

Programming Rust

SECOND EDITION

Fast, Safe Systems Development

Jim Blandy, Jason Orendorff, and Leonora F. S.
Tindall

Programming Rust

by Jim Blandy, Jason Orendorff, and Leonora F. S. Tindall

Copyright © 2021 Jim Blandy, Leonora F. S. Tindall, Jason Orendorff. All
rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade

Developmental Editor: Jeff Bleiel

Production Editor: Beth Kelly

Copyeditor: Charles Roumeliotis

Proofreader: Kim Wimpsett

Indexer: Potomac Indexing, LLC

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

June 2021: Second Edition

http://oreilly.com

Revision History for the Second Edition

2021-06-11: First Release

2021-11-05: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492052593 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Programming Rust, the cover image, and related trade dress are trademarks
of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes
is subject to open source licenses or the intellectual property rights of others,
it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

978-1-492-05259-3

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492052593

Preface

Rust is a language for systems programming.

This bears some explanation these days, as systems programming is
unfamiliar to most working programmers. Yet it underlies everything we do.

You close your laptop. The operating system detects this, suspends all the
running programs, turns off the screen, and puts the computer to sleep. Later,
you open the laptop: the screen and other components are powered up again,
and each program is able to pick up where it left off. We take this for granted.
But systems programmers wrote a lot of code to make that happen.

Systems programming is for:

Operating systems

Device drivers of all kinds

Filesystems

Databases

Code that runs in very cheap devices, or devices that must be
extremely reliable

Cryptography

Media codecs (software for reading and writing audio, video, and
image files)

Media processing (for example, speech recognition or photo editing
software)

Memory management (for example, implementing a garbage
collector)

Text rendering (the conversion of text and fonts into pixels)

Implementing higher-level programming languages (like JavaScript
and Python)

Networking

Virtualization and software containers

Scientific simulations

Games

In short, systems programming is resource-constrained programming. It is
programming when every byte and every CPU cycle counts.

The amount of systems code involved in supporting a basic app is staggering.

This book will not teach you systems programming. In fact, this book covers
many details of memory management that might seem unnecessarily abstruse
at first, if you haven’t already done some systems programming on your own.
But if you are a seasoned systems programmer, you’ll find that Rust is
something exceptional: a new tool that eliminates major, well-understood
problems that have plagued a whole industry for decades.

Who Should Read This Book
If you’re already a systems programmer and you’re ready for an alternative to
C++, this book is for you. If you’re an experienced developer in any
programming language, whether that’s C#, Java, Python, JavaScript, or
something else, this book is for you too.

However, you don’t just need to learn Rust. To get the most out of the
language, you also need to gain some experience with systems programming.
We recommend reading this book while also implementing some systems
programming side projects in Rust. Build something you’ve never built
before, something that takes advantage of Rust’s speed, concurrency, and
safety. The list of topics at the beginning of this preface should give you
some ideas.

Why We Wrote This Book
We set out to write the book we wished we had when we started learning
Rust. Our goal was to tackle the big, new concepts in Rust up front and head-
on, presenting them clearly and in depth so as to minimize learning by trial
and error.

Navigating This Book
The first two chapters of this book introduce Rust and provide a brief tour
before we move on to the fundamental data types in Chapter 3. Chapters 4
and 5 address the core concepts of ownership and references. We recommend
reading these first five chapters through in order.

Chapters 6 through 10 cover the basics of the language: expressions
(Chapter 6), error handling (Chapter 7), crates and modules (Chapter 8),
structs (Chapter 9), and enums and patterns (Chapter 10). It’s all right to skim
a little here, but don’t skip the chapter on error handling. Trust us.

Chapter 11 covers traits and generics, the last two big concepts you need to
know. Traits are like interfaces in Java or C#. They’re also the main way Rust
supports integrating your types into the language itself. Chapter 12 shows
how traits support operator overloading, and Chapter 13 covers many more
utility traits.

Understanding traits and generics unlocks the rest of the book. Closures and
iterators, two key power tools that you won’t want to miss, are covered in
Chapters 14 and 15, respectively. You can read the remaining chapters in any
order, or just dip into them as needed. They cover the rest of the language:
collections (Chapter 16), strings and text (Chapter 17), input and output
(Chapter 18), concurrency (Chapter 19), asynchronous programming
(Chapter 20), macros (Chapter 21), unsafe code (Chapter 22), and calling
functions in other languages (Chapter 23).

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

NOTE
This icon signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/ProgrammingRust.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does require
permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Programming Rust,
Second Edition by Jim Blandy, Jason Orendorff, and Leonora F. S. Tindall
(O’Reilly). Copyright 2021 Jim Blandy, Leonora F. S. Tindall, and Jason
Orendorff, 978-1-492-05259-3.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

https://github.com/ProgrammingRust
mailto:permissions@oreilly.com

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand access to
live training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly and 200+
other publishers. For more information, please visit http://oreilly.com.

http://oreilly.com
http://www.oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/programming-rust-2e.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

Visit http://www.oreilly.com for more information about our books and
courses.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

https://oreil.ly/programming-rust-2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Acknowledgments
The book you are holding has benefited greatly from the attention of our
official technical reviewers: Brian Anderson, Matt Brubeck, J. David
Eisenberg, Ryan Levick, Jack Moffitt, Carol Nichols, and Erik Nordin; and
our translators: Hidemoto Nakada (中田 秀基) (Japanese), Mr. Songfeng Li
(Simplified Chinese), and Adam Bochenek and Krzysztof Sawka (Polish).

Many other unofficial reviewers read early drafts and provided invaluable
feedback. We would like to thank Eddy Bruel, Nick Fitzgerald, Graydon
Hoare, Michael Kelly, Jeffrey Lim, Jakob Olesen, Gian-Carlo Pascutto, Larry
Rabinowitz, Jaroslav Šnajdr, Joe Walker, and Yoshua Wuyts for their
thoughtful comments. Jeff Walden and Nicolas Pierron were especially
generous with their time, reviewing almost the entire book. Like any
programming venture, a programming book thrives on quality bug reports.
Thank you.

Mozilla was extremely accommodating of Jim’s and Jason’s work on this
project, even though it fell outside our official responsibilities and competed
with them for our attention. We are grateful to Jim’s and Jason’s managers:
Dave Camp, Naveed Ihsanullah, Tom Tromey, and Joe Walker, for their
support. They take a long view of what Mozilla is about; we hope these
results justify the faith they placed in us.

We would also like to express our appreciation for everyone at O’Reilly who
helped bring this project to fruition, especially our astonishingly patient
editors Jeff Bleiel and Brian MacDonald, and our acquisitions editor Zan
McQuade.

Most of all, our heartfelt thanks to our families for their unwavering love,
enthusiasm, and patience.

Chapter 1. Systems Programmers
Can Have Nice Things

In certain contexts—for example the context Rust is targeting—being 10x
or even 2x faster than the competition is a make-or-break thing. It decides
the fate of a system in the market, as much as it would in the hardware
market.

—Graydon Hoare

All computers are now parallel...
Parallel programming is programming.

—Michael McCool et al., Structured Parallel Programming

TrueType parser flaw used by nation-state attacker for surveillance; all
software is security-sensitive.

—Andy Wingo

We chose to open our book with the three quotes above for a reason. But let’s
start with a mystery. What does the following C program do?

int main(int argc, char **argv) {
 unsigned long a[1];
 a[3] = 0x7ffff7b36cebUL;
 return 0;
}

On Jim’s laptop this morning, this program printed:

undef: Error: .netrc file is readable by others.
undef: Remove password or make file unreadable by others.

Then it crashed. If you try it on your machine, it may do something else.
What’s going on here?

The program is flawed. The array a is only one element long, so using a[3] is,

https://oreil.ly/Akgzc
https://oreil.ly/7dnHr

according to the C programming language standard, undefined behavior:

Behavior, upon use of a nonportable or erroneous program construct or of
erroneous data, for which this International Standard imposes no
requirements

Undefined behavior doesn’t just have an unpredictable result: the standard
explicitly permits the program to do anything at all. In our case, storing this
particular value in the fourth element of this particular array happens to
corrupt the function call stack such that returning from the main function,
instead of exiting the program gracefully as it should, jumps into the midst of
code from the standard C library for retrieving a password from a file in the
user’s home directory. It doesn’t go well.

C and C++ have hundreds of rules for avoiding undefined behavior. They’re
mostly common sense: don’t access memory you shouldn’t, don’t let
arithmetic operations overflow, don’t divide by zero, and so on. But the
compiler does not enforce these rules; it has no obligation to detect even
blatant violations. Indeed, the preceding program compiles without errors or
warnings. The responsibility for avoiding undefined behavior falls entirely on
you, the programmer.

Empirically speaking, we programmers do not have a great track record in
this regard. While a student at the University of Utah, researcher Peng Li
modified C and C++ compilers to make the programs they translated report
whether they executed certain forms of undefined behavior. He found that
nearly all programs do, including those from well-respected projects that hold
their code to high standards. Assuming that you can avoid undefined
behavior in C and C++ is like assuming you can win a game of chess simply
because you know the rules.

The occasional strange message or crash may be a quality issue, but
inadvertent undefined behavior has also been a major cause of security flaws
since the 1988 Morris Worm used a variation of the technique shown earlier
to propagate from one computer to another on the early Internet.

So C and C++ put programmers in an awkward position: those languages are
the industry standards for systems programming, but the demands they place

on programmers all but guarantee a steady stream of crashes and security
problems. Answering our mystery just raises a bigger question: can’t we do
any better?

Rust Shoulders the Load for You
Our answer is framed by our three opening quotes. The third quote refers to
reports that Stuxnet, a computer worm found breaking into industrial control
equipment in 2010, gained control of the victims’ computers using, among
many other techniques, undefined behavior in code that parsed TrueType
fonts embedded in word processing documents. It’s a safe bet that the authors
of that code were not expecting it to be used this way, illustrating that it’s not
just operating systems and servers that need to worry about security: any
software that might handle data from an untrusted source could be the target
of an exploit.

The Rust language makes you a simple promise: if your program passes the
compiler’s checks, it is free of undefined behavior. Dangling pointers,
double-frees, and null pointer dereferences are all caught at compile time.
Array references are secured with a mix of compile-time and run-time
checks, so there are no buffer overruns: the Rust equivalent of our
unfortunate C program exits safely with an error message.

Further, Rust aims to be both safe and pleasant to use. In order to make
stronger guarantees about your program’s behavior, Rust imposes more
restrictions on your code than C and C++ do, and these restrictions take
practice and experience to get used to. But the language overall is flexible
and expressive. This is attested to by the breadth of code written in Rust and
the range of application areas to which it is being applied.

In our experience, being able to trust the language to catch more mistakes
encourages us to try more ambitious projects. Modifying large, complex
programs is less risky when you know that issues of memory management
and pointer validity are taken care of. And debugging is much simpler when
the potential consequences of a bug don’t include corrupting unrelated parts
of your program.

Of course, there are still plenty of bugs that Rust cannot detect. But in
practice, taking undefined behavior off the table substantially changes the

character of development for the better.

Parallel Programming Is Tamed
Concurrency is notoriously difficult to use correctly in C and C++.
Developers usually turn to concurrency only when single-threaded code has
proven unable to achieve the performance they need. But the second opening
quote argues that parallelism is too important to modern machines to treat as
a method of last resort.

As it turns out, the same restrictions that ensure memory safety in Rust also
ensure that Rust programs are free of data races. You can share data freely
between threads, as long as it isn’t changing. Data that does change can only
be accessed using synchronization primitives. All the traditional concurrency
tools are available: mutexes, condition variables, channels, atomics, and so
on. Rust simply checks that you’re using them properly.

This makes Rust an excellent language for exploiting the abilities of modern
multi-core machines. The Rust ecosystem offers libraries that go beyond the
usual concurrency primitives and help you distribute complex loads evenly
across pools of processors, use lock-free synchronization mechanisms like
Read-Copy-Update, and more.

And Yet Rust Is Still Fast
This, finally, is our first opening quote. Rust shares the ambitions Bjarne
Stroustrup articulates for C++ in his paper “Abstraction and the C++
Machine Model”:

In general, C++ implementations obey the zero-overhead principle: What
you don’t use, you don’t pay for. And further: What you do use, you
couldn’t hand code any better.

Systems programming is often concerned with pushing the machine to its
limits. For video games, the entire machine should be devoted to creating the
best experience for the player. For web browsers, the efficiency of the
browser sets the ceiling on what content authors can do. Within the
machine’s inherent limitations, as much memory and processor attention as
possible must be left to the content itself. The same principle applies to
operating systems: the kernel should make the machine’s resources available
to user programs, not consume them itself.

But when we say Rust is “fast,” what does that really mean? One can write
slow code in any general-purpose language. It would be more precise to say
that, if you are ready to make the investment to design your program to make
the best use of the underlying machine’s capabilities, Rust supports you in
that effort. The language is designed with efficient defaults and gives you the
ability to control how memory gets used and how the processor’s attention is
spent.

Rust Makes Collaboration Easier
We hid a fourth quote in the title of this chapter: “Systems programmers can
have nice things.” This refers to Rust’s support for code sharing and reuse.

Rust’s package manager and build tool, Cargo, makes it easy to use libraries
published by others on Rust’s public package repository, the crates.io
website. You simply add the library’s name and required version number to a
file, and Cargo takes care of downloading the library, together with whatever
other libraries it uses in turn, and linking the whole lot together. You can
think of Cargo as Rust’s answer to NPM or RubyGems, with an emphasis on
sound version management and reproducible builds. There are popular Rust
libraries providing everything from off-the-shelf serialization to HTTP clients
and servers and modern graphics APIs.

Going further, the language itself is also designed to support collaboration:
Rust’s traits and generics let you create libraries with flexible interfaces so
that they can serve in many different contexts. And Rust’s standard library
provides a core set of fundamental types that establish shared conventions for
common cases, making different libraries easier to use together.

The next chapter aims to make concrete the broad claims we’ve made in this
chapter, with a tour of several small Rust programs that show off the
language’s strengths.

Chapter 2. A Tour of Rust

Rust presents the authors of a book like this one with a challenge: what gives
the language its character is not some specific, amazing feature that we can
show off on the first page, but rather, the way all its parts are designed to
work together smoothly in service of the goals we laid out in the last chapter:
safe, performant systems programming. Each part of the language is best
justified in the context of all the rest.

So rather than tackle one language feature at a time, we’ve prepared a tour of
a few small but complete programs, each of which introduces some more
features of the language, in context:

As a warm-up, we have a program that does a simple calculation on
its command-line arguments, with unit tests. This shows Rust’s core
types and introduces traits.

Next, we build a web server. We’ll use a third-party library to handle
the details of HTTP and introduce string handling, closures, and
error handling.

Our third program plots a beautiful fractal, distributing the
computation across multiple threads for speed. This includes an
example of a generic function, illustrates how to handle something
like a buffer of pixels, and shows off Rust’s support for concurrency.

Finally, we show a robust command-line tool that processes files
using regular expressions. This presents the Rust standard library’s
facilities for working with files, and the most commonly used third-
party regular expression library.

Rust’s promise to prevent undefined behavior with minimal impact on
performance influences the design of every part of the system, from the
standard data structures like vectors and strings to the way Rust programs use
third-party libraries. The details of how this is managed are covered

throughout the book. But for now, we want to show you that Rust is a capable
and pleasant language to use.

First, of course, you need to install Rust on your computer.

rustup and Cargo
The best way to install Rust is to use rustup. Go to https://rustup.rs and
follow the instructions there.

You can, alternatively, go to the Rust website to get pre-built packages for
Linux, macOS, and Windows. Rust is also included in some operating system
distributions. We prefer rustup because it’s a tool for managing Rust
installations, like RVM for Ruby or NVM for Node. For example, when a
new version of Rust is released, you’ll be able to upgrade with zero clicks by
typing rustup update.

In any case, once you’ve completed the installation, you should have three
new commands available at your command line:

$ cargo --version
cargo 1.49.0 (d00d64df9 2020-12-05)
$ rustc --version
rustc 1.49.0 (e1884a8e3 2020-12-29)
$ rustdoc --version
rustdoc 1.49.0 (e1884a8e3 2020-12-29)

Here, the $ is the command prompt; on Windows, this would be C:\> or
something similar. In this transcript we run the three commands we installed,
asking each to report which version it is. Taking each command in turn:

cargo is Rust’s compilation manager, package manager, and general-
purpose tool. You can use Cargo to start a new project, build and run
your program, and manage any external libraries your code depends
on.

rustc is the Rust compiler. Usually we let Cargo invoke the compiler
for us, but sometimes it’s useful to run it directly.

rustdoc is the Rust documentation tool. If you write documentation
in comments of the appropriate form in your program’s source code,
rustdoc can build nicely formatted HTML from them. Like rustc, we

https://rustup.rs
https://oreil.ly/4Q2FB

usually let Cargo run rustdoc for us.

As a convenience, Cargo can create a new Rust package for us, with some
standard metadata arranged appropriately:

$ cargo new hello
 Created binary (application) `hello` package

This command creates a new package directory named hello, ready to build a
command-line executable.

Looking inside the package’s top-level directory:

$ cd hello
$ ls -la
total 24
drwxrwxr-x. 4 jimb jimb 4096 Sep 22 21:09 .
drwx------. 62 jimb jimb 4096 Sep 22 21:09 ..
drwxrwxr-x. 6 jimb jimb 4096 Sep 22 21:09 .git
-rw-rw-r--. 1 jimb jimb 7 Sep 22 21:09 .gitignore
-rw-rw-r--. 1 jimb jimb 88 Sep 22 21:09 Cargo.toml
drwxrwxr-x. 2 jimb jimb 4096 Sep 22 21:09 src

We can see that Cargo has created a file Cargo.toml to hold metadata for the
package. At the moment this file doesn’t contain much:

[package]
name = "hello"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at
https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]

If our program ever acquires dependencies on other libraries, we can record
them in this file, and Cargo will take care of downloading, building, and
updating those libraries for us. We’ll cover the Cargo.toml file in detail in
Chapter 8.

Cargo has set up our package for use with the git version control system,
creating a .git metadata subdirectory and a .gitignore file. You can tell Cargo
to skip this step by passing --vcs none to cargo new on the command line.

The src subdirectory contains the actual Rust code:

$ cd src
$ ls -l
total 4
-rw-rw-r--. 1 jimb jimb 45 Sep 22 21:09 main.rs

It seems that Cargo has begun writing the program on our behalf. The main.rs
file contains the text:

fn main() {
 println!("Hello, world!");
}

In Rust, you don’t even need to write your own “Hello, World!” program.
And this is the extent of the boilerplate for a new Rust program: two files,
totaling thirteen lines.

We can invoke the cargo run command from any directory in the package to
build and run our program:

$ cargo run
 Compiling hello v0.1.0 (/home/jimb/rust/hello)
 Finished dev [unoptimized + debuginfo] target(s) in 0.28s
 Running `/home/jimb/rust/hello/target/debug/hello`
Hello, world!

Here, Cargo has invoked the Rust compiler, rustc, and then run the
executable it produced. Cargo places the executable in the target subdirectory
at the top of the package:

$ ls -l ../target/debug
total 580
drwxrwxr-x. 2 jimb jimb 4096 Sep 22 21:37 build
drwxrwxr-x. 2 jimb jimb 4096 Sep 22 21:37 deps
drwxrwxr-x. 2 jimb jimb 4096 Sep 22 21:37 examples

-rwxrwxr-x. 1 jimb jimb 576632 Sep 22 21:37 hello
-rw-rw-r--. 1 jimb jimb 198 Sep 22 21:37 hello.d
drwxrwxr-x. 2 jimb jimb 68 Sep 22 21:37 incremental
$../target/debug/hello
Hello, world!

When we’re through, Cargo can clean up the generated files for us:

$ cargo clean
$../target/debug/hello
bash: ../target/debug/hello: No such file or directory

Rust Functions
Rust’s syntax is deliberately unoriginal. If you are familiar with C, C++,
Java, or JavaScript, you can probably find your way through the general
structure of a Rust program. Here is a function that computes the greatest
common divisor of two integers, using Euclid’s algorithm. You can add this
code to the end of src/main.rs:

fn gcd(mut n: u64, mut m: u64) -> u64 {
 assert!(n != 0 && m != 0);
 while m != 0 {
 if m < n {
 let t = m;
 m = n;
 n = t;
 }
 m = m % n;
 }
 n
}

The fn keyword (pronounced “fun”) introduces a function. Here, we’re
defining a function named gcd, which takes two parameters n and m, each of
which is of type u64, an unsigned 64-bit integer. The -> token precedes the
return type: our function returns a u64 value. Four-space indentation is
standard Rust style.

Rust’s machine integer type names reflect their size and signedness: i32 is a
signed 32-bit integer; u8 is an unsigned 8-bit integer (used for “byte” values),
and so on. The isize and usize types hold pointer-sized signed and unsigned
integers, 32 bits long on 32-bit platforms, and 64 bits long on 64-bit
platforms. Rust also has two floating-point types, f32 and f64, which are the
IEEE single- and double-precision floating-point types, like float and double
in C and C++.

By default, once a variable is initialized, its value can’t be changed, but
placing the mut keyword (pronounced “mute,” short for mutable) before the

https://oreil.ly/DFpyb

parameters n and m allows our function body to assign to them. In practice,
most variables don’t get assigned to; the mut keyword on those that do can be
a helpful hint when reading code.

The function’s body starts with a call to the assert! macro, verifying that
neither argument is zero. The ! character marks this as a macro invocation,
not a function call. Like the assert macro in C and C++, Rust’s assert! checks
that its argument is true, and if it is not, terminates the program with a helpful
message including the source location of the failing check; this kind of abrupt
termination is called a panic. Unlike C and C++, in which assertions can be
skipped, Rust always checks assertions regardless of how the program was
compiled. There is also a debug_assert! macro, whose assertions are skipped
when the program is compiled for speed.

The heart of our function is a while loop containing an if statement and an
assignment. Unlike C and C++, Rust does not require parentheses around the
conditional expressions, but it does require curly braces around the
statements they control.

A let statement declares a local variable, like t in our function. We don’t need
to write out t’s type, as long as Rust can infer it from how the variable is
used. In our function, the only type that works for t is u64, matching m and n.
Rust only infers types within function bodies: you must write out the types of
function parameters and return values, as we did before. If we wanted to spell
out t’s type, we could write:

let t: u64 = m;

Rust has a return statement, but the gcd function doesn’t need one. If a
function body ends with an expression that is not followed by a semicolon,
that’s the function’s return value. In fact, any block surrounded by curly
braces can function as an expression. For example, this is an expression that
prints a message and then yields x.cos() as its value:

{
 println!("evaluating cos x");
 x.cos()

}

It’s typical in Rust to use this form to establish the function’s value when
control “falls off the end” of the function, and use return statements only for
explicit early returns from the midst of a function.

Writing and Running Unit Tests
Rust has simple support for testing built into the language. To test our gcd
function, we can add this code at the end of src/main.rs:

#[test]
fn test_gcd() {
 assert_eq!(gcd(14, 15), 1);

 assert_eq!(gcd(2 * 3 * 5 * 11 * 17,
 3 * 7 * 11 * 13 * 19),
 3 * 11);
}

Here we define a function named test_gcd, which calls gcd and checks that it
returns correct values. The #[test] atop the definition marks test_gcd as a test
function, to be skipped in normal compilations, but included and called
automatically if we run our program with the cargo test command. We can
have test functions scattered throughout our source tree, placed next to the
code they exercise, and cargo test will automatically gather them up and run
them all.

The #[test] marker is an example of an attribute. Attributes are an open-
ended system for marking functions and other declarations with extra
information, like attributes in C++ and C#, or annotations in Java. They’re
used to control compiler warnings and code style checks, include code
conditionally (like #ifdef in C and C++), tell Rust how to interact with code
written in other languages, and so on. We’ll see more examples of attributes
as we go.

With our gcd and test_gcd definitions added to the hello package we created
at the beginning of the chapter, and our current directory somewhere within
the package’s subtree, we can run the tests as follows:

$ cargo test
 Compiling hello v0.1.0 (/home/jimb/rust/hello)
 Finished test [unoptimized + debuginfo] target(s) in 0.35s

 Running unittests (/home/jimb/rust/hello/target/debug/deps/hello-2375...)

running 1 test
test test_gcd ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

Handling Command-Line Arguments
In order for our program to take a series of numbers as command-line
arguments and print their greatest common divisor, we can replace the main
function in src/main.rs with the following:

use std::str::FromStr;
use std::env;

fn main() {
 let mut numbers = Vec::new();

 for arg in env::args().skip(1) {
 numbers.push(u64::from_str(&arg)
 .expect("error parsing argument"));
 }

 if numbers.len() == 0 {
 eprintln!("Usage: gcd NUMBER ...");
 std::process::exit(1);
 }

 let mut d = numbers[0];
 for m in &numbers[1..] {
 d = gcd(d, *m);
 }

 println!("The greatest common divisor of {:?} is {}",
 numbers, d);
}

This is a large block of code, so let’s take it piece by piece:

use std::str::FromStr;
use std::env;

The first use declaration brings the standard library trait FromStr into scope.
A trait is a collection of methods that types can implement. Any type that
implements the FromStr trait has a from_str method that tries to parse a value
of that type from a string. The u64 type implements FromStr, and we’ll call

u64::from_str to parse our command-line arguments. Although we never use
the name FromStr elsewhere in the program, a trait must be in scope in order
to use its methods. We’ll cover traits in detail in Chapter 11.

The second use declaration brings in the std::env module, which provides
several useful functions and types for interacting with the execution
environment, including the args function, which gives us access to the
program’s command-line arguments.

Moving on to the program’s main function:

fn main() {

Our main function doesn’t return a value, so we can simply omit the -> and
return type that would normally follow the parameter list.

let mut numbers = Vec::new();

We declare a mutable local variable numbers and initialize it to an empty
vector. Vec is Rust’s growable vector type, analogous to C++’s std::vector, a
Python list, or a JavaScript array. Even though vectors are designed to be
grown and shrunk dynamically, we must still mark the variable mut for Rust
to let us push numbers onto the end of it.

The type of numbers is Vec<u64>, a vector of u64 values, but as before, we
don’t need to write that out. Rust will infer it for us, in part because what we
push onto the vector are u64 values, but also because we pass the vector’s
elements to gcd, which accepts only u64 values.

for arg in env::args().skip(1) {

Here we use a for loop to process our command-line arguments, setting the
variable arg to each argument in turn and evaluating the loop body.

The std::env module’s args function returns an iterator, a value that produces
each argument on demand, and indicates when we’re done. Iterators are
ubiquitous in Rust; the standard library includes other iterators that produce

the elements of a vector, the lines of a file, messages received on a
communications channel, and almost anything else that makes sense to loop
over. Rust’s iterators are very efficient: the compiler is usually able to
translate them into the same code as a handwritten loop. We’ll show how this
works and give examples in Chapter 15.

Beyond their use with for loops, iterators include a broad selection of
methods you can use directly. For example, the first value produced by the
iterator returned by args is always the name of the program being run. We
want to skip that, so we call the iterator’s skip method to produce a new
iterator that omits that first value.

numbers.push(u64::from_str(&arg)
 .expect("error parsing argument"));

Here we call u64::from_str to attempt to parse our command-line argument
arg as an unsigned 64-bit integer. Rather than a method we’re invoking on
some u64 value we have at hand, u64::from_str is a function associated with
the u64 type, akin to a static method in C++ or Java. The from_str function
doesn’t return a u64 directly, but rather a Result value that indicates whether
the parse succeeded or failed. A Result value is one of two variants:

A value written Ok(v), indicating that the parse succeeded and v is
the value produced

A value written Err(e), indicating that the parse failed and e is an
error value explaining why

Functions that do anything that might fail, such as doing input or output or
otherwise interacting with the operating system, can return Result types
whose Ok variants carry successful results—the count of bytes transferred,
the file opened, and so on—and whose Err variants carry an error code
indicating what went wrong. Unlike most modern languages, Rust does not
have exceptions: all errors are handled using either Result or panic, as
outlined in Chapter 7.

We use Result’s expect method to check the success of our parse. If the result

is an Err(e), expect prints a message that includes a description of e and exits
the program immediately. However, if the result is Ok(v), expect simply
returns v itself, which we are finally able to push onto the end of our vector
of numbers.

if numbers.len() == 0 {
 eprintln!("Usage: gcd NUMBER ...");
 std::process::exit(1);
}

There’s no greatest common divisor of an empty set of numbers, so we check
that our vector has at least one element and exit the program with an error if it
doesn’t. We use the eprintln! macro to write our error message to the
standard error output stream.

let mut d = numbers[0];
for m in &numbers[1..] {
 d = gcd(d, *m);
}

This loop uses d as its running value, updating it to stay the greatest common
divisor of all the numbers we’ve processed so far. As before, we must mark d
as mutable so that we can assign to it in the loop.

The for loop has two surprising bits to it. First, we wrote for m in
&numbers[1..]; what is the & operator for? Second, we wrote gcd(d, *m);
what is the * in *m for? These two details are complementary to each other.

Up to this point, our code has operated only on simple values like integers
that fit in fixed-size blocks of memory. But now we’re about to iterate over a
vector, which could be of any size whatsoever—possibly very large. Rust is
cautious when handling such values: it wants to leave the programmer in
control over memory consumption, making it clear how long each value
lives, while still ensuring memory is freed promptly when no longer needed.

So when we iterate, we want to tell Rust that ownership of the vector should
remain with numbers; we are merely borrowing its elements for the loop. The
& operator in &numbers[1..] borrows a reference to the vector’s elements

from the second onward. The for loop iterates over the referenced elements,
letting m borrow each element in succession. The * operator in *m
dereferences m, yielding the value it refers to; this is the next u64 we want to
pass to gcd. Finally, since numbers owns the vector, Rust automatically frees
it when numbers goes out of scope at the end of main.

Rust’s rules for ownership and references are key to Rust’s memory
management and safe concurrency; we discuss them in detail in Chapter 4
and its companion, Chapter 5. You’ll need to be comfortable with those rules
to be comfortable in Rust, but for this introductory tour, all you need to know
is that &x borrows a reference to x, and that *r is the value that the reference
r refers to.

Continuing our walk through the program:

println!("The greatest common divisor of {:?} is {}",
 numbers, d);

Having iterated over the elements of numbers, the program prints the results
to the standard output stream. The println! macro takes a template string,
substitutes formatted versions of the remaining arguments for the {...} forms
as they appear in the template string, and writes the result to the standard
output stream.

Unlike C and C++, which require main to return zero if the program finished
successfully, or a nonzero exit status if something went wrong, Rust assumes
that if main returns at all, the program finished successfully. Only by
explicitly calling functions like expect or std::process::exit can we cause the
program to terminate with an error status code.

The cargo run command allows us to pass arguments to our program, so we
can try out our command-line handling:

$ cargo run 42 56
 Compiling hello v0.1.0 (/home/jimb/rust/hello)
 Finished dev [unoptimized + debuginfo] target(s) in 0.22s
 Running `/home/jimb/rust/hello/target/debug/hello 42 56`
The greatest common divisor of [42, 56] is 14
$ cargo run 799459 28823 27347

 Finished dev [unoptimized + debuginfo] target(s) in 0.02s
 Running `/home/jimb/rust/hello/target/debug/hello 799459 28823 27347`
The greatest common divisor of [799459, 28823, 27347] is 41
$ cargo run 83
 Finished dev [unoptimized + debuginfo] target(s) in 0.02s
 Running `/home/jimb/rust/hello/target/debug/hello 83`
The greatest common divisor of [83] is 83
$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.02s
 Running `/home/jimb/rust/hello/target/debug/hello`
Usage: gcd NUMBER ...

