OREILLY"

)
©
@)
)
g
0O
(4°)
k=
(4]
)
=
(4°)
=
©
c
(gv)
c
(g)
o
)
()]
=
=

Yoo ~Q\m,,?r’-u
!JZJ..!‘Q_Z%P vl b

Patrick Viafore

O'REILLY"

Robust Python

Does it seem like your Python projects are getting bigger and
bigger? Are you feeling the pain as your codebase expands
and gets tougher to debug and maintain? Python is an easy
language to learn and use, but that also means systems can
quickly grow beyond comprehension. Thankfully, Python has
features to help developers overcome maintainability woes.

In this practical book, author Patrick Viafore shows you how

to use Python's type system to the max. You'll look at user-
defined types, such as classes and enums, and Python's type
hinting system. You'll also learn how to make Python extensible
and how to use a comprehensive testing strategy as a safety
net. With these tips and techniques, you'll write clearer and
more maintainable code.

e Learn why types are essential in modern development
ecosystems

¢ Understand how type choices such as classes, dictionaries,
and enums reflect specific intents

¢ Make Python extensible for the future without adding bloat

¢ Use popular Python tools to increase the safety and
robustness of your codebase

¢ Evaluate current code to detect common maintainability
gotchas

¢ Build a safety net around your codebase with linters
and tests

Patrick Viafore has worked for more
than 13 years on mission-critical
software, including lightning detection,
telecommunications, and operating
systems. He develops pipelines and
tools to deploy Ubuntu images to public
cloud providers and performs software
consulting and contracting through his
business, Kudzera, LLC. Patrick's goal is
to make computer science and software
engineering topics more approachable
to the developer community.

PROGRAMMING / PYTHON

US $4999 CAN $6599
ISBN: 978-1-098-10066-7

JWDMERTC R

7810981100667

Twitter: @oreillymedia
facebook.com/oreilly

Robust Python

Write Clean and Maintainable Code

Patrick Viafore

Bejng - Boston « Farnham - Sebastopol - Tokyo [@YRIIMNY

Robust Python
by Patrick Viafore

Copyright © 2021 Kudzera, LLC. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn Indexer: Ellen Troutman-Zaig
Development Editor: Sarah Grey Interior Designer: David Futato
Production Editor: Kristen Brown Cover Designer: Karen Montgomery
Copyeditor: Justin Billing lllustrator: Kate Dullea

Proofreader: Shannon Turlington
July 2021: First Edition

Revision History for the First Edition
2021-07-12: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098100667 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Robust Python, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-098-10066-7
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098100667

Table of Contents

Preface. ...ooi Xi
1. Introduction to Robust Python............ccooiiiiiiiiiiii i, 1
Robustness 2
Why Does Robustness Matter? 4
What's Your Intent? 5
Asynchronous Communication 8
Examples of Intent in Python 12
Collections 12
Iteration 15
Law of Least Surprise 17
Closing Thoughts 18
Partl. Annotating Your Code with Types
2. Introductionto Python Types.cvvviriiiiiiiiiiiiii i iieieineennaes 23
What's in a Type? 23
Mechanical Representation 24
Semantic Representation 25
Typing Systems 28
Strong Versus Weak 28
Dynamic Versus Static 30
Duck Typing 31
Closing Thoughts 33

3.

Type ANnotations.c.vvviiiiiiiiiiiiiineineineeneennss

What Are Type Annotations?
Benefits of Type Annotations
Autocomplete
Typecheckers
Exercise: Spot the Bug
When to Use Type Annotations
Closing Thoughts

Constraining TYPeS. ..o vvvenriiiiieeiieirnnrenetieeneenannans

Optional Type
Union Types
Product and Sum Types
Literal Types
Annotated Types
NewType
Final Types
Closing Thoughts

. Collection Types. ..ovveeee i e i iieeieeenieeneannes

Annotating Collections
Homogeneous Versus Heterogeneous Collections
TypedDict
Creating New Collections
Generics
Modifying Existing Types
As Easy as ABC
Closing Thoughts

. Customizing Your Typechecker............ccovvviiiiiiiiiinnnn

Configuring Your Typechecker
Configuring mypy
Mypy Reporting
Speeding Up mypy
Alternative Typecheckers
Pyre
Pyright
Closing Thoughts

36
40
40
40
41
43
44

45
46
51
53
55
56
57
59
60

61
61
63
67
69
69
71
74
76

79
79
80
83
84
85
85
91
93

iv

Table of Contents

7. Adopting Typechecking Practically...........covvvuiiiiiiiiiiiiiiiiiniennnen. 95

Trade-offs 96
Breaking Even Earlier 97
Find Your Pain Points 97
Target Code Strategically 98
Lean on Your Tooling 100
Closing Thoughts 106

Partll. Defining Your Own Types

8. User-Defined Types:EnuUmMS.oovvniiriiiiiiiiii it iiiiiiiiennnes M
User-Defined Types 111
Enumerations 112

Enum 114
When Not to Use 115
Advanced Usage 116
Automatic Values 116
Flags 117
Integer Conversion 119
Unique 120
Closing Thoughts 121

9. User-Defined Types: Data Classes.ovvvviriieiiiriinrenneenneennnnens 123
Data Classes in Action 123
Usage 128

String Conversion 128
Equality 128
Relational Comparison 129
Immutability 130
Comparison to Other Types 132
Data Classes Versus Dictionaries 132
Data Classes Versus TypedDict 133
Data Classes Versus namedtuple 133
Closing Thoughts 134
10. User-Defined Types: Classes.oovueernerinerenieenieennerenerenaeennns 135
Class Anatomy 135
Constructors 136
Invariants 137

Table of Contents | v

Avoiding Broken Invariants 140

Why Are Invariants Beneficial? 140
Communicating Invariants 143
Consuming Your Class 143
What About Maintainers? 144
Encapsulation and Maintaining Invariants 146
Encapsul-what, Now? 146
Protecting Data Access 147
Operations 149
Closing Thoughts 152
11. Defining Your Interfaces.couveeeruiiriiiinerernnnreenneeeennnnnes 155
Natural Interface Design 156
Thinking Like a User 157
Natural Interactions 160
Natural Interfaces in Action 160
Magic Methods 166
Context Managers 167
Closing Thoughts 170
LY 11147 11T S 17
Inheritance 172
Substitutability 176
Design Considerations 182
Composition 183
Closing Thoughts 185
13, Protocols.ovveeieiiiiii 187
Tension Between Typing Systems 187
Leave the Type Blank or Use Any 189
Use a Union 189
Use Inheritance 190
Use Mixins 191
Protocols 192
Defining a Protocol 193
Advanced Usage 194
Composite Protocols 194
Runtime Checkable Protocols 195
Modules Satisfying Protocols 196
Closing Thoughts 197

vi | Tableof Contents

14. Runtime Checking With pydantic..............ooiiiiiiiiiiiiiiiiiiiiinne, 199
Dynamic Configuration 200
pydantic 205

Validators 207
Validation Versus Parsing 209
Closing Thoughts 210

Partlll. Extensible Python

15. Extensibility.covniiiiiiii s 215
What Is Extensibility? 215

The Redesign 217
Open-Closed Principle 221
Detecting OCP Violations 222
Drawbacks 223
Closing Thoughts 224

