Thursday, Tuesday, and Wednesday are the only
possible levels. Friday is not listed. Apparently, the lab staff never
made observations on a Friday, so R does not know that Friday is a
possible value. Hence, you need to list the possible levels of wday
explicitly:


f <- factor(wday, levels=c("Mon", "Tue", "Wed", "Thu", "Fri"))
f
#>  [1] Wed Thu Mon Wed Thu Thu Thu Tue Thu Tue
#> Levels: Mon Tue Wed Thu Fri


Now R understands that f is a factor with five possible levels. It
knows their correct order, too. It originally put Thursday before
Tuesday because it assumes alphabetical order by default. The
explicit levels argument defines the correct order.


In many situations it is not necessary to call factor explicitly. When
an R function requires a factor, it usually converts your data to a
factor automatically. The table function, for instance, works only on
factors, so it routinely converts its inputs to factors without asking.
You must explicitly create a factor variable when you want to specify
the full set of levels or when you want to control the ordering of
levels.

















See Also


See Recipe 12.5
to create a factor from continuous data.
























5.5 Combining Multiple Vectors into One Vector and a Factor










Problem


You have several groups of data, with one vector for each group. You
want to combine the vectors into one large vector and simultaneously
create a parallel factor that identifies each value’s original group.

















Solution


Create a list that contains the vectors. Use the stack function to
combine the list into a two-column data frame:


comb <- stack(list(v1 = v1, v2 = v2, v3 = v3)) # Combine 3 vectors


The data frame’s columns are called values and ind. The first column
contains the data, and the second column contains the parallel factor.

















Discussion


Why in the world would you want to mash all your data into one big
vector and a parallel factor? The reason is that many important
statistical functions require the data in that format.


Suppose you survey freshmen, sophomores, and juniors regarding their
confidence level (“What percentage of the time do you feel confident in
school?”). Now you have three vectors, called freshmen, sophomores,
and juniors. You want to perform an ANOVA of the differences between
the groups. The ANOVA function, aov, requires one vector with the
survey results as well as a parallel factor that identifies the group.
You can combine the groups using the stack function:


freshmen <- c(1, 2, 1, 1, 5)
sophomores <- c(3, 2, 3, 3, 5)
juniors <- c(5, 3, 4, 3, 3)

comb <- stack(list(fresh = freshmen, soph = sophomores, jrs = juniors))
print(comb)
#>    values   ind
#> 1       1 fresh
#> 2       2 fresh
#> 3       1 fresh
#> 4       1 fresh
#> 5       5 fresh
#> 6       3  soph
#> 7       2  soph
#> 8       3  soph
#> 9       3  soph
#> 10      5  soph
#> 11      5   jrs
#> 12      3   jrs
#> 13      4   jrs
#> 14      3   jrs
#> 15      3   jrs


Now you can perform the ANOVA on the two columns:


aov(values ~ ind, data = comb)


When building the list we must provide tags for the list elements. (The
tags are fresh, soph, and jrs in this example.) Those tags are
required because stack uses them as the levels of the parallel factor.
























5.6 Creating a List










Problem


You want to create and populate a list.

















Solution


To create a list from individual data items, use the list function:


lst <- list(x, y, z)

















Discussion


Lists can be quite simple, such as this list of three numbers:


lst <- list(0.5, 0.841, 0.977)
lst
#> [[1]]
#> [1] 0.5
#>
#> [[2]]
#> [1] 0.841
#>
#> [[3]]
#> [1] 0.977


When R prints the list, it identifies each list element by its position
([[1]], [[2]], [[3]]) and prints the element’s value (e.g.,
[1] 0.5) under its position.


More usefully, lists can, unlike vectors, contain elements of different
modes (types). Here is an extreme example of a mongrel created from a
scalar, a character string, a vector, and a function:


lst <- list(3.14, "Moe", c(1, 1, 2, 3), mean)
lst
#> [[1]]
#> [1] 3.14
#>
#> [[2]]
#> [1] "Moe"
#>
#> [[3]]
#> [1] 1 1 2 3
#>
#> [[4]]
#> function (x, ...)
#> UseMethod("mean")
#> <bytecode: 0x7ff04b0bc900>
#> <environment: namespace:base>


You can also build a list by creating an empty list and populating it.
Here is our “mongrel” example built in that way:


lst <- list()
lst[[1]] <- 3.14
lst[[2]] <- "Moe"
lst[[3]] <- c(1, 1, 2, 3)
lst[[4]] <- mean
lst
#> [[1]]
#> [1] 3.14
#>
#> [[2]]
#> [1] "Moe"
#>
#> [[3]]
#> [1] 1 1 2 3
#>
#> [[4]]
#> function (x, ...)
#> UseMethod("mean")
#> <bytecode: 0x7ff04b0bc900>
#> <environment: namespace:base>


List elements can be named. The list function lets you supply a name
for every element:


lst <- list(mid = 0.5, right = 0.841, far.right = 0.977)
lst
#> $mid
#> [1] 0.5
#>
#> $right
#> [1] 0.841
#>
#> $far.right
#> [1] 0.977

















See Also


See the introduction to this chapter for
more about lists; see Recipe 5.9 for more
about building and using lists with named elements.
























5.7 Selecting List Elements by Position










Problem


You want to access list elements by position.

















Solution


Use one of these ways. Here, lst is a list variable:


	lst[[n]]

	
Selects the nth element from the list



	lst[c(n1, n2, ..., nk)]

	
Returns a list of elements, selected by their positions






Note that the first form returns a single element and the second form
returns a list.

















Discussion


Suppose we have a list of four integers, called years:


years <- list(1960, 1964, 1976, 1994)
years
#> [[1]]
#> [1] 1960
#>
#> [[2]]
#> [1] 1964
#>
#> [[3]]
#> [1] 1976
#>
#> [[4]]
#> [1] 1994


We can access single elements using the double-square-bracket syntax:


years[[1]]
#> [1] 1960


We can extract sublists using the single-square-bracket syntax:


years[c(1, 2)]
#> [[1]]
#> [1] 1960
#>
#> [[2]]
#> [1] 1964


This syntax can be confusing because of a subtlety: there is an
important difference between lst[[n]] and lst[n]. They are
not the same thing:


	lst[[n]]

	
This is an element, not a list. It is the nth element of lst.



	lst[n]

	
This is a list, not an element. The list contains one element, taken
from the nth element of lst.





Tip

The second form is a special case of
lst[c(n1, n2, ..., nk)] in which we eliminated the
c(...) construct because there is only one n.




The difference becomes apparent when we inspect the structure of the
result—one is a number and the other is a list:


class(years[[1]])
#> [1] "numeric"

class(years[1])
#> [1] "list"


The difference becomes annoyingly apparent when we cat the value.
Recall that cat can print atomic values or vectors but complains about
printing structured objects:


cat(years[[1]], "\n")
#> 1960

cat(years[1], "\n")
#> Error in cat(years[1], "\n"): argument 1 (type 'list')
#> cannot be handled by 'cat'


We got lucky here because R alerted us to the problem. In other
contexts, you might work long and hard to figure out that you accessed a
sublist when you wanted an element, or vice versa.
























5.8 Selecting List Elements by Name










Problem


You want to access list elements by their names.

















Solution


Use one of these forms. Here, lst is a list variable:


	lst[["name"]]

	
Selects the element called name. Returns NULL if no element has
that name.



	lst$name

	
Same as previous, just different syntax.



	lst[c(name1, name2, ..., namek)]

	
Returns a list built from the indicated elements of lst.






Note that the first two forms return an element, whereas the third form
returns a list.

















Discussion


Each element of a list can have a name. If named, the element can be
selected by its name. This assignment creates a list of four named
integers:


years <- list(Kennedy = 1960, Johnson = 1964,
              Carter = 1976, Clinton = 1994)


These next two expressions return the same value—namely, the element
that is named “Kennedy”:


years[["Kennedy"]]
#> [1] 1960
years$Kennedy
#> [1] 1960


The following two expressions return sublists extracted from years:


years[c("Kennedy", "Johnson")]
#> $Kennedy
#> [1] 1960
#>
#> $Johnson
#> [1] 1964

years["Carter"]
#> $Carter
#> [1] 1976


Just as with selecting list elements by position (see Recipe 5.7), there is an important difference between lst[["name"]]
and lst["name"]. They are not the same:


	lst[["name"]]

	
This is an element, not a list.



	lst["name"]

	
This is a list, not an element.





Tip

The second form is a special case of
lst[c(name1, name2, ..., namek)] in which we don’t need
the c(...) construct because there is only one name.



















See Also


See Recipe 5.7 to access elements by position rather than by
name.
























5.9 Building a Name/Value Association List










Problem


You want to create a list that associates names and values, like a
dictionary, hash, or lookup table would in another programming language.

















Solution


The list function lets you give names to elements, creating an
association between each name and its value:


lst <- list(mid = 0.5, right = 0.841, far.right = 0.977)


If you have parallel vectors of names and values, you can create an
empty list and then populate the list by using a vectorized assignment
statement:


values <- c(1, 2, 3)
names <- c("a", "b", "c")
lst <- list()
lst[names] <- values

















Discussion


Each element of a list can be named, and you can retrieve list elements
by name. This gives you a basic programming tool: the ability to
associate names with values.


You can assign element names when you build the list. The list
function allows arguments of the form name=value:


lst <- list(
  far.left = 0.023,
  left = 0.159,
  mid = 0.500,
  right = 0.841,
  far.right = 0.977
)
lst
#> $far.left
#> [1] 0.023
#>
#> $left
#> [1] 0.159
#>
#> $mid
#> [1] 0.5
#>
#> $right
#> [1] 0.841
#>
#> $far.right
#> [1] 0.977


One way to name the elements is to create an empty list and then
populate it via assignment statements:


lst <- list()
lst$far.left <- 0.023
lst$left <- 0.159
lst$mid <- 0.500
lst$right <- 0.841
lst$far.right <- 0.977


Sometimes you have a vector of names and a vector of corresponding
values:


values <- -2:2
names <- c("far.left", "left", "mid", "right", "far.right")


You can associate the names and the values by creating an empty list and
then populating it with a vectorized assignment statement:


lst <- list()
lst[names] <- values
lst
#> $far.left
#> [1] -2
#>
#> $left
#> [1] -1
#>
#> $mid
#> [1] 0
#>
#> $right
#> [1] 1
#>
#> $far.right
#> [1] 2


Once the association is made, the list can “translate” names into values
through a simple list lookup:


cat("The left limit is", lst[["left"]], "\n")
#> The left limit is -1
cat("The right limit is", lst[["right"]], "\n")
#> The right limit is 1

for (nm in names(lst)) cat("The", nm, "limit is", lst[[nm]], "\n")
#> The far.left limit is -2
#> The left limit is -1
#> The mid limit is 0
#> The right limit is 1
#> The far.right limit is 2
























5.10 Removing an Element from a List










Problem


You want to remove an element from a list.

















Solution


Assign NULL to the element. R will remove it from the list.

















Discussion


To remove a list element, select it by position or by name, and then
assign NULL to the selected element:


years <- list(Kennedy = 1960, Johnson = 1964,
              Carter = 1976, Clinton = 1994)
years
#> $Kennedy
#> [1] 1960
#>
#> $Johnson
#> [1] 1964
#>
#> $Carter
#> [1] 1976
#>
#> $Clinton
#> [1] 1994
years[["Johnson"]] <- NULL # Remove the element labeled "Johnson"
years
#> $Kennedy
#> [1] 1960
#>
#> $Carter
#> [1] 1976
#>
#> $Clinton
#> [1] 1994


You can remove multiple elements this way, too:


years[c("Carter", "Clinton")] <- NULL # Remove two elements
years
#> $Kennedy
#> [1] 1960
























5.11 Flattening a List into a Vector










Problem


You want to flatten all the elements of a list into a vector.

















Solution


Use the unlist function.

















Discussion


There are many contexts that require a vector. Basic statistical
functions work on vectors but not on lists, for example. If iq.scores
is a list of numbers, then we cannot directly compute their mean:


iq.scores <- list(100, 120, 103, 80, 99)
mean(iq.scores)
#> Warning in mean.default(iq.scores): argument is not numeric or logical:
#> returning NA
#> [1] NA


Instead, we must flatten the list into a vector using unlist and then
compute the mean of the result:


mean(unlist(iq.scores))
#> [1] 100


Here is another example. We can cat scalars and vectors, but we cannot
cat a list:


cat(iq.scores, "\n")
#> Error in cat(iq.scores, "\n"): argument 1 (type 'list') cannot be
#> handled by 'cat'


One solution is to flatten the list into a vector before printing:


cat("IQ Scores:", unlist(iq.scores), "\n")
#> IQ Scores: 100 120 103 80 99

















See Also


Conversions such as this are discussed more fully in Recipe 5.29.
























5.12 Removing NULL Elements from a List










Problem


Your list contains NULL values. You want to remove them.

















Solution


The compact function from the purrr package will remove the NULL elements.

















Discussion


The curious reader may be wondering how a list can contain NULL
elements, given that we remove elements by setting them to NULL (see Recipe 5.10). The answer is that we can create a list containing NULL
elements:


library(purrr)     # or library(tidyverse)

lst <- list("Moe", NULL, "Curly")
lst
#> [[1]]
#> [1] "Moe"
#>
#> [[2]]
#> NULL
#>
#> [[3]]
#> [1] "Curly"

compact(lst)   # Remove NULL element
#> [[1]]
#> [1] "Moe"
#>
#> [[2]]
#> [1] "Curly"


In practice, we might also end up with NULL items in a list after applying
some transformation.


Note that in R, NA and NULL are not the same thing. The compact function
will remove NULL from a list but not NA. To remove NA values, see
Recipe 5.13.

















See Also


See Recipe 5.10 for how to remove list elements and Recipe 5.13 for how to remove list elements conditionally.
























5.13 Removing List Elements Using a Condition










Problem


You want to remove elements from a list according to a conditional test,
such as removing elements that are undefined, negative, or smaller than
some threshold.

















Solution


Start with a function that returns TRUE when your criteria are met and
FALSE otherwise. Then use the discard function from purrr to
remove values that match your criteria. This code snippet, for example,
uses the is.na function to remove NA values from lst:


lst <- list(NA, 0, NA, 1, 2)

lst %>%
  discard(is.na)
#> [[1]]
#> [1] 0
#>
#> [[2]]
#> [1] 1
#>
#> [[3]]
#> [1] 2

















Discussion


The discard function removes elements from a list using a predicate,
which is a function that returns either TRUE or FALSE. The predicate
is applied to each element of the list. If the predicate returns TRUE,
the element is discarded; otherwise, it is kept.


Suppose we want to remove character strings from lst. The function
is.character is a predicate that returns TRUE if its argument is a
character string, so we can use it with discard:


lst <- list(3, "dog", 2, "cat", 1)

lst %>%
  discard(is.character)
#> [[1]]
#> [1] 3
#>
#> [[2]]
#> [1] 2
#>
#> [[3]]
#> [1] 1


You can define your own predicate and use it with discard. This
example removes both NA and NULL values from a list by defining the
predicate is_na_or_null:


is_na_or_null <- function(x) {
  is.na(x) || is.null(x)
}

lst <- list(1, NA, 2, NULL, 3)

lst %>%
  discard(is_na_or_null)
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 2
#>
#> [[3]]
#> [1] 3


Lists can hold complex objects, too, not just atomic values. Suppose
that mods is a list of linear models created by the lm function:


mods <- list(lm(x ~ y1),
             lm(x ~ y2),
             lm(x ~ y3))


We can define a predicate, filter_r2, to identify models whose R2
values are less than 0.70, then use the predicate to remove those models from
mods:


filter_r2 <- function(model) {
  summary(model)$r.squared < 0.7
}

mods %>%
  discard(filter_r2)


The inverse of discard is the
keep function, which uses a predicate to retain list elements
instead of discarding them.

















See Also


See Recipe 5.7, Recipe 5.10, and Recipe 15.3.
























5.14 Initializing a Matrix










Problem


You want to create a matrix and initialize it from given values.

















Solution


Capture the data in a vector or list, and then use the matrix function
to shape the data into a matrix. This example shapes a vector into a 2 ×
3 matrix (i.e., two rows and three columns):


vec <- 1:6
matrix(vec, 2, 3)
#>      [,1] [,2] [,3]
#> [1,]    1    3    5
#> [2,]    2    4    6

















Discussion


The first argument of matrix is the data, the second argument is the
number of rows, and the third argument is the number of columns. Note
that the matrix in the Solution was filled column by column, not row by
row.


It’s common to initialize an entire matrix to one value, such as 0 or
NA. If the first argument of matrix is a single value, then R will
apply the Recycling Rule and automatically replicate the value to fill
the entire matrix:


matrix(0, 2, 3) # Create an all-zeros matrix
#>      [,1] [,2] [,3]
#> [1,]    0    0    0
#> [2,]    0    0    0

matrix(NA, 2, 3) # Create a matrix populated with NAs
#>      [,1] [,2] [,3]
#> [1,]   NA   NA   NA
#> [2,]   NA   NA   NA


You can create a matrix with a one-liner, of course, but it becomes
difficult to read:


mat <- matrix(c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3), 2, 3)
mat
#>      [,1] [,2] [,3]
#> [1,]  1.1  1.3  2.2
#> [2,]  1.2  2.1  2.3


A common idiom in R is typing the data itself in a rectangular shape
that reveals the matrix structure:


theData <- c(
  1.1, 1.2, 1.3,
  2.1, 2.2, 2.3
)
mat <- matrix(theData, 2, 3, byrow = TRUE)
mat
#>      [,1] [,2] [,3]
#> [1,]  1.1  1.2  1.3
#> [2,]  2.1  2.2  2.3


Setting byrow=TRUE tells matrix that the data is row-by-row and not
column-by-column (which is the default). In condensed form, that
becomes:


mat <- matrix(c(1.1, 1.2, 1.3,
                2.1, 2.2, 2.3),
              2, 3,
              byrow = TRUE)


Expressed this way, it’s easy to see the two rows and three columns of
data.


There is a quick-and-dirty way to turn a vector into a matrix: just
assign dimensions to the vector. This was discussed in the
introduction to this chapter. The following example creates
a vanilla vector and then shapes it into a 2 × 3 matrix:


v <- c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3)
dim(v) <- c(2, 3)
v
#>      [,1] [,2] [,3]
#> [1,]  1.1  1.3  2.2
#> [2,]  1.2  2.1  2.3


We find this more opaque than using matrix, especially since there is
no byrow option here.

















See Also


See Recipe 5.3.
























5.15 Performing Matrix Operations










Problem


You want to perform matrix operations such as transposition, inversion, multiplication, or constructing an identity matrix.

















Solution


Perform these operations with the following functions:


	t(A)

	
Matrix transposition of A



	solve(A)

	
Matrix inverse of A



	A %*% B

	
Matrix multiplication of A and B



	diag(n)

	
Constructs an n×n diagonal (identity) matrix





















Discussion


Recall that A*B is element-wise multiplication, whereas A %*% B
is matrix multiplication (see Recipe 2.11).


All these functions return a matrix. Their arguments can be either
matrices or data frames. If they are data frames, then R will first
convert them to matrices (although this is useful only if the data frame
contains exclusively numeric values).
























5.16 Giving Descriptive Names to the Rows and Columns of a Matrix










Problem


You want to assign descriptive names to the rows or columns of a matrix.

















Solution


Every matrix has a rownames attribute and a colnames attribute.
Assign a vector of character strings to the appropriate attribute:


rownames(mat) <- c("rowname1", "rowname2", ..., "rownameN")
colnames(mat) <- c("colname1", "colname2", ..., "colnameN")

















Discussion


R lets you assign names to the rows and columns of a matrix, which is
useful for printing the matrix. R will display the names if they are
defined, enhancing the readability of your output. Consider this matrix
of correlations between the stock prices of IBM, Microsoft, and Google:


print(corr_mat)
#>       [,1]  [,2]  [,3]
#> [1,] 1.000 0.556 0.390
#> [2,] 0.556 1.000 0.444
#> [3,] 0.390 0.444 1.000


In this form, the interpretation of the matrix is not self-evident. We
can give names to the rows and columns, clarifying its meaning:


colnames(corr_mat) <- c("AAPL", "MSFT", "GOOG")
rownames(corr_mat) <- c("AAPL", "MSFT", "GOOG")
corr_mat
#>       AAPL  MSFT  GOOG
#> AAPL 1.000 0.556 0.390
#> MSFT 0.556 1.000 0.444
#> GOOG 0.390 0.444 1.000


Now you can see at a glance which rows and columns apply to which
stocks.


Another advantage of naming rows and columns is that you can refer to
matrix elements by those names:


# What is the correlation between MSFT and GOOG?
corr_mat["MSFT", "GOOG"]
#> [1] 0.444
























5.17 Selecting One Row or Column from a Matrix










Problem


You want to select a single row or a single column from a matrix.

















Solution


The solution depends on what you want. If you want the result to be a
simple vector, just use normal indexing:


mat[1, ]     # First row
mat[, 3]     # Third column


If you want the result to be a one-row matrix or a one-column matrix,
then include the drop=FALSE argument:


mat[1, , drop=FALSE]   # First row, one-row matrix
mat[, 3, drop=FALSE]   # Third column, one-column matrix

















Discussion


Normally, when you select one row or column from a matrix, R strips off
the dimensions. The result is a dimensionless vector:


mat[1, ]
#> [1] 1.1 1.2 1.3
mat[, 3]
#> [1] 1.3 2.3


When you include the drop=FALSE argument, however, R retains the
dimensions. In that case, selecting a row returns a row vector (a 1 ×
n matrix):


mat[1, , drop=FALSE]
#>      [,1] [,2] [,3]
#> [1,]  1.1  1.2  1.3


Likewise, selecting a column with drop=FALSE returns a column vector
(an n × 1 matrix):


mat[, 3, drop=FALSE]
#>      [,1]
#> [1,]  1.3
#> [2,]  2.3
























5.18 Initializing a Data Frame from Column Data










Problem


Your data is organized by columns, and you want to assemble it into a
data frame.

















Solution


If your data is captured in several vectors and/or factors, use the
data.frame function to assemble them into a data frame:


df <- data.frame(v1, v2, v3, f1)


If your data is captured in a list that contains vectors and/or
factors, use as.data.frame instead:


df <- as.data.frame(list.of.vectors)

















Discussion


A data frame is a collection of columns, each of which corresponds to an
observed variable (in the statistical sense, not the programming sense).
If your data is already organized into columns, then it’s easy to build
a data frame.


The data.frame function can construct a data frame from vectors, where
each vector is one observed variable. Suppose you have two numeric
variables, one character variable, and one response variable. The
data.frame function can create a data frame from your vectors:


data.frame(pred1, pred2, pred3, resp)
#>   pred1 pred2 pred3 resp
#> 1  1.75  11.8    AM 13.2
#> 2  4.01  10.7    PM 12.9
#> 3  2.64  12.2    AM 13.9
#> 4  6.03  12.2    PM 14.9
#> 5  2.78  15.0    PM 16.4


Notice that data.frame takes the column names from your program
variables. You can override that default by supplying explicit column
names:


data.frame(p1 = pred1, p2 = pred2, p3 = pred3, r = resp)
#>     p1   p2 p3    r
#> 1 1.75 11.8 AM 13.2
#> 2 4.01 10.7 PM 12.9
#> 3 2.64 12.2 AM 13.9
#> 4 6.03 12.2 PM 14.9
#> 5 2.78 15.0 PM 16.4


If you’d rather have a tibble than a data frame, use the tibble
function from the tidyverse:


tibble(p1 = pred1, p2 = pred2, p3 = pred3, r = resp)
#> # A tibble: 5 x 4
#>      p1    p2 p3        r
#>   <dbl> <dbl> <fct> <dbl>
#> 1  1.75  11.8 AM     13.2
#> 2  4.01  10.7 PM     12.9
#> 3  2.64  12.2 AM     13.9
#> 4  6.03  12.2 PM     14.9
#> 5  2.78  15.0 PM     16.4


Sometimes, your data may indeed be organized into vectors, but those
vectors are held in a list, not individual program variables:


list.of.vectors <- list(p1=pred1, p2=pred2, p3=pred3, r=resp)


In that case, use the as.data.frame function to create a data frame
from the list:


as.data.frame(list.of.vectors)
#>     p1   p2 p3    r
#> 1 1.75 11.8 AM 13.2
#> 2 4.01 10.7 PM 12.9
#> 3 2.64 12.2 AM 13.9
#> 4 6.03 12.2 PM 14.9
#> 5 2.78 15.0 PM 16.4


or use as_tibble to create a tibble:


as_tibble(list.of.vectors)
#> # A tibble: 5 x 4
#>      p1    p2 p3        r
#>   <dbl> <dbl> <fct> <dbl>
#> 1  1.75  11.8 AM     13.2
#> 2  4.01  10.7 PM     12.9
#> 3  2.64  12.2 AM     13.9
#> 4  6.03  12.2 PM     14.9
#> 5  2.78  15.0 PM     16.4












Factors in data frames


There is an important difference between creating a data frame and
creating a tibble. When you use the data.frame function to create a
data frame, R will convert character values into factors by default. The
pred3 value in the preceding data.frame example was converted to a
factor, but that is not evident from the output.


The tibble and as_tibble functions, however, do not change character
data. If you look at the tibble example, you’ll see column p3 has
type chr, meaning character.


This difference is something you should be aware of. It can be
maddeningly frustrating to debug an issue caused by this subtle
difference.





























5.19 Initializing a Data Frame from Row Data










Problem


Your data is organized by rows, and you want to assemble it into a data
frame.

















Solution


Store each row in a one-row data frame. Use rbind to bind the rows
into one large data frame:

rbind(row1, row2, ... , rowN)


















Discussion


Data often arrives as a collection of observations. Each observation is
a record or tuple that contains several values, one for each observed
variable. The lines of a flat file are usually like that: each line is
one record, each record contains several columns, and each column is a
different variable (see Recipe 4.15). Such data
is organized by observation, not by variable. In other words, you
are given rows one at a time rather than columns one at a time.


Each such row might be stored in several ways. One obvious way is as a
vector. If you have purely numerical data, use a vector.


Many datasets, however, are a mixture of numeric, character, and
categorical data, in which case a vector won’t work. We recommend
storing each such heterogeneous row in a one-row data frame. (You could
store each row in a list, but this recipe gets a little more
complicated.)


We need to bind together those rows into a data frame. That’s what the
rbind function does. It binds its arguments in such a way that each
argument becomes one row in the result. If we rbind these three
observations, for example, we get a three-row data frame:


r1 <- data.frame(a = 1, b = 2, c = "X")
r2 <- data.frame(a = 3, b = 4, c = "Y")
r3 <- data.frame(a = 5, b = 6, c = "Z")
rbind(r1, r2, r3)
#>   a b c
#> 1 1 2 X
#> 2 3 4 Y
#> 3 5 6 Z


When you’re working with a large number of rows, they will likely be
stored in a list; that is, you will have a list of rows. The bind_rows
function, from the tidyverse package dplyr, handles that case, as shown in this toy example:


list.of.rows <- list(r1, r2, r3)
bind_rows(list.of.rows)
#> Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
#> Warning in bind_rows_(x, .id): binding character and factor vector,
#> coercing into character vector

#> Warning in bind_rows_(x, .id): binding character and factor vector,
#> coercing into character vector

#> Warning in bind_rows_(x, .id): binding character and factor vector,
#> coercing into character vector
#>   a b c
#> 1 1 2 X
#> 2 3 4 Y
#> 3 5 6 Z


Sometimes, for reasons beyond your control, each row of data is stored
in a list rather than one-row data frames. You may be dealing with rows
returned by a function or a database package, for example. bind_rows can handle that situation as well:


# Same toy data, but rows stored in lists
l1 <- list(a = 1, b = 2, c = "X")
l2 <- list(a = 3, b = 4, c = "Y")
l3 <- list(a = 5, b = 6, c = "Z")
list.of.lists <- list(l1, l2, l3)

bind_rows(list.of.lists)
#> # A tibble: 3 x 3
#>       a     b c
#>   <dbl> <dbl> <chr>
#> 1     1     2 X
#> 2     3     4 Y
#> 3     5     6 Z












Factors in data frames


If you would
rather get characters instead of factors, you have a couple of options.
One is to set the stringsAsFactors parameter to FALSE when
data.frame is called:


data.frame(a = 1, b = 2, c = "a", stringsAsFactors = FALSE)
#>   a b c
#> 1 1 2 a


Of course, if you inherited your data and it’s already in a data frame
with factors, you can convert all the factors to
characters using this bonus recipe:


# same setup as in the previous examples
l1 <- list( a=1, b=2, c='X' )
l2 <- list( a=3, b=4, c='Y' )
l3 <- list( a=5, b=6, c='Z' )
obs <- list(l1, l2, l3)
df <- do.call(rbind, Map(as.data.frame, obs))

# Yes, you could use stringsAsFactors=FALSE above,
# but we're assuming the data.frame
# came to you with factors already

i <- sapply(df, is.factor)             # determine which columns are factors
df[i] <- lapply(df[i], as.character)   # turn only the factors to characters


Keep in mind that if you use a tibble instead of a data frame, then
characters will not be forced into factors by default.






















See Also


See Recipe 5.18 if your data is organized by columns, not rows.
























5.20 Appending Rows to a Data Frame










Problem


You want to append one or more new rows to a data frame.

















Solution


Create a second, temporary data frame containing the new rows. Then use
the rbind function to append the temporary data frame to the original
data frame.

















Discussion


Suppose we have a data frame of Chicago-area suburbs:


suburbs <- read_csv("./data/suburbs.txt")
#> Parsed with column specification:
#> cols(
#>   city = col_character(),
#>   county = col_character(),
#>   state = col_character(),
#>   pop = col_double()
#> )


Further suppose we want to append a new row. First, we create a one-row
data frame with the new data:


newRow <- data.frame(city = "West Dundee", county = "Kane",
                     state = "IL", pop = 7352)


Next, we use the rbind function to append that one-row data frame to
our existing data frame:


rbind(suburbs, newRow)
#> # A tibble: 18 x 4
#>   city    county   state     pop
#>   <chr>   <chr>    <chr>   <dbl>
#> 1 Chicago Cook     IL    2853114
#> 2 Kenosha Kenosha  WI      90352
#> 3 Aurora  Kane     IL     171782
#> 4 Elgin   Kane     IL      94487
#> 5 Gary    Lake(IN) IN     102746
#> 6 Joliet  Kendall  IL     106221
#> # ... with 12 more rows


The rbind function tells R that we are appending a new row to
suburbs, not a new column. It may be obvious to you that newRow is a
row and not a column, but it is not obvious to R. (Use the cbind
function to append a column.)

Warning

The new row must use the same column names as the
data frame. Otherwise, rbind will fail.




We can combine these two steps into one, of course:


rbind(suburbs,
      data.frame(city = "West Dundee", county = "Kane",
                 state = "IL", pop = 7352))
#> # A tibble: 18 x 4
#>   city    county   state     pop
#>   <chr>   <chr>    <chr>   <dbl>
#> 1 Chicago Cook     IL    2853114
#> 2 Kenosha Kenosha  WI      90352
#> 3 Aurora  Kane     IL     171782
#> 4 Elgin   Kane     IL      94487
#> 5 Gary    Lake(IN) IN     102746
#> 6 Joliet  Kendall  IL     106221
#> # ... with 12 more rows


We can even extend this technique to multiple new rows because rbind
allows multiple arguments:


rbind(suburbs,
      data.frame(city = "West Dundee", county = "Kane",
                 state = "IL", pop = 7352),
      data.frame(city = "East Dundee", county = "Kane",
                 state = "IL", pop = 3192)
)
#> # A tibble: 19 x 4
#>   city    county   state     pop
#>   <chr>   <chr>    <chr>   <dbl>
#> 1 Chicago Cook     IL    2853114
#> 2 Kenosha Kenosha  WI      90352
#> 3 Aurora  Kane     IL     171782
#> 4 Elgin   Kane     IL      94487
#> 5 Gary    Lake(IN) IN     102746
#> 6 Joliet  Kendall  IL     106221
#> # ... with 13 more rows


It’s worth noting that in the previous examples we seamlessly commingled
tibbles and data frames. suburbs is a tibble because we used the tidy
function read_csv, which produces tibbles, while newRow was created
using data.frame, which returns a traditional R data frame. And note
that the data frames contain factors while the tibbles do not:


str(suburbs) # a tibble
#> Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 17 obs. of
#> 4 variables:
#>  $ city  : chr  "Chicago" "Kenosha" "Aurora" "Elgin" ...
#>  $ county: chr  "Cook" "Kenosha" "Kane" "Kane" ...
#>  $ state : chr  "IL" "WI" "IL" "IL" ...
#>  $ pop   : num  2853114 90352 171782 94487 102746 ...
#>  - attr(*, "spec")=
#>   .. cols(
#>   ..   city = col_character(),
#>   ..   county = col_character(),
#>   ..   state = col_character(),
#>   ..   pop = col_double()
#>   .. )
str(newRow)  # a data.frame
#> 'data.frame':    1 obs. of  4 variables:
#>  $ city  : Factor w/ 1 level "West Dundee": 1
#>  $ county: Factor w/ 1 level "Kane": 1
#>  $ state : Factor w/ 1 level "IL": 1
#>  $ pop   : num 7352


When the inputs to rbind are a mix of data.frame objects and
tibble objects, the result will have the same type as the first
argument of rbind. So this would produce a tibble:


rbind(some_tibble, some_data.frame)


while this would produce a data frame:


rbind(some_data.frame, some_tibble)
























5.21 Selecting Data Frame Columns by Position










Problem


You want to select columns from a data frame according to their
position.

















Solution


Use the select function:


  	df %>% select(n1, n2, ..., nk)




where df is a data frame and n1, n2, …, nk are
integers with values between 1 and the number of columns.

















Discussion


Let’s use the first three rows of the dataset of population data for the
16 largest cities in the Chicago metropolitan area:


suburbs <- read_csv("data/suburbs.txt") %>% head(3)
#> Parsed with column specification:
#> cols(
#>   city = col_character(),
#>   county = col_character(),
#>   state = col_character(),
#>   pop = col_double()
#> )
suburbs
#> # A tibble: 3 x 4
#>   city    county  state     pop
#>   <chr>   <chr>   <chr>   <dbl>
#> 1 Chicago Cook    IL    2853114
#> 2 Kenosha Kenosha WI      90352
#> 3 Aurora  Kane    IL     171782


Right off the bat, we can see this is a tibble. This will extract the
first column (and only the first column):


suburbs %>%
  dplyr::select(1)
#> # A tibble: 3 x 1
#>   city
#>   <chr>
#> 1 Chicago
#> 2 Kenosha
#> 3 Aurora


These will extract multiple columns:


suburbs %>%
  dplyr::select(1, 3, 4)
#> # A tibble: 3 x 3
#>   city    state     pop
#>   <chr>   <chr>   <dbl>
#> 1 Chicago IL    2853114
#> 2 Kenosha WI      90352
#> 3 Aurora  IL     171782
suburbs %>%
  dplyr::select(2:4)
#> # A tibble: 3 x 3
#>   county  state     pop
#>   <chr>   <chr>   <dbl>
#> 1 Cook    IL    2853114
#> 2 Kenosha WI      90352
#> 3 Kane    IL     171782












List expressions


The select verb is part of the tidyverse package dplyr. Base R also has its own rich
functionality for selecting columns, at the cost of some additional
syntax. The choices can be confusing until you understand the logic
behind the alternatives.


One alternative uses list expressions. This might seem odd until you
recall that a data frame is a list of columns. The list expression
selects columns from that list. As you read this explanation, notice how
the change in syntax—double brackets versus single brackets—changes the
meaning of the expression.


We can select exactly one column by using double brackets ([[ and
]]):


	df[[n]]

	
Returns a vector—specifically, the vector in the nth column of
df






We can select one or more columns by using single brackets ([ and
]).


	df[n]

	
Returns a data frame consisting solely of the nth column of df



	df[c(n1, n2, ..., nk)]

	
Returns a data frame built from the columns in positions n1,
n2, …, nk of df






For example, we can use list notation to select the first column from
suburbs, the city column:


suburbs[[1]]
#> [1] "Chicago" "Kenosha" "Aurora"


That column is a character vector, so that’s what suburbs[[1]]
returns: a vector.


The result changes when we use the single-bracket notation, as in
suburbs[1] or suburbs[c(1,3)]. We still get the requested columns,
but R leaves them in a data frame. This example returns the first column
as a one-column data frame:


suburbs[1]
#> # A tibble: 3 x 1
#>   city
#>   <chr>
#> 1 Chicago
#> 2 Kenosha
#> 3 Aurora


And this example returns the first and third columns as a data frame:


suburbs[c(1, 3)]
#> # A tibble: 3 x 2
#>   city    state
#>   <chr>   <chr>
#> 1 Chicago IL
#> 2 Kenosha WI
#> 3 Aurora  IL

Tip

The expression suburbs[1] is actually a shortened form of
suburbs[c(1)]. We don’t need the c(...) wrapper because there is
only one n.




A major source of confusion is that suburbs[[1]] and suburbs[1] look
similar but produce very different results:


	suburbs[[1]]

	
Returns one column



	suburbs[1]

	
Returns a data frame that contains exactly one column






The point here is that “one column” is different from “a data frame that
contains one column.” The first expression returns a
vector. The second expression returns a data frame, which is a different
data structure.

















Matrix-style subscripting


You can use matrix-style subscripting to select columns from a data
frame:


	df[, n]

	
Returns a vector taken from the nth column (assuming that n
contains exactly one value)



	df[, c(n1, n2, ..., nk)]

	
Returns a data frame built from the columns in positions n1,
n2, …, nk






An odd quirk can bite you here: you might get a column vector or you
might get a data frame, depending upon how many subscripts you use and whether you are operating on a tibble or a data.frame. Tibbles will always return tibbles when you index. However, a data.frame may return a vector if you use one index.


In the simple case of one index on a data.frame you get a vector, like this:


# suburbs is a tibble so we convert for this example
suburbs_df &lt;<- as.data.frame(suburbs)
suburbs_df[, 1]
#> [1] "Chicago" "Kenosha" "Aurora"


But using the same matrix-style syntax with multiple indexes returns a
data frame:


suburbs_df[, c(1, 4)]
#>      city     pop
#> 1 Chicago 2853114
#> 2 Kenosha   90352
#> 3  Aurora  171782


This creates a problem. Suppose you see this expression in some old R
code:


df[, vec]


Quick, does that return a column or a data frame? Well, it depends. If
vec contains one value, then you get a column; otherwise, you get a
data frame. You cannot tell from the syntax alone.


To avoid this problem, you can include drop=FALSE in the subscripts,
forcing R to return a data frame:


df[, vec, drop = FALSE]


Now there is no ambiguity about the returned data structure. It’s a data
frame.


When all is said and done, using matrix notation to select columns from
data frames can be tricky. Use select when you can.






















See Also


See Recipe 5.17 for more about using drop=FALSE.
























5.22 Selecting Data Frame Columns by Name










Problem


You want to select columns from a data frame according to their name.

















Solution


Use select and give it the column names.


  	df %>% select(name1, name2, ..., namek)



















Discussion


All columns in a data frame must have names. If you know the name, it’s
usually more convenient and readable to select by name, not by position.
Note that you don’t put the column names in quotes when using select.


The solutions described here are similar to those for Recipe 5.21, where we selected columns by position. The only difference
is that here we use column names instead of column numbers. All the
observations made in that recipe apply here.












List expressions


The select verb is part of the tidyverse. Base R itself also has
several rich methods for selecting columns by name, at the cost of some
additional syntax.


To select a single column, use one of these list expressions. Note that
they use double brackets ([[ and ]]):


	df[["name"]]

	
Returns one column, the column called name



	df$name

	
Same as previous, just different syntax






To select one or more columns, use these list expressions. Note that
they use single brackets ([ and ]):


	df["name"]

	
Selects one column from a data frame



	df[c("name1", "name2", ..., "namek")]

	
Selects several columns





















Matrix-style subscripting


Base R also allows matrix-style subscripting for selecting one or more
columns from a data frame by name:


	df[, "name"]

	
Returns the named column



	df[, c("name1", "name2", ..., "namek")]

	
Selects several columns in a data frame






The matrix-style subscripting can return either a column or a data
frame, so be careful how many names you supply. See the comments in
Recipe 5.21 for a discussion of this “gotcha” and using
drop=FALSE.






















See Also


See Recipe 5.21 to select by position instead of name.
























5.23 Changing the Names of Data Frame Columns










Problem


You want to change the names of a data frame’s columns.

















Solution


The rename function from the dplyr package makes renaming pretty
easy:


  	df %>% rename(newname1 = oldname1, ... , newnamen = oldnamen)




where df is a data frame, oldnamei are names of columns in df,
and newnamei are the desired new names.


Note that the argument order is newname = oldname.

















Discussion


The columns of data frames must have names. You can change them using
rename:


df <- data.frame(V1 = 1:3, V2 = 4:6, V3 = 7:9)
df %>% rename(tom = V1, dick = V2)
#>   tom dick V3
#> 1   1    4  7
#> 2   2    5  8
#> 3   3    6  9


The column names are stored in an attribute called colnames, so
another way to rename columns is to change that attribute:


colnames(df) <- c("tom", "dick", "V2")
df
#>   tom dick V2
#> 1   1    4  7
#> 2   2    5  8
#> 3   3    6  9


If you happen to be using select to select individual columns, you can
rename those columns at the same time:


df <- data.frame(V1 = 1:3, V2 = 4:6, V3 = 7:9)
df %>% select(tom = V1, V2)
#>   tom V2
#> 1   1  4
#> 2   2  5
#> 3   3  6


The difference between renaming with select versus renaming with
rename is that rename will rename what you specify, leaving all
other columns intact and unchanged, whereas select keeps only the
columns you select. In the preceding example, V3 is dropped because
it’s not in the select statement. Both select and rename use the
same argument order: newname = oldname.

















See Also


See Recipe 5.29.
























5.24 Removing NAs from a Data Frame










Problem


Your data frame contains NA values, which is creating problems for
you.

















Solution


Use na.omit to remove rows that contain any NA values:

clean_dfrm <- na.omit(dfrm)


















Discussion


We frequently stumble upon situations where just a few NA values in a
data frame cause everything to fall apart. One solution is simply to
remove all rows that contain any NAs. That’s what na.omit does.


Consider a data frame with embedded NA values:


df <- data.frame(
  x = c(1, NA, 3, 4, 5),
  y = c(1, 2, NA, 4, 5)
)
df
#>    x  y
#> 1  1  1
#> 2 NA  2
#> 3  3 NA
#> 4  4  4
#> 5  5  5


The cumsum function should calculate cumulative sums, but it stumbles
on the NA values:


colSums(df)
#>  x  y
#> NA NA


If we remove rows with NA values, cumsum can complete its
summations:


cumsum(na.omit(df))
#>    x  y
#> 1  1  1
#> 4  5  5
#> 5 10 10


But watch out! The na.omit function removes entire rows. The
non-NA values in those rows also disappear, changing the meaning of
“cumulative sum.”


This recipe works for removing NA from vectors and matrices, too, but
not lists.


The obvious danger here is that simply dropping observations from your
data could render the results numerically or statistically meaningless.
Make sure that omitting data makes sense in your context. Remember that
na.omit will remove entire rows, not just the NA values, which could
eliminate useful information.
























5.25 Excluding Columns by Name










Problem


You want to exclude a column from a data frame using its name.

















Solution


Use the select function from the dplyr package with a dash (minus
sign) in front of the name of the column to exclude:


select(df, -bad)   # Select all columns from df except bad

















Discussion


Placing a minus sign in front of a variable name tells the select
function to drop that variable.


This can come in handy when we’re calculating a correlation matrix
from a data frame, and we want to exclude the nondata columns such as
labels:


cor(patient_data)
#>            patient_id    pre  dosage   post
#> patient_id     1.0000  0.159 -0.0486  0.391
#> pre            0.1590  1.000  0.8104 -0.289
#> dosage        -0.0486  0.810  1.0000 -0.526
#> post           0.3912 -0.289 -0.5262  1.000


This correlation matrix includes the meaningless “correlation” between
patient_id and other variables, which is annoying. We can exclude the
patient_id column to clean up the output:


patient_data %>%
  select(-patient_id) %>%
  cor
#>           pre dosage   post
#> pre     1.000  0.810 -0.289
#> dosage  0.810  1.000 -0.526
#> post   -0.289 -0.526  1.000


We can exclude multiple columns the same way:


patient_data %>%
  select(-patient_id, -dosage) %>%
  cor()
#>         pre   post
#> pre   1.000 -0.289
#> post -0.289  1.000
























5.26 Combining Two Data Frames










Problem


You want to combine the contents of two data frames into one data frame.

















Solution


To combine the columns of two data frames side by side, use cbind
(column bind):


all.cols <- cbind(df1, df2)


To “stack” the rows of two data frames, use rbind (row bind):


all.rows <- rbind(df1, df2)

















Discussion


You can combine data frames in one of two ways: either by putting the
columns side by side to create a wider data frame, or by “stacking” the
rows to create a taller data frame.


The cbind function will combine data frames side by side:


df1 <- data.frame(a = c(1,2))
df2 <- data.frame(b = c(7,8))

cbind(df1, df2)
#>   a b
#> 1 1 7
#> 2 2 8


You would normally combine columns with the same height (number of
rows). Technically speaking, however, cbind does not require matching
heights. If one data frame is short, R will invoke the Recycling Rule
to extend the short columns as necessary (see Recipe 5.3), which may or
may not be what you want.


The rbind function will “stack” the rows of two data frames:


df1 <- data.frame(x = c("a", "a"), y = c(5, 6))
df2 <- data.frame(x = c("b", "b"), y = c(9, 10))
rbind(df1, df2)
#>   x         y
#> 1 a         5
#> 2 a         6
#> 3 b         9
#> 4 b        10


The rbind function requires that the data frames have the same
width—the same number of columns and same column names. The columns need
not be in the same order, however; rbind will sort that out.


Finally, this recipe is slightly more general than the title implies.
First, you can combine more than two data frames because both rbind
and cbind accept multiple arguments. Second, you can apply this recipe
to other data types because rbind and cbind work also with vectors,
lists, and matrices.
























5.27 Merging Data Frames by Common Column










Problem


You have two data frames that share a common column. You want to merge
or join their rows into one data frame by matching on the common column.

















Solution


We can use the join functions from the dplyr package to join our data frames together on a common column. If you want only rows that appear in both data frames, use
inner_join:


inner_join(df1, df2, by = "col")


where "col" is the column that appears in both data frames.


If you want all rows that appear in either data frame, use full_join
instead:


full_join(df1, df2, by = "col")


If you want all rows from df1 and only those from df2 that match,
use left_join:


left_join(df1, df2, by = "col")


Or to get all records from df2 and only the matching ones from df1,
use right_join:


right_join(df1, df2, by = "col")

















Discussion


Suppose we have two data frames, born and died, that each contain a
column called name:


born <- tibble(
  name = c("Moe", "Larry", "Curly", "Harry"),
  year.born = c(1887, 1902, 1903, 1964),
  place.born = c("Bensonhurst", "Philadelphia", "Brooklyn", "Moscow")
)

died <- tibble(
  name = c("Curly", "Moe", "Larry"),
  year.died = c(1952, 1975, 1975)
)


We can merge them into one data frame by using name to combine matched
rows:


inner_join(born, died, by="name")
#> # A tibble: 3 x 4
#>   name  year.born place.born   year.died
#>   <chr>     <dbl> <chr>            <dbl>
#> 1 Moe        1887 Bensonhurst       1975
#> 2 Larry      1902 Philadelphia      1975
#> 3 Curly      1903 Brooklyn          1952


Notice that inner_join does not require the rows to be sorted or even
to occur in the same order. It found the matching rows for Curly even
though they occur in different positions. It also discarded the row for
Harry, which appeared only in born.


A full_join of these data frames includes every row of both, even rows
with no matching values:


full_join(born, died, by="name")
#> # A tibble: 4 x 4
#>   name  year.born place.born   year.died
#>   <chr>     <dbl> <chr>            <dbl>
#> 1 Moe        1887 Bensonhurst       1975
#> 2 Larry      1902 Philadelphia      1975
#> 3 Curly      1903 Brooklyn          1952
#> 4 Harry      1964 Moscow              NA


Where a data frame has no matching value, its columns are filled with
NA: the year.died for Harry is NA.


If we don’t supply the join function with a field to join by, then it
will attempt to join by any field with matching names in both data
frames and will return an informational response stating which field it
is joining on:


full_join(born, died)
#> Joining, by = "name"
#> # A tibble: 4 x 4
#>   name  year.born place.born   year.died
#>   <chr>     <dbl> <chr>            <dbl>
#> 1 Moe        1887 Bensonhurst       1975
#> 2 Larry      1902 Philadelphia      1975
#> 3 Curly      1903 Brooklyn          1952
#> 4 Harry      1964 Moscow              NA


If we want to join two data frames on a field that does not have the
same name in both data frames, we need our by parameter to be a vector
of equalities:


df1 <- data.frame(key1 = 1:3, value=2)
df2 <- data.frame(key2 = 1:3, value=3)

inner_join(df1, df2, by = c("key1" = "key2"))
#>   key1 value.x value.y
#> 1    1       2       3
#> 2    2       2       3
#> 3    3       2       3


Notice in the preceding example how both tables have a field named
value that gets renamed in the output. The field from the first table
becomes value.x, while the field from the second table becomes
value.y. dplyr joins will always rename output this way when there
is a naming clash on columns not being joined on.

















See Also


See Recipe 5.26 for other ways to combine data frames.


The example joined on a single column, name, but these functions can
join on multiple columns, too. For details, see the function
documentation by typing ?dplyr::join.


These join operations were inspired by SQL. Just like in SQL, there are
multiple types of joins in dplyr, including inner, left, right, full,
semi, and anti. Again, see the function documentation.
























5.28 Converting One Atomic Value into Another










Problem


You have a data value that has an atomic data type: character, complex,
double, integer, or logical. You want to convert this value into one of
the other atomic data types.

















Solution


For each atomic data type, there is a function for converting values to
that type. The conversion functions for atomic types include:



	
as.character(x)



	
as.complex(x)



	
as.numeric(x) or as.double(x)



	
as.integer(x)



	
as.logical(x)





















Discussion


Converting one atomic type into another is usually pretty simple. If the
conversion works, you get what you would expect. If it does not work,
you get NA:


as.numeric(" 3.14 ")
#> [1] 3.14
as.integer(3.14)
#> [1] 3
as.numeric("foo")
#> Warning: NAs introduced by coercion
#> [1] NA
as.character(101)
#> [1] "101"


If you have a vector of atomic types, these functions apply themselves
to every value. So the preceding examples of converting scalars
generalize easily to converting entire vectors:


as.numeric(c("1", "2.718", "7.389", "20.086"))
#> [1]  1.00  2.72  7.39 20.09
as.numeric(c("1", "2.718", "7.389", "20.086", "etc."))
#> Warning: NAs introduced by coercion
#> [1]  1.00  2.72  7.39 20.09    NA
as.character(101:105)
#> [1] "101" "102" "103" "104" "105"


When converting logical values into numeric values, R converts FALSE
to 0 and TRUE to 1:


as.numeric(FALSE)
#> [1] 0
as.numeric(TRUE)
#> [1] 1


This behavior is useful when you are counting occurrences of TRUE in
vectors of logical values. If logvec is a vector of logical values,
then sum(logvec) does an implicit conversion from logical to integer values and returns the number of TRUEs:


logvec <- c(TRUE, FALSE, TRUE, TRUE, TRUE, FALSE)
sum(logvec) ## num true
#> [1] 4
length(logvec) - sum(logvec) ## num not true
#> [1] 2
























5.29 Converting One Structured Data Type into Another










Problem


You want to convert a variable from one structured data type to
another—for example, converting a vector into a list, or a matrix into a
data frame.

















Solution


These functions convert their argument into the corresponding structured
data type:



	
as.data.frame(x)



	
as.list(x)



	
as.matrix(x)



	
as.vector(x)






Some of these conversions may surprise you, however. We suggest you
review Table 5-2 for more detail.

















Discussion


Converting between structured data types can be tricky. Some conversions
behave as you’d expect. If you convert a matrix into a data frame, for
instance, the rows and columns of the matrix become the rows and columns
of the data frame. No sweat.


In other cases, the results might surprise you. Table 5-2 summarizes some noteworthy examples.


Table 5-2. Data conversions


	Conversion
	How
	Notes





	Vector→List

	as.list(vec)

	Don’t use list(vec); that creates a
one-element list whose only element is a copy of vec.




	Vector→Matrix

	To create a one-column matrix: cbind(vec) or
as.matrix(vec) 
To create a one-row matrix: rbind(vec) 
To create an
n × m matrix: matrix(vec,n,m)

	See Recipe 5.14.




	Vector→Data frame

	To create a one-column data frame:
as.data.frame(vec) 
To create a one-row data frame:
as.data.frame(rbind(vec))

	



	List→Vector

	unlist(lst)

	Use unlist rather than as.vector; see
Note 1 and Recipe 5.11.




	List→Matrix

	To create a one-column matrix: as.matrix(lst) 
To create
a one-row matrix: as.matrix(rbind(lst)) 
To create an n × m matrix:
matrix(lst,n,m)

	



	List→Data frame

	If the list elements are columns of data:
as.data.frame(lst) 
If the list elements are rows of data, see Recipe 5.19.

	



	Matrix→Vector

	as.vector(mat)

	Returns all matrix elements in a
vector.




	Matrix→List

	as.list(mat)

	Returns all matrix elements in a list.




	Matrix→Data frame

	as.data.frame(mat)

	



	Data frame→Vector

	To convert a one-row data frame: df[1,] 
To convert
a one-column data frame: df[,1] or df[[1]]

	See Note 2.




	Data frame→List

	as.list(df)

	See Note 3.




	Data frame→Matrix

	as.matrix(df)

	See Note 4.







The notes cited in the table are as follows:


	
When you convert a list into a vector, the conversion works cleanly
if your list contains atomic values that are all of the same mode.
Things become complicated if either your list contains mixed modes
(e.g., numeric and character), in which case everything is converted to
characters, or your list contains other structured data types (such
as sublists or data frames), in which case very odd things happen, so
don’t do that.



	
Converting a data frame into a vector makes sense only if the data
frame contains one row or one column. To extract all its elements into
one long vector, use as.vector(as.matrix(df)). But even that makes
sense only if the data frame is all numeric or all character; if not,
everything is first converted to character strings.



	
Converting a data frame into a list may seem odd in that a data
frame is already a list (i.e., a list of columns). Using as.list
essentially removes the class (data.frame) and thereby exposes the
underlying list. That is useful when you want R to treat your data
structure as a list—say, for printing.



	
Be careful when converting a data frame into a matrix. If the data
frame contains only numeric values, then you get a numeric matrix. If it
contains only character values, you get a character matrix. But if the
data frame is a mix of numbers, characters, and/or factors, then all
values are first converted to characters. The result is a matrix of
character strings.

















Special considerations for matrices


The matrix conversions detailed here assume that your matrix is
homogeneous—that is, all elements have the same mode (e.g., all numeric
or all character). A matrix can be heterogeneous, too, when the
matrix is built from a list. If so, conversions become messy. For
example, when you convert a mixed-mode matrix to a data frame, the data
frame’s columns are actually lists (to accommodate the mixed data).






















See Also


See Recipe 5.28 for converting atomic data types; see the
introduction to this chapter for remarks on
problematic conversions.

















1 A data frame can be built from a mixture of vectors, factors, and matrices. The columns of the matrices become columns in the data frame. The number of rows in each matrix must match the length of the vectors and factors. In other words, all elements of a data frame must have the same height.



Chapter 6. Data Transformations



While traditional programming languages use loops, R has traditionally
encouraged using vectorized operations and the apply family of
functions to crunch data in batches, greatly streamlining the
calculations. There is nothing to prevent you from writing loops in R
that break your data into whatever chunks you want and then doing an
operation on each chunk. However, using vectorized functions can, in
many cases, increase the speed, readability, and maintainability of your
code.


In recent history, though, the tidyverse—specifically the purrr and
dplyr packages—has introduced new idioms into R that make these
concepts easier to learn and slightly more consistent. The name purrr
comes from a play on the phrase “Pure R.” A “pure function” is a
function whose result is determined only by its
inputs, and which does not produce any side effects. This is not a
functional programming concept you need to understand in order to get
great value from purrr, however. All most users need to know is that
purrr contains functions to help us operate “chunk by chunk” on our
data in a way that meshes well with other tidyverse packages such as
dplyr.


Base R has many apply functions—apply, lapply, sapply, tapply,
and mapply—as well as their cousins, by and split. These are solid
functions that have been workhorses in Base R for years. We struggled a bit with how much to focus on the Base R apply
functions and how much to focus on the newer “tidy” approach. After much
debate, we’ve chosen to try to illustrate the purrr approach and to
acknowledge Base R approaches and, in a few places, to illustrate both.
The interface to purrr and dplyr is very clean and, we believe, in
most cases, more intuitive.








6.1 Applying a Function to Each List Element










Problem


You have a list, and you want to apply a function to each element of the
list.

















Solution


Use map to apply a function to every element of a list:


library(tidyverse)

lst %>%
  map(fun)

















Discussion


Let’s look at a specific example of taking the average of all the
numbers in each element of a list:


library(tidyverse)

lst <- list(
  a = c(1,2,3),
  b = c(4,5,6)
)
lst %>%
  map(mean)
#> $a
#> [1] 2
#>
#> $b
#> [1] 5


The map function will call your function once for every element in
your list. Your function should expect one argument, an element from the
list. The map functions will collect the returned values and return
them in a list.


The purrr package contains a whole family of map functions that take
a list or a vector and then return an object with the same number of
elements as the input. The type of object they return varies based on
which map function is used. See the help file for map for a complete
list, but a few of the most common are as follows:


	map

	
Always returns a list, and the elements of the list may be of
different types. This is quite similar to the Base R function lapply.



	map_chr

	
Returns a character vector.



	map_int

	
Returns an integer vector.



	map_dbl

	
Returns a floating-point numeric vector.






Let’s take a quick look at a contrived situation where we have a
function that could result in a character or an integer result:


fun <- function(x) {
  if (x > 1) {
    1
  } else {
    "Less Than 1"
  }
}

fun(5)
#> [1] 1
fun(0.5)
#> [1] "Less Than 1"


Let’s create a list of elements that we can map fun to and look at how
some of the map variants behave:


lst <- list(.5, 1.5, .9, 2)

map(lst, fun)
#> [[1]]
#> [1] "Less Than 1"
#>
#> [[2]]
#> [1] 1
#>
#> [[3]]
#> [1] "Less Than 1"
#>
#> [[4]]
#> [1] 1


You can see that map produced a list and it is of mixed data types.


map_chr will produce a character vector and coerce the numbers
into characters:


map_chr(lst, fun)
#> [1] "Less Than 1" "1.000000"    "Less Than 1" "1.000000"

## or using pipes
lst %>%
  map_chr(fun)
#> [1] "Less Than 1" "1.000000"    "Less Than 1" "1.000000"


while map_dbl will try to coerce a character string into a double and
die trying:


map_dbl(lst, fun)
#> Error: Can't coerce element 1 from a character to a double


As mentioned earlier, the Base R lapply function acts very much like
map. The Base R sapply function is more like the other map
functions we discussed previously, in that the function tries to simplify
the results into a vector or matrix.

















See Also


See Recipe 15.3.
























6.2 Applying a Function to Every Row of a Data Frame










Problem


You have a function and you want to apply it to every row in a data
frame.

















Solution


The mutate function will create a new variable based on a vector of
values. But if we are using a function that can’t take in a vector and
output a vector, then we have to do a row-by-row operation using
rowwise.


We can use rowwise in a pipe chain to tell dplyr to do all following
commands row by row:


df %>%
  rowwise() %>%
  row_by_row_function()

















Discussion


Let’s create a function and apply it row by row to a data frame. Our function will simply calculate the sum of a sequence from a to b
by c:


fun <- function(a, b, c) {
  sum(seq(a, b, c))
}


Let’s create some data to apply this function to, then use rowwise to
apply our function, fun, to it:


df <- data.frame(mn = c(1, 2, 3),
                 mx = c(8, 13, 18),
                 rng = c(1, 2, 3))

df %>%
  rowwise %>%
  mutate(output = fun(a = mn, b = mx, c = rng))
#> Source: local data frame [3 x 4]
#> Groups: <by row>
#>
#> # A tibble: 3 x 4
#>      mn    mx   rng output
#>   <dbl> <dbl> <dbl>  <dbl>
#> 1     1     8     1     36
#> 2     2    13     2     42
#> 3     3    18     3     63


Had we tried to run this function without rowwise, it would have
thrown an error because the seq function cannot process an entire
vector:


df %>%
  mutate(output = fun(a = mn, b = mx, c = rng))
#> Error in seq.default(a, b, c): 'from' must be of length 1
























6.3 Applying a Function to Every Row of a Matrix










Problem


You have a matrix. You want to apply a function to every row,
calculating the function result for each row.

















Solution


Use the apply function. Set the second argument to 1 to indicate
row-by-row application of the function:


results <- apply(mat, 1, fun)    # mat is a matrix, fun is a function


The apply function will call fun once for each row of the matrix,
assemble the returned values into a vector, and then return that vector.

















Discussion


You may notice that we show only the use of the Base R apply function
here, while other recipes illustrate purrr alternatives. As of this
writing, matrix operations are out of scope for purrr, so we use the
very solid Base R apply function. If you really like the purrr
syntax, you can use those functions if you first convert your matrix to a
data frame or tibble. But if your matrix is large, you will notice a
meaningful runtime slowdown using purrr.


Suppose we have a matrix long containing longitudinal data, so each row has
data for one subject and the columns contain the repeated observations
over time:


long <- matrix(1:15, 3, 5)
long
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,]    1    4    7   10   13
#> [2,]    2    5    8   11   14
#> [3,]    3    6    9   12   15


We could calculate the average observation for each subject by applying
the mean function to each row. The result is a vector:


apply(long, 1, mean)
#> [1] 7 8 9


If our matrix has row names, apply uses them to identify the elements
of the resulting vector, which is handy:


rownames(long) <- c("Moe", "Larry", "Curly")
apply(long, 1, mean)
#>   Moe Larry Curly
#>     7     8     9


The function being called should expect one argument, a vector, which
will be one row from the matrix. The function can return a scalar or a
vector. In the vector case, apply assembles the results into a matrix.
The range function returns a vector of two elements, the minimum and
the maximum, so applying it to long produces a matrix:


apply(long, 1, range)
#>      Moe Larry Curly
#> [1,]   1     2     3
#> [2,]  13    14    15


You can employ this recipe on data frames as well. It works if the data
frame is homogeneous—that is, either all numbers or all character
strings. When the data frame has columns of different types, extracting
vectors from the rows isn’t sensible because vectors must be
homogeneous.
























6.4 Applying a Function to Every Column










Problem


You have a matrix or data frame, and you want to apply a function to
every column.

















Solution


For a matrix, use the apply function. Set the second argument to 2,
which indicates column-by-column application of the function. So, if our
matrix or data frame was named mat and we wanted to apply a function
named fun to every column, it would look like this:


apply(mat, 2, fun)


For a data frame, use the map_df function from purrr:


df2 <- map_df(df, fun)

















Discussion


Let’s look at an example with real numbers and apply the mean function
to every column of a matrix:


mat <- matrix(c(1, 3, 2, 5, 4, 6), 2, 3)
colnames(mat) <- c("t1", "t2", "t3")
mat
#>      t1 t2 t3
#> [1,]  1  2  4
#> [2,]  3  5  6

apply(mat, 2, mean)  # Compute the mean of every column
#>  t1  t2  t3
#> 2.0 3.5 5.0


In Base R, the apply function is intended for processing a matrix or
data frame. The second argument of apply determines the direction:



	
1 means process row by row.



	
2 means process column by column.






This is more mnemonic than it looks. We speak of matrices in “rows and
columns,” so rows are first and columns second: 1 and 2, respectively.


A data frame is a more complicated data structure than a matrix, so
there are more options. You can simply use apply, in which case R will
convert your data frame to a matrix and then apply your function. That
will work if your data frame contains only one type of data but will
probably not do what you want if some columns are numeric and some are
character. In that case, R will force all columns to have identical
types, likely performing an unwanted conversion as a result.


Fortunately, there are multiple alternatives. Recall that a data frame
is a kind of list: it is a list of the columns of the data frame.
purrr has a whole family of map functions that return different
types of objects. Of particular interest here is map_df, which returns
a data.frame (thus the df in the name):


df2 <- map_df(df, fun) # Returns a data.frame


The function fun should expect one argument: a column from the data
frame.


Here is a common recipe to check the types of columns in data frames. In
this example, the batch column of this data frame, at a quick glance,
seems to contain numbers:


load("./data/batches.rdata")
head(batches)
#>   batch clinic dosage shrinkage
#> 1     3     KY     IL    -0.307
#> 2     3     IL     IL    -1.781
#> 3     1     KY     IL    -0.172
#> 4     3     KY     IL     1.215
#> 5     2     IL     IL     1.895
#> 6     2     NJ     IL    -0.430


But using map_df to print out the class of each column reveals the
column batch to be a factor instead:


map_df(batches, class)
#> # A tibble: 1 x 4
#>   batch  clinic dosage shrinkage
#>   <chr>  <chr>  <chr>  <chr>
#> 1 factor factor factor numeric

Note

Notice how the third line of the output says <chr>
repeatedly. This is because the output of class is being put in a data
frame and then printed. The intermediate data frame is all character
fields. It’s the last row that tells us our original data frame has
three factor columns and one numeric field.



















See Also


See Recipe 5.21, Recipe 6.1, and Recipe 6.3.
























6.5 Applying a Function to Parallel Vectors or Lists










Problem


You have a function that takes multiple arguments. You want to apply the
function element-wise to vectors and obtain a vector result.
Unfortunately, the function is not vectorized; that is, it works on
scalars but not on vectors.

















Solution


Use one of the map or pmap functions from the tidyverse core package
purrr. The most general solution is to put your vectors in a list,
then use pmap:


lst <- list(v1, v2, v3)
pmap(lst, fun)


pmap will take the elements of lst and pass them as the inputs to
fun.


If you only have two vectors you are passing as inputs to your function,
the map2 family of functions is convenient and saves you the step of
putting your vectors in a list first. map2 will return a list:


map2(v1, v2, fun)


while
the typed variants (map2_chr, map2_dbl, etc.) return vectors of the
type their name implies. So, if fun returns only a double, use the typed variant of map2 instead:


map2_dbl(v1, v2, fun)


The typed variants in purrr functions refer to the output type
expected from the function. All the typed variants return vectors of
their respective type, while the untyped variants return lists, which
allow mixing of types.

















Discussion


The basic operators of R, such as x + y, are vectorized; this means
that they compute their result element by element and return a vector of
results. Also, many R functions are vectorized.


Not all functions are vectorized, however, and those that are not typed
work only on scalars. Using vector arguments produces errors at best and
meaningless results at worst. In such cases, the map functions from
purrr can effectively vectorize the function for you.


Consider the gcd function from Recipe 15.3, which takes two arguments:


gcd <- function(a, b) {
  if (b == 0) {
    return(a)
  } else {
    return(gcd(b, a %% b))
  }
}


If we apply gcd to two vectors, the result is wrong answers and a pile
of error messages:


gcd(c(1, 2, 3), c(9, 6, 3))
#> Warning in if (b == 0) {: the condition has length > 1 and only the first
#> element will be used

#> Warning in if (b == 0) {: the condition has length > 1 and only the first
#> element will be used

#> Warning in if (b == 0) {: the condition has length > 1 and only the first
#> element will be used
#> [1] 1 2 0


The function is not vectorized, but we can use map to “vectorize” it.
In this case, since we have two inputs we’re mapping over, we should use
the map2 function. This gives the element-wise greatest common divisors (GCDs) between two
vectors:


a <- c(1, 2, 3)
b <- c(9, 6, 3)
my_gcds <- map2(a, b, gcd)
my_gcds
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 2
#>
#> [[3]]
#> [1] 3


Notice that map2 returns a list of lists. If we wanted the output in a
vector, we could use unlist on the result:


unlist(my_gcds)
#> [1] 1 2 3


or use one of the typed
variants, such as map2_dbl.


The map family of purrr functions give you a series of variations
that return specific types of output. The suffixes on the function names
communicate the type of vector they will return. While map and
map2 return lists, since the type-specific variants are returning
objects guaranteed to be the same type, they can be put in atomic
vectors. For example, we could use the map_chr function to ask R to
coerce the results into character output or map2_dbl to ensure the
results are doubles:


map2_chr(a, b, gcd)
#> [1] "1.000000" "2.000000" "3.000000"
map2_dbl(a, b, gcd)
#> [1] 1 2 3


If our data has more than two vectors, or the data is already in a list,
we can use the pmap family of functions, which take a list as an
input:


lst <- list(a,b)
pmap(lst, gcd)
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 2
#>
#> [[3]]
#> [1] 3


Or if we want a typed vector as output:


lst <- list(a,b)
pmap_dbl(lst, gcd)
#> [1] 1 2 3


With the purrr functions, remember that the pmap family are parallel
mappers that take in a list as inputs, while map2 functions take
two, and only two, vectors as inputs.

















See Also


This is really just a special case of our very first recipe in this
chapter, Recipe 6.1. See that recipe for more discussion of
map variants. In addition, Jenny Bryan has a great collection of
purrr tutorials on her
GitHub site.
























6.6 Applying a Function to Groups of Data










Problem


Your data elements occur in groups. You want to process the data by
groups—for example, summing by group or averaging by group.

















Solution


The easiest way to do grouping is with the dplyr function group_by
in conjunction with summarize. If our data frame is df and has a
variable we want to group by named grouping_var, and we want to apply
the function fun to all the combinations of v1 and v2, we can do
that with group_by:


df %>%
  group_by(v1, v2) %>%
  summarize(
    result_var = fun(value_var)
  )

















Discussion


Let’s look at a specific example where our input data frame, df,
contains a variable, my_group, which we want to group by, and a field
named values which we would like to calculate some statistics on:


df <- tibble(
  my_group = c("A", "B","A", "B","A", "B"),
  values = 1:6
)

df %>%
  group_by(my_group) %>%
  summarize(
    avg_values = mean(values),
    tot_values = sum(values),
    count_values = n()
  )
#> # A tibble: 2 x 4
#>   my_group avg_values tot_values count_values
#>   <chr>         <dbl>      <int>        <int>
#> 1 A                 3          9            3
#> 2 B                 4         12            3


The output has one record per grouping along with calculated values for
the three summary fields we defined.

Warning

If you are grouping by several variables, please be aware that summarize will change your grouping. Each grouping becomes a single row; at the same time, it also removes the last grouping variable. In other words, if you group your data by A, B, and C and then summarize it, the resulting data frame is grouped only by A and B. This is surprising but necessary. If summarize kept the C grouping, each “group” would contain exactly one row, which would be pointless.


























6.7 Creating a New Column Based on Some Condition










Problem


You want to create a new column in a data frame based on some condition.

















Solution


Using the dplyr tidyverse package, we can create new data frame
columns with mutate and then use case_when to implement conditional
logic.


df %>%
  mutate(
    new_field = case_when(my_field == "something" ~ "result",
                    my_field != "something else" ~ "other result",
                    TRUE ~ "all other results")
  )

















Discussion


The case_when function from dplyr is analogous to CASE WHEN in SQL
or nested IF statements in Excel. The function tests every element and,
when it finds a condition that is true, returns the value on the
righthand side of the ~ (tilde).


Let’s look at an example where we want to add a text field that
describes a value. First let’s set up some simple example data in a data
frame with one column named vals:


df <- data.frame(vals = 1:5)


Now let’s implement logic that creates a field called new_vals. If
vals is less than or equal to 2, we’ll return 2 or less; if the
value is greater than 2 and less than or equal to 4, we’ll
return 2 to 4, and otherwise we’ll return over 4:


df %>%
  mutate(new_vals = case_when(vals <= 2 ~ "2 or less",
                              vals > 2 & vals <= 4 ~ "2 to 4",
                              TRUE ~ "over 4"))
#>   vals  new_vals
#> 1    1 2 or less
#> 2    2 2 or less
#> 3    3    2 to 4
#> 4    4    2 to 4
#> 5    5    over 4


You can see in the example that the condition goes on the left of the
~, while the resulting return value goes on the right. Each condition
is separated by commas. case_when will evaluate each condition
sequentially and stop evaluating as soon as one of the criteria returns
TRUE. Our last line is our “or else” statement. Setting the condition to TRUE ensures that, no matter what, this condition will be met if no
condition above it has returned TRUE.

















See Also


See Recipe 6.2 for more examples of using mutate.



















Chapter 7. Strings and Dates



Strings? Dates? In a statistical programming package?


As soon as you read files or print reports, you need strings. When you
work with real-world problems, you need dates.


R has facilities for both strings and dates. They are clumsy compared to
string-oriented languages such as Perl, but then it’s a matter of the
right tool for the job. We wouldn’t want to perform logistic regression
in Perl.


Some of this clunkiness with strings and dates has been improved through
the tidyverse packages stringr and lubridate. As with other chapters
in this book, the examples here will pull from Base R as well as
add-on packages that make life easier, faster, and more convenient.










Classes for Dates and Times


R has a variety of classes for working with dates and times, which is
nice if you prefer having a choice but annoying if you prefer living
simply. There is a critical distinction among the classes: some are
date-only classes, some are datetime classes. All classes can handle
calendar dates (e.g., March 15, 2019), but not all can represent a
datetime (11:45 AM on March 1, 2019).


The following classes are included in the base distribution of R:


	Date

	
The Date class can represent a calendar date but not a clock time.
It is a solid, general-purpose class for working with dates, including
conversions, formatting, basic date arithmetic, and time-zone
handling. Most of the date-related recipes in this book are built on
the Date class.



	POSIXct

	
This is a datetime class, and it can represent a moment in time with
an accuracy of one second. Internally, the datetime is stored as the
number of seconds since January 1, 1970, so it’s a very compact
representation. This class is recommended for storing datetime
information (e.g., in data frames).



	POSIXlt

	
This is also a datetime class, but the representation is stored in a
nine-element list that includes the year, month, day, hour, minute,
and second. This representation makes it easy to extract date parts,
such as the month or hour. Obviously, this is much less compact than
the POSIXct class; hence, it is normally used for intermediate
processing and not for storing data.






The base distribution also provides functions for easily converting
between representations: as.Date, as.POSIXct, and as.POSIXlt.


The following helpful packages are available for downloading from CRAN:


	chron

	
The chron package can represent both dates and times, but without the
added complexities of handling time zones and Daylight Saving Time.
It’s therefore easier to use than Date but less powerful than
POSIXct and POSIXlt. It would be useful for work in econometrics
or time series analysis.



	lubridate

	
This is a tidyverse package designed to make working with dates and
times easier while keeping the important bells and whistles such as
time zones. It’s especially clever regarding datetime arithmetic. This
package introduces some helpful constructs like durations, periods,
and intervals. lubridate is part of the tidyverse, so it is
installed when you install.packages('tidyverse'), but it is not part
of “core tidyverse,” so it does not get loaded when you run
library(tidyverse). This means you must explicitly load it by
running library(lubridate).



	mondate

	
This is a specialized package for handling dates in units of months in
addition to days and years. It can be helpful in accounting and
actuarial work, for example, where month-by-month calculations are
needed.



	timeDate

	
This is a high-powered package with well-thought-out facilities for
handling dates and times, including date arithmetic, business days,
holidays, conversions, and generalized handling of time zones. It was
originally part of the Rmetrics software for financial modeling,
where precision in dates and times is critical. If you have a
demanding need for date facilities, consider this package.






Which class should you select? The article
“Date and Time
Classes in R” by Gabor Grothendieck and Thomas Petzoldt offers this
general advice:


When considering which class to use, always choose the least complex
class that will support the application. That is, use Date if
possible, otherwise use chron and otherwise use the POSIX classes.
Such a strategy will greatly reduce the potential for error and increase
the reliability of your application.


















See Also


See help(DateTimeClasses) for more details regarding the built-in
facilities. See the June 2004 article
“Date and Time
Classes in R” by Gabor Grothendieck and Thomas Petzoldt for a great
introduction to the date and time facilities. The June 2001 article
“Date-Time
Classes” by Brian Ripley and Kurt Hornik discusses the two POSIX
classes in particular. Chapter 16,
“Dates and Times”, from the
book R for Data Science by Garrett Grolemund and Hadley Wickham (O’Reilly) provides a great introduction to lubridate.















7.1 Getting the Length of a String










Problem


You want to know the length of a string.

















Solution


Use the nchar function, not the length function.

















Discussion


The nchar function takes a string and returns the number of characters
in the string:


nchar("Moe")
#> [1] 3
nchar("Curly")
#> [1] 5


If you apply nchar to a vector of strings, it returns the length of
each string:


s <- c("Moe", "Larry", "Curly")
nchar(s)
#> [1] 3 5 5


You might think the length function returns the length of a string.
Nope. It returns the length of a vector. When you apply the length
function to a single string, R returns the value 1 because it views
that string as a singleton vector—a vector with one element:


length("Moe")
#> [1] 1
length(c("Moe", "Larry", "Curly"))
#> [1] 3
























7.2 Concatenating Strings










Problem


You want to join together two or more strings into one string.

















Solution


Use the paste function.

















Discussion


The paste function concatenates several strings together. In other
words, it creates a new string by joining the given strings end to end:


paste("Everybody", "loves", "stats.")
#> [1] "Everybody loves stats."


By default, paste inserts a single space between pairs of strings,
which is handy if that’s what you want and annoying otherwise. The sep
argument lets you specify a different separator. Use an empty string
("") to run the strings together without separation:


paste("Everybody", "loves", "stats.", sep = "-")
#> [1] "Everybody-loves-stats."
paste("Everybody", "loves", "stats.", sep = "")
#> [1] "Everybodylovesstats."


It’s a common idiom to want to concatenate strings together with no
separator at all. The function paste0 makes this very convenient:


paste0("Everybody", "loves", "stats.")
#> [1] "Everybodylovesstats."


The function is very forgiving about nonstring arguments. It tries to
convert them to strings using the as.character function silently
behind the scenes:


paste("The square root of twice pi is approximately", sqrt(2 * pi))
#> [1] "The square root of twice pi is approximately 2.506628274631"


If one or more arguments are vectors of strings, paste will generate
all combinations of the arguments (because of recycling):


stooges <- c("Moe", "Larry", "Curly")
paste(stooges, "loves", "stats.")
#> [1] "Moe loves stats."   "Larry loves stats." "Curly loves stats."


Sometimes you want to join even those combinations into one big string.
The collapse parameter lets you define a top-level separator and
instructs paste to concatenate the generated strings using that
separator:


paste(stooges, "loves", "stats", collapse = ", and ")
#> [1] "Moe loves stats, and Larry loves stats, and Curly loves stats"
























7.3 Extracting Substrings










Problem


You want to extract a portion of a string according to position.

















Solution


Use substr(string,start,end) to extract the substring that
begins at start and ends at end.

















Discussion


The substr function takes a string, a starting point, and an ending
point. It returns the substring between the starting and ending points:


substr("Statistics", 1, 4) # Extract first 4 characters
#> [1] "Stat"
substr("Statistics", 7, 10) # Extract last 4 characters
#> [1] "tics"


Just like many R functions, substr lets the first argument be a vector
of strings. In that case, it applies itself to every string and returns
a vector of substrings:


ss <- c("Moe", "Larry", "Curly")
substr(ss, 1, 3) # Extract first 3 characters of each string
#> [1] "Moe" "Lar" "Cur"


In fact, all the arguments can be vectors, in which case substr will
treat them as parallel vectors. From each string, it extracts the
substring delimited by the corresponding entries in the starting and
ending points. This can facilitate some useful tricks. For example, the
following code snippet extracts the last two characters from each
string; each substring starts on the penultimate character of the
original string and ends on the final character:


cities <- c("New York, NY", "Los Angeles, CA", "Peoria, IL")
substr(cities, nchar(cities) - 1, nchar(cities))
#> [1] "NY" "CA" "IL"


You can extend this trick into mind-numbing territory by exploiting the
Recycling Rule, but we suggest you avoid the temptation.
























7.4 Splitting a String According to a Delimiter










Problem


You want to split a string into substrings. The substrings are separated
by a delimiter.

















Solution


Use strsplit, which takes two arguments, the string and the delimiter
of the substrings:

strsplit(string, delimiter)



The delimiter can be either a simple string or a regular expression.

















Discussion


It is common for a string to contain multiple substrings separated by
the same delimiter. One example is a filepath, whose components are
separated by slashes (/):


path <- "/home/mike/data/trials.csv"


We can split that path into its components by using strsplit with a
delimiter of /:


strsplit(path, "/")
#> [[1]]
#> [1] ""           "home"       "mike"       "data"       "trials.csv"


Notice that the first “component” is actually an empty string because
nothing preceded the first slash.


Also notice that strsplit returns a list and that each element of the
list is a vector of substrings. This two-level structure is necessary
because the first argument can be a vector of strings. Each string is
split into its substrings (a vector), and then those vectors are
returned in a list.


If you are operating only on a single string, you can pop out the first
element like this:


strsplit(path, "/")[[1]]
#> [1] ""           "home"       "mike"       "data"       "trials.csv"


This example splits three filepaths and returns a three-element list:


paths <- c(
  "/home/mike/data/trials.csv",
  "/home/mike/data/errors.csv",
  "/home/mike/corr/reject.doc"
)
strsplit(paths, "/")
#> [[1]]
#> [1] ""           "home"       "mike"       "data"       "trials.csv"
#>
#> [[2]]
#> [1] ""           "home"       "mike"       "data"       "errors.csv"
#>
#> [[3]]
#> [1] ""           "home"       "mike"       "corr"       "reject.doc"


The second argument of strsplit (the delimiter argument) is
actually much more powerful than these examples indicate. It can be a
regular expression, letting you match patterns far more complicated than
a simple string. In fact, to turn off the regular expression feature
(and its interpretation of special characters), you must include the
fixed=TRUE argument.

















See Also


To learn more about regular expressions in R, see the help page for
regexp. See O’Reilly’s
Mastering Regular
Expressions, by Jeffrey E.F. Friedl, to learn more about regular
expressions in general.
























7.5 Replacing Substrings










Problem


Within a string, you want to replace one substring with another.

















Solution


Use sub to replace the first instance of a substring:

sub(old, new, string)



Use gsub to replace all instances of a substring:

gsub(old, new, string)


















Discussion


The sub function finds the first instance of the old substring within
string and replaces it with the new substring:


str <- "Curly is the smart one. Curly is funny, too."
sub("Curly", "Moe", str)
#> [1] "Moe is the smart one. Curly is funny, too."


gsub does the same thing, but it replaces all instances of the
substring (a global replace), not just of the first instance:


gsub("Curly", "Moe", str)
#> [1] "Moe is the smart one. Moe is funny, too."


To remove a substring altogether, simply set the new substring to be
empty:


sub(" and SAS", "", "For really tough problems, you need R and SAS.")
#> [1] "For really tough problems, you need R."


The old argument can be a regular expression, which allows you to match
patterns much more complicated than a simple string. This is actually
assumed by default, so you must set the fixed=TRUE argument if you
don’t want sub and gsub to interpret old as a regular expression.

















See Also


To learn more about regular expressions in R, see the help page for
regexp. See Mastering Regular Expressions to learn more about regular expressions in
general.
























7.6 Generating All Pairwise Combinations of Strings










Problem


You have two sets of strings, and you want to generate all combinations
from those two sets (their Cartesian product).

















Solution


Use the outer and paste functions together to generate the matrix of
all possible combinations:

m <- outer(strings1, strings2, paste, sep = "")


















Discussion


The outer function is intended to form the outer product. However, it
allows a third argument to replace simple multiplication with any
function. In this recipe we replace multiplication with string
concatenation (paste), and the result is all combinations of strings.


Suppose we have four test sites and three treatments:


locations <- c("NY", "LA", "CHI", "HOU")
treatments <- c("T1", "T2", "T3")


We can apply outer and paste to generate all combinations of test
sites and treatments like so:


outer(locations, treatments, paste, sep = "-")
#>      [,1]     [,2]     [,3]
#> [1,] "NY-T1"  "NY-T2"  "NY-T3"
#> [2,] "LA-T1"  "LA-T2"  "LA-T3"
#> [3,] "CHI-T1" "CHI-T2" "CHI-T3"
#> [4,] "HOU-T1" "HOU-T2" "HOU-T3"


The fourth argument of outer is passed to paste. In this case, we
passed sep="-" in order to define a hyphen as the separator between
the strings.


The result of outer is a matrix. If you want the combinations in a
vector instead, flatten the matrix using the as.vector function.


In the special case where you are combining a set with itself and order
does not matter, the result will be duplicate combinations:


outer(treatments, treatments, paste, sep = "-")
#>      [,1]    [,2]    [,3]
#> [1,] "T1-T1" "T1-T2" "T1-T3"
#> [2,] "T2-T1" "T2-T2" "T2-T3"
#> [3,] "T3-T1" "T3-T2" "T3-T3"


Or you can use expand.grid to get a pair of vectors representing all
combinations:


expand.grid(treatments, treatments)
#>   Var1 Var2
#> 1   T1   T1
#> 2   T2   T1
#> 3   T3   T1
#> 4   T1   T2
#> 5   T2   T2
#> 6   T3   T2
#> 7   T1   T3
#> 8   T2   T3
#> 9   T3   T3


But suppose we want all unique pairwise combinations of treatments. We
can eliminate the duplicates by removing the lower triangle (or upper
triangle). The lower.tri function identifies that triangle, so
inverting it identifies all elements outside the lower triangle:


m <- outer(treatments, treatments, paste, sep = "-")
m[!lower.tri(m)]
#> [1] "T1-T1" "T1-T2" "T2-T2" "T1-T3" "T2-T3" "T3-T3"

















See Also


See Recipe 13.3 for using paste to generate combinations of strings. The
gtools
package on CRAN has the functions combinations and permutation,
which may be of help with related tasks.
























7.7 Getting the Current Date










Problem


You need to know today’s date.

















Solution


The Sys.Date function returns the current date:


Sys.Date()
#> [1] "2019-05-13"

















Discussion


The Sys.Date function returns a Date object. In the preceding
example it seems to return a string because the result is printed inside
double quotes. What really happens, however, is that Sys.Date
returns a Date object and then R converts that object into a string
for printing purposes. You can see this by checking the class of the
result from Sys.Date:


class(Sys.Date())
#> [1] "Date"

















See Also


See Recipe 7.9.
























7.8 Converting a String into a Date










Problem


You have the string representation of a date, such as "2018-12-31",
and you want to convert that into a Date object.

















Solution


You can use as.Date, but you must know the format of the string. By
default, as.Date assumes the string looks like yyyy-mm-dd. To handle
other formats, you must specify the format parameter of as.Date. Use
format="%m/%d/%Y" if the date is in American style, for instance.

















Discussion


This example shows the default format assumed by as.Date, which is the
ISO 8601 standard format of yyyy-mm-dd:


as.Date("2018-12-31")
#> [1] "2018-12-31"


The as.Date function returns a Date object that (as in the prior
recipe) is being converted here back to a string for printing; this
explains the double quotes around the output.


The string can be in other formats, but you must provide a format
argument so that as.Date can interpret your string. See the help page
for the stftime function for details about allowed formats.


Being simple Americans, we often mistakenly try to convert the usual
American date format (mm/dd/yyyy) into a Date object, with these
unhappy results:


as.Date("12/31/2018")
#> Error in charToDate(x): character string is not in a standard
#> unambiguous format


Here is the correct way to convert an American-style date:


as.Date("12/31/2018", format = "%m/%d/%Y")
#> [1] "2018-12-31"


Observe that the Y in the format string is capitalized to indicate a
four-digit year. If you’re using two-digit years, specify a lowercase
y.
























7.9 Converting a Date into a String










Problem


You want to convert a Date object into a character string, usually
because you want to print the date.

















Solution


Use either format or as.character:


format(Sys.Date())
#> [1] "2019-05-13"
as.character(Sys.Date())
#> [1] "2019-05-13"


Both functions allow a format argument that controls the formatting.
Use format="%m/%d/%Y" to get American-style dates, for example:


format(Sys.Date(), format = "%m/%d/%Y")
#> [1] "05/13/2019"

















Discussion


The format argument defines the appearance of the resulting string.
Normal characters, such as a slash (/) or hyphen (-), are simply copied
to the output string. Each two-letter combination of a percent sign
(%) followed by another character has special meaning. Some common
ones are:


	%b

	
Abbreviated month name (“Jan”)



	%B

	
Full month name (“January”)



	%d

	
Day as a two-digit number



	%m

	
Month as a two-digit number



	%y

	
Year without century (00–99)



	%Y

	
Year with century






See the help page for the strftime function for a complete list of
formatting codes.
























7.10 Converting Year, Month, and Day into a Date










Problem


You have a date represented by its year, month, and day in different
variables. You want to merge these elements into a single Date object
representation.

















Solution


Use the ISOdate function:


ISOdate(year, month, day)


The result is a POSIXct object that you can convert into a Date
object:


year <- 2018
month <- 12
day <- 31
as.Date(ISOdate(year, month, day))
#> [1] "2018-12-31"

















Discussion


It is common for input data to contain dates encoded as three numbers:
year, month, and day. The ISOdate function can combine them into a
POSIXct object:


ISOdate(2020, 2, 29)
#> [1] "2020-02-29 12:00:00 GMT"


You can keep your date in the POSIXct format. However, when working
with pure dates (not dates and times), we often convert to a Date
object and truncate the unused time information:


as.Date(ISOdate(2020, 2, 29))
#> [1] "2020-02-29"


Trying to convert an invalid date results in NA:


ISOdate(2013, 2, 29) # Oops! 2013 is not a leap year
#> [1] NA


ISOdate can process entire vectors of years, months, and days, which
is quite handy for mass conversion of input data. The following example
starts with the year/month/day numbers for the third Wednesday in
January of several years and then combines them all into Date objects:


years <- c(2010, 2011, 2012, 2014)
months <- c(1, 1, 1, 1, 1)
days <- c(15, 21, 20, 18, 17)
ISOdate(years, months, days)
#> [1] "2010-01-05 12:00:00 GMT" "2011-01-06 12:00:00 GMT"
#> [3] "2012-01-07 12:00:00 GMT" "2013-01-08 12:00:00 GMT"
#> [5] "2014-01-09 12:00:00 GMT"
as.Date(ISOdate(years, months, days))
#> [1] "2010-01-05" "2011-01-06" "2012-01-07" "2013-01-08" "2014-01-09"


Purists will note that the vector of months is redundant and that the
last expression can therefore be further simplified by invoking the
Recycling Rule:


as.Date(ISOdate(years, 1, days))
#> [1] "2010-01-05" "2011-01-06" "2012-01-07" "2013-01-08" "2014-01-09"


You can also extend this recipe to handle year, month, day, hour,
minute, and second data by using the ISOdatetime function (see the
help page for details):


ISOdatetime(year, month, day, hour, minute, second)
























7.11 Getting the Julian Date










Problem


Given a Date object, you want to extract the Julian date—which is, in
R, the number of days since January 1, 1970.

















Solution


Either convert the Date object to an integer or use the julian
function:


d <- as.Date("2019-03-15")
as.integer(d)
#> [1] 17970
jd <- julian(d)
jd
#> [1] 17970
#> attr(,"origin")
#> [1] "1970-01-01"
attr(jd, "origin")
#> [1] "1970-01-01"

















Discussion


A Julian “date” is simply the number of days since an arbitrary starting point. In the case of R, that starting point is
January 1, 1970, the same starting point as Unix systems. So the Julian
date for January 1, 1970 is zero, as shown here:


as.integer(as.Date("1970-01-01"))
#> [1] 0
as.integer(as.Date("1970-01-02"))
#> [1] 1
as.integer(as.Date("1970-01-03"))
#> [1] 2
























7.12 Extracting the Parts of a Date










Problem


Given a Date object, you want to extract a date part such as the day
of the week, the day of the year, the calendar day, the calendar month,
or the calendar year.

















Solution


Convert the Date object to a POSIXlt object, which is a list of date
parts. Then extract the desired part from that list:


d <- as.Date("2019-03-15")
p <- as.POSIXlt(d)
p$mday        # Day of the month
#> [1] 15
p$mon         # Month (0 = January)
#> [1] 2
p$year + 1900 # Year
#> [1] 2019

















Discussion


The POSIXlt object represents a date as a list of date parts. Convert
your Date object to POSIXlt by using the as.POSIXlt function,
which will give you a list with these members:


	sec

	
Seconds (0–61)



	min

	
Minutes (0–59)



	hour

	
Hours (0–23)



	mday

	
Day of the month (1–31)



	mon

	
Month (0–11)



	year

	
Years since 1900



	wday

	
Day of the week (0–6, 0 = Sunday)



	yday

	
Day of the year (0–365)



	isdst

	
Daylight Saving Time flag






Using these date parts, we can learn that April 2, 2020, is a Thursday
(wday = 4) and the 93rd day of the year (because yday = 0 on January
1):


d <- as.Date("2020-04-02")
as.POSIXlt(d)$wday
#> [1] 4
as.POSIXlt(d)$yday
#> [1] 92


A common mistake is failing to add 1900 to the year, giving the
impression you are living a long, long time ago:


as.POSIXlt(d)$year # Oops!
#> [1] 120
as.POSIXlt(d)$year + 1900
#> [1] 2020
























7.13 Creating a Sequence of Dates










Problem


You want to create a sequence of dates, such as a sequence of daily,
monthly, or annual dates.

















Solution


The seq function is a generic function that has a version for Date
objects. It can create a Date sequence similarly to the way it creates
a sequence of numbers.

















Discussion


A typical use of seq specifies a starting date (from), ending date
(to), and increment (by). An increment of 1 indicates daily dates:


s <- as.Date("2019-01-01")
e <- as.Date("2019-02-01")
seq(from = s, to = e, by = 1) # One month of dates
#>  [1] "2019-01-01" "2019-01-02" "2019-01-03" "2019-01-04" "2019-01-05"
#>  [6] "2019-01-06" "2019-01-07" "2019-01-08" "2019-01-09" "2019-01-10"
#> [11] "2019-01-11" "2019-01-12" "2019-01-13" "2019-01-14" "2019-01-15"
#> [16] "2019-01-16" "2019-01-17" "2019-01-18" "2019-01-19" "2019-01-20"
#> [21] "2019-01-21" "2019-01-22" "2019-01-23" "2019-01-24" "2019-01-25"
#> [26] "2019-01-26" "2019-01-27" "2019-01-28" "2019-01-29" "2019-01-30"
#> [31] "2019-01-31" "2019-02-01"


Another typical use specifies a starting date (from), increment
(by), and number of dates (length.out):


seq(from = s, by = 1, length.out = 7) # Dates, one week apart
#> [1] "2019-01-01" "2019-01-02" "2019-01-03" "2019-01-04" "2019-01-05"
#> [6] "2019-01-06" "2019-01-07"


The increment (by) is flexible and can be specified in days, weeks,
months, or years:


seq(from = s, by = "month", length.out = 12)   # First of the month for one year
#>  [1] "2019-01-01" "2019-02-01" "2019-03-01" "2019-04-01" "2019-05-01"
#>  [6] "2019-06-01" "2019-07-01" "2019-08-01" "2019-09-01" "2019-10-01"
#> [11] "2019-11-01" "2019-12-01"
seq(from = s, by = "3 months", length.out = 4) # Quarterly dates for one year
#> [1] "2019-01-01" "2019-04-01" "2019-07-01" "2019-10-01"
seq(from = s, by = "year", length.out = 10)    # Year-start dates for one decade
#>  [1] "2019-01-01" "2020-01-01" "2021-01-01" "2022-01-01" "2023-01-01"
#>  [6] "2024-01-01" "2025-01-01" "2026-01-01" "2027-01-01" "2028-01-01"


Be careful with by="month" near month-end. In this example, the end of
February overflows into March, which is probably not what you want:


seq(as.Date("2019-01-29"), by = "month", len = 3)
#> [1] "2019-01-29" "2019-03-01" "2019-03-29"



















Chapter 8. Probability



Probability theory is the foundation of statistics, and R has plenty of
machinery for working with probability, probability distributions, and
random variables. The recipes in this chapter show you how to calculate
probabilities from quantiles, calculate quantiles from probabilities,
generate random variables drawn from distributions, plot distributions,
and so forth.










Names of Distributions


R has an abbreviated name for every probability distribution. This name
is used to identify the functions associated with the distribution. For
example, the name of the normal distribution is “norm,” which is the
root of the function names listed in Table 8-1.


Table 8-1. Normal distribution functions


	Function
	Purpose





	dnorm

	Normal density




	pnorm

	Normal distribution function




	qnorm

	Normal quantile function




	rnorm

	Normal random variates







Table 8-2 describes some common discrete
distributions, and Table 8-3 describes several
common continuous distributions.


Table 8-2. Common discrete distributions


	Discrete distribution
	R name
	Parameters





	Binomial

	binom

	n = number of trials; p = probability of success
for one trial




	Geometric

	geom

	p = probability of success for one trial




	Hypergeometric

	hyper

	m = number of white balls in urn; n =
number of black balls in urn; k = number of balls drawn from urn




	Negative binomial (NegBinomial)

	nbinom

	size = number of
successful trials; either prob = probability of successful trial or
mu = mean




	Poisson

	pois

	lambda = mean







Table 8-3. Common continuous distributions


	Continuous distribution
	R name
	Parameters





	Beta

	beta

	shape1; shape2




	Cauchy

	cauchy

	location; scale




	Chi-squared (Chisquare)

	chisq

	df = degrees of freedom




	Exponential

	exp

	rate




	F

	f

	df1 and df2 = degrees of freedom




	Gamma

	gamma

	rate or scale




	Log-normal (Lognormal)

	lnorm

	meanlog = mean on logarithmic scale;
sdlog = standard deviation on logarithmic scale




	Logistic

	logis

	location; scale




	Normal

	norm

	mean; sd = standard deviation




	Student’s t (TDist)

	t

	df = degrees of freedom




	Uniform

	unif

	min = lower limit; max = upper limit




	Weibull

	weibull

	shape; scale




	Wilcoxon

	wilcox

	m = number of observations in first sample; n =
number of observations in second sample






Warning

All distribution-related functions require distributional parameters,
such as size and prob for the binomial or prob for the geometric.
The big “gotcha” is that the distributional parameters may not be what
you expect. For example, we would expect the parameter of an exponential
distribution to be β, the mean. The R convention, however, is for the
exponential distribution to be defined by the rate = 1/β, so we often
supply the wrong value. The moral is, study the help page before you use
a function related to a distribution. Be sure you’ve got the parameters
right.



















Getting Help on Probability Distributions


To see the R functions related to a particular probability distribution,
use the help command and the full name of the distribution. For example,
this will show the functions related to the normal distribution:


?Normal


Some distributions have names that don’t work well with the help
command, such as “Student’s t.” They have special help names, as noted
in Table 8-2 and Table 8-3:
NegBinomial, Chisquare, Lognormal, and TDist. Thus, to get help on the
Student’s t distribution, use this:


?TDist

















See Also


There are many other distributions implemented in downloadable packages;
see the CRAN task view devoted to
probability
distributions. The SuppDists package is part of the R base, and it
includes 10 supplemental distributions. The MASS package, which is
also part of the base, provides additional support for distributions,
such as maximum-likelihood fitting for some common distributions as well
as sampling from a multivariate normal distribution.















8.1 Counting the Number of Combinations










Problem


You want to calculate the number of combinations of n items taken k
at a time.

















Solution


Use the choose function:

choose(n, k)


















Discussion


A common problem in computing probabilities of discrete variables is
counting combinations: the number of distinct subsets of size k that
can be created from n items. The number is given by n!/r!(n –
r)!, but it’s much more convenient to use the choose
function—especially as n and k grow larger:


choose(5, 3)   # How many ways can we select 3 items from 5 items?
#> [1] 10
choose(50, 3)  # How many ways can we select 3 items from 50 items?
#> [1] 19600
choose(50, 30) # How many ways can we select 30 items from 50 items?
#> [1] 4.71e+13


These numbers are also known as binomial coefficients.

















See Also


This recipe merely counts the combinations; see Recipe 8.2 to
actually generate them.
























8.2 Generating Combinations










Problem


You want to generate all combinations of n items taken k at a time.

















Solution


Use the combn function:


items <- 2:5
k <- 2
combn(items, k)
#>      [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,]    2    2    2    3    3    4
#> [2,]    3    4    5    4    5    5

















Discussion


We can use combn(1:5,3) to generate all combinations of the numbers 1
through 5 taken three at a time:


combn(1:5, 3)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,]    1    1    1    1    1    1    2    2    2     3
#> [2,]    2    2    2    3    3    4    3    3    4     4
#> [3,]    3    4    5    4    5    5    4    5    5     5


The function is not restricted to numbers. We can generate combinations
of strings, too. Here are all combinations of five treatments taken
three at a time:


combn(c("T1", "T2", "T3", "T4", "T5"), 3)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] "T1" "T1" "T1" "T1" "T1" "T1" "T2" "T2" "T2" "T3"
#> [2,] "T2" "T2" "T2" "T3" "T3" "T4" "T3" "T3" "T4" "T4"
#> [3,] "T3" "T4" "T5" "T4" "T5" "T5" "T4" "T5" "T5" "T5"

Warning

As the number of items, n, increases, the number of combinations can
explode—especially if k is not near to 1 or n.



















See Also


See Recipe 8.1 to count the number of possible combinations before
you generate a huge set.
























8.3 Generating Random Numbers










Problem


You want to generate random numbers.

















Solution


The simple case of generating a uniform random number between 0 and 1 is
handled by the runif function. This example generates one uniform
random number:


runif(1)
#> [1] 0.915

Note

If you are saying runif out loud (or even in your head), you
should pronounce it “are unif” instead of “run if.” The term runif is
a portmanteau of “random uniform” so should not sound as if it’s a
flow control function.




R can generate random variates from other distributions as well. For a
given distribution, the name of the random number generator is “r”
prefixed to the distribution’s abbreviated name (e.g., rnorm for the
normal distribution’s random number generator). This example generates
one random value from the standard normal distribution:


rnorm(1)
#> [1] 1.53

















Discussion


Most programming languages have a wimpy random number generator that
generates one random number, uniformly distributed between 0.0 and 1.0,
and that’s all. Not R.


R can generate random numbers from many probability distributions other
than the uniform distribution. The simple case of generating uniform
random numbers between 0 and 1 is handled by the runif function:


runif(1)
#> [1] 0.83


The argument of runif is the number of random values to be generated.
Generating a vector of 10 such values is as easy as generating one:


runif(10)
#>  [1] 0.642 0.519 0.737 0.135 0.657 0.705 0.458 0.719 0.935 0.255


There are random number generators for all built-in distributions.
Simply prefix the distribution name with “r” and you have the name of
the corresponding random number generator. Here are some common ones:


runif(1, min = -3, max = 3)      # One uniform variate between -3 and +3
#> [1] 2.49
rnorm(1)                         # One standard Normal variate
#> [1] 1.53
rnorm(1, mean = 100, sd = 15)    # One Normal variate, mean 100 and SD 15
#> [1] 114
rbinom(1, size = 10, prob = 0.5) # One binomial variate
#> [1] 5
rpois(1, lambda = 10)            # One Poisson variate
#> [1] 12
rexp(1, rate = 0.1)              # One exponential variate
#> [1] 3.14
rgamma(1, shape = 2, rate = 0.1) # One gamma variate
#> [1] 22.3


As with runif, the first argument is the number of random values to be
generated. Subsequent arguments are the parameters of the distribution,
such as mean and sd for the normal distribution or size and prob
for the binomial. See the function’s R help page for details.


The examples given so far use simple scalars for distributional
parameters. Yet the parameters can also be vectors, in which case R will
cycle through the vector while generating random values. The following
example generates three normal random values drawn from distributions
with means of –10, 0, and +10, respectively (all distributions have a
standard deviation of 1.0):


rnorm(3, mean = c(-10, 0, +10), sd = 1)
#> [1] -9.420 -0.658 11.555


That is a powerful capability in cases such as hierarchical models,
where the parameters are themselves random. The next example calculates
30 draws of a normal variate whose mean is itself randomly distributed
and with hyperparameters of μ = 0 and σ = 0.2:


means <- rnorm(30, mean = 0, sd = 0.2)
rnorm(30, mean = means, sd = 1)
#>  [1] -0.5549 -2.9232 -1.2203  0.6962  0.1673 -1.0779 -0.3138 -3.3165
#>  [9]  1.5952  0.8184 -0.1251  0.3601 -0.8142  0.1050  2.1264  0.6943
#> [17] -2.7771  0.9026  0.0389  0.2280 -0.5599  0.9572  0.1972  0.2602
#> [25] -0.4423  1.9707  0.4553  0.0467  1.5229  0.3176


If you are generating many random values and the vector of parameters is
too short, R will apply the Recycling Rule to the parameter vector.

















See Also


See the introduction to this chapter.
























8.4 Generating Reproducible Random Numbers










Problem


You want to generate a sequence of random numbers, but you want to
reproduce the same sequence every time your program runs.

















Solution


Before running your R code, call the set.seed function to initialize
the random number generator to a known state:


set.seed(42) # Or use any other positive integer...

















Discussion


After generating random numbers, you may often want to reproduce the
same sequence of “random” numbers every time your program executes. That
way, you get the same results from run to run. One of the authors once
supported a complicated Monte Carlo analysis of a huge portfolio of
securities. The users complained about getting slightly different
results each time the program ran. No kidding! The analysis was driven
entirely by random numbers, so of course there was randomness in the
output. The solution was to set the random number generator to a known
state at the beginning of the program. That way, it would generate the
same (quasi-)random numbers each time and thus yield consistent,
reproducible results.


In R, the set.seed function sets the random number generator to a
known state. The function takes one argument, an integer. Any positive
integer will work, but you must use the same one in order to get the
same initial state.


The function returns nothing. It works behind the scenes, initializing
(or reinitializing) the random number generator. The key here is that
using the same seed restarts the random number generator back at the
same place:


set.seed(165)   # Initialize generator to known state
runif(10)       # Generate ten random numbers
#>  [1] 0.116 0.450 0.996 0.611 0.616 0.426 0.666 0.168 0.788 0.442

set.seed(165)   # Reinitialize to the same known state
runif(10)       # Generate the same ten "random" numbers
#>  [1] 0.116 0.450 0.996 0.611 0.616 0.426 0.666 0.168 0.788 0.442

Warning

When you set the seed value and freeze your sequence of random numbers,
you are eliminating a source of randomness that may be critical to
algorithms such as Monte Carlo simulations. Before you call set.seed
in your application, ask yourself: am I undercutting the value of my
program or perhaps even damaging its logic?



















See Also


See Recipe 8.3 for more about generating random numbers.
























8.5 Generating a Random Sample










Problem


You want to sample a dataset randomly.

















Solution


The sample function will randomly select n items from a set:

sample(set, n)


















Discussion


Suppose your World Series data contains a vector of years when the
Series was played. You can select 10 years at random using sample:


world_series <- read_csv("./data/world_series.csv")
sample(world_series$year, 10)
#>  [1] 2010 1961 1906 1992 1982 1948 1910 1973 1967 1931


The items are randomly selected, so running sample again (usually)
produces a different result:


sample(world_series$year, 10)
#>  [1] 1941 1973 1921 1958 1979 1946 1932 1919 1971 1974


The sample function normally samples without replacement, meaning it
will not select the same item twice. Some statistical procedures
(especially the bootstrap) require sampling with replacement, which
means that one item can appear multiple times in the sample. Specify
replace=TRUE to sample with replacement.


It’s easy to implement a simple bootstrap using sampling with
replacement. Suppose we have a vector, x, of 1,000 random numbers,
drawn from a normal distribution with mean 4 and standard deviation 10:


set.seed(42)
x <- rnorm(1000, 4, 10)


This code fragment samples 1,000 times from x and calculates the
median of each sample:


medians <- numeric(1000)   # empty vector of 1000 numbers
for (i in 1:1000) {
  medians[i] <- median(sample(x, replace = TRUE))
}


From the bootstrap estimates, we can estimate the confidence interval
for the median:


ci <- quantile(medians, c(0.025, 0.975))
cat("95% confidence interval is (", ci, ")\n")
#> 95% confidence interval is ( 3.16 4.49 )


We know that x was created from a normal distribution with a mean of 4, and hence the sample median should be 4 also. (In a symmetrical
distribution like this one, the mean and the median are the same.) Our
confidence interval easily contains the value.

















See Also


See Recipe 8.7 for randomly permuting a vector and Recipe 13.8 for more about
bootstrapping. Recipe 8.4 discusses setting seeds for quasi-random
numbers.
























8.6 Generating Random Sequences










Problem


You want to generate a random sequence, such as a series of simulated
coin tosses or a simulated sequence of Bernoulli trials.

















Solution


Use the sample function. Sample n draws from the set of possible
values, and set replace=TRUE:

sample(set, n, replace = TRUE)


















Discussion


The sample function randomly selects items from a set. It normally
samples without replacement, which means that it will not select the
same item twice and will return an error if you try to sample more items
than exist in the set. With replace=TRUE, however, sample can select
items over and over; this allows you to generate long, random sequences
of items.


The following example generates a random sequence of 10 simulated flips
of a coin:


sample(c("H", "T"), 10, replace = TRUE)
#>  [1] "H" "T" "H" "T" "T" "T" "H" "T" "T" "H"


The next example generates a sequence of 20 Bernoulli trials—random
successes or failures. We use TRUE to signify a success:


sample(c(FALSE, TRUE), 20, replace = TRUE)
#>  [1]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
#> [12]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE


By default sample will choose equally among the set elements, so
the probability of selecting either TRUE or FALSE is 0.5. With a
Bernoulli trial, the probability p of success is not necessarily 0.5.
You can bias the sample by using the prob argument of sample; this
argument is a vector of probabilities, one for each set element. Suppose
we want to generate 20 Bernoulli trials with a probability of success
p = 0.8. We set the probability of FALSE to be 0.2 and the
probability of TRUE to 0.8:


sample(c(FALSE, TRUE), 20, replace = TRUE, prob = c(0.2, 0.8))
#>  [1]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
#> [12]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE


The resulting sequence is clearly biased toward TRUE. We chose this
example because it’s a simple demonstration of a general technique. For
the special case of a binary-valued sequence you can use rbinom, the
random generator for binomial variates:


rbinom(10, 1, 0.8)
#>  [1] 1 0 1 1 1 1 1 0 1 1
























8.7 Randomly Permuting a Vector










Problem


You want to generate a random permutation of a vector.

















Solution


If v is your vector, then sample(v) returns a random permutation.

















Discussion


We typically think of the sample function for sampling from large
datasets. However, the default parameters enable you to create a random
rearrangement of the dataset. The function call sample(v) is
equivalent to:


sample(v, size = length(v), replace = FALSE)


which means “select all the elements of v in random order while using
each element exactly once.” That is a random permutation. Here is a
random permutation of 1, …, 10:


sample(1:10)
#>  [1]  7  3  6  1  5  2  4  8 10  9

















See Also


See Recipe 8.5 for more about sample.
























8.8 Calculating Probabilities for Discrete Distributions










Problem


You want to calculate either the simple or the cumulative probability
associated with a discrete random variable.

















Solution


For a simple probability, P(X = x), use the density function. All
built-in probability distributions have a density function whose name is
“d” prefixed to the distribution name; for example, dbinom for the
binomial distribution.


For a cumulative probability, P(X ≤ x), use the distribution
function. All built-in probability distributions have a distribution
function whose name is “p” prefixed to the distribution name; thus,
pbinom is the distribution function for the binomial distribution.

















Discussion


Suppose we have a binomial random variable X over 10 trials, where
each trial has a success probability of 1/2. Then we can calculate the
probability of observing x = 7 by calling dbinom:


dbinom(7, size = 10, prob = 0.5)
#> [1] 0.117


That calculates a probability of about 0.117. R calls dbinom the
density function. Some textbooks call it the probability mass
function or the probability function. Calling it a density function
keeps the terminology consistent between discrete and continuous
distributions (see Recipe 8.9).


The cumulative probability, P(X ≤ x), is given by the
distribution function, which is sometimes called the cumulative
probability function. The distribution function for the binomial
distribution is pbinom. Here is the cumulative probability for x = 7
(i.e., P(X ≤ 7)):


pbinom(7, size = 10, prob = 0.5)
#> [1] 0.945


It appears the probability of observing X ≤ 7 is about 0.945.


The density functions and distribution functions for some common
discrete distributions are shown in Table 8-4.


Table 8-4. Discrete distributions


	Distribution
	Density function: P(X = x)
	Distribution function:
P(X ≤ x)





	Binomial

	dbinom(x, size, prob)

	pbinom(x, size, prob)




	Geometric

	dgeom(x, prob)

	pgeom(x, prob)




	Poisson

	dpois(x, lambda)

	ppois(x, lambda)







The complement of the cumulative probability is the survival function,
P(X > x). All of the distribution functions let you find this
right-tail probability simply by specifying lower.tail=FALSE:


pbinom(7, size = 10, prob = 0.5, lower.tail = FALSE)
#> [1] 0.0547


Thus we see that the probability of observing X > 7 is about 0.055.


The interval probability, P(x1 < X ≤ x2), is the
probability of observing X between the limits x1 and x2. It is
calculated as the difference between two cumulative probabilities:
P(X ≤ x2) – P(X ≤ x1). Here is P(3 < X ≤ 7) for our
binomial variable:


pbinom(7, size = 10, prob = 0.5) - pbinom(3, size = 10, prob = 0.5)
#> [1] 0.773


R lets you specify multiple values of x for these functions and will
return a vector of the corresponding probabilities. Here we calculate
two cumulative probabilities, P(X ≤ 3) and P(X ≤ 7), in one call
to pbinom:


pbinom(c(3, 7), size = 10, prob = 0.5)
#> [1] 0.172 0.945


This leads to a one-liner for calculating interval probabilities. The
diff function calculates the difference between successive elements of
a vector. We apply it to the output of pbinom to obtain the difference
in cumulative probabilities—in other words, the interval probability:


diff(pbinom(c(3, 7), size = 10, prob = 0.5))
#> [1] 0.773

















See Also


See this chapter’s introduction for more about
the built-in probability distributions.
























8.9 Calculating Probabilities for Continuous Distributions










Problem


You want to calculate the distribution function (DF) or cumulative
distribution function (CDF) for a continuous random variable.

















Solution


Use the distribution function, which calculates P(X ≤ x). All
built-in probability distributions have a distribution function whose
name is “p” prefixed to the distribution’s abbreviated name—for
instance, pnorm for the normal distribution.


For example, we can calculate the probability of a draw being from
a random standard normal distribution being below 0.8 as follows:


pnorm(q = .8, mean = 0, sd = 1)
#> [1] 0.788

















Discussion


The R functions for probability distributions follow a consistent
pattern, so the solution to this recipe is essentially identical to the
solution for discrete random variables (see Recipe 8.8). The significant difference is that continuous
variables have no “probability” at a single point, P(X = x).
Instead, they have a “density” at a point.


Given that consistency, the discussion of distribution functions in
Recipe 8.8 is applicable here, too. Table 8-5 gives the distribution functions for several
continuous distributions.


Table 8-5. Continuous distributions


	Distribution
	Distribution function: P(X ≤ x)





	Normal

	pnorm(x, mean, sd)




	Student’s t

	pt(x, df)




	Exponential

	pexp(x, rate)




	Gamma

	pgamma(x, shape, rate)




	Chi-squared (χ2)

	pchisq(x, df)







We can use pnorm to calculate the probability that a man is shorter
than 66 inches, assuming that men’s heights are normally distributed
with a mean of 70 inches and a standard deviation of 3 inches.
Mathematically speaking, we want P(X ≤ 66) given that X ~ N(70,
3):


pnorm(66, mean = 70, sd = 3)
#> [1] 0.0912


Likewise, we can use pexp to calculate the probability that an
exponential variable with a mean of 40 could be less than 20:


pexp(20, rate = 1 / 40)
#> [1] 0.393


Just as for discrete probabilities, the functions for continuous
probabilities use lower.tail=FALSE to specify the survival function,
P(X > x). This call to pexp gives the probability that the same
exponential variable could be greater than 50:


pexp(50, rate = 1 / 40, lower.tail = FALSE)
#> [1] 0.287


Also like discrete probabilities, the interval probability for a
continuous variable, P(x1 < X < x2), is computed as the
difference between two cumulative probabilities, P(X < x2) –
P(X < x1). For the same exponential variable, here is P(20 <
X < 50), the probability that it could fall between 20 and 50:


pexp(50, rate = 1 / 40) - pexp(20, rate = 1 / 40)
#> [1] 0.32

















See Also


See this chapter’s introduction for more about
the built-in probability distributions.
























8.10 Converting Probabilities to Quantiles










Problem


Given a probability p and a distribution, you want to determine the
corresponding quantile for p: the value x such that P(X ≤ x) =
p.

















Solution


Every built-in distribution includes a quantile function that converts
probabilities to quantiles. The function’s name is “q” prefixed to the
distribution name; thus, for instance, qnorm is the quantile function
for the normal distribution.


The first argument of the quantile function is the probability. The
remaining arguments are the distribution’s parameters, such as mean,
shape, or rate:


qnorm(0.05, mean = 100, sd = 15)
#> [1] 75.3

















Discussion


A common example of computing quantiles is when we compute the limits of
a confidence interval. If we want to know the 95% confidence interval
(α = 0.05) of a standard Normal variable, then we need the quantiles
with probabilities of α/2 = 0.025 and (1 – α)/2 = 0.975:


qnorm(0.025)
#> [1] -1.96
qnorm(0.975)
#> [1] 1.96


In the true spirit of R, the first argument of the quantile functions
can be a vector of probabilities, in which case we get a vector of
quantiles. We can simplify this example into a one-liner:


qnorm(c(0.025, 0.975))
#> [1] -1.96  1.96


All the built-in probability distributions provide a quantile function.
Table 8-6 shows the quantile functions for
some common discrete distributions.


Table 8-6. Discrete quantile distributions


	Distribution
	Quantile function





	Binomial

	qbinom(p, size, prob)




	Geometric

	qgeom(p, prob)




	Poisson

	qpois(p, lambda)







Table 8-7 shows the quantile functions for common
continuous distributions.


Table 8-7. Continuous quantile distributions


	Distribution
	Quantile function





	Normal

	qnorm(p, mean, sd)




	Student’s t

	qt(p, df)




	Exponential

	qexp(p, rate)




	Gamma

	qgamma(p, shape, rate) or
qgamma(p, shape, scale)




	Chi-squared (χ2)

	qchisq(p, df)






















See Also


Determining the quantiles of a dataset is different from determining the
quantiles of a distribution—see Recipe 9.5.
























8.11 Plotting a Density Function










Problem


You want to plot the density function of a probability distribution.

















Solution


Define a vector x over the domain. Apply the distribution’s density
function to x and then plot the result. If x is a vector of points
over the domain you care about plotting, you then calculate the density
using one of the d_____ density functions, like dlnorm for lognormal
or dnorm for normal:


dens <- data.frame(x = x,
                   y = d_____(x))
ggplot(dens, aes(x, y)) + geom_line()


Here is a specific example that plots the standard normal distribution
for the interval –3 to +3:


library(ggplot2)

x <- seq(-3, +3, 0.1)
dens <- data.frame(x = x, y = dnorm(x))

ggplot(dens, aes(x, y)) + geom_line()


Figure 8-1 shows the smooth density function.



[image: rcbk 0801]
Figure 8-1. Smooth density function



















Discussion


All the built-in probability distributions include a density function.
For a particular density, the function name is “d” prepended to the
distribution name. The density function for the normal distribution is
dnorm, the density for the gamma distribution is dgamma, and so
forth.


If the first argument of the density function is a vector, then the
function calculates the density at each point and returns the vector of
densities.


The following code creates a 2 × 2 plot of four densities (Figure 8-2):


x <- seq(from = 0, to = 6, length.out = 100) # Define the density domains
ylim <- c(0, 0.6)

# Make a data.frame with densities of several distributions
df <- rbind(
  data.frame(x = x, dist_name = "Uniform"=, y = dunif(x, min   = 2, max = 4)),
  data.frame(x = x, dist_name = "Normal"=, y = dnorm(x, mean  = 3, sd = 1)),
  data.frame(x = x, dist_name = "Exponential", y = dexp(x, rate  = 1 / 2)),
  data.frame(x = x, dist_name = "Gamma"=, y = dgamma(x, shape = 2, rate = 1)) )

# Make a line plot like before, but use facet_wrap to create the grid
ggplot(data = df, aes(x = x, y = y)) +
  geom_line() +
  facet_wrap(~dist_name)   # facet and wrap by the variable dist_name



[image: rcbk 0802]
Figure 8-2. Multiple density plots




Figure 8-2 shows four density plots. However, a raw
density plot is rarely useful or interesting by itself, and we often
shade a region of interest.


Figure 8-3 is a normal distribution with shading
from the 75th percentile to the 95th percentile.


We create the plot by plotting the density and then creating a
shaded region with the geom_ribbon function from ggplot2.


First, we create some data and draw a density curve like the one shown
in Figure 8-4:


x <- seq(from = -3, to = 3, length.out = 100)
df <- data.frame(x = x, y = dnorm(x, mean = 0, sd = 1))

p <- ggplot(df, aes(x, y)) +
  geom_line() +
  labs(
    title = "Standard Normal Distribution",
    y = "Density",
    x = "Quantile"
  )
p



[image: rcbk 0803]
Figure 8-3. Standard normal with shading





[image: rcbk 0804]
Figure 8-4. Density plot




Next, we define the region of interest by calculating the x values for
the quantiles we’re interested in. Finally, we use geom_ribbon to
add a subset of our original data as a colored region:


q75 <- quantile(df$x, .75)
q95 <- quantile(df$x, .95)

p +
  geom_ribbon(
    data = subset(df, x > q75 & x < q95),
    aes(ymax = y),
    ymin = 0,
    fill = "blue",
    color = NA,
    alpha = 0.5
  )


The resulting
plot is shown in Figure 8-5.



[image: rcbk 0805]
Figure 8-5. Normal density with shading





















Chapter 9. General Statistics



Any significant application of R includes statistics or models or
graphics. This chapter addresses the statistics. Some recipes simply
describe how to calculate a statistic, such as relative frequency. Most
recipes involve statistical tests or confidence intervals. The
statistical tests let you choose between two competing hypotheses; that
paradigm is described next. Confidence intervals reflect the likely
range of a population parameter and are calculated based on your data
sample.










Null Hypotheses, Alternative Hypotheses, and p-Values


Many of the statistical tests in this chapter use a time-tested paradigm
of statistical inference. In the paradigm, we have one or two data
samples. We also have two competing hypotheses, either of which could
reasonably be true.


One hypothesis, called the null hypothesis, is that nothing
happened: the mean was unchanged; the treatment had no effect; you got
the expected answer; the model did not improve; and so forth.