We’ve used a few features from Rust’s standard library in this section. If
you’re curious about what else is available, we strongly encourage you to try
out Rust’s online documentation. It has a live search feature that makes
exploration easy and even includes links to the source code. The rustup
command automatically installs a copy on your computer when you install
Rust itself. You can view the standard library documentation on the Rust
website, or in your browser with the command:

$ rustup doc --std

https://oreil.ly/CGsB5

Serving Pages to the Web
One of Rust’s strengths is the collection of freely available library packages
published on the website crates.io. The cargo command makes it easy for
your code to use a crates.io package: it will download the right version of the
package, build it, and update it as requested. A Rust package, whether a
library or an executable, is called a crate; Cargo and crates.io both derive
their names from this term.

To show how this works, we’ll put together a simple web server using the
actix-web web framework crate, the serde serialization crate, and various
other crates on which they depend. As shown in Figure 2-1, our website will
prompt the user for two numbers and compute their greatest common divisor.

Figure 2-1. Web page offering to compute GCD

First, we’ll have Cargo create a new package for us, named actix-gcd:

$ cargo new actix-gcd
 Created binary (application) `actix-gcd` package
$ cd actix-gcd

Then, we’ll edit our new project’s Cargo.toml file to list the packages we
want to use; its contents should be as follows:

[package]
name = "actix-gcd"
version = "0.1.0"
edition = "2021"

https://crates.io

See more keys and their definitions at
https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]
actix-web = "1.0.8"
serde = { version = "1.0", features = ["derive"] }

Each line in the [dependencies] section of Cargo.toml gives the name of a
crate on crates.io, and the version of that crate we would like to use. In this
case, we want version 1.0.8 of the actix-web crate, and version 1.0 of the
serde crate. There may well be versions of these crates on crates.io newer
than those shown here, but by naming the specific versions we tested this
code against, we can ensure the code will continue to compile even as new
versions of the packages are published. We’ll discuss version management in
more detail in Chapter 8.

Crates can have optional features: parts of the interface or implementation
that not all users need, but that nonetheless make sense to include in that
crate. The serde crate offers a wonderfully terse way to handle data from web
forms, but according to serde’s documentation, it is only available if we
select the crate’s derive feature, so we’ve requested it in our Cargo.toml file
as shown.

Note that we need only name those crates we’ll use directly; cargo takes care
of bringing in whatever other crates those need in turn.

For our first iteration, we’ll keep the web server simple: it will serve only the
page that prompts the user for numbers to compute with. In actix-
gcd/src/main.rs, we’ll place the following text:

use actix_web::{web, App, HttpResponse, HttpServer};

fn main() {
 let server = HttpServer::new(|| {
 App::new()
 .route("/", web::get().to(get_index))
 });

 println!("Serving on http://localhost:3000...");
 server
 .bind("127.0.0.1:3000").expect("error binding server to address")

 .run().expect("error running server");
}

fn get_index() -> HttpResponse {
 HttpResponse::Ok()
 .content_type("text/html")
 .body(
 r#"
 <title>GCD Calculator</title>
 <form action="/gcd" method="post">
 <input type="text" name="n"/>
 <input type="text" name="m"/>
 <button type="submit">Compute GCD</button>
 </form>
 "#,
)
}

We start with a use declaration to make some of the actix-web crate’s
definitions easier to get at. When we write use actix_web::{...}, each of the
names listed inside the curly brackets becomes directly usable in our code;
instead of having to spell out the full name actix_web::HttpResponse each
time we use it, we can simply refer to it as HttpResponse. (We’ll get to the
serde crate in a bit.)

Our main function is simple: it calls HttpServer::new to create a server that
responds to requests for a single path, "/"; prints a message reminding us how
to connect to it; and then sets it listening on TCP port 3000 on the local
machine.

The argument we pass to HttpServer::new is the Rust closure expression || {
App::new() ... }. A closure is a value that can be called as if it were a
function. This closure takes no arguments, but if it did, their names would
appear between the || vertical bars. The { ... } is the body of the closure.
When we start our server, Actix starts a pool of threads to handle incoming
requests. Each thread calls our closure to get a fresh copy of the App value
that tells it how to route and handle requests.

The closure calls App::new to create a new, empty App and then calls its
route method to add a single route for the path "/". The handler provided for
that route, web::get().to(get_index), treats HTTP GET requests by calling the

function get_index. The route method returns the same App it was invoked
on, now enhanced with the new route. Since there’s no semicolon at the end
of the closure’s body, the App is the closure’s return value, ready for the
HttpServer thread to use.

The get_index function builds an HttpResponse value representing the
response to an HTTP GET / request. HttpResponse::Ok() represents an HTTP
200 OK status, indicating that the request succeeded. We call its content_type
and body methods to fill in the details of the response; each call returns the
HttpResponse it was applied to, with the modifications made. Finally, the
return value from body serves as the return value of get_index.

Since the response text contains a lot of double quotes, we write it using the
Rust “raw string” syntax: the letter r, zero or more hash marks (that is, the #
character), a double quote, and then the contents of the string, terminated by
another double quote followed by the same number of hash marks. Any
character may occur within a raw string without being escaped, including
double quotes; in fact, no escape sequences like \" are recognized. We can
always ensure the string ends where we intend by using more hash marks
around the quotes than ever appear in the text.

Having written main.rs, we can use the cargo run command to do everything
needed to set it running: fetching the needed crates, compiling them, building
our own program, linking everything together, and starting it up:

$ cargo run
 Updating crates.io index
 Downloading crates ...
 Downloaded serde v1.0.100
 Downloaded actix-web v1.0.8
 Downloaded serde_derive v1.0.100
...
 Compiling serde_json v1.0.40
 Compiling actix-router v0.1.5
 Compiling actix-http v0.2.10
 Compiling awc v0.2.7
 Compiling actix-web v1.0.8
 Compiling gcd v0.1.0 (/home/jimb/rust/actix-gcd)
 Finished dev [unoptimized + debuginfo] target(s) in 1m 24s
 Running `/home/jimb/rust/actix-gcd/target/debug/actix-gcd`

Serving on http://localhost:3000...

At this point, we can visit the given URL in our browser and see the page
shown earlier in Figure 2-1.

Unfortunately, clicking Compute GCD doesn’t do anything, other than
navigate our browser to a blank page. Let’s fix that next, by adding another
route to our App to handle the POST request from our form.

It’s finally time to use the serde crate we listed in our Cargo.toml file: it
provides a handy tool that will help us process the form data. First, we’ll need
to add the following use directive to the top of src/main.rs:

use serde::Deserialize;

Rust programmers typically gather all their use declarations together toward
the top of the file, but this isn’t strictly necessary: Rust allows declarations to
occur in any order, as long as they appear at the appropriate level of nesting.

Next, let’s define a Rust structure type that represents the values we expect
from our form:

#[derive(Deserialize)]
struct GcdParameters {
 n: u64,
 m: u64,
}

This defines a new type named GcdParameters that has two fields, n and m,
each of which is a u64—the argument type our gcd function expects.

The annotation above the struct definition is an attribute, like the #[test]
attribute we used earlier to mark test functions. Placing a #
[derive(Deserialize)] attribute above a type definition tells the serde crate to
examine the type when the program is compiled and automatically generate
code to parse a value of this type from data in the format that HTML forms
use for POST requests. In fact, that attribute is sufficient to let you parse a
GcdParameters value from almost any sort of structured data: JSON, YAML,

TOML, or any one of a number of other textual and binary formats. The
serde crate also provides a Serialize attribute that generates code to do the
reverse, taking Rust values and writing them out in a structured format.

With this definition in place, we can write our handler function quite easily:

fn post_gcd(form: web::Form<GcdParameters>) -> HttpResponse {
 if form.n == 0 || form.m == 0 {
 return HttpResponse::BadRequest()
 .content_type("text/html")
 .body("Computing the GCD with zero is boring.");
 }

 let response =
 format!("The greatest common divisor of the numbers {} and {} \
 is {}\n",
 form.n, form.m, gcd(form.n, form.m));

 HttpResponse::Ok()
 .content_type("text/html")
 .body(response)
}

For a function to serve as an Actix request handler, its arguments must all
have types Actix knows how to extract from an HTTP request. Our post_gcd
function takes one argument, form, whose type is
web::Form<GcdParameters>. Actix knows how to extract a value of any type
web::Form<T> from an HTTP request if, and only if, T can be deserialized
from HTML form POST data. Since we’ve placed the #[derive(Deserialize)]
attribute on our GcdParameters type definition, Actix can deserialize it from
form data, so request handlers can expect a web::Form<GcdParameters>
value as a parameter. These relationships between types and functions are all
worked out at compile time; if you write a handler function with an argument
type that Actix doesn’t know how to handle, the Rust compiler lets you know
of your mistake immediately.

Looking inside post_gcd, the function first returns an HTTP 400 BAD
REQUEST error if either parameter is zero, since our gcd function will panic
if they are. Then, it constructs a response to the request using the format!
macro. The format! macro is just like the println! macro, except that instead

of writing the text to the standard output, it returns it as a string. Once it has
obtained the text of the response, post_gcd wraps it up in an HTTP 200 OK
response, sets its content type, and returns it to be delivered to the sender.

We also have to register post_gcd as the handler for the form. We’ll replace
our main function with this version:

fn main() {
 let server = HttpServer::new(|| {
 App::new()
 .route("/", web::get().to(get_index))
 .route("/gcd", web::post().to(post_gcd))
 });

 println!("Serving on http://localhost:3000...");
 server
 .bind("127.0.0.1:3000").expect("error binding server to address")
 .run().expect("error running server");
}

The only change here is that we’ve added another call to route, establishing
web::post().to(post_gcd) as the handler for the path "/gcd".

The last remaining piece is the gcd function we wrote earlier, which goes in
the actix-gcd/src/main.rs file. With that in place, you can interrupt any
servers you might have left running and rebuild and restart the program:

$ cargo run
 Compiling actix-gcd v0.1.0 (/home/jimb/rust/actix-gcd)
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/actix-gcd`
Serving on http://localhost:3000...

This time, by visiting http://localhost:3000, entering some numbers, and
clicking the Compute GCD button, you should actually see some results
(Figure 2-2).

Figure 2-2. Web page showing results of computing GCD

Concurrency
One of Rust’s great strengths is its support for concurrent programming. The
same rules that ensure Rust programs are free of memory errors also ensure
threads can share memory only in ways that avoid data races. For example:

If you use a mutex to coordinate threads making changes to a shared
data structure, Rust ensures that you can’t access the data except
when you’re holding the lock, and releases the lock automatically
when you’re done. In C and C++, the relationship between a mutex
and the data it protects is left to the comments.

If you want to share read-only data among several threads, Rust
ensures that you cannot modify the data accidentally. In C and C++,
the type system can help with this, but it’s easy to get it wrong.

If you transfer ownership of a data structure from one thread to
another, Rust makes sure you have indeed relinquished all access to
it. In C and C++, it’s up to you to check that nothing on the sending
thread will ever touch the data again. If you don’t get it right, the
effects can depend on what happens to be in the processor’s cache
and how many writes to memory you’ve done recently. Not that
we’re bitter.

In this section, we’ll walk you through the process of writing your second
multi-threaded program.

You’ve already written your first: the Actix web framework you used to
implement the Greatest Common Divisor server uses a pool of threads to run
request handler functions. If the server receives simultaneous requests, it may
run the get_form and post_gcd functions in several threads at once. That may
come as a bit of a shock, since we certainly didn’t have concurrency in mind
when we wrote those functions. But Rust guarantees this is safe to do, no
matter how elaborate your server gets: if your program compiles, it is free of
data races. All Rust functions are thread-safe.

This section’s program plots the Mandelbrot set, a fractal produced by
iterating a simple function on complex numbers. Plotting the Mandelbrot set
is often called an embarrassingly parallel algorithm, because the pattern of
communication between the threads is so simple; we’ll cover more complex
patterns in Chapter 19, but this task demonstrates some of the essentials.

To get started, we’ll create a fresh Rust project:

$ cargo new mandelbrot
 Created binary (application) `mandelbrot` package
$ cd mandelbrot

All the code will go in mandelbrot/src/main.rs, and we’ll add some
dependencies to mandelbrot/Cargo.toml.

Before we get into the concurrent Mandelbrot implementation, we need to
describe the computation we’re going to perform.

What the Mandelbrot Set Actually Is
When reading code, it’s helpful to have a concrete idea of what it’s trying to
do, so let’s take a short excursion into some pure mathematics. We’ll start
with a simple case and then add complicating details until we arrive at the
calculation at the heart of the Mandelbrot set.

Here’s an infinite loop, written using Rust’s dedicated syntax for that, a loop
statement:

fn square_loop(mut x: f64) {
 loop {
 x = x * x;
 }
}

In real life, Rust can see that x is never used for anything and so might not
bother computing its value. But for the time being, assume the code runs as
written. What happens to the value of x? Squaring any number smaller than 1
makes it smaller, so it approaches zero; squaring 1 yields 1; squaring a
number larger than 1 makes it larger, so it approaches infinity; and squaring a
negative number makes it positive, after which it behaves like one of the
prior cases (Figure 2-3).

Figure 2-3. Effects of repeatedly squaring a number

So depending on the value you pass to square_loop, x stays at either zero or
one, approaches zero, or approaches infinity.

Now consider a slightly different loop:

fn square_add_loop(c: f64) {
 let mut x = 0.;

 loop {
 x = x * x + c;
 }
}

This time, x starts at zero, and we tweak its progress in each iteration by
adding in c after squaring it. This makes it harder to see how x fares, but
some experimentation shows that if c is greater than 0.25 or less than –2.0,
then x eventually becomes infinitely large; otherwise, it stays somewhere in
the neighborhood of zero.

The next wrinkle: instead of using f64 values, consider the same loop using
complex numbers. The num crate on crates.io provides a complex number
type we can use, so we must add a line for num to the [dependencies] section
in our program’s Cargo.toml file. Here’s the entire file, up to this point (we’ll
be adding more later):

[package]
name = "mandelbrot"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at
https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]
num = "0.4"

Now we can write the penultimate version of our loop:

use num::Complex;

fn complex_square_add_loop(c: Complex<f64>) {
 let mut z = Complex { re: 0.0, im: 0.0 };
 loop {
 z = z * z + c;
 }
}

It’s traditional to use z for complex numbers, so we’ve renamed our looping
variable. The expression Complex { re: 0.0, im: 0.0 } is the way we write

complex zero using the num crate’s Complex type. Complex is a Rust
structure type (or struct), defined like this:

struct Complex<T> {
 /// Real portion of the complex number
 re: T,

 /// Imaginary portion of the complex number
 im: T,
}

The preceding code defines a struct named Complex, with two fields, re and
im. Complex is a generic structure: you can read the <T> after the type name
as “for any type T.” For example, Complex<f64> is a complex number
whose re and im fields are f64 values, Complex<f32> would use 32-bit
floats, and so on. Given this definition, an expression like Complex { re:
0.24, im: 0.3 } produces a Complex value with its re field initialized to 0.24,
and its im field initialized to 0.3.

The num crate arranges for *, +, and other arithmetic operators to work on
Complex values, so the rest of the function works just like the prior version,
except that it operates on points on the complex plane, not just points along
the real number line. We’ll explain how you can make Rust’s operators work
with your own types in Chapter 12.

Finally, we’ve reached the destination of our pure math excursion. The
Mandelbrot set is defined as the set of complex numbers c for which z does
not fly out to infinity. Our original simple squaring loop was predictable
enough: any number greater than 1 or less than –1 flies away. Throwing a + c
into each iteration makes the behavior a little harder to anticipate: as we said
earlier, values of c greater than 0.25 or less than –2 cause z to fly away. But
expanding the game to complex numbers produces truly bizarre and beautiful
patterns, which are what we want to plot.

Since a complex number c has both real and imaginary components c.re and
c.im, we’ll treat these as the x and y coordinates of a point on the Cartesian
plane, and color the point black if c is in the Mandelbrot set, or a lighter color
otherwise. So for each pixel in our image, we must run the preceding loop on

the corresponding point on the complex plane, see whether it escapes to
infinity or orbits around the origin forever, and color it accordingly.

The infinite loop takes a while to run, but there are two tricks for the
impatient. First, if we give up on running the loop forever and just try some
limited number of iterations, it turns out that we still get a decent
approximation of the set. How many iterations we need depends on how
precisely we want to plot the boundary. Second, it’s been shown that, if z
ever once leaves the circle of radius 2 centered at the origin, it will definitely
fly infinitely far away from the origin eventually. So here’s the final version
of our loop, and the heart of our program:

use num::Complex;

/// Try to determine if `c` is in the Mandelbrot set, using at most `limit`
/// iterations to decide.
///
/// If `c` is not a member, return `Some(i)`, where `i` is the number of
/// iterations it took for `c` to leave the circle of radius 2 centered on the
/// origin. If `c` seems to be a member (more precisely, if we reached the
/// iteration limit without being able to prove that `c` is not a member),
/// return `None`.
fn escape_time(c: Complex<f64>, limit: usize) -> Option<usize> {
 let mut z = Complex { re: 0.0, im: 0.0 };
 for i in 0..limit {
 if z.norm_sqr() > 4.0 {
 return Some(i);
 }
 z = z * z + c;
 }

 None
}

This function takes the complex number c that we want to test for
membership in the Mandelbrot set and a limit on the number of iterations to
try before giving up and declaring c to probably be a member.

The function’s return value is an Option<usize>. Rust’s standard library
defines the Option type as follows:

enum Option<T> {
 None,
 Some(T),
}

Option is an enumerated type, often called an enum, because its definition
enumerates several variants that a value of this type could be: for any type T,
a value of type Option<T> is either Some(v), where v is a value of type T, or
None, indicating no T value is available. Like the Complex type we discussed
earlier, Option is a generic type: you can use Option<T> to represent an
optional value of any type T you like.

In our case, escape_time returns an Option<usize> to indicate whether c is in
the Mandelbrot set—and if it’s not, how long we had to iterate to find that
out. If c is not in the set, escape_time returns Some(i), where i is the number
of the iteration at which z left the circle of radius 2. Otherwise, c is
apparently in the set, and escape_time returns None.

for i in 0..limit {

The earlier examples showed for loops iterating over command-line
arguments and vector elements; this for loop simply iterates over the range of
integers starting with 0 and up to (but not including) limit.

The z.norm_sqr() method call returns the square of z’s distance from the
origin. To decide whether z has left the circle of radius 2, instead of
computing a square root, we just compare the squared distance with 4.0,
which is faster.

You may have noticed that we use /// to mark the comment lines above the
function definition; the comments above the members of the Complex
structure start with /// as well. These are documentation comments; the
rustdoc utility knows how to parse them, together with the code they
describe, and produce online documentation. The documentation for Rust’s
standard library is written in this form. We describe documentation
comments in detail in Chapter 8.

The rest of the program is concerned with deciding which portion of the set

to plot at what resolution and distributing the work across several threads to
speed up the calculation.

Parsing Pair Command-Line Arguments
The program takes several command-line arguments controlling the
resolution of the image we’ll write and the portion of the Mandelbrot set the
image shows. Since these command-line arguments all follow a common
form, here’s a function to parse them:

use std::str::FromStr;

/// Parse the string `s` as a coordinate pair, like `"400x600"` or `"1.0,0.5"`.
///
/// Specifically, `s` should have the form <left><sep><right>, where <sep> is
/// the character given by the `separator` argument, and <left> and <right> are
/// both strings that can be parsed by `T::from_str`. `separator` must be an
/// ASCII character.
///
/// If `s` has the proper form, return `Some<(x, y)>`. If it doesn't parse
/// correctly, return `None`.
fn parse_pair<T: FromStr>(s: &str, separator: char) -> Option<(T, T)> {
 match s.find(separator) {
 None => None,
 Some(index) => {
 match (T::from_str(&s[..index]), T::from_str(&s[index + 1..])) {
 (Ok(l), Ok(r)) => Some((l, r)),
 _ => None
 }
 }
 }
}

#[test]
fn test_parse_pair() {
 assert_eq!(parse_pair::<i32>("", ','), None);
 assert_eq!(parse_pair::<i32>("10,", ','), None);
 assert_eq!(parse_pair::<i32>(",10", ','), None);
 assert_eq!(parse_pair::<i32>("10,20", ','), Some((10, 20)));
 assert_eq!(parse_pair::<i32>("10,20xy", ','), None);
 assert_eq!(parse_pair::<f64>("0.5x", 'x'), None);
 assert_eq!(parse_pair::<f64>("0.5x1.5", 'x'), Some((0.5, 1.5)));
}

The definition of parse_pair is a generic function:

fn parse_pair<T: FromStr>(s: &str, separator: char) -> Option<(T, T)> {

You can read the clause <T: FromStr> aloud as, “For any type T that
implements the FromStr trait...” This effectively lets us define an entire
family of functions at once: parse_pair::<i32> is a function that parses pairs
of i32 values, parse_pair::<f64> parses pairs of floating-point values, and so
on. This is very much like a function template in C++. A Rust programmer
would call T a type parameter of parse_pair. When you use a generic
function, Rust will often be able to infer type parameters for you, and you
won’t need to write them out as we did in the test code.

Our return type is Option<(T, T)>: either None or a value Some((v1, v2)),
where (v1, v2) is a tuple of two values, both of type T. The parse_pair
function doesn’t use an explicit return statement, so its return value is the
value of the last (and the only) expression in its body:

match s.find(separator) {
 None => None,
 Some(index) => {
 ...
 }
}

The String type’s find method searches the string for a character that matches
separator. If find returns None, meaning that the separator character doesn’t
occur in the string, the entire match expression evaluates to None, indicating
that the parse failed. Otherwise, we take index to be the separator’s position
in the string.

match (T::from_str(&s[..index]), T::from_str(&s[index + 1..])) {
 (Ok(l), Ok(r)) => Some((l, r)),
 _ => None
}

This begins to show off the power of the match expression. The argument to
the match is this tuple expression:

(T::from_str(&s[..index]), T::from_str(&s[index + 1..]))

The expressions &s[..index] and &s[index + 1..] are slices of the string,
preceding and following the separator. The type parameter T’s associated
from_str function takes each of these and tries to parse them as a value of
type T, producing a tuple of results. This is what we match against:

(Ok(l), Ok(r)) => Some((l, r)),

This pattern matches only if both elements of the tuple are Ok variants of the
Result type, indicating that both parses succeeded. If so, Some((l, r)) is the
value of the match expression and hence the return value of the function.

_ => None

The wildcard pattern _ matches anything and ignores its value. If we reach
this point, then parse_pair has failed, so we evaluate to None, again providing
the return value of the function.

Now that we have parse_pair, it’s easy to write a function to parse a pair of
floating-point coordinates and return them as a Complex<f64> value:

/// Parse a pair of floating-point numbers separated by a comma as a complex
/// number.
fn parse_complex(s: &str) -> Option<Complex<f64>> {
 match parse_pair(s, ',') {
 Some((re, im)) => Some(Complex { re, im }),
 None => None
 }
}

#[test]
fn test_parse_complex() {
 assert_eq!(parse_complex("1.25,-0.0625"),
 Some(Complex { re: 1.25, im: -0.0625 }));
 assert_eq!(parse_complex(",-0.0625"), None);
}

The parse_complex function calls parse_pair, builds a Complex value if the
coordinates were parsed successfully, and passes failures along to its caller.

If you were reading closely, you may have noticed that we used a shorthand

notation to build the Complex value. It’s common to initialize a struct’s fields
with variables of the same name, so rather than forcing you to write Complex
{ re: re, im: im }, Rust lets you simply write Complex { re, im }. This is
modeled on similar notations in JavaScript and Haskell.

Mapping from Pixels to Complex Numbers
The program needs to work in two related coordinate spaces: each pixel in
the output image corresponds to a point on the complex plane. The
relationship between these two spaces depends on which portion of the
Mandelbrot set we’re going to plot, and the resolution of the image requested,
as determined by command-line arguments. The following function converts
from image space to complex number space:

/// Given the row and column of a pixel in the output image, return the
/// corresponding point on the complex plane.
///
/// `bounds` is a pair giving the width and height of the image in pixels.
/// `pixel` is a (column, row) pair indicating a particular pixel in that image.
/// The `upper_left` and `lower_right` parameters are points on the complex
/// plane designating the area our image covers.
fn pixel_to_point(bounds: (usize, usize),
 pixel: (usize, usize),
 upper_left: Complex<f64>,
 lower_right: Complex<f64>)
 -> Complex<f64>
{
 let (width, height) = (lower_right.re - upper_left.re,
 upper_left.im - lower_right.im);
 Complex {
 re: upper_left.re + pixel.0 as f64 * width / bounds.0 as f64,
 im: upper_left.im - pixel.1 as f64 * height / bounds.1 as f64
 // Why subtraction here? pixel.1 increases as we go down,
 // but the imaginary component increases as we go up.
 }
}

#[test]
fn test_pixel_to_point() {
 assert_eq!(pixel_to_point((100, 200), (25, 175),
 Complex { re: -1.0, im: 1.0 },
 Complex { re: 1.0, im: -1.0 }),
 Complex { re: -0.5, im: -0.75 });
}

Figure 2-4 illustrates the calculation pixel_to_point performs.

The code of pixel_to_point is simply calculation, so we won’t explain it in
detail. However, there are a few things to point out. Expressions with this
form refer to tuple elements:

pixel.0

This refers to the first element of the tuple pixel.

pixel.0 as f64

This is Rust’s syntax for a type conversion: this converts pixel.0 to an f64
value. Unlike C and C++, Rust generally refuses to convert between numeric
types implicitly; you must write out the conversions you need. This can be
tedious, but being explicit about which conversions occur and when is
surprisingly helpful. Implicit integer conversions seem innocent enough, but
historically they have been a frequent source of bugs and security holes in
real-world C and C++ code.

Figure 2-4. The relationship between the complex plane and the image’s pixels

Plotting the Set
To plot the Mandelbrot set, for every pixel in the image, we simply apply
escape_time to the corresponding point on the complex plane, and color the
pixel depending on the result:

/// Render a rectangle of the Mandelbrot set into a buffer of pixels.
///
/// The `bounds` argument gives the width and height of the buffer `pixels`,
/// which holds one grayscale pixel per byte. The `upper_left` and `lower_right`
/// arguments specify points on the complex plane corresponding to the upper-
/// left and lower-right corners of the pixel buffer.
fn render(pixels: &mut [u8],
 bounds: (usize, usize),
 upper_left: Complex<f64>,
 lower_right: Complex<f64>)
{
 assert!(pixels.len() == bounds.0 * bounds.1);

 for row in 0..bounds.1 {
 for column in 0..bounds.0 {
 let point = pixel_to_point(bounds, (column, row),
 upper_left, lower_right);
 pixels[row * bounds.0 + column] =
 match escape_time(point, 255) {
 None => 0,
 Some(count) => 255 - count as u8
 };
 }
 }
}

This should all look pretty familiar at this point.

pixels[row * bounds.0 + column] =
 match escape_time(point, 255) {
 None => 0,
 Some(count) => 255 - count as u8
 };

If escape_time says that point belongs to the set, render colors the
corresponding pixel black (0). Otherwise, render assigns darker colors to the

numbers that took longer to escape the circle.

Writing Image Files
The image crate provides functions for reading and writing a wide variety of
image formats, along with some basic image manipulation functions. In
particular, it includes an encoder for the PNG image file format, which this
program uses to save the final results of the calculation. In order to use
image, add the following line to the [dependencies] section of Cargo.toml:

image = "0.13.0"

With that in place, we can write:

use image::ColorType;
use image::png::PNGEncoder;
use std::fs::File;

/// Write the buffer `pixels`, whose dimensions are given by `bounds`, to the
/// file named `filename`.
fn write_image(filename: &str, pixels: &[u8], bounds: (usize, usize))
 -> Result<(), std::io::Error>
{
 let output = File::create(filename)?;

 let encoder = PNGEncoder::new(output);
 encoder.encode(pixels,
 bounds.0 as u32, bounds.1 as u32,
 ColorType::Gray(8))?;

 Ok(())
}

The operation of this function is pretty straightforward: it opens a file and
tries to write the image to it. We pass the encoder the actual pixel data from
pixels, and its width and height from bounds, and then a final argument that
says how to interpret the bytes in pixels: the value ColorType::Gray(8)
indicates that each byte is an eight-bit grayscale value.

That’s all straightforward. What’s interesting about this function is how it
copes when something goes wrong. If we encounter an error, we need to

report that back to our caller. As we’ve mentioned before, fallible functions
in Rust should return a Result value, which is either Ok(s) on success, where
s is the successful value, or Err(e) on failure, where e is an error code. So
what are write_image’s success and error types?

When all goes well, our write_image function has no useful value to return; it
wrote everything interesting to the file. So its success type is the unit type (),
so called because it has only one value, also written (). The unit type is akin
to void in C and C++.

When an error occurs, it’s because either File::create wasn’t able to create the
file or encoder.encode wasn’t able to write the image to it; the I/O operation
returned an error code. The return type of File::create is Result<std::fs::File,
std::io::Error>, while that of encoder.encode is Result<(), std::io::Error>, so
both share the same error type, std::io::Error. It makes sense for our
write_image function to do the same. In either case, failure should result in an
immediate return, passing along the std::io::Error value describing what went
wrong.

So to properly handle File::create’s result, we need to match on its return
value, like this:

let output = match File::create(filename) {
 Ok(f) => f,
 Err(e) => {
 return Err(e);
 }
};

On success, let output be the File carried in the Ok value. On failure, pass
along the error to our own caller.

This kind of match statement is such a common pattern in Rust that the
language provides the ? operator as shorthand for the whole thing. So, rather
than writing out this logic explicitly every time we attempt something that
could fail, you can use the following equivalent and much more legible
statement:

let output = File::create(filename)?;

If File::create fails, the ? operator returns from write_image, passing along
the error. Otherwise, output holds the successfully opened File.

NOTE
It’s a common beginner’s mistake to attempt to use ? in the main function. However, since
main itself doesn’t return a value, this won’t work; instead, you need to use a match
statement, or one of the shorthand methods like unwrap and expect. There’s also the
option of simply changing main to return a Result, which we’ll cover later.

A Concurrent Mandelbrot Program
All the pieces are in place, and we can show you the main function, where we
can put concurrency to work for us. First, a nonconcurrent version for
simplicity:

use std::env;

fn main() {
 let args: Vec<String> = env::args().collect();

 if args.len() != 5 {
 eprintln!("Usage: {} FILE PIXELS UPPERLEFT LOWERRIGHT",
 args[0]);
 eprintln!("Example: {} mandel.png 1000x750 -1.20,0.35 -1,0.20",
 args[0]);
 std::process::exit(1);
 }

 let bounds = parse_pair(&args[2], 'x')
 .expect("error parsing image dimensions");
 let upper_left = parse_complex(&args[3])
 .expect("error parsing upper left corner point");
 let lower_right = parse_complex(&args[4])
 .expect("error parsing lower right corner point");

 let mut pixels = vec![0; bounds.0 * bounds.1];

 render(&mut pixels, bounds, upper_left, lower_right);

 write_image(&args[1], &pixels, bounds)
 .expect("error writing PNG file");
}

After collecting the command-line arguments into a vector of Strings, we
parse each one and then begin calculations.

let mut pixels = vec![0; bounds.0 * bounds.1];

A macro call vec![v; n] creates a vector n elements long whose elements are
initialized to v, so the preceding code creates a vector of zeros whose length

is bounds.0 * bounds.1, where bounds is the image resolution parsed from the
command line. We’ll use this vector as a rectangular array of one-byte
grayscale pixel values, as shown in Figure 2-5.