16. DePeNdenCies. .. .ovveereereeteeeteeenneeeeeeneeenneennerenenennnns 225
Relationships 226
Types of Dependencies 228

Physical Dependencies 228
Logical Dependencies 232
Temporal Dependencies 234
Visualizing Your Dependencies 236
Visualizing Packages 236
Visualizing Imports 237
Visualizing Function Calls 238
Interpreting Your Dependency Graph 240
Closing Thoughts 241

17. Composability.ovvuiiiiiiiir ittt i, 243
Composability 243
Policy Versus Mechanisms 247
Composing on a Smaller Scale 251

Composing Functions 251
Composing Algorithms 255
Closing Thoughts 257

Table of Contents | vii

18. Event-Driven Architecture. . .oovvevnrie ittt ittt ittt eneenennenens 259

How It Works 259
Drawbacks 261
Simple Events 262
Using a Message Broker 262
The Observer Pattern 264
Streaming Events 266
Closing Thoughts 269
19. Pluggable Python..........covuiiiiiiiiiiiiii i iiie e eieeenaaennans 271
The Template Method Pattern 272
The Strategy Pattern 275
Plug-in Architectures 277
Closing Thoughts 281

PartlV. Building a Safety Net

20. StaticANalysis. . ..vvveeneeeit i i i i e aaes 285
Linting 285
Writing Your Own Pylint Plug-in 287
Breaking Down the Plug-in 289
Other Static Analyzers 291
Complexity Checkers 292
Security Analysis 295
Closing Thoughts 296

27, Testing Strategy.veueiniiuniinrineineeneeunenneensensensenesnnsnnse 297
Defining Your Test Strategy 297
What Is a Test? 298
Reducing Test Cost 303
AAA Testing 303
Closing Thoughts 313

22, Acceptance Testing.oevuvureeineeneeneenernesrneensoneenssnssnnsanss 315
Behavior-Driven Development 316
The Gherkin Language 316
Executable Specifications 318
Additional behave Features 320
Parameterized Steps 320

viii | Table of Contents

23.

24,

Table-Driven Requirements
Step Matching
Customizing the Test Life Cycle
Using Tags to Selectively Run Tests
Report Generation

Closing Thoughts

Property-Based Testing.c.uverniriiiiiiiiiiiiiriiiieieeniennnnss

Property-Based Testing with Hypothesis
The Magic of Hypothesis
Contrast with Traditional Tests
Getting the Most Out of Hypothesis
Hypothesis Strategies
Generating Algorithms
Closing Thoughts

Mutation Testing. . ..o.vvurnniiniiii ittt it it iiieieeeenesnnsannes

What Is Mutation Testing?
Mutation Testing with mutmut
Fixing Mutants
Mutation Testing Reports
Adopting Mutation Testing
The Fallacy of Coverage (and Other Metrics)
Closing Thoughts

321
322
322
323
323
324

325
325
330
330
331
331
333
336

337
337
340
342
342
344
345
346

Table of Contents

ix

Preface

Noted software engineer and entrepreneur Marc Andreesen famously declared that
“software is eating the world”. This was back in 2011, and has only become more true
over time. Software systems continue to grow in complexity and can be found in all
facets of modern life. Standing in the middle of this ravenous beast is the Python lan-
guage. Programmers often cite Python as a favorite language, and it can be found
everywhere: from web applications, to machine learning, to developer tools, and
more.

Not all that glitters is gold, though. As our software systems become more complex, it
becomes harder to understand how our mental models map onto the real world. If
left unchecked, software systems bloat and become brittle, earning the frightening
moniker “legacy code” These codebases often come with warnings such as, “Do not
touch these files; we don’t know why, but it breaks when you do,” and, “Oh, only So-
and-So knows that code, and they left for a high-paying Silicon Valley job two years
ago.” Software development is a young field, but these sort of statements should be
terrifying to developers and businesspeople alike.

The truth is, to write systems that last, you need to be deliberate in the choices you
make. As stated by Titus Winters, Tom Manshreck, and Hyrum Wright, “Software
engineering is programming integrated over time”' Your code might last a long time
—TI've stepped into projects whose code was written while I was in elementary school.
How long will your code last? Will it last longer than your tenure at your current job
(or when you finish maintaining that project)? How do you want your code to be
received in a few years when someone is building core components from it? Do you
want your successors to thank you for your foresight, or curse your name for the
complexities you bore into this world?

1 Titus Winters, Tom Manshreck, and Hyrum Wright. Software Engineering at Google: Lessons Learned from
Programming over Time. Sebastopol, CA: O’Reilly Media, Inc., 2020.

Xi

https://oreil.ly/tYaNz
https://oreil.ly/RUNNh

Python is a wonderful language, but it occasionally makes building for the future
tricky. Some proponents of other programming languages have decried Python as
“not production-grade” or “useful for prototyping only,” but the truth is that many
developers only scratch the surface, rather than learning all the tools and tricks for
writing robust Python. Throughout this book, you’ll learn how to do better. You’ll
journey through numerous ways to make Python clean and maintainable. Your future
maintainers will enjoy working with your code, as it was designed up front to make
things easy. So go, read this book, look toward the future, and build awesome soft-
ware that will last.

Who Should Read This Book

This book is for any Python developer who is looking to grow the code they work on
in a sustainable and maintainable fashion. This is not intended to be your first
Python text; I expect that you have written Python before. You should be comfortable
with Python control flow, and have worked with classes before. If you are looking for
a more introductory text, I suggest reading Learning Python by Mark Lutz (O’Reilly)
first.

While I will be covering many advanced Python topics, the goal of this book is not to
be a how-to for using all of Python’s features. Instead, the features are a backdrop for
a larger conversation about robustness and how your choices impact maintainability.
At times I will discuss strategies that you should rarely use, if at all. That is because I
want to illustrate first principles of robustness; the journey of understanding why and
how we make decisions in code is more important than knowing what tools to use in
an optimal scenario. In practice, the optimal scenario is a rare occurence. Use the
principles in this book to draw your own conclusions from your codebase.

This book is not a reference book. You might call it a discussion book. Each chapter
should be a starting point for developers in your organization to discuss, together,
how best to apply these principles. Start a book club, discussion group, or lunch and
learn to foster communication. I have proposed discussion topics in each chapter to
get the converstation started. When you come across these topics, I encourage you to
stop and reflect on your current codebase. Talk among your peers and use these top-
ics as a springboard for discussing the state of your code, processes, and workflows. If
you are interested in a reference book about the Python language, I heartily recom-
mend Fluent Python by Luciano Ramalho (O’Reilly; a second edition is forthcoming
in late 2021).

A system can be robust in many different ways. It can be security hardened, scalable,
fault-tolerant, or less likely to introduce new errors. Each one of these facets of
robustness warrants a full book; this book is focused on preventing the developers
who inherit your code from creating new faults in your system. I will show you
how to communicate to future developers, how to make their lives easier through

xii | Preface

https://oreil.ly/iIl2K
https://oreil.ly/PVbON

architectural patterns, and how to catch errors in your codebase before they make it
into production. This book zeroes in on the robustness of your Python codebase, not
the robustness of your system as a whole.

I will be covering a wealth of information, from many different areas of software,
including software engineering, computer science, testing, functional programming,
and object-oriented programming (OOP). I do not expect you to have a background
in these fields. There are sections where I explain things at a beginner level; this is
often to deconstruct how we think about core fundamentals of the language. This is,
for the most part, an intermediate-level text.

Ideal readers include:

o Developers currently working in a large codebase, looking to find better ways to
communicate with their colleagues

o Primary codebase maintainers, looking for ways to help lessen the burden of
future maintainers

o Self-taught developers who can write Python really well but need to better under-
stand why we do the things we do

« Software engineering graduates who need a reminder of practical advice for
development

« Senior developers looking for a way to tie their design rationale to first principles
of robustness

This book focuses on writing software over time. If a lot of your code is a prototype,
throwaway, or disposable in any other fashion, the advice in this book will end up
creating more work than is necessary for your project. Likewise if your project is
small—say, under one hundred lines of Python. Making code maintainable does add
complexity; there’s no doubt about that. However, I'll guide you through minimizing
that complexity. If your code lives longer than a few weeks or grows to a considerable
size, you need to consider the sustainability of your codebase.

About This Book

This book covers a wide swath of knowledge, across many chapters. It is broken up
into four parts:

Part I, Annotating Your Code with Types
We'll start with types in Python. Types are fundamental to the language, but are
not often examined in great detail. The types you choose matter, as they convey a
very specific intent. We'll examine type annotations and what specific annota-
tions communicate to the developer. We'll also go over typecheckers and how
those help catch bugs early.

Preface | xiii

Part II, Defining Your Own Types
After covering how to think about Python’s types, we'll focus on how to create
your own types. We'll walk through enumerations, data classes, and classes in
depth. We'll explore how making certain design choices in designing a type can
increase or decrease the robustness of your code.

Part III, Extensible Python
After learning how to better express your intentions, we’ll focus on how to enable
developers to change your code effortlessly, building with confidence on your
strong foundation. We'll cover extensibility, dependencies, and architectural pat-
terns that allow you to modify your system with minimal impact.

Part IV, Building a Safety Net
Lastly, we'll explore how to build a safety net, so that you can gently catch your
future collaborators when they do fall. Their confidence will increase, knowing
that they have a strong, robust system that they can fearlessly adapt to their use
case. Finally, we'll cover a variety of static analysis and testing tools that will help
you catch rogue behavior.

Each chapter is mostly self-contained, with references to other chapters where appli-
cable. You can read this book from cover to cover, or bounce around to chapters that
suit your fancy. Chapters grouped in each part will be related to one another, but
there will be fewer relations between book parts.

All code examples were run using Python 3.9.0, and I'll try to call out when you need
a specific Python version or later to run examples (such as Python 3.7 for the use of
data classes).

Throughout this book, I will be doing most of my work on the command line. I ran
all of these commands from an Ubuntu operating system, but most tools should work
just as well on Mac or Windows systems. In some cases, I will show how certain tools
interact with integrated development environments (IDEs), such as Visual Studio
Code (VS Code). Most IDEs use the command-line options underneath the hood;
most of what you learn on the command line will translate directly to IDE options.

This book will be presenting many different techniques that can improve the robust-
ness of your code. However, there are no silver bullets in software development.
Trade-offs are the heart of solid engineering, and there is no exception in the meth-
ods that I present. I will be transparent about benefits and drawbacks as I discuss
these topics. You will know more about your systems than I will, and you are best
suited to choose which tool is appropriate for which job. All I am doing is stocking
your toolbox.

xiv | Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

N

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/pviafore/RobustPython.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not

Preface | xv

https://github.com/pviafore/RobustPython
mailto:bookquestions@oreilly.com

need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O'Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product's documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Robust Python by Pat-
rick Viafore (O'Reilly). Copyright 2021 Kudzera, LLC, 978-1-098-10066-7

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O'Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O'Reilly and over two hundred other publishers. For more information, visit http://
oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/robust-python.

xvi | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/robust-python

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments

I would like to acknowledge my incredible wife, Kendall. She is my support and
sounding board, and I appreciate everything she did to make sure that I had the time
and space to write this book.

No book is written in isolation, and this book is no exception. I stand on the should-
ers of giants in the software industry, and I appreciate all who came before me.

I also would like to thank everyone who was involved in reviewing this book to make
sure that my messaging was consistent and that my examples were clear. Thank you
to Bruce G., David K., David P,, and Don P. for providing early feedback and helping
me decide on a direction for this book. Thank you to my tech reviewers Charles
Givre, Drew Winstel, Jennifer Wilcox, Jordan Goldmeier, Nathan Stocks, and Jess
Males for their invaluable feedback, especially where things really only made sense in
my head but not on paper. Lastly, thank you to anyone who read the early release
draft and was kind enough to email me their thoughts, especially Daniel C. and
Francesco.

I'd like to thank everyone who helped transform my final draft into something
production-worthy. Thank you to Justin Billing for diving deep as a copyeditor and
helping refine the presentation of my ideas. Thank you to Shannon Turlington for
proofreading; the book is much more polished because of you. A big thank you goes
to Ellen Troutman-Zaig, who produced a fantastic index that I was blown away by.

Lastly, I could not do this without the fabulous team at O’Reilly. Thank you to
Amanda Quinn for helping me through the proposal process and helping me develop
focus for the book. Thank you to Kristen Brown for making the production stage
incredibly easy for me. Thank you to Kate Dullea, who converted my MS Paint-
quality sketches into clean, crisp illustrations. Also, I would like to give a tremendous
thank you to my developmental editor, Sarah Grey. I looked forward to our weekly
meetings, and she was fantastic in helping me craft a book for a broad audience, while
still letting me dive deep into technical details.

Preface | xvii

mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

CHAPTER 1
Introduction to Robust Python

This book is all about making your Python more manageable. As your codebase
grows, you need a specific toolbox of tips, tricks, and strategies to build maintainable
code. This book will guide you toward fewer bugs and happier developers. You'll be
taking a hard look at how you write code, and you'll learn the implications of your
decisions. When discussing how code is written, I am reminded of these wise words
from C.A.R. Hoare:

There are two ways of constructing a software design: One way is to make it so simple
that there are obviously no deficiencies, and the other way is to make it so complicated
that there are no obvious deficiencies. The first method is far more difficult.!

This book is about developing systems the first way. It will be more difficult, yes, but
have no fear. I will be your guide on your journey to leveling up your Python game
such that, as C.A.R. Hoare says above, there are obviously no deficiencies in your code.
Ultimately, this is a book all about writing robust Python.

In this chapter were going to cover what robustness means and why you should care
about it. We'll go through how your communication method implies certain benefits
and drawbacks, and how best to represent your intentions. “The Zen of Python”
states that, when developing code, “There should be one -- and preferably only one --
obvious way to do it” You'll learn how to evaluate whether your code is written in an
obvious way, and what you can do to fix it. First, we need to address the basics. What
is robustness in the first place?

1 Charles Antony Richard Hoare. “The Emperor’s Old Clothes” Commun. ACM 24, 2 (Feb. 1981), 75-83.
https://doi.org/10.1145/358549.358561.

https://doi.org/10.1145/358549.358561
https://oreil.ly/SHq8i

Robustness

Every book needs at least one dictionary definition, so I'll get this out of the way nice
and early. Merriam-Webster offers many definitions for robustness:

1. having or exhibiting strength or vigorous health
2. having or showing vigor, strength, or firmness

3. strongly formed or constructed
4.

capable of performing without failure under a wide range of conditions

These are fantastic descriptions of what to aim for. We want a healthy system, one that
meets expectations for years. We want our software to exhibit strength; it should be
obvious that this code will stand the test of time. We want a strongly constructed sys-
tem, one that is built upon solid foundations. Crucially, we want a system that is capa-
ble of performing without failure; the system should not become vulnerable as changes
are introduced.

It is common to think of a software like a skyscraper, some grand structure that
stands as a bulwark against all change and a paragon of immortality. The truth is,
unfortunately, messier. Software systems constantly evolve. Bugs are fixed, user inter-
faces get tweaked, and features are added, removed, and then re-added. Frameworks
shift, components go out of date, and security bugs arise. Software changes. Develop-
ing software is more akin to handling sprawl in city planning than it is constructing a
static building. With ever changing codebases, how can you make your code robust?
How can you build a strong foundation that is resilient to bugs?

The truth is, you have to accept change. Your code will be split apart, stitched
together, and reworked. New use cases will alter huge swaths of code—and that’s OK.
Embrace it. Understand that it’s not enough that your code can easily be changed; it
might be best for it to be deleted and rewritten as it goes out of date. That doesn't
diminish its value; it will still have a long life in the spotlight. Your job is to make it
easy to rewrite parts of the system. Once you start to accept the ephemeral nature of
your code, you start to realize that it's not enough to write bug-free code for the
present; you need to enable the codebase’s future owners to be able to change your
code with confidence. That is what this book is about.

You are going to learn to build strong systems. This strength doesn’t come from
rigidity, as exhibited by a bar of iron. It instead comes from flexibility. Your code
needs to be strong like a tall willow tree, swaying in the wind, flexing but not break-
ing. Your software will need to handle situations you would never dream of. Your
codebase needs to be able to adapt to new circumstances, because it won't always be
you maintaining it. Those future maintainers need to know they are working in a
healthy codebase. Your codebase needs to communicate its strength. You must write

2 | Chapter 1: Introduction to Robust Python

https://oreil.ly/2skKO

Python code in a way that reduces failure, even as future maintainers tear it apart and
reconstruct it.

Writing robust code means deliberately thinking about the future. You want future
maintainers to look at your code and understand your intentions easily, not curse
your name during late-night debugging sessions. You must convey your thoughts,
reasoning, and cautions. Future developers will need to bend your code into new
shapes—and will want to do so without worrying that each change may cause it to
collapse like a teetering house of cards.

Put simply, you don’t want your systems to fail, especially when the unexpected hap-
pens. Testing and quality assurance are huge parts of this, but neither of those bake
quality completely in. They are more suited to illuminating gaps in expectations and
offering a safety net. Instead, you must make your software stand the test of time. In
order to do that, you must write clean and maintainable code.

Clean code expresses its intent clearly and concisely, in that order. When you look at
a line of code and say to yourself, “ah, that makes complete sense,” that’s an indicator
of clean code. The more you have to step through a debugger, the more you have to
look at a lot of other code to figure out what’s happening, the more you have to stop
and stare at the code, the less clean it is. Clean code does not favor clever tricks if it
makes the code unreadable to other developers. Just like C.A.R. Hoare said earlier,
you do not want to make your code so obtuse that it will be difficult to understand
upon visual inspection.

The Importance of Clean Code

Having clean code is paramount to having robust code; consider it table stakes for any
meaningful project. There are often specific practices tied to writing clean code,
including:

o Organizing your code in an appropriately granular fashion
« Providing good documentation
« Naming your variables/functions/types well

o Keeping functions short and simple

While the motifs of clean code weave throughout this book, I will not be dedicating
substantial time to these specific practices. There are other books that capture clean
code practices much better. I recommend Clean Code by Robert C. Martin (Prentice
Hall), The Pragmatic Programmer by Andy Hunt and Dave Thomas (Addison-
Wesley), and Code Complete by Steve McConnell (Microsoft Press). All three of these
books greatly improved my skills as a developer and are great resources for anyone
looking to grow.

Robustness | 3

While you should absolutely strive to write code cleanly, you must be prepared to
work in codebases that aren’t a shining example of cleanliness. Software development
is a messy endeavor, and there will be times where the purity of clean code will be
sacrificed for various reasons, both business and technical. Use the advice given
in this book to help drive toward cleaner code through discussions about
maintainability.