The other hypothesis, called the alternative hypothesis, is that
something happened: the mean rose; the treatment improved the
patients’ health; you got an unexpected answer; the model fit better;
and so forth.


We want to determine which hypothesis is more likely in light of the
data. Here’s how we do this:


	
To begin, we assume that the null hypothesis is true.



	
We calculate a test statistic. It could be something simple, such as
the mean of the sample, or it could be quite complex. The critical
requirement is that we must know the statistic’s distribution. We might
know the distribution of the sample mean, for example, by invoking the
Central Limit Theorem.



	
From the statistic and its distribution we can calculate a
p-value, the probability of a test statistic value as extreme or more
extreme than the one we observed, while assuming that the null
hypothesis is true.



	
If the p-value is too small, we have strong evidence against the
null hypothesis. This is called rejecting the null hypothesis.



	
If the p-value is not small, then we have no such evidence. This
is called failing to reject the null hypothesis.







There is one necessary decision here: when is a p-value “too small”?

Note

In this book, we follow the common convention that we reject the null
hypothesis when p < 0.05 and fail to reject it when p > 0.05. In
statistical terminology, we choose a significance level of α = 0.05 to
define the border between strong evidence and insufficient evidence
against the null hypothesis.




But the real answer is, “It depends.” Your chosen significance level
depends on your problem domain. The conventional limit of p < 0.05
works for many problems. In our work, the data is especially noisy and
so we are often satisfied with p < 0.10. For someone working in
high-risk areas, p < 0.01 or p < 0.001 might be necessary.


In the recipes, we mention which tests include a p-value so that you
can compare the p-value against your chosen significance level of α.
We worded the recipes to help you interpret the comparison. Here is the
wording from Recipe 9.4, a test for the independence of
two factors:


Conventionally, a p-value of less than 0.05 indicates that the
variables are likely not independent, whereas a p-value exceeding 0.05
fails to provide any such evidence.



This is a compact way of saying:



	
The null hypothesis is that the variables are independent.



	
The alternative hypothesis is that the variables are not independent.



	
For α = 0.05, if p < 0.05 then we reject the null hypothesis,
giving strong evidence that the variables are not independent; if p >
0.05, we fail to reject the null hypothesis.



	
You are free to choose your own α, of course, in which case your
decision to reject or fail to reject might be different.






Remember, the recipe states the informal interpretation of the test
results, not the rigorous mathematical interpretation. We use colloquial
language in the hope that it will guide you toward a practical
understanding and application of the test. If the precise semantics of
hypothesis testing are critical for your work, we urge you to consult the
reference cited under See Also or one of the other
fine textbooks on mathematical statistics.

















Confidence Intervals


Hypothesis testing is a well-understood mathematical procedure, but it
can be frustrating. First, the semantics are tricky. The test does not
reach a definite, useful conclusion. You might get strong evidence
against the null hypothesis, but that’s all you’ll get. Second, it does
not give you a number, only evidence.


If you want numbers then use confidence intervals, which bound the
estimate of a population parameter at a given level of confidence.
Recipes in this chapter can calculate confidence intervals for means,
medians, and proportions of a population.


For example, Recipe 9.9 calculates a 95% confidence interval
for the population mean based on sample data. The interval is 97.16 <
μ < 103.98, which means there is a 95% probability that the
population’s mean, μ, is between 97.16 and 103.98.

















See Also


Statistical terminology and conventions can vary. This book generally
follows the conventions of Mathematical Statistics with Applications,
6th ed., by Dennis Wackerly et al. (Duxbury Press). We recommend this
book also for learning more about the statistical tests described in
this chapter.















9.1 Summarizing Your Data










Problem


You want a basic statistical summary of your data.

















Solution


The summary function gives some useful statistics for vectors,
matrices, factors, and data frames:


summary(vec)
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
#>     0.0     0.5     1.0     1.6     1.9    33.0

















Discussion


The Solution exhibits the summary of a vector. The 1st Qu. and
3rd Qu. are the first and third quartile, respectively. Having both
the median and mean is useful because you can quickly detect skew. The
output in the Solution, for example, shows a mean that is larger than the
median; this indicates a possible skew to the right, as one would expect
from a lognormal distribution.


The summary of a matrix works column by column. Here we see the summary
of a matrix, mat, with three columns named Samp1, Samp2, and
Samp3:


summary(mat)
#>      Samp1           Samp2            Samp3
#>  Min.   :  1.0   Min.   :-2.943   Min.   : 0.04
#>  1st Qu.: 25.8   1st Qu.:-0.774   1st Qu.: 0.39
#>  Median : 50.5   Median :-0.052   Median : 0.85
#>  Mean   : 50.5   Mean   :-0.067   Mean   : 1.60
#>  3rd Qu.: 75.2   3rd Qu.: 0.684   3rd Qu.: 2.12
#>  Max.   :100.0   Max.   : 2.150   Max.   :13.18


The summary of a factor gives counts:


summary(fac)
#> Maybe    No   Yes
#>    38    32    30


The summary of a character vector is pretty useless, giving just the vector
length:


summary(char)
#>    Length     Class      Mode
#>       100 character character


The summary of a data frame incorporates all these features. It works
column by column, giving an appropriate summary according to the column
type. Numeric values receive a statistical summary and factors are
counted (character strings are not summarized):


suburbs <- read_csv("./data/suburbs.txt")
summary(suburbs)
#>      city              county             state
#>  Length:17          Length:17          Length:17
#>  Class :character   Class :character   Class :character
#>  Mode  :character   Mode  :character   Mode  :character
#>
#>
#>
#>       pop
#>  Min.   :   5428
#>  1st Qu.:  72616
#>  Median :  83048
#>  Mean   : 249770
#>  3rd Qu.: 102746
#>  Max.   :2853114


The “summary” of a list is pretty funky: you get the data type of each list
member. Here is a summary of a list of vectors:


summary(vec_list)
#>   Length Class  Mode
#> x 100    -none- numeric
#> y 100    -none- numeric
#> z 100    -none- character


To summarize the data inside a list of vectors, map summary to each
list element:


library(purrr)
map(vec_list, summary)
#> $x
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
#>  -2.572  -0.686  -0.084  -0.043   0.660   2.413
#>
#> $y
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
#>  -1.752  -0.589   0.045   0.079   0.769   2.293
#>
#> $z
#>    Length     Class      Mode
#>       100 character character


Unfortunately, the summary function does not compute any measure of
variability, such as standard deviation or median absolute deviation.
This is a serious shortcoming, so we usually call sd or mad (mean absolute deviation) right
after calling summary.

















See Also


See Recipe 2.6 and Recipe 6.1.
























9.2 Calculating Relative Frequencies










Problem


You want to count the relative frequency of certain observations in your
sample.

















Solution


Identify the interesting observations by using a logical expression;
then use the mean function to calculate the fraction of observations
it identifies. For example, given a vector x, you can find the
relative frequency of positive values in this way:


mean(x > 3)
#> [1] 0.12

















Discussion


A logical expression, such as x > 3, produces a vector of logical
values (TRUE and FALSE), one for each element of x. The mean
function converts those values to 1s and 0s, respectively, and computes
the average. This gives the fraction of values that are TRUE—in other
words, the relative frequency of the interesting values. In the
Solution, for example, that’s the relative frequency of values greater
than 3.


The concept here is pretty simple. The tricky part is dreaming up a
suitable logical expression. Here are some examples:


	mean(lab == "NJ")

	
Fraction of lab values that are New Jersey



	mean(after > before)

	
Fraction of observations for which the effect increases



	mean(abs(x-mean(x)) > 2*sd(x))

	
Fraction of observations that exceed two standard deviations from the
mean



	mean(diff(ts) >  0)

	
Fraction of observations in a time series that are larger than the
previous observation




























9.3 Tabulating Factors and Creating Contingency Tables










Problem


You want to tabulate one factor or build a contingency table from
multiple factors.

















Solution


The table function produces counts of one factor:


table(f1)
#> f1
#>  a  b  c  d  e
#> 14 23 24 21 18


It can also produce contingency tables (cross-tabulations) from two or
more factors:


table(f1, f2)
#>    f2
#> f1   f  g  h
#>   a  6  4  4
#>   b  7  9  7
#>   c  4 11  9
#>   d  7  8  6
#>   e  5 10  3


table works for characters, too, not only factors:


t1 <- sample(letters[9:11], 100, replace = TRUE)
table(t1)
#> t1
#>  i  j  k
#> 20 40 40

















Discussion


The table function counts the levels of one factor or characters, such
as these counts of initial and outcome (which are factors):


set.seed(42)
initial <- factor(sample(c("Yes", "No", "Maybe"), 100, replace = TRUE))
outcome <- factor(sample(c("Pass", "Fail"), 100, replace = TRUE))

table(initial)
#> initial
#> Maybe    No   Yes
#>    39    31    30

table(outcome)
#> outcome
#> Fail Pass
#>   56   44


The greater power of table is in producing contingency tables, also
known as cross-tabulations. Each cell in a contingency table counts how
many times that row/column combination occurred:


table(initial, outcome)
#>        outcome
#> initial Fail Pass
#>   Maybe   23   16
#>   No      20   11
#>   Yes     13   17


This table shows that the combination of initial = Yes and
outcome = Fail occurred 13 times, the combination of initial = Yes
and outcome = Pass occurred 17 times, and so forth.

















See Also


The xtabs function can also produce a contingency table. It has a
formula interface, which some people prefer.
























9.4 Testing Categorical Variables for Independence










Problem


You have two categorical variables that are represented by factors. You
want to test them for independence using the chi-squared test.

















Solution


Use the table function to produce a contingency table from the two
factors. Then use the summary function to perform a chi-squared test
of the contingency table. In this example we have two vectors of factor
values, which we created in the prior recipe:


summary(table(initial, outcome))
#> Number of cases in table: 100
#> Number of factors: 2
#> Test for independence of all factors:
#>  Chisq = 3, df = 2, p-value = 0.2


The output includes a p-value. Conventionally, a p-value of less
than 0.05 indicates that the variables are likely not independent,
whereas a p-value exceeding 0.05 fails to provide any such evidence.

















Discussion


This example performs a chi-squared test on the contingency table from
Recipe 9.3, and yields a p-value of 0.2:


summary(table(initial, outcome))
#> Number of cases in table: 100
#> Number of factors: 2
#> Test for independence of all factors:
#>  Chisq = 3, df = 2, p-value = 0.2


The large p-value indicates that the two factors, initial and
outcome, are probably independent. Practically speaking, we conclude
there is no connection between the variables. This makes sense, as this
example data was created by simply drawing random data using the
sample function in the prior recipe.

















See Also


The chisq.test function can also perform this test.
























9.5 Calculating Quantiles (and Quartiles) of a Dataset










Problem


Given a fraction f, you want to know the corresponding quantile of
your data. That is, you seek the observation x such that the fraction
of observations below x is f.

















Solution


Use the quantile function. The second argument is the fraction, f:


quantile(vec, 0.95)
#>  95%
#> 1.43


For quartiles, simply omit the second argument altogether:


quantile(vec)
#>      0%     25%     50%     75%    100%
#> -2.0247 -0.5915 -0.0693  0.4618  2.7019

















Discussion


Suppose vec contains 1,000 observations between 0 and 1. The
quantile function can tell you which observation delimits the lower 5%
of the data:


vec <- runif(1000)
quantile(vec, .05)
#>     5%
#> 0.0451


The quantile documentation refers to the second argument as a
“probability,” which is natural when we think of probability as meaning
relative frequency.


In true R style, the second argument can be a vector of probabilities;
in this case, quantile returns a vector of corresponding quantiles,
one for each probability:


quantile(vec, c(.05, .95))
#>     5%    95%
#> 0.0451 0.9363


That is a handy way to identify the middle 90% (in this case) of the
observations.


If you omit the probabilities altogether, then R assumes you want the
probabilities 0, 0.25, 0.50, 0.75, and 1.0—in other words, the
quartiles:


quantile(vec)
#>       0%      25%      50%      75%     100%
#> 0.000405 0.235529 0.479543 0.737619 0.999379


Amazingly, the quantile function implements nine (yes, nine) different
algorithms for computing quantiles. Study the help page before assuming
that the default algorithm is the best one for you.
























9.6 Inverting a Quantile










Problem


Given an observation x from your data, you want to know its
corresponding quantile. That is, you want to know what fraction of the
data is less than x.

















Solution


Assuming your data is in a vector vec, compare the data against the
observation and then use mean to compute the relative frequency of
values less than x—say, 1.6 as per this example:


mean(vec < 1.6)
#> [1] 0.948

















Discussion


The expression vec < x compares every element of vec against x
and returns a vector of logical values, where the nth logical value is
TRUE if vec[n] < x. The mean function converts those logical
values to 0s and 1s: 0 for FALSE and 1 for TRUE. The average
of all those 1s and 0s is the fraction of vec that is less than
x, or the inverse quantile of x.

















See Also


This is an application of the general approach described in Recipe 9.2.
























9.7 Converting Data to z-Scores










Problem


You have a dataset, and you want to calculate the corresponding
z-scores for all data elements. (This is sometimes called
normalizing the data.)

















Solution


Use the scale function:


scale(x)
#>          [,1]
#>  [1,]  0.8701
#>  [2,] -0.7133
#>  [3,] -1.0503
#>  [4,]  0.5790
#>  [5,] -0.6324
#>  [6,]  0.0991
#>  [7,]  2.1495
#>  [8,]  0.2481
#>  [9,] -0.8155
#> [10,] -0.7341
#> attr(,"scaled:center")
#> [1] 2.42
#> attr(,"scaled:scale")
#> [1] 2.11


This works for vectors, matrices, and data frames. In the case of a
vector, scale returns the vector of normalized values. In the case of
matrices and data frames, scale normalizes each column independently
and returns columns of normalized values in a matrix.

















Discussion


You might also want to normalize a single value y relative to a
dataset x. You can do so by using vectorized operations as follows:


(y - mean(x)) / sd(x)
#> [1] -0.633
























9.8 Testing the Mean of a Sample (t-Test)










Problem


You have a sample from a population. Given this sample, you want to know
if the mean of the population could reasonably be a particular value
m.

















Solution


Apply the t.test function to the sample x with the argument
mu = m:

t.test(x, mu = m)



The output includes a p-value. Conventionally, if p < 0.05 then the
population mean is unlikely to be m, whereas p > 0.05 provides no
such evidence.


If your sample size n is small, then the underlying population must be
normally distributed in order to derive meaningful results from the t-test. A good rule of thumb is that “small” means n < 30.

















Discussion


The t-test is a workhorse of statistics, and this is one of its basic
uses: making inferences about a population mean from a sample. The
following example simulates sampling from a normal population with mean
μ = 100. It uses the t-test to ask if the population mean could be
95, and t.test reports a p-value of 0.005:


x <- rnorm(75, mean = 100, sd = 15)
t.test(x, mu = 95)
#>
#>  One Sample t-test
#>
#> data:  x
#> t = 3, df = 70, p-value = 0.005
#> alternative hypothesis: true mean is not equal to 95
#> 95 percent confidence interval:
#>   96.5 103.0
#> sample estimates:
#> mean of x
#>      99.7


The p-value is small, so it’s unlikely (based on the sample data)
that 95 could be the mean of the population.


Informally, we could interpret the low p-value as follows. If the
population mean were really 95, then the probability of observing our
test statistic (t = 2.8898 or something more extreme) would be only
0.005. That is very improbable, yet that is the value we observed.
Hence we conclude that the null hypothesis is wrong; therefore, the
sample data does not support the claim that the population mean is 95.


In sharp contrast, testing for a mean of 100 gives a p-value of
0.9:


t.test(x, mu = 100)
#>
#>  One Sample t-test
#>
#> data:  x
#> t = -0.2, df = 70, p-value = 0.9
#> alternative hypothesis: true mean is not equal to 100
#> 95 percent confidence interval:
#>   96.5 103.0
#> sample estimates:
#> mean of x
#>      99.7


The large p-value indicates that the sample is consistent with
assuming a population mean μ of 100. In statistical terms, the data
does not provide evidence against the true mean being 100.


A common case is testing for a mean of zero. If you omit the mu
argument, it defaults to 0.

















See Also


The t.test function is a many-splendored thing. See Recipe 9.9 and Recipe 9.15 for other uses.
























9.9 Forming a Confidence Interval for a Mean










Problem


You have a sample from a population. Given that sample, you want to
determine a confidence interval for the population’s mean.

















Solution


Apply the t.test function to your sample x:


t.test(x)


The output includes a confidence interval at the 95% confidence level.
To see intervals at other levels, use the conf.level argument.


As in Recipe 9.8, if your sample size n is small, then the underlying
population must be normally distributed for there to be a meaningful
confidence interval. Again, a good rule of thumb is that “small” means
n < 30.

















Discussion


Applying the t.test function to a vector yields a lot of output.
Buried in the output is a confidence interval:


t.test(x)
#>
#>  One Sample t-test
#>
#> data:  x
#> t = 50, df = 50, p-value <2e-16
#> alternative hypothesis: true mean is not equal to 0
#> 95 percent confidence interval:
#>   94.2 101.5
#> sample estimates:
#> mean of x
#>      97.9


In this example, the confidence interval is approximately 94.2 < μ <
101.5, which is sometimes written simply as (94.2, 101.5).


We can raise the confidence level to 99% by setting conf.level=0.99:


t.test(x, conf.level = 0.99)
#>
#>  One Sample t-test
#>
#> data:  x
#> t = 50, df = 50, p-value <2e-16
#> alternative hypothesis: true mean is not equal to 0
#> 99 percent confidence interval:
#>   92.9 102.8
#> sample estimates:
#> mean of x
#>      97.9


That change widens the confidence interval to 92.9 < μ < 102.8.
























9.10 Forming a Confidence Interval for a Median










Problem


You have a data sample, and you want to know the confidence interval for
the median.

















Solution


Use the wilcox.test function, setting conf.int=TRUE:


wilcox.test(x, conf.int = TRUE)


The output will contain a confidence interval for the median.

















Discussion


The procedure for calculating the confidence interval of a mean is well
defined and widely known. The same is not true for the median,
unfortunately. There are several procedures for calculating the median’s
confidence interval. None of them is “the” procedure, but the Wilcoxon
signed rank test is pretty standard.


The wilcox.test function implements that procedure. Buried in the
output is the 95% confidence interval, which is approximately (–0.102,
0.646) in this case:


wilcox.test(x, conf.int = TRUE)
#>
#>  Wilcoxon signed rank test
#>
#> data:  x
#> V = 200, p-value = 0.1
#> alternative hypothesis: true location is not equal to 0
#> 95 percent confidence interval:
#>  -0.102  0.646
#> sample estimates:
#> (pseudo)median
#>          0.311


You can change the confidence level by setting conf.level, such as
conf.level=0.99 or other such values.


The output also includes something called the pseudomedian, which is
defined on the help page. Don’t assume it equals the median; they are
different:


median(x)
#> [1] 0.314

















See Also


The bootstrap procedure is also useful for estimating the median’s
confidence interval; see Recipe 8.5 and
Recipe 13.8.
























9.11 Testing a Sample Proportion










Problem


You have a sample of values from a population consisting of successes
and failures. You believe the true proportion of successes is p, and
you want to test that hypothesis using the sample data.

















Solution


Use the prop.test function. Suppose the sample size is n and the
sample contains x successes:

prop.test(x, n, p)



The output includes a p-value. Conventionally, a p-value of less
than 0.05 indicates that the true proportion is unlikely to be p,
whereas a p-value exceeding 0.05 fails to provide such evidence.

















Discussion


Suppose you encounter some loudmouthed fan of the Chicago Cubs early in
the baseball season. The Cubs have played 20 games and won 11 of them,
or 55% of their games. Based on that evidence, the fan is “very
confident” that the Cubs will win more than half of their games this
year. Should they be that confident?


The prop.test function can evaluate the fan’s logic. Here, the number
of observations is n = 20, the number of successes is x = 11, and
p is the true probability of winning a game. We want to know whether
it is reasonable to conclude, based on the data, that p > 0.5.
Normally, prop.test would check for p ≠ 0.05, but we can check for
p > 0.5 instead by setting alternative="greater":


prop.test(11, 20, 0.5, alternative = "greater")
#>
#>  1-sample proportions test with continuity correction
#>
#> data:  11 out of 20, null probability 0.5
#> X-squared = 0.05, df = 1, p-value = 0.4
#> alternative hypothesis: true p is greater than 0.5
#> 95 percent confidence interval:
#>  0.35 1.00
#> sample estimates:
#>    p
#> 0.55


The prop.test output shows a large p-value, 0.55, so we cannot
reject the null hypothesis; that is, we cannot reasonably conclude that
p is greater than 1/2. The Cubs fan is being overly confident based on
too little data. No surprise there.
























9.12 Forming a Confidence Interval for a Proportion










Problem


You have a sample of values from a population consisting of successes
and failures. Based on the sample data, you want to form a confidence
interval for the population’s proportion of successes.

















Solution


Use the prop.test function. Suppose the sample size is n and the
sample contains x successes:

prop.test(x, n)



The function output includes the confidence interval for p.

















Discussion


We subscribe to a stock market newsletter that is well written, but
includes a section purporting to identify stocks that are likely to
rise. It does this by looking for a certain pattern in the stock price.
It recently reported, for example, that a certain stock was following
the pattern. It also reported that the stock rose six times after the
last nine times that pattern occurred. The writers concluded that the
probability of the stock rising again was therefore 6/9, or 66.7%.


Using prop.test, we can obtain the confidence interval for the true
proportion of times the stock rises after the pattern. Here, the number
of observations is n = 9 and the number of successes is x = 6. The
output shows a confidence interval of (0.309, 0.910) at the 95%
confidence level:


prop.test(6, 9)
#> Warning in prop.test(6, 9): Chi-squared approximation may be incorrect
#>
#>  1-sample proportions test with continuity correction
#>
#> data:  6 out of 9, null probability 0.5
#> X-squared = 0.4, df = 1, p-value = 0.5
#> alternative hypothesis: true p is not equal to 0.5
#> 95 percent confidence interval:
#>  0.309 0.910
#> sample estimates:
#>     p
#> 0.667


The writers are pretty foolish to say the probability of the stock rising is
66.7%. They could be leading their readers into a very bad bet.


By default, prop.test calculates a confidence interval at the 95%
confidence level. Use the conf.level argument for other confidence
levels:


prop.test(x, n, p, conf.level = 0.99)   # 99% confidence level

















See Also


See Recipe 9.11.
























9.13 Testing for Normality










Problem


You want a statistical test to determine whether your data sample is
from a normally distributed population.

















Solution


Use the shapiro.test function:

shapiro.test(x)



The output includes a p-value. Conventionally, p < 0.05 indicates
that the population is likely not normally distributed, whereas p >
0.05 provides no such evidence.

















Discussion


This example reports a p-value of 0.4 for x:


shapiro.test(x)
#>
#>  Shapiro-Wilk normality test
#>
#> data:  x
#> W = 1, p-value = 0.4


The large p-value suggests the underlying population could be normally
distributed. The next example reports a very small p-value for y, so
it is unlikely that this sample came from a normal population:


shapiro.test(y)
#>
#>  Shapiro-Wilk normality test
#>
#> data:  y
#> W = 0.7, p-value = 7e-13


We have highlighted the Shapiro–Wilk test because it is a standard R
function. You can also install the package nortest, which is dedicated
entirely to tests for normality. This package includes the following tests:



	
Anderson–Darling (ad.test)



	
Cramer–von Mises (cvm.test)



	
Lilliefors (lillie.test)



	
Pearson chi-squared for the composite hypothesis of normality
(pearson.test)



	
Shapiro–Francia (sf.test)






The problem with all of these is their null hypothesis: they all
assume that the population is normally distributed until proven
otherwise. As a result, the population must be decidedly nonnormal
before the test reports a small p-value and you can reject that null
hypothesis. That makes the tests quite conservative, tending to err on
the side of normality.


Instead of depending solely upon a statistical test, we suggest also
using histograms (Recipe 10.19) and quantile-quantile plots
(Recipe 10.21) to evaluate the normality of any data. Are the
tails too fat? Is the peak too peaked? Your judgment is likely better
than a single statistical test.

















See Also


See Recipe 3.10 for how to install the nortest package.
























9.14 Testing for Runs










Problem


Your data is a sequence of binary values: yes/no, 0/1, true/false, or
other two-valued data. You want to know: is the sequence random?

















Solution


The tseries package contains the runs.test function, which checks a
sequence for randomness. The sequence should be a factor with two
levels:

library(tseries)
runs.test(as.factor(s))



The runs.test function reports a p-value. Conventionally, a
p-value of less than 0.05 indicates that the sequence is likely not
random, whereas a p-value exceeding 0.05 provides no such evidence.

















Discussion


A run is a subsequence composed of identical values, such as all 1s or
all 0s. A random sequence should be properly jumbled up, without too
many runs. It shouldn’t contain too few runs, either—a sequence of perfectly alternating values (0, 1, 0, 1, 0, 1,
…) contains no runs, but would you say that it’s random?


The runs.test function checks the number of runs in your sequence. If
there are too many or too few, it reports a small p-value.


This first example generates a random sequence of 0s and 1s and then
tests the sequence for runs. Not surprisingly, runs.test reports a
large p-value, indicating the sequence is likely random:


s <- sample(c(0, 1), 100, replace = T)
runs.test(as.factor(s))
#>
#>  Runs Test
#>
#> data:  as.factor(s)
#> Standard Normal = 0.1, p-value = 0.9
#> alternative hypothesis: two.sided


This next sequence, however, consists of three runs and so the reported
p-value is quite low:


s <- c(0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0)
runs.test(as.factor(s))
#>
#>  Runs Test
#>
#> data:  as.factor(s)
#> Standard Normal = -2, p-value = 0.02
#> alternative hypothesis: two.sided

















See Also


See Recipe 5.4
and Recipe 8.6.
























9.15 Comparing the Means of Two Samples










Problem


You have one sample each from two populations. You want to know if the
two populations could have the same mean.

















Solution


Perform a t-test by calling the t.test function:

t.test(x, y)



By default, t.test assumes that your observations are not paired. If the
observations are paired (i.e., if each xi is paired with one
yi), then specify paired=TRUE:

t.test(x, y, paired = TRUE)



In either case, t.test will compute a p-value. Conventionally, if
p < 0.05 then the means are likely different, whereas p > 0.05
provides no such evidence:



	
If either sample size is small, then the populations must be normally
distributed. Here, “small” means fewer than 20 data points.



	
If the two populations have the same variance, specify
var.equal=TRUE to obtain a less conservative test.





















Discussion


We often use the t-test to get a quick sense of the difference between
two population means. It requires that the samples be large enough
(i.e., both samples have 20 or more observations) or that the underlying
populations be normally distributed. We don’t take the “normally
distributed” part too literally. Being bell-shaped and reasonably
symmetrical should be good enough.


A key distinction here is whether or not your data contains paired
observations, since the results may differ in the two cases. Suppose we
want to know if drinking coffee in the morning improves scores on SATs. We could
run the experiment two ways:



	
Randomly select one group of people. Give them the SAT twice, once
with morning coffee and once without morning coffee. For each person, we
will have two SAT scores. These are paired observations.



	
Randomly select two groups of people. One group has a cup of morning
coffee and takes the SAT. The other group just takes the test. We have a
score for each person, but the scores are not paired in any way.






Statistically, these experiments are quite different. In experiment 1,
there are two observations for each person (caffeinated and not) and
they are not statistically independent. In experiment 2, the observations are
independent.


If you have paired observations (experiment 1) and erroneously analyze
them as unpaired observations (experiment 2), then you could get this
result with a p-value of 0.3:


load("./data/sat.rdata")
t.test(x, y)
#>
#>  Welch Two Sample t-test
#>
#> data:  x and y
#> t = -1, df = 200, p-value = 0.3
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#>  -46.4  16.2
#> sample estimates:
#> mean of x mean of y
#>      1054      1069


The large p-value forces you to conclude there is no difference
between the groups. Contrast that result with the one that follows from
analyzing the same data but correctly identifying it as paired:


t.test(x, y, paired = TRUE)
#>
#>  Paired t-test
#>
#> data:  x and y
#> t = -20, df = 100, p-value <2e-16
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#>  -16.8 -13.5
#> sample estimates:
#> mean of the differences
#>                   -15.1


The p-value plummets to 2e-16, and we reach the exactly opposite
conclusion.

















See Also


If the populations are not normally distributed (bell-shaped) and either
sample is small, consider using the Wilcoxon–Mann–Whitney test described
in Recipe 9.16.
























9.16 Comparing the Locations of Two Samples Nonparametrically










Problem


You have samples from two populations. You don’t know the distribution
of the populations, but you know they have similar shapes. You want to
know: is one population shifted to the left or right compared with the
other?

















Solution


You can use a nonparametric test, the Wilcoxon–Mann–Whitney test, which
is implemented by the wilcox.test function. For paired observations
(every xi is paired with yi), set paired=TRUE:


wilcox.test(x, y, paired = TRUE)


For unpaired observations, let paired default to FALSE:


wilcox.test(x, y)


The test output includes a p-value. Conventionally, a p-value of
less than 0.05 indicates that the second population is likely shifted
left or right with respect to the first population, whereas a p-value
exceeding 0.05 provides no such evidence.

















Discussion


When we stop making assumptions regarding the distributions of
populations, we enter the world of nonparametric statistics. The
Wilcoxon–Mann–Whitney test is nonparametric and so can be applied to
more datasets than the t-test, which requires that the data be
normally distributed (for small samples). This test’s only assumption is
that the two populations have the same shape.


In this recipe, we are asking: is the second population shifted left or
right with respect to the first? This is similar to asking whether the
average of the second population is smaller or larger than that of the first.
However, the Wilcoxon–Mann–Whitney test answers a different question: it
tells us whether the central locations of the two populations are
significantly different or, equivalently, whether their relative
frequencies are different.


Suppose we randomly select a group of employees and ask each one to
complete the same task under two different circumstances: under
favorable conditions and under unfavorable conditions, such as a noisy
environment. We measure their completion times under both conditions, so
we have two measurements for each employee. We want to know if the two
times are significantly different, but we can’t assume they are normally
distributed.


The observations are paired, so we must set paired=TRUE:


load(file = "./data/workers.rdata")
wilcox.test(fav, unfav, paired = TRUE)
#>
#>  Wilcoxon signed rank test
#>
#> data:  fav and unfav
#> V = 10, p-value = 1e-04
#> alternative hypothesis: true location shift is not equal to 0


The p-value is essentially zero. Statistically speaking, we reject the
assumption that the completion times were equal. Practically speaking,
it’s reasonable to conclude that the times were different.


In this example, setting paired=TRUE is critical. Treating the data as
unpaired would be wrong because the observations are not independent,
and this in turn would produce bogus results. Running the example with
paired=FALSE produces a p-value of 0.1022, which leads to the wrong
conclusion.

















See Also


See Recipe 9.15 for the parametric test.
























9.17 Testing a Correlation for Significance










Problem


You calculated the correlation between two variables, but you don’t know
if the correlation is statistically significant.

















Solution


The cor.test function can calculate both the p-value and the
confidence interval of the correlation. If the variables came from
normally distributed populations then use the default measure of
correlation, which is the Pearson method:


cor.test(x, y)


For nonnormal populations, use the Spearman method instead:


cor.test(x, y, method = "spearman")


The function returns several values, including the p-value from the
test of significance. Conventionally, p < 0.05 indicates that the
correlation is likely significant, whereas p > 0.05 indicates it is
not.

















Discussion


In our experience, people often fail to check a correlation for
significance. In fact, many people are unaware that a correlation can be
insignificant. They jam their data into a computer, calculate the
correlation, and blindly believe the result. However, they should ask
themselves: Was there enough data? Is the magnitude of the correlation
large enough? Fortunately, the cor.test function answers those
questions.


Suppose we have two vectors, x and y, with values from normal
populations. We might be very pleased that their correlation is greater
than 0.75:


cor(x, y)
#> [1] 0.751


But that is naïve. If we run cor.test, it reports a relatively large
p-value of 0.09:


cor.test(x, y)
#>
#>  Pearson's product-moment correlation
#>
#> data:  x and y
#> t = 2, df = 4, p-value = 0.09
#> alternative hypothesis: true correlation is not equal to 0
#> 95 percent confidence interval:
#>  -0.155  0.971
#> sample estimates:
#>   cor
#> 0.751


The p-value is above the conventional threshold of 0.05, so we
conclude that the correlation is unlikely to be significant.


You can also check the correlation by using the confidence interval. In
this example, the confidence interval is (–0.155, 0.971). The interval
contains zero and so it is possible that the correlation is zero, in
which case there would be no correlation. Again, you could not be
confident that the reported correlation is significant.


The cor.test output also includes the point estimate reported by cor
(at the bottom, labeled “sample estimates”), saving you the additional
step of running cor.


By default, cor.test calculates the Pearson correlation, which assumes
that the underlying populations are normally distributed. The Spearman
method makes no such assumption because it is nonparametric. Use
method="Spearman" when working with nonnormal data.

















See Also


See Recipe 2.6 for calculating simple correlations.
























9.18 Testing Groups for Equal Proportions










Problem


You have samples from two or more groups. The groups’ elements are
binary-valued: either success or failure. You want to know if the groups
have equal proportions of successes.

















Solution


Use the prop.test function with two vector arguments:


ns <- c(48, 64)
nt <- c(100, 100)
prop.test(ns, nt)
#>
#>  2-sample test for equality of proportions with continuity
#>  correction
#>
#> data:  ns out of nt
#> X-squared = 5, df = 1, p-value = 0.03
#> alternative hypothesis: two.sided
#> 95 percent confidence interval:
#>  -0.3058 -0.0142
#> sample estimates:
#> prop 1 prop 2
#>   0.48   0.64


These are parallel vectors. The first vector, ns, gives the number of
successes in each group. The second vector, nt, gives the size of the
corresponding group (often called the number of trials).


The output includes a p-value. Conventionally, a p-value of less
than 0.05 indicates that it is likely the groups’ proportions are
different, whereas a p-value exceeding 0.05 provides no such evidence.

















Discussion


In Recipe 9.11, we tested a proportion based on one sample. Here, we have
samples from multiple groups and want to compare the proportions in the
underlying groups.


One of the authors recently taught statistics to 38 students and awarded
a grade of A to 14 of them. A colleague taught the same class to 40
students and awarded an A to only 10. We wanted to know: was the author
fostering grade inflation by awarding significantly more A grades than
the other teacher did?


We used prop.test. “Success” means awarding an A, so the vector of
successes contains two elements, the number awarded by the author and
the number awarded by the colleague:


successes <- c(14, 10)


The number of trials is the number of students in the corresponding
class:


trials <- c(38, 40)


The prop.test output yields a p-value of 0.4:


prop.test(successes, trials)
#>
#>  2-sample test for equality of proportions with continuity
#>  correction
#>
#> data:  successes out of trials
#> X-squared = 0.8, df = 1, p-value = 0.4
#> alternative hypothesis: two.sided
#> 95 percent confidence interval:
#>  -0.111  0.348
#> sample estimates:
#> prop 1 prop 2
#>  0.368  0.250


The relatively large p-value means that we cannot reject the null
hypothesis: the evidence does not suggest any difference between the
teachers’ grading.

















See Also


See Recipe 9.11.
























9.19 Performing Pairwise Comparisons Between Group Means










Problem


You have several samples, and you want to perform a pairwise comparison
between the sample means. That is, you want to compare the mean of every
sample against the mean of every other sample.

















Solution


Place all data into one vector and create a parallel factor to identify
the groups. Use pairwise.t.test to perform the pairwise comparison of
means:

pairwise.t.test(x, f)   # x is the data, f is the grouping factor



The output contains a table of p-values, one for each pair of groups.
Conventionally, if p < 0.05 then the two groups likely have different
means, whereas p > 0.05 provides no such evidence.

















Discussion


This is more complicated than Recipe 9.15, where we
compared the means of two samples. Here we have several samples and want
to compare the mean of every sample against the mean of every other
sample.


Statistically speaking, pairwise comparisons are tricky. It is not the
same as simply performing a t-test on every possible pair. The
p-values must be adjusted, as otherwise you will get an overly
optimistic result. The help pages for pairwise.t.test and p.adjust
describe the adjustment algorithms available in R. Anyone doing serious
pairwise comparisons is urged to review the help pages and consult a
good textbook on the subject.


Suppose we are using a larger sample of the data from Recipe 5.5, where we combined data for freshmen,
sophomores, and juniors into a data frame called comb. The data frame
has two columns: the data in a column called values, and the grouping
factor in a column called ind. We can use pairwise.t.test to perform
pairwise comparisons between the groups:


pairwise.t.test(comb$values, comb$ind)
#>
#>  Pairwise comparisons using t-tests with pooled SD
#>
#> data:  comb$values and comb$ind
#>
#>      fresh soph
#> soph 0.001 -
#> jrs  3e-04 0.592
#>
#> P value adjustment method: holm


Notice the table of p-values. The comparisons of juniors versus
freshmen and of sophomores versus freshmen produced small p-values:
0.001 and 0.0003, respectively. We can conclude there are significant
differences between those groups. However, the comparison of sophomores
versus juniors produced a (relatively) large p-value of 0.592, so
they are not significantly different.

















See Also


See Recipe 5.5 and Recipe 9.15.
























9.20 Testing Two Samples for the Same Distribution










Problem


You have two samples, and you are wondering: did they come from the same
distribution?

















Solution


The Kolmogorov–Smirnov test compares two samples and tests them for
being drawn from the same distribution. The ks.test function
implements that test:

ks.test(x, y)



The output includes a p-value. Conventionally, a p-value of less
than 0.05 indicates that the two samples (x and y) were drawn from
different distributions, whereas a p-value exceeding 0.05 provides no
such evidence.

















Discussion


The Kolmogorov–Smirnov test is wonderful for two reasons. First, it is a
nonparametric test and so you needn’t make any assumptions regarding the
underlying distributions: it works for all distributions. Second, it
checks the location, dispersion, and shape of the populations, based on
the samples. If these characteristics disagree then the test will detect
that, allowing you to conclude that the underlying distributions are
different.


Suppose we suspect that the vectors x and y come from differing
distributions. Here, ks.test reports a p-value of 0.04:


ks.test(x, y)
#>
#>  Two-sample Kolmogorov-Smirnov test
#>
#> data:  x and y
#> D = 0.2, p-value = 0.04
#> alternative hypothesis: two-sided


From the small p-value we can conclude that the samples are from
different distributions. However, when we test x against another
sample, z, the p-value is much larger (0.6); this suggests that
x and z could have the same underlying distribution:


z <- rnorm(100, mean = 4, sd = 6)
ks.test(x, z)
#>
#>  Two-sample Kolmogorov-Smirnov test
#>
#> data:  x and z
#> D = 0.1, p-value = 0.6
#> alternative hypothesis: two-sided



















Chapter 10. Graphics



Graphics is a great strength of R. The graphics package is part of the
standard distribution and contains many useful functions for creating a
variety of graphic displays. The base functionality has been expanded
and made easier with ggplot2, part of the tidyverse of packages. In
this chapter we will focus on examples using ggplot2, and we will
occasionally suggest other packages. In this chapter’s See Also sections
we mention functions in other packages that do the same job in a
different way. We suggest that you explore those alternatives if you are
dissatisfied with what’s offered by ggplot2 or base graphics.


Graphics is a vast subject, and we can only scratch the surface here.
Winston Chang’s R
Graphics Cookbook, 2nd ed., is part of the O’Reilly Cookbook
series and walks through many useful recipes with a focus on ggplot2.
If you want to delve deeper, we recommend R Graphics by Paul Murrell
(Chapman & Hall); it discusses the paradigms behind R
graphics, explains how to use the graphics functions, and contains
numerous examples, including the code to re-create them. Some of the
examples are pretty amazing.










The Illustrations


The graphs in this chapter are mostly plain and unadorned. We did that
intentionally. When you call the ggplot function, as in:


library(tidyverse)


df <- data.frame(x = 1:5, y = 1:5)
ggplot(df, aes(x, y)) +
  geom_point()


you get a plain graphical representation of x and y as shown in
Figure 10-1.



[image: rcbk 1001]
Figure 10-1. Simple plot




You could adorn the graph with colors, a
title, labels, a legend, text, and so forth, but then the call to
ggplot becomes more and more crowded, obscuring the basic intention:


ggplot(df, aes(x, y)) +
  geom_point() +
  labs(
    title = "Simple Plot Example",
    subtitle = "with a subtitle",
    x = "x-values",
    y = "y-values"
  ) +
  theme(panel.background = element_rect(fill = "white", color = "grey50"))


The resulting plot is shown in Figure 10-2. We want
to keep the recipes clean, so we emphasize the basic plot and then show
later (as in Recipe 10.2) how to add adornments.



[image: rcbk 1002]
Figure 10-2. Slightly more complicated plot



















Notes on ggplot2 Basics


While the package is called ggplot2, the primary plotting function in
the package is called ggplot. It is important to understand the basic
pieces of a ggplot graph. In the preceding examples, you can see that
we pass data into ggplot, then define how the graph is created by
stacking together small phrases that describe some aspect of the plot.
This stacking together of phrases is part of the “grammar of graphics”
ethos (that’s where the gg comes from). To learn more, you can read
“A Layered Grammar of
Graphics” written by ggplot author Hadley Wickham. The concept originated with Leland Wilkinson, who articulated the
idea of building graphics up from a set of primitives (i.e., verbs and
nouns). With ggplot, the underlying data need not be fundamentally
reshaped for each type of graphical representation. In general, the data
stays the same and the user changes the syntax slightly to illustrate
the data differently. This is significantly more consistent than base
graphics, which often require reshaping the data in order to change the
way it is visualized.


As we’re talking about ggplot graphics, it’s worth defining the components
of a ggplot graph:


	Geometric object functions

	
These are geometric objects that describe the type of graph being
created. Their names start with geom_; examples include geom_line,
geom_boxplot, and geom_point, along with dozens more.



	Aesthetics

	
The aesthetics, or aesthetic mappings, communicate to ggplot which
fields in the source data get mapped to which visual elements in the
graphic. This is the aes line in a ggplot call.



	Stats

	
Stats are statistical transformations that are done before displaying
the data. Not all graphs will have stats, but a few common stats are
stat_ecdf (the empirical cumulative distribution function) and
stat_identity, which tells ggplot to pass the data without doing
any stats at all.



	Facet functions

	
Facets are subplots where each small plot represents a subgroup of the
data. The faceting functions include facet_wrap and facet_grid.



	Themes

	
Themes are the visual elements of the plot that are not tied to data.
These might include titles, margins, table of contents locations, or
font choices.



	Layer

	
A layer is a combination of data, aesthetics, a geometric object, a
stat, and other options to produce a visual layer in the ggplot
graphic.





















“Long” Versus “Wide” Data with ggplot


One of the first sources of confusion for new ggplot users is that
they are inclined to reshape their data to be “wide” before plotting it.
“Wide” here means every variable they are plotting is its own column in
the underlying data frame. This is an approach that many users develop
while using Excel and then bring with them to R. ggplot works most
easily with “long” data, where additional variables are added as rows in
the data frame rather than columns. The great side effect of adding more
measurements as rows is that any properly constructed ggplot graphs
will automatically update to reflect the new data without changing the
ggplot code. If each additional variable were added as a column, then
the plotting code would have to be changed to introduce additional
variables. This idea of “long” versus “wide” data will become more
obvious in the examples in the rest of this chapter.

















Graphics in Other Packages


R is highly programmable, and many people have extended its graphics
machinery with additional features. Quite often, packages include
specialized functions for plotting their results and objects. The zoo
package, for example, implements a time series object. If you create a
zoo object z and call plot(z), then the zoo package does the
plotting; it creates a graphic that is customized for displaying a time
series. zoo uses base graphics, so the resulting graph will not be a
ggplot graphic.


There are even entire packages devoted to extending R with new graphics
paradigms. The lattice package is an alternative to base graphics that
predates ggplot2. It uses a powerful graphics paradigm that enables
you to create informative graphics more easily. It was implemented by
Deepayan Sarkar, who also wrote Lattice: Multivariate Data
Visualization with R (Springer), which explains the package and
how to use it. The lattice package is also described in
R in a Nutshell (O’Reilly).


There are two chapters in Hadley Wickham and Garrett Grolemund’s excellent book R for Data
Science that deal with graphics. Chapter 7, “Exploratory Data
Analysis,” focuses on exploring data with ggplot2, while Chapter 28,
“Graphics for Communication,” explores communicating to others with
graphics. R for Data Science is available in print or
online.















10.1 Creating a Scatter Plot










Problem


You have paired observations: (x1, y1), (x2, y2), …,
(xn, yn). You want to create a scatter plot of the pairs.

















Solution


We can plot the data by calling ggplot, passing in the data frame, and
invoking a geometric point function:


ggplot(df, aes(x, y)) +
  geom_point()


In this example, the data frame is called df and the x and y data
are in fields named x and y, which we pass to the aesthetic in the
call aes(x, y).

















Discussion


A scatter plot is a common first attack on a new dataset. It’s a quick
way to see the relationship, if any, between x and y.


Plotting with ggplot requires telling ggplot what data frame to use,
then what type of graph to create and which aesthetic mapping (aes)
to use. The aes in this case defines which field from df goes into
which axis on the plot. Then the command geom_point communicates that
you want a point graph, as opposed to a line or other type of graphic.


We can use the built-in mtcars dataset to illustrate plotting
horsepower (hp) on the x-axis and fuel economy (mpg) on the y-axis:


ggplot(mtcars, aes(hp, mpg)) +
  geom_point()


The resulting plot is shown in Figure 10-3.



[image: rcbk 1003]
Figure 10-3. Scatter plot



















See Also


See Recipe 10.2 for adding a title and labels, Recipe 10.3 for adding a grid, and Recipe 10.6 for adding a legend. See Recipe 10.8 for plotting multiple variables.
























10.2 Adding a Title and Labels










Problem


You want to add a title to your plot or add labels for the axes.

















Solution


With ggplot we add a labs element that controls the labels for the
title and axes.


When calling labs in ggplot, specify:


	title

	
Desired title text



	x

	
x-axis label



	y

	
y-axis label






For example:


ggplot(df, aes(x, y)) +
  geom_point() +
  labs(title = "The Title",
       x = "X-axis Label",
       y = "Y-axis Label")

















Discussion


The graph created in Recipe 10.1 is quite plain. A title
and better labels will make it more interesting and easier to interpret.


Note that in ggplot you build up the elements of the graph by
connecting the parts with the plus sign, +. So, we add further
graphical elements by stringing together phrases. You can see this in
the following code, which uses the built-in mtcars dataset and plots
horsepower versus fuel economy in a scatter plot, shown in Figure 10-4:


ggplot(mtcars, aes(hp, mpg)) +
  geom_point() +
  labs(title = "Cars: Horsepower vs. Fuel Economy",
       x = "HP",
       y = "Economy (miles per gallon)")



[image: rcbk 1004]
Figure 10-4. Labeled axes and title


























10.3 Adding (or Removing) a Grid










Problem


You want to change the background grid of your graphic.

















Solution


With ggplot background grids come as a default, as you have seen in
previous recipes. However, we can alter the background grid using the
theme function or by applying a prepackaged theme to our graph.


We can use theme to alter the background panel of our graphic. This example removes it, as seen in Figure 10-5:


ggplot(df) +
  geom_point(aes(x, y)) +
  theme(panel.background = element_rect(fill = "white", color = "grey50"))



[image: rcbk 1005]
Figure 10-5. White background



















Discussion


ggplot fills in the background with a grey grid by default. You may
find yourself wanting to remove that grid completely or change it to
something else. Let’s create a ggplot graphic and then incrementally
change the background style.


We can add or change aspects of our graphic by creating a ggplot
object, then calling the object and using the + to add to it. The
background shading in a ggplot graphic is actually three different
graph elements:


	panel.grid.major

	
The major grid is white by default and heavy.



	panel.grid.minor

	
The minor grid is white by default and light.



	panel.background

	
The background is grey by default.






You can see these elements if you look carefully at the background of
Figure 10-4.


If we set the background as element_blank, then the major and minor
grids are still there, but they are white on white so we can’t see them in
Figure 10-6:


g1 <- ggplot(mtcars, aes(hp, mpg)) +
  geom_point() +
  labs(title = "Cars: Horsepower vs. Fuel Economy",
       x = "HP",
       y = "Economy (miles per gallon)") +
  theme(panel.background = element_blank())
g1



[image: rcbk 1006]
Figure 10-6. Blank background




Notice in the previous code we put the ggplot graph into a variable
called g1. Then we printed the graphic by just calling g1. Having
the graph inside of g1 means we can add further graphical components
without rebuilding the graph.


If we wanted to show the background grid with unusual patterns for
illustration, it’s as easy as setting its components to a color and
setting a line type, as in this example (see Figure 10-7):


g2 <- g1 + theme(panel.grid.major =
                   element_line(color = "black", linetype = 3)) +
  # linetype = 3 is dash
  theme(panel.grid.minor =
          element_line(color = "darkgrey", linetype = 4))
  # linetype = 4 is dot dash
g2



[image: rcbk 1007]
Figure 10-7. Major and minor gridlines




Figure 10-7 lacks visual appeal, but you can clearly see
that the dotted black lines make up the major grid and the dashed grey
lines are the minor grid.


Or we could do something less garish and take the ggplot object g1
from before and add grey gridlines to the white background, as shown in
Figure 10-8:


g1 +
  theme(panel.grid.major = element_line(color = "grey"))



[image: rcbk 1008]
Figure 10-8. Grey major gridlines



















See Also


See Recipe 10.4 to see how to apply an entire canned theme to your
figure.
























10.4 Applying a Theme to a ggplot Figure










Problem


You want your plot to use a preset collection of colors, styles, and
formatting.

















Solution


ggplot supports themes, which are collections of settings for your
figures. To use one of the themes, just add the desired theme function
to your ggplot with a +:


ggplot(df, aes(x, y)) +
  geom_point() +
  theme_bw()


The ggplot2 package contains the following themes:


theme_bw()
theme_dark()
theme_classic()
theme_gray()
theme_linedraw()
theme_light()
theme_minimal()
theme_test()
theme_void()

















Discussion


Let’s start with a simple plot and then show how it looks with a few of
the built-in themes. Figure 10-9 shows a basic
ggplot figure with no theme applied:


p <- ggplot(mtcars, aes(x = disp, y = hp)) +
  geom_point() +
  labs(title = "mtcars: Displacement vs. Horsepower",
       x = "Displacement (cubic inches)",
       y = "Horsepower")
p



[image: rcbk 1009]
Figure 10-9. Starting plot




Let’s create the same plot multiple times, but apply a different theme
to each one. Figure 10-10 shows what it looks like with the black and white theme applied:


p + theme_bw()


Figure 10-11 shows the classic theme:


p + theme_classic()



[image: rcbk 1010]
Figure 10-10. theme_bw





[image: rcbk 1011]
Figure 10-11. theme_classic




Figure 10-12 shows the minimal theme:


p + theme_minimal()



[image: rcbk 1012]
Figure 10-12. theme_minimal




And Figure 10-13 shows the void theme:


p + theme_void()



[image: rcbk 1013]
Figure 10-13. theme_void




In addition to the themes included in ggplot2, there are packages,
like ggtheme, that include themes to help you make your figures look
more like the figures found in popular tools and publications such as
Stata or The Economist.

















See Also


See Recipe 10.3 to see how to change a single theme element.
























10.5 Creating a Scatter Plot of Multiple Groups










Problem


You have data in a data frame with multiple observations per record: x,
y, and a factor f that indicates the group. You want to create a
scatter plot of x and y that distinguishes among the groups.

















Solution


With ggplot we control the mapping of shapes to the factor f by
passing shape = f to the aes function:


ggplot(df, aes(x, y, shape = f)) +
  geom_point()

















Discussion


Plotting multiple groups in one scatter plot creates an uninformative
mess unless we distinguish one group from another. We make this
distinction in ggplot by setting the shape parameter of the aes
function.


The built-in iris dataset contains paired measures of Petal.Length
and Petal.Width. Each measurement also has a Species property
indicating the species of the flower that was measured. If we plot all
the data at once, we just get the scatter plot shown in Figure 10-14:


ggplot(data = iris,
       aes(x = Petal.Length,
           y = Petal.Width)) +
  geom_point()



[image: rcbk 1014]
Figure 10-14. iris: length vs. width




The graphic would be far more informative if we distinguished the points
by species. In addition to distinguishing the species by shape, we could
also differentiate by color. We can add shape = Species and
color = Species to our aes call to get each species with a
different shape and color, as shown in Figure 10-15:


ggplot(data = iris,
       aes(
         x = Petal.Length,
         y = Petal.Width,
         shape = Species,
         color = Species
       )) +
  geom_point()



[image: rcbk 1015]
Figure 10-15. iris: shape and color




ggplot conveniently sets up a legend for you as well, which is handy.

















See Also


See Recipe 10.6 for more on how to add a legend.
























10.6 Adding (or Removing) a Legend










Problem


You want your plot to include a legend, the little box that decodes
the graphic for the viewer.

















Solution


In most cases ggplot will add legends automatically, as you can
see in the previous recipe. But if we do not have explicit grouping in the
aes function, then ggplot will not show a legend by default. If we want to
force ggplot to show a legend, we can set the shape or line type of
our graph to a constant. ggplot will then show a legend with one
group. We use guides to guide ggplot in how to label the
legend.


This can be illustrated with our iris scatter plot:


g <- ggplot(data = iris,
       aes(x = Petal.Length,
           y = Petal.Width,
           shape="Observation")) +
  geom_point()  +
  guides(shape=guide_legend(title="My Legend Title"))
g


Figure 10-16 illustrates the result of setting the shape
to a string value and then relabeling the legend using guides.



[image: rcbk 1016]
Figure 10-16. Legend added




More commonly, you may want to turn legends off, which you can do by
calling theme with legend.position = "none". Figure 10-17 shows the result when we add this call to the iris plot from the previous recipe:


g <- ggplot(data = iris,
            aes(
              x = Petal.Length,
              y = Petal.Width,
              shape = Species,
              color = Species
            )) +
  geom_point() +
  theme(legend.position = "none")
g



[image: rcbk 1017]
Figure 10-17. Legend removed



















Discussion


Adding legends to ggplot when there is no grouping is an exercise in
“tricking” ggplot into showing the legend by passing a string to a
grouping parameter in aes. While this will not change the grouping (as
there is only one group), it will result in a legend being shown with a
name.


Then we can use guides to alter the legend title. It’s worth noting
that we are not changing anything about the data, just exploiting
settings in order to coerce ggplot into showing a legend when it
typically would not.


One of the huge benefits of ggplot is its very good defaults. Getting
positions and correspondence between labels and their point types is
done automatically, but this can be overridden if needed. To remove a legend
totally, we set theme parameters with
theme(legend.position = "none"). We can also set
the legend.position to be "left", "right", "bottom", "top", or
a two-element numeric vector. Use a two-element numeric vector in order
to pass ggplot specific coordinates of where you want the legend. If
you’re using the coordinate positions, the values passed are between 0
and 1 for the x and y positions, in that order.


Figure 10-18 shows an example of a legend
positioned at the bottom, created with this adjustment to the
legend.position:


g + theme(legend.position = "bottom")



[image: rcbk 1018]
Figure 10-18. Legend at the bottom




Or we could use a two-element numeric vector to put the legend in a
specific location, as in Figure 10-19. This
example puts the center of the legend at 80% to the right and 20% up
from the bottom:


g + theme(legend.position = c(.8, .2))


In many aspects beyond legends, ggplot uses sane defaults but offers
the flexibility to override them and tweak the details. You can find
more details on ggplot options related to legends in the help for
theme by typing ?theme or by looking in the ggplot
online reference
material.



[image: rcbk 1019]
Figure 10-19. Legend at a point


























10.7 Plotting the Regression Line of a Scatter Plot










Problem


You are plotting pairs of data points, and you want to add a line that
illustrates their linear regression.

















Solution


With ggplot there is no need to calculate the linear model first using
the R lm function. We can instead use the geom_smooth function to
calculate the linear regression inside of our ggplot call.


If our data is in a data frame df and the x and y data are in
columns x and y, we plot the regression line like this:


ggplot(df, aes(x, y)) +
  geom_point() +
  geom_smooth(method = "lm",
              formula = y ~ x,
              se = FALSE)


The se = FALSE parameter tells ggplot not to plot the standard error
bands around our regression line.

















Discussion


Suppose we are modeling the strongx dataset found in the faraway
package. We can create a linear model using the built-in lm function
in R. We can predict the variable crossx as a linear function of
energy. First, let’s look at a simple scatter plot of our data (Figure 10-20):


library(faraway)
data(strongx)

ggplot(strongx, aes(energy, crossx)) +
  geom_point()



[image: rcbk 1020]
Figure 10-20. strongx scatter plot




ggplot can calculate a linear model on the fly and then plot the
regression line along with our data (Figure 10-21):


g <- ggplot(strongx, aes(energy, crossx)) +
  geom_point()

g + geom_smooth(method = "lm",
                formula = y ~ x)



[image: rcbk 1021]
Figure 10-21. Simple linear model ggplot




We can turn the confidence bands off by adding the se = FALSE option,
as shown in Figure 10-22:


g + geom_smooth(method = "lm",
                formula = y ~ x,
                se = FALSE)


Notice that in geom_smooth we use x and y rather than the
variable names. ggplot has set x and y inside the plot based
on the aesthetic. Multiple smoothing methods are supported by
geom_smooth. You can explore those and other options in the help by
typing ?geom_smooth.



[image: rcbk 1022]
Figure 10-22. Simple linear model ggplot without se




If we had a line we wanted to plot that was stored in another R object,
we could use geom_abline to plot the line on our graph. In the
following example we pull the intercept term and the slope from the
regression model m and add those to our graph (see Figure 10-23):


m <- lm(crossx ~ energy, data = strongx)

ggplot(strongx, aes(energy, crossx)) +
  geom_point() +
  geom_abline(
    intercept = m$coefficients[1],
    slope = m$coefficients[2]
  )



[image: rcbk 1023]
Figure 10-23. Simple line from slope and intercept




This produces a plot very similar to Figure 10-22. The
geom_abline method can be handy if you are plotting a line from a
source other than a simple linear model.

















See Also


See Chapter 11 for more about linear
regression and the lm function.
























10.8 Plotting All Variables Against All Other Variables










Problem


Your dataset contains multiple numeric variables. You want to see
scatter plots for all pairs of variables.

















Solution


ggplot does not have any built-in method to create pairs plots;
however, the package GGally provides this functionality with the
ggpairs function:


library(GGally)
ggpairs(df)

















Discussion


When you have a large number of variables, finding interrelationships
between them is difficult. One useful technique is looking at scatter
plots of all pairs of variables. This would be quite tedious if coded
pair-by-pair, but the ggpairs function from the package GGally
provides an easy way to produce all those scatter plots at once.


The iris dataset contains four numeric variables and one categorical
variable:


head(iris)
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 3          4.7         3.2          1.3         0.2  setosa
#> 4          4.6         3.1          1.5         0.2  setosa
#> 5          5.0         3.6          1.4         0.2  setosa
#> 6          5.4         3.9          1.7         0.4  setosa


What is the relationship, if any, between the columns? Plotting the
columns with ggpairs produces multiple scatter plots, as seen in
Figure 10-24:


library(GGally)
ggpairs(iris)



[image: rcbk 1024]
Figure 10-24. ggpairs plot of iris data




The ggpairs function is pretty, but not particularly fast. If you’re
just doing interactive work and want a quick peek at the data, the base
R plot function provides faster output (see Figure 10-25):


plot(iris)



[image: rcbk 1025]
Figure 10-25. Base plot pairs plot




While the ggpairs function is not as fast to plot as the Base R plot
function, it produces density graphs on the diagonal and reports
correlation in the upper triangle of the graph. When factors or
character columns are present, ggpairs produces histograms in the
lower triangle of the graph and boxplots in the upper triangle. These
are nice additions to understanding relationships in your data.
























10.9 Creating One Scatter Plot for Each Group










Problem


Your dataset contains (at least) two numeric variables and a factor or
character field defining a group. You want to create several scatter
plots for the numeric variables, with one scatter plot for each level of
the factor or character field.

















Solution


We produce this kind of plot, called a conditioning plot, in ggplot
by adding facet_wrap to our plot. In this example we use the data
frame df, which contains three columns, x, y, and f, with f
being a factor (or a character string):


ggplot(df, aes(x, y)) +
  geom_point() +
  facet_wrap( ~ f)

















Discussion


Conditioning plots (coplots) are another way to explore and illustrate
the effect of a factor or to compare different groups to each other.


The Cars93 dataset contains 27 variables describing 93 car models as
of 1993. Two numeric variables are MPG.city, the miles per gallon in
the city, and Horsepower, the engine horsepower. One categorical
variable is Origin, which can be USA or non-USA according to where the
model was built.


Exploring the relationship between MPG and horsepower, we might ask: is
there a different relationship for USA models and non-USA models?


Let’s examine this as a facet plot (Figure 10-26):


data(Cars93, package = "MASS")
ggplot(Cars93, aes(MPG.city, Horsepower)) +
  geom_point() +
  facet_wrap( ~ Origin)



[image: rcbk 1026]
Figure 10-26. Cars93 data with facet




The resulting plot reveals a few
insights. If we really crave that 300-horsepower monster, then we’ll
have to buy a car built in the USA; but if we want high MPG, we have
more choices among non-USA models. These insights could be teased out of
a statistical analysis, but the visual presentation reveals them much
more quickly.


Note that using facet results in subplots with the same x- and y-axis
ranges. This helps ensure that visual inspection of the data is not
misleading because of differing axis ranges.

















See Also


The Base R graphics function coplot can accomplish very similar plots
using only base graphics.
























10.10 Creating a Bar Chart










Problem


You want to create a bar chart.

















Solution


A common situation is to have a column of data that represents a group
and then another column that represents a measure about that group. This
format is “long” data because the data runs vertically instead of having
a column for each group.


Using the geom_bar function in ggplot, we can plot the heights as
bars. If the data is already aggregated, we add stat = "identity" so
that ggplot knows it needs to do no aggregation on the groups of
values before plotting:


ggplot(data = df, aes(x, y)) +
  geom_bar(stat = "identity")

















Discussion


Let’s use the cars made by Ford in the Cars93 dataset in an example:


ford_cars <- Cars93 %>%
  filter(Manufacturer == "Ford")

ggplot(ford_cars, aes(Model, Horsepower)) +
  geom_bar(stat = "identity")


Figure 10-27 shows the resulting bar chart.



[image: rcbk 1027]
Figure 10-27. Ford cars bar chart




This example uses stat = "identity", which assumes that the heights of
your bars are conveniently stored as a value in one field with only one
record per column. That is not always the case, however. Often you have
a vector of numeric data and a parallel factor or character field that
groups the data, and you want to produce a bar chart of the group means
or the group totals.


Let’s work up an example using the built-in airquality dataset, which
contains daily temperature data for a single location for five months.
The data frame has a numeric Temp column and Month and Day
columns. If we want to plot the mean temperature by month using ggplot, we
don’t need to precompute the mean; instead, we can have ggplot do that
in the plot command logic. To tell ggplot to calculate the mean, we
pass stat = "summary", fun.y = "mean" to the geom_bar command. We
can also turn the month numbers into dates using the built-in constant
month.abb, which contains the abbreviations for the months:


ggplot(airquality, aes(month.abb[Month], Temp)) +
  geom_bar(stat = "summary", fun.y = "mean") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)")


Figure 10-28 shows the resulting plot. But you might notice the
sort order on the months is alphabetical, which is not how we typically
like to see months sorted.



[image: rcbk 1028]
Figure 10-28. Bar chart: temp by month




We can fix the sorting issue using a few functions from dplyr combined
with fct_inorder from the forcats tidyverse package. To get the
months in the correct order, we can sort the data frame by Month,
which is the month number. Then we can apply fct_inorder, which will
arrange our factors in the order they appear in the data. You can see in
Figure 10-29 that the bars are now sorted properly:


library(forcats)

aq_data <- airquality %>%
  arrange(Month) %>%
  mutate(month_abb = fct_inorder(month.abb[Month]))

ggplot(aq_data, aes(month_abb, Temp)) +
  geom_bar(stat = "summary", fun.y = "mean") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)")



[image: rcbk 1029]
Figure 10-29. Bar chart properly sorted



















See Also


See Recipe 10.11 for adding confidence intervals and Recipe 10.12 for
adding color.


Type ?geom_bar for help with bar charts in ggplot.


You can also use barplot for Base R bar charts or the barchart function in the lattice package.
























10.11 Adding Confidence Intervals to a Bar Chart










Problem


You want to augment a bar chart with confidence intervals.

















Solution


Suppose we have a data frame df with columns group (group
names), stat (a column of statistics), and lower and upper (which represent the corresponding limits for the confidence intervals).
We can display a bar chart of stat for each group and its confidence
interval using the geom_bar function combined with geom_errorbar:


ggplot(df, aes(group, stat)) +
  geom_bar(stat = "identity") +
  geom_errorbar(aes(ymin = lower, ymax = upper), width = .2)


Figure 10-30 shows the resulting bar chart with confidence
intervals.



[image: rcbk 1030]
Figure 10-30. Bar chart with confidence intervals



















Discussion


Most bar charts display point estimates, which are shown by the heights
of the bars, but rarely do they include confidence intervals. Our inner
statisticians dislike this intensely. The point estimate is only half of
the story; the confidence interval gives the full story.


Fortunately, we can plot the error bars using ggplot. The hard part is
calculating the intervals. In the previous examples our data had a
simple –15% and +20% interval. However, in Recipe 10.10 we calculated group means
before plotting them. If we let ggplot do the calculations for us, we
can use the built-in mean_se along with the stat_summary function to
get the standard errors of the mean measures.


Let’s use the airquality data we used previously. First we’ll do the
sorted factor procedure (from the prior recipe) to get the month names
in the desired order:


aq_data <- airquality %>%
  arrange(Month) %>%
  mutate(month_abb = fct_inorder(month.abb[Month]))


Now we can plot the bars along with the associated standard errors, as in
Figure 10-31:


ggplot(aq_data, aes(month_abb, Temp)) +
  geom_bar(stat = "summary",
           fun.y = "mean",
           fill = "cornflowerblue") +
  stat_summary(fun.data = mean_se, geom = "errorbar") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)")



[image: rcbk 1031]
Figure 10-31. Mean temp by month with error bars




Sometimes you’ll want to sort the columns in your bar chart in
descending order based on their height, as in Figure 10-32. This can be a little bit
confusing when you’re using summary stats in ggplot, but the secret is
to use mean in the reorder statement to sort the factor by the mean
of the temp. Note that the reference to mean in reorder is not
quoted, while the reference to mean in geom_bar is quoted:


ggplot(aq_data, aes(reorder(month_abb, -Temp, mean), Temp)) +
  geom_bar(stat = "summary",
           fun.y = "mean",
           fill = "tomato") +
  stat_summary(fun.data = mean_se, geom = "errorbar") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)")



[image: rcbk 1032]
Figure 10-32. Mean temp by month in descending order




You may look at this example and the result in Figure 10-32
and wonder, “Why didn’t they just use reorder(month_abb, Month) in the
first example instead of that sorting business with
forcats::fct_inorder to get the months in the right order?” Well, we
could have. But sorting using fct_inorder is a design pattern that
provides flexibility for more complicated things. Plus it’s quite easy
to read in a script. Using reorder inside aes is a bit denser and harder to read later, but either approach is reasonable.

















See Also


See Recipe 9.9 for more about t.test.
























10.12 Coloring a Bar Chart










Problem


You want to color or shade the bars of a bar chart.

















Solution


With gplot we add the fill parameter to our aes call and let ggplot pick
the colors for us:


ggplot(df, aes(x, y, fill = group))

















Discussion


We can use the fill parameter in aes to tell ggplot
what field to base the colors on. If we pass a numeric field to
ggplot, we will get a continuous gradient of colors, and if we pass a
factor or character field to fill, we will get contrasting colors for
each group. Here we pass the character name of each month to the fill
parameter:


aq_data <- airquality %>%
  arrange(Month) %>%
  mutate(month_abb = fct_inorder(month.abb[Month]))

ggplot(data = aq_data, aes(month_abb, Temp, fill = month_abb)) +
  geom_bar(stat = "summary", fun.y = "mean") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)") +
  scale_fill_brewer(palette = "Paired")


We define the colors in the resulting bar chart (Figure 10-33) by calling scale_fill_brewer(palette="Paired").
The "Paired" color palette comes, along with many other color
palettes, in the package RColorBrewer.



[image: rcbk 1033]
Figure 10-33. Colored monthly temp bar chart




If we want to change the color of each bar based on the temperature,
we can’t just set fill = Temp—as might seem intuitive—because ggplot
won’t understand we want the mean temperature after the grouping by
month. The way we get around this is by accessing a special field inside
of our graph called ..y.., which is the calculated value on the
y-axis. But we don’t want the legend labeled ..y.., so we add
fill = "Temp" to our labs call in order to change the name of the
legend. The result is shown in Figure 10-34:


ggplot(airquality, aes(month.abb[Month], Temp, fill = ..y..)) +
  geom_bar(stat = "summary", fun.y = "mean") +
  labs(title = "Mean Temp by Month",
       x = "",
       y = "Temp (deg. F)",
       fill = "Temp")



[image: rcbk 1034]
Figure 10-34. Bar chart shaded by value




If we want to reverse the color scale, we can just add a negative sign,
-, in front of the field we are filling by: fill=-..y.., for
example.

















See Also


See Recipe 10.10 for creating a bar chart.
























10.13 Plotting a Line from x and y Points










Problem


You have paired observations in a data frame: (x1, y1), (x2,
y2), …, (xn, yn). You want to plot a series of line
segments that connect the data points.

















Solution


With ggplot we can use geom_point to plot the points:


ggplot(df, aes(x, y)) +
  geom_point()


Since ggplot graphics are built up element by element, we can have
both a point and a line in the same graphic very easily by having two
geoms:


ggplot(df, aes(x , y)) +
  geom_point() +
  geom_line()

















Discussion


To illustrate, let’s look at some example US economic data that comes
with ggplot2. This example data frame has a column called date,
which we’ll plot on the x-axis, and a field called unemploy, which is the
number of unemployed people:


ggplot(economics, aes(date , unemploy)) +
  geom_point() +
  geom_line()


Figure 10-35 shows the resulting chart, which contains
both lines and points because we used both geoms.



[image: rcbk 1035]
Figure 10-35. Line chart



















See Also


See Recipe 10.1.
























10.14 Changing the Type, Width, or Color of a Line










Problem


You are plotting a line, and you want to change its type, width, or color.

















Solution


ggplot uses the linetype parameter for controlling the appearance of
lines. The options are:



	
linetype="solid" or linetype=1 (default)



	
linetype="dashed" or linetype=2



	
linetype="dotted" or linetype=3



	
linetype="dotdash" or linetype=4



	
linetype="longdash" or linetype=5



	
linetype="twodash" or linetype=6



	
linetype="blank" or linetype=0 (inhibits drawing)






We can change the line characteristics by passing linetype, col,
and/or size as parameters to geom_line. For example, if we wanted to change
the line type to dashed, red, and heavy, we could pass the following params to geom_line:


ggplot(df, aes(x, y)) +
  geom_line(linetype = 2,
            size = 2,
            col = "red")

















Discussion


The example syntax shows how to draw one line and specify its style,
width, or color. A common scenario involves drawing multiple lines, each
with its own style, width, or color.


In ggplot this can be a conundrum for many users. The challenge is
that ggplot works best with “long” data instead of “wide” data, as was
mentioned in the introduction to this chapter.


Let’s set up some example data:


x <- 1:10
y1 <- x**1.5
y2 <- x**2
y3 <- x**2.5
df <- data.frame(x, y1, y2, y3)


Our example data frame
has four columns of wide data:


head(df, 3)
#>   x   y1 y2    y3
#> 1 1 1.00  1  1.00
#> 2 2 2.83  4  5.66
#> 3 3 5.20  9 15.59


We can make our wide data long by using the gather function from the
core tidyverse package tidyr. In this example, we use gather to
create a new column named bucket and put our column names in there
while keeping our x and y variables:


df_long <- gather(df, bucket, y, -x)
head(df_long, 3)
#>   x bucket    y
#> 1 1     y1 1.00
#> 2 2     y1 2.83
#> 3 3     y1 5.20
tail(df_long, 3)
#>     x bucket   y
#> 28  8     y3 181
#> 29  9     y3 243
#> 30 10     y3 316


Now we can pass bucket to the col parameter and get multiple lines,
each a different color:


ggplot(df_long, aes(x, y, col = bucket)) +
  geom_line()


Figure 10-36 shows the resulting graph with each
variable represented in a different color.



[image: rcbk 1036]
Figure 10-36. Multiple line chart




It’s straightforward to vary the line weight by a variable—simply pass a
numerical variable to size:


ggplot(df, aes(x, y1, size = y2)) +
  geom_line() +
  scale_size(name = "Thickness based on y2")


The result of varying the thickness with x is shown in Figure 10-37.



[image: rcbk 1037]
Figure 10-37. Thickness as a function of x



















See Also


See Recipe 10.13 for plotting a basic line.
























10.15 Plotting Multiple Datasets










Problem


You want to show multiple datasets in one plot.

















Solution


We can add multiple data frames to a ggplot figure by creating an
empty plot and then adding two different geoms to the plot:


ggplot() +
  geom_line(data = df1, aes(x1, y1)) +
  geom_line(data = df2, aes(x2, y2))


This code uses geom_line, but you could use any geom.

















Discussion


We could combine the data into one data frame before plotting using one
of the join functions from dplyr. However, next we will create two
separate data frames and then add them each to a ggplot graph.


First let’s set up our example data frames, df1 and df2:


# example data
n <- 20

x1 <- 1:n
y1 <- rnorm(n, 0, .5)
df1 <- data.frame(x1, y1)

x2 <- (.5 * n):((1.5 * n) - 1)
y2 <- rnorm(n, 1, .5)
df2 <- data.frame(x2, y2)


Typically we would pass the data frame directly into the ggplot
function call. Since we want two geoms with two different data sources,
we will initiate a plot with ggplot and then add in two calls to
geom_line, each with its own data source:


ggplot() +
  geom_line(data = df1, aes(x1, y1), color = "darkblue") +
  geom_line(data = df2, aes(x2, y2), linetype = "dashed")


ggplot allows us to make multiple calls to different geom_
functions, each with its own data source, if desired. Then ggplot will
look at all the data we are plotting and adjust the ranges to
accommodate all the data.


The graph with expanded limits is shown in Figure 10-38.



[image: rcbk 1038]
Figure 10-38. Two lines, one plot


























10.16 Adding Vertical or Horizontal Lines










Problem


You want to add a vertical or horizontal line to your plot, such as an
axis through the origin or a pointer to a threshold.

















Solution


The ggplot functions geom_vline and geom_hline produce vertical
and horizontal lines, respectively. The functions can also take color,
linetype, and size parameters to set the line style:


# using the data.frame df1 from the prior recipe
ggplot(df1) +
  aes(x = x1, y = y1) +
  geom_point() +
  geom_vline(
    xintercept = 10,
    color = "red",
    linetype = "dashed",
    size = 1.5
  ) +
  geom_hline(yintercept = 0, color = "blue")


Figure 10-39 shows the resulting plot with added horizontal
and vertical lines.



[image: rcbk 1039]
Figure 10-39. Vertical and horizontal lines



















Discussion


A typical use of lines would be drawing regularly spaced lines. Suppose
we have a sample of points, samp. First, we plot them with a solid
line through the mean. Then we calculate and draw dotted lines at ±1 and
±2 standard deviations away from the mean. We can add the lines into our
plot with geom_hline:


samp <- rnorm(1000)
samp_df <- data.frame(samp, x = 1:length(samp))

mean_line <- mean(samp_df$samp)
sd_lines <- mean_line + c(-2, -1, +1, +2) * sd(samp_df$samp)

ggplot(samp_df) +
  aes(x = x, y = samp) +
  geom_point() +
  geom_hline(yintercept = mean_line, color = "darkblue") +
  geom_hline(yintercept = sd_lines, linetype = "dotted")


Figure 10-40 shows the sampled data along with the mean
and standard deviation lines.



[image: rcbk 1040]
Figure 10-40. Mean and SD bands in a plot



















See Also


See Recipe 10.14 for more about changing line types.
























10.17 Creating a Boxplot










Problem


You want to create a boxplot of your data.

















Solution


Use geom_boxplot from ggplot to add a boxplot geom to a ggplot
graphic. Using the samp_df data frame from the prior recipe, we can
create a boxplot of the values in the x column. The resulting graph is
shown in Figure 10-41:


ggplot(samp_df) +
  aes(y = samp) +
  geom_boxplot()



[image: rcbk 1041]
Figure 10-41. Single boxplot



















Discussion


A boxplot provides a quick and easy visual summary of a dataset:



	
The thick line in the middle is the median.



	
The box surrounding the median identifies the first and third
quartiles; the bottom of the box is Q1, and the top is Q3.



	
The “whiskers” above and below the box show the range of the data,
excluding outliers.



	
The circles identify outliers. By default, an outlier is defined as
any value that is farther than 1.5 × IQR away from the box. (IQR is the
interquartile range, or Q3–Q1.) In this example, there are a few
outliers on the high side.






We can rotate the boxplot by flipping the coordinates. There are some
situations where this makes a more appealing graphic, as shown in Figure 10-42:


ggplot(samp_df) +
  aes(y = samp) +
  geom_boxplot() +
  coord_flip()



[image: rcbk 1042]
Figure 10-42. Single boxplot, flipped



















See Also


One boxplot alone is pretty boring. See Recipe 10.18 for
creating multiple boxplots.
























10.18 Creating One Boxplot for Each Factor Level










Problem


Your dataset contains a numeric variable and a factor (or other
categorical text). You want to create several boxplots of the numeric
variable broken out by levels.

















Solution


With ggplot we pass the name of the categorical variable to the x
parameter in the aes call. The resulting boxplot will then be grouped
by the values in the categorical variable:


ggplot(df) +
  aes(x = factor, y = values) +
  geom_boxplot()

















Discussion


This recipe is another great way to explore and illustrate the
relationship between two variables. In this case, we want to know
whether the numeric variable changes according to the level of a
category.


The UScereal dataset from the MASS package contains many variables
regarding breakfast cereals. One variable is the amount of sugar per
portion and another is the shelf position (counting from the floor).
Cereal manufacturers can negotiate for shelf position, placing their
products for the best sales potential. We wonder: where do they put the
high-sugar cereals? We can produce Figure 10-43 and
explore that question by creating one boxplot per shelf:


data(UScereal, package = "MASS")

ggplot(UScereal) +
  aes(x = as.factor(shelf), y = sugars) +
  geom_boxplot() +
  labs(
    title = "Sugar Content by Shelf",
    x = "Shelf",
    y = "Sugar (grams per portion)"
  )



[image: rcbk 1043]
Figure 10-43. Boxplots by shelf number




The boxplots suggest that shelf #2 has the most high-sugar cereals.
Could it be that this shelf is at eye level for young children who can
influence their parents’ choice of cereals?

Tip

Note that in the aes call we had to tell ggplot to treat the shelf
number as a factor. Otherwise, ggplot would not react to the shelf as
a grouping and would print only a single boxplot.



















See Also


See Recipe 10.17
for creating a basic boxplot.
























10.19 Creating a Histogram










Problem


You want to create a histogram of your data.

















Solution


Use geom_histogram, and set x to a vector of numeric values.

















Discussion


Figure 10-44 is a histogram of the MPG.city column taken
from the Cars93 dataset:


data(Cars93, package = "MASS")

ggplot(Cars93) +
  geom_histogram(aes(x = MPG.city))
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


The geom_histogram function must decide how many cells (bins) to
create for binning the data. In this example, the default algorithm
chose 30 bins. If we wanted fewer bins, we would include the bins
parameter to tell geom_histogram how many bins we want:


ggplot(Cars93) +
  geom_histogram(aes(x = MPG.city), bins = 13)


Figure 10-45 shows the histogram with 13 bins.



[image: rcbk 1044]
Figure 10-44. Histogram of counts by MPG





[image: rcbk 1045]
Figure 10-45. Histogram of counts by MPG with fewer bins



















See Also


The Base R function hist provides much of the same functionality, as
does the histogram function of the lattice package.
























10.20 Adding a Density Estimate to a Histogram










Problem


You have a histogram of your data sample, and you want to add a curve to
illustrate the apparent density.

















Solution


Use the geom_density function to approximate the sample density, as
shown in Figure 10-46:


ggplot(Cars93) +
  aes(x = MPG.city) +
  geom_histogram(aes(y = ..density..), bins = 21) +
  geom_density()



[image: rcbk 1046]
Figure 10-46. Histogram with density plot



















Discussion


A histogram suggests the density function of your data, but it is rough.
A smoother estimate could help you better visualize the underlying
distribution. A kernel density estimation (KDE) is a smoother
representation of univariate data.


In ggplot we tell the geom_histogram function to use the
geom_density function by passing it aes(y = ..density..).


The following example takes a sample from a gamma distribution and then
plots the histogram and the estimated density, as shown in Figure 10-47:


samp <- rgamma(500, 2, 2)

ggplot() +
  aes(x = samp) +
  geom_histogram(aes(y = ..density..), bins = 10) +
  geom_density()



[image: rcbk 1047]
Figure 10-47. Histogram and density: gamma distribution



















See Also


The geom_density function approximates the shape of the density
nonparametrically. If you know the actual underlying distribution, use Recipe 8.11 to plot the density function instead.
























10.21 Creating a Normal Quantile–Quantile Plot










Problem


You want to create a quantile–quantile (Q–Q) plot of your data,
typically because you want to know how the data differs from a normal
distribution.

















Solution


With ggplot we can use the stat_qq and stat_qq_line functions to
create a Q–Q plot that shows the observed points as well as the Q–Q
line. Figure 10-48 shows the resulting plot:


df <- data.frame(x = rnorm(100))

ggplot(df, aes(sample = x)) +
  stat_qq() +
  stat_qq_line()



[image: rcbk 1048]
Figure 10-48. Q–Q plot



















Discussion


Sometimes it’s important to know if your data is normally distributed. A
quantile–quantile (Q–Q) plot is a good first check.


The Cars93 dataset contains a Price column. Is it normally
distributed? This code snippet creates a Q–Q plot of Price, as shown in
Figure 10-49:


ggplot(Cars93, aes(sample = Price)) +
  stat_qq() +
  stat_qq_line()



[image: rcbk 1049]
Figure 10-49. Q–Q plot of car prices




If the data had a perfect normal distribution, then the points would
fall exactly on the diagonal line. Many points are close, especially in
the middle section, but the points in the tails are pretty far off. Too
many points are above the line, indicating a general skew to the left.


The leftward skew might be cured by a logarithmic transformation. We can
plot log(Price), which yields Figure 10-50:


ggplot(Cars93, aes(sample = log(Price))) +
  stat_qq() +
  stat_qq_line()



[image: rcbk 1050]
Figure 10-50. Q–Q plot of log car prices




Notice that the points in the new plot are much better behaved, staying
close to the line except in the extreme left tail. It appears that
log(Price) is approximately normal.

















See Also


See Recipe 10.22 for creating Q–Q plots for other
distributions. See Recipe 11.16 for an application
of Normal Q–Q plots to diagnose linear regression.
























10.22 Creating Other Quantile–Quantile Plots










Problem


You want to view a quantile-quantile plot for your data, but the data is
not normally distributed.

















Solution


For this recipe, you must have some idea of the underlying distribution,
of course. The solution is built from the following steps:


	
Use the ppoints function to generate a sequence of points between
0 and 1.



	
Transform those points into quantiles, using the quantile function
for the assumed distribution.



	
Sort your sample data.



	
Plot the sorted data against the computed quantiles.



	
Use abline to plot the diagonal line.







This can all be done in two lines of R code. Here is an example that
assumes your data, y, has a Student’s t distribution with 5 degrees
of freedom. Recall that the quantile function for Student’s t is qt
and that its second argument is the degrees of freedom.


First let’s make some example data:


df_t <- data.frame(y = rt(100, 5))


In order to create the Q–Q plot we need to estimate the parameters of
the distribution we want to plot. Since this is a Student’s t
distribution, we only need to estimate one parameter, the degrees of
freedom. Of course we know the actual degrees of freedom is 5, but in
most situations we’ll need to calculate that value. So, we’ll use the
MASS::fitdistr function to estimate the degrees of freedom:


est_df <- as.list(MASS::fitdistr(df_t$y, "t")$estimate)[["df"]]
est_df
#> [1] 19.5


As expected, that’s pretty close to what was used to generate the
simulated data, so let’s pass the estimated degrees of freedom to the
Q–Q functions and create Figure 10-51:


ggplot(df_t) +
  aes(sample = y) +
  geom_qq(distribution = qt, dparams = est_df) +
  stat_qq_line(distribution = qt, dparams = est_df)



[image: rcbk 1051]
Figure 10-51. Student’s t distribution Q–Q plot



















Discussion


The Solution looks complicated, but the gist of it is picking a
distribution, fitting the parameters, and then passing those parameters
to the Q–Q functions in ggplot.


We can illustrate this recipe by taking a random sample from an
exponential distribution with a mean of 10 (or, equivalently, a rate of
1/10):


rate <- 1 / 10
n <- 1000
df_exp <- data.frame(y = rexp(n, rate = rate))


est_exp <- as.list(MASS::fitdistr(df_exp$y, "exponential")$estimate)[["rate"]]
est_exp
#> [1] 0.101


Notice that for an exponential distribution, the parameter we estimate
is called rate as opposed to df, which was the parameter in the t
distribution.


The quantile function for the exponential distribution is qexp, which
takes the rate argument. Figure 10-52 shows the resulting
Q–Q plot using a theoretical exponential distribution:


ggplot(df_exp) +
  aes(sample = y) +
  geom_qq(distribution = qexp, dparams = est_exp) +
  stat_qq_line(distribution = qexp, dparams = est_exp)



[image: rcbk 1052]
Figure 10-52. Exponential distribution Q–Q plot


























10.23 Plotting a Variable in Multiple Colors










Problem


You want to plot your data in multiple colors, typically to make the
plot more informative, readable, or interesting.

















Solution


We can pass a color to a geom_ function in order to produce colored
output (see Figure 10-53):


df <- data.frame(x = rnorm(200), y = rnorm(200))

ggplot(df) +
  aes(x = x, y = y) +
  geom_point(color = "blue")


If you are reading this in print you may see only black. Try it out on
your own in order to see the graph in full color.



[image: rcbk 1053]
Figure 10-53. Point data in color




The value of color can be:



	
One color, in which case all data points are that color.



	
A vector of colors, the same length as x, in which case each value
of x is colored with its corresponding color.



	
A short vector, in which case the vector of colors is recycled.





















Discussion


The default color in ggplot is black. While it’s not very exciting,
black is high contrast and easy for almost anyone to see.


However, it is much more useful (and interesting) to vary the color in a
way that illuminates the data. Let’s illustrate this by plotting a
graphic two ways, once in black and white and once with simple shading.


This produces the basic black-and-white graphic in Figure 10-54:


df <- data.frame(
  x = 1:100,
  y = rnorm(100)
)

ggplot(df) +
  aes(x, y) +
  geom_point()



[image: rcbk 1054]
Figure 10-54. Simple point plot




Now we can make it more interesting by creating a vector of "gray" and
"black" values, according to the sign of x, and then plotting x
using those colors, as shown in Figure 10-55:


shade <- if_else(df$y >= 0, "black", "gray")

ggplot(df) +
  aes(x, y) +
  geom_point(color = shade)



[image: rcbk 1055]
Figure 10-55. Color-shaded point plot




The negative values are now plotted in gray because the corresponding
element of colors is "gray".

















See Also


See Recipe 5.3 regarding the Recycling Rule. Execute colors to see
a list of available colors, and use geom_segment in ggplot to plot
line segments in multiple colors.
























10.24 Graphing a Function










Problem


You want to graph the value of a function.

















Solution


The ggplot function stat_function will graph a function across a
range. In Figure 10-56, we plot a sine wave across the
range –3 to 3:


ggplot(data.frame(x = c(-3, 3))) +
  aes(x) +
  stat_function(fun = sin)



[image: rcbk 1056]
Figure 10-56. Sine wave plot



















Discussion


It’s pretty common to want to plot a statistical function, such as a
normal distribution, across a given range. stat_function in
ggplot allows us to do this. We need only supply a data frame with x
value limits, and stat_function will calculate the y values and plot
the results as shown in Figure 10-57:


ggplot(data.frame(x = c(-3.5, 3.5))) +
  aes(x) +
  stat_function(fun = dnorm) +
  ggtitle("Standard Normal Density")



[image: rcbk 1057]
Figure 10-57. Standard Normal density plot




Notice here that we used ggtitle to set the
title. If setting multiple text elements in a ggplot we use labs,
but when we’re just adding a title, ggtitle is more concise than
labs(title='Standard Normal Density'), although they accomplish the
same thing. See ?labs for more discussion of labels with ggplot.


stat_function can graph any function that takes one argument and
returns one value. Let’s create a function and then plot it. Our
function is a dampened sine wave—that is, a sine wave that loses amplitude
as it moves away from 0:


f <- function(x) exp(-abs(x)) * sin(2 * pi * x)


ggplot(data.frame(x = c(-3.5, 3.5))) +
  aes(x) +
  stat_function(fun = f) +
  ggtitle("Dampened Sine Wave")


The resulting plot is shown in Figure 10-58.



[image: rcbk 1058]
Figure 10-58. Dampened sine wave plot



















See Also


See Recipe 15.3 for how to define a function.
























10.25 Displaying Several Figures on One Page










Problem


You want to display several plots side by side on one page.

















Solution


There are a number of ways to put ggplot graphics into a grid, but one
of the easiest to use and understand is patchwork by Thomas Lin
Pedersen. patchwork is not currently available on CRAN, but you can
install it from GitHub using the devtools package:


devtools::install_github("thomasp85/patchwork")


After installing the package, you can use it to plot multiple ggplot
objects using a + between the objects, then a call to plot_layout to
arrange the images into a grid, as shown in Figure 10-59.
The example code here has four ggplot objects:


library(patchwork)
p1 + p2 + p3 + p4



[image: rcbk 1059]
Figure 10-59. A patchwork plot




patchwork supports grouping with parentheses and using / to put
groupings under other elements, as illustrated in Figure 10-60:


p3 / (p1 + p2 + p4)



[image: rcbk 1060]
Figure 10-60. A patchwork 1 / 2 plot



















Discussion


Let’s use a multifigure plot to display four different beta
distributions. Using ggplot and the patchwork package, we can create
a 2×2 layout effect by creating four graphics objects and then printing
them using the + notation from patchwork:


library(patchwork)

df <- data.frame(x = c(0, 1))

g1 <- ggplot(df) +
  aes(x) +
  stat_function(
    fun = function(x)
      dbeta(x, 2, 4)
  ) +
  ggtitle("First")

g2 <- ggplot(df) +
  aes(x) +
  stat_function(
    fun = function(x)
      dbeta(x, 4, 1)
  ) +
  ggtitle("Second")

g3 <- ggplot(df) +
  aes(x) +
  stat_function(
    fun = function(x)
      dbeta(x, 1, 1)
  ) +
  ggtitle("Third")

g4 <- ggplot(df) +
  aes(x) +
  stat_function(
    fun = function(x)
      dbeta(x, .5, .5)
  ) +
  ggtitle("Fourth")

g1 + g2 + g3 + g4 + plot_layout(ncol = 2, byrow = TRUE)


The output is shown in Figure 10-61.



[image: rcbk 1061]
Figure 10-61. Four plots using patchwork




To lay the images out in column order, we could pass byrow=FALSE
to plot_layout:


g1 + g2 + g3 + g4 + plot_layout(ncol = 2, byrow = FALSE)

















See Also


Recipe 8.11 discusses plotting density functions as we do here.


Recipe 10.9 shows how you can create a matrix of plots using a
facet function.


The grid package and the lattice package contain additional tools
for multifigure layouts with base graphics.
























10.26 Writing Your Plot to a File










Problem


You want to save your graphics in a file, such as a PNG, JPEG, or
PostScript file.

















Solution


With ggplot figures you can use ggsave to save a displayed image to a
file. ggsave will make some default assumptions about size and file
type for you, allowing you to specify only a filename:


ggsave("filename.jpg")


The file type is derived from the extension you use in the filename you
pass to ggsave. You can control details of size, file type, and scale
by passing parameters to ggsave. See ?ggsave for specific details.

















Discussion


In RStudio, a shortcut is to click on Export in the Plots window and
then click on “Save as Image,” “Save as PDF,” or “Copy to Clipboard.”
The save options will prompt you for a file type and a filename before
writing the file. The “Copy to Clipboard” option can be handy if you are
manually copying and pasting your graphics into a presentation or word
processor.


Remember that the file will be written to your current working directory
(unless you use an absolute filepath), so be certain you know which
directory is your working directory before calling savePlot.


In a noninteractive script using ggplot, you can pass plot objects
directly to ggsave so they need not be displayed before saving. In the
prior recipe we created a plot object called g1. We can save it to a
file like this:


ggsave("g1.png", plot = g1, units = "in", width = 5, height = 4)


Note that the units for height and width in ggsave are specified
with the units parameter. In this case we used in for inches, but
ggsave also supports mm and cm for the more metrically inclined.

















See Also


See Recipe 3.1 for more about the current working directory.



















Chapter 11. Linear Regression and ANOVA



In statistics, modeling is where we get down to business. Models
quantify the relationships between our variables. Models let us make
predictions.


A simple linear regression is the most basic model. It’s just two
variables and is modeled as a linear relationship with an error term:


yi = β0 + β1xi + εi



We are given the data for x and y. Our mission is to fit the model,
which will give us the best estimates for β0 and β1 (see Recipe 11.1).


That generalizes naturally to multiple linear regression, where we have
multiple variables on the righthand side of the relationship (see Recipe 11.2):


yi = β0 + β1ui + β2vi + β3wi + εi



Statisticians call u, v, and w the predictors and y the
response. Obviously, the model is useful only if there is a fairly
linear relationship between the predictors and the response, but that
requirement is much less restrictive than you might think. Recipe 11.12 discusses transforming your variables into a (more) linear
relationship so that you can use the well-developed machinery of linear
regression.


The beauty of R is that anyone can build these linear models. The models
are built by a function, lm, which returns a model object. From the
model object, we get the coefficients (βi) and regression
statistics. It’s easy. Really!


The horror of R is likewise that anyone can build these models. Nothing requires
you to check that the model is reasonable, much less statistically
significant. Before you blindly believe a model, check it! Most of the
information you need is in the regression summary (see Recipe 11.4):


	Is the model statistically significant?

	
Check the F statistic at the bottom of the summary.



	Are the coefficients significant?

	
Check the coefficient’s t statistics and p-values in the summary,
or check their confidence intervals (see Recipe 11.14).



	Is the model useful?

	
Check the R2 near the bottom of the summary.



	Does the model fit the data well?

	
Plot the residuals and check the regression diagnostics (see Recipe 11.15 and Recipe 11.16).



	Does the data satisfy the assumptions behind linear regression?

	
Check whether the diagnostics confirm that a linear model is
reasonable for your data (see Recipe 11.16).














ANOVA


Analysis of variance (ANOVA) is a powerful statistical technique.
First-year graduate students in statistics are taught ANOVA almost
immediately because of its importance, both theoretical and practical.
We are often amazed, however, at the extent to which people outside the
field are unaware of its purpose and value.


Regression creates a model, and ANOVA is one method of evaluating such
models. The mathematics of ANOVA are intertwined with the mathematics of
regression, so statisticians usually present them together; we follow
that tradition here.


ANOVA is actually a family of techniques that are connected by a common
mathematical analysis. This chapter mentions several applications:


	One-way ANOVA

	
This is the simplest application of ANOVA. Suppose you have data
samples from several populations and are wondering whether the
populations have different means. One-way ANOVA answers that question.
If the populations have normal distributions, use the oneway.test
function (see Recipe 11.21); otherwise, use the
nonparametric version, the kruskal.test function (see Recipe 11.24).



	Model comparison

	
When you add or delete a predictor variable in a linear regression,
you want to know whether that change improved the model.
The anova function compares two regression models and reports
whether they are significantly different (see Recipe 11.25).



	ANOVA table

	
The anova function can also construct the ANOVA table of a linear
regression model, which includes the F statistic needed to gauge the
model’s statistical significance (see Recipe 11.3). This important
table is discussed in nearly every textbook on regression.





















Example Data


In many of the examples in this chapter, we start by creating example
data using R’s pseudorandom number generation capabilities. So at the
beginning of each recipe, you may see something like the following:


set.seed(42)
x <- rnorm(100)
e <- rnorm(100, mean=0, sd=5)
y <- 5 + 15 * x + e


We use set.seed to set the random number generation seed so that if
you run the example code on your machine you will get the same answer.
In the preceding example, x is a vector of 100 draws from a standard
normal (mean=0, sd=1) distribution. Then we create a little
random noise called e from a normal distribution with mean= 0 and
sd= 5. y is then calculated as 5 + 15 * x + e. The idea behind
creating example “toy” data rather than using “real-world” data is that with
simulated data you can change the coefficients and parameters and
see how the change impacts the resulting model. For example, you could
increase the standard deviation of e in the example data and see what
impact that has on the R^2 of your model.

















See Also


There are many good texts on linear regression. One of our favorites is
Applied Linear Regression Models, 4th ed., by Michael Kutner,
Christopher Nachtsheim, and John Neter (McGraw-Hill/Irwin). We generally
follow their terminology and conventions in this chapter.


We also like Linear Models with R by Julian Faraway (Chapman & Hall/CRC),
because it illustrates regression using R and is quite readable. Earlier
versions of Faraday’s work are available free
online, too.















11.1 Performing Simple Linear Regression










Problem


You have two vectors, x and y, that hold paired observations:
(x1, y1), (x2, y2), …, (xn, yn). You believe
there is a linear relationship between x and y, and you want to
create a regression model of the relationship.

















Solution


The lm function performs a linear regression and reports the
coefficients.


If your data is in vectors:


lm(y ~ x)


Or if your data is in columns in a data frame:


lm(y ~ x, data = df)

















Discussion


Simple linear regression involves two variables: a predictor (or
independent) variable, often called x, and a response (or dependent)
variable, often called y. The regression uses the ordinary
least-squares (OLS) algorithm to fit the linear model:


yi = β0 + β1xi + εi



where β0 and β1 are the regression coefficients and εi
are the error terms.


The lm function can perform linear regression. The main argument is a
model formula, such as y ~ x. The formula has the response variable on
the left of the tilde character (~) and the predictor variable on the
right. The function estimates the regression coefficients, β0 and
β1, and reports them as the intercept and the coefficient of x,
respectively:


set.seed(42)
x <- rnorm(100)
e <- rnorm(100, mean = 0, sd = 5)
y <- 5 + 15 * x + e

lm(y ~ x)
#>
#> Call:
#> lm(formula = y ~ x)
#>
#> Coefficients:
#> (Intercept)            x
#>        4.56        15.14


In this case, the regression equation is:


yi = 4.56 + 15.14xi + εi



It is quite common for data to be captured inside a data frame, in which
case you want to perform a regression between two data frame columns.
Here, x and y are columns of a data frame dfrm:


df <- data.frame(x, y)
head(df)
#>        x     y
#> 1  1.371 31.57
#> 2 -0.565  1.75
#> 3  0.363  5.43
#> 4  0.633 23.74
#> 5  0.404  7.73
#> 6 -0.106  3.94


The lm function lets you specify a data frame by using the data
parameter. If you do, the function will take the variables from the data
frame and not from your workspace:


lm(y ~ x, data = df)          # Take x and y from df
#>
#> Call:
#> lm(formula = y ~ x, data = df)
#>
#> Coefficients:
#> (Intercept)            x
#>        4.56        15.14
























11.2 Performing Multiple Linear Regression










Problem


You have several predictor variables (e.g., u, v, and w) and a
response variable, y. You believe there is a linear relationship
between the predictors and the response, and you want to perform a
linear regression on the data.

















Solution


Use the lm function. Specify the multiple predictors on the righthand
side of the formula, separated by plus signs (+):


lm(y ~ u + v + w)

















Discussion


Multiple linear regression is the obvious generalization of simple
linear regression. It allows multiple predictor variables instead of one
predictor variable and still uses OLS to compute the coefficients of a
linear equation. The three-variable regression just given corresponds to
this linear model:


yi = β0 + β1ui + β2vi + β3wi + εi



R uses the lm function for both simple and multiple linear regression.
You simply add more variables to the righthand side of the model
formula. The output then shows the coefficients of the fitted model.
Let’s set up some example random normal data using the rnorm function:


set.seed(42)
u <- rnorm(100)
v <- rnorm(100, mean = 3,  sd = 2)
w <- rnorm(100, mean = -3, sd = 1)
e <- rnorm(100, mean = 0,  sd = 3)


Then we can create an equation using known coefficients to calculate our
y variable:


y <- 5 + 4 * u + 3 * v + 2 * w + e


Now if we run a linear regression, we can see that R solves for the
coefficients and gets pretty close to the actual values just used:


lm(y ~ u + v + w)
#>
#> Call:
#> lm(formula = y ~ u + v + w)
#>
#> Coefficients:
#> (Intercept)            u            v            w
#>        4.77         4.17         3.01         1.91


The data parameter of lm is especially valuable when the number of
variables increases, since it’s much easier to keep your data in one
data frame than in many separate variables. Suppose your data is
captured in a data frame, such as the df variable shown here:


df <- data.frame(y, u, v, w)
head(df)
#>       y      u     v     w
#> 1 16.67  1.371 5.402 -5.00
#> 2 14.96 -0.565 5.090 -2.67
#> 3  5.89  0.363 0.994 -1.83
#> 4 27.95  0.633 6.697 -0.94
#> 5  2.42  0.404 1.666 -4.38
#> 6  5.73 -0.106 3.211 -4.15


When you supply df to the data parameter of lm, R looks for the
regression variables in the columns of the data frame:


lm(y ~ u + v + w, data = df)
#>
#> Call:
#> lm(formula = y ~ u + v + w, data = df)
#>
#> Coefficients:
#> (Intercept)            u            v            w
#>        4.77         4.17         3.01         1.91

















See Also


See Recipe 11.1 for simple linear regression.
























11.3 Getting Regression Statistics










Problem


You want the critical statistics and information regarding your
regression, such as R2, the F statistic, confidence intervals for
the coefficients, residuals, the ANOVA table, and so forth.

















Solution


Save the regression model in a variable, say m:


m <- lm(y ~ u + v + w)


Then use functions to extract regression statistics and information from
the model:


	anova(m)

	
ANOVA table



	coefficients(m)

	
Model coefficients



	coef(m)

	
Same as coefficients(m)



	confint(m)

	
Confidence intervals for the regression coefficients



	deviance(m)

	
Residual sum of squares



	effects(m)

	
Vector of orthogonal effects



	fitted(m)

	
Vector of fitted y values



	residuals(m)

	
Model residuals



	resid(m)

	
Same as residuals(m)



	summary(m)

	
Key statistics, such as R2, the F statistic, and the residual
standard error (σ)



	vcov(m)

	
Variance–covariance matrix of the main parameters





















Discussion


When we started using R, the documentation said to use the lm function to
perform linear regression. So we did something like this, getting the
output shown in Recipe 11.2:


lm(y ~ u + v + w)
#>
#> Call:
#> lm(formula = y ~ u + v + w)
#>
#> Coefficients:
#> (Intercept)            u            v            w
#>        4.77         4.17         3.01         1.91


How disappointing! The output was nothing compared to other statistics
packages such as SAS. Where is R2? Where are the confidence
intervals for the coefficients? Where is the F statistic, its
p-value, and the ANOVA table?


Of course, all that information is available—you just have to ask for
it. Other statistics systems dump everything and let you wade through
it. R is more minimalist. It prints a bare-bones output and lets you
request what more you want.


The lm function returns a model object that you can assign to a
variable:


m <- lm(y ~ u + v + w)


From the model object, you can extract important information using
specialized functions. The most important function is summary:


summary(m)
#>
#> Call:
#> lm(formula = y ~ u + v + w)
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -5.383 -1.760 -0.312  1.856  6.984
#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)    4.770      0.969    4.92  3.5e-06 ***
#> u              4.173      0.260   16.07  < 2e-16 ***
#> v              3.013      0.148   20.31  < 2e-16 ***
#> w              1.905      0.266    7.15  1.7e-10 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.66 on 96 degrees of freedom
#> Multiple R-squared:  0.885,  Adjusted R-squared:  0.882
#> F-statistic:  247 on 3 and 96 DF,  p-value: <2e-16


The summary shows the estimated coefficients, the critical
statistics (such as R2 and the F statistic), and an estimate
of σ, the standard error of the residuals. The summary is so important
that there is an entire recipe devoted to understanding it (Recipe 11.4).


There are specialized extractor functions for other important
information:


	Model coefficients (point estimates)

	

coef(m)
#> (Intercept)           u           v           w
#>        4.77        4.17        3.01        1.91



	Confidence intervals for model coefficients

	

confint(m)
#>             2.5 % 97.5 %
#> (Intercept)  2.85   6.69
#> u            3.66   4.69
#> v            2.72   3.31
#> w            1.38   2.43



	Model residuals

	

resid(m)
#>       1       2       3       4       5       6       7       8       9
#> -0.5675  2.2880  0.0972  2.1474 -0.7169 -0.3617  1.0350  2.8040 -4.2496
#>      10      11      12      13      14      15      16      17      18
#> -0.2048 -0.6467 -2.5772 -2.9339 -1.9330  1.7800 -1.4400 -2.3989  0.9245
#>      19      20      21      22      23      24      25      26      27
#> -3.3663  2.6890 -1.4190  0.7871  0.0355 -0.3806  5.0459 -2.5011  3.4516
#>      28      29      30      31      32      33      34      35      36
#>  0.3371 -2.7099 -0.0761  2.0261 -1.3902 -2.7041  0.3953  2.7201 -0.0254
#>      37      38      39      40      41      42      43      44      45
#> -3.9887 -3.9011 -1.9458 -1.7701 -0.2614  2.0977 -1.3986 -3.1910  1.8439
#>      46      47      48      49      50      51      52      53      54
#>  0.8218  3.6273 -5.3832  0.2905  3.7878  1.9194 -2.4106  1.6855 -2.7964
#>      55      56      57      58      59      60      61      62      63
#> -1.3348  3.3549 -1.1525  2.4012 -0.5320 -4.9434 -2.4899 -3.2718 -1.6161
#>      64      65      66      67      68      69      70      71      72
#> -1.5119 -0.4493 -0.9869  5.6273 -4.4626 -1.7568  0.8099  5.0320  0.1689
#>      73      74      75      76      77      78      79      80      81
#>  3.5761 -4.8668  4.2781 -2.1386 -0.9739 -3.6380  0.5788  5.5664  6.9840
#>      82      83      84      85      86      87      88      89      90
#> -3.5119  1.2842  4.1445 -0.4630 -0.7867 -0.7565  1.6384  3.7578  1.8942
#>      91      92      93      94      95      96      97      98      99
#>  0.5542 -0.8662  1.2041 -1.7401 -0.7261  3.2701  1.4012  0.9476 -0.9140
#>     100
#>  2.4278



	Residual sum of squares

	

deviance(m)
#> [1] 679



	ANOVA table

	

anova(m)
#> Analysis of Variance Table
#>
#> Response: y
#>           Df Sum Sq Mean Sq F value  Pr(>F)
#> u          1   1776    1776   251.0 < 2e-16 ***
#> v          1   3097    3097   437.7 < 2e-16 ***
#> w          1    362     362    51.1 1.7e-10 ***
#> Residuals 96    679       7
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1






If you find it annoying to save the model in a variable, you are welcome
to use one-liners such as this:


summary(lm(y ~ u + v + w))


Or you can use magrittr pipes:


lm(y ~ u + v + w) %>%
  summary

















See Also


See Recipe 11.4 for more on the regression summary. See Recipe 11.17 for
regression statistics specific to model diagnostics.
























11.4 Understanding the Regression Summary










Problem


You created a linear regression model, m. However, you are confused by
the output from summary(m).

















Discussion


The model summary is important because it links you to the most critical
regression statistics. Here is the model summary from Recipe 11.3:


summary(m)
#>
#> Call:
#> lm(formula = y ~ u + v + w)
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -5.383 -1.760 -0.312  1.856  6.984
#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)    4.770      0.969    4.92  3.5e-06 ***
#> u              4.173      0.260   16.07  < 2e-16 ***
#> v              3.013      0.148   20.31  < 2e-16 ***
#> w              1.905      0.266    7.15  1.7e-10 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.66 on 96 degrees of freedom
#> Multiple R-squared:  0.885,  Adjusted R-squared:  0.882
#> F-statistic:  247 on 3 and 96 DF,  p-value: <2e-16


Let’s dissect this summary by section. We’ll read it from top to
bottom, even though the most important statistic (the F statistic)
appears at the end:


	Call

	

#> lm(formula = y ~ u + v + w)


This shows how lm
was called when it created the model, which is important for putting
this summary into the proper context.



	Residuals statistics

	

#> Residuals:
#>     Min      1Q  Median      3Q     Max
#>  -5.383  -1.760  -0.312   1.856   6.984


Ideally, the regression residuals would have a perfect normal
distribution. These statistics help you identify possible deviations
from normality. The OLS algorithm is mathematically guaranteed to
produce residuals with a mean of zero,1 hence the sign of the median indicates the
skew’s direction and the magnitude of the median indicates the extent.
In this case the median is negative, which suggests some skew to the
left.


If the residuals have a nice bell-shaped distribution, then the first
quartile (1Q) and third quartile (3Q) should have about the same
magnitude. In this example, the larger magnitude of 3Q versus 1Q
(1.856 versus 1.76) indicates a slight skew to the right in our data,
although the negative median makes the situation less clear-cut.


The Min and Max residuals offer a quick way to detect extreme
outliers in the data, since extreme outliers (in the response variable)
produce large residuals.



	Coefficients

	

#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)    4.770      0.969    4.92  3.5e-06 ***
#> u              4.173      0.260   16.07  < 2e-16 ***
#> v              3.013      0.148   20.31  < 2e-16 ***
#> w              1.905      0.266    7.15  1.7e-10 ***


The column labeled Estimate contains the estimated regression
coefficients as calculated by ordinary least squares.


Theoretically, if a variable’s coefficient is zero then the variable is
worthless; it adds nothing to the model. Yet the coefficients shown here
are only estimates, and they will never be exactly zero. We therefore
ask: statistically speaking, how likely is it that the true coefficient
is zero? That is the purpose of the t statistics and the p-values,
which in the summary are labeled (respectively) t value and
Pr(>|t|).


The p-value is a probability. It gauges the likelihood that the
coefficient is not significant, so smaller is better. Big is bad
because it indicates a high likelihood of insignificance. In this
example, the p-value for the u coefficient is a mere 0.00106, so u
is likely significant. The p-value for w, however, is 0.05744; this
is just over our conventional limit of 0.05, which suggests that w is
likely insignificant.2 Variables with large p-values are
candidates for elimination.


A handy feature is that R flags the significant variables for quick
identification. Did you notice the extreme righthand column containing triple asterisks (*)? Other values you might see in this column are
double asterisks (**), a single asterisk (*), and a period (.). This column highlights the significant variables. The line labeled
Signif. codes at the bottom of the Coefficients section gives a cryptic guide to the flags’
meanings. You can interpret them as follows:





	Significance indication
	Meaning





	***

	p-value between 0 and 0.001




	**

	p-value between 0.001 and 0.01




	*

	p-value between 0.01 and 0.05




	.

	p-value between 0.05 and 0.1




	(blank)

	p-value between 0.1 and 1.0







The column labeled Std. Error is the standard error of the estimated
coefficient. The column labeled t value is the t statistic from
which the p-value was calculated.






	Residual standard error

	

# Residual standard error: 2.66 on 96 degrees of freedom


This reports the standard error of the residuals (σ)—that is, the
sample standard deviation of ε.



	R2 (coefficient of determination)

	

# Multiple R-squared:  0.885,    Adjusted R-squared:  0.882


R2 is a measure of the model’s quality. Bigger is better.
Mathematically, it is the fraction of the variance of y that is
explained by the regression model. The remaining variance is not
explained by the model, so it must be due to other factors (i.e.,
unknown variables or sampling variability). In this case, the model
explains 0.885 (88.5%) of the variance of y, and the remaining
0.115 (11.5%) is unexplained.


That being said, we strongly suggest using the adjusted rather than the
basic R2. The adjusted value accounts for the number of variables in
your model and so is a more realistic assessment of its effectiveness.
In this case, then, we would use 0.882, not 0.885.



	F statistic

	

# F-statistic: 246.6 on 3 and 96 DF,  p-value: < 2.2e-16


The F statistic tells you whether the model is significant or
insignificant. The model is significant if any of the coefficients are
nonzero (i.e., if βi ≠ 0 for some i). It is insignificant if all
coefficients are zero (β1 = β2 = … = βn = 0).


Conventionally, a p-value of less than 0.05 indicates that the model
is likely significant (one or more βi are nonzero), whereas values
exceeding 0.05 indicate that the model is likely not significant. Here,
the probability is only 2.2e-16 that our model is insignificant. That’s
good.


Most people look at the R2 statistic first. The statistician wisely
starts with the F statistic, because if the model is not significant
then nothing else matters.





















See Also


See Recipe 11.3 for more on extracting statistics and information from the
model object.
























11.5 Performing Linear Regression Without an Intercept










Problem


You want to perform a linear regression, but you want to force the
intercept to be zero.

















Solution


Add "+ 0" to the righthand side of your regression formula. That
will force lm to fit the model with a zero intercept:


lm(y ~ x + 0)


The corresponding regression equation is:


yi = βxi + εi


















Discussion


Linear regression ordinarily includes an intercept term, so that is the
default in R. In rare cases, however, you may want to fit the data while
assuming that the intercept is zero. In this case you make a modeling
assumption: when x is zero, y should be zero.


When you force a zero intercept, the lm output includes a coefficient
for x but no intercept for y, as shown here:


lm(y ~ x + 0)
#>
#> Call:
#> lm(formula = y ~ x + 0)
#>
#> Coefficients:
#>   x
#> 4.3


We strongly suggest you check that modeling assumption before
proceeding. Perform a regression with an intercept; then see if the
intercept could plausibly be zero. Check the intercept’s confidence
interval. In this example, the confidence interval is (6.26, 8.84):


confint(lm(y ~ x))
#>             2.5 % 97.5 %
#> (Intercept)  6.26   8.84
#> x            2.82   5.31


Because the confidence interval does not contain zero, it is not
statistically plausible that the intercept could be zero. So in this
case, it is not reasonable to rerun the regression while forcing a zero
intercept.
























11.6 Regressing Only Variables That Highly Correlate with Your Dependent Variable










Problem


You have a data frame with many variables and you want to build a
multiple linear regression using only the variables that are highly
correlated to your response (dependent) variable.

















Solution


If df is our data frame containing both our response (dependent) and
all our predictor (independent) variables and dep_var is our response
variable, we can figure out our best predictors and then use them in a
linear regression. If we want the top four predictor variables, we can
use this:


best_pred <- df %>%
  select(-dep_var) %>%
  map_dbl(cor, y = df$dep_var) %>%
  sort(decreasing = TRUE) %>%
  .[1:4] %>%
  names %>%
  df[.]

mod <- lm(df$dep_var ~ as.matrix(best_pred))


This recipe is a combination of many different pieces of logic used
elsewhere in this book. We will describe each step here, and then walk
through it in the Discussion using some example data.


First we drop the response variable out of our pipe chain so that we
have only our predictor variables in our data flow:


df %>%
  select(-dep_var)


Then we use map_dbl from purrr to perform a pairwise correlation on
each column relative to the response variable:


  map_dbl(cor, y = df$dep_var) %>%


We then take the resulting correlations and sort them in decreasing
order:


  sort(decreasing = TRUE) %>%


We want only the top four correlated variables, so we select the top
four records in the resulting vector:


  .[1:4] %>%


And we don’t need the correlation values, only the names of the
rows—which are the variable names from our original data frame, df:


names %>%


Then we can pass those names into our subsetting brackets to select only
the columns with names matching the ones we want:


df[.]


Our pipe chain assigns the resulting data frame into best_pred. We can
then use best_pred as the predictor variables in our regression and we
can use df$dep_var as the response:


mod <- lm(df$dep_var ~ as.matrix(best_pred))

















Discussion


By combining the mapping functions discussed in Recipe 6.4, we can create a recipe to remove low-correlation variables
from a set of predictors and use the high-correlation predictors in a
regression.


We have an example data frame that contains six predictor variables
named pred1 through pred6. The response variable is named resp.
Let’s walk that data frame through our logic and see how it works.


Loading the data and dropping the resp variable is pretty
straightforward, so let’s look at the result of mapping the cor
function:


# loads the pred data frame
load("./data/pred.rdata")

pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp)
#> pred1 pred2 pred3 pred4 pred5 pred6
#> 0.573 0.279 0.753 0.799 0.322 0.607


The output is a named vector of values where the names are the variable
names and the values are the pairwise correlations between each
predictor variable and resp, the response variable.


If we sort this vector, we get the correlations in decreasing order:


pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp) %>%
  sort(decreasing = TRUE)
#> pred4 pred3 pred6 pred1 pred5 pred2
#> 0.799 0.753 0.607 0.573 0.322 0.279


Using subsetting allows us to select the top four records. The .
operator is a special operator that tells the pipe where to put the
result of the prior step:


pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp) %>%
  sort(decreasing = TRUE) %>%
  .[1:4]
#> pred4 pred3 pred6 pred1
#> 0.799 0.753 0.607 0.573


We then use the names function to extract the names from our vector.
The names are the names of the columns we ultimately want to use as our
independent variables:


pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp) %>%
  sort(decreasing = TRUE) %>%
  .[1:4] %>%
  names
#> [1] "pred4" "pred3" "pred6" "pred1"


When we pass the vector of names into pred[.], the names are used to
select columns from the pred data frame. We then use head to select
only the top six rows for easier illustration:


pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp) %>%
  sort(decreasing = TRUE) %>%
  .[1:4] %>%
  names %>%
  pred[.] %>%
  head
#>    pred4   pred3  pred6  pred1
#> 1  7.252  1.5127  0.560  0.206
#> 2  2.076  0.2579 -0.124 -0.361
#> 3 -0.649  0.0884  0.657  0.758
#> 4  1.365 -0.1209  0.122 -0.727
#> 5 -5.444 -1.1943 -0.391 -1.368
#> 6  2.554  0.6120  1.273  0.433


Now let’s bring it all together and pass the resulting data into the
regression:


best_pred <- pred %>%
  select(-resp) %>%
  map_dbl(cor, y = pred$resp) %>%
  sort(decreasing = TRUE) %>%
  .[1:4] %>%
  names %>%
  pred[.]

mod <- lm(pred$resp ~ as.matrix(best_pred))
summary(mod)
#>
#> Call:
#> lm(formula = pred$resp ~ as.matrix(best_pred))
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -1.485 -0.619  0.189  0.562  1.398
#>
#> Coefficients:
#>                           Estimate Std. Error t value Pr(>|t|)
#> (Intercept)                  1.117      0.340    3.28   0.0051 **
#> as.matrix(best_pred)pred4    0.523      0.207    2.53   0.0231 *
#> as.matrix(best_pred)pred3   -0.693      0.870   -0.80   0.4382
#> as.matrix(best_pred)pred6    1.160      0.682    1.70   0.1095
#> as.matrix(best_pred)pred1    0.343      0.359    0.95   0.3549
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.927 on 15 degrees of freedom
#> Multiple R-squared:  0.838,  Adjusted R-squared:  0.795
#> F-statistic: 19.4 on 4 and 15 DF,  p-value: 8.59e-06
























11.7 Performing Linear Regression with Interaction Terms










Problem


You want to include an interaction term in your regression.

















Solution


The R syntax for regression formulas lets you specify interaction terms.
To indicate the interaction of two variables, u and v, we separate
their names with an asterisk (*):


lm(y ~ u * v)


This corresponds to the model yi = β0 + β1ui + β2vi + β3uivi + εi, which includes the first-order interaction term β3uivi.

















Discussion


In regression, an interaction occurs when the product of two predictor
variables is also a significant predictor (i.e., in addition to the
predictor variables themselves). Suppose we have two predictors, u and
v, and want to include their interaction in the regression. This is
expressed by the following equation:


yi = β0 + β1ui + β2vi + β3uivi + εi



Here the product term, β3uivi, is called the
interaction term. The R formula for that equation is:


y ~ u * v


When you write y ~ u * v, R automatically includes u, v, and
their product in the model. This is for a good reason. If a model
includes an interaction term, such as β3uivi, then
regression theory tells us the model should also contain the constituent
variables ui and vi.


Likewise, if you have three predictors (u, v, and w) and want to
include all their interactions, separate them by asterisks:


y ~ u * v * w


This corresponds to the regression equation:


yi = β0 + β1ui + β2vi + β3wi + β4uivi + β5uiwi + β6viwi + β7uiviwi + εi



Now we have all the first-order interactions and a second-order
interaction (β7uiviwi).


Sometimes, however, you may not want every possible interaction. You can
explicitly specify a single product by using the colon operator (:).
For example, u:v:w denotes the product term βuiviwi
but without all possible interactions. So the R formula:


y ~ u + v + w + u:v:w


corresponds to the regression equation:


yi = β0 + β1ui + β2vi + β3wi + β4uiviwi + εi



It might seem odd that a colon (:) means pure multiplication while
an asterisk (*) means both multiplication and inclusion of constituent
terms. Again, this is because we normally incorporate the constituents
when we include their interaction, so making that approach the default
for * makes sense.


There is some additional syntax for easily specifying many interactions:


	(u + v + ... + w)^2

	
Include all variables (u, v, …, w) and all their first-order
interactions.



	(u + v + ... + w)^3

	
Include all variables, all their first-order interactions, and all
their second-order interactions.



	(u + v + ... + w)^4

	
And so forth.






Both the asterisk (*) and the colon (:) follow a “distributive law,”
so the following notations are also allowed:


	x*(u + v + ... + w)

	
Same as x*u + x*v + ... +               x*w (which is the same as
x +               u + v + ... + w + x:u + x:v + ... + x:w)



	x:(u + v + ... + w)

	
Same as x:u + x:v + ... + x:w






All this syntax gives you some flexibility in writing your formula. For
example, these three formulas are equivalent:


y ~ u * v
y ~ u + v + u:v
y ~ (u + v) ^ 2


They all define the same regression equation, yi = β0 + β1ui + β2vi + β3uivi + εi .

















See Also


The full syntax for formulas is richer than described here. See
R in a Nutshell
or the R Language Definition for more details.
























11.8 Selecting the Best Regression Variables










Problem


You are creating a new regression model or improving an existing model.
You have the luxury of many regression variables, and you want to select
the best subset of those variables.

















Solution


The step function can perform stepwise regression, either forward or
backward. Backward stepwise regression starts with many variables and
removes the underperformers:


full.model <- lm(y ~ x1 + x2 + x3 + x4)
reduced.model <- step(full.model, direction = "backward")


Forward stepwise regression starts with a few variables and adds new
ones to improve the model until it cannot be improved further:


min.model <- lm(y ~ 1)
fwd.model <-
  step(min.model,
       direction = "forward",
       scope = (~ x1 + x2 + x3 + x4))

















Discussion


When you have many predictors, it can be quite difficult to choose the
best subset. Adding and removing individual variables affects the
overall mix, so the search for “the best” can become tedious.


The step function automates that search. Backward stepwise regression
is the easiest approach. Start with a model that includes all the
predictors. We call that the full model. The model summary, shown
here, indicates that not all predictors are statistically significant:


# example data
set.seed(4)
n <- 150
x1 <- rnorm(n)
x2 <- rnorm(n, 1, 2)
x3 <- rnorm(n, 3, 1)
x4 <- rnorm(n,-2, 2)
e <- rnorm(n, 0, 3)
y <- 4 + x1 + 5 * x3 + e

# build the model
full.model <- lm(y ~ x1 + x2 + x3 + x4)
summary(full.model)
#>
#> Call:
#> lm(formula = y ~ x1 + x2 + x3 + x4)
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -8.032 -1.774  0.158  2.032  6.626
#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)  3.40224    0.80767    4.21  4.4e-05 ***
#> x1           0.53937    0.25935    2.08    0.039 *
#> x2           0.16831    0.12291    1.37    0.173
#> x3           5.17410    0.23983   21.57  < 2e-16 ***
#> x4          -0.00982    0.12954   -0.08    0.940
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.92 on 145 degrees of freedom
#> Multiple R-squared:  0.77,   Adjusted R-squared:  0.763
#> F-statistic:  121 on 4 and 145 DF,  p-value: <2e-16


We want to eliminate the insignificant variables, so we use step to
incrementally eliminate the underperformers. The result is called the
reduced model:


reduced.model <- step(full.model, direction="backward")
#> Start:  AIC=327
#> y ~ x1 + x2 + x3 + x4
#>
#>        Df Sum of Sq  RSS AIC
#> - x4    1         0 1240 325
#> - x2    1        16 1256 327
#> <none>              1240 327
#> - x1    1        37 1277 329
#> - x3    1      3979 5219 540
#>
#> Step:  AIC=325
#> y ~ x1 + x2 + x3
#>
#>        Df Sum of Sq  RSS AIC
#> - x2    1        16 1256 325
#> <none>              1240 325
#> - x1    1        37 1277 327
#> - x3    1      3988 5228 539
#>
#> Step:  AIC=325
#> y ~ x1 + x3
#>
#>        Df Sum of Sq  RSS AIC
#> <none>              1256 325
#> - x1    1        44 1300 328
#> - x3    1      3974 5230 537


The output from step shows the sequence of models that it explored. In
this case, step removed x2 and x4 and left only x1 and x3 in
the final (reduced) model. The summary of the reduced model shows that
it contains only significant predictors:


summary(reduced.model)
#>
#> Call:
#> lm(formula = y ~ x1 + x3)
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -8.148 -1.850 -0.055  2.026  6.550
#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)    3.648      0.751    4.86    3e-06 ***
#> x1             0.582      0.255    2.28    0.024 *
#> x3             5.147      0.239   21.57   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.92 on 147 degrees of freedom
#> Multiple R-squared:  0.767,  Adjusted R-squared:  0.763
#> F-statistic:  241 on 2 and 147 DF,  p-value: <2e-16


Backward stepwise regression is easy, but sometimes it’s not feasible to
start with “everything” because you have too many candidate variables.
In that case use forward stepwise regression, which will start with
nothing and incrementally add variables that improve the regression. It
stops when no further improvement is possible.


A model that “starts with nothing” may look odd at first:


min.model <- lm(y ~ 1)


This is a model with a response variable (y) but no predictor
variables. (All the fitted values for y are simply the mean of y,
which is what you would guess if no predictors were available.)


We must tell step which candidate variables are available for
inclusion in the model. That is the purpose of the scope argument.
scope is a formula with nothing on the lefthand side of the tilde
(~) and candidate variables on the righthand side:


fwd.model <- step(
  min.model,
  direction = "forward",
  scope = (~ x1 + x2 + x3 + x4),
  trace = 0
)


Here we see that x1, x2, x3, and x4 are all candidates for
inclusion. (We also included trace = 0 to inhibit the voluminous
output from step.) The resulting model has two significant predictors
and no insignificant predictors:


summary(fwd.model)
#>
#> Call:
#> lm(formula = y ~ x3 + x1)
#>
#> Residuals:
#>    Min     1Q Median     3Q    Max
#> -8.148 -1.850 -0.055  2.026  6.550
#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)    3.648      0.751    4.86    3e-06 ***
#> x3             5.147      0.239   21.57   <2e-16 ***
#> x1             0.582      0.255    2.28    0.024 *
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.92 on 147 degrees of freedom
#> Multiple R-squared:  0.767,  Adjusted R-squared:  0.763
#> F-statistic:  241 on 2 and 147 DF,  p-value: <2e-16


The step-forward algorithm reached the same model as the step-backward
model by including x1 and x3 but excluding x2 and x4. This is a
toy example, so that is not surprising. In real applications, we suggest
trying both the forward and backward regression and then comparing
the results. You might be surprised.


Finally, don’t get carried away with stepwise regression. It is not a
panacea, it cannot turn junk into gold, and it is definitely not a
substitute for choosing predictors carefully and wisely. You might
think: “Oh boy! I can generate every possible interaction term for my
model, then let step choose the best ones! What a model I’ll get!”
You’d be thinking of something like this, which starts with all possible
interactions and then tries to reduce the model:


full.model <- lm(y ~ (x1 + x2 + x3 + x4) ^ 4)
reduced.model <- step(full.model, direction = "backward")
#> Start:  AIC=337
#> y ~ (x1 + x2 + x3 + x4)^4
#>
#>               Df Sum of Sq  RSS AIC
#> - x1:x2:x3:x4  1    0.0321 1145 335
#> <none>                     1145 337
#>
#> Step:  AIC=335
#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 +
#>     x3:x4 + x1:x2:x3 + x1:x2:x4 + x1:x3:x4 + x2:x3:x4
#>
#>            Df Sum of Sq  RSS AIC
#> - x2:x3:x4  1      0.76 1146 333
#> - x1:x3:x4  1      8.37 1154 334
#> <none>                  1145 335
#> - x1:x2:x4  1     20.95 1166 336
#> - x1:x2:x3  1     25.18 1170 336
#>
#> Step:  AIC=333
#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 +
#>     x3:x4 + x1:x2:x3 + x1:x2:x4 + x1:x3:x4
#>
#>            Df Sum of Sq  RSS AIC
#> - x1:x3:x4  1      8.74 1155 332
#> <none>                  1146 333
#> - x1:x2:x4  1     21.72 1168 334
#> - x1:x2:x3  1     26.51 1172 334
#>
#> Step:  AIC=332
#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 +
#>     x3:x4 + x1:x2:x3 + x1:x2:x4
#>
#>            Df Sum of Sq  RSS AIC
#> - x3:x4     1      0.29 1155 330
#> <none>                  1155 332
#> - x1:x2:x4  1     23.24 1178 333
#> - x1:x2:x3  1     31.11 1186 334
#>
#> Step:  AIC=330
#> y ~ x1 + x2 + x3 + x4 + x1:x2 + x1:x3 + x1:x4 + x2:x3 + x2:x4 +
#>     x1:x2:x3 + x1:x2:x4
#>
#>            Df Sum of Sq  RSS AIC
#> <none>                  1155 330
#> - x1:x2:x4  1      23.4 1178 331
#> - x1:x2:x3  1      31.5 1187 332


This does not work well. Most of the interaction terms are meaningless.
The step function becomes overwhelmed, and you are left with many
insignificant terms.

















See Also


See Recipe 11.25.
























11.9 Regressing on a Subset of Your Data










Problem


You want to fit a linear model to a subset of your data, not to the
entire dataset.

















Solution


The lm function has a subset parameter that specifies which data
elements should be used for fitting. The parameter’s value can be any
index expression that could index your data. This shows a fitting that
uses only the first 100 observations:


lm(y ~ x1, subset=1:100)          # Use only x[1:100]

















Discussion


You will often want to regress only a subset of your data. This can
happen, for example, when you’re using in-sample data to create the
model and out-of-sample data to test it.


The lm function has a parameter, subset, that selects the
observations used for fitting. The value of subset is a vector. It can
be a vector of index values, in which case lm selects only the
indicated observations from your data. It can also be a logical vector,
the same length as your data, in which case lm selects the
observations with a corresponding TRUE.


Suppose you have 1,000 observations of (x, y) pairs and want to fit
your model using only the first half of those observations. Use a
subset parameter of 1:500, indicating lm should use observations 1
through 500:


## example data
n <- 1000
x <- rnorm(n)
e <- rnorm(n, 0, .5)
y <- 3 + 2 * x + e
lm(y ~ x, subset = 1:500)
#>
#> Call:
#> lm(formula = y ~ x, subset = 1:500)
#>
#> Coefficients:
#> (Intercept)            x
#>           3            2


More generally, you can use the expression 1:floor(length(x)/2) to
select the first half of your data, regardless of size:


lm(y ~ x, subset = 1:floor(length(x) / 2))
#>
#> Call:
#> lm(formula = y ~ x, subset = 1:floor(length(x)/2))
#>
#> Coefficients:
#> (Intercept)            x
#>           3            2


Let’s say your data was collected in several labs and you have a factor,
lab, that identifies the lab of origin. You can limit your regression
to observations collected in New Jersey by using a logical vector that
is TRUE only for those observations:


load('./data/lab_df.rdata')
lm(y ~ x, subset = (lab == "NJ"), data = lab_df)
#>
#> Call:
#> lm(formula = y ~ x, data = lab_df, subset = (lab == "NJ"))
#>
#> Coefficients:
#> (Intercept)            x
#>        2.58         5.03
























11.10 Using an Expression Inside a Regression Formula










Problem


You want to regress on calculated values, not simple variables, but the
syntax of a regression formula seems to forbid that.

















Solution


Embed the expressions for the calculated values inside the I(...)
operator. That will force R to calculate the expression and use the
calculated value for the regression.

















Discussion


If you want to regress on the sum of u and v, then this is your
regression equation:


yi = β0 + β1(ui + vi) + εi



How do you write that equation as a regression formula? This won’t work:


lm(y ~ u + v)    # Not quite right


Here R will interpret u and v as two separate predictors, each with
its own regression coefficient. Likewise, suppose your regression
equation is:


yi = β0 + β1ui + β2ui2 + εi



This won’t work:


lm(y ~ u + u ^ 2)  # That's an interaction, not a quadratic term


R will interpret u^2 as an interaction term (see Recipe 11.7) and not as the square of u.


The solution is to surround the expressions by the I(...) operator,
which inhibits an expression from being interpreted as a regression
formula. Instead, it forces R to calculate the expression’s value and
then incorporate that value directly into the regression. Thus, the
first example becomes:


lm(y ~ I(u + v))


In response to that command, R computes u + v and then regresses y
on the sum.


For the second example we use:


lm(y ~ u + I(u ^ 2))


Here R computes the square of u and then regresses on the sum u + u ^ 2.

Tip

All the basic binary operators (+, -, *, /, ^) have special
meanings inside a regression formula. For this reason, you must use the
I(...) operator whenever you incorporate calculated values into a
regression.




A beautiful aspect of these embedded transformations is that R remembers
them and applies them when you make predictions from the model. Consider
the quadratic model described by the second example. It uses u and
u^2, but we supply the value of u only and R does the heavy lifting.
We don’t need to calculate the square of u ourselves:


load('./data/df_squared.rdata')
m <- lm(y ~ u + I(u ^ 2), data = df_squared)
predict(m, newdata = data.frame(u = 13.4))
#>   1
#> 877

















See Also


See Recipe 11.11 for the special case of regression on a polynomial. See
Recipe 11.12 for incorporating other data transformations into the
regression.
























11.11 Regressing on a Polynomial










Problem


You want to regress y on a polynomial of x.

















Solution


Use the poly(x, n) function in your regression formula to regress on an
n-degree polynomial of x. This example models y as a cubic
function of x:


lm(y ~ poly(x, 3, raw = TRUE))


The example’s formula corresponds to the following cubic regression
equation:


yi = β0 + β1xi + β2xi2 + β3xi3 + εi


















Discussion


When people first use a polynomial model in R, they often do something
clunky like this:


x_sq <- x ^ 2
x_cub <- x ^ 3
m <- lm(y ~ x + x_sq + x_cub)


Obviously, this is quite annoying, and it litters their workspace with
extra variables.


It’s much easier to write:


m <- lm(y ~ poly(x, 3, raw = TRUE))


The raw = TRUE is necessary. Without it, the poly function computes
orthogonal polynomials instead of simple polynomials.


Beyond the convenience, a huge advantage is that R will calculate all
those powers of x when you make predictions from the model (see Recipe 11.19).
Without that, you are stuck calculating x2 and x3 yourself every
time you employ the model.


Here is another good reason to use poly. You cannot write your
regression formula in this way:


lm(y ~ x + x^2 + x^3)     # Does not do what you think!


R will interpret x^2 and x^3 as interaction terms, not as powers of
x. The resulting model is a one-term linear regression, completely
unlike your expectation. You could write the regression formula like
this:


lm(y ~ x + I(x ^ 2) + I(x ^ 3))


But that’s getting pretty verbose. Just use poly.

















See Also


See Recipe 11.7 for more about interaction terms.
See Recipe 11.12 for other transformations on regression data.
























11.12 Regressing on Transformed Data










Problem


You want to build a regression model for x and y, but they do not
have a linear relationship.

















Solution


You can embed the needed transformation inside the regression formula.
If, for example, y must be transformed into log(y), then the
regression formula becomes:


lm(log(y) ~ x)

















Discussion


A critical assumption behind the lm function for regression is that
the variables have a linear relationship. To the extent this assumption
is false, the resulting regression becomes meaningless.


Fortunately, many datasets can be transformed into a linear relationship
before applying lm.


Figure 11-1 shows an example of exponential decay. The
left panel shows the original data, z. The dotted line shows a linear
regression on the original data; clearly, it’s a lousy fit.



[image: rcbk 1101]
Figure 11-1. Example of a data transform




If the data
is really exponential, then a possible model is:


  	z = exp[β0 + β1t + ε]




where t is time and exp[] is the exponential function (ex). This
is not linear, of course, but we can linearize it by taking logarithms:


  	log(z) = β0 + β1t + ε




In R, that regression is simple because we can embed the log transform
directly into the regression formula:


# read in our example data
load(file = './data/df_decay.rdata')
z <- df_decay$z
t <- df_decay$time

# transform and model
m <- lm(log(z) ~ t)
summary(m)
#>
#> Call:
#> lm(formula = log(z) ~ t)
#>
#> Residuals:
#>     Min      1Q  Median      3Q     Max
#> -0.4479 -0.0993  0.0049  0.0978  0.2802
#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)   0.6887     0.0306    22.5   <2e-16 ***
#> t            -2.0118     0.0351   -57.3   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.148 on 98 degrees of freedom
#> Multiple R-squared:  0.971,  Adjusted R-squared:  0.971
#> F-statistic: 3.28e+03 on 1 and 98 DF,  p-value: <2e-16


The right panel of Figure 11-1 shows the plot of log(z)
versus time. Superimposed on that plot is their regression line. The fit
appears to be much better; this is confirmed by the R2 = 0.97,
compared with 0.82 for the linear regression on the original data.


You can embed other functions inside your formula. If you thought the
relationship was quadratic, you could use a square-root transformation:


lm(sqrt(y) ~ month)


You can apply transformations to variables on both sides of the formula,
of course. This formula regresses y on the square root of x:


lm(y ~ sqrt(x))


This regression is for a log-log relationship between x and y:


lm(log(y) ~ log(x))

















See Also


See Recipe 11.13.
























11.13 Finding the Best Power Transformation (Box–Cox Procedure)










Problem


You want to improve your linear model by applying a power transformation
to the response variable.

















Solution


Use the Box–Cox procedure, which is implemented by the boxcox function
of the MASS package. The procedure will identify a power, λ, such
that transforming y into yλ will improve the fit of your model:


library(MASS)
m <- lm(y ~ x)
boxcox(m)

















Discussion


To illustrate the Box–Cox transformation, let’s create some artificial
data using the equation y–1.5 = x + ε, where ε is an error
term:


set.seed(9)
x <- 10:100
eps <- rnorm(length(x), sd = 5)
y <- (x + eps) ^ (-1 / 1.5)


Then we will (mistakenly) model the data using a simple linear
regression and derive an adjusted R2 of 0.637:


m <- lm(y ~ x)
summary(m)
#>
#> Call:
#> lm(formula = y ~ x)
#>
#> Residuals:
#>      Min       1Q   Median       3Q      Max
#> -0.04032 -0.01633 -0.00792  0.00996  0.14516
#>
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)
#> (Intercept)  0.166885   0.007078    23.6   <2e-16 ***
#> x           -0.001465   0.000116   -12.6   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.0291 on 89 degrees of freedom
#> Multiple R-squared:  0.641,  Adjusted R-squared:  0.637
#> F-statistic:  159 on 1 and 89 DF,  p-value: <2e-16


When plotting the residuals against the fitted values, we get a clue
that something is wrong. We can get a ggplot residual plot using the
broom library. The augment function from broom will put our
residuals (and other things) into a data frame for easier plotting. Then
we can use ggplot to plot:


library(broom)
augmented_m <- augment(m)

ggplot(augmented_m, aes(x = .fitted, y = .resid)) +
  geom_point()


The result is shown in Figure 11-2.



[image: rcbk 1102]
Figure 11-2. Fitted values versus residuals




If you just need a fast peek at the residual plot and don’t care if the
result is a ggplot figure, you can use Base R’s plot method on the
model object, m:


plot(m, which = 1)  # which = 1 plots only the fitted vs. residuals


We can see in Figure 11-2 that this plot has a clear
parabolic shape. A possible fix is a power transformation on y, so we
run the Box–Cox procedure:


library(MASS)
#>
#> Attaching package: 'MASS'
#> The following object is masked from 'package:dplyr':
#>
#>     select
bc <- boxcox(m)


The boxcox function plots values of λ against the log-likelihood of
the resulting model, as shown in Figure 11-3. We want to
maximize that log-likelihood, so the function draws a line at the best
value and also draws lines at the limits of its confidence interval. In
this case, it looks like the best value is around –1.5, with a
confidence interval of about (–1.75, –1.25).



[image: rcbk 1103]
Figure 11-3. Output of boxcox on the model (m)




Oddly, the boxcox function does not return the best value of λ.
Rather, it returns the (x, y) pairs displayed in the plot. It’s
pretty easy to find the values of λ that yield the largest
log-likelihood, y. We use the which.max function:


which.max(bc$y)
#> [1] 13


Then this gives us the position of the corresponding λ:


lambda <- bc$x[which.max(bc$y)]
lambda
#> [1] -1.52


The function reports that the best λ is –1.52. In an actual
application, we would urge you to interpret this number and choose the
power that makes sense to you, rather than blindly accepting this “best”
value. Use the graph to assist you in that interpretation. Here, we’ll
go with –1.52.


We can apply the power transform to y and then fit the revised model;
this gives a much better R2 of 0.967:


z <- y ^ lambda
m2 <- lm(z ~ x)
summary(m2)
#>
#> Call:
#> lm(formula = z ~ x)
#>
#> Residuals:
#>     Min      1Q  Median      3Q     Max
#> -13.459  -3.711  -0.228   2.206  14.188
#>
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)
#> (Intercept)  -0.6426     1.2517   -0.51     0.61
#> x             1.0514     0.0205   51.20   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 5.15 on 89 degrees of freedom
#> Multiple R-squared:  0.967,  Adjusted R-squared:  0.967
#> F-statistic: 2.62e+03 on 1 and 89 DF,  p-value: <2e-16


For those who prefer one-liners, the transformation can be embedded
right into the revised regression formula:


m2 <- lm(I(y ^ lambda) ~ x)

Tip

By default, boxcox searches for values of λ in the range –2 to +2.
You can change that via the lambda argument; see the help page for
details.




We suggest viewing the Box–Cox result as a starting point, not as a
definitive answer. If the confidence interval for λ includes 1.0, it
may be that no power transformation is actually helpful. As always,
inspect the residuals before and after the transformation. Did they
really improve?


Compare Figure 11-4 (transformed data) with Figure 11-2 (no transformation).


augmented_m2 <- augment(m2)

ggplot(augmented_m2, aes(x = .fitted, y = .resid)) +
  geom_point()
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Figure 11-4. Fitted values versus residuals: m2



















See Also


See Recipe 11.12 and Recipe 11.16.
























11.14 Forming Confidence Intervals for Regression Coefficients










Problem


You are performing linear regression and you need the confidence
intervals for the regression coefficients.

















Solution


Save the regression model in an object; then use the confint function
to extract confidence intervals:


load(file = './data/conf.rdata')
m <- lm(y ~ x1 + x2)
confint(m)
#>             2.5 % 97.5 %
#> (Intercept) -3.90   6.47
#> x1          -2.58   6.24
#> x2           4.67   5.17

















Discussion


The Solution uses the model y = β0 + β1(x1)i + β2(x2)i + εi. The confint function returns the
confidence intervals for the intercept (β0), the coefficient of
x1 (β1), and the coefficient of x2 (β2):


confint(m)
#>             2.5 % 97.5 %
#> (Intercept) -3.90   6.47
#> x1          -2.58   6.24
#> x2           4.67   5.17


By default, confint uses a confidence level of 95%. Use the level
parameter to select a different level:


confint(m, level = 0.99)
#>             0.5 % 99.5 %
#> (Intercept) -5.72   8.28
#> x1          -4.12   7.79
#> x2           4.58   5.26

















See Also


The coefplot function of the arm package can plot confidence
intervals for regression coefficients.
























11.15 Plotting Regression Residuals










Problem


You want a visual display of your regression residuals.

















Solution


You can plot the model object by using broom to put model results in a
data frame, then plot with ggplot:


m <- lm(y ~ x1 + x2)

library(broom)
augmented_m <- augment(m)

ggplot(augmented_m, aes(x = .fitted, y = .resid)) +
  geom_point()

















Discussion


Using the linear model m from the prior recipe, we can create a simple
residual plot:


library(broom)
augmented_m <- augment(m)

ggplot(augmented_m, aes(x = .fitted, y = .resid)) +
  geom_point()


The output is shown in Figure 11-5.
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Figure 11-5. Model residual plot




You could also use the Base R plot method to get a quick peek, but it
will produce Base R graphics output, instead of a ggplot graph:


plot(m, which = 1)

















See Also


See Recipe 11.16, which contains examples of residuals plots and other
diagnostic plots.
























11.16 Diagnosing a Linear Regression










Problem


You have performed a linear regression. Now you want to verify the
model’s quality by running diagnostic checks.

















Solution


Start by plotting the model object, which will produce several
diagnostic plots using Base R graphics:


m <- lm(y ~ x1 + x2)
plot(m)


Next, identify possible outliers either by looking at the diagnostic
plot of the residuals or by using the outlierTest function of the
car package:


library(car)
outlierTest(m)


Finally, identify any overly influential observations. See Recipe 11.17.

















Discussion


R fosters the impression that linear regression is easy: just use the
lm function. Yet fitting the data is only the beginning. It’s your job
to decide whether the fitted model actually works and works well.


Before anything else, you must have a statistically significant model.
Check the F statistic from the model summary (Recipe 11.4) and be sure that the p-value is small enough for your
purposes. Conventionally, it should be less than 0.05 or else your model
is likely not very meaningful.


Simply plotting the model object produces several useful diagnostic
plots, shown in Figure 11-6:


m <- lm(y ~ x1 + x2)
par(mfrow = (c(2, 2))) # this gives us a 2x2 plot
plot(m)
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Figure 11-6. Diagnostics of a good fit




Figure 11-6 shows diagnostic plots for a pretty good
regression:



	
The points in the Residuals vs Fitted plot are randomly scattered with
no particular pattern.



	
The points in the Normal Q–Q plot are more or less on the line,
indicating that the residuals follow a normal distribution.



	
In both the Scale–Location plot and the Residuals vs Leverage plot,
the points are in a group with none too far from the center.






In contrast, the series of graphs in Figure 11-7 show
the diagnostics for a not-so-good regression:


load(file = './data/bad.rdata')
m <- lm(y2 ~ x3 + x4)
par(mfrow = (c(2, 2)))      # this gives us a 2x2 plot
plot(m)


Observe that the Residuals vs Fitted plot has a definite parabolic
shape. This tells us that the model is incomplete: a quadratic factor is
missing that could explain more variation in y. Other patterns in
residuals would be suggestive of additional problems: a cone shape, for
example, may indicate nonconstant variance in y. Interpreting those
patterns is a bit of an art, so we suggest reviewing a good book on
linear regression while evaluating the plot of residuals.


There are other problems with these not-so-good diagnostics. The Normal
Q–Q plot has more points off the line than it does for the good
regression. Both the Scale–Location and Residuals vs Leverage plots show
points scattered away from the center, which suggests that some points
have excessive leverage.


Another pattern is that point number 28 sticks out in every plot. This
warns us that something is odd about that observation. The point could be
an outlier, for example. We can check that hunch with the outlierTest
function of the car package:


library(car)
outlierTest(m)
#>    rstudent unadjusted p-value Bonferonni p
#> 28     4.46           7.76e-05       0.0031


outlierTest identifies the model’s most outlying observation. In
this case, it identified observation number 28 and so confirmed that it
could be an outlier.
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Figure 11-7. Diagnostics of a poor fit



















See Also


See Recipe 11.4 and Recipe 11.17. The car
package is not part of the standard distribution of R; see Recipe 3.10 for how to install it.
























11.17 Identifying Influential Observations










Problem


You want to identify the observations that are having the most influence
on the regression model. This is useful for diagnosing possible problems
with the data.

















Solution


The influence.measures function reports several useful statistics for
identifying influential observations, and it flags the significant ones
with an asterisk (*). Its main argument is the model object from your
regression:


influence.measures(m)

















Discussion


The title of this recipe could be “Identifying Overly Influential
Observations,” but that would be redundant. All observations influence
the regression model, even if only a little. When a statistician says
that an observation is influential, it means that removing the
observation would significantly change the fitted regression model. We
want to identify those observations because they might be outliers that
distort our model; we owe it to ourselves to investigate them.


The influence.measures function reports several statistics: DFBETAS,
DFFITS, covariance ratio, Cook’s distance, and hat matrix values. If any
of these measures indicate that an observation is influential, the
function flags that observation with an asterisk (*) along the
righthand side:


influence.measures(m)
#> Influence measures of
#>   lm(formula = y2 ~ x3 + x4) :
#>
#>      dfb.1_   dfb.x3   dfb.x4    dffit cov.r   cook.d    hat inf
#> 1  -0.18784  0.15174  0.07081 -0.22344 1.059 1.67e-02 0.0506
#> 2   0.27637 -0.04367 -0.39042  0.45416 1.027 6.71e-02 0.0964
#> 3  -0.01775 -0.02786  0.01088 -0.03876 1.175 5.15e-04 0.0772
#> 4   0.15922 -0.14322  0.25615  0.35766 1.133 4.27e-02 0.1156
#> 5  -0.10537  0.00814 -0.06368 -0.13175 1.078 5.87e-03 0.0335
#> 6   0.16942  0.07465  0.42467  0.48572 1.034 7.66e-02 0.1062
#> 7  -0.10128 -0.05936  0.01661 -0.13021 1.078 5.73e-03 0.0333
#> 8  -0.15696  0.04801  0.01441 -0.15827 1.038 8.38e-03 0.0276
#> 9  -0.04582 -0.12089 -0.01032 -0.14010 1.188 6.69e-03 0.0995
#> 10 -0.01901  0.00624  0.01740 -0.02416 1.147 2.00e-04 0.0544
#> 11 -0.06725 -0.01214  0.04382 -0.08174 1.113 2.28e-03 0.0381
#> 12  0.17580  0.35102  0.62952  0.74889 0.961 1.75e-01 0.1406
#> 13 -0.14288  0.06667  0.06786 -0.15451 1.071 8.04e-03 0.0372
#> 14 -0.02784  0.02366 -0.02727 -0.04790 1.173 7.85e-04 0.0767
#> 15  0.01934  0.03440 -0.01575  0.04729 1.197 7.66e-04 0.0944
#> 16  0.35521 -0.53827 -0.44441  0.68457 1.294 1.55e-01 0.2515   *
#> 17 -0.09184 -0.07199  0.01456 -0.13057 1.089 5.77e-03 0.0381
#> 18 -0.05807 -0.00534 -0.05725 -0.08825 1.119 2.66e-03 0.0433
#> 19  0.00288  0.00438  0.00511  0.00761 1.176 1.99e-05 0.0770
#> 20  0.08795  0.06854  0.19526  0.23490 1.136 1.86e-02 0.0884
#> 21  0.22148  0.42533 -0.33557  0.64699 1.047 1.34e-01 0.1471
#> 22  0.20974 -0.19946  0.36117  0.49631 1.085 8.06e-02 0.1275
#> 23 -0.03333 -0.05436  0.01568 -0.07316 1.167 1.83e-03 0.0747
#> 24 -0.04534 -0.12827 -0.03282 -0.14844 1.189 7.51e-03 0.1016
#> 25 -0.11334  0.00112 -0.05748 -0.13580 1.067 6.22e-03 0.0307
#> 26 -0.23215  0.37364  0.16153 -0.41638 1.258 5.82e-02 0.1883   *
#> 27  0.29815  0.01963 -0.43678  0.51616 0.990 8.55e-02 0.0986
#> 28  0.83069 -0.50577 -0.35404  0.92249 0.303 1.88e-01 0.0411   *
#> 29 -0.09920 -0.07828 -0.02499 -0.14292 1.077 6.89e-03 0.0361
#> # etc.


This is the model from Recipe 11.16, where we suspected
that observation 28 was an outlier. An asterisk is flagging that
observation, confirming that it’s overly influential.

Tip

This recipe can identify influential observations, but you shouldn’t
reflexively delete them. Some judgment is required here. Are those
observations improving your model or damaging it?



















See Also


See Recipe 11.16. Use help(influence.measures) to get a list of influence
measures and some related functions. See a regression textbook for
interpretations of the various influence measures.
























11.18 Testing Residuals for Autocorrelation (Durbin–Watson Test)










Problem


You have performed a linear regression and want to check the residuals
for autocorrelation.

















Solution


The Durbin–Watson test can check the residuals for autocorrelation. The
test is implemented by the dwtest function of the lmtest package:


library(lmtest)
m <- lm(y ~ x)           # Create a model object
dwtest(m)                # Test the model residuals


The output includes a p-value. Conventionally, if p < 0.05 then the
residuals are significantly correlated, whereas p > 0.05 provides no
evidence of correlation.


You can perform a visual check for autocorrelation by graphing the
autocorrelation function (ACF) of the residuals:


acf(m)                   # Plot the ACF of the model residuals

















Discussion


The Durbin–Watson test is often used in time series analysis, but it was
originally created for diagnosing autocorrelation in regression
residuals. Autocorrelation in the residuals is a scourge because it
distorts the regression statistics, such as the F statistic and the
t statistics for the regression coefficients. The presence of
autocorrelation suggests that your model is missing a useful predictor
variable or that it should include a time series component, such as a
trend or a seasonal indicator.


This first example builds a simple regression model and then tests the
residuals for autocorrelation. The test returns a p-value well above
zero, which indicates that there is no significant autocorrelation:


library(lmtest)
load(file = './data/ac.rdata')
m <- lm(y1 ~ x)
dwtest(m)
#>
#>  Durbin-Watson test
#>
#> data:  m
#> DW = 2, p-value = 0.4
#> alternative hypothesis: true autocorrelation is greater than 0


This second example exhibits autocorrelation in the residuals. The
p-value is near zero, so the autocorrelation is likely positive:


m <- lm(y2 ~ x)
dwtest(m)
#>
#>  Durbin-Watson test
#>
#> data:  m
#> DW = 2, p-value = 0.01
#> alternative hypothesis: true autocorrelation is greater than 0


By default, dwtest performs a one-sided test and answers this
question: is the autocorrelation of the residuals greater than zero? If
your model could exhibit negative autocorrelation (yes, that is
possible), then you should use the alternative option to perform a
two-sided test:


dwtest(m, alternative = "two.sided")


The Durbin–Watson test is also implemented by the durbinWatsonTest
function of the car package. We suggested the dwtest function
primarily because we think the output is easier to read.

















See Also


Neither the lmtest package nor the car package is included in the
standard distribution of R; see Recipe 3.8 and Recipe 3.10 for accessing their functions and installing them.
See Recipe 14.13 and Recipe 14.16 for more regarding tests of autocorrelation.
























11.19 Predicting New Values










Problem


You want to predict new values from your regression model.

















Solution


Save the predictor data in a data frame. Use the predict function,
setting the newdata parameter to the data frame:


load(file = './data/pred2.rdata')

m <- lm(y ~ u + v + w)
preds <- data.frame(u = 3.1, v = 4.0, w = 5.5)
predict(m, newdata = preds)
#>  1
#> 45

















Discussion


Once you have a linear model, making predictions is quite easy because
the predict function does all the heavy lifting. The only annoyance is
arranging for a data frame to contain your data.


The predict function returns a vector of predicted values with one
prediction for every row in the data. The example in the Solution
contains one row, so predict returned one value.


If your predictor data contains several rows, you get one prediction per
row:


preds <- data.frame(
  u = c(3.0, 3.1, 3.2, 3.3),
  v = c(3.9, 4.0, 4.1, 4.2),
  w = c(5.3, 5.5, 5.7, 5.9)
)
predict(m, newdata = preds)
#>    1    2    3    4
#> 43.8 45.0 46.3 47.5


In case it’s not obvious: the new data needn’t contain values for
response variables, only predictor variables. After all, you are trying
to calculate the response, so it would be unreasonable of R to expect
you to supply it.

















See Also


These are just the point estimates of the predictions. See Recipe 11.20
for the confidence intervals.
























11.20 Forming Prediction Intervals










Problem


You are making predictions using a linear regression model. You want to
know the prediction intervals: the range of the distribution of the
prediction.

















Solution


Use the predict function and specify interval = "prediction":


predict(m, newdata = preds, interval = "prediction")

















Discussion


This is a continuation of Recipe 11.19, which described packaging
your data into a data frame for the predict function. We are adding
interval = "prediction" to obtain prediction intervals.


Here is the example from Recipe 11.19, now with prediction
intervals. The new lwr and upr columns are the lower and upper
limits, respectively, for the interval:


predict(m, newdata = preds, interval = "prediction")
#>    fit  lwr  upr
#> 1 43.8 38.2 49.4
#> 2 45.0 39.4 50.7
#> 3 46.3 40.6 51.9
#> 4 47.5 41.8 53.2


By default, predict uses a confidence level of 0.95. You can change
this via the level argument.


A word of caution: these prediction intervals are extremely sensitive to
deviations from normality. If you suspect that your response variable is
not normally distributed, consider a nonparametric technique, such as
the bootstrap (see Recipe 13.8), for prediction
intervals.
























11.21 Performing One-Way ANOVA










Problem


Your data is divided into groups, and the groups are normally
distributed. You want to know if the groups have significantly different
means.

















Solution


Use a factor to define the groups. Then apply the oneway.test
function:


oneway.test(x ~ f)


Here, x is a vector of numeric values and f is a factor that
identifies the groups. The output includes a p-value. Conventionally,
a p-value of less than 0.05 indicates that two or more groups have
significantly different means, whereas a value exceeding 0.05 provides
no such evidence.

















Discussion


Comparing the means of groups is a common task. One-way ANOVA performs
that comparison and computes the probability that they are statistically
identical. A small p-value indicates that two or more groups likely
have different means. (It does not indicate that all groups have
different means.)


The basic ANOVA test assumes that your data has a normal distribution or
that, at least, it is pretty close to bell-shaped. If not, use the
Kruskal–Wallis test instead (see Recipe 11.24).


We can illustrate ANOVA with stock market historical data. Is the stock
market more profitable in some months than in others? For instance, a
common folk myth says that October is a bad month for stock market
investors.3 We explored this question by creating
a data frame, GSPC_df, containing two columns, r and mon. The factor
r is the daily returns in the Standard & Poor’s 500 index, a broad
measure of stock market performance. The factor mon indicates the
calendar month in which that change occurred: Jan, Feb, Mar, and so
forth. The data covers the period 1950 though 2009.


The one-way ANOVA shows a p-value of 0.03347:


load(file = './data/anova.rdata')
oneway.test(r ~ mon, data = GSPC_df)
#>
#>  One-way analysis of means (not assuming equal variances)
#>
#> data:  r and mon
#> F = 2, num df = 10, denom df = 7000, p-value = 0.03


We can conclude that stock market changes varied significantly according
to the calendar month.


Before you run to your broker and start flipping your portfolio monthly,
however, we should check something: did the pattern change recently? We
can limit the analysis to recent data by specifying a subset
parameter. This works for oneway.test just as it does for the lm
function. The subset contains the indexes of observations to be
analyzed; all other observations are ignored. Here, we give the indexes
of the 2,500 most recent observations, which is about 10 years’ worth of data:


oneway.test(r ~ mon, data = GSPC_df, subset = tail(seq_along(r), 2500))
#>
#>  One-way analysis of means (not assuming equal variances)
#>
#> data:  r and mon
#> F = 0.7, num df = 10, denom df = 1000, p-value = 0.8


Uh-oh! Those monthly differences evaporated during the past 10 years.
The large p-value, 0.8, indicates that changes have not recently
varied according to calendar month. Apparently, those differences are a
thing of the past.


Notice that the oneway.test output says “(not assuming equal
variances)”. If you know the groups have equal variances, you’ll get a
less conservative test by specifying var.equal = TRUE:


oneway.test(x ~ f, var.equal = TRUE)


You can also perform a one-way ANOVA by using the aov function like
this:


m <- aov(x ~ f)
summary(m)


However, the aov function always assumes equal variances and so is
somewhat less flexible than oneway.test.

















See Also


If the means are significantly different, use Recipe 11.23 to
see the actual differences. Use Recipe 11.24 if
your data is not normally distributed, as required by ANOVA.
























11.22 Creating an Interaction Plot










Problem


You are performing a multiway ANOVA, using two or more categorical
variables as predictors. You want a visual check of possible interaction
between the predictors.

















Solution


Use the interaction.plot function:


interaction.plot(pred1, pred2, resp)


Here, pred1 and pred2 are two categorical predictors and resp is
the response variable.

















Discussion


ANOVA is a form of linear regression, so ideally there is a linear
relationship between every predictor and the response variable. One
source of nonlinearity is an interaction between two predictors: as
one predictor changes value, the other predictor changes its
relationship to the response variable. Checking for interaction between
predictors is a basic diagnostic.


The faraway package contains a dataset called rats. In it, treat
and poison are categorical variables and time is the response
variable. When plotting poison against time we are looking for
straight, parallel lines, which indicate a linear relationship. However,
using the interaction.plot function produces Figure 11-8, which reveals that something is not right:


library(faraway)
data(rats)
interaction.plot(rats$poison, rats$treat, rats$time)


Each line graphs time against poison. The difference between lines
is that each line is for a different value of treat. The lines should
be parallel, but the top two are not exactly parallel. Evidently,
varying the value of treat “warped” the lines, introducing a
nonlinearity into the relationship between poison and time.


This signals a possible interaction that we should check. For this data
it just so happens that yes, there is an interaction, but no, it is not
statistically significant. The moral is clear: the visual check is
useful, but it’s not foolproof. Follow up with a statistical check.
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Figure 11-8. Interaction plot



















See Also


See Recipe 11.7.
























11.23 Finding Differences Between Means of Groups










Problem


Your data is divided into groups, and an ANOVA test indicates that the
groups have significantly different means. You want to know the
differences between those means for all groups.

















Solution


Perform the ANOVA test using the aov function, which returns a model
object. Then apply the TukeyHSD function to the model object:


m <- aov(x ~ f)
TukeyHSD(m)


Here, x is your data and f is the grouping factor. You can plot the
TukeyHSD result to obtain a graphical display of the differences:


plot(TukeyHSD(m))

















Discussion


The ANOVA test is important because it tells you whether or not the
groups’ means are different. But the test does not identify which
groups are different, and it does not report their differences.


The TukeyHSD function can calculate those differences and help you
identify the largest ones. It uses the “honest significant differences”
method invented by John Tukey.


We’ll illustrate TukeyHSD by continuing the example from Recipe 11.21,
which grouped daily stock market changes by month. Here, we group them
by weekday instead, using a factor called wday that identifies the day
of the week (Mon, …, Fri) on which the change occurred. We’ll use the
first 2,500 observations, which roughly cover the period from 1950 to
1960:


load(file = './data/anova.rdata')
oneway.test(r ~ wday, subset = 1:2500, data = GSPC_df)
#>
#>  One-way analysis of means (not assuming equal variances)
#>
#> data:  r and wday
#> F = 10, num df = 4, denom df = 1000, p-value = 5e-10


The p-value is essentially zero, indicating that average changes
varied significantly depending on the weekday. To use the TukeyHSD
function, we first perform the ANOVA test using the aov function,
which returns a model object, and then apply the TukeyHSD function to
the object:


m <- aov(r ~ wday, subset = 1:2500, data = GSPC_df)
TukeyHSD(m)
#>   Tukey multiple comparisons of means
#>     95% family-wise confidence level
#>
#> Fit: aov(formula = r ~ wday, data = GSPC_df, subset = 1:2500)
#>
#> $wday
#>              diff       lwr       upr p adj
#> Mon-Fri -0.003153 -4.40e-03 -0.001911 0.000
#> Thu-Fri -0.000934 -2.17e-03  0.000304 0.238
#> Tue-Fri -0.001855 -3.09e-03 -0.000618 0.000
#> Wed-Fri -0.000783 -2.01e-03  0.000448 0.412
#> Thu-Mon  0.002219  9.79e-04  0.003460 0.000
#> Tue-Mon  0.001299  5.85e-05  0.002538 0.035
#> Wed-Mon  0.002370  1.14e-03  0.003605 0.000
#> Tue-Thu -0.000921 -2.16e-03  0.000314 0.249
#> Wed-Thu  0.000151 -1.08e-03  0.001380 0.997
#> Wed-Tue  0.001072 -1.57e-04  0.002300 0.121


Each line in the output table includes the difference between the means
of two groups (diff) as well as the lower and upper bounds of the
confidence interval (lwr and upr) for the difference. The first line
in the table, for example, compares the Mon group and the Fri group: the
difference of their means is 0.003 with a confidence interval of
(–0.0044, –0.0019).


Scanning the table, we see that the Wed–Mon comparison had the largest
difference, which was 0.00237.


A cool feature of TukeyHSD is that it can display these differences
visually, too. Simply plot the function’s return value to get output, as
shown in Figure 11-9:


plot(TukeyHSD(m))
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Figure 11-9. TukeyHSD plot




The horizontal lines plot the confidence intervals for each pair. With
this visual representation you can quickly see that several confidence
intervals cross over zero, indicating that the difference is not
necessarily significant. You can also see that the Wed–Mon pair has the
largest difference because their confidence interval is farthest to the right.

















See Also


See Recipe 11.21.
























11.24 Performing Robust ANOVA (Kruskal–Wallis Test)










Problem


Your data is divided into groups. The groups are not normally
distributed, but their distributions have similar shapes. You want to
perform a test similar to ANOVA—you want to know if the group medians
are significantly different.

















Solution


Create a factor that defines the groups of your data. Use the
kruskal.test function, which implements the Kruskal–Wallis test.
Unlike the ANOVA test, this test does not depend upon the normality of
the data:


kruskal.test(x ~ f)


Here, x is a vector of data and f is a grouping factor. The output
includes a p-value. Conventionally, p < 0.05 indicates that there is
a significant difference between the medians of two or more groups,
whereas p > 0.05 provides no such evidence.

















Discussion


Regular ANOVA assumes that your data has a normal distribution. It can
tolerate some deviation from normality, but extreme deviations will
produce meaningless p-values.


The Kruskal–Wallis test is a nonparametric version of ANOVA, which means
that it does not assume normality. However, it does assume same-shaped
distributions. You should use the Kruskal–Wallis test whenever your data
distribution is nonnormal or simply unknown.


The null hypothesis is that all groups have the same median. Rejecting
the null hypothesis (with p < 0.05) does not indicate that all
groups are different, but it does suggest that two or more groups are
different.


One year, Paul taught Business Statistics to 94 undergraduate students.
The class included a midterm examination, and there were four homework
assignments prior to the exam. He wanted to know: what is the
relationship between completing the homework and doing well on the exam?
If there is no relation, then the homework is irrelevant and needs
rethinking.


He created a vector of grades, one per student, and he also created a
parallel factor that captured the number of homework assignments
completed by that student. The data is in a data frame named
student_data:


load(file = './data/student_data.rdata')
head(student_data)
#> # A tibble: 6 x 4
#>   att.fact hw.mean midterm hw
#>   <fct>      <dbl>   <dbl> <fct>
#> 1 3          0.808   0.818 4
#> 2 3          0.830   0.682 4
#> 3 3          0.444   0.511 2
#> 4 3          0.663   0.670 3
#> 5 2          0.9     0.682 4
#> 6 3          0.948   0.954 4


Notice that the hw variable—although it appears to be numeric—is
actually a factor. It assigns each midterm grade to one of five groups
depending upon how many homework assignments the student completed.


The distribution of exam grades is definitely not normal: the students
have a wide range of math skills, so there are an unusual number of A
and F grades. Hence, regular ANOVA would not be appropriate. Instead we
used the Kruskal–Wallis test and obtained a p-value of essentially
zero (4 × 10–5, or 0.00004):


kruskal.test(midterm ~ hw, data = student_data)
#>
#>  Kruskal-Wallis rank sum test
#>
#> data:  midterm by hw
#> Kruskal-Wallis chi-squared = 30, df = 4, p-value = 4e-05


Obviously, there is a significant performance difference between
students who complete their homework and those who do not. But what
could Paul actually conclude? At first, he was pleased that the
homework appeared so effective. Then it dawned on him that this was a
classic error in statistical reasoning: he assumed that correlation
implied causality. It does not, of course. Perhaps strongly motivated
students do well on both homework and exams, whereas lazy students do
not. In that case, the causal factor is degree of motivation, not the
brilliance of the homework selection. In the end, he could only
conclude something very simple—students who complete the homework will
likely do well on the midterm exam—but he still doesn’t really know
why.
























11.25 Comparing Models by Using ANOVA










Problem


You have two models of the same data, and you want to know whether they
produce different results.

















Solution


The anova function can compare two models and report if they are
significantly different:


anova(m1, m2)


Here, m1 and m2 are both model objects returned by lm. The output
from anova includes a p-value. Conventionally, a p-value of less
than 0.05 indicates that the models are significantly different, whereas
a value exceeding 0.05 provides no such evidence.

















Discussion


In Recipe 11.3, we used the anova function to print the ANOVA table for
one regression model. Now we are using the two-argument form to compare
two models.


The anova function has one strong requirement when comparing two
models: one model must be contained within the other. That is, all the
terms of the smaller model must appear in the larger model. Otherwise,
the comparison is impossible.


The ANOVA analysis performs an F test that is similar to the F test
for a linear regression. The difference is that this test is between two
models, whereas the regression F test is between using the regression
model and using no model.


Suppose we build three models of y, adding terms as we go:


load(file = './data/anova2.rdata')
m1 <- lm(y ~ u)
m2 <- lm(y ~ u + v)
m3 <- lm(y ~ u + v + w)


Is m2 really different from m1? We can use anova to compare them,
and the result is a p-value of 0.0091:


anova(m1, m2)
#> Analysis of Variance Table
#>
#> Model 1: y ~ u
#> Model 2: y ~ u + v
#>   Res.Df RSS Df Sum of Sq    F Pr(>F)
#> 1     18 197
#> 2     17 130  1      66.4 8.67 0.0091 **
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


The small p-value indicates that the models are significantly
different. Comparing m2 and m3, however, yields a p-value of
0.055:


anova(m2, m3)
#> Analysis of Variance Table
#>
#> Model 1: y ~ u + v
#> Model 2: y ~ u + v + w
#>   Res.Df RSS Df Sum of Sq    F Pr(>F)
#> 1     17 130
#> 2     16 103  1      27.5 4.27  0.055 .
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


This is right on the edge. Strictly speaking, it does not pass our
requirement of being smaller than 0.05; however, it’s close enough that you
might judge the models to be “different enough.”


This example is a bit contrived, so it does not show the larger power of
anova. We use anova when, while experimenting with complicated
models by adding and deleting multiple terms, we need to know whether or
not the new model is really different from the original one. In other
words: if we add terms and the new model is essentially unchanged, then
the extra terms are not worth the additional complications.

















1 Unless you performed the linear regression without an intercept term (see Recipe 11.5).
2 The significance level of α = 0.05 is the convention observed in this book. Your application might instead use α = 0.10, α = 0.01, or some other value. See the introduction to Chapter 9.
3 In the words of Mark Twain, “October: This is one of the peculiarly dangerous months to speculate in stocks in. The others are July, January, September, April, November, May, March, June, December, August, and February.”



Chapter 12. Useful Tricks



The recipes in this chapter are neither obscure numerical calculations
nor deep statistical techniques. Yet they are useful functions and
idioms that you will likely need at one time or another.








12.1 Peeking at Your Data










Problem


You have a lot of data—too much to display at once. Nonetheless, you
want to see some of the data.

















Solution


Use head to view the first few data values or rows:

head(x)



Use tail to view the last few data values or rows:

tail(x)



Or you can view the whole thing in an interactive viewer in RStudio:

View(x)


















Discussion


Printing a large dataset is pointless because everything just rolls off
your screen. Use head to see a little bit of the data (six rows by
default):


load(file = './data/lab_df.rdata')
head(lab_df)
#>         x lab      y
#> 1  0.0761  NJ  1.621
#> 2  1.4149  KY 10.338
#> 3  2.5176  KY 14.284
#> 4 -0.3043  KY  0.599
#> 5  2.3916  KY 13.091
#> 6  2.0602  NJ 16.321


Use tail to see the last few rows and the number of rows:


tail(lab_df)
#>          x lab      y
#> 195  7.353  KY 38.880
#> 196 -0.742  KY -0.298
#> 197  2.116  NJ 11.629
#> 198  1.606  KY  9.408
#> 199 -0.523  KY -1.089
#> 200  0.675  KY  5.808


Both head and tail allow you to pass a number to the function to set
the number of rows returned:


tail(lab_df, 2)
#>          x lab     y
#> 199 -0.523  KY -1.09
#> 200  0.675  KY  5.81


RStudio comes with an interactive viewer built in. You can call the
viewer from the console or a script:


View(lab_df)


Or you can pipe an object to the viewer:


lab_df %>%
  View()


When piping to View you will notice that the viewer names the View tab
simply . (just a dot). To get a more informative name, you can put a
descriptive name in quotes:


lab_df %>%
  View("lab_df test from pipe")


The resulting RStudio viewer is shown in Figure 12-1.



[image: rcbk 1201]
Figure 12-1. RStudio viewer



















See Also


See Recipe 12.13 for seeing the structure of your variable’s
contents.
























12.2 Printing the Result of an Assignment










Problem


You are assigning a value to a variable and you want to see its value.

















Solution


Simply put parentheses around the assignment:


x <- 1/pi            # Prints nothing
(x <- 1/pi)          # Prints assigned value
#> [1] 0.318

















Discussion


Normally, R inhibits printing when it sees you enter a simple
assignment. When you surround the assignment with parentheses, however,
it is no longer a simple assignment and so R prints the value. This can
be very handy for quick debugging in a script.

















See Also


See Recipe 2.1 for more ways to print things.
























12.3 Summing Rows and Columns










Problem


You want to sum the rows or columns of a matrix or data frame.

















Solution


Use rowSums to sum the rows:

rowSums(m)



Use colSums to sum the columns:

colSums(m)


















Discussion


This is a mundane recipe, but it’s so common that it deserves
mentioning. We use this recipe, for example, when producing reports that
include column totals. In this example, daily.prod is a record of this
week’s factory production and we want totals by product and by day:


load(file = './data/daily.prod.rdata')
daily.prod
#>     Widgets Gadgets Thingys
#> Mon     179     167     182
#> Tue     153     193     166
#> Wed     183     190     170
#> Thu     153     161     171
#> Fri     154     181     186
colSums(daily.prod)
#> Widgets Gadgets Thingys
#>     822     892     875
rowSums(daily.prod)
#> Mon Tue Wed Thu Fri
#> 528 512 543 485 521


These functions return a vector. In the case of column sums, we can
append the vector to the matrix and thereby neatly print the data and
totals together:


rbind(daily.prod, Totals=colSums(daily.prod))
#>        Widgets Gadgets Thingys
#> Mon        179     167     182
#> Tue        153     193     166
#> Wed        183     190     170
#> Thu        153     161     171
#> Fri        154     181     186
#> Totals     822     892     875
























12.4 Printing Data in Columns










Problem


You have several parallel data vectors, and you want to print them in
columns.

















Solution


Use cbind to form the data into columns, then print the result.

















Discussion


When you have parallel vectors, it’s difficult to see their relationship
if you print them separately:


load(file = './data/xy.rdata')
print(x)
#>  [1] -0.626  0.184 -0.836  1.595  0.330 -0.820  0.487  0.738  0.576 -0.305
print(y)
#>  [1]  1.5118  0.3898 -0.6212 -2.2147  1.1249 -0.0449 -0.0162  0.9438
#>  [9]  0.8212  0.5939


Use the cbind function to form them into columns that, when printed,
show the data’s structure:


print(cbind(x,y))
#>            x       y
#>  [1,] -0.626  1.5118
#>  [2,]  0.184  0.3898
#>  [3,] -0.836 -0.6212
#>  [4,]  1.595 -2.2147
#>  [5,]  0.330  1.1249
#>  [6,] -0.820 -0.0449
#>  [7,]  0.487 -0.0162
#>  [8,]  0.738  0.9438
#>  [9,]  0.576  0.8212
#> [10,] -0.305  0.5939


You can include expressions in the output, too. Use a tag to give them a
column heading:


print(cbind(x, y, Total = x + y))
#>            x       y  Total
#>  [1,] -0.626  1.5118  0.885
#>  [2,]  0.184  0.3898  0.573
#>  [3,] -0.836 -0.6212 -1.457
#>  [4,]  1.595 -2.2147 -0.619
#>  [5,]  0.330  1.1249  1.454
#>  [6,] -0.820 -0.0449 -0.865
#>  [7,]  0.487 -0.0162  0.471
#>  [8,]  0.738  0.9438  1.682
#>  [9,]  0.576  0.8212  1.397
#> [10,] -0.305  0.5939  0.289
























12.5 Binning Your Data










Problem


You have a vector, and you want to split the data into groups according
to intervals. Statisticians call this binning your data.

















Solution


Use the cut function. You must define a vector, say breaks, that
gives the ranges of the intervals. The cut function will group your
data according to those intervals. It returns a factor whose levels
(elements) identify each datum’s group:


f <- cut(x, breaks)

















Discussion


This example generates 1,000 random numbers that have a standard normal
distribution. It breaks them into six groups by defining intervals at
±1, ±2, and ±3 standard deviations:


x <- rnorm(1000)
breaks <- c(-3, -2, -1, 0, 1, 2, 3)
f <- cut(x, breaks)


The result is a factor, f, that identifies the groups. The summary
function shows the number of elements by level. R creates names for each
level, using the mathematical notation for an interval:


summary(f)
#> (-3,-2] (-2,-1]  (-1,0]   (0,1]   (1,2]   (2,3]    NA's
#>      25     147     341     332     132      18       5


The results are bell-shaped, which is what we expect from the rnorm
function. There are five NA values, indicating that two values in x
fell outside the defined intervals.


We can use the labels parameter to give nice, predefined names to the
six groups instead of the funky synthesized names:


f <- cut(x, breaks, labels = c("Bottom", "Low", "Neg", "Pos", "High", "Top"))


Now the summary function uses our names:


summary(f)
#> Bottom    Low    Neg    Pos   High    Top   NA's
#>     25    147    341    332    132     18      5


Binning is useful for summaries such as histograms. But it results in
information loss, which can be harmful in modeling. Consider the extreme
case of binning a continuous variable into two values, high and low.
The binned data has only two possible values, so you have replaced a
rich source of information with one bit of information. Where the
continuous variable might be a powerful predictor, the binned variable
can distinguish at most two states and so will likely have only a
fraction of the original power. Before you bin, we suggest exploring
other transformations that are less lossy.
























12.6 Finding the Position of a Particular Value










Problem


You have a vector. You know a particular value occurs in the contents,
and you want to know its position.

















Solution


The match function will search a vector for a particular value and
return the position:


vec <- c(100, 90, 80, 70, 60, 50, 40, 30, 20, 10)
match(80, vec)
#> [1] 3


Here match returns 3, which is the position of 80 within vec.

















Discussion


There are special functions for finding the location of the minimum and
maximum values—which.min and which.max, respectively:


vec <- c(100,90,80,70,60,50,40,30,20,10)
which.min(vec)          # Position of smallest element
#> [1] 10
which.max(vec)          # Position of largest element
#> [1] 1

















See Also


This technique is used in Recipe 11.13.
























12.7 Selecting Every nth Element of a Vector










Problem


You want to select every nth element of a vector.

















Solution


Create a logical indexing vector that is TRUE for every nth element.
One approach is to find all subscripts that equal zero when taken modulo
n:


v[seq_along(v) %% n == 0]

















Discussion


This problem arises in systematic sampling: we want to sample a dataset
by selecting every nth element. The seq_along(v) function generates
the sequence of integers that can index v; it is equivalent to
1:length(v). We compute each index value modulo n by the expression:


v <- rnorm(10)
n <- 2
seq_along(v) %% n
#>  [1] 1 0 1 0 1 0 1 0 1 0


Then we find those values that equal zero:


seq_along(v) %% n == 0
#>  [1] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE


The result is a logical vector, the same length as v and with TRUE
at every nth element, that can index v to select the desired
elements:


v
#>  [1]  2.325  0.524  0.971  0.377 -0.996 -0.597  0.165 -2.928 -0.848  0.799
v[ seq_along(v) %% n == 0 ]
#> [1]  0.524  0.377 -0.597 -2.928  0.799


If you just want something simple like every second element, you can use
the Recycling Rule in a clever way. Index v with a two-element logical
vector, like this:


v[c(FALSE, TRUE)]
#> [1]  0.524  0.377 -0.597 -2.928  0.799


If v has more than two elements, then the indexing vector is too
short. Hence, R will invoke the Recycling Rule and expand the index
vector to the length of v, recycling its contents. That gives an index
vector that is FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, and so
forth. Voilà! The final result is every second element of v.

















See Also


See Recipe 5.3 for more about the Recycling Rule.
























12.8 Finding Minimums or Maximums










Problem


You have two vectors, v and w, and you want to find the minimums or
the maximums of pairwise elements. That is, you want to calculate:


min(v1, w1), min(v2, w2), min(v3, w3), …



or:


max(v1, w1), max(v2, w2), max(v3, w3), …


















Solution


R calls these the parallel minimum and the parallel maximum. The
calculation is performed by pmin(v,w) and pmax(v,w), respectively:


pmin(1:5, 5:1)    # Find the element-by-element minimum
#> [1] 1 2 3 2 1
pmax(1:5, 5:1)    # Find the element-by-element maximum
#> [1] 5 4 3 4 5

















Discussion


When an R beginner wants pairwise minimums or maximums, a common mistake
is to write min(v,w) or max(v,w). Those are not pairwise operations:
min(v,w) returns a single value, the minimum over all v and w.
Likewise, max(v,w) returns a single value from all of v and w.


The pmin and pmax values compare their arguments in parallel,
picking the minimum or maximum for each subscript. They return a vector
that matches the length of the inputs.


You can combine pmin and pmax with the Recycling Rule to perform
useful hacks. Suppose the vector v contains both positive and negative
values, and you want to reset the negative values to zero. This does the
trick:


v <- c(-3:3)
v
#> [1] -3 -2 -1  0  1  2  3
v <- pmax(v, 0)
v
#> [1] 0 0 0 0 1 2 3


By the Recycling Rule, R expands the zero-valued scalar into a vector of
zeros that is the same length as v. Then pmax does an
element-by-element comparison, taking the larger of zero and each
element of v.


Actually, pmin and pmax are more powerful than the Solution
indicates. They can take more than two vectors, comparing all vectors in
parallel.


It is not uncommon to use pmin or pmax to calculate a new variable
in a data frame based on multiple fields. Let’s look at a quick example:


df <- data.frame(a = c(1,5,8),
                 b = c(2,3,7),
                 c = c(0,4,9))
df %>%
  mutate(max_val = pmax(a,b,c))
#>   a b c max_val
#> 1 1 2 0       2
#> 2 5 3 4       5
#> 3 8 7 9       9


We can see the new column, max_val, now contains the row-by-row max
value from the three input columns.

















See Also


See Recipe 5.3 for more about the Recycling Rule.
























12.9 Generating All Combinations of Several Variables










Problem


You have two or more variables. You want to generate all combinations of
their levels, also known as their Cartesian product.

















Solution


Use the expand.grid function. Here, f and g are vectors:


expand.grid(f, g)

















Discussion


This code snippet creates two vectors—sides represents the two sides
of a coin, and faces represents the six faces of a die (those little
spots on a die are called pips):


sides <- c("Heads", "Tails")
faces <- c("1 pip", paste(2:6, "pips"))


We can use expand.grid to find all combinations of one roll of the die
and one coin toss:


expand.grid(faces, sides)
#>      Var1  Var2
#> 1   1 pip Heads
#> 2  2 pips Heads
#> 3  3 pips Heads
#> 4  4 pips Heads
#> 5  5 pips Heads
#> 6  6 pips Heads
#> 7   1 pip Tails
#> 8  2 pips Tails
#> 9  3 pips Tails
#> 10 4 pips Tails
#> 11 5 pips Tails
#> 12 6 pips Tails


Similarly, we could find all combinations of two dice, but we won’t
print the output here because it’s 36 lines long:


expand.grid(faces, faces)


The result of expand.grid is a data frame. R automatically provides
the row names and column names.


The Solution and the example show the Cartesian product of two vectors,
but expand.grid can handle three or more factors, too.

















See Also


If you’re working with strings and want a bit more control over how you
bring the combinations together, then you can also use Recipe 7.6 to generate combinations.
























12.10 Flattening a Data Frame










Problem


You have a data frame of numeric values. You want to process all its
elements together, not as separate columns—for example, to find the mean
across all values.

















Solution


Convert the data frame to a matrix and then process the matrix. This
example finds the mean of all elements in the data frame dfrm:


mean(as.matrix(dfrm))


It is sometimes necessary then to convert the matrix to a vector. In
that case, use as.vector(as.matrix(dfrm)).

















Discussion


Suppose we have a data frame, such as the factory production data from
Recipe 12.3:


load(file = './data/daily.prod.rdata')
daily.prod
#>     Widgets Gadgets Thingys
#> Mon     179     167     182
#> Tue     153     193     166
#> Wed     183     190     170
#> Thu     153     161     171
#> Fri     154     181     186


Suppose also that we want the average daily production across all days
and products. This won’t work:


mean(daily.prod)
#> Warning in mean.default(daily.prod): argument is not numeric or logical:
#> returning NA
#> [1] NA


The mean function doesn’t really know what to do with a data frame, so
it just throws an error. When you want the average across all
values, first collapse the data frame down to a matrix:


mean(as.matrix(daily.prod))
#> [1] 173


This recipe works only on data frames with all-numeric data. Recall that
converting a data frame with mixed data (numeric columns mixed with
character columns or factors) into a matrix forces all columns to be
converted to characters.

















See Also


See Recipe 5.29 for more about converting between
data types.
























12.11 Sorting a Data Frame










Problem


You have a data frame. You want to sort the contents, using one column
as the sort key.

















Solution


Use the arrange function from the dplyr package:


df <- arrange(df, key)


Here df is a data frame and key is the sort-key column.

















Discussion


The sort function is great for vectors but is ineffective for data
frames. Suppose we have the following data frame and we want to sort by
month:


load(file = './data/outcome.rdata')
print(df)
#>   month day outcome
#> 1     7  11     Win
#> 2     8  10    Lose
#> 3     8  25     Tie
#> 4     6  27     Tie
#> 5     7  22     Win


The arrange function rearranges the months into ascending order and
returns the entire data frame:


library(dplyr)
arrange(df, month)
#>   month day outcome
#> 1     6  27     Tie
#> 2     7  11     Win
#> 3     7  22     Win
#> 4     8  10    Lose
#> 5     8  25     Tie


After rearranging the data frame, the month column is in ascending
order—just as we wanted. If you want to sort the data in descending
order, put a - in front of the column you want to sort by:


arrange(df,-month)
#>   month day outcome
#> 1     8  10    Lose
#> 2     8  25     Tie
#> 3     7  11     Win
#> 4     7  22     Win
#> 5     6  27     Tie


If you want to sort by multiple columns, you can add them to the
arrange function. The following example sorts by month first, then by
day:


arrange(df, month, day)
#>   month day outcome
#> 1     6  27     Tie
#> 2     7  11     Win
#> 3     7  22     Win
#> 4     8  10    Lose
#> 5     8  25     Tie


Within months 7 and 8, the days are now sorted into ascending order.
























12.12 Stripping Attributes from a Variable










Problem


A variable is carrying around old attributes. You want to remove some or
all of them.

















Solution


To remove all attributes, assign NULL to the variable’s attributes
property:


attributes(x) <- NULL


To remove a single attribute, select the attribute using the attr
function, and set it to NULL:


attr(x, "attributeName") <- NULL

















Discussion


Any variable in R can have attributes. An attribute is simply a
name/value pair, and the variable can have many of them. A common
example is the dimensions of a matrix variable, which are stored in an
attribute. The attribute name is dim and the attribute value is a
two-element vector giving the number of rows and columns.


You can view the attributes of x by printing attributes(x) or
str(x).


Sometimes you want just a number and R insists on giving it attributes.
This can happen when you fit a simple linear model and extract the
slope, which is the second regression coefficient:


load(file = './data/conf.rdata')
m <- lm(y ~ x1)
slope <- coef(m)[2]
slope
#>  x1
#> -11


When we print slope, R also prints "x1". That is a name attribute
given by lm to the coefficient (because it’s the coefficient for the
x1 variable). We can see that more clearly by printing the internals
of slope, which reveals a "names" attribute:


str(slope)
#>  Named num -11
#>  - attr(*, "names")= chr "x1"


It’s easy to strip out all the attributes, after which the slope value
becomes simply a number:


attributes(slope) <- NULL    # Strip off all attributes
str(slope)                   # Now the "names" attribute is gone
#>  num -11

slope                        # And the number prints cleanly without a label
#> [1] -11


Alternatively, we could have stripped out the single offending attribute
this way:


attr(slope, "names") <- NULL

Warning

Remember that a matrix is a vector (or list) with a dim attribute. If
you strip out all the attributes from a matrix, that will strip away the
dimensions and thereby turn it into a mere vector (or list).
Furthermore, stripping the attributes from an object (specifically, an
S3 object) can render it useless. So, remove attributes with care.



















See Also


See Recipe 12.13 for more about seeing attributes.
























12.13 Revealing the Structure of an Object










Problem


You called a function that returned something. Now you want to look
inside that something and learn more about it.

















Solution


Use class to determine the thing’s object class:

class(x)



Use mode to strip away the object-oriented features and reveal the
underlying structure:

mode(x)



Use str to show the internal structure and contents:

str(x)


















Discussion


We are regularly amazed by how often we call a function, get something
back, and wonder: “What the heck is this thing?” Theoretically, the
function documentation should explain the returned value, but somehow we
feel better when we can see its structure and contents ourselves. This
is especially true for objects with a nested structure: objects within
objects.


Let’s dissect the value returned by lm (the linear modeling function)
in the simplest linear regression recipe, Recipe 11.1:


load(file = './data/conf.rdata')
m <- lm(y ~ x1)
print(m)
#>
#> Call:
#> lm(formula = y ~ x1)
#>
#> Coefficients:
#> (Intercept)           x1
#>        15.9        -11.0


Always start by checking the thing’s class. The class indicates if it’s
a vector, matrix, list, data frame, or object:


class(m)
#> [1] "lm"


Hmmm. It seems that m is an object of class lm. That may not mean
anything to you but we know that all object classes are built
upon the native data structures (vector, matrix, list, or data frame). We can use mode to strip away the object facade and reveal the
underlying structure:


mode(m)
#> [1] "list"


Ah-ha! It seems that m is built on a list structure. Now we can use
list functions and operators to dig into its contents. First, we want to
know the names of its list elements:


names(m)
#>  [1] "coefficients"  "residuals"     "effects"       "rank"
#>  [5] "fitted.values" "assign"        "qr"            "df.residual"
#>  [9] "xlevels"       "call"          "terms"         "model"


The first list element is called "coefficients". We could guess
those are the regression coefficients. Let’s have a look:


m$coefficients
#> (Intercept)          x1
#>        15.9       -11.0


Yes, that’s what they are. We recognize those values.


We could continue digging into the list structure of m, but that would
get tedious. The str function does a good job of revealing the
internal structure of any variable:


str(m)
#> List of 12
#>  $ coefficients : Named num [1:2] 15.9 -11
#>   ..- attr(*, "names")= chr [1:2] "(Intercept)" "x1"
#>  $ residuals    : Named num [1:30] 36.6 58.6 112.1 -35.2 -61.7 ...
#>   ..- attr(*, "names")= chr [1:30] "1" "2" "3" "4" ...
#>  $ effects      : Named num [1:30] -73.1 69.3 93.9 -31.1 -66.3 ...
#>   ..- attr(*, "names")= chr [1:30] "(Intercept)" "x1" "" "" ...
#>  $ rank         : int 2
#>  $ fitted.values: Named num [1:30] 25.69 13.83 -1.55 28.25 16.74 ...
#>   ..- attr(*, "names")= chr [1:30] "1" "2" "3" "4" ...
#>  $ assign       : int [1:2] 0 1
#>  $ qr           :List of 5
#>   ..$ qr   : num [1:30, 1:2] -5.477 0.183 0.183 0.183 0.183 ...
#>   .. ..- attr(*, "dimnames")=List of 2
#>   .. .. ..$ : chr [1:30] "1" "2" "3" "4" ...
#>   .. .. ..$ : chr [1:2] "(Intercept)" "x1"
#>   .. ..- attr(*, "assign")= int [1:2] 0 1
#>   ..$ qraux: num [1:2] 1.18 1.02
#>   ..$ pivot: int [1:2] 1 2
#>   ..$ tol  : num 1e-07
#>   ..$ rank : int 2
#>   ..- attr(*, "class")= chr "qr"
#>  $ df.residual  : int 28
#>  $ xlevels      : Named list()
#>  $ call         : language lm(formula = y ~ x1)
#>  $ terms        :Classes 'terms', 'formula'  language y ~ x1
#>   .. ..- attr(*, "variables")= language list(y, x1)
#>   .. ..- attr(*, "factors")= int [1:2, 1] 0 1
#>   .. .. ..- attr(*, "dimnames")=List of 2
#>   .. .. .. ..$ : chr [1:2] "y" "x1"
#>   .. .. .. ..$ : chr "x1"
#>   .. ..- attr(*, "term.labels")= chr "x1"
#>   .. ..- attr(*, "order")= int 1
#>   .. ..- attr(*, "intercept")= int 1
#>   .. ..- attr(*, "response")= int 1
#>   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
#>   .. ..- attr(*, "predvars")= language list(y, x1)
#>   .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
#>   .. .. ..- attr(*, "names")= chr [1:2] "y" "x1"
#>  $ model        :'data.frame':   30 obs. of  2 variables:
#>   ..$ y : num [1:30] 62.25 72.45 110.59 -6.94 -44.99 ...
#>   ..$ x1: num [1:30] -0.8969 0.1848 1.5878 -1.1304 -0.0803 ...
#>   ..- attr(*, "terms")=Classes 'terms', 'formula'  language y ~ x1
#>   .. .. ..- attr(*, "variables")= language list(y, x1)
#>   .. .. ..- attr(*, "factors")= int [1:2, 1] 0 1
#>   .. .. .. ..- attr(*, "dimnames")=List of 2
#>   .. .. .. .. ..$ : chr [1:2] "y" "x1"
#>   .. .. .. .. ..$ : chr "x1"
#>   .. .. ..- attr(*, "term.labels")= chr "x1"
#>   .. .. ..- attr(*, "order")= int 1
#>   .. .. ..- attr(*, "intercept")= int 1
#>   .. .. ..- attr(*, "response")= int 1
#>   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
#>   .. .. ..- attr(*, "predvars")= language list(y, x1)
#>   .. .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
#>   .. .. .. ..- attr(*, "names")= chr [1:2] "y" "x1"
#>  - attr(*, "class")= chr "lm"


Notice that str shows all the elements of m and then recursively
dumps each element’s contents and attributes. Long vectors and lists are
truncated to keep the output manageable.


There is an art to exploring an R object. Use class, mode, and str
to dig through the layers. We have found that often str tells you
everything you want to know…and sometimes a lot more!
























12.14 Timing Your Code










Problem


You want to know how much time is required to run your code. This is
useful, for example, when you are optimizing your code and need “before”
and “after” numbers to measure the improvement.

















Solution


The tictoc package contains a very easy way to time and label chunks
of code. The tic function starts a timer and the toc function stops
the timer and reports the execution time:

library(tictoc)
tic('Optional helpful name here')
aLongRunningExpression()
toc()



The output is the execution time in seconds.

















Discussion


Suppose we want to know the time required to generate 10,000,000 random
normal numbers and sum them together:


library(tictoc)
tic('making big numbers')
total_val <- sum(rnorm(1e7))
toc()
#> making big numbers: 0.794 sec elapsed


The toc function returns the message set in tic along with the
runtime in seconds.


If you assign the result of toc to an object, you can have access to
the underlying start time, finish time, and message:


tic('two sums')
sum(rnorm(10000000))
#> [1] -84.1
sum(rnorm(10000000))
#> [1] -3899
toc_result <- toc()
#> two sums: 1.373 sec elapsed

print(toc_result)
#> $tic
#> elapsed
#>    2.64
#>
#> $toc
#> elapsed
#>    4.01
#>
#> $msg
#> [1] "two sums"


If you want to report the results in minutes (or hours!), you can use
the elements of the output to get at the underlying start and finish
times:


print(paste('the code ran in',
            round((toc_result$toc -  toc_result$tic) / 60, 4),
            'minutes'))
#> [1] "the code ran in 0.0229 minutes"


You can accomplish the same thing using just Sys.time calls, but
without the convenience of labeling and clarity of syntax provided by
toctoc:


start <- Sys.time()
sum(rnorm(10000000))
#> [1] 3607
sum(rnorm(10000000))
#> [1] 1893
Sys.time() - start
#> Time difference of 1.37 secs
























12.15 Suppressing Warnings and Error Messages










Problem


A function is producing annoying error messages or warning messages. You
don’t want to see them.

















Solution


Surround the function call with suppressMessage(…) or
suppressWarnings(…):


suppressMessage(annoyingFunction())
suppressWarnings(annoyingFunction())

















Discussion


The Augmented Dickey–Fuller Test, adf.test, is a popular time series
function. However, it produces an annoying warning message, shown here
at the bottom of the output, when the p-value is below 0.01:


library(tseries)
load(file = './data/adf.rdata')
results <- adf.test(x)
#> Warning in adf.test(x): p-value smaller than printed p-value


Fortunately, we can muzzle the function by calling it inside
suppressWarnings(…):


results <- suppressWarnings(adf.test(x))


Notice that the warning message disappeared. The message is not entirely
lost because R retains it internally. We can retrieve the message at our
leisure by using the warnings function:


warnings()


Some functions also produce “messages” (in R terminology), which are
even more benign than warnings. Typically, they are merely informative
and not signals of problems. If such a message is annoying you, you can make it disappear by calling the
function inside suppressMessages(...).

















See Also


See the options function for other ways to control the reporting of
errors and warnings.
























12.16 Taking Function Arguments from a List










Problem


Your data is captured in a list structure. You want to pass the data to
a function, but the function does not accept a list.

















Solution


In simple cases, convert the list to a vector. For more complex cases,
the do.call function can break the list into individual arguments and
call your function:

do.call(function, list)


















Discussion


If your data is in a vector, life is simple and most R functions work as
expected:


vec <- c(1, 3, 5, 7, 9)
mean(vec)
#> [1] 5


If your data is captured in a list, some functions complain and return a
useless result, like this:


numbers <- list(1, 3, 5, 7, 9)
mean(numbers)
#> Warning in mean.default(numbers): argument is not numeric or logical:
#> returning NA
#> [1] NA


The numbers list is a simple, one-level list, so we can just convert
it to a vector and call the function:


mean(unlist(numbers))
#> [1] 5


The big headaches come when you have multilevel list structures: lists
within lists. These can occur within complex data structures. Here is a
list of lists in which each sublist is a column of data:


my_lists <-
  list(col1 = list(7, 8),
       col2 = list(70, 80),
       col3 = list(700, 800))
my_lists
#> $col1
#> $col1[[1]]
#> [1] 7
#>
#> $col1[[2]]
#> [1] 8
#>
#>
#> $col2
#> $col2[[1]]
#> [1] 70
#>
#> $col2[[2]]
#> [1] 80
#>
#>
#> $col3
#> $col3[[1]]
#> [1] 700
#>
#> $col3[[2]]
#> [1] 800


Suppose we want to form this data into a matrix. The cbind function is
supposed to create data columns, but it gets confused by the list
structure and returns something useless:


cbind(my_lists)
#>      my_lists
#> col1 List,2
#> col2 List,2
#> col3 List,2


If we unlist the data then we just get one big, long column, which is
not what we are after either:


cbind(unlist(my_lists))
#>       [,1]
#> col11    7
#> col12    8
#> col21   70
#> col22   80
#> col31  700
#> col32  800


The solution is to use do.call, which splits the list into individual
items and then calls cbind on those items:


do.call(cbind, my_lists)
#>      col1 col2 col3
#> [1,] 7    70   700
#> [2,] 8    80   800


Using do.call in that way is functionally identical to calling cbind
like this:


cbind(my_lists[[1]], my_lists[[2]], my_lists[[3]])
#>      [,1] [,2] [,3]
#> [1,] 7    70   700
#> [2,] 8    80   800

Warning

Be careful if the list elements have names. In that case, do.call
interprets the element names as names of parameters to the function,
which might cause trouble.




This recipe presents the most basic use of do.call. The function is
quite powerful and has many other uses. See the help page for more
details.

















See Also


See Recipe 5.29 for converting between data types.
























12.17 Defining Your Own Binary Operators










Problem


You want to define your own binary operators, making your R code more
streamlined and readable.

















Solution


R recognizes any text between percent signs (%…%) as a binary
operator. Create and define a new binary operator by assigning a
two-argument function to it.

















Discussion


R contains an interesting feature that lets you define your own binary
operators. Any text between two percent signs (%…%) is
automatically interpreted by R as a binary operator. R predefines
several such operators, such as %/% for integer division, %*% for
matrix multiplication, and the pipe %>% in the magrittr package.


You can create a new binary operator by assigning a function to it. This
example creates an operator, %+-%:


'%+-%' <- function(x, margin)
  x + c(-1, +1) * margin


The expression x %+-% m calculates x ± m. Here it calculates 100 ±
(1.96 × 15), the two-standard-deviation range of a standard IQ test:


100 %+-% (1.96 * 15)
#> [1]  70.6 129.4


Notice that we quote the binary operator when defining it but not when
using it.


The pleasure of defining your own operators is that you can wrap
commonly used operations inside a succinct syntax. If your application
frequently concatenates two strings without an intervening blank, then
you might define a binary concatenation operator for that purpose:


'%+%' <- function(s1, s2)
  paste(s1, s2, sep = "")
"Hello" %+% "World"
#> [1] "HelloWorld"
"limit=" %+% round(qnorm(1 - 0.05 / 2), 2)
#> [1] "limit=1.96"


A danger of defining your own operators, however, is that the code
becomes less portable to other environments. Bring the definitions along
with the code in which they are used; otherwise, R will complain about
undefined operators.


All user-defined operators have the same precedence and are listed
collectively in Table 2-1 as %any%. Their
precedence is fairly high: higher than multiplication and division but
lower than exponentiation and sequence creation. As a result, it’s easy
to misexpress yourself. If we omit parentheses from the %+-% example,
we get an unexpected result:


100 %+-% 1.96 * 15
#> [1] 1471 1529


R interpreted the expression as (100 %+-% 1.96) * 15.

















See Also


See Recipe 2.11 for more about operator precedence and Recipe 15.3 for how
to define a function.
























12.18 Suppressing the Startup Message










Problem


When you run R from a command prompt or shell script, you are tired of
seeing R’s verbose startup message.

















Solution


Use the --quiet command-line option when you start R from the command
line or a shell script.

















Discussion


The startup message from R is handy for beginners because it contains
useful information about the R project and getting help. But the novelty
wears off pretty quickly—especially if you start R from a shell prompt
to use it as a calculator throughout the day. This is not particularly
helpful if you’re using R only from RStudio.


If you start R from the shell prompt, use the --quiet option to hide
the startup message:


R --quiet


On a Linux or Mac box, you could alias R like this from the shell so you
never see the startup message:


alias R="/usr/bin/R --quiet"
























12.19 Getting and Setting Environment Variables










Problem


You want to see the value of an environment variable, or you want to
change its value.

















Solution


Use the Sys.getenv function to see values. Use Sys.putenv to change
them:


Sys.setenv(DB_PASSWORD = "My_Password!")
Sys.getenv("DB_PASSWORD")
#> [1] "My_Password!"

















Discussion


Environment variables are often used to configure and control software.
Each process has its own set of environment variables, which are
inherited from its parent process. You sometimes need to see the
environment variable settings for your R process in order to understand
its behavior. Likewise, you sometimes need to change those settings to
modify that behavior.


A common use case is to store a username or password for use in
accessing a remote database or cloud service. It’s a really bad idea to
store passwords in plain text in a project script. One way to avoid
storing passwords in your script is to set an environment variable
containing your password when R starts.


To ensure your password and username are available at every R login, you
can add calls to Sys.setenv in the .Rprofile file in your home
directory. .Rprofile is an R script that is run every time R
starts.


For example, you could add the following to your .Rprofile:


Sys.setenv(DB_USERID = "Me")
Sys.setenv(DB_PASSWORD = "My_Password!")


Then you could fetch and use the environment variables in a script to
log into an Amazon Redshift database, for example:


con <- DBI::dbConnect(
  RPostgreSQL::PostgreSQL(),
  dbname   = "my_database",
  port     = 5439,
  host     = "my_database.amazonaws.com",
  user     = Sys.getenv("DB_USERID"),
  password = Sys.getenv("DB_PASSWORD")
)

















See Also


See Recipe 3.16 for more about changing configuration at startup.
























12.20 Use Code Sections










Problem


You’ve got a long script and you’re finding it difficult to navigate
from one section of code to the next.

















Solution


Code sections provide section dividers in an outline pane on the side of
your editor. To use code sections, simply start a comment with # and
then end the comment with ---- or #### or ====:


# My First Section      -----
x <- 1

# My Second Section     ####
y <- 2

# My Third Section      ====
z <- 3


In the RStudio editor window you can see the outline on the righthand
side (see Figure 12-2).



[image: rcbk 1202]
Figure 12-2. Code sections



















Discussion


Code sections are just a specially formatted type of R comment since
they start with the # symbol. If you open your code with any editor
other than RStudio, they are treated simply as code comments. But
RStudio sees these specially formatted code comments as section headers
and creates a helpful outline in the side panel of the editor.

Tip

The first time you use code sections, you may need to click the outline
icon to the right of the Source button in order to show the outline.




If you are writing R Markdown instead of a *.R script, your Markdown
headings and subheadings will show up in the outline pane, making
navigating your document much easier.

















See Also


See Recipe 16.4 for using section headings in R Markdown documents.
























12.21 Executing R in Parallel Locally










Problem


You have code that takes a while to run, and you would like to speed it
up by using more of the cores on your local computer.

















Solution


The easiest solution to get up and running with is to use the furrr
package, which in turn uses the future package to provide parallel
processing via functions that feel like those from purrr except that
they operate in parallel.


You’ll want to download the latest development version from GitHub
because the package is still under active development as of this
writing:


devtools::install_github("DavisVaughan/furrr")


To use furrr to parallelize our code, we call the furrr::future_map function in place of the purrr::map function we discussed in Recipe 6.1. But first we have to tell furrr how we want to parallelize.
In this case we want a multiprocess parallel process that uses all our
local processors, so we set that up by calling plan(multiprocess).
Then we can apply a function to every element in our list using
future_map:


library(furrr)

plan(multiprocess)

future_map(my_list, some_function)

















Discussion


Let’s do an example simulation to illustrate parallelization. A classic
stochastic simulation is to draw random points inside of a 2 × 2 box and
see how many points fall within one unit from the center of the box. The
ratio of points inside the box / total points multiplied by 4 is a
good estimate of pi. The following function takes one input,
n_iterations, which is the number of random points to simulate. Then
it returns the resulting average estimate of pi:


simulate_pi <- function(n_iterations) {
  rand_draws <- matrix(runif(2 * n_iterations, -1, 1), ncol = 2)
  num_in <- sum(sqrt(rand_draws[, 1]**2 + rand_draws[, 2]**2) <= 1)
  pi_hat <- (num_in / n_iterations) * 4
  return(pi_hat)
}
simulate_pi(1000000)
#> [1] 3.14


As you can see, even with 1,000,000 simulations the result is only
accurate out to a couple of decimal points. This is not a very efficient
way to estimate pi, but it works for our illustration.


For the purpose of comparison later, let’s run 200 runs of this pi
simulator where each run has 2,500,000 simulated points. We’ll do this
by creating a list with 200 elements, each of which is the value
5,000,000, which we will pass to simulate_pi. We’ll time the code with
the tictoc package:


library(purrr) # for `map`
library(tictoc) # for timing our code

draw_list <- as.list(rep(5000000, 200))

tic("simulate pi - single process")
sims_list <- map(draw_list, simulate_pi)
toc()
#> simulate pi - single process: 90.772 sec elapsed

mean(unlist(sims_list))
#> [1] 3.14


That runs in less than two minutes and gives an estimate of pi based on
a billion simulations (5m × 200).


Now let’s take the exact same R function, simulate_pi, and run it through future_map to
run it in parallel:


library(furrr)
#> Loading required package: future
#>
#> Attaching package: 'future'
#> The following object is masked from 'package:tseries':
#>
#>     value
plan(multiprocess)

tic("simulate pi - parallel")
sims_list <- future_map(draw_list, simulate_pi)
toc()
#> simulate pi - parallel: 26.33 sec elapsed
mean(unlist(sims_list))
#> [1] 3.14


The preceding example was run on a MacBook Pro with four physical cores
and two virtual cores per physical core. When you’re running code in
parallel the best-case scenario is that the runtime is reduced by
1/(number of physical cores). With four physical cores you can see the
parallel runtime is much faster than the single-threaded version, but
not quite one-fourth the runtime of the single-threaded version. There
is always some overhead from moving the data around, so you will never
experience the best-case scenario. And the more data each iteration
produces, the less speed improvement you will experience from
parallelization.

















See Also


See Recipe 12.22.
























12.22 Executing R in Parallel Remotely










Problem


You have access to a number of remote machines and you would like to run
your code in parallel across them all.

















Solution


Running code in parallel across multiple machines can be tricky to set
up initially. However, if we start with a few key prerequisites in
place, the process has a much higher probability of success.


The starting prerequisites are:



	
You can ssh from your main machine to each remote node without a
password using previously generated SSH keys.



	
The remote nodes all have R installed (ideally the same version of R).



	
Paths are set such that you can run Rscript from SSH.



	
The remote nodes have the package furrr installed (which in turn
installs future).



	
The remote nodes already have all the packages your
distributed code depends on installed.






Once you have worker nodes that are set up and ready to go, you can
create a cluster by calling makeClusterPSOCK from the future
package. Then use the resulting cluster with the furrr function
future_map:


library(furrr) # loads future as a dependency

workers <- c("node_1.domain.com", "node_2.domain.com")

cl <- makeClusterPSOCK(
  worker = workers
)

plan(cluster, workers = cl)

future_map(my_list, some_function)

















Discussion


Suppose we have two big Linux machines named von-neumann12 and
von-neumann15 that we can use to run numerical models. These machines
meet the criteria just listed, so they are good candidates to be our
backend for a furrr/future cluster. Let’s do the same pi simulation
we did in the previous recipe using the simulate_pi function:


library(tidyverse)
library(furrr)
library(tictoc)

my_workers <- c('von-neumann12','von-neumann15')

cl <- makeClusterPSOCK(
  workers = my_workers,
  rscript = '/home/anaconda2/bin/Rscript',  #yours may differ
  verbose=TRUE
)

draw_list <- as.list(rep(5000000, 200))

plan(cluster, workers = cl)

tic('simulate pi - parallel map')
sims_list_parallel <- draw_list %>%
  future_map(simulate_pi)
toc()
#> simulate pi - parallel map: 116.986 sec elapsed

mean(unlist(sims_list_parallel))
#> [1] 3.14167


This is ~8.5 million sims per second.


The two nodes in our ad hoc cluster each have 32 processors and 128 GB of
RAM. But if you compare the runtime of the preceding code with the
runtime of the prior recipe run on a humble MacBook Pro, you’ll notice
that the MacBook executed the code in about the same time as the
multi-CPU Linux cluster with 64 total processors! This unintuitive
surprise happens because the preceding code runs only on one CPU per
cluster node. So, as a result, it uses only two CPUs, while the MacBook uses all four of its CPUs.


So how do we run parallel code on a cluster and have each node also run
in parallel across multiple CPU cores? To do that we need to make three
changes to our code:


	
Create a nested parallel plan that uses both cluster and
multiprocess.



	
Create an input list that is a nested list. Each cluster machine
will get from the main list an item that contains sublist items that it
can process in parallel across all its CPUs.



	
Call future_map twice, using a nested call. The outer future_map
will parallelize items across the cluster nodes, and then the inner call
will parallelize across the CPUs.







To created the nested parallel plan, we will create a multipart plan by
passing a list of two plans to the plan function like this:


plan(list(tweak(cluster, workers = cl), multiprocess))


The second change is to create the nested list to iterate on. We can do
that by using the split command and passing it our prior list followed
by a vector of 1:4, like so:


split(draw_list, 1:4)


This will break the initial list into four sublists, so our resulting
list will have four elements. Each sublist will have 50 inputs for our
final simulate_pi function.


The third change to our code is to create a nested future_map call
that will pass each of our four list elements to the worker nodes, which
subsequently will iterate over the elements of each sublist. We create
that nested function like this:


future_map(draw_list, ~future_map(.,simulate_pi))


The ~ sets up R to expect an anonymous function inside the first
future_map call, and the . tells R where to put the list element.
The anonymous function in this example is a separate call to
future_map that gets executed on each node.


Here are all three changes integrated into the code:


# nested parallel plan - the first part of the plan is the cluster call
# followed by the multiprocess
plan(list(tweak(cluster, workers = cl), multiprocess))

# break the draw_list into a nested list with fewer elements
draw_list_nested <- split(draw_list, 1:4)

tic('simulate pi - parallel nested map')
sims_list_nested_parallel <- future_map(
  draw_list_nested, ~future_map(.,simulate_pi)
)
toc()
#> simulate pi - parallel nested map: 15.964 sec elapsed
mean(unlist(sims_list_nested_parallel))
#> [1] 3.14158


You can see the runtime decreased substantially from the previous example, although with 32 processors on each node, we’re not seeing a 32×
improvement in runtime. This is because we’re passing only 50 sets of
simulations to each node. Each node runs 32 sets of simulations in the
first pass but only 18 in the second pass, leaving half the CPUs idle.


Let’s keep the CPUs a little busier by increasing our total simulations
from 1 billion to 25 billion. Then we’ll break them into 500 work blocks
to be spread to the two worker nodes:


draw_list <- as.list(rep(5000000, 5000))
draw_list_nested <- split(draw_list, 1:50)

plan(list(tweak(cluster, workers = cl), multiprocess))

tic('simulate pi - parallel nested map')
sims_list_nested_parallel <- future_map(
  draw_list_nested, ~future_map(.,simulate_pi)
)
toc()
#> simulate pi - parallel nested map: 260.532 sec elapsed
mean(unlist(sims_list_nested_parallel))
#> [1] 3.14157


This gives us ~ 96 million sims per second.

















See Also


The future package has multiple excellent vignettes. To better
understand the nested plan call, start with
vignette('future-3-topologies',package = 'future').


Further info about furrr can be found at its
GitHub page.



















Chapter 13. Beyond Basic Numerics and Statistics



This chapter presents a few advanced techniques such as those you might
encounter in the first or second year of a graduate program in applied
statistics.


Most of these recipes use functions available in the base distribution.
Through add-on packages, R provides some of the world’s most advanced
statistical techniques. This is because researchers in statistics now
use R as their lingua franca, showcasing their newest work. Anyone
looking for a cutting-edge statistical technique is urged to search CRAN
and the web for possible implementations.








13.1 Minimizing or Maximizing a Single-Parameter Function










Problem


Given a single-parameter function f, you want to find the point at
which f reaches its minimum or maximum.

















Solution


To minimize a single-parameter function, use optimize. Specify the
function to be minimized and the bounds for its domain (x):

optimize(f, lower = lowerBound, upper = upperBound)



If you instead want to maximize the function, specify maximum = TRUE:

optimize(f,
         lower = lowerBound,
         upper = upperBound,
         maximum = TRUE)


















Discussion


The optimize function can handle functions of one argument. It
requires upper and lower bounds for x that delimit the region to be
searched. The following example finds the minimum of a polynomial,
3x4 – 2x3 + 3x2 – 4x + 5:


f <- function(x)
  3 * x ^ 4 - 2 * x ^ 3 + 3 * x ^ 2 - 4 * x + 5
optimize(f, lower = -20, upper = 20)
#> $minimum
#> [1] 0.597
#>
#> $objective
#> [1] 3.64


The returned value is a list with two elements: minimum, the x value
that minimizes the function; and objective, the value of the function
at that point.


A tighter range for lower and upper means a smaller region to be
searched and hence a faster optimization. However, if you are unsure of
the appropriate bounds, use big but reasonable values such as
lower = -1000 and upper = 1000. Just be careful that your function
does not have multiple minima within that range! The optimize function
will find and return only one such minimum.

















See Also


See Recipe 13.2.
























13.2 Minimizing or Maximizing a Multiparameter Function










Problem


Given a multiparameter function f, you want to find the point at which
f reaches its minimum or maximum.

















Solution


To minimize a multiparameter function, use optim. You must specify the
starting point, which is a vector of initial arguments for f:

optim(startingPoint, f)



To maximize the function instead, specify this control parameter:

optim(startingPoint, f, control = list(fnscale = -1))


















Discussion


The optim function is more general than optimize (see Recipe 13.1) because it handles multiparameter
functions. To evaluate your function at a point, optim packs the
point’s coordinates into a vector and calls your function with that
vector. The function should return a scalar value. optim will begin at
your starting point and move through the parameter space, searching for
the function’s minimum.


Here is an example of using optim to fit a nonlinear model. Suppose
you believe that the paired observations z and x are related by
zi = (xi + α)β + εi, where α and β are
unknown parameters and where the εi are nonnormal noise terms.
Let’s fit the model by minimizing a robust metric, the sum of the
absolute deviations:


∑|z – (x + a)b|



First we define the function to be minimized. Note that the function has
only one formal parameter, a two-element vector. The actual parameters
to be evaluated, a and b, are packed into the vector in locations 1
and 2:


load(file = './data/opt.rdata')  # loads x, y, z

f <-
  function(v) {
    a <- v[1]
    b <- v[2]                           # "unpack" v, giving a and b
    sum(abs(z - ((x + a) ^ b)))         # calculate and return the error
  }


The following code makes a call to optim, starts from (1, 1), and
searches for the minimum point of f:


optim(c(1, 1), f)
#> $par
#> [1] 10.0  0.7
#>
#> $value
#> [1] 1.26
#>
#> $counts
#> function gradient
#>      485       NA
#>
#> $convergence
#> [1] 0
#>
#> $message
#> NULL


The returned list includes convergence, the indicator of success or
failure. If this indicator is 0, then optim found a minimum;
otherwise, it did not. Obviously, the convergence indicator is the most
important returned value because other values are meaningless if the
algorithm did not converge.


The returned list also includes par, the parameters that minimize our
function, and value, the value of f at that point. In this case,
optim did converge and found a minimum point at approximately a =
10.0 and b = 0.7.

Note

There are no lower and upper bounds for optim, just the starting point
that you provide. A better guess for the starting point means a faster
minimization.




The optim function supports several different minimization algorithms,
and you can select among them. If the default algorithm does not work
for you, see the help page for alternatives. A typical problem with
multidimensional minimization is that the algorithm gets stuck at a
local minimum and fails to find a deeper, global minimum. Generally
speaking, the algorithms that are more powerful are less likely to get
stuck. However, there is a trade-off: they also tend to run more slowly.

















See Also


The R community has implemented many tools for optimization. On CRAN,
see the task view for
Optimization and
Mathematical Programming for more solutions.
























13.3 Calculating Eigenvalues and Eigenvectors










Problem


You want to calculate the eigenvalues or eigenvectors of a matrix.

















Solution


Use the eigen function. It returns a list with two elements, values
and vectors, which contain (respectively) the eigenvalues and
eigenvectors.

















Discussion


Suppose we have a matrix such as the Fibonacci matrix:


fibmat <- matrix(c(0, 1, 1, 1), 2, 2)
fibmat
#>      [,1] [,2]
#> [1,]    0    1
#> [2,]    1    1


Given the matrix, the eigen function will return a list of its
eigenvalues and eigenvectors:


eigen(fibmat)
#> eigen() decomposition
#> $values
#> [1]  1.618 -0.618
#>
#> $vectors
#>       [,1]   [,2]
#> [1,] 0.526 -0.851
#> [2,] 0.851  0.526


Use either eigen(fibmat)$values or eigen(fibmat)$vectors to select
the needed value from the list.
























13.4 Performing Principal Component Analysis










Problem


You want to identify the principal components of a multivariable
dataset.

















Solution


Use the prcomp function. The first argument is a formula whose
righthand side is the set of variables, separated by plus signs (+).
The lefthand side is empty:


r <- prcomp( ~ x + y + z)
summary(r)
#> Importance of components:
#>                          PC1     PC2     PC3
#> Standard deviation     1.894 0.11821 0.04459
#> Proportion of Variance 0.996 0.00388 0.00055
#> Cumulative Proportion  0.996 0.99945 1.00000

















Discussion


Base R includes two functions for principal component
analysis (PCA), prcomp and princomp. The documentation mentions that
prcomp has better numerical properties, so that’s the function
presented here.


An important use of PCA is to reduce the dimensionality of your dataset.
Suppose your data contains a large number N of variables. Ideally, all
the variables are more or less independent and contributing equally. But
if you suspect that some variables are redundant, PCA can tell you
the number of sources of variance in your data. If that number is near
N, then all the variables are useful. If the number is less than N,
then your data can be reduced to a dataset of smaller dimensionality.


PCA recasts your data into a vector space where the first dimension
captures the most variance, the second dimension captures the second
most, and so forth. The actual output from prcomp is an object that,
when printed, gives the needed vector rotation:


load(file = './data/pca.rdata')
r <- prcomp(~ x + y)
print(r)
#> Standard deviations (1, .., p=2):
#> [1] 0.393 0.163
#>
#> Rotation (n x k) = (2 x 2):
#>      PC1    PC2
#> x -0.553  0.833
#> y -0.833 -0.553


We typically find the summary of PCA much more useful. It shows the
proportion of variance that is captured by each component:


summary(r)
#> Importance of components:
#>                          PC1   PC2
#> Standard deviation     0.393 0.163
#> Proportion of Variance 0.853 0.147
#> Cumulative Proportion  0.853 1.000


In this example, the first component captured 85% of the variance and
the second component only 15%, so we know the first component captured
most of it.


After calling prcomp, use plot(r) to view a bar chart of the
variances of the principal components and predict(r) to rotate your
data to the principal components.

















See Also


See Recipe 13.9 for
an example of using principal component analysis. Further uses of PCA in
R are discussed in Modern Applied Statistics with S-Plus by W. N.
Venables and B. D. Ripley (Springer).
























13.5 Performing Simple Orthogonal Regression










Problem


You want to create a linear model using orthogonal regression in which
the variances of x and y are treated symmetrically.

















Solution


Use prcomp to perform PCA on x and y. From the resulting rotation,
compute the slope and intercept:


r <- prcomp(~ x + y)
slope <- r$rotation[2, 1] / r$rotation[1, 1]
intercept <- r$center[2] - slope * r$center[1]

















Discussion


Orthogonal regression is also known as total least squares (TLS).


The ordinary least squares (OLS) algorithm has an odd property: it is
asymmetric. That is, calculating lm(y ~ x) is not the mathematical
inverse of calculating lm(x ~ y). The reason is that OLS assumes the
x values to be constants and the y values to be random variables, so
all the variance is attributed to y and none is attributed to x.
This creates an asymmetric situation.


The asymmetry is illustrated in Figure 13-1, where the
upper-left panel displays the fit for lm(y ~ x). The OLS algorithm
tries the minimize the vertical distances, which are shown as dotted
lines. The upper-right panel shows the identical dataset but fit with
lm(x ~ y) instead, so the algorithm is minimizing the horizontal
dotted lines. Obviously, you’ll get a different result depending upon
which distances are minimized.


The lower panel of Figure 13-1 is quite different. It uses PCA
to implement orthogonal regression. Now the distances being minimized
are the orthogonal distances from the data points to the regression
line. This is a symmetric situation: reversing the roles of x and y
does not change the distances to be minimized.



[image: rcbk 1301]
Figure 13-1. Ordinary least squares versus orthogonal regression




Implementing a basic orthogonal regression in R is quite simple. First,
perform the PCA:


load(file = './data/pca.rdata')
r <- prcomp(~ x + y)


Next, use the rotations to compute the slope:


slope <- r$rotation[2, 1] / r$rotation[1, 1]


And then, from the slope, calculate the intercept:


intercept <- r$center[2] - slope * r$center[1]


We call this a “basic” regression because it yields only the point
estimates for the slope and intercept, not the confidence intervals.
Obviously, we’d like to have the regression statistics, too. Recipe 13.8
shows one way to estimate the confidence intervals using a bootstrap
algorithm.

















See Also


Principal component analysis is described in Recipe 13.4. The
graphics in this recipe were inspired by the work of Vincent Zoonekynd
and his tutorial on
regression.
























13.6 Finding Clusters in Your Data










Problem


You believe your data contains clusters: groups of points that are
“near” each other. You want to identify those clusters.

















Solution


Your dataset, x, can be a vector, data frame, or matrix. Assume that
n is the number of clusters you desire:

d <- dist(x)               # Compute distances between observations
hc <- hclust(d)            # Form hierarchical clusters
clust <- cutree(hc, k=n)   # Organize them into the n largest clusters



The result, clust, is a vector of numbers between 1 and n, one for
each observation in x. Each number classifies its corresponding
observation into one of the n clusters.

















Discussion


The dist function computes distances between all the observations. The
default is Euclidean distance, which works well for many applications,
but other distance measures are also available.


The hclust function uses those distances to form the observations into
a hierarchical tree of clusters. You can plot the result of hclust to
create a visualization of the hierarchy, called a dendrogram, as shown
in Figure 13-2.


Finally, cutree extracts clusters from that tree. You must specify
either how many clusters you want or the height at which the tree should
be cut. Often the number of clusters is unknown, in which case you will
need to explore the dataset for clustering that makes sense in your
application.


We’ll illustrate clustering of a synthetic dataset. We start by
generating 99 normal variates, each with a randomly selected mean of
either –3, 0, or +3:


means <- sample(c(-3, 0, +3), 99, replace = TRUE)
x <- rnorm(99, mean = means)


For our own curiosity, we can compute the true means of the original
clusters. (In a real situation, we would not have the means factor and
would be unable to perform this computation.) We can confirm that the
groups’ means are pretty close to –3, 0, and +3:


tapply(x, factor(means), mean)
#>     -3      0      3
#> -3.015 -0.224  2.760


To “discover” the clusters, we first compute the distances between all
points:


d <- dist(x)


Then we create the hierarchical clusters:


hc <- hclust(d)


And we can plot the hierarchical cluster dendrogram by calling plot on
the hc object (Figure 13-2):


plot(hc,
     sub = "",
     labels = FALSE)



[image: rcbk 1302]
Figure 13-2. Hierarchical cluster dendrogram




We can now extract the three largest clusters:


clust <- cutree(hc, k=3)


Obviously, we have a huge advantage here because we know the
true number of clusters. Real life is rarely that easy. However, even if
we didn’t already know we were dealing with three clusters, looking at
the dendrogram gives us a good clue that there are three big clusters in
the data.


clust is a vector of integers between 1 and 3, one integer for each
observation in the sample, that assigns each observation to a cluster.
Here are the first 20 cluster assignments:


head(clust, 20)
#>  [1] 1 2 2 2 1 2 3 3 2 3 1 3 2 3 2 1 2 1 1 3


By treating the cluster number as a factor, we can compute the mean of
each statistical cluster (see Recipe 6.6):


tapply(x, clust, mean)
#>      1      2      3
#>  3.190 -2.699  0.236


R did a good job of splitting the data into clusters: the means appear
distinct, with one near –2.7, one near 0.27, and one near +3.2. (The
order of the extracted means does not necessarily match the order of the
original groups, of course.) The extracted means are similar but not
identical to the original means. Side-by-side boxplots can show why (see Figure 13-3):


library(patchwork)

df_cluster <- data.frame(x,
                         means = factor(means),
                         clust = factor(clust))

g1 <- ggplot(df_cluster) +
  geom_boxplot(aes(means, x)) +
  labs(title = "Original Clusters", x = "Cluster Mean")

g2 <- ggplot(df_cluster) +
  geom_boxplot(aes(clust, x)) +
  labs(title = "Identified Clusters", x = "Cluster Number")

g1 + g2
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Figure 13-3. Cluster boxplots




The clustering
algorithm perfectly separated the data into nonoverlapping groups. The
original clusters overlapped, whereas the identified clusters do not.


This illustration used one-dimensional data, but the dist function
works equally well on multidimensional data stored in a data frame or
matrix. Each row in the data frame or matrix is treated as one
observation in a multidimensional space, and dist computes the
distances between those observations.

















See Also


This demonstration is based on the clustering features of the base
package. There are other packages, such as mclust, that offer
alternative clustering mechanisms.
























13.7 Predicting a Binary-Valued Variable (Logistic Regression)










Problem


You want to perform logistic regression, a regression model that
predicts the probability of a binary event occurring.

















Solution


Call the glm function with family = binomial to perform logistic
regression. The result is a model object:


m <- glm(b ~ x1 + x2 + x3, family = binomial)


Here, b is a factor with two levels (e.g., TRUE and FALSE, 0 and
1), while x1, x2, and x3 are predictor variables.


Use the model object, m, and the predict function to predict a
probability from new data:


df <- data.frame(x1 = value, x2 = value, x3 = value)
predict(m, type = "response", newdata = dfrm)

















Discussion


Predicting a binary-valued outcome is a common problem in modeling. Will
a treatment be effective or not? Will prices rise or fall? Who will win
the game, team A or team B? Logistic regression is useful for modeling
these situations. In the true spirit of statistics, it does not simply
give a “thumbs up” or “thumbs down” answer; rather, it computes a
probability for each of the two possible outcomes.


In the call to predict, we set type = "response" so that predict
returns a probability. Otherwise, it returns log-odds, which most of us
don’t find intuitive.


In his unpublished book entitled
Practical
Regression and ANOVA Using R, Julian Faraway gives an example of
predicting a binary-valued variable: test from the dataset pima is
true if the patient tested positive for diabetes. The predictors are
diastolic blood pressure and body mass index (BMI). Faraway uses linear
regression, so let’s try logistic regression instead:


data(pima, package = "faraway")
b <- factor(pima$test)
m <- glm(b ~ diastolic + bmi, family = binomial, data = pima)


The summary of the resulting model, m, shows that the respective
p-values for the diastolic and bmi variables are 0.8 and
(essentially) 0. We can therefore conclude that only the bmi
variable is significant:


summary(m)
#>
#> Call:
#> glm(formula = b ~ diastolic + bmi, family = binomial, data = pima)
#>
#> Deviance Residuals:
#>    Min      1Q  Median      3Q     Max
#> -1.913  -0.918  -0.685   1.234   2.742
#>
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -3.62955    0.46818   -7.75  9.0e-15 ***
#> diastolic   -0.00110    0.00443   -0.25      0.8
#> bmi          0.09413    0.01230    7.65  1.9e-14 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#>     Null deviance: 993.48  on 767  degrees of freedom
#> Residual deviance: 920.65  on 765  degrees of freedom
#> AIC: 926.7
#>
#> Number of Fisher Scoring iterations: 4


Because only the bmi variable is significant, we can create a reduced
model like this:


m.red <- glm(b ~ bmi, family = binomial, data = pima)


Let’s use the model to calculate the probability that someone with an
average BMI (32.0) will test positive for diabetes:


newdata <- data.frame(bmi = 32.0)
predict(m.red, type = "response", newdata = newdata)
#>     1
#> 0.333


According to this model, the probability is about 33.3%. The same
calculation for someone in the 90th percentile gives a probability of
54.9%:


newdata <- data.frame(bmi = quantile(pima$bmi, .90))
predict(m.red, type = "response", newdata = newdata)
#>   90%
#> 0.549

















See Also


Using logistic regression involves interpreting the deviance to judge
the significance of the model. We suggest you review a text on logistic
regression before attempting to draw any conclusions from your
regression.
























13.8 Bootstrapping a Statistic










Problem


You have a dataset and a function to calculate a statistic from that
dataset. You want to estimate a confidence interval for the statistic.

















Solution


Use the boot package. Apply the boot function to calculate bootstrap
replicates of the statistic:


library(boot)
bootfun <- function(data, indices) {
  # . . . calculate statistic using data[indices]. . .
  return(statistic)
}

reps <- boot(data, bootfun, R = 999)


Here, data is your original dataset, which can be stored in either a
vector or a data frame. The statistic function (bootfun in this case)
should expect two arguments: data and
indices, a vector of integers that selects the bootstrap sample from
data.


Next, use the boot.ci function to estimate a confidence interval from
the replications:


boot.ci(reps, type = c("perc", "bca"))

















Discussion


Anybody can calculate a statistic, but that’s just the point estimate.
We want to take it to the next level: what is the confidence interval
(CI)? For some statistics, we can calculate the CI analytically. The CI
for a mean, for instance, is calculated by the t.test function.
Unfortunately, that is the exception and not the rule. For most
statistics, the mathematics are too tortuous or simply unknown, and there
is no known closed-form calculation for the CI.


The bootstrap algorithm can estimate a CI even when no closed-form
calculation is available. It works like this. The algorithm assumes that
you have a sample of size N and a function to calculate the statistic and performs the following steps:


	
Randomly select N elements from the sample, sampling with
replacement. That set of elements is called a bootstrap sample.



	
Apply the function to the bootstrap sample to calculate the
statistic. That value is called a bootstrap replication.



	
Repeat steps 1 and 2 many times to yield many (typically thousands)
of bootstrap replications.



	
From the bootstrap replications, compute the confidence interval.







That last step may seem mysterious, but there are several algorithms for
computing the CI. A simple one uses percentiles of the replications,
such as taking the 2.5 percentile and the 97.5 percentile to form the
95% CI.


We’re huge fans of the bootstrap because we work daily with obscure
statistics, it is important that we know their confidence intervals, and
there is definitely no known formula for obtaining those. The bootstrap gives
us a good approximation.


Let’s work an example. In Recipe 13.4 we
estimated the slope of a line using orthogonal regression. That gave us
a point estimate, but how can we find the CI? First, we encapsulate the
slope calculation within a function:


stat <- function(data, indices) {
  r <- prcomp(~ x + y, data = data, subset = indices)
  slope <- r$rotation[2, 1] / r$rotation[1, 1]
  return(slope)
}


Notice that the function is careful to select the subset defined by
indices and to compute the slope from that exact subset.


Next, we calculate 999 replications of the slope. Recall that we had two
vectors, x and y, in the original recipe; here, we combine them into
a data frame:


load(file = './data/pca.rdata')
library(boot)
set.seed(3) # for reproducability

boot.data <- data.frame(x = x, y = y)
reps <- boot(boot.data, stat, R = 999)


The choice of 999 replications is a good starting point. You can always
repeat the bootstrap with more and see if the results change
significantly.


The boot.ci function can estimate the CI from the replications. It
implements several different algorithms, and the type argument selects
which algorithms are performed. For each selected algorithm, boot.ci
will return the resulting estimate:


boot.ci(reps, type = c("perc", "bca"))
#> BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
#> Based on 999 bootstrap replicates
#>
#> CALL :
#> boot.ci(boot.out = reps, type = c("perc", "bca"))
#>
#> Intervals :
#> Level     Percentile            BCa
#> 95%   ( 1.07,  1.99 )   ( 1.09,  2.05 )
#> Calculations and Intervals on Original Scale


Here we chose two algorithms, percentile and BCa, by setting
type = c("perc","bca"). The two resulting estimates appear at the
bottom under their names. Other algorithms are available; see the help
page for boot.ci.


You will note that the two confidence intervals are slightly different:
(1.068, 1.992) versus (1.086, 2.050). This is an uncomfortable but
inevitable result of using two different algorithms. We don’t know any
method for deciding which is better. If the selection is a critical
issue, you will need to study the reference and understand the
differences. In the meantime, our best advice is to be conservative and
use the minimum lower bound and the maximum upper bound; in this case,
that would be (1.068, 2.050).


By default, boot.ci estimates a 95% CI. You can change that via the
conf argument, like this:


boot.ci(reps, type = c("perc", "bca"), conf = 0.90)

















See Also


See Recipe 13.4 for the slope calculation. A good tutorial and
reference for the bootstrap algorithm is An Introduction to the
Bootstrap by Bradley Efron and Robert Tibshirani (Chapman & Hall/CRC).
























13.9 Factor Analysis










Problem


You want to perform factor analysis on your dataset, usually to discover
what your variables have in common.

















Solution


Use the factanal function, which requires your dataset and your
estimate of the number of factors:

factanal(data, factors = n)



The output includes n factors, showing the loadings of each input
variable for each factor.


The output also includes a p-value. Conventionally, a p-value of
less than 0.05 indicates that the number of factors is too small and
does not capture the full dimensionality of the dataset; a p-value
exceeding 0.05 indicates that there are likely enough (or more than
enough) factors.

















Discussion


Factor analysis creates linear combinations of your variables, called
factors, that abstract the variables’ underlying commonality. If your
n variables are perfectly independent, then they have nothing in
common and n factors are required to describe them. But to the extent
that the variables have an underlying commonality, fewer factors capture
most of the variance and so fewer than n factors are required.


For each factor and variable, we calculate the correlation between them,
known as the loading. Variables with a high loading are well explained
by the factor. We can square the loading to know what fraction of the
variable’s total variance is explained by the factor.


Factor analysis is useful when it shows that a few factors capture most
of the variance of your variables. Thus, it alerts you to redundancy in
your data. In that case you can reduce your dataset by combining closely
related variables or by eliminating redundant variables altogether.


A more subtle application of factor analysis is interpreting the factors
to find interrelationships between your variables. If two variables both
have large loadings for the same factor, then you know they have
something in common. What is it? There is no mechanical answer. You’ll
need to study the data and its meaning.


There are two tricky aspects of factor analysis. The first is choosing
the number of factors. Fortunately, you can use PCA to get a good
initial estimate of the number of factors. The second tricky aspect is
interpreting the factors themselves.


Let’s illustrate factor analysis by using stock prices, or, more
precisely, changes in stock prices. The dataset contains six months of
price changes for the stocks of 12 companies. Every company is involved
in the petroleum and gasoline industry. Their stock prices probably move
together, since they are subject to similar economic and market forces.
We might ask: how many factors are required to explain their changes? If
only one factor is required, then all the stocks are the same and one is
as good as another. If many factors are required, we know that owning
several of them provides diversification.


We start by doing a PCA on diffs, the data frame of price changes.
Plotting the PCA results shows the variance captured by the components (Figure 13-4):


load(file = './data/diffs.rdata')
plot(prcomp(diffs))
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Figure 13-4. PCA results plot




We can see in Figure 13-4 that the first component
captures much of the variance, but we don’t know if more components are required. So we
perform the initial factor analysis while assuming that two factors are
required:


factanal(diffs, factors = 2)
#>
#> Call:
#> factanal(x = diffs, factors = 2)
#>
#> Uniquenesses:
#>   APC    BP   BRY   CVX   HES   MRO   NBL   OXY   ETP   VLO   XOM
#> 0.307 0.652 0.997 0.308 0.440 0.358 0.363 0.556 0.902 0.786 0.285
#>
#> Loadings:
#>     Factor1 Factor2
#> APC 0.773   0.309
#> BP  0.317   0.497
#> BRY
#> CVX 0.439   0.707
#> HES 0.640   0.389
#> MRO 0.707   0.377
#> NBL 0.749   0.276
#> OXY 0.562   0.358
#> ETP 0.283   0.134
#> VLO 0.303   0.350
#> XOM 0.355   0.767
#>
#>                Factor1 Factor2
#> SS loadings       2.98   2.072
#> Proportion Var    0.27   0.188
#> Cumulative Var    0.27   0.459
#>
#> Test of the hypothesis that 2 factors are sufficient.
#> The chi square statistic is 62.9 on 34 degrees of freedom.
#> The p-value is 0.00184


We can ignore most of the output because the p-value at the bottom is
very close to zero (.00184). The small p-value indicates that two
factors are insufficient, so the analysis isn’t good. More are required,
so we try again with three factors instead:


factanal(diffs, factors = 3)
#>
#> Call:
#> factanal(x = diffs, factors = 3)
#>
#> Uniquenesses:
#>   APC    BP   BRY   CVX   HES   MRO   NBL   OXY   ETP   VLO   XOM
#> 0.316 0.650 0.984 0.315 0.374 0.355 0.346 0.521 0.723 0.605 0.271
#>
#> Loadings:
#>     Factor1 Factor2 Factor3
#> APC  0.747   0.270   0.230
#> BP   0.298   0.459   0.224
#> BRY                  0.123
#> CVX  0.442   0.672   0.197
#> HES  0.589   0.299   0.434
#> MRO  0.703   0.350   0.167
#> NBL  0.760   0.249   0.124
#> OXY  0.592   0.357
#> ETP  0.194           0.489
#> VLO  0.198   0.264   0.535
#> XOM  0.355   0.753   0.190
#>
#>                Factor1 Factor2 Factor3
#> SS loadings      2.814   1.774   0.951
#> Proportion Var   0.256   0.161   0.086
#> Cumulative Var   0.256   0.417   0.504
#>
#> Test of the hypothesis that 3 factors are sufficient.
#> The chi square statistic is 30.2 on 25 degrees of freedom.
#> The p-value is 0.218


The large p-value (0.218) confirms that three factors are sufficient,
so we can use the analysis.


The output includes a table of explained variance, shown here:


               Factor1 Factor2 Factor3
SS loadings      2.814   1.774   0.951
Proportion Var   0.256   0.161   0.086
Cumulative Var   0.256   0.417   0.504


This table shows that the proportion of variance explained by each
factor is 0.256, 0.161, and 0.086, respectively. Cumulatively, they
explain 0.504 of the variance, which leaves 1 – 0.504 = 0.496
unexplained.


Next we want to interpret the factors, which is more like voodoo than
science. Let’s look at the loadings, repeated here:


Loadings:
    Factor1 Factor2 Factor3
APC  0.747   0.270   0.230
BP   0.298   0.459   0.224
BRY                  0.123
CVX  0.442   0.672   0.197
HES  0.589   0.299   0.434
MRO  0.703   0.350   0.167
NBL  0.760   0.249   0.124
OXY  0.592   0.357
ETP  0.194           0.489
VLO  0.198   0.264   0.535
XOM  0.355   0.753   0.190


Each row is labeled with the variable name (stock symbol): APC, BP, BRY,
and so forth. The first factor has many large loadings, indicating that
it explains the variance of many stocks. This is a common phenomenon in
factor analysis. We are often looking at related variables, and the
first factor captures their most basic relationship. In this example, we
are dealing with stocks, and most stocks move together in concert with
the broad market. That’s probably captured by the first factor.


The second factor is more subtle. Notice that the loadings for CVX
(0.67) and XOM (0.75) are the dominant ones, with BP not far behind
(0.46), but all other stocks have noticeably smaller loadings. This
indicates a connection between CVX, XOM, and BP. Perhaps they operate
together in a common market (e.g., multinational energy) and so tend to
move together.


The third factor also has three dominant loadings: VLO, ETP, and HES.
These are somewhat smaller companies than the global giants we saw in the second factor. Possibly these three share similar markets or risks
and so their stocks also tend to move together.


In summary, it seems there are three groups of stocks here:



	
CVX, XOM, BP



	
VLO, ETP, HES



	
Everything else






Factor analysis is an art and a science. We suggest that you read a good
book on multivariate analysis before employing it.

















See Also


See Recipe 13.4 for more about PCA.



















Chapter 14. Time Series Analysis



Time series analysis has become a hot topic with the rise of
quantitative finance and automated trading of securities. Many of the
facilities described in this chapter were invented by practitioners and
researchers in finance, securities trading, and portfolio management.


Before you start any time series analysis in R, a key decision is your
choice of data representation (object class). This is especially
critical in an object-oriented language such as R, because the choice
affects more than how the data is stored; it also dictates which
functions (methods) will be available for loading, processing,
analyzing, printing, and plotting your data. When many people start
using R they simply store time series data in vectors. That seems
natural. However, they quickly discover that none of the coolest
analytics for time series analysis work with simple vectors. We’ve found
when users switch to using an object class intended for time series
data, the analysis gets easier, opening a gateway to valuable functions
and analytics.


This chapter’s first recipe recommends using the zoo or xts packages
for representing time series data. They are quite general and should
meet the needs of most users. Nearly every subsequent recipe assumes you
are using one of those two representations.

Note

The xts implementation is a superset of zoo, so xts can do
everything that zoo can do. In this chapter, whenever a recipe works
for a zoo object, you can safely assume (unless stated otherwise) that
it also works for an xts object.












Other Representations


Other representations of time series data are available in the R
universe, including:



	
The fts package



	
The irts class from the tseries package



	
The timeSeries package



	
The ts class in the base distribution



	
The tsibble package, a tidyverse style package for time series






In fact, there is a whole toolkit, called tsbox, just for converting
between representations.


Two representations deserve special mention.












ts (base distribution)


The base distribution of R includes a time series class called ts. We
don’t recommend this representation for general use because the
implementation itself is too limited and restrictive.


However, the base distribution includes some important time series
analytics that depend upon ts, such as the autocorrelation function
(acf) and the cross-correlation function (ccf). To use those base
functions on xts data, use the to.ts function to “downshift” your
data into the ts representation before calling the function. For
example, if x is an xts object, you can compute its autocorrelation
like this:


acf(as.ts(x))

















tsibble package


The tsibble package is a recent extension to the tidyverse,
specifically designed for working with time series data within the
tidyverse. We find it useful for cross-sectional data—that is, data
for which the observations are grouped by date, and you want to perform
analytics within dates more than across dates.






















Date Versus Datetime


Every observation in a time series has an associated date or time. The
object classes used in this chapter, zoo and xts, give you the
choice of using either dates or datetimes for representing the data’s
time component. You would use dates to represent daily data, of course,
and also for weekly, monthly, or even annual data; in these cases, the
date gives the day on which the observation occurred. You would use
datetimes for intraday data, where both the date and time of observation
are needed.


In describing this chapter’s recipes, we found it pretty cumbersome to
keep saying “date or datetime.” So, we simplified the prose by assuming
that your data is daily and thus uses whole dates. Please bear in mind,
of course, that you are free and able to use timestamps below the
resolution of a calendar date.

















See Also


R has many useful functions and packages for time series analysis.
You’ll find pointers to them in the
task view for Time
Series Analysis.















14.1 Representing Time Series Data










Problem


You want an R data structure that can represent time series data.

















Solution


We recommend the zoo and xts packages. They define a data structure
for time series, and they contain many useful functions for working with
time series data. Create a zoo object this way, where x is a vector,
matrix, or data frame, and dt is a vector of corresponding dates or
datetimes:


library(zoo)
ts <- zoo(x, dt)


Create an xts object in this way:


library(xts)
ts <- xts(x, dt)


Convert between representations of the time series data by using
as.zoo and as.xts:


	as.zoo(ts)

	
Converts ts to a zoo object



	as.xts(ts)

	
Converts ts to an xts object





















Discussion


R has at least eight different implementations of data structures for
representing time series. We haven’t tried them all, but we can say that
zoo and xts are excellent packages for working with time series data
and better than the others that we have tried.


These representations assume you have two vectors: a vector of
observations (data) and a vector of dates or times of those
observations. The zoo function combines them into a zoo object:


library(zoo)
#>
#> Attaching package: 'zoo'
#> The following objects are masked from 'package:base':
#>
#>     as.Date, as.Date.numeric
x <- c(3, 4, 1, 4, 8)
dt <- seq(as.Date("2018-01-01"), as.Date("2018-01-05"), by = "days")

ts <- zoo(x, dt)
print(ts)
#> 2018-01-01 2018-01-02 2018-01-03 2018-01-04 2018-01-05
#>          3          4          1          4          8


The xts function is similar, returning an xts object:


library(xts)
#>
#> Attaching package: 'xts'
#> The following objects are masked from 'package:dplyr':
#>
#>     first, last
ts <- xts(x, dt)
print(ts)
#>            [,1]
#> 2018-01-01    3
#> 2018-01-02    4
#> 2018-01-03    1
#> 2018-01-04    4
#> 2018-01-05    8


The data, x, should be numeric. The vector of dates or datetimes,
dt, is called the index. Legal indices vary between the packages:


	zoo

	
The index can be any ordered values, such as Date objects, POSIXct
objects, integers, or even floating-point values.



	xts

	
The index must be a supported date or time class. This includes
Date, POSIXct, and chron objects. Those should be sufficient for
most applications, but you can also use yearmon, yearqtr, and
dateTime objects. The xts package is more restrictive than zoo
because it implements powerful operations that require a time-based
index.






The following example creates a zoo object that contains the price of
IBM stock for the first five days of 2010; it uses Date objects for
the index:


prices <- c(132.45, 130.85, 130.00, 129.55, 130.85)
dates <- as.Date(c(
  "2010-01-04", "2010-01-05", "2010-01-06",
  "2010-01-07", "2010-01-08"
))
ibm.daily <- zoo(prices, dates)
print(ibm.daily)
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>        132        131        130        130        131


In contrast, the next example captures the price of IBM stock at
one-second intervals. It represents time by the number of hours past
midnight starting at 9:30 a.m. (1 second = 0.00027778 hours, more or
less):


prices <- c(131.18, 131.20, 131.17, 131.15, 131.17)
seconds <- c(9.5, 9.500278, 9.500556, 9.500833, 9.501111)
ibm.sec <- zoo(prices, seconds)
print(ibm.sec)
#>  10  10  10  10  10
#> 131 131 131 131 131


Those two examples used a single time series, where the data came from a
vector. Both zoo and xts can also handle multiple, parallel time
series. For this, capture the several time series in a matrix or data
frame and then create a multivariate time series by calling the zoo
(or xts) function:


ts <- zoo(df, dt) # OR: ts <- xts(dfrm, dt)


The second argument is a vector of dates (or datetimes) for each
observation. There is only one vector of dates for all the time series;
in other words, all observations in each row of the matrix or data frame
must have the same date. See Recipe 14.5 if your data has
mismatched dates.


Once the data is captured inside a zoo or xts object, you can
extract the pure data via coredata, which returns a simple vector (or
matrix):


coredata(ibm.daily)
#> [1] 132 131 130 130 131


You can extract the date or time portion via index:


index(ibm.daily)
#> [1] "2010-01-04" "2010-01-05" "2010-01-06" "2010-01-07" "2010-01-08"


The xts package is very similar to zoo. It is optimized for speed,
so is especially well suited for processing large volumes of data. It is
also clever about converting to and from other time series
representations.


One big advantage of capturing data inside a zoo or xts object is
that special-purpose functions become available for printing, plotting,
differencing, merging, periodic sampling, applying rolling functions,
and other useful operations. There is even a function, read.zoo,
dedicated to reading time series data from ASCII files.


Remember that the xts package can do everything that the zoo package
can do, so everywhere that this chapter talks about zoo objects you
can also use xts objects.


If you are a serious user of time series data, we strongly recommend
studying the documentation of these packages in order to learn about the
ways they can improve your life. They are rich packages with many useful
features.

















See Also


See CRAN for documentation on
zoo and
xts, including reference
manuals, vignettes, and quick reference cards. If the packages are
already installed on your computer, view their documentation using the
vignette function:


vignette("zoo")
vignette("xts")


The timeSeries package is another good implementation of a time series
object. It is part of the Rmetrics project for quantitative finance.
























14.2 Plotting Time Series Data










Problem


You want to plot one or more time series.

















Solution


Use plot(x), which works for zoo objects and xts objects
containing either single or multiple time series.


For a simple vector v of time series observations, you can use either
plot(v,type = "l") or plot.ts(v).

















Discussion


The generic plot function has a version for zoo objects and xts
objects. It can plot objects that contain a single time series or
multiple time series. In the latter case, it can plot each series in a
separate plot or together in one plot.


Suppose that ibm.infl is a zoo object that contains two time series.
One shows the quoted price of IBM stock from January 2000 through
December 2017, and the other is that same price adjusted for
inflation. If you plot the object, R will plot the two time series
together in one plot, as shown in Figure 14-1:


load(file = "./data/ibm.rdata")
library(xts)

main <- "IBM: Historical vs. Inflation-Adjusted"
lty <- c("dotted", "solid")

# Plot the xts object
plot(ibm.infl,
  lty = lty, main = main,
  legend.loc = "left"
)



[image: rcbk 1401]
Figure 14-1. Example xts plot




The plot function for xts provides a default title as simply the
name of the xts object. As we show here, it’s common to set the main
parameter to a more meaningful title.


The code specifies two line types (lty) so that the two lines are
drawn in two different styles, making them easier to distinguish.

















See Also


For working with financial data, the quantmod package contains special
plotting functions that produce beautiful, stylized plots.
























14.3 Extracting the Oldest or Newest Observations










Problem


You want to see only the oldest or newest observations of your time
series.

















Solution


Use head to view the oldest observations:

head(ts)



Use tail to view the newest observations:

tail(ts)


















Discussion


The head and tail functions are generic, so they will work whether
your data is stored in a simple vector, a zoo object, or an xts
object.


Suppose you have an xts object with a multiyear history of the price of
IBM stock, like the one used in the prior recipe. You can’t display the
whole dataset because it would scroll off your screen. But you can view
the initial observations:


ibm <- ibm.infl$ibm # grab one column for illustration
head(ibm)
#>             ibm
#> 2000-01-01 78.6
#> 2000-01-03 82.0
#> 2000-01-04 79.2
#> 2000-01-05 82.0
#> 2000-01-06 80.6
#> 2000-01-07 80.2


And you can view the final observations:


tail(ibm)
#>            ibm
#> 2017-12-21 148
#> 2017-12-22 149
#> 2017-12-26 150
#> 2017-12-27 150
#> 2017-12-28 151
#> 2017-12-29 150


By default, head and tail show (respectively) the six oldest and six
newest observations. You can see more observations by providing a second
argument—for example, tail(ibm, 20).


The xts package also includes first and last functions, which use
calendar periods instead of number of observations. We can use first
and last to select data by number of days, weeks, months, or even
years:


first(ibm, "2 week")
#>             ibm
#> 2000-01-01 78.6
#> 2000-01-03 82.0
#> 2000-01-04 79.2
#> 2000-01-05 82.0
#> 2000-01-06 80.6
#> 2000-01-07 80.2


At first glance this output might be confusing. We asked for "2 week"
and xts returned six days. That might seem off until we look at a
calendar of January 2000 (Figure 14-2).



[image: rcbk 1402]
Figure 14-2. January 2000 calendar




We can see from the calendar that the first week of January 2000 has
only one day, Saturday the 1st. Then the second week runs from the 2nd
to the 8th. Our data has no value for the 8th, so when we ask first
for the first "2 week" it returns all the values from the first two
calendar weeks. In our example dataset the first two calendar weeks
contain only six values.


Similarly, we can ask last to give us the last month’s worth of data:


last(ibm, "month")
#>            ibm
#> 2017-12-01 152
#> 2017-12-04 153
#> 2017-12-05 152
#> 2017-12-06 151
#> 2017-12-07 150
#> 2017-12-08 152
#> 2017-12-11 152
#> 2017-12-12 154
#> 2017-12-13 151
#> 2017-12-14 151
#> 2017-12-15 149
#> 2017-12-18 150
#> 2017-12-19 150
#> 2017-12-20 150
#> 2017-12-21 148
#> 2017-12-22 149
#> 2017-12-26 150
#> 2017-12-27 150
#> 2017-12-28 151
#> 2017-12-29 150


If we had been using zoo objects here, we would need to have converted
them to xts objects before passing the objects to first or last,
as those are xts functions.

















See Also


See help(first.xts) and help(last.xts) for details on the first
and last functions, respectively.

Warning

The tidyverse package dplyr also has functions called first and
last. If your workflow involves loading both the xts and dplyr
packages, make sure to be explicit about which function you are calling
by using the package::function notation (for example,
xts::first).


























14.4 Subsetting a Time Series










Problem


You want to select one or more elements from a time series.

















Solution


You can index a zoo or xts object by position. Use one or two
subscripts, depending upon whether the object contains one time series
or multiple time series:


	ts[_i-]

	
Selects the ith observation from a single time series



	ts[j,i]

	
Selects the ith observation of the jth time series of multiple
time series






You can index the time series by date. Use the same type of object as
the index of your time series. This example assumes that the index
contains Date objects:

ts[as.Date("yyyy-mm-dd")]



You can index it by a sequence of dates:

dates <- seq(startdate, enddate, increment)
ts[dates]



The window function can select a range by start and end date:

window(ts, start = startdate, end = enddate)


















Discussion


Recall our xts object that is a sample of inflation-adjusted IBM stock
prices from the previous recipe:


head(ibm)
#>             ibm
#> 2000-01-01 78.6
#> 2000-01-03 82.0
#> 2000-01-04 79.2
#> 2000-01-05 82.0
#> 2000-01-06 80.6
#> 2000-01-07 80.2


We can select an observation by position, just like selecting elements
from a vector (see Recipe 2.9):


ibm[2]
#>            ibm
#> 2000-01-03  82


We can also select multiple observations by position:


ibm[2:4]
#>             ibm
#> 2000-01-03 82.0
#> 2000-01-04 79.2
#> 2000-01-05 82.0


Sometimes it’s more useful to select by date. Simply use the date itself
as the index:


ibm[as.Date("2010-01-05")]
#>            ibm
#> 2010-01-05 103


Our ibm data is an xts object, so we can use date-like subsetting,
too (the zoo object does not offer this flexibility):


ibm['2010-01-05']

ibm['20100105']


We can also select by a vector of Date objects:


dates <- seq(as.Date("2010-01-04"), as.Date("2010-01-08"), by = 2)
ibm[dates]
#>            ibm
#> 2010-01-04 104
#> 2010-01-06 102
#> 2010-01-08 103


The window function is easier for selecting a range of consecutive
dates:


window(ibm, start = as.Date("2010-01-05"), end = as.Date("2010-01-07"))
#>            ibm
#> 2010-01-05 103
#> 2010-01-06 102
#> 2010-01-07 102


We can select a year/month combination using yyyymm subsetting:


ibm['201001']  # Jan 2010


Select year ranges using / like so:


ibm['2009/2011'] # all of 2009 - 2011


Or use / to select ranges including months:


ibm['2009/201001'] # all of 2009 plus Jan 2010
ibm['200906/201005'] # June 2009 through May 2010

















See Also


The xts package provides many other clever ways to index a time
series. See the package documentation.
























14.5 Merging Several Time Series










Problem


You have two or more time series. You want to merge them into a single
time series object.

















Solution


Use a zoo or xts object to represent the time series, then use the
merge function to combine them:

merge(ts1, ts2)


















Discussion


Merging two time series is an incredible headache when the two series
have differing timestamps. Consider these two time series, with the daily
price of IBM stock from 1999 through 2017 and the monthly Consumer
Price Index (CPI) for the same period:


load(file = "./data/ibm.rdata")
head(ibm)
#>             ibm
#> 1999-01-04 64.2
#> 1999-01-05 66.5
#> 1999-01-06 66.2
#> 1999-01-07 66.7
#> 1999-01-08 65.8
#> 1999-01-11 66.4
head(cpi)
#>              cpi
#> 1999-01-01 0.938
#> 1999-02-01 0.938
#> 1999-03-01 0.938
#> 1999-04-01 0.945
#> 1999-05-01 0.945
#> 1999-06-01 0.945


Obviously, the two time series have different timestamps because one is
daily data and the other is monthly data. Even worse, the downloaded CPI
data is timestamped for the first day of every month, even when that day
is a holiday or weekend (e.g., New Year’s Day).


Thank goodness for the merge function, which handles the messy details
of reconciling the different dates:


head(merge(ibm, cpi))
#>             ibm   cpi
#> 1999-01-01   NA 0.938
#> 1999-01-04 64.2    NA
#> 1999-01-05 66.5    NA
#> 1999-01-06 66.2    NA
#> 1999-01-07 66.7    NA
#> 1999-01-08 65.8    NA


By default, merge finds the union of all dates: the output contains
all dates from both inputs, and missing observations are filled with
NA values. You can replace those NA values with the most recent
observation by using the na.locf function from the zoo package:


head(na.locf(merge(ibm, cpi)))
#>             ibm   cpi
#> 1999-01-01   NA 0.938
#> 1999-01-04 64.2 0.938
#> 1999-01-05 66.5 0.938
#> 1999-01-06 66.2 0.938
#> 1999-01-07 66.7 0.938
#> 1999-01-08 65.8 0.938


(Here locf stands for “last observation carried forward.”) Observe
that the NAs were replaced. However, na.locf left an NA in the first
observation (1999-01-01) because there was no IBM stock price on that
day.


You can get the intersection of all dates by setting all = FALSE:


head(merge(ibm, cpi, all = FALSE))
#>             ibm   cpi
#> 1999-02-01 63.1 0.938
#> 1999-03-01 59.2 0.938
#> 1999-04-01 62.3 0.945
#> 1999-06-01 79.0 0.945
#> 1999-07-01 92.4 0.949
#> 1999-09-01 89.8 0.956


Now the output is limited to observations that are common to both
files.


Notice, however, that the intersection begins on February 1, not January
1. The reason is that January 1 is a holiday, so there is no IBM stock
price for that date and hence no intersection with the CPI data. To fix
this, see Recipe 14.6.
























14.6 Filling or Padding a Time Series










Problem


Your time series data is missing observations. You want to fill or pad
the data with the missing dates/times.

















Solution


Create a zero-width (dataless) zoo or xts object with the missing
dates/times. Then merge your data with the zero-width object, taking the
union of all dates:


empty <- zoo(, dates) # 'dates' is vector of the missing dates
merge(ts, empty, all = TRUE)

















Discussion


The zoo package includes a handy feature in the constructor for zoo
objects: you can omit the data and build a zero-width object. The object
contains no data, just dates. We can use these “Frankenstein” objects to
perform such operations as filling and padding on other time series
objects.


Suppose you download monthly CPI data used in the last recipe. The data
is timestamped with the first day of each month:


head(cpi)
#>              cpi
#> 1999-01-01 0.938
#> 1999-02-01 0.938
#> 1999-03-01 0.938
#> 1999-04-01 0.945
#> 1999-05-01 0.945
#> 1999-06-01 0.945


As far as R knows, we have no observations for the other days of the
months. However, we know that each CPI value applies to the subsequent
days through month-end. So first we build a zero-width object with every
day of the decade, but no data:


dates <- seq(from = min(index(cpi)), to = max(index(cpi)), by = 1)
empty <- zoo(, dates)


We use min(index(cpi)) and max(index(cpi)) to get the minimum
and maximum index values from our cpi data. So our resulting empty
object is just an index of daily dates with the same range as our cpi
data.


Then we take the union of the CPI data and the zero-width object, yielding
a dataset filled with NA values:


filled.cpi <- merge(cpi, empty, all = TRUE)
head(filled.cpi)
#>              cpi
#> 1999-01-01 0.938
#> 1999-01-02    NA
#> 1999-01-03    NA
#> 1999-01-04    NA
#> 1999-01-05    NA
#> 1999-01-06    NA


The resulting time series contains every calendar day, with NAs where
there was no observation. That might be what you need. However, a more
common requirement is to replace each NA with the most recent
observation as of that date. The na.locf function from the zoo
package does exactly that:


filled.cpi <- na.locf(merge(cpi, empty, all = TRUE))
head(filled.cpi)
#>              cpi
#> 1999-01-01 0.938
#> 1999-01-02 0.938
#> 1999-01-03 0.938
#> 1999-01-04 0.938
#> 1999-01-05 0.938
#> 1999-01-06 0.938


January’s value of 1 is carried forward until February 1, at which
time it is replaced by the February value. Now every day has the latest
CPI value as of that date. Note that in this dataset, the CPI is based
on January 1, 1999 = 100% and all CPI values are relative to the value
on that date:


tail(filled.cpi)
#>             cpi
#> 2017-11-26 1.41
#> 2017-11-27 1.41
#> 2017-11-28 1.41
#> 2017-11-29 1.41
#> 2017-11-30 1.41
#> 2017-12-01 1.41


We can use this recipe to fix the problem mentioned in Recipe 14.5.
There, the daily price of IBM stock and the monthly CPI data had no
intersection on certain days. We can fix that using several different
methods. One way is to pad the IBM data to include the CPI dates and
then take the intersection (recall that index(cpi) returns all the
dates in the CPI time series):


filled.ibm <- na.locf(merge(ibm, zoo(, index(cpi))))
head(merge(filled.ibm, cpi, all = FALSE))
#>             ibm   cpi
#> 1999-01-01   NA 0.938
#> 1999-02-01 63.1 0.938
#> 1999-03-01 59.2 0.938
#> 1999-04-01 62.3 0.945
#> 1999-05-01 73.6 0.945
#> 1999-06-01 79.0 0.945


That gives monthly observations. Another way is to fill out the CPI data
(as described previously) and then take the intersection with the IBM
data. That gives daily observations, as follows:


filled_data <- merge(ibm, filled.cpi, all = FALSE)
head(filled_data)
#>             ibm   cpi
#> 1999-01-04 64.2 0.938
#> 1999-01-05 66.5 0.938
#> 1999-01-06 66.2 0.938
#> 1999-01-07 66.7 0.938
#> 1999-01-08 65.8 0.938
#> 1999-01-11 66.4 0.938


Another common method for filling missing values uses the cubic spline
technique, which interpolates smooth intermediate values from the known
data. We can use the zoo function na.spline to fill our missing
values using a cubic spline:


combined_data <- merge(ibm, cpi, all = TRUE)
head(combined_data)
#>             ibm   cpi
#> 1999-01-01   NA 0.938
#> 1999-01-04 64.2    NA
#> 1999-01-05 66.5    NA
#> 1999-01-06 66.2    NA
#> 1999-01-07 66.7    NA
#> 1999-01-08 65.8    NA

combined_spline <- na.spline(combined_data)
head(combined_spline)
#>              ibm   cpi
#> 1999-01-01  4.59 0.938
#> 1999-01-04 64.19 0.938
#> 1999-01-05 66.52 0.938
#> 1999-01-06 66.21 0.938
#> 1999-01-07 66.71 0.938
#> 1999-01-08 65.79 0.938


Notice that both the missing values for cpi and ibm were filled.
However, the value filled in for January 1, 1999 for the ibm column
seems out of line with the January 4th observation. This illustrates one
of the challenges with cubic splines: they can become quite unstable if
the value that is being interpolated is at the very beginning or the
very end of a series. To get around this instability, we could get some
data points from before January 1, 1999, then interpolate using
na.spline, or we could simply choose a different interpolation method.
























14.7 Lagging a Time Series










Problem


You want to shift a time series in time, either forward or backward.

















Solution


Use the lag function. The second argument, k, is the number of
periods to shift the data:

lag(ts, k)



Use positive k to shift the data forward in time (tomorrow’s data
becomes today’s data). Use a negative k to shift the data backward in
time (yesterday’s data becomes today’s data).

















Discussion


Recall the zoo object containing five days of IBM stock prices from
Recipe 14.1:


ibm.daily
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>        132        131        130        130        131


To shift the data forward one day, we use k = +1:


lag(ibm.daily, k = +1, na.pad = TRUE)
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>         NA        132        131        130        130


We also set na.pad = TRUE to fill the trailing dates with NA.
Otherwise, they would simply be dropped, resulting in a shortened time
series.


To shift the data backward one day, we use k = -1. Again we use
na.pad = TRUE to pad the beginning with NAs:


lag(ibm.daily, k = -1, na.pad = TRUE)
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>         NA        132        131        130        130


If the sign convention for k seems odd to you, you are not alone.

Warning

The function is called lag, but a positive k actually generates
leading data, not lagging data. Use a negative k to get lagging
data. Yes, this is bizarre. Perhaps the function should have been called
lead.




The other thing to be careful with when using lag is that the dplyr
package contains a function named lag as well. The arguments for
dplyr::lag are not exactly the same as for the Base R lag function. In
particular, dplyr uses n instead of k:


dplyr::lag(ibm.daily, n = 1)
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>         NA        132        131        130        130

Warning

If you want to load dplyr, you should use the namespace to be explicit
about which lag function you are using. The Base R function is
stats::lag, while the dplyr function is, naturally, dplyr::lag.


























14.8 Computing Successive Differences










Problem


Given a time series, x, you want to compute the difference between
successive observations: (x2 – x1), (x3 – x2), (x4 –
x3), ….

















Solution


Use the diff function:


diff(x)

















Discussion


The diff function is generic, so it works on simple vectors, xts
objects, and zoo objects. The beauty of differencing a zoo or xts
object is that the result is the same type of object you started with and
the differences have the correct dates. Here we compute the differences
for successive prices of IBM stock:


ibm.daily
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>        132        131        130        130        131
diff(ibm.daily)
#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>      -1.60      -0.85      -0.45       1.30


The difference labeled 2010-01-05 is the change from the previous day
(2010-01-04), which is usually what you want. The differenced series is
shorter than the original series by one element because R can’t compute
the change as of 2010-01-04, of course.


By default, diff computes successive differences. You can compute
differences that are more widely spaced by using its lag parameter.
Suppose you have monthly CPI data and want to compute the change from
the previous 12 months, giving the year-over-year change. Specify a
lag of 12:


head(cpi, 24)
#>              cpi
#> 1999-01-01 0.938
#> 1999-02-01 0.938
#> 1999-03-01 0.938
#> 1999-04-01 0.945
#> 1999-05-01 0.945
#> 1999-06-01 0.945
#> 1999-07-01 0.949
#> 1999-08-01 0.952
#> 1999-09-01 0.956
#> 1999-10-01 0.957
#> 1999-11-01 0.959
#> 1999-12-01 0.961
#> 2000-01-01 0.964
#> 2000-02-01 0.968
#> 2000-03-01 0.974
#> 2000-04-01 0.973
#> 2000-05-01 0.975
#> 2000-06-01 0.981
#> 2000-07-01 0.983
#> 2000-08-01 0.983
#> 2000-09-01 0.989
#> 2000-10-01 0.990
#> 2000-11-01 0.992
#> 2000-12-01 0.994
head(diff(cpi, lag = 12), 24) # Compute year-over-year change
#>               cpi
#> 1999-01-01     NA
#> 1999-02-01     NA
#> 1999-03-01     NA
#> 1999-04-01     NA
#> 1999-05-01     NA
#> 1999-06-01     NA
#> 1999-07-01     NA
#> 1999-08-01     NA
#> 1999-09-01     NA
#> 1999-10-01     NA
#> 1999-11-01     NA
#> 1999-12-01     NA
#> 2000-01-01 0.0262
#> 2000-02-01 0.0302
#> 2000-03-01 0.0353
#> 2000-04-01 0.0285
#> 2000-05-01 0.0296
#> 2000-06-01 0.0353
#> 2000-07-01 0.0342
#> 2000-08-01 0.0319
#> 2000-09-01 0.0330
#> 2000-10-01 0.0330
#> 2000-11-01 0.0330
#> 2000-12-01 0.0330
























14.9 Performing Calculations on Time Series










Problem


You want to use arithmetic and common functions on time series data.

















Solution


No problem. R is pretty clever about operations on zoo and xts
objects. You can use arithmetic operators (+, -, *, /, etc.) as
well as common functions (sqrt, log, etc.) and usually get what you
expect.

















Discussion


When you perform arithmetic on zoo or xts objects, R aligns the
objects according to date so that the results make sense. Suppose we
want to compute the percentage change in IBM stock. We need to divide
the daily change by the price, but those two time series are not
naturally aligned—they have different start times and different lengths.
Here’s an illustration with a zoo object:


ibm.daily
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>        132        131        130        130        131
diff(ibm.daily)
#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>      -1.60      -0.85      -0.45       1.30


Fortunately, when we divide one series by the other, R aligns the series
for us and returns a zoo object:


diff(ibm.daily) / ibm.daily
#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>   -0.01223   -0.00654   -0.00347    0.00994


We can scale the result by 100 to compute the percentage change, and the
result is another zoo object:


100 * (diff(ibm.daily) / ibm.daily)
#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>     -1.223     -0.654     -0.347      0.994


Functions work just as well. If we compute the logarithm or square root
of a zoo object, the result is a zoo object with the timestamps
preserved:


log(ibm.daily)
#> 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>       4.89       4.87       4.87       4.86       4.87


In investment management, computing the difference of logarithms of
prices is quite common. That’s a piece of cake in R:


diff(log(ibm.daily))
#> 2010-01-05 2010-01-06 2010-01-07 2010-01-08
#>   -0.01215   -0.00652   -0.00347    0.00998

















See Also


See Recipe 14.8 for the special case of computing the difference between
successive values.
























14.10 Computing a Moving Average










Problem


You want to compute the moving average of a time series.

















Solution


Use the rollmean function of the zoo package to calculate the
k-period moving average:


library(zoo)
ma <- rollmean(ts, k)


Here ts is the time series data, captured in a zoo object, and k
is the number of periods.


For most financial applications, you want rollmean to calculate the
mean using only historical data; that is, for each day, you use only the
data available that day. To do that, specify align = right. Otherwise,
rollmean will “cheat” and use future data that was actually
unavailable at the time:


ma <- rollmean(ts, k, align = "right")

















Discussion


Traders are fond of moving averages for smoothing out fluctuations in
prices. The formal name is the rolling mean. You could calculate the
rolling mean as described in Recipe 14.12 by combining the
rollapply function and the mean function, but rollmean is much
faster.


Besides speed, the beauty of rollmean is that it returns the same type
of time series object it’s called on (i.e., xts or zoo). For each
element in the object, its date is the “as of” date for a calculated
mean. Because the result is a time series object, you can easily merge
the original data and the moving average and then plot them together as
in Figure 14-3:


ibm_year <- ibm["2016"]
ma_ibm <- rollmean(ibm_year, 7, align = "right")
ma_ibm <- merge(ma_ibm, ibm_year)
plot(ma_ibm)



[image: rcbk 1403]
Figure 14-3. Rolling average plot




The output is normally missing a few initial data points, since
rollmean needs a full k observations to compute the mean.
Consequently, the output is shorter than the input. If that’s a problem,
specify na.pad = TRUE; then rollmean will pad the initial output
with NA values.

















See Also


See Recipe 14.12 for more about the align parameter.


The moving average described here is a simple moving average. The
quantmod, TTR, and fTrading packages contain functions for
computing and plotting many kinds of moving averages, including simple
ones.
























14.11 Applying a Function by Calendar Period










Problem


Given a time series, you want to group the contents by a calendar period
(e.g., week, month, or year) and then apply a function to each group.

















Solution


The xts package includes functions for processing a time series by
day, week, month, quarter, or year:


apply.daily(ts, f)
apply.weekly(ts, f)
apply.monthly(ts, f)
apply.quarterly(ts, f)
apply.yearly(ts, f)


Here ts is an xts time series, and f is the function to apply to
each day, week, month, quarter, or year.


If your time series is a zoo object, convert it to an xts object first
so you can access these functions; for example:


apply.monthly(as.xts(ts), f)

















Discussion


It is common to process time series data according to calendar period.
But figuring calendar periods is tedious at best and bizarre at worst.
Let these functions do the heavy lifting.


Suppose we have a five-year history of IBM stock prices stored in an
xts object:


ibm_5 <- ibm["2012/2017"]
head(ibm_5)
#>            ibm
#> 2012-01-03 152
#> 2012-01-04 151
#> 2012-01-05 150
#> 2012-01-06 149
#> 2012-01-09 148
#> 2012-01-10 148


We can calculate the average price by month if we use apply.monthly
and mean together:


ibm_mm <- apply.monthly(ibm_5, mean)
head(ibm_mm)
#>            ibm
#> 2012-01-31 151
#> 2012-02-29 158
#> 2012-03-30 166
#> 2012-04-30 167
#> 2012-05-31 164
#> 2012-06-29 159


Notice that the IBM data is in an xts object from the start. Had the
data been in a zoo object, we would have needed to convert it to xts
using as.xts.


A more interesting application is calculating volatility by calendar
month, where volatility is measured as the standard deviation of daily
log-returns. Daily log-returns are calculated this way:


diff(log(ibm_5))


We calculate their standard deviation, month by month, like this:


apply.monthly(as.xts(diff(log(ibm_5))), sd)


We can scale the daily number to estimate annualized volatility, as
shown in Figure 14-4:


ibm_vol <- sqrt(251) * apply.monthly(as.xts(diff(log(ibm_5))), sd)
plot(ibm_vol,
  main = "IBM: Monthly Volatility"
)



[image: rcbk 1404]
Figure 14-4. IBM volatility plot


























14.12 Applying a Rolling Function










Problem


You want to apply a function to a time series in a rolling manner:
calculate the function at a data point using some window of time around
that point, move to the next data point, calculate the function around
that point, move to the next data point, and so forth.

















Solution


Use the rollapply function in the zoo package. The width parameter
defines how many data points from the time series (ts) should be
processed by the function (f) at each point:


library(zoo)
rollapply(ts, width, f)


For many applications, you will likely set align = "right" to avoid
computing f with historical data that was unavailable at the time:

rollapply(ts, width, f, align = "right")


















Discussion


The rollapply function extracts a “window” of data from your time
series, calls your function with that data, saves the result, and moves
to the next window—and repeats this pattern for the entire input. As an
illustration, consider calling rollapply with a width of 21:


rollapply(ts, 21, f)


rollapply will repeatedly call the function, f, with a sliding
window of data, like this:


	
f(ts[1:21])



	
f(ts[2:22])



	
f(ts[3:23])



	
… etc. …







Observe that the function should expect one argument, which is a vector
of values. rollapply will save the returned values before packaging
them into a zoo object along with a timestamp for every value. The
choice of timestamp depends on the align parameter given to
rollapply:


	align="right"

	
The timestamp is taken from the rightmost value.



	align="left"

	
The timestamp is taken from the leftmost value.



	align="center" (default)

	
The timestamp is taken from the middle value.






By default, rollapply will recalculate the function at successive data
points. You may instead want to calculate the function at every nth
data point. Use the by = n parameter to have rollapply move ahead
n points after each function call. When we calculate the rolling
standard deviation of a time series, for example, we usually want each
window of data to be separate, not overlapping, so we set the by value
equal to the window size:


ibm_sds <- rollapply(ibm_5, width = 30, FUN = sd, by = 30, align = "right")
ibm_sds <- na.omit(ibm_sds)
head(ibm_sds)


The rollapply function will, by default, return an object with as many
observations as your input data with the missing values filled with
NA. In the preceding example we use na.omit to drop the NA values
so that our resulting object has records only for the dates for which we
have values.
























14.13 Plotting the Autocorrelation Function










Problem


You want to plot the autocorrelation function (ACF) of your time series.

















Solution


Use the acf function:

acf(ts)


















Discussion


The autocorrelation function is an important tool for revealing the
interrelationships within a time series. It is a collection of
correlations, 
  ρ k 
 for k = 1, 2, 3, …, where

  ρ k 
 is the correlation between all pairs of data points
that are exactly k steps apart.


Visualizing the autocorrelations is much more useful than listing them,
so the acf function plots them for each value of k. The following
example shows the autocorrelation functions for two time series, one
with autocorrelations (Figure 14-5) and one without (Figure 14-6). The dashed line delimits the
significant and insignificant correlations: values above the line are
significant (the height of the line is determined by the amount
of data). We can plot them as follows:


load(file = "./data/ts_acf.rdata")

acf(ts1, main = "Significant Autocorrelations")

acf(ts2, main = "Insignificant Autocorrelations")



[image: rcbk 1405]
Figure 14-5. Autocorrelations at each lag: ts1





[image: rcbk 1406]
Figure 14-6. Autocorrelations at each lag: ts2




The presence of autocorrelations is one indication that an
autoregressive integrated moving average (ARIMA) model could model the
time series. From the ACF, you can count the number of significant
autocorrelations, which is a useful estimate of the number of moving
average (MA) coefficients in the model. Figure 14-5 shows
seven significant autocorrelations, for example, so we estimate that its
ARIMA model will require seven MA coefficients (MA(7)). That estimate is
just a starting point, however, and must be verified by fitting and
diagnosing the model.
























14.14 Testing a Time Series for Autocorrelation










Problem


You want to test your time series for the presence of autocorrelations.

















Solution


Use the Box.test function, which implements the Box–Pierce test for
autocorrelation:

Box.test(ts)



The output includes a p-value. Conventionally, a p-value of less
than 0.05 indicates that the data contains significant autocorrelations,
whereas a p-value exceeding 0.05 provides no such evidence.

















Discussion


Graphing the autocorrelation function is useful for digging into your
data. Sometimes, however, you just need to know whether or not the data
is autocorrelated. A statistical test such as the Box–Pierce test can
provide an answer.


We can apply the Box–Pierce test to the data whose autocorrelation
function we plotted in Recipe 14.13. The test
shows p-values for the two time series that are nearly 0 and 0.79,
respectively:


Box.test(ts1)
#>
#>  Box-Pierce test
#>
#> data:  ts1
#> X-squared = 100, df = 1, p-value <2e-16

Box.test(ts2)
#>
#>  Box-Pierce test
#>
#> data:  ts2
#> X-squared = 0.07, df = 1, p-value = 0.8


The p-value near 0 indicates that the first time series has
significant autocorrelations. (We don’t know which autocorrelations are
significant; we just know they exist.) The p-value of 0.8 indicates
that the test did not detect autocorrelations in the second time series.


The Box.test function can also perform the Ljung–Box test, which is
better for small samples. That test calculates a p-value whose
interpretation is the same as that for the Box–Pierce p-value:


Box.test(ts, type = "Ljung-Box")

















See Also


See Recipe 14.13 to plot the autocorrelation function, a
visual check of the autocorrelation.
























14.15 Plotting the Partial Autocorrelation Function










Problem


You want to plot the partial autocorrelation function (PACF) for your
time series.

















Solution


Use the pacf function:

pacf(ts)


















Discussion


The partial autocorrelation function is another tool for revealing the
interrelationships in a time series. However, its interpretation is much
less intuitive than that of the autocorrelation function. We’ll leave
the mathematical definition of partial correlation to a textbook on
statistics. Here, we’ll just say that the partial correlation between
two random variables, X and Y, is the correlation that remains after
accounting for the correlation shown by X and Y with all other
variables. In the case of time series, the partial autocorrelation at
lag k is the correlation between all data points that are exactly k
steps apart, after accounting for their correlation with the data between
those k steps.


The practical value of a PACF is that it helps you to identify the
number of autoregression (AR) coefficients in an ARIMA model. The
following example shows the PACF for the two time series used in Recipe 14.13. One of these series has partial autocorrelations and one
does not. Lag values whose lines cross above the dotted line are
statistically significant. In the first time series (Figure 14-7) there are two such values, at k = 1 and k =
2, so our initial ARIMA model will have two AR coefficients (AR(2)). As
with autocorrelation, however, that is just an initial estimate and must
be verified by fitting and diagnosing the model. The second time series
(Figure 14-8) shows no such autocorrelation pattern. We can plot them as follows:


pacf(ts1, main = "Significant Partial Autocorrelations")

pacf(ts2, main = "Insignificant Partial Autocorrelations")



[image: rcbk 1407]
Figure 14-7. Autocorrelations at each lag: ts1





[image: rcbk 1408]
Figure 14-8. Autocorrelations at each lag: ts2



















See Also


See Recipe 14.13.
























14.16 Finding Lagged Correlations Between Two Time Series










Problem


You have two time series, and you are wondering if there is a lagged
correlation between them.

















Solution


Use the Ccf function from the package forecast to plot the
cross-correlation function, which will reveal lagged correlations:

library(forecast)
Ccf(ts1, ts2)


















Discussion


The cross-correlation function helps you discover lagged correlations
between two time series. A lagged correlation occurs when today’s value
in one time series is correlated with a future or past value in the
other time series.


Consider the relationship between commodity prices and bond prices. Some
analysts believe those prices are connected because changes in commodity
prices are a barometer of inflation, one of the key factors in bond
pricing. Can we discover a correlation between them?


Figure 14-9 shows a cross-correlation function generated
from daily changes in bond prices and a commodity price
index:1


library(forecast)
load(file = "./data/bnd_cmty.Rdata")
b <- coredata(bonds)[, 1]
c <- coredata(cmdtys)[, 1]

Ccf(b, c, main = "Bonds vs. Commodities")



[image: rcbk 1409]
Figure 14-9. Cross-correlation function




Note that since the objects we start with, bonds and cmdtys, are
xts objects, we extract from each the vector of data using
coredata()[1]. This is because the Ccf function expects inputs to be
simple vectors.


Every vertical line shows the correlation between the two time series at
some lag, as indicated along the x-axis. If a correlation extends above
or below the dotted lines, it is statistically significant.


Notice that the correlation at lag 0 is –0.24, which is the simple
correlation between the variables:


cor(b, c)
#> [1] -0.24


Much more interesting are the correlations at lags 1, 5, and 8, which
are statistically significant. Evidently there is some “ripple effect”
in the day-to-day prices of bonds and commodities because changes today
are correlated with changes tomorrow. Discovering this sort of
relationship is useful to short-term forecasters such as market analysts
and bond traders.
























14.17 Detrending a Time Series










Problem


Your time series data contains a trend that you want to remove.

















Solution


Use linear regression to identify the trend component, and then subtract
the trend component from the original time series. These two lines show
how to detrend the zoo object ts and put the result in detr:


m <- lm(coredata(ts) ~ index(ts))
detr <- zoo(resid(m), index(ts))

















Discussion


Some time series data contains trends, which means that it gradually
slopes upward or downward over time. Suppose our time series object (a
zoo object in this case), yield, contains a trend as shown in Figure 14-10.



[image: rcbk 1410]
Figure 14-10. Time series with trend




We can remove the trend component in two steps. First, we identify the
overall trend by using the linear model function, lm. The model should
use the time series index for the x variable and the time series data
for the y variable:


m <- lm(coredata(yield) ~ index(yield))


Second, we remove the linear trend from the original data by subtracting
the straight line found by lm. This is easy because we have access to
the linear model’s residuals, which are defined by the difference
between the original data and the fitted line:



  
    r i 
    =
    y i 
    -
    β 1 
    x i 
    -
    β 0 
  




where 
  r i 
 is the ith residual and 
  β 1 
 and 
  β 0 
 are the model’s slope
and intercept, respectively. We can extract the residuals from the
linear model by using the resid function and then embed the residuals
inside a zoo object:


detr <- zoo(resid(m), index(yield))


Notice that we use the same time index as the original data. When we
plot detr it is clearly trendless, as is evident in Figure 14-11:


autoplot(detr)



[image: rcbk 1411]
Figure 14-11. Residual plot




This data is the state average corn yield for Illinois in bushels per
acre (bu/ac), so detr is the difference between the actual yield and the
trend. Sometimes when detrending you may want to determine the percent
deviation from the trend. In that case you can divide by the initial
measure (see Figure 14-12):


library(patchwork)
# y <- autoplot(yield) +
#   labs(x='Year', y='Yield (bu/ac)', title='IL Corn Yield')
d <- autoplot(detr, geom = "point") +
  labs(
    x = "Year", y = "Yield Dev (bu/ac)",
    title = "IL Corn Yield Deviation from Trend (bu/ac)"
  )
dp <- autoplot(detr / yield, geom = "point") +
  labs(
    x = "Year", y = "Yield Dev (%)",
    title = "IL Corn Yield Deviation from Trend (%)"
  )

d / dp



[image: rcbk 1412]
Figure 14-12. Detrended plots




The top plot in Figure 14-12 shows the yield deviation
from the trend in bu/ac (the original units), while the lower plot shows
the percent deviation from the trend.
























14.18 Fitting an ARIMA Model










Problem


You want to fit an ARIMA model to your time series data.

















Solution


The auto.arima function in the forecast package can select the
correct model order and fit the model to your data:

library(forecast)
auto.arima(x)



If you already know the model order, (p, d, q), then the arima
function can fit the model directly:

arima(x, order = c(p, d, q))


















Discussion


Creating an ARIMA model involves three steps:


	
Identify the model order.



	
Fit the model to the data, giving the coefficients.



	
Apply diagnostic measures to validate the model.







The model order is usually denoted by three integers, (p, d, q),
where p is the number of autoregressive coefficients, d is the
degree of differencing, and q is the number of moving average
coefficients.


When most of us build an ARIMA model, we are usually clueless about the
appropriate order. Rather than tediously searching for the best
combination of p, d, and q, we typically use auto.arima, which
does the searching for us:


library(forecast)
library(fpp2) # for example data

auto.arima(ausbeer)
#> Series: ausbeer
#> ARIMA(1,1,2)(0,1,1)[4]
#>
#> Coefficients:
#>         ar1     ma1    ma2    sma1
#>       0.050  -1.009  0.375  -0.743
#> s.e.  0.196   0.183  0.153   0.050
#>
#> sigma^2 estimated as 241:  log likelihood=-886
#> AIC=1783   AICc=1783   BIC=1800


In this case, auto.arima decided the best order was (1, 1, 2), which
means that it differenced the data once (d = 1) before selecting a
model with one AR coefficient (p = 1) and two MA coefficients (q = 2).
In addition, the auto.arima function determined that our data has
seasonality and included the seasonal terms P = 0, D = 1, Q = 1
and a period of m = 4. The seasonality terms are similar to the
nonseasonal ARIMA terms, but relate to the seasonality component of the
model. The m term tells us the periodicity of the seasonality, which
in this case is quarterly. We can see this more easily if we plot the
ausbeer data as in Figure 14-13:


autoplot(ausbeer)



[image: rcbk 1413]
Figure 14-13. Australian beer consumption




By default, auto.arima limits p and q to the range 0 ≤ p ≤ 5 and
0 ≤ q ≤ 5. If you are confident that your model needs fewer than five
coefficients, use the max.p and max.q parameters to limit the search
further; this makes it faster. Likewise, if you believe that your model
needs more coefficients, use max.p and max.q to expand the search
limits.


If you want to turn off the seasonality component of auto.arima, you
can set seasonal = FALSE:


auto.arima(ausbeer, seasonal = FALSE)
#> Series: ausbeer
#> ARIMA(3,2,2)
#>
#> Coefficients:
#>          ar1     ar2     ar3     ma1    ma2
#>       -0.957  -0.987  -0.925  -1.043  0.142
#> s.e.   0.026   0.018   0.024   0.062  0.062
#>
#> sigma^2 estimated as 327:  log likelihood=-935
#> AIC=1882   AICc=1882   BIC=1902


But notice that since the model fits a nonseasonal model, the
coefficients are different than in the seasonal model.


If you already know the order of your ARIMA model, the arima function
can quickly fit the model to your data:


arima(ausbeer, order = c(3, 2, 2))
#>
#> Call:
#> arima(x = ausbeer, order = c(3, 2, 2))
#>
#> Coefficients:
#>          ar1     ar2     ar3     ma1    ma2
#>       -0.957  -0.987  -0.925  -1.043  0.142
#> s.e.   0.026   0.018   0.024   0.062  0.062
#>
#> sigma^2 estimated as 319:  log likelihood = -935,  aic = 1882


The output looks identical to that of auto.arima with the seasonal parameter
set to FALSE. What you can’t see here is that arima executes much
more quickly.


The output from auto.arima and arima includes the fitted
coefficients and the standard error (s.e.) for each coefficient:


Coefficients:
          ar1      ar2      ar3      ma1     ma2
      -0.9569  -0.9872  -0.9247  -1.0425  0.1416
s.e.   0.0257   0.0184   0.0242   0.0619  0.0623


You can find the coefficients’ confidence intervals by capturing the
ARIMA model in an object and then using the confint function:


m <- arima(x = ausbeer, order = c(3, 2, 2))
confint(m)
#>       2.5 % 97.5 %
#> ar1 -1.0072 -0.907
#> ar2 -1.0232 -0.951
#> ar3 -0.9721 -0.877
#> ma1 -1.1639 -0.921
#> ma2  0.0195  0.264


This output illustrates a major headache of ARIMA modeling: not all the
coefficients are necessarily significant. If one of the intervals
contains zero, the true coefficient might be zero itself, in which case
the term is unnecessary.


If you discover that your model contains insignificant coefficients, use
Recipe 14.19 to remove them.

Note

The auto.arima and arima functions contain useful features for
fitting the best model. For example, you can force them to include or
exclude a trend component. See the help pages for details.




A final caveat: the danger of auto.arima is that it makes ARIMA
modeling look simple. ARIMA modeling is not simple. It is more art
than science, and the automatically generated model is just a starting
point. We urge you to review a good book about ARIMA modeling before
settling on a final model.

















See Also


See Recipe 14.20 for performing diagnostic tests on the ARIMA model.


As a textbook on time series forecasting we highly recommend
Forecasting: Principles and Practice, 2nd ed., by Rob J. Hyndman and George
Athanasopoulos, which is freely available
online.
























14.19 Removing Insignificant ARIMA Coefficients










Problem


One or more of the coefficients in your ARIMA model are statistically
insignificant. You want to remove them.

















Solution


The arima function includes the parameter fixed, which is a vector.
The vector should contain one element for every coefficient in the
model, including a term for the drift (if any). Each element is either
NA or 0. Use NA for the coefficients to be kept and use 0 for
the coefficients to be removed. This example shows an ARIMA(2, 1, 2)
model with the first AR coefficient and the first MA coefficient forced
to be 0:


arima(x, order = c(2, 1, 2), fixed = c(0, NA, 0, NA))

















Discussion


The fpp2 package contains a dataset called euretail, which is a quarterly retail index for the Euro area. Let’s run auto.arima on the data and look at the 98% confidence intervals:


m <- auto.arima(euretail)
m
#> Series: euretail
#> ARIMA(0,1,3)(0,1,1)[4]
#>
#> Coefficients:
#>         ma1    ma2    ma3    sma1
#>       0.263  0.369  0.420  -0.664
#> s.e.  0.124  0.126  0.129   0.155
#>
#> sigma^2 estimated as 0.156:  log likelihood=-28.6
#> AIC=67.3   AICc=68.4   BIC=77.7
confint(m, level = .98)
#>          1 %   99 %
#> ma1  -0.0246  0.551
#> ma2   0.0774  0.661
#> ma3   0.1190  0.721
#> sma1 -1.0231 -0.304


In this example, we can see that the 98% confidence interval for the ma1 parameter contains 0 and we can reasonably conclude that this parameter is insignificant at this level of confidence. We can set this parameter to 0 using the fixed parameter:


m <- arima(euretail,
                   order = c(0, 1, 3),
                   seasonal = c(0, 1, 1),
                   fixed = c(0, NA, NA, NA)).
m
#>
#> Call:
#> arima(x = euretail,
                     order = c(0, 1, 3),
                     seasonal = c(0, 1, 1),
                     fixed = c(0,
#>     NA, NA, NA))
#>
#> Coefficients:
#>       ma1    ma2    ma3    sma1
#>         0  0.404  0.293  -0.700
#> s.e.    0  0.129  0.107   0.135
#>
#> sigma^2 estimated as 0.156:  log likelihood = -30.8,  aic = 69.5


Observe that the ma1 coefficient is now 0. The
remaining coefficients (ma2, ma3, sma1) are still significant, as shown
by their confidence intervals, so we have a reasonable model:


confint(m, level = .98)
#>          1 %   99 %
#> ma1       NA     NA
#> ma2   0.1049  0.703
#> ma3   0.0438  0.542
#> sma1 -1.0140 -0.386
























14.20 Running Diagnostics on an ARIMA Model










Problem


You have built an ARIMA model using the forecast package, and you want
to run diagnostic tests to validate the model.

















Solution


Use the checkresiduals function. This example fits the ARIMA model
using auto.arima, puts the results in m, and then runs diagnostics
on the model:


m <- auto.arima(x)
checkresiduals(m)

















Discussion


The result of checkresiduals is a set of three graphs, as shown in
Figure 14-14. A good model should produce results like these:


#>
#>  Ljung-Box test
#>
#> data:  Residuals from ARIMA(1,1,2)(0,1,1)[4]
#> Q* = 5, df = 4, p-value = 0.3
#>
#> Model df: 4.   Total lags used: 8



[image: rcbk 1414]
Figure 14-14. Residuals plots: good model




Here’s what’s good about the graphs:



	
The standardized residuals don’t show clusters of volatility.



	
The autocorrelation function (ACF) shows no significant
autocorrelation between the residuals.



	
The residuals look bell-shaped, suggesting they are reasonably
symmetrical.



	
The p-value in the Ljung–Box test is large, indicating that the
residuals are patternless—meaning all the information has been extracted
by the model and only noise is left behind.






For contrast, Figure 14-15 shows diagnostic charts with
problems:


#>
#>  Ljung-Box test
#>
#> data:  Residuals from ARIMA(1,1,1)(0,0,1)[4]
#> Q* = 20, df = 5, p-value = 5e-04
#>
#> Model df: 3.   Total lags used: 8



[image: rcbk 1415]
Figure 14-15. Residuals plots: problem model




The issues here are:



	
The ACF shows significant autocorrelations between residuals.



	
The p-values for the Ljung–Box statistics are small, indicating
there is some pattern in the residuals (i.e., there is still information to be
extracted from the data).



	
The residuals appear asymmetrical.






These are basic diagnostics, but they are a good start. Find a good book
on ARIMA modeling and perform the recommended diagnostic tests before
concluding that your model is sound. Additional checks of the residuals
could include:



	
Tests for normality



	
Quantile–quantile (Q–Q) plot



	
Scatter plot against the fitted values




























14.21 Making Forecasts from an ARIMA Model










Problem


You have an ARIMA model for your time series that you built with the
forecast package. You want to forecast the next few observations in
the series.

















Solution


Save the model in an object, and then apply the forecast function to
the object. This example saves the model from Recipe 14.19 and
predicts the next eight observations:


m <- arima(euretail, order = c(0, 1, 3), seasonal = c(0, 1, 1),
  fixed = c(0, NA, NA, NA))
forecast(m)
#>         Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
#> 2012 Q1           95.1  94.6  95.6  94.3  95.9
#> 2012 Q2           95.2  94.5  95.9  94.1  96.3
#> 2012 Q3           95.2  94.2  96.3  93.7  96.8
#> 2012 Q4           95.3  93.9  96.6  93.2  97.3
#> 2013 Q1           94.5  92.8  96.1  91.9  97.0
#> 2013 Q2           94.5  92.6  96.5  91.5  97.5
#> 2013 Q3           94.5  92.3  96.7  91.1  97.9
#> 2013 Q4           94.5  92.0  97.0  90.7  98.3

















Discussion


The forecast function will calculate the next few observations and
their standard errors according to the model. It returns a list with 10
elements. When we print the model, as we just did, forecast returns
the time series points it is forecasting, the forecast, and two pairs of
confidence bands: high/low 80% and high/low 95%.


If we want to extract out just the forecast, we can do that by assigning
the results to an object, and then pulling out the list item named
mean:


fc_m <- forecast(m)
fc_m$mean
#>      Qtr1 Qtr2 Qtr3 Qtr4
#> 2012 95.1 95.2 95.2 95.3
#> 2013 94.5 94.5 94.5 94.5


The result is a Time-Series object containing the forecasts created by
the forecast function.
























14.22 Plotting a Forecast










Problem


You have created a time series forecast with the forecast package and
you would like to plot it.

















Solution


Time series models created with the forecast package have a plotting
method that uses ggplot2 to create graphs easily, as shown in Figure 14-16:


fc_m <- forecast(m)
autoplot(fc_m)



[image: rcbk 1416]
Figure 14-16. Forecast cone of uncertainty: default



















Discussion


The autoplot function makes a very reasonable figure, as shown in
Figure 14-16. Since the resulting figure is a ggplot
object, we can adjust the plotting parameters the same way we would with any
other ggplot object. Here we add labels and a title and change the
theme, as shown in Figure 14-17:


autoplot(fc_m) +
  ylab("Euro Index") +
  xlab("Year/Quarter") +
  ggtitle("Forecasted Retail Index") +
  theme_bw()



[image: rcbk 1417]
Figure 14-17. Forecast cone of uncertainty: labeled



















See Also


See Chapter 10 for more information on working with ggplot figures.
























14.23 Testing for Mean Reversion










Problem


You want to know if your time series is mean-reverting (stationary).

















Solution


A common test for mean reversion is the Augmented Dickey–Fuller (ADF)
test, which is implemented by the adf.test function of the tseries
package:

library(tseries)
adf.test(ts)



The output from adf.test includes a p-value. Conventionally, if p
< 0.05, the time series is likely mean-reverting, whereas a p > 0.05
provides no such evidence.

















Discussion


When a time series is mean-reverting, it tends to return to its long-run
average. It may wander off, but eventually it wanders back. If a time
series is not mean-reverting, then it can wander away without ever
returning to the mean.


Figure 14-18 appears to be wandering upward and not
returning. The large p-value from adf.test confirms that it is
not mean-reverting:


library(tseries)
library(fpp2)
autoplot(goog200)
adf.test(goog200)
#>
#>  Augmented Dickey-Fuller Test
#>
#> data:  goog200
#> Dickey-Fuller = -2, Lag order = 5, p-value = 0.7
#> alternative hypothesis: stationary



[image: rcbk 1418]
Figure 14-18. Time series without mean reversion




The time series in Figure 14-19, however, is just
bouncing around its average value. The small p-value (0.01) confirms
that it is mean-reverting:


autoplot(hsales)
adf.test(hsales)
#>
#>  Augmented Dickey-Fuller Test
#>
#> data:  hsales
#> Dickey-Fuller = -4, Lag order = 6, p-value = 0.01
#> alternative hypothesis: stationary



[image: rcbk 1419]
Figure 14-19. Time series with mean reversion




The example data here comes from the fpp2 package and comprises all
Time-Series object types. If your data were in a zoo or xts
object, then you would need to call coredata to extract out the raw
data from the object before passing it to adf.test:


library(xts)
data(sample_matrix)
xts_obj <- as.xts(sample_matrix, dateFormat = "Date")[, "Close"] # vector of data

adf.test(coredata(xts_obj))
#>
#>  Augmented Dickey-Fuller Test
#>
#> data:  coredata(xts_obj)
#> Dickey-Fuller = -3, Lag order = 5, p-value = 0.3
#> alternative hypothesis: stationary


The adf.test function massages your data before performing the ADF
test. First it automatically detrends your data, and then it recenters
the data, giving it a mean of zero.


If either detrending or recentering is undesirable for your application,
use the adfTest
 function in the fUnitRoots package instead:


library(fUnitRoots)
adfTest(coredata(ts1), type = "nc")


With type = "nc", the function neither detrends nor recenters your
data. With type = "c", the function recenters your data but does not
detrend it.


Both the adf.test and adfTest functions let you specify a lag
value that controls the exact statistic they calculate. These functions
provide reasonable defaults, but serious users should study the textbook
description of the ADF test to determine the appropriate lag for their
application.

















See Also


The urca and CADFtest packages also implement tests for a unit root,
which is the test for mean reversion. Be careful when comparing the
tests from several packages, however. Each package can make slightly different
assumptions, which can lead to puzzling differences in the results.
























14.24 Smoothing a Time Series










Problem


You have a noisy time series. You want to smooth the data to eliminate
the noise.

















Solution


The KernSmooth package contains functions for smoothing. Use the
dpill function to select an initial bandwidth parameter, and then use
the locpoly function to smooth the data:


library(KernSmooth)

gridsize <- length(y)
bw <- dpill(t, y, gridsize = gridsize)
lp <- locpoly(x = t, y = y, bandwidth = bw, gridsize = gridsize)
smooth <- lp$y


Here, t is the time variable and y is the time series.

















Discussion


The KernSmooth package is a standard part of the R distribution. It
includes the locpoly
 function, which constructs, around each data
point, a polynomial that is fitted to the nearby data points. These are
called local polynomials. The local polynomials are strung together to
create a smoothed version of the original data series.


The algorithm requires a bandwidth parameter to control the degree of
smoothing. A small bandwidth means less smoothing, in which case the
result follows the original data more closely. A large bandwidth means
more smoothing, so the result contains less noise. The tricky part is
choosing just the right bandwidth: not too small, not too large.


Fortunately, KernSmooth also includes the function dpill for
estimating the appropriate bandwidth, and it works quite well. We
recommend that you start with the dpill value and then experiment with
values above and below that starting point. There is no magic formula
here. You need to decide what level of smoothing works best in your
application.


The following is an example of smoothing. We’ll create some example data
that is the sum of a simple sine wave and normally distributed “noise”:


t <- seq(from = -10, to = 10, length.out = 201)
noise <- rnorm(201)
y <- sin(t) + noise


Both dpill and locpoly require a grid size—in other words, the
number of points for which a local polynomial is constructed. We often
use a grid size equal to the number of data points, which yields a fine
resolution. The resulting time series is very smooth. You might use a
smaller grid size if you want a coarser resolution or if you have a very
large dataset:


library(KernSmooth)
gridsize <- length(y)
bw <- dpill(t, y, gridsize = gridsize)


The locpoly function performs the smoothing and returns a list. The
y element of that list is the smoothed data:


lp <- locpoly(x = t, y = y, bandwidth = bw, gridsize = gridsize)
smooth <- lp$y

ggplot() +
  geom_line(aes(x = t, y = y)) +
  geom_line(aes(x = t, y = smooth), linetype = 2)


In Figure 14-20, the smoothed data is shown as a dashed
line, while the solid line is our original example data. The figure
demonstrates that locpoly did an excellent job of extracting the
original sine wave.



[image: rcbk 1420]
Figure 14-20. Example time series plot



















See Also


The ksmooth, lowess, and HoltWinters functions in the base
distribution can also perform smoothing. The expsmooth package
implements exponential smoothing.

















1 Specifically, the bonds variable is the log-returns of the Vanguard Long-Term Bond Index Fund (VBLTX), and the cmdtys variable is the log-returns of the Invesco DB Commodity Tracking Fund (DBC). The data was taken from the period 2007-01-01 through 2017-12-31.



Chapter 15. Simple Programming



R lets you accomplish a lot without knowing anything about programming.
Programming opens the door to accomplishing more, however, and most
serious users eventually perform some level of programming, starting
simply and possibly becoming quite proficient. While this is not a
programming book, this chapter lays out some programming recipes that R
users typically find useful to begin their journey.


If you are already familiar with programming and programming languages,
a few notes here may help you quickly adapt. (If these terms are unfamiliar to you, you can skip this section.) Here are some technical details of R to be aware of:


	Typeless variables

	
Variables in R do not have a fixed type, such as integer or character,
unlike in typed languages such as C and Java. A variable could contain a
number one moment and a data frame the next.



	Return values

	
All functions return a value. Normally, a function returns the value
of the last expression in its body. You can also use return(expr)
anywhere within the body.



	Call-by-value parameters

	
Function parameters are “call by value”—in other words, parameters are
strictly local variables, and changes to those variables do not affect
the caller’s value.



	Local variables

	
You create a local variable simply by assigning a value to it.
Explicit declaration is not required. When the function exits, local
variables are lost.



	Global variables

	
Global variables are held in the user’s workspace. Within a function
you can change a global variable by using the <<- assignment
operator, but this is not encouraged.



	Conditional execution

	
The R syntax includes an if statement. See help(Control) for
details.



	Loops

	
The R syntax also includes for loops, while loops, and repeat
loops. For details, see help(Control).



	Case or switch statements

	
A special function called switch provides a basic case statement.
The semantics may strike you as odd, however. See help(switch) for
details.



	Lazy evaluation

	
R does not immediately evaluate function arguments when the function
is called. Rather, it waits until the argument is actually used within
the function, then evaluates it. This gives the language an especially
rich and powerful semantics. Most of the time, it’s not noticeable,
but occasionally it results in situations that are baffling to
programmers familiar only with “eager” evaluation, where arguments are
evaluated when the function is called.



	Functional semantics

	
Functions are “first-class citizens” and can be treated like other
objects: assigned to variables, passed to functions, printed,
inspected, and so forth.



	Object orientation

	
R supports object-oriented programming. In fact, there are several
different paradigms for object orientation, which is a blessing if you
enjoy having a choice and baffling if you don’t.












15.1 Choosing Between Two Alternatives: if/else










Problem


You want to write a conditional branch that will choose between two
paths based on a simple test.

















Solution


An if block can implement conditional logic by testing a simple
condition:

if (condition) {
  ## do this if condition is TRUE
} else {
  ## do this if condition is FALSE
}



Notice the parentheses around the condition, which are required, and the
curly braces around the subsequent two blocks of code.

















Discussion


The if structure lets you choose between two alternative code paths by
testing some condition, such as x == 0 or y > 1, and then following
one path or the other accordingly. This if, for example, checks for
negative numbers before calculating a square root:


if (x >= 0) {
  print(sqrt(x))             # do this if x >= 0
} else {
  print("negative number")   # do this otherwise
}


You can chain a series of if/else structures to make a series of
decisions. Let’s suppose we want a value to be cupped at 0 (no negative
values) and capped at 1. We could code that as follows:


x <- -0.3

if (x < 0) {
  x <- 0
} else if (x > 1) {
  x <- 1
}

print(x)
#> [1] 0


It is important that the conditional test (the expression after if) is
a simple test; that is, it must return a single, logical value of
either TRUE or FALSE. A common problem is mistakenly using a
vector of logical values, as in this example:


x <- c(-2, -1, 0, 1, 2)

if (x < 0) {
  print("values are negative")
}
#> Warning in if (x < 0) {: the condition has length > 1 and only the first
#> element will be used
#> [1] "values are negative"


The problem arises because x < 0 is ambiguous when x is a vector:
are you testing for all values being negative or some values being
negative? R provides the helper functions all and any to address the
situation. They take a vector of logical values and reduce them to one,
single value:


x <- c(-2, -1, 0, 1, 2)

if (all(x < 0)) {
  print("all are negative")
}

if (any(x < 0)) {
  print("some are negative")
}
#> [1] "some are negative"

















See Also


The if structure presented here is intended for programming. There is
also a function called ifelse that implements a vectorized if/else
structure, useful for transforming entire vectors. See help(ifelse).
























15.2 Iterating with a Loop










Problem


You want to iterate over the elements of a vector or list.

















Solution


A common iteration technique uses the for structure. If v is a
vector or list, this for loop selects each element of v one by one,
assigns the element to x, and does something with it:


for (x in v) {
  # do something with x
}

















Discussion


Programmers from C and Python will recognize for loops. They are less
common in R but still occasionally useful.


For illustration, this for loop prints the first five integers and
their squares. It sets x to 1, 2, 3, 4, and 5 successively,
executing the body of the loop each time:


for (x in 1:5) {
  cat(x, x^2, "\n")
}
#> 1 1
#> 2 4
#> 3 9
#> 4 16
#> 5 25


We can also iterate over the subscripts of a vector or list, which is
useful for updating the data in place. Here, we initialize v with the
vector 1:5, then update its elements by squaring each one:


v <- 1:5
for (i in 1:5) {
  v[[i]] <- v[[i]] ^ 2
}
print(v)
#> [1]  1  4  9 16 25


But, frankly, this also illustrates one reason why loops are less common
in R than in other programming languages. The vectorized operations of R
are fast and easy, often eliminating the need for looping altogether.
Here is the vectorized version of the previous example:


v <- 1:5
v <- v^2
print(v)
#> [1]  1  4  9 16 25

















See Also


Another reason loops are rare is that map and similar functions can
process entire vectors and lists at once, usually more quickly and
easily than a loop. See Recipe 6.1 for
details on using the purrr package to apply functions to lists.
























15.3 Defining a Function










Problem


You want to define a new R function.

















Solution


Create the function by using the function keyword followed by a list
of parameter names and then the function body:

name <- function(param1, ..., paramN) {
          expr1
          .
          .
          .
          exprM
        }



Put parentheses around the parameter names. Put curly braces around the
function body, which is a sequence of one or more expressions. R will
evaluate each expression in order and return the value of the last one,
denoted here as exprM.

















Discussion


Function definitions are how you tell R, “Here’s how to calculate
this.” For example, R does not have a built-in function for
calculating the coefficient of variation, but we can create such a
function, calling it cv:


cv <- function(x) {
  sd(x) / mean(x)
}


This function has one parameter, x, and the body of the function is
sd(x) / mean(x).


When we call the function with an argument, R will set the parameter x
to that value, then evaluate the body of the function:


cv(1:10)     # Set x = 1:10 and evaluate sd(x)/mean(x)
#> [1] 0.550482


Note that the parameter x is distinct from any other variable called
x. If you have a global variable x in your workspace, for example,
that x is distinct from this x and won’t be affected by cv.
Furthermore, the parameter x exists only while the cv function is
executing and disappears after that.


A function can have more than one argument. This function has two
arguments, both integers, and implements Euclid’s algorithm for
computing their greatest common divisor:


gcd <- function(a, b) {
  if (b == 0) {
    a                # Return a to caller
  } else {
    gcd(b, a %% b)   # Recursively call ourselves
  }
}

# What's the greatest common denominator of 14 and 21?
gcd(14, 21)
#> [1] 7


(This function definition is recursive because it calls itself when
b is nonzero.)


Normally, the function returns the value of the last expression in the
function body. You can choose to return a value earlier, however, by
writing return(expr), forcing the function to stop and immediately
return expr to the caller. We can illustrate this by coding gcd in
a subtly different way using an explicit return:


gcd <- function(a, b) {
  if (b == 0) {
    return(a)    # Stop and return a
  }
  gcd(b, a %% b)
}


When parameter b is 0, gcd executes return(a), returning that
value immediately to the caller.

















See Also


Functions are a central component of R programming, so they are covered
well in books such as
R for Data Science by Hadley Wickham and Garrett Grolemund (O’Reilly) and The Art of R
Programming by Norman Matloff (No Starch Press).
























15.4 Creating a Local Variable










Problem


You want to create a variable that is local to a function—that is, a
variable that is created inside the function, used inside the function,
and removed when the function is done.

















Solution


Inside the function, simply assign a value to the name. The name
automatically becomes a local variable and will be removed when the
function finishes.

















Discussion


This function will map a vector, x, into the unit interval. It
requires two intermediate values, low and high:


unitInt <- function(x) {
  low <- min(x)
  high <- max(x)
  (x - low) / (high - low)
}


The low and high values are automatically created by the assignment
statements. Because the assignments occur within the function body, the
variables are local to the function. That brings two important
advantages.


First, the local variables named low and high are distinct from any
global variables named low and high in your workspace. Because they
are distinct, there is no “collision”: changes to the local variables do
not change the global variables.


Second, local variables disappear when the function is done. That
prevents clutter and automatically frees the space they used.
























15.5 Choosing Between Multiple Alternatives: switch










Problem


A variable can take on several different values. You want your program
to handle each case separately, according to the value.

















Solution


The switch function will branch according to a value, letting you select
how you handle each case.

















Discussion


The first argument to switch is a value for R to consider. The
remaining arguments show how to handle each possible value. For example,
this call to switch considers the value of who, then returns one of
three possible results:


hair_type = switch(who,
                   Moe = "long",
                   Larry = "fuzzy",
                   Curly = "none")


Notice that each expression after the initial who is labeled with a
possible value for who. If who is Moe, then the switch returns
"long"; if it is Larry, the switch returns "fuzzy"; if it’s Curly, it returns "none".


Very often, you cannot anticipate all possible values to be considered,
so switch lets you define a default for the situation where no label
matches. Simply put the default last with no label. This switch, for
example, will translate the contents of s from "one", "two", or
"three" into the corresponding integer. It returns NA for any other
value:


num <- switch(s,
              one = 1,
              two = 2,
              three = 3,
              NA)


An annoying quirk of switch arises when the labels are integers. This
won’t do what you expect, for example:


switch(i,            # Does not work the way you expect
       10 = "ten",
       20 = "twenty",
       30 = "thirty",
       "other")


But there is a workaround—convert the integer to a character string,
then use character strings for the labels:


switch(as.character(i),
       "10" = "ten",
       "20" = "twenty",
       "30" = "thirty",
       "other")

















See Also


See help(switch) for more details.


This sort of feature is quite common in other programming languages,
where it’s usually called a switch or case statement.


The switch function works only with scalars. Switching on the contents
of a data frame is more complicated. See the function case_when in the
dplyr package for a powerful mechanism to handle that situation.
























15.6 Defining Defaults for Function Parameters










Problem


You want to define default parameters for a function—that is, values to
use when the caller does not provide explicit arguments.

















Solution


R lets you set default values for parameters by including them in the
function definition:

my_fun <- function(param = default_value) {
  ...
}


















Discussion


Let’s create a toy function that greets someone by name:


greet <- function(name) {
  cat("Hello,", name, "\n")
}

greet("Fred")
#> Hello, Fred


If we call greet without a name argument, we get this error:


greet()
#> Error in cat("Hello,", name, "\n") :
#>   argument "name" is missing, with no default


We can change the function definition, however, to define a default
name. In this case, we’ll default to the generic name world:


greet <- function(name = "world") {
  cat("Hello,", name, "\n")
}


Now if we omit the argument, R supplies a default:


greet()
#> Hello, world


This mechanism for defaults is handy. Nonetheless, we recommend using it
judiciously. We’ve seen too many cases where the function creator
defined defaults and the function caller accepted the defaults without
much thought, leading to questionable results. For example, if you are
using the k-nearest neighbors algorithm, the choice of k is critical
and providing a default makes no sense. Sometimes it’s better to force
the caller to make a choice.
























15.7 Signaling Errors










Problem


When your code encounters a serious problem, you want to halt and alert
the user.

















Solution


Call the stop function, which will print your message and terminate
all processing.

















Discussion


It is critical to halt processing when your code encounters fatal
errors, such as this check that an account still has a positive balance:


if (balance < 0) {
  stop("Funds exhausted.")
}


This call to stop would display the message, terminate processing, and
put the user back at the console prompt:


#> Error in eval(expr, envir, enclos): Funds exhausted


Problems arise for all sorts of reasons: bad data, user error, network
failures, and bugs in code, to name a few. The list is endless. It is
important that you anticipate potential problems and code appropriately:


	Detect

	
At a minimum, detect possible errors. Halt if further
processing is impossible. Undetected errors are a major source of
program failures.



	Report

	
If you must halt, give users a reasonable explanation of
why. That will help them diagnose and fix the problem.



	Recover

	
In some cases, the code may be able to correct the
situation itself and continue. We recommend, however, warning the user
that your code encountered a problem and corrected it.






Error handling is part of defensive programming, the practice of
making your code robust.

















See Also


An alternative to stop is the warning function, which prints its
message and continues without halting. Be sure, however, that it is
actually reasonable to continue.
























15.8 Protecting Against Errors










Problem


You anticipate the possibility of fatal errors, and you want to handle
them rather than halt altogether.

















Solution


Use the possibly function to “wrap” the problematic code. It will trap
errors and let you respond to them.

















Discussion


The purrr package contains a function called possibly, which takes
two parameters. The first parameter is a function, and possibly will
protect against failures in that function. The second parameter is a
value called otherwise.


A concrete example is useful here. The read.csv function tries to read
a file, but it simply halts if the file does not exist. That could be
undesirable. We might want to recover and continue instead.


We can “wrap” the read.csv function in a protective layer this way:


library(purrr)
safe_read <- possibly(read.csv, otherwise=NULL)


It may seem strange, but possibly returns a new function. The new
function, called safe_read here, behaves exactly like the old
function, read.csv, but with one very important difference. When
read.csv would fail and halt, safe_read will instead return the
otherwise value (NULL) and let you continue. (If read.csv
succeeds, you get its usual result: a data frame.)


You could use safe_read like this to handle optional files:


details = safe_read("details.csv")    # Try to read details.csv file
if (is.null(details)) {               # NULL means read.csv failed
  cat("Details are not available\n")
} else {
  print(details)                      # We got the contents!
}


If the details.csv file exists, safe_read returns the contents and
this code will print them. If it does not exist, then read.csv fails,
safe_read returns NULL, and this code prints a message.


The otherwise value in this case is NULL, but it can be anything. It
could be a data frame, for example, which provides a default. In that
case, when the details.csv file is unavailable, safe_read would
return that default.

















See Also


The purrr package contains other functions for protecting against
errors. Check out the safely and quietly functions.


If you need even higher-powered tools, use help(tryCatch) to see the
mechanism behind possibly, which has sophisticated bells and whistles
for handling both errors and warnings. It mirrors the familiar try/catch
paradigm of other programming languages.
























15.9 Creating an Anonymous Function










Problem


You are using tidyverse functions such as map or discard that
require a function. You want a shortcut for easily defining the required
function.

















Solution


Use the function keyword to define a function with parameters and a
body, but instead of giving the function a name, simply use its
definition inline.

















Discussion


It may seem strange to create a function with no name, but it can be a
handy convenience.


In Recipe 15.3, we defined a function, is_na_or_null, and used it
to remove NA and NULL elements from a list:


is_na_or_null <- function(x) {
  is.na(x) || is.null(x)
}

lst %>%
  discard(is_na_or_null)


Sometimes, writing a tiny, one-off function such as is_na_or_null is
annoying. You can avoid that hassle by using the function definition
directly, not giving it a name:


lst %>%
  discard(function(x) is.na(x) || is.null(x))


This kind of function is called an anonymous function, for the obvious
reason that it has no name.

















See Also


Function definitions are described in Recipe 15.3.
























15.10 Creating a Collection of Reusable Functions










Problem


You want to reuse one or more functions across several scripts.

















Solution


Save the functions in a local file, say myLibrary.R, then use the
source function to load those functions into your script:


source("myLibrary.R")

















Discussion


Quite often, you will write functions that are useful in several
scripts. For example, you could have one function that loads, checks,
and cleans your data; now you want to reuse that function in every
script that needs the data.


Most beginners simply cut and paste the reusable function into each
script, duplicating the code. That creates a serious problem. What if
you discover a bug in that duplicated code? Or what if you must change
the code to accommodate new circumstances? You’re forced to hunt down
every copy and make the identical change everywhere, an annoying and
error-prone process.


Instead, create a file, say myLibrary.R, and save the function
definition there. The file contents could look like this:


loadMyData <- function() {
  # code for data loading, checking, and cleaning here
}


Then, inside each script, use the source function to read the code from
the file:


source("myLibrary.R")


When you run the script, the source function reads the indicated file,
just as if you’d typed the file contents at that location in the
script. It’s better than cutting and pasting because you’ve isolated the
function’s definition into one known place.

Tip

This example has only one function in the sourced file, but the file can
contain multiple functions, of course. We suggest gathering related
functions into their own file, creating a group of related, reusable
functions.



















See Also


This recipe is a very simple method for reusing code, appropriate for
small projects. A more powerful approach is to create your own R package
of functions, which is especially useful for collaborating with other
people. Package creation is a large topic, but getting started is pretty
easy. We suggest the excellent book R Packages by Hadley Wickham
(O’Reilly), available in printed form or
online.
























15.11 Automatically Reindenting Code










Problem


You want to reformat your code so that it lines up nicely and is
indented consistently.

















Solution


To consistently indent a block of code, highlight the text in RStudio,
then press Ctrl-I (Windows or Linux) or Cmd-I (Mac).

















Discussion


One of the many features of the RStudio IDE is that it helps with
routine code maintenance, such as reformatting. When you’re editing code
it’s easy to end up with indentation that is inconsistent and a little
confusing. The IDE can fix that.


Take the following code, for example:


for (i in 1:5) {
    if (i >= 3) {
  print(i**2)
} else {
  print(i * 3)
}
  }


While that’s valid code, it can be tricky to read because of the odd
indentation. If we highlight the text in the RStudio IDE and press
Ctrl-I (or Cmd-I on Mac), then our code gets consistent indentation:


for (i in 1:5) {
  if (i >= 3) {
    print(i**2)
  }
  else {
    print(i * 3)
  }
}

















See Also


RStudio has several helpful features for code editing. You can access
cheat sheets by clicking Help → Cheatsheets or by going directly to
https://www.rstudio.com/resources/cheatsheets/.



















Chapter 16. R Markdown and Publishing



While R by itself is an incredibly powerful tool for data analysis and
visualization, almost all of us, after we do analysis, will need to
communicate the results to others. We may do that with published papers,
blog posts, PowerPoint presentations, or books. R Markdown is the tool
that helps us go from R analysis and visualization all the way to
publishable documents.


R Markdown is a package (as well as an ecosystem of tools) that allows
us to add R code to a plain-text file with some Markdown formatting. The
document can then be rendered into many different output formats,
including PDF, HTML, Microsoft Word, and Microsoft PowerPoint. At
rendering, also called knitting, the R code is run and the resulting
output and figures are placed in the final document.


In this chapter we’ll give you recipes to get you started creating R
Markdown documents. After you go through these recipes, one of the best
ways to learn more about R Markdown is by looking at the source files
and final output of other people’s R Markdown work. The book you are
reading was itself written in R Markdown. You can see the source to this
book on GitHub.


In addition, Yihui Xie, J. J. Allaire, and Garrett Grolemund have
written R Markdown: The
Definitive Guide (Chapman & Hall/CRC) and also made the source R Markdown available on
GitHub.


Many other books written with R Markdown have been made
freely available online.


We mentioned that R Markdown is an ecosystem as well as a package. There
are specialized packages to extend R Markdown for blogging (blogdown),
for books (bookdown), and for making gridded dashboards
(flexdashboard). The initial package in the ecosystem is called
knitr, and we still call the process of turning R Markdown into a
final format “knitting” the document. The R Markdown ecosystem supports many output formats, and covering them all would be
unreasonable. In this book we’ll stick primarily to four common
output formats: HTML, LaTeX, Microsoft Word, and Microsoft PowerPoint.


The RStudio IDE contains many helpful features for creating and editing
R Markdown documents. While we’ll make use of those features in the
following recipes, R Markdown is not dependent on RStudio in order to be
useful. It’s possible to edit plain-text R Markdown files with your
favorite text editor and then knit the document using R’s command-line
interface. However, the RStudio tools are so helpful that we’ll
illustrate them extensively.








16.1 Creating a New Document










Problem


You want to create a new R Markdown document to tell your data story.

















Solution


The easiest way to create a new R Markdown document is using the File →
New File → R Markdown… menu choice in the RStudio IDE (see Figure 16-1).



[image: rcbk 1601]
Figure 16-1. Creating a new R Markdown document




Selecting “R Markdown…” will lead you to the New R Markdown dialog,
where you can choose the type of output document you would like
to create (see Figure 16-2). The default option is
HTML, which is a good choice if you want to publish your work online or
in an email, or if you haven’t made up your mind yet about how you’d
like to output your final document. Changing to a different format later
is typically as easy as chaining one line of text in the document, or a
few clicks in the IDE.



[image: rcbk 1602]
Figure 16-2. New R Markdown document options




After you make your selection and click OK, you’ll get an R Markdown
template with some metadata and example text (see Figure 16-3).



[image: rcbk 1603]
Figure 16-3. New R Markdown document



















Discussion


R Markdown documents are plain-text files. The shortcut just outlined is
the fastest way to get a template for creating a new R Markdown text
document. Once you have the template you can edit the text, alter the R
code, and change anything you want. The other recipes in this chapter
deal with the types of things you will likely want to do in your R
Markdown document, but if you just want to see what some output looks
like, click on the Knit button in the RStudio IDE and your R Markdown
document will be rendered into your desired output format.
























16.2 Adding a Title, Author, or Date










Problem


You want to alter the title, author, or date of your document.

















Solution


At the top of an R Markdown document is a block of specially formatted
text that starts and ends with ---. This block contains important
metadata about your document. In this block, you can set the title,
author, and date:


---
title: "Your Title Here"
author: "Your Name Here"
date: "12/31/9999"
output: html_document
---


You can also set the output format (e.g., output: html_document).
We’ll discuss the different output formats later in the recipes that
cover specific formats.

















Discussion


When you knit your R Markdown document to create your output, R will run
each chunk, create Markdown (not R Markdown) for each chunk’s output,
and pass the full Markdown document to Pandoc. Pandoc is the software
that creates your final output document from the intermediate Markdown.
Most of the time, you don’t even need to think about the steps unless
you’re having a problem knitting your document.


The text at the top of your R Markdown document between the --- marks
is in a format called YAML (Yet Another Markup Language). This chunk is
used to pass metadata to the Pandoc software that builds your output
document. The fields title, author, and date are read by Pandoc
and inserted at the top of most output document formats.


The way these values are formatted and inserted into the output document
is a function of the template used for output. The default templates for
HTML, PDF, and Microsoft Word each format the title, author, and
date fields similarly (see Figure 16-4).



[image: rcbk 1604]
Figure 16-4. Header illustration




You can add other key/value pairs into the YAML header, but if your
template is not configured to use these values, they are ignored.

















See Also


For information on creating your own templates, see Chapter 17,
“Document Templates,” in
R
Markdown: The Definitive Guide.
























16.3 Formatting Document Text










Problem


You want to format the text of your document, such as putting text into
italics or bold.

















Solution


The body of an R Markdown document is plain text and allows formatting
using Markdown notation. You’ll likely want to add formatting, such as
making text bold or italic. You’ll also want to add section headers,
lists, and tables, which will be covered in later recipes. All of these
options can be accomplished through Markdown.


Table 16-1 shows a brief summary of some of the most
common formatting syntax.


Table 16-1. Common Markdown formatting syntax


	Markdown
	Output





	plain text

	plain text




	*italics*

	italics




	**bold**

	bold




	`code`

	code




	sub~script~

	subscript




	super^script^

	superscript




	~~strikethrough~~

	strikethrough




	endash: --

	endash: –




	emdash: ---

	emdash: —






















See Also


RStudio publishes a
handy
reference sheet.


See also recipes for inserting various structures, such as Recipe 16.4, Recipe 16.5,
and Recipe 16.9.
























16.4 Inserting Document Headings










Problem


Your R Markdown document needs section headings.

















Solution


You can insert section headings by starting a line with the # (hash)
character. Use one hash character for the top level, two for the second
level, and so on:


# Level 1 Heading
## Level 2 Heading
### Level 3 Heading
#### Level 4 Heading
##### Level 5 Heading
###### Level 6 Heading

















Discussion


Markdown and HTML both support up to six heading levels, so that’s
what’s supported in R Markdown. In R Markdown (and Markdown in
general) the formatting does not include specific font details; it communicates only what formatting class to apply to text. The
specifics of each class are defined by the output format and the
template used by each output format.
























16.5 Inserting a List










Problem


You want to include a bulleted or numbered list in your document.

















Solution


To create a bulleted list, start each line with an asterisk (*) like
so:


* first item
* second item
* third item


To create a numbered list, start each line with 1. as follows:


1. first item
1. second item
1. third item


R Markdown will replace the 1. prefixes with the sequence 1., 2.,
3., and so on.


The rules for lists are a bit strict:



	
There must be a blank line before the list.



	
There must be a blank line after the list.



	
There must be a space character after the leading asterisk.





















Discussion


The syntax for lists is simple, but watch out for the rules given in
the Solution. If you violate even one, the output will be gobbledygook.


An important feature of lists is that they allow sublists. This bulleted
list has three subitems:


* first item
   * first subitem
   * second subitem
   * third subitem
* second item


which produces this output:



	
first item



	
first subitem



	
second subitem



	
third subitem







	
second item






Again, there is an important rule: the sublists must be indented by two,
three, or four spaces relative to the level above. No more, no
less—otherwise, chaos will ensue.


The Solution recommends using the prefix 1. to identify numbered
lists. You can also use a. and i., which will produce lowercase
letters and roman numeral sequences, respectively. That’s handy for
formatting sublists:


1. first item
1. second item
   a. subitem 1
   a. subitem 2
      i. sub-subitem 1
      i. sub-subitem 2
   a. subitem 2
1. third item


This produces:


	
first item



	
second item


	
subitem 1



	
subitem 2


	
sub-subitem 1



	
sub-subitem 2








	
subitem 2








	
third item






















See Also


The syntax for lists is more flexible and feature-laden than described
here. See the reference material for details, such as the
Pandoc Markdown guide.
























16.6 Showing Output from R Code










Problem


You want to execute some R code and show the results in the output
document.

















Solution


You can insert R code in an R Markdown document. It will be executed and
the output included in the final document.


There are two ways to insert the code. For small bits of code, include
them inline between two tick marks (``), as in:


The square root of pi is `r sqrt(pi)`.


which results in this output:


The square root of pi is 1.772.


For larger blocks of code, define a code chunk by placing the block
between matching triple tick marks (```).


```{r}
# code block goes here
```


Note the {r} after the first triple tick marks: this alerts R
Markdown that we want it to execute the code.

















Discussion


Embedding R code into your document is the most powerful feature of R
Markdown. In fact, without that feature, R Markdown would just be plain
old Markdown.


Inline R, described first in the Solution, is useful for pulling in
small bits of information directly into the text of a report—information such as dates, times, or the results of small calculations.


Code chunks are for doing the heavy lifting. By default, the code chunk
is shown in the text, and the results are displayed directly under the
code. The results are preceded by a prefix, which defaults to a double
hash tag: ##.


If we had this code chunk in a source R Markdown document:


```{r}
sqrt(pi)
sqrt(1:5)
```


it would produce this output:


sqrt(pi)
## [1] 1.77
sqrt(1:5)
## [1] 1.00 1.41 1.73 2.00 2.24


Conveniently, having the results preceded by the ## allows the reader
to paste the code and results into their own R session and execute the
code. R will ignore the results because they look like comments.

Note

The {r} after the tick marks is important because R Markdown
allows code blocks from other languages, too, such as Python or SQL. If
you work in a multilanguage environment, this is a very powerful
feature. See the R Markdown documentation for details.



















See Also


See Recipe 16.7 for controlling what’s shown in the output.


For details on the available language engines, see “Other language engines” in
R Markdown:
The Definitive Guide.
























16.7 Controlling Which Code and Results Are Shown










Problem


Your document contains chunks of R code. You want to control what’s
shown in the final document: only the results, only the code, or
neither.

















Solution


Code blocks support several options that control what appears in the
final document. Set the options at the top of the block. For example,
this block has echo set to FALSE:


```{r echo=FALSE}
# . . . code here will not appear in output . . .
```


See the Discussion for a table of available options.

















Discussion


There are many display options, such as echo, which controls whether
the code itself appears in the final output, and eval, which controls
whether or not the code is evaluated (executed).


A few of the most popular options are listed in Table 16-2.


Table 16-2. Options that control what’s shown in the final document


	Chunk option
	Executes code
	Shows code
	Shows output text
	Shows
figures





	results='hide'

	X

	X

	
	X




	include=FALSE

	X

	
	
	



	echo=FALSE

	X

	
	X

	X




	fig.show='hide'

	X

	X

	X

	



	eval=FALSE

	
	X

	
	






You can mix and match combinations of options to get the results you’re
after. Some common use cases are:



	
You want the code’s output to appear, but not the code itself:
echo=FALSE.



	
You want the code to appear, but not be executed: eval=FALSE.



	
You want to execute the code for its side effects (e.g., loading
packages or loading data), but neither the code nor any incidental
output should appear: include=FALSE.






We often use include=FALSE for the first code chunk of an R Markdown
document, where we are calling library, initializing variables, and
doing other housekeeping tasks whose incidental output is just an
annoyance.


In addition to the output options just described, there are several
options that control handling of the error messages, warning messages,
and informational messages generated by your code:



	
error=TRUE allows your document to build completely even if there is
an error in the code chunk. This is helpful when you’re creating a
document where you specifically want to see the error in the output. The
default is error=FALSE.



	
warning=FALSE suppresses warning messages. The default is
warning=TRUE.



	
message=FALSE suppresses informational messages. This is handy when
your code uses chatty packages that produce messages while loading. The
default is message=TRUE.





















See Also


The
R
Markdown cheat sheet from RStudio lists many available options.


The author of knitr, Yihui Xie, has documented the options on his
website.
























16.8 Inserting a Plot










Problem


You want to insert a plot into your output document.

















Solution


Simply create a code chunk that creates the plot, and insert that chunk
into your R Markdown document. R Markdown will capture the plot and
insert it into your output document.

















Discussion


Here’s an R Markdown code chunk that creates a ggplot plot called
gg, then “prints” it:


```{r}
library(ggplot2)
gg <- ggplot(airquality, aes(Wind, Temp)) + geom_point()
print(gg)
```


Recall that print(gg) renders the plot. If we insert this code chunk
into an R Markdown document, R Markdown will capture the result and
insert it into the output, which looks something like this:


library(ggplot2)
gg <- ggplot(airquality, aes(Wind, Temp)) + geom_point()
print(gg)


The resulting plot is shown in Figure 16-5.



[image: rcbk 1605]
Figure 16-5. Example ggplot in R Markdown




Almost any plot we can produce in R can be rendered into the output
document. We have some control over the rendered results using options
in the code block, such as setting the size, resolution, and format of
the output. Let’s look at some examples using the gg plot object we
just created.


We can shrink the output using out.width:


```{r out.width='30%'}
print(gg)
```


which results in Figure 16-6:


print(gg)



[image: rcbk 1606]
Figure 16-6. Small-width plot




Or we can enlarge the output to the full width of the page:


```{r out.width='100%'}
print(gg)
```


which results in Figure 16-7:


print(gg)



[image: rcbk 1607]
Figure 16-7. Large-width plot




Some common output settings to use with graphics are:


	out.width and out.height

	
The size of the output figure as a
percentage of the page size.



	dev

	
The R graphical device used to create the figure. The default
is 'png' for HTML output and 'pdf' for LaTeX output. You can also
use 'jpg' or 'svg', for example.



	fig.cap

	
The figure caption.



	fig.align

	
The alignment of the plot: 'left', 'center', or 'right'.






Let’s use these settings to create a figure with 50% width, 20% height,
a caption, and left alignment:


```{r out.width='50%',
       out.height='20%',
        fig.cap='Temperature versus wind speed',
        fig.align='left'}
print(gg)


This produces Figure 16-8:


print(gg)



[image: rcbk 1608]
Figure 16-8. Temperature vs. wind speed


























16.9 Inserting a Table










Problem


You want to insert a nicely formatted table into your document.

















Solution


Lay out the contents in a text table, using the pipe character (|) to
separate columns. Use dashes to “underline” column headings. R Markdown
will format that into attractive output. For example, this input:


| Stooge | Year | Hair?           |
|--------|------|-----------------|
| Moe    | 1887 | Yes             |
| Larry  | 1902 | Yes             |
| Curly  | 1903 | No (ironically) |


will produce this output:





	Stooge
	Year
	Hair?





	Moe

	1887

	Yes




	Larry

	1902

	Yes




	Curly

	1903

	No (ironically)







You must place a blank line before and after the table.

















Discussion


The syntax for tables lets you “draw” the table using ASCII characters.
The “underline” made from dashes is a signal to R Markdown that the line
above it contains column headings. Without that “underline,” R Markdown
would interpret the first line as contents, not headings.


The table formatting is a bit more flexible than the Solution might
suggest. This (ugly) input, for example, would produce the same
(beautiful) output as shown in the Solution:


| Stooge | Year | Hair? |
|--------|------|-----------------|
| Moe | 1887 | Yes |
| Larry | 1902 | Yes |
| Curly | 1903 | No (ironically) |


The computer cares only about pipe characters (|) and dashes. The
whitespace padding is optional. Use it to make the input easier for you
to read.


A handy feature is the use of colons (:) to control justification of
columns. Include colons in the dash “underline” to set the column
justification. This table defines the justification for three of four
columns:


|Left   |Right | Center  | Default |
|:------|-----:|:-------:|---------|
| 12345 |12345 | 12345   | 12345   |
| text  | text | text    | text    |
| 12    | 12   | 12      | 12      |


which gives this result:




	Left
	Right
	Center
	Default





	12345

	12345

	12345

	12345




	text

	text

	text

	text




	12

	12

	12

	12







Use the colons within a column heading’s “underline” this way:



	
A colon at the extreme left end causes left justification.



	
A colon at the extreme right causes right justification.



	
Colons at both ends cause center justification.





















See Also


Actually, R Markdown supports several syntaxes for tables—some might say
a bewildering number of syntaxes. This recipe shows only one, just to
keep it simple. See the Markdown reference material for the
alternatives.
























16.10 Inserting a Table of Data










Problem


You want to include a table of computer-generated data in your output
document.

















Solution


Use the kable function from the knitr package, shown here formatting
a data frame called dfrm:


library(knitr)
kable(dfrm)

















Discussion


In Recipe 16.9, we showed how to put a
static table into a document using plain text. Here, we have the table
contents captured in a data frame, and we want to show the data in the
document output.


We could just print the table, and it would end up in the output,
unformatted:


myTable <- tibble(
  x=c(1.111, 2.222, 3.333),
  y=c('one', 'two', 'three'),
  z=c(pi, 2*pi, 3*pi))
myTable
#> # A tibble: 3 x 3
#>       x y         z
#>   <dbl> <chr> <dbl>
#> 1  1.11 one    3.14
#> 2  2.22 two    6.28
#> 3  3.33 three  9.42


But we typically want something more attractive and formatted. The
easiest way to implement this is by using the kable function from the
knitr package (Figure 16-9):


library(knitr)
kable(myTable, caption = 'My Table')



[image: rcbk 16in01]
Figure 16-9. A kable table




The kable function takes a data frame as input and a number of
formatting parameters, returning a formatted table suitable for display.


kable produces great-looking output, but many people discover they
want more control over the output than it allows. Luckily kable can be
paired with another package, kableExtra, for—not surprisingly—extra
kable functionality.


Here we set the rounding and caption using kable. Then we use
kable_styling to make the table more narrow than full width, add
shaded striping in our LaTeX output, and center the table in the output (Figure 16-10):


library(knitr)
library(kableExtra)
#>
#> Attaching package: 'kableExtra'
#> The following object is masked from 'package:dplyr':
#>
#>     group_rows

kable(myTable, digits = 2, caption = 'My Table') %>%
   kable_styling(full_width = FALSE,
                 latex_options = c('hold_position', 'striped'),
                 position = "center",
                 font_size = 12)



[image: rcbk 16in02]
Figure 16-10. A kableExtra table




The kable_styling function takes a kable table as input (not a data
frame), plus formatting parameters, then returns a formatted table.


Some options in kable_styling have a different impact on your output
depending on your output format. In our previous example, the
full_width = FALSE does not change anything in LaTeX (PDF) format
because tables in LaTeX output default to not being full width. In HTML,
however, the default behavior for kable tables is to be full width, so
this option has an impact.


Similiarly, the latex_options = c('hold_position', 'striped') option
applies only to LaTeX output, not HTML. The 'hold_position' ensures
that the table ends up where we put it in our source, not at the top or
bottom of the page, which tends to happen in LaTeX. The 'striped'
option makes zebra-striped tables with alternating light and dark rows
for easier reading.


For more control over Microsoft Word tables, we recommend using the function
flextable::regulartable, which is discussed in Recipe 16.14.
























16.11 Inserting Math Equations










Problem


You want to insert a mathematical equation in your document.

















Solution


R Markdown supports the LaTeX math equation notation. There are two ways
of entering LaTeX in R Markdown.


For short formulas, put the LaTeX notation inline between single dollar
signs ($). The notation for the solution to a linear regression could be expressed as
$\beta = (X^{T}X)^{-1}X^{T}{\bf{y}}$, which would result in the
inline formula 
  
    β
    =
    (X T X) -1 
    X T 
    𝐲
  
.


For large formula blocks, embed the block between double dollar signs ($$), like this:


$$
\frac{\partial \mathrm C}{ \partial \mathrm t } + \frac{1}{2}\sigma^{2}
      \mathrm S^{2} \frac{\partial^{2} \mathrm C}{\partial \mathrm C^2}
    + \mathrm r \mathrm S \frac{\partial \mathrm C}{\partial \mathrm S}\ =
    \mathrm r \mathrm C
    \label{eq:1}
$$


which generates this output:



  
    ∂C ∂t
    +
    1 2
    σ 2 
    S 2 
    ∂ 2 C ∂C 2 
    +
    r
    S
    ∂C ∂S
    
    =
    r
    C
  



















Discussion


The math equation markup syntax is a LaTeX standard that originated in
TeX. Building on that standard, R Markdown can render mathematical
expressions in PDF, HTML, MS Word, and MS PowerPoint documents. The PDF
and HTML formats support a full range of LaTeX math equations. The
translation into Microsoft Word and PowerPoint, however, supports only a
subset of the full syntax.


The details of LaTeX equation notation are beyond the scope of this
book, but since TeX has been around for 40+ years there are many great
resources available online and in print. A very good online
resource is the
Wikibooks.org
introduction to LaTeX/Mathematics.
























16.12 Generating HTML Output










Problem


You would like to create a HyperText Markup Language (HTML) document
from an R Markdown document.

















Solution


In RStudio, click on the down arrow next to the button labeled Knit at the
top of the code editing window. When you do, you’ll get a drop-down list
of all the output formats available for your current document. Select
the “Knit to HTML” option, as shown in Figure 16-11.



[image: rcbk 1609]
Figure 16-11. Knit to HTML



















Discussion


When you select “Knit to HTML,” RStudio moves html_document: default to
the top of your YAML output chunk at the top of the document, saves the
file, and then runs rmarkdown::render(./YourFile.Rmd). If you have
knitted your document into three different formats, your YAML may look
like this:


output:
  html_document: default
  pdf_document: default
  word_document: default


If you run render(./YourFile.Rmd) on your R Markdown document,
substituting your actual filename for YourFile.Rmd, it will, by
default, knit to the topmost output format (in this case, HTML).

Warning

If you are knitting to HTML, your R Markdown document should not contain
any special LaTeX-specific formatting, as this will not knit properly
in HTML. The exception, as mentioned in prior recipes, is LaTeX math
equations, which show up properly in HTML thanks to the MathJax
JavaScript library.



















See Also


See Recipe 16.11.
























16.13 Generating PDF Output










Problem


You would like to create an Adobe Portable Document Format (PDF)
document from an R Markdown document.

















Solution


In RStudio, click on the down arrow next to the button labeled Knit at the
top of the code editing window. When you do, you’ll get a drop-down list
of all the output formats available for your current document. Select
the “Knit to PDF” option, as shown in Figure 16-12.


This will move pdf_document to the top of your YAML output options:


---
title: "Nice Title"
output:
  pdf_document: default
  html_document: default
---


and then knit the document to PDF.



[image: rcbk 1610]
Figure 16-12. Knit to PDF



















Discussion


Knitting to PDF uses Pandoc and a LaTeX engine to generate a PDF
document. If you don’t already have a LaTeX distribution installed on
your computer, the easiest way to get one is with the tinytex package.
Install tinytex in R, then call install_tinytex(), and tinytex will
install a small and efficient LaTeX distribution on your computer:


install.packages("tinytex")
tinytex::install_tinytex()


LaTeX is rich with options, and fortunately, most things that we want to
do can be represented with R Markdown and automatically converted to
LaTeX via Pandoc. Since LaTeX is a powerful typesetting tool, it is
possible to do things with it for which there is no R Markdown
equivalent. We can’t enumerate all the possibilities here, but we can talk
about the ways to pass parameters directly to LaTeX from R Markdown.
Keep in mind, though, that any LaTeX-specific options you use will not
be translated properly into other formats, like HTML or MS Word.


There are two main ways to pass information from R Markdown to the LaTeX
rendering engine:


	
Pass LaTeX directly to the LaTeX compiler.



	
Set LaTeX options in the YAML header.







If you want to pass LaTeX commands directly through to the LaTeX
compiler, you can use the LaTeX command beginning with \. The
limitation is that if you knit the document to any format other than
PDF, the command following the slash is completely omitted from the
output.


For example, if we put this phrase into our R Markdown source:


Sometimes you want to write directly in \LaTeX !


it will be rendered as shown in Figure 16-13.



[image: rcbk 1611]
Figure 16-13. LaTeX typeset




However, if you render your document to HTML, the \LaTeX command will be dropped completely, leaving you with an unappealing blank in your document.


If you want to set global options for LaTeX, you can do so by adding
parameters to the YAML header in your R Markdown document. The YAML
header has top-level metadata as well as subdata for some options.
Different parameters are set at different levels of indentation, so we
typically look them up in R Markdown: The Definitive Guide just to be
sure.


For example, if you have some previously written LaTeX content and you
want to include it in your document, you can add this prewritten content
in three different places in your document: in the header, before the
body content, or after the body content at the end. If you were adding
external content in all three sections, your YAML header would look something like
this:


---
title: "My Wonderful Document"
output:
  pdf_document:
    includes:
      in_header: header_stuff.tex
      before_body: body_prefix.tex
      after_body: body_suffix.tex
---


Another common LaTeX option to use is a LaTeX template for formatting
your document. Many templates are available
online, and some companies and
schools have their own templates. If you want to use an existing
template, you can reference it in the YAML header like this:


---
title: "Poetry I Love"
output:
  pdf_document:
    template: i_love_template.tex
---


You can also turn on or off page numbering and section numbering:


---
title: "Why I Love a Good ToC"
output:
  pdf_document:
    toc: true
    number_sections: true
---


Some LaTeX options, however, get set with top-level YAML metadata:


---
title: "Custom Report"
output: pdf_document
fontsize: 12pt
geometry: margin=1.2in
---


So when you are setting LaTeX options, consult the R Markdown
documentation to determine if the option you are setting is a suboption
of the output: parameter or its own top-level YAML option.

















See Also


See the section “PDF document” in
R Markdown: The
Definitive Guide.


See also the Pandoc template documentation.
























16.14 Generating Microsoft Word Output










Problem


You would like to create a Microsoft Word document from an R Markdown
document.

















Solution


In RStudio, click on the down arrow next to the button labeled Knit at the
top of the code editing window. When you do, you’ll get a drop-down list
of all the output formats available for your current document. Select
the “Knit to Word” option, as shown in Figure 16-14.



[image: rcbk 1612]
Figure 16-14. Knit to Word




This will move word_document to the top of your YAML output options
and then knit your R Markdown document to Word:


---
title: "Nice Title"
output:
  word_document: default
  pdf_document: default
---

















Discussion


Knitting to Microsoft Word is helpful in businesses and scholastic
environments where supervisors and collaborators expect documents in
Word format. Most R Markdown features work very well in Word, but there
are a few tweaks we have found to be helpful when using Word output.


Microsoft has its own equation editing tool. Pandoc will coerce your
LaTeX equations into MS Equation Editor, which works well with most
basic equations but does not support all LaTeX equation options. One
challenge is that MS Equation Editor does not support changing fonts for
part of an equation. As a result, matrix notation with fractions and
other formulas that require varying fonts can look a bit odd in Word.


Here’s a matrix example that looks good in HTML and PDF:


$$
M = \begin{bmatrix}
       \frac{1}{6} & \frac{1}{6} & 0           \\[0.3em]
       \frac{7}{8} & 0           & \frac{2}{3} \\[0.3em]
       0           & \frac{7}{9} & \frac{7}{7}
     \end{bmatrix}
$$


Here’s how it renders in these output formats:



  
    M
    =
    
      
        
          
            1 6
          
          
            1 6
          
          
            0
          
        
        
          
            7 8
          
          
            0
          
          
            2 3
          
        
        
          
            0
          
          
            7 9
          
          
            7 7
          
        
      
    
  




But it looks like Figure 16-15 in MS Word.
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Figure 16-15. Matrix in MS Word




Any formula using scaling of characters will not work properly in Word.
For example, this:


$( \big( \Big( \bigg( \Bigg($


would look like this in HTML and LaTeX:



[image: rcbk 16in03]





but will get simplified in MS Equation Editor, as shown in Figure 16-16.



[image: rcbk 1614]
Figure 16-16. Equation font scaling in MS Word




The easiest solution for equations in Word is to try your equation
first. If you don’t like the output, take your LaTeX equation to an
online free
equation editor, render it there, and save it as an
image file. Then include that image file in your R Markdown document,
ensuring that your Word documents have rendered equations that look as
good as HTML or LaTeX documents. You will probably want to save your
LaTeX equation source in a text file just to make sure you can alter it
easily later.


Another challenge with Word output is that often figures don’t look
quite as good as they do in HTML or PDF. Take this example of a line
graph:


```{r}
mtcars %>%
  group_by(cyl, gear) %>%
  summarize(mean_hp=mean(hp)) %>%
  ggplot(., aes(x = cyl, y = mean_hp, group = gear)) +
    geom_point() +
    geom_line(aes(linetype = factor(gear))) +
    theme_bw()
```


In a Word document this image appears as shown in Figure 16-17.



[image: rcbk 1615]
Figure 16-17. Graph in Word




This looks pretty good, but when printed, the image looks a little
blocky and not sharp.


You can improve this by increasing the dots per inch (dpi) setting
used when knitting the output. This will help make the output smoother
and sharper:


```{r, dpi=300}
mtcars %>%
  group_by(cyl, gear) %>%
  summarize(mean_hp=mean(hp)) %>%
  ggplot(., aes(x = cyl, y = mean_hp, group = gear)) +
    geom_point() +
    geom_line(aes(linetype = factor(gear))) +
    theme_bw()
```


To show the improvement in appearance, we’ve stitched together a
composite image showing the default low dpi on the left and the higher
dpi on the right in Figure 16-18.



[image: rcbk 1616]
Figure 16-18. Image resolution in Word (default low dpi in left half, higher dpi on right)




In addition to images, table output in Word sometimes is not as
customized as we desire. Using kable, as illustrated in previous
recipes, produces a good, no-frills table in MS Word (see Figure 16-19):


library(knitr)
myTable <- tibble(x = c(1.111, 2.222, 3.333),
                 y = c('one', 'two', 'three'),
                 z = c(5, 6, 7))
kable(myTable, caption = 'My Table in Word')



[image: rcbk 1617]
Figure 16-19. A table in Word




Pandoc puts the table in a Microsoft table structure inside the Word document.
But, just like with tables in PDFs or HTML, we can use the flextable
package in Word too:


library(flextable)
regulartable(myTable)


which gives us Figure 16-20 in Word.



[image: rcbk 1618]
Figure 16-20. A regulartable in Word




We can tap into the rich formatting features of flextable and pipe
chains to adjust the column widths, add background color to our headers,
and make the header font white:


regulartable(myTable) %>%
   width(width = c(.5, 1.5, 3)) %>%
   bg(bg = "#000080", part = "header") %>%
   color(color = "white", part = "header")


which gives us Figure 16-21 in Word.



[image: rcbk 1619]
Figure 16-21. A customized regulartable in Word




For details on all the customizable options in flextable, see the
flextable vignettes and the flextable online documentation.


Knitting to Word allows a template to control the formatting of your
Word output. To use a template, add reference_docs: template.docx
to the YAML header:

title: "Nice Title"
output:
  word_document:
     reference_docx: template.docx



When you knit an R Markdown file to Word using a template, knitr maps
the formatting of elements in your source document to styles in the
template. So if you want to change the font of the body text, you can set the body text style in a Word template to your desired font.
Then knitr will use the template style in the new document.


A common workflow when using a template for the first time is to knit
your document to Word without a template, then open the resulting Word
document, adjust the styles of each section to your preference, and use
the adjusted Word document as a template in the future. This way, you
don’t have to guess what style knitr is using for each element.

















See Also


See the flextable vignette on formatting,
vignette('format','flextable'), and the flextable
online
documentation.
























16.15 Generating Presentation Output










Problem


You would like to create a presentation from an R Markdown document.

















Solution


R Markdown and knitr support creating presentations from R Markdown
documents. The most common formats for presentations are HTML (using
the ioslides or Slidy HTML templates), PDF with Beamer, or Microsoft
PowerPoint. The biggest difference between R Markdown documents and R
Markdown presentations is that presentations default to landscape layout
(wide, not long), and every time you create a second-level header
starting with ##, knitr will create a new “page” or slide.


The easiest way to get started with presentations with R Markdown is to
use RStudio and select File → New File → R Markdown…, then choose
one of the four presentation formats offered by the dialog in Figure 16-22.


The four classes of presentations map to the three major classes of
documents discussed in previous document recipes.


When it comes time to knit your document to an output format, in RStudio
you click the down arrow next to the Knit button and select the
type of presentation you would like to produce from the drop-down list, as shown in Figure 16-23.



[image: rcbk 1620]
Figure 16-22. New R Markdown Presentation dialog





[image: rcbk 1621]
Figure 16-23. Knit: presentations



















Discussion


Knitting to a presentation format is very similar to knitting to a
regular document, only with different output names. When you use the
Knit button in RStudio to choose your output format, RStudio moves your
selected output format to the top of the output options in the YAML
header of your document, then runs
rmarkdown::render("your_file.Rmd"), which knits to the topmost
format in your YAML header.


For example, if we selected “Knit to PDF (Beamer)”, the header of the
presentation might look like this:


---
title: "Best Presentation Ever"
output:
  beamer_presentation: default
  slidy_presentation: default
  ioslides_presentation: default
  powerpoint_presentation: default
---


Most of the HTML options discussed in previous recipes apply to
Slidy and ioslides HTML presentations. Beamer is a PDF-based format, so
most LaTex and PDF options discussed in previous recipes apply to
Beamer. And last, but never least, PowerPoint is a Microsoft format, so
the caveats and options discussed previously about Word documents apply
to PowerPoint as well.

















See Also


The other recipes related to R Markdown output can be helpful: see Recipe 16.12,
Recipe 16.13, and
Recipe 16.14.
























16.16 Creating a Parameterized Report










Problem


You would like to run the same report periodically with different
inputs.

















Solution


R Markdown documents can be created with parameters in the YAML header
that can then be used as variables in the document body. The parameters
are stored as named items in a list called params, which you can
access in your code chunk:


---
output: html_document
params:
  var: 2
---
```{r}
print(params$var)
```


Later, if you want to change the parameter(s), you have three options:



	
Edit the R Markdown document and then render it again.



	
Render the document from within R using the command
rmarkdown::render, passing parameters as a list:


rmarkdown::render("test_params.Rmd", params = list(var=3))



	
Using RStudio, select Knitr → Knit with Parameters, and
RStudio will prompt you for parameters before knitting.





















Discussion


Using parameters in R Markdown is very helpful if you have a document
you need to run regularly with different settings. A common use case is
a report in which only a date setting and a label are changed each time
it runs.


Here’s an example R Markdown document illustrating how parameters can be
passed into the text of a document:


---
title: "Example of Params"
output: html_document
params:
  effective_date: '2018-07-01'
  quarter_num: 2
---

## Illustrate Params
```{r, results='asis', echo=FALSE}
cat('### Quarter', params$quarter_num,
    'report. Valuation date:',
    params$effective_date)
```


The rendered R Markdown results in Figure 16-24.



[image: rcbk 1622]
Figure 16-24. Parameter output




In the header of the chunk, we set results='asis', because our code
chunk is going to generate Markdown text directly. We want to dump that
Markdown into our document without prefixing it with ##, which is what
normally happens to the output from a code chunk. In addition, inside
the code block we use cat to concatenate our text together. We use
cat here instead of paste because cat performs less conversion on
the text than calling paste. This ensures that the text is simply put
together and passed into the Markdown document without being altered.


If we want to render the document with other parameters, we can edit the
default values in the YAML header and then knit, or we can use the Knitr
menu (Figure 16-25) to knit with parameters.



[image: rcbk 1623]
Figure 16-25. Knit with Parameters… menu option




This then prompts us for parameters, as shown in Figure 16-26.


Or we can render the document from R, passing new parameters as a list:


rmarkdown::render("example_of_params.Rmd",
params = list(quarter_num=2, effective_date='2018-07-01'))


As an alternative to using the Knitr menu, if we want to be prompted for
parameters we can set params="ask" when we call rmarkdown::render
and R will prompt us for inputs:


rmarkdown::render("example_of_params.Rmd", params="ask")



[image: rcbk 1624]
Figure 16-26. Knit with Parameters dialog



















See Also


See the section “Parameterized reports” in R Markdown: The Definitive Guide.
























16.17 Organizing Your R Markdown Workflow










Problem


You want to organize your R Markdown project so that it’s efficient,
flexible, and productive.

















Solution


The best way to get control of your project is to organize your
workflow. Organization takes a bit of effort, so it might be overkill to
have a highly structured project if your R Markdown document is only one
page of output with three small code chunks. However, most people find
that organizing their workflow is worth the added effort.


Here are four tips for organizing your workflow so that your work is
easier to read, edit, and maintain in the future:


	
Use RStudio Projects.



	
Name directories intuitively.



	
Create an R package for reused logic.



	
Keep R Markdown focused on content, and source logic.

















Use RStudio Projects


RStudio includes the notion of an RStudio Project (note the capital P),
which is a way of storing metadata and settings related to a logical
project. When you open a Project in RStudio, one of the things that
RStudio does is set the working directory to the path where the Project
is located. Every Project should live in its own unique directory. All
code is run from that working directory, which means your code should
never contain setwd commands that would keep your analysis from being
run on someone else’s computer.

















Name directories intuitively


It’s a good idea to organize the files in your Project directory into subdirectories and then name your files thoughtfully inside those
directories. As the number of files in a project increases, so does the
importance of organization and intuitive naming. One common structure
recommended by the team at Software Carpentry is this:


my_project
 |- data
 |- doc
 |- results
 |- src


In this structure, raw input data goes in the data directory,
documentation goes in doc, results of analyses go in results, and R
source code goes in src.


Once you have a directory structure to put your work into, the
individual files should be named in a way that’s readable to both humans
and computers. This helps with maintaining your code in the future and
saves a lot of headaches. Some of the best advice we’ve seen on file
naming comes from Jenny Bryan:



	
Use underscores instead of spaces in filenames; spaces cause too many
headaches later.



	
If you put dates in your filenames, use ISO 8601 dates: YYYY-MM-DD.



	
Use a prefix on your scripts so they sort properly—for example,
00_start_here.R, 01_data_scrub.R, 02_report_output.Rmd.






Using numeric prefixes on your scripts and using ISO 8601 dates helps
ensure that your files sort in a meaningful way by default. This is very
helpful when someone else, or even future you, tries to make sense of
your project.

















Create an R package for reused logic


Once you have a good directory structure and rational naming, you should
give some thought to what logic goes where. You should consider
building an R package for logic you use in more than three different
projects. R packages are collections of functions and other code that
provide functionality not available in Base R. Throughout this book
we’ve used a number of packages, and there’s nothing stopping you from
writing a package for your functions that you use over and over.
Building a package is out of scope for this book, but Jim Hester’s presentation
“You
Can Make a Package in 20 Minutes” is one of the best introductions to the topic.

















Keep R Markdown focused on content, and source logic


Most of us start a project with one big .Rmd file full of all our
logic in code chunks. As the document grows and the code chunks expand,
this can get difficult to manage. You may find that your code formatting
is intermingled with code that reshapes data and fetches things from
files and databases. Having logic, formatting, and presentation code all
intermingled can make it hard to alter your code later and even harder
for someone else to understand your code. We recommend keeping the code
blocks in your main reporting .Rmd file focused on content, tables,
and figures and having your manipulation logic stored in *.R files
that you pull in with the source function.


Using source to pull in external R code involves passing the filename
of your R file to the source function:


source("my_logic_file.R")


R will run the entire contents of my_logic_file.R at the place in
your code where you call source. A good pattern is to source files
that extract data frames and reshape your data into the form you need to
make graphs or tables in your document. Then, in your main .Rmd file,
you keep mostly code that prepares graphs and tables.


Keep in mind that this is a design pattern for managing large, unwieldy
R Markdown files. If your project is not very large, you should probably
just keep all your code in the .Rmd file.






















See Also


Useful references include:



	
“Project-oriented
workflow” tidyverse documentation



	
Project
Management with RStudio from Software Carpentry



	
R Packages by Hadley Wickham (O’Reilly)



	
Naming
Things by Jenny Bryan



	
“Good Enough Practices in
Scientific Computing” by Greg Wilson, et al.
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	as.POSIXlt function, Classes for Dates and Times, Solution
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	of clusters, Discussion
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	c operator, Discussion, Passing multiple arguments to a single-argument function, Solution, Solution
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	Cartesian product, Problem, Problem-See Also
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	redirecting output to file with sink function, Discussion
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	converting atomic values to, Solution
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	checkresiduals function, Solution
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	chisq.test function, See Also
	choose function, Solution
	chooseCRANmirror function, Solution
	chron package, Classes for Dates and Times
	classes	defining abstract type of objects, Class: Abstract Type
	for dates and time, Classes for Dates and Times	deciding which to select, Classes for Dates and Times


	revealing object's class with class function, Solution


	cloud, installing R and RStudio in, Problem
	cluster and multiprocess, remote plan using, Discussion-Discussion
	clusters, finding in data, Problem-See Also
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	Cmd key combinations, Discussion
	code	controlling results shown in R Markdown documents, Problem
	inserting R code in R Markdown document, Solution
	reindenting automatically, Problem
	timing running of, Problem-Problem
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	running in R scripts, See Also
	saving in a script, Solution


	code chunks, Solution
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	autoregression (AR) coefficients in ARIMA model, Discussion
	calculating coefficient of variation, Discussion
	for ARIMA model fitted to time series, Discussion
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	moving average coefficients, Discussion


	coefplot function, See Also
	coin toss, Discussion	generating random sequence of, Discussion


	collect function, Solution
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	colon operator (see : (colon) operator, under Symbols)
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	color parameter in geometric object functions, Solution
	plotting a variable in multiple colors, Problem-See Also
	specifying for lines in a line chart, Discussion


	colSums function, Solution
	columns	changing names in data frames, Problem
	column as sort key for a data frame, Problem
	creating new column in a data frame based on a condition, Problem-See Also
	data in, using to initialize a data frame, Problem
	defining width with read_fwf function, Solution
	excluding by name in data frames, Problem
	in data frames, Data Frames
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	in tables in R Markdown, setting justification, Discussion
	merging data frames by a common column, Problem-See Also
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	selecting by name in data frames, Problem-See Also
	selecting by position in data frames, Problem-Matrix-style subscripting
	selecting one column from a matrix, Solution
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	generating, Problem
	generating all combinations of several variables, Problem-See Also


	combinations function, See Also
	combn function, Solution
	comma-separated values files (see CSV files)
	command line	+ prompt, Discussion
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	starting R from, using --quiet option, Solution


	commandArgs function, Discussion
	commands	entering, Solution-Discussion	shortcuts, Discussion


	saving result of previous command, Problem
	viewing command history, Problem-Discussion


	comments, Solution	comment parameter in read_table2 function, Discussion
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	compact function, Solution
	comparison operators (== != < > <= >=), Solution, Solution
	complex atomic type, Solution
	computer scientists, meaning of data frames to, Data Frames
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	conditionals	creating new column in a data frame based on a condition, Problem-See Also
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	computing limits of, Discussion
	finding for ARIMA model coefficients, Discussion
	for ARIMA model coefficients, Discussion
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	forming for a mean, Problem-Discussion
	forming for a median, Problem
	forming for a proportion, Problem
	of a correlation, Solution


	confint function, Solution
	connection to a file, writing output to, Discussion
	connection to MySQL database, Discussion
	contained in operator (%in%), Discussion
	contingency tables, Solution
	continuation prompt (+), Incorrectly continuing an expression across lines
	continuous distributions, Names of Distributions	calculating probabilities for, Problem
	quantile functions for, Discussion
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	coplot function, See Also
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	cor.test function, Solution
	coredata function, Discussion, Discussion
	corporate executives, meaning of data frames to, Data Frames
	correlation	autocorrelation function of a time series, Discussion
	calculating correlation matrix from a data frame, Discussion
	calculating with cor function, Discussion
	finding lagged correlations between time series, Problem
	partial autocorrelation function for time series, Problem-Problem
	testing for autocorrelation in time series, Problem
	testing for significance, Problem-Problem


	covariance, Solution, Discussion	calculating with cov function, Discussion
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	installing packages from, Problem-See Also
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	package documentation, Getting Started and Getting Help
	packages for dates and time, Classes for Dates and Times
	setting or changing default mirror, Problem
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	CSV (comma-separated values) files	read.csv function, Discussion
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	reading from the web, Problem
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	cutree function, Discussion


D
	dampened sine wave, Discussion
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	Excel	meaning of data frames to a user, Data Frames
	nested IF statements, Discussion
	reading data from files, Problem-See Also
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