The next line of interest is this:

render(&mut pixels, bounds, upper_left, lower_right);

This calls the render function to actually compute the image. The expression
&mut pixels borrows a mutable reference to our pixel buffer, allowing render
to fill it with computed grayscale values, even while pixels remains the
vector’s owner. The remaining arguments pass the image’s dimensions and
the rectangle of the complex plane we’ve chosen to plot.

write_image(&args[1], &pixels, bounds)
 .expect("error writing PNG file");

Figure 2-5. Using a vector as a rectangular array of pixels

Finally, we write the pixel buffer out to disk as a PNG file. In this case, we
pass a shared (nonmutable) reference to the buffer, since write_image should
have no need to modify the buffer’s contents.

At this point, we can build and run the program in release mode, which

enables many powerful compiler optimizations, and after several seconds, it
will write a beautiful image to the file mandel.png:

$ cargo build --release
 Updating crates.io index
 Compiling autocfg v1.0.1
 ...
 Compiling image v0.13.0
 Compiling mandelbrot v0.1.0 ($RUSTBOOK/mandelbrot)
 Finished release [optimized] target(s) in 25.36s
$ time target/release/mandelbrot mandel.png 4000x3000 -1.20,0.35 -1,0.20
real 0m4.678s
user 0m4.661s
sys 0m0.008s

This command should create a file called mandel.png, which you can view
with your system’s image viewing program or in a web browser. If all has
gone well, it should look like Figure 2-6.

Figure 2-6. Results from parallel Mandelbrot program

In the previous transcript, we used the Unix time program to analyze the
running time of the program: it took about five seconds total to run the
Mandelbrot computation on each pixel of the image. But almost all modern
machines have multiple processor cores, and this program used only one. If
we could distribute the work across all the computing resources the machine
has to offer, we should be able to complete the image much more quickly.

To this end, we’ll divide the image into sections, one per processor, and let
each processor color the pixels assigned to it. For simplicity, we’ll break it
into horizontal bands, as shown in Figure 2-7. When all processors have
finished, we can write out the pixels to disk.

Figure 2-7. Dividing the pixel buffer into bands for parallel rendering

The crossbeam crate provides a number of valuable concurrency facilities,
including a scoped thread facility that does exactly what we need here. To
use it, we must add the following line to our Cargo.toml file:

crossbeam = "0.8"

Then we need to take out the single line calling render and replace it with the
following:

let threads = 8;
let rows_per_band = bounds.1 / threads + 1;

{
 let bands: Vec<&mut [u8]> =
 pixels.chunks_mut(rows_per_band * bounds.0).collect();
 crossbeam::scope(|spawner| {
 for (i, band) in bands.into_iter().enumerate() {
 let top = rows_per_band * i;
 let height = band.len() / bounds.0;
 let band_bounds = (bounds.0, height);
 let band_upper_left =
 pixel_to_point(bounds, (0, top), upper_left, lower_right);
 let band_lower_right =
 pixel_to_point(bounds, (bounds.0, top + height),
 upper_left, lower_right);

 spawner.spawn(move |_| {
 render(band, band_bounds, band_upper_left, band_lower_right);
 });
 }
 }).unwrap();
}

Breaking this down in the usual way:

let threads = 8;
let rows_per_band = bounds.1 / threads + 1;

Here we decide to use eight threads. Then we compute how many rows of
pixels each band should have. We round the row count upward to make sure
the bands cover the entire image even if the height isn’t a multiple of threads.

let bands: Vec<&mut [u8]> =
 pixels.chunks_mut(rows_per_band * bounds.0).collect();

Here we divide the pixel buffer into bands. The buffer’s chunks_mut method
returns an iterator producing mutable, nonoverlapping slices of the buffer,
each of which encloses rows_per_band * bounds.0 pixels—in other words,
rows_per_band complete rows of pixels. The last slice that chunks_mut
produces may contain fewer rows, but each row will contain the same
number of pixels. Finally, the iterator’s collect method builds a vector
holding these mutable, nonoverlapping slices.

1

Now we can put the crossbeam library to work:

crossbeam::scope(|spawner| {
 ...
}).unwrap();

The argument |spawner| { ... } is a Rust closure that expects a single
argument, spawner. Note that, unlike functions declared with fn, we don’t
need to declare the types of a closure’s arguments; Rust will infer them,
along with its return type. In this case, crossbeam::scope calls the closure,
passing as the spawner argument a value the closure can use to create new
threads. The crossbeam::scope function waits for all such threads to finish
execution before returning itself. This behavior allows Rust to be sure that
such threads will not access their portions of pixels after it has gone out of
scope, and allows us to be sure that when crossbeam::scope returns, the
computation of the image is complete. If all goes well, crossbeam::scope
returns Ok(()), but if any of the threads we spawned panicked, it returns an
Err. We call unwrap on that Result so that, in that case, we’ll panic too, and
the user will get a report.

for (i, band) in bands.into_iter().enumerate() {

Here we iterate over the pixel buffer’s bands. The into_iter() iterator gives
each iteration of the loop body exclusive ownership of one band, ensuring
that only one thread can write to it at a time. We explain how this works in
detail in Chapter 5. Then, the enumerate adapter produces tuples pairing each
vector element with its index.

let top = rows_per_band * i;
let height = band.len() / bounds.0;
let band_bounds = (bounds.0, height);
let band_upper_left =
 pixel_to_point(bounds, (0, top), upper_left, lower_right);
let band_lower_right =
 pixel_to_point(bounds, (bounds.0, top + height),
 upper_left, lower_right);

Given the index and the actual size of the band (recall that the last one might
be shorter than the others), we can produce a bounding box of the sort render
requires, but one that refers only to this band of the buffer, not the entire
image. Similarly, we repurpose the renderer’s pixel_to_point function to find
where the band’s upper-left and lower-right corners fall on the complex
plane.

spawner.spawn(move |_| {
 render(band, band_bounds, band_upper_left, band_lower_right);
});

Finally, we create a thread, running the closure move |_| { ... }. The move
keyword at the front indicates that this closure takes ownership of the
variables it uses; in particular, only the closure may use the mutable slice
band. The argument list |_| means that the closure takes one argument, which
it doesn’t use (another spawner for making nested threads).

As we mentioned earlier, the crossbeam::scope call ensures that all threads
have completed before it returns, meaning that it is safe to save the image to a
file, which is our next action.

Running the Mandelbrot Plotter
We’ve used several external crates in this program: num for complex number
arithmetic, image for writing PNG files, and crossbeam for the scoped thread
creation primitives. Here’s the final Cargo.toml file including all those
dependencies:

[package]
name = "mandelbrot"
version = "0.1.0"
edition = "2021"

[dependencies]
num = "0.4"
image = "0.13"
crossbeam = "0.8"

With that in place, we can build and run the program:

$ cargo build --release
 Updating crates.io index
 Compiling crossbeam-queue v0.3.2
 Compiling crossbeam v0.8.1
 Compiling mandelbrot v0.1.0 ($RUSTBOOK/mandelbrot)
 Finished release [optimized] target(s) in #.## secs
$ time target/release/mandelbrot mandel.png 4000x3000 -1.20,0.35 -1,0.20
real 0m1.436s
user 0m4.922s
sys 0m0.011s

Here, we’ve used time again to see how long the program took to run; note
that even though we still spent almost five seconds of processor time, the
elapsed real time was only about 1.5 seconds. You can verify that a portion of
that time is spent writing the image file by commenting out the code that does
so and measuring again. On the laptop where this code was tested, the
concurrent version reduces the Mandelbrot calculation time proper by a factor
of almost four. We’ll show how to substantially improve on this in
Chapter 19.

As before, this program will have created a file called mandel.png. With this
faster version, you can more easily explore the Mandelbrot set by changing
the command-line arguments to your liking.

Safety Is Invisible
In the end, the parallel program we ended up with is not substantially
different from what we might write in any other language: we apportion
pieces of the pixel buffer out among the processors, let each one work on its
piece separately, and when they’ve all finished, present the result. So what is
so special about Rust’s concurrency support?

What we haven’t shown here is all the Rust programs we cannot write. The
code we looked at in this chapter partitions the buffer among the threads
correctly, but there are many small variations on that code that do not (and
thus introduce data races); not one of those variations will pass the Rust
compiler’s static checks. A C or C++ compiler will cheerfully help you
explore the vast space of programs with subtle data races; Rust tells you, up
front, when something could go wrong.

In Chapters 4 and 5, we’ll describe Rust’s rules for memory safety.
Chapter 19 explains how these rules also ensure proper concurrency hygiene.

Filesystems and Command-Line Tools
Rust has found a significant niche in the world of command-line tools. As a
modern, safe, and fast systems programming language, it gives programmers
a toolbox they can use to assemble slick command-line interfaces that
replicate or extend the functionality of existing tools. For instance, the bat
command provides a syntax-highlighting-aware cat alternative with built-in
support for paging tools, and hyperfine can automatically benchmark
anything that can be run with a command or pipeline.

While something that complex is out of scope for this book, Rust makes it
easy to dip your toes into the world of ergonomic command-line applications.
In this section, we’ll show you how to build your own search-and-replace
tool, complete with colorful output and friendly error messages.

To start, we’ll create a new Rust project:

$ cargo new quickreplace
 Created binary (application) `quickreplace` package
$ cd quickreplace

For our program, we’ll need two other crates: text-colorizer for creating
colorful output in the terminal and regex for the actual search-and-replace
functionality. As before, we put these crates in Cargo.toml to tell cargo that
we need them:

[package]
name = "quickreplace"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at
https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]
text-colorizer = "1"
regex = "1"

Rust crates that have reached version 1.0, as these have, follow the “semantic
versioning” rules: until the major version number 1 changes, newer versions
should always be compatible extensions of their predecessors. So if we test
our program against version 1.2 of some crate, it should still work with
versions 1.3, 1.4, and so on; but version 2.0 could introduce incompatible
changes. When we simply request version "1" of a crate in a Cargo.toml file,
Cargo will use the newest available version of the crate before 2.0.

The Command-Line Interface
The interface for this program is quite simple. It takes four arguments: a
string (or regular expression) to search for, a string (or regular expression) to
replace it with, the name of an input file, and the name of an output file.
We’ll start off our main.rs file with a struct containing these arguments:

#[derive(Debug)]
struct Arguments {
 target: String,
 replacement: String,
 filename: String,
 output: String,
}

The #[derive(Debug)] attribute tells the compiler to generate some extra code
that allows us to format the Arguments struct with {:?} in println!.

In case the user enters the wrong number of arguments, it’s customary to
print out a concise explanation of how to use the program. We’ll do this with
a simple function called print_usage and import everything from text-
colorizer so we can add some color:

use text_colorizer::*;

fn print_usage() {
 eprintln!("{} - change occurrences of one string into another",
 "quickreplace".green());
 eprintln!("Usage: quickreplace <target> <replacement> <INPUT> <OUTPUT>");
}

Simply adding .green() to the end of a string literal produces a string wrapped
in the appropriate ANSI escape codes to display as green in a terminal
emulator. That string is then interpolated into the rest of the message before it
is printed.

Now we can collect and process the program’s arguments:

use std::env;

fn parse_args() -> Arguments {

 let args: Vec<String> = env::args().skip(1).collect();

 if args.len() != 4 {
 print_usage();
 eprintln!("{} wrong number of arguments: expected 4, got {}.",
 "Error:".red().bold(), args.len());
 std::process::exit(1);
 }

 Arguments {
 target: args[0].clone(),
 replacement: args[1].clone(),
 filename: args[2].clone(),
 output: args[3].clone()
 }
}

In order to get the arguments the user has entered, we use the same args
iterator as in the previous examples. .skip(1) skips the iterator’s first value
(the name of the program being run) so that the result has only the command-
line arguments.

The collect() method produces a Vec of arguments. We then check that the
right number is present and, if not, print a message and exit with an error
code. We again colorize part of the message and use .bold() to make the text
heavier, as well. If the right number of arguments is present, we put them in
an Arguments struct, and return it.

Then we’ll add a main function that just calls parse_args and prints the
output:

fn main() {
 let args = parse_args();
 println!("{:?}", args);
}

At this point, we can run the program and see that it spits out the right error
message:

$ cargo run
 Updating crates.io index
Compiling libc v0.2.82
Compiling lazy_static v1.4.0
Compiling memchr v2.3.4
Compiling regex-syntax v0.6.22
Compiling thread_local v1.1.0
Compiling aho-corasick v0.7.15
Compiling atty v0.2.14
Compiling text-colorizer v1.0.0
Compiling regex v1.4.3
Compiling quickreplace v0.1.0 (/home/jimb/quickreplace)
Finished dev [unoptimized + debuginfo] target(s) in 6.98s
Running `target/debug/quickreplace`
quickreplace - change occurrences of one string into another
Usage: quickreplace <target> <replacement> <INPUT> <OUTPUT>
Error: wrong number of arguments: expected 4, got 0

If you give the program some arguments, it will instead print out a
representation of the Arguments struct:

$ cargo run "find" "replace" file output
 Finished dev [unoptimized + debuginfo] target(s) in 0.01s
 Running `target/debug/quickreplace find replace file output`
Arguments { target: "find", replacement: "replace", filename: "file", output: "output" }

This is a very good start! The arguments are correctly picked up and placed
in the correct parts of the Arguments struct.

Reading and Writing Files
Next, we need some way to actually get data from the filesystem so we can
process it, and write it back when we’re done. Rust has a robust set of tools
for input and output, but the designers of the standard library know that
reading and writing files is very common, and they’ve made it easy on
purpose. All we need to do is import one module, std::fs, and we get access to
the read_to_string and write functions:

use std::fs;

std::fs::read_to_string returns a Result<String, std::io::Error>. If the function
succeeds, it produces a String. If it fails, it produces a std::io::Error, the
standard library’s type for representing I/O problems. Similarly, std::fs::write
returns a Result<(), std::io::Error>: nothing in the success case, or the same
error details if something goes wrong.

fn main() {
 let args = parse_args();

 let data = match fs::read_to_string(&args.filename) {
 Ok(v) => v,
 Err(e) => {
 eprintln!("{} failed to read from file '{}': {:?}",
 "Error:".red().bold(), args.filename, e);
 std::process::exit(1);
 }
 };

 match fs::write(&args.output, &data) {
 Ok(_) => {},
 Err(e) => {
 eprintln!("{} failed to write to file '{}': {:?}",
 "Error:".red().bold(), args.filename, e);
 std::process::exit(1);
 }
 };
}

Here, we’re using the parse_args() function we wrote beforehand and passing

the resulting filenames to read_to_string and write. The match statements on
those functions’ outputs handle errors gracefully, printing out the filename,
the provided reason for the error, and a little pop of color to get the user’s
attention.

With this updated main function, we can run the program and see that, of
course, the contents of the new and old files are exactly the same:

$ cargo run "find" "replace" Cargo.toml Copy.toml
 Compiling quickreplace v0.1.0 (/home/jimb/rust/quickreplace)
 Finished dev [unoptimized + debuginfo] target(s) in 0.01s
 Running `target/debug/quickreplace find replace Cargo.toml Copy.toml`

The program does read in the input file Cargo.toml, and it does write to the
output file Copy.toml, but since we haven’t written any code to actually do
finding and replacing, nothing in the output has changed. We can easily
check by running the diff command, which detects no differences:

$ diff Cargo.toml Copy.toml

Find and Replace
The final touch for this program is to implement its actual functionality:
finding and replacing. For this, we’ll use the regex crate, which compiles and
executes regular expressions. It provides a struct called Regex, which
represents a compiled regular expression. Regex has a method replace_all,
which does exactly what it says: it searches a string for all matches of the
regular expression and replaces each one with a given replacement string. We
can pull this logic out into a function:

use regex::Regex;
fn replace(target: &str, replacement: &str, text: &str)
 -> Result<String, regex::Error>
{
 let regex = Regex::new(target)?;
 Ok(regex.replace_all(text, replacement).to_string())
}

Note the return type of this function. Just like the standard library functions
we used earlier, replace returns a Result, this time with an error type provided
by the regex crate.

Regex::new compiles the user-provided regex, and it can fail if given an
invalid string. As in the Mandelbrot program, we use ? to short-circuit in case
Regex::new fails, but in this case the function returns an error type specific to
the regex crate. Once the regex is compiled, its replace_all method replaces
any matches in text with the given replacement string.

If replace_all finds matches, it returns a new String with those matches
replaced with the text we gave it. Otherwise, replace_all returns a pointer to
the original text, avoiding unnecessary memory allocation and copying. In
this case, however, we always want an independent copy, so we use the
to_string method to get a String in either case and return that string wrapped
in Result::Ok, as in the other functions.

Now, it’s time to incorporate the new function into our main code:

fn main() {
 let args = parse_args();

 let data = match fs::read_to_string(&args.filename) {
 Ok(v) => v,
 Err(e) => {
 eprintln!("{} failed to read from file '{}': {:?}",
 "Error:".red().bold(), args.filename, e);
 std::process::exit(1);
 }
 };

 let replaced_data = match replace(&args.target, &args.replacement, &data) {
 Ok(v) => v,
 Err(e) => {
 eprintln!("{} failed to replace text: {:?}",
 "Error:".red().bold(), e);
 std::process::exit(1);
 }
 };

 match fs::write(&args.output, &replaced_data) {
 Ok(v) => v,
 Err(e) => {
 eprintln!("{} failed to write to file '{}': {:?}",
 "Error:".red().bold(), args.filename, e);
 std::process::exit(1);
 }
 };
}

With this final touch, the program is ready, and you should be able to test it:

$ echo "Hello, world" > test.txt
$ cargo run "world" "Rust" test.txt test-modified.txt
 Compiling quickreplace v0.1.0 (/home/jimb/rust/quickreplace)
 Finished dev [unoptimized + debuginfo] target(s) in 0.88s
 Running `target/debug/quickreplace world Rust test.txt test-modified.txt`

$ cat test-modified.txt
Hello, Rust

And, of course, the error handling is also in place, gracefully reporting errors
to the user:

$ cargo run "[[a-z]" "0" test.txt test-modified.txt
 Finished dev [unoptimized + debuginfo] target(s) in 0.01s
 Running `target/debug/quickreplace '[[a-z]' 0 test.txt test-modified.txt`
Error: failed to replace text: Syntax(
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~
regex parse error:
 [[a-z]
 ^
error: unclosed character class
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~
)

There are, of course, many features missing from this simple demonstration,
but the fundamentals are there. You’ve seen how to read and write files,
propagate and display errors, and colorize output for improved user
experience in the terminal.

Future chapters will explore more advanced techniques for application
development, from collections of data and functional programming with
iterators to asynchronous programming techniques for extremely efficient
concurrency, but first, you’ll need the next chapter’s solid foundation in
Rust’s fundamental data types.

1 The num_cpus crate provides a function that returns the number of CPUs available on the
current system.

Chapter 3. Fundamental Types

There are many, many types of books in the world, which makes good
sense, because there are many, many types of people, and everybody wants
to read something different.

—Lemony Snicket

To a great extent, the Rust language is designed around its types. Its support
for high-performance code arises from letting developers choose the data
representation that best fits the situation, with the right balance between
simplicity and cost. Rust’s memory and thread safety guarantees also rest on
the soundness of its type system, and Rust’s flexibility stems from its generic
types and traits.

This chapter covers Rust’s fundamental types for representing values. These
source-level types have concrete machine-level counterparts with predictable
costs and performance. Although Rust doesn’t promise it will represent
things exactly as you’ve requested, it takes care to deviate from your requests
only when it’s a reliable improvement.

Compared to a dynamically typed language like JavaScript or Python, Rust
requires more planning from you up front. You must spell out the types of
function arguments and return values, struct fields, and a few other
constructs. However, two features of Rust make this less trouble than you
might expect:

Given the types that you do spell out, Rust’s type inference will
figure out most of the rest for you. In practice, there’s often only one
type that will work for a given variable or expression; when this is
the case, Rust lets you leave out, or elide, the type. For example, you
could spell out every type in a function, like this:

fn build_vector() -> Vec<i16> {

 let mut v: Vec<i16> = Vec::<i16>::new();

 v.push(10i16);

 v.push(20i16);

 v

}

But this is cluttered and repetitive. Given the function’s return type,
it’s obvious that v must be a Vec<i16>, a vector of 16-bit signed
integers; no other type would work. And from that it follows that
each element of the vector must be an i16. This is exactly the sort of
reasoning Rust’s type inference applies, allowing you to instead
write:

fn build_vector() -> Vec<i16> {

 let mut v = Vec::new();

 v.push(10);

 v.push(20);

 v

}

These two definitions are exactly equivalent, and Rust will generate
the same machine code either way. Type inference gives back much
of the legibility of dynamically typed languages, while still catching
type errors at compile time.

Functions can be generic: a single function can work on values of
many different types.

In Python and JavaScript, all functions work this way naturally: a
function can operate on any value that has the properties and
methods the function will need. (This is the characteristic often
called duck typing: if it quacks like a duck, it’s a duck.) But it’s
exactly this flexibility that makes it so difficult for those languages
to detect type errors early; testing is often the only way to catch such
mistakes. Rust’s generic functions give the language a degree of the
same flexibility, while still catching all type errors at compile time.

Despite their flexibility, generic functions are just as efficient as
their nongeneric counterparts. There is no inherent performance
advantage to be had from writing, say, a specific sum function for
each integer over writing a generic one that handles all integers.
We’ll discuss generic functions in detail in Chapter 11.

The rest of this chapter covers Rust’s types from the bottom up, starting with
simple numeric types like integers and floating-point values then moving on
to types that hold more data: boxes, tuples, arrays, and strings.

Here’s a summary of the sorts of types you’ll see in Rust. Table 3-1 shows
Rust’s primitive types, some very common types from the standard library,
and some examples of user-defined types.

Table 3-1. Examples of types in Rust

Type Description Values

i8, i16, i32, i64, i128
u8, u16, u32, u64, u1
28

Signed and unsigned integers,
of given bit width

42,
-5i8, 0x400u16, 0o10
0i16,
20_922_789_888_00
0u64,
b'*' (u8 byte literal)

isize, usize Signed and unsigned integers,
the same size as an address on the machine (32 or 64
bits)

137,
-0b0101_0010isize,
0xffff_fc00usize

f32, f64 IEEE floating-point numbers,
single and double precision

1.61803, 3.14f32, 6.0
221e23f64

bool Boolean true, false

char Unicode character, 32 bits wide '*', '\n', '字', '\x7f', '\u{
CA0}'

(char, u8, i32) Tuple: mixed types allowed ('%', 0x7f, -1)

() “Unit” (empty tuple) ()

struct S { x: f32, y: f3
2 }

Named-field struct S { x: 120.0, y: 209.0
}

struct T (i32, char); Tuple-like struct T(120, 'X')

struct E; Unit-like struct; has no fields E

enum Attend { OnTi Enumeration, algebraic data type Attend::Late(5), Atten

me, Late(u32) } d::OnTime

Box<Attend> Box: owning pointer to value in heap Box::new(Late(15))

&i32, &mut i32 Shared and mutable references: non-owning pointers
that must not outlive their referent

&s.y, &mut v

String UTF-8 string, dynamically sized "ラーメン: ramen".to_s
tring()

&str Reference to str: non-owning pointer to UTF-8 text "そば: soba", &s[0..12
]

[f64; 4], [u8; 256] Array, fixed length; elements all of same type [1.0, 0.0, 0.0, 1.0],
[b' '; 256]

Vec<f64> Vector, varying length; elements all of same type vec![0.367, 2.718, 7.3
89]

&[u8],&mut [u8] Reference to slice: reference to a portion of an array or
vector, comprising pointer and length

&v[10..20], &mut a[..
]

Option<&str> Optional value: either None (absent) or Some(v)
(present, with value v)

Some("Dr."), None

Result<u64, Error> Result of operation that may fail: either a success value
Ok(v), or an error Err(e)

Ok(4096), Err(Error::l
ast_os_error())

&dyn Any, &mut dy
n Read

Trait object: reference to any value that implements a
given set of methods

value as &dyn Any,
&mut file as &mut dy
n Read

fn(&str) -> bool Pointer to function str::is_empty

(Closure types have
no written form)

Closure |a, b| { a*a + b*b }

Most of these types are covered in this chapter, except for the following:

We give struct types their own chapter, Chapter 9.

We give enumerated types their own chapter, Chapter 10.

We describe trait objects in Chapter 11.

We describe the essentials of String and &str here, but provide more
detail in Chapter 17.

We cover function and closure types in Chapter 14.

Fixed-Width Numeric Types
The footing of Rust’s type system is a collection of fixed-width numeric
types, chosen to match the types that almost all modern processors implement
directly in hardware.

Fixed-width numeric types can overflow or lose precision, but they are
adequate for most applications and can be thousands of times faster than
representations like arbitrary-precision integers and exact rationals. If you
need those sorts of numeric representations, they are supported in the num
crate.

The names of Rust’s numeric types follow a regular pattern, spelling out their
width in bits, and the representation they use (Table 3-2).

Table 3-2. Rust numeric types

Size (bits) Unsigned integer Signed integer Floating-point

8 u8 i8

16 u16 i16

32 u32 i32 f32

64 u64 i64 f64

128 u128 i128

Machine word usize isize

Here, a machine word is a value the size of an address on the machine the
code runs on, 32 or 64 bits.

Integer Types
Rust’s unsigned integer types use their full range to represent positive values
and zero (Table 3-3).

Table 3-3. Rust unsigned integer types

Type Range

u8 0 to 2 –1 (0 to 255)

u16 0 to 2 −1 (0 to 65,535)

u32 0 to 2 −1 (0 to 4,294,967,295)

u64 0 to 2 −1 (0 to 18,446,744,073,709,551,615, or 18 quintillion)

u128 0 to 2 −1 (0 to around 3.4✕10)

usize 0 to either 2 −1 or 2 −1

Rust’s signed integer types use the two’s complement representation, using
the same bit patterns as the corresponding unsigned type to cover a range of
positive and negative values (Table 3-4).

Table 3-4. Rust signed integer types

Type Range

i8 −2 to 2 −1 (−128 to 127)

i16 −2 to 2 −1 (−32,768 to 32,767)

i32 −2 to 2 −1 (−2,147,483,648 to 2,147,483,647)

i64 −2 to 2 −1 (−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)

i128 −2 to 2 −1 (roughly -1.7✕10 to +1.7✕10)

isize Either −2 to 2 −1, or −2 to 2 −1

Rust uses the u8 type for byte values. For example, reading data from a
binary file or socket yields a stream of u8 values.

Unlike C and C++, Rust treats characters as distinct from the numeric types:
a char is not a u8, nor is it a u32 (though it is 32 bits long). We describe

8

16

32

64

128 38

32 64

7 7

15 15

31 31

63 63

127 127 38 38

31 31 63 63

Rust’s char type in “Characters”.

The usize and isize types are analogous to size_t and ptrdiff_t in C and C++.
Their precision matches the size of the address space on the target machine:
they are 32 bits long on 32-bit architectures, and 64 bits long on 64-bit
architectures. Rust requires array indices to be usize values. Values
representing the sizes of arrays or vectors or counts of the number of
elements in some data structure also generally have the usize type.

Integer literals in Rust can take a suffix indicating their type: 42u8 is a u8
value, and 1729isize is an isize. If an integer literal lacks a type suffix, Rust
puts off determining its type until it finds the value being used in a way that
pins it down: stored in a variable of a particular type, passed to a function that
expects a particular type, compared with another value of a particular type, or
something like that. In the end, if multiple types could work, Rust defaults to
i32 if that is among the possibilities. Otherwise, Rust reports the ambiguity as
an error.

The prefixes 0x, 0o, and 0b designate hexadecimal, octal, and binary literals.

To make long numbers more legible, you can insert underscores among the
digits. For example, you can write the largest u32 value as 4_294_967_295.
The exact placement of the underscores is not significant, so you can break
hexadecimal or binary numbers into groups of four digits rather than three, as
in 0xffff_ffff, or set off the type suffix from the digits, as in 127_u8. Some
examples of integer literals are illustrated in Table 3-5.

Table 3-5. Examples of integer literals

Literal Type Decimal value

116i8 i8 116

0xcafeu32 u32 51966

0b0010_1010 Inferred 42

0o106 Inferred 70

Although numeric types and the char type are distinct, Rust does provide byte
literals, character-like literals for u8 values: b'X' represents the ASCII code

for the character X, as a u8 value. For example, since the ASCII code for A is
65, the literals b'A' and 65u8 are exactly equivalent. Only ASCII characters
may appear in byte literals.

There are a few characters that you cannot simply place after the single quote,
because that would be either syntactically ambiguous or hard to read. The
characters in Table 3-6 can only be written using a stand-in notation,
introduced by a backslash.

Table 3-6. Characters requiring a stand-in
notation

Character Byte literal Numeric equivalent

Single quote, ' b'\'' 39u8

Backslash, \ b'\\' 92u8

Newline b'\n' 10u8

Carriage return b'\r' 13u8

Tab b'\t' 9u8

For characters that are hard to write or read, you can write their code in
hexadecimal instead. A byte literal of the form b'\xHH', where HH is any
two-digit hexadecimal number, represents the byte whose value is HH. For
example, you can write a byte literal for the ASCII “escape” control character
as b'\x1b', since the ASCII code for “escape” is 27, or 1B in hexadecimal.
Since byte literals are just another notation for u8 values, consider whether a
simple numeric literal might be more legible: it probably makes sense to use
b'\x1b' instead of simply 27 only when you want to emphasize that the value
represents an ASCII code.

You can convert from one integer type to another using the as operator. We
explain how conversions work in “Type Casts”, but here are some examples:

assert_eq!(10_i8 as u16, 10_u16); // in range
assert_eq!(2525_u16 as i16, 2525_i16); // in range

assert_eq!(-1_i16 as i32, -1_i32); // sign-extended
assert_eq!(65535_u16 as i32, 65535_i32); // zero-extended

// Conversions that are out of range for the destination
// produce values that are equivalent to the original modulo 2^N,
// where N is the width of the destination in bits. This
// is sometimes called "truncation."
assert_eq!(1000_i16 as u8, 232_u8);
assert_eq!(65535_u32 as i16, -1_i16);

assert_eq!(-1_i8 as u8, 255_u8);
assert_eq!(255_u8 as i8, -1_i8);

The standard library provides some operations as methods on integers. For
example:

assert_eq!(2_u16.pow(4), 16); // exponentiation
assert_eq!((-4_i32).abs(), 4); // absolute value
assert_eq!(0b101101_u8.count_ones(), 4); // population count

You can find these in the online documentation. Note, however, that the
documentation contains separate pages for the type itself under "i32
(primitive type),” and for the module dedicated to that type (search for
“std::i32”).

In real code, you usually won’t need to write out the type suffixes as we’ve
done here, because the context will determine the type. When it doesn’t,
however, the error messages can be surprising. For example, the following
doesn’t compile:

println!("{}", (-4).abs());

Rust complains:

error: can't call method `abs` on ambiguous numeric type `{integer}`

This can be a little bewildering: all the signed integer types have an abs
method, so what’s the problem? For technical reasons, Rust wants to know
exactly which integer type a value has before it will call the type’s own
methods. The default of i32 applies only if the type is still ambiguous after all
method calls have been resolved, so that’s too late to help here. The solution

is to spell out which type you intend, either with a suffix or by using a
specific type’s function:

println!("{}", (-4_i32).abs());
println!("{}", i32::abs(-4));

Note that method calls have a higher precedence than unary prefix operators,
so be careful when applying methods to negated values. Without the
parentheses around -4_i32 in the first statement, -4_i32.abs() would apply the
abs method to the positive value 4, producing positive 4, and then negate that,
producing -4.

Checked, Wrapping, Saturating, and Overflowing Arithmetic
When an integer arithmetic operation overflows, Rust panics, in a debug
build. In a release build, the operation wraps around: it produces the value
equivalent to the mathematically correct result modulo the range of the value.
(In neither case is overflow undefined behavior, as it is in C and C++.)

For example, the following code panics in a debug build:

let mut i = 1;
loop {
 i *= 10; // panic: attempt to multiply with overflow
 // (but only in debug builds!)
}

In a release build, this multiplication wraps to a negative number, and the
loop runs indefinitely.

When this default behavior isn’t what you need, the integer types provide
methods that let you spell out exactly what you want. For example, the
following panics in any build:

let mut i: i32 = 1;
loop {
 // panic: multiplication overflowed (in any build)
 i = i.checked_mul(10).expect("multiplication overflowed");
}

These integer arithmetic methods fall in four general categories:

Checked operations return an Option of the result: Some(v) if the
mathematically correct result can be represented as a value of that
type, or None if it cannot. For example:

// The sum of 10 and 20 can be represented as a u8.

assert_eq!(10_u8.checked_add(20), Some(30));

// Unfortunately, the sum of 100 and 200 cannot.

assert_eq!(100_u8.checked_add(200), None);

// Do the addition; panic if it overflows.

let sum = x.checked_add(y).unwrap();

// Oddly, signed division can overflow too, in one particular case.

// A signed n-bit type can represent -2ⁿ⁻¹, but not 2ⁿ⁻¹.
assert_eq!((-128_i8).checked_div(-1), None);

Wrapping operations return the value equivalent to the
mathematically correct result modulo the range of the value:

// The first product can be represented as a u16;

// the second cannot, so we get 250000 modulo 2¹⁶.
assert_eq!(100_u16.wrapping_mul(200), 20000);

assert_eq!(500_u16.wrapping_mul(500), 53392);

// Operations on signed types may wrap to negative values.

assert_eq!(500_i16.wrapping_mul(500), -12144);

// In bitwise shift operations, the shift distance

// is wrapped to fall within the size of the value.

// So a shift of 17 bits in a 16-bit type is a shift

// of 1.

assert_eq!(5_i16.wrapping_shl(17), 10);

As explained, this is how the ordinary arithmetic operators behave in
release builds. The advantage of these methods is that they behave
the same way in all builds.

Saturating operations return the representable value that is closest to
the mathematically correct result. In other words, the result is
“clamped” to the maximum and minimum values the type can
represent:

assert_eq!(32760_i16.saturating_add(10), 32767);

assert_eq!((-32760_i16).saturating_sub(10), -32768);

There are no saturating division, remainder, or bitwise shift methods.

Overflowing operations return a tuple (result, overflowed), where
result is what the wrapping version of the function would return, and
overflowed is a bool indicating whether an overflow occurred:

assert_eq!(255_u8.overflowing_sub(2), (253, false));

assert_eq!(255_u8.overflowing_add(2), (1, true));

overflowing_shl and overflowing_shr deviate from the pattern a bit:
they return true for overflowed only if the shift distance was as large
or larger than the bit width of the type itself. The actual shift applied
is the requested shift modulo the bit width of the type:

// A shift of 17 bits is too large for `u16`, and 17 modulo 16 is 1.

assert_eq!(5_u16.overflowing_shl(17), (10, true));

The operation names that follow the checked_, wrapping_, saturating_, or
overflowing_ prefix are shown in Table 3-7.

Table 3-7. Operation names

Operation Name suffix Example

Addition add 100_i8.checked_add(27) == Some(127)

Subtraction sub 10_u8.checked_sub(11) == None

Multiplication mul 128_u8.saturating_mul(3) == 255

Division div 64_u16.wrapping_div(8) == 8

Remainder rem (-32768_i16).wrapping_rem(-1) == 0

Negation neg (-128_i8).checked_neg() == None

Absolute value abs (-32768_i16).wrapping_abs() == -32768

Exponentiation pow 3_u8.checked_pow(4) == Some(81)

Bitwise left shift shl 10_u32.wrapping_shl(34) == 40

Bitwise right shift shr 40_u64.wrapping_shr(66) == 10

Floating-Point Types
Rust provides IEEE single- and double-precision floating-point types. These
types include positive and negative infinities, distinct positive and negative
zero values, and a not-a-number value (Table 3-8).

Table 3-8. IEEE single- and double-precision floating-point types

Type Precision Range

f32 IEEE single precision (at least 6 decimal
digits)

Roughly –3.4 × 10 to +3.4 ×
10

f64 IEEE double precision (at least 15 decimal
digits)

Roughly –1.8 × 10 to +1.8 ×
10

Rust’s f32 and f64 correspond to the float and double types in C and C++ (in
implementations that support IEEE floating point) as well as Java (which
always uses IEEE floating point).

Floating-point literals have the general form diagrammed in Figure 3-1.

Figure 3-1. A floating-point literal

Every part of a floating-point number after the integer part is optional, but at
least one of the fractional part, exponent, or type suffix must be present, to
distinguish it from an integer literal. The fractional part may consist of a lone

38
38

308
308

decimal point, so 5. is a valid floating-point constant.

If a floating-point literal lacks a type suffix, Rust checks the context to see
how the values are used, much as it does for integer literals. If it ultimately
finds that either floating-point type could fit, it chooses f64 by default.

For the purposes of type inference, Rust treats integer literals and floating-
point literals as distinct classes: it will never infer a floating-point type for an
integer literal, or vice versa. Table 3-9 shows some examples of floating-
point literals.

Table 3-9. Examples of floating-point literals

Literal Type Mathematical value

-1.5625 Inferred −(1 ⁄)

2. Inferred 2

0.25 Inferred ¼

1e4 Inferred 10,000

40f32 f32 40

9.109_383_56e-31f64 f64 Roughly 9.10938356 × 10

The types f32 and f64 have associated constants for the IEEE-required
special values like INFINITY, NEG_INFINITY (negative infinity), NAN
(the not-a-number value), and MIN and MAX (the largest and smallest finite
values):

assert!((-1. / f32::INFINITY).is_sign_negative());
assert_eq!(-f32::MIN, f32::MAX);

The f32 and f64 types provide a full complement of methods for
mathematical calculations; for example, 2f64.sqrt() is the double-precision
square root of two. Some examples:

assert_eq!(5f32.sqrt() * 5f32.sqrt(), 5.); // exactly 5.0, per IEEE
assert_eq!((-1.01f64).floor(), -2.0);

9
16

–31

Again, method calls have a higher precedence than prefix operators, so be
sure to correctly parenthesize method calls on negated values.

The std::f32::consts and std::f64::consts modules provide various commonly
used mathematical constants like E, PI, and the square root of two.

When searching the documentation, remember that there are pages for both
the types themselves, named “f32 (primitive type)” and “f64 (primitive
type)”, and the modules for each type, std::f32 and std::f64.

As with integers, you usually won’t need to write out type suffixes on
floating-point literals in real code, but when you do, putting a type on either
the literal or the function will suffice:

println!("{}", (2.0_f64).sqrt());
println!("{}", f64::sqrt(2.0));

Unlike C and C++, Rust performs almost no numeric conversions implicitly.
If a function expects an f64 argument, it’s an error to pass an i32 value as the
argument. In fact, Rust won’t even implicitly convert an i16 value to an i32
value, even though every i16 value is also an i32 value. But you can always
write out explicit conversions using the as operator: i as f64, or x as i32.

The lack of implicit conversions sometimes makes a Rust expression more
verbose than the analogous C or C++ code would be. However, implicit
integer conversions have a well-established record of causing bugs and
security holes, especially when the integers in question represent the size of
something in memory, and an unanticipated overflow occurs. In our
experience, the act of writing out numeric conversions in Rust has alerted us
to problems we would otherwise have missed.

We explain exactly how conversions behave in “Type Casts”.

The bool Type
Rust’s Boolean type, bool, has the usual two values for such types, true and
false. Comparison operators like == and < produce bool results: the value of
2 < 5 is true.

Many languages are lenient about using values of other types in contexts that
require a Boolean value: C and C++ implicitly convert characters, integers,
floating-point numbers, and pointers to Boolean values, so they can be used
directly as the condition in an if or while statement. Python permits strings,
lists, dictionaries, and even sets in Boolean contexts, treating such values as
true if they’re nonempty. Rust, however, is very strict: control structures like
if and while require their conditions to be bool expressions, as do the short-
circuiting logical operators && and ||. You must write if x != 0 { ... }, not
simply if x { ... }.

Rust’s as operator can convert bool values to integer types:

assert_eq!(false as i32, 0);
assert_eq!(true as i32, 1);

However, as won’t convert in the other direction, from numeric types to bool.
Instead, you must write out an explicit comparison like x != 0.

Although a bool needs only a single bit to represent it, Rust uses an entire
byte for a bool value in memory, so you can create a pointer to it.

Characters
Rust’s character type char represents a single Unicode character, as a 32-bit
value.

Rust uses the char type for single characters in isolation, but uses the UTF-8
encoding for strings and streams of text. So, a String represents its text as a
sequence of UTF-8 bytes, not as an array of characters.

Character literals are characters enclosed in single quotes, like '8' or '!'. You
can use the full breadth of Unicode: '錆' is a char literal representing the
Japanese kanji for sabi (rust).

As with byte literals, backslash escapes are required for a few characters
(Table 3-10).

Table 3-10. Characters that
require backslash escapes

Character Rust character literal

Single quote, ' '\''

Backslash, \ '\\'

Newline '\n'

Carriage return '\r'

Tab '\t'

If you prefer, you can write out a character’s Unicode code point in
hexadecimal:

If the character’s code point is in the range U+0000 to U+007F (that
is, if it is drawn from the ASCII character set), then you can write
the character as '\xHH', where HH is a two-digit hexadecimal
number. For example, the character literals '*' and '\x2A' are
equivalent, because the code point of the character * is 42, or 2A in
hexadecimal.

You can write any Unicode character as '\u{HHHHHH}', where
HHHHHH is a hexadecimal number up to six digits long, with
underscores allowed for grouping as usual. For example, the
character literal '\u{CA0}' represents the character “ಠ”, a Kannada
character used in the Unicode Look of Disapproval, “ಠ_ಠ”. The
same literal could also be simply written as 'ಠ'.

A char always holds a Unicode code point in the range 0x0000 to 0xD7FF, or
0xE000 to 0x10FFFF. A char is never a surrogate pair half (that is, a code
point in the range 0xD800 to 0xDFFF), or a value outside the Unicode
codespace (that is, greater than 0x10FFFF). Rust uses the type system and
dynamic checks to ensure char values are always in the permitted range.

Rust never implicitly converts between char and any other type. You can use
the as conversion operator to convert a char to an integer type; for types
smaller than 32 bits, the upper bits of the character’s value are truncated:

assert_eq!('*' as i32, 42);
assert_eq!('ಠ' as u16, 0xca0);
assert_eq!('ಠ' as i8, -0x60); // U+0CA0 truncated to eight bits, signed

Going in the other direction, u8 is the only type the as operator will convert
to char: Rust intends the as operator to perform only cheap, infallible
conversions, but every integer type other than u8 includes values that are not
permitted Unicode code points, so those conversions would require run-time
checks. Instead, the standard library function std::char::from_u32 takes any
u32 value and returns an Option<char>: if the u32 is not a permitted Unicode
code point, then from_u32 returns None; otherwise, it returns Some(c), where
c is the char result.

The standard library provides some useful methods on characters, which you
can look up in the online documentation under “char (primitive type),” and
the module “std::char.” For example:

assert_eq!('*'.is_alphabetic(), false);
assert_eq!('β'.is_alphabetic(), true);
assert_eq!('8'.to_digit(10), Some(8));
assert_eq!('ಠ'.len_utf8(), 3);

assert_eq!(std::char::from_digit(2, 10), Some('2'));

Naturally, single characters in isolation are not as interesting as strings and
streams of text. We’ll describe Rust’s standard String type and text handling
in general in “String Types”.

Tuples
A tuple is a pair, or triple, quadruple, quintuple, etc. (hence, n-tuple, or tuple),
of values of assorted types. You can write a tuple as a sequence of elements,
separated by commas and surrounded by parentheses. For example, ("Brazil",
1985) is a tuple whose first element is a statically allocated string, and whose
second is an integer; its type is (&str, i32). Given a tuple value t, you can
access its elements as t.0, t.1, and so on.

To a certain extent, tuples resemble arrays: both types represent an ordered
sequence of values. Many programming languages conflate or combine the
two concepts, but in Rust, they’re completely separate. For one thing, each
element of a tuple can have a different type, whereas an array’s elements
must be all the same type. Further, tuples allow only constants as indices, like
t.4. You can’t write t.i or t[i] to get the ith element.

Rust code often uses tuple types to return multiple values from a function.
For example, the split_at method on string slices, which divides a string into
two halves and returns them both, is declared like this:

fn split_at(&self, mid: usize) -> (&str, &str);

The return type (&str, &str) is a tuple of two string slices. You can use
pattern-matching syntax to assign each element of the return value to a
different variable:

let text = "I see the eigenvalue in thine eye";
let (head, tail) = text.split_at(21);
assert_eq!(head, "I see the eigenvalue ");
assert_eq!(tail, "in thine eye");

This is more legible than the equivalent:

let text = "I see the eigenvalue in thine eye";
let temp = text.split_at(21);
let head = temp.0;

let tail = temp.1;
assert_eq!(head, "I see the eigenvalue ");
assert_eq!(tail, "in thine eye");

You’ll also see tuples used as a sort of minimal-drama struct type. For
example, in the Mandelbrot program in Chapter 2, we needed to pass the
width and height of the image to the functions that plot it and write it to disk.
We could declare a struct with width and height members, but that’s pretty
heavy notation for something so obvious, so we just used a tuple:

/// Write the buffer `pixels`, whose dimensions are given by `bounds`, to the
/// file named `filename`.
fn write_image(filename: &str, pixels: &[u8], bounds: (usize, usize))
 -> Result<(), std::io::Error>
{ ... }

The type of the bounds parameter is (usize, usize), a tuple of two usize
values. Admittedly, we could just as well write out separate width and height
parameters, and the machine code would be about the same either way. It’s a
matter of clarity. We think of the size as one value, not two, and using a tuple
lets us write what we mean.

The other commonly used tuple type is the zero-tuple (). This is traditionally
called the unit type because it has only one value, also written (). Rust uses
the unit type where there’s no meaningful value to carry, but context requires
some sort of type nonetheless.

For example, a function that returns no value has a return type of (). The
standard library’s std::mem::swap function has no meaningful return value; it
just exchanges the values of its two arguments. The declaration for
std::mem::swap reads:

fn swap<T>(x: &mut T, y: &mut T);

The <T> means that swap is generic: you can use it on references to values of
any type T. But the signature omits the swap’s return type altogether, which
is shorthand for returning the unit type:

fn swap<T>(x: &mut T, y: &mut T) -> ();

Similarly, the write_image example we mentioned before has a return type of
Result<(), std::io::Error>, meaning that the function returns a std::io::Error
value if something goes wrong, but returns no value on success.

If you like, you may include a comma after a tuple’s last element: the types
(&str, i32,) and (&str, i32) are equivalent, as are the expressions ("Brazil",
1985,) and ("Brazil", 1985). Rust consistently permits an extra trailing
comma everywhere commas are used: function arguments, arrays, struct and
enum definitions, and so on. This may look odd to human readers, but it can
make diffs easier to read when entries are added and removed at the end of a
list.

For consistency’s sake, there are even tuples that contain a single value. The
literal ("lonely hearts",) is a tuple containing a single string; its type is (&str,).
Here, the comma after the value is necessary to distinguish the singleton tuple
from a simple parenthetic expression.

Pointer Types
Rust has several types that represent memory addresses.

This is a big difference between Rust and most languages with garbage
collection. In Java, if class Rectangle contains a field Vector2D upperLeft;,
then upperLeft is a reference to another separately created Vector2D object.
Objects never physically contain other objects in Java.

Rust is different. The language is designed to help keep allocations to a
minimum. Values nest by default. The value ((0, 0), (1440, 900)) is stored as
four adjacent integers. If you store it in a local variable, you’ve got a local
variable four integers wide. Nothing is allocated in the heap.

This is great for memory efficiency, but as a consequence, when a Rust
program needs values to point to other values, it must use pointer types
explicitly. The good news is that the pointer types used in safe Rust are
constrained to eliminate undefined behavior, so pointers are much easier to
use correctly in Rust than in C++.

We’ll discuss three pointer types here: references, boxes, and unsafe pointers.

References
A value of type &String (pronounced “ref String”) is a reference to a String
value, a &i32 is a reference to an i32, and so on.

It’s easiest to get started by thinking of references as Rust’s basic pointer
type. At run time, a reference to an i32 is a single machine word holding the
address of the i32, which may be on the stack or in the heap. The expression
&x produces a reference to x; in Rust terminology, we say that it borrows a
reference to x. Given a reference r, the expression *r refers to the value r
points to. These are very much like the & and * operators in C and C++. And
like a C pointer, a reference does not automatically free any resources when it
goes out of scope.

Unlike C pointers, however, Rust references are never null: there is simply no
way to produce a null reference in safe Rust. And unlike C, Rust tracks the
ownership and lifetimes of values, so mistakes like dangling pointers, double
frees, and pointer invalidation are ruled out at compile time.

Rust references come in two flavors:

&T

An immutable, shared reference. You can have many shared references to
a given value at a time, but they are read-only: modifying the value they
point to is forbidden, as with const T* in C.

&mut T

A mutable, exclusive reference. You can read and modify the value it
points to, as with a T* in C. But for as long as the reference exists, you
may not have any other references of any kind to that value. In fact, the
only way you may access the value at all is through the mutable
reference.

Rust uses this dichotomy between shared and mutable references to enforce a
“single writer or multiple readers” rule: either you can read and write the

value, or it can be shared by any number of readers, but never both at the
same time. This separation, enforced by compile-time checks, is central to
Rust’s safety guarantees. Chapter 5 explains Rust’s rules for safe reference
use.

Boxes
The simplest way to allocate a value in the heap is to use Box::new:

let t = (12, "eggs");
let b = Box::new(t); // allocate a tuple in the heap

The type of t is (i32, &str), so the type of b is Box<(i32, &str)>. The call to
Box::new allocates enough memory to contain the tuple on the heap. When b
goes out of scope, the memory is freed immediately, unless b has been moved
—by returning it, for example. Moves are essential to the way Rust handles
heap-allocated values; we explain all this in detail in Chapter 4.

Raw Pointers
Rust also has the raw pointer types *mut T and *const T. Raw pointers really
are just like pointers in C++. Using a raw pointer is unsafe, because Rust
makes no effort to track what it points to. For example, raw pointers may be
null, or they may point to memory that has been freed or that now contains a
value of a different type. All the classic pointer mistakes of C++ are offered
for your enjoyment.

However, you may only dereference raw pointers within an unsafe block. An
unsafe block is Rust’s opt-in mechanism for advanced language features
whose safety is up to you. If your code has no unsafe blocks (or if those it
does are written correctly), then the safety guarantees we emphasize
throughout this book still hold. For details, see Chapter 22.

Arrays, Vectors, and Slices
Rust has three types for representing a sequence of values in memory:

The type [T; N] represents an array of N values, each of type T. An
array’s size is a constant determined at compile time and is part of
the type; you can’t append new elements or shrink an array.

The type Vec<T>, called a vector of Ts, is a dynamically allocated,
growable sequence of values of type T. A vector’s elements live on
the heap, so you can resize vectors at will: push new elements onto
them, append other vectors to them, delete elements, and so on.

The types &[T] and &mut [T], called a shared slice of Ts and
mutable slice of Ts, are references to a series of elements that are a
part of some other value, like an array or vector. You can think of a
slice as a pointer to its first element, together with a count of the
number of elements you can access starting at that point. A mutable
slice &mut [T] lets you read and modify elements, but can’t be
shared; a shared slice &[T] lets you share access among several
readers, but doesn’t let you modify elements.

Given a value v of any of these three types, the expression v.len() gives the
number of elements in v, and v[i] refers to the ith element of v. The first
element is v[0], and the last element is v[v.len() - 1]. Rust checks that i
always falls within this range; if it doesn’t, the expression panics. The length
of v may be zero, in which case any attempt to index it will panic. i must be a
usize value; you can’t use any other integer type as an index.

Arrays
There are several ways to write array values. The simplest is to write a series
of values within square brackets:

let lazy_caterer: [u32; 6] = [1, 2, 4, 7, 11, 16];
let taxonomy = ["Animalia", "Arthropoda", "Insecta"];

assert_eq!(lazy_caterer[3], 7);
assert_eq!(taxonomy.len(), 3);

For the common case of a long array filled with some value, you can write
[V; N], where V is the value each element should have, and N is the length.
For example, [true; 10000] is an array of 10,000 bool elements, all set to true:

let mut sieve = [true; 10000];
for i in 2..100 {
 if sieve[i] {
 let mut j = i * i;
 while j < 10000 {
 sieve[j] = false;
 j += i;
 }
 }
}

assert!(sieve[211]);
assert!(!sieve[9876]);

You’ll see this syntax used for fixed-size buffers: [0u8; 1024] can be a one-
kilobyte buffer, filled with zeros. Rust has no notation for an uninitialized
array. (In general, Rust ensures that code can never access any sort of
uninitialized value.)

An array’s length is part of its type and fixed at compile time. If n is a
variable, you can’t write [true; n] to get an array of n elements. When you
need an array whose length varies at run time (and you usually do), use a
vector instead.

The useful methods you’d like to see on arrays—iterating over elements,

searching, sorting, filling, filtering, and so on—are all provided as methods
on slices, not arrays. But Rust implicitly converts a reference to an array to a
slice when searching for methods, so you can call any slice method on an
array directly:

let mut chaos = [3, 5, 4, 1, 2];
chaos.sort();
assert_eq!(chaos, [1, 2, 3, 4, 5]);

Here, the sort method is actually defined on slices, but since it takes its
operand by reference, Rust implicitly produces a &mut [i32] slice referring to
the entire array and passes that to sort to operate on. In fact, the len method
we mentioned earlier is a slice method as well. We cover slices in more detail
in “Slices”.

Vectors
A vector Vec<T> is a resizable array of elements of type T, allocated on the
heap.

There are several ways to create vectors. The simplest is to use the vec!
macro, which gives us a syntax for vectors that looks very much like an array
literal:

let mut primes = vec![2, 3, 5, 7];
assert_eq!(primes.iter().product::<i32>(), 210);

But of course, this is a vector, not an array, so we can add elements to it
dynamically:

primes.push(11);
primes.push(13);
assert_eq!(primes.iter().product::<i32>(), 30030);

You can also build a vector by repeating a given value a certain number of
times, again using a syntax that imitates array literals:

fn new_pixel_buffer(rows: usize, cols: usize) -> Vec<u8> {
 vec![0; rows * cols]
}

The vec! macro is equivalent to calling Vec::new to create a new, empty
vector and then pushing the elements onto it, which is another idiom:

let mut pal = Vec::new();
pal.push("step");
pal.push("on");
pal.push("no");
pal.push("pets");
assert_eq!(pal, vec!["step", "on", "no", "pets"]);

Another possibility is to build a vector from the values produced by an
iterator:

let v: Vec<i32> = (0..5).collect();
assert_eq!(v, [0, 1, 2, 3, 4]);

You’ll often need to supply the type when using collect (as we’ve done here),
because it can build many different sorts of collections, not just vectors. By
specifying the type of v, we’ve made it unambiguous which sort of collection
we want.

As with arrays, you can use slice methods on vectors:

// A palindrome!
let mut palindrome = vec!["a man", "a plan", "a canal", "panama"];
palindrome.reverse();
// Reasonable yet disappointing:
assert_eq!(palindrome, vec!["panama", "a canal", "a plan", "a man"]);

Here, the reverse method is actually defined on slices, but the call implicitly
borrows a &mut [&str] slice from the vector and invokes reverse on that.

Vec is an essential type to Rust—it’s used almost anywhere one needs a list
of dynamic size—so there are many other methods that construct new vectors
or extend existing ones. We’ll cover them in Chapter 16.

A Vec<T> consists of three values: a pointer to the heap-allocated buffer for
the elements, which is created and owned by the Vec<T>; the number of
elements that buffer has the capacity to store; and the number it actually
contains now (in other words, its length). When the buffer has reached its
capacity, adding another element to the vector entails allocating a larger
buffer, copying the present contents into it, updating the vector’s pointer and
capacity to describe the new buffer, and finally freeing the old one.

If you know the number of elements a vector will need in advance, instead of
Vec::new you can call Vec::with_capacity to create a vector with a buffer
large enough to hold them all, right from the start; then, you can add the
elements to the vector one at a time without causing any reallocation. The
vec! macro uses a trick like this, since it knows how many elements the final
vector will have. Note that this only establishes the vector’s initial size; if you
exceed your estimate, the vector simply enlarges its storage as usual.

Many library functions look for the opportunity to use Vec::with_capacity
instead of Vec::new. For example, in the collect example, the iterator 0..5
knows in advance that it will yield five values, and the collect function takes
advantage of this to pre-allocate the vector it returns with the correct
capacity. We’ll see how this works in Chapter 15.

Just as a vector’s len method returns the number of elements it contains now,
its capacity method returns the number of elements it could hold without
reallocation:

let mut v = Vec::with_capacity(2);
assert_eq!(v.len(), 0);
assert_eq!(v.capacity(), 2);

v.push(1);
v.push(2);
assert_eq!(v.len(), 2);
assert_eq!(v.capacity(), 2);

v.push(3);
assert_eq!(v.len(), 3);
// Typically prints "capacity is now 4":
println!("capacity is now {}", v.capacity());

The capacity printed at the end isn’t guaranteed to be exactly 4, but it will be
at least 3, since the vector is holding three values.

You can insert and remove elements wherever you like in a vector, although
these operations shift all the elements after the affected position forward or
backward, so they may be slow if the vector is long:

let mut v = vec![10, 20, 30, 40, 50];

// Make the element at index 3 be 35.
v.insert(3, 35);
assert_eq!(v, [10, 20, 30, 35, 40, 50]);

// Remove the element at index 1.
v.remove(1);
assert_eq!(v, [10, 30, 35, 40, 50]);

You can use the pop method to remove the last element and return it. More
precisely, popping a value from a Vec<T> returns an Option<T>: None if the
vector was already empty, or Some(v) if its last element had been v:

let mut v = vec!["Snow Puff", "Glass Gem"];
assert_eq!(v.pop(), Some("Glass Gem"));
assert_eq!(v.pop(), Some("Snow Puff"));
assert_eq!(v.pop(), None);

You can use a for loop to iterate over a vector:

// Get our command-line arguments as a vector of Strings.
let languages: Vec<String> = std::env::args().skip(1).collect();
for l in languages {
 println!("{}: {}", l,
 if l.len() % 2 == 0 {
 "functional"
 } else {
 "imperative"
 });
}

Running this program with a list of programming languages is illuminating:

$ cargo run Lisp Scheme C C++ Fortran
 Compiling proglangs v0.1.0 (/home/jimb/rust/proglangs)
 Finished dev [unoptimized + debuginfo] target(s) in 0.36s
 Running `target/debug/proglangs Lisp Scheme C C++ Fortran`
Lisp: functional
Scheme: functional
C: imperative
C++: imperative
Fortran: imperative
$

Finally, a satisfying definition for the term functional language.

Despite its fundamental role, Vec is an ordinary type defined in Rust, not
built into the language. We’ll cover the techniques needed to implement such
types in Chapter 22.

Slices
A slice, written [T] without specifying the length, is a region of an array or
vector. Since a slice can be any length, slices can’t be stored directly in
variables or passed as function arguments. Slices are always passed by
reference.

A reference to a slice is a fat pointer: a two-word value comprising a pointer
to the slice’s first element, and the number of elements in the slice.

Suppose you run the following code:

let v: Vec<f64> = vec![0.0, 0.707, 1.0, 0.707];
let a: [f64; 4] = [0.0, -0.707, -1.0, -0.707];

let sv: &[f64] = &v;
let sa: &[f64] = &a;

In the last two lines, Rust automatically converts the &Vec<f64> reference
and the &[f64; 4] reference to slice references that point directly to the data.

By the end, memory looks like Figure 3-2.

Figure 3-2. A vector v and an array a in memory, with slices sa and sv referring to each

Whereas an ordinary reference is a non-owning pointer to a single value, a
reference to a slice is a non-owning pointer to a range of consecutive values
in memory. This makes slice references a good choice when you want to

write a function that operates on either an array or a vector. For example,
here’s a function that prints a slice of numbers, one per line:

fn print(n: &[f64]) {
 for elt in n {
 println!("{}", elt);
 }
}

print(&a); // works on arrays
print(&v); // works on vectors

Because this function takes a slice reference as an argument, you can apply it
to either a vector or an array, as shown. In fact, many methods you might
think of as belonging to vectors or arrays are methods defined on slices: for
example, the sort and reverse methods, which sort or reverse a sequence of
elements in place, are actually methods on the slice type [T].

You can get a reference to a slice of an array or vector, or a slice of an
existing slice, by indexing it with a range:

print(&v[0..2]); // print the first two elements of v
print(&a[2..]); // print elements of a starting with a[2]
print(&sv[1..3]); // print v[1] and v[2]

As with ordinary array accesses, Rust checks that the indices are valid.
Trying to borrow a slice that extends past the end of the data results in a
panic.

Since slices almost always appear behind references, we often just refer to
types like &[T] or &str as “slices,” using the shorter name for the more
common concept.

String Types
Programmers familiar with C++ will recall that there are two string types in
the language. String literals have the pointer type const char *. The standard
library also offers a class, std::string, for dynamically creating strings at run
time.

Rust has a similar design. In this section, we’ll show all the ways to write
string literals and then introduce Rust’s two string types. We provide more
detail about strings and text handling in Chapter 17.

String Literals
String literals are enclosed in double quotes. They use the same backslash
escape sequences as char literals:

let speech = "\"Ouch!\" said the well.\n";

In string literals, unlike char literals, single quotes don’t need a backslash
escape, and double quotes do.

A string may span multiple lines:

println!("In the room the women come and go,
 Singing of Mount Abora");

The newline character in that string literal is included in the string and
therefore in the output. So are the spaces at the beginning of the second line.

If one line of a string ends with a backslash, then the newline character and
the leading whitespace on the next line are dropped:

println!("It was a bright, cold day in April, and \
 there were four of us—\
 more or less.");

This prints a single line of text. The string contains a single space between
“and” and “there” because there is a space before the backslash in the
program, and no space between the em dash and “more.”

In a few cases, the need to double every backslash in a string is a nuisance.
(The classic examples are regular expressions and Windows paths.) For these
cases, Rust offers raw strings. A raw string is tagged with the lowercase letter
r. All backslashes and whitespace characters inside a raw string are included
verbatim in the string. No escape sequences are recognized:

let default_win_install_path = r"C:\Program Files\Gorillas";

let pattern = Regex::new(r"\d+(\.\d+)*");

You can’t include a double-quote character in a raw string simply by putting
a backslash in front of it—remember, we said no escape sequences are
recognized. However, there is a cure for that too. The start and end of a raw
string can be marked with pound signs:

println!(r###"
 This raw string started with 'r###"'.
 Therefore it does not end until we reach a quote mark ('"')
 followed immediately by three pound signs ('###'):
"###);

You can add as few or as many pound signs as needed to make it clear where
the raw string ends.

Byte Strings
A string literal with the b prefix is a byte string. Such a string is a slice of u8
values—that is, bytes—rather than Unicode text:

let method = b"GET";
assert_eq!(method, &[b'G', b'E', b'T']);

The type of method is &[u8; 3]: it’s a reference to an array of three bytes. It
doesn’t have any of the string methods we’ll discuss in a minute. The most
string-like thing about it is the syntax we used to write it.

Byte strings can use all the other string syntax we’ve shown: they can span
multiple lines, use escape sequences, and use backslashes to join lines. Raw
byte strings start with br".

Byte strings can’t contain arbitrary Unicode characters. They must make do
with ASCII and \xHH escape sequences.

Strings in Memory
Rust strings are sequences of Unicode characters, but they are not stored in
memory as arrays of chars. Instead, they are stored using UTF-8, a variable-
width encoding. Each ASCII character in a string is stored in one byte. Other
characters take up multiple bytes.

Figure 3-3 shows the String and &str values created by the following code:

let noodles = "noodles".to_string();
let oodles = &noodles[1..];
let poodles = "ಠ_ಠ";

A String has a resizable buffer holding UTF-8 text. The buffer is allocated on
the heap, so it can resize its buffer as needed or requested. In the example,
noodles is a String that owns an eight-byte buffer, of which seven are in use.
You can think of a String as a Vec<u8> that is guaranteed to hold well-
formed UTF-8; in fact, this is how String is implemented.

A &str (pronounced “stir” or “string slice”) is a reference to a run of UTF-8
text owned by someone else: it “borrows” the text. In the example, oodles is a
&str referring to the last six bytes of the text belonging to noodles, so it
represents the text “oodles.” Like other slice references, a &str is a fat
pointer, containing both the address of the actual data and its length. You can
think of a &str as being nothing more than a &[u8] that is guaranteed to hold
well-formed UTF-8.

Figure 3-3. String, &str, and str

A string literal is a &str that refers to preallocated text, typically stored in
read-only memory along with the program’s machine code. In the preceding
example, poodles is a string literal, pointing to seven bytes that are created
when the program begins execution and that last until it exits.

A String or &str’s .len() method returns its length. The length is measured in
bytes, not characters:

assert_eq!("ಠ_ಠ".len(), 7);
assert_eq!("ಠ_ಠ".chars().count(), 3);

It is impossible to modify a &str:

let mut s = "hello";
s[0] = 'c'; // error: `&str` cannot be modified, and other reasons
s.push('\n'); // error: no method named `push` found for reference `&str`

For creating new strings at run time, use String.

The type &mut str does exist, but it is not very useful, since almost any
operation on UTF-8 can change its overall byte length, and a slice cannot

reallocate its referent. In fact, the only operations available on &mut str are
make_ascii_uppercase and make_ascii_lowercase, which modify the text in
place and affect only single-byte characters, by definition.

String
&str is very much like &[T]: a fat pointer to some data. String is analogous to
Vec<T>, as described in Table 3-11.

Table 3-11. Vec〈T〉 and String comparison

 Vec<T> String

Automatically frees buffers Yes Yes

Growable Yes Yes

::new() and ::with_capacity() type-associated functions Yes Yes

.reserve() and .capacity() methods Yes Yes

.push() and .pop() methods Yes Yes

Range syntax v[start..stop] Yes, returns &[T] Yes, returns &str

Automatic conversion &Vec<T> to &[T] &String to &str

Inherits methods From &[T] From &str

Like a Vec, each String has its own heap-allocated buffer that isn’t shared
with any other String. When a String variable goes out of scope, the buffer is
automatically freed, unless the String was moved.

There are several ways to create Strings:

The .to_string() method converts a &str to a String. This copies the
string:

let error_message = "too many pets".to_string();

The .to_owned() method does the same thing, and you may see it
used the same way. It works for some other types as well, as we’ll
discuss in Chapter 13.

The format!() macro works just like println!(), except that it returns a
new String instead of writing text to stdout, and it doesn’t
automatically add a newline at the end:

assert_eq!(format!("{}°{:02}′{:02}″N", 24, 5, 23),

 "24°05′23″N".to_string());

Arrays, slices, and vectors of strings have two methods, .concat()
and .join(sep), that form a new String from many strings:

let bits = vec!["veni", "vidi", "vici"];

assert_eq!(bits.concat(), "venividivici");

assert_eq!(bits.join(", "), "veni, vidi, vici");

The choice sometimes arises of which type to use: &str or String. Chapter 5
addresses this question in detail. For now it will suffice to point out that a
&str can refer to any slice of any string, whether it is a string literal (stored in
the executable) or a String (allocated and freed at run time). This means that
&str is more appropriate for function arguments when the caller should be
allowed to pass either kind of string.

Using Strings
Strings support the == and != operators. Two strings are equal if they contain
the same characters in the same order (regardless of whether they point to the
same location in memory):

assert!("ONE".to_lowercase() == "one");

Strings also support the comparison operators <, <=, >, and >=, as well as
many useful methods and functions that you can find in the online
documentation under “str (primitive type)” or the “std::str” module (or just
flip to Chapter 17). Here are a few examples:

assert!("peanut".contains("nut"));
assert_eq!("ಠ_ಠ".replace("ಠ", "■"), "■_■");
assert_eq!(" clean\n".trim(), "clean");

for word in "veni, vidi, vici".split(", ") {
 assert!(word.starts_with("v"));
}

Keep in mind that, given the nature of Unicode, simple char-by-char
comparison does not always give the expected answers. For example, the
Rust strings "th\u{e9}" and "the\u{301}" are both valid Unicode
representations for thé, the French word for tea. Unicode says they should
both be displayed and processed in the same way, but Rust treats them as two
completely distinct strings. Similarly, Rust’s ordering operators like < use a
simple lexicographical order based on character code point values. This
ordering only sometimes resembles the ordering used for text in the user’s
language and culture. We discuss these issues in more detail in Chapter 17.

Other String-Like Types
Rust guarantees that strings are valid UTF-8. Sometimes a program really
needs to be able to deal with strings that are not valid Unicode. This usually
happens when a Rust program has to interoperate with some other system
that doesn’t enforce any such rules. For example, in most operating systems
it’s easy to create a file with a filename that isn’t valid Unicode. What should
happen when a Rust program comes across this sort of filename?

Rust’s solution is to offer a few string-like types for these situations:

Stick to String and &str for Unicode text.

When working with filenames, use std::path::PathBuf and &Path
instead.

When working with binary data that isn’t UTF-8 encoded at all, use
Vec<u8> and &[u8].

When working with environment variable names and command-line
arguments in the native form presented by the operating system, use
OsString and &OsStr.

When interoperating with C libraries that use null-terminated strings,
use std::ffi::CString and &CStr.

Type Aliases
The type keyword can be used like typedef in C++ to declare a new name for
an existing type:

type Bytes = Vec<u8>;

The type Bytes that we’re declaring here is shorthand for this particular kind
of Vec:

fn decode(data: &Bytes) {
 ...
}

Beyond the Basics
Types are a central part of Rust. We’ll continue talking about types and
introducing new ones throughout the book. In particular, Rust’s user-defined
types give the language much of its flavor, because that’s where methods are
defined. There are three kinds of user-defined types, and we’ll cover them in
three successive chapters: structs in Chapter 9, enums in Chapter 10, and
traits in Chapter 11.

Functions and closures have their own types, covered in Chapter 14. And the
types that make up the standard library are covered throughout the book. For
example, Chapter 16 presents the standard collection types.

All of that will have to wait, though. Before we move on, it’s time to tackle
the concepts that are at the heart of Rust’s safety rules.

Chapter 4. Ownership and Moves

When it comes to managing memory, there are two characteristics we’d like
from our programing languages:

We ʼ d like memory to be freed promptly, at a time of our choosing.
This gives us control over the program’s memory consumption.

We never want to use a pointer to an object after it’s been freed. This
would be undefined behavior, leading to crashes and security holes.

But these seem to be mutually exclusive: freeing a value while pointers exist
to it necessarily leaves those pointers dangling. Almost all major
programming languages fall into one of two camps, depending on which of
the two qualities they give up on:

The “Safety First” camp uses garbage collection to manage memory,
automatically freeing objects when all reachable pointers to them are
gone. This eliminates dangling pointers by simply keeping the
objects around until there are no pointers to them left to dangle.
Almost all modern languages fall in this camp, from Python,
JavaScript, and Ruby to Java, C#, and Haskell.

But relying on garbage collection means relinquishing control over
exactly when objects get freed to the collector. In general, garbage
collectors are surprising beasts, and understanding why memory
wasn’t freed when you expected can be a challenge.

The “Control First” camp leaves you in charge of freeing memory.
Your program’s memory consumption is entirely in your hands, but
avoiding dangling pointers also becomes entirely your concern. C
and C++ are the only mainstream languages in this camp.

This is great if you never make mistakes, but evidence suggests that
eventually you will. Pointer misuse has been a common culprit in

reported security problems for as long as that data has been
collected.

Rust aims to be both safe and performant, so neither of these compromises is
acceptable. But if reconciliation were easy, someone would have done it long
before now. Something fundamental needs to change.

Rust breaks the deadlock in a surprising way: by restricting how your
programs can use pointers. This chapter and the next are devoted to
explaining exactly what these restrictions are and why they work. For now,
suffice it to say that some common structures you are accustomed to using
may not fit within the rules, and you’ll need to look for alternatives. But the
net effect of these restrictions is to bring just enough order to the chaos to
allow Rust’s compile-time checks to verify that your program is free of
memory safety errors: dangling pointers, double frees, using uninitialized
memory, and so on. At run time, your pointers are simple addresses in
memory, just as they would be in C and C++. The difference is that your code
has been proven to use them safely.

These same rules also form the basis of Rust’s support for safe concurrent
programming. Using Rust’s carefully designed threading primitives, the rules
that ensure your code uses memory correctly also serve to prove that it is free
of data races. A bug in a Rust program cannot cause one thread to corrupt
another’s data, introducing hard-to-reproduce failures in unrelated parts of the
system. The nondeterministic behavior inherent in multithreaded code is
isolated to those features designed to handle it—mutexes, message channels,
atomic values, and so on—rather than appearing in ordinary memory
references. Multithreaded code in C and C++ has earned its ugly reputation,
but Rust rehabilitates it quite nicely.

Rust’s radical wager, the claim on which it stakes its success and that forms
the root of the language, is that even with these restrictions in place, you’ll
find the language more than flexible enough for almost every task and that
the benefits—the elimination of broad classes of memory management and
concurrency bugs—will justify the adaptations you’ll need to make to your
style. The authors of this book are bullish on Rust exactly because of our

extensive experience with C and C++. For us, Rust’s deal is a no-brainer.

Rust’s rules are probably unlike what you’ve seen in other programming
languages. Learning how to work with them and turn them to your advantage
is, in our opinion, the central challenge of learning Rust. In this chapter, we’ll
first provide insight into the logic and intent behind Rust’s rules by showing
how the same underlying issues play out in other languages. Then, we’ll
explain Rust’s rules in detail, looking at what ownership means at a
conceptual and mechanical level, how changes in ownership are tracked in
various scenarios, and types that bend or break some of these rules in order to
provide more flexibility.

Ownership
If you’ve read much C or C++ code, you’ve probably come across a
comment saying that an instance of some class owns some other object that it
points to. This generally means that the owning object gets to decide when to
free the owned object: when the owner is destroyed, it destroys its
possessions along with it.

For example, suppose you write the following C++ code:

std::string s = "frayed knot";

The string s is usually represented in memory as shown in Figure 4-1.

Figure 4-1. A C++ std::string value on the stack, pointing to its heap-allocated buffer

Here, the actual std::string object itself is always exactly three words long,
comprising a pointer to a heap-allocated buffer, the buffer’s overall capacity
(that is, how large the text can grow before the string must allocate a larger
buffer to hold it), and the length of the text it holds now. These are fields
private to the std::string class, not accessible to the string’s users.

A std::string owns its buffer: when the program destroys the string, the
string’s destructor frees the buffer. In the past, some C++ libraries shared a

single buffer among several std::string values, using a reference count to
decide when the buffer should be freed. Newer versions of the C++
specification effectively preclude that representation; all modern C++
libraries use the approach shown here.

In these situations it’s generally understood that although it’s fine for other
code to create temporary pointers to the owned memory, it is that code’s
responsibility to make sure its pointers are gone before the owner decides to
destroy the owned object. You can create a pointer to a character living in a
std::string’s buffer, but when the string is destroyed, your pointer becomes
invalid, and it’s up to you to make sure you don’t use it anymore. The owner
determines the lifetime of the owned, and everyone else must respect its
decisions.

We’ve used std::string here as an example of what ownership looks like in
C++: it’s just a convention that the standard library generally follows, and
although the language encourages you to follow similar practices, how you
design your own types is ultimately up to you.

In Rust, however, the concept of ownership is built into the language itself
and enforced by compile-time checks. Every value has a single owner that
determines its lifetime. When the owner is freed—dropped, in Rust
terminology—the owned value is dropped too. These rules are meant to make
it easy for you to find any given value’s lifetime simply by inspecting the
code, giving you the control over its lifetime that a systems language should
provide.

A variable owns its value. When control leaves the block in which the
variable is declared, the variable is dropped, so its value is dropped along
with it. For example:

fn print_padovan() {
 let mut padovan = vec![1,1,1]; // allocated here
 for i in 3..10 {
 let next = padovan[i-3] + padovan[i-2];
 padovan.push(next);
 }
 println!("P(1..10) = {:?}", padovan);
} // dropped here

The type of the variable padovan is Vec<i32>, a vector of 32-bit integers. In
memory, the final value of padovan will look something like Figure 4-2.

Figure 4-2. A Vec<i32> on the stack, pointing to its buffer in the heap

This is very similar to the C++ std::string we showed earlier, except that the
elements in the buffer are 32-bit values, not characters. Note that the words
holding padovan’s pointer, capacity, and length live directly in the stack
frame of the print_padovan function; only the vector’s buffer is allocated on
the heap.

As with the string s earlier, the vector owns the buffer holding its elements.
When the variable padovan goes out of scope at the end of the function, the
program drops the vector. And since the vector owns its buffer, the buffer
goes with it.

Rust’s Box type serves as another example of ownership. A Box<T> is a
pointer to a value of type T stored on the heap. Calling Box::new(v) allocates
some heap space, moves the value v into it, and returns a Box pointing to the
heap space. Since a Box owns the space it points to, when the Box is
dropped, it frees the space too.

For example, you can allocate a tuple in the heap like so:

{
 let point = Box::new((0.625, 0.5)); // point allocated here
 let label = format!("{:?}", point); // label allocated here

 assert_eq!(label, "(0.625, 0.5)");
} // both dropped here

When the program calls Box::new, it allocates space for a tuple of two f64
values on the heap, moves its argument (0.625, 0.5) into that space, and
returns a pointer to it. By the time control reaches the call to assert_eq!, the
stack frame looks like Figure 4-3.

Figure 4-3. Two local variables, each owning memory in the heap

The stack frame itself holds the variables point and label, each of which
refers to a heap allocation that it owns. When they are dropped, the
allocations they own are freed along with them.

Just as variables own their values, structs own their fields, and tuples, arrays,
and vectors own their elements:

struct Person { name: String, birth: i32 }

let mut composers = Vec::new();
composers.push(Person { name: "Palestrina".to_string(),
 birth: 1525 });
composers.push(Person { name: "Dowland".to_string(),
 birth: 1563 });
composers.push(Person { name: "Lully".to_string(),
 birth: 1632 });
for composer in &composers {
 println!("{}, born {}", composer.name, composer.birth);
}

Here, composers is a Vec<Person>, a vector of structs, each of which holds a
string and a number. In memory, the final value of composers looks like

Figure 4-4.

Figure 4-4. A more complex tree of ownership

There are many ownership relationships here, but each one is pretty
straightforward: composers owns a vector; the vector owns its elements, each
of which is a Person structure; each structure owns its fields; and the string
field owns its text. When control leaves the scope in which composers is
declared, the program drops its value and takes the entire arrangement with it.
If there were other sorts of collections in the picture—a HashMap, perhaps,
or a BTreeSet—the story would be the same.

At this point, take a step back and consider the consequences of the
ownership relations we’ve presented so far. Every value has a single owner,
making it easy to decide when to drop it. But a single value may own many
other values: for example, the vector composers owns all of its elements. And
those values may own other values in turn: each element of composers owns
a string, which owns its text.

It follows that the owners and their owned values form trees: your owner is
your parent, and the values you own are your children. And at the ultimate
root of each tree is a variable; when that variable goes out of scope, the entire

tree goes with it. We can see such an ownership tree in the diagram for
composers: it’s not a “tree” in the sense of a search tree data structure, or an
HTML document made from DOM elements. Rather, we have a tree built
from a mixture of types, with Rust’s single-owner rule forbidding any
rejoining of structure that could make the arrangement more complex than a
tree. Every value in a Rust program is a member of some tree, rooted in some
variable.

Rust programs don’t usually explicitly drop values at all, in the way C and
C++ programs would use free and delete. The way to drop a value in Rust is
to remove it from the ownership tree somehow: by leaving the scope of a
variable, or deleting an element from a vector, or something of that sort. At
that point, Rust ensures the value is properly dropped, along with everything
it owns.

In a certain sense, Rust is less powerful than other languages: every other
practical programming language lets you build arbitrary graphs of objects
that point to each other in whatever way you see fit. But it is exactly because
Rust is less powerful that the analyses the language can carry out on your
programs can be more powerful. Rust’s safety guarantees are possible exactly
because the relationships it may encounter in your code are more tractable.
This is part of Rust’s “radical wager” we mentioned earlier: in practice, Rust
claims, there is usually more than enough flexibility in how one goes about
solving a problem to ensure that at least a few perfectly fine solutions fall
within the restrictions the language imposes.

That said, the concept of ownership as we’ve explained it so far is still much
too rigid to be useful. Rust extends this simple idea in several ways:

You  can  move  values  from  one  owner  to  another. This allows you
to  build,  rearrange, and tear down the tree.

Very simple types like integers, floating-point numbers, and
characters are excused from the ownership rules. These are called
Copy types.

The standard library provides the reference-counted pointer types Rc

and Arc, which allow values to have multiple owners, under some
restrictions.

You can “borrow a reference” to a value; references are non-owning
pointers, with limited lifetimes.

Each of these strategies contributes flexibility to the ownership model, while
still upholding Rust’s promises. We’ll explain each one in turn, with
references covered in the next chapter.

Moves
In Rust, for most types, operations like assigning a value to a variable,
passing it to a function, or returning it from a function don’t copy the value:
they move it. The source relinquishes ownership of the value to the
destination and becomes uninitialized; the destination now controls the
value’s lifetime. Rust programs build up and tear down complex structures
one value at a time, one move at a time.

You may be surprised that Rust would change the meaning of such
fundamental operations; surely assignment is something that should be pretty
well nailed down at this point in history. However, if you look closely at how
different languages have chosen to handle assignment, you’ll see that there’s
actually significant variation from one school to another. The comparison
also makes the meaning and consequences of Rust’s choice easier to see.

Consider the following Python code:

s = ['udon', 'ramen', 'soba']
t = s
u = s

Each Python object carries a reference count, tracking the number of values
that are currently referring to it. So after the assignment to s, the state of the
program looks like Figure 4-5 (note that some fields are left out).

Figure 4-5. How Python represents a list of strings in memory

Since only s is pointing to the list, the list’s reference count is 1; and since the
list is the only object pointing to the strings, each of their reference counts is
also 1.

What happens when the program executes the assignments to t and u? Python
implements assignment simply by making the destination point to the same
object as the source, and incrementing the object’s reference count. So the
final state of the program is something like Figure 4-6.

Figure 4-6. The result of assigning s to both t and u in Python

Python has copied the pointer from s into t and u and updated the list’s
reference count to 3. Assignment in Python is cheap, but because it creates a
new reference to the object, we must maintain reference counts to know when

we can free the value.

Now consider the analogous C++ code:

using namespace std;
vector<string> s = { "udon", "ramen", "soba" };
vector<string> t = s;
vector<string> u = s;

The original value of s looks like Figure 4-7 in memory.

What happens when the program assigns s to t and u? Assigning a std::vector
produces a copy of the vector in C++; std::string behaves similarly. So by the
time the program reaches the end of this code, it has actually allocated three
vectors and nine strings (Figure 4-8).

Figure 4-7. How C++ represents a vector of strings in memory

Figure 4-8. The result of assigning s to both t and u in C++

Depending on the values involved, assignment in C++ can consume
unbounded amounts of memory and processor time. The advantage, however,
is that it’s easy for the program to decide when to free all this memory: when
the variables go out of scope, everything allocated here gets cleaned up
automatically.

In a sense, C++ and Python have chosen opposite trade-offs: Python makes
assignment cheap, at the expense of requiring reference counting (and in the
general case, garbage collection). C++ keeps the ownership of all the memory
clear, at the expense of making assignment carry out a deep copy of the
object. C++ programmers are often less than enthusiastic about this choice:
deep copies can be expensive, and there are usually more practical
alternatives.

So what would the analogous program do in Rust? Here’s the code:

let s = vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()];
let t = s;
let u = s;

Like C and C++, Rust puts plain string literals like "udon" in read-only
memory, so for a clearer comparison with the C++ and Python examples, we
call to_string here to get heap-allocated String values.

After carrying out the initialization of s, since Rust and C++ use similar
representations for vectors and strings, the situation looks just as it did in
C++ (Figure 4-9).

Figure 4-9. How Rust represents a vector of strings in memory

But recall that, in Rust, assignments of most types move the value from the
source to the destination, leaving the source uninitialized. So after initializing
t, the program’s memory looks like Figure 4-10.

Figure 4-10. The result of assigning s to t in Rust

What has happened here? The initialization let t = s; moved the vector’s three
header fields from s to t; now t owns the vector. The vector’s elements stayed
just where they were, and nothing happened to the strings either. Every value
still has a single owner, although one has changed hands. There were no

reference counts to be adjusted. And the compiler now considers s
uninitialized.

So what happens when we reach the initialization let u = s;? This would
assign the uninitialized value s to u. Rust prudently prohibits using
uninitialized values, so the compiler rejects this code with the following
error:

error: use of moved value: `s`
 |
7 | let s = vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()];
 | - move occurs because `s` has type `Vec<String>`,
 | which does not implement the `Copy` trait
8 | let t = s;
 | - value moved here
9 | let u = s;
 | ^ value used here after move

Consider the consequences of Rust’s use of a move here. Like Python, the
assignment is cheap: the program simply moves the three-word header of the
vector from one spot to another. But like C++, ownership is always clear: the
program doesn’t need reference counting or garbage collection to know when
to free the vector elements and string contents.

The price you pay is that you must explicitly ask for copies when you want
them. If you want to end up in the same state as the C++ program, with each
variable holding an independent copy of the structure, you must call the
vector’s clone method, which performs a deep copy of the vector and its
elements:

let s = vec!["udon".to_string(), "ramen".to_string(), "soba".to_string()];
let t = s.clone();
let u = s.clone();

You could also re-create Python’s behavior by using Rust’s reference-
counted pointer types; we’ll discuss those shortly in “Rc and Arc: Shared
Ownership”.

More Operations That Move
In the examples thus far, we’ve shown initializations, providing values for
variables as they come into scope in a let statement. Assigning to a variable is
slightly different, in that if you move a value into a variable that was already
initialized, Rust drops the variable’s prior value. For example:

let mut s = "Govinda".to_string();
s = "Siddhartha".to_string(); // value "Govinda" dropped here

In this code, when the program assigns the string "Siddhartha" to s, its prior
value "Govinda" gets dropped first. But consider the following:

let mut s = "Govinda".to_string();
let t = s;
s = "Siddhartha".to_string(); // nothing is dropped here

This time, t has taken ownership of the original string from s, so that by the
time we assign to s, it is uninitialized. In this scenario, no string is dropped.

We’ve used initializations and assignments in the examples here because
they’re simple, but Rust applies move semantics to almost any use of a value.
Passing arguments to functions moves ownership to the function’s
parameters; returning a value from a function moves ownership to the caller.
Building a tuple moves the values into the tuple. And so on.

You may now have better insight into what’s really going on in the examples
we offered in the previous section. For example, when we were constructing
our vector of composers, we wrote:

struct Person { name: String, birth: i32 }

let mut composers = Vec::new();
composers.push(Person { name: "Palestrina".to_string(),
 birth: 1525 });

This code shows several places at which moves occur, beyond initialization

and assignment:

Returning values from a function

The call Vec::new() constructs a new vector and returns, not a pointer to
the vector, but the vector itself: its ownership moves from Vec::new to
the variable composers. Similarly, the to_string call returns a fresh String
instance.

Constructing new values

The name field of the new Person structure is initialized with the return
value of to_string. The structure takes ownership of the string.

Passing values to a function

The entire Person structure, not a pointer to it, is passed to the vector’s
push method, which moves it onto the end of the structure. The vector
takes ownership of the Person and thus becomes the indirect owner of the
name String as well.

Moving values around like this may sound inefficient, but there are two
things to keep in mind. First, the moves always apply to the value proper, not
the heap storage they own. For vectors and strings, the value proper is the
three-word header alone; the potentially large element arrays and text buffers
sit where they are in the heap. Second, the Rust compiler’s code generation is
good at “seeing through” all these moves; in practice, the machine code often
stores the value directly where it belongs.

Moves and Control Flow
The previous examples all have very simple control flow; how do moves
interact with more complicated code? The general principle is that, if it’s
possible for a variable to have had its value moved away and it hasn’t
definitely been given a new value since, it’s considered uninitialized. For
example, if a variable still has a value after evaluating an if expression’s
condition, then we can use it in both branches:

let x = vec![10, 20, 30];
if c {
 f(x); // ... ok to move from x here
} else {
 g(x); // ... and ok to also move from x here
}
h(x); // bad: x is uninitialized here if either path uses it

For similar reasons, moving from a variable in a loop is forbidden:

let x = vec![10, 20, 30];
while f() {
 g(x); // bad: x would be moved in first iteration,
 // uninitialized in second
}

That is, unless we’ve definitely given it a new value by the next iteration:

let mut x = vec![10, 20, 30];
while f() {
 g(x); // move from x
 x = h(); // give x a fresh value
}
e(x);

Moves and Indexed Content
We’ve mentioned that a move leaves its source uninitialized, as the
destination takes ownership of the value. But not every kind of value owner
is prepared to become uninitialized. For example, consider the following
code:

// Build a vector of the strings "101", "102", ... "105"
let mut v = Vec::new();
for i in 101 .. 106 {
 v.push(i.to_string());
}

// Pull out random elements from the vector.
let third = v[2]; // error: Cannot move out of index of Vec
let fifth = v[4]; // here too

For this to work, Rust would somehow need to remember that the third and
fifth elements of the vector have become uninitialized, and track that
information until the vector is dropped. In the most general case, vectors
would need to carry around extra information with them to indicate which
elements are live and which have become uninitialized. That is clearly not the
right behavior for a systems programming language; a vector should be
nothing but a vector. In fact, Rust rejects the preceding code with the
following error:

error: cannot move out of index of `Vec<String>`
 |
14 | let third = v[2];
 | ^^^^
 | |
 | move occurs because value has type `String`,
 | which does not implement the `Copy` trait
 | help: consider borrowing here: `&v[2]`

It also makes a similar complaint about the move to fifth. In the error
message, Rust suggests using a reference, in case you want to access the
element without moving it. This is often what you want. But what if you

really do want to move an element out of a vector? You need to find a
method that does so in a way that respects the limitations of the type. Here
are three possibilities:

// Build a vector of the strings "101", "102", ... "105"
let mut v = Vec::new();
for i in 101 .. 106 {
 v.push(i.to_string());
}

// 1. Pop a value off the end of the vector:
let fifth = v.pop().expect("vector empty!");
assert_eq!(fifth, "105");

// 2. Move a value out of a given index in the vector,
// and move the last element into its spot:
let second = v.swap_remove(1);
assert_eq!(second, "102");

// 3. Swap in another value for the one we're taking out:
let third = std::mem::replace(&mut v[2], "substitute".to_string());
assert_eq!(third, "103");

// Let's see what's left of our vector.
assert_eq!(v, vec!["101", "104", "substitute"]);

Each one of these methods moves an element out of the vector, but does so in
a way that leaves the vector in a state that is fully populated, if perhaps
smaller.

Collection types like Vec also generally offer methods to consume all their
elements in a loop:

let v = vec!["liberté".to_string(),
 "égalité".to_string(),
 "fraternité".to_string()];

for mut s in v {
 s.push('!');
 println!("{}", s);
}

When we pass the vector to the loop directly, as in for ... in v, this moves the

vector out of v, leaving v uninitialized. The for loop’s internal machinery
takes ownership of the vector and dissects it into its elements. At each
iteration, the loop moves another element to the variable s. Since s now owns
the string, we’re able to modify it in the loop body before printing it. And
since the vector itself is no longer visible to the code, nothing can observe it
mid-loop in some partially emptied state.

If you do find yourself needing to move a value out of an owner that the
compiler can’t track, you might consider changing the owner’s type to
something that can dynamically track whether it has a value or not. For
example, here’s a variant on the earlier example:

struct Person { name: Option<String>, birth: i32 }

let mut composers = Vec::new();
composers.push(Person { name: Some("Palestrina".to_string()),
 birth: 1525 });

You can’t do this:

let first_name = composers[0].name;

That will just elicit the same “cannot move out of index” error shown earlier.
But because you’ve changed the type of the name field from String to
Option<String>, that means that None is a legitimate value for the field to
hold, so this works:

let first_name = std::mem::replace(&mut composers[0].name, None);
assert_eq!(first_name, Some("Palestrina".to_string()));
assert_eq!(composers[0].name, None);

The replace call moves out the value of composers[0].name, leaving None in
its place, and passes ownership of the original value to its caller. In fact,
using Option this way is common enough that the type provides a take
method for this very purpose. You could write the preceding manipulation
more legibly as follows:

let first_name = composers[0].name.take();

This call to take has the same effect as the earlier call to replace.

Copy Types: The Exception to Moves
The examples we’ve shown so far of values being moved involve vectors,
strings, and other types that could potentially use a lot of memory and be
expensive to copy. Moves keep ownership of such types clear and assignment
cheap. But for simpler types like integers or characters, this sort of careful
handling really isn’t necessary.

Compare what happens in memory when we assign a String with what
happens when we assign an i32 value:

let string1 = "somnambulance".to_string();
let string2 = string1;

let num1: i32 = 36;
let num2 = num1;

After running this code, memory looks like Figure 4-11.

Figure 4-11. Assigning a String moves the value, whereas assigning an i32 copies it

As with the vectors earlier, assignment moves string1 to string2 so that we
don’t end up with two strings responsible for freeing the same buffer.
However, the situation with num1 and num2 is different. An i32 is simply a
pattern of bits in memory; it doesn’t own any heap resources or really depend
on anything other than the bytes it comprises. By the time we’ve moved its
bits to num2, we’ve made a completely independent copy of num1.

Moving a value leaves the source of the move uninitialized. But whereas it

serves an essential purpose to treat string1 as valueless, treating num1 that
way is pointless; no harm could result from continuing to use it. The
advantages of a move don’t apply here, and it’s inconvenient.

Earlier we were careful to say that most types are moved; now we’ve come to
the exceptions, the types Rust designates as Copy types. Assigning a value of
a Copy type copies the value, rather than moving it. The source of the
assignment remains initialized and usable, with the same value it had before.
Passing Copy types to functions and constructors behaves similarly.

The standard Copy types include all the machine integer and floating-point
numeric types, the char and bool types, and a few others. A tuple or fixed-
size array of Copy types is itself a Copy type.

Only types for which a simple bit-for-bit copy suffices can be Copy. As
we’ve already explained, String is not a Copy type, because it owns a heap-
allocated buffer. For similar reasons, Box<T> is not Copy; it owns its heap-
allocated referent. The File type, representing an operating system file
handle, is not Copy; duplicating such a value would entail asking the
operating system for another file handle. Similarly, the MutexGuard type,
representing a locked mutex, isn’t Copy: this type isn’t meaningful to copy at
all, as only one thread may hold a mutex at a time.

As a rule of thumb, any type that needs to do something special when a value
is dropped cannot be Copy: a Vec needs to free its elements, a File needs to
close its file handle, a MutexGuard needs to unlock its mutex, and so on. Bit-
for-bit duplication of such types would leave it unclear which value was now
responsible for the original’s resources.

What about types you define yourself? By default, struct and enum types are
not Copy:

struct Label { number: u32 }

fn print(l: Label) { println!("STAMP: {}", l.number); }

let l = Label { number: 3 };
print(l);
println!("My label number is: {}", l.number);

This won’t compile; Rust complains:

error: borrow of moved value: `l`
 |
10 | let l = Label { number: 3 };
 | - move occurs because `l` has type `main::Label`,
 | which does not implement the `Copy` trait
11 | print(l);
 | - value moved here
12 | println!("My label number is: {}", l.number);
 | ^^^^^^^^
 | value borrowed here after move

Since Label is not Copy, passing it to print moved ownership of the value to
the print function, which then dropped it before returning. But this is silly; a
Label is nothing but a u32 with pretensions. There’s no reason passing l to
print should move the value.

But user-defined types being non-Copy is only the default. If all the fields of
your struct are themselves Copy, then you can make the type Copy as well by
placing the attribute #[derive(Copy, Clone)] above the definition, like so:

#[derive(Copy, Clone)]
struct Label { number: u32 }

With this change, the preceding code compiles without complaint. However,
if we try this on a type whose fields are not all Copy, it doesn’t work.
Suppose we compile the following code:

#[derive(Copy, Clone)]
struct StringLabel { name: String }

It elicits this error:

error: the trait `Copy` may not be implemented for this type
 |
7 | #[derive(Copy, Clone)]
 | ^^^^
8 | struct StringLabel { name: String }
 | ------------ this field does not implement `Copy`

Why aren’t user-defined types automatically Copy, assuming they’re
eligible? Whether a type is Copy or not has a big effect on how code is
allowed to use it: Copy types are more flexible, since assignment and related
operations don’t leave the original uninitialized. But for a type’s
implementer, the opposite is true: Copy types are very limited in which types
they can contain, whereas non-Copy types can use heap allocation and own
other sorts of resources. So making a type Copy represents a serious
commitment on the part of the implementer: if it’s necessary to change it to
non-Copy later, much of the code that uses it will probably need to be
adapted.

While C++ lets you overload assignment operators and define specialized
copy and move constructors, Rust doesn’t permit this sort of customization.
In Rust, every move is a byte-for-byte, shallow copy that leaves the source
uninitialized. Copies are the same, except that the source remains initialized.
This does mean that C++ classes can provide convenient interfaces that Rust
types cannot, where ordinary-looking code implicitly adjusts reference
counts, puts off expensive copies for later, or uses other sophisticated
implementation tricks.

But the effect of this flexibility on C++ as a language is to make basic
operations like assignment, passing parameters, and returning values from
functions less predictable. For example, earlier in this chapter we showed
how assigning one variable to another in C++ can require arbitrary amounts
of memory and processor time. One of Rust’s principles is that costs should
be apparent to the programmer. Basic operations must remain simple.
Potentially expensive operations should be explicit, like the calls to clone in
the earlier example that make deep copies of vectors and the strings they
contain.

In this section, we’ve talked about Copy and Clone in vague terms as
characteristics a type might have. They are actually examples of traits, Rust’s
open-ended facility for categorizing types based on what you can do with
them. We describe traits in general in Chapter 11, and Copy and Clone in
particular in Chapter 13.

Rc and Arc: Shared Ownership
Although most values have unique owners in typical Rust code, in some
cases it’s difficult to find every value a single owner that has the lifetime you
need; you’d like the value to simply live until everyone’s done using it. For
these cases, Rust provides the reference-counted pointer types Rc and Arc.
As you would expect from Rust, these are entirely safe to use: you cannot
forget to adjust the reference count, create other pointers to the referent that
Rust doesn’t notice, or stumble over any of the other sorts of problems that
accompany reference-counted pointer types in C++.

The Rc and Arc types are very similar; the only difference between them is
that an Arc is safe to share between threads directly—the name Arc is short
for atomic reference count—whereas a plain Rc uses faster non-thread-safe
code to update its reference count. If you don’t need to share the pointers
between threads, there’s no reason to pay the performance penalty of an Arc,
so you should use Rc; Rust will prevent you from accidentally passing one
across a thread boundary. The two types are otherwise equivalent, so for the
rest of this section, we’ll only talk about Rc.

Earlier we showed how Python uses reference counts to manage its values’
lifetimes. You can use Rc to get a similar effect in Rust. Consider the
following code:

use std::rc::Rc;

// Rust can infer all these types; written out for clarity
let s: Rc<String> = Rc::new("shirataki".to_string());
let t: Rc<String> = s.clone();
let u: Rc<String> = s.clone();

For any type T, an Rc<T> value is a pointer to a heap-allocated T that has
had a reference count affixed to it. Cloning an Rc<T> value does not copy the
T; instead, it simply creates another pointer to it and increments the reference
count. So the preceding code produces the situation illustrated in Figure 4-12
in memory.

Figure 4-12. A reference-counted string with three references

Each of the three Rc<String> pointers is referring to the same block of
memory, which holds a reference count and space for the String. The usual
ownership rules apply to the Rc pointers themselves, and when the last extant
Rc is dropped, Rust drops the String as well.

You can use any of String’s usual methods directly on an Rc<String>:

assert!(s.contains("shira"));
assert_eq!(t.find("taki"), Some(5));
println!("{} are quite chewy, almost bouncy, but lack flavor", u);

A value owned by an Rc pointer is immutable. Suppose you try to add some
text to the end of the string:

s.push_str(" noodles");

Rust will decline:

error: cannot borrow data in an `Rc` as mutable
 |
13 | s.push_str(" noodles");
 | ^ cannot borrow as mutable
 |

Rust’s memory and thread-safety guarantees depend on ensuring that no
value is ever simultaneously shared and mutable. Rust assumes the referent
of an Rc pointer might in general be shared, so it must not be mutable. We
explain why this restriction is important in Chapter 5.

One well-known problem with using reference counts to manage memory is
that, if there are ever two reference-counted values that point to each other,
each will hold the other’s reference count above zero, so the values will never
be freed (Figure 4-13).

Figure 4-13. A reference-counting loop; these objects will not be freed

It is possible to leak values in Rust this way, but such situations are rare. You
cannot create a cycle without, at some point, making an older value point to a
newer value. This obviously requires the older value to be mutable. Since Rc
pointers hold their referents immutable, it’s not normally possible to create a
cycle. However, Rust does provide ways to create mutable portions of
otherwise immutable values; this is called interior mutability, and we cover it
in “Interior Mutability”. If you combine those techniques with Rc pointers,

you can create a cycle and leak memory.

You can sometimes avoid creating cycles of Rc pointers by using weak
pointers, std::rc::Weak, for some of the links instead. However, we won’t
cover those in this book; see the standard library’s documentation for details.

Moves and reference-counted pointers are two ways to relax the rigidity of
the ownership tree. In the next chapter, we’ll look at a third way: borrowing
references to values. Once you have become comfortable with both
ownership and borrowing, you will have climbed the steepest part of Rust’s
learning curve, and you’ll be ready to take advantage of Rust’s unique
strengths.

Chapter 5. References

Libraries cannot provide new inabilities.
—Mark Miller

All the pointer types we’ve seen so far—the simple Box<T> heap pointer,
and the pointers internal to String and Vec values—are owning pointers:
when the owner is dropped, the referent goes with it. Rust also has non-
owning pointer types called references, which have no effect on their
referents’ lifetimes.

In fact, it’s rather the opposite: references must never outlive their referents.
You must make it apparent in your code that no reference can possibly
outlive the value it points to. To emphasize this, Rust refers to creating a
reference to some value as borrowing the value: what you have borrowed,
you must eventually return to its owner.

If you felt a moment of skepticism when reading the phrase “You must make
it apparent in your code,” you’re in excellent company. The references
themselves are nothing special—under the hood, they’re just addresses. But
the rules that keep them safe are novel to Rust; outside of research languages,
you won’t have seen anything like them before. And although these rules are
the part of Rust that requires the most effort to master, the breadth of classic,
absolutely everyday bugs they prevent is surprising, and their effect on
multithreaded programming is liberating. This is Rust’s radical wager, again.

In this chapter, we’ll walk through how references work in Rust; show how
references, functions, and user-defined types all incorporate lifetime
information to ensure that they’re used safely; and illustrate some common
categories of bugs that these efforts prevent, at compile time and without run-
time performance penalties.

References to Values
As an example, let’s suppose we’re going to build a table of murderous
Renaissance artists and the works they’re known for. Rust’s standard library
includes a hash table type, so we can define our type like this:

use std::collections::HashMap;

type Table = HashMap<String, Vec<String>>;

In other words, this is a hash table that maps String values to Vec<String>
values, taking the name of an artist to a list of the names of their works. You
can iterate over the entries of a HashMap with a for loop, so we can write a
function to print out a Table:

fn show(table: Table) {
 for (artist, works) in table {
 println!("works by {}:", artist);
 for work in works {
 println!(" {}", work);
 }
 }
}

Constructing and printing the table is straightforward:

fn main() {
 let mut table = Table::new();
 table.insert("Gesualdo".to_string(),
 vec!["many madrigals".to_string(),
 "Tenebrae Responsoria".to_string()]);
 table.insert("Caravaggio".to_string(),
 vec!["The Musicians".to_string(),
 "The Calling of St. Matthew".to_string()]);
 table.insert("Cellini".to_string(),
 vec!["Perseus with the head of Medusa".to_string(),
 "a salt cellar".to_string()]);

 show(table);
}

And it all works fine:

$ cargo run
 Running `/home/jimb/rust/book/fragments/target/debug/fragments`
works by Gesualdo:
 many madrigals
 Tenebrae Responsoria
works by Cellini:
 Perseus with the head of Medusa
 a salt cellar
works by Caravaggio:
 The Musicians
 The Calling of St. Matthew
$

But if you’ve read the previous chapter’s section on moves, this definition for
show should raise a few questions. In particular, HashMap is not Copy—it
can’t be, since it owns a dynamically allocated table. So when the program
calls show(table), the whole structure gets moved to the function, leaving the
variable table uninitialized. (It also iterates over its contents in no specific
order, so if you’ve gotten a different order, don’t worry.) If the calling code
tries to use table now, it’ll run into trouble:

...
show(table);
assert_eq!(table["Gesualdo"][0], "many madrigals");

Rust complains that table isn’t available anymore:

error: borrow of moved value: `table`
 |
20 | let mut table = Table::new();
 | --------- move occurs because `table` has type
 | `HashMap<String, Vec<String>>`,
 | which does not implement the `Copy` trait
...
31 | show(table);
 | ----- value moved here
32 | assert_eq!(table["Gesualdo"][0], "many madrigals");
 | ^^^^^ value borrowed here after move

In fact, if we look into the definition of show, the outer for loop takes
ownership of the hash table and consumes it entirely; and the inner for loop
does the same to each of the vectors. (We saw this behavior earlier, in the
“liberté, égalité, fraternité” example.) Because of move semantics, we’ve
completely destroyed the entire structure simply by trying to print it out.
Thanks, Rust!

The right way to handle this is to use references. A reference lets you access a
value without affecting its ownership. References come in two kinds:

A shared reference lets you read but not modify its referent.
However, you can have as many shared references to a particular
value at a time as you like. The expression &e yields a shared
reference to e’s value; if e has the type T, then &e has the type &T,
pronounced “ref T.” Shared references are Copy.

If you have a mutable reference to a value, you may both read and
modify the value. However, you may not have any other references
of any sort to that value active at the same time. The expression
&mut e yields a mutable reference to e’s value; you write its type as
&mut T, which is pronounced “ref mute T.” Mutable references are
not Copy.

You can think of the distinction between shared and mutable references as a
way to enforce a multiple readers or single writer rule at compile time. In
fact, this rule doesn’t apply only to references; it covers the borrowed value’s
owner as well. As long as there are shared references to a value, not even its
owner can modify it; the value is locked down. Nobody can modify table
while show is working with it. Similarly, if there is a mutable reference to a
value, it has exclusive access to the value; you can’t use the owner at all, until
the mutable reference goes away. Keeping sharing and mutation fully
separate turns out to be essential to memory safety, for reasons we’ll go into
later in the chapter.

The printing function in our example doesn’t need to modify the table, just
read its contents. So the caller should be able to pass it a shared reference to
the table, as follows:

show(&table);

References are non-owning pointers, so the table variable remains the owner
of the entire structure; show has just borrowed it for a bit. Naturally, we’ll
need to adjust the definition of show to match, but you’ll have to look closely
to see the difference:

fn show(table: &Table) {
 for (artist, works) in table {
 println!("works by {}:", artist);
 for work in works {
 println!(" {}", work);
 }
 }
}

The type of show’s parameter table has changed from Table to &Table:
instead of passing the table by value (and hence moving ownership into the
function), we’re now passing a shared reference. That’s the only textual
change. But how does this play out as we work through the body?

Whereas our original outer for loop took ownership of the HashMap and
consumed it, in our new version it receives a shared reference to the
HashMap. Iterating over a shared reference to a HashMap is defined to
produce shared references to each entry’s key and value: artist has changed
from a String to a &String, and works from a Vec<String> to a
&Vec<String>.

The inner loop is changed similarly. Iterating over a shared reference to a
vector is defined to produce shared references to its elements, so work is now
a &String. No ownership changes hands anywhere in this function; it’s just
passing around non-owning references.

Now, if we wanted to write a function to alphabetize the works of each artist,
a shared reference doesn’t suffice, since shared references don’t permit
modification. Instead, the sorting function needs to take a mutable reference
to the table:

fn sort_works(table: &mut Table) {

 for (_artist, works) in table {
 works.sort();
 }
}

And we need to pass it one:

sort_works(&mut table);

This mutable borrow grants sort_works the ability to read and modify our
structure, as required by the vectors’ sort method.

When we pass a value to a function in a way that moves ownership of the
value to the function, we say that we have passed it by value. If we instead
pass the function a reference to the value, we say that we have passed the
value by reference. For example, we fixed our show function by changing it
to accept the table by reference, rather than by value. Many languages draw
this distinction, but it’s especially important in Rust, because it spells out
how ownership is affected.

Working with References
The preceding example shows a pretty typical use for references: allowing
functions to access or manipulate a structure without taking ownership. But
references are more flexible than that, so let’s look at some examples to get a
more detailed view of what’s going on.

Rust References Versus C++ References
If you’re familiar with references in C++, they do have something in common
with Rust references. Most importantly, they’re both just addresses at the
machine level. But in practice, Rust’s references have a very different feel.

In C++, references are created implicitly by conversion, and dereferenced
implicitly too:

// C++ code!
int x = 10;
int &r = x; // initialization creates reference implicitly
assert(r == 10); // implicitly dereference r to see x's value
r = 20; // stores 20 in x, r itself still points to x

In Rust, references are created explicitly with the & operator, and
dereferenced explicitly with the * operator:

// Back to Rust code from this point onward.
let x = 10;
let r = &x; // &x is a shared reference to x
assert!(*r == 10); // explicitly dereference r

To create a mutable reference, use the &mut operator:

let mut y = 32;
let m = &mut y; // &mut y is a mutable reference to y
*m += 32; // explicitly dereference m to set y's value
assert!(*m == 64); // and to see y's new value

But you might recall that, when we fixed the show function to take the table
of artists by reference instead of by value, we never had to use the * operator.
Why is that?

Since references are so widely used in Rust, the . operator implicitly
dereferences its left operand, if needed:

struct Anime { name: &'static str, bechdel_pass: bool }
let aria = Anime { name: "Aria: The Animation", bechdel_pass: true };

let anime_ref = &aria;
assert_eq!(anime_ref.name, "Aria: The Animation");

// Equivalent to the above, but with the dereference written out:
assert_eq!((*anime_ref).name, "Aria: The Animation");

The println! macro used in the show function expands to code that uses the .
operator, so it takes advantage of this implicit dereference as well.

The . operator can also implicitly borrow a reference to its left operand, if
needed for a method call. For example, Vec’s sort method takes a mutable
reference to the vector, so these two calls are equivalent:

let mut v = vec![1973, 1968];
v.sort(); // implicitly borrows a mutable reference to v
(&mut v).sort(); // equivalent, but more verbose

In a nutshell, whereas C++ converts implicitly between references and
lvalues (that is, expressions referring to locations in memory), with these
conversions appearing anywhere they’re needed, in Rust you use the & and *
operators to create and follow references, with the exception of the . operator,
which borrows and dereferences implicitly.

Assigning References
Assigning a reference to a variable makes that variable point somewhere
new:

let x = 10;
let y = 20;
let mut r = &x;

if b { r = &y; }

assert!(*r == 10 || *r == 20);

The reference r initially points to x. But if b is true, the code points it at y
instead, as illustrated in Figure 5-1.

Figure 5-1. The reference r, now pointing to y instead of x

This behavior may seem too obvious to be worth mentioning: of course r now
points to y, since we stored &y in it. But we point this out because C++
references behave very differently: as shown earlier, assigning a value to a
reference in C++ stores the value in its referent. Once a C++ reference has
been initialized, there’s no way to make it point at anything else.

References to References
Rust permits references to references:

struct Point { x: i32, y: i32 }
let point = Point { x: 1000, y: 729 };
let r: &Point = &point;
let rr: &&Point = &r;
let rrr: &&&Point = &rr;

(We’ve written out the reference types for clarity, but you could omit them;
there’s nothing here Rust can’t infer for itself.) The . operator follows as
many references as it takes to find its target:

assert_eq!(rrr.y, 729);

In memory, the references are arranged as shown in Figure 5-2.

Figure 5-2. A chain of references to references

So the expression rrr.y, guided by the type of rrr, actually traverses three
references to get to the Point before fetching its y field.

Comparing References
Like the . operator, Rust’s comparison operators “see through” any number of
references:

let x = 10;
let y = 10;

let rx = &x;
let ry = &y;

let rrx = ℞
let rry = &ry;

assert!(rrx <= rry);
assert!(rrx == rry);

The final assertion here succeeds, even though rrx and rry point at different
values (namely, rx and ry), because the == operator follows all the references
and performs the comparison on their final targets, x and y. This is almost
always the behavior you want, especially when writing generic functions. If
you actually want to know whether two references point to the same memory,
you can use std::ptr::eq, which compares them as addresses:

assert!(rx == ry); // their referents are equal
assert!(!std::ptr::eq(rx, ry)); // but occupy different addresses

Note that the operands of a comparison must have exactly the same type,
including the references:

assert!(rx == rrx); // error: type mismatch: `&i32` vs `&&i32`
assert!(rx == *rrx); // this is okay

References Are Never Null
Rust references are never null. There’s no analogue to C’s NULL or C++’s
nullptr. There is no default initial value for a reference (you can’t use any
variable until it’s been initialized, regardless of its type) and Rust won’t
convert integers to references (outside of unsafe code), so you can’t convert
zero into a reference.

C and C++ code often uses a null pointer to indicate the absence of a value:
for example, the malloc function returns either a pointer to a new block of
memory or nullptr if there isn’t enough memory available to satisfy the
request. In Rust, if you need a value that is either a reference to something or
not, use the type Option<&T>. At the machine level, Rust represents None as
a null pointer and Some(r), where r is a &T value, as the nonzero address, so
Option<&T> is just as efficient as a nullable pointer in C or C++, even
though it’s safer: its type requires you to check whether it’s None before you
can use it.

Borrowing References to Arbitrary Expressions
Whereas C and C++ only let you apply the & operator to certain kinds of
expressions, Rust lets you borrow a reference to the value of any sort of
expression at all:

fn factorial(n: usize) -> usize {
 (1..n+1).product()
}
let r = &factorial(6);
// Arithmetic operators can see through one level of references.
assert_eq!(r + &1009, 1729);

In situations like this, Rust simply creates an anonymous variable to hold the
expression’s value and makes the reference point to that. The lifetime of this
anonymous variable depends on what you do with the reference:

If you immediately assign the reference to a variable in a let
statement (or make it part of some struct or array that is being
immediately assigned), then Rust makes the anonymous variable live
as long as the variable the let initializes. In the preceding example,
Rust would do this for the referent of r.

Otherwise, the anonymous variable lives to the end of the enclosing
statement. In our example, the anonymous variable created to hold
1009 lasts only to the end of the assert_eq! statement.

If you’re used to C or C++, this may sound error-prone. But remember that
Rust will never let you write code that would produce a dangling reference. If
the reference could ever be used beyond the anonymous variable’s lifetime,
Rust will always report the problem to you at compile time. You can then fix
your code to keep the referent in a named variable with an appropriate
lifetime.

References to Slices and Trait Objects
The references we’ve shown so far are all simple addresses. However, Rust
also includes two kinds of fat pointers, two-word values carrying the address
of some value, along with some further information necessary to put the
value to use.

A reference to a slice is a fat pointer, carrying the starting address of the slice
and its length. We described slices in detail in Chapter 3.

Rust’s other kind of fat pointer is a trait object, a reference to a value that
implements a certain trait. A trait object carries a value’s address and a
pointer to the trait’s implementation appropriate to that value, for invoking
the trait’s methods. We’ll cover trait objects in detail in “Trait Objects”.

Aside from carrying this extra data, slice and trait object references behave
just like the other sorts of references we’ve shown so far in this chapter: they
don’t own their referents, they are not allowed to outlive their referents, they
may be mutable or shared, and so on.

Reference Safety
As we’ve presented them so far, references look pretty much like ordinary
pointers in C or C++. But those are unsafe; how does Rust keep its references
under control? Perhaps the best way to see the rules in action is to try to
break them.

To convey the fundamental ideas, we’ll start with the simplest cases, showing
how Rust ensures references are used properly within a single function body.
Then we’ll look at passing references between functions and storing them in
data structures. This entails giving said functions and data types lifetime
parameters, which we’ll explain. Finally, we’ll present some shortcuts that
Rust provides to simplify common usage patterns. Throughout, we’ll be
showing how Rust points out broken code and often suggests solutions.

Borrowing a Local Variable
Here’s a pretty obvious case. You can’t borrow a reference to a local variable
and take it out of the variable’s scope:

{
 let r;
 {
 let x = 1;
 r = &x;
 }
 assert_eq!(*r, 1); // bad: reads memory `x` used to occupy
}

The Rust compiler rejects this program, with a detailed error message:

error: `x` does not live long enough
 |
7 | r = &x;
 | ^^ borrowed value does not live long enough
8 | }
 | - `x` dropped here while still borrowed
9 | assert_eq!(*r, 1); // bad: reads memory `x` used to occupy
10 | }

Rust’s complaint is that x lives only until the end of the inner block, whereas
the reference remains alive until the end of the outer block, making it a
dangling pointer, which is verboten.

While it’s obvious to a human reader that this program is broken, it’s worth
looking at how Rust itself reached that conclusion. Even this simple example
shows the logical tools Rust uses to check much more complex code.

Rust tries to assign each reference type in your program a lifetime that meets
the constraints imposed by how it is used. A lifetime is some stretch of your
program for which a reference could be safe to use: a statement, an
expression, the scope of some variable, or the like. Lifetimes are entirely
figments of Rust’s compile-time imagination. At run time, a reference is
nothing but an address; its lifetime is part of its type and has no run-time

representation.

In this example, there are three lifetimes whose relationships we need to work
out. The variables r and x both have a lifetime, extending from the point at
which they’re initialized until the point that the compiler can prove they are
no longer in use. The third lifetime is that of a reference type: the type of the
reference we borrow to x and store in r.

Here’s one constraint that should seem pretty obvious: if you have a variable
x, then a reference to x must not outlive x itself, as shown in Figure 5-3.

Beyond the point where x goes out of scope, the reference would be a
dangling pointer. We say that the variable’s lifetime must contain or enclose
that of the reference borrowed from it.

Figure 5-3. Permissible lifetimes for &x

Here’s another kind of constraint: if you store a reference in a variable r, the
reference’s type must be good for the entire lifetime of the variable, from its
initialization until its last use, as shown in Figure 5-4.

If the reference can’t live at least as long as the variable does, then at some
point r will be a dangling pointer. We say that the reference’s lifetime must
contain or enclose the variable’s.

Figure 5-4. Permissible lifetimes for reference stored in r

The first kind of constraint limits how large a reference’s lifetime can be,
while the second kind limits how small it can be. Rust simply tries to find a
lifetime for each reference that satisfies all these constraints. In our example,
however, there is no such lifetime, as shown in Figure 5-5.

Figure 5-5. A reference with contradictory constraints on its lifetime

Let’s now consider a different example where things do work out. We have
the same kinds of constraints: the reference’s lifetime must be contained by
x’s, but fully enclose r’s. But because r’s lifetime is smaller now, there is a

lifetime that meets the constraints, as shown in Figure 5-6.

Figure 5-6. A reference with a lifetime enclosing r’s scope, but within x’s scope

These rules apply in a natural way when you borrow a reference to some part
of some larger data structure, like an element of a vector:

let v = vec![1, 2, 3];
let r = &v[1];

Since v owns the vector, which owns its elements, the lifetime of v must
enclose that of the reference type of &v[1]. Similarly, if you store a reference
in some data structure, its lifetime must enclose that of the data structure. For
example, if you build a vector of references, all of them must have lifetimes
enclosing that of the variable that owns the vector.

This is the essence of the process Rust uses for all code. Bringing more
language features into the picture—e.g., data structures and function calls—
introduces new sorts of constraints, but the principle remains the same: first,
understand the constraints arising from the way the program uses references;
then, find lifetimes that satisfy them. This is not so different from the process
C and C++ programmers impose on themselves; the difference is that Rust
knows the rules and enforces them.

Receiving References as Function Arguments
When we pass a reference to a function, how does Rust make sure the
function uses it safely? Suppose we have a function f that takes a reference
and stores it in a global variable. We’ll need to make a few revisions to this,
but here’s a first cut:

// This code has several problems, and doesn't compile.
static mut STASH: &i32;
fn f(p: &i32) { STASH = p; }

Rust’s equivalent of a global variable is called a static: it’s a value that’s
created when the program starts and lasts until it terminates. (Like any other
declaration, Rust’s module system controls where statics are visible, so
they’re only “global” in their lifetime, not their visibility.) We cover statics in
Chapter 8, but for now we’ll just call out a few rules that the code just shown
doesn’t follow:

Every static must be initialized.

Mutable statics are inherently not thread-safe (after all, any thread
can access a static at any time), and even in single-threaded
programs, they can fall prey to other sorts of reentrancy problems.
For these reasons, you may access a mutable static only within an
unsafe block. In this example we’re not concerned with those
particular problems, so we’ll just throw in an unsafe block and move
on.

With those revisions made, we now have the following:

static mut STASH: &i32 = &128;
fn f(p: &i32) { // still not good enough
 unsafe {
 STASH = p;
 }
}

We’re almost done. To see the remaining problem, we need to write out a few
things that Rust is helpfully letting us omit. The signature of f as written here
is actually shorthand for the following:

fn f<'a>(p: &'a i32) { ... }

Here, the lifetime 'a (pronounced “tick A”) is a lifetime parameter of f. You
can read <'a> as “for any lifetime 'a” so when we write fn f<'a>(p: &'a i32),
we’re defining a function that takes a reference to an i32 with any given
lifetime 'a.

Since we must allow 'a to be any lifetime, things had better work out if it’s
the smallest possible lifetime: one just enclosing the call to f. This assignment
then becomes a point of contention:

STASH = p;

Since STASH lives for the program’s entire execution, the reference type it
holds must have a lifetime of the same length; Rust calls this the 'static
lifetime. But the lifetime of p’s reference is some 'a, which could be anything,
as long as it encloses the call to f. So, Rust rejects our code:

error: explicit lifetime required in the type of `p`
 |
5 | STASH = p;
 | ^ lifetime `'static` required

At this point, it’s clear that our function can’t accept just any reference as an
argument. But as Rust points out, it ought to be able to accept a reference that
has a 'static lifetime: storing such a reference in STASH can’t create a
dangling pointer. And indeed, the following code compiles just fine:

static mut STASH: &i32 = &10;

fn f(p: &'static i32) {
 unsafe {
 STASH = p;
 }

}

This time, f’s signature spells out that p must be a reference with lifetime
'static, so there’s no longer any problem storing that in STASH. We can only
apply f to references to other statics, but that’s the only thing that’s certain
not to leave STASH dangling anyway. So we can write:

static WORTH_POINTING_AT: i32 = 1000;
f(&WORTH_POINTING_AT);

Since WORTH_POINTING_AT is a static, the type of
&WORTH_POINTING_AT is &'static i32, which is safe to pass to f.

Take a step back, though, and notice what happened to f’s signature as we
amended our way to correctness: the original f(p: &i32) ended up as f(p:
&'static i32). In other words, we were unable to write a function that stashed
a reference in a global variable without reflecting that intention in the
function’s signature. In Rust, a function’s signature always exposes the
body’s behavior.

Conversely, if we do see a function with a signature like g(p: &i32) (or with
the lifetimes written out, g<'a>(p: &'a i32)), we can tell that it does not stash
its argument p anywhere that will outlive the call. There’s no need to look
into g’s definition; the signature alone tells us what g can and can’t do with
its argument. This fact ends up being very useful when you’re trying to
establish the safety of a call to the function.

Passing References to Functions
Now that we’ve shown how a function’s signature relates to its body, let’s
examine how it relates to the function’s callers. Suppose you have the
following code:

// This could be written more briefly: fn g(p: &i32),
// but let's write out the lifetimes for now.
fn g<'a>(p: &'a i32) { ... }

let x = 10;
g(&x);

From g’s signature alone, Rust knows it will not save p anywhere that might
outlive the call: any lifetime that encloses the call must work for 'a. So Rust
chooses the smallest possible lifetime for &x: that of the call to g. This meets
all constraints: it doesn’t outlive x, and it encloses the entire call to g. So this
code passes muster.

Note that although g takes a lifetime parameter 'a, we didn’t need to mention
it when calling g. You only need to worry about lifetime parameters when
defining functions and types; when using them, Rust infers the lifetimes for
you.

What if we tried to pass &x to our function f from earlier that stores its
argument in a static?

fn f(p: &'static i32) { ... }

let x = 10;
f(&x);

This fails to compile: the reference &x must not outlive x, but by passing it to
f, we constrain it to live at least as long as 'static. There’s no way to satisfy
everyone here, so Rust rejects the code.

Returning References
It’s common for a function to take a reference to some data structure and then
return a reference into some part of that structure. For example, here’s a
function that returns a reference to the smallest element of a slice:

// v should have at least one element.
fn smallest(v: &[i32]) -> &i32 {
 let mut s = &v[0];
 for r in &v[1..] {
 if *r < *s { s = r; }
 }
 s
}

We’ve omitted lifetimes from that function’s signature in the usual way.
When a function takes a single reference as an argument and returns a single
reference, Rust assumes that the two must have the same lifetime. Writing
this out explicitly would give us:

fn smallest<'a>(v: &'a [i32]) -> &'a i32 { ... }

Suppose we call smallest like this:

let s;
{
 let parabola = [9, 4, 1, 0, 1, 4, 9];
 s = smallest(¶bola);
}
assert_eq!(*s, 0); // bad: points to element of dropped array

From smallest’s signature, we can see that its argument and return value must
have the same lifetime, 'a. In our call, the argument ¶bola must not
outlive parabola itself, yet smallest’s return value must live at least as long as
s. There’s no possible lifetime 'a that can satisfy both constraints, so Rust
rejects the code:

error: `parabola` does not live long enough

 |
11 | s = smallest(¶bola);
 | -------- borrow occurs here
12 | }
 | ^ `parabola` dropped here while still borrowed
13 | assert_eq!(*s, 0); // bad: points to element of dropped array
 | - borrowed value needs to live until here
14 | }

Moving s so that its lifetime is clearly contained within parabola’s fixes the
problem:

{
 let parabola = [9, 4, 1, 0, 1, 4, 9];
 let s = smallest(¶bola);
 assert_eq!(*s, 0); // fine: parabola still alive
}

Lifetimes in function signatures let Rust assess the relationships between the
references you pass to the function and those the function returns, and they
ensure they’re being used safely.

Structs Containing References
How does Rust handle references stored in data structures? Here’s the same
erroneous program we looked at earlier, except that we’ve put the reference
inside a structure:

// This does not compile.
struct S {
 r: &i32
}

let s;
{
 let x = 10;
 s = S { r: &x };
}
assert_eq!(*s.r, 10); // bad: reads from dropped `x`

The safety constraints Rust places on references can’t magically disappear
just because we hid the reference inside a struct. Somehow, those constraints
must end up applying to S as well. Indeed, Rust is skeptical:

error: missing lifetime specifier
 |
7 | r: &i32
 | ^ expected lifetime parameter

Whenever a reference type appears inside another type’s definition, you must
write out its lifetime. You can write this:

struct S {
 r: &'static i32
}

This says that r can only refer to i32 values that will last for the lifetime of
the program, which is rather limiting. The alternative is to give the type a
lifetime parameter 'a and use that for r:

struct S<'a> {

 r: &'a i32
}

Now the S type has a lifetime, just as reference types do. Each value you
create of type S gets a fresh lifetime 'a, which becomes constrained by how
you use the value. The lifetime of any reference you store in r had better
enclose 'a, and 'a must outlast the lifetime of wherever you store the S.

Turning back to the preceding code, the expression S { r: &x } creates a fresh
S value with some lifetime 'a. When you store &x in the r field, you constrain
'a to lie entirely within x’s lifetime.

The assignment s = S { ... } stores this S in a variable whose lifetime extends
to the end of the example, constraining 'a to outlast the lifetime of s. And now
Rust has arrived at the same contradictory constraints as before: 'a must not
outlive x, yet must live at least as long as s. No satisfactory lifetime exists,
and Rust rejects the code. Disaster averted!

How does a type with a lifetime parameter behave when placed inside some
other type?

struct D {
 s: S // not adequate
}

Rust is skeptical, just as it was when we tried placing a reference in S without
specifying its lifetime:

error: missing lifetime specifier
 |
8 | s: S // not adequate
 | ^ expected named lifetime parameter
 |

We can’t leave off S’s lifetime parameter here: Rust needs to know how D’s
lifetime relates to that of the reference in its S in order to apply the same
checks to D that it does for S and plain references.

We could give s the 'static lifetime. This works:

struct D {
 s: S<'static>
}

With this definition, the s field may only borrow values that live for the entire
execution of the program. That’s somewhat restrictive, but it does mean that
D can’t possibly borrow a local variable; there are no special constraints on
D’s lifetime.

The error message from Rust actually suggests another approach, which is
more general:

help: consider introducing a named lifetime parameter
 |
7 | struct D<'a> {
8 | s: S<'a>
 |

Here, we give D its own lifetime parameter and pass that to S:

struct D<'a> {
 s: S<'a>
}

By taking a lifetime parameter 'a and using it in s’s type, we’ve allowed Rust
to relate D value’s lifetime to that of the reference its S holds.

We showed earlier how a function’s signature exposes what it does with the
references we pass it. Now we’ve shown something similar about types: a
type’s lifetime parameters always reveal whether it contains references with
interesting (that is, non-'static) lifetimes and what those lifetimes can be.

For example, suppose we have a parsing function that takes a slice of bytes
and returns a structure holding the results of the parse:

fn parse_record<'i>(input: &'i [u8]) -> Record<'i> { ... }

Without looking into the definition of the Record type at all, we can tell that,
if we receive a Record from parse_record, whatever references it contains

must point into the input buffer we passed in, and nowhere else (except
perhaps at 'static values).

In fact, this exposure of internal behavior is the reason Rust requires types
that contain references to take explicit lifetime parameters. There’s no reason
Rust couldn’t simply make up a distinct lifetime for each reference in the
struct and save you the trouble of writing them out. Early versions of Rust
actually behaved this way, but developers found it confusing: it is helpful to
know when one value borrows something from another value, especially
when working through errors.

It’s not just references and types like S that have lifetimes. Every type in Rust
has a lifetime, including i32 and String. Most are simply 'static, meaning that
values of those types can live for as long as you like; for example, a
Vec<i32> is self-contained and needn’t be dropped before any particular
variable goes out of scope. But a type like Vec<&'a i32> has a lifetime that
must be enclosed by 'a: it must be dropped while its referents are still alive.

Distinct Lifetime Parameters
Suppose you’ve defined a structure containing two references like this:

struct S<'a> {
 x: &'a i32,
 y: &'a i32
}

Both references use the same lifetime 'a. This could be a problem if your code
wants to do something like this:

let x = 10;
let r;
{
 let y = 20;
 {
 let s = S { x: &x, y: &y };
 r = s.x;
 }
}
println!("{}", r);

This code doesn’t create any dangling pointers. The reference to y stays in s,
which goes out of scope before y does. The reference to x ends up in r, which
doesn’t outlive x.

If you try to compile this, however, Rust will complain that y does not live
long enough, even though it clearly does. Why is Rust worried? If you work
through the code carefully, you can follow its reasoning:

Both fields of S are references with the same lifetime 'a, so Rust
must find a single lifetime that works for both s.x and s.y.

We assign r = s.x, requiring 'a to enclose r’s lifetime.

We initialized s.y with &y, requiring 'a to be no longer than y’s
lifetime.

These constraints are impossible to satisfy: no lifetime is shorter than y’s

scope but longer than r’s. Rust balks.

The problem arises because both references in S have the same lifetime 'a.
Changing the definition of S to let each reference have a distinct lifetime
fixes everything:

struct S<'a, 'b> {
 x: &'a i32,
 y: &'b i32
}

With this definition, s.x and s.y have independent lifetimes. What we do with
s.x has no effect on what we store in s.y, so it’s easy to satisfy the constraints
now: 'a can simply be r’s lifetime, and 'b can be s’s. (y’s lifetime would work
too for 'b, but Rust tries to choose the smallest lifetime that works.)
Everything ends up fine.

Function signatures can have similar effects. Suppose we have a function like
this:

fn f<'a>(r: &'a i32, s: &'a i32) -> &'a i32 { r } // perhaps too tight

Here, both reference parameters use the same lifetime 'a, which can
unnecessarily constrain the caller in the same way we’ve shown previously.
If this is a problem, you can let parameters’ lifetimes vary independently:

fn f<'a, 'b>(r: &'a i32, s: &'b i32) -> &'a i32 { r } // looser

The downside to this is that adding lifetimes can make types and function
signatures harder to read. Your authors tend to try the simplest possible
definition first and then loosen restrictions until the code compiles. Since
Rust won’t permit the code to run unless it’s safe, simply waiting to be told
when there’s a problem is a perfectly acceptable tactic.

Omitting Lifetime Parameters
We’ve shown plenty of functions so far in this book that return references or
take them as parameters, but we’ve usually not needed to spell out which
lifetime is which. The lifetimes are there; Rust is just letting us omit them
when it’s reasonably obvious what they should be.

In the simplest cases, you may never need to write out lifetimes for your
parameters. Rust just assigns a distinct lifetime to each spot that needs one.
For example:

struct S<'a, 'b> {
 x: &'a i32,
 y: &'b i32
}

fn sum_r_xy(r: &i32, s: S) -> i32 {
 r + s.x + s.y
}

This function’s signature is shorthand for:

fn sum_r_xy<'a, 'b, 'c>(r: &'a i32, s: S<'b, 'c>) -> i32

If you do return references or other types with lifetime parameters, Rust still
tries to make the unambiguous cases easy. If there’s only a single lifetime
that appears among your function’s parameters, then Rust assumes any
lifetimes in your return value must be that one:

fn first_third(point: &[i32; 3]) -> (&i32, &i32) {
 (&point[0], &point[2])
}

With all the lifetimes written out, the equivalent would be:

fn first_third<'a>(point: &'a [i32; 3]) -> (&'a i32, &'a i32)

If there are multiple lifetimes among your parameters, then there’s no natural

reason to prefer one over the other for the return value, and Rust makes you
spell out what’s going on.

If your function is a method on some type and takes its self parameter by
reference, then that breaks the tie: Rust assumes that self’s lifetime is the one
to give everything in your return value. (A self parameter refers to the value
the method is being called on Rust’s equivalent of this in C++, Java, or
JavaScript, or self in Python. We’ll cover methods in “Defining Methods
with impl”.)

For example, you can write the following:

struct StringTable {
 elements: Vec<String>,
}

impl StringTable {
 fn find_by_prefix(&self, prefix: &str) -> Option<&String> {
 for i in 0 .. self.elements.len() {
 if self.elements[i].starts_with(prefix) {
 return Some(&self.elements[i]);
 }
 }
 None
 }
}

The find_by_prefix method’s signature is shorthand for:

fn find_by_prefix<'a, 'b>(&'a self, prefix: &'b str) -> Option<&'a String>

Rust assumes that whatever you’re borrowing, you’re borrowing from self.

Again, these are just abbreviations, meant to be helpful without introducing
surprises. When they’re not what you want, you can always write the
lifetimes out explicitly.

Sharing Versus Mutation
So far, we’ve discussed how Rust ensures no reference will ever point to a
variable that has gone out of scope. But there are other ways to introduce
dangling pointers. Here’s an easy case:

let v = vec![4, 8, 19, 27, 34, 10];
let r = &v;
let aside = v; // move vector to aside
r[0]; // bad: uses `v`, which is now uninitialized

The assignment to aside moves the vector, leaving v uninitialized, and turns r
into a dangling pointer, as shown in Figure 5-7.

Figure 5-7. A reference to a vector that has been moved away

Although v stays in scope for r’s entire lifetime, the problem here is that v’s
value gets moved elsewhere, leaving v uninitialized while r still refers to it.
Naturally, Rust catches the error:

error: cannot move out of `v` because it is borrowed
 |
9 | let r = &v;

 | - borrow of `v` occurs here
10 | let aside = v; // move vector to aside
 | ^^^^^ move out of `v` occurs here

Throughout its lifetime, a shared reference makes its referent read-only: you
may not assign to the referent or move its value elsewhere. In this code, r’s
lifetime contains the attempt to move the vector, so Rust rejects the program.
If you change the program as shown here, there’s no problem:

let v = vec![4, 8, 19, 27, 34, 10];
{
 let r = &v;
 r[0]; // ok: vector is still there
}
let aside = v;

In this version, r goes out of scope earlier, the reference’s lifetime ends
before v is moved aside, and all is well.

Here’s a different way to wreak havoc. Suppose we have a handy function to
extend a vector with the elements of a slice:

fn extend(vec: &mut Vec<f64>, slice: &[f64]) {
 for elt in slice {
 vec.push(*elt);
 }
}

This is a less flexible (and much less optimized) version of the standard
library’s extend_from_slice method on vectors. We can use it to build up a
vector from slices of other vectors or arrays:

let mut wave = Vec::new();
let head = vec![0.0, 1.0];
let tail = [0.0, -1.0];

extend(&mut wave, &head); // extend wave with another vector
extend(&mut wave, &tail); // extend wave with an array

assert_eq!(wave, vec![0.0, 1.0, 0.0, -1.0]);

So we’ve built up one period of a sine wave here. If we want to add another
undulation, can we append the vector to itself?

extend(&mut wave, &wave);
assert_eq!(wave, vec![0.0, 1.0, 0.0, -1.0,
 0.0, 1.0, 0.0, -1.0]);

This may look fine on casual inspection. But remember that when we add an
element to a vector, if its buffer is full, it must allocate a new buffer with
more space. Suppose wave starts with space for four elements and so must
allocate a larger buffer when extend tries to add a fifth. Memory ends up
looking like Figure 5-8.

The extend function’s vec argument borrows wave (owned by the caller),
which has allocated itself a new buffer with space for eight elements. But
slice continues to point to the old four-element buffer, which has been
dropped.

Figure 5-8. A slice turned into a dangling pointer by a vector reallocation

This sort of problem isn’t unique to Rust: modifying collections while
pointing into them is delicate territory in many languages. In C++, the
std::vector specification cautions you that “reallocation [of the vector’s
buffer] invalidates all the references, pointers, and iterators referring to the
elements in the sequence.” Similarly, Java says, of modifying a
java.util.Hashtable object:

If the Hashtable is structurally modified at any time after the iterator is
created, in any way except through the iterator’s own remove method, the
iterator will throw a ConcurrentModificationException.

What’s especially difficult about this sort of bug is that it doesn’t happen all
the time. In testing, your vector might always happen to have enough space,
the buffer might never be reallocated, and the problem might never come to
light.

Rust, however, reports the problem with our call to extend at compile time:

error: cannot borrow `wave` as immutable because it is also
 borrowed as mutable
 |
9 | extend(&mut wave, &wave);
 | ---- ^^^^- mutable borrow ends here
 | | |
 | | immutable borrow occurs here
 | mutable borrow occurs here

In other words, we may borrow a mutable reference to the vector, and we
may borrow a shared reference to its elements, but those two references’
lifetimes must not overlap. In our case, both references’ lifetimes contain the
call to extend, so Rust rejects the code.

These errors both stem from violations of Rust’s rules for mutation and
sharing:

Shared access is read-only access.

Values borrowed by shared references are read-only. Across the lifetime

of a shared reference, neither its referent, nor anything reachable from

that referent, can be changed by anything. There exist no live mutable

references to anything in that structure, its owner is held read-only, and so

on. It’s really frozen.

Mutable access is exclusive access.

A value borrowed by a mutable reference is reachable exclusively via that

reference. Across the lifetime of a mutable reference, there is no other

usable path to its referent or to any value reachable from there. The only

references whose lifetimes may overlap with a mutable reference are

those you borrow from the mutable reference itself.

Rust reported the extend example as a violation of the second rule: since
we’ve borrowed a mutable reference to wave, that mutable reference must be
the only way to reach the vector or its elements. The shared reference to the
slice is itself another way to reach the elements, violating the second rule.

But Rust could also have treated our bug as a violation of the first rule: since
we’ve borrowed a shared reference to wave’s elements, the elements and the
Vec itself are all read-only. You can’t borrow a mutable reference to a read-
only value.

Each kind of reference affects what we can do with the values along the
owning path to the referent, and the values reachable from the referent
(Figure 5-9).

Figure 5-9. Borrowing a reference affects what you can do with other values in the same ownership
tree

Note that in both cases, the path of ownership leading to the referent cannot
be changed for the reference’s lifetime. For a shared borrow, the path is read-
only; for a mutable borrow, it’s completely inaccessible. So there’s no way
for the program to do anything that will invalidate the reference.

Paring these principles down to the simplest possible examples:

let mut x = 10;
let r1 = &x;
let r2 = &x; // ok: multiple shared borrows permitted
x += 10; // error: cannot assign to `x` because it is borrowed
let m = &mut x; // error: cannot borrow `x` as mutable because it is
 // also borrowed as immutable
println!("{}, {}, {}", r1, r2, m); // the references are used here,
 // so their lifetimes must last
 // at least this long

let mut y = 20;
let m1 = &mut y;
let m2 = &mut y; // error: cannot borrow as mutable more than once
let z = y; // error: cannot use `y` because it was mutably borrowed
println!("{}, {}, {}", m1, m2, z); // references are used here

It is OK to reborrow a shared reference from a shared reference:

let mut w = (107, 109);
let r = &w;

let r0 = &r.0; // ok: reborrowing shared as shared
let m1 = &mut r.1; // error: can't reborrow shared as mutable
println!("{}", r0); // r0 gets used here

You can reborrow from a mutable reference:

let mut v = (136, 139);
let m = &mut v;
let m0 = &mut m.0; // ok: reborrowing mutable from mutable
*m0 = 137;
let r1 = &m.1; // ok: reborrowing shared from mutable,
 // and doesn't overlap with m0
v.1; // error: access through other paths still forbidden
println!("{}", r1); // r1 gets used here

These restrictions are pretty tight. Turning back to our attempted call
extend(&mut wave, &wave), there’s no quick and easy way to fix up the
code to work the way we’d like. And Rust applies these rules everywhere: if
we borrow, say, a shared reference to a key in a HashMap, we can’t borrow a
mutable reference to the HashMap until the shared reference’s lifetime ends.

But there’s good justification for this: designing collections to support
unrestricted, simultaneous iteration and modification is difficult and often
precludes simpler, more efficient implementations. Java’s Hashtable and
C++’s vector don’t bother, and neither Python dictionaries nor JavaScript
objects define exactly how such access behaves. Other collection types in
JavaScript do, but require heavier implementations as a result. C++’s
std::map promises that inserting new entries doesn’t invalidate pointers to
other entries in the map, but by making that promise, the standard precludes
more cache-efficient designs like Rust’s BTreeMap, which stores multiple
entries in each node of the tree.

Here’s another example of the kind of bug these rules catch. Consider the
following C++ code, meant to manage a file descriptor. To keep things
simple, we’re only going to show a constructor and a copying assignment
operator, and we’re going to omit error handling:

struct File {
 int descriptor;

 File(int d) : descriptor(d) { }

 File& operator=(const File &rhs) {
 close(descriptor);
 descriptor = dup(rhs.descriptor);
 return *this;
 }
};

The assignment operator is simple enough, but fails badly in a situation like
this:

File f(open("foo.txt", ...));
...
f = f;

If we assign a File to itself, both rhs and *this are the same object, so
operator= closes the very file descriptor it’s about to pass to dup. We destroy
the same resource we were meant to copy.

In Rust, the analogous code would be:

struct File {
 descriptor: i32
}

fn new_file(d: i32) -> File {
 File { descriptor: d }
}

fn clone_from(this: &mut File, rhs: &File) {
 close(this.descriptor);
 this.descriptor = dup(rhs.descriptor);
}

(This is not idiomatic Rust. There are excellent ways to give Rust types their
own constructor functions and methods, which we describe in Chapter 9, but
the preceding definitions work for this example.)

If we write the Rust code corresponding to the use of File, we get:

let mut f = new_file(open("foo.txt", ...));
...
clone_from(&mut f, &f);

Rust, of course, refuses to even compile this code:

error: cannot borrow `f` as immutable because it is also
 borrowed as mutable
 |
18 | clone_from(&mut f, &f);
 | - ^- mutable borrow ends here
 | | |
 | | immutable borrow occurs here
 | mutable borrow occurs here

This should look familiar. It turns out that two classic C++ bugs—failure to
cope with self-assignment and using invalidated iterators—are the same
underlying kind of bug! In both cases, code assumes it is modifying one
value while consulting another, when in fact they’re both the same value. If
you’ve ever accidentally let the source and destination of a call to memcpy or
strcpy overlap in C or C++, that’s yet another form the bug can take. By
requiring mutable access to be exclusive, Rust has fended off a wide class of
everyday mistakes.

The immiscibility of shared and mutable references really demonstrates its
value when writing concurrent code. A data race is possible only when some
value is both mutable and shared between threads—which is exactly what
Rust’s reference rules eliminate. A concurrent Rust program that avoids
unsafe code is free of data races by construction. We’ll cover this aspect in
more detail when we talk about concurrency in Chapter 19, but in summary,
concurrency is much easier to use in Rust than in most other languages.

RUST’S SHARED REFERENCES VERSUS C’S POINTERS
TO CONST

On first inspection, Rust’s shared references seem to closely resemble C
and C++’s pointers to const values. However, Rust’s rules for shared
references are much stricter. For example, consider the following C code:

int x = 42; // int variable, not const
const int *p = &x; // pointer to const int
assert(*p == 42);
x++; // change variable directly
assert(*p == 43); // “constant” referent's value has changed

The fact that p is a const int * means that you can’t modify its referent via
p itself: (*p)++ is forbidden. But you can also get at the referent directly
as x, which is not const, and change its value that way. The C family’s
const keyword has its uses, but constant it is not.

In Rust, a shared reference forbids all modifications to its referent, until
its lifetime ends:

let mut x = 42; // non-const i32 variable
let p = &x; // shared reference to i32
assert_eq!(*p, 42);
x += 1; // error: cannot assign to x because it is borrowed
assert_eq!(*p, 42); // if you take out the assignment, this is true

To ensure a value is constant, we need to keep track of all possible paths
to that value and make sure that they either don’t permit modification or
cannot be used at all. C and C++ pointers are too unrestricted for the
compiler to check this. Rust’s references are always tied to a particular
lifetime, making it feasible to check them at compile time.

Taking Arms Against a Sea of Objects
Since the rise of automatic memory management in the 1990s, the default
architecture of all programs has been the sea of objects, shown in Figure 5-
10.

This is what happens if you have garbage collection and you start writing a
program without designing anything. We’ve all built systems that look like
this.

This architecture has many advantages that don’t show up in the diagram:
initial progress is rapid, it’s easy to hack stuff in, and a few years down the
road, you’ll have no difficulty justifying a complete rewrite. (Cue AC/DC’s
“Highway to Hell.”)

Of course, there are disadvantages too. When everything depends on
everything else like this, it’s hard to test, evolve, or even think about any
component in isolation.

Figure 5-10. A sea of objects

One fascinating thing about Rust is that the ownership model puts a speed
bump on the highway to hell. It takes a bit of effort to make a cycle in Rust—
two values such that each one contains a reference pointing to the other. You
have to use a smart pointer type, such as Rc, and interior mutability—a topic
we haven’t even covered yet. Rust prefers for pointers, ownership, and data
flow to pass through the system in one direction, as shown in Figure 5-11.

Figure 5-11. A tree of values

The reason we bring this up right now is that it would be natural, after
reading this chapter, to want to run right out and create a “sea of structs,” all
tied together with Rc smart pointers, and re-create all the object-oriented
antipatterns you’re familiar with. This won’t work for you right away. Rust’s
ownership model will give you some trouble. The cure is to do some up-front
design and build a better program.

Rust is all about transferring the pain of understanding your program from
the future to the present. It works unreasonably well: not only can Rust force
you to understand why your program is thread-safe, it can even require some

amount of high-level architectural design.

Chapter 6. Expressions

LISP programmers know the value of everything, but the cost of nothing.
—Alan Perlis, epigram #55

In this chapter, we’ll cover the expressions of Rust, the building blocks that
make up the body of Rust functions and thus the majority of Rust code. Most
things in Rust are expressions. In this chapter, we’ll explore the power this
brings and how to work with its limitations. We’ll cover control flow, which
in Rust is entirely expression-oriented, and how Rust’s foundational
operators work in isolation and combination.

A few concepts that technically fall into this category, such as closures and
iterators, are deep enough that we will dedicate a whole chapter to them later.
For now, we aim to cover as much syntax as possible in a few pages.

An Expression Language
Rust visually resembles the C family of languages, but this is a bit of a ruse.
In C, there is a sharp distinction between expressions, bits of code that look
something like this:

5 * (fahr-32) / 9

and statements, which look more like this:

for (; begin != end; ++begin) {
 if (*begin == target)
 break;
}

Expressions have values. Statements don’t.

Rust is what is called an expression language. This means it follows an older
tradition, dating back to Lisp, where expressions do all the work.

In C, if and switch are statements. They don’t produce a value, and they can’t
be used in the middle of an expression. In Rust, if and match can produce
values. We already saw a match expression that produces a numeric value in
Chapter 2:

pixels[r * bounds.0 + c] =
 match escapes(Complex { re: point.0, im: point.1 }, 255) {
 None => 0,
 Some(count) => 255 - count as u8
 };

An if expression can be used to initialize a variable:

let status =
 if cpu.temperature <= MAX_TEMP {
 HttpStatus::Ok
 } else {
 HttpStatus::ServerError // server melted

 };

A match expression can be passed as an argument to a function or macro:

println!("Inside the vat, you see {}.",
 match vat.contents {
 Some(brain) => brain.desc(),
 None => "nothing of interest"
 });

This explains why Rust does not have C’s ternary operator (expr1 ? expr2 :
expr3). In C, it is a handy expression-level analogue to the if statement. It
would be redundant in Rust: the if expression handles both cases.

Most of the control flow tools in C are statements. In Rust, they are all
expressions.

Precedence and Associativity
Table 6-1 summarizes Rust expression syntax. We will discuss all of these
kinds of expressions in this chapter. Operators are listed in order of
precedence, from highest to lowest. (Like most programming languages, Rust
has operator precedence to determine the order of operations when an
expression contains multiple adjacent operators. For example, in limit < 2 *
broom.size + 1, the . operator has the highest precedence, so the field access
happens first.)

Table 6-1. Expressions

Expression type Example Related traits

Array literal [1, 2, 3]

Repeat array literal [0; 50]

Tuple (6, "crullers")

Grouping (2 + 2)

Block { f(); g() }

Control flow expressions if ok { f() }

if ok { 1 } else { 0 }

if let Some(x) = f() { x } else { 0 }

match x { None => 0, _ => 1 }

for v in e { f(v); } std::iter::IntoIterator

while ok { ok = f(); }

while let Some(x) = it.next() { f(x); }

loop { next_event(); }

break

continue

return 0

Macro invocation println!("ok")

Path std::f64::consts::PI

Struct literal Point {x: 0, y: 0}

Tuple field access pair.0 Deref, DerefMut

Struct field access point.x Deref, DerefMut

Method call point.translate(50, 50) Deref, DerefMut

Function call stdin() Fn(Arg0, ...) -> T,
FnMut(Arg0, ...) -> T,
FnOnce(Arg0, ...) -> T

Index arr[0] Index, IndexMut
Deref, DerefMut

Error check create_dir("tmp")?

Logical/bitwise NOT !ok Not

Negation -num Neg

Dereference *ptr Deref, DerefMut

Borrow &val

Type cast x as u32

Multiplication n * 2 Mul

Division n / 2 Div

Remainder (modulus) n % 2 Rem

Addition n + 1 Add

Subtraction n - 1 Sub

Left shift n << 1 Shl

Right shift n >> 1 Shr

Bitwise AND n & 1 BitAnd

Bitwise exclusive OR n ^ 1 BitXor

Bitwise OR n | 1 BitOr

Less than n < 1 std::cmp::PartialOrd

Less than or equal n <= 1 std::cmp::PartialOrd

Greater than n > 1 std::cmp::PartialOrd

Greater than or equal n >= 1 std::cmp::PartialOrd

Equal n == 1 std::cmp::PartialEq

Not equal n != 1 std::cmp::PartialEq

Logical AND x.ok && y.ok

Logical OR x.ok || backup.ok

End-exclusive range start .. stop

End-inclusive range start ..= stop

Assignment x = val

Compound assignment x *= 1 MulAssign

x /= 1 DivAssign

x %= 1 RemAssign

x += 1 AddAssign

x -= 1 SubAssign

x <<= 1 ShlAssign

x >>= 1 ShrAssign

x &= 1 BitAndAssign

x ^= 1 BitXorAssign

x |= 1 BitOrAssign

Closure |x, y| x + y

All of the operators that can usefully be chained are left-associative. That is, a
chain of operations such as a - b - c is grouped as (a - b) - c, not a - (b - c).
The operators that can be chained in this way are all the ones you might
expect:

* / % + - << >> & ^ | && || as

The comparison operators, the assignment operators, and the range operators
.. and ..= can’t be chained at all.

Blocks and Semicolons
Blocks are the most general kind of expression. A block produces a value and
can be used anywhere a value is needed:

let display_name = match post.author() {
 Some(author) => author.name(),
 None => {
 let network_info = post.get_network_metadata()?;
 let ip = network_info.client_address();
 ip.to_string()
 }
};

The code after Some(author) => is the simple expression author.name(). The
code after None => is a block expression. It makes no difference to Rust. The
value of the block is the value of its last expression, ip.to_string().

Note that there is no semicolon after the ip.to_string() method call. Most lines
of Rust code do end with either a semicolon or curly braces, just like C or
Java. And if a block looks like C code, with semicolons in all the familiar
places, then it will run just like a C block, and its value will be (). As we
mentioned in Chapter 2, when you leave the semicolon off the last line of a
block, that makes the value of the block the value of its final expression,
rather than the usual ().

In some languages, particularly JavaScript, you’re allowed to omit
semicolons, and the language simply fills them in for you—a minor
convenience. This is different. In Rust, the semicolon actually means
something:

let msg = {
 // let-declaration: semicolon is always required
 let dandelion_control = puffball.open();

 // expression + semicolon: method is called, return value dropped
 dandelion_control.release_all_seeds(launch_codes);

 // expression with no semicolon: method is called,
 // return value stored in `msg`
 dandelion_control.get_status()
};

This ability of blocks to contain declarations and also produce a value at the
end is a neat feature, one that quickly comes to feel natural. The one
drawback is that it leads to an odd error message when you leave out a
semicolon by accident:

...
if preferences.changed() {
 page.compute_size() // oops, missing semicolon
}
...

If you made this mistake in a C or Java program, the compiler would simply
point out that you’re missing a semicolon. Here’s what Rust says:

error: mismatched types
22 | page.compute_size() // oops, missing semicolon
 | ^^^^^^^^^^^^^^^^^^^- help: try adding a semicolon: `;`
 | |
 | expected (), found tuple
 |
 = note: expected unit type `()`
 found tuple `(u32, u32)`

With the semicolon missing, the block’s value would be whatever
page.compute_size() returns, but an if without an else must always return ().
Fortunately, Rust has seen this sort of thing before and suggests adding the
semicolon.

Declarations
In addition to expressions and semicolons, a block may contain any number
of declarations. The most common are let declarations, which declare local
variables:

let name: type = expr;

The type and initializer are optional. The semicolon is required. Like all
identifiers in Rust, variable names must start with a letter or underscore, and
can contain digits only after that first character. Rust has a broad definition of
“letter”: it includes Greek letters, accented Latin characters, and many more
symbols—anything that Unicode Standard Annex #31 declares suitable.
Emoji aren’t allowed.

A let declaration can declare a variable without initializing it. The variable
can then be initialized with a later assignment. This is occasionally useful,
because sometimes a variable should be initialized from the middle of some
sort of control flow construct:

let name;
if user.has_nickname() {
 name = user.nickname();
} else {
 name = generate_unique_name();
 user.register(&name);
}

Here there are two different ways the local variable name might be
initialized, but either way it will be initialized exactly once, so name does not
need to be declared mut.

It’s an error to use a variable before it’s initialized. (This is closely related to
the error of using a value after it’s been moved. Rust really wants you to use
values only while they exist!)

You may occasionally see code that seems to redeclare an existing variable,

like this:

for line in file.lines() {
 let line = line?;
 ...
}

The let declaration creates a new, second variable, of a different type. The
type of the first variable line is Result<String, io::Error>. The second line is a
String. Its definition supersedes the first’s for the rest of the block. This is
called shadowing and is very common in Rust programs. The code is
equivalent to:

for line_result in file.lines() {
 let line = line_result?;
 ...
}

In this book, we’ll stick to using a _result suffix in such situations so that the
variables have distinct names.

A block can also contain item declarations. An item is simply any declaration
that could appear globally in a program or module, such as a fn, struct, or use.

Later chapters will cover items in detail. For now, fn makes a sufficient
example. Any block may contain an fn:

use std::io;
use std::cmp::Ordering;

fn show_files() -> io::Result<()> {
 let mut v = vec![];
 ...

 fn cmp_by_timestamp_then_name(a: &FileInfo, b: &FileInfo) -> Ordering {
 a.timestamp.cmp(&b.timestamp) // first, compare timestamps
 .reverse() // newest file first
 .then(a.path.cmp(&b.path)) // compare paths to break ties
 }

 v.sort_by(cmp_by_timestamp_then_name);
 ...

}

When an fn is declared inside a block, its scope is the entire block—that is, it
can be used throughout the enclosing block. But a nested fn cannot access
local variables or arguments that happen to be in scope. For example, the
function cmp_by_timestamp_then_name could not use v directly. (Rust also
has closures, which do see into enclosing scopes. See Chapter 14.)

A block can even contain a whole module. This may seem a bit much—do
we really need to be able to nest every piece of the language inside every
other piece?—but programmers (and particularly programmers using macros)
have a way of finding uses for every scrap of orthogonality the language
provides.

if and match
The form of an if expression is familiar:

if condition1 {
 block1
} else if condition2 {
 block2
} else {
 block_n
}

Each condition must be an expression of type bool; true to form, Rust does
not implicitly convert numbers or pointers to Boolean values.

Unlike C, parentheses are not required around conditions. In fact, rustc will
emit a warning if unnecessary parentheses are present. The curly braces,
however, are required.

The else if blocks, as well as the final else, are optional. An if expression
with no else block behaves exactly as though it had an empty else block.

match expressions are something like the C switch statement, but more
flexible. A simple example:

match code {
 0 => println!("OK"),
 1 => println!("Wires Tangled"),
 2 => println!("User Asleep"),
 _ => println!("Unrecognized Error {}", code)
}

This is something a switch statement could do. Exactly one of the four arms
of this match expression will execute, depending on the value of code. The
wildcard pattern _ matches everything. This is like the default: case in a
switch statement, except that it must come last; placing a _ pattern before
other patterns means that it will have precedence over them. Those patterns
will never match anything (and the compiler will warn you about it).

The compiler can optimize this kind of match using a jump table, just like a
switch statement in C++. A similar optimization is applied when each arm of
a match produces a constant value. In that case, the compiler builds an array
of those values, and the match is compiled into an array access. Apart from a
bounds check, there is no branching at all in the compiled code.

The versatility of match stems from the variety of supported patterns that can
be used to the left of => in each arm. Above, each pattern is simply a constant
integer. We’ve also shown match expressions that distinguish the two kinds
of Option value:

match params.get("name") {
 Some(name) => println!("Hello, {}!", name),
 None => println!("Greetings, stranger.")
}

This is only a hint of what patterns can do. A pattern can match a range of
values. It can unpack tuples. It can match against individual fields of structs.
It can chase references, borrow parts of a value, and more. Rust’s patterns are
a mini-language of their own. We’ll dedicate several pages to them in
Chapter 10.

The general form of a match expression is:

match value {
 pattern => expr,
 ...
}

The comma after an arm may be dropped if the expr is a block.

Rust checks the given value against each pattern in turn, starting with the
first. When a pattern matches, the corresponding expr is evaluated, and the
match expression is complete; no further patterns are checked. At least one of
the patterns must match. Rust prohibits match expressions that do not cover
all possible values:

let score = match card.rank {
 Jack => 10,

 Queen => 10,
 Ace => 11
}; // error: nonexhaustive patterns

All blocks of an if expression must produce values of the same type:

let suggested_pet =
 if with_wings { Pet::Buzzard } else { Pet::Hyena }; // ok

let favorite_number =
 if user.is_hobbit() { "eleventy-one" } else { 9 }; // error

let best_sports_team =
 if is_hockey_season() { "Predators" }; // error

(The last example is an error because in July, the result would be ().)

Similarly, all arms of a match expression must have the same type:

let suggested_pet =
 match favorites.element {
 Fire => Pet::RedPanda,
 Air => Pet::Buffalo,
 Water => Pet::Orca,
 _ => None // error: incompatible types
 };

if let
There is one more if form, the if let expression:

if let pattern = expr {
 block1
} else {
 block2
}

The given expr either matches the pattern, in which case block1 runs, or
doesn’t match, and block2 runs. Sometimes this is a nice way to get data out
of an Option or Result:

if let Some(cookie) = request.session_cookie {
 return restore_session(cookie);
}

if let Err(err) = show_cheesy_anti_robot_task() {
 log_robot_attempt(err);
 politely_accuse_user_of_being_a_robot();
} else {
 session.mark_as_human();
}

It’s never strictly necessary to use if let, because match can do everything if
let can do. An if let expression is shorthand for a match with just one pattern:

match expr {
 pattern => { block1 }
 _ => { block2 }
}

Loops
There are four looping expressions:

while condition {
 block
}

while let pattern = expr {
 block
}

loop {
 block
}

for pattern in iterable {
 block
}

Loops are expressions in Rust, but the value of a while or for loop is always
(), so their value isn’t very useful. A loop expression can produce a value if
you specify one.

A while loop behaves exactly like the C equivalent, except that, again, the
condition must be of the exact type bool.

The while let loop is analogous to if let. At the beginning of each loop
iteration, the value of expr either matches the given pattern, in which case the
block runs, or doesn’t, in which case the loop exits.

Use loop to write infinite loops. It executes the block repeatedly forever (or
until a break or return is reached or the thread panics).

A for loop evaluates the iterable expression and then evaluates the block once
for each value in the resulting iterator. Many types can be iterated over,
including all the standard collections like Vec and HashMap. The standard C
for loop:

for (int i = 0; i < 20; i++) {
 printf("%d\n", i);
}

is written like this in Rust:

for i in 0..20 {
 println!("{}", i);
}

As in C, the last number printed is 19.

The .. operator produces a range, a simple struct with two fields: start and
end. 0..20 is the same as std::ops::Range { start: 0, end: 20 }. Ranges can be
used with for loops because Range is an iterable type: it implements the
std::iter::IntoIterator trait, which we’ll discuss in Chapter 15. The standard
collections are all iterable, as are arrays and slices.

In keeping with Rust’s move semantics, a for loop over a value consumes the
value:

let strings: Vec<String> = error_messages();
for s in strings { // each String is moved into s here...
 println!("{}", s);
} // ...and dropped here
println!("{} error(s)", strings.len()); // error: use of moved value

This can be inconvenient. The easy remedy is to loop over a reference to the
collection instead. The loop variable, then, will be a reference to each item in
the collection:

for rs in &strings {
 println!("String {:?} is at address {:p}.", *rs, rs);
}

Here the type of &strings is &Vec<String>, and the type of rs is &String.

Iterating over a mut reference provides a mut reference to each element:

for rs in &mut strings { // the type of rs is &mut String

 rs.push('\n'); // add a newline to each string
}

Chapter 15 covers for loops in greater detail and shows many other ways to
use iterators.

Control Flow in Loops
A break expression exits an enclosing loop. (In Rust, break works only in
loops. It is not necessary in match expressions, which are unlike switch
statements in this regard.)

Within the body of a loop, you can give break an expression, whose value
becomes that of the loop:

// Each call to `next_line` returns either `Some(line)`, where
// `line` is a line of input, or `None`, if we've reached the end of
// the input. Return the first line that starts with "answer: ".
// Otherwise, return "answer: nothing".
let answer = loop {
 if let Some(line) = next_line() {
 if line.starts_with("answer: ") {
 break line;
 }
 } else {
 break "answer: nothing";
 }
};

Naturally, all the break expressions within a loop must produce values with
the same type, which becomes the type of the loop itself.

A continue expression jumps to the next loop iteration:

// Read some data, one line at a time.
for line in input_lines {
 let trimmed = trim_comments_and_whitespace(line);
 if trimmed.is_empty() {
 // Jump back to the top of the loop and
 // move on to the next line of input.
 continue;
 }
 ...
}

In a for loop, continue advances to the next value in the collection. If there

are no more values, the loop exits. Similarly, in a while loop, continue
rechecks the loop condition. If it’s now false, the loop exits.

A loop can be labeled with a lifetime. In the following example, 'search: is a
label for the outer for loop. Thus, break 'search exits that loop, not the inner
loop:

'search:
for room in apartment {
 for spot in room.hiding_spots() {
 if spot.contains(keys) {
 println!("Your keys are {} in the {}.", spot, room);
 break 'search;
 }
 }
}

A break can have both a label and a value expression:

// Find the square root of the first perfect square
// in the series.
let sqrt = 'outer: loop {
 let n = next_number();
 for i in 1.. {
 let square = i * i;
 if square == n {
 // Found a square root.
 break 'outer i;
 }
 if square > n {
 // `n` isn't a perfect square, try the next
 break;
 }
 }
};

Labels can also be used with continue.

return Expressions
A return expression exits the current function, returning a value to the caller.

return without a value is shorthand for return ():

fn f() { // return type omitted: defaults to ()
 return; // return value omitted: defaults to ()
}

Functions don’t have to have an explicit return expression. The body of a
function works like a block expression: if the last expression isn’t followed
by a semicolon, its value is the function’s return value. In fact, this is the
preferred way to supply a function’s return value in Rust.

But this doesn’t mean that return is useless, or merely a concession to users
who aren’t experienced with expression languages. Like a break expression,
return can abandon work in progress. For example, in Chapter 2, we used the
? operator to check for errors after calling a function that can fail:

let output = File::create(filename)?;

We explained that this is shorthand for a match expression:

let output = match File::create(filename) {
 Ok(f) => f,
 Err(err) => return Err(err)
};

This code starts by calling File::create(filename). If that returns Ok(f), then
the whole match expression evaluates to f, so f is stored in output, and we
continue with the next line of code following the match.

Otherwise, we’ll match Err(err) and hit the return expression. When that
happens, it doesn’t matter that we’re in the middle of evaluating a match
expression to determine the value of the variable output. We abandon all of
that and exit the enclosing function, returning whatever error we got from

File::create().

We’ll cover the ? operator more completely in “Propagating Errors”.

Why Rust Has loop
Several pieces of the Rust compiler analyze the flow of control through your
program:

Rust checks that every path through a function returns a value of the
expected return type. To do this correctly, it needs to know whether
it’s possible to reach the end of the function.

Rust checks that local variables are never used uninitialized. This
entails checking every path through a function to make sure there’s
no way to reach a place where a variable is used without having
already passed through code that initializes it.

Rust warns about unreachable code. Code is unreachable if no path
through the function reaches it.

These are called flow-sensitive analyses. They are nothing new; Java has had
a “definite assignment” analysis, similar to Rust’s, for years.

When enforcing this sort of rule, a language must strike a balance between
simplicity, which makes it easier for programmers to figure out what the
compiler is talking about sometimes, and cleverness, which can help
eliminate false warnings and cases where the compiler rejects a perfectly safe
program. Rust went for simplicity. Its flow-sensitive analyses do not examine
loop conditions at all, instead simply assuming that any condition in a
program can be either true or false.

This causes Rust to reject some safe programs:

fn wait_for_process(process: &mut Process) -> i32 {
 while true {
 if process.wait() {
 return process.exit_code();
 }
 }
} // error: mismatched types: expected i32, found ()

The error here is bogus. This function only exits via the return statement, so
the fact that the while loop doesn’t produce an i32 is irrelevant.

The loop expression is offered as a “say-what-you-mean” solution to this
problem.

Rust’s type system is affected by control flow, too. Earlier we said that all
branches of an if expression must have the same type. But it would be silly to
enforce this rule on blocks that end with a break or return expression, an
infinite loop, or a call to panic!() or std::process::exit(). What all those
expressions have in common is that they never finish in the usual way,
producing a value. A break or return exits the current block abruptly, an
infinite loop never finishes at all, and so on.

So in Rust, these expressions don’t have a normal type. Expressions that
don’t finish normally are assigned the special type !, and they’re exempt from
the rules about types having to match. You can see ! in the function signature
of std::process::exit():

fn exit(code: i32) -> !

The ! means that exit() never returns. It’s a divergent function.

You can write divergent functions of your own using the same syntax, and
this is perfectly natural in some cases:

fn serve_forever(socket: ServerSocket, handler: ServerHandler) -> ! {
 socket.listen();
 loop {
 let s = socket.accept();
 handler.handle(s);
 }
}

Of course, Rust then considers it an error if the function can return normally.

With these building blocks of large-scale control flow in place, we can move
on to the finer-grained expressions typically used within that flow, like
function calls and arithmetic operators.

Function and Method Calls
The syntax for calling functions and methods is the same in Rust as in many
other languages:

let x = gcd(1302, 462); // function call

let room = player.location(); // method call

In the second example here, player is a variable of the made-up type Player,
which has a made-up .location() method. (We’ll show how to define your
own methods when we start talking about user-defined types in Chapter 9.)

Rust usually makes a sharp distinction between references and the values
they refer to. If you pass a &i32 to a function that expects an i32, that’s a type
error. You’ll notice that the . operator relaxes those rules a bit. In the method
call player.location(), player might be a Player, a reference of type &Player,
or a smart pointer of type Box<Player> or Rc<Player>. The .location()
method might take the player either by value or by reference. The same
.location() syntax works in all cases, because Rust’s . operator automatically
dereferences player or borrows a reference to it as needed.

A third syntax is used for calling type-associated functions, like Vec::new():

let mut numbers = Vec::new(); // type-associated function call

These are similar to static methods in object-oriented languages: ordinary
methods are called on values (like my_vec.len()), and type-associated
functions are called on types (like Vec::new()).

Naturally, method calls can be chained:

// From the Actix-based web server in Chapter 2:
server
 .bind("127.0.0.1:3000").expect("error binding server to address")
 .run().expect("error running server");

One quirk of Rust syntax is that in a function call or method call, the usual
syntax for generic types, Vec<T>, does not work:

return Vec<i32>::with_capacity(1000); // error: something about chained comparisons

let ramp = (0 .. n).collect<Vec<i32>>(); // same error

The problem is that in expressions, < is the less-than operator. The Rust
compiler helpfully suggests writing ::<T> instead of <T> in this case, and
that solves the problem:

return Vec::<i32>::with_capacity(1000); // ok, using ::<

let ramp = (0 .. n).collect::<Vec<i32>>(); // ok, using ::<

The symbol ::<...> is affectionately known in the Rust community as the
turbofish.

Alternatively, it is often possible to drop the type parameters and let Rust
infer them:

return Vec::with_capacity(10); // ok, if the fn return type is Vec<i32>

let ramp: Vec<i32> = (0 .. n).collect(); // ok, variable's type is given

It’s considered good style to omit the types whenever they can be inferred.

Fields and Elements
The fields of a struct are accessed using familiar syntax. Tuples are the same
except that their fields have numbers rather than names:

game.black_pawns // struct field
coords.1 // tuple element

If the value to the left of the dot is a reference or smart pointer type, it is
automatically dereferenced, just as for method calls.

Square brackets access the elements of an array, a slice, or a vector:

pieces[i] // array element

The value to the left of the brackets is automatically dereferenced.

Expressions like these three are called lvalues, because they can appear on
the left side of an assignment:

game.black_pawns = 0x00ff0000_00000000_u64;
coords.1 = 0;
pieces[2] = Some(Piece::new(Black, Knight, coords));

Of course, this is permitted only if game, coords, and pieces are declared as
mut variables.

Extracting a slice from an array or vector is straightforward:

let second_half = &game_moves[midpoint .. end];

Here game_moves may be either an array, a slice, or a vector; the result,
regardless, is a borrowed slice of length end - midpoint. game_moves is
considered borrowed for the lifetime of second_half.

The .. operator allows either operand to be omitted; it produces up to four
different types of object depending on which operands are present:

.. // RangeFull
a .. // RangeFrom { start: a }
.. b // RangeTo { end: b }
a .. b // Range { start: a, end: b }

The latter two forms are end-exclusive (or half-open): the end value is not
included in the range represented. For example, the range 0 .. 3 includes the
numbers 0, 1, and 2.

The ..= operator produces end-inclusive (or closed) ranges, which do include
the end value:

..= b // RangeToInclusive { end: b }
a ..= b // RangeInclusive::new(a, b)

For example, the range 0 ..= 3 includes the numbers 0, 1, 2, and 3.

Only ranges that include a start value are iterable, since a loop must have
somewhere to start. But in array slicing, all six forms are useful. If the start or
end of the range is omitted, it defaults to the start or end of the data being
sliced.

So an implementation of quicksort, the classic divide-and-conquer sorting
algorithm, might look, in part, like this:

fn quicksort<T: Ord>(slice: &mut [T]) {
 if slice.len() <= 1 {
 return; // Nothing to sort.
 }

 // Partition the slice into two parts, front and back.
 let pivot_index = partition(slice);

 // Recursively sort the front half of `slice`.
 quicksort(&mut slice[.. pivot_index]);

 // And the back half.
 quicksort(&mut slice[pivot_index + 1 ..]);
}

Reference Operators
The address-of operators, & and &mut, are covered in Chapter 5.

The unary * operator is used to access the value pointed to by a reference. As
we’ve seen, Rust automatically follows references when you use the .
operator to access a field or method, so the * operator is necessary only when
we want to read or write the entire value that the reference points to.

For example, sometimes an iterator produces references, but the program
needs the underlying values:

let padovan: Vec<u64> = compute_padovan_sequence(n);
for elem in &padovan {
 draw_triangle(turtle, *elem);
}

In this example, the type of elem is &u64, so *elem is a u64.

Arithmetic, Bitwise, Comparison, and Logical
Operators
Rust’s binary operators are like those in many other languages. To save time,
we assume familiarity with one of those languages, and focus on the few
points where Rust departs from tradition.

Rust has the usual arithmetic operators, +, -, *, /, and %. As mentioned in
Chapter 3, integer overflow is detected, and causes a panic, in debug builds.
The standard library provides methods like a.wrapping_add(b) for unchecked
arithmetic.

Integer division rounds toward zero, and dividing an integer by zero triggers
a panic even in release builds. Integers have a method a.checked_div(b) that
returns an Option (None if b is zero) and never panics.

Unary - negates a number. It is supported for all the numeric types except
unsigned integers. There is no unary + operator.

println!("{}", -100); // -100
println!("{}", -100u32); // error: can't apply unary `-` to type `u32`
println!("{}", +100); // error: expected expression, found `+`

As in C, a % b computes the signed remainder, or modulus, of division
rounding toward zero. The result has the same sign as the lefthand operand.
Note that % can be used on floating-point numbers as well as integers:

let x = 1234.567 % 10.0; // approximately 4.567

Rust also inherits C’s bitwise integer operators, &, |, ^, <<, and >>. However,
Rust uses ! instead of ~ for bitwise NOT:

let hi: u8 = 0xe0;
let lo = !hi; // 0x1f

This means that !n can’t be used on an integer n to mean “n is zero.” For that,

write n == 0.

Bit shifting is always sign-extending on signed integer types and zero-
extending on unsigned integer types. Since Rust has unsigned integers, it
does not need an unsigned shift operator, like Java’s >>> operator.

Bitwise operations have higher precedence than comparisons, unlike C, so if
you write x & BIT != 0, that means (x & BIT) != 0, as you probably intended.
This is much more useful than C’s interpretation, x & (BIT != 0), which tests
the wrong bit!

Rust’s comparison operators are ==, !=, <, <=, >, and >=. The two values
being compared must have the same type.

Rust also has the two short-circuiting logical operators && and ||. Both
operands must have the exact type bool.

Assignment
The = operator can be used to assign to mut variables and their fields or
elements. But assignment is not as common in Rust as in other languages,
since variables are immutable by default.

As described in Chapter 4, if the value has a non-Copy type, assignment
moves it into the destination. Ownership of the value is transferred from the
source to the destination. The destination’s prior value, if any, is dropped.

Compound assignment is supported:

total += item.price;

This is equivalent to total = total + item.price;. Other operators are supported
too: -=, *=, and so forth. The full list is given in Table 6-1, earlier in this
chapter.

Unlike C, Rust doesn’t support chaining assignment: you can’t write a = b =
3 to assign the value 3 to both a and b. Assignment is rare enough in Rust that
you won’t miss this shorthand.

Rust does not have C’s increment and decrement operators ++ and --.

Type Casts
Converting a value from one type to another usually requires an explicit cast
in Rust. Casts use the as keyword:

let x = 17; // x is type i32
let index = x as usize; // convert to usize

Several kinds of casts are permitted:

Numbers may be cast from any of the built-in numeric types to any
other.

Casting an integer to another integer type is always well-defined.
Converting to a narrower type results in truncation. A signed integer
cast to a wider type is sign-extended, an unsigned integer is zero-
extended, and so on. In short, there are no surprises.

Converting from a floating-point type to an integer type rounds
toward zero: the value of -1.99 as i32 is -1. If the value is too large
to fit in the integer type, the cast produces the closest value that the
integer type can represent: the value of 1e6 as u8 is 255.

Values of type bool or char, or of a C-like enum type, may be cast to
any integer type. (We’ll cover enums in Chapter 10.)

Casting in the other direction is not allowed, as bool, char, and enum
types all have restrictions on their values that would have to be
enforced with run-time checks. For example, casting a u16 to type
char is banned because some u16 values, like 0xd800, correspond to
Unicode surrogate code points and therefore would not make valid
char values. There is a standard method, std::char::from_u32(),
which performs the run-time check and returns an Option<char>; but
more to the point, the need for this kind of conversion has grown
rare. We typically convert whole strings or streams at once, and
algorithms on Unicode text are often nontrivial and best left to

libraries.

As an exception, a u8 may be cast to type char, since all integers
from 0 to 255 are valid Unicode code points for char to hold.

Some casts involving unsafe pointer types are also allowed. See
“Raw Pointers”.

We said that a conversion usually requires a cast. A few conversions
involving reference types are so straightforward that the language performs
them even without a cast. One trivial example is converting a mut reference
to a non-mut reference.

Several more significant automatic conversions can happen, though:

Values of type &String auto-convert to type &str without a cast.

Values of type &Vec<i32> auto-convert to &[i32].

Values of type &Box<Chessboard> auto-convert to &Chessboard.

These are called deref coercions, because they apply to types that implement
the Deref built-in trait. The purpose of Deref coercion is to make smart
pointer types, like Box, behave as much like the underlying value as possible.
Using a Box<Chessboard> is mostly just like using a plain Chessboard,
thanks to Deref.

User-defined types can implement the Deref trait, too. When you need to
write your own smart pointer type, see “Deref and DerefMut”.

Closures
Rust has closures, lightweight function-like values. A closure usually consists
of an argument list, given between vertical bars, followed by an expression:

let is_even = |x| x % 2 == 0;

Rust infers the argument types and return type. You can also write them out
explicitly, as you would for a function. If you do specify a return type, then
the body of the closure must be a block, for the sake of syntactic sanity:

let is_even = |x: u64| -> bool x % 2 == 0; // error

let is_even = |x: u64| -> bool { x % 2 == 0 }; // ok

Calling a closure uses the same syntax as calling a function:

assert_eq!(is_even(14), true);

Closures are one of Rust’s most delightful features, and there is a great deal
more to be said about them. We shall say it in Chapter 14.

Onward
Expressions are what we think of as “running code.” They’re the part of a
Rust program that compiles to machine instructions. Yet they are a small
fraction of the whole language.

The same is true in most programming languages. The first job of a program
is to run, but that’s not its only job. Programs have to communicate. They
have to be testable. They have to stay organized and flexible so that they can
continue to evolve. They have to interoperate with code and services built by
other teams. And even just to run, programs in a statically typed language
like Rust need some more tools for organizing data than just tuples and
arrays.

Coming up, we’ll spend several chapters talking about features in this area:
modules and crates, which give your program structure, and then structs and
enums, which do the same for your data.

First, we’ll dedicate a few pages to the important topic of what to do when
things go wrong.

Chapter 7. Error Handling

I knew if I stayed around long enough, something like this would happen.
—George Bernard Shaw on dying

Rust’s approach to error handling is unusual enough to warrant a short
chapter on the topic. There aren’t any difficult ideas here, just ideas that
might be new to you. This chapter covers the two different kinds of error
handling in Rust: panic and Results.

Ordinary errors are handled using the Result type. Results typically represent
problems caused by things outside the program, like erroneous input, a
network outage, or a permissions problem. That such situations occur is not
up to us; even a bug-free program will encounter them from time to time.
Most of this chapter is dedicated to that kind of error. We’ll cover panic first,
though, because it’s the simpler of the two.

Panic is for the other kind of error, the kind that should never happen.

Panic
A program panics when it encounters something so messed up that there must
be a bug in the program itself. Something like:

Out-of-bounds array access

Integer division by zero

Calling .expect() on a Result that happens to be Err

Assertion failure

(There’s also the macro panic!(), for cases where your own code discovers
that it has gone wrong, and you therefore need to trigger a panic directly.
panic!() accepts optional println!()-style arguments, for building an error
message.)

What these conditions have in common is that they are all—not to put too
fine a point on it—the programmer’s fault. A good rule of thumb is: “Don’t
panic.”

But we all make mistakes. When these errors that shouldn’t happen do
happen—what then? Remarkably, Rust gives you a choice. Rust can either
unwind the stack when a panic happens or abort the process. Unwinding is
the default.

Unwinding
When pirates divvy up the booty from a raid, the captain gets half of the loot.
Ordinary crew members earn equal shares of the other half. (Pirates hate
fractions, so if either division does not come out even, the result is rounded
down, with the remainder going to the ship’s parrot.)

fn pirate_share(total: u64, crew_size: usize) -> u64 {
 let half = total / 2;
 half / crew_size as u64
}

This may work fine for centuries until one day it transpires that the captain is
the sole survivor of a raid. If we pass a crew_size of zero to this function, it
will divide by zero. In C++, this would be undefined behavior. In Rust, it
triggers a panic, which typically proceeds as follows:

An error message is printed to the terminal:

thread 'main' panicked at 'attempt to divide by zero', pirates.rs:3780

note: Run with `RUST_BACKTRACE=1` for a backtrace.

If you set the RUST_BACKTRACE environment variable, as the
messages suggests, Rust will also dump the stack at this point.

The stack is unwound. This is a lot like C++ exception handling.

Any temporary values, local variables, or arguments that the current
function was using are dropped, in the reverse of the order they were
created. Dropping a value simply means cleaning up after it: any
Strings or Vecs the program was using are freed, any open Files are
closed, and so on. User-defined drop methods are called too; see
“Drop”. In the particular case of pirate_share(), there’s nothing to
clean up.

Once the current function call is cleaned up, we move on to its
caller, dropping its variables and arguments the same way. Then we

move to that function’s caller, and so on up the stack.

Finally, the thread exits. If the panicking thread was the main thread,
then the whole process exits (with a nonzero exit code).

Perhaps panic is a misleading name for this orderly process. A panic is not a
crash. It’s not undefined behavior. It’s more like a RuntimeException in Java
or a std::logic_error in C++. The behavior is well-defined; it just shouldn’t be
happening.

Panic is safe. It doesn’t violate any of Rust’s safety rules; even if you manage
to panic in the middle of a standard library method, it will never leave a
dangling pointer or a half-initialized value in memory. The idea is that Rust
catches the invalid array access, or whatever it is, before anything bad
happens. It would be unsafe to proceed, so Rust unwinds the stack. But the
rest of the process can continue running.

Panic is per thread. One thread can be panicking while other threads are
going on about their normal business. In Chapter 19, we’ll show how a parent
thread can find out when a child thread panics and handle the error
gracefully.

There is also a way to catch stack unwinding, allowing the thread to survive
and continue running. The standard library function
std::panic::catch_unwind() does this. We won’t cover how to use it, but this
is the mechanism used by Rust’s test harness to recover when an assertion
fails in a test. (It can also be necessary when writing Rust code that can be
called from C or C++, because unwinding across non-Rust code is undefined
behavior; see Chapter 22.)

Ideally, we would all have bug-free code that never panics. But nobody’s
perfect. You can use threads and catch_unwind() to handle panic, making
your program more robust. One important caveat is that these tools only catch
panics that unwind the stack. Not every panic proceeds this way.

Aborting
Stack unwinding is the default panic behavior, but there are two
circumstances in which Rust does not try to unwind the stack.

If a .drop() method triggers a second panic while Rust is still trying to clean
up after the first, this is considered fatal. Rust stops unwinding and aborts the
whole process.

Also, Rust’s panic behavior is customizable. If you compile with -C
panic=abort, the first panic in your program immediately aborts the process.
(With this option, Rust does not need to know how to unwind the stack, so
this can reduce the size of your compiled code.)

This concludes our discussion of panic in Rust. There is not much to say,
because ordinary Rust code has no obligation to handle panic. Even if you do
use threads or catch_unwind(), all your panic-handling code will likely be
concentrated in a few places. It’s unreasonable to expect every function in a
program to anticipate and cope with bugs in its own code. Errors caused by
other factors are another kettle of fish.

Result
Rust doesn’t have exceptions. Instead, functions that can fail have a return
type that says so:

fn get_weather(location: LatLng) -> Result<WeatherReport, io::Error>

The Result type indicates possible failure. When we call the get_weather()
function, it will return either a success result Ok(weather), where weather is a
new WeatherReport value, or an error result Err(error_value), where
error_value is an io::Error explaining what went wrong.

Rust requires us to write some kind of error handling whenever we call this
function. We can’t get at the WeatherReport without doing something to the
Result, and you’ll get a compiler warning if a Result value isn’t used.

In Chapter 10, we’ll see how the standard library defines Result and how you
can define your own similar types. For now, we’ll take a “cookbook”
approach and focus on how to use Results to get the error-handling behavior
you want. We’ll look at how to catch, propagate, and report errors, as well as
common patterns for organizing and working with Result types.

Catching Errors
The most thorough way of dealing with a Result is the way we showed in
Chapter 2: use a match expression.

match get_weather(hometown) {
 Ok(report) => {
 display_weather(hometown, &report);
 }
 Err(err) => {
 println!("error querying the weather: {}", err);
 schedule_weather_retry();
 }
}

This is Rust’s equivalent of try/catch in other languages. It’s what you use
when you want to handle errors head-on, not pass them on to your caller.

match is a bit verbose, so Result<T, E> offers a variety of methods that are
useful in particular common cases. Each of these methods has a match
expression in its implementation. (For the full list of Result methods, consult
the online documentation. The methods listed here are the ones we use the
most.)

result.is_ok(), result.is_err()

Return a bool telling if result is a success result or an error result.

result.ok()

Returns the success value, if any, as an Option<T>. If result is a success

result, this returns Some(success_value); otherwise, it returns None,

discarding the error value.

result.err()

Returns the error value, if any, as an Option<E>.

result.unwrap_or(fallback)

Returns the success value, if result is a success result. Otherwise, it
returns fallback, discarding the error value.

// A fairly safe prediction for Southern California.

const THE_USUAL: WeatherReport = WeatherReport::Sunny(72);

// Get a real weather report, if possible.

// If not, fall back on the usual.

let report = get_weather(los_angeles).unwrap_or(THE_USUAL);

display_weather(los_angeles, &report);

This is a nice alternative to .ok() because the return type is T, not
Option<T>. Of course, it works only when there’s an appropriate fallback
value.

result.unwrap_or_else(fallback_fn)

This is the same, but instead of passing a fallback value directly, you pass
a function or closure. This is for cases where it would be wasteful to
compute a fallback value if you’re not going to use it. The fallback_fn is
called only if we have an error result.

let report =

 get_weather(hometown)

 .unwrap_or_else(|_err| vague_prediction(hometown));

(Chapter 14 covers closures in detail.)

result.unwrap()

Also returns the success value, if result is a success result. However, if

result is an error result, this method panics. