
Marc Loy

Smaller C
Lean Code for Small Machines

Marc Loy

Smaller C
Lean Code for Small Machines

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10033-9

[LSI]

Smaller C
by Marc Loy

Copyright © 2021 Marc Loy. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn
Development Editor: Amelia Blevins
Production Editor: Daniel Elfanbaum
Copyeditor: nSight, Inc.
Proofreader: Piper Editorial Consulting, LLC

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

June 2021: First Edition

Revision History for the First Edition
2021-05-27: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098100339 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Smaller C, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098100339

Table of Contents

Preface. ix

1. The ABCs of C. 1
Strengths and Weaknesses 2
Getting Started 2

Tools Required 2
Creating a C “Hello, World” 15
Compiling Your Code 17
Running Your Code 17

Next Steps 19

2. Storing and Stating. 21
Statements in C 21

Statement Separators 22
Statement Flow 22

Variables and Types 24
Getting User Input 24
Strings and Characters 27
Numbers 29
Variable Names 31
Variable Assignments 32

printf() and scanf() 34
printf() Formats 34
Tailored Output 35
scanf() and Parsing Inputs 38

Operators and Expressions 39
Arithmetic Operators 39
Order of Operations 41

iii

Type Casting 42
Next Steps 45

3. Flow of Control. 47
Boolean Values 47

Comparison Operators 48
Logical Operators 49

Branching 52
The if Statement 52
The switch Statement 58

The Ternary Operator and Conditional Assignment 63
Loop Statements 65

The for Statement 65
The while Statement 69
The do/while Variation 71

Nesting 72
Nested Loops and Tables 74
Variable Scope 75

Exercises 77
Next Steps 79

4. Bits and (Many) Bytes. 81
Storing Multiple Things with Arrays 81

Creating and Manipulating Arrays 82
Review of Strings 88
Multidimensional Arrays 89
Accessing Elements in Multidimensional Arrays 90

Storing Bits 91
Binary, Octal, Hexadecimal 92
Octal and Hexadecimal Literals in C 93
Input and Output of Octal and Hex Values 94
Bitwise Operators 96

Mixing Bits and Bytes 97
Conversion Answers 101
Next Steps 102

5. Functions. 103
Familiar Functions 104
Function Flow 104
Simple Functions 105
Sending Information to Functions 107

Passing Simple Types 107

iv | Table of Contents

Passing Strings to Functions 108
Multiple Types 110
Exiting a Function 110

Returning Information 111
Using Returned Values 112
Ignoring Returned Values 113

Nested Calls and Recursion 114
Recursive Functions 115

Variable Scope 118
Global Variables 119

The main() Function 121
Return values and main() 122
Command-Line Arguments and main() 123

Next Steps 125

6. Pointers and References. 127
Addresses in C 127

The NULL Value and Pointer Errors 129
Arrays 130
Local Variables and the Stack 131
Global Variables and the Heap 133

Pointer Arithmetic 134
Array Pointers 135
Functions and Pointers 137
Managing Memory with Arrays 138

Allocating with malloc() 138
Deallocating with free() 139

C Structures 140
Defining Structures 141
Assigning and Accessing Structure Members 141
Pointers to Structures 142
Functions and Structures 143

Pointer Syntax Recap 145
Next Steps 147

7. Libraries. 149
The C Standard Library 150

stdio.h 150
stdlib.h 150
string.h 154
math.h 157
time.h 159

Table of Contents | v

ctype.h 160
Putting It Together 161

Filling In Strings 161
Finding Our Interest 162

Finding New Libraries 163
Next Steps 164

8. Real-World C With Arduino. 165
Arduino IDE (Win, Mac, Linux) 166

Installing on Windows 167
Installing on macOS 168
Installing on Linux 168

Your First Arduino Project 169
Selecting Your Board 170
Hello, LED! 172
An External LED Upgrade 175

Arduino Libraries 176
Managing Libraries 177
Using Arduino Libraries 178

Arduino Sketches and C++ 179
C++ Objects and Variables 182
More Practice with Objects 183
C++ Considerations 185
Object Homework 186

Next Steps 187

9. Smaller Systems. 189
The Arduino Environment 189

Special Values 190
Special Types 192
“Built-In” Functions 193
Trying Out the Arduino “Stuff ” 194

Microcontroller I/O 197
Sensors and Analog Input 197
The Serial Monitor 198
Is It Hot in Here? 199
Segmented Displays 200
Buttons and Digital Input 202
Just How Hot Is It? 204

Memory Management on Arduino 206
Flash (PROGMEM) 206
SRAM 209

vi | Table of Contents

EEPROM 211
Remembering Choices 212

Interrupts 215
Interrupt Service Routines 215
Interrupt-Driven Programming 216

Exercises 218
Next Steps 220

10. Faster Code. 221
The Setup 222
Floating-Point Versus Integer Math 223

Floating-Point Math Alternatives 224
Integer Math Versus No Math 225
Lookup Tables 226
The Project So Far 227

The Power of Powers of 2 229
Loop Optimizations 230

Unrolling for Fun and Profit 231
Recursion Versus Iteration 232

String Versus char[] 232
Our Final Offer 233
Next Steps 234

11. Custom Libraries. 235
Creating Your Own Library 235

Preprocessor Directives 238
Preprocessor Macros 239
Custom Type Definitions 240
Our Car Project 241

Multifile Projects 244
Code (.ino) Files 244
Header Files 247

Importing Custom Libraries 249
Facilitating Communication 249
Retrofitting Our Car 250
Creating a Controller 252
Creating the Library 253
Updating the Car Project 258
Getting It Under Control 260
Go Driving! 262
Documentation and Distribution 262

Next Steps 265

Table of Contents | vii

12. Next Next Steps. 267
Intermediate and Advanced Topics 267

IoT and Arduino 268
Arduino Source Code 273

Other Microcontrollers 273
Industry C/C++ 274
Back to the Future 274

A. Hardware and Software. 275

B. printf() Format Specifier Details. 281

Index. 285

viii | Table of Contents

Preface

In a world where new JavaScript frameworks come and go almost daily, why would
you dive into an aging, bare-bones language like C? Well, for one, if you hope to keep
up with all those framework fads (ouch, opinion alert), you might want a background
in just such aging, bare-bones technologies that provide a foundation for so many
“modern” languages. Did you look up popular programming languages on a site like
TIOBE and find C consistently at the top? Maybe you’re interested in the amazingly
advanced video cards and want to see how the software that drives them works. Or
perhaps you’re exploring newer—and much smaller—gadgets like Arduinos and
heard that C is the right tool for the job.

No matter the reason, it’s great to have you here. All of those reasons are valid ones,
by the way. C is a foundational language and understanding its syntax and quirks will
give you a very long-lived computer language literacy that will help you pick up new
languages and styles more easily. C (and its cousin C++) are still widely used when
writing low-level code for device drivers or operating systems. And the Internet of
Things is breathing new life into microcontrollers with limited resources. C is a great
fit for wringing the most of those tiny environments.

While I’ll be focusing on that last idea of writing clean, tight code for tiny, limited
machines, I’ll still start with the basics of computer programming and cover a variety
of rules and patterns that apply to C anywhere you might find it.

How to Use This Book
This book aims to cover all the basics of good C programming for any of the situa‐
tions mentioned above. We’ll look at control structures, operators, functions, and
other elements of C’s syntax along with examples of alternate patterns that can shave
a few bytes off the size of your compiled program. We’ll also be looking at the Ardu‐
ino environment as a great application for lean C code. To best enjoy the Arduino
section, you should have some basic experience with building simple circuits and
using components like LEDs and resistors.

ix

https://oreil.ly/ZTdwN

Here’s a preview of the chapters:

Chapter 1, The ABCs of C
A brief look at the history of the C language and steps to set up your develop‐
ment environment.

Chapter 2, Storing and Stating
An introduction to statements in C, including basic I/O, variables, and operators.

Chapter 3, Flow of Control
Here I cover branching and looping statements and go a little deeper on variables
and their scope.

Chapter 4, Bits and (Many) Bytes
A quick return to storing data. I show you C’s facilities for manipulating individ‐
ual bits and storing lots of bigger things in arrays.

Chapter 5, Functions
I’ll look at how to break up your code into manageable chunks.

Chapter 6, Pointers and References
Getting a little more advanced, I create more complex data structures and learn
how to pass them to, and return them from, functions.

Chapter 7, Libraries
Learn how to find and use popular bits of code that can help you with common
or intricate tasks.

Chapter 8, Real-World C With Arduino
The real fun begins! We’ll set up the Arduino development environment and
make some LEDs blink.

Chapter 9, Smaller Systems
Try out several electronic peripherals including sensors, buttons, and LCD dis‐
plays with complete Arduino projects.

Chapter 10, Faster Code
Learn some tricks for writing code especially designed to help small processors
get the most out of their resources.

Chapter 11, Custom Libraries
Build on your C library skills with tips and tricks for writing friendly, well-
documented libraries compatible with the Arduino IDE.

Chapter 12, Next Next Steps
Try a quick Internet of Things project with a few parting thoughts and some
ideas for what to try next as you continue to improve your lean coding skills.

x | Preface

The appendices include a handy collection of links to the hardware and software I
use, as well as information on downloading and configuring the C and Arduino
examples shown throughout the book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Many of the code examples in this book are quite succinct, and you’ll often benefit
from typing them in by hand. But that isn’t always fun and sometimes you want to
start with a known, working copy and modify stuff. You can grab the source for all of

Preface | xi

the examples from GitHub at https://github.com/l0y/smallerc. Appendix A has detailed
instructions on downloading the code and setting up the files for use with your devel‐
opment environment.

If you have a technical question or a problem using the code examples, please send an
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, you may use the example
code offered with this book in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing examples from O’Reilly books
does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Smaller C by Marc Loy
(O’Reilly). Copyright 2021 Marc Loy, 978-1-098-10033-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

xii | Preface

https://github.com/l0y/smallerc
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/smaller-c.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly.

Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://youtube.com/oreillymedia.

Acknowledgments
I would like to thank Amelia Blevins for shepherding another book for me through
the publication process. Her project management skills are surpassed only by her
ability to improve my writing through her artful suggestions. Thanks also go to
Amanda Quinn and Suzanne McQuade for helping me get the project off the ground
in the first place, and Danny Elfanbaum for his superb tech support. The entire crew
at O’Reilly are peerless.

Our technical reviewers brought a wide range of expertise to the table, and I could
not have asked for better feedback. Tony Crawford tightened up my C code discus‐
sions, and I heartily recommend you read his book: C in a Nutshell. Alex Faber ran
every example in the book on multiple platforms and made sure I kept new program‐
mers in mind. Eric Van Hoose made my writing clearer and helped focus the flow of
the book overall. Chaim Krause filled in at the last minute and highlighted a few gaps
that have been duly filled in turn.

Personal thanks to my husband Ron for wordsmithing advice and general moral sup‐
port. Reg Dyck also provided some welcome encouragement. If you ever want to
really learn a topic, explain it to friends and family like Reg and Ron. Neither gent has
much interest in programming or electronics, but their friendly questions helped me
suss out the core of what I wanted to say on many difficult topics.

Preface | xiii

https://oreil.ly/smaller-c
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia
https://www.oreilly.com/library/view/c-in-a/0596006977/

CHAPTER 1

The ABCs of C

C is a powerful language. It is procedural (meaning you do a lot of your coding work
with procedures) and compiled (meaning the code you write must be translated for
use by a computer using a compiler). You can write your procedures anywhere you
can edit a text file, and you can compile those procedures to run on anything from
supercomputers to the tiniest of embedded controllers. It’s a fantastic, mature lan‐
guage—I’m glad you’re here learning about it!

C has been around for quite some time: it was developed in the early 1970s by Dennis
Ritchie at Bell Labs. You might have heard of him as one of the authors of the canoni‐
cal C programming book, The C Programming Language with Brian Kernighan
(Pearson). (If you see or hear or read about the phrase “K&R” in the programming
world, that’s a reference to the book.) As a general purpose, procedural language built
with an eye toward keeping programmers connected to the hardware their programs
would run on, C caught on with both academic and industrial institutions outside
Bell Labs to run a growing array of computers and remains a viable systems
programming language.

Like all languages, C is not static. And with nearly 50 years under its belt, C has
undergone many changes and spawned a great number of other languages. You can
see its influence in the syntax of languages as disparate as Java and Perl. Indeed, some
of C’s elements are so universal that you see it show up in pseudocode examples
meant to represent “any” language.

As C grew in popularity, it became necessary to organize and standardize its syntax
and features. The first part of this book will focus on Standard C as defined by the
International Organization for Standardization (ISO) and the code we write will be
portable to any C compiler on any platform. The latter part of this book will focus on
using C with specific hardware such as the Arduino microcontroller.

1

https://oreil.ly/9MDKn

Strengths and Weaknesses
When you think about solving actual problems with a computer these days, using a
high-level language is a must. C provides a great balance between code you can think
about and code that performs well when compiled for actual hardware. C has
straightforward code structures and a wealth of useful operators. (These are the fea‐
tures that have spread into so many subsequent languages and makes it such a good
option for lean code on microcontrollers.) C also gives you room to break problems
up into smaller subproblems. You can reason about the code (and its inevitable bugs)
as a human—quite a handy thing.

C does have its downsides, though. C does not have some of the fancier features avail‐
able today in other languages such as Java’s automatic memory garbage collection.
Many modern languages hide most of those details from the programmer at the
expense of a little performance. C requires you to be more deliberate in how you
allocate and manage resources like memory. Sometimes that requirement can feel
tedious.

C also lets you write some pretty impressive bugs. It has no type safety or really any
safety checks at all. Again, as a programmer, this hands-off approach means you can
write clever, efficient code that really hums on the hardware. It also means that if you
get something wrong, it’s up to you to find and fix the problem. (Tools like linters and
debuggers help; we’ll definitely be looking at those along the way.)

Getting Started
So how do we get started? As with any compiled language, we’ll first need a file con‐
taining some valid C instructions. We’ll then need a compiler that can translate those
instructions. With the right contents in the file and a compiler for your own comput‐
er’s hardware, you can have a C program running in just a few minutes.

If you have spent any time learning any computer language at all, you’re likely famil‐
iar with the idea of a “Hello, World” program. It’s an admirably simple idea: create a
tiny program that proves several things in one go. It proves you can write valid code
in the language. It proves your compiler or interpreter works. It also proves you can
produce visible output, which comes in very handy for humans, as it turns out. Let’s
get started!

Tools Required
Folks use computers today for a vast array of tasks. Entertainment such as games and
streaming video takes up as many (if not more) CPU cycles as business productivity
work or even application development. And because computers are used as much for
consuming as they are for producing, very few systems come with the tools required

2 | Chapter 1: The ABCs of C

1 Well, “any” is awfully expansive; if your language is an interpreted language, then of course you would need a
good interpreter rather than a good compiler!

to do stuff like application development. Happily, those tools are freely available, but
you do have to go get them yourself and then set them up to work on your system.

As I’ve noted before, this book focuses on writing clean, efficient C code. I take care
in our examples to avoid overly clever patterns. I also work hard to ensure the exam‐
ples do not rely on a particular compiler or a particular development platform. To
that end, I’ll be working with the minimum setup required for any software develop‐
ment: a good editor and a good compiler.1

If you’re comfortable hunting down software online and want to dive right in, we’ll be
installing Visual Studio Code (often just “VS Code”) from Microsoft as our editor and
the GNU developer tools from the GNU Foundation to handle compiling. More links
and details follow, but feel free to jump to “Creating a C ‘Hello, World’” on page 15
after installing these tools on your own or if you already have an editor and a com‐
piler you’re comfortable using.

Windows
Microsoft Windows owns the lion’s share of the desktop market. If you only write
programs for one system, Windows gets you the most bang for your buck. But that
means that you’ll find a lot more competition in the software that helps you write
those programs. There are more commerical developer applications for Windows
than any other platform. Fortunately, many of those applications have a free or “com‐
munity” version that will suffice for our purposes. (When we get to the Arduino
focus in the second part of this book, we’ll be looking at some Arduino-specific tools
that include compilers.)

You can’t talk about Windows and software development without mentioning the
Visual Studio IDE (Integrated Development Environment) from Microsoft. If you
want to build applications for Windows itself, it’s hard to beat Visual Studio. They
even offer a community edition for students and individual developers. While I won’t
be discussing either edition for the examples in this book, Visual Studio is a great IDE
for Windows users and will easily handle our code. (I will, however, be using a close
cousin called Visual Studio Code as our editor on all three of the major platforms.)

Another popular commerical IDE is CLion from Jetbrains. CLion
is also cross-platform so you can easily move between different
operating systems and still feel productive. If you have experience
with any of the other quality applications from Jetbrains, CLion can
be a familiar way to get started writing and debugging C code.

Getting Started | 3

https://oreil.ly/kXf3h
https://oreil.ly/xclHh
https://oreil.ly/E1Oxh

2 J. M. Eubank, however, has done the legwork on a single-file installer that you might want to check out if the
general steps for a more complete setup look overwhelming: tdm-gcc.

There are myriad other text editors, each with some pros and cons. You can even use
tools like the built-in Notepad application, although programming-specific editors
will have some handy features that can make reading and debugging your code easier.

GNU tools on Windows. On Windows, installing the GCC tool from GNU can be a bit
tedious. There’s no quick, friendly installer.2 You can find a variety of binary packages
that provide most of what we need, but you still have to take care to download the
GNU compiler subpackages and then configure your Windows environment.

We will install the Cygwin environment to get our Windows version of GCC. Cygwin
is a much larger collection of tools and utilities that provides Windows users with a
nice Unix shell environment. But “nice” is pretty subjective, and if you don’t know
Unix or its derivatives such as Linux or modern macOS, you probably won’t use
much else of the collection.

Grab the Cygwin setup executable. Once it’s done downloading, go ahead and launch
it. You may need to “allow this app from an unknown publisher to make changes to
your device.” You can try the “Install from Internet” option, but if you have any trou‐
ble, go back and use the “Download Without Installing” option. You’ll still want to
follow the package selection step, but after the download completes, you can run this
installer program a second time and choose the “Install from Local Directory” option
and use the folder where you downloaded all of the packages.

Go ahead and accept the defaults for any questions the installer asks. When you get to
the mirror selection page, use one physically close to you if you can identify a univer‐
sity or business you know. Otherwise, any mirror should do—but it’s OK to come
back and pick a different one if you have any troubles with the download.

On the “Select Package” screen, you do need to make an extra selection as gcc is not
included by default. Switch the View dropdown to “Full” and then enter “gcc” as a
search term. You want the “gcc-core” package as highlighted in Figure 1-1. Any of the
versions available are sufficient for our needs. At the time of this writing, we selected
the most recent gcc-core version, which was 10.2.0-1.

4 | Chapter 1: The ABCs of C

https://oreil.ly/RWJcB
https://oreil.ly/atDoI
https://oreil.ly/Loj7l

Figure 1-1. Selecting the Cygwin GCC package

Confirm your selections on the Review page and start the download! It may take a
little time to download and install everything, but you should eventually hit the Fin‐
ish screen. You can add the desktop icon if you want to play around with a Unix-like
command prompt, but it is not required for the work we’ll be doing. What is
required, though, is an extra step to add the Cygwin tools to Microsoft’s command
prompt.

You may wish to search online for a guided tour of creating and editing Windows
environment variables, but here are the basics. (If you’ve done this type of thing
before, feel free to skip to the Cygwin folder selection and just put that in your path.)

From the Start menu, search for “env” and you should quickly see an option to edit
the system environment variables at the top, as shown in Figure 1-2.

The System Properties dialog should open, and you want to click the “Environment
Variables…” button near the bottom right corner, as shown in Figure 1-3.

Getting Started | 5

Figure 1-2. Finding the environment variable editor in Windows

Figure 1-3. The System Properties dialog in Windows

6 | Chapter 1: The ABCs of C

3 If you’re unsure whether you have a 64-bit or 32-bit version of Windows, check out the Microsoft FAQ.

You can set just your path or set it system wide. Highlight the PATH entry you want
to update and then click Edit. Next, click the New button on the “Edit environment
variables” dialog and then click the Browse button to navigate to the Cygwin bin
folder, as shown in Figure 1-4. (If you recall the root folder you chose for the Cygwin
installer to put everything in, you can also just type that in, of course.)

Figure 1-4. Adding the Cygwin bin folder to the Path environment variable

Select the OK button to close each of the dialogs and you should be set!

For the editor, you can find VS Code at the Visual Studio site. Depending on your
system, you will most likely want either the 64-bit or 32-bit user installer version.3

Use the Extensions view shown in Figure 1-5 to grab the C/C++ extension. You can
search for the simple letter “c,” but you might also see the extension right away on the
“Popular” list. Go ahead and click the small green Install button for the extension.

Getting Started | 7

https://oreil.ly/kyR5d
https://oreil.ly/27eCl

Figure 1-5. The C extension in VS Code

Let’s test the GCC tool from those Cygwin utilities. (You may need to restart Visual
Studio Code for it to recognize your Cygwin tools.) From the View menu, select the
Terminal option. The Terminal tab should open at the bottom. You may need to hit
the Enter key to get a prompt. Run gcc --version at the prompt. Hopefully, you’ll
see output similar to that in Figure 1-6.

You should see the version number matching the package you selected as you were
installing Cygwin. If you do, hooray! Jump down to “Creating a C ‘Hello, World’” on
page 15 and get started with your first C program. If you don’t see any output or get a
“not recognized” error, review the steps to set up Windows environment variables.
And as always, searching online for particular errors you see can help you solve most
installation and setup issues.

8 | Chapter 1: The ABCs of C

Figure 1-6. Testing GCC in the Terminal tab

macOS
If you live mostly with graphical applications and tools, you might not be aware of the
Unix underpinnings of macOS. While you can mostly remain blissfully ignorant of
those underpinnings, it is useful to know a bit about navigating the world from a
command prompt. We’ll be using the Terminal app to download and install GCC,
but as with Windows, it is worth noting that Apple’s official developer tool, Xcode,
can be used to write and compile C code. Fortunately we don’t need all of Xcode to
get going with C, so we’ll stick to the minimum.

The Terminal app is in the Application → Utilities folder. Go ahead and start it. You
should see something like Figure 1-7.

Getting Started | 9

Figure 1-7. A basic macOS Terminal window

If you already have the main Apple programming application, Xcode, you can quickly
check to see if GCC is also available. Try running gcc -v:

$ gcc -v
Configured with: --prefix=/Library/Developer/CommandLineTools/usr --with...
Apple clang version 11.0.3 (clang-1103.0.32.62)
Target: x86_64-apple-darwin19.6.0
Thread model: posix
InstalledDir: /Library/Developer/CommandLineTools/usr/bin

The exact versions aren’t that important; we just want to make sure GCC is in fact
available. If not, you’ll need to install the xcode-select command-line tool, which
will bring GCC along for the ride. Type in xcode-select --install and follow the
prompts. A dialog will ask if you want to install the command-line tools; say yes and
you’re on your way.

After the installation completes, go ahead and run that gcc -v command to make
sure you have the compiler. If you don’t get a good response, you may need to visit
Apple’s Developer Support site and search on “command-line tools.”

Installing VS Code on macOS is much simpler. Visit the same VS Code downloads
page at the Visual Studio site. Select the macOS download. You should receive a ZIP
file in your standard download folder. Double-click that file to unzip it, and then drag
the resulting Visual Studio Code.app file to your Applications folder. If you are promp‐
ted for your password to move the app to Applications, go ahead and provide it now.

Once relocated, go ahead and open VS Code. We want to add the C/C++ extension
and then check that we can access GCC from the Terminal tab.

10 | Chapter 1: The ABCs of C

https://oreil.ly/JyXV8
https://oreil.ly/kUgwI

Pull up the Extensions panel in VS Code by clicking the “boxes” icon shown in
Figure 1-8. You can search for the simple letter “C” and likely find the correct exten‐
sion at the top of the results.

Figure 1-8. VS Code extensions

To try out the Terminal tab, open it from the View → Terminal menu item. You
should see a new section at the bottom of your editor space. Go ahead and try run‐
ning our GCC check command (gcc -v) in that new area. You should see results sim‐
ilar to Figure 1-9.

Getting Started | 11

Figure 1-9. Trying GCC in VS Code on macOS

Again, if you don’t get the expected results from running the gcc command, check
Apple’s developer site. You can also find several video tutorials online that may help
you with your particular setup.

Linux
Many Linux systems are geared toward folks who tinker. You might already have
GCC available. You can check quickly by starting the Terminal app and running the
same check used on other operating systems. If gcc -v returns an answer—other
than “Command not found,” of course—then you are good to go and can download
VS Code. If you need to install GCC, you can use the package manager on your plat‐
form. You might have a nifty graphical application for such things; look for “devel‐
oper tools” or “software development” and then read the description to see if GCC or
GNU utilities are included.

For Debian/Ubuntu systems, you can grab the build-essential metapackage that
will include GCC along with lots of other useful (or required) libraries and tools:

$ sudo apt install build-essential

12 | Chapter 1: The ABCs of C

For Redhat/Fedora/CentOS systems, the Dandified Yum (dnf) tool can be used. We
only need GCC for our work in this book:

$ su -
dnf install gcc

Although if you’re curious about software development in general, you might want to
grab the “Development Tools” group package, which includes GCC along with lots of
other nifty things:

$ su -
dnf groupinstall "Development Tools"

Manjaro is another popular Linux distribution based on Arch Linux. You can use the
pacman tool here:

$ su -
pacman -S gcc

If you have some other flavor of Linux that doesn’t use apt, dnf, or pacman, you can
easily search for “install gcc my-linux” or use the search option with your system’s
package manager to look for “gcc” or “gnu.”

As a Linux user, you may already have some experience with text editors for writing
shell scripts or other languages. If you’re already comfortable with your editor and
the terminal, you can skip forward. But if you are new to coding or don’t have a
favorite editor, go ahead and install VS Code. Visit the same VS Code downloads page
at the Visual Studio site as mentioned for the other operating systems. Get the appro‐
priate bundle for your system. (If your flavor of Linux doesn’t use .deb or .rpm files,
you can get the .tar.gz version.)

Double-click the downloaded file and you should be prompted to go through a stan‐
dard installation. You may be asked for an administrative password if you are instal‐
ling VS Code for all users. Different distributions will put VS Code in different spots,
and different desktops have different app launchers. You can also launch VS Code
from the command line using the code command.

As with the other operating systems, we want to add the C/C++ extension and then
check that we can access GCC from the Terminal tab.

Pull up the Extensions panel in VS Code by clicking the “boxes” icon shown in
Figure 1-10. You can search for the simple letter “C” and likely find the correct exten‐
sion at the top of the results.

Getting Started | 13

https://oreil.ly/ptJFA

Figure 1-10. VS Code extensions on Linux

To try out the Terminal tab, open it from the View → Terminal menu item. You
should see a new section at the bottom of your editor space. Go ahead and try run‐
ning our GCC check command (gcc -v) in that new area. You should see (verbose
and slightly messy) results similar to Figure 1-11.

Figure 1-11. Trying GCC in VS Code on Linux

14 | Chapter 1: The ABCs of C

Hooray, hooray. Hopefully, you have a simple C development environment up and
running. Let’s go write some code!

Creating a C “Hello, World”
With your editor and compiler in place, we can try out the acclaimed first program
many developers write in any new language: the “Hello, World” program. It is meant
to show you can write valid code in the new language and that you can output infor‐
mation.

C, as a language, can be terse. We’ll be getting into all the nitty-gritty of semicolons,
curly braces, backslashes, and other strange symbols in this first program, but for
now, copy this small bit of code verbatim. You can create a new file in VS Code using
a right-click in the Explorer on the left, or using the File → New File menu item, or by
pressing Ctrl+N.

#include <stdio.h>

int main() {
 printf("Hello, world\n");
}

Go ahead and save the file and name it hello.c. We’ll also go ahead and open the Ter‐
minal in VS Code (View → Terminal menu item or Ctrl+`). You should see some‐
thing similar to Figure 1-12.

Figure 1-12. “Hello, World” and our Terminal tab

Getting Started | 15

If you know other languages already then you can probably guess what’s happening.
Either way, let’s take a quick moment to review each line. But don’t worry if some of
these explanations feel opaque. Learning to program requires a lot of practice and a
lot of patience. Later chapters will help you reinforce both skills.

#include <stdio.h>

This line loads the header file for the “standard input/output” library. Libraries
(roughly speaking) are external pieces of code that can be attached to your own code
when you run gcc. Header files are succinct descriptions of these external entities. It’s
a very common line for a very popular part of a very common library. Among other
things, this header includes the definition of the printf() function we use to get our
actual output. Almost every C program you write will use it. This line is always at the
top of the file, although as we’ll see in Chapter 6 you will often use several libraries,
each with their own header file #include line.

int main() {

Complex programs can have dozens (even hundreds or thousands) of separate C files.
Separating big problems into tinier parts is a fundamental part of being a good pro‐
grammer. These smaller “bites” are easier to debug and maintain. They also tend to
help you find moments of repeated tasks where you can reuse code you have already
written. But whether you have a big, complex program, or a tiny, simple one, you
need some place to start. This line is that starting place. The main() function is
always required, though it occasionally looks a little different. We’ll tackle types like
the int you see at the beginning of the line in Chapter 2 and look more closely at
functions in Chapter 5. But pay attention to that { at the end of the line. That charac‐
ter opens a block of code.

 printf("Hello, world\n");

This statement is the heart of our program. Less romantically speaking, it represents
the body of our main() function block. Blocks contain one or more lines of code
bounded (in C) by curly braces, and we often refer to the content of any block as its
body. This particular body does one thing: it uses the printf() function (again,
defined in stdio.h) to produce a friendly, global greeting. We’ll be going through
printf() and things like the "Hello, world\n" snippet in much more detail in
“printf() and scanf()” on page 34.

I also want to quickly highlight the semicolon at the end of the line. That bit of punc‐
tuation tells the C compiler when you have finished a statement. That marker doesn’t
mean much here with only one statement in our block, but it will help down the road
when we have more statements and statements that are messy enough to span several
lines.

16 | Chapter 1: The ABCs of C

And last but certainly not least, here is the “closing” curly brace to match up with the
“opening” curly brace two lines up:

}

Every block will have these open/close braces. One of the most common mistakes in
programming is having one too many open or close braces. Happily, most modern
editors have fancy syntax highlighting that can help you match up any pair of braces
(and thus identify any braces that don’t have a partner as well).

Compiling Your Code
Now we finally get to put all that software installation headache to use! In the Termi‐
nal tab, run the following command:

gcc hello.c

If all goes well, you won’t see any output, just a new command prompt. If something
did go wrong, you’ll get an error message (or many messages) that hopefully point
you to what needs fixing. We’ll see debugging tricks as we encounter more examples,
but for now, look back at your code and the example above to see if you can spot any
differences.

If you are still having trouble with this first file, don’t give up!
Check out Appendix A on downloading the sample code for this
book from GitHub. You can compile and run the code as is, or use
our examples as a starting point for your own tweaks and modifica‐
tions.

Running Your Code
After successfully compiling our first C program, how do we test it? If you list the
files in your directory, you’ll notice a new file named a.out on Linux and macOS sys‐
tems, and a.exe on Windows systems. To run it, just type its name. On many Linux
and macOS systems, your executable path may not include your working directory.
In that case, use the local path prefix “./”. (The period means the current directory; the
slash is just the standard path separator character.) Figure 1-13 shows the output.

Getting Started | 17

Figure 1-13. Saying hello on macOS and Linux

Figure 1-14 shows the output on Windows.

Figure 1-14. Saying hello on Windows

On Windows, the .exe suffix marks a file as executable. However,
you do not need to include the suffix when you run the program.
You can just type a. Depending on the command prompt applica‐
tion used (cmd or PowerShell, for example), you may also need to
use the local directory prefix similar to macOS or Linux (.\).

18 | Chapter 1: The ABCs of C

As a name, though, “a” is pretty boring and definitely doesn’t tell us what the program
does. You can use the -o (output) option to the gcc command to specify a better
name for your program if you like.

On Linux and macOS:

$ gcc hello.c -o hello

On Windows:

C:\> gcc hello.c -o hello.exe

Try that command and then look at the files in your folder. You should have a newly
minted hello (or hello.exe) file that you can run. Much nicer.

Distributing Your Code
You have a fully functioning C program compiled and ready to take over the world!
How do you let someone else run your code? That question is unfortunately messy. If
you want to share your a.out or hello.exe file with someone running the same operat‐
ing system as you on similar hardware, you can just copy the program to their
machine and it will work. But if you compiled your hello.exe on a Windows box and
want to share it with a macOS user, you’re out of luck. We have compiled a native
application. Native applications can get the best performance out of your hardware,
but that comes at the expense of needing a different compiled version (sometimes
called a “binary”) for every platform you want to support.

You can certainly share your source code, though! If you email your hello.c file from
Windows to Linux, or from macOS to Windows, or from an Ubuntu distro to Arch,
the recipient can set up their own development environment and compile your code.

Next Steps
Whew…that’s a lot of effort to get your computer to say hi! If it helps, it took human‐
ity eons to get the first computer to do what you just did. :) But now that we have a
working development environment, the next chapters will explore the details of the C
language and show you how to write, debug, and maintain much more interesting
programs. And with our microcontrollers, the popular term for smaller computers
typically used for dedicated tasks like reporting the current temperature or counting
the number of boxes waiting on a conveyor belt, we’ll turn those interesting programs
into interesting, physical creations!

Next Steps | 19

CHAPTER 2

Storing and Stating

The essence of programming is the manipulation of data. A programming language
provides humans an interface for telling the computer what that data is and what you
want to do to that data. Languages designed for powerful machines may hide (or
infer) a lot of the details about storing data, but C remains fairly simple in this regard.
Perhaps simple is the wrong word, but its approach to data storage is straightforward
while still allowing for complex manipulation. As we’ll see in Chapter 6, C also pro‐
vides the programmer with a window into the low-level aspects of where the data is
stored in the computer’s memory. When we start working directly with microcontrol‐
lers in the latter half of this book, that access will become more important.

For now though, I want to tackle some of the basics of C’s syntax so that we can start
composing original programs rather than just copying lines of code from a book.
This chapter has plenty of those lines, and you are heartily encouraged to copy them
as you read! But hopefully, we’ll get to the point where you can create novel answers
to your own programming challenges.

If you already feel comfortable with programming from your expe‐
rience in another language, feel free to skim this chapter. You
should read “printf() and scanf()” on page 34 on the printf() and
scanf() functions, but other sections will likely be familiar.

Statements in C
Another concept you hear about as a fundamental element of programming is the
notion of an algorithm. Algorithms are sets of instructions that process data and gen‐
erally get things done on computers. One classic analogy for an algorithm is a kitchen
recipe. Given a set of ingredients, here are the individual steps you take to turn those

21

ingredients into something like a cake. In programming, those “individual steps” are
statements.

In C, statements come in a variety of flavors. In this chapter, I’ll be looking at declara‐
tion statements, initialization statements, function calls, and comments. Later chap‐
ters will tackle control statements and not-quite statements like creating your own
functions and preprocessor commands.

Statement Separators
Statements are separated from each other using a semicolon. Semicolons in C work a
lot like periods do in English. Long sentences in English might span multiple lines,
but you know to keep going until you see a period. Likewise, you might have several
short sentences bunched up together on a single line, but you can easily distinguish
them based on those periods. It can be easy to forget the semicolon at the end of a
statement. If each statement fits on its own line, it becomes tempting to assume the
compiler “sees” the same structure that humans can so easily pick out. Unfortunately,
the compiler cannot. Even with our first, very simple program from “Creating a C
‘Hello, World’” on page 15, the statement we used to print out some text in our
terminal window needs to end with a semicolon. If you’re curious, try deleting that
semicolon, save your file, and then recompile it. You’ll end up with something like
this:

$ gcc hello.c
hello.c:4:27: error: expected ';' after expression
 printf("Hello, world\n")
 ^
 ;
1 error generated.

Yuck. An error. But at least the error message is useful. It tells us two critical things:
what went wrong (“expected ‘;' after expression”) and where the compiler had trouble
(“hello.c:4:27”, or the hello.c file, line 4, column 27). I don’t want to scare you off with
an error message so early in your exploration of C, but you will definitely run into
them. A lot. Happily, it just means you need to look at your source code a little closer
and then try again.

Statement Flow
The separators tell the compiler where one statement ends and where the next begins.
That order matters, too. The flow of statements is top to bottom, or left to right if
multiple statements are on the same line. And multiple statements are definitely
allowed! We can quickly expand our simple “Hello, World” program to be a little
more verbose.

22 | Chapter 2: Storing and Stating

When you have the time and energy, I highly recommend tran‐
scribing the source code by hand. This will give you a little more
practice with C’s syntax. You’ll often make a mistake or two, as well.
Spotting and fixing those mistakes is a great way to learn! Even if
those mistakes can be a little frustrating from time to time.

Consider the following program, ch02/verbose.c:

#include <stdio.h>

int main() {
 printf("Ahem!\n");
 printf("May I have your attention, please?\n");
 printf("I would like to extend the warmest of\n");
 printf("greetings to the world.\n");
 printf("Thank you.\n");
}

We start with a very similar statement to the one we used in hello.c. The only
real difference is the text we print. Note that we end the line with our semicolon
separator.

We have a second printf() statement similar to the first. It will indeed be exe‐
cuted second.

And just to drive the point home, this third statement will be called after the first
two. And the last two calls will come after this one.

Here’s the output of our simple multiline upgrade:

$ gcc verbose.c
$./a.out
Ahem!
May I have your attention, please?
I would like to extend the warmest of
greetings to the world.
Thank you.

Nice. You can see how the output precisely follows the order of the statements in our
program. Try switching them around and confirm for yourself that the flow of the
program goes top to bottom. Or try putting two printf() calls on the same line. This
isn’t meant to be tricky. I just want you to practice writing, running, and compiling
code as often as possible. The more examples you try, the better you’ll get at avoiding
the simple mistakes and the easier it will be to follow along with new code examples.

Statements in C | 23

https://oreil.ly/wqnYC

Variables and Types
We can do much more than just print text, of course. We can also store and manipu‐
late data as we work to implement an algorithm or perform a task. In C (and in most
languages), you store data in variables, which are powerful tools in problem solving.
Those variables have types, which dictate what kinds of data you can store. Both of
these concepts figure heavily in two of the statement flavors I mentioned: declarations
and initializations.

A variable is a placeholder for a value. A variable can hold simple values like numbers
(how many students are in the class? what’s the total cost of the items in my shopping
cart?) or more complex things (what’s the name of this particular student? what are
each student’s grades? or even an actual complex value like the square root of –1).
Variables can store data received from users, and they allow you to write programs
that can solve general problems without rewriting the program itself.

Getting User Input
We’ll be exploring the details of defining and initializing variables shortly, but let’s
first run with that idea of getting some input for the user to create dynamic output
without recompiling our program every time. We’ll return to our “Hello, World” pro‐
gram and upgrade it a little. We can ask the user to give us their name and then greet
them personally!

You’ve seen one output statement so far, our printf() function call we used to greet
the planet. There is a counterpart, input function, too: scanf(). You can use print/
scan pairs to prompt the user and then wait for them to type in an answer. We’ll store
that answer in a variable. If you have done some programming in other languages,
this next program should look familiar. If you’re new to programming and to C, the
listing may be a little dense or weird—and that’s OK! Typing in these programs and
getting them to run after fixing any typos you make is a useful way to learn.

A lot of programming is just thoughtful plagiarism. That’s a bit of a
joke, but only a bit. You start out much the way humans start out
with spoken language: repeating something you see (or hear)
without necessarily understanding everything about it. If you per‐
form that repetition enough, you discover the patterns inherent in
the language and learn where you can make useful changes. Make
enough of those useful changes, and you discover how to create
new, meaningful things from scratch. That is our goal.

24 | Chapter 2: Storing and Stating

1 While some support for wide characters was added to C in the1990s, C generally does not deal well with the
more popular UTF character encodings such as UTF-8, UTF-16, etc. Those encodings allow for multibyte
characters, and C’s char type was built with single bytes in mind. (More on types in “Strings and Characters”
on page 27.) If you work with international or localized text, you’ll want to research some libraries to help.
While I won’t cover localization in detail, I do go into more depth on libraries in general in Chapter 7.

This ch02/hello2.c program is simply another bit of code you can copy as you start
down the path of programming discovery:

#include <stdio.h>

int main() {
 char name[20];

 printf("Enter your name: ");
 scanf("%s", name);
 printf("Well hello, %s!\n", name);
}

Hopefully, the structure of this program looks familiar. We include our standard I/O
library, we have a main() function, and that function has a body with multiple state‐
ments inside a pair of curly braces. That body, though, contains several new items.
Let’s go through each line.

 char name[20];

Here is our first example of the declaration of a variable. The variable’s name is, well,
“name”. Its type is char, which is what C uses to refer to a single (ASCII) character.1 It
is also an array, meaning it stores multiple char values in sequence. In our case, 20
such values can be stored. More on arrays in Chapter 4. For now, just note that this
variable can keep a person’s name as long as it is less than 20 characters long.

 printf("Enter your name: ");

This is a fairly standard printf() call—very similar to the one we used in our first
program back in “Creating a C ‘Hello, World’” on page 15. The only meaningful dif‐
ference is the last characters inside the set of double quote marks. If you look at
hello.c or verbose.c, you’ll notice the last two characters are a backslash and the letter
“n”. The combination of those two characters (\n) represents a single “newline” char‐
acter. If you add \n at the end, you are printing one line and any subsequent call to
printf() will go on the next line. Conversely, if you omit the \n, the cursor in the
terminal stays on the current line. This can be handy if you want to do things like
print out a table but do so one table cell at a time. Or, in our case, if you want to
prompt the user for some input, and then allow them to enter their response on the
same line as the question.

 scanf("%s", name);

Variables and Types | 25

https://oreil.ly/OrUqu

2 You might still see discussions online about including or excluding a “carriage return,” which is just old coder
jargon for an end-of-line marker. It is a term inherited from early typewriters which had a literal mechanism
to return the paper carriage to a starting position so you could begin the next line of text.

Here is that new function I mentioned at the beginning of this section. The scanf()
function “scans in” characters and can convert them into C data types like numbers,
or in this case, an array of characters. Once converted, scanf() expects to store each
“thing” in a variable. In this line, then, we’re scanning for a bunch of characters and
we’ll store them in our name variable. We’ll look at the very strange syntax of the stuff
inside the parentheses in “printf() and scanf()” on page 34.

 printf("Well hello, %s!\n", name);

And lastly, we want to print our greeting. Again, this should look familiar, but now
we have more strange syntax. If the %s jumps out at you as the same weird thing that
was in the call to scanf(), congrats! You just spotted a very useful pattern. That pair
of characters is exactly what C uses when printing or scanning an array of characters.
An array of characters is such a common type in C that it has a simpler name: string.
Hence the use of an “s” in this pair.

So what’s happening with name? The scanf() call took whatever name you typed in
(not including the Return key2 you pressed) and stored it in memory. Our name vari‐
able contains the memory location of those characters. When we come along with
our printf() call, our first argument (the "Well hello, %s!\n" part) contains a few
literal characters such as those in the word “Well” and a placeholder for a string (the
%s part). Variables are great for filling placeholders. Whatever name you typed in will
now be displayed back to you!

Also notice that we do include the special \n newline here on our greeting. That
means we’ll print the greeting and then “hit the Return key” so that anything else to
be shown in the terminal will go on the next line.

Let’s go ahead and run the program to see how things work. You can use the Terminal
tab at the bottom of VS Code, or the Terminal or Command app for your platform.
You’ll need to compile it first with gcc then run either a.out or whatever name you
chose using the -o option. You should get something similar to Figure 2-1.

Notice that when you type in a name, it appears on the same line as the prompt ask‐
ing you to enter it. That is exactly what we wanted when we left off the newline (\n)
character. But try running it again and type in a different name. Did you get the
results you expected? Try a third time. This dynamic behavior of responding to user
input makes variables invaluable in computer programming. The same program can
produce different output based on different input without being recompiled. That
ability, in turn, has helped make computer programs invaluable to our everyday lives.

26 | Chapter 2: Storing and Stating

Figure 2-1. Our tailored Hello World output

Strings and Characters
Let’s look a little closer at the char type as well as its close cousin, the array of charac‐
ters—char[]—better known as a string. When you declare a variable in C, you give it
both a name and a type. The simplest declaration looks something like this:

char response;

Here we create a variable named response with a type of char. The char type holds
one character. We could store a “y” or an “n”, for example. Chapter 5 will go through
the memory address and reference details, but for now, just remember that a variable
declaration sets aside a spot in memory with enough space to store one of whatever
type you specified. If we had a series of questions to ask, then we could create a series
of variables:

char response1;
char response2;
char finalanswer;

Each of these variables can hold one character. But again, when you use a variable,
you don’t have to predict or decide what that character will be in advance. The con‐
tents can vary. (Vary…variable…get it? :)

Variables and Types | 27

3 American Standard Code for Information Interchange, originally a 7-bit encoding built for Teletype
machines. Now with 8-bit variants, it is still based on English. Other, more extensible encodings such as
Unicode and its UTF-8 option have become the norm.

C compilers determine which encoding your source characters use. Older compilers
use the older ASCII3 format while more recent compilers typically use UTF-8. Both
encodings include lower- and uppercase letters, numbers, and most of the symbols
you see on your keyboard. To talk about a specific character rather than a variable of
type char, you use single quotes to delimit it. For example, 'a', 'A', '8', and '@' are
all valid.

Special characters
A character can also be special. C supports things like tabs and newlines. We’ve seen
the newline character (\n), but there are also a few other special characters listed in
Table 2-1. These special characters are coded using “escape sequences,” and the back‐
slash is known as the “escape character”.

Table 2-1. Escape sequences in C

Char ASCII Name Description
\a 7 BEL Make the terminal “beep” when printed

\n 10 LF Line Feed (standard line ending on Mac and Linux)

\r 13 CR Carriage Return (when used with \n, common line ending on Windows)

\t 15 HT (Horizontal) Tab

\\ 92 Used to place a literal backslash in a string or char

\' 39 Used to place a literal single quote in a char (no escape required in a string)

\” 34 Used to place a literal double quote in a string (no escape required in a char)

This is not an exhaustive list, but covers the characters we will use in this book.

These named shortcuts only cover the most popular characters. If you have to use
other special characters, say an end of transmission (EOT, ASCII value 4) signal from
a modem, you can give the character’s ASCII value in octal with the backslash. Our
EOT character, then, would be '\4', or sometimes you see three digits: '\004'.
(Since ASCII is a 7-bit encoding, three octal digits cover the highest ASCII character.
Which, if you’re curious, is delete (DEL, ASCII 127) or '\177' as an octal escape
sequence. Some folks prefer the consistency of always seeing three digits.)

You might not need many of these shortcuts, but since Windows path names use the
backslash character, it’s important to remember that some characters require this spe‐
cial prefix. And, of course, the newline character will continue to show up in many of
our print statements. As you may have noticed with the octal escape sequences, the

28 | Chapter 2: Storing and Stating

prefixing backslash is included inside the single quotes. So a tab is '\t' and the back‐
slash is '\\'.

Strings

Strings are a series of chars, but a very formalized series. Many programming lan‐
guages support such series, called arrays. Chapter 4 introduces arrays in much more
detail, but the array of char type—char[] in C syntax—is so common that I want to
mention it separately.

We’ve been working with strings without being very explicit about them. In our very
first hello program, we called printf() with a string argument. A string in C is a col‐
lection of zero or more chars with a special, final “null” character, \0 (with the ASCII
value of 0). You typically include the characters in your code between double quotes,
such as our "Hello, world!\n" argument. Happily, when you use those double
quotes, you don’t have to add the \0 yourself. It is implicit in the definition of a string
literal.

Declaring string variables is as simple as declaring char variables:

char firstname[20];
char lastname[20];
char jobtitle[50];

Each of these variables could store simple things like a name, or more complex things
like a multipart title, e.g., “Senior Code and Tasty Pie Developer.” A string can also be
empty: “”. That may seem silly, but think about forms where you are entering things
like names. If you happen to be a wildly successful pop star with just one name, the
lastname variable above could be given the valid value "" (i.e., just the terminating
'\0') to indicate that Drake and Cher are doing just fine without a surname.

Numbers
Not surprisingly, C also has types that can store numeric values. Or more precisely, C
has types for storing numbers larger than what typically fits in variable of type char.
(Even though the examples in this chapter so far have used char for storing actual
characters, it’s still a numeric type and is good for storing small numbers that have
nothing to do with a character encoding.) C breaks these numeric types into two sub‐
categories: integers and floating point numbers (i.e., decimals).

Integer types

The integer types store simple numbers. The main type is called int, but there are
many variations. The main difference in the variations is the size of the biggest num‐
ber that can be stored in a variable of the given type. Table 2-2 summarizes the types
and their storage capacities.

Variables and Types | 29

4 The char type can actually be either signed or unsigned depending on your compiler.

Table 2-2. Integer types and their typical sizes

Type Bytes Range Notes
char 1 –127 to +127 or 0 to 255 Normally for letters; can also store small

numbers

short 2 –32,767 to +32,767

int 2 or 4 –32,767 to +32,767 or –2,147,483,647 to +2,147,483,647 Varies by implementation

long 4 –2,147,483,647 to +2,147,483,647

long long 8 –9,223,372,036,854,775,807 to +9,223,372,036,854,775,807 Introduced in C99

While char is defined as one byte, the other sizes are system dependent.

Most of the types above are signed types,4 which means that they can store values less
than zero. All five types also have an explicit unsigned variation (e.g., unsigned int
or unsigned char) that is the same size in bits/bytes but does not store negative val‐
ues. Their ranges start at zero and end at roughly double the top of the signed range,
as shown in Table 2-3.

Table 2-3. Unsigned integer types and their typical sizes

Type Bytes Range
unsigned char 1 0 to 255

unsigned short 2 0 to 65535

unsigned int 2 or 4 0 to 65535 or 0 to 4,294,967,295

unsigned long 4 0 to 4,294,967,295

unsigned long long 8 0 to 18,446,744,073,709,551,615

Here are some sample integer type declarations. Note the declaration of the x and y
variables. You often see coordinates on a grid or graph discussed in terms of “x and y.”
C allows you to declare multipe variable names with the same type using a comma to
separate them. There’s nothing special about this format, but if you ever have some
short, related variable names, this might be a nice option.

int studentcount;
long total;
int x, y;
short volume, chapter, page;
unsigned long long nationaldebt;

If you have small values to store, say “up to one dozen” or “top 100,” remember that
you can use the char type. It is only 1 byte in length and the compiler doesn’t care if
you ever print the value as an actual character or as a simple number.

30 | Chapter 2: Storing and Stating

5 These formats were specified by the IEEE (Institute of Electrical and Electronics Engineers). The 32-bit ver‐
sion is called “single precision,” and the 64-bit version is “double.” Higher precisions exist, and the spec (IEEE
754) continues to be developed.

6 The GNU C compiler, for example, does not impose any limit. But for compatibility and conformity, sticking
to much less than 31 characters is still advisable.

Floating point types

If you are storing fractional or financial numbers, you can use the float or double
types. These are both floating point types where the decimal point is not fixed (e.g., it
can float), capable of storing values like 999.9 or 3.14. But because we are talking
about computers that think in discrete chunks, the floating point types store an
approximation of the value encoded in 1s and 0s like an int. The float type is a 32-
bit encoding that can store a wide range of values from very small fractions to very
large exponentials. But float is most accurate in a narrow band between roughly
–32k to 32k and six significant places after the decimal point.

The double type has “double” the precision of a float.5 This means roughly 15 deci‐
mal digits will be accurately represented. We’ll see a few places where this approxima‐
tion can cause problems, but for general purposes like a receipt total or a reading
from a temperature sensor, these types are sufficient.

As with the other types, you place the type before the name:

float balance;
float average;
double microns;

Since normal decimal numbers can also store integral values like 6
(as 6.0), it might be tempting to use float for your default numeric
type. But manipulating numbers encoded with decimal points can
be expensive on tiny CPUs like an Arduino. And even on big chips,
it is still more expensive than working with simple integers. For
performance and accuracy reasons, most C programmers stick
with int unless they have an explicit reason not to.

Variable Names
Regardless of what type a variable is, it has a name. For the most part, you are free to
use any name you want, but there are a few rules you have to follow.

In C, variable names can start with any letter or the underscore character (“_”). After
that initial character, a name can have more letters, more underscores, or numbers.
Variable names are case sensitive (total and Total are not the same variable) and are
(usually) limited to 31 characters long,6 although convention keeps them shorter.

Variables and Types | 31

https://oreil.ly/rxm00
https://oreil.ly/rxm00

C also has several keywords that are reserved for use by the C language itself. Because
the keywords in Table 2-4 already mean something to C, they cannot be used as vari‐
able names. Some implementations may reserve other words (such as asm, typeof,
and inline), but most alternate keywords begin with one or two underscores to help
make conflicts with your own variable names unlikely.

Table 2-4. C keywords

Reserved words
_Bool default if static

_Complex do int struct

_Imaginary double long switch

auto else register typedef

break enum restrict union

case extern return unsigned

char float short void

const for signed volatile

continue goto sizeof while

If you do stumble upon a conflict with a keyword when declaring your variables,
you’ll see an error similar to the error you get if you use an invalid variable name,
such as one starting with a number:

badname.c: In function ‘main’:
badname.c:4:9: error: expected identifier or ‘(’ before ‘do’
 4 | float do;
 | ^~
badname.c:5:7: error: expected identifier or ‘(’ before numeric constant
 5 | int 5r;
 | ^~

That phrase “expected identifier” is a strong indicator your variable is the cause of the
error. The compiler was expecting a variable name but found a keyword instead.

Variable Assignments
In our hello2.c example, we relied on a rather implicit assignment to our name vari‐
able. As an argument to the scanf() function, whatever the user types is stored in
that variable. But we can (and often do) make direct assignments to variables. You use
the equal sign (“=”) to indicate an assignment like so:

int total;
total = 7;

You have now successfully stored the value 7 in the variable total. Congratulations!

32 | Chapter 2: Storing and Stating

You can overwrite that value at any time, too:

int total;
total = 7;
total = 42;

While back-to-back assignments is a bit wasteful, there is nothing wrong with this
snippet of C. The variable total will only retain one integer value, though, so the
most recent assignment is the winner, 42 in this case.

You often see variables defined and assigned an initial value (initialized in
programmer-speak) at the same time:

int total = 7;
char answer = 'y';

Both total and answer now have values you can use, but both can still be changed as
needed. That’s exactly what variables do.

Literals
Those simple values we are plugging into variables in these examples are called liter‐
als. A literal is just a value that needs no interpretation. Numbers, characters inside
single quotes, or strings inside double quotes all count as literals:

int count = 12;
char suffix = 's';
char label[] = "Description";

Hopefully, those first two variable definitions look familiar. But notice when we ini‐
tialized our string called label, we did not give the array a length. The C compiler
infers the size from the literal we use in the initialization. In this case, then, label is
12 characters long; 11 for the letters in the word “Description” and one more for the
terminating '\0'. You can give string variables more room if you know you’ll need it
later in your code, but you should not specify too little room.

char automatic[] = "A string variable with just the right length";
char jobtitle[50] = "Chief Acceptable Length Officer";
char warning[5] = "This is a bad idea.";

If you do try to assign a string literal that is too long for its char[] variable, you’ll
likely see a warning from the compiler:

toolong.c: In function ‘main’:
toolong.c:6:21: warning: initializer-string for array of chars is too long
 6 | char warning[5] = "This is a bad idea.";
 | ^~~~~~~~~~~~~~~~~~~~~

That’s a fairly specific error, so hopefully you’ll find it easy to fix. Your program will
still run, by the way. Notice that the compiler gave you a warning rather than an error
as we’ve seen in some previous examples with compiler problems. Warnings typically

Variables and Types | 33

mean the compiler thinks you are making a mistake, but you get the benefit of the
doubt. It’s usually best to address warnings anyway, but it is not required.

printf() and scanf()
We have already seen how to print out information using printf() and how to
accept user input with scanf(), but I glossed over many of the details of both func‐
tions. Let’s look at some of those details now.

printf() Formats
The printf() function is C’s primary output function. We have already used it for
printing simple strings like "Hello, world\n". We also peeked at using it to print a
variable in “Getting User Input” on page 24. It can print all variable types, you just
need to supply the correct format string.

When we call printf(), the first thing we supply is usually a string literal. That first
argument is known as the format string. You can have simple strings that are echoed
“as is” to the terminal, or you can print (and format) the values of variables. You use
the format string to let printf() know what’s coming. You do that by including for‐
mat specifiers such as our %s from ch02/hello2.c. Let’s print a few of those variables we
have been creating while discussing declarations and assignments. Consider ch02/
hello3.c:

#include <stdio.h>

int main() {
 int count = 12;
 int total = 7;
 char answer = 'y';
 char jobtitle[50] = "Chief Acceptable Length Officer";
 // char warning[5] = "This is a bad idea.";

 printf("You can have %d, you currently have %d.\n", count, total);
 printf("You answered: %c\n", answer);
 printf("Please welcome our newest %s!\n", jobtitle);
}

And here’s the result:

ch02$ gcc hello3.c
ch02$./a.out
You can have 12, you currently have 7.
You answered: y
Please welcome our newest Chief Acceptable Length Officer!

Compare the output to the source code. You can see that we mostly print out the
characters in our format string as is. But when we encounter a format specifier, we

34 | Chapter 2: Storing and Stating

https://oreil.ly/DcU5k
https://oreil.ly/qhIIT
https://oreil.ly/qhIIT

substitute the value of one of the arguments that follow the format string. Look
closely at our first call to printf(). We have two format specifiers in the format
string. After that string, we supply two variables. The variables fill in the format
specifiers in order, left to right. If you check the output, you can see that first line of
output does indeed include the value of count first, followed by the value of total.
Neat. And we got the output of our char and string variables, too.

If you noticed that each type uses a different specifier, congratulations! You’re finding
the important differences in these statements. (And if it all still looks a little like gib‐
berish, don’t give up! The patterns—and the things that don’t fit the patterns—will
start to stand out as you read and practice more.) In fact, printf() has quite a range
of format specifiers, as shown in Table 2-5. Some are obvious and are clearly associ‐
ated with a particular type. Others are a little more esoteric, but that’s what books are
for. You’ll memorize the few specifiers you use most often and can always look up the
less popular ones when you need them.

Table 2-5. Common format specifier types for printf()

Specifier Type(s) Description

%c char Print out a single character

%d int, short, long Print integer values in base 10 (“decimal”)

%f float, double Print floating point values

%i int, short Print integer values in base 10

%li, %lli long, long long Print long integer values in base 10

%s char[] (string) Print array of char as text

There are other formats as well, but I’ll leave those for later where we need to print
out odd or special bits of data. These formats will cover the vast majority of what you
need day-to-day. Appendix B includes a more detailed discussion of all the formats
used in this book.

Tailored Output
But what about formatting those values? After all, C uses the phrases “format string”
and “format specifier.” You add information to the format specifier to achieve this
goal. One of the most common examples of this is printing floating point numbers
like bank account balances or analog sensor readings. Let’s give ourselves some inter‐
esting decimals and try printing them out.

#include <stdio.h>

int main() {
 float one_half = 0.5;
 double two_thirds = 0.666666667;

printf() and scanf() | 35

 double pi = 3.1415926535897932384626433;

 printf("1/2: %f\n", one_half);
 printf("2/3: %f\n", two_thirds);
 printf("pi: %f\n", pi);
}

We declare three variables, one float and two double types. We use the %f format
specifier in our printf() statements. Great! Here’s what we get after compiling and
running the program:

1/2: 0.500000
2/3: 0.666667
pi: 3.141593

Hmm, they all had six decimal places, even though we didn’t specify how many we
wanted and none of our variables have exactly six decimal places. To get just the right
amount of information, you give the format specifier some extra details. All specifiers
can accept both width and precision arguments. Both are optional, and you can sup‐
ply either or both. The extra details look like a decimal number: width.precision
and these details go between the percent sign and the type character, as shown in
Figure 2-2.

Figure 2-2. Implicit casting hierarchy

Using both of these options makes a lot of sense for floating point numbers. We can
now ask for more or less digits. Try changing the three printf() calls in ch02/floats.c
like so:

 printf("1/2: |%5.2f|\n", one_half);
 printf("2/3: |%12f|\n", two_thirds);
 printf("pi: |%12.10f|\n", pi);

I added the vertical bar or pipe character (|) just before and after the expanded for‐
mat specifiers so that you can see just how the width element affects the output. Take
a look at the new results:

36 | Chapter 2: Storing and Stating

https://oreil.ly/Os37q

1/2: | 0.50|
2/3: | 0.666667|
pi: |3.1415926536|

Our value, 0.5, is displayed with two decimal places of precision in a total field
width of five characters. Because we don’t need all five spots, one space character
is added at the beginning.

A longer decimal number is printed within 12 spots. Notice that we get the same
six decimal places as we did without specifying any width or precision.

An even longer decimal number is shown within 12 spots but includes 10 places
of precision. Notice here that 12 is the total width—including the spots occupied
by the numbers after the decimal point.

For printf(), the precision you request and the actual value you
are printing take precedence over the width if given. You regularly
see floating point formats like “%0.2f” or “%.1f” that give you the
right number of decimal places within the exact number of spots
required. Applying these two example formats to π, for example,
would result in 3.14 and 3.1, respectively.

With other types such as strings or ints, the width option is fairly straightforward. For
example, you can print tabular data quite easily, as shown in ch02/tabular.c, by using
the same widths regardless of the value being printed like so:

float root2 = 1.4142;
float phi = 1.618034;
float pi = 3.1415926;
printf(" %10s%10s%10s\n", "Root 2", "phi", "pi");
printf(" 1x %10.4f%10.4f%10.4f\n", root2, phi, pi);
printf(" 2x %10.4f%10.4f%10.4f\n", 2 * root2, 2 * phi, 2 * pi);

With wonderful columnar results:

 Root 2 phi pi
 1x 1.4142 1.6180 3.1416
 2x 2.8284 3.2361 6.2832

Very nice. And notice how I tackled the column labels. I used format specifiers and
string literals rather than a single string with the labels manually spaced apart. I did it
this way to highlight the use of output widths, even though doing it manually
wouldn’t be difficult. In fact, it would be easier to center the labels over these few col‐
umns manually. If you’re up for a little exercise, open the tabular.c file and try adjust‐
ing that first printf() to see if you can get the labels centered.

printf() and scanf() | 37

https://oreil.ly/nQC7x

While the width option is straightforward for all types, for nonfloating point formats,
the effect of adding the precision option may not be as intuitive. For strings, specify‐
ing a precision results in truncating text to fit the given field width. (For int and char
types, it typically has no effect, but your compiler may warn you not to rely on such
“typical” behavior.)

scanf() and Parsing Inputs
On the flip side of output is input. We took a peek at using the scanf() function to
do this at the beginning of this chapter in “Getting User Input” on page 24. By now
you might recognize the %s we used in that simple program as a format specifier. That
familiarity goes deeper: you can use all of the format specifiers listed in Table 2-5 with
scanf() to get those types of values from user input.

There is one important point I need to make about the variables you use with
scanf(). We got a little lucky scanning for a string in our first example. Strings in C,
if you recall, are really just arrays of type char. We’ll see more on this topic in Chap‐
ters 4 and 6, but for our purpose here, I’ll just note that arrays are a special case of
pointers in C. Pointers are special values that refer to the address (location) of things
in memory. The scanf() function uses the address of a variable, not its value. Indeed,
the point of scanf() is to put a value into a variable. Since arrays are really pointers,
you can use a char array variable directly. But to use numeric and individual char
variables with scanf(), you have to use a special prefix on the variable name, the
ampersand (&).

I’ll go into the & prefix in a lot more detail in Chapter 6, but it tells the compiler to use
the address of the variable—perfect for scanf(). Take a look at this small snippet:

char name[20];
int age;

printf("Please enter your first name and age, separated by a space: ");
scanf("%s %d", name, &age);

Notice the difference in the use of the name variable in the scanf() line and the use of
the &age variable. That is solely down to name being an array and age being a simple
integer. This is regrettably one of those things that is easy to forget. Not regrettably, it
is easy to fix and the compiler will remind you if you forget:

warning: format '%d' expects argument of type 'int *',
 but argument 3 has type 'int' [-Wformat=]
 15 | scanf("%s %d", name, age);
 | ~^ ~~~
 | | |
 | | int
 | int *

38 | Chapter 2: Storing and Stating

When you see this “expects type” error, just remember that int, float, char, and sim‐
ilar nonarray variables always need the & prefix when used with scanf().

Operators and Expressions
With variables and I/O statements, we now have some really powerful building blocks
in our programming toolbox. But storing and printing values is pretty boring as cod‐
ing goes. We want to start doing some work with the contents of those variables. One
of the first rungs up the code complexity ladder is the ability to calculate new values.
In C (and many other languages), you can perform calculations with the help of oper‐
ators, symbols that allow you to do things like add, subtract, multiply, or compare
(i.e., perform an “operation”) on two or more values.

C includes several predefined operators for doing basic mathematic and logic work.
(Advanced math and logic can be done by writing your own functions, which we’ll
look at in Chapter 5.) With the exception of a special ternary operator (?:, discussed
in “The Ternary Operator and Conditional Assignment” on page 63), C’s operators
work with either one or two values. Figure 2-3 shows how these unary and binary
operators fit with values and expressions.

Figure 2-3. Binary operator syntax

Notice that you can use operators on more than two values in a sequence, but under
the hood, C will be treating that sequence as a series of pairs. In general, operators
work with expressions. The term “expression” is quite expansive. An expression can be
as simple as a literal value or a single variable. It can also be so complex that it
requires multiple lines of code to write down. The key thing to remember when you
see discussions of expressions is that they have (or will produce) a value.

Arithmetic Operators
Perhaps the most intuitive operators in C are those used for mathematical calcula‐
tions. Table 2-6 shows the operators built into C.

Operators and Expressions | 39

Table 2-6. Arithmetic Operators

Operator Operation Description

+ Addition Add two values

- Subtraction Subtract the second value from the first

* Multiplication Multiply two values

/ Division Divide the first value by the second

% Remainder Find the remainder after dividing the first (integer) value by the second

You can do math with literals or variables or expressions, or some combination of
those things. Let’s try a simple program to ask the user for two integers and then use
those values to do some calculations.

#include <stdio.h>

int main() {
 int num1, num2;
 printf("Please enter two numbers, separated by a space: ");
 scanf("%d %d", &num1, &num2);
 printf("%d + %d is %d\n", num1, num2, num1 + num2);
 printf("%d - %d is %d\n", num1, num2, num1 - num2);
 printf("%d * %d is %d\n", num1, num2, num1 * num2);
 printf("%d / %d is %d\n", num1, num2, num1 / num2);
 printf("%d %% %d is %d\n", num1, num2, num1 % num2);
}

Try this short program out yourself. You can type it in or open up the ch02/calcs.c file.
Compile and run and you should get output similar to this:

ch02$ gcc calcs.c
ch02$./a.out
Please enter two numbers, separated by a space: 233 17
233 + 17 is 250
233 - 17 is 216
233 * 17 is 3961
233 / 17 is 13
233 % 17 is 12

Hopefully, most of those answers make sense and fit with your expectations. Some
results that seem odd might be our attempt to divide two numbers. Instead of getting
a floating point approximation of something like 8.33333, we got a flat-out 8.
Remember that the int type does not support fractions. If you divide two ints, you
always get another int as the result and any decimal portion is simply dropped. And I
do mean dropped, not rounded. A division result of 8.995, for example, would come
back as simply 8, and a negative answer, say –7.89, would come back as –7.

40 | Chapter 2: Storing and Stating

https://oreil.ly/w13kJ

Order of Operations
But what if we make a more complex expression with two (or more) operators? We
can upgrade our program a little to take three integers and combine them in different
ways. Check out ch02/calcs2.c:

#include <stdio.h>

int main() {
 int num1, num2, num3;
 printf("Please enter three numbers, separated by a space: ");
 scanf("%d %d %d", &num1, &num2, &num3);
 printf("%d + %d + %d is %d\n", num1, num2, num3, num1 + num2 + num3);
 printf("%d + %d - %d is %d\n", num1, num2, num3, num1 + num2 - num3);
 printf("%d * %d / %d is %d\n", num1, num2, num3, num1 * num2 / num3);
 printf("%d + %d / %d is %d\n", num1, num2, num3, num1 + num2 / num3);
 printf("%d * %d %% %d is %d\n", num1, num2, num3, num1 * num2 % num3);
}

Feel free to tweak the code to try other combinations if you like. As it stands, you can
compile and run this program to get the following output:

ch02$ gcc calcs2.c
ch02$./a.out
Please enter three numbers, separated by a space: 36 19 7
36 + 19 + 7 is 62
36 + 19 - 7 is 48
36 * 19 / 7 is 97
36 + 19 / 7 is 38
36 * 19 % 7 is 5

Do these answers match what you expected? If not, it’s likely due to the precedence of
different operators. C does not handle large expressions in a simple, left-to-right
manner. Some operators are more important than others—they have precedence over
lesser operators. C will perform the most important operations first, wherever they
are in the expression, before moving on to do the remaining operations. You’ll often
see the phrase “order of operations” used when talking about evaluating expressions
with a mix of operators.

Multiplication, division, and remainder (*, /, %) operations will all be done before
addition and subtraction (+, -) operations. Where you have a series of the same or
equivalent operators, then those calculations are done left to right. Usually that’s fine
and we can get the answer we need by being a little careful in how we arrange the
parts of our expression. When we can’t rely on a simple arrangement, we can use
parentheses to create a specific, custom order of operations. Consider this snippet:

int average1 = 14 + 20 / 2; // or 14 + 10 which is 24
int average2 = 14 / 2 + 20; // or 7 + 20 which is 27
int average3 = (14 + 20) / 2; // or 34 / 2 which is 17, yay!

Operators and Expressions | 41

https://oreil.ly/wznGj

Here we have three orderings, but only the final one, average3, is correct. The paren‐
thetical expression, 14 + 20, is evaluated first. One way to think about this is that
parentheses have a higher order of precedence than arithmetic operations. You are
free to use parentheses anywhere you like, by the way, even if it only adds visual
clarity to an otherwise correctly ordered expression.

The notion of “visual clarity” is very subjective. If the parentheses
are necessary for calculating the correct answer, then of course you
need to use them. If they are not strictly necessary, use them wher‐
ever they help you read the expression more easily. It is possible to
have too many parentheses, making it more difficult to read your
code. Above all, be consistent in your use.

Parentheses can also be nested if you have particularly messy expressions similar to
some of these:

int messy1 = 6 * 7 / ((4 + 5) / 2);
int messy2 = ((((1 + 2) * 3) + 4) / 5);

In expressions like these, the innermost parenthetical expression, (1 + 2), is evalu‐
ated first and then you work your way back out.

Type Casting
We’ve talked about variable types quite a bit in this chapter, but expressions also have
a type, and sometimes that leads to surprises for the uninitiated. Consider this follow‐
ing snippet:

double one_third = 1 / 3;
int x = 5;
int y = 12;
float average = (x + y) / 2;

Any guesses at what will show up if we print out one_third and average? Try creat‐
ing a small C program to test your theory. Your results should look like this:

One third: 0.000000
Average: 8.000000

But “one third” should be 0.333333 and our average of 12 and 5 should be 8.5. What
happened? Well, the compiler saw a bunch of integers and performed integer math. If
you think back to grade school, you may have learned to do long division with
remainders, i.e., “3 goes into 1 zero times with a remainder of 3.” For C, that means
that integer 1 divided by integer 3 is integer 0. (Recall that the % operator will give you
the remainder value if you need it.)

42 | Chapter 2: Storing and Stating

7 Sometimes you may hear the terms “type promotion” or “automatic type conversion” as well.

Is there any way to get the floating point answer we want? Yes! In fact, there are a
number of ways to get the right answer. Perhaps the simplest way to do this in our
made-up examples is to use floating point literals in the initialization expressions:

double one_third = 1.0 / 3.0;
int x = 5;
int y = 12;
float average = (x + y) / 2.0;

Try changing your program, and hopefully you’ll get new, correct output:

One third: 0.333333
Average: 8.500000

But what about cases where we are not using literals? What if we change our average
calculation in the snippet to use a third, int variable?

int x = 5;
int y = 12;
int count = 2;
float average = x + y / count;

How could we get the average to come out correctly in this case? C supports type cast‐
ing, which allows you to tell the compiler to treat a value as if it had some other type.
Very handy for just this type of situation. We can cast our count variable as a float
like so:

float average = x + y / (float)count;

You put the type you want in parentheses before the value or expression that you
want to convert. And now that we have a floating point value in our calculation, the
rest of the calculation will be “upgraded” to a floating point expression and we’ll get
the correct answer. That process of upgrading is not just a happy accident. The com‐
piler does this on purpose and the process even has a name, implicit type casting.7

Figure 2-4 shows you the upgrade path for many of the numeric types we have
discussed.

In any expression with different types involved, the “biggest” type wins and everyone
else will be promoted to that type. Notice that you can occasionally lose some impor‐
tant information in such conversions. A negative number will lose its sign if it gets
promoted to an unsigned type. Or a long integer might be approximated rather
poorly if it gets promoted to float or even to a double.

Operators and Expressions | 43

Figure 2-4. Implicit casting hierarchy

As with parentheses that add clarity without changing the calculation, you can always
use an explicit cast if it helps you understand what your expression is doing. But note
that the order of operations is still in effect. For example, the following statements are
not all the same:

float average1 = (x + y) / (float)count;
float average2 = (float)(x + y) / count;
float average3 = (float)((x + y)/ count);

If you add those lines to your testing program and then print out the three averages,
you’ll notice that the first two work fine, but the third does not. Do you see why? The
parentheses in the third calculation cause the original, wrong average with all integer
types to be performed before that wrong answer is promoted to a float.

I should also point out that any time you want to move down the
promotion ladder to a “smaller” type, you must use an explicit cast.
Luckily, the compiler can usually catch these situations and warn
you.

44 | Chapter 2: Storing and Stating

Next Steps
Statements comprise the core of any computer language and we’ve seen the basic syn‐
tax for how C uses them to assign values, perform calculations, and print results. You
may have to get used to including that semicolon at the end of statements, but that’ll
start to feel natural before long. Typing in the examples and running them is your
best route to that happy feeling.

If you did try any of the calculating demo programs, you may have been tempted to
enter a zero for one of the divisors. (If you weren’t tempted, go try it now!) However,
C cannot divide by zero and gives up. You will get an error like “Floating point excep‐
tion (core dumped)” or a result like “NaN” for “not a number.” How could we prevent
such a crash? The next chapter will look at comparison operations and control state‐
ments that grant us exactly this ability.

Next Steps | 45

CHAPTER 3

Flow of Control

Now that you have seen the basic format of a statement in C, it’s time to start branch‐
ing out…pun intended. In code, the idea of making decisions and then selecting a
particular bit of code to run instead of some other bit of code is often referred to as
branching or conditional branching. And repetition is often discussed in terms of loop‐
ing or iterating. Collectively, branching and looping statements comprise the flow of
control in a language.

Some problems can be solved with a simple series of linear steps. Many programs that
automate various computer tasks work just this way, taking a tedious routine and
reducing that to a single app you can run whenever you need it. But programs can do
much more than just process a batch of commands. They can make decisions based
on the values in a variable or the state of a sensor. They can repeat tasks like turn on
every LED in a string of lights or process every line in a log file. And they can com‐
bine the decision-making and repetition in complex, nested ways that allow you as
the programmer to solve just about any problem you can think of. In this chapter
we’ll look at how C implements these concepts.

Boolean Values
To ask a question in C, you typically compare two (or more) things. C has several
operators meant for just this task. You can check to see if two things are the same.
You can check to see if two things are not the same. You can see if some value is less
than or greater than some other value.

When you ask questions like “is x the same as y,” you get a yes or no, true or false
answer. In computer science, these are called Boolean values, after George Boole, who
worked to formalize a system of logical operations and outcomes. Some languages

47

1 C99 introduced a new type, _Bool, but we won’t be using this in our lean code. If you find yourself working
with Boolean logic in your own coding, though, be sure to check out the stdbool.h header. You can find more
details on just about everything C in Prinz and Crawford’s C in a Nutshell (O’Reilly).

have an actual type for Boolean values and variables, but C mostly uses integers: 0 is
false/no and 1 is true/yes.1

Technically, any value in C that is not 0 is true. So 1 is true, 2 is
true, –18 is true, etc. I’ll point out anytime I perform a check that
relies on this fact. It can be convenient, and you will definitely see it
used in the real world, but I’ll be concentrating on performing
explicit comparisons wherever I can.

Comparison Operators
Math, of course, is not the only thing computers are good at. When we get into writ‐
ing more complex programs, we’ll need the ability to make decisions about the state
of our system. We’ll need to compare variables against desired values and safeguard
against error conditions. We’ll need to detect the end of lists and other data struc‐
tures. Happily, all of these requirements can be accommodated with C’s comparison
operators.

C defines six operators (shown in Table 3-1) that can be used to compare values. We
use these operators much like we used the mathematical operators from Table 2-6.
You have a variable or value or expression on the left, the operator, and a variable or
value or expression on the right. The difference here is that the result of using a com‐
parison operator is always a Boolean int, meaning it is always a 1 or a 0.

Table 3-1. Comparison operators

Operator Comparison

== Is equal to

!= Is not equal to

< Is less than

> Is greater than

<= Is less than or equal to

>= Is greater than or equal to

In C, the comparison operators work on characters, integers, and floating point num‐
bers. Some languages support operators that work on more complex bits of data like
arrays (I’ll cover these in Chapter 4), records, or objects, but C uses functions (cov‐
ered in Chapter 5) to do that type of work.

48 | Chapter 3: Flow of Control

https://www.oreilly.com/library/view/c-in-a/0596006977/

When comparing two expressions of the same type, you can use the operators in
Table 3-1 without really thinking about it. If you compare expressions of different
types, say a float variable and an int value, the same notion of implicit casting (see
Figure 2-4) applies and the value with the “lower” type will be promoted before being
compared.

We’ll put these comparison operators to use shortly in “Branching” on page 52 and
“Loop Statements” on page 65, but we can take a quick detour and show the 0-or-1
results with some simple print statements. Consider ch03/booleans.c:

#include <stdio.h>

int main() {
 printf(" 1 == 1 : %d\n", 1 == 1);
 printf(" 1 != 1 : %d\n", 1 != 1);
 printf(" 5 < 10 : %d\n", 5 < 10);
 printf(" 5 > 10 : %d\n", 5 > 10);
 printf("12 <= 10 : %d\n", 12 <= 10);
 printf("12 >= 10 : %d\n", 12 >= 10);
}

Go ahead and compile that file and run it. You should see output similar to this:

ch03$ gcc booleans.c
ch03$./a.out
 1 == 1 : 1
 1 != 1 : 0
 5 < 10 : 1
 5 > 10 : 0
12 <= 10 : 0
12 >= 10 : 1

You can see here that a “true” comparison results in a 1, as I noted before. Conversely,
“false” is a 0 behind the scenes.

Logical Operators
Some questions we want to ask in our code cannot be reduced to a single comparison.
A very popular question, for example, is to ask if a variable is within a range of values.
We need to know if the variable in question is both greater than some minimum value
and also less than some maximum. C does not have the kinds of operators that create
ranges or that test for membership in such ranges. But C does support logical opera‐
tors (sometimes you’ll hear about Boolean operators) to help you build up logic
expressions that can be quite complex.

To get started, look at the operators in Table 3-2.

Boolean Values | 49

https://oreil.ly/2dSZx

Table 3-2. Boolean operators

Operator Operation Notes
! Not Unary operator that produces the logical opposite of its operand

&& And Conjunction; both operands must be true to yield true

|| Or Disjunction; true if at least one operand is true

These operators probably look a little strange and you may not be familiar with logi‐
cal operations, so give yourself some time to play with these symbols. Don’t worry if
they aren’t comfortable yet. Boolean algebra is not a common grade school topic! But
you will definitely encounter these operators in code you find online, so let’s make
sure you understand how they work.

Calling it “logic” or “boolean algebra” is useful when discussing
programming languages, but you probably do have experience with
these concepts from human languages (like the English I’m using
here): these operators form conjunctions. The classic “and,” “but,”
and “or” from grammar lessons are roughly equivalent to the &&, !,
and || in C. Putting these Boolean expressions into English can
even help you grasp their intent. Consider “x > 0 && x < 100.” Go
ahead and read that expression out loud: “x is greater than zero and
x is less than 100.” If spelling these expressions out helps, it’s an
easy trick to pull out when coming across new code.

In logic, these operators can be described best by their outcomes. Those outcomes, in
turn, are often shown in truth tables that enumerate all possible combinations of
inputs and their results. Luckily, with only two possible values, true and false, the
combinations are manageable. Each operator gets its own truth table. Table 3-3 lists
the inputs and results for the && operator. Let’s start there.

Table 3-3. The && (and) operator

a b a && b
true true true

true false false

false true false

false false false

As the table illustrates, this is a fairly restrictive operator. Both inputs have to be true
for the result to be true. Per the previous tip, it can be useful to think in terms of an
English conjunction: “We can’t go to the party until both Reg and Kaori are ready.” If
Reg isn’t ready, we have to wait. If Reg is ready, but Kaori isn’t, we have to wait. Of

50 | Chapter 3: Flow of Control

2 Many languages, including C, are clever enough to realize that if Reg is not ready, we don’t even have to
bother checking on Kaori. This behavior is often referred to as “short circuit evaluation.” Short circuit com‐
parisons can be very useful when the tests involved are computationally expensive.

3 And like the && operator, the C compiler optimizes the case where Reg can join by not asking Kaori at all.

course, if neither are ready, we wait.2 It’s only when both are good to go that we can
start our trek. For the record, Reg and Kaori are both quite prompt individuals. Wait‐
ing is rarely an issue. ;)

Table 3-4 shows the results when using || for the same combination of inputs.

Table 3-4. The || (or) operator

a b a || b
true true true

true false true

false true true

false false false

This is a more permissive operator. Back to our party trip metaphor, perhaps it falls
on a weeknight and we can’t expect both of our friends to drop everything and join.
For this variation, if either Reg or Kaori can join, then we will have a nice time with a
good dinner companion. Similar to the && operator, if both can join, then hooray! We
still have an enjoyable evening ahead.3 If both inputs are false, though, the overall
answer is still false and we’ll be stuck on our own.

The final operator C supports for building logic expressions is !. It is a unary opera‐
tor, meaning it operates on only one thing rather than the two that go into a binary
operation like the math or comparison operators require. That means its table,
Table 3-5, is a little simpler.

Table 3-5. The ! (not) operator

a !a
true false

false true

In coding, this “not” operation is often used to guard against errors before continuing
on. Our final party example: we will arrive at the party on time as long as we do not
run into traffic. This operator creates an opposite result. So “traffic is bad” versus “no
traffic is good.” The conversion to English is not quite as literal, but hopefully still
illustrates the point that you can talk about the logic being performed.

Boolean Values | 51

Branching
Now that we know how to translate logic questions into valid C syntax, how can we
put those questions to use? We’ll start with the notion of conditional statements, or
branches. We can ask a question and then execute some group of statements (or not)
depending on the answer.

The if Statement
The simplest conditional statement is the if statement. It has three forms, with the
simplest being a do-it-or-don’t configuration. The syntax of this statement is fairly
straightforward. You supply the if keyword, a test inside parentheses, and then a
statement or code block (a grouping of one or more statements inside curly braces)
like so:

// For single statements, like a printf():
if (test)
 printf("Test returned true!\n");

// or for multiple statements:
if (test) {
 // body goes here
}

If the Boolean expression we use is true, we will execute the statement or block fol‐
lowing the if line. If the expression is false, we will skip the statement or block.

Consider a simple program that asks the user for a numeric input. You might want to
let the user know about uncommon inputs, in case they made a typo. For example, we
could allow negative numbers, but maybe they aren’t the usual way to go. We still
want the program to run, but we alert the user that they might get a surprising result.
The program in ch03/warnings.c is a simple example:

#include <stdio.h>

int main() {
 int units = 0;
 printf("Please enter the number of units found: ");
 scanf("%d", &units);
 if (units < 0) { // start of our "if" code block
 printf(" *** Warning: possible lost items ***\n");
 } // end of our "if" code block
 printf("%d units received.\n", units);
}

If we run this with a few different inputs, you can see the effect of the if statement.
Only the final run shows the warning:

ch03$ gcc warnings.c
ch03$./a.out

52 | Chapter 3: Flow of Control

https://oreil.ly/sP2kJ

Please enter the number of units found: 12
12 units received.

ch03$./a.out
Please enter the number of units found: 7
7 units received.

ch03$./a.out
Please enter the number of units found: -4
 *** Warning: possible lost items ***
-4 units received.

Try entering the program and then compile and run it yourself. Try changing the test
to look for other things like even or odd numbers, or numbers inside or outside a
range.

We can also use if statements to get some more human-friendly responses from
Boolean values. Instead of printing out simple ones and zeros, we can put the tests
into an if statement and then print out any true response. Here’s our updated exam‐
ple; we’ll call it ch03/booleans2.c:

#include <stdio.h>

int main() {
 if (1 == 1) {
 printf(" 1 == 1\n");
 }
 if (1 != 1) {
 printf(" 1 != 1\n");
 }
 if (5 < 10) {
 printf(" 5 < 10\n");
 }
 if (5 > 10) {
 printf(" 5 > 10\n");
 }
 if (12 <= 10) {
 printf("12 <= 10\n");
 }
 if (12 >= 10) {
 printf("12 >= 10\n");
 }
}

Give this new program a try and you should get output similar to this:

ch03$ gcc booleans2.c
ch03$./a.out
 1 == 1
 5 < 10
12 >= 10

Branching | 53

https://oreil.ly/neHcZ

Great! Only tests that return true are printing. That is much more readable. This type
of if combined with printf() is a common debugging trick. Anytime you have an
interesting (or worrying) condition, print out a warning and maybe include the rele‐
vant variables to help you fix the problem.

else

With a simple if, we can see nice output for tests that return true. But what if we also
want to know when a test is false? That’s what the second form of the if statement is
for; it includes an else clause. You always use an else in conjunction with an if. (An
else on its own is a syntax error and the program won’t compile.) The if/else state‐
ment ends up with two branches: one executes if the test is true, the other executes if
the test is false. Let’s build ch03/booleans3.c and get either a thumbs-up or a thumbs-
down answer for every test:

#include <stdio.h>

int main() {
 if (1 == 1) {
 printf(" 1 == 1\n");
 } else {
 printf(" *** Yikes! 1 == 1 returned false\n");
 }
 if (1 != 1) {
 printf(" *** Yikes! 1 != 1 returned true\n");
 } else {
 printf(" 1 != 1 is false\n");
 }
 if (5 < 10) {
 printf(" 5 < 10\n");
 } else {
 printf(" *** Yikes! 5 < 10 returned false\n");
 }
 if (5 > 10) {
 printf(" *** Yikes! 5 > 10 returned true\n");
 } else {
 printf(" 5 > 10 is false\n");
 }
 if (12 <= 10) {
 printf(" *** Yikes! 12 <= 10 returned false\n");
 } else {
 printf("12 <= 10 is false\n");
 }
 if (12 >= 10) {
 printf("12 >= 10\n");
 } else {
 printf(" *** Yikes! 12 >= 10 returned false\n");
 }
}

54 | Chapter 3: Flow of Control

https://oreil.ly/neHcZ

And if we run this with the same inputs from before, we’ll see a gratifying expansion
of answers:

ch03$ gcc booleans3.c
ch03$./a.out
 1 == 1
 1 != 1 is false
 5 < 10
 5 > 10 is false
12 <= 10 is false
12 >= 10

Perfect. We have readable answers for every test. Now we don’t have to wonder if a
test ran and failed or was somehow skipped altogether. We get a useful response every
time. Try upgrading the warnings.c file so that you still get the warning if a number is
“unusual,” but it also gives the user a friendly message indicating their input is in the
expected range.

else if chains
We now have some pretty powerful decision statements in our toolkit. We can do
something or skip it. We can do one thing or an alternative. What if we need to
decide between three statements? Or four? Or more? One possible pattern for this
scenario is the third variation of if: the if/else if/else combination.

C allows you to “chain” if/else pairs together to achieve a one-of-many branch
selection. Consider game scores that get rated with one, two, or three stars depending
on how well you did. You could get that type of answer with this idea of else if
blocks. Here is ch03/stars.c:

#include <stdio.h>

int main() {
 int score = 0;
 printf("Enter your score (1 - 100): ");
 scanf("%d", &score);
 if (score > 100) {
 printf("Bad score, must be between 1 and 100.\n");
 } else if (score >= 85) {
 printf("Great! 3 stars!\n");
 } else if (score >= 50) {
 printf("Good score! 2 stars.\n");
 } else if (score >= 1) {
 printf("You completed the game. 1 star.\n");
 } else {
 // Only here because we have a negative score
 printf("Impossible score, must be positive.\n");
 }
}

Branching | 55

https://oreil.ly/Fe8q9

Here are some example runs:

ch03$ gcc stars.c
ch03$./a.out
Enter your score (1 - 100): 72
Good score! 2 stars.

ch03$./a.out
Enter your score (1 - 100): 99
Great! 3 stars!

ch03$./a.out
Enter your score (1 - 100): 4567
Bad score, must be between 1 and 100.

ch03$./a.out
Enter your score (1 - 100): 42
You completed the game. 1 star.

ch03$./a.out
Enter your score (1 - 100): -42
Impossible score, must be positive.

But maybe our game is special and has four star performances. (Wow!) The file ch03/
stars2.c shows how to bring one more else if clause to the rescue!

#include <stdio.h>

int main() {
 int score = 0;
 printf("Enter your score (1 - 100): ");
 scanf("%d", &score);
 if (score > 100) {
 printf("Bad score, must be between 1 and 100.\n");
 } else if (score == 100) {
 printf("Perfect score!! 4 stars!!\n");
 } else if (score >= 85) {
 printf("Great! 3 stars!\n");
 } else if (score >= 50) {
 printf("Good score! 2 stars.\n");
 } else if (score >= 1) {
 printf("You completed the game. 1 star.\n");
 } else {
 // Only here because we have a negative score
 printf("Impossible score, must be positive.\n");
 }
}

And a few more examples of the output to verify that our new top score works:

ch03$ gcc stars2.c
ch03$./a.out
Enter your score (1 - 100): 100

56 | Chapter 3: Flow of Control

https://oreil.ly/uXLDr
https://oreil.ly/uXLDr

Perfect score!! 4 stars!!

ch03$./a.out
Enter your score (1 - 100): 64
Good score! 2 stars.

ch03$./a.out
Enter your score (1 - 100): 101
Bad score, must be between 1 and 100.

You could continue those chains ad infinitum. Well, within reason. You’ll eventually
be limited by memory and beyond a handful of clauses, it becomes difficult to follow
the flow of such chains. If it feels like you have too many else/if blocks in one chain,
it might be worth spending a little time examining your algorithm to see if there are
other ways to break down your tests.

if gotchas

The syntax of those else/if chains hints at a detail of C’s syntax I previously men‐
tioned briefly. The if and else chunks do not require the curly braces if you have
exactly one statement in the clause. For example, our booleans3.c could be written like
this (ch03/booleans3_alt.c):

#include <stdio.h>

int main() {
 if (1 == 1)
 printf(" 1 == 1\n");
 else
 printf(" *** Yikes! 1 == 1 returned false\n");
 if (1 != 1)
 printf(" *** Yikes! 1 != 1 returned true\n");
 else
 printf(" 1 != 1 is false\n");
 // ...
}

You will definitely run across code like this online. It saves a little typing and can
make for more compact code where the tests and the statements are simple. You can
use the curly braces to create a block with a single statement just as we did in the orig‐
inal booleans3.c code. It works like using extra parentheses in mathematic operations:
not necessary but useful for readability. It is mostly just a matter of style when you
have only the one thing to do. Since doing two or more things always requires the
curly braces, though, I’ll stick to using curly braces as a way to future-proof our code.
(And as a matter of style, I prefer the consistency of seeing the braces.) If we come
back later to update some example and need to add another print statement, say, we
won’t have to remember to add the braces; they’ll be there ready and waiting.

Branching | 57

https://oreil.ly/FrXzk

The tests you use in if statements can also cause problems if you aren’t careful.
Remember the comment about C treating a zero as false and any other number as
true? Some programmers rely on that fact to write very compact tests. Consider this
snippet:

int x;
printf("Please enter an integer: ");
scanf("%i", x);
if (x) {
 printf("Thanks, you gave us a great number!\n");
} else {
 printf("Oh. A zero. Well, thanks for \"nothing\"! ;)\n");
}

The if clause will execute for any positive or negative number, as if we had built a
real test like x != 0 or even a fancier logical expression like (x < 0 || x > 0). This
pattern gets used as a (sometimes lazy) shortcut for asking “does this variable have
any value at all” where a zero is assumed to be an invalid possibility. It’s a fairly com‐
mon pattern, although I usually prefer to write explicit tests.

One other big quirk of C using integers as proxies for Boolean values: there is a very
subtle typo that can cause real trouble. Take a look at this next snippet:

int first_card = 10;
int second_card = 7;
int total = first_card + second_card;

if (total = 21) {
 printf("Blackjack! %d\n", total);
}

If you’re curious, go ahead and create a program to try this gotcha. When you run it,
you’ll see that you always get the “Blackjack! 21” output. What happened? Look
closely at the test in the if statement. What we meant to write was total == 21 using
the double equal sign comparison operator. By using the single equal sign, we actually
assigned the value 21 to our total variable right there inside the if test! Assignments
in C are expressions just like our mathematic calculations. The value of an assign‐
ment expression is the same as the new value being assigned. The upshot is that this
test is akin to if (21) ..., which will always be true since 21 is not 0. It is frustrat‐
ingly easy to make this mistake. Just watch out for if statements that always seem to
execute no matter how you change your inputs. That behavior is a hint to reexamine
the test you’re using.

The switch Statement
I noted in “else if chains” on page 55 that the if/else if chains can become difficult
to follow if you have too many tests chained together. Sometimes, though, you really
do have a bunch of specific cases you need to check, say, what shirts are in stock at

58 | Chapter 3: Flow of Control

your favorite online store based on your size. If those cases all involve the same vari‐
able and all use simple equality (==) as the test, then you can use the switch statement
in C as a nice alternative.

A switch statement takes an expression (the control expression), typically a variable
or simple calculation, and then systematically compares the value of that expression
to one or more constant values using case labels. If the control expression value
matches a case, the code following that value starts executing and continues until the
end of the switch statement (which is always a curly brace block) or the program hits
a break command. The ch03/medals.c file contains a simple example:

#include <stdio.h>

int main() {
 int place;
 printf("Enter your place: ");
 scanf("%i", &place);
 switch (place) {
 case 1:
 printf("1st place! Gold!\n");
 break;
 case 2:
 printf("2nd place! Silver!\n");
 break;
 case 3:
 printf("3rd place! Bronze!\n");
 break;
 }
}

If you compile and run the program a few times with the three possible inputs, you
should see results like this:

ch03$ gcc medals.c
ch03$./a.out
Enter your place: 2
2nd place! Silver!

ch03$./a.out
Enter your place: 1
1st place! Gold!

ch03$./a.out
Enter your place: 3
3rd place! Bronze!

Neat! Exactly what we expected. But what if we comment out those break lines? Let’s
try that now because this illustrates a critical quirk with switch that can trip up new
programmers. Here is our altered program, ch03/medals2.c:

Branching | 59

https://oreil.ly/LVkuZ
https://oreil.ly/MluI4

#include <stdio.h>

int main() {
 int place;
 printf("Enter your place: ");
 scanf("%i", &place);
 switch (place) {
 case 1:
 printf("1st place! Gold!\n");
 case 2:
 printf("2nd place! Silver!\n");
 case 3:
 printf("3rd place! Bronze!\n");
 }
}

And here is the new output using the same series of inputs we used the first time:

ch03$ gcc medals2.c
ch03$./a.out
Enter your place: 2
2nd place! Silver!
3rd place! Bronze!

ch03$./a.out
Enter your place: 1
1st place! Gold!
2nd place! Silver!
3rd place! Bronze!

ch03$./a.out
Enter your place: 3
3rd place! Bronze!

Huh. That’s really strange. Once it gets started, the program just keeps executing
statements in the switch even if they are part of separate cases. While that might
seem like a bad idea, it is meant to be a feature of switch, not a bug. This design
allows you to perform the same action for several values. Consider the following
snippet that describes any number between 1 and 10 in terms of even, odd, and
prime:

printf("Describing %d:\n", someNumber);
switch(someNumber) {
 case 2:
 printf(" only even prime\n");
 break;
 case 3:
 case 5:
 case 7:
 printf(" prime\n");
 case 1:
 case 9:

60 | Chapter 3: Flow of Control

 // 1 isn't often described as prime, so we'll just let it be odd
 printf(" odd\n");
 break;
 case 4:
 case 6:
 case 8:
 case 10:
 printf(" even\n");
 break;
}

We can arrange cases in such a way that the switch feature of flowing until a break
gives us exactly the right output. While this feature is most often used to collect a
related series of distinct values (such as our even numbers) and then give them the
same block to execute, the flow of printing the “prime” qualifier and then continuing
on to add the “odd” designation is valid and can be handy sometimes.

Handling defaults

There is one other feature in switch that is similar to the else clause that can be used
with if statements. Sometimes you want your switch statement to handle every pos‐
sible input. But listing out a few thousand integers or even just every letter in the
alphabet can be very tedious, to say the least. And usually, you don’t have unique
actions for all those thousands of options. In these situations, you can use the
default label as your final “case” and it will execute regardless of the control expres‐
sion value.

Technically, default can appear anywhere in the list of cases, not
just as the final option. However, since the default case always
runs when encountered, it doesn’t make sense to include subse‐
quent, specific cases.

For example, with our medals.c program, what about contestants that didn’t make the
podium? Try running it again with some number larger than three. What do you get?
Nothing. No error, no output, nada. Let’s write ch03/medals3.c and use the default
option to print a message and at least prove we saw the input:

#include <stdio.h>

int main() {
 int place;
 printf("Enter your place: ");
 scanf("%i", &place);
 switch (place) {
 case 1:
 printf("1st place! Gold!\n");
 break;

Branching | 61

https://oreil.ly/l1AHK

 case 2:
 printf("2nd place! Silver!\n");
 break;
 case 3:
 printf("3rd place! Bronze!\n");
 break;
 default:
 printf("Sorry, you didn't make the podium.\n");
 }
}

Compile and run this new program and try some values larger than three:

ch03$ gcc medals3.c
ch03$./a.out
Enter your place: 8
Sorry, you didn't make the podium.

ch03$./a.out
Enter your place: 88
Sorry, you didn't make the podium.

ch03$./a.out
Enter your place: 5792384
Sorry, you didn't make the podium.

Lovely! No matter what number greater than three we give, we get some feedback to
show that we have processed that input. Exactly what we wanted. And we can use
default even with switch statements that include the multiple-cases-per-block
arrangement. Let’s add a “Top 10” level to our medal description program, ch03/
medals4.c:

#include <stdio.h>

int main() {
 int place;
 printf("Enter your place: ");
 scanf("%i", &place);
 switch (place) {
 case 1:
 printf("1st place! Gold!\n");
 break;
 case 2:
 printf("2nd place! Silver!\n");
 break;
 case 3:
 printf("3rd place! Bronze!\n");
 break;
 case 4:
 case 5:
 case 6:
 case 7:
 case 8:

62 | Chapter 3: Flow of Control

https://oreil.ly/lS1tv
https://oreil.ly/lS1tv

 case 9:
 case 10:
 printf("Top 10! Congrats!\n");
 break;
 default:
 printf("Sorry, you didn't make the podium.\n");
 }
}

One more compile and then run it with a few inputs:

ch03$ gcc medals4.c
ch03$./a.out
Enter your place: 4
Top 10! Congrats!

ch03$./a.out
Enter your place: 1
1st place! Gold!

ch03$./a.out
Enter your place: 20
Sorry, you didn't make the podium.

ch03$./a.out
Enter your place: 7
Top 10! Congrats!

Great. Here’s a quick homework assignment for you. Modify medals4.c so that if you
get 4th or 5th place, you get labeled a “runner up.” Places 6 through 10 should still be
listed as top 10. (It’s a small change. You can check your answer against mine in ch03/
medals5.c.)

The Ternary Operator and Conditional Assignment
One last conditional topic that gets a lot of use in lean code is the notion of condi‐
tional assignment. C includes a ternary operator, ?:, that takes three operands. It
allows you to use one of two values in a very compact syntax. The result of this ter‐
nary expression is indeed a value like any other expression in C, so you can use ?:
anywhere a value is legal.

The syntax of ?: uses a Boolean expression as the first operand, then the question
mark, then an expression to evaluate if the boolean is true, then the colon, and finally
an alternate expression to evaluate if the boolean is false.

A great example of using the ternary operator is grabbing the smaller of two values.
Consider a simple program processing two bids for some graphic design work.
Budget is sadly the driving factor, so you need to accept the lowest bid.

int winner = (bid1 < bid2) ? bid1 : bid2;

The Ternary Operator and Conditional Assignment | 63

https://oreil.ly/W7uci
https://oreil.ly/W7uci

Very dense! It takes a little practice even just to read these ternary expressions, but
once you have the hang of it, I think you’ll find it a very handy operator. The alterna‐
tive is a somewhat drawn out if/else:

int winner;
if (bid1 < bid2) {
 winner = bid1;
} else {
 winner = bid2;
}

Certainly not an awful alternative, but it is definitely more verbose. Plus there are
times where the ternary approach really simplifies things. Remember the first pro‐
gram on Boolean expressions, booleans.c, in “Comparison Operators” on page 48? We
had to live with interpreting a 1 as “true” and a 0 as “false.” We eventually printed nice
statements in booleans3.c, but we had to use that fairly verbose if/else pattern.
With ?:, however, we can make human-friendly output directly in the printf()
statements. Try ch03/booleans4.c and see what you think:

#include <stdio.h>

int main() {
 printf(" 1 == 1 : %s\n", 1 == 1 ? "true" : "false");
 printf(" 1 != 1 : %s\n", 1 != 1 ? "true" : "false");
 printf(" 5 < 10 : %s\n", 5 < 10 ? "true" : "false");
 printf(" 5 > 10 : %s\n", 5 > 10 ? "true" : "false");
 printf("12 <= 10 : %s\n", 12 <= 10 ? "true" : "false");
 printf("12 >= 10 : %s\n", 12 >= 10 ? "true" : "false");
}

And here is our updated output:

ch03$ gcc booleans4.c
ch03$./a.out
 1 == 1 : true
 1 != 1 : false
 5 < 10 : true
 5 > 10 : false
12 <= 10 : false
12 >= 10 : true

Much better.

64 | Chapter 3: Flow of Control

https://oreil.ly/Hnumr

It was a bit of a pain wrapping each of those print calls in an if/
else block in booleans3.c. Not just annoying, the shared parts in
the printed text can get out of sync if you make any changes. If you
found a typo at the beginning of a line, for example, you would
have to make sure you fixed the beginning of both the if clause
printf() and again in the else clause. It is all too easy to forget
one or the other.
Any time you can avoid such duplicated code by using a different
conditional statement or operator, it’s worth considering. But don’t
be overzealous; if your if/else chain feels readable and produces
the right output, that is still a fine option.

Loop Statements
You can solve some interesting problems with just variables and the input, output,
and branching statements we have covered so far. But one of the spots where comput‐
ers really shine is when you need to repeat a test or batch of statements. To perform
repetitions, you can use one of C’s loop statements. Your program will execute all of
the (optional) statements, and at the end of those statements, “loop” back to the start
and execute them all again. Usually you don’t want that loop to run forever, so each
loop statement has a condition to check and see when the loop should stop.

The for Statement
One type of repetition that crops up in programming is repeating a block for a spe‐
cific number of times. For example, doing something for each day of the week, or
processing the first 5 lines of input, or even just counting to 10. In fact, let’s see the
for loop that counts to 10, shown in Figure 3-1 where I have marked the parts of the
loop. (Feel free to type this in or open up the ch03/ten.c file.) It can look a little messy
at first, but over time it’ll become familiar.

Figure 3-1. An annotated for loop

Loop Statements | 65

https://oreil.ly/qqDiQ

4 Did you know many shampoo bottles come with an algorithm for washing your hair? But don’t follow the
algorithm too closely: many times the instructions really are as simple as “lather, rinse, repeat,” which is an
infinite loop! There is no check as to when you have repeated enough.

Before we look at the details of the loop, here’s the output:

ch03$ gcc ten.c
ch03$./a.out
Loop iteration: 1
Loop iteration: 2
Loop iteration: 3
Loop iteration: 4
Loop iteration: 5
Loop iteration: 6
Loop iteration: 7
Loop iteration: 8
Loop iteration: 9
Loop iteration: 10

(int i = 1) This is our loop variable. We use the same declaration and initializa‐
tion syntax as we do for normal variables. This portion of the loop is always exe‐
cuted first, and is only executed once when the loop starts.

(i <= 10) Here is the test to see when the loop should stop. The loop will run as
long as this test returns true. If this condition is false—even the first time it is
checked—the loop will end.

The body of the loop is executed next, assuming the test in returned true.

(i = i + 1) After completing the body, this adjustment expression is evaluated.
This expression typically increments or decrements our loop variable by one.
After this step, control jumps back to to see if the loop should continue.

The initialization, the check for when to end, and the adjustment are all quite flexible.
You can use whatever name you like and can count up or down by any amount. You
can even use the char type for a variable if you want sequential characters for any
reason.

Let’s try a few more simple for loops to practice its syntax and its flow. We’ll initialize
our loop variable, check to make sure we should start the loop, execute the statements
in the body, perform the adjustment, and then check to see if we should continue.
Lather. Rinse. Repeat.4 We’ll try some loops with different adjustments including a
decrement that can be used to count backward, ch03/more_for.c:

#include <stdio.h>

int main() {

66 | Chapter 3: Flow of Control

https://oreil.ly/jzGZe

 printf("Print only even values from 2 to 10:\n");
 for (int i = 2; i <= 10; i = i + 2) {
 printf(" %i\n", i);
 }
 printf("\nCount down from 5 to 1:\n");
 for (int j = 5; j > 0; j = j - 1) {
 printf(" %i\n", j);
 }
}

Here’s our output:

ch03$ gcc more_for.c
ch03$./a.out
Print only even values from 2 to 10:
 2
 4
 6
 8
 10

Count down from 5 to 1:
 5
 4
 3
 2
 1

Try tweaking some of the values in the loops and recompile. Can you count backward
by twos? Can you count to 100? Can you count from 1 to 1,024 by doubling?

Increment shortcuts
Incrementing or decrementing a variable like we do in those adjustment expressions
is such a common task (even outside of loops) that C supports a number of shortcuts
for that type of change. Consider statements of the following form:

var = var op value

// Examples
i = i + 1
y = y * 5
total = total - 1

where var is some variable and op is one of the arithmetic operators from Table 2-6.
If you are using that pattern in your code, you can use a compound assignment
instead:

var op= value

// Converted examples
i += 1

Loop Statements | 67

5 A quick nerdy detail, if you’re curious. Prefix operators come before the value or expression they are meant to
operate on. The i-- expression contains an example of a postfix operator—one that comes after the value or
expression. In C, all of the binary operators like + or * or == are infix operators, coming “in between” the
operands.

y *= 5
total -= 1

Going further, any time you are adding or subtracting 1 from a variable, you can use
an even more succinct variation:

var++ or var--

// Further converted examples
i++
total--

You may see a “prefix” version of the increment and decrement
shortcuts, i.e., ++i or --total. These variations are legal and have a
subtle distinction that does not come into play when used in for
loops like we’re doing.5

You don’t have to use these compact options, but they are popular and you will cer‐
tainly encounter them on coding sites like Stack Overflow or in Arduino examples.

for gotchas
Before we tackle the other loop options in C, I want to point out a few details about
for loops that can trip you up.

Perhaps the most important element of the for loop syntax is the condition in the
middle of the loop’s setup. You need to make sure that the condition allows the loop
to start as well as the more obviously necessary ability to make the loop stop. Con‐
sider this loop snippet:

 for (int x = 1; x == 11; x++) {
 //
 }

The ostensible intent of the loop is to count to 10—by stopping when x is equal to 11.
But the condition must evaluate to true for the loop to run, so you can’t just watch for
the end.

You also need to make sure your condition and adjustment expressions are in sync.
One of my favorite mistakes is to create a loop meant to count down or count back‐
ward, but I forget to use the decrement operation:

68 | Chapter 3: Flow of Control

 for (int countdown = 10; countdown > 0; countdown++) {
 //
 }

I obviously should say countdown-- in the last segment of this setup, but increment‐
ing is so common, it’s almost muscle memory. Take a look at this loop. Can you see
what is going to happen? Instead of moving toward the stop condition, this loop will
head away and keep going for quite some time. Sadly, the compiler can’t really help us
here because this syntax is entirely legal. The error is a logic error, so it falls to you as
the programmer to catch it.

The other big mistake that can be easy to make has to do with the syntax of the for
loop setup. Notice that the expressions are separated by semicolons, not commas:

 for (int bad = 1, bad < 10, bad++) {
 //
 }

 for (int good = 1; good < 10; good++) {
 //
 }

That detail is easy to miss and you’ll probably make that mistake at least once. Here,
the compiler will catch you, though:

ch03$ gcc bad_ten.c
ten.c: In function ‘main’:
ten.c:4:23: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ before ‘<=’ token
 4 | for (int bad = 1, bad <= 10, bad++) {
 | ^~
ten.c:7:1: error: expected expression before ‘}’ token
 7 | }
 | ^
ten.c:7:1: error: expected expression before ‘}’ token
ten.c:7:1: error: expected expression before ‘}’ token

Easy to fix, of course, but something to be mindful of as you are learning. These types
of errors are something you encounter (and then fix!) more often when typing up
code directly rather than cutting and pasting it from an online source. I really do
recommend entering some of the program listings in this book by hand for just this
reason.

The while Statement
Performing a specific number of iterations is certainly a popular task in computer
programming. But looping until some more generic condition is met is easily just as
common. In C, that more generic loop is the while loop. It has a simple condition as
its only real syntactic element. If the condition is true, the body of the loop is exe‐
cuted. Jump back up and check the condition…and repeat.

Loop Statements | 69

This type of loop is perfect for input where you cannot predict how many pieces of
information you will need to scan. Let’s try a simple program to calculate the average
of some numbers. Critically, we will allow the user to enter as many (or as few) num‐
bers as they wish. We’ll ask them to enter a sentinel value to indicate they are done
giving us new numbers. A sentinel can be any value that stands out from expected
values. We use it in our condition so we know when to stop. For example, let’s ask the
user for numbers between 1 and 100. We can then use 0 as a sentinel. Here is ch03/
average.c:

#include <stdio.h>

int main() {
 int grade;
 float total = 0.0;
 int count = 0;
 printf("Please enter a grade between 1 and 100. Enter 0 to quit: ");
 scanf("%i", &grade);
 while (grade != 0) {
 total += grade;
 count++;
 printf("Enter another grade (0 to quit): ");
 scanf("%i", &grade);
 }
 if (count > 0) {
 printf("\nThe final average is %.2f\n", total / count);
 } else {
 printf("\nNo grades were entered.\n");
 }
}

Here are two sample runs with different inputs:

ch03$ gcc average.c
ch03$./a.out
Please enter a grade between 1 and 100. Enter 0 to quit: 82
Enter another grade (0 to quit): 91
Enter another grade (0 to quit): 77
Enter another grade (0 to quit): 43
Enter another grade (0 to quit): 14
Enter another grade (0 to quit): 97
Enter another grade (0 to quit): 0

The final average is 67.33

ch03$./a.out
Please enter a grade between 1 and 100. Enter 0 to quit: 0

No grades were entered.

We get things going by asking the user for the first number. We then use that
response in our while statement. If they enter a 0 the first time, we’re done. Unlike

70 | Chapter 3: Flow of Control

https://oreil.ly/KmxH4
https://oreil.ly/KmxH4

for loops, it is not uncommon for a while loop to never execute. There are reason‐
able circumstances where you might need to iterate over an optional task, say, turning
off all the lights in a smart home. But being optional, sometimes that means you don’t
do it at all; if the lights are already off, there’s nothing to do.

Assuming they give us a valid number, though, we start the loop. We add their input
to a separate variable where we keep the running total. (In programming, this is
sometimes referred to as an accumulator.) We also increment a third variable, count,
to keep track of how many numbers the user gives us.

We prompt the user for the next number (or a 0 to quit). We get their input, and
again that value will be used in the while loop’s condition. If the most recent grade is
valid, add it to the total and repeat.

Once we complete the loop, we print the results. We use an if/else statement to
wrap that final result in a nice, human-friendly sentence. If they entered a 0 at the
beginning, we note that there is no average to print. Otherwise (else) we print the
average with two decimal places of precision.

The do/while Variation
The last of the loop statements in C is the do/while (sometimes referred to as just a
do loop). As you might guess from the name, it is similar to the while loop, but with
one big difference. A do loop automatically guarantees at least one execution of the
loop body. It does this by checking the loop condition after the body has executed
instead of before. This is great where you know you need at least one pass. Our grade
averaging program is actually a perfect example. We have to ask the user for a grade
at least once. If they give us a 0 right away, we’re done and that’s fine. If they give us a
valid number, we accumulate our total and ask again. Using a do loop and a small
adjustment to our count at the end, we can avoid the duplicate scanf() calls in ch03/
average2.c:

#include <stdio.h>

int main() {
 int grade;
 float total = 0.0;
 int count = 0;
 do {
 printf("Enter a grade between 1 and 100 (0 to quit): ");
 scanf("%i", &grade);
 total += grade;
 count++;
 } while (grade != 0);
 // We end up counting the sentinel as a grade, so undo that
 count--;

Loop Statements | 71

https://oreil.ly/ILhdW
https://oreil.ly/ILhdW

 if (count > 0) {
 printf("\nThe final average is %.2f\n", total / count);
 } else {
 printf("\nNo grades were entered.\n");
 }
}

And the output is essentially the same:

ch03$ gcc average2.c
ch03$./a.out
Enter a grade between 1 and 100 (0 to quit): 82
Enter a grade between 1 and 100 (0 to quit): 91
Enter a grade between 1 and 100 (0 to quit): 77
Enter a grade between 1 and 100 (0 to quit): 43
Enter a grade between 1 and 100 (0 to quit): 14
Enter a grade between 1 and 100 (0 to quit): 97
Enter a grade between 1 and 100 (0 to quit): 0

The final average is 67.33

Not much of a difference—indeed no difference in the results—but any time you can
remove lines of code without harming functionality, you’re reducing the chances of
bugs cropping up. That’s always a good thing!

Nesting
Adding loops and conditional statements to your repertoire greatly expands the prob‐
lems you can tackle. But it gets even better: you can nest if statements inside loops to
watch for error conditions, put a while inside an if to wait on a sensor, or use a for
loop inside another for loop to traverse tabular data. Remember that all these control
statements are still just statements and they can be used anywhere other, simpler
statements are allowed.

Let’s use this nesting ability to improve our averaging program further. We know zero
is the “done” value, but we said we wanted values between 1 and 100. What happens if
the user gives us a negative number? Or a number greater than 100? If you look
closely at the code in average2.c, you’ll see we don’t do much about it. We don’t exit or
throw it out. We can do better if we use an if/else statement inside our loop as in
ch03/average3.c:

#include <stdio.h>

int main() {
 int grade;
 float total = 0.0;
 int count = 0;
 do {
 printf("Enter a grade between 1 and 100 (0 to quit): ");
 scanf("%i", &grade);

72 | Chapter 3: Flow of Control

https://oreil.ly/alYI8

 if (grade >= 1 && grade <= 100) {
 // Valid! Count it.
 total += grade;
 count++;
 } else if (grade != 0) {
 // Not valid, and not our sentinel, so print an error and continue.
 printf(" *** %d is not a valid grade. Skipping.\n", grade);
 }
 } while (grade != 0);

 if (count > 0) {
 printf("\nThe final average is %.2f\n", total / count);
 } else {
 printf("\nNo grades were entered.\n");
 }
}

Cool. We even fixed the little hiccup with our count variable in average2.c where we
had to decrement count by 1 since we executed the entire body of the do/while loop
even if the first entry was 0. Very nice upgrade!

Let’s test this program with some simple inputs so we can verify that bad values were
not included in the average:

ch03$ gcc average3.c
ch03$./a.out
Enter a grade between 1 and 100 (0 to quit): 82
Enter a grade between 1 and 100 (0 to quit): -82
 *** -82 is not a valid grade. Skipping.
Enter a grade between 1 and 100 (0 to quit): 43
Enter a grade between 1 and 100 (0 to quit): 14
Enter a grade between 1 and 100 (0 to quit): 9101
 *** 9101 is not a valid grade. Skipping.
Enter a grade between 1 and 100 (0 to quit): 97
Enter a grade between 1 and 100 (0 to quit): 0

The final average is 59.00

We can check the math: 82 + 43 + 14 + 97 = 236. 236 ÷ 4 = 59. That matches our
result, so our nested if/else is working. Hooray!

Nesting | 73

As you build more complicated programs with nested control
statements, you may bump into situations where you need to get
out of a loop before it would normally finish. Happily, the break
command you saw in the discussion of the switch statement can be
used to immediately exit a loop. Some programmers try to avoid
this “cheat,” but sometimes I think it actually makes code more
readable.
A common use case is encountering an error from user input in the
middle of a loop. Rather than try to add extra logic to your loop
condition, you can test for the error with an if statement and if
you did get the error, just break.

Nested Loops and Tables
Let’s try another example. I mentioned using nested for loops for tabular data. We
can use this idea to produce the classic multiplication table from grade school in
ch03/multiplication.c:

#include <stdio.h>

int main() {
 int tableSize = 10;
 for (int row = 1; row <= tableSize; row++) {
 for (int col = 1; col <= tableSize; col++) {
 printf("%4d", row * col);
 }
 printf("\n"); // final newline to move to the next row
 }
}

That’s pretty small. This is the type of repetitive task that programs can solve very
efficiently. And the resulting table:

ch03$ gcc multiplication.c
ch03$./a.out
 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30
 4 8 12 16 20 24 28 32 36 40
 5 10 15 20 25 30 35 40 45 50
 6 12 18 24 30 36 42 48 54 60
 7 14 21 28 35 42 49 56 63 70
 8 16 24 32 40 48 56 64 72 80
 9 18 27 36 45 54 63 72 81 90
 10 20 30 40 50 60 70 80 90 100

Very gratifying! And you aren’t limited to just two loops. You could process three-
dimensional data with three loops, as in this snippet:

74 | Chapter 3: Flow of Control

https://oreil.ly/mQQbs

 for (int x = -5; x <= 5; x++) {
 for (int y = -5; y <= 5; y++) {
 for (int z = -5; z <= 5; z++) {
 // Do something with your 3D (x, y, z) coordinate
 // or use even more nested elements like checking for the origin
 if (x == 0 && y == 0 && z == 0) {
 printf("We found the origin!\n");
 }
 }
 }
 }

There is (almost) no end to the complexity you can wrap up in your code to solve
even the thorniest problems.

Variable Scope
One important thing to remember about nesting statements in C is that the language
enforces variable scope in its blocks. If you create a variable to use with a for loop, for
example, that variable cannot be used after the loop has completed. This is true of any
variable declared inside a block (e.g., inside a pair of curly braces) or in the setup of a
for loop. Once the block ends, the variable is no longer accessible. (Sometimes you’ll
hear programmers talk about a variable’s visibility, which is the same idea.)

Most times you don’t have to think much about this topic, as you’ll naturally tend to
use your variables where you declare them and that’s great. But in complex code
structures, you can lose track of where a variable was declared and that can cause
problems.

Let’s upgrade our multiplication table program to ask the user what size of table
(within reason!) they’d like to produce. We’ll allow any table size from 1 to 20. We’ll
store the user’s response in a variable that can be used by both loops. Try the follow‐
ing program (ch03/multiplication2.c) and pay attention to the comments that high‐
light some potential problem areas where a variable is not visible.

#include <stdio.h>

int main() {
 int tableSize;
 printf("Please enter a size for your table (1 - 20): ");
 scanf("%i", &tableSize);
 if (tableSize < 1 || tableSize > 20) {
 printf("We can't make a table that size. Sorry!\n");
 printf("We'll use the default size of 10 instead.\n");
 tableSize = 10;
 }
 for (int row = 1; row <= tableSize; row++) {
 // row and tableSize are both in scope
 for (int col = 1; col <= tableSize; col++) {
 // row, col, and tableSize are all in scope

Nesting | 75

https://oreil.ly/0z424

 printf("%4d", row * col);
 }
 // col is now _out_ of scope
 printf("\n"); // final newline to move to the next row
 }
 // row is out of scope now, too, but tableSize remains available
}

You can see that our tableSize variable is visible in both loops.

Clearly, the row variable is visible inside the loop drive by the col variable.

But once that inner for loop finishes printing the values for a given row, the col
variable goes “out of scope” and cannot be used.

But what happens if you try to access something that has gone out of scope? Well
happily, the compiler will usually catch you. For example, if we try printing the final
value of col where we currently print the newline character to end the row, we’ll get
an error like this:

ch03$ gcc multiplication2.c
multiplication2.c: In function ‘main’:
multiplication2.c:19:20: error: ‘col’ undeclared (first use in this function)
 19 | printf("%d\n", col); // final newline to move to the next row
 | ^~~

Making these mistakes is never fatal. You just have to read the error message and fig‐
ure out which bit of code is causing the problem. If you do need to use a particular
variable after a loop or block concludes, you must define that variable before the
block. For example, we could declare both of our loop variables, row and col, in the
same spot where we declare tableSize to make all three of them visible everywhere
inside our main() function. Our initialization step in our for loops won’t declare
those variables with their int type, but rather just assign the starting value, like in
ch03/multiplication3.c:

#include <stdio.h>

int main() {
 int tableSize, row, col;
 printf("Please enter a size for your table (1 - 20): ");
 scanf("%i", &tableSize);
 if (tableSize < 1 || tableSize > 20) {
 printf("We can't make a table that size. Sorry!\n");
 printf("We'll use the default size of 10 instead.\n");
 tableSize = 10;
 }
 // Notice that since we declared row and col above, we do not
 // include the "int" type declaration inside the for loops below
 for (row = 1; row <= tableSize; row++) {

76 | Chapter 3: Flow of Control

https://oreil.ly/yTDBc

 for (col = 1; col <= tableSize; col++) {
 printf("%4d", row * col);
 }
 printf("\n");
 }
 printf("\nFinal variable values:\n");
 printf(" row == %d\n col == %d\n tableSize == %d\n", row, col, tableSize);
}

If we run our new version with a width of 5, then, here’s our output:

ch03$ gcc multiplication3.c
ch03$./a.out
Please enter a size for your table (1 - 20): 5
 1 2 3 4 5
 2 4 6 8 10
 3 6 9 12 15
 4 8 12 16 20
 5 10 15 20 25

Final variable values:
 row == 6
 col == 6
 tableSize == 5

So we can see the final values of row and col that caused the loops to stop. Kind of
neat, but also kind of prone to causing problems. Using variables with a broad or
global scope is frowned on because of those potential problems. If you have a good
reason and need to use a particular variable in different blocks, that’s fine, just make
sure you declare such variables deliberately and not simply to make the program
compile.

Exercises
We’ve seen the structure of several different flow of control statements in this chapter.
Hopefully, you’ve been trying and tweaking the examples as you’ve been reading. But
nothing helps you get comfortable with a new language or a new statement like using
it. Over and over. And over. :) To that end, here are some exercises to try if you like
before reading on.

1. Print out a triangle pattern. You can hardcode the size or ask the user, like we did
with our multiplication table. For example:

exercises$./a.out
Please enter a size for your triangle (1 - 20): 5
*
**

Exercises | 77

2. Print out a pyramid pattern where the rows of stars are centered, like this:
exercises$./a.out
Please enter a size for your triangle (1 - 20): 5
 *
 * *
 * * *
 * * * *
* * * * *

3. Add row and column labels to our multiplication table, like this:
exercises$./a.out
Please enter a size for your table (1 - 20): 5
 1 2 3 4 5
 1 1 2 3 4 5
 2 2 4 6 8 10
 3 3 6 9 12 15
 4 4 8 12 16 20
 5 5 10 15 20 25

4. Write a number guessing game. For now, just pick a number yourself and store it
in a variable like secret. (We’ll take a look at letting the computer pick a random
number for us in Chapter 7.) Tell the user what the bounds of the range are and
as they guess, give them clues about whether their guess is lower or higher than
the secret. Playing your game might look something like this:

exercises$./a.out
Guess a number between 1 and 50: 25
Too low! Try again.
Guess a number between 1 and 50: 38
Too low! Try again.
Guess a number between 1 and 50: 44
Too high! Try again.
Guess a number between 1 and 50: 42
*** Congratulations! You got it right! ***

5. Try implementing Euclid’s algorithm for finding the greatest common divisor
shared by two numbers. In pseudocode (English statements arranged like code
and occasionally using operators like “=”; it’s meant to be a way of describing the
steps of some program without requiring real code), the algorithm goes like this:

Start with two positive numbers, a and b
While b is not zero:
 Is a greather than b?

78 | Chapter 3: Flow of Control

 Yes: a = a - b
 No: b = b - a
Print a

You can just set the two values in your program or ask the user to input them. To
check your program, the greatest common divisor of 3,456 and 1,234 is 2 and the
greatest common divisor of 432 and 729 is 27.

If you want to see how I solved these problems, you can look at the various answers
in the ch03/exercises folder. But I encourage you to try and solve them yourself before
looking at my solutions. There are many, many ways to solve each of the exercises,
and comparing your own approach to mine can help reinforce the syntax and pur‐
pose of the statements we’ve covered.

Next Steps
The branching and repetition statements we covered in this chapter are the core of a
computer program’s ability to solve problems. They make it possible to take real-
world algorithms and convert them into code. Knowing C’s control statements comes
with the added benefit of preparing you for other programming languages that often
borrow some of C’s syntax.

There is more of that syntax to cover, though. In the next chapter, we’ll look at how C
handles one of the most popular tools for storing big lists of things: the array. With an
eye on our goal of writing C code for more limited microcontrollers, we’ll also see
how C can be used to manipulate the smallest thing in a computer: the bit.

Next Steps | 79

https://oreil.ly/BDw5K

CHAPTER 4

Bits and (Many) Bytes

Before we start building more complex programs with things like functions in Chap‐
ter 5, we should cover two more useful storage categories in C: arrays and individual
bits. These aren’t really distinct types like int or double, but they are useful when
dealing with tiny things or with lots of things. Indeed, the notion of an array, a
sequential list of items, is so useful we had to cheat back in “Getting User Input” on
page 24 and use it without much explanation to store user input in the form of
a string.

We have also discussed the idea of Boolean values that are either yes or no, true or
false, 1 or 0. When dealing with microcontrollers in particular, you will regularly have
a small collection of sensors or switches that are providing on/off values. C’s normal
storage options would mean devoting an entire char (8 bits) or int (16 bits) to keep‐
ing track of such tiny values. That feels like a bit (ha!) of a waste, and it is. C has a few
tricks you can employ to store this type of information more efficiently. In this
chapter, we’ll tackle both the big stuff by declaring arrays and then accessing and
manipulating their contents, as well as how to work with the smallest bits (ahem).
(And I promise not to make more bit puns. Mostly.)

Storing Multiple Things with Arrays
It is almost impossible to find a C program tackling real-world problems that does
not use arrays. If you have to work with any collection of values of any type at all,
those values will almost certainly wind up in an array. A list of grades, a list of stu‐
dents, the list of US state abbreviations, etc., etc., etc. Even our tiny machines can use
arrays to track the colors on a strip of LEDs. It is not an exaggeration to say arrays are
ubiquitous in C, so let’s take a closer look at how to use them.

81

Creating and Manipulating Arrays
As I mentioned, we used an array back in Chapter 2 (in “Getting User Input” on page
24) to allow for some user input. Let’s revisit that code (ch04/hello2.c) and pay more
attention to the array of characters:

#include <stdio.h>

int main() {
 char name[20];

 printf("Enter your name: ");
 scanf("%s", name);
 printf("Well hello, %s!\n", name);
}

So what exactly does that char name[20] declaration do? It creates a variable named
“name” with a base type of char, but it is an array, so you get space to store multiple
chars. In this case, we asked for 20 bytes, as illustrated in Figure 4-1.

Figure 4-1. An empty array of type char called name

And what happens with this array variable when we run the program? When you
type in a name and hit Return on your keyboard, the characters you typed get placed
in the array. Since we used scanf() and its string (%s) format field, we will automati‐
cally get a trailing null character ('\0' or sometimes '\000') that marks the end of
the string. In memory, the name variable now looks like Figure 4-2.

Figure 4-2. A char array with a string

The null character at the end of the array is a peculiarity of strings;
it is not how other types of arrays are managed. Strings are often
stored in arrays that are set up before the length of the string is
known, and use this '\0' sentinel much like we did in “The while
Statement” on page 69 to mark the end of useful input. All string-
processing functions in C expect to see this terminating character,
and you can count on its existence in your own work with strings.

82 | Chapter 4: Bits and (Many) Bytes

https://oreil.ly/HnAfB

1 Exactly how things go wrong may vary. Your operating system or version, compiler version, or even the con‐
ditions on your system at runtime can all affect the output. The point is to be careful not to overflow your
arrays.

2 The gcc stack-protector option can be used to detect some buffer overflows and abort the program before
the overflow can be used maliciously. This is a compile-time flag that is off by default.

Now when we use the name variable again in the subsequent printf() call, we can
echo back all of the letters that were stored and the null character tells printf() when
to stop, even if the name doesn’t occupy the entire array. Conversely, printing a string
that does not have the terminating character will cause printf() to keep going after
the end of the array and likely cause a crash.

Length versus capacity
Didn’t we allocate 20 character slots? What are they doing if our name (such as
“Grace”) doesn’t occupy all of the slots? Happily, that final, null character solves this
quandary rather neatly. We do indeed have room for longer names like “Alexander”
or even “Grace Hopper”; the null character always marks the end, no matter how big
the array is.

If you haven’t worked with characters before in C or another lan‐
guage, the notion of a null character can be confusing. It is the
character with the numeric value of 0 (zero). That is not the same
thing as a space character (ASCII 32) or the digit 0 (ASCII 48) or a
newline ('\n' ASCII 10). You usually don’t have to worry about
adding or placing these nulls by hand, but it is important to
remember they occur at the end of strings, even though they are
never printed.

But what if the name was too long for the allocated array? Let’s find out! Run the pro‐
gram again and type in a longer name:

ch04$./a.out
Enter your name: @AdmiralGraceMurrayHopper
Well hello, @AdmiralGraceMurrayHopper!
*** stack smashing detected ***: terminated
Aborted (core dumped)

Interesting. So the capacity we declared is a fairly hard limit—things go wrong if we
overflow an array.1 Good to know! We always need to reserve sufficent space before
we use it.2

What if we didn’t know ahead of time how many slots were in an array? The C sizeof
operator can help. It can tell you (in bytes) the size of variables or types. For simple
types, that is the length of an int or char or double. For arrays, it is the total memory

Storing Multiple Things with Arrays | 83

allocated. That means we can tell how many slots we have in an array as long as we
know its base type. Let’s try making an array of double values, say, for an accounting
ledger. We’ll pretend we don’t know how many values we can store and use sizeof to
find out. Take a look at ch04/capacity.c:

#include <stdio.h>

int main() {
 double ledger[100];
 printf("Size of a double: %li\n", sizeof (double));
 printf("Size of ledger: %li\n", sizeof ledger);
 printf("Calculated ledger capacity: %li\n", sizeof ledger / (sizeof (double)));
}

Notice that when asking about the size of a type, you need parentheses. The compiler
needs this extra bit of context to treat the keyword as an expression. For variables like
ledger that already fit the expression definition, we can leave them off. Let’s run our
tiny program. Here’s the output:

ch04$ gcc capacity.c
ch04$./a.out
Size of a double: 8
Size of ledger: 800
Calculated ledger capacity: 100

Nice. Since we actually do know how big we made our array, we can just compare that
chosen size to our calculated results. They match. (Whew!) But there are situations
where you are given information from an independent source and won’t always know
the size of the array. Remember that tools like sizeof exist and can help you under‐
stand that information.

Initializing arrays

So far, we’ve created empty arrays or loaded char arrays with input from the user at
runtime. Just like simpler variable types, C allows you to initialize arrays when you
define them.

For any array, you can supply a list of values inside a pair of curly braces, separated by
commas. Here are a few examples:

int days_in_month[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
char vowels[6] = { 'a', 'e', 'i', 'o', 'u', 'y' };
float readings[7] = { 8.9, 8.6, 8.5, 8.7, 8.9, 8.8, 8.5 };

Notice that the declared size of the array matches the number of values supplied to
initialize the array. In this situation, C allows a nice shorthand: you can omit the
explicit size in between the square brackets. The compiler will allocate the correct
amount of memory to fit the initialization list exactly. This means we could rewrite
our previous snippet like this:

84 | Chapter 4: Bits and (Many) Bytes

https://oreil.ly/O3DfB

int days_in_month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
float readings[] = { 8.9, 8.6, 8.5, 8.7, 8.9, 8.8, 8.5 };

Strings, however, are a special case. C supports the notion of string literals. This
means you can use a sequence of characters between double quotes as a value. You
can use a string literal to initialize a char[] variable. You can also use it almost any‐
where a string variable would be allowed. (We saw this in “The Ternary Operator and
Conditional Assignment” on page 63 where we used the terneray operator (?:) to
print true and false values as words instead of as 1 or 0.)

// Special initialization of a char array with a string literal
char secret[] = "password1";

// The printf() format string is usually a string literal
printf("Hello, world!\n");

// And we can print literals, too
printf("The value stored in %s is '%s'\n", "secret", secret);

You can also initialize a string by supplying individual characters inside curly braces,
but that is generally harder to read. You have to remember to include the terminating
null character, and this verbose option doesn’t provide any other real advantage over
the use of a string literal.

Accessing array elements
Once you have an array created, you can access individual elements inside the array
using square brackets. You give an index number inside the square brackets, where
the first element has an index value of 0. To print the second vowel or the days in July
from our earlier arrays, for example:

 printf("The second vowel is: %c\n", vowels[1]);
 printf("July has %d days.\n", days_in_month[6]);

These statements would produce the following output if bundled into a complete
program:

The second vowel is: e
July has 31 days.

But the value we supply inside the square brackets does not need to be a fixed num‐
ber. It can be any expression that results in an integer. (If you have enough memory, it
could be a long or other, larger integer type.) This means you can use a calculation or
a variable as your index. For example, if we store the “current month” in a variable
and use the typical values for months—January is 1, February is 2, and so on—then
we could print the number of days in July using the following code:

 int month = 7;
 printf("July (month %d) has %d days.", month, days_in_month[month - 1]);

Storing Multiple Things with Arrays | 85

The ease and flexibility of accessing these members is part of what makes arrays so
popular. After a bit of practice, you’ll find them indispensible!

The value inside the square brackets needs to be “in bounds” or
you’ll get a an error at runtime. For example if you tried printing
the days in the 15th month like we tried for July, you’d see some‐
thing like “Invalid (month 15) has -1574633234 days.” C won’t stop
you—note we did not cause a crash—but neither did we get a usa‐
ble value. And assigning values (which we discuss next) to invalid
slots in an array is how you cause a buffer overflow. This classic
security exploit gets its name from the notion of an array as a stor‐
age buffer. You “overflow” it exactly by assigning values to the array
outside the actual array. If you get lucky (or are very devious), you
can write executable code and trick the computer into running
your commands instead of the intended program.

Changing array elements
You can also change the value of a given array position using the square bracket nota‐
tion. For example, we could alter the number of days in February to accommodate a
leap year:

if (year % 4 == 0) {
 // Forgive the naive leap year calculation :)
 days_in_month[1] = 29;
}

This type of post-declaration assignment is handy (or often even necessary) when
you have more dynamic data. With the Arduino projects we’ll cover later, for exam‐
ple, you might want to keep the 10 most recent sensor readings. You won’t have those
readings when you declare your array. So you can set aside 10 slots, and just fill them
in later:

float readings[10];
// ... interesting stuff goes here to set up the sensor and read it
readings[7] = latest_reading;

Just make sure you supply a value of the same type as (or at least compatible with) the
array. Our readings array, for example, is expecting floating point numbers. If we
were to assign a character to one of the slots, it would “fit” in that slot, but it would
produce a strange answer. Assigning the letter x to readings[8] would end up
putting the ASCII value of lowercase x (120) in the slot as a float value of 120.0.

86 | Chapter 4: Bits and (Many) Bytes

Iterating through arrays
The ability to use a variable as an index makes working with an entire array a simple
loop task. We could print out all the days_in_month counts using a for loop, for
example:

for (int m = 0; m < 12; m++) {
 // remember the array starts at 0, but humans start at 1
 printf("Days in month %d is %d.\n", m + 1, days_in_month[m]);
}

This snippet produces the following output. We can get a sense of just how powerful
the combination of arrays and loops could be. With just a tiny bit of code, we get
some fairly interesting output:

Days in month 1 is 31.
Days in month 2 is 28.
Days in month 3 is 31.
Days in month 4 is 30.
Days in month 5 is 31.
Days in month 6 is 30.
Days in month 7 is 31.
Days in month 8 is 31.
Days in month 9 is 30.
Days in month 10 is 31.
Days in month 11 is 30.
Days in month 12 is 31.

You’re free to use the elements of your array however you need to. You aren’t limited
to printing them out. As another example, we could calculate the average reading
from our readings array like so:

float readings[] = { 8.9, 8.6, 8.5, 8.7, 8.9, 8.8, 8.5 };

// Use our sizeof trick to get the number of elements
int count = sizeof readings / sizeof (float);
float total = 0.0;
float average;
for (int r = 0; r < count; r++) {
 total += readings[r];
}
average = total / count;
printf("The average reading is %0.2f\n", average);

This example highlights just how much C you have learned in only a few chapters! If
you want some more practice, build this snippet into a complete program. Compile
and run it to make sure you have it working. (The average should be 8.70, by the
way.) Then add some more variables to capture the highest and lowest readings.
You’ll need some if statements to help there. You can see one possible solution in
arrays.c in the examples for this chapter.

Storing Multiple Things with Arrays | 87

Review of Strings
I have noted that strings are really just arrays of type char with some extra features
supported by the language itself, such as literals. But since strings represent the easi‐
est way to communicate with users, I want to highlight more of what you can do with
strings in C.

Initializing strings
We have already seen how to declare and initialize a string. If you know the value of
the string ahead of time, you can use a literal. If you don’t know the value, you can
still declare the variable and then use scanf() to ask the user what text to store. But
what if you wanted to do both? Assign an initial default and then let the user supply
an optional new value that overrides the default?

Happily, you can get there, but you do have to plan ahead a little. It might be tempt‐
ing to use the default value when you first declare your variable, and then let the user
provide a different value at runtime if they want. This works, but it requires an extra
question to the user (“Do you want to change the background color, yes or no?”) and
also assumes the user will supply a valid value as an alternative. Such assumptions are
often safe as you are likely the only user while you’re learning a new language. But in
programs you share with others, it’s better not to assume what the user will do.

String literals also make it tempting to think you can simply overwrite an existing
string just like you can with int or float variables. But a string really is just a char[],
and arrays are not assignable beyond the optional initialization when you declare
them.

These limitations can all be overcome with the use of things like functions, which
we’ll explore in Chapter 5. In fact, the need for the functions that make it possible to
manipulate strings at runtime are so useful, they have been bundled up into their own
library, which I cover in “stdlib.h” on page 150.

For now, I want you to remember that string literals can make the initialization of
character arrays simple and readable, but that at their heart, strings in C are not like
numbers and individual characters.

Accessing individual characters
But I do want to reiterate that strings are just arrays. You can access individual char‐
acters in your string using the same syntax you use to access the members of any
other array. For example, we could find out if a given phrase contains a comma by
looking at each character in the phrase. Here’s ch04/comma.c:

88 | Chapter 4: Bits and (Many) Bytes

https://oreil.ly/UWgY6

#include <stdio.h>

int main() {
 char phrase[] = "Hello, world!";
 int i = 0;
 // keep looping until the end of the string
 while (phrase[i] != '\0') {
 if (phrase[i] == ',') {
 printf("Found a comma at position %d.\n", i);
 break;
 }
 // try the next character
 i++;
 }
 if (phrase[i] == '\0') {
 // Rats. Made it to the end of the string without a match.
 printf("No comma found in %s\n", phrase);
 }
}

This program actually uses the array nature of the string a few times. Our loop condi‐
tion depends on accessing a single character of the string just like the if condition
that helps answer our original question. And we test an individual character at the
very end to see if we found something or not. We’ll look at several string-related func‐
tions in Chapter 7, but hopefully you see how you could accomplish things like copy‐
ing or comparing strings using a good loop and the square brackets to march one
character at a time through your array.

Multidimensional Arrays
It may not be obvious since strings are already an array, but you can store an array of
strings in C. But because there is no “string type” that you can use when declaring
such an array, how do you do it? Turns out C supports the idea of a multidimensional
array so you can create an array of char[] just like other arrays:

char month_names[][];

Seems fair. But what is not obvious in that declaration is what the pair of square
bracket pairs refer to. When declaring a two-dimensional array like this, the first
square bracket pair can be thought of as the row index, and the second is the column.
Another way to think about it is the first index tells you how many character arrays
we’ll be storing and the second index tells you how long each of those arrays can be.

We know how many months there are and a little research tells us the longest name is
September, with nine letters. Add on one more for our terminating null character,
and we could precisely define our month_names array like this:

char month_names[12][11];

Storing Multiple Things with Arrays | 89

You could also initialize this two-dimensional array since we know the names of the
months and don’t require user input:

char month_names[12][11] = {
 "January", "February", "March", "April", "May", "June", "July",
 "August", "September", "October", "November", "December"
};

But here I cheated a little with the initialization by using string literals, so the second
dimension of the month_names array isn’t readily apparent. The first dimension is the
months, and the second (hidden) dimension is the individual characters that make up
the month names. If you are working with other data types that don’t have this string
literal shortcut, you can use nested curly brace lists like this:

int multiplication[5][5] = {
 { 0, 0, 0, 0, 0 },
 { 0, 1, 2, 3, 4 },
 { 0, 2, 4, 6, 8 },
 { 0, 3, 6, 9, 12 },
 { 0, 4, 8, 12, 16 }
};

It might be tempting to assume the compiler can determine the size of the multi-
dimensional structure, but sadly, you must supply the capacity for each dimension
beyond the first. For our month names, for example, we could start off without the
“12” for how many names, but not without the “11” indicating the maximum length
of any individual name:

// This shortcut is ok
char month_names[][11] = { "January", "February" /* ... */ };

// This shortcut is NOT
char month_names[][] = { "January", "February" /* ... */ };

You’ll eventually internalize these rules, but the compiler (and many editors) will
always be there to catch you if you make a small mistake.

Accessing Elements in Multidimensional Arrays
With our array of month names, it is straightforward getting access to any particular
month. It looks just like accessing the element of any other one-dimensional array:

printf("The name of the first month is: %s\n", month_names[0]);

// Output: The name of the first month is: January

But how would we access an element in the multiplication two-dimensional array?
We use two indices:

90 | Chapter 4: Bits and (Many) Bytes

printf("Looking up 3 x 4: %d\n", multiplication[3][4]);

// Output: Looking up 3 x 4: 12

Notice that in this multiplication table, the potentially strange use of zero as the first
index value turns out to be a useful element. Index “0” gives us a row—or column—
of valid multiplication answers.

And with two indices, you’ll need two loops if you want to print out all of the data.
We can take the work we did in “Nested Loops and Tables” on page 74 and use it to
access our stored values rather than generating the numbers directly. Here’s the print‐
ing snippet from ch04/print2d.c:

 for (int row = 0; row < 5; row++) {
 for (int col = 0; col < 5; col++) {
 printf("%3d", multiplication[row][col]);
 }
 printf("\n");
 }

And here is our nicely formatted table:

ch04$ gcc print2d.c
ch04$./a.out
 0 0 0 0 0
 0 1 2 3 4
 0 2 4 6 8
 0 3 6 9 12
 0 4 8 12 16

We’ll see some other options in Chapter 6 for more tailored multidimensional stor‐
age. In the near term, just remember that you can create more dimensions with more
pairs of square brackets. While you’ll likely use one-dimensional arrays most of the
time, tables are common enough and spatial data often fits in three-dimensional
“cubes.” Few programmers will ever need it, especially those of us concentrating on
microcontrollers, but C does support higher orders of arrays.

Storing Bits
Arrays allow us to store truly vast quantities of data with relative ease. At the other
end of the spectrum, C has several operators that you can use to manipulate very
small amounts of data. Indeed, you can work with the absolute smallest pieces of
data: individual bits.

When C was developed in the 1970s, every byte of memory was expensive, and there‐
fore precious. As I noted at the beginning of the chapter, if you had a particular vari‐
able that stored Boolean answers, using 16 bits for an int or even just 8 bits for a
char would be a little wasteful. If you had an array of such variables, it could become
very wasteful. Desktop computers these days can manage that type of waste without

Storing Bits | 91

https://oreil.ly/3gr8L

blinking an eye (or an LED), but our microcontrollers often need all the storage help
they can get.

Binary, Octal, Hexadecimal
Before we tackle the operators in C that access and manipulate bits, let’s review some
notation for discussing binary values. If we have a single bit, a 0 or a 1 are sufficient
and that’s easy enough. However, if we want to store a dozen bits inside one int vari‐
able, we need a way to describe the value of that int. Technically, the int will have a
decimal (base 10) representation, but base 10 does not map cleanly to individual bits.
For that, octal and hexadecimal notation is much clearer. (Binary, or base 2, notation
would obviously be clearest, but large numbers get very long in binary. Octal and
hexadecimal—often just “hex”—are a good compromise.)

When we talk about numbers, we often implicitly use base 10, thanks to the digits
(ooh, get it?) on our hands. Computers don’t have hands (discounting robots, of
course) and don’t count in base 10. They use binary. Two digits, 0 and 1, make up the
entirety of their world. If you group three binary digits, you can represent the decimal
numbers 0 through 7, which is eight total numbers, so this is base 8, or octal. Add a
fourth bit and you can represent 0 through 15, which covers the individual “digits” in
hexadecimal. Table 4-1 shows these first 16 values in all four bases.

Table 4-1. Numbers in decimal, binary, octal, and hexadecimal

Decimal Binary Octal Hexadecimal Decimal Binary Octal Hexadecimal

 0 0000 0000 000 0x00 8 0000 1000 010 0x08

 1 0000 0001 001 0x01 9 0000 1001 011 0x09

 2 0000 0010 002 0x02 10 0000 1010 012 0x0A / 0x0a

 3 0000 0011 003 0x03 11 0000 1011 013 0x0B / 0x0b

 4 0000 0100 004 0x04 12 0000 1100 014 0x0C / 0x0c

 5 0000 0101 005 0x05 13 0000 1101 015 0x0D / 0x0d

 6 0000 0110 006 0x06 14 0000 1110 016 0x0E / 0x0e

 7 0000 0111 007 0x07 15 0000 1111 017 0x0F / 0x0f

You might notice that I always showed eight numbers for the binary column, three
for octal, and two for hex. The byte (8 bits) is a very common unit to work with in C.
Binary numbers often get shown in groups of four, with as many groups as required
to cover the largest number being discussed. So for a full byte of 8 bits, which can
store any value between 0 to 255, for example, you would see a binary value with two
groupings of four digits. Similarly, octal values with three digits can display any byte’s
value, and hexadecimal numbers need two digits. Note also that hexadecimal literals
are not case sensitive. (Neither is the “x” in the hexadecimal prefix, but an uppercase
“X” can be harder to distinguish.)

92 | Chapter 4: Bits and (Many) Bytes

We’ll be using binary notation from time to time when working with microcontrol‐
lers in the latter half of this book, but you may have already run into hexadecimal
numbers if you have written any styled text in HTML or CSS or similar markup lan‐
guages. Colors in these documents are often represented with the hex values for a
byte of red, a byte of green, a byte of blue, and occasionally a byte of alpha (transpar‐
ency). So a full red that ignores the alpha channel would be FF0000. Now that you
know two hex digits can represent one byte, it may be easier to read such color values.

To help you get accustomed to these different bases, try filling out the missing values
in Table 4-2. (You can check your answers with the Table 4-4 table at the end of the
chapter.) The numbers are not in any particular order, by the way. I want to keep you
on your toes!

Table 4-2. Converting between bases

Decimal Binary Octal Hexadecimal

14 016

0010 0000

021 11

50 32

052

13

167

1111 1001

Modern browsers can convert bases for you right in the search bar, so you probably
won’t need to memorize the full 256 values possible in a byte. But it will still be useful
if you can estimate the size of a hex value or determine if an octal ASCII code is prob‐
ably a letter or a number.

Octal and Hexadecimal Literals in C
The C language has special options for expressing numeric literals in octal and hex.
Octal literals start with a simple 0 as a prefix, although you can have multiple zeroes if
you are keeping all of your values the same width, like we did in our base tables. For
hex values, you use the prefix 0x or 0X. You typically match the case of the ‘X’ charac‐
ter to the case of any of the A-F digits in your hex value, but this is just a convention.

Here’s a snippet showing how to use some of these prefixes:

int line_feed = 012;
int carriage_return = 015;
int red = 0xff;
int blue = 0x7f;

Storing Bits | 93

Some compilers support nonstandard prefixes or suffixes for representing binary lit‐
erals, but as the “nonstandard” qualifier suggests, they are not part of the official C
language.

Input and Output of Octal and Hex Values
The printf() function has built-in format specifiers to help you produce octal or
hexadecimal output. Octal value can be printed with the %o specifier and hex can be
shown with either %x or %X, depending on whether you want lower- or uppercase out‐
put. These specifiers can be used with variables or expressions of any of the integer
types in any base, which makes printf() a pretty easy way to convert from decimal
to octal or hex. We could easily produce a table similar to Table 4-1 (minus the binary
column) using a loop and a single printf(). We can take advantage of the width and
padding options of the format specifier to get our desired three octal digits and two
hex digits. Take a look at ch04/dec_oct_hex.c:

#include <stdio.h>

int main() {
 printf(" Dec Oct Hex\n");
 for (int i = 0; i < 16; i++) {
 printf(" %3d %03o 0x%02X\n", i, i, i);
 }
}

Notice that we just reuse the exact same variable for each of the three columns. Also
notice that when printing the hexadecimal version, I manually added the “0x” prefix
—it is not included in the %x or %X formats. Here are a few of the first and last lines:

ch04$ gcc dec_oct_hex.c
ch04$./a.out
 Dec Oct Hex
 0 000 0x00
 1 001 0x01
 2 002 0x02
 3 003 0x03
 ...
 13 015 0x0D
 14 016 0x0E
 15 017 0x0F

Neat. Just the output we wanted. On the input side using scanf(), the format specifi‐
ers work in an interesting way. They are all still used to get numeric input from the
user. The different specifiers now perform base conversion on the number you enter.
If you specify decimal input (%d), you cannot use hex values. Conversely, if you spec‐
ify hex input (%x or %X) and only enter numbers (i.e., you don’t use any of the A-F
digits), the number will still be converted from base 16.

94 | Chapter 4: Bits and (Many) Bytes

https://oreil.ly/59f56

The specifiers %d and %i are normally interchangeable. In a
printf() call, they will result in identical output. In a scanf() call,
however, the %d option requires you to enter a simple base 10 num‐
ber. The %i specifier allows you to use the various C literal perfixes
to enter a value in a different base such as 0x to enter a hexadecimal
number.

We can illustrate this with a simple converter program, ch04/rosetta.c, that will trans‐
late different inputs to all three bases on output. We can set which type of input we
expect in the program but use an if/else if/else block to make it easy to adjust.
(Although recompiling will still be required.)

#include <stdio.h>

int main() {
 char base;
 int input;

 printf("Convert from? (d)ecimal, (o)ctal, he(x): ");
 scanf("%c", &base);

 if (base == 'o') {
 // Get octal input
 printf("Please enter a number in octal: ");
 scanf("%o", &input);
 } else if (base == 'x') {
 // Get hex input
 printf("Please enter a number in hexadecimal: ");
 scanf("%x", &input);
 } else {
 // assume decimal input
 printf("Please enter a number in decimal: ");
 scanf("%d", &input);
 }
 printf("Dec: %d, Oct: %o, Hex: %x\n", input, input, input);
}

Here are a few example runs:

ch04$ gcc rosetta.c

ch04$./a.out
Convert from? (d)ecimal, (o)ctal, he(x): d
Please enter a number in decimal: 55
Dec: 55, Oct: 67, Hex: 37

ch04$./a.out
Convert from? (d)ecimal, (o)ctal, he(x): x
Please enter a number in hexadecimal: 37
Dec: 55, Oct: 67, Hex: 37

Storing Bits | 95

https://oreil.ly/NU9Wc

ch04$./a.out
Convert from? (d)ecimal, (o)ctal, he(x): d
Please enter a number in decimal: 0x37
Dec: 0, Oct: 0, Hex: 0

Interesting. The first two runs went according to plan. The third run didn’t create an
error but didn’t really work, either. What happened here is a sort of “feature” of
scanf(). It tried very hard to bring in a decimal number. It found the character 0 in
our input, which is a valid decimal digit, so it started parsing that character. But it
next encountered the x character which is not valid for a base 10 number. So that was
the end of the parsing and our program converted the value 0 into each of the three
bases.

Try running this program yourself and switch the mode a few times. Do you get the
behavior you expect? Can you cause any errors?

Knowing what we do about the difference between %i and other numeric specifiers in
scanf(), can you see how to make this program a little simpler? It should be possible
to accept any of the three bases for input without the big if statement. I’ll leave this
problem to you as an exercise, but you can see one possible solution in the rosetta2.c
file in the code examples for this chapter.

Bitwise Operators
Starting out on limited hardware like C did means occasionally working with data at
the bit level quite apart from printing or reading in binary data. C supports this work
with bitwise operators. These operators allow you to tweak individual bits inside int
variables (or char or long, of course). We’ll see some fun uses of these features with
the Arduino microcontroller in Chapter 10.

Table 4-3 describes these operators and shows some examples that make use of the
following two variables:

char a = 0xD; // 1101 in binary
char b = 0x7; // 0111 in binary

Table 4-3. Bitwise operators in C

Operator Name Description Example
& bitwise and Both bits must be 1 to yield a 1 a & b == 0101

| bitwise or Either bit can be 1 to yield a 1 a | b == 1111

! bitwise not Yields the opposite of the input bit ~a == 0010

^ bitwise xor eXclusive OR, bits that don’t match yield a 1 a ^ b == 1010

<< left shift Move bits to the left by a number of places a << 3 == 0110 1000

>> right shift Move bits to the right by a number of places b >> 2 == 0001

96 | Chapter 4: Bits and (Many) Bytes

3 As an example of an alternative pair of extra characters, the base64url variation uses a minus (“-”) and under‐
score (“_”).

You can technically apply bitwise operators to any variable type to tweak particular
bits. They are rarely used on floating point types, though. You usually pick an integral
type that is big enough to hold however many individual bits you need. Because they
are “editing” the bits of a given variable, you often see them used with compound
assignment operators (op=). If you have five LEDs, for example, you could keep track
of their on/off state with a single char type variable, as in this snippet:

char leds = 0; // Start with everyone off, 0000 0000

leds |= 8; // Turn on the 4th led from the right, 0000 1000
leds ^= 0x1f; // Toggle all lights, 0001 0111
leds &= 0x0f; // Turn off 5th led, leave others as is, 0000 0111

Five int or char values likely won’t make the difference in whether you can store or
run a program on a microcontroller, even ones with only one or two kilobytes of
memory, but those small storage needs do add up. If you’re tracking a panel of LEDs
with hundreds or thousands of lights, it makes a difference how tightly you can store
their state. One size rarely fits all, so remember your options and pick one that balan‐
ces between ease of use and any resource constraints you have.

Mixing Bits and Bytes
We now have enough elements of C under our belts to start writing some really inter‐
esting code. We can combine all of our previous discussions on bits, arrays, types,
looping, and branching to tackle a popular way of encoding binary data in text. One
format for transmitting binary data through networks of devices with potentially
limited resources is to convert it to simple lines of text. This is known as “base64”
encoding and is still used in things like inline email attachments for images. The 64
comes from the fact that this encoding uses 6-bit chunks, and 2 to the 6th power is
64. We use numbers, lowercase letters, uppercase letters, and other characters more
or less arbitrarily chosen, typically the plus (+) and the forward slash (/).3

For this encoding, values 0 through 25 are the uppercase letters A through Z. Values
26 through 51 are the lowercase letters a through z. Values 52 through 61 are the dig‐
its 0 through 9, and finally, value 62 is the plus sign, and 63 is the forward slash.

But aren’t bytes 8 bits long? Yes, they are. That’s exactly where all of our recent topics
come into play! We can use this new knowledge to change those 8-bit chunks into 6-
bit chunks.

Mixing Bits and Bytes | 97

Figure 4-3 shows a small example of converting three bytes into a string of base64
text. These happen to be the first few bytes of a valid JPEG file, but you could work
on any source you like. This is a fairly trivial bit of binary data, of course, but it will
validate our algorithm.

Figure 4-3. Going from 8-bit to 6-bit chunks with encoding

We have nine bytes total to encode in our example, but really we just want to take
things three bytes at a time, like the illustration, and repeat. Sounds like a job for a
loop! We could use any of our loops, but we’ll go with a for loop since we know
where to start and end, and we can count up by threes. We’ll pull out three bytes from
the source array into three variables, just for convenience of discussion.

unsigned char source[9] = { 0xd8,0xff,0xe0,0xff,0x10,0x00,0x46,0x4a,0x46 };
char buffer[4] = { 0, 0, 0, 0 };

for (int i = 0; i < 9; i += 3) {
 unsigned char byte1 = source[i];
 unsigned char byte2 = source[i + 1];
 unsigned char byte3 = source[i + 2];
 // ...
}

The next big step is getting the four 6-bit chunks into our buffer. We can use our
bitwise operators to grab what we need. Look back at Table 4-3. The leftmost six bits
of byte1 make up our first 6-bit chunk. In this case, we can just shift those six bits to
the right two slots:

 buffer[0] = byte1 >> 2;

Neat! One down, three to go. The second 6-bit chunk, though, is a little messy
because it uses the two remaining bits from byte1 and four bits from byte2. There
are several ways to do this, but we’ll process the bits in order and just break up the
assignment to the next slot in buffer into two steps:

 buffer[1] = (byte1 & 0x03) << 4;
 buffer[1] |= (byte2 & 0xf0) >> 4;

98 | Chapter 4: Bits and (Many) Bytes

First, take the right two bits from byte1 and scoot them to the left four spaces to
make room for the rest of our 6-bit chunk.

Now, take the left four bits from byte2, scoot them to the right four spaces, and
put them into buffer[1] without disturbing the upper half of that variable.

Halfway there! We can do something very similar for the third 6-bit chunk:

 buffer[2] = (byte2 & 0x0f) << 2;
 buffer[2] |= (byte3 & 0xc0) >> 6;

In this case, we take and scoot the right four bits of byte2 and scoot them over two
slots to make room for the left two bits of byte3. But like before, we have to scoot
those two bits all the way to the right first. Our last 6-bit chunk is another easy one.
We just want the right six bits of byte4, no scooting required:

 buffer[3] = byte3 & 0x3f;

Hooray! We have successfully done the 3x8-bit to 4x6-bit conversion! Now we just
need to print out each of the values in our buffer array. Sounds like another loop.
And if you recall that we have five ranges for our base 64 “digits,” that calls for a con‐
ditional of some sort. We could list out all 64 cases in a switch, but that feels tedious.
(It would be very self-documenting, at least.) An if/else if chain should do nicely.
Inside any particular branch, we’ll do a little character math to get the correct value.
As you read this next snippet, see if you can figure out how that character math is
working its magic:

 for (int b = 0; b < 4; b++) {
 if (buffer[b] < 26) {
 // value 0 - 25, so uppercase letter
 printf("%c", 'A' + buffer[b]);
 } else if (buffer[b] < 52) {
 // value 26 - 51, so lowercase letter
 printf("%c", 'a' + (buffer[b] - 26));
 } else if (buffer[b] < 62) {
 // value 52 - 61, so a digit
 printf("%c", '0' + (buffer[b] - 52));
 } else if (buffer[b] == 62) {
 // our "+" case, no need for math, just print it
 printf("+");
 } else if (buffer[b] == 63) {
 // our "/" case, no need for math, just print it
 printf("/");
 } else {
 // Yikes! Error. We should never get here.
 printf("\n\n Error! Bad 6-bit value: %c\n", buffer[b]);
 }
 }

Mixing Bits and Bytes | 99

Does the character math make sense? Since char is an integer type, you can “add” to
characters. If we add one to the character A, we get B. Add two to A and we get C, etc.
For the lowercase letters and the digits, we first have to realign our buffered value so
it is in a range starting at zero. The last two cases are easy, since we have one value
that maps directly to one character. Hopefully, we never hit our else clause, but that
is exactly what those clauses are for. If we got something wrong, print out a warning!

Whew! Those are some impressive moving parts. And if you want to build tiny devi‐
ces that communicate with other tiny devices or the cloud, like a tiny security camera
sending a picture to your phone, these are exactly the kind of moving parts you’ll
bump into.

Let’s assemble them in one listing (ch04/encode64.c) with the other bits we need for a
valid C program:

#include <stdio.h>

int main() {
 // Manually specify a few bytes to encode for now
 unsigned char source[9] = { 0xd8,0xff,0xe0,0xff,0x10,0x00,0x46,0x4a,0x46 };
 char buffer[4] = { 0, 0, 0, 0 };

 // sizeof(char) == 1 byte, so the array's size in bytes is also its length
 int source_length = sizeof(source);
 for (int i = 0; i < source_length; i++) {
 printf("0x%02x ", source[i]);
 }
 printf("==> ");
 for (int i = 0; i < source_length; i += 3) {
 unsigned char byte1 = source[i];
 unsigned char byte2 = source[i + 1];
 unsigned char byte3 = source[i + 2];

 // Now move the appropriate bits into our buffer
 buffer[0] = byte1 >> 2;
 buffer[1] = (byte1 & 0x03) << 4;
 buffer[1] |= (byte2 & 0xf0) >> 4;
 buffer[2] = (byte2 & 0x0f) << 2;
 buffer[2] |= (byte3 & 0xc0) >> 6;
 buffer[3] = byte3 & 0x3f;

 for (int b = 0; b < 4; b++) {
 if (buffer[b] < 26) {
 // value 0 - 25, so uppercase letter
 printf("%c", 'A' + buffer[b]);
 } else if (buffer[b] < 52) {
 // value 26 - 51, so lowercase letter
 printf("%c", 'a' + (buffer[b] - 26));
 } else if (buffer[b] < 62) {
 // value 52 - 61, so a digit
 printf("%c", '0' + (buffer[b] - 52));

100 | Chapter 4: Bits and (Many) Bytes

https://oreil.ly/Ibp52

 } else if (buffer[b] == 62) {
 // our "+" case, no need for math, just print it
 printf("+");
 } else if (buffer[b] == 63) {
 // our "/" case, no need for math, just print it
 printf("/");
 } else {
 // Yikes! Error. We should never get here.
 printf("\n\n Error! Bad 6-bit value: %c\n", buffer[b]);
 }
 }
 }
 printf("\n");
}

As always, I encourage you to type in the program yourself, making any adjustments
you want or adding any comments to help you remember what you learned. You can
also compile the encode64.c file and then run it. Here’s the output:

ch04$ gcc encode64.c
ch04$./a.out
0xd8 0xff 0xe0 0xff 0x10 0x00 0x46 0x4a 0x46 ==> 2P/g/xAARkpG

Very, very cool. Congratulations, by the way! That is a nontrivial bit of code there.
You should be proud. But if you want to really test your skills, try writing your own
decoder to reverse this process. If you start with the output above, do you get the
original nine bytes? (You can check your answer against mine: ch04/decode64.c.)

Conversion Answers
Whether or not you tackle decoding the base64 encoded string, hopefully you tried
converting the values in Table 4-2 yourself. You can compare your answers here. Or
use the rosetta.c program!

Table 4-4. Base conversion answers

Decimal Binary Octal Hexadecimal
14 0000 1110 016 0E

32 0010 0000 040 20

17 0001 0001 021 11

50 0011 0010 062 32

42 0010 1010 052 2A

35 0001 0011 023 13

167 1010 0111 247 A7

249 1111 1001 371 F9

Conversion Answers | 101

https://oreil.ly/exGqM

Next Steps
C’s support of simple arrays opens up a wide world of storage and retrieval options
for just about any type of data. You do have to pay attention to the number of ele‐
ments that you expect to use, but within those bounds, C’s arrays are quite efficient.
And if you are only storing small, yes or no, on or off type values, C has several oper‐
ators that make it possible to squeeze those values into the individual bits of a larger
data type like an int. Modern desktops rarely require that much attention to detail,
but some of our Arduino options in the latter half of this book care very much!

So what’s next? Well, our programs are getting interesting enough that we’ll want to
start breaking the logic up into manageable slices. Think about this book, for exam‐
ple. It is not made up of one, excessive run-on sentence. It is broken into chapters.
Those chapters, in turn, are broken into sections. Those sections are broken into
paragraphs. It is usually easier to discuss a single paragraph than it is an entire book.
C allows you to perform this type of breakdown for your own logic. And once you
have the logic in digestible blocks, you can use those blocks just like we have been
doing with the printf() and scanf() functions. Let’s dive in!

102 | Chapter 4: Bits and (Many) Bytes

1 Within reason, of course. Or rather, within your computer’s resource limits. Desktop systems have so much
memory these days, it would be difficult to write too many functions. On our microcontrollers, though, we do
have to be more careful.

CHAPTER 5

Functions

With the various assignment statements and flow of control options we’ve seen so far,
you are now primed to solve just about any problem meant for computers. But solv‐
ing a problem turns out to be only about half of the, uh, problem. Whether you are
coding for work or for fun, you invariably need to go back to code you have already
written. You might be fixing a small bug or adding a missing feature. You may be
using a previous project as a starting point for a new one. In all of these moments, the
maintainability of your code becomes almost as important as the initial effort to get
the code working. Breaking up a problem to make it manageable while you are solv‐
ing it can have a beneficial effect on the code you end up writing—which also has a
beneficial effect on its readability and maintainability.

Core to this idea of tackling smaller problems on the way to tackling the whole one is
the use of functions or procedures. Functions help you encapsulate logic—the state‐
ments and control structures you are learning to code. In C, you can write and call as
many functions as you need.1 C doesn’t really distinguish between the word “func‐
tion” and the word “procedure,” although some languages do. (In those languages, the
difference is often whether or not a piece of code returns a value or simply executes a
set of statements.) I’ll mostly use the term function, but if you see discussions of a
procedure (or routine, same idea) here or in any of your other reading, it still refers to
a block of code you can call from some other block of code.

103

Familiar Functions
We’ve actually been using functions all along. The main() block of code is a function.
In our very first “Hello, World” program, we used the printf() function to produce
some output. We use the scanf() function to get input from the user. Both of those
functions come from the stdio.h library we include in our programs.

Function Flow
What is going on inside these functions? What does it mean to “call” them? Functions
and procedures are another form of flow control. They allow you to jump between
chunks of code in an orderly way—and return to where you came from when you’re
done. Figure 5-1 illustrates this flow a little more formally.

Figure 5-1. Following the flow of control through a function

This flow is what I mean by calling a function. You go from your current statement to
the first statement of the function. You work your way through the function (which,
by the way, can contain calls to other functions) and then come back. On your way
back, you can bring along a result, but that’s optional. For example, we don’t use any
return value from our printf() and scanf() calls. (There is one, but we can safely
ignore it.) We do, however, rely on the return value from many functions to know
things like whether two strings match, or if a character is a numeric digit, or what the
square root of some number is.

104 | Chapter 5: Functions

We’ll look at many of the functions that make up the “standard library” of C in Chap‐
ter 7. But we don’t have to rely solely on the standard functions, either. C allows us to
create our own functions. Figure 5-2 shows the basic structure of a function.

Figure 5-2. The basic parts of a C function

We’ll work through all the variations on these key parts of a function in this chapter.

Simple Functions
The simplest form of a C function is one where we only jump to the function, execute
its statements, and jump back. We don’t pass any information in and we don’t expect
any information back. This might sound a little boring or even wasteful, but it can be
incredibly useful for breaking up large programs into manageable pieces. It also
makes it possible to reuse popular chunks of code. For example, your program might
come with some helpful instructions. Anywhere the user gets stuck, you print those
to the screen to help get them unstuck. You can put those instructions in a function:

void print_help() {
 printf("This program prints a friendly greeting.\n");
 printf("When prompted, you can type in a name \n");
 printf("and hit the return key. Max length is 24.\n");
}

Note the type of our function; it’s a new one. This void type tells the compiler this
function does not have a return value. C’s default is to return an int like our main()
function, but functions can return any type of value that C supports—including no
value at all, like we do here.

Function names in C follow the same rules as variable names. You have to start with a
letter or the underscore, and then you can have any number of following letters,
numbers, or underscores. Also, like variables, you cannot use any of the reserved
words from Table 2-4.

Simple Functions | 105

We can then call this function anytime we need to nudge the user or if they ask for
help. Here’s the rest of the program, ch05/help_demo.c. We’ll print the help informa‐
tion when the program starts, and if the user simply hits the Return key when promp‐
ted for a name, we’ll print it again.

#include <stdio.h>

void print_help() {
 printf("This program prints a friendly greeting.\n");
 printf("When prompted, you can type in a name \n");
 printf("and hit the return key. Max length is 24.\n");
}

int main() {
 char name[25];

 do {
 // Call our newly minted help function!
 print_help();

 // Now prompt the user, but if they enter an 'h',
 // start over with the help message
 printf("Please enter a name: ");
 scanf("%s", name);
 } while (name[0] == 'h' && name[1] == '\0');

 // Ok, we must have a name to greet!
 printf("Hello, %s!\n", name);
}

And here’s the output:

ch05$ gcc help_demo.c
ch05$./a.out
This program prints a friendly greeting.
When prompted, you can type in a name
and hit the return key. Max length is 24.
Please enter a name: h
This program prints a friendly greeting.
When prompted, you can type in a name
and hit the return key. Max length is 24.
Please enter a name: joe
Hello, joe!

Notice that in reusing our simple print_help() function, we did not save much by
way of lines of code. Sometimes, using a function is more about consistency than
reducing space or complexity. If we end up changing how our program works, say,
asking the user for their name and address, for example, we can update just this one
function and everywhere it gets used will automatically benefit from the new content.

106 | Chapter 5: Functions

https://oreil.ly/LilAh

Sending Information to Functions
While there are a surprising number of times where simple functions such as our
print_help() come in handy, more often you’ll need to pass some information that
the function can use to do its work. Think back to our second iteration of saying hello
to the user. We prompted them to enter their name and then printed a personalized
greeting. We can create a function that has that same tailoring capacity. To do that,
we’ll specify a function parameter.

Parameters go inside the pair of parentheses and look a lot like variable declarations.
In a very real sense, they are variable declarations. But there are a few key differences
between parameters and variables. First, you must supply a type for each parameter.
You can’t “piggyback” on another parameter’s type, even though the second type is the
same. Secondly, you cannot initialize a parameter. Parameters get their initial value
from the arguments you supply when you call the function. Here are a few valid and
invalid examples:

// Correct and valid parameter declarations:
void average(double v1, double v2, double v3) { ...
void plot(int x, int y) { ...
void printUser(char *name, long id) { ...

// Incorrect declarations:
void bad_average(double v1, v2, v3) { // every parameter needs a type
void bad_plot(int x; int y) { // separate parameters with commas
void bad_print(char *name, long id = 0) { // do not initialize a parameter

The names “parameter” and “argument” are just programmer-speak for variables and
values. But it’s useful to have distinct names when talking about the structure of your
program with other developers. When you say “parameter,” other programmers know
you are talking about defining a function and its inputs. By contrast, when you talk
about arguments, it is clear you mean the values passed to an already defined func‐
tion that you are calling. Knowing this terminology can also help you ask better ques‐
tions when you search online for help.

Passing Simple Types
Let’s try passing some things to a function and using them. A canonical function with
parameters is one that calculates a numeric average. We can define a function that
accepts two floating point numbers and prints out the average like this:

void print_average(float a, float b) {
 float average = (a + b) / 2;
 printf("The average of %.2f and %.2f is %.2f\n", a, b, average);
}

Sending Information to Functions | 107

We can now call print_average() from some other part of our program like this:

 float num1, num2;
 printf("Please enter two numbers separated by a space: ");
 scanf("%f %f", &num1, &num2);
 print_average(num1, num2);

Notice that our parameters, a and b, do not share a name with the variables we use as
arguments, num1 and num2. It is not the names of things that tie arguments to parame‐
ters, it is their position. The first argument, whether it is a literal value, a variable, or
even an expression, must match the type of the first parameter and will be used to
give that first parameter its starting value. The second argument goes with the second
parameter, and so on. All of the following calls to print_average() are valid:

 float x = 17.17;
 float y = 6.2;
 print_average(3.1415, 2.71828);
 print_average(x, y);
 print_average(x * x, y * y);
 print_average(x, 3.1415);

Passing arguments to functions is fundamental to C programming. We won’t go
through the output here, but take a look at ch05/averages.c. Run it and see if you get
the output you expect. Try adding some of your own variables or use scanf() to get
more input, and then print some more averages. This is definitely a case where prac‐
tice will pay off!

Passing Strings to Functions
But what about our personalized greeting function? We can pass strings (again, really
just an array of char) more or less like we pass other types. As with other parameters,
we do not give array parameters an initial value, so the square brackets are always
empty:

void greet(char name[]) {
 printf("Hello, %s\n", name);
}

When we go to call greet(), we’ll use the whole array as the argument, similar to
how we pass string variables to the scanf() function. We reused the variable name
because it makes sense for our program and our greet() function. It is not required
that arguments and parameters match like this. In fact, such alignment is rare. We’ll
look at this distinction between the parameters in a function and the arguments
passed to it in “Variable Scope” on page 118.

108 | Chapter 5: Functions

https://oreil.ly/v9VLq

You will often see array parameters declared with a “*” prefix rather
than the “[]” bracket suffix (e.g., void greet(char *name)). This is
valid notation centering on the use of pointers. We’ll tackle pointers
in Chapter 6 where I’ll cover how array variables work in more
detail, both in terms of their memory allocation and using them
with functions.

Here’s a complete program, ch05/greeting.c that defines and uses greet():

#include <stdio.h>

void print_help() {
 printf("This program prints a friendly greeting.\n");
 printf("When prompted, you can type in a name \n");
 printf("and hit the return key. Max length is 24.\n");
}

void greet(char name[]) {
 printf("Hello, %s\n", name);
}

int main() {
 char name[25];

 // First, tell them how to use the program
 print_help();

 // Now, prompt them for a name (just the once)
 printf("Please enter your name: ");
 scanf("%s", name);

 // Finally, call our new greeting function with our name argument
 greet(name);
}

And here is the output of a few runs:

ch05$ gcc greeting.c
ch05$./a.out
This program prints a friendly greeting.
When prompted, you can type in a name
and hit the return key. Max length is 24.
Please enter your name: Brian
Hello, Brian
ch05$./a.out
This program prints a friendly greeting.
When prompted, you can type in a name
and hit the return key. Max length is 24.
Please enter your name: Vivienne
Hello, Vivienne

Sending Information to Functions | 109

https://oreil.ly/FTudJ

Hopefully, nothing too surprising there. As noted above, we’ll revisit passing arrays as
arguments in Chapter 6. There’s nothing wrong with how we specify our char[]
parameter in this example, but it isn’t the only way to do it.

Multiple Types
It might be obvious, but I want to point out that the parameter list in a function defi‐
nition can mix and match types. You are not restricted to one type. For example, we
can write a repeat() function that takes a string to print and a count to tell us how
many times to print the string:

void repeat(char thing[], int count) {
 for (int i = 0; i < count; i++) {
 printf("%d: %s\n", i, thing);
 }
}

Neat! If we call repeat() with the word “Dennis” and the number 5, we will get the
following output:

// repeat("Dennis", 5);
0: Dennis
1: Dennis
2: Dennis
3: Dennis
4: Dennis

Well, the answer to this little quiz is a tip, at least. :) Can you think
of a way to print the index numbers in the output above so that
they start at 1 and go to 5 instead of the less human-friendly 0 to 4
that we have now?

Exiting a Function
A common problem every programmer faces is making sure that the inputs to func‐
tions are appropriate. In the case of our nifty repeat() function, for example, we
want a count that is a positive number so that we actually get some output. What do
we do if we get a bad number and don’t want to finish the rest of the function? Fortu‐
nately, C provides a way to exit a function at any time: the return statement.

We can upgrade repeat() to check for a good count before trying to run the printing
loop:

void repeat(char thing[], int count) {
 if (count < 1) {
 printf("Invalid count: %d. Skipping.\n", count);
 return;
 }

110 | Chapter 5: Functions

 for (int i = 0; i < count; i++) {
 printf("%d: %s\n", i, thing);
 }
}

Much better. The first version of repeat() wouldn’t crash or anything if a negative
count was supplied, but the user would not see any output and would not know why.
Testing for legal or expected values is usually a good idea—especially if you are writ‐
ing code that other people might also end up using.

Returning Information
Functions can also return information. You specify one of the data types, such as int
or float, in the definition, and then use the return statement to send back an actual
value. When you call such a function, you can store that returned value in a variable
or use it anywhere a value or an expression is allowed.

For example, we could take print_average() and turn it into a function that calcu‐
lates the average and simply returns it, rather than printing anything out. That way
you are free to print the average yourself with a custom message. Or you can use the
average in some other calculation.

Here’s a simple version of such a function:

float calc_average(float a, float b) {
 float average = (a + b) / 2;
 return average;
}

Instead of void for a type, we now have float. So our return statement should
include a float value, variable, or expression. In this example, we calculate the average
and store it in a temporary variable called average. We then use that variable with the
return. It’s important to note that what gets returned is a value. The average variable
disappears when we’re done with the function, but its final value is sent back.

Since we do return a value, it is common for functions like calc_average() to skip
the temporary variables. You can perform this simple calculation right with the
return like so:

float calc_average(float a, float b) {
 return (a + b) / 2;
}

You don’t lose any readability here, but that is probably because this is such a straight‐
forward calculation. For larger or more complex functions, feel free to use whichever
approach is more comfortable or seems more maintainable.

Returning Information | 111

Using Returned Values
To capture that average, we put the call to the calc_average() function somewhere
we would normally see a literal or expression. We can assign it to a variable. We could
use it in a printf() statement. We could include it inside a larger calculation. Its type
is float, so anywhere you could use a floating point value or variable, you can call
calc_average().

Here are a few examples from ch05/averages2.c:

float avg = calc_average(12.34, 56.78);
float triple = 3 * calc_average(3.14, 1.414);
printf("The first average is %.2f\n", avg);
printf("Our tripled average is %.2f\n", triple);
printf("A direct average: %.2f\n", calc_average(8, 12));

In each of these statements, you can see how calc_average() gets used in place of a
float value. Figure 5-3 illustrates the flow of that first assignment statement.

Figure 5-3. Flow of a call to calc_average()

Call to calc_average() transfers control to the function; its parameters are ini‐
tialized from the arguments.

Once the function completes its work, return control to the main function along
with the result to be stored in avg.

Resume processing statements in the original function.

112 | Chapter 5: Functions

https://oreil.ly/ALwA3

If you build your own program with the calc_average() function and the previous
snippet, you should see something like this output:

ch05$ gcc averages2.c
ch05$./a.out
The first average is 34.56
Our tripled average is 6.83
A direct average: 10.00

You can create your own file, or compile and run averages2.c if you would like to try
these examples. As an exercise, how could you expand the calc_average() function
to produce the average of three inputs?

Ignoring Returned Values
You are not required to make use of a return value in C if it isn’t useful. I didn’t men‐
tion this when introducing the printf() function, but it actually returns an int: the
count of how many bytes were written out. Don’t believe it? Try it! I dropped this
snippet in ch05/printf_bytes.c if you don’t want to write it up yourself:

printf("This is a typical print statement.\n");
int total_bytes = printf("This is also a print statement.\n");
printf("The previous printf displayed %d bytes.\n", total_bytes);

This snippet would produce the following output:

ch05$ gcc printf_bytes.c
ch05$./a.out
This is a typical print statement.
This is also a print statement.
The previous printf displayed 32 bytes.

C is happy with all three of those calls to printf(). The first and the third call also
return a count, but we ignore it (with no ill effect). We grab the count from the sec‐
ond call just to show that printf() does in fact return a value. Usually, you call a
function that returns a value precisely because you want that returned value. Some
functions, however, come with side effects that are the real target, rather than the
returned value. printf() is just such a function. It is occasionally useful to keep track
of how many bytes your program has written (a microcontroller that reports sensor
readings to a cloud service, for example, might have a daily or monthly limit it cannot
surpass), but you probably used printf() because you wanted some text to show up
on the screen.

Returning Information | 113

https://oreil.ly/rDKBc

Nested Calls and Recursion
If you look at any of the complete program files for this chapter like ch05/greeting.c or
ch05/averages2.c, you will likely notice that we follow a simple pattern: define a func‐
tion, define the main() function, and call our first function from inside main(). But
that is not the only valid arrangement. As I’ll show you in Chapter 11, with just a little
extra code, you could swap the position of main() and calc_average(), for example.

We also have the freedom to call our functions from inside yet other functions. We
could create a new program that reproduces the same exact output as the original
print_average() function from averages.c, but do it using the calc_average() func‐
tion from averages2.c to get the actual average value.

Here’s the complete ch05/averages3.c so you can see where we place the different
functions and where those functions are called:

#include <stdio.h>

float calc_average(float a, float b) {
 return (a + b) / 2;
}

void print_average(float a, float b) {
 float average = calc_average(a, b);
 printf("The average of %.2f and %.2f is %.2f\n", a, b, average);
}

int main() {
 float num1, num2;
 printf("Please enter two numbers separated by a space: ");
 scanf("%f %f", &num1, &num2);
 print_average(num1, num2);

 float x = 17.17;
 float y = 6.2;
 print_average(3.1415, 2.71828);
 print_average(x, y);
 print_average(x * x, y * y);
 print_average(x, 3.1415);
}

If you run it, the output will be similar to the first example back in “Passing Simple
Types” on page 107:

ch05$ gcc averages3.c
ch05$./a.out
Please enter two numbers separated by a space: 12.34 56.78
The average of 12.34 and 56.78 is 34.56
The average of 3.14 and 2.72 is 2.93
The average of 17.17 and 6.20 is 11.68

114 | Chapter 5: Functions

https://oreil.ly/fBCrG
https://oreil.ly/BPwIl
https://oreil.ly/c3Ssi

2 If you want to experience the pinnacle of nerdy humor, check out The Hitchhiker’s Guide to the Galaxy by
Douglas Adams. The words “Don’t Panic” feature prominently in large, friendly letters.

The average of 294.81 and 38.44 is 166.62
The average of 17.17 and 3.14 is 10.16

Clever. We’ve actually been relying on this feature all along. In our very first “Hello,
World” program, we call the printf() function—which is indeed a real function, just
one defined by the built-in standard I/O library—from within our main() function.

All C programs out there solving real-world problems will use this basic pattern.
Functions are written to tackle some small portion of a bigger problem. Other func‐
tions call those functions to assemble the small answers into a bigger whole. Some
problems are so large that you will have several layers of functions that call functions
that call functions. But we’re getting ahead of ourselves. We’ll keep practicing with
simpler functions. As you get comfortable defining and calling them, you’ll naturally
start to build more complex hierarchies as you solve more complex problems.

Recursive Functions
It may not be obvious unless you have worked with other languages, but a C function
is allowed to call itself, too. This is called recursion and such a self-calling function is
known as a recursive function. If you’ve spent any time around programmers, perhaps
you have heard the surprisingly accurate joke about the definition of recursion: “I
looked up recursion in the dictionary. It said: ‘See recursion.’” Who says nerds don’t
have a sense of humor? ;-)

But the joke definition does hint at exactly how you write a recursive function in C.
There is just one big caveat: you need to have a way to stop the recursion. If the sub‐
ject in the joke were a computer, it would be in an endless cycle of looking up the
word only to be told to look up the word only to be told to look up the word, etc.,
etc., ad infinitum. If you write such a function in C, eventually the program will con‐
sume all the memory in your computer and crash.

To avoid that crash, recursive functions have at least two branches. One branch, a
base case, terminates. It produces a concrete value and completes. The other branch
does some sort of calculation and recurses. That “some sort of calculation” must even‐
tually lead to the base case. If that sounds a little confusing, don’t panic!2 We can bet‐
ter illustrate this process with actual code.

Perhaps one of the most famous recursive algorithms is one that calculates the Fibo‐
nacci numbers. You may recall these from high school math. Named for a 13th cen‐
tury Italian mathematician, they are part of a sequence that builds up from a simple
starting point of two numbers, either a zero and a one, or two ones. You add those
two numbers to produce the third. You add the second and the third to produce the

Nested Calls and Recursion | 115

fourth, and so on. So the nth Fibonacci number is the sum of the previous number,
and the previous previous number. A more formal way to say that goes like this:

F(n) = F(n - 1) + F(n - 2)

Here, the function F() is defined in terms of the function F(). Aha! Recursion! So
what does this look like in C? Let’s take a look.

We’ll start by defining a function that takes one int as a parameter and returns an
int. If the value passed to us is a zero or a one, we return a zero or a one, respectively,
as part of the definition of the sequence. (So F(0) == 0 and F(1) == 1, more for‐
mally.) That sounds pretty easy:

int fibonacci(int n) {
 // Base case 0
 // We'll cheat and return zero for negative numbers as well
 if (n <= 0) {
 return 0;
 }
 // Base case 1
 if (n == 1) {
 return 1;
 }
 // recursive call will go here
}

We have the critical part: the base case (or cases, like our 0 and 1) that has a definite
answer. If we get some integer greater than one, we will fall to the recursive call. What
does that look like? Just like any other function call. What makes it special is that we
call the function we are in the middle of defining, fibonacci() in our case. The
“some sort of calculation” we mentioned when introducing recursion is the n - 1 and
n - 2 elements from our formal definition:

 // recursive call
 return fibonacci(n - 1) + fibonacci(n - 2);

Let’s put that all together in a complete program (ch05/fib.c) that prints a few sample
Fibonacci numbers:

#include <stdio.h>

int fibonacci(int n) {
 // Base case 0
 // We'll lazily return zero for negative numbers as well
 if (n <= 0) {
 return 0;
 }
 // Base case 1
 if (n == 1) {
 return 1;
 }

116 | Chapter 5: Functions

https://oreil.ly/8xBXV

 // recurring call
 return (fibonacci(n-1) + fibonacci(n-2));
}

int main() {
 printf("The 6th Fibonnaci number is: %d\n", fibonacci(6));
 printf("The 42nd Fibonnaci number is: %d\n", fibonacci(42));
 printf("The first 10 Fibonacci numbers are:\n");
 for (int f = 0; f < 10; f++) {
 printf(" %d", fibonacci(f));
 }
 printf("\n");
}

If we run it, we’ll get the following output:

ch05$ gcc fib.c
ch05$./a.out
The 6th Fibonnaci number is: 8
The 42nd Fibonnaci number is: 267914296
The first 10 Fibonacci numbers are:
 0 1 1 2 3 5 8 13 21 34

Very cool. But how does it work? It would seem impossible to assign a value coming
from a function that needs that very same function to calculate the value! Figure 5-4
shows what’s happening inside fibonacci() using the tiny value of 4.

Figure 5-4. A recursive call stack

If this process still seems a little convoluted, give it time. The more you work with
functions in general, the easier it will become to read (and create!) more interesting
functions like our recursive Fibonacci example.

Nested Calls and Recursion | 117

But it is convoluted for the computer. Recursion can go too deep and cause the com‐
puter to run out of memory. Even if your recursive code doesn’t go that deep, it can
still take quite a while to process. Try changing the program to show the 50th Fibo‐
nacci number instead of the 42nd. Notice it pause at that step? If not, congrats on
your powerful system! Try bumping it up to 60 or 70. You will eventually go high
enough that the sheer number of function calls will clog your CPU. Just remember
that recursion is best in moderation.

It is also worth pointing out that most recursive algorithms have
counterparts that use more mundane tricks like loops. But some‐
times using loops turns out to be much more complex than the
recursive option. In the right circumstances, recursion makes solv‐
ing some problems simpler by literally breaking them into smaller
problems. The Fast Fourier Transform (FFT), so common in pro‐
cessing audio and video streams, for example, is a fairly complex
algorithm that has a recursive solution that is easier to understand
and implement.

Variable Scope
I didn’t highlight this detail explicitly in our average-calculating functions, but you
can declare any variables of any type you need inside a function. These are often
referred to as local variables because they are located inside a function and are
removed when the function finishes. Let’s revisit that first print_average() function
we wrote in “Passing Simple Types” on page 107:

void print_average(float a, float b) {
 float average = (a + b) / 2;
 printf("The average of %.2f and %.2f is %.2f\n", a, b, average);
}

Here, the variables a and b are the function’s parameters, and average is a local
variable. There’s nothing terribly special about local variables, but because they are
kept inside the function where they are defined, you can reuse names between differ‐
ent functions. Consider two functions that calculate the average for two and three
parameters:

void print_average_2(float a, float b) {
 float average = (a + b) / 2;
 printf("The two numbers average out to %.2f\n", average);
}

void print_average_3(float a, float b, float c) {
 float average = (a + b + c) / 3;
 printf("The three numbers average out to %.2f\n", average);
}

118 | Chapter 5: Functions

Both functions declare a local variable named average, but they are two wholly sepa‐
rate variables. Even though they share a name, the compiler never confuses them.
Indeed, even if the calling function also has an average variable, they won’t be con‐
fused. Each local variable is contained entirely within its function:

float calc_average_2(float a, float b) {
 float average = (a + b) / 2;
 return average;
}

int main() {
 float avg1 = calc_average_2(18.5, 21.1);
 float avg2 = calc_average_2(16.3, 19.4);
 float average = calc_average_2(avg1, avg2);
 printf("The average of the two averages is: %.2f\n", average);
}

Wonderful. That means we can concentrate on using names appropriate to whatever
work we’re doing in a given function. We don’t have to keep track of what variables
were used in other functions or even in main(). That makes our job as programmers
much easier.

Global Variables
As a programmer, though, you will undoubtedly encounter global variables as well as
local ones. A global variable is sort of the opposite of a local variable. Where local
variables are contained inside a function or a loop block, global variables are visible
everywhere. Where local variables disappear when the loop or function is done,
global variables persist.

This visibility and persistence can make global variables very attractive for any value
that is shared or reused in several functions. But it is frustratingly easy to corrupt a
global variable precisely because any function can see it—and modify it. Here’s an
example (ch05/globals.c) with a global variable that we use inside a function and
inside main():

#include <stdio.h>

char buffer[30];

void all_caps() {
 char diff = 'a' - 'A';
 for (int b = 0; b < 30 && buffer[b] != 0; b++) {
 if (buffer[b] >= 'a' && buffer[b] <= 'z') {
 // We have a lowercase letter, so change this slot
 // in the char array to its uppercase cousin
 buffer[b] -= diff;
 }
 }

Variable Scope | 119

https://oreil.ly/5tgaO

}

int main() {
 printf("Please enter a name or phrase: ");
 scanf("%[^\n]s", buffer);
 printf("Before all_caps(): %s\n", buffer);
 all_caps();
 printf("After all_caps(): %s\n", buffer);
}

And here’s the output from running the program:

ch05$ gcc globals.c
ch05$./a.out
Please enter a name or phrase: This is a test.
Before all_caps(): This is a test.
After all_caps(): THIS IS A TEST.

Notice that we never alter the value of the variable in main(), but we see (and can
print) the changes that were made inside the all_caps() function.

The format string I use in globals.c probably looks strange. On its
own, scanf("%s", buffer) would stop scanning for a string at the
first bit of white space. In the sample output, that would mean only
the word “This” would be captured into buffer. The [^\n] quali‐
fier borrows some syntax from the world of regular expressions
and means “any character except a newline.” This allows us to type
in a phrase with spaces and capture every word up to the newline
as a single string.

Sometimes working with a global variable is legitimately useful. Especially on smaller
systems like the Arduino, this arrangement can occasionally save you a few bytes. But
you really do have to be careful. If too many functions use and alter a global variable,
debugging what is happening when things go wrong gets really messy. If you don’t
have a compelling reason to use a global variable, I recommend passing shared values
as parameters to any function that needs them.

Masking global variables
One other important gotcha with respect to global variables is that you can still
declare a local variable inside a function with the same name as the global variable.
Such a local variable is said to mask the global variable. Any printing or calculating or
manipulating you do inside the function only affects the local variable. And if you
also need to access the global one, you are out of luck. Look at ch05/globals2.c:

#include <stdio.h>

char buffer[30];

120 | Chapter 5: Functions

https://oreil.ly/3A61l
https://oreil.ly/KO8Fe

void all_caps() {
 char buffer[30] = "This is a local buffer!";
 char diff = 'a' - 'A';
 for (int b = 0; b < 30 && buffer[b] != 0; b++) {
 if (buffer[b] >= 'a' && buffer[b] <= 'z') {
 // We have a lowercase letter, so change this slot
 // in the char array to its uppercase cousin
 buffer[b] -= diff;
 }
 }
 printf("Inside all_caps(): %s\n", buffer);
}

int main() {
 printf("Please enter a name or phrase: ");
 scanf("%[^\n]s", buffer);
 printf("Before all_caps(): %s\n", buffer);
 all_caps();
 printf("After all_caps(): %s\n", buffer);
}

And compare the output from the previous globals.c to this output:

ch05$ gcc globals2.c
ch05$./a.out
Please enter a name or phrase: A second global test.
Before all_caps(): A second global test.
Inside all_caps(): THIS IS A LOCAL BUFFER!
After all_caps(): A second global test.

You can see here that back in the main() method, the global buffer variable was not
updated, even though that may have been what we wanted. Again, I don’t recommend
using global variables unless it is necessary. Sometimes their convenience will win
you over, and that’s fine. Just be vigilant and deliberate.

The main() Function
We’ve mentioned the main() function a number of times in this chapter as we expand
our knowledge of C functions. main() is indeed a real, regular C function with the
main (ha!) distinction of being the function where an executable C program starts.
Since it is “just a function,” can we return a value from it? Can we pass it parameters?
If so, where would the arguments used to fill those parameters come from? You can
indeed return values and declare parameters. This last section covers main() in more
detail if you’re interested. Luckily, the simple main() we’ve been using so far will con‐
tinue to suffice for our lean examples.

The main() Function | 121

Return values and main()
But we haven’t really dug into the details of our main() declarations. You may have
already been wondering about the fact that we give a type (int) to the main() func‐
tion although we have never written a return statement in that function. But it turns
out we could!

Most operating systems use some mechanism for determining whether a program
you run has completed successfully or failed for some reason. Unix and its deriva‐
tives, as well as MS DOS, use numeric values for this purpose. A return value of zero
is generally considered success and anything else a failure. “Anything else” leaves a
pretty wide range of failure options, which some programs do use. If you write shell
scripts or DOS batch files, you may have used these return values to suss out exactly
why a particular command failed, and mitigate the problem if possible.

I have not included a return in the main() function in any of our examples so far. So
what has been going on? The compiler has simply built a program that implicitly pro‐
vides 0 as the int return value. Let’s take a look by checking the exit status of our very
first program, hello.c.

First, let’s compile and run the program. Now we can follow up and ask the operating
system about that return value. On Unix/Linux and macOS systems, you check the $?
special variable:

ch01$ gcc -o hello hello.c
ch01$./hello
Hello, world
ch01$ echo $?
0

On Windows systems, you can check the %ERRORLEVEL% variable:

C:\Users\marc\Documents\smallerc> gcc -o hello.exe hello.c

C:\Users\marc\Documents\smallerc> hello
Hello world

C:\Users\marc\Documents\smallerc>echo %ERRORLEVEL%
0

But that “0” might feel a little unconvincing since that is a common value for unde‐
fined or uninitialized variables. Let’s write a new program, ch05/exitcode.c, that
returns an explicit, non-zero value to prove something is being returned.

We’ll prompt the user to see if they want to succeed or fail. It’s a silly prompt, but it
allows you to try the two options without recompiling:

122 | Chapter 5: Functions

https://oreil.ly/vHOfd

#include <stdio.h>

int main() {
 char answer;
 printf("Would you like to succeed (s) or fail (f)? ");
 scanf("%c", &answer);
 if (answer == 's') {
 return 0;
 } else if (answer == 'f') {
 return 1;
 } else {
 printf("You supplied an unsupported answer: %c\n", answer);
 return 2;
 }
}

Let’s compile and run this one with a few different answers to see what we get when
checking the exit code via the operating system. (For brevity, I’ll just show the Linux
output, but both macOS and Windows would be similar.)

ch05$ gcc exitcode.c
ch05$./a.out
Would you like to succeed (s) or fail (f)? s
ch05$ echo $?
0
ch05$./a.out
Would you like to succeed (s) or fail (f)? f
ch05$ echo $?
1
ch05$./a.out
Would you like to succeed (s) or fail (f)? invalid
You supplied an unsupported answer: i
ch05$ echo $?
2

This simple program hints at how more complex programs might use these exit codes
to provide more details on what happened. Notice, though, that in the end the pro‐
gram still exited. These values are optional but can be useful if you plan to write util‐
ities that will end up in scripts.

Command-Line Arguments and main()
What about passing arguments to main()? Happily, you can use the command line
and a second option for defining main that helps with that exact task. This alternate
version looks like this:

int main(int argc, char *argv[]) { // ...

The argc parameter is the “argument count,” and the argv string array is the list of
“argument values.” The asterisk in the type of argv might be a little surprising. The
argv variable is indeed an array of character arrays, similar to the two-dimensional

The main() Function | 123

char arrays in “Multidimensional Arrays” on page 89, but this is a more flexible ver‐
sion. It is an array of char pointers (denoted by that askterisk). We’ll cover pointers
next in Chapter 6, where we can dive into details. For now, think of argv as an array
of strings.

You stock the argv array from the command line when you start your program.
Everything comes in as a string, but you can convert them to other things (well, num‐
bers or characters) if that’s what you need. Here’s a short program, ch05/argv.c, to
illustrate accessing the arguments with a common check for a “help flag.” If the first
command-line argument is -h, we’ll print a help message and ignore the rest of the
arguments. Otherwise we’ll list them all out, one per line:

#include <stdio.h>

void print_help(char *program_name) {
 printf("You can enter several command-line arguments like this:\n");
 printf("%s this is four words\n", program_name);
}

int main(int argc, char *argv[]) {
 if (argc == 1) {
 printf("Only the name of the program '%s' was given.\n", argv[0]);
 } else if (argc == 2) {
 // Might be a request for help
 int len = sizeof(argv[1]);
 if (len >= 2 && argv[1][0] == '-' && argv[1][1] == 'h') {
 print_help(argv[0]);
 } else {
 printf("Found one, non-help argument: %s\n", argv[1]);
 }
 } else {
 printf("Found %c command-line arguments:\n", argc);
 for (int i = 0; i < argc; i++) {
 printf(" %s\n", argv[i]);
 }
 }
}

When you run argv.c with a few random words, you should see them listed out:

ch05$ gcc argv.c
ch05$./a.out this is a test!
Found command-line arguments:
 ./a.out
 this
 is
 a
 test!

124 | Chapter 5: Functions

https://oreil.ly/1SiYk

But if you use just the special -h argument, you should get our help message:

ch05$./a.out -h
You can enter several command-line arguments like this:
./a.out this is four words
ch05$ gcc -o argv argv.c
ch05$./argv -h
You can enter several command-line arguments like this:
./argv this is four words

Try running it a few times yourself. If you want to try a fairly advanced exercise, cre‐
ate a function that converts a string of digits to an integer. Then use that function to
add up all of the numbers you pass on the command line. Here’s an example of the
expected output:

./sum 22 154 6 73
The sum of these 4 numbers is 255

You can check my solution in the sum.c file if you want to see how I tackled it.

You might suppose converting strings to numbers is a common
task and that C would already have a function for it, and you’d
mostly be right. There is a function called atoi() (ascii to integer)
that is part of the standard library, stdlib.h. We’ll look into libraries
in Chapter 7, but this small addition saves a lot of manual labor. If
you are up for another quick exercise, try including the stdlib.h
header and use the atoi() function to complete an alternate varia‐
tion. Or feel free to just peek at my solution in sum2.c.

Next Steps
We’ve got all of the biggest building blocks out of the way now. You can start building
some really interesting programs to solve real-world problems with the various con‐
trol structures from previous chapters and the functions we covered here. But C can
do more, and as we start to look forward to working on microcontrollers, some of
that “more” will be critical.

In the next two chapters, we’ll tackle pointers and using libraries to round out our C
skills. Then we can dive into the world of Arduino and have a world of fun!

Next Steps | 125

CHAPTER 6

Pointers and References

Reasonably direct access to memory is one of C’s biggest features for folks who work
on low-level problems like device drivers or embedded systems. C gives you the tools
to micromanage your bytes. That can be a real boon when you need to worry about
every bit of free memory, but it can also be a real pain to worry about every bit of
memory you use. When you want that control, though, it’s great to have the option.
This chapter covers the basics of finding out where things are located in memory
(their address) as well as storing and using those locations with pointers, variables that
store the address of other variables.

Addresses in C
We’ve touched on the notion of pointers when we discussed using scanf() to read in
base types like integers and floats versus reading in a string as a character array. You
may recall for numbers, I mentioned the required & prefix. That prefix can be thought
of as an “address of ” the operator or function. It returns a numeric value that tells you
where the variable following the & is located in memory. We can actually print that
location out. Take a look at ch06/address.c:

#include <stdio.h>

int main() {
 int answer = 42;
 double pi = 3.1415926;
 printf("answer's value: %d\n", answer);
 printf("answer's address: %p\n", &answer);
 printf("pi's value: %0.4f\n", pi);
 printf("pi's address: %p\n", &pi);
}

127

https://oreil.ly/z9TrR

In this simple program, we create two variables and initialize them. We use a few
printf() statements to show both their values and their locations in memory. If we
compile and run this example, here’s what we’ll see:

ch06$ gcc address.c
ch06$./a.out
answer's value: 42
answer's address: 0x7fff2970ee0c
pi's value: 3.1416
pi's address: 0x7fff2970ee10

I should say here is roughly what we’ll see; your setup will likely dif‐
fer from mine, so the addresses likely won’t match exactly. Indeed,
simply running this program successively will almost certainly
result in different addresses as well. Where a program is loaded
into memory depends on myriad factors. If any of those factors are
different, the addresses will probably be different as well.
In all of the examples that follow, it is more useful to pay attention
to which addresses are close to which other addresses. The exact
values are not important.

Getting the value stored in answer or pi is straightforward and something we’ve been
doing since Chapter 2. But playing with the address of a variable is new. We even
needed a new printf() format specifier, %p, to print them! The mnemonic for that
format specifier is “pointer,” which is closely related to “address.” Typically, pointer
refers to a variable that stores an address, even though you will see people talk about a
specific value as a pointer. You will also run across the term reference, which is synon‐
ymous with pointer but is more often used when talking about function parameters.
For example, tutorials online will say things like “when you pass a reference to this
function….” They mean you are passing the address of some variable to the function
rather than the value of the variable.

But back to our example. Those printed pointer values sure look like big numbers!
This won’t always be the case, but on systems with gigabytes or even terabytes of
RAM that use logical addresses to help separate and manage multiple programs, it’s
not uncommon. What do those values represent? They are the slots within our proc‐
ess’s memory where our variables’ values are kept. Figure 6-1 illustrates the basic
setup in memory of our simple example.

Even without figuring out the exact decimal value of the addresses, you can see they
are close together. In fact, the address for pi is four bytes bigger than the address for
answer. An int on my machine is four bytes, so hopefully you can see the connec‐
tion. A double is eight bytes on my system. If we added a third variable to our exam‐
ple, can you guess what address it would have?

128 | Chapter 6: Pointers and References

Figure 6-1. Variable values and addresses

Let’s go ahead and try it together. The program ch06/address2.c adds another int
variable and then prints its value and address:

#include <stdio.h>

int main() {
 int answer = 42;
 double pi = 3.1415926;
 int extra = 1234;
 printf("answer's value: %d\n", answer);
 printf("answer's address: %p\n", &answer);
 printf("pi's value: %0.4f\n", pi);
 printf("pi's address: %p\n", &pi);
 printf("extra's value: %d\n", extra);
 printf("extra's address: %p\n", &extra);
}

And here’s the output of our three-variable version:

ch06$ gcc address2.c
ch06$./a.out
answer's value: 42
answer's address: 0x7fff9c827498
pi's value: 3.1416
pi's address: 0x7fff9c8274a0
extra's value: 1234
extra's address: 0x7fff9c82749c

Hmm, actually the variables are not stored in the order we declared them. How
strange! If you look closely, you can see that answer is still stored first (address 0x…
498), followed by extra four bytes later (0x…49c), followed by pi four bytes after
that (0x…4a0). The compiler will often arrange things in a way it deems efficient—
and that efficient ordering won’t always line up with our source code. So even though
the order is a little surprising, we can still see that the variables all stack on top of
each other with exactly as much space as their type dictates.

The NULL Value and Pointer Errors
The stdio.h header includes a handy value, NULL, that we can use whenever we need to
talk about an “empty” or uninitialized pointer. You can assign NULL to a pointer vari‐
able or use it in a comparison to see if a particular pointer is valid. If you like always

Addresses in C | 129

https://oreil.ly/6gdjU

assigning an initial value to your variables when you declare them, NULL is the value
to use with pointers. For example, we could declare two variables, one double and
one pointer to a double. We’ll initialize them with “nothing,” but then fill them in
later:

double pi = 0.0;
double *pi_ptr = NULL;
// ...
pi = 3.14156;
pi_ptr = π

You should check for NULL pointers anytime you can’t trust where a pointer came
from. Inside a function where a pointer was passed to you, for example:

double messyAreaCalculator(double radius, double *pi_ptr) {
 if (pi_ptr == NULL) {
 printf("Could not calculate area with a reference to pi!\n");
 return 0.0;
 }
 return radius * radius * (*pi_ptr);
}

Not the easiest way to calculate the area of a circle, of course, but the if statement at
the beginning is a common pattern. It’s a simple guarantee that you have something
to work with. If you forget to check your pointer and try dereferencing it anyway,
your program will (usually) halt, and you’ll probably see an error like this:

Segmentation fault (core dumped)

Even if you can’t do anything about the empty pointer, if you check before using it,
you can give the user a nicer error message and avoid crashing.

Arrays
What about arrays and strings? Will those go on the stack just like simpler types? Will
they have addresses in the same general part of memory? Let’s create a couple array
variables and see where they land and how much space they take up. ch06/address3.c
has our arrays. I’ve added a size printout so that we can easily verify how much space
is allocated:

#include <stdio.h>

int main() {
 char title[30] = "Address Example 3";
 int page_counts[5] = { 14, 78, 49, 18, 50 };
 printf("title's value: %s\n", title);
 printf("title's address: %p\n", &title);
 printf("title's size: %lu\n", sizeof(title));
 printf("page_counts' value: {");
 for (int p = 0; p < 5; p++) {
 printf(" %d", page_counts[p]);

130 | Chapter 6: Pointers and References

https://oreil.ly/UA5ZK

 }
 printf(" }\n");
 printf("page_counts's address: %p\n", &page_counts);
 printf("page_counts's size: %lu\n", sizeof(page_counts));
}

And here is our output:

title's value: Address Example 3
title's address: 0x7ffe971a5dc0
title's size: 30
page_counts' value: { 14 78 49 18 50 }
page_counts's address: 0x7ffe971a5da0
page_counts's size: 20

The compiler rearranged our variables again, but we can see that the page_counts
array is 20 bytes (5 x 4 bytes per int) and that title gets an address 32 bytes after
page_counts. (You can ignore the common parts of the address and do a little math:
0xc0 – 0xa0 == 0x20 == 32.) So what’s in the extra 12 bytes? There is some overhead
for an array, and the compiler has kindly made room for it. Happily, we (as program‐
mers or as users) do not have to worry about that overhead. And as programmers we
can see the compiler definitely sets aside enough room for the array itself.

Local Variables and the Stack
So where exactly is that “room” being set aside? In the largest terms, the room is allo‐
cated from our computer’s memory, its RAM. In the case of variables defined in a
function (and remember from “The main() Function” on page 121 that main() is a
function), the space is allocated on the stack. That’s the term for the spot in memory
where all local variables are created and kept as you make various function calls.
Organizing and maintaining these memory allocations is one of the primary jobs of
your operating system.

Consider this next small program, ch06/do_stuff.c. We have the main() function as
usual, and another function, do_stuff(), that, well, does stuff. Not fancy stuff, but it
still creates and prints the details of an int variable. Even boring functions use the
stack and help illustrate how function calls fit together in memory!

#include <stdio.h>

void do_stuff() {
 int local = 12;
 printf("Our local variable has a value of %d\n", local);
 printf("local's address: %p\n", &local);
}

int main() {
 int count = 1;
 printf("Starting count at %d\n", count);

Addresses in C | 131

https://oreil.ly/C5xCP

 printf("count's address: %p\n", &count);
 do_stuff();
}

And here’s the output:

ch06$ gcc do_stuff.c
ch06$./a.out
Starting count at 1
count's address: 0x7fff30f1b644
Our local variable has a value of 12
local's address: 0x7fff30f1b624

You can see the addresses of count in main() and local in do_stuff() are near each
other. They are both on the stack. Figure 6-2 shows the stack with a little more
context.

Figure 6-2. Local variables on the stack

This is where the name “stack” comes from: the function calls stack up. If do_stuff()
were to call some other function, that function’s variables would pile on top of local.
And when any function completes, its variables are popped off the stack. That stack‐
ing can go on quite awhile, but not forever. If you don’t provide a proper base case for
a recursive function like those in “Recursive Functions” on page 115, for example,
this runaway stack allocation is what eventually causes your program to crash.

You might have caught that the addresses in Figure 6-2 are actually decreasing. The
start of the stack can either be at the beginning of the memory allocated to our pro‐
gram and addresses will count up, or at the end of the allotted space and addresses
will count down. Which version you see depends on the architecture and operating
system. The idea of the stack and its growth, though, remains the same.

The stack also houses any parameters that get passed to a function as well as any loop
or other variables that get declared later in the function. Consider this snippet:

float average(float a, float b) {
 float sum = a + b;
 if (sum < 0) {
 for (int i = 0; i < 5; i++) {
 printf("Warning!\n");
 }
 printf("Negative average. Be careful!\n");

132 | Chapter 6: Pointers and References

 }
 return sum / 2;
}

In this snippet, the stack will include space for the following elements:

• the float return value from average() itself
• the float parameter a
• the float parameter b
• the float local variable sum
• the int variable i for the loop (only if sum < 0)

The stack is pretty versatile! Pretty much anything having to do with a particular
function will get its memory from the stack.

Global Variables and the Heap
But what about global variables that are not connected to any particular function?
They get allocated in a separate part of memory called the heap. If “heap” sounds a
little messy, it is. Any bit of memory your program needs that isn’t part of the stack
will be in the heap. Figure 6-3 illustrates how to think about the stack and the heap.

Figure 6-3. Stack versus heap memory

The stack and the heap share one logical lump of memory given to your program
when you run it. As you make function calls, the stack will grow (down from the
“top” in this case). As functions complete their call, the stack shrinks. Global variables
make the heap grow (up from the “bottom”). Large arrays or other structures may
also be allocated in the heap. (“Managing Memory with Arrays” on page 138 in this
chapter looks at how you can manually use memory in this space.) You can free up

Addresses in C | 133

some parts of the heap to make it shrink, but global variables remain as long as your
program is executing.

We’ll look in more detail at how these two parts of memory interact in “Stacks and
heaps” on page 209. As both the stack and the heap grow, the free space in the middle
gets smaller and smaller. If they meet, you’re in trouble. If the stack cannot grow any
further, you won’t be able to call any more functions. If you call a function anyway,
you will likely crash your program. Similarly, if there is no space left for the heap to
grow, but you try to request some space, the computer has no choice but to halt your
program.

Managing to stay out of this trouble is your job as the programmer. C won’t stop you
from making a mistake, but in turn, it gives you room to be quite clever when cir‐
cumstances dictate. Chapter 10 looks at several of those circumstances on microcon‐
trollers and discusses some tricks for navigating them.

Pointer Arithmetic
Regardless of where your variables store their contents, C allows you to work directly
with the addresses in a powerful (and potentially dangerous) way. We aren’t limited
to printing out the address of a variable for simple inspection. We can store it in
another variable. And we can use that other variable to get to the same bit of data and
manipulate it.

Take a look at ch06/pointer.c to see an example of using a variable that points to
another variable. I’ve called out a few key concepts in working with pointers:

#include <stdio.h>

int main() {
 double total = 500.0;
 int count = 34;
 double average = total / count;
 printf("The average of %d units totaling %.1f is %.2f\n",
 count, total, average);

 // Now let's reproduce some of that work with pointers
 double *total_ptr = &total;
 int *count_ptr = &count;
 printf("total_ptr is the same as the address of total:\n");
 printf(" total_ptr %p == %p &total\n", total_ptr, &total);

 // We can manipulate the value at the end of a pointer
 // with the '*' prefix (dereferencing)
 printf("The current total is: %.1f\n", *total_ptr);
 // Let's pretend we forgot two units and correct our count:
 *count_ptr += 2;
 average = *total_ptr / *count_ptr;
 printf("The corrected average of %d units totaling %.1f is %.2f\n",

134 | Chapter 6: Pointers and References

https://oreil.ly/ONjNE

 count, total, average);
}

We start with a normal set of variables and perform a simple calculation.

Next, we create new variables with corresponding pointer types. E.g., we create
total_ptr of type double * as a pointer to our total variable of type double.

You can dereference pointers to use or alter the things they point to.

Lastly, we prove that the original, non-pointer variables were in fact changed by
the work we did with their pointer counterparts.

Here’s the output:

ch06$ gcc pointer.c
ch06$./a.out
The average of 34 units totaling 500.0 is 14.71
total_ptr is the same as the address of total:
 total_ptr 0x7ffdfdc079c8 == 0x7ffdfdc079c8 &total
The current total is: 500.0
The corrected average of 36 units totaling 500.0 is 13.89

That output isn’t very exciting, but again, it proves we were able to edit the value of
variables like count via the count_ptr pointer. Manipulating data through pointers is
pretty advanced stuff. Don’t worry if this topic still feels a little overwhelming. Keep
trying the examples and you’ll get more comfortable with the syntax, which in turn
will help you think about using pointers with your own future projects.

Array Pointers
We have actually worked with a pointer already, although it was very cleverly dis‐
guised as an array. Recall our expanded use of the scanf() function in “scanf() and
Parsing Inputs” on page 38. When we wanted to scan in a number, we had to use &
with the name of the numeric variable. But scanning strings did not require that syn‐
tax—we simply gave the name of the array. That is because arrays in C are already
pointers, just pointers with an expected structure to make reading and writing array
elements easy.

It turns out that you can work with the contents of an array without the convenience
of the square brackets. You can use exactly the same dereferencing we just saw in the
previous example. With dereferencing, you can add and subtract simple integers to
the array variable to get at individual elements in that array. But this type of thing is
best discussed over code. Check out ch06/direct_edit.c:

#include <stdio.h>

Array Pointers | 135

https://oreil.ly/GPhxA

int main() {
 char name[] = "a.c. Programmer";
 printf("Before manipulation: %s\n", name);
 *name = 'A';
 *(name + 2) = 'C';
 printf("After manipulation: %s\n", name);
}

We declare and initialize our string (char array) as usual.

We can dereference the array variable to read or alter the first character. This is
equivalent to name[0] = A.

We can also dereference an expression involving our array variable. We can add
or subtract int values, which translates to moving forward or backward in the
array by one element. In our code, this line is equivalent to name[2] = C.

And you can see the array variable itself is “unharmed,” although we did success‐
fully edit the string.

Go ahead and compile and run the program. Here’s the output:

ch06$ gcc direct_edit.c
ch06$./a.out
Before manipulation: a.c. Programmer
After manipulation: A.C. Programmer

This type of math and dereferencing works on arrays of other types, as well. You
might see pointer arithmetic in loops that process arrays, for example, where incre‐
menting the array pointer amounts to moving to the next element in the array. This
use of pointers can be remarkably efficient. But while the simple manipulations in
direct_edit.c might have been faster historically, modern C compilers are very (very!)
good at optimizing your code.

I recommend concentrating on getting the answer you want before
worrying about performance. Chapter 10 looks at memory and
other resources on the Arduino platform where such worrying is
a bit more justified. Even there, optimizing won’t be your first
concern.

136 | Chapter 6: Pointers and References

Functions and Pointers
Where pointers really start to make a difference in your day-to-day life as a program‐
mer is when you attach them to the parameters or return values of functions. This
feature allows you to create a piece of shareable memory without making it global.
Consider the following functions from ch06/increment.c:

void increment_me(int me, int amount) {
 // increment "me" by the "amount"
 me += amount;
 printf(" Inside increment_me: %d\n", me);
}

void increment_me_too(int *me, int amount) {
 // increment the variable pointed to by "me" by the "amount"
 *me += amount;
 printf(" Inside increment_me_too: %d\n", *me);
}

The first function, increment_me(), should feel familiar. We have passed values to
functions before. Inside increment_me(), we can add amount to me and get the cor‐
rect answer. However, we did pass only the value of count from our main() method.
That should mean that the original count variable will remain untouched.

But increment_me_too() uses a pointer. Instead of a simple value, we can now pass a
reference to count. In this approach, we should find that count has been updated once
we return to main(). Let’s test that expectation. Here’s a minimal main() method that
tries both functions:

int main() {
 int count = 1;
 printf("Initial count: %d\n", count);
 increment_me(count, 5);
 printf("Count after increment_me: %d\n", count);
 increment_me_too(&count, 5);
 printf("Count after increment_me_too: %d\n", count);
}

And here’s what we get for output:

ch06$ gcc increment.c
ch06$./a.out
Initial count: 1
 Inside increment_me: 6
Count after increment_me: 1
 Inside increment_me_too: 6
Count after increment_me_too: 6

Excellent. We got exactly the behavior we wanted. The increment_me() function does
not affect the value of count passed in from main(), but increment_me_too() does

Functions and Pointers | 137

https://oreil.ly/JJLV4

affect it. You will often see the terms “pass by value” and “pass by reference” to distin‐
guish the way a function handles the arguments passed to it. And note that in the case
of increment_me_too(), we have one reference parameter and one value parameter.
There is no restriction on mixing the types. As the programmer, you just have to
make sure you use your function correctly.

Functions can also return a pointer to something they have created in the heap. This
is a popular trick in external libraries, as we’ll see in Chapters 9 and 11.

Managing Memory with Arrays
If you know ahead of time you want a large chunk of memory, say, to store image or
audio data, you can allocate your own arrays (and structures; see “Defining Struc‐
tures” on page 141). The result of the allocation is a pointer that you can then pass to
any functions that might need to work with your data. You don’t duplicate any storage
this way, and you can check to make sure you got all the memory you need before you
have to use it. That is a definite boon when working with content from unknown
sources. If sufficient memory is not available, you can provide a polite error message
and ask the user to try again rather than simply crashing without an explanation.

Allocating with malloc()
While we’ll typically reserve heap work for larger arrays, you can allocate anything
you want there. To do so, you use the malloc() function and provide it a quantity in
bytes that you need. The malloc() function is defined in another header, stdlib.h,
so we have to include that header, similar to how we include stdio.h. We’ll see more
of the functions that stdlib.h provides in “stdio.h” on page 150, but for now, just add
this line at the top, below our usual include:

#include <stdio.h>
#include <stdlib.h>

// ...

With this header included, we can create a simple program that illustrates the mem‐
ory allocation of global and local variables as well as our own, custom bit of memory
in the heap. Take a look at ch06/memory.c:

#include <stdio.h>
#include <stdlib.h>

int result_code = 404;
char result_msg[20] = "File Not Found";

int main() {
 char temp[20] = "Loading ...";
 int success = 200;

138 | Chapter 6: Pointers and References

https://oreil.ly/zAK5y

 char *buffer = (char *)malloc(20 * sizeof (char));

 // We won't do anything with these various variables,
 // but we can print out their addresses
 printf("Address of result_code: %p\n", &result_code);
 printf("Address of result_msg: %p\n", &result_msg);
 printf("Address of temp: %p\n", &temp);
 printf("Address of success: %p\n", &success);
 printf("Address of buffer (heap): %p\n", buffer);
}

The global declarations of result_code and result_msg as well as the local variables
temp and success should be familiar. But look at how we declared buffer. You can
see the use of malloc() in a real program. We asked for 20 characters of space. You
can specify a simple number of bytes if you want, but it is usually safer (indeed, often
necessary) to use sizeof, as shown in this example. Different systems will have differ‐
ent rules regarding type sizes and memory allocation, and sizeof provides an easy
guard against unwitting mistakes.

Let’s take a look at the addresses of our variables in the output:

ch06$ gcc memory.c
ch06$./a.out
Address of result_code: 0x55c4f49c8010
Address of result_msg: 0x55c4f49c8020
Address of temp: 0x7fffc84f1840
Address of success: 0x7fffc84f1834
Address of buffer (heap): 0x55c4f542e2a0

Again, don’t worry about the exact value of those addresses. What we’re looking for
here is their general location. Hopefully, you can see that the global variables and the
buffer pointer we created in the heap manually with malloc() are all in roughly the
same spot. Likewise, the two variables local to main() are similarly grouped, but in a
separate spot.

So malloc() makes room for your data in the heap. We’ll make use of this allocated
space in “Pointers to Structures” on page 142, but we need to look at a closely related
function, free(), first. When you allocate memory using malloc(), you are responsi‐
ble for returning that space when you are done.

Deallocating with free()
As you might recall in the discussion of Figure 6-3, if you use up too much of the
stack or the heap—or enough of both—you will run out of memory and your pro‐
gram will crash. One of the benefits of working with the heap is that you have control
over when and how memory is allocated from and returned to the heap. Of course, as
I just noted, the flipside of this benefit is that you have to remember to do the “give‐

Managing Memory with Arrays | 139

1 That convenient handling turns out to be very convenient. Kernighan and Ritchie devote an entire chapter of
The C Programming Language to this topic. Obviously they go into more detail than I can here, so here’s one
more plug for picking up this classic.

ing back” part yourself. Many newer languages work to relieve the programmer of
that burden, as it is all too easy to forget to clean up after yourself. Perhaps you have
even heard of the quasi-official term for this issue: a memory leak.

To return memory and avoid such leaks in C, you use the free() function (also from
stdlib.h). It’s pretty straightforward to use—you just pass the pointer returned from
your corresponding malloc() call. So to free up buffer when you’re done using it,
for example:

 free(buffer);

Easy! But again, it’s remembering to use free() that is the difficulty. That might not
seem like such a problem, but it gets increasingly tricky when you start using func‐
tions to create and remove bits of data. How many times did you call the create func‐
tions? Did you call a reciprocal remove function for each one? What if you try to
remove something that was never allocated? All of these questions make keeping
track of your memory usage as troublesome as it is vital.

C Structures
As you tackle more interesting problems, your data storage needs will get more com‐
plex. If you are working with LCD displays, for example, you will work with pixels
that need a color and a location. That location itself will be made up of x and y coor‐
dinates. While you can create three separate arrays (one for all the colors, one for all
the x coordinates, and finally one for the y coordinates), that collection will be diffi‐
cult to pass to and from functions and opens up several avenues for bugs—like
adding a color but forgetting one of the coordinates. Fortunately, C includes the
struct facility to create better containers for your new data needs.

To quote K&R: “A structure is a collection of one or more variables, possibly of differ‐
ent types, grouped together under a single name for convenient handling.”1 They go
on to note that other languages support this idea as a record. Searching online today
you would also encounter the term composite type. Whatever you call it, this variable
grouping feature is very powerful. Let’s see how it works.

140 | Chapter 6: Pointers and References

Defining Structures
To create your own structures, you use the struct keyword and name followed by
your list of variables inside curly braces. Then you can access those variables by name
much like you access the elements of an array by index. Here’s a quick example we
could use with a program for bank accounts:

struct transaction {
 double amount;
 int day, month, year;
};

We now have a new “type” we can use with our variables. Instead of int or char[],
we have struct transaction:

int main() {
 int count;
 char message[] = "Your money is safe with us!";
 struct transaction bill, deposit;
 // ...
}

The count and message declarations should look familiar. The next line declares two
more variables, bill and deposit, who share the new struct transaction type. You
can use this new type anywhere you have been using native types like int. You can
create local or global variables with struct types. You can pass structures to functions
or return them from functions. Working with structures and functions tends to rely
more on pointers, but we’ll look at those details in “Functions and Structures” on
page 143.

Your structure definitions can be quite complex. There is no real restriction on how
many variables they can contain. A structure can even contain nested struct defini‐
tions! You don’t want to go overboard, of course, but you do have freedom to create
just about any kind of record you can imagine.

Assigning and Accessing Structure Members
Once your structure type is defined, you can declare and initialize variables of that
type using syntax similar to how we handle arrays. For example, if you know a struc‐
ture’s values ahead of time, you can use curly braces to initialize your variable:

 struct transaction deposit = { 200.00, 6, 20, 2021 };

The order of the values inside the braces needs to match the order of the variables
you listed in the struct definition. But you can also create a structure variable and fill
it in after the fact. To indicate which field you want to assign, you use the “dot” opera‐
tor. You give the structure variable’s name (bill or deposit in our current example),

C Structures | 141

a period, and then the member of the structure you are interested in, like day or
amount. With this approach, you can make assignments in any order you like:

 bill.day = 15;
 bill.month = 7;
 bill.year = 2021;
 bill.amount = 56.75;

Regardless of how you filled the structure, you use the same dot notation to access a
structure’s contents anytime you need them. For example, to print any details from a
transaction, we specify the transaction variable (bill or deposit in our case), the dot,
and the field we want, like this:

 printf("Your deposit of $%0.2f was accepted.\n", deposit.amount);
 printf("Your bill is due on %d/%02d\n", bill.month, bill.day);

We can print these inner elements to the screen. We can assign new values to them.
We can use them in calculations. You can do everything with the pieces inside your
structure that you do with other variables. The point of the structure is simply to
make it easier to keep related pieces of data together. But these structures also keep
data distinct. Consider assigning the amount variable in both our bill and our
deposit:

 deposit.amount = 200.00;
 bill.amount = 56.75;

There is never any confusion over which amount you mean, even though we used the
amount name in both assignments. If we add some tax to our bill after it was set up,
for example, that will not affect how much money we include in our deposit:

 bill.amount = bill.amount + bill.amount * 0.05;

 printf("Our final bill: $%0.2f\n", bill.amount); // $59.59
 printf("Our deposit: $%0.2f\n",) // $200.00

Hopefully, that separation makes sense. With structures, you can talk about bills and
deposits as entities in their own right, while understanding that the details of any
individual bill or deposit remain unique to that transaction.

Pointers to Structures
If you build a good composite type that encapsulates just the right data, you will likely
start using these types in more and more places. You can use them for global and
local variables or as parameter types or even function return types. In the wild, how‐
ever, you will more often see programmers working with pointers to structures rather
than structures themselves.

142 | Chapter 6: Pointers and References

To create (or destroy) pointers to structures, you can use exactly the same operators
and functions that are available for simple types. If you already have a struct vari‐
able, for example, you can get its address with the & operator. If you created an
instance of your structure with malloc(), you use free() to return that memory to
the heap. Here are a few examples of using these features and functions with our
struct transaction type:

struct transaction tmp = { 68.91, 8, 1, 2020 };
struct transaction *payment;
struct transaction *withdrawal;

payment = &tmp;
withdrawal = malloc(sizeof(struct transaction));

Here, tmp is a normal struct transaction variable and we initialize it using curly
braces. Both payment and withdrawal are declared as pointers. We can assign the
address of a struct transaction variable like we do with payment, or we can allo‐
cate memory on the heap (to fill in later) like we do with withdrawal.

When we go to fill in withdrawal, however, we have to remember that we have a
pointer, so withdrawal requires dereferencing before we can apply the dot. Not only
that, the dot operator has a higher order of precedence than the dereference operator,
so you have to use parentheses to get the operators applied correctly. That can be a
little tedious, so we often use an alternate notation for accessing the members of a
struct pointer. The “arrow” operator, ->, allows us to use a struct pointer without
dereferencing it. You place the arrow between the structure variable’s name and the
name of the intended member just like with the dot operator:

// With dereferencing:
(*withdrawal).amount = -20.0;

// With the arrow operator:
withdrawal->day = 3;
withdrawal->month = 8;
withdrawal->year = 2021;

This difference can be a little frustrating, but eventually you’ll get used to it. Pointers
to structures provide an efficient means of sharing relevant information between dif‐
ferent parts of your program. Their biggest advantage is that pointers do not have the
overhead of moving or copying all of the internal pieces of their structures. This
advantage becomes apparent when you start using structures with functions.

Functions and Structures
Consider writing a function to print out the contents of a transaction in a nice for‐
mat. We could pass the structure as is to a function. We just use the struct transac
tion type in our parameter list and then pass a normal variable when we call it:

C Structures | 143

void printTransaction1(struct transaction tx) {
 printf("%2d/%02d/%4d: %10.2f\n", tx.month, tx.day, tx.year, tx.amount);
}
// ...
printTransaction1(bill);
printTransaction1(deposit);

Pretty simple, but recall our discussion of how function calls work with the stack. In
this example, all of the fields of bill or deposit will have to be put on the stack when
we call printTransaction1(). That takes extra time and space. Indeed, in the very
earliest versions of C, this wasn’t even allowed! That’s obviously not true any longer,
but passing pointers to and from functions is still faster. Here’s a pointer version of
our printTransaction1() function:

void printTransaction2(struct transaction *ptr) {
 printf("%2d/%02d/%4d: %10.2f\n",
 ptr->month, ptr->day, ptr->year, ptr->amount);
}
// ...
printTransaction2(&tmp);
printTransaction2(payment)
printTransaction2(withdrawal);

The only thing required to go on the stack was the address of one struct transac
tion object. Much cleaner.

Passing pointers this way has an interesting, intended feature: we can change the con‐
tents of a structure in the function. Recall from “Passing Simple Types” on page 107
that without pointers, we end up passing values via the stack that initialize the param‐
eters of the function. Nothing we do to those parameters while inside the function
affects the original arguments from wherever the function was called.

If we pass a pointer, however, we can use that pointer to change the insides of the
structure. And those changes persist because we are working on the actual structure,
not a copy of its values. For example, we could create a function to add tax to any
transaction:

void addTax(struct transaction *ptr, double rate) {
 double tax = ptr->amount * rate;
 ptr->amount += tax;
}

// ... back in main
 printf("Our bill amount before tax: $%.2f\n", bill.amount);
 addTax(&bill, 0.05);
 printf("Our bill amount after tax: $%.2f\n", bill.amount);
// ...

144 | Chapter 6: Pointers and References

Notice that we do not change bill.amount in the main() function. We simply pass its
address to addTax() along with a tax rate. Here’s the output of those printf()
statements:

Our bill amount before tax: $56.75
Our bill amount after tax: $59.59

Exactly what we were hoping for. Because it proves so powerful, passing structures by
reference is very common. Not everything needs to be in a structure, and not every
structure has to be passed by reference, but in large programs, the organization and
efficiency you get are definitely appealing.

This ability to alter the contents of a structure using a pointer is
usually desirable. But if for some reason you don’t want to change a
member while you’re using a pointer to its structure, be sure not to
assign anything to that member. You can, of course, always put a
copy of that member’s value into a temporary variable first, and
then work with the temporary variable.

Pointer Syntax Recap
I introduced enough new and somewhat esoteric bits of C’s syntax in this chapter that
I wanted to recap things here for quick reference:

• We defined new data types with the struct keyword.
• We used the “dot” operator (.) for accessing the contents of a structure.
• We used the “arrow” operator (->) for accessing the contents of a structure

though a pointer.
• We allocated our own space for data using malloc().
• We worked with that space using the & (“address of ”) and * (“dereference”)

operators.
• When we’re done with the data, we can release its space using free().

Let’s see these new concepts and definitions in context. Consider the following pro‐
gram, ch06/structure.c. Rather than use callouts in this slightly longer listing, I have
added several inline comments to highlight key points. That way you can look up
these details quickly here in the book, or in your code editor if you’re working on one
of your own programs:

// Include the usual stdio, but also stdlib for access
// to the malloc() and free() functions, and NULL
#include <stdio.h>
#include <stdlib.h>

Pointer Syntax Recap | 145

https://oreil.ly/xeqqL

// We can use the struct keyword to define new, composite types
struct transaction {
 double amount;
 int month, day, year;
};

// That new type can be used with function parameters
void printTransaction1(struct transaction tx) {
 printf("%2d/%02d/%4d: %10.2f\n", tx.month, tx.day, tx.year, tx.amount);
}

// We can also use a pointer to that type with parameters
void printTransaction2(struct transaction *ptr) {
 // Check to make sure our pointer isn't empty
 if (ptr == NULL) {
 printf("Invalid transaction.\n");
 } else {
 // Yay! We have a transaction, print out its details with ->
 printf("%2d/%02d/%4d: %10.2f\n", ptr->month, ptr->day, ptr->year,
 ptr->amount);
 }
}

// Passing a structure pointer to a function means we can alter
// the contents of the structure if necessary
void addTax(struct transaction *ptr, double rate) {
 double tax = ptr->amount * rate;
 ptr->amount += tax;
}

int main() {
 // We can declare local (or global) variables with our new type
 struct transaction bill;

 // We can assign initial values inside curly braces
 struct transaction deposit = { 200.00, 6, 20, 2021 };

 // Or we can assign values at any time after with the dot operator
 bill.amount = 56.75;
 bill.month = 7;
 bill.day = 15;
 bill.year = 2021;

 // We can pass structure variables to functions just like other variables
 printTransaction1(deposit);
 printTransaction1(bill);

 // We can also create pointers to structures and use them with malloc()
 struct transaction tmp = { 68.91, 8, 1, 2020 };
 struct transaction *payment = NULL;
 struct transaction *withdrawal;
 payment = &tmp;

146 | Chapter 6: Pointers and References

 withdrawal = malloc(sizeof(struct transaction));

 // With a pointer, we either have to carefully dereference it
 (*withdrawal).amount = -20.0;
 // Or use the arrow operator
 withdrawal->day = 3;
 withdrawal->month = 8;
 withdrawal->year = 2021;

 // And we are free to pass structure pointers to functions
 printTransaction2(payment);
 printTransaction2(withdrawal);

 // Add tax to our bill using a function and a pointer
 printf("Our bill amount before tax: $%.2f\n", bill.amount);
 addTax(&bill, 0.05);
 printf("Our bill amount after tax: $%.2f\n", bill.amount);

 // Before we go, release the memory we allocated to withdrawal:
 free(withdrawal);
}

As with most new concepts and bits of syntax, you’ll get more comfortable with
pointers and malloc() as you use them more in your own programs. Creating a pro‐
gram from scratch that solves a problem you are interested in always helps cement
your understanding of a new topic. I officially give you permission to go play around
with pointers!

Next Steps
We covered some pretty advanced stuff in this chapter. We looked at where data is
stored in memory as your program is running and the operators (&, *, ., and ->) and
functions (malloc() and free()) that help you work with the addresses of that data.
Many books on intermediate and advanced programming will spend multiple chap‐
ters on these concepts, so don’t be discouraged if you need to read through some of
this material a few more times. As always, running the code with some of your own
modifications is a great way to practice your understanding.

We have an impressive array of tools in our C kit now! We can start tackling complex
problems and have a good shot at solving them. But in many cases, our problems are
not actually novel. In fact, a lot of problems (or at least a lot of the subproblems we
find when we break up our real task into manageable pieces) have already been
encountered and solved by other programmers. The next chapter looks at how to take
advantage of those external solutions.

Next Steps | 147

CHAPTER 7

Libraries

One of C’s best qualities is the minimal adornment present in its compiled code. A
favorite snipe at some more modern languages like Java is the size of the “Hello,
World” program. Our very first program back in “Creating a C ‘Hello, World’” on
page 15 takes up a little over 16Kb on my Linux machine without any optimizations.
Achieving the same output from a standalone executable on the same system using
Java, though, requires tens of megabytes and much, much more effort to build. That’s
not an entirely fair comparison since the Java hello application needs the entire Java
runtime baked into the executable, but that’s also the point: C makes it easy to create
lean code for a given system.

That ease is great when we’re tackling small things like “Hello, World” or even most of
the examples from past chapters. But as we get ready to jump into the world of
microcontrollers and Arduino, we’re left worrying about re-creating our own solu‐
tions to some pretty mundane problems. For example, we’ve written some of our own
functions to compare strings. We wrote a fancier program to encode base64 content.
That stuff is fun, but do we always have to do this type of work from scratch?

Happily, the answer to that question is: no. C supports the notion of using a library
for quick, friendly expansion of its capabilities—without losing its lean profile for the
final executable. A library is a bundle of code that can be imported into your projects
to add new capabilities, like working with strings or talking to a wireless network. But
the key to using libraries is that you only need to add the one that contains the fea‐
tures you need. That Java hello application would have latent support for creating an
entire graphical interface and opening network connections, even though they would
not be used just to print some text in a terminal window.

With Arduino, for example, you’ll find libraries for most of the popular sensors like
temperature components or light-level resistors and outputs like LEDs and LCD dis‐
plays. You won’t have to write your own device driver to use a piece of electronic

149

paper or change the color of an RGB LED. You can load up a library and get to work
on what you want to display on that e-paper, and not worry about how.

The C Standard Library
We have already used a couple libraries on our path to this point in the book. Even
our very first program needed the stdio.h header for access to the printf() function.
And our most recent work on pointers in Chapter 6 required the malloc() function
found in the stdlib.h header. We didn’t have to do much to get access to those bits.
Indeed, we just wrote an #include statement at the top of our program and off
we went!

The reason these functions are so easy to incorporate is that they belong to the C
standard library. Every C compiler or development environment will have this library
available. It may be packaged differently on different platforms (such as including or
excluding the math functions), but you can always count on the overall content being
ready for inclusion. I can’t cover everything in the library, but I do want to highlight
some useful functions and the headers that provide them. In “Putting It Together” on
page 161, I’ll also cover where to look for other libraries that tackle a wider range of
features.

stdio.h
Obviously we’ve been using the stdio.h header from the very start. We have already
used the two most useful functions (for our purposes): printf() and scanf(). The
other functions in this header revolve around access to files. The microcontrollers
we’ll be working with in the coming chapters do sometimes have filesystems, but the
types of programs we’ll be writing won’t need that particular feature. Still, if you do
want to work with files on a desktop or high-powered microcontroller, this header is
a good place to start!

stdlib.h
We have also seen a few functions from stdlib.h, namely malloc() and free(). But
this header has a few more useful tricks worth mentioning.

atoi()
In “Command-Line Arguments and main()” on page 123, I gave you an exercise to
convert a string to a number. The “extra credit” note mentioned using stdlib.h to get
access to C’s standard conversion function: atoi(). There are two other converters
for other base types: atol() converts to a long value, and atof() converts to a float‐
ing point type, but contrary to the final letter in the function’s name, atof() returns a
double value. (You can always cast that to the lower-precision float type if needed.)

150 | Chapter 7: Libraries

1 That algorithm is deterministic and while that’s fine for most developers, it is not truly random.

The solution to that extra exercise, ch07/sum2.c, highlights just how simple convert‐
ing can be if you include the necessary header file:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
 int total = 0;
 for (int i = 1; i < argc; i++) {
 total += atoi(argv[i]);
 }
 printf("The sum of these %d numbers is %d\n", argc - 1, total);
}

Pretty easy! Which is, of course, the hope in using a library function like this. You
could write this conversion code yourself, but you can save a lot of time (and a fair
amount of debugging) if you can find an appropriate library function to use instead.

Do be a little careful with these functions. They stop parsing the
string when they hit a nondigit character. If you attempt to convert
the word “one” to a number, for example, that parsing stops imme‐
diately and atoi() (or the others) will return a 0 without any
errors. If 0 can appear as a legitimate value in your string, you’ll
need to add your own validity checks before calling them.

rand() and srand()
Random values play a fun role in many situations. Want to vary the colors of your
LED lamp? Want to shuffle a virtual deck of cards? Need to simulate potential com‐
munication delays? Random numbers to the rescue!

The rand() function returns a pseudorandom number between 0 and a constant
(well, technically a macro; more on these in “Special Values” on page 190), RAND_MAX,
also defined in stdlib.h. I say “pseudorandom” because the “random” number you get
back is the product of an algorithm.1

A related function, srand(), can be used to seed the random number generating algo‐
rithm. The “seed” value is the starting point for the algorithm before it goes hopping
around producing a nice variety of values. You can use srand() to supply new values
every time your program runs—using the current timestamp, for example—or you
can use the seed to produce a known list of numbers. That might seem like a strange
thing to want, but it can be useful in testing.

The C Standard Library | 151

https://oreil.ly/x8J8O

Let’s try out these two functions to get a feel for their use. Take a look at ch07/
random.c:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main() {
 printf("RAND_MAX: %d\n", RAND_MAX);
 unsigned int r1 = rand();
 printf("First random number: %d\n", r1);
 srand(5);
 printf("Second random number: %d\n", rand());
 srand(time(NULL));
 printf("Third random number: %d\n", rand());
 unsigned int pin = rand() % 9000 + 1000;
 printf("Random four digit number: %d\n", pin);
}

And let’s compile and run it to see the output:

ch07$ gcc random.c
ch07$./a.out
RAND_MAX: 2147483647
First random number: 1804289383
Second random number: 590011675
Third random number: 1205842387
Random four digit number: 7783

ch07$./a.out
RAND_MAX: 2147483647
First random number: 1804289383
Second random number: 590011675
Third random number: 612877372
Random four digit number: 5454

On my system, then, the maximum value returned by rand() is 2147483647. The first
number we generate should be between 0 and 2147483647, and so it is. The second
number we generate will be in the same range, but it comes after we provide a new
seed value to srand(), so hopefully it’s different than r1, and that bears out.

But look at those first two “random” numbers in the output of our second run.
They’re exactly the same! Hardly random. As I mentioned, rand() is a pseudo‐
random generator. The default seed for the generating algorithm is 1 if you never call
srand(). But if you call it with a constant like 5, that’s no better. It will be a different
sequence of numbers, but every time you run the program it will be the same “differ‐
ent” sequence.

So, in order to get different pseudorandom numbers, you need to provide a seed that
changes every time you run your program. The most common trick is to do what I
did by including yet another header, time.h (see “time.h” on page 159) and pull in the

152 | Chapter 7: Libraries

https://oreil.ly/sst4C
https://oreil.ly/sst4C

2 I don’t have space to cover good generators, but searching online for “C random generator” will net you some
interesting options. There are better algorithms such as Blum Blum Shub or a Mersenne Twister, but you can
also find hardware-dependent generators that are better still.

current timestamp (seconds since January 1, 1970). As long as we don’t manage to
start the program twice in one second, we’ll get new sequences each run. You can see
that seed turned out fine in the two runs above as the third number is indeed differ‐
ent between them.

With that better seed2 in place, subsequent calls to rand() should look random from
execution to execution. We can see that benefit with the PIN we generate for our final
random number. The PIN is bounded using a popular trick for getting a random
number in a range. You use the remainder operator to make sure you get an appro‐
priately limited range, and then add a base value. For the PIN to have exactly four
digits, we use a base of 1000 and a range of 9000 (0 to 8999 inclusive).

exit()

The final function from stdlib.h that I want to highlight is the exit() function. In
“Return values and main()” on page 122 we looked at using the return statement to
end your program and optionally return a value from the main() function to provide
some status information to the operating system.

There is also a separate exit() function that takes an int argument that is used for
the same exit code value as the return statement in the main() method. The differ‐
ence between using exit() and returning from main() is that exit() can be called
from any function and immediately quits the application. For example, we could
write a “confirmation” function that asks the user if they are sure they want to quit. If
they answer with a y, then we can use exit() at that point rather than returning some
sentinel value to main() and then using return. Take a look at ch07/areyousure.c:

#include <stdio.h>
#include <stdlib.h>

void confirm() {
 char answer;
 printf("Are you sure you want to exit? (y/n) ");
 scanf("%c", &answer);
 if (answer == 'y' || answer == 'Y') {
 printf("Bye\n\n");
 exit(0);
 printf("This will never be printed.\n");
 }
}

int main() {
 printf("In main... let's try exiting.\n");

The C Standard Library | 153

https://oreil.ly/W5lIr

 confirm();
 printf("Glad you decided not to leave.\n");
}

And here is the output from two runs:

ch07$ gcc areyousure.c
ch07$./a.out
In main... let's try exiting.
Are you sure you want to exit? (y/n) y
Bye

ch07$./a.out
In main... let's try exiting.
Are you sure you want to exit? (y/n) n
Glad you decided not to leave.

Notice that when we use exit(), we don’t go back to the main() function or even fin‐
ish the code in our confirm() function itself. We really do exit the program and sup‐
ply an exit code to the operating system.

Inside main(), by the way, it mostly doesn’t matter whether you use return or
exit(), although the former is more “polite.” (For example, any cleanup from com‐
pleting the main() function will still run if you use return. That same cleanup would
be skipped if you use exit().) It is also worth noting that simply making it to the end
of the main() body as we have been doing all along is a fine and popular way to finish
your program when there were no errors.

string.h
Strings are so common and so useful that they even have their own header file. The
string.h header can be added to any program where you need to compare or manipu‐
late strings beyond simply storing and printing them. This header describes more
functions than we have time to cover here, but there are some import utilities we
want to highlight in Table 7-1.

Table 7-1. Useful string functions

Function Description

strlen(char *s) Calculate the length of a string (not including the final null
character)

strcmp(char *s1, char *s2) Compare two strings. Return -1 if s1 < s2, 0 if s1 == s2, and 1 if
s1 > s2

strncmp(char *s1, char *s2, int n) Compare at most n bytes of s1 and s2 (results similar to strcmp)

strcpy(char *dest, char *src) Copy src to dest

strncpy(char *dest, char *src, int n) Copy at most n bytes of src to dest

154 | Chapter 7: Libraries

Function Description

strcat(char *dest, char *src) Append src to dest

strncat(char *dest, char *src, int n) Append at most n bytes of src to dest

We can demonstrate all of these functions in a simple program, ch07/fullname.c, by
asking the user for their full name in pieces and (safely!) putting it together at the
end. If we find we’re interacting with Dennis M. Ritchie, we’ll thank him for writing
C.

#include <stdio.h>
#include <string.h>

int main() {
 char first[20];
 char middle[20];
 char last[20];
 char full[60];
 char spacer[2] = " ";

 printf("Please enter your first name: ");
 scanf("%s", first);
 printf("Please enter your middle name or initial: ");
 scanf("%s", middle);
 printf("Please enter your last name: ");
 scanf("%s", last);

 // First, assemble the full name
 strncpy(full, first, 20);
 strncat(full, spacer, 40);
 strncat(full, middle, 39);
 strncat(full, spacer, 20);
 strncat(full, last, 19);

 printf("Well hello, %s!\n", full);

 int dennislen = 17; // length of "Dennis M. Ritchie"
 if (strlen(full) == dennislen &&
 strncmp("Dennis M. Ritchie", full, dennislen) == 0)
 {
 printf("Thanks for writing C!\n");
 }
}

And an example run:

ch07$ gcc fullname.c
ch07$./a.out
Please enter your first name: Alice
Please enter your middle name or initial: B.
Please enter your last name: Toklas
Well hello, Alice B. Toklas!

The C Standard Library | 155

https://oreil.ly/dzycy

Give this program a try yourself. If you do enter Dennis’s name (including the period
after his middle initial: “M.”), do you get the thank-you message as expected?

It’s a common mistake to set the maximum number of characters to
concatenate in strncat() to the length of the source string.
Instead, you should set it to the maximum number of characters
remaining in your destination. Your compiler may warn you about
this mistake with a “specified bound X equals source length” mes‐
sage. (X, of course, would be the bound you specified when calling
strncat().) It’s just a warning, and you might well have exactly the
length of your source remaining. But if you see the warning,
double-check that you didn’t use the source length by accident.

As another example, we can revisit the notion of default values and overwriting
arrays from “Initializing strings” on page 88. You can delay the initialization of a
character array until you know what the user has done. We can declare—but not initi‐
alize—a string, use it with scanf(), and then go back to the default if the user didn’t
give us a good alternate value.

Let’s try this with a question about the background color of some future, amazing
application. We might assume a dark theme with a black background. We can prompt
the user for a different value, or have them simply hit the Return key without entering
a value if they want to keep the default. Here’s ch07/background.c:

#include <stdio.h>
#include <string.h>

int main() {
 char background[20];
 printf("Enter a background color or return for the default: ");
 scanf("%[^\n]s", background);
 if (strlen(background) == 0) {
 strcpy(background, "black");
 }
 printf("The background color is now %s.\n", background);
}

Declare a string with enough capacity, but don’t set it to anything.

Get input from the user and store it in our array.

If the array is empty after prompting the user, store our default.

Show the final value, either from the user or from our default.

156 | Chapter 7: Libraries

https://oreil.ly/a89Jd

And here are some sample runs, including one where we keep the black background:

ch07$ gcc background.c
ch07$./a.out
Enter a background color or return for the default: blue
The background color is now blue.
ch07$./a.out
Enter a background color or return for the default: white
The background color is now white.
ch07$./a.out
Enter a background color or return for the default:
The background color is now black.

If you are inviting the user to supply a value, just remember to allocate sufficient
room in your array to contain whatever response the user might give you. If you can’t
trust your users, scanf() has another trick that you can deploy. Just like the format
specifiers in printf(), you can add a width to any input field in scanf(). For our
previous example, say, we could change to an explicit limit of 19 (saving room for that
final '\0' character):

 scanf("%19[^\n]s", background);

Easy peasy. It does look quite dense, but it’s a nice option for limited devices where
you might not be able to allocate a lot of extra space in case of verbose users.

math.h
The math.h header declares several useful functions for performing a variety of arith‐
metic and trigonometric calculations. Table 7-2 includes several of the more popular
functions. All of these functions return a double value.

Table 7-2. Handy functions from math.h

Function Description
Trigonometric Functions

cos(double rad) Cosine

sin(double rad) Sine

atan(double rad) Arctangent

atan2(double y, double x) Two-argument arctangent (angle between positive X axis and point (x,y))

Roots and Exponents

exp(double x) ex

log(double x) Natural logarithm (base e) of x

log10(double x) Common logarithm (base 10) of x

pow(double x, double y) xy

sqrt(double x) Square root of x

The C Standard Library | 157

Function Description
Rounding

ceil(double x) Ceiling function, next bigger integer from x

floor(double x) Floor function, next smaller integer from x

Signs

fabs(double x)a Return the absolute value of x
a Oddly, the absolute value function for integer types, abs(), is declared in stdlib.h.

For any situation where you want an int or long answer, you just have to cast. For
example, we could write a simple program (ch07/rounding.c) to average several inte‐
gers and then round them to the nearest int value like this:

#include <stdio.h>
#include <math.h>

int main() {
 int grades[6] = { 86, 97, 77, 76, 85, 90 };
 int total = 0;
 int average;

 for (int g = 0; g < 6; g++) {
 total += grades[g];
 }
 printf("Raw average: %0.2f\n", total / 6.0);
 average = (int)floor(total / 6.0 + 0.5);
 printf("Rounded average: %d\n", average);
}

Since we (may) need to help the compiler with this library, let’s take a look at the
compile command:

gcc rounding.c -lm

Again, math.h declares functions in the C standard library, but those functions are
not necessarily implemented in the same place as other functions. The binary con‐
taining most of the functions we’re discussing is libc (or glibc for GNU’s version).
However, on many systems, the math functions live in a separate binary, libm, which
requires that trailing -lm flag to make sure the compiler knows to link in the math
library.

Your system may differ. There’s no harm in trying to compile without the -lm option
to see if your system automatically includes libm (or has all of the functions already
included in libc). If you try compiling without the flag and you don’t get any errors,
you’re in good shape! If you do need the library flag, you’ll see something like this:

158 | Chapter 7: Libraries

https://oreil.ly/rEMTv

ch07$ gcc rounding.c
/usr/bin/ld: /tmp/ccP1MUC7.o: in function `main':
rounding.c:(.text+0xaf): undefined reference to `floor'
collect2: error: ld returned 1 exit status

Try it yourself (with or without the library flag as needed). You should get 85 as an
answer. If rounding is something you do often, you can write your own function to
simplify things and avoid littering your code with the slightly clunky business of
adding the 0.5 value before calling floor() and casting the result.

time.h
This header gives you access to a number of utilities to help with determining and
displaying time. It uses two types of storage for handling dates and times: a simple
timestamp (with a type alias, time_t, representing the number of seconds since Janu‐
ary 1, 1970, UTC) and a much more detailed structure, struct tm, with the following
definition:

struct tm {
 int tm_sec; // seconds (0 - 60; allow for leap second)
 int tm_min; // minutes (0 - 59)
 int tm_hour; // hours (0 - 23)
 int tm_mday; // day of month (1 - 31)
 int tm_mon; // month (0 - 11; WARNING! NOT 1 - 12)
 int tm_year; // year (since 1900)
 int tm_wday; // day of week (0 - 6)
 int tm_yday; // day of year (0 - 365)
 int tm_isdst; // Daylight Saving Time flag
 // This flag can be in one of three states:
 // -1 == unavailable, 0 == standard time, 1 == DST.
}

I won’t be using this nifty structure with all the separated fields, but it can be useful if
you are doing any work with dates and times, like you might find in a calendaring
application. I will be using timestamps from, uh, time to time, as we’ve already seen in
“rand() and srand()” on page 151 for supplying a changing seed to the srand() func‐
tion. Table 7-3 shows some functions that work with these simple values:

Table 7-3. Working with timestamps

Function Description

char *ctime(time_t *t) Return a string of the local time

struct tm *localtime(time_t *t) Expand a timestamp into the detailed structure

time_t mktime(struct tm *t) Reduce a structure to a timestamp

time_t time(time_t *t) Return the current time as a timestamp

The C Standard Library | 159

The definition of that last function, time(), might look a little weird. It both takes
and returns a time_t pointer. You can call time() with either a NULL value or with a
valid pointer to a variable of type time_t. If you use NULL, the current time is simply
returned. If you supply a pointer, the current time is returned, but the variable poin‐
ted to is also updated with the current time. We only need the NULL option for our
work with random numbers, but you’ll stumble on a few utility functions that use this
pattern. It can be useful if you are working with heap memory.

ctype.h
Many situations where you process input from users require you to validate that the
input conforms to some expected type or value. For example, a ZIP code should be
five digits and a US state abbreviation should be two uppercase letters. The ctype.h
header declares several handy functions for checking individual characters. It also has
two helper functions that convert between upper- and lowercase. Table 7-4 highlights
several of these functions.

Table 7-4. Working with characters using ctype.h

Function Description
Testing

isalnum(int c) Is c a numeric character or a letter

isalpha(int c) Is c a letter

isdigit(int c) Is c a decimal digit

isxdigit(int c) Is c a hexadecimal digit (case-insensitive)

islower(int c) Is c a lowercase letter

isupper(int c) Is c an uppercase letter

isspace(int c) Is c a space, tab, newline, carriage return, vertical tab, or form feed

Conversion

tolower(int c) Return the lowercase version of c

toupper(int c) Return the uppercase version of c

Don’t forget your Boolean operators! You can easily expand these tests to ask ques‐
tions like “is not whitespace” with the ! operator:

 if (!isspace(answer)) {
 // Not a blank character, so go ahead
 ...
 }

160 | Chapter 7: Libraries

As with the math functions and getting a double result where you
need an int, the conversion functions in ctype.h return an int, but
you can easily cast it to a char as needed.

Putting It Together
Let’s pull in a few of these new headers and use some of the topics from previous
chapters to make a more rounded example. We’ll create a structure to store informa‐
tion on a simple bank account. We can use the new string.h utilities to add a name
field to each account. And we’ll use the math.h functions to calculate a sample com‐
pound interest payment on the balance of the account. Here are the includes this
example will require:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

With our headers ready, let’s dive in and get the program itself going.

Filling In Strings
Let’s start our example by creating our account type including a string “name” field.
The new struct is simple enough:

struct account {
 char name[50];
 double balance;
};

We can now use our string functions to load up name with actual content after our
structure is created. We can also use malloc() to create that structure in a function
and return the address of our account. Here’s the new function, with some of the
safety checks omitted just for readability:

struct account *create(char *name, double initial) {
 struct account *acct = malloc(sizeof(struct account));
 strncpy(acct->name, name, 49);
 acct->balance = initial;
 return acct;
}

Notice I chose to use strncpy() here. The idea is that I cannot guarantee the incom‐
ing name parameter will fit. Since I wrote the entire program, of course, I certainly can
guarantee that detail, but that’s not the point. I want to make sure if I ever allow user
input, say, by prompting the user for details, my create() function has some safe‐
guards in place.

Putting It Together | 161

Let’s go ahead and create a function to print our account details. Hopefully, this code
looks familiar from our work in Chapter 6. We can also start our main() function to
try out everything we’ve written so far:

void print(struct account *a) {
 printf("Account: %s\n", a->name);
 printf("Balance: $%.2f\n", a->balance);
}

int main() {
 struct account *checking;
 checking = create("Bank of Earth (checking)", 200.0);
 print(checking);
 free(checking);
}

Let’s compile and run ch07/account1.c. Here’s our output:

ch07$ gcc account1.c
ch07$./a.out
Account: Bank of Earth (checking)
Balance: $200.00

Hooray! So far, so good. Next up is figuring out an interest payment.

Finding Our Interest
Using the pow() function from the math.h library, we can calculate a monthly com‐
pounded interest in one expression. I know I was taught this formula in high school,
but I still have to look it up online any time I actually need to use it. Then we’ll update
main() to add a year’s worth of interest (at 5%) to our account and print out the
details again. Here are the new parts from ch07/account2.c:

void add_interest(struct account *acct, double rate, int months) {
 // Put our current balance in a local var for easier use
 double principal = acct->balance;
 // Convert our annual rate to a monthly percentage value
 rate /= 1200;
 // Use the interest formula to calculate our new balance
 acct->balance = principal * pow(1 + rate, months);
}

int main() {
 struct account *checking;
 checking = create("Bank of Earth (checking)", 200.0);
 print(checking);

 add_interest(checking, 5.0, 12);
 print(checking);

 free(checking);
}

162 | Chapter 7: Libraries

https://oreil.ly/i8vvr
https://oreil.ly/EAOwS

That’s looking pretty good! Let’s compile and run account2.c. If your system needs the
-lm math library flag, be sure to add it when you compile:

ch07$ gcc account2.c -lm
ch07$./a.out
Account: Bank of Earth (checking)
Balance: $200.00
Account: Bank of Earth (checking)
Balance: $210.23

Everything worked! Although you are reading the final output from my code after I
fixed the various little mistakes I made while writing it. I reversed the order of the
source and destination strings in strncpy(), for example. It’s rare to get everything
right the first time. The compiler will usually let you know what you got wrong. You
just head back to your editor and fix it. Getting comfortable with mistakes—and with
fixing them!—is one of the reasons I encourage you to type in some of these exam‐
ples. Nothing like actually writing code to get better at writing code.

Finding New Libraries
There are many more libraries out there for your consumption than I can possibly
cover here. Indeed, there are more functions just in the C standard library; you can
dig much deeper with the GNU C Library documentation online.

Beyond the standard library, though, there are other libraries that can help with your
projects. For those situations where you want a specialized library, your best bet these
days is to search online. If you want to interact directly with a USB-connected device,
for example, you could search for “C USB library” and wind up with the nifty libusb
from https://libusb.info.

You can also find some lists of popular libraries, but those lists vary in quality and
upkeep. Sadly, there is no central repository for “all things C” like one has with some
languages. My advice is to look over the search results for links to reputable sites like
GitHub or gnu.org. And don’t be afraid to just read through the source code of the
library. If anything you see raises a flag, pay attention. Most times you’ll be getting
exactly what you expected, but a little caution is always advisable when using things
you find online.

Finding New Libraries | 163

https://oreil.ly/58fLM
https://libusb.info
https://github.com
https://gnu.org

Coming to a Folder Near You
I also want to point out that most development environments have several of the
more common libraries ready for use by you and other applications installed on your
system right out of the gate. Where the header files for these libraries get stored varies
from system to system, but Linux systems have the /usr/include and /usr/local/include
folders as popular locations.

On macOS, you can find many headers in /usr/local/include but most will be in an
ungainly path below your Xcode application, such as /Applications/Xcode.app/
Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/usr/
include.

On Windows, it depends largely on how you installed GCC, but you will often find
similar usr\include or usr\local\include folders under the install folder for your com‐
piler. For example, on my Windows 10 machine, I can use a normal cmd.exe window
and navigate to C:\msys64\usr\include. On a different machine with Cygwin, that
folder is C:\cygwin65\lib\gcc\x86_64-pc-cygwin\10\include.

Next Steps
Helping you get better at writing code is certainly one of the goals for this book.
We’ve covered a number of the more common and popular libraries (and the header
files that we must include to make use of their functions) in this chapter. There are
certainly more libraries out there! Hopefully, you see how libraries and headers inter‐
act with your own code.

We’ll be tackling microcontrollers next, and we’ll start looking at writing tighter code
along the way. Good code isn’t necessarily a prerequisite for doing optimization work,
but it sure helps. Feel free to review some of the examples from past chapters before
forging ahead. Try making some changes. Try breaking things. Try fixing the things
you broke. Every successful compile should count as a notch in your programmer
belt.

164 | Chapter 7: Libraries

1 For more (much more!) information on the details of Arduino, check out Arduino: A Technical Reference by
J. M. Hughes (O’Reilly).

CHAPTER 8

Real-World C With Arduino

We’ve seen our C skills grow from compiling a short list of simple statements to pass‐
ing pointers to functions with nested flow of control. But so far we’ve been printing
results in our terminal windows. That’s great for proving that our logic works and
that our program is doing what we expect, but eventually we’ll want code that runs
somewhere other than a terminal in order to take advantage of all the great hardware
out there. In the rest of this book, we’re going to write code aimed at microcontrol‐
lers. And what better microcontroller to start with than an Arduino.

The Arduino family of microcontrollers has been around for over 15 years. Starting
with 8-bit Atmel AVR controllers designed specifically to facilitate learning and tin‐
kering, these gadgets have exploded in popularity. These days, you can find a wealth
of development boards preloaded with all manner of sensors and connections. WiFi,
GPS, Bluetooth, even radio options can be added easily. The ecosystem of inputs, out‐
puts, and containers is truly mind-boggling. For us, that makes this platform a perfect
target. You can grab an inexpensive controller and LEDs to start, and expand into
robotics or weather stations or radio control or just about any other electronics niche
that tickles your fancy.1

“Getting the Hardware: Adafruit” on page 276 includes information on all the micro‐
controllers and peripherals I’ll be using throughout the rest of the book. But any
Arduino-compatible microcontroller will work with the majority of our examples.

165

https://learning.oreilly.com/library/view/arduino-a-technical/9781491934319/
https://oreil.ly/EH7un

Arduino IDE (Win, Mac, Linux)
Way back in “Compiling Your Code” on page 17, we learned how to compile C source
code into an executable for our operating system on our machine. And while it might
be possible to run a C compiler on an Arduino controller, we can use the notion of a
cross-compiler to let our fancy laptops and desktops do the hard work of compiling,
yet still produce a binary built for Arduino.

You can find tools like gcc-avr to run from the command line as we did with gcc,
but fortunately there is a nifty IDE that does what it says on the label. The Arduino
IDE is an integrated development environment where you can edit your source code,
compile it, load to a microcontroller, and watch a serial console for help debugging.
See an error in that console? Fix the source, recompile, and reload. And it runs on all
three major platforms.

No matter your platform, head to the Arduino Software page (see Figure 8-1) and
download the appropriate version. If you want background on the features of the
IDE, you can look over the IDE Environment Guide online.

Figure 8-1. The Arduino IDE download site

Let’s take a look at the installation details for Windows, macOS, and Linux. Mostly
the Arudino IDE is a mature tool with a typical installer, but there are a few platform-
specific steps and gotchas I want to point out.

166 | Chapter 8: Real-World C With Arduino

https://oreil.ly/jMXH0
https://oreil.ly/FKreY

Installing on Windows
From the download page, be sure to grab one of the downloads that come direct from
arduino.cc, either the ZIP file or the Windows 7 and up installer.

If you use the Microsoft Store for apps, you may have noticed the
Arduino IDE there as well. Regrettably, there are many reports of
difficulties using this version of the IDE. It is older, and the store
listing does not seem to be well maintained. We recommend avoid‐
ing this version, even though a link to the store is available on the
downloads page.

The online guide has detailed instructions for installing the Arduino IDE through
the .exe file you downloaded. It’s a fairly standard Windows installer; our only sugges‐
tion is to install all of the components available when prompted. (If you don’t want
shortcuts on your desktop or in your start menu, you can certainly uncheck those.)
You may also be prompted to install some ports and drivers, which we recommend
using as well. If all goes well, you can launch the IDE and see an empty document, as
shown in Figure 8-2.

Figure 8-2. The Arduino IDE running on Windows 10

Once your IDE is running, go ahead and try the first project in “Your First Arduino
Project” on page 169.

Arduino IDE (Win, Mac, Linux) | 167

https://oreil.ly/Fa8kZ

Installing on macOS
The macOS version of Arduino IDE is delivered as a simple .zip file. Many browsers
will automatically unzip the download, but you can always double-click the file your‐
self to unzip. The only thing in the .zip file is the macOS application. Go ahead and
drag the application to your Applications folder. (This may require you to enter your
administrative password.) That’s it! If it worked, you should see the standard startup
in Figure 8-3.

Figure 8-3. The Arduino IDE running on macOS

Once your IDE is running, go ahead and try the first project in “Your First Arduino
Project” on page 169.

Installing on Linux
For Linux, you also receive the application as a simple archive, .tar.xz in this case.
Most distributions have an archive manager app that will happily unpack your down‐
load with a double-click. If you don’t have such an accommodating app already, you
can try your version of tar as it can automatically decompress most types of archives:

$ tar xf arduino-1.8.13-linux64.tar.xz

(Of course your filename may be different depending on your platform and the cur‐
rently released version of the app itself.)

168 | Chapter 8: Real-World C With Arduino

Place the unpacked folder (named arduino-1.8.13, again, depending on the version
you downloaded) wherever you want to keep the application. That might be in a
shared location or just in your own user directory somewhere. Once you have it in
your preferred spot, change into that arduino-1.8.13 folder and run ./install.sh.
That script will do its best to add shortcuts to your start menu and desktop. Go ahead
and start the app to make sure the installation worked. You should end up with some‐
thing like Figure 8-4, similar to that for the other operating systems.

Figure 8-4. The Arduino IDE running on Linux (with Gnome)

Hooray! Let’s get that first program running on our microcontroller.

Your First Arduino Project
Of course, with microcontrollers like Arduino, the IDE is only half of the equation.
You need an actual Arduino controller! Or at least one of its many siblings. You can
get these boards from a wide variety of sellers and manufacturers. I’ll toss out an
unpaid plug for Adafruit as they have a fantastic array of both boards and peripherals
—plus everything else that goes into building actual electronics projects. Their Trin‐
kets and Feathers and ultra dimunitive QT Py pack some great features in some small
packages.

Your First Arduino Project | 169

https://adafruit.com

Selecting Your Board
Whatever microcontroller you choose, you’ll need to specify that choice in the Ardu‐
ino IDE. Under the Tools menu, look for the Board: item. Then comes a long, long
list of supported boards ready for you to use, as shown in Figure 8-5. You can see that
I have the “Adafruit ESP32 Feather” board selected. That’s just the most recent project
I was tackling—an ESP32 WiFi-enabled LED project. It really is amazing what fits on
a microcontroller these days! If you don’t see a matching board in this list, go back to
the top for the “Boards Manager…” option. That option opens a dialog where you can
browse for other supported boards.

Figure 8-5. Supported development boards

For most of the examples in this book, I’ll be using a Metro Mini from Adafruit, as
shown in Figure 8-6. It has a 16MHz ATmega328P with 2K of RAM and 32K of flash.
With lots of I/O pins, we’ll be free to tackle a good range of interesting projects get‐
ting input from sensors and switches while providing output through LEDs, LCDs,
and servos.

Figure 8-6. The Metro Mini microcontroller from Adafruit

170 | Chapter 8: Real-World C With Arduino

https://oreil.ly/6oe6O

The Metro Mini is pin-compatible with the Arduino UNO, so let’s select that as our
board option. Figure 8-7 shows the Boards list again with our UNO selected. A pin,
by the way, is what you call the things that stick out of the microcontroller and fit into
your breadboard (engineer-speak for the nifty, perforated base that simplifies con‐
necting components). Even when you connect your Arduino using something else
like alligator clips or just soldering a wire directly, “pin” is still the term for a named
or numbered connection to the microcontroller. A “pin-out diagram” is a sort of
cheat sheet for matching up those names and numbers to actual connecting points on
the device.

Figure 8-7. Selecting the UNO board

Chances are pretty high that you’ll have a different microcontroller.
There are so many wonderful options out there for makers and
anyone else tinkering with electronics. Hopefully, you see your
board in the list and can simply select it like we did with the UNO.
Sadly, we can’t cover every option or even predict the most popular
ones. The Arduino Help Center has some great documentation and
FAQs. Their community is top-notch as well.

Your First Arduino Project | 171

https://oreil.ly/bgyMM

Hello, LED!
In Arduinoland, making an LED blink is the electronics equivalent of our “Hello,
World” program from “Creating a C ‘Hello, World’” on page 15. We’ll do our best to
lay out any circuitry and connections we build, but you’ll have to adjust as needed for
your own controller and components.

Many development boards include an LED with an appropriate resistor right on the
board itself. We’ll start by blinking the LED on our Metro Mini to make sure our C
code can be uploaded and then run on our microcontroller. Back in the Arduino IDE,
select the File → New option. You should now have a new sketch tab. “Sketch” is the
term for the compiled bundle meant for executing on a microcontroller. (More on
sketches in “C++ Objects and Variables” on page 182.) You’ll see two empty func‐
tions, setup() and loop(). These two functions serve as the microcontroller version
of the main() function from our desktop C programs.

The setup() function is the entry point for our code and is run once, typically when
power is first supplied to the board or after the user presses a reset button (if such a
button is part of the board). Here we set up any global information we need or run
any initializations that are required of our hardware such as resetting a servo position
or specifying how we plan to use the I/O pins.

The loop() function then takes over to repeat your program indefinitely. Microcon‐
trollers are typically used to do one task (or perhaps a modest few) over and over as
long as they have power. They can continuously read a sensor. They can drive an LED
animation. They can read a sensor and use that value to alter an LED animation.
They can nudge a clock hand forward. But they all repeat some flow or other until
you cut the power, so loop() is an aptly named function.

While there is a lot more going on behind the scenes, it’s reasonable to imagine the
standard main() function for Arduino projects defined like this:

int main() {
 setup();
 while (1) {
 loop();
 }
}

Note that our while loop “condition” is just the value 1. Recall that “not zero” is con‐
sidered to be true in these Boolean contexts. So this while loop runs forever. Just
what we need for Arduino.

For our blinking hello program, we’ll use setup() to tell our board we want to use the
built-in LED for output (meaning we’ll “write” on and off values to the pin associated
with the LED). Then we’ll use loop() to do that writing along with some small delays

172 | Chapter 8: Real-World C With Arduino

to make the blinking readily visible to humans. Here’s our first iteration using con‐
stants described in the Arduino docs:

void setup() {
 // put your setup code here, to run once:
 // Tell our board we want to write to the built-in LED
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
 // A high value is 'on' for an LED
 digitalWrite(LED_BUILTIN, HIGH);
 // Now wait for 500 milliseconds
 delay(500);
 // And write a low value to turn our LED off
 digitalWrite(LED_BUILTIN, LOW);
 // and wait another 500ms
 delay(500);
}

The all-caps names like LED_BUILTIN and HIGH were defined in
headers that are included automatically by the Arduino IDE. They
are technically preprocessor macros, and we’ll look at those in
more detail in “Preprocessor Directives” on page 238. They are
quite handy and very easy to use in your own code: #define PIN 5
defines the word PIN to be the value 5. It’s a lot like a variable or a
constant. The difference is that the preprocessor will go through
your code before the compiler (hence the “pre-” prefix) and replace
every spot it finds PIN with the literal number 5. A typical variable
or constant would reserve a slot in memory and could be initialized
at runtime, perhaps after you have gathered some necessary infor‐
mation from the user.

Go ahead and type this simple program in. You can also open the ch08/blink1/
blink1.ino project directly in the IDE.

Before trying it on your board, you can use the IDE’s Verify button (shown in
Figure 8-8) to make sure the code compiles. Verifying your code also checks to make
sure your finished program will fit on the controller you selected. If you have used
too many variables or simply have too much logic, you’ll see warnings and errors in
the bottom status area. Try leaving off a semicolon on some statement like we did in
“Statements in C” on page 21. Click Verify again and you can see the type of message
you might encounter as you write your own code going forward.

Your First Arduino Project | 173

https://oreil.ly/Qt6DM
https://oreil.ly/p6eGd
https://oreil.ly/p6eGd

Figure 8-8. Verifying your sketch before uploading

After verifying your code is OK, you can ship it over to your microcontroller using
the Upload shortcut button next to Verify or select the appropriate item from the
Sketch menu. Uploading will compile the code (even if you have recently verified it)
and then write it to your board. The Arduino IDE works great with the Metro Mini
on this step—it’s all delightfully automatic. Some development boards need to be
manually configured for upload. Again, the Arduino Help Center is your friend here.

Once the upload completes, you should see your LED start blinking at half-second
intervals. While less impressive on the printed page, Figure 8-9 shows the on/off
states of our nifty LED.

Figure 8-9. Our “Hello, World” LED blinking

174 | Chapter 8: Real-World C With Arduino

https://oreil.ly/csLX6

An External LED Upgrade
We are focusing on the software side of Arduino projects, but it is impossible to work
with an Arduino and not use some external components. Let’s upgrade our simple
blinker to use an external LED.

Figure 8-10 shows the simple circuit we’re using. We have our controller, one LED,
and a resistor. For this setup, we can rely on the power being supplied over USB.

Figure 8-10. Simple circuit for an external LED

We can pick a pin to use and learn more about the voltage supplied over the pins by
reading the specs for our microcontroller. In the case of our Metro Mini, we looked at
the Pinouts page on the Adafruit site. The details tell us which pins on our board map
to the UNO’s pins. Along the “top” of our board (the tiny print on the chip is right
side up) are several digital I/O pins, and in particular, pins 2 through 12 are exactly
what we need. We’ll start with 2, since it’s such a nice number. Different boards will
likely have different configurations, but for ours, pins 0 through 13 map directly to
digital pins 0 through 13. So we can either use our own #define and attach a nice
name (yay!) or just use the value 2 in our pinMode() and digitalWrite() calls.

The Metro Mini provides 5V on its digital pins. Using the specs provided by the LED
manufacturer, we know our blue LED has a forward voltage drop of 2.5V. If we want
to supply 30mA of current for a bright light, Ohm’s law tells us a 100Ω resistor will

Your First Arduino Project | 175

https://oreil.ly/H2wNN
https://oreil.ly/6ihdc

work fine. With everything wired up, we can make a new sketch (or just tweak the
first one). Here’s ch08/blink2/blink2.ino as it stands:

#define D2 2

void setup() {
 // put your setup code here, to run once:
 // Tell our board we want to write to digital pin 2
 pinMode(D2, OUTPUT);
}

void loop() {
 digitalWrite(D2, HIGH);
 delay(2000);
 digitalWrite(D2, LOW);
 delay(1000);
}

Notice I went with the preprocessor #define feature to designate which digital pin we
are using with our LED (D2). You can see this simple configuration up and running in
Figure 8-11. Hooray!

Figure 8-11. Our external LED blinking

There is something extra satisfying in these small, physical projects. The “Hello,
World” programs are all designed to prove your development environment works
and that you can produce some output. That’s all we’ve done here, but gosh it’s fun
seeing the LED light turn on. Every time I throw the switch on a new project, it feels a
bit like Dr. Frankenstein screaming, “It’s alive!” in his lab. :-)

Arduino Libraries
We’re not done making blinking lights just yet. While you can do an amazing amount
of work with these microcontrollers right out of the box, quite often you’ll be build‐
ing projects with some interesting accessories like multicolor LEDs, LCD screens,
e-ink, sensors, servos, keypads, or even game controllers. Many of those components

176 | Chapter 8: Real-World C With Arduino

https://oreil.ly/xpo2a

have handy chunks of code already written for them. These chunks are collected into
a library that you can add to the Arduino IDE. Some of the libraries are “official” and
come from the component maker; others are produced by fellow hobbyists. Whatever
the provenance, libraries can speed up devlopment on your projects.

Let’s take a look at finding and managing libraraies through the IDE. Doing so prop‐
erly will help ensure your sketch does not contain any unused libraries.

Managing Libraries
The Tools menu of the Arduino IDE has an entry to “Manage Libraries…” that pulls
up a dialog for searching and installing libraries. We’re going to add an Adafruit
library and try lighting up one of their fantastic NeoPixels—individually addressable,
three-color LEDs that come in a wide variety of form factors for just about any possi‐
ble use. They can even be chained together to build fancier rigs. For this example,
though, we’ll be sticking with one of the simplest form factors: the Flora.

In the Library Manager dialog, enter the term “neopixel” in the search box at the top.
You should get several results; we want the simple “Adafruit NeoPixel” entry. Click the
Install button (or Update if you happen to have an older version of this library
already installed as we do in Figure 8-12), and that’s it! The IDE downloads the
library and does the appropriate work to make it available behind the scenes.

Figure 8-12. Finding a NeoPixel library

The physical circuit for using NeoPixels is similar to what we use for simple LEDs,
but they have three wires rather than two. You have standard V+ and Ground connec‐
tors for the basic power needs, and the third wire provides the “data” to the pixel or

Arduino Libraries | 177

https://oreil.ly/JEuFF

strip. The data does flow in a particular direction, so if you decide to try this circuit,
pay attention to where you connect the data input. Like our simple LED, we also want
a small resistor (470Ω in our case) before the data signal gets to the NeoPixel. You can
see the full setup in Figure 8-13.

Figure 8-13. A simple NeoPixel setup

You can follow along with this project without NeoPixels, by the
way. You can use any other addressable LEDs. If you have some of
your own WS281x or APA102 or other lights, they’ll likely work
with the excellent FastLED library. You’ll have to do a little more
independent reading, but all of the concepts are the same. FastLED
has nice documentation on GitHub. For example, the work we’ll do
in the next section with NeoPixels is covered in FastLED’s Basic
Usage page.

Using Arduino Libraries
So how do we pull an Arduino library into our sketch? We use the familiar #include
preprocessor command just like we did with the various header files from the C stan‐
dard library in previous chapters. For the NeoPixels, our include looks like this:

#include <Adafruit_NeoPixel.h>

The IDE even helps confirm you have the library installed by bolding and coloring
the name of the header file. Take a look at the comparison in Figure 8-14 where we
used a lower-case “p” when spelling NeoPixel. The nice, bold color disappears. So if

178 | Chapter 8: Real-World C With Arduino

http://fastled.io
https://oreil.ly/eupDp
https://oreil.ly/eupDp

your library is correctly installed and the name stands out in your include line, you
are ready to go!

Figure 8-14. Noticing library name mistakes

You can use multiple libraries within any given sketch. It’s entirely
reasonable to have a library for things like your LEDs as well as one
for servos or for an LCD screen. The only real limitation is mem‐
ory—a ubiquitous concern when working with microcontrollers.

When you verify a sketch, check the messages in the lower section of the IDE. You’ll
get a report on the memory used as well as how much remains (assuming you have
the correct board selected.) Happily, most folks and companies writing libraries for
Arduino are very aware of how limited memory is. For example, adding this NeoPixel
library took our blinking sketch from a little under 1K (964 bytes) to about 2.5K
(2636 bytes). While you could say it tripled the amount of flash required to store, get‐
ting all of the niceties of the library for less than 2K seems a fair trade-off!

Arduino Sketches and C++
To put this NeoPixel library to use, we need to take a tiny detour into C++, a succes‐
sor to C with an object orientation (compared to C’s procedural orientation).
Sketches are actually C++ projects. Happily, since C++ grew out of C, C code is legal
C++ code as well. As programmers, we don’t have to learn much C++ if we don’t
want to.

But notice that “much” qualifier in that last sentence. Many libraries—including our
NeoPixel library—are written as C++ classes (a class is the organizing unit of object-
oriented languages.) These libraries often take advantage of some nifty features of
C++. In particular, you’ll find constructors and methods used all over the place.
Constructors are functions that initialize an object. An object, in turn, is an encapsu‐

Arduino Sketches and C++ | 179

lation of both data and functions meant to access and manipulate that data. Those
functions defined for an object are referred to as the object’s methods.

To see where constructors and methods show up in an Arduino library, let’s go ahead
and finish our next iteration of the blinking light. Recall the setup shown in
Figure 8-13. We can write a new sketch, blink3, that cycles the NeoPixel through its
primary colors: red, green, and blue. Here’s the full code, including (no pun
intended!) the appropriate #include line, ch08/blink3/blink3.ino:

#include <Adafruit_NeoPixel.h>

#define PIXEL_PIN 4
#define PIXEL_COUNT 1

// Declare our NeoPixel strip object per documentation from Adafruit
// https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use

Adafruit_NeoPixel strip(PIXEL_COUNT, PIXEL_PIN);

void setup() {
 strip.begin(); // Get things ready
 strip.setBrightness(128); // Set a comfortable brightness
 strip.show(); // Start with all pixels off
}

void loop() {
 // Show red for 1 second on the first pixel (start counting at 0)
 strip.setPixelColor(0, 255, 0, 0);
 strip.show();
 delay(1000);
 // Show green for 1 second
 strip.setPixelColor(0, 0, 255, 0);
 strip.show();
 delay(1000);
 // Show blue for 1 second
 strip.setPixelColor(0, 0, 0, 255);
 strip.show();
 delay(1000);
}

180 | Chapter 8: Real-World C With Arduino

https://oreil.ly/Ughez

Our constructed variable, strip. Its class (roughly analagous to its type) is Ada
fruit_NeoPixel. The name “strip” here is common, but a little wrong for our
single Flora. But technically we are allocating a strip that is simply one pixel long.

An example of a method: begin() is a function that applies to strip. The
begin() method gets our strip of lights ready by filling in default values and per‐
forming other miscellaneous startup tasks.

The setBrightness() method controls a premultiplied max brightness on
strip.

Another example of a method. show() causes the current colors in memory to be
displayed on the actual LEDs of strip.

The setPixelColor() method takes four arguments: which pixel on strip to set
(starting at 0), and the red, green, and blue values to apply. Color values range
from 0 (off) to 255 (full brightness, though the final value is adjusted by that set
Brightness() call we made in setup()).

To see our new pixel color on strip, we repeat our call to show().

Try uploading this with your NeoPixel connected. Hopefully, you’ll see it run through
red, green, and blue colors, as shown in Figure 8-15.

Figure 8-15. Our blinking NeoPixel

Neat! Feel free to play around with the color or blink patterns. It can be surprisingly
fun getting just the right hue. It really is magic. And now, you too know the right
incantations!

Arduino Sketches and C++ | 181

C++ Objects and Variables
When you create an object variable, the declaration and initialization look a little
funny. In C, we can create a variable and give it some starting value like this:

int counter = 1;

If we had a C++ class named Integer, trying the same type of setup might look like
this:

Integer counter(1);

The parentheses give you a clue that a function is being called. That’s the constructor.
If you decide to go on and study C++ down the road, you’ll learn all the clever things
that can be done in constructors. For now, though, we just want you to be aware of
the syntax so that you’re comfortable creating variables that refer to objects.

The strip.begin() and strip.setPixelColor() lines that we called out are exam‐
ples of calling an object’s functions (again, object-oriented languages use the term
“methods”). The idea is the strip is what we want to work on, and begin() or set
PixelColor() represents the work to be done.

One way to think about this syntax is that it is a sort of transformation. In pure C, we
could imagine writing normal functions for begin() and setPixelColor(). But we’d
have to tell those functions which strip of NeoPixels we want to set up or change. So
we would need an extra argument to pass a reference to the correct strip like so:

void setup() {
 begin(&strip);
 // ...
}

void loop() {
 // ...
 setPixelColor(&strip, 0, 255, 0, 0);
}

But again, for our work in this book, you mostly just need to get comfortable with
statements that create a new object from a library, and then remember that using the
methods of objects follows the object.method() pattern.

What Are .ino Files?
If you look in your computer’s filesystem for the files being saved from the Arduino
IDE, you’ll discover there are folders matching the sketch names (e.g., blink1, blink2,
etc.). Inside each folder is a .ino file with the same base name as the sketch as well. But
what are .ino files? They are actually rebranded C++ files. (Do you see the suffix from
A-r-d-u-ino?) To compile a valid application, you still need a main() function as a
launch point. The IDE is doing some magic behind the scenes to incorporate our .ino

182 | Chapter 8: Real-World C With Arduino

content into a broader package that has a few standard includes and an appropriate
main() function. That function will “do the right thing” to get our Arduino code up
and running. It will call setup() at the start, then move on and call loop() inside,
well, a loop.

For our projects, we don’t really need to worry about these files. The IDE manages
them for us. We will be looking at writing more complex projects and creating our
own libraries in Chapter 11, but the majority of our projects will fit in the standard
setup() and loop() functions of a single file. I do want you to be aware of where
things are stored so that you are familiar with the structure of these Arduino projects.
That familiarity can be useful when you get advanced enough that single-file projects
no longer cover your needs.

More Practice with Objects
Before we move on to other aspects of coding for microcontrollers, let’s make one
more blinking application with an eye toward reinforcing the object syntax. We’ll try
using some actual strips of LEDs with more than one LED. In particular, we’ll be
using a small stick of 8 NeoPixels and a ring of 24 NeoPixels. To make things even
more fun, we’ll be using them at the same time!

To keep the code simple, we’ll make a blink program that shows one pixel at a time on
each strip. This will also keep the power requirement down so that we can continue to
use what we get from our USB connection. (If you are familiar with larger LED setups
and already know how to add external power, feel free to create your own arrange‐
ment.) Figure 8-16 shows our new setup. We removed the blue LED and the previous
“strip” of the lonely NeoPixel Flora.

Figure 8-16. A more interesting NeoPixel setup

Arduino Sketches and C++ | 183

https://oreil.ly/yeieS
https://oreil.ly/1CTcw

We are reusing the same output pins for the data line, though. In this arrangement,
the stick is using pin 2 and the ring is using pin 4.

Without further ado, here is the code for our two-strip blink extravaganza, blink4.
We’ll dive into the callouts after the snippet to make sure the steps we take here make
sense. Before reading those callouts, though, try going through ch08/blink4/blink4.ino
and see if you can guess how the objects work.

#include <Adafruit_NeoPixel.h>

#define STICK_PIN 2
#define STICK_COUNT 8
#define RING_PIN 4
#define RING_COUNT 24

// Declare our NeoPixel strip object per documentation from Adafruit
// https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use

Adafruit_NeoPixel stick(STICK_COUNT, STICK_PIN);
Adafruit_NeoPixel ring(RING_COUNT, RING_PIN, NEO_GRBW);

void setup() {
 stick.begin(); // Initialize our stick
 stick.setBrightness(128);
 stick.show();
 ring.begin(); // Initialize our ring
 ring.setBrightness(128);
 ring.show();
}

void loop() {
 // our stick and ring have different LED counts, so we have
 // to be a little clever with our loop. There are several
 // ways to do this. We'll use modulus (remainder) math, but
 // can you think of other solutions that would achieve
 // the same pattern?
 for (int p = 0; p < RING_COUNT; p++) {
 stick.clear();
 stick.setPixelColor(p % STICK_COUNT, 0, 0, 255);
 ring.clear();
 ring.setPixelColor(p, 0, 255, 0, 0);
 stick.show();
 ring.show();
 }
}

184 | Chapter 8: Real-World C With Arduino

https://oreil.ly/19dUL

Here we create an Adafruit_NeoPixel object named stick similar to how we cre‐
ated strip in “Arduino Sketches and C++” on page 179.

And now we create a second, distinct object named ring. (The ring uses a fancier
LED configuration with a white component so we add a third argument to the
constructor. You can find this value in the NeoPixel documentation.)

We initialize our stick just as we did before with the strip.

We also initialize our ring; notice we use the begin() method on both objects.

Now we set the color of one of the pixels on our stick.

We use a similar method with a fifth argument to set the color on our ring. (The
arguments here are which pixel, red, green, blue, and white. The ring will blink
green.)

Last but not least, show both changes.

Hopefully, seeing two objects in use side by side helps illustrate how the object-
oriented syntax works. Again, our for loop is pure C. We dip into the C++ syntax on
an as-needed basis.

C++ Considerations
There is definitely more to the role of object-oriented programming in Arduino
development. OO programming is a fairly natural fit for an environment where so
many of things we get to work with are physical objects. C++ also offers several fea‐
tures that are well suited to bundling up code to share with others. If you interact
with your microcontrollers primarily through the Arduino IDE, it’s worth spending
some time investigating C++.

Diving into C++ will teach you about classes and members and methods. You’ll create
constructors and destructors. As your understanding of objects improves, you’ll likely
start breaking down your projects along object lines rather than along functional
ones. You will certainly find things you like about C++ and probably a few that you
don’t. Some libraries will be easier to use if you understand C++, but none of them
will be out of your reach even if you never crack an official C++ book.

Arduino Sketches and C++ | 185

The C language on its own remains a powerful core in Arduino programming, and
I’ll keep the focus of the remaining chapters on using functions and other basic C fea‐
tures to code up our projects. Where we use any third-party libraries for specific
peripherals, I’ll try to use the minimum of object notation. I’ll also try to highlight
any spots where C++ syntax stands out.

To reiterate the most common object-oriented patterns you’ll see in the remaining
chapters, here is a recap from our NeoPixel example in “Arduino Sketches and C++”
on page 179:

// Using a library written in C++ still requires the same C "#include"
// directive to bring in the associated header file.
#include <Adafruit_NeoPixel.h>

#define PIXEL_PIN 4
#define PIXEL_COUNT 1

// Common example of a C++ constructor call that creates an object.
// Our NeoPixel "strip" is the created object in this case.
Adafruit_NeoPixel strip(PIXEL_COUNT, PIXEL_PIN);

void setup() {
 // Common example of using the method "begin()" from our object "strip".
 strip.begin();

// ...

Hopefully, you’ll grow more comfortable with these small dips into C++. I also hope
that comfort grows into curiosity about what more you can do with C++! But don’t
worry if you never really get curious or even comfortable. One of the things I most
enjoy about coding for microcontrollers is that a little code goes a long way. You can
still get a lot of satisfaction out of your programming efforts without mastering C++.
A brief scan of my own projects shows that I stuck with C more than 90% of the time,
even though every one of those projects also uses a library written in C++.

Object Homework
If you’d like a little more practice with the object notation we’ve already seen and will
bump into occasionally in the coming chapters, try creating some of these ideas:

• Blink every other pixel on the stick so that the even pixels turn on, then the odd
pixels, back and forth.

• Blink each pixel on the ring once for every pixel on the stick, like a counter. (I.e.,
keep one pixel showing on the stick as you march around the ring. Then move to
the next pixel on the stick, and march around the ring again. Repeat!)

186 | Chapter 8: Real-World C With Arduino

• Working with just the stick, try “filling” it from left to right. Then clear all the
pixels and let it fill again.

• Take a look at the documentation for NeoPixels (or FastLED, or whatever library
you are using) and see if there are any methods to turn the entire strip one color
with a single call. Use that method to turn the entire stick red, then green, then
blue, similar to our blink3 program that used the single Flora.

Next Steps
We now have the basics of an Arduino project up and running. We’ve worked with
the Arduino IDE and we’ve seen where C++ might crop up in our code. Putting it all
together, we turned on an LED! While that is exciting, there is a lot more fun to
be had.

In the next chapter, we’ll explore some of the many inputs and outputs available for
use with a microcontroller. We certainly can’t cover every sensor or button or speaker
or display, but we can (and will!) look at several good examples of these peripherals.
We’ll concentrate on getting these disparate gadgets to work together so you have a
solid foundation to rely on as you tackle your own projects down the road.

Next Steps | 187

https://oreil.ly/GxxxI
https://oreil.ly/9Ln6A

CHAPTER 9

Smaller Systems

Now that we have the Arduino IDE ready to go, we can embark on the physically sat‐
isfying world of writing C code to control things! LED things. Sensor things. Button
things. So many things! We’ll also dip our toes into the Internet of Things (IoT) in
“IoT and Arduino” on page 268.

In this chapter, I’ll touch on several Arduino peculiarities (most of them helpful,
some of them frustrating) while building some small but complete projects that you
can try yourself. “Getting the Hardware: Adafruit” on page 276 contains links for all
the various components and microcontrollers I use in case you want to replicate any
of the projects exactly.

The Arduino Environment
I’m sure you noticed that we did not write “complete” C programs in Chapter 8. We
had no main() function, and for the earlier examples, we didn’t even import the usual
header files. Yet we clearly had access to new functions and things like the HIGH and
LOW values we used to blink our first LED.

Where did those extras come from? It can feel at times like the IDE is providing a bit
of magic. It’s not, of course, but it is doing a lot of work behind the scenes in the
hopes of making you more productive. I want to point out some of that hidden work
so that you have a better understanding of the distinction between C itself and the
supporting elements provided by the Arduino IDE. Inevitably, you’ll head to the web
to search for examples of new topics as you build more of your own projects. Know‐
ing the difference between the language and the tools can make those searches more
fruitful.

Smaller Systems | 189

1 Generic C calls these named values symbolic constants. I’ll use the unqualified “constant” to match the Ardu‐
ino documentation.

The Arduino IDE quietly includes several headers for you to make up what can
loosely be called the “Arduino language.” It’s not a distinct language like Python, but it
certainly feels like something more than just the C-with-headers-and-libraries we’ve
seen so far. The Arduino language is more a collection of useful pieces (values and
functions) that make programming microcontrollers easier. I’ll be showing you sev‐
eral of the more immediately beneficial parts, but you can get the complete list
online. The Language Reference at the Arduino site contains a simple index of
included features as well as links to details and examples.

Special Values
We relied on some of these “language” extensions just to make our first LED blink.
Let’s revisit that code but with more discussion of the named values (the Arduino
Language Reference calls these constants) that are specific to the Arduino
environment.1

void setup() {
 // put your setup code here, to run once:
 // Tell our board we want to write to the built-in LED
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
 // A high value is 'on' for an LED
 digitalWrite(LED_BUILTIN, HIGH);
 // Now wait for 500 milliseconds
 delay(500);
 // And write a low value to turn our LED off
 digitalWrite(LED_BUILTIN, LOW);
 // and wait another 500ms
 delay(500);
}

The LED_BUILTIN constant represents the number of the pin connected to the
LED found on most development boards. It won’t always be the same number for
every controller, but the IDE grabs the correct value based on the board you
select.

OUTPUT is the value we use to indicate we will send information to something like
an LED or a motor. We’ll see analogous INPUT and INPUT_PULLUP constants when
we tackle sensors and buttons.

190 | Chapter 9: Smaller Systems

https://oreil.ly/wlwhf

2 This is true for GCC, but some compilers use wholly separate executables for preprocessing and compiling.

HIGH is a reference to the increased voltage used to “switch on” the device
attached to the pin. What “on” means depends on said device. It’s pretty self-
explanatory for an LED. :)

And LOW is the decreased voltage counterpart to HIGH, turning the LED off.

These named values are not variables. They are technically preprocessor macros. The
preprocessor is a step your code goes through before it is compiled.2 You create these
entities with the define directive. (The prefix might look familiar from #include,
and it should. Both “commands” are handled by the preprocessor.) We’ll go into more
depth on this directive in “Preprocessor Directives” on page 238, but its syntax is
simple:

#define LED_BUILTIN 13
#define HIGH 1
#define LOW 0

The C preprocessor simply catches every instance of the macro’s name in your code
and replaces that name with the defined value. If we had a new controller with fewer
pins, for example, we could change our #define to, say, 8. Then we wouldn’t have to
change any of the other parts of our program where we turn the onboard LED on
or off.

Constants: const versus #define
In computer programming, a constant is a variable or other reference to a value that
does not change at runtime. (That is different from a literal like the numbers and
strings discussed in “Literals” on page 33.) Using this generic definition, it’s reason‐
able to refer to the #define entries we’ve seen as constants.

In C, we can also use the const keyword to create a regular variable (of any type) and
assign it some value. Once that value is assigned, the compiler will make sure we
never try to assign a new value. Such a declaration would go like this:

const double lo_res_pi = 3.14;

For a lot of the work we’ll do with Arduino, which approach you choose won’t really
matter. In many cases, the compiler will analyze how your const variable is used and
substitute the actual value as an optimization, just as if you had used #define. But
sometimes it is useful to have a known, explicit type. In those situations, const is
often the easiest approach.

The Arduino Environment | 191

And to be clear, #define is part of C (via the preprocessor). You can use it in your
own code whether you are writing for a microcontroller or for a desktop. It’s the spe‐
cific constants like OUTPUT that are part of the Arduino setup. Table 9-1 shows some
of the constants we’ll be using in our projects.

Table 9-1. Useful constants defined for Arduino

Name Description

LED_BUILTIN If the selected board has a built-in LED, this represents the pin number for that LED

INPUT For pins that can perform both input and output, expect input

INPUT_PULLUP Similar to INPUT, but use an internal pull-up resistor to report HIGH on something like an unpressed
push button, and LOW while it is pressed

OUTPUT For pins that can perform both input and output, expect output

HIGH Friendly name for 1, meant for use with digital reading and writing

LOW Friendly name for 0, meant for use with digital reading and writing

You can get more details on these constants on the official Arduino Reference page.

Special Types
Beyond those constants, the headers that are loaded for your Arduino sketches also
include a number of other data types that I want to highlight, as you might find them
useful. These aren’t really new types and aren’t even restricted to use in Arduino, but
again, your sketches have access to these and you will likely see them used in exam‐
ples you find online.

Table 9-2 lists several of these types with their sizes and a brief description.

Table 9-2. Useful constants defined for Arduino

Type Description

bool Boolean type; bool variables can be assigned either true or false

byte Unsigned 8-bit integer type

size_t Integer type corresponding to maximum size (in bytes) of an object on the selected board. The
value you get from sizeof, for example, is of type size_t.

String An object-oriented way of handling strings (note the capital “S” in the type) with several
convenience functions available

int8_t, int16_t,
int32_t

Signed integer types with explicit sizes (8, 16, and 32 bits, respectively)

uint8_t, uint16_t,
uint32_t

Unsigned integer types with explicit sizes (8, 16, and 32 bits, respectively)

192 | Chapter 9: Smaller Systems

https://oreil.ly/pS11s

With the exception of String, these types are actually aliases of other types. This is
done with C’s typedef and is fairly straightforward. For example, the byte type is an
alias for unsigned char and can be defined like this:

typedef unsigned char byte;

We’ll do more work with typedef in “Preprocessor Macros” on page 239, but several
of the types are pretty handy. I use byte in particular in many of my own projects as it
makes more sense (and takes fewer keystrokes) than unsigned char, but that’s just a
personal preference. Either type defines an 8-bit slot capable of storing values from
0–255.

“Built-In” Functions
The Arduino environment includes several headers that make some popular func‐
tions available to you. You can make use of the functions shown in Table 9-3 without
any explicit #include in your sketch.

Table 9-3. Functions available in Arduino

Function Description
Input/Output

void pinMode(pin, mode) Set the specified pin to input or output mode

int digitalRead(pin) Return value will be HIGH or LOW

void digitalWrite(pin, value) Value should be HIGH or LOW

int analogRead(pin) Returns 0–1023 (some boards offer 0–4095)

void analogWrite(pin, value) Value is 0–255, must use PWM-capable pin

Time

void delay(ms) Pause execution for specified number of milliseconds

void delayMicroseconds(micros) Pause execution for specified number of microseconds

unsigned long micros() Returns number of microseconds since program started

unsigned long millis() Returns number of milliseconds since program started

Math (Unlisted return types depend on the type of the arguments)

abs(x) Returns absolute value of x (int or float)

constrain(x, min, max) Returns x, but bounded by min and max

map(x, fromLow, fromHigh, toLow, toHigh) Returns x converted from “from” range to “to” range

max(x, y) Returns the larger of x or y

min(x, y) Returns the smaller of x or y

double pow(base, exp) Returns base raised to the exp power

double sq(x) Returns the square of x

double sqrt(x) Returns the square root of x

The Arduino Environment | 193

3 The Arduino Language provides some alternate names for these functions with slightly different casing that
you might find more readable, like isDigit() and isUpperCase().

4 On typical pinout diagrams, digital pins that can do PWM often have a ~ prefix or other distinguishing mark.

Function Description

double cos(rad) Returns the cosine of the angle given in radians

double sin(rad) Returns the sine of the angle given in radians

double tan(rad) Returns the tangent of the angle given in radians

Random Numbers

void randomSeed(seed) Initializes the generator; seed is an unsigned long

long random(max) Returns a random long between 0 and max - 1

long random(min, max) Returns a random long between min and max - 1

The many character tests from ctype.h such as isdigit() or isupper() are also avail‐
able automatically.3 See Table 7-4 for the full list.

Trying Out the Arduino “Stuff”
Let’s put all of these new ideas into a project and see just how they work (and work
together). To do this, we’ll create a more interesting LED sketch. We’ll make the LED
“breathe” using the analogWrite() function and a little math.

The LED in question is not actually an analog device. It still has just
the on and off states. But many output devices like LEDs can simu‐
late “degrees” of on with a technique known as Pulse Width Modu‐
lation or PWM. The idea is that you can turn the LED on and off
rapidly in such a way that it appears dimmer. (Or working with
something like a motor, it might seem to turn slower.)
It’s important to note that not all pins on all controllers can do
PWM output. You need to check the datasheet or pinout diagram
for your controller.4 On the Metro Mini I’ve been using in the
projects so far, for example, only pins 3, 5, 6, 9, 10, and 11 support
PWM.

We’ll use a different RGB LED this time. It has four pins: one ground, and one each
for the red, green, and blue channels. Each color will need its own connection to the
controller, so we’ll define some constants for those pins. We’ll also define a few values
for the breathing rate and our maximum number of radians, (2 * π). Figure 9-1 shows
the wiring I used in this example. Remember that using analogWrite() requires
paying attention to which pins you connect. (I won’t bother with a picture for this
project; the fun is in running it yourself to see the change in brightness!)

194 | Chapter 9: Smaller Systems

Figure 9-1. Wiring diagram for our breathing LED example

And now we can get to coding! As always, I encourage you to start a new sketch and
type this in yourself, but you can also just pop open breathe.ino and follow along.

For our setup(), we’ll get our color pin modes set to OUTPUT and pick a random color
for the LED. We’ll show that color on the LED for a few seconds before starting the
animation.

Our loop() function will drive the animation. We can use the millis() function to
get an ever-increasing number. We’ll use our breathing rate and our max radians
value to turn those milliseconds into radians. With the radians in hand, we’ll use the
sin() function to get a nice fractional brightness that grows and fades. Finally, we’ll
apply that brightness to the LED and pause a few milliseconds before animating the
next step. Here’s the complete listing of ch09/breathe/breathe.ino:

// Output pins, have to make sure they support PWM
#define RED 5
#define GREEN 6
#define BLUE 9

// Some helper values
#define RATE 5000
#define PI_2 6.283185

The Arduino Environment | 195

https://oreil.ly/FHdP8

// Color channel values for our LED
byte red;
byte green;
byte blue;

void setup() {
 // Set our output pins
 pinMode(RED, OUTPUT);
 pinMode(GREEN, OUTPUT);
 pinMode(BLUE, OUTPUT);

 // Start the LED "off"
 digitalWrite(RED, 0);
 digitalWrite(GREEN, 0);
 digitalWrite(BLUE, 0);

 // Get our PRNG ready, then pick our random colors
 randomSeed(analogRead(0));

 // And pick our random color, but make sure it's relatively bright
 red = random(128,255);
 green = random(128,255);
 blue = random(128,255);

 // Finally show the LED for a few seconds before starting the animation
 analogWrite(RED, red);
 analogWrite(GREEN, green);
 analogWrite(BLUE, blue);
 delay(RATE);
}

void loop() {
 double ms_in_radians = (millis() % RATE) * PI_2 / RATE;
 double breath = (sin(ms_in_radians) + 1.0) / 2.0;
 analogWrite(RED, red * breath);
 analogWrite(GREEN, green * breath);
 analogWrite(BLUE, blue * breath);
 delay(10);
}

If you don’t have an RGB LED, don’t worry! You can use a regular
LED and just write to the one pin of the LED rather than writing to
the three separate color pins. You won’t need to pick a random
value, either; just use 255 (the full brightness). Even if you have a
multicolor LED, try rewriting the example for a single-color LED
as an exercise.

196 | Chapter 9: Smaller Systems

You can see that although we used several functions that are not part of C itself, we
did not need to manually #include anything. That is all down to the magic of the
Arduino IDE. It really does make development on these tiny boards simpler.

Microcontroller I/O
What else can we do with these extras supplied by our IDE? Lots! Let’s try branching
out from LEDs to try some inputs and some other types of output.

Sensors and Analog Input
An easy step up from the simple sketches we’ve been building so far is to add a sensor.
Sensors come in all types: light, sound, temperature, air quality, humidity, etc. And
they’re usually inexpensive (although fancier ones do come with fancier price tags).
For example, the TMP36 Analog Temperature sensor is only $1.50 over at Adafruit.
Let’s drop that sensor into a simple circuit like the one shown in Figure 9-2 to see how
the wiring works.

Figure 9-2. Wiring diagram for our temperature example

Pretty easy! And this is a fairly common arrangement. Sensors need power. They can
either have a separate pin for power—like our TMP36—or many can draw enough
current directly from the data pin you connect it to (such as a photoresistor). We use
the analogRead() function to grab the current value of the sensor. Different boards

Microcontroller I/O | 197

https://oreil.ly/Bczhb

and different sensors support different ranges, but 10-bit (0–1023) ranges are com‐
mon. Exactly what those values mean depends on the sensor, of course. Our TMP36
ranges from –50°C (a reading of 0) to 125°C (a reading of 1023).

The Serial Monitor
While you likely won’t have your Arduino project tethered to your main computer
for long, while it is connected, we can take advantage of a very handy feature of most
microcontrollers: the serial port. The Arduino IDE has a Serial Port Monitor you can
launch, as shown in Figure 9-3. During development, this is an excellent tool for
debugging and generally peeking into how things are going.

Figure 9-3. Accessing the Arduino IDE Serial Monitor

The port (selected via the Tools menu, also shown in Figure 9-3) and speed settings
(selected at the bottom of the monitor window itself) will vary depending on several
factors, including your OS, other devices you might have attached, and the particular

198 | Chapter 9: Smaller Systems

Arduino board you are using. For example, my Metro Mini on my Linux desktop
communicates at 115200 baud (the classic unit of measurement for the rate of serial
communication; remember modems?) on port /dev/ttyUSB0 (the filesystem path to a
“device” connection) but a nifty Trinket M0 microcontroller uses port /dev/ttyACM0.
That same Trinket on an old Windows system I have still uses a COM port.

Is It Hot in Here?
Let’s put these two new topics to use in a project. We’ll use the circuit shown in
Figure 9-2. You can start a new sketch or open ch09/temp_serial/temp_serial.ino and
follow along. The code is fairly straightforward. We set up an input pin. Then we read
from that pin and print the result in the serial monitor in a loop. Let’s see the code:

// TMP36 is a 10-bit (0 - 1023) analog sensor
// 10mV / C with 500mV offset for temps below 0
#define TMP36_PIN 0

void setup() {
 Serial.begin(115200);
}

void loop() {
 int raw = analogRead(TMP36_PIN);
 float asVolts = raw * 5.0 / 1024; // Connected to 5V
 float asC = (asVolts - 0.5) * 100;
 Serial.print(asC);
 Serial.println(" degrees C");
 float asF = (asC * 1.8) + 32;
 Serial.print(asF);
 Serial.println(" degrees F");
 delay(5000);
}

Pretty spiffy! The bouncy nature of the readings is not uncommon. If we needed a
steadier reading, say, to prevent a false alarm going off, there are a few electronic
options we could employ, like adding resistors and capacitors. We could also read
from the sensor several times and take an average. Or we could get even fancier and
use statistics to toss any real outliers and then get the average. But we mostly just
wanted to prove the sensor is working and that we can see the readings in the serial
monitor. If you want to make sure the sensor is working, try holding it gently with
your fingers—they should be warmer than room temperature, and you should see the
trend of the readings going up.

For a bit of fun, try popping open the “Serial Plotter” from the
Tools menu (just under the Serial Monitor). It tracks simple values
printed via Serial.println() as a graph. It can even track multi‐
ple values as separate lines; just print a space in between the values
on the same line.

Microcontroller I/O | 199

https://oreil.ly/eSsOI
https://oreil.ly/cal6o

5 Other popular driver chips such as the MAX7219 will have similar search results.

But as I said, you likely won’t have your Arduino plugged into your USB port con‐
stantly. Let’s explore a better output option.

Segmented Displays
LCD and segmented LED displays come in a wealth of size and price options. You can
get high-resolution LCDs the size of a postage stamp, touch-capable screens similar
to those found in cell phones, or segmented LED displays for text or numeric output.
I picked up a simple 4-digit LED display (a Velleman VMA425, shown in Figure 9-4)
with a driver chip built in (so you don’t need individual pin connections for each sep‐
arate segment) for less than $7 at a local Micro Center. We can use just such a display
to show our TMP36 readings (properly converted to Fahrenheit or Celsius) without
resorting to the serial monitor.

Figure 9-4. An example of a 4-digit, 7-segment display component

Unfortunately, these peripherals usually require a little help to operate. Fortunately,
that help is almost always readily available in the form of a library. We’ll go over libra‐
ries in much more detail in Chapter 11, but we can take a short detour now to grab
what we need for our 4-digit LED display.

The driver chip I mentioned that comes with my particular display is a TM1637.
There was no magic involved in finding that name—it is noted on the package and
more plainly on the chip itself. Using the Arduino IDE Library Manager, I entered
“TM1637” as the search term.5 Several results came back, and I chose a library (writ‐
ten by Avishay Orpaz) that looked simple and stable. After clicking the Install button,

200 | Chapter 9: Smaller Systems

6 If you are using a similar display, it has a nicely documented repo on GitHub.

I simply included the library’s lone header file and was immediately ready to put up
some numbers!6

#include <TM1637Display.h>

Doesn’t get much easier than that. You will often follow this process for adding new
peripherals, both sensors and other outputs. You may also decide nothing available is
quite right, and roll your own code. Again, we’ll look at the mechanics of creating
your own libray in Chapter 11.

I shouldn’t really say I was immediately ready after installing the library. I did have to
wire up the display. Figure 9-5 shows the connections required. I also had to read the
documentation for the library which I found by clicking the “More info” link in the
Library Manager listing.

Figure 9-5. Wiring for temperatures on an LED display

Ignoring the TMP36 sensor for the moment, ch09/display_test/display_test.ino is a
simple test of the 4-digit display. We’ll display “1234” to prove our connections are
working and that we understand the library functions from the documentation.

// Our 4-digit display uses a TM1637 chip and I2C
#include <TM1637Display.h>

// Name our pins
#define CLK 2

Microcontroller I/O | 201

https://oreil.ly/RVv2F
https://oreil.ly/jzXm9

#define DIO 3

// Create our 4-segment display object
TM1637Display display(CLK, DIO);

void setup() {
 // Get our display ready and set a medium brightness
 display.clear();
 display.setBrightness(0x0f);
 display.showNumberDec(1234);
}

void loop() {
}

The library I chose has one header, so include that to get going.

The display needs two pins (in addition to power and ground), so name those for
ease of use.

Create a global display variable similar to how we created the NeoPixel objects.

Use our display object with functions described in the documentation to initial‐
ize our display and put up a simple test number, 1234 in this case.

Nothing changes, and the display will hold whatever number it was last sent, so
we can leave the loop() function empty.

Hooray! If all goes well, you’ll see something like Figure 9-4. If you chose a different
display or library and you aren’t seeing what you hoped, see if you can find other
examples of using your hardware or library online. Usually someone has posted use‐
ful, minimal code examples you can easily copy and try yourself.

Buttons and Digital Input
But we’re not done yet! We can add another peripheral to add a little more function‐
ality to our temperature display sketch and expand our coding skills at the same time.
Let’s attach a very common input: the push button. We’ll use it to toggle our display
between Fahrenheit and Celsius output.

I grabbed a Tactile Button from Adafruit; it’s simple and breadboard friendly.
Figure 9-6 shows the final connections for the TMP36 sensor, the 4-digit display, and
our newly added button. The diagonal connections to the button are intentional.
Either diagonal works; other arrangements are possible if you look at the specs for the
button, but this choice guarantees we get the functionality we need.

202 | Chapter 9: Smaller Systems

http://adafru.it/367

Figure 9-6. Wiring for our sensor, display, and button

To use the button, we need to set one pin to be an input and then use the digital
Read() function on that pin. In particular, this button will use the INPUT_PULLUP con‐
stant. This common approach causes the default state of the pin (when the button is
not pressed) to return HIGH. When the button is pressed, then, the pin will read LOW.
We can watch for that LOW value and use it to trigger a change—like our F/C choice.

But watch out! Just because we’re using the digitalRead() function does not mean
the button is digital. It takes time to get the physical mechanism all the way down. It
also takes a little time to fully release. All told, it takes a human much longer to press
the button than it does for the Arduino to register a change. Consider this naive read-
and-change loop snippet:

bool useC = false; // display temp in Celsius?

void loop() {
 // ...
 int toggle = digitalRead(BUTTON);
 if (toggle == LOW) {
 useC = !useC;
 }
 // ...
}

The pin will read low for tens of milliseconds during even the fastest press. Our
microcontroller can read the pin and change the display much faster than we can let
go of the button, causing a crazy flicker as the display rapidly bounces between our F

Microcontroller I/O | 203

and our C temperatures. We want to stop that flicker, so we have to be a little more
clever in our code. We need to debounce the button. The idea of debouncing has
gained traction in a lot of user interface work—it generally means making sure you
don’t report multiple presses (or clicks or taps or whatever) in too short a period.

I’ll show you a few methods we can use to accomplish this debounce behavior. It usu‐
ally involves keeping some extra state information around. For the first debounce
technique, I simply keep a bool that tracks when the button state first changes. If that
flag is true, we just pause for a second. (In “Just How Hot Is It?”, we pause for exactly
one second, in fact, but you can certainly choose a different delay.) After that gap has
passed, we can read another change.

Just How Hot Is It?
So let’s tie all of these new topics together and create the code for the components we
wired up in Figure 9-6. We’ll initialize our display in the setup. In the loop, we’ll read
the temperature, print out some debugging statements to the serial monitor, put the
temperature on the display in the correct units, and then watch the button to see if we
need to change those units. You can open ch09/temp_display/temp_display.ino or type
in the following code:

// TMP36 is a 10-bit (0 - 1023) analog sensor
// 10mV / C with 500mV offset for temps below 0
// Our 4-digit display uses a TM1637 chip and I2C
#include <TM1637Display.h>

// Name our pins
#define TMP36_PIN 0
#define CLK 2
#define DIO 3
#define BUTTON 8

// Create our 4-segment display object
TM1637Display display(CLK, DIO);

// Build the letters "F" and "C"
// Segment bits run clockwise from top (bit 1) to center (64)
uint8_t segmentF[] = { 1 | 32 | 64 | 16 };
uint8_t segmentC[] = { 1 | 32 | 16 | 8 };

// Keep track of scale
bool useC = false;

// Manage button at human time
bool debounce = false;

void setup() {
 Serial.begin(115200);
 display.clear();

204 | Chapter 9: Smaller Systems

https://oreil.ly/flVsn

 display.setBrightness(0x0f);
 pinMode(BUTTON, INPUT_PULLUP);
}

void loop() {
 int raw = analogRead(TMP36_PIN);
 float asVolts = raw * 5.0 / 1024; // Connected to 5V
 float asC = (asVolts - 0.5) * 100;
 int wholeC = (int)(asC + 0.5);
 int wholeF = (int)((asC * 1.8) + 32 + 0.5);
 Serial.print(raw);
 Serial.print(" ");
 Serial.println(asC);
 if (useC) {
 display.showNumberDec(wholeC, false, 3, 0);
 display.setSegments(segmentC, 1, 3);
 } else {
 display.showNumberDec(wholeF, false, 3, 0);
 display.setSegments(segmentF, 1, 3);
 }
 if (debounce) {
 debounce = false;
 delay(1000);
 } else {
 for (int i =0; i < 1000; i += 10) {
 int toggle = digitalRead(BUTTON);
 if (toggle == LOW) {
 useC = !useC;
 debounce = true;
 break;
 }
 delay(10);
 }
 }
}

Notice I use a new function from the TM1637 library: setSegments(). This function
allows you to turn on any pattern of segments you want. You can make cute anima‐
tions or present a somewhat rough version of any English letter. You can see my
results in Figure 9-7.

Microcontroller I/O | 205

Figure 9-7. Our temperature reading on an LED display

Give this bigger example a try with your own setup. The project is in the ch09 folder
as temp_display. You can adjust the debounce pause or try making the “C” pattern a
lowercase version. Tweaking existing projects is a great way to build up your under‐
standing of new concepts! Speaking of new concepts, there are two more biggies I
want to cover for the Arduino platform: memory management and interrupts.

Memory Management on Arduino
Memory management is much more important on small devices, so I want to high‐
light how memory works on a microcontroller like Arduino. Arduino has three types
of memory. Flash memory is where our program is stored. SRAM is where the pro‐
gram operates while the Arduino has power. And finally, EEPROM allows you to read
and write a small amount of data that will persist between power cycles. Let’s look at
each of these types of memory in more detail and see how we can use them in our
code.

Flash (PROGMEM)
If the word “flash” sounds familiar, it probably is. This is the same type of memory
found in flash (or thumb) drives. It is much slower than something like RAM, but it is

206 | Chapter 9: Smaller Systems

generally on par with storage like hard drives. It is also persistent and does not
require power to retain its information. That makes it perfect for storing our com‐
piled sketches.

In microcontroller parlance, you may also hear a less familiar term: PROGMEM or
“program memory.” It’s the same memory, but the latter term tells you a little more
about what we’re doing with that memory.

Even though this flash is the same technology as you find in thumb drives, we don’t
have write access to this memory when our program is running. Writing is reserved
for the “upload” step in our IDE. The chip is put in a special mode for modification,
and the new program is loaded. After the upload is complete, the chip restarts, reads
the new program from flash, and off we go. We do have read access, though.

Most Arduino chips have more flash storage than you need for your compiled pro‐
gram. You can make use of the leftover space to reduce the amount of RAM needed
to run your program. Since RAM is almost always more limited, this feature can be a
real boon. You can store arrays or strings or individual values. You can use special
functions to grab those stored values as you need them while your program is actively
running.

Storing values in flash

To get a particular value into flash for use in your code, you can use the special PROG
MEM modifier when declaring and initializing the variable. For example, we could
store an array of 32-bit colors that would work with the RGBW NeoPixel ring from
“C++ Considerations” on page 185:

const PROGMEM uint32_t colors[] = {
 0xCC000000, 0x00CC0000, 0x0000CC00, 0x000000CC,
 0xCC336699, 0xCC663399, 0xCC339966, 0xCC996633
};

At this point, the colors array is no longer a simple list of 32-bit values. It now con‐
tains the location of these values in flash. You need a special function to get at the
contents of this array.

Reading values from flash
Those special functions are defined in the pgmspace.h header. In recent versions of
the Arduino IDE, that header is one of the many “behind-the-scenes” elements han‐
dled for you automatically. There are several functions for reading absolutely every
data type supported on Arduino. Table 9-4 lists the few functions we’ll use in our
projects.

Memory Management on Arduino | 207

https://oreil.ly/nIk62

Table 9-4. Program memory (flash) read functions

Name Description

pgm_read_byte() Read one byte

pgm_read_word() Read one word (two bytes, like int on many microcontrollers)

pgm_read_dword() Read one double word (four bytes, like long)

pgm_read_float() Read four bytes as a float or double

If we wanted to get the first entry from our colors array for actual use, we could use
the pgm_read_dword() function like so:

uint32_t firstColor = pgm_read_dword(&colors[0]);

This is obviously a little cumbersome. When you are running low on RAM, though,
cumbersome is often a fair trade-off. 32 bytes for eight colors is not much, but what
about a 256-color palette? At four bytes per color, that’s an entire kilobyte. Some
microcontrollers like our Metro Mini have a tiny 2K operating memory, so offloading
such a palette to flash memory is a big win.

Reading strings from flash
Printing to the serial monitor is a great way to debug your program, or even just to
watch what’s going on as a sort of cheap status indicator. However, every one of the
strings you print consumes some precious runtime memory. Moving these strings off
to flash is a great way to reclaim some of that space. You simply pull the string you
need out of flash just at the moment you need it. If you put it into a common, reusa‐
ble buffer, that buffer is the only memory we have to make room for at runtime.

This is such a common memory-saving technique that the Arduino environment
includes a special macro to simplify the round trip: F(). (Again, more on macros and
#define in “Preprocessor Macros” on page 239.) F() is remarkably easy to use and
provides an immediate savings. Say we have a few debugging statements like this:

setup() {
 Serial.begin(115200);
 Serial.println("Initializing...");
 // ...
 Serial.println("Setting pin modes...");
 // ...
 Serial.println("Ready");
}

There are likely other variables and such in your program, too. Verifying your code in
the Arduino IDE might produce some output similar to this:

Sketch uses 4548 bytes (14%) of program storage space. Maximum is 32256 bytes.
Global variables use 275 bytes (13%) of dynamic memory,
leaving 1773 bytes for local variables. Maximum is 2048 bytes.

208 | Chapter 9: Smaller Systems

7 Dynamic random-access memory, or DRAM, is the type of memory you buy in “sticks” and physically insert
into your aging Windows 7 box so you can eke one more year out of it. The “dynamic” term here indicates
this RAM needs to be refreshed periodically by drawing a little power—in contrast to SRAM, which does not.
Both types, however, require at least some power and are therefore termed volatile, as their contents will be
reset during a power cycle.

Great. We have plenty of room at the moment, but 1773 bytes is not much! Let’s use
the F() macro now to move those strings to flash memory:

setup() {
 Serial.begin(115200);
 Serial.println(F("Initializing..."));
 // ...
 Serial.println(F("Setting pin modes..."));
 // ...
 Serial.println(F("Ready"));
}

Pretty simple to incorporate, right? And now if we verify our program, we can see a
small but advantageous change:

Sketch uses 4608 bytes (14%) of program storage space. Maximum is 32256 bytes.
Global variables use 225 bytes (10%) of dynamic memory,
leaving 1823 bytes for local variables. Maximum is 2048 bytes.

Our new sketch takes up a little more room in flash, but a little less room at runtime.
That’s exactly what we came for. Now, obviously, removing those debugging state‐
ments entirely saves space in both types of memory, but there are certainly times
when you will have nice peripherals such as mini LCD displays that show text. F()
can give you more room to play without much added effort.

SRAM
I’ve been tossing around the terms “at runtime” and “operating memory,” among oth‐
ers. These terms refer to a type of memory called SRAM. Static random-access mem‐
ory is the Arduino equivalent to the generic RAM term so often applied to bigger
systems.7 Flash is where our program is stored, SRAM is where our program operates.
The stack and heap mentioned in Figure 6-3 are found here in SRAM while your pro‐
gram is running. The operating size of your program is limited by the amount of
SRAM you have. Let’s take a look at some implications of this limit.

Stacks and heaps
Recall the discussion of global variables and the heap from “Local Variables and the
Stack” on page 131. I mentioned that you could potentially run out of memory if you
had too many variables or made too many nested function calls. It is a largely theoret‐
ical discussion if you have gigabytes or even terabytes of memory like modern

Memory Management on Arduino | 209

desktop systems. But 2K? What about our Metro Mini and its meager 2K of SRAM?
The stack and heap—active at runtime, so not part of flash memory—must fit in this
limited space as we run our Arduino sketches.

Imagine redoing the addresses from Figure 6-3 to fit in 2K. That middle is much
smaller now. It is much easier to imagine too many function calls or too many global
variables or malloc() allocations. If you wrote out 32 bytes per line (64 hexadecimal
characters), it would take just 64 lines to represent the entire contents of SRAM on
some microcontrollers. That’s one two-sided piece of paper from a high school note‐
pad! That means a careless loop or large array can overrun our SRAM and cause our
program to crash.

For example, our recursive Fibonacci calculating function could easily fill up available
memory after a few dozen calls—especially since we will still need memory for our
LEDs, sensor libraries, etc. It’s not forbidden to use recursion when working with
microcontrollers, but it does require paying a little more attention to detail on your
part.

Global variables in Arduino
Unlike desktop applications where globals (allocated on the heap) are almost always
optional (if convenient), the Arduino environment makes regular use of them. The
Arduino IDE hides a lot of the effort done on our behalf to create a viable, executable
program. Remember that we don’t write our own main() function, for example. As
such, if we need to initialize a variable in the setup() function and then refer to that
variable in our loop() function, we have to use a globally declared variable.

That fact is not terribly controversial. Many examples online, and certainly in this
book, rely on globals. But given our limited space, it does require more of that atten‐
tion to detail. For example, I often use int for any numeric variable that I know isn’t
going to store numbers in the billions. It’s almost muscle memory to type out int
count = 0;. Well, if I’m going to be counting successive button presses so that I can
distinguish between single or double (or even triple) clicks, that count fits easily in
a byte. Remembering to use the smallest appropriate data type is a great habit to
get into.

In fact, if you get really pressed for memory, remember that you can read and manip‐
ulate individual bits using the operators we discussed in “Bitwise Operators” on page
96. If you had two buttons and needed to track potential triple clicks, those counts
could both fit in one byte variable. Indeed, you could store the count of four buttons
in that variable. That’s definitely a little extreme, but again, when you need it, every
byte counts. We’re not on desktops anymore, Toto.

210 | Chapter 9: Smaller Systems

EEPROM
If you did come to Arduino from the land of desktop computing, you may also have
noticed the lack of filesystem discussions. You likely weren’t surprised that a physical,
3.5” hard drive was not attached to your tiny microcontroller, but the lack of long-
term, read-write storage may have caught you off guard. Power cycle your Arduino,
and every variable starts off back at the beginning. Many, many satisfying projects do
not require any such storage, but some do. Happily, many controllers have some
(limited) capacity for storing values you can manipulate in the form of electronically
erasable programmable read-only memory, or EEPROM.

Not every microcontroller includes EEPROM. Enough don’t, in fact, that this type of
memory is not something the IDE expects you to use. You have to include the
EEPROM.h header manually to store and retrieve values from this area. We only need
two of the functions from this libray: get() and put(), but you can see the other
functions available in the EEPROM library documentation.

Both functions take two arguments: an offset into EEPROM (the “address” in the
documentation) and some “data,” which can be a variable or struct for get(), or also
a literal value for put(). Putting and getting a float, for example, would look some‐
thing like this:

#include <EEPROM.h>

float temperature;

void setup() {
 EEPROM.get(0, temperature);
 // ... other initialization stuff
}

void loop() {
 // ... things happen, temperature changes
 EEPROM.put(0, temperature);
 // things continue to happen ...
}

Notice that unlike the scanf() function we have used to accept input from users, I
did not use & with the temperature variable in the call to get(). This library does the
work of assigning the value to the correct location for you. You usually read from
EEPROM during setup(), so hopefully it’s easy to be a little careful and remember to
use simple variables and not their addresses. In the snippet above, EEPROM.get() will
fill our temperature variable with the value stored in EEPROM exactly as we expect.

Using get() and put() and remembering the exact byte offset of where you stored
your persistent values in EEPROM may seem tedious, and I agree that it is. In return,
however, you have total control over what goes in and how you retrieve it. Just make

Memory Management on Arduino | 211

https://oreil.ly/Hbgqn

sure that you manage your addresses correctly. If you are storing two float numbers
and a byte, in that order, you need to make sure the second float is stored at address
4 and the byte at address 8. Or better yet, use sizeof to advance a running location
variable by exactly the right amount.

It’s important to know that reading and writing to EEPROM is “expensive,” in that it
is not a speedy operation. EEPROM also has limits on how often it can be read and
changed. You aren’t likely to hit those read/write limits, and the speed is fine for ini‐
tializing our tiny projects, but EEPROM is definitely not a simple extension of
SRAM.

Remembering Choices
All of this memory stuff sure is esoteric. I think it’s time for another kitchen sink
example! Let’s get that nifty LED ring wired back up and add a tactile button to
change its color. We’ll store the selected color in EEPROM, too, so that if we shut off
the Arduino and turn it back on later, the ring will light up with our most recent
choice. This project uses only the ring and the button, as shown in Figure 9-8.

Figure 9-8. Wiring for our EEPROM demo with our LED ring and button

Along the way, we can use a new technique to debounce the button, and we’ll even
borrow the debounce concept to keep from writing to EEPROM too much. When
you let users change things, they often take you up on the offer and change them a

212 | Chapter 9: Smaller Systems

lot. If they press the button to change the color, we’ll wait a few seconds before com‐
mitting that change to EEPROM, in case they just want to quickly cycle through the
colors to see their options.

If you are up for a challenge, try sketching out (get it?) a solution yourself before
reviewing the code here. But that is a pretty hefty challenge. Feel free to enter in this
code or compile and upload ch09/ring_eeprom/ring_eeprom.ino if you’d rather just get
on with the joy of changing LED colors!

#include <Adafruit_NeoPixel.h>
#include <EEPROM.h>

#define RING_PIN 3
#define RING_COUNT 24
#define BUTTON_PIN 2

int previousState = HIGH;
int pause = 250;
int countdown = -1;

const PROGMEM uint32_t colors[] = {
 0xCC000000, 0x00CC0000, 0x0000CC00, 0x000000CC,
 0xCC336699, 0xCC663399, 0xCC339966, 0xCC996633
};
const byte colorCount = 8;
byte colorIndex;

Adafruit_NeoPixel ring(RING_COUNT, RING_PIN, NEO_GRBW);

void setup() {
 Serial.begin(115200);
 pinMode(BUTTON_PIN, INPUT_PULLUP);
 retrieveIndex();
 ring.begin(); // Initialize our ring
 ring.setBrightness(128); // Set a comfortable mid-level brightness
 ring.fill(pgm_read_dword(&colors[colorIndex]));
 ring.show();
}

void loop() {
 int toggle = digitalRead(BUTTON_PIN);
 if (toggle != previousState) {
 if (toggle == LOW) {
 // "falling" state, so do our work
 previousState = LOW;
 colorIndex++;
 if (colorIndex >= colorCount) {
 colorIndex = 0;
 }
 ring.fill(pgm_read_dword(&colors[colorIndex]));
 ring.show();
 countdown = 10;

Memory Management on Arduino | 213

https://oreil.ly/yir2G

 } else {
 // "rising", just record the new state
 previousState = HIGH;
 }
 }
 if (countdown > 0) {
 countdown--;
 } else if (countdown == 0) {
 // Time's up! Record the current color index to EEPROM
 countdown = -1; // stop counting down
 storeIndex();
 }
 delay(100);
}

void retrieveIndex() {
 Serial.print(F("RETRIEVE ... "));
 EEPROM.get(0, colorIndex);
 if (colorIndex >= colorCount) {
 Serial.println(F("ERROR, using default"));
 // Got a bad value from EEPROM, use default of 0
 colorIndex = 0;
 // And try to store this good value
 storeIndex();
 } else {
 Serial.print(colorIndex);
 Serial.println(F(" OK"));
 }
}

void storeIndex() {
 Serial.print(F("STORE ... "));
 Serial.print(colorIndex);
 EEPROM.put(0, colorIndex);
 Serial.println(F(" OK"));
}

There are three parts of this program I specifically want to highlight. The first is the
use of the previousState variable to track the state of our button. Rather than use a
Boolean value to know if we are in the middle of a debounce period, I only act on the
button press when I notice it changing from a HIGH state to the LOW state. It’s about the
same amount of work, but I wanted to show you an alternative.

The other two interesting parts are the functions at the bottom, retrieveIndex()
and storeIndex(). Here you can see the use of the EEPROM functions. Storing the
index is straightforward, but I added a safety check when reading the index to make
sure that it is a valid value.

214 | Chapter 9: Smaller Systems

Interrupts
There is one last bit of cool functionality that can streamline the code you write to
handle inputs like our tactile buttons. While not peculiar to Arduino, the use of inter‐
rupts is not something many desktop or web developers encounter anymore. Inter‐
rupts are hardware signals that can trigger software responses. Interrupts can let you
know that some network data has arrived, or that a USB device was connected, or
maybe a key was pressed. They get their name from the advantageous fact that they
“interrupt” the normal flow of your program and transfer control somewhere else.

I say advantageous because interrupts can significantly simplify the process of worry‐
ing about asynchronous, unreliable events. Think about typing at your keyboard. One
way your operating system could go about “listening” for keys to be pressed is to run
a big loop and check every key, one after the other, to see if it had been pressed
recently. What a tedious task. Even if we abstract things a little bit so that the operat‐
ing system can ask if any key has been pressed, we would need to ask this question of
every input device. Every hard drive, every thumb drive, the mouse, the mic, every
USB port, etc., etc. That type of polling just isn’t something we want to worry about.
Interrupts take away that worry. When a key is pressed, a signal arrives telling your
computer to go check the keyboard. It’s an on-demand system.

When such a demand is made, the computer typically goes to a function you have
supplied with the express intent of handling the interruption in question. You register
a handler and the operating system does the management of stopping anything else
that is happening and switching to that handler.

On an Arduino project, you can use interrupts for various input devices like our tac‐
tile buttons. Rather than polling the button like we’ve done in some of our previous
projects, we can register a function for the button press. We write our loop without
any mention of the button. No polling, no debounce flag or timer, nothing. The
microcontroller is doing its own internal work to watch each of its pins, and when
one of them changes, say the one attached to our button, an interrupt fires and we
jump to our registered function.

Interrupt Service Routines
An interrupt service routine, or ISR, is really just a function. But you do want to obey
a few rules and a few guidelines:

• An ISR cannot have any parameters (rule)
• An ISR should not return any values (guideline)

Interrupts | 215

8 The micros() function will work, but only for a millisecond or two. delayMicroseconds() uses a different
mechanism to pause, so it actually can be used. But you really don’t want to delay inside an ISR at all if you
can help it.

• Timing functions like delay() and millis() themselves use interrupts so you
can’t use them inside an ISR (rule)8

• Because you are “holding up the line” while inside your ISR, these functions
should be designed to run as quickly as possible (guideline)

To register an ISR in Arduino, you use the attachInterrupt() function. That func‐
tion takes three arguments:

• The interrupt to listen for: use the function digitalPinToInterrupt(pin) for
this argument

• The ISR: just give the name of the function you want to use
• The mode, one of:

— LOW: triggered when the pin is LOW
— CHANGE: triggered when there is any change in the pin’s value
— RISING: triggered when the pin goes from LOW to HIGH
— FALLING: triggered when the pin goes from HIGH to LOW
— HIGH: some—but not all—boards support triggers when a pin is HIGH

If you no longer want to handle an interrupt, you can use detachInterrupt(). That
function takes one argument, the same digitalPinToInterrupt(pin) as the first
argument to attachInterrupt(). (This helper function correctly translates your pin
number to the necessary interrupt number. It is not recommended to supply the
interrupt number directly.)

Interrupt-Driven Programming
Let’s dive into one more project to try harnessing an interrupt. We’ll take our LED
ring and light up one LED after the other to make a cycling animation. We’ll use a
button to change the speed of that cycle. We certainly could write this type of pro‐
gram without interrupts, but I think you’ll like how much cleaner this project is than
our example that polled the button to change the color of the LED ring. We’ll actually
use the exact same hardware setup as we did for that project. You can look back at
Figure 9-8 if you need to re-create it.

216 | Chapter 9: Smaller Systems

As always, feel free to grab this sketch (ch09/ring_interrupt/ring_interrupt.ino), or
enter it yourself. The only wiring on this project is connecting the power and ground
of the NeoPixel ring and the data line to an acceptable pin on your microcontroller.
You’ll need to check the documentation for your board to see which pins support
interrupts. For our Metro Mini (compatible with the Arduino Uno), we can use either
pin 2 or pin 3:

#include <Adafruit_NeoPixel.h>

#define RING_PIN 3
#define RING_COUNT 24
#define BUTTON_PIN 2

int pause = 1000;

Adafruit_NeoPixel ring(RING_COUNT, RING_PIN, NEO_GRBW);

void nextPause() {
 if (pause == 250) {
 pause = 1000;
 } else {
 pause /= 2;
 }
}

void setup() {
 pinMode(BUTTON_PIN, INPUT_PULLUP);
 attachInterrupt(digitalPinToInterrupt(BUTTON_PIN),
 nextPause, FALLING);
 ring.begin(); // Initialize our ring
 ring.setBrightness(128); // Set a comfortable brightness
 ring.show(); // Start with all pixels off
}

void loop() {
 for (int p = 0; p < RING_COUNT; p++) {
 ring.clear();
 ring.setPixelColor(p, 0, 255, 0, 0);
 ring.show();
 delay(pause);
 }
}

Set an initial pause duration of 1 second for our ring animation.

Create a concise function to respond to button presses by cycling through differ‐
ent pause durations.

Setup our button pin as an INPUT_PULLUP, just as we have before.

Interrupts | 217

https://oreil.ly/iZ5JJ

Configure nextPause() to handle the event of our button being pressed.

Set up our LED ring, also like we have before.

Our animation loop does not have to include any button-polling logic (hooray!).

Hopefully, this feels simpler than our other projects that included buttons. Our
loop() function is devoted solely to driving the animated pixel around the ring. And
although I use the FALLING mode to trigger the interrupt, we could have used RISING
just as easily for this example. Changing that mode is a great tweak to try now if
you’re curious about the effect.

Exercises
Now that we’ve seen several sketches up and running with help from the Arduino
environment to make use of some interesting peripherals, here are a few small
projects you can try to test your new skills. I’m including the wiring diagrams for my
setups, but you are certainly welcome to arrange the components however you like
and use whichever pins are appropriate for your microcontroller. The solutions are in
the ch09/exercises folder.

1. Automatic night-light. With a photoresistor and an LED (see Figure 9-9), create a
night-light that responds to a decrease in light by increasing the brightness of the
LED. Try using the map() function to convert the sensor reading value to an
appropriate LED value. (You can use a NeoPixel or a regular LED with PWM.)

Figure 9-9. Wiring for an automatic night-light

218 | Chapter 9: Smaller Systems

https://oreil.ly/ezhYB

2. Stopwatch. Use our 4-digit display and one button (see Figure 9-10) to create a
stopwatch. When you first press the button, the stopwatch starts and tracks the
elapsed time in seconds (up to 99:99 seconds). Pressing the button again will stop
the count. Pressing it a third time will reset the stopwatch to 0:00.

Figure 9-10. Wiring for a simple stopwatch

3. Scoreboard. Use four buttons and a 4-digit display (see Figure 9-11) to run a small
scoreboard for two teams. The left two digits of the display will keep the score for
team 1, the right two digits for team 2. Use two buttons for each team: one to
increase their score and one to decrease it. Start small and build up. Get one but‐
ton working. Then get one team working. Finally, get both teams working. You
may need to consult the documentation for your segmented display library to
make sure you can update the score for one team without clobbering the score
for the other team.

Figure 9-11. Wiring for a scoreboard

Exercises | 219

Next Steps
My goodness that was a lot of code. But I sincerely hope you enjoyed our tour of the
functions and features available for programming in Arduino. We tried out several
new peripherals and covered the ways Arduino programmers can work with limited
memory. We also introduced the topic of interrupts. You are wholly encouraged to
feel overwhelmed! Hopefully not discouraged, though. If any of the examples remain
unclear, let them sit a day or two and come back to try again.

The next chapter won’t be quite so intense. In the discussion on memory, we saw that
sometimes you have to be a bit clever when dealing with microcontrollers. We’ll take
a look at how you can optimize some patterns common in Arduino programming by
concentrating on a single, simple example. The optimizations are certainly valid on
desktops, too, they just might not make as much of an impact. But right now, we’re
still focusing on Arduino, so read on to see just how much of an impact a few small
changes can have!

220 | Chapter 9: Smaller Systems

https://oreil.ly/z4YpN

1 Making use of this feature requires understanding the really low-level details of your chip. That understand‐
ing comes with a pretty steep learning curve that’s well beyond our goals in this book. Even the SAM D21
heart of tiny controllers like Adafruit’s Trinket M0 has a 1000+ page datasheet for your reading pleasure!

CHAPTER 10

Faster Code

I mentioned at the very beginning of Chapter 1 that C was designed for machines
with limited resources—at least by today’s standards. Microcontrollers have many of
those same limitations, making C a pretty natural fit as a development language.
Indeed, if you want to get the maximum possible performance out of a tiny chip, C’s
ability to work directly with memory addresses, as we saw in “Addresses in C” on
page 127, is unparalleled, if tedious.1

I’m happy to say that even without diving into the depths of datasheets (seriously
technical specifications produced by component and microcontroller manufacturers),
you can employ several straightforward tricks to speed up your code. But do remem‐
ber that sometimes good enough is, well, good enough! Try getting your code going
with the patterns you know first. Does your program run? Does it do what you need?
If so, the interesting options I highlight in this chapter, such as using integers rather
than floating point numbers or unrolling loops, are just that: interesting. They are not
really “better” and certainly not necessary. Usually. The Arduino and its cousins are
definitely more limited than desktops. Sometimes your program won’t run or doesn’t
quite do what you need. In those instances, consider bringing some of the following
optimizations to bear.

221

The Setup
Rather than toss another slew of new gadgets and configurations and wiring diagrams
at you, I’m going to focus on a hardware setup similar to our first Arduino projects
back in Chapter 8. We’ll use one NeoPixel strip. Figure 10-1 shows the usual wiring
diagram and my Metro Mini wired (and powered) up.

Figure 10-1. Our simple LED setup

Next, we’ll steal the “breathing” logic from “Trying Out the Arduino ‘Stuff ’” on page
194 and apply it to each pixel in the strip. Rather than start with random colors, we’ll
simply assign some nice rainbowy ones. Feel free to tweak the colors, by the way. Pick
a palette you will enjoy staring at; we’ll be using this sketch as the basis for every opti‐
mization in the chapter.

Pull up ch10/optimize/optimize.ino and try it out on your own setup. Be sure to adjust
the LED_PIN and LED_COUNT values if needed.

#include <Adafruit_NeoPixel.h>

#define LED_PIN 4
#define LED_COUNT 8
#define RATE 5000
#define PI_2 6.283185

Adafruit_NeoPixel stick(LED_COUNT, LED_PIN, NEO_GRB);
uint32_t colors[] = {
 0xFF0000, 0x00FF00, 0x0000FF, 0x3377FF,
 0x00FFFF, 0xFF00FF, 0xFFFF00, 0xFF7733
};

void setup() {
 Serial.begin(115200);

222 | Chapter 10: Faster Code

https://oreil.ly/UHE04

2 I had the distinct pleasure of upgrading my 8086 CPU with an amazing 8087 FPU coprocessor. I’ll leave it to
you, gentle reader, to suss out the incriminating dates of this lovely bit of nostalgia.

 stick.begin(); // Initialize our LEDs
 stick.setBrightness(128); // Set a comfortable brightness
 // Show our colors for a few seconds before animating
 for (byte p = 0; p < LED_COUNT; p++) {
 stick.setPixelColor(p, colors[p]);
 }
 stick.show();
 delay(RATE);
}

void loop() {
 double ms_in_radians = (millis() % RATE) * PI_2 / RATE;
 double breath = (sin(ms_in_radians) + 1.0) / 2.0;
 for (byte p = 0; p < LED_COUNT; p++) {
 byte red = (colors[p] & 0xFF0000) >> 16;
 byte green = (colors[p] & 0x00FF00) >> 8;
 byte blue = colors[p] & 0x0000FF;
 red = (byte)(red * breath);
 green = (byte)(green * breath);
 blue = (byte)(blue * breath);
 stick.setPixelColor(p, red, green, blue);
 }
 stick.show();
 delay(10);
}

With this minimal example in place, we can look at some popular techniques for
gaining performance. Many of these techniques are squarely in the trade-off realm.
Many take up a little extra storage in flash memory or in SRAM in return for speed‐
ing up the work you have to do in the loop() function. Some, though, are trade-offs
involving your time and energy as a programmer. But again, if your program is
already working the way you want, there’s not really anything overly superior in the
alterations that follow. :)

Floating-Point Versus Integer Math
A lot of computer hardware press these days discusses the ever more powerful GPUs
(graphics processing units, impressive chips devoted to displaying and manipulating
graphics) available from various venders. But not so long ago, you could also talk
about separate FPUs, or floating-point units (impressive chips devoted to performing
—and speeding up—floating-point calculations).2 Floating-point math takes power,
and it took a while for computers to get generally powerful enough that such niceties
could be integrated.

Floating-Point Versus Integer Math | 223

Happily, our computers have really grown in power (while shrinking in size) and
Arduino projects do have access to good floating-point support and fancier things
that use floating-point math like trigonometric functions. But doing that math still
takes more horsepower than doing purely integer math. If you hang around the
Arduino forums, you’ll see anecdotes about floating-point math taking twice (or
more!) the time that comparable calculations take with integer operands.

It’s worth pointing out that on microcontrollers, float and double
are not always 4- and 8-byte types like they usually are on desktops.
On the Metro Mini (with a 16MHz ATmega328P chip), for exam‐
ple, both types are 4 bytes. It’s unlikely this fact will cause much
trouble, but on the off chance you need really high-precision
floating-point numbers, you may need to look for a library to help
out.

Floating-Point Math Alternatives
Many times, programmers use floating-point numbers without really considering the
costs. Decimal numbers and fractions are everywhere around us: gas gauges, gas pri‐
ces, tax rates, tip percentages, and on and on and on. It can make sense to use them in
some cases, especially when outputting information meant to be read by humans.
(For example, we converted the raw voltage readings of our TMP36 sensor from
“Segmented Displays” on page 200 to floating-point degrees.)

But if we are just doing some internal work, and not showing those results to users,
sometimes we can get the same results with integers. Consider these two calculations:

int dozen = 12;
int six = dozen * 0.5;
int half_a_dozen = dozen / 2;

Both six and half_a_dozen will contain the int value 6, but multiplying by 0.5 is
more expensive. This example is obviously contrived, but only slightly. Let’s look at
our breath calculation and think about what, exactly, we are trying to do:

 double ms_in_radians = (millis() % RATE) * PI_2 / RATE;
 double breath = (sin(ms_in_radians) + 1.0) / 2.0;
 // ...
 red = (byte)(red * breath);

We are taking an ever-increasing count and turning it into a value between 0.0 and
1.0. We then multiply that value to give us a “portion” of our various colors. The net
result, though, is still a byte value. We never use 140.7 units of red, we only use 140.
What we’re really trying to do is convert a value from the range (0 to RATE) to a value
in the range (0 to 255) along a wave-like curve.

224 | Chapter 10: Faster Code

https://oreil.ly/xT1E6

3 The NeoPixel documentation uses the type uint8_t rather than byte, so I will follow suit for the temporary
variables.

It just so happens that this task is very common for LED applications—it makes for
nice fading animations, as we’ve seen. There is a very spiffy sine8() function in the
NeoPixel library that approximates the sine calculation with uint8_t values3 as both
inputs and outputs. sine8() treats the input range of (0 to 255) as if it were the classic
radian range of (0 to 2π). In turn, it outputs values between 0 and 255 as though it
were the classic (–1 to 1) range of the sine wave.

That might sound too mathy, but the upshot is that we can get our brightness anima‐
tion by constraining our (increasing) milliseconds to the range (0 to 255) and using
the sine8() function to get a cycling value between 0 and 255. We can then treat
breath / 255 as a fraction with all integer parts. That allows us to apply our
half_a_dozen trick. Rather than multiply by a floating-point value between 0.0 and
1.0, we multiply by breath and then divide by 255:

 uint8_t ms = (millis() % RATE) / 20; // close enough :)
 uint8_t breath = stick.sine8(ms);
 // ...
 red = red * breath / 255;

Slick! But be careful not to use parentheses around our “fraction” breath / 255.
While it might read nicer and highlight the proportional value we’re after, in integer
math, dividing a smaller number (something between 0 and 255) by a larger number
(always 255) will just give us 0, except for the very last case of 255 / 255, which does
result in 1.

Integer Math Versus No Math
You know what’s better than integer math? No math at all! Sometimes a little plan‐
ning can make a big difference. Look at how we use the colors array. We use the
actual, full 32-bit values only once in setup(). Inside loop(), though, we break up
those colors into their respective red, green, and blue parts. And we do that every 10
milliseconds. Yikes! So rather than store single 32-bit values, why not store individual
bytes from the get-go? We could use a two-dimensional byte array if we want:

byte colors[8][3] = {
 { 0xFF, 0x00, 0x00 }, { 0x00, 0xFF, 0x00 },
 { 0x00, 0x00, 0xFF }, { 0x33, 0x77, 0xFF },
 { 0x00, 0xFF, 0xFF }, { 0xFF, 0x00, 0xFF },
 { 0xFF, 0xFF, 0x00 }, { 0xFF, 0x77, 0x33 }
};

Floating-Point Versus Integer Math | 225

https://oreil.ly/hMmZw

We could also store them in a single, simple array and do the tiny amount of math
required to get the green and blue index values as needed:

byte colors[] = {
 0xFF, 0x00, 0x00, 0x00, 0xFF, 0x00,
 0x00, 0x00, 0xFF, 0x33, 0x77, 0xFF,
 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0xFF,
 0xFF, 0xFF, 0x00, 0xFF, 0x77, 0x33
};

What’s more, both options save us eight bytes of storage! Since both options require
either a second index or a bit of math on the lone index, it’s up to you which feels
easier. Here’s how we can alter both the initial show in setup() and the more interest‐
ing uses in loop() with the two-dimensional approach:

void setup() {
 // ...
 for (byte p = 0; p < LED_COUNT; p++) {
 stick.setPixelColor(p, colors[p][0], colors[p][1], colors[p][2]);
 }
 // ...
}

void loop() {
 // ...
 for (byte p = 0; p < LED_COUNT; p++) {
 byte red = (byte)(colors[p][0] * breath);
 byte green = (byte)(colors[p][1] * breath);
 byte blue = (byte)(colors[p][2] * breath);
 stick.setPixelColor(p, red, green, blue);
 }
 // ...
}

That definitely feels simpler. And while it isn’t always true, one of the things I love
about C is that looks are rarely deceiving. C can certainly work magic on small devi‐
ces, but that magic is usually out in the open. So writing clean, simple code often
increases both readability and performance.

Lookup Tables
While not quite as good as no math, performing a common calculation just once and
then storing the answer for reuse is a close second. If we look at the calculations we’re
performing inside our loop() function, there are basically two: one to convert the
current millis() value into a fraction, and then one to apply that function to our
color channels (albeit separately for each channel). It would be great to get rid of
those calculations.

226 | Chapter 10: Faster Code

When you have more storage space than processing power (another trade-off), a
popular trick is to use lookup tables. You essentially run every calculation you need
ahead of time, and store the answers in an array. Then when you need one of those
answers, all you have to do is pluck the correct entry out of that array.

Depending on how expensive the calculation you want to store actually is, you have
two options for creating your lookup table. If it’s not too expensive, you can build the
table up at runtime before it’s needed. (For example, in an Arduino project, we can
use the setup() function to do this work. Then we read from the array in the loop()
function.) If the calculation is just impossibly expensive, you can do all the work “off‐
line” and then simply transcribe the results into your program and initialize your
array with a litany of literal values.

With limited memory, this type of optimization won’t always make sense. Filling up a
large global array might put too much of a squeeze on the rest of your program. But if
the calculation is expensive enough, even reading from the slightly slower flash mem‐
ory becomes feasible and you can store your lookup table there. In the latter case, of
course, you have to do the offline calculation and initialize the array in PROGMEM when
you declare it.

The Project So Far
Let’s put our lookup table (we’ll build ours in setup()) and our simpler math to work.
When you do sit down to optimize one of your projects, it’s a good idea to try out
your ideas in small steps. This incremental approach makes it less likely you’ll break
anything. But when you do break something, the incremental approach should make
it easier to fix—or rip out and start over if worse comes to worst. Here’s ch10/opti‐
mize2/optimize2.ino:

#include <Adafruit_NeoPixel.h>

#define LED_PIN 4
#define LED_COUNT 8
#define RATE 5000

Adafruit_NeoPixel stick(LED_COUNT, LED_PIN, NEO_GRB);
byte colors[8][3] = {
 { 0xFF, 0x00, 0x00 }, { 0x00, 0xFF, 0x00 },
 { 0x00, 0x00, 0xFF }, { 0x33, 0x77, 0xFF },
 { 0x00, 0xFF, 0xFF }, { 0xFF, 0x00, 0xFF },
 { 0xFF, 0xFF, 0x00 }, { 0xFF, 0x77, 0x33 }
};

uint8_t breaths[256];

void setup() {
 Serial.begin(115200);
 stick.begin(); // Initialize our LEDs

Floating-Point Versus Integer Math | 227

https://oreil.ly/eDKmd
https://oreil.ly/eDKmd

 stick.setBrightness(80); // Set a comfortable brightness
 // Show our colors for a few seconds before animating
 for (byte p = 0; p < LED_COUNT; p++) {
 stick.setPixelColor(p,
 colors[p][0], colors[p][1], colors[p][2]);
 }
 stick.show();
 // Now initialize our sine lookup table
 for (int s = 0; s <= 255; s++) {
 breaths[s] = stick.sine8(s);
 }
 delay(2000);
}

void loop() {
 uint8_t ms = (millis() % RATE) / 20;
 uint8_t breath = breaths[ms];
 for (byte p = 0; p < LED_COUNT; p++) {
 byte red = colors[p][0] * breath / 255;
 byte green = colors[p][1] * breath / 255;
 byte blue = colors[p][2] * breath / 255;
 stick.setPixelColor(p, red, green, blue);
 }
 stick.show();
 delay(10);
}

Break out our pixel colors into a two-dimensional array (for easier calculations in
loop()).

Make a global for our lookup table so we can initialize it in setup() and refer to
it in loop().

Use an alternate function to set the pixel colors that accepts the red, green, and
blue values individually.

Fill in our sine value lookup table using the handy (and speedy) sine8() func‐
tion from the NeoPixel library.

Simplify our translation from milliseconds to lookup index.

Now put our lookup table value to use in calculating the current brightness.

You can certainly give this a try on your controller, but hopefully the behavior of your
LED strip is the same. The intent is to make sure you understand the changes we
made before tackling more tweaks.

228 | Chapter 10: Faster Code

Notice that I used an int variable for the breaths array initializa‐
tion. Since we need to go right to the edge of what a byte can store
(namely, we need to use 255), we can’t use a byte-sized variable for
the index value. The adjustment step where we increment s will
occur one more time when s is 255, pushing it to 256. Except that
for a byte variable, that push will force the variable to rollover back
to 0. After that rollover, we check the loop condition. Since 0 is less
than or equal to 255, we keep going. I made this mistake the first
time I wrote up the initialization loop. It took me a few minutes to
figure out why the setup() function never ended!

The Power of Powers of 2
One more math-related optimization to keep in your bag of tricks: use bitwise opera‐
tions instead of multiplication and division. Multiplication is not cheap. Division is
downright expensive. On microcontrollers, these operations can be very expensive—
except when you are multiplying or dividing by 2 or a power of 2 (i.e., 4, 8, 1024,
etc.). The remainder operation (%) is really a division operation as well, so it is also
expensive, except where a power of 2 can be used.

We have removed a lot of expensive steps from our breathing loop, but we do still
have some remainder and division operations. Let’s see how powers of 2 help on these
calculations.

When we multiply a color by our breath variable and divide by 255 to get the correct
shade of that color, we’re trying to make sure that the shade is somewhere in the 0 to
255 range. That fraction we create has a denominator tanalizingly close to a power of
2, namely 255 is almost 256. For example, consider our brightest red. Ideally, we
would display the value 255 on our LED. The calculation we currently use looks like
this:

 red = red * breath / 255;
 // = 255 * 255 / 255;
 // = 65025 / 255;
 // = 255

This calculation results in 255, which is exactly what we want. But I said dividing by
256 would speed things up. I’ll show you how shortly, but first let’s explore an impor‐
tant question: is it OK to divide by 256 rather than 255? Well, 65025 / 256 is ~254.004.
For an LED, that is definitely close enough. So how is dividing by 256 faster than
dividing by 255?

It turns out that for computers with their binary brains, dividing by a power of two is
the same thing as using the right shift operator, >>. That is marvelously fast compared
to division. So our red approximation can now be calculated like this:

 red = (red * breath) >> 8;

The Power of Powers of 2 | 229

4 An important side effect of “running faster” is that you also make room for more calculations—or more com‐
plex calculations—to run in the same amount of time as your old calculations used to run. So without losing
any performance, we could support longer strips of LEDs instead, or LEDs with more than just red, green,
and blue channels.

You simply shift by the “power” part of your power of 2; e.g., dividing by 2 (21) means
shifting right by 1. Dividing by 256 (28) means shifting right by 8. Multiplication by a
power of 2, then, works the same way; you just shift left. Need to quadruple a value?
Shift it left by 2 (22 == 4). Neat! And more importantly, speedy. All the computer has
to do is scoot some bits left or right. That type of work is very simple compared to the
algorithms for multiplying and dividing, even though the results are the same.

But what about remainders? They are just as expensive as division since you perform
the division on the way to finding the leftover amount. But if you are using % and a
power of two, that can be expressed with the bitwise & operation and the correct
mask. You’ll often hear about bit “masks,” which are simply numbers that keep certain
bits but hide (or mask) others. To find the remainder of a division by 64 (26), say, you
create a mask of 6 bits: 0x3f. (That turns out to be 63, or 64–1.) If we were to adjust
our breathing rate to about four seconds (4096 milliseconds, or 212, to be precise), we
could rewrite our millisecond conversion like this:

 uint8_t ms = (millis() & 0x0fff) / 20; // Bit mask with 12 bits

And since we really want that ms value to lie in the range of 0 to 255 so it is an appro‐
priate index into our lookup table, we can turn that division into another shift oper‐
aion with a small adjustment to our divisor (5000 / 20 is roughly 4095 / 16):

 uint8_t ms = (millis() & 0x0fff) >> 4;

Not bad. Not bad at all. We did have to fudge our breath rate, though. Remember my
caveat at the top of the chapter: if it’s working, it’s working! If you get a satisfactory
animation with all the floating-point math and nice round numbers like 5 seconds,
your project is a success. But if you aren’t getting the results you want, consider mak‐
ing adjustments to take advantage of these optimization tricks.

Loop Optimizations
We have one more clever alteration we could make to our breathing LED sketch to
make it run even faster.4 Looping sections often sacrifice a little performance for the
sake of readable, reusable code. When performance is the top goal, you can steal back
a little of that speed by reducing that reusability.

230 | Chapter 10: Faster Code

Unrolling for Fun and Profit
The motivation behind this optimization is that it takes a little bit of time to manage a
loop. In our loop() function, we have a for loop that sets the color for each LED on
our little stick. After one LED has been updated, we have to increment the p variable
and then test to see if there are more LEDs to process. Those few steps are tiny, but
they are not nothing. If you are counting microseconds, this might not be time you
can spare.

To get those microseconds back, you can unroll or unwind your loop. Basically, you
take the body of your loop and simply copy it once for every iteration required, then
hardcode the controlling variable (p in our case). I want you to try some of this opti‐
mizing as good practice, so I won’t fully unwind the for loop. We can also use the >>
trick to replace the division required when calculating the red/blue/green values.
Updating the first couple LEDs would then look like this:

void loop() {
 uint8_t ms = (millis() & 0x0fff) >> 4;
 uint8_t breath = breaths[ms];

 byte red, green, blue;

 // Pixel 0
 red = (colors[0][0] * breath) >> 8;
 green = (colors[0][1] * breath) >> 8;
 blue = (colors[0][2] * breath) >> 8;
 stick.setPixelColor(0, red, green, blue);

 // Pixel 1
 red = (colors[1][0] * breath) >> 8;
 green = (colors[1][1] * breath) >> 8;
 blue = (colors[1][2] * breath) >> 8;
 stick.setPixelColor(1, red, green, blue);

 // Pixel 2
 // ...

 stick.show();
 delay(10);
}

As with other optimizations, there is a trade-off here: we will consume more program
space with the unrolled loop. But again, we’re here for performance—as long as we
have the space. Just make sure you get the loop working correctly before you unroll it.
Any bug hiding in an unrolled loop will require tedious copying and pasting to fix
each and every expanded chunk.

Loop Optimizations | 231

Recursion Versus Iteration
There is another loop option that is not quite an optimization, but one worth men‐
tioning. On devices with limited memory, recursive algorithms can run amok rather
quickly. Happily, every recursive algorithm can also be written iteratively. Sometimes
the loop approach is not intuitive or looks unwieldy, but it will work. If you are wor‐
ried about recursive calls in your code, consider converting them into a loop with
some extra variables to help out.

As a quick demonstration, let’s look at a loop approach to finding the nth Fibonacci
number (to replace the recursive algorithm we coded up back in “Recursive Func‐
tions” on page 115). We can use a for loop and three variables:

int find = 8; // we want the 8th Fibonacci number in this example
int antepenultimate = 0; // F(n - 2)
int penultimate = 0; // F(n - 1)
int ultimate = 1; // F(n)

for (int f = 1; f < find; f++) {
 antepenultimate = penultimate;
 penultimate = ultimate;
 ultimate = penultimate + antepenultimate;
}
// After the loop completes, ultimate contains the answer, 21

You might recall that the recursive algorithm got sluggish with larger numbers. That
won’t happen here. The numbers will eventually grow quite large, so you might need
something like a long long to store the results, but the algorithm would continue to
run quickly. So why don’t we always use the iterative option? It’s not obvious with the
Fibonacci series, but sometimes the recursive algorithm is simply, well, simpler (occa‐
sionally much simpler) to understand and translate into code.

Again we have a trade-off: complexity versus performance. In this case, though, the
trade-off may be a no-brainer. If you can’t finish performing a calculation, using a
potentially more complex algorithm that can complete the calculation will win.

String Versus char[]
The String class that you can use with the Arduino IDE for storing and processing
text is another candidate for optimization. Our simple LED project didn’t really use
any text, but if you tackle any projects with text output, say on a mini LCD screen or
over a WiFi connection, you may be tempted to use String as it has some convenient
features. If you are running out of room, though, consider using (and reusing) boring
old char[] variables.

Many examples you’ll find online make use of String precisely because of those
convenient extras like converting numbers to text in a given base, or functions like

232 | Chapter 10: Faster Code

toLowerCase(), or using the + operator to concatenate String objects together. (You
can read about all of these extras in the String documentation.) The examples with
String read well, and the text involved is often incidental to the project.

But if you are doing something more serious with text like driving an LED or LCD
display, or shipping JSON blobs to a web service (we’ll do something similar in “IoT
and Arduino” on page 268), the convenience of all those String objects flying around
can start to eat into your SRAM. Using an array of characters that you control can
keep that memory consumption to a minimum. At the very least, you’ll be aware of
exactly how much room is required to accomplish your goals.

Don’t forget that you can store text in flash for on-demand use as we saw in “Flash
(PROGMEM)” on page 206. Sometimes that F() macro is all you need. But relying
on flash will slow your program down a little bit and you can’t programmatically alter
those messages you store in flash. The control you get with char[] can be a win all
around; the trade-off here is your time and energy.

Our Final Offer
Even for such a simple project, there were a surprising number of optimizations
available. Here’s our final version of the project, ch10/optimize3/optimize3.ino:

#include <Adafruit_NeoPixel.h>

#define LED_PIN 4
#define LED_COUNT 8

Adafruit_NeoPixel stick(LED_COUNT, LED_PIN, NEO_GRB);
byte colors[8][3] = {
 { 0xFF, 0x00, 0x00 }, { 0x00, 0xFF, 0x00 },
 { 0x00, 0x00, 0xFF }, { 0x33, 0x77, 0xFF },
 { 0x00, 0xFF, 0xFF }, { 0xFF, 0x00, 0xFF },
 { 0xFF, 0xFF, 0x00 }, { 0xFF, 0x77, 0x33 }
};

uint8_t breaths[256];

void setup() {
 Serial.begin(115200);
 stick.begin(); // Initialize our LEDs
 stick.setBrightness(80); // Set a comfortable brightness
 // Show our colors for a few seconds before animating
 for (byte p = 0; p < LED_COUNT; p++) {
 stick.setPixelColor(p, colors[p][0], colors[p][1], colors[p][2]);
 }
 stick.show();
 // Now initialize our sine lookup table
 for (int s = 0; s <= 255; s++) {
 breaths[s] = stick.sine8(s);

Our Final Offer | 233

https://oreil.ly/8SZ50
https://oreil.ly/J8Myy

 }
 delay(2000);
}

void loop() {
 uint8_t ms = (millis() & 0x0fff) >> 4;
 uint8_t breath = breaths[ms];
 for (byte p = 0; p < LED_COUNT; p++) {
 byte red = (colors[p][0] * breath) >> 8;
 byte green = (colors[p][1] * breath) >> 8;
 byte blue = (colors[p][2] * breath) >> 8;
 stick.setPixelColor(p, red, green, blue);
 }
 stick.show();
 delay(10);
}

The only change from our previous version is the use of integer math and bitwise
operations in our loop() function. We convert the current millisecond count to an
index we can use with our sine lookup table and simplify the current shade calcula‐
tion for each of our red, green, and blue values. All told, this is quite the set of
improvements! The extra efficiency leaves room to do other things. Now we could
handle more LEDs or work on fancier animations. Or we could include some sensors
and integrate their readings into our output. All in 2K of RAM. Your programmer
ancestors would be proud. :)

But I shouldn’t forget the practice I mentioned. If you want to try your own bit of
optimizing, unroll the for loop like we started to do in “Unrolling for Fun and Profit”
on page 231 and make sure the project still behaves as expected.

Next Steps
We’ve seen quite an array of optimization tricks in this chapter. There are other, more
esoteric tricks, but they require more knowledge of the specific hardware you plan to
use. I don’t have any specific exercises this time, but I hope you’ll revisit this chapter
after you get some of your own Arduino projects off the ground.

If you end up with any useful functions that you optimize and tune to perfection, you
can put them in a custom library for reuse with future projects. You can even publish
them for others to use! Either way, Arduino makes making libraries relatively easy.
Let’s see how it’s done in the next chapter.

234 | Chapter 10: Faster Code

CHAPTER 11

Custom Libraries

We’ve already seen how to include the headers of useful libraries that come with the
Arduino IDE as well as how to add third-party libraries for some of the more inter‐
esting peripherals and sensors. But as you build up your catalog of microcontroller
projects, you’re likely to create some code that you reuse. I regularly employ the
maxim that there are only three numbers in the universe: 0, 1, and many. If you find a
chunk of code you use a second time, you’re in that “many” category and it is proba‐
bly time to consider making your own library.

That statement may seem dramatic. It certainly sounds grandiose. Happily, it is a
fairly straightforward process and really does make reuse a snap down the road.

I do want to admit that the project in this chapter is bigger than our past projects in
every sense. If remote-control robotic cars don’t spike your interest, feel free to skip
the bulk of this chapter. I would still recommend reading “Multifile Projects” on page
244 and “Creating the Library” on page 253 to get a sense of the steps involved in
writing a library for your own use within the Arduino IDE. You can safely skip this
chapter in favor of exploring an IoT project in Chapter 12.

Creating Your Own Library
To get started on a custom library, you’ll need some code to reuse. The best way to
find reusable code is to create some usable code first. We can kick off a normal
project and then extract the parts that seem likely to work well in other projects.

For this project, we’ll create a motorized car that can be driven with simple forward,
backward, left, and right buttons. Once that is all working, we can break out the vari‐
ous “drive” functions into a separate file to highlight how the Arduino IDE works
with multiple files. And finally, with a little multifile experience in your back pocket,

235

we’ll make the leap to radio control and see how to encapsulate that communication
in a library that can be shared between our car and a separate navigation project.

Figure 11-1 shows the setup we’re going to use. I bought these parts from Adafruit,
but you can assemble a similar car from other parts just as easily. (See Appendix B for
the exact part numbers I used.) The physical car is reasonably simple, but definitely
requires some assembly. I had to make a trip to my local hardware store for a few of
the small machine screws, but the prefabricated chassis from Adafruit sure made
things simpler. The chassis has perfect holes and sockets to guide the attachment of
both the rear motors and the loose caster on the front. I just rested a breadboard and
battery on top, but there are ample spots to mount these with clips, screws, or zip ties.

Figure 11-1. Our robot car

236 | Chapter 11: Custom Libraries

Figure 11-2 shows the wiring of our microcontroller, navigation joystick, and the
DRV8833 motor driver breakout board. There are a lot more connections on this
project, but hopefully not so many that you are overwhelmed.

Figure 11-2. Wiring for the robot car

Robotics in general is a big interest of mine, but the mechanical elements are (way)
out of my field of expertise. The extra learning required to pull off this project my
first time around was challenging but fun—at least more fun than frustrating. I’ve
never worked with motors before, so getting them mounted, powered, and properly
connected so I could control them through software certainly required a little trial
and error and no small amount of exasperated utterances. But if this particular
project does not hold much interest for you, feel free to just follow along with the
deconstruction of our code and see how to pull those parts back together in a library.
But I will say that the first time you make a wheel spin by pressing a button, you feel
like you can conquer the world. :)

Creating Your Own Library | 237

If looking at the diagram in Figure 11-2 gives you the heebie-
jeebies, you can look for robotic car kits that come with all the nec‐
essary parts as well as detailed assembly instructions. The kits
usually have their own coding instructions, too. Feel free to get the
kit running “as is” and get comfortable with the electronics first.
Then come back here to work through my code examples and
apply them (probably with a few modifications that will reinforce
the work we’re doing here) to your fully functioning car.

Preprocessor Directives
We’ve seen a couple of preprocessor directives already: #include and #define are
both handled by the preprocessor. And the name “preprocessor” probably gives you a
hint about its role in compiling your code. These directives are processed before your
code is compiled.

The #include directive is used to bring in code defined in a separate file. After inclu‐
sion, it looks to the compiler as if you had typed in that external file as part of your
own code.

The #define directive, as we’ve been using it, puts a human-friendly name on some
literal. We can then use the name in our code rather than remembering the correct
literal every time. And if we ever need to change that value, say, move an LED con‐
nection to a different pin on our controller, we only need to change it once. As with
#include, the preprocessor replaces each instance of a #define name with its literal
as though you had typed the literal directly.

For our car, let’s use #define for the pins on our navigation joystick as we have with
other connected peripherals:

#define LEFT_BTN 12
#define RIGHT_BTN 9
#define FWD_BTN 10
#define BKWD_BTN 11

I should point out that you can use #define with values other than numbers. Perhaps
you have a standard error message or text response. Those can be defined, too:

#define GOOD_STATUS "OK"
#define BAD_STATUS "ERROR"
#define NO_STATUS "UNKNOWN"

Knowing how #define works with the preprocessor also explains why we don’t put a
semicolon at the end. We don’t want the semicolon showing up in our code, after all.

238 | Chapter 11: Custom Libraries

Preprocessor Macros
You can take #define a step further as well. Not only does it handle strings, it can
handle small pieces of logic, almost like a function. These snippets are often referred
to as macros to distinguish them from actual functions. A macro (or macroinstruc‐
tion) transforms some bit of input to a corresponding bit of output, typically via sub‐
stitutions. Macros are not function calls. Macros are not pushed onto or popped off
of the stack.

Macros are great when you have a repeated bit of code that just doesn’t rise to the
level of needing a function. They are also great when you want your snippet to
remain data-type agnostic. For example, consider a simple macro to determine the
minimum of two values. Here’s the definition and an example of how to use it:

#define MIN (x,y) x < y ? x : y

int main() {
 int smaller1 = MIN(9, 5);
 float smaller2 = MIN(1.414, 3.1415);
 // ...
}

To create the macro, we use #define and a name, like before, but then we supply a
variable (or variables) in parentheses. Whatever arguments you pass to the macro
replace the variables in the macro’s snippet. That snippet, in turn, replaces the spot
where it was called. It’s as if you had typed the following:

int main() {
 int smaller1 = 9 < 5 ? 9 : 5;
 float smaller2 = 1.414 < 3.1415 ? 1.414 : 3.1415;
}

That simple replacement process can be powerful. But do be careful. Because the
replacement is so simple, you can create problems if you pass complex expressions to
your macro. If, say, your expression uses an operator of lower precedence than one
used in your macro, the intended outcome can be wrong or even uncompilable. You
can avoid some of these problems with judicious use of parentheses, like this:

#define MIN (x,y) (x) < (y) ? (x) : (y)

Even then you can create some odd code by passing just the right (er, wrong) expres‐
sions. The GNU documentation on C and the C preprocessor even has an entire sec‐
tion devoted to macro pitfalls.

We don’t need any macros just yet, but they’re common enough that I want you to
recognize them if you find them in the wild. The C preprocessor is actually quite an
interesting entity in its own right. It’s a great target for some independent research
after you finish this book!

Creating Your Own Library | 239

https://oreil.ly/aKdZT

Custom Type Definitions
Beyond constants and macros, libraries often make use of another feature of C: the
typedef operator. You can use typedef to assign an alias to some other type. That
might sound unnecessary, and it technically is, but there are several cases where it is
very convenient and leads to more readable, maintainable code.

We saw the use of some of these typedef aliases in Chapter 10. The byte, uint8_t,
and uint32_t specifiers were all created with typedef. If the Arduino environment
didn’t provide those for you, you could create them yourself like so:

typedef unsigned char byte;
typedef unsigned char uint8_t;
typedef unsigned long int uint32_t;

The “_t” suffix is popular for these aliases. It’s an easy way to high‐
light the fact that the name is an alias built with typedef.

You can also use typedef with the struct keyword to make more palatable names for
your custom, rich data types. For example, we could have used typedef in “Defining
Structures” on page 141 and defined our transaction like this:

typedef struct transaction {
 double amount;
 int day, month, year;
} transaction_t;

// Transaction variables can now be declared like this:
transaction_t bill;
transaction_t deposit;

This feature is not something strictly necessary for our simple library, but many libra‐
ries do use typedef to provide names for types that make more sense in the context
of the library or that are simply easier to work with. Let’s go ahead and define a type
for any variables that might store one of our direction constants:

typedef signed char direction_t;

We’ll stick with the signed version of char since we might find uses for negative val‐
ues down the road. Negative numbers make great error codes if you are otherwise
only expecting positive numbers, for example. Now let’s use our new type to create
some typed constants:

const direction_t STOP = 0;
const direction_t LEFT = 1;
const direction_t RIGHT = 2;

240 | Chapter 11: Custom Libraries

const direction_t FORWARD = 3;
const direction_t BACKWARD = 4;

Recall the discussion of const versus #define in “Constants: const versus #define” on
page 191. This is one of those spots where we aren’t really doing anything that
demands one approach or the other, but the const approach does add some inherent
documentation to our code that could be useful to other readers. And I should say
that 90% of the time the first “other reader” that sees your code is you, but you after a
few weeks or months away from the project. Hints about your intentions like the
direction_t type can be very useful in jogging your own memory.

Our Car Project
Let’s get going! This will be our “version one” project with some extra abstraction that
should help as we break up this project into reusable pieces. (You can take a look at
version 0 if you want to start with a simple proof of functionality.) As you work with
your own project, you may not have the motors wired up exactly as I do. Your naviga‐
tion input (buttons or a joystick) might be connected a little differently. Test out your
setup and don’t be afraid of changing which pins get set HIGH or LOW in the various
driving functions. Happily, that can all be tweaked here in software. The end goal is
simply to get your car to roll forward when you push the joystick up.

Here’s version 1 of our car build. As always, you can type this up yourself or just open
ch11/car1/car1.ino:

// Define the pins we're using for the joystick and the motor
#define LEFT_BTN 12
#define RIGHT_BTN 9
#define FWD_BTN 10
#define BKWD_BTN 11

#define AIN1 4
#define AIN2 5
#define BIN1 6
#define BIN2 7

// Define our direction type
typedef char direction_t;

// Define our direction constants
const direction_t STOP = 0;
const direction_t LEFT = 1;
const direction_t RIGHT = 2;
const direction_t FORWARD = 3;
const direction_t BACKWARD = 4;

void setup() {
 // Tell our board we want to write to the built-in LED
 pinMode(LED_BUILTIN, OUTPUT);

Creating Your Own Library | 241

https://oreil.ly/Mr2ED
https://oreil.ly/8kqQL

 // Accept input from the joystick pins
 pinMode(LEFT_BTN, INPUT_PULLUP);
 pinMode(RIGHT_BTN, INPUT_PULLUP);
 pinMode(FWD_BTN, INPUT_PULLUP);
 pinMode(BKWD_BTN, INPUT_PULLUP);

 // Send output to the motor pins
 pinMode(AIN1, OUTPUT);
 pinMode(AIN2, OUTPUT);
 pinMode(BIN1, OUTPUT);
 pinMode(BIN2, OUTPUT);

 // And make sure our LED is off
 digitalWrite(LED_BUILTIN, LOW);
}

void allstop() {
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, LOW);
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, LOW);
}

void forward() {
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, HIGH);
 digitalWrite(BIN1, HIGH);
 digitalWrite(BIN2, LOW);
}

void backward() {
 digitalWrite(AIN1, HIGH);
 digitalWrite(AIN2, LOW);
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, HIGH);
}

void left() {
 digitalWrite(AIN1, HIGH);
 digitalWrite(AIN2, LOW);
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, LOW);
}

void right() {
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, LOW);
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, HIGH);
}

242 | Chapter 11: Custom Libraries

direction_t readDirection() {
 if (digitalRead(FWD_BTN) == LOW) {
 return FORWARD;
 }
 if (digitalRead(BKWD_BTN) == LOW) {
 return BACKWARD;
 }
 if (digitalRead(LEFT_BTN) == LOW) {
 return LEFT;
 }
 if (digitalRead(RIGHT_BTN) == LOW) {
 return RIGHT;
 }
 // No buttons were pressed, so return STOP
 return STOP;
}

void loop() {
 direction_t dir = readDirection();
 if (dir > 0) { // Driving!
 digitalWrite(LED_BUILTIN, HIGH);
 switch (dir) {
 case FORWARD:
 forward();
 break;
 case BACKWARD:
 backward();
 break;
 case LEFT:
 left();
 break;
 case RIGHT:
 right();
 break;
 }
 } else {
 // Stopping, or eventually we could handle errors, too
 digitalWrite(LED_BUILTIN, LOW);
 allstop();
 }
}

Feel free to take a break from the book at this point and just have some fun. :) Can
you drive both forward and backward? When you move the joystick left or right,
does the car turn the way you want? Can you parallel park between two stuffed ani‐
mal obstacles? It might feel a little awkward following your car around with the teth‐
ered joystick, but we’ll fix that shortly.

Creating Your Own Library | 243

Multifile Projects
Welcome back! Hope you managed to safely parallel park your new roadster. With a
working program as our baseline, let’s break it up into some reusable parts.

C, as a language, does not really worry about where your code lives. As long as gcc
can find all of the source files, header files, and libraries you mention in your code, it
will produce usable output. Creating multifile projects for the Arduino IDE is a little
different, however. The IDE manages some integration steps that would normally be
left to you on the desktop. Since we’re concentrating on microcontrollers at this point,
we’ll stick to what needs to be done in the Arduino IDE. If you are curious about
building larger projects outside of Arduino, I’ll again recommend Prinz and Craw‐
ford’s C in a Nutshell.

We’ll start by converting our current project into a multifile project with no change in
functionality. Then we’ll extend our robot car to support remote radio control and see
how powerful shared code can be.

In our small car example, we have several functions devoted to making the car move.
Those related functions are perfect for separating into their own file. They all serve a
similiar purpose. Their related purpose is not necessary for creating separate files, but
it’s a popular means of organizing the pieces of a larger project. A small number of
files, each with a small number of functions, can be easier to maintain and debug
than a huge file with lots of functions. But if you break up functions randomly, it will
be difficult to remember which files contain which functions.

The Arduino IDE gives us a few options for breaking up our projects: we can add
new .ino files, we can include custom header files, or we can create and then import a
custom library. The rest of this chapter looks at all three of these mechanisms.

Code (.ino) Files
To start, let’s save this project under a new name so that we have a backup in case
something goes awry and we want to refer back to a working project. From the “File”
menu in the Arduino IDE, select the “Save As…” option. I chose the highly creative
and original name car2. You are free to be as creative or even more so if the muse
strikes.

Now let’s take all five of our driving functions and move them to their own file. To
add a new file, use the downward pointing triangle button on the right-hand side
near the top. That button opens a small menu, as shown in Figure 11-3. Select “New
Tab” from that menu.

244 | Chapter 11: Custom Libraries

https://www.oreilly.com/library/view/c-in-a/0596006977/

Figure 11-3. Creating a new tab in the Arduino IDE

Next, you’ll be prompted to name the tab, as shown in Figure 11-4. Enter the name
drive.ino in the field and then click the OK button.

Figure 11-4. Naming our new file

Multifile Projects | 245

You should now have a new tab named “drive” (with no suffix showing). Go ahead
and cut the five driving functions (including allstop()) from the “car2” tab and then
paste them into our new “drive” tab. That tab will end up with the following code
(ch11/car2/drive.ino):

void allstop() {
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, LOW);
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, LOW);
}

void forward() {
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, HIGH);
 digitalWrite(BIN1, HIGH);
 digitalWrite(BIN2, LOW);
}

void backward() {
 digitalWrite(AIN1, HIGH);
 digitalWrite(AIN2, LOW);
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, HIGH);
}

void left() {
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, HIGH);
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, LOW);
}

void right() {
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, LOW);
 digitalWrite(BIN1, HIGH);
 digitalWrite(BIN2, LOW);
}

That’s actually all the work required to separate these pieces of code! You now have
your first multifile Arduino project. Click the Verify (checkmark) button to make
sure your project still compiles in its new, two-file configuration. Everything should
still work. You can even upload this to your controller and still drive your car.

If the project does not verify or upload, check to make sure you didn’t drop a curly
brace or perhaps grab an extra line from the original file. You should also make sure
the name you picked for your newly separated file ends with that .ino extension.

246 | Chapter 11: Custom Libraries

https://oreil.ly/pRodD

The Arduino IDE performs a little magic for us with .ino files. Our main project file
(car2.ino in the car2 folder, in this case) is prepared first. Any other .ino files will then
be included in alphabetical order. You may have noticed that our drive.ino file has no
#include statements. And yet, we clearly use the pin constants defined in our main
file. As far as the compiler is concerned, there is only one large .ino file to compile, so
successive .ino files see all of the functions, #defines, and global variables from the
files that came before. At this time, there is no way to change the order of the sepa‐
rate .ino files; they are always incorporated alphabetically.

Header Files
So how can all these separate files work together so seamlessly? The IDE adds one
more piece of magic before loading these separate files. It creates a header file with
forward declarations of all of the functions and global variables in your .ino file. For‐
ward declarations are brief descriptions of what your function is named, what param‐
eters it has, and what type of value it will return. They allow separate files to use a
function without needing to have its full implementation. Each header, in turn, is
automatically included in your main project file.

You can see the effect of this in our simple two-tab project. The drive.ino file does not
need to include any extra information to make use of our #define pin entries. And
the code in our main car2.ino file can call the functions defined in drive.ino without
worrying about the ordering or specific location of the functions. In the end, both
files fit together perfectly to complete our project.

You can also create your own header files. This can be nice for housekeeping. For
example, if you have many #define statements, you could place them in their own
header. Or if you want a low-tech means of sharing some directives between projects,
you can make a copy of a header and put it in another project. It is largely up to you
what makes the most sense for your own projects. Many successful makers out there
have dozens or hundreds of projects each with one single .ino file. I just want to make
sure you know how to split things into more manageable pieces if that one big file
starts to overwhelm you.

In service of that goal, let’s break up our main project just a little more. Let’s try the
trick of putting some of our #define directives in their own header file. We’ll move
the eight pin constants. Create a new tab as before, and name it pins.h when promp‐
ted. The new tab should show the full name of the file, pins.h, to help distinguish it
from .ino files that hide the extension.

Multifile Projects | 247

Cut the eight #define lines and the relevant comments from car2 and paste them into
pins.h. The result should look like ch11/car2/pins.h:

// Define the pins we're using for the joystick and the motor

#ifndef PINS_H
#define PINS_H

#define LEFT_BTN 12
#define RIGHT_BTN 9
#define FWD_BTN 10
#define BKWD_BTN 11

#define AIN1 4
#define AIN2 5
#define BIN1 6
#define BIN2 7

#endif /* PINS_H */

Preventing Duplicate Includes
The first and last lines in pins.h might look a little strange. #ifndef and #endif are
more preprocessor directives. #ifndef checks to see if a given name is “Not
DEFined,” and #endif is the end of that block, much like a closing curly brace ends a
block statement in C. (There is also a #ifdef directive to test if a particular term is
defined.)

Combined with the empty #define PINS_H line, these directives form an include
guard. They prevent this header file from being included multiple times. Or more
precisely, they prevent the contents of the header from being processed multiple
times. This makes it safe to include a header, even if some other header may have
already included the same header.

You’ll likely see these #ifdef and #ifndef statements in many headers. They are a
handy tool for environments that have to accommodate different values for different
situations. In the Arduino IDE, for example, when you select a new development
board, a series of these defined/not-defined tests makes sure that constants like
LED_BUILTIN have the correct pin assigned for the board you chose.

Now we just need to add an include statement to our car2 tab at the top of our file:

#include "pins.h"

You can check your work against my version 2. Your project should still verify (and
upload) just as before. Feel free to give it a try and make sure you can still drive your
car.

248 | Chapter 11: Custom Libraries

https://oreil.ly/pwQM6
https://oreil.ly/EWAV9

Pay close attention to the double quotes around our pins.h header
name. Previous #include statements used angle brackets (<>: less
than, greater than). The distinction is intentional. The angle brack‐
ets tell the compiler to look for the header in the standard include
path. Typically, that means you are bringing in a header from a
known library.
The quotes tell the compiler the file to be included is in the same
folder as the file doing the including. Typically, that means you are
bringing in a header file you wrote specifically for this project.

Again, divvying up a project is not a requirement or something you always do with
large files, but it can be helpful. It allows you to concentrate on one part of your code
without accidentally changing another part. If you collaborate with other program‐
mers, working on separate files can also make it easier to combine your efforts at the
end. In the end, though, it really is up to you and what you feel comfortable with.

Importing Custom Libraries
Beyond multiple .ino and .h files, though, you can also build your own Arduino IDE
library. If you have code that you want to use in multiple projects or perhaps share
with others via public code sites like GitHub, a library is a great choice.

Happily, creating a custom library doesn’t require too much effort. You need at least
one .cpp file and a matching header (.h) file. You can have more files, if needed, as
well as a few niceties we’ll discuss in the next section.

Facilitating Communication
Our robot car is spiffy, but following it around with a tethered joystick is clunky. A
radio-controlled robot car would be even spiffier! We can do that, and using a library
to manage that radio communication is a great way to guarantee we don’t cross any
signals—literally. We can use a library to make sure multiple parties have access to
common definitions (say, the value for driving “forward”). We can also put the rules
of a protocol into a library’s functions. It’s a bit like making sure everyone is speaking
the same language.

Libraries can supply more than the vocabulary of this hypothetical language. They
can also enforce the rules of conversation. Who speaks first? Who speaks next? Is a
response required? Can there be more than one listener? You answer questions like
these with the functions you write in your library. As long as two (or more) projects
use the same library, the details you encoded in the library’s functions will make sure
everyone plays nicely together.

Importing Custom Libraries | 249

Let’s create a library to send and receive radio signals. We’ll create two separate
projects that both use this library. We’ll start by replacing the joystick that is currently
wired to our car with a radio component. Then we’ll create a controller project that
pairs our newly liberated joystick with a similar radio. This does mean we need two
microcontrollers, by the way. I’ll use another Metro Mini, but they don’t have to be
identical. If you have some other controller lying around that is compatible with our
radio and can use our library, any combination of controllers should work.

Retrofitting Our Car
Let’s swap out the joystick for a radio transceiver. I’m using the nicely packaged
RFM69HCW high-power breakout from Adafruit. It’s about $10 and is reasonably
straightforward to connect. Plus, it comes with some nice features like encrypted
transmissions that can only be decrypted by a similar chip with the same encryption
key (that you provide in code). Figure 11-5 shows the wiring diagram for our micro‐
controller, the motor driver, and our radio. I had to relocate several of the DRV8833
connections as the RFM69HCW requires the use of specific pins on our Metro Mini
microcontroller (more on that in “Our radio-control library header” on page 255).

Figure 11-5. Wiring for the robot car with radio transceiver

250 | Chapter 11: Custom Libraries

https://oreil.ly/JhUn8

1 There are certainly fancier options available if you are so inclined or want to communicate over longer distan‐
ces.

Of course the power and ground pins should be connected as well. I used a 9V for the
microcontroller (which in turn supplies power to the radio) and a separate power
supply for the DRV8833. The lonely green wire attached to the top of the
RFM69HCW is just a three-inch piece of wire serving as the simplest possible
antenna.1

Figure 11-6 shows the assembled components, all ready to roll with no wires
attached!

Figure 11-6. Our wire-free robot car

Importing Custom Libraries | 251

https://oreil.ly/AEvxE

Well, no wires to a joystick, that is. The breadboard is rather lousy with wires. This is
a bigger project than we’ve tackled so far. If a radio-controlled car isn’t up your alley,
feel free to skip to the next chapter. But before you go, check out “Creating the
Library” on page 253 on creating the library code and its header file.

I’m using two separate power supplies to keep the motors separate from the micro‐
controller and the radio. If you have more experience powering Arduino projects and
want to use a different configuration, go right ahead! The important part is that we
have our radio ready to receive driving instructions.

Creating a Controller
We also need a new project to take input from our joystick and send that information
out over the radio. Figure 11-7 shows the wiring. Only one battery is required for the
controller; the radio can be safely powered from the 5V pin of our microcontroller.

Figure 11-7. Wiring for the radio controller

I powered the controller with a USB power pack plugged into the Metro Mini.
Figure 11-8 shows the final result.

252 | Chapter 11: Custom Libraries

Figure 11-8. Our wire-free controller

Not the most glamorous of gadgets, but it does send radio signals! At least, it will
once we add a little code.

Creating the Library
The code for both our car and our controller will require our radio library, so let’s
start there. We’ll be creating one header file and one .cpp file to accommodate the
C++-centric nature of the Arduino IDE. The actual code will still be (mostly) vanilla
C, it just needs to live in a file with that .cpp extension.

How you go about writing this code is really up to you. You can write everything in
one file and then separate out the parts that go into the header (much like we did ear‐
lier in this chapter). You can also use the header as a sort of outline or plan. Fill out
the header with your constants and names of your functions, then go create the .cpp
file to implement those functions. Regardless of which path sounds better to you, we
need to put the files in a specific place before the IDE will recognize them.

Importing Custom Libraries | 253

2 Forked would be a better verb than written. The Adafruit library is based on the AirSpayce RadioHead library
written by Mike McCauley.

The libraries folder
We place all of the files for our library inside one folder that goes in the libraries
folder wherever your Arduino sketches live. On my Linux box, that’s the Arduino
folder in my home directory. If you’re not sure where that folder is on your system,
you can check the preferences in the Arduino IDE. From the File menu, select the
Preferences option. You should see a dialog similar to Figure 11-9. Notice the
“Sketchbook location” toward the top. That’s where the libraries folder needs to go. If
there isn’t one there already, go ahead and create that now.

Figure 11-9. The Sketchbook location preference setting

It’s actually useful that we’re looking at this folder now, since we need to manually
install the library for our radio breakout. It will go in this same folder. I’m using the
radio library written by the folks at Adafruit.2 Download the ZIP archive from the
green “Code” drop-down button. Unzip that file and rename the resulting folder
RadioHead. Place this RadioHead folder in the libraries folder, and that’s it.

Well, that’s it for the radio library. We still need to make a folder for our own, yet to
be written, library. Inside the libraries folder, create a new folder and pick a name for

254 | Chapter 11: Custom Libraries

https://oreil.ly/nP82M
https://oreil.ly/YLphd

your custom library. Since this is a radio control library for a robot car, and the title of
this book ends in those two letters, I chose to name mine SmalleRC. You are under no
pressure to use such delightful, nerdy puns for your library names, by the way. This is
where the “custom” adjective comes in. Customize your library however you like!

Our radio-control library header
Inside your new library folder, then, let’s create our files. I’ll use the second approach
and start with the header file, SmalleRC.h.

We’ll load the headers we need for our radio work as well as the Arduino.h header in
case we rely on any Arduino-specific functions in our library code. We’ll define sev‐
eral constants and then provide some function prototypes:

#ifndef SMALLERC_H
#define SMALLERC_H

#include "Arduino.h"
#include <SPI.h>
#include <RH_RF69.h>

#define RF69_FREQ 915.0
#define RFM69_CS 4
#define RFM69_INT 3
#define RFM69_RST 2
#define LED 13

#define rc_INIT_SUCCESS 1
#define rc_INIT_FAILED -1
#define rc_FREQ_FAILED -2

// Define our direction type
typedef signed char direction_t;

// Define our directions
const direction_t rc_STOP = 0;
const direction_t rc_LEFT = 1;
const direction_t rc_RIGHT = 2;
const direction_t rc_FORWARD = 3;
const direction_t rc_BACKWARD = 4;

char rc_start();
void rc_send(int d);
int rc_receive();

#endif /* SMALLERC_H */

Importing Custom Libraries | 255

https://oreil.ly/koHtr

We’ll use a header guard like we did with pins.h.

Our library code may need some of the Arduino-specific types or functions, so
we include this header. It is automatically included in our main project by the
IDE, which is why we haven’t seen this #include before.

The SPI (Serial Peripheral Interface) header allows us to perform complex com‐
munication (i.e., something other than HIGH and LOW or single values) with a
peripheral using only a few wires. We’ll use this type of connection with our
radio breakout board. Our microcontroller has very specific pins for SPI, so we
don’t have to specify which ones to use. Figure 11-7 shows the correct connec‐
tions to make.

We’ll need the RH_RF69 library we just installed to talk to the radio.

While SPI takes care of most communication needs, these define entries fill in
some details needed by the RH_RF69 library to operate our radio, including the
frequency to use (RF69_FREQ; use 433 MHz in Europe and 868 or 915 MHz in the
Americas) and which pins handle the interrupts and resets.

We’ll define a few of our own constants to help coordinate the initialization of
our radio. We’ll distinguish failures in a way that can help us debug any issues.

We can put our typedef here so that everyone importing this library has access
to the direction_t type alias. We’ll also include our directions.

These are the forward declarations (also called function prototypes) for our
library. We’ll need to write the complete functions in our .cpp file, and those
functions will have the same names and parameters as the ones declared here.

That’s quite a lot of detail in one header file! But that’s what header files are for. In the
absence of any other documentation, reading a header file should tell you just about
everything you need to know to use a library.

I’m cheating a bit with this header. For an Arduino library that you
intend to share with others, you wouldn’t normally dictate the pins
to use in connecting peripherals. We have the ability to make this
header match up with our physical project, but other users might
not have the same controller or the same free pins. See “Sharing
online” on page 264 for some tips on digging deeper into shareable
library creation. For libraries meant solely for your own projects,
though, you’re allowed a shortcut or two.

256 | Chapter 11: Custom Libraries

https://oreil.ly/eZmyO

Our radio-control library code
To complete our library, then, we need to write some code and implement the func‐
tions that were prototyped in our header file. This code is not very complex, but it
does have several novel parts related to enabling and communicating with our radio.
You can type it in yourself or pull up SmalleRC.cpp in your editor:

#include "SmalleRC.h"

RH_RF69 rf69(RFM69_CS, RFM69_INT);

char rc_start() {
 pinMode(LED, OUTPUT);
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, LOW);

 // manual reset
 digitalWrite(RFM69_RST, HIGH);
 delay(10);
 digitalWrite(RFM69_RST, LOW);
 delay(10);

 if (!rf69.init()) {
 return rc_INIT_FAILED;
 }

 if (!rf69.setFrequency(RF69_FREQ)) {
 return rc_FREQ_FAILED;
 }

 // range from 14-20 for power
 // 2nd arg must be true for 69HCW
 rf69.setTxPower(17, true);

 // The encryption key is up to you, but must be
 // the same for both the car and the controller
 uint8_t key[] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08
 };
 rf69.setEncryptionKey(key);

 pinMode(LED, OUTPUT);
 return rc_INIT_SUCCESS;
}

void rc_send(direction_t d) {
 uint8_t packet[1] = { d };
 rf69.send(packet, 1);
 rf69.waitPacketSent();
}

Importing Custom Libraries | 257

https://oreil.ly/pc5v4

direction_t rc_receive() {
 uint8_t buf[RH_RF69_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);
 if (rf69.recv(buf, &len)) {
 if (len == 0) {
 return -1;
 }
 buf[len] = 0;
 return (direction_t)buf[0];
 }
 return STOP;
}

Include our recently built header file with all the pins, directions, and radio con‐
figuration information.

Create a radio control object similar to the NeoPixel objects in previous projects.

Initialize the radio. This code is based on the examples included with the library
we installed. See “Sharing online” on page 264 for a few more details on examples
and other library documentation.

Part of the radio initialization is setting an encryption key that will make sure
only other radios using the same key can communicate with us. These values are
exactly those from the example. Feel free to change them, just make sure the key
is 16 bytes.

A simple function to broadcast a direction. The radio library expects a packet of
uint8_t values, so we create a one-element array to match. The library can send
longer messages, of course, but we only need to send this single value.

The receiving function to read any directions coming from the controller. Again,
the radio library can handle longer messages, but we only need the first byte,
which should contain our direction. If there’s no message at all, return -1 to let
the caller know nothing was ready. Otherwise, return the direction we received
or STOP as a default.

With our custom library in place, we can look at writing the actual projects for the car
and the controller. But we sure whizzed through this code! If you’re curious about
radio communication, I encourage you to play with the examples from the radio
library to get a better feel for what possibilities and limits exist.

Updating the Car Project
Now we need to write the code for the car. (Feel free to review the physical setup of
the car and breakouts in “Retrofitting Our Car” on page 250.) Essentially, we are

258 | Chapter 11: Custom Libraries

https://oreil.ly/7YRVZ

going to replace the logic for polling the joystick with a call to check for data from the
radio. We’ll pause for a few milliseconds to avoid starting and stopping the motors
too quickly. Otherwise, we’ll run a pretty tight loop so that the car feels responsive to
our remote controller.

I based this version (car3) on the car2 project, which had the separate pins.h and
drive.ino files. We no longer need the pins for the joystick in this project, so the
header file is a bit shorter:

#ifndef PINS_H
#define PINS_H

#define AIN1 9
#define AIN2 8
#define BIN1 6
#define BIN2 7

#endif /* PINS_H */

The driving functions are completely unchanged so I’ll leave those out, but you can
review the code (“Code (.ino) Files” on page 244) if you want. The code for the main
car3.ino file should feel familiar, but obviously we need to include the header file of
our new radio library:

#include "pins.h"
#include "SmalleRC.h"

void setup() {
 Serial.begin(115200);
 // Send output to the motor pins
 pinMode(AIN1, OUTPUT);
 pinMode(AIN2, OUTPUT);
 pinMode(BIN1, OUTPUT);
 pinMode(BIN2, OUTPUT);

 if (rc_start() != rc_INIT_SUCCESS) {
 Serial.println("Failed to initialize radio.");
 }
}

void loop() {
 direction_t dir = rc_receive();
 if (dir > 0) { // Driving!
 switch (dir) {
 case rc_FORWARD:
 forward();
 break;
 case rc_BACKWARD:
 backward();
 break;
 case rc_LEFT:

Importing Custom Libraries | 259

https://oreil.ly/Dk0JC
https://oreil.ly/JcLJl

 left();
 break;
 case rc_RIGHT:
 right();
 break;
 }
 delay(20);
 } else {
 // Stopping, or eventually we could handle errors, too
 allstop();
 }
}

Notice that I’m using the new navigation constants (like rc_LEFT) defined in the
SmalleRC.h file. But that’s really all the code we need now to drive our car! This is one
of the many benefits from separating out chunks of common code. By building on
that shared code, you can more quickly create some very interesting projects.

There’s no good way to test this new car3 project just yet, but go ahead and upload it
to your microcontroller. If nothing else, you can use the Serial Monitor tool to ensure
that there were no errors in starting up the radio to receive. I went with the “no news
is good news” approach to errors in the setup() function, but feel free to alter that a
bit to produce a success message if you like.

Now that the Arduino IDE knows about our SmalleRC library, you
can actually edit the source files of that library in place and then
reverify or reupload the project. If you do have some trouble start‐
ing the radio, for example, add some debugging calls to
Serial.println() in SmalleRC.cpp. Once you have the problem
isolated and solved, you can remove the debugging statements and
upload once more.

Getting It Under Control
Next up is getting the controller programmed. (Again, look back at “Creating a Con‐
troller” on page 252 if you still need to build the physical remote control.) Here we
take the joystick polling and instead of sending the results to the motors, we broad‐
cast any directional information over our radio. This is a pretty small project thanks
to the library, so I left it in a single ch11/controller/controller.ino file:

260 | Chapter 11: Custom Libraries

https://oreil.ly/rSPTh

#include "SmalleRC.h"

#define LEFT_BTN 9
#define RIGHT_BTN 7
#define FWD_BTN 8
#define BKWD_BTN 6

void setup() {
 Serial.begin(115200);
 // Accept input from the joystick pins
 pinMode(LEFT_BTN, INPUT_PULLUP);
 pinMode(RIGHT_BTN, INPUT_PULLUP);
 pinMode(FWD_BTN, INPUT_PULLUP);
 pinMode(BKWD_BTN, INPUT_PULLUP);

 if (rc_start() != rc_INIT_SUCCESS) {
 Serial.println("Failed to initialize radio.");
 }
}

direction_t readDirection() {
 if (digitalRead(FWD_BTN) == LOW) {
 return rc_FORWARD;
 }
 if (digitalRead(BKWD_BTN) == LOW) {
 return rc_BACKWARD;
 }
 if (digitalRead(LEFT_BTN) == LOW) {
 return rc_LEFT;
 }
 if (digitalRead(RIGHT_BTN) == LOW) {
 return rc_RIGHT;
 }
 // No buttons were pressed, so return STOP
 return rc_STOP;
}

void loop() {
 direction_t dir = readDirection();
 rc_send(dir);
 delay(10);
}

We could have put the logic of the readDirection() function right inside our loop()
function, but I like how concise loop() is with this small abstraction.

Try verifying this new project and if you hit any snags, add a few more
Serial.println() statements. And remember, you can also add those to your library
code if needed.

Importing Custom Libraries | 261

For projects like this, where so much work is done in libraries (not
just our custom one, but also libraries like RF_RH69) println()
calls may not help with every problem. Bugs in downloaded libra‐
ries do happen, but they’re pretty rare. I find many problems are
caused by me getting some of the wiring wrong. So if things still
aren’t working, try double-checking your connections between the
microcontroller and the various peripherals.

Go Driving!
No code. No diagrams. No instructions. Just another point in this chapter where I
wholly encourage you to go play. :) Try powering up both projects and see what hap‐
pens when you move the joystick. There are definitely things that could go wrong! If
the wiring isn’t quite right, for example, the car might move, but not in the direction
you meant. (I accidentally swapped the right-side motor input pins when moving the
project to a full-size breadboard, for example. The right wheel turned, but in the
wrong direction.) Or if we have the wrong pins connected to the joystick, we might
not send any signal at all.

If the car doesn’t budge, it’s time yet again to break out your debugging skills. You can
have both projects connected to your computer at the same time, by the way. They
will simply be on different serial ports. (Remember, you can set which port you use
for your microcontroller through the Tools menu in the Arduino IDE.) You can use
Serial.println() statements to make sure your inputs, sends, receives, and drives
are all doing what you expect them to do. Just watch out for success! When you do
get things working, it’s surprisingly easy to drive your car right off the desk and leave
a string of electronics dangling from your USB cable. Or, you know, so I’m told.

Documentation and Distribution
Once your library is working and you’ve had enough fun zipping around your room,
it’s time to think about adding a little documentation to your project. Documentation
is great. Not just for other programmers who might use your library, either. If you
step away from a project even just for a few days, any documentation you wrote can
be surprisingly useful for helping you get your own mind back up to speed.

Keywords
One very simple piece of documentation that you can add for use with the Arduino
IDE is a single text file called keywords.txt. For a custom library, it should contain two
columns, separated by a tab. The first column contains functions, constants, and data
types defined in your library. The second column should contain one entry from
Table 11-1 indicating the category of the name in the first column.

262 | Chapter 11: Custom Libraries

Table 11-1. Keyword categories for documenting Arduino libraries

Category Name Purpose Appearance
KEYWORD1 data types orange, bold

KEYWORD2 functions orange, plain

LITERAL1 constants blue, plain

While limited, these few categories can still help programmers who rely on the IDE
cues for things like whether or not they spelled a function name correctly.

For our library, then, we could create the following entries (again, separated by a tab)
in our own keywords.txt file:

rc_INIT_SUCCESS LITERAL1
rc_INIT_FAILED LITERAL1
rc_FREQ_FAILED LITERAL1

direction_t KEYWORD1

rc_STOP LITERAL1
rc_LEFT LITERAL1
rc_RIGHT LITERAL1
rc_FORWARD LITERAL1
rc_BACKWARD LITERAL1

rc_start KEYWORD2
rc_send KEYWORD2
rc_receive KEYWORD2

Basically, that list is everything we defined in our SmalleRC.h file minus the few con‐
stants that were used only by the radio library. If you restart your IDE at this point,
the functions and other names listed in the file will share the same syntax highlight‐
ing that the core language uses! Very cool.

Be sure to use real tab characters to separate the columns in key‐
words.txt. Spaces will not work. Many editors (like VS Code, for
example) have a reasonable setting that turns all tabs into the
appropriate number of spaces when the file is saved. There are
many reasons that quiet change can be useful in source files, but we
don’t want it here.
If you can’t temporarily disable this feature in your editor of choice,
keywords.txt really is just a text file. You can create or edit it using
any text editor, including very simple ones like Notepad in Win‐
dows 10 or TextEdit in macOS.

Importing Custom Libraries | 263

https://oreil.ly/o3KjH

Including examples
Including a few example projects with your library is another great addition that
doesn’t require too much effort. You simply create an examples folder in the folder
with your library code and keywords.txt file. Inside examples, then, you can place a
few project folders. (Use the entire folder, not just the .ino file inside.)

Example projects should be short and sweet. Don’t include unnecessary features that
don’t make use of the library if at all possible. You want a new user to see the impor‐
tant parts of your library and how they fit within a sketch. If your library is fairly rich,
don’t be afraid of providing several smaller examples that each focus on a particular
aspect of the library.

Of course, you will find the other end of that “smaller, focused” spectrum in the wild.
Sometimes a single example contains a demonstration of every single feature in a
library. While these expansive examples do highlight the use of a library, they can
make it more difficult for an outsider to extract details. If you’re only trying to learn
about one or two of the functions in a library, big examples can be overwhelming.

But any example is better than no examples! If you only have the energy for the sin‐
gle, comprehensive approach, include it. If you host it somewhere public like GitHub,
you might even invite other users to contribute some focused examples from their
own projects.

Sharing online
If you do get serious about sharing your code, you’ll want to check out the official
Library Guide online, as well as the excellent Library Specification document. There
are a few more things you can add to your library folder if you want it to feel pol‐
ished. You can even get your library to work with the Library Manager in the IDE. A
quick heads-up, though: these docs (reasonably) use C++. C++ has many more facili‐
ties for sharing the appropriate parts of your code while hiding the implementation
details. There are definitely bits of syntax that will be new to you, but hopefully noth‐
ing too overwhelming.

As a first step toward publishing your library, check out the FAQ direct from the
Arduino team.

264 | Chapter 11: Custom Libraries

https://oreil.ly/hB0rX
https://oreil.ly/uifGf
https://oreil.ly/3y4IT

Next Steps
Even if you never publish a library, we have seen how to manage larger projects with
several tricks including preprocessor macros, type aliasing, and using multiple tabs in
the Arduino IDE. We also covered creating simple libraries that you can manually
install on your system to share between your own projects.

It’s useful to remember that the tab and library stuff is peculiar to the Arduino IDE.
Other IDEs or environments may have their own quirks, but you can almost always
find a way to use multiple files when needed. The main goal is to keep you productive
with whatever tools you choose.

I mentioned that you might want to know a little C++ if you publish any libraries.
C++ in general is an excellent topic to explore after this book. In the next chapter,
we’ll look at a more advanced project as a stepping-stone out into the wider world. I’ll
also suggest a few other topics worth considering as you continue to expand your C
and Arduino skills.

Next Steps | 265

1 Again from Adafruit, I used the Gemma M0 and carved up one of their 144 LED/meter RGBW strips to sew
the hourglass onto a shirt. I powered the whole thing with a USB battery pack and barely dented the charge
after more than four hours of continuous operation.

CHAPTER 12

Next Next Steps

First off, congratulations for making it this far! We have toured a pretty impressive
breadth of the C programming language and the Arduino microcontroller ecosystem.
Remember that first “Hello, World” program or that first blinking LED? You know a
lot more about both worlds now, and I hope you’re eager to continue expanding your
skills.

In this final chapter, we’ll look at one last project that connects your Arduino skills to
the Internet of Things. The world of IoT is growing daily and will provide plenty of
opportunities to try out new things, but we’ll also cover a few other topics you might
look into next.

Intermediate and Advanced Topics
There are so many paths you can take from here. The array of sensors and displays
available these days is truly astonishing. Go exploring! You’ll find your own inspira‐
tions and projects to tackle, which will lead to more exploring and more inspiration.
My most enjoyable adventures have come from specific project ideas. I wanted an
animated LED hourglass for part of a Halloween costume, so I found a capable, wear‐
able microcontroller and some dense LED strips.1 I had such fun with the LEDs on
that project that I decided to create some weatherproof lighting for my backyard.
With WiFi available to makers like us on small budgets, I could even let guests pick
the colors and other effects. The success of the WiFi feature in turn propelled me to
create a miniature weather station to feed my inner meteorologist.

267

https://oreil.ly/ZQ5JB
https://oreil.ly/HlJGk
https://oreil.ly/2fpE0

The key to success for all those projects was picking a fairly focused goal. For exam‐
ple, in the next section we’ll dip our toes into the world of IoT with a simple project
that takes a temperature reading from the TMP36 components we’ve used already
and reports it to a cloud service over WiFi. If you really want to cement the new
knowledge and skills you’ve gained through the projects and examples in this book,
pick your own mini project and make it a reality!

IoT and Arduino
It wouldn’t do to have a chapter with no code, so let’s look at one last project that
introduces some really fun avenues you can explore on the way to creating your own
gadgets. The Internet of Things is exploding, and Arduino is perfectly suited for play‐
ing in that space. Let’s look at a simplified version of my weather station project. We’ll
use a WiFi-capable microcontroller to report sensor data to a cloud API.

The circuit for this project is fairly simple. We need a WiFi-capable microcontroller
or a WiFi breakout that you can connect to your controller like we did with the RF
breakout in “Importing Custom Libraries” on page 249. I chose the HUZZAH32
Feather from Adafruit. It has some impressive specs like more than 500KB of SRAM
and 4MB of flash in addition to the integrated WiFi support. The sensor is the same
TMP36 we used in “Sensors and Analog Input” on page 197. I also added an OLED
display so I could watch the output without being tied to a computer to access the
Serial Monitor, but this display is definitely optional. Figure 12-1 shows the wiring
diagram and my actual “station” up and running on a breadboard.

Figure 12-1. Connecting the HUZZAH32, TMP36, and OLED

The OLED uses a library provided by Adafruit that you can import through the Man‐
age Libraries dialog of the IDE. Enter SSD1306 in the search field and look for the
“Adafruit SSD1306” library. It should be close to the top.

268 | Chapter 12: Next Next Steps

https://oreil.ly/aySPa
https://oreil.ly/aySPa

We also need to pick a cloud service provider and find a library for communicating
with them. I use Adafruit.io for these types of projects, but any IoT cloud service will
likely work. AWS, Google, and Azure all have IoT solutions, for example.

For Adafruit.io, we can use the Library Manager to find our communication library.
Search for “adafruit io arduino” and then scroll down a bit to find the actual library
called “Adafruit IO Arduino.” Installing this library requires quite a few dependencies,
such as the HTTP and message queue libraries, but the Library Manager will handle
that for you automatically and prompt you to install those dependencies. You might
have some of the listed dependencies like the NeoPixel library already, but the Library
Manager isn’t quite smart enough to show only the missing ones. When you do install
the dependencies, though, only those that are missing will be added.

I won’t go through the details of signing up, but once you have an account with your
chosen provider, you’ll almost certainly need a few credentials to configure the
library. Adafruit.io, for example, requires a unique username and access key. Let’s put
this cloud service information in a separate config.h file where we can also include
our WiFi details:

#include "AdafruitIO_WiFi.h"

#define IO_USERNAME "userNameGoesHere"
#define IO_KEY "ioKeyGoesHere"
#define WIFI_SSID "HomeWifi"
#define WIFI_PASS "password"

Happily, that library also contains a more generic WiFi library as a dependency. That
double duty is nice for us—we don’t have to go through separate steps to configure
both the WiFi and our access to the cloud. But we do still have to do a little bit of
setup work to make sure we can communicate with the cloud. We’ll add that code in
with the stuff necessary to use our nifty OLED display in the setup() function. As
always, feel free to type this in yourself, or grab ch12/temp_web/temp_web.ino:

#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>

// Use credentials from config.h to set up our feed
#include "config.h"
AdafruitIO_WiFi io(IO_USERNAME, IO_KEY, WIFI_SSID, WIFI_PASS);
AdafruitIO_Feed *smallerc = io.feed("smallerc");

// Set up our OLED
#define SCREEN_WIDTH 128 // OLED width, in pixels
#define SCREEN_HEIGHT 32 // OLED height, in pixels
#define OLED_RESET 4 // Reset pin #
#define SCREEN_ADDRESS 0x3C // 128x32 screen
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT,

Intermediate and Advanced Topics | 269

https://io.adafruit.com
https://oreil.ly/t6UO6
https://oreil.ly/muYAu

 &Wire, OLED_RESET);
char statusline[22] = "Starting...";

// A few things for keeping an average temperature reading
#define ADJUST 3.33 /* my office reads about 3 degrees C cold */
float total = 0.0;
int count = 0;

void setup() {
 Serial.begin(115200);
 // SSD1306_SWITCHCAPVCC = generate voltage from 3.3V internally
 if(!display.begin(SSD1306_SWITCHCAPVCC, SCREEN_ADDRESS)) {
 Serial.println(F("SSD1306 allocation failed"));
 for(;;); // Don't proceed, loop forever
 }

 // Show Adafruit splash screen initialized by the display library
 display.display();

 // Now set up the connection to adafruit.io
 Serial.print("Connecting to Adafruit IO");
 io.connect();
 // wait for a connection
 while(io.status() < AIO_CONNECTED) {
 Serial.print(".");
 delay(500);
 }

 // we are connected
 Serial.println();
 Serial.println(io.statusText());

 // Set up our display for simple (if small) text
 display.clearDisplay();
 display.setTextSize(1); // Normal 1:1 pixel scale
 display.setTextColor(SSD1306_WHITE); // Draw white text
 display.setCursor(0, 0); // Start at top-left corner
 display.cp437(true); // Use 'Code Page 437' font
 display.println(statusline); // Show our starting status
 display.display(); // Update the actual display
}

void loop() {
 // put your main code here, to run repeatedly:
 int reading = analogRead(A2);
 float voltage = reading / 1024.0;
 if (count == 0) {
 total = voltage;
 } else {
 total += voltage;
 }
 count++;

270 | Chapter 12: Next Next Steps

 float avg = total / count;
 float tempC = (avg - 0.5) * 100;
 float tempF = tempC * 1.8 + 32;
 if (count % 100 == 0) {
 // Update our display every 10 seconds
 display.clearDisplay();
 display.setCursor(0, 0);
 display.println(statusline);
 display.print(reading);
 display.print(" ");
 display.println(voltage);
 display.print(tempC);
 display.println("\370 C");
 display.print(tempF);
 display.println("\370 F");
 display.display();
 strcpy(statusline, "Reading...");
 }
 if (count % 600 == 0) {
 // Update our IoT feed every minute
 smallerc->save(tempF);
 strcpy(statusline, "Feed updated");
 }
 delay(100);
}

Include the various header files needed to communicate with the libraries that
draw on our OLED.

With the credentials from config.h, create an I/O object (io) and establish a con‐
nection to the Adafruit IO service, then specify which feed we will update.

Instantiate our display object using constants and referencing the Wire library.

Attempt to connect to the display. If that fails, print an error message and do not
continue. If you do get stuck here, it’s likely a problem in your wiring. Double-
check the connections and make sure your display also has power.

Make sure we can use the feed from . Wait (potentially forever) until it’s ready.
If you can’t connect, you might try using your credentials in a browser to verify
the combination of user and key works. You can also test out your WiFi connec‐
tion with a separate project. Under the File menu in the IDE, look for the Exam‐
ples submenu, find your board, and pick something simple like HTTPClient.

Read the current analog value from our TMP36 sensor and update the average,
running temperature.

Intermediate and Advanced Topics | 271

Update our display with some nice text on the temperature and the current cloud
status. The API for this display is similar to the functions we use with Serial.

Once a minute, report the simple temperature in Fahrenheit to our feed. The next
time through loop(), we’ll note the update in our status line on the OLED.

You can certainly turn controllers like the HUZZAH32 into their own web servers
and just get readings directly in your browser, but services like Adafuit.io make it
easy to get fancier reports, such as the small graph of temperatures over a few minutes
shown in Figure 12-2. These services typically support connecting to yet more serv‐
ices as well. For example, If This Then That (IFTTT) allows you to use events
reported to Adafruit.io to trigger actions like sending an email or turning on smart
home devices.

Figure 12-2. Graph of our reported temperatures

This little project is just the briefest of introductions to the Internet of Things. Heck,
just the fun combinations possible through IFTTT could fill their own book. IoT
books and blog posts abound, covering everything from user interface design for
small devices to enterprise mesh configurations. This is a fun, dynamic area, and you
certainly have the skills to dive in if you’re curious to learn more.

272 | Chapter 12: Next Next Steps

https://ifttt.com

Arduino Source Code
There are so many neat Arduino projects out there and so many of their authors are
doing it for the joy of creating. They put their hardware specs and source code online
and actively participate in the Arduino forums. I heartily encourage you to read some
of that source code. You have the skills to understand the code in those projects now,
and seeing how other programmers tackle problems can help you learn new tricks.

You can also access the source code behind the many boards supported out of the
gate by the Arduino IDE. The various ArduinoCore packages cover the C and C++
content that goes into the Arduino “language” we discussed in “The Arduino Envi‐
ronment” on page 189. It’ll be dense reading, to be sure, but you might be surprised
how much of the basics you can pick up.

Other Microcontrollers
Of course, Arduino isn’t the only microcontroller game in town. Mitchel Davis has a
really enjoyable series on YouTube documenting his journey from programming on
Arduino to more limited controllers like the STM8. His examples are often in C, and
you can see some of the more arcane topics we covered like bit-wise operators on full
display.

Going the other direction toward more powerful controllers, the Raspberry Pi plat‐
form deserves a mention as well. These tiny computers are full-fledged desktop sys‐
tems capable of running a complete Linux distribution—including running all of the
developer tools like gcc. What’s more, Pis come with the same kinds of GPIO (general
purpose I/O) connections as the microcontrollers we’ve worked with in this book.
You can use the same types of sensors and outputs and write C programs to drive
them. And you get to compile those programs right on the hardware where the
peripherals are attached! You can take some of the really clever projects, such as the
MagicMirror, and add motion detectors so the mirror lights up only when someone
is nearby to make use of it, making it even more magical.

If nothing else, I hope this book has given you the confidence to try tackling these
types of projects. It’s a gratifying world that lends itself to mastery. Unlike enterprise
engineering projects that literally span the globe, you can concentrate on really learn‐
ing the details of something like the Metro Mini controller from so many of our
examples. You don’t need eight different toolchains to get that LED blinking. You
don’t need a dozen programmers to debug a photoresistor night-light. As one of the
reviewers for this book, Alex Faber, put it, there’s no cruft to get in the way of the
craft. I couldn’t agree more.

Other Microcontrollers | 273

https://forum.arduino.cc
https://oreil.ly/ekC2v
https://oreil.ly/iN1Fj
https://raspberrypi.org
https://oreil.ly/p4emq

Industry C/C++
You also aren’t limited to tinkering with C at home. Arthur C. Clarke’s many futures
(2001: A Space Odyssey, 2010: Odyssey Two) are now our past, but computers and
artificial intelligence figure quite prominently in our present. If you are interested in
pursuing C programming as a career, search any tech job site and you will find hun‐
dreds of jobs for C programmers from entry level positions to senior architects. You
can intern with a Linux kernel group or help program embedded controllers. You can
get a job working on tiny toy drones or program sensors that keep the world’s largest
factories running.

Legacy code maintenance still requires good C programmers and pays well enough
for said programmers to build a nice financial legacy for their progeny. Gaming
systems need really, really fast code for both the game engines and the consoles they
run on.

Supercomputers and microcontrollers both make use of C in a variety of environ‐
ments. While it might be more obvious that microcontrollers need efficient code,
massive supercomputers want every possible cycle of CPU (or, these days, GPU) time
to go toward completing their calculations. C excels at providing that level of control,
and companies know they need programmers who excel at making their expensive
machines go fast. Just about any field you can think of these days is computerized,
and anywhere they are pushing the limits of hardware (the tiniest, the deepest, the
coldest, the fastest, etc.), you can find C programmers helping push those boundaries.

Back to the Future
Many languages have cropped up since C was first developed in the 1970s. Many
more languages will undoubtedly appear in the years and decades to come. C remains
so relevant precisely because of that extra control and speed it provides. Many more
“advanced” languages like Java retain the ability to load native libraries written in C
with the same kinds of header files we wrote for Arduino. Go can also call C func‐
tions. Working on embedded systems with Rust, but that one component only has C
support? Rust can pull in C as well.

Just about everywhere you go in the computer programming world these days, you
will find C. From its ubiquitous control statements to integration via native libraries,
knowing C connects you to so much more of this world than you probably imagined.
All I can say in closing is that I hope you keep imagining. Imagine new projects.
Imagine new libraries. And then get that imagination running on hardware. C is a
great tool for reifying those digital dreams. After working through this book, I hope
you feel confident using it.

274 | Chapter 12: Next Next Steps

APPENDIX A

Hardware and Software

I try to point out any specific hardware parts or software packages where I first use
them, but I also want to give you a quick list of the various components for easy refer‐
ence. I wasn’t paid for mentioning any products nor do the various owners and man‐
ufacturers endorse my book. The glowing opinions I express here are entirely my
own. :)

Getting the Code
The C examples and Arduino Sketches are all available online at https://
github.com/l0y/smallerc. Most examples have links to their particular files, but you
can also download the archive using the drop-down shown in Figure A-1.

For the C examples, there’s not really anything else to do. You can open any of the
examples in your editor of choice. You can make and save your changes, then compile
the examples right there in the same folder.

For the various sketches, you may want to drag each sketch folder over to your Ardu‐
ino Sketchbook location as you work on it. (This location is set in the Arduino IDE
preferences, as shown in Figure 11-9 from “The libraries folder” on page 254.) This
will make sure you have access to any libraries you may have installed. It also means
you can look in the “usual spot” for these projects after you’re done with the book.

275

https://github.com/l0y/smallerc
https://github.com/l0y/smallerc

Figure A-1. Downloading the examples archive from GitHub

Getting the Hardware: Adafruit
A lot of the physical gear I use throughout the examples in this book comes from
Adafruit. They have an amazing selection of controllers and components, along with
some of the most fun, complete, nerdy tutorials you can find on the web. I do most of
my shopping directly at their site, but you can also find many of their parts through
Amazon and Digi-Key. Table A-1 lists the microcontrollers I used in the many Ardu‐
ino projects. Table A-2 lists the peripherals and components I used by chapter. Where
I used a component in multiple projects, I went ahead and listed it in every chapter it
appeared.

Table A-1. Microcontrollers and prototyping

Microcontroller Specs
Metro Mini (2x) ATmega328, 32KB flash, 2KB SRAM

Trinket M0 32-bit ATSAMD21E18, 256KB flash, 32KB SRAM

HUZZAH32 Feather Tensilica LX6, WROOM32, HT40 WiFi, 4MB flash, 520KB SRAM, Bluetooth

Prototyping Gear

Full-size Breadboard Standard breadboard with power rails

Half-size Breadboard Compact breadboard with power rails

Connector Wires Bundle with various lengths and molex tips

276 | Appendix A: Hardware and Software

https://adafruit.com
https://oreil.ly/CyB1X
https://digikey.com
https://oreil.ly/KxFf0
https://oreil.ly/R2fui
https://oreil.ly/p5Ldy
https://oreil.ly/sZo2h
https://oreil.ly/bfpYJ
https://oreil.ly/RoHW1

Table A-2. Peripherals and components

Component Specs
Chapter 8

100Ω Resistor Carbon fiber through-hole

470Ω Resistor Carbon fiber through-hole

Blue LEDs 3mm diameter, ~3.0V Forward Voltage

NeoPixel Flora Individual RGB NeoPixel LED

NeoPixel Stick 8 RGB NeoPixel LEDs, stick mounted

NeoPixel Ring 24 RGB NeoPixel LEDs, ring mounted

Chapter 9

RGB LED 5mm, common cathode

470Ω Resistor Carbon fiber through-hole

TMP36 Temperature Sensor Analog, range -50 to 125 C

Four-Digit Display Red, MAX7219 driver (alternative to VMA425)

Tactile Button Simple push-button

NeoPixel Ring 24 RGB NeoPixel LEDs, ring mounted

Chapter 10

NeoPixel Stick 8 RGB NeoPixel LEDs, stick mounted

Chapter 11

RFM69HCW Transceiver (2x) 900MHz (Americas)

Navigation Switch Through-hole, 5-way

Rubber Nubbin Cap Fits navigation joystick

TT Motor Wheel (2x) Orange spokes, clear tire

TT Motor Gearbox (2x) 200 RPM, 3 - 6VDC

Motor Driver Breakout DRV8833 chip

Chassis for TT Motors Aluminum, purple

Chapter 12

OLED Display 0.91”, 128x32 pixel, I2C

TMP36 Temperature Sensor Analog, range -50 to 125 C

In general, I tried to stick with breadboard projects that are easy to set up and alter. If
you build something stable and want to reflect that stability by getting off the bread‐
board, I highly recommend the Adafruit Guide to Excellent Soldering. They give you
some great advice on both the hardware and techniques that pro hobbyists use to cre‐
ate more permanent projects. I will add one bit of emphasis to their otherwise fantas‐
tic guide: in the section on soldering irons, the “Best Irons” really are the best. They
are definitely more expensive, so won’t be for everyone, but if you can afford it, irons
like the Hakko FX-888D elevate the tedium of soldering header pins to a meditative
art.

Hardware and Software | 277

https://oreil.ly/YOgc7
https://oreil.ly/wwVrn
https://oreil.ly/xJqOL
https://oreil.ly/dyCpE
https://oreil.ly/8zpaZ
https://oreil.ly/Mwoph
https://oreil.ly/e0TBv
https://oreil.ly/8jyjo
https://oreil.ly/JQFud
https://oreil.ly/RO5P5
http://adafru.it/367
https://oreil.ly/8GOWh
https://oreil.ly/mPpVW
https://adafru.it/3070
https://adafru.it/504
https://adafru.it/4697
https://adafru.it/3766
https://adafru.it/3777
https://adafru.it/3297
https://adafru.it/3796
https://adafru.it/4440
https://adafru.it/165
https://oreil.ly/vytmN
https://https://adafru.it/1204

VS Code
I do my non-Arduino coding with Visual Studio Code from Microsoft. And while it
is written by Microsoft, VS Code also works on Linux and macOS. It’s highly configu‐
rable and has a vibrant extension ecosystem for just about every possible program‐
ming language and web development framework. The “C/C++” extension is great for
working with C, if nothing else.

Arduino IDE
Throughout this book, I relied on the Arduino IDE for compiling and uploading the
microcontroller projects. The Arduino IDE is cross-platform and has excellent sup‐
port for a wide range of microcontrollers from many different vendors.

The Arduino site also has a useful Language Reference and several tutorials covering
everything from simple “getting started” topics to more advanced hacking techniques
for really diving into the Arduino platform.

I should point out that for folks who really enjoy the VS Code envi‐
ronment, there is growing enthusiasm for PlatformIO. Per their
About page: “PlatformIO is a cross-platform, cross-architecture,
multiple framework, professional tool for embedded systems engi‐
neers and for software developers who write applications for
embedded products.”
It has a standalone option, but it also has a mature VS Code exten‐
sion. You can find out more details on their VS Code Integration
page.

Fritzing
You may have noticed the cute circuitry-as-font word “fritzing” in our wiring dia‐
grams. If you build any projects that you decide to share with others, you can create
these types of diagrams yourself. The good folks at Fritzing created the software I
used. The design application is cross-platform, and many third parties have created a
truly remarkable number of visually appealing contributions to the libraries of con‐
trollers and components. It’s also delightfully intuitive, especially if you’ve had any
experience with other design and layout tools, such as OmniGraffle or Inkscape. They
do request a (very!) modest fee, and I find it worth every penny if you can afford it.

You can find a wealth of fritzing-friendly components online as well. Their forum
contains some great, high-quality contributions such as the 4-digit, 7-segment display
used in Figure 9-5, contributed by Desnot4000. You can also import SVG files to cre‐
ate custom components if needed.

278 | Appendix A: Hardware and Software

https://oreil.ly/C6v3D
https://oreil.ly/7vXun
https://oreil.ly/VH8RZ
https://oreil.ly/OWYJy
https://platformio.org
https://oreil.ly/3ZH3G
https://fritzing.org
https://oreil.ly/zODll
https://inkscape.org

If you really get going with your own electronics projects, Fritzing’s software can also
be used to produce custom circuit boards. Your hobby has never looked so professio‐
nal! Dedicated to making hardware open and accessible to more and more folks, I
could not be more impressed with this group and their wider user community.

GNU Compiler Collection
Last but most definitely not least, I used the GNU C compiler (as does the Arduino
IDE) from the impossibly useful GNU Compiler Collection. As you probably noticed
in “Tools Required” on page 2, it can take a little effort to get these tools installed on
some platforms, but the breadth and quality of these compilers is unparalleled. Com‐
bined with their open source ethos, it really is hard to beat GNU software anywhere
it’s available.

Hardware and Software | 279

https://gcc.gnu.org

APPENDIX B

printf() Format Specifier Details

The formats supported by the printf() function almost comprise their own lan‐
guage. While not an exhaustive list, this appendix details all of the options I use
throughout this book. I also describe how the options work with the different types of
output, even if I do not use a given combination. As with so much of programming, it
is useful to try stuff out yourself to see how the pieces fit together.

The code examples include a simple C program that goes through the more popular
combinations of flags, widths, precisions, and types. You can compile and run popu‐
lar_formats.c as is, or you can edit it to tweak some of the lines and test your own
combinations.

If you want to know even more about the things you can specify in printf(), includ‐
ing nonstandard and implementation-specific options, I recommend the Wikipedia
page devoted to just this topic.

Specifier Syntax
The specifier as I use it throughout this book contains three optional elements and
one required type arranged like so:

% flag(s) width . precision type

Again, the flag (or flags), width, and precision are not required.

Specifier Types
How printf() interprets a given value to print depends on the type specifier you use.
The value 65, for example, would print as the letter “A” with %c (characters) but as
“41” with %x (hexadecimal integers). Table B-1 summarizes the types we have used
throughout this book, although it is not an exhaustive list.

281

https://oreil.ly/Adirl

Table B-1. Format specifier types for printf()

Specifier Type(s) Description

%c char Print out a single character

%d char, int, short, long Print signed integer values in decimal (base 10)

%f float, double Print floating point values

%i char, int, short Print integer values in base 10 (same as %d for output)

%o int, short, long Print integer values in octal (base 8)

%p address Print pointers (as hexadecimal address)

%s char[] Print a string (array of char) as text

%u unsigned (char, int, short) Print unsigned integer values in decimal

%x char, int, short, long Print integer values in hexadecimal (base 16)

The %i and %u integer types can use length modifiers. l or ll (e.g., %li or %llu) tell
printf() to expect long or long long length arguments. For floating point types, L
can be used (e.g., %Ld) to indicate a long double argument.

Specifier Flags
Each type you specify can be modified with one or more flags. Table B-2 lists the
specifier flags. Not all flags have an effect on every type, and all flags are optional.

Table B-2. Format specifier flags for printf()

Specifier Description

- Left-align output within its field

+ Force plus sign (+) prefix on positive numeric values

(space) Force space prefix on positive numeric values (as opposed to no prefix at all)

0 Pad left of numeric values with 0s (if they do not fill a field where width is specified)

Print a prefix (0, 0x, or 0X) when used with o, x, or X types

You see these flags used more often when you have numeric, columnar output,
although flags like the “-” can be used on strings as well.

Width and Precision
For any specifier, you can supply a minimum width for the output field. (The mini‐
mum qualifier means that no truncation occurs for values that are larger than the
given width.) The default is to align output to the right, but that can be changed with
the - flag noted in Table B-2.

282 | Appendix B: printf() Format Specifier Details

You can also supply a precision, which can affect the maximum width for output. For
floating point types, it dictates the number of digits to the right of the decimal separa‐
tor. For strings, it truncates over-long values. It is ignored for integer types.

Common Formats
To see some of the more common or popular formats in action, take a look at appB/
popular_formats.c. It’s just a big batch of printf() calls, but it contains a wide variety
of examples using different format specifiers. I won’t bother with the source listing
here, but the output makes for a quick reference:

appB$ gcc popular_formats.c
appB$./a.out
char Examples
 Simple char: %c |y|
 In a 9-char field: %9c | y|
 Left, 9-char field: %-9c |y |
 The percent sign: %% |%|

int Examples
 Simple int: %i |76|
 Simple decimal int: %d |76|
 Simple octal int: %o |114|
 Prefixed octal int: %#o |0114|
 Simple hexadecimal int: %x |4c|
 Uppercase hexadecimal: %X |4C|
 Prefixed hexadecimal: %#x |0x4c|
 Prefixed uppercase: %#X |0X4C|
 In a 9-column field: %9i | 76|
 Left, 9-column field: %-9i |76 |
 Zeros, 9-column field: %09i |000000076|
 With plus prefix: %+i |+76|
 negative value: |-12|
 With space prefix: % i | 76|
 negative value: |-12|
 Huge number: %llu |28054511505742|
 (Ignored) precision: %1.1d |76|

float Examples
 Simple float: %f |216.289993|
 2 decimal places: %.2f |216.29|
 1 decimal place: %.1f |216.3|
 No decimal places: %.0f |216|
 In a 12-column field: %12f | 216.289993|
 2 decimals, 12 columns: %12.2f | 216.29|
 Left, 12-column field: %-12.2f |216.29 |

printf() Format Specifier Details | 283

https://oreil.ly/R2vNI
https://oreil.ly/R2vNI

string (char[]) Examples
 Simple string: %s |Ada Lovelace|
 In a 20-column field: %20s | Ada Lovelace|
 Left, 20-column field: %-20s |Ada Lovelace |
 6-column field: %6s |Ada Lovelace|
 6-columns, truncated: %6.6s |Ada Lo|

And last but not least, a blank line (\n):

The Wikipedia page on the printf format string has a comprehensive overview of the
options available.

284 | Appendix B: printf() Format Specifier Details

https://oreil.ly/xvtiC

Index

Symbols
! (NOT) operator, 51
% (percent sign), printf specifiers, 26, 282
%s (percent s), for strings, 26
& (ampersand), variable prefix, 38-39, 127
&& (AND) operator, 50
() (parentheses), order of operations, 42
-> (arrow) operator, 143
. (period), dot notation, 141
; (semicolon), in C code, 16, 22
= (equal sign), variable assignments, 32
== (double equal sign), equality comparison

operator, 48
?: (ternary) operator, 63-65
[] (square brackets), array elements, 85-86
\ (backslash), as escape character, 28-29
\0 (null character), 29, 82-83
{} (curly braces), 17

(see also blocks of code)
in C code, 17
in if/else statements, 57

|| (OR) operator, 51

A
abs() function, 193
accessing

Arduino source code, 273
array elements, 85-86
multidimensional array elements, 90-91
string characters, 88-89
structure members, 141-142

accumulators, 71
Adafruit, 169

components available, 276-277

library management, 268
addresses (memory), 38

for arrays, 130-131
explained, 127-129
in heap, 133-134
NULL value, 129
in stack, 131-133

algorithms, 21
aliases, 193
allocating memory, 138-139
ampersand (&), variable prefix, 38-39, 127
analog input, sensor setup, 197-198
analogRead() function, 193
analogWrite() function, 193
AND (&&) operator, 50
Arduino IDE

Arduino language elements
constants, 190-192
functions, 193-194
LED light example, 194-197
purpose of, 189-190
types, 192-193

C++ considerations, 185-186
downloading, 166, 278
"Hello, LED!" program, 172-174
.ino files, 182, 244-247
installing

on Linux, 168-169
on macOS, 168
on Windows, 167

libraries
creating custom, 235-243, 249-262
documentation, 262-264
importing, 268

285

installing, 178-179, 200, 254
managing, 177-178
purpose of, 176
sharing online, 264

libraries folder, 254
multifile projects, 244-249

header files, 247-249
.ino files, 244-247

purpose of, 166
reference materials, 278
selecting microcontrollers in, 170-171
Serial Port Monitor, 198-199
sketches (see sketches)
source code, accessing, 273
verifying code, 173

Arduino microcontrollers, 165
buttons

setup, 202-204
temperature output example, 204-206

car example project
hardware setup, 235-238
initial software setup, 241-243
preprocessor directives, 238
preprocessor macros, 239
radio control setup, 249-262
type definitions, 240-241

interrupts
buttons example, 216-218
ISRs (interrupt service routines),

215-216
purpose of, 215

IoT and, 268-272
LED lights (see LED lights)
memory management

EEPROM, 211-212
LED lights example, 212-214
PROGMEM, 206-209
SRAM, 209-210
types of, 206

optimization
arrays, 225-226
floating-point math, 223-224
integer math, 224-225
LED lights example, 227-228, 233-234
lookup tables, 226-227
loops, 230-232
powers of 2, 229-230
setup for, 222-223
strings, 232-233

segmented displays
setup, 200-202
temperature output example, 204-206

selecting in IDE, 170-171
sensors

setup, 197-198
temperature output example, 199-200,

204-206
serial ports, 198-199
uploading code to, 174

arguments
for main() function, 123-125
passing, 107-108, 137-138
purpose of, 107

arithmetic operators
list of, 39-40
precedence, 41-42

arrays, 25
accessing elements, 85-86
changing elements, 86
of characters (see strings)
creating, 82-83
default values, 156-157
initializing, 84-85
length of, 33
length versus capacity, 83-84
looping through, 87
in memory, 130-131
for memory management

allocation, 138-139
deallocation, 139
purpose of, 138

multidimensional
accessing elements, 90-91
creating, 89-90

optimization with, 225-226
overflowing, 83, 86
passing to functions, 108-110
as pointers, 135-136
strings as, 26, 29

arrow (->) operator, 143
assigning variables, 32, 58

conditional assignment, 63-65
atan() function, 157
atan2() function, 157
atof() function, 150
atoi() function, 125, 150-151
atol() function, 150
attachInterrupt() function, 216

286 | Index

B
backslash (\), as escape character, 28-29
base cases, 115
base64 encoding, 97-101
binary numbers, comparison with other bases,

92-93
binary operators, 39
bits, byte conversion, 97-101
bitwise operators, 96-97

optimization with, 229-230
blocks of code, 16, 52
boards (see Arduino microcontrollers)
body of code, 16
bool (variable type), 192
Boole, George, 47
Boolean values

comparison operators, 48-49
described, 47-48
in if statements, 52
logical operators, 49-51

branching, 47
else statement, 54-57
if statement, 52-58
nesting in, 72-75
switch statement, 58-63

break statement, 59, 74
buffer overflows, 86
buttons

interrupts example, 216-218
setup, 202-204
temperature output example, 204-206

byte (variable type), 192, 229
bytes, bit conversion, 97-101

C
C in a Nutshell (Prinz and Crawford), 48
C programming language

compatibility with other languages, 274
downloading examples, 275
jobs using, 274
requirements for, 2-3

in Linux, 12-14
in macOS, 9-12
in Windows, 3-8

standards, 1
strengths and weaknesses, 2

The C Programming Language (Kernighan and
Ritchie), 1, 140

C standard library, 150

ctype.h, 160
math.h, 157-159
stdio.h, 150
stdlib.h, 150-154
string.h, 154-157
time.h, 159-160

C++
considerations in Arduino programming,

185-186
objects

creating, 182
LED lights, 183-185

sketches and, 179-181
calling

functions, 104-105
nested calls, 114-115
recursive calls, 115-118

methods (C++), 182
capacity of arrays, length versus, 83-84
car example project

hardware setup, 235-238
initial software setup, 241-243
preprocessor directives, 238
preprocessor macros, 239
radio control

controller setup, 252-253, 260-261
creating library, 253-258
purpose of, 249-250
retrofitting car for, 250-252
updating car, 258-260

type definitions, 240-241
careers using C, 274
carriage returns, 26
case statement, 59
casting (types), 42-44
ceil() function, 158
chaining else if statements, 55-57
changing array elements, 86
char (variable type), 25, 27-29, 30

(see also characters)
characters

accessing in strings, 88-89
arrays of (see strings)
ctype.h, 160
encoding, 28
special, 28-29

classes (C++), 179
CLion, 3
comparison operators, 48-49

Index | 287

compiled languages, defined, 1
compiling "Hello, World!" programs, 17
composite types (see structures)
conditional assignment, 63-65
conditional branching (see branching)
conjunctions, comparison with logical opera‐

tors, 50
const keyword, #define versus, 191
constants, 190-192

const versus #define, 191
list of, 192

constrain() function, 193
constructors (C++), 179-181
control flow (see flow of control)
controller setup for radio-controlled car,

252-253, 260-261
converting strings to numbers, 125, 150-151
cos() function, 157, 194
cross-compilers, 166
ctime() function, 159
ctype.h, 160
curly braces ({}), 17

(see also blocks of code)
in C code, 17
in if/else statements, 57

custom libraries, 235-243
car project initial version, 241-243
documentation, 262-264
editing source files, 260
hardware setup, 235-238
preprocessor directives, 238
preprocessor macros, 239
radio control example

controller setup, 252-253, 260-261
creating library, 253-258
purpose of, 249-250
retrofitting car for, 250-252
updating car, 258-260

sharing online, 264
type definitions, 240-241

Cygwin environment, installing, 4-8

D
Davis, Mitchel, 273
deallocating memory, 139
debouncing, 204
debugging

for loops, 68-69
if statement, 57-58

with if statements, 54
libraries and wiring, 262

decimal numbers, 31
comparison with other bases, 92-93
formatting, 35-37

declaring
integers, 30
strings, 29
variables, 25, 27

decrementing variables, 67
default statement, 61-63
default values for arrays, 156-157
#define directive, 238-239

const keyword versus, 191
in header files, 247-248

delay() function, 193
delayMicroseconds() function, 193
detachInterrupt() function, 216
digital input, button setup, 202-204
digitalRead() function, 193
digitalWrite() function, 193
distributing "Hello, World!" programs, 19
division, optimization of, 229-230
do (while) statement, 71-72
documentation, 262-264
dot notation, 141
double (variable type), 31, 224
double equal sign (==), equality comparison

operator, 48
downloading

Arduino IDE, 166, 278
Arduino libraries, 254
C examples, 275
GCC tool

in Linux, 12-14
in macOS, 9-12
in Windows, 4-8

sketches, 275
Visual Studio Code, 278

DRAM (dynamic random-access memory), 209

E
editing

library source files, 260
variables via pointers, 134-135
Windows environment variables, 5-7

EEPROM (electronically erasable programma‐
ble read-only memory), 206, 211-212

else statement, 54-57

288 | Index

encoding for characters, 28
#endif directive, 248
environment variables in Windows, editing, 5-7
equal sign (=), variable assignments, 32
equality comparison operator (==), 48
error messages

empty pointers, 130
expects type, 39
missing semicolon, 22
variable names, 32
variable scope, 76
warnings versus, 33

escape characters, 28-29
example projects as documentation, 264
exclamation point (!), NOT operator, 51
executable files (Windows), 18
exit() function, 153-154
exiting functions, 110-111
exp() function, 157
explicit type casting, 44
expressions

assignment in, 58
Boolean, in if statements, 52
described, 39
order of operations, 41-42
in switch statements, 59
type casting, 42-44

external LED lights, 175-176

F
F() macro, 208
fabs() function, 158
Fibonacci numbers, 115-117
files, renaming, 19
finding libraries, 163-164
flags for printf() function, 282
flash memory, 206-209
float (variable type), 31, 224
floating point numbers, formatting, 35-37
floating point types, 31
floating-point math

alternatives, 224-225
processing requirements, 223-224

floor() function, 158
flow of control, 47

(see also branching; looping)
in functions, 104-105

flow of statements, 22-23
folders for libraries, 164

for statement, 65-69
incrementing/decrementing variables, 67
potential pitfalls, 68-69

format specifiers, 34-38, 94-96, 281-284
format strings, 34-38, 120
formatting floating point numbers, 35-37
forward declarations, 247
free() function, 139
Fritzing, 278
functions

Arduino built-in functions, 193-194
arguments

passing, 107-108, 137-138
purpose of, 107

atof(), 150
atoi(), 125, 150-151
atol(), 150
for calculations, 157-158
calling, 104-105

nested calls, 114-115
recursive calls, 115-118

for characters, 160
constructors and, 182
for EEPROM, 211
exit(), 153-154
exiting, 110-111
for flash memory, 208
free(), 139
ISRs (interrupt service routines), 215-216
local variables, 118-119, 120
loop(), 172
main(), 16, 121

command-line arguments, 123-125
exiting, 154
return values, 122-123

malloc(), 138-139
naming, 105
parameters

multiple types, 110
purpose of, 107

pointers and, 137-138
printf(), 16, 25, 34-38, 94-96, 281-284
purpose of, 103
rand(), 151-153
returned values

explained, 111
ignoring, 113
using, 112-113

scanf(), 24, 26, 38-39, 94-96, 157

Index | 289

setup(), 172
sine8(), 225
srand(), 151-153
for strings, 154-156
strings, passing to, 108-110
structures and, 143-145
for time, 159
void type, 105-106

G
GCC tool, installing

in Linux, 12-14
in macOS, 9-12
in Windows, 4-8

get() function, 211
global variables, 119-121

in Arduino, 210
in heap, 133-134

GNU Compiler Collection, 279

H
header files

described, 16
in multifile projects, 247-249
for radio control project, 255-256

heap, 133-134
in SRAM, 209
stack versus, 133

"Hello, LED!" program, 172-174
"Hello, World!" programs

compiling, 17
creating, 15-17
described, 2
distributing, 19
running, 17-19
semicolons in, 22
size comparison, C and Java, 149
statement flow in, 22-23
user input, 24-26

hexadecimal numbers
comparison with other bases, 92-93
input/output, 94-96
as literals, 93-94

HIGH constant, 192

I
if statement, 52-58

Boolean expressions in, 52

debugging with, 54
else statement and, 54-57
potential pitfalls, 57-58
ternary operator versus, 65

#ifdef directive, 248
#ifndef directive, 248
ignoring returned values, 113
implicit type casting, 43
importing Arduino libraries, 268
#include directive, 238

angle brackets versus quotes, 249
preventing duplicates, 248

include guards, 248
incrementing variables, 67
infix operators, 68
initializing

arrays, 84-85
multidimensional arrays, 89-90
strings, 85, 88
structures, 141
variables, 33

.ino files, 182, 244-247
input

button setup, 202-204
interrupts

buttons example, 216-218
ISRs (interrupt service routines),

215-216
purpose of, 215

octal/hex values, 94-96
parsing, 38-39
sensor setup, 197-198
with variables, 24-26

INPUT constant, 192
INPUT_PULLUP constant, 192
installing

Arduino IDE
on Linux, 168-169
on macOS, 168
on Windows, 167

Arduino libraries, 178-179, 200, 254
GCC tool

in Linux, 12-14
in macOS, 9-12
in Windows, 4-8

Visual Studio Code
on Linux, 13
on macOS, 10-11
on Windows, 7

290 | Index

int (variable type), 29, 40, 229
int8_t (variable type), 192
int16_t (variable type), 192
int32_t (variable type), 192
integer math

avoiding with arrays, 225-226
as floating-point alternative, 224-225

integer types, 29-30
integers, 40
interest calculations, 162-163
International Organization for Standardization

(ISO), 1
interrupts

buttons example, 216-218
ISRs (interrupt service routines), 215-216
purpose of, 215

IoT (Internet of Things), Arduino and, 268-272
isalnum() function, 160
isalpha() function, 160
isdigit() function, 160
islower() function, 160
ISO (International Organization for Standardi‐

zation), 1
ISRs (interrupt service routines), 215-216
isspace() function, 160
isupper() function, 160
isxdigit() function, 160
iterating (see looping)

J
jobs using C, 274

K
Kernighan, Brian, 1, 140
keywords, 32, 262-263

L
LED lights

Arduino language elements, 194-197
C++ constructors and methods, 179-181
C++ objects, 183-185
external, 175-176
"Hello, LED!" program, 172-174
interrupts example, 216-218
libraries, managing, 177-178
memory management example, 212-214
optimization example, 227-228, 233-234

LED_BUILTIN constant, 192

length of arrays, capacity versus, 83-84
libraries

Arduino
creating custom, 235-243, 249-262
documentation, 262-264
importing, 268
installing, 178-179, 200, 254
managing, 177-178
purpose of, 176
sharing online, 264

C standard library, 150
ctype.h, 160
math.h, 157-159
stdio.h, 150
stdlib.h, 150-154
string.h, 154-157
time.h, 159-160

custom, 235-243
car project initial version, 241-243
documentation, 262-264
editing source files, 260
hardware setup, 235-238
preprocessor directives, 238
preprocessor macros, 239
radio control example, 249-262
sharing online, 264
type definitions, 240-241

debugging, 262
described, 16
finding, 163-164
folder locations, 164
purpose of, 149

libraries folder, 254
Linux

Arduino IDE, installing, 168-169
C tools for, 12-14
library folders, 164

literals, 33-34
constants versus, 191

local variables, 118-119, 120
in stack, 131-133

localtime() function, 159
log() function, 157
log10() function, 157
logic errors, 69
logical operators, 49-51
long (variable type), 29
long long (variable type), 29
lookup tables, 226-227

Index | 291

loop() function, 172
looping, 47

described, 65
do (while) statement, 71-72
for statement, 65-69
nesting in, 72-75
optimization, 230-232
through arrays, 87
while statement, 69-71

LOW constant, 192

M
macOS

Arduino IDE, installing, 168
C tools for, 9-12
library folders, 164

macros (see preprocessor macros)
main() function, 16, 121

command-line arguments, 123-125
exiting, 154
return values, 122-123

malloc() function, 138-139
map() function, 193
masking global variables, 120-121
masks, 230
math.h, 157-159
max() function, 193
memory

addresses, 38
for arrays, 130-131
explained, 127-129
in heap, 133-134
NULL value, 129
in stack, 131-133

in Arduino
EEPROM, 211-212
LED lights example, 212-214
for libraries, 179
PROGMEM, 206-209
SRAM, 209-210
types of, 206

management
allocation, 138-139
deallocation, 139
purpose of, 138

methods (C++), 179-181
calling, 182

microcontrollers, 170
(see also Arduino microcontrollers)

Adafruit components available, 276-277
Raspberry Pi, 273

micros() function, 193
millis() function, 193
min() function, 193
mktime() function, 159
multidimensional arrays

accessing elements, 90-91
creating, 89-90

multifile projects, 244-249
header files, 247-249
.ino files, 244-247

multiplication, optimization of, 229-230

N
naming

functions, 105
variables, 31-32

native applications, 19
nested parentheses, 42
nesting

functions, 114-115
statements, 72-75

newline character, 25, 26, 120
NOT (!) operator, 51
Notepad (Windows editor), 4
null character (\0), 29, 82-83
NULL value in pointers, 129
numbers

bases, compared, 92-93
char variable type, 29, 30
converting strings to, 125, 150-151
floating point types, 31
formatting, 35-37
integers, 29-30, 40
octal/hex literals, 93-94

O
object-oriented programming (see C++)
objects (C++), 179

creating, 182
LED lights and, 183-185

octal numbers
comparison with other bases, 92-93
input/output, 94-96
as literals, 93-94

operators
arithmetic

list of, 39-40

292 | Index

precedence, 41-42
bitwise, 96-97
comparison, 48-49
described, 39
logical (Boolean), 49-51
ternary, 63-65

optimization
with arrays, 225-226
floating-point math

alternatives, 224-225
processing requirements, 223-224

LED lights example, 227-228, 233-234
with lookup tables, 226-227
loops, 230-232
powers of 2, 229-230
setup for, 222-223
strings, 232-233

OR (||) operator, 51
order of operations, 41-42
output

formatting, 35-38
LED lights (see LED lights)
octal/hex values, 94-96
segmented displays

setup, 200-202
temperature output example, 204-206

sensors, temperature output example,
199-200, 204-206

OUTPUT constant, 192
overflowing arrays, 83, 86

P
parameters

multiple types, 110
purpose of, 107

parentheses (), order of operations, 42
parsing user input, 38-39
passing

arguments, 107-108, 137-138
strings, 108-110

percent s (%s), for strings, 26
percent sign (%), printf specifiers, 26, 282
period (.), dot notation, 141
pgm_read_byte() function, 208
pgm_read_dword() function, 208
pgm_read_float() function, 208
pgm_read_word() function, 208
pin-out diagrams, 171
pinMode() function, 193

pins, 171
Pulse Width Modulation (PWM), 194

PlatformIO, 278
pointers, 38

arrays as, 135-136
editing variables via, 134-135
explained, 127-129
functions and, 137-138
with functions and structures, 143-145
NULL value, 129
to structures, 142-143
syntax, 145-147

postfix operators, 68
pow() function, 157, 162-163, 193
powers of 2 optimization, 229-230
precedence (of operators), 41-42
precision for format specifiers, 283
prefix operators, 68
preprocessor directives for custom libraries,

238
preprocessor macros, 191

for custom libraries, 239
purpose of, 173

printf() function, 16, 25, 34-38, 94-96, 281-284
procedural languages, defined, 1
procedures (see functions)
PROGMEM (flash memory), 206-209
programming languages, purpose of, 21
publishing custom libraries, 264
Pulse Width Modulation (PWM), 194
put() function, 211

R
radio control project

controller setup, 252-253, 260-261
creating library, 253-258
purpose of, 249-250
retrofitting car for, 250-252
transceiver breakout, 250
updating car, 258-260

rand() function, 151-153
random numbers, 151-153
random() function, 194
randomSeed() function, 194
Raspberry Pi, 273
reading from flash memory, 207-209
records (see structures)
recursive functions, 115-118

optimization of, 232

Index | 293

references (see pointers)
remainder, optimization of, 229-230
renaming files, 19
requirements for C, 2-3

in Linux, 12-14
in macOS, 9-12
in Windows, 3-8

return statement
exit() function and, 153-154
exiting functions early, 110-111
explained, 111

returned values (functions)
explained, 111
ignoring, 113
from main() function, 122-123
using, 112-113

Ritchie, Dennis, 1, 140
routines (see functions)
running "Hello, World!" programs, 17-19

S
scanf() function, 24, 26, 38-39, 94-96, 157
scope of variables, 75-77

global, 119-121
in Arduino, 210
in heap, 133-134

local, 118-119, 120
in stack, 131-133

seeding random numbers, 151-153
segmented displays

setup, 200-202
temperature output example, 204-206

selecting microcontrollers in IDE, 170-171
semicolon (;), in C code, 16, 22
sensors

setup, 197-198
temperature output example, 199-200,

204-206
sentinel values, 70
Serial Port Monitor, 198-199
serial ports, 198-199
setup() function, 172
sharing custom libraries, 264
short (variable type), 29
signed variable types, 30
sin() function, 157, 194
sine8() function, 225
sizeof operator, 83-84, 139
size_t (variable type), 192

sketches, 172
C++ and, 179-181
downloading, 275
libraries folder, 254

software requirements (see requirements for C)
soldering, 277
source code, accessing, 273
special characters, 28-29
sq() function, 193
sqrt() function, 157, 193
square brackets ([]), array elements, 85-86
SRAM (static random-access memory), 206,

209-210
srand() function, 151-153
stack, 131-133

heap versus, 133
in SRAM, 209

Standard C, 1
standards for C, 1
statements

branching
else statement, 54-57
if statement, 52-58
switch statement, 58-63

flow of, 22-23
looping

described, 65
do (while) statement, 71-72
for statement, 65-69
while statement, 69-71

nesting, 72-75
operators (see operators)
semicolon (;) in, 22
variables (see variables)

stdio.h, 150
stdlib.h, 150-154

atoi() function, 150-151
exit() function, 153-154
rand() function, 151-153
srand() function, 151-153

strcat() function, 155
strcmp() function, 154
strcpy() function, 154
String (variable type), 192, 232-233
string literals, 85, 88
string.h, 154-157
strings

accessing characters, 88-89
as arrays, 26, 29, 82-83

294 | Index

converting to numbers, 125, 150-151
declaring, 29
described, 29
initializing, 85, 88
length of, 33
in memory, 130-131
multidimensional arrays of

accessing elements, 90-91
creating, 89-90

optimization, 232-233
passing to functions, 108-110
reading from flash memory, 208-209
string.h, 154-157
in structures, 161-162
white space in, 120

strlen() function, 154
strncat() function, 155, 156
strncmp() function, 154
strncpy() function, 154, 161-162
struct keyword, 141
structures

accessing members, 141-142
creating, 141
functions and, 143-145
initializing, 141
pointers to, 142-143
purpose of, 140
strings in, 161-162

switch statement, 58-63
default statement and, 61-63
expressions in, 59

symbolic constants (see constants)

T
tan() function, 194
temperature output example

buttons and displays, 204-206
for IoT (Internet of Things), 268-272
sensor readings, 199-200

Terminal app (macOS), 9-12
ternary (?:) operator, 63-65
time() function, 159
time.h, 159-160
timestamps, functions for, 159
tolower() function, 160
toupper() function, 160
truth tables, 50
type definitions, 240-241
type specifiers for printf() function, 26, 281-282

typedef operator, 193, 240-241
types (variables), 24

in Arduino language, 192-193
bool, 192
byte, 192, 229
casting, 42-44
char, 25, 27-29, 30

(see also characters)
double, 31, 224
float, 31, 224
floating point, 31
int, 29, 40, 229
int8_t, 192
int16_t, 192
int32_t, 192
integers, 29-30, 40
long, 29
long long, 29
multiple in parameters, 110
passing to functions, 107-108
prefixes for, 38-39
short, 29
signed/unsigned, 30
size_t, 192
String, 192, 232-233
uint8_t, 192
uint16_t, 192
uint32_t, 192

U
uint8_t (variable type), 192
uint16_t (variable type), 192
uint32_t (variable type), 192
unary operators, 39, 51
unrolling loops, 231
unsigned variable types, 30
uploading code to Arduino microcontrollers,

174
user input (see input)

V
variables

arrays (see arrays)
assigning, 32, 58

conditional assignment, 63-65
C++ objects and, 182
declaring, 25, 27
described, 24
editing via pointers, 134-135

Index | 295

in flash memory, 207
incrementing/decrementing, 67
initializing, 33
literals, 33-34
naming, 31-32
parameters versus, 107
pointers (see pointers)
scope, 75-77

global, 119-121, 133-134, 210
local, 118-119, 120, 131-133

strings (see strings)
structures (see structures)
types, 24

in Arduino language, 192-193
bool, 192
byte, 192, 229
casting, 42-44
char, 25, 27-29, 30

(see also characters)
double, 31, 224
float, 31, 224
floating point, 31
int, 29, 40, 229
int8_t, 192
int16_t, 192
int32_t, 192
integers, 29-30, 40
long, 29
long long, 29
multiple in parameters, 110
passing to functions, 107-108
prefixes for, 38-39
short, 29
signed/unsigned, 30
size_t, 192
String, 192, 232-233
uint8_t, 192
uint16_t, 192

uint32_t, 192
user input, 24-26

verifying Arduino IDE code, 173
visibility of variables, 75
visual clarity, 42
Visual Studio Code, 3

downloading, 278
files, creating, 15
installing

on Linux, 13
on macOS, 10-11
on Windows, 7

PlatformIO, 278
Visual Studio IDE, 3
void type (functions), 105-106
volatile memory, 209

W
warnings

concatenated string length, 156
error messages versus, 33
string length, 33

weather station example (IoT), 268-272
while statement, 69-71
white space in strings, 120
width for format specifiers, 282
Windows

Arduino IDE, installing, 167
C tools for, 3-8
environment variables, editing, 5-7
executable files, 18
library folders, 164
Visual Studio Code, installing, 7

wiring, debugging, 262

X
Xcode, 9-10

296 | Index

About the Author
Marc Loy caught the programming bug after learning 6808 Assembly to program his
school’s HERO 1 in the 1980s. He developed and delivered training classes on Java,
Unix internals, and networking at Sun Microsystems back in the day and has contin‐
ued training a (much) wider audience ever since. He now spends his days consulting
and writing on technical and media topics. He has also caught the maker bug and is
exploring the fast-growing world of embedded electronics and wearables.

Colophon
The animal on the cover of Smaller C is an Atlantic wild canary (Serinus canaria).
This bird, also known as the island or common canary, can be found in a variety of
habitats on the Canary Islands (after which these birds are named), the Azores, and
Madeira.

The Atlantic canary can range from 3.9 to 4.7 inches in length and weighs about a
half an ounce on average. In the wild, these birds are mostly yellow-green in color
with brown streaks along their backs, but a number of differently colored varieties
have been bred in captivity. Males and females have similar coloring, although the
plumage of female Atlantic canaries tends to be more grayish in color. Juvenile Atlan‐
tic canaries are mostly brown.

While they are typically found in open areas dotted with small trees, the Atlantic can‐
ary occurs in a variety of habitats, including artificial habitats such as parks and gar‐
dens. This social bird feeds in flocks and often builds its cup-shaped nests in groups,
well-hidden near the ends or forks in tree branches. Given its wide (and growing)
distribution, the conservation status of this bird is Least Concern. Many of the ani‐
mals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Rev. J.G. Wood’s Animate Creation. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Cover
	Copyright
	Table of Contents
	Preface
	How to Use This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. The ABCs of C
	Strengths and Weaknesses
	Getting Started
	Tools Required
	Creating a C “Hello, World”
	Compiling Your Code
	Running Your Code

	Next Steps

	Chapter 2. Storing and Stating
	Statements in C
	Statement Separators
	Statement Flow

	Variables and Types
	Getting User Input
	Strings and Characters
	Numbers
	Variable Names
	Variable Assignments

	printf() and scanf()
	printf() Formats
	Tailored Output
	scanf() and Parsing Inputs

	Operators and Expressions
	Arithmetic Operators
	Order of Operations
	Type Casting

	Next Steps

	Chapter 3. Flow of Control
	Boolean Values
	Comparison Operators
	Logical Operators

	Branching
	The if Statement
	The switch Statement

	The Ternary Operator and Conditional Assignment
	Loop Statements
	The for Statement
	The while Statement
	The do/while Variation

	Nesting
	Nested Loops and Tables
	Variable Scope

	Exercises
	Next Steps

	Chapter 4. Bits and (Many) Bytes
	Storing Multiple Things with Arrays
	Creating and Manipulating Arrays
	Review of Strings
	Multidimensional Arrays
	Accessing Elements in Multidimensional Arrays

	Storing Bits
	Binary, Octal, Hexadecimal
	Octal and Hexadecimal Literals in C
	Input and Output of Octal and Hex Values
	Bitwise Operators

	Mixing Bits and Bytes
	Conversion Answers
	Next Steps

	Chapter 5. Functions
	Familiar Functions
	Function Flow
	Simple Functions
	Sending Information to Functions
	Passing Simple Types
	Passing Strings to Functions
	Multiple Types
	Exiting a Function

	Returning Information
	Using Returned Values
	Ignoring Returned Values

	Nested Calls and Recursion
	Recursive Functions

	Variable Scope
	Global Variables

	The main() Function
	Return values and main()
	Command-Line Arguments and main()

	Next Steps

	Chapter 6. Pointers and References
	Addresses in C
	The NULL Value and Pointer Errors
	Arrays
	Local Variables and the Stack
	Global Variables and the Heap

	Pointer Arithmetic
	Array Pointers
	Functions and Pointers
	Managing Memory with Arrays
	Allocating with malloc()
	Deallocating with free()

	C Structures
	Defining Structures
	Assigning and Accessing Structure Members
	Pointers to Structures
	Functions and Structures

	Pointer Syntax Recap
	Next Steps

	Chapter 7. Libraries
	The C Standard Library
	stdio.h
	stdlib.h
	string.h
	math.h
	time.h
	ctype.h

	Putting It Together
	Filling In Strings
	Finding Our Interest

	Finding New Libraries
	Next Steps

	Chapter 8. Real-World C With Arduino
	Arduino IDE (Win, Mac, Linux)
	Installing on Windows
	Installing on macOS
	Installing on Linux

	Your First Arduino Project
	Selecting Your Board
	Hello, LED!
	An External LED Upgrade

	Arduino Libraries
	Managing Libraries
	Using Arduino Libraries

	Arduino Sketches and C++
	C++ Objects and Variables
	More Practice with Objects
	C++ Considerations
	Object Homework

	Next Steps

	Chapter 9. Smaller Systems
	The Arduino Environment
	Special Values
	Special Types
	“Built-In” Functions
	Trying Out the Arduino “Stuff”

	Microcontroller I/O
	Sensors and Analog Input
	The Serial Monitor
	Is It Hot in Here?
	Segmented Displays
	Buttons and Digital Input
	Just How Hot Is It?

	Memory Management on Arduino
	Flash (PROGMEM)
	SRAM
	EEPROM
	Remembering Choices

	Interrupts
	Interrupt Service Routines
	Interrupt-Driven Programming

	Exercises
	Next Steps

	Chapter 10. Faster Code
	The Setup
	Floating-Point Versus Integer Math
	Floating-Point Math Alternatives
	Integer Math Versus No Math
	Lookup Tables
	The Project So Far

	The Power of Powers of 2
	Loop Optimizations
	Unrolling for Fun and Profit
	Recursion Versus Iteration

	String Versus char[]
	Our Final Offer
	Next Steps

	Chapter 11. Custom Libraries
	Creating Your Own Library
	Preprocessor Directives
	Preprocessor Macros
	Custom Type Definitions
	Our Car Project

	Multifile Projects
	Code (.ino) Files
	Header Files

	Importing Custom Libraries
	Facilitating Communication
	Retrofitting Our Car
	Creating a Controller
	Creating the Library
	Updating the Car Project
	Getting It Under Control
	Go Driving!
	Documentation and Distribution

	Next Steps

	Chapter 12. Next Next Steps
	Intermediate and Advanced Topics
	IoT and Arduino
	Arduino Source Code

	Other Microcontrollers
	Industry C/C++
	Back to the Future

	Appendix A. Hardware and Software
	Getting the Code
	Getting the Hardware: Adafruit
	VS Code
	Arduino IDE
	Fritzing
	GNU Compiler Collection

	Appendix B. printf() Format Specifier Details
	Specifier Syntax
	Specifier Types
	Specifier Flags
	Width and Precision

	Common Formats

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