Maintainable code is code that...well, can be easily maintained. Maintenance begins
immediately after the first commit and continues until not a single developer is look-
ing at the project anymore. Developers will be fixing bugs, adding features, reading
code, extracting code for use in other libraries, and more. Maintainable code makes
these tasks frictionless. Software lives for years, if not decades. Focus on your main-
tainability today.

You don't want to be the reason systems fail, whether you are actively working on
them or not. You need to be proactive in making your system stand the test of time.
You need a testing strategy to be your safety net, but you also need to be able to avoid
falling in the first place. So with all that in mind, I offer my definition of robustness in
terms of your codebase:

A robust codebase is resilient and error-free in spite of constant change.

Why Does Robustness Matter?

A lot of energy goes into making software do what it’s supposed to, but it’s not easy to
know when youre done. Development milestones are not easily predicted. Human
factors such as UX, accessibility, and documentation only increase the complexity.
Now add in testing to ensure that you've covered a slice of known and unknown
behaviors, and you are looking at lengthy development cycles.

The purpose of software is to provide value. It is in every stakeholder’s interests to
deliver that full value as early as possible. Given the uncertainty around some devel-
opment schedules, there is often extra pressure to meet expectations. We've all been
on the wrong end of an unrealistic schedule or deadline. Unfortunately, many of the
tools to make software incredibly robust only add onto our development cycle in the
short term.

Its true that there is an inherent tension between immediate delivery of value and
making code robust. If your software is “good enough,” why add even more complex-
ity? To answer that, consider how often that piece of software will be iterated upon.
Delivering software value is typically not a static exercise; it’s rare that a system pro-
vides value and is never modified again. Software is ever-evolving by its very nature.
The codebase needs to be prepared to deliver value frequently and for long periods of
time. This is where robust software engineering practices come into play. If you can’t

4 | Chapter 1: Introduction to Robust Python

painlessly deliver features quickly and without compromising quality, you need to re-
evaluate techniques to make your code more maintainable.

If you deliver your system late, or broken, you incur real-time costs. Think through
your codebase. Ask yourself what happens if your code breaks a year from now
because someone wasn't able to understand your code. How much value do you lose?
Your value might be measured in money, time, or even lives. Ask yourself what hap-
pens if the value isn’t delivered on time? What are the repercussions? If the answers to
these questions are scary, good news, the work youre doing is valuable. But it also
underscores why it’s so important to eliminate future errors.

Multiple developers work on the same codebase simlutaneously. Many software
projects will outlast most of those developers. You need to find a way to communicate
to the present and future developers, without having the benefit of being there in per-
son to explain. Future developers will be building off of your decisions. Every false
trail, every rabbit hole, and every yak-shaving® adventure will slow them down, which
impedes value. You need empathy for those who come after you. You need to step
into their shoes. This book is your gateway to thinking about your collaborators and
maintainers. You need to think about sustainable engineering practices. You need to
write code that lasts. The first step to making code that lasts is being able to commu-
nicate through your code. You need to make sure future developers understand your
intent.

What's Your Intent?

Why should you strive to write clean and maintainable code? Why should you care so
much about robustness? The heart of these answers lies in communication. You’re not
delivering static systems. The code will continue to change. You also have to consider
that maintainers change over time. Your goal, when writing code, is to deliver value.
It’s also to write your code in such a way that other developers can deliver value just
as quickly. In order to do that, you need to be able to communicate reasoning and
intent without ever meeting your future maintainers.

Let’s take a look at a code block found in a hypothetical legacy system. I want you to
estimate how long it takes for you to understand what this code is doing. Its OK if
you're not familiar with all the concepts here, or if you feel like this code is convolu-
ted (it intentionally is!).

2 Yak-shaving describes a situation where you frequently have to solve unrelated problems before you can even
begin to tackle the original problem. You can learn about the origins of the term at https://oreil.ly/4iZm?7.

What's Your Intent? | 5

https://oreil.ly/4iZm7

Take a meal recipe and change the number of servings
by adjusting each ingredient
A recipe's first element is the number of servings, and the remainder
of elements is (name, amount, unit), such as ("flour", 1.5, "cup")
def adjust_recipe(recipe, servings):
new_recipe = [servings]
old_servings = recipe[0]
factor = servings / old_servings
recipe.pop(0)
while recipe:
ingredient, amount, unit = recipe.pop(0)
please only use numbers that will be easily measurable
new_recipe.append((ingredient, amount * factor, unit))
return new_recipe

This function takes a recipe and adjusts every ingredient to handle a new number of
servings. However, this code prompts many questions.

o What is the pop for?
o What does recipe[0] signify? Why is that the old servings?

« Why do I need a comment for numbers that will be easily measurable?

This is a bit of questionable Python, for sure. I won’t blame you if you feel the need to
rewrite it. It looks much nicer written like this:

def adjust_recipe(recipe, servings):

old_servings = recipe.pop(0)

factor = servings / old_servings

new_recipe = {ingredient: (amount*factor, unit)

for ingredient, amount, unit in recipe}

new_recipe["servings"] = servings

return new_recipe
Those who favor clean code probably prefer the second version (I certainly do). No
raw loops. Variables do not mutate. I'm returning a dictionary instead of a list of
tuples. All these changes can be seen as positive, depending on the circumstances. But
I may have just introduced three subtle bugs.

« In the original code snippet, I was clearing out the original recipe. Now I am not.
Even if it’s just one area of calling code that is relying on this behavior, I broke
that calling code’s assumptions.

By returning a dictionary, I have removed the ability to have duplicate ingredi-
ents in a list. This might have an effect on recipes that have multiple parts (such
as a main dish and a sauce) that both use the same ingredient.

o If any of the ingredients are named “servings” I've just introduced a collision with
naming.

6 | Chapter 1: Introduction to Robust Python

Whether these are bugs or not depends on two interrelated things: the original
author’s intent and calling code. The author intended to solve a problem, but I am
unsure of why they wrote the code the way they did. Why are they popping elements?
Why is “servings” a tuple inside the list? Why is a list used? Presumably, the original
author knew why, and communicated it locally to their peers. Their peers wrote call-
ing code based on those assumptions, but as time wore on, that intent became lost.
Without communication to the future, I am left with two options of maintaining this
code:

o Look at all calling code and confirm that this behavior is not relied upon before
implementing. Good luck if this is a public API for a library with external callers.
I would spend a lot of time doing this, which would frustrate me.

+ Make the change and wait to see what the fallout is (customer complaints, broken
tests, etc.). If 'm lucky, nothing bad will happen. If 'm not, I would spend a lot of
time fixing use cases, which would frustrate me.

Neither option feels productive in a maintenance setting (especially if I have to mod-
ify this code). I don't want to waste time; I want to deal with my current task quickly
and move on to the next one. It gets worse if I consider how to call this code. Think
about how you interact with previously unseen code. You might see other examples of
calling code, copy them to fit your use case, and never realize that you needed to pass
a specific string called “servings” as the first element of your list.

These are the sorts of decisions that will make you scratch your head. We've all seen
them in larger codebases. They aren’t written maliciously, but organically over time
with the best intentions. Functions start simple, but as use cases grow and multiple
developers contribute, that code tends to morph and obscure original intent. This is a
sure sign that maintainability is suffering. You need to express intent in your code up
front.

So what if the original author made use of better naming patterns and better type
usage? What would that code look like?

def adjust_recipe(recipe, servings):
Take a meal recipe and change the number of servings
:param recipe: a ‘Recipe’ indicating what needs to be adusted
:param servings: the number of servings
:return Recipe: a recipe with serving size and ingredients adjusted
for the new servings
create a copy of the ingredients
new_ingredients = list(recipe.get_ingredients())
recipe.clear_1ingredients()

for ingredient in new_ingredients:

What's Your Intent? | 7

ingredient.adjust_propoprtion(Fraction(servings, recipe.servings))
return Recipe(servings, new_ingredients)
This looks much better, is better documented, and expresses original intent clearly.
The original developer encoded their ideas directly into the code. From this snippet,
you know the following is true:

o I am using a Recipe class. This allows me to abstract away certain operations.
Presumably, inside the class itself there is an invariant that allows for duplicate
ingredients. (I'll talk more about classes and invariants in Chapter 10.) This pro-
vides a common vocabulary that makes the function’s behavior more explicit.

« Servings are now an explicit part of a Recipe class, rather than needing to be the
first element of the list, which was handled as a special case. This greatly simpli-
fies calling code, and prevents inadvertent collisions.

o It is very apparent that I want to clear out ingredients on the old recipe. No
ambiguous reason for why I needed to do a . pop(0).

o Ingredients are a separate class, and handle fractions rather than an explicit
float. It's clearer for all involved that I am dealing with fractional units, and can
easily do things such as limit_denominator (), which can be called when people
want to restrict measuring units (instead of relying on a comment).

I've replaced variables with types, such as a recipe type and an ingredient type. I've
also defined operations (clear_ingredients, adjust_proportion) to communicate
my intent. By making these changes, I've made the code’s behavior crystal clear to
future readers. They no longer have to come talk to me to understand the code.
Instead, they comprehend what I'm doing without ever talking to me. This is asyn-
chronous communication at its finest.

Asynchronous Communication

It's weird writing about asynchronous communication in a Python book without
mentioning async and await. But I'm afraid I have to discuss asynchronous commu-
nication in a much more complex place: the real world.

Asynchronous communication means that producing information and consuming
that information are independent of each other. There is a time gap between the pro-
duction and consumption. It might be a few hours, as is the case of collaborators in
different time zones. Or it might be years, as future maintainers try to do a deep dive
into the inner workings of code. You can't predict when somebody will need to
understand your logic. You might not even be working on that codebase (or for that
company) by the time they consume the information you produced.

8 | Chapter 1: Introduction to Robust Python

https://oreil.ly/YxUHK

Contrast that with synchronous communication. Synchronous communication is the
exchange of ideas live (in real time). This form of direct communication is one of the
best ways to express your thoughts but unfortunately, it doesn’t scale, and you won't
always be around to answer questions.

In order to evaluate how appropriate each method of communication is when trying
to understand intentions, let’s look at two axes: proximity and cost.

Proximity is how close in time the communicators need to be in order for that com-
munication to be fruitful. Some methods of communication excel with real-time
transfer of information. Other methods of communication excel at communicating
years later.

Cost is the measure of effort to communicate. You must weigh the time and money
expended to communicate with the value provided. Your future consumers then have
to weigh the cost of consuming the information with the value they are trying to
deliver. Writing code and not providing any other communication channels is your
baseline; you have to do this to produce value. To evaluate additional communication
channels’ cost, here is what I factor in:

Discoverability
How easy was it to find this information outside of a normal workflow? How
ephemeral is the knowledge? Is it easy to search for information?

Maintenance cost
How accurate is the information? How often does it need to be updated? What
goes wrong if this information is out of date?

Production cost
How much time and money went into producing the communication?

In Figure 1-1, I plot some common communication methods’ cost and proximity
required, based on my own experience.

What's Your Intent? | 9

Low proximity required
@ Code
@ Comments @ Tests _ _
@ Version control history @ Wikis @ Videorecordings
. Design documentation
@ In-project
documentation
@ Agile boards
@ tmail
Low cost Instant messaging @ High cost
@ Talks
@ Codereview
@ Meetings
@ Direct communication
High proximity required

Figure 1-1. Plotting cost and proximity of communcation methods

There are four quadrants that make up the cost/proximity graph.

Low cost, high proximity required

These are cheap to produce and consume, but are not scalable across time. Direct
communication and instant messaging are great examples of these methods.
Treat these as snapshots of information in time; they are only valuable when the
user is actively listening. Don’t rely on these methods to communicate to the
future.

High cost, high proximity required

These are costly events, and often only happen once (such as meetings or confer-
ences). These events should deliver a lot of value at the time of communication,
because they do not provide much value to the future. How many times have you
been to a meeting that felt like a waste of time? You're feeling the direct loss of
value. Talks require a multiplicative cost for each attendee (time spent, hosting
space, logistics, etc.). Code reviews are rarely looked at once they are done.

High cost, low proximity required

These are costly, but that cost can be paid back over time in value delivered, due
to the low proximity needed. Emails and agile boards contain a wealth of infor-
mation, but are not discoverable by others. These are great for bigger concepts

| Chapter 1: Introduction to Robust Python

that don’t need frequent updates. It becomes a nightmare to try and sift through
all the noise just to find the nugget of information you are looking for. Video
recordings and design documentation are great for understanding snapshots in
time, but are costly to keep updated. Don’t rely on these communication methods
to understand day-to-day decisions.

Low cost, low proximity required

These are cheap to create, and are easily consumable. Code comments, version
control history, and project README:s all fall into this category, since they are
adjacent to the source code we write. Users can view this communication years
after it was produced. Anything that a developer encounters during their day-to-
day workflow is inherently discoverable. These communication methods are a
natural fit for the first place someone will look after the source code. However,
your code is one of your best documentation tools, as it is the living record and
single source of truth for your system.

Discussion Topic

This plot in Figure 1-1 was created based on generalized use cases.
Think about the communication paths you and your organization
use. Where would you plot them on the graph? How easy is it to
consume accurate information? How costly is it to produce infor-
mation? Your answers to these questions may result in a slightly
different graph, but the single source of truth will be in the exe-
cutable software you deliver.

Low cost, low proximity communication methods are the best tools for communicat-
ing to the future. You should strive to minimize the cost of production and of con-
sumption of communication. You have to write software to deliver value anyway, so
the lowest cost option is making your code your primary communication tool. Your
codebase becomes the best possible option for expressing your decisions, opinions,
and workarounds clearly.

However, for this assertion to hold true, the code has to be cheap to consume as well.
Your intent has to come across clearly in your code. Your goal is to minimize the time
needed for a reader of your code to understand it. Ideally, a reader does not need to
read your implementation, but just your function signature. Through the use of good
types, comments and variable names, it should be crystal clear what your code does.

What's Your Intent? | 11

Self-Documenting Code

The wrong response to Figure 1-1 is “Self-documenting code is all I need!” Code
should absolutely self-document what is being done, but can’t cover every use case of
communication. For example, version control will give you a history of changes.
Design documents discuss sweeping ideals that are not local to any one code file.
Meetings (when done right) can be an important event for synchronizing plan execu-
tion. Talks are great for sharing ideas with a large audience all at once. While this
book focuses on what you can do in your code, don’t throw away any other valuable
means of communication.

Examples of Intent in Python

Now that I've talked through what intent is and how it matters, let’s look at examples
through a Python lens. How can you make sure that you are correctly expressing your
intentions? I will take a look at two different examples of how a decision affects inten-
tions: collections and iteration.

Collections

When you pick a collection, you are communicating specific information. You must
pick the right collection for the task at hand. Otherwise, maintainers will infer the
wrong intention from your code.

Consider this code that takes a list of cookbooks and provides a mapping between
authors and the number of books written:

def create_author_count_mapping(cookbooks: list[Cookbook]):
counter = {}
for cookbook in cookbooks:
if cookbook.author not in counter:
counter[cookbook.author] = 0
counter[cookbook.author] += 1
return counter

What does my use of collections tell you? Why am I not passing a dictionary or a set?
Why am I not returning a list? Based on my current usage of collections, here’s what
you can assume:

o I pass in a list of cookbooks. There may be duplicate cookbooks in this list (I
might be counting a shelf of cookbooks in a store with multiple copies).

I am returning a dictionary. Users can look up a specific author, or iterate over
the entire dictionary. I do not have to worry about duplicate authors in the
returned collection.

12 | Chapter 1: Introduction to Robust Python

What if I wanted to communicate that no duplicates should be passed into this func-
tion? A list communicates the wrong intention. Instead, I should have chosen a set to
communicate that this code absolutely will not handle duplicates.

Choosing a collection tells readers about your specific intentions. Here’s a list of com-
mon collection types, and the intention they convey:

List
This is a collection to be iterated over. It is mutable: able to be changed at any
time. Very rarely do you expect to be retrieving specific elements from the mid-
dle of the list (using a static list index). There may be duplicate elements. The
cookbooks on a shelf might be stored in a list.

String
An immutable collection of characters. The name of a cookbook would be a
string.

Generator
A collection to be iterated over, and never indexed into. Each element access is
performed lazily, so it may take time and/or resources through each loop itera-
tion. They are great for computationally expensive or infinite collections. An
online database of recipes might be returned as a generator; you don’t want to
fetch all the recipes in the world when the user is only going to look at the first 10
results of a search.

Tuple
An immutable collection. You do not expect it to change, so it is more likely to
extract specific elements from the middle of the tuple (either through indices or
unpacking). It is very rarely iterated over. The information about a specific cook-
book might be represented as a tuple, such as (cookbook_name, author, page
count).

Set
An iterable collection that contains no duplicates. You cannot rely on ordering of
elements. The ingredients in a cookbook might be stored as a set.

Dictionary
A mapping from keys to values. Keys are unique across the dictionary. Dictionar-
ies are typically iterated over, or indexed into using dynamic keys. A cookbook’s
index is a great example of a key to value mapping (from topic to page number.)

Do not use the wrong collection for your purposes. Too many times have I come
across a list that should not have had duplicates or a dictionary that wasn’t actually
being used to map keys to values. Every time there is a disconnect between what you
intend and what is in code, you create a maintenance burden. Maintainers must

Examples of Intentin Python | 13

pause, work out what you really meant, and then work around their faulty assump-
tions (and your faulty assumptions, too).

Dynamic Versus Static Indexing

Depending on the collection type you are using, you may or may not want to use a
static index. A static index is what you get when you use a constant literal to index
into the collection, such as my_1list[4] or my_dict["Python"]. In general, lists and
dictionaries will not often need a use case for this. You have no guarantee that the col-
lection has the element you are looking for at that index, due to their dynamic nature.
If you are looking for specific fields in these types of collections, this is a good sign
that you need a user-defined type (explored in Chapters 8, 9 and 10). It is safe to stati-
cally index into a tuple, since they are fixed size. Sets and generators are never
indexed into.

Exceptions to this rule include:

o Getting the first or last element of a sequence (my_1list[0] or my_list[-1])

« Using a dictionary as an intermediate data type such as when reading JSON or
YAML

o Operations on a sequence dealing specifically with fixed chunks (e.g., always
splitting after the third element or checking for a specific character in a fixed-
format string)

o Performance reasons for a specific collection type

In contrast, dynamic indexing occurs whenever you index into a collection with a
variable that is not known until runtime. This is the most appropriate choice for lists
and dictionaries. You’'ll see this when iterating over collections or searching for a spe-
cific element with an index() function.

These are basic collections, but there are more ways to express intent. Here are some
special collection types that are even more expressive in communicating to the future:

frozenset

A set that is immutable.

OrderedDict

A dictionary that preserves order of elements based on insertion time. As of
CPython 3.6 and Python 3.7, built-in dictionaries will also preserve order of ele-
ments based on insertion of time.

14

| Chapter 1: Introduction to Robust Python

defaultdict
A dictionary that provides a default value if the key is missing. For example, I
could rewrite my earlier example as follows:

from import defaultdict
def create_author_count_mapping(cookbooks: List[Cookbook]):
counter = defaultdict(lambda: 0)
for cookbook in cookbooks:
counter[cookbook.author] += 1
return counter

This introduces a new behavior for end users—if they query the dictionary for a
value that doesn’t exist, they will receive a 0. This might be beneficial in some use
cases, but if it’s not, you can just return dict(counter) instead.

Counter
A special type of dictionary used for counting how many times an element
appears. This greatly simplifies our above code to the following:

from import Counter
def create_author_count_mapping(cookbooks: List[Cookbook]):
return Counter(book.author for book in cookbooks)

Take a minute to reflect on that last example. Notice how using a Counter gives us
much more concise code without sacrificing readability. If your readers are familiar
with Counter, the meaning of this function (and how the implementation works) is
immediately apparent. This is a great example of communicating intent to the
future through better selection of collection types. I'll explore collections further in
Chapter 5.

There are plenty of additional types to explore, including array, bytes, and range.
Whenever you come across a new collection type, built-in or otherwise, ask yourself
how it differs from other collections and what it conveys to future readers.

Iteration

Iteration is another example where the abstraction you choose dictates the intent you
convey.

How many times have you seen code like this?

text = "This is some generic text"
index = 0
while index < len(text):
print(text[index])
index += 1

This simple code prints each character on a separate line. This is perfectly fine for a
first pass at Python for this problem, but the solution quickly evolves into the more

Examples of Intentin Python | 15

Pythonic (code written in an idiomatic style that aims to emphasize simplicity and is
recognizable to most Python developers):

for character in text:
print(character)

Take a moment and reflect on why this option is preferable. The for loop is a more
appropriate choice; it communicates intentions more clearly. Just like collection types,
the looping construct you select explicitly communicates different concepts. Here’s a
list of some common looping constructs and what they convey:

for loops
for loops are used for iterating over each element in a collection or range and
performing an action/side effect.

for cookbook in cookbooks:
print(cookbook)

while loops
while loops are used for iterating as long as a certain condition is true.

while is_cookbook_open(cookbook):
narrate(cookbook)

Comprehensions
Comprehensions are used for transforming one collection into another (nor-
mally, this does not have side effects, especially if the comprehension is lazy).

authors = [cookbook.author for cookbook in cookbooks]

Recursion
Recursion is used when the substructure of a collection is identical to the struc-
ture of a collection (for example, each child of a tree is also a tree).

def list_ingredients(item):
if isinstance(item, PreparedIngredient):
list_ingredients(item)
else:
print(ingredient)

You want each line of your codebase to deliver value. Furthermore, you want each
line to clearly communicate what that value is to future developers. This drives a need
to minimize any amount of boilerplate, scaffolding, and superfluous code. In the
example above, I am iterating over each element and performing a side effect (print-
ing an element), which makes the for loop an ideal looping construct. I am not wast-
ing code. In contrast, the while loop requires us to explicitly track looping until a
certain condition occurs. In other words, I need to track a specific condition and
mutate a variable every iteration. This distracts from the value the loop provides, and
provides unwanted cognitive burden.

16 | Chapter 1: Introduction to Robust Python

Law of Least Surprise

Distractions from intent are bad, but there’s a class of communication that is even
worse: when code actively surprises your future collaborators. You want to adhere to
the Law of Least Surprise; when someone reads through the codebase, they should
almost never be surprised at behavior or implementation (and when they are sur-
prised, there should be a great comment near the code to explain why it is that way).
This is why communicating intent is paramount. Clear, clean code lowers the likeli-
hood of miscommunication.

The Law Of Least Surprise, also known as the Law of Least Aston-
ishment, states that a program should always respond to the user in
the way that astonishes them the least.’ Surprising behavior leads to
confusion. Confusion leads to misplaced assumptions. Misplaced
assumptions lead to bugs. And that is how you get unreliable
software.

Bear in mind, you can write completely correct code and still surprise someone in the
future. There was one nasty bug I was chasing early in my career that crashed due
to corrupted memory. Putting the code under a debugger or putting in too many
print statements affected timing such that the bug would not manifest (a true
“heisenbug”).* There were literally thousands of lines of code that related to this bug.

So I had to do a manual bisect, splitting the code in half, see which half actually had
the crash by removing the other half, and then do it all over again in that code half.
After two weeks of tearing my hair out, I finally decided to inspect an innocuous
sounding function called getEvent. It turns out that this function was actually setting
an event with invalid data. Needless to say, I was very surprised. The function was
completely correct in what it was doing, but because I missed the intent of the code, I
overlooked the bug for at least three days. Surprising your collaborators will cost their
time.

A lot of this surprise ends up coming from complexity. There are two types of com-
plexity: necessary complexity and accidental complexity. Necessary complexity is the
complexity inherent in your domain. Deep learning models are necessarily complex;
they are not something you browse through the inner workings of and understand in
a few minutes. Optimizing object-relational mapping (ORM) is necessarily complex;
there is a large variety of possible user inputs have to be accounted for. You won’t be
able to remove necessary complexity, so your best bet would be to try and contain it,

3 Geoffrey James. The Tao of Programming. https://oreil.ly/NcKNK.

4 A bug that displays different behavior when being observed. SIGSOFT °83: Proceedings of the ACM SIGSOFT/
SIGPLAN software engineering symposium on High-level debugging.

Examples of Intentin Python | 17

https://oreil.ly/NcKNK

lest it sprawls across your codebase and ends up becoming accidental complexity
instead.

In contrast, accidental complexity is complexity that produces superfluous, wasteful,
or confusing statements in code. It's what happens when a system evolves over time
and developers are jamming features in without reevaluating old code to determine
whether their original assertions hold true. I once worked on a project where adding
a single command-line option (and associated means of programmatically setting it)
touched no fewer than 10 files. Why would adding one simple value ever need to
require changes all over the codebase?

You know you have accidental complexity if you've ever experienced the following:

 Things that sound simple (adding users, changing a UI control, etc.) are non-
trivial to implement.

« Difficulty onboarding new developers into understanding your codebase. New
developers on a project are your best indicators of how maintainable your code is
right now—no need to wait years.

« Estimates for adding functionality are always high, yet you slip the schedule
nonetheless.

Remove accidental complexity and isolate your necessary complexity wherever possi-
ble. Those will be the stumbling blocks for your future collaborators. These sources of
complexity compound miscommunication, as they obscure and diffuse intent
throughout the codebase.

Discussion Topic

What accidental complexities do you have in your codebase? How
challenging would it be to understand simple concepts if you were
dropped into the codebase with no communication to other devel-
opers? What can you do to simplify complexities identified in this
exercise (especially if they are in often-changing code)?

Throughout the rest of the book, I will look at different techniques for communicat-
ing intent in Python.

Closing Thoughts

Robust code matters. Clean code matters. Your code needs to be maintainable for the
entire lifetime of the codebase, and in order to ensure that outcome, you need to put
active foresight into what you are communicating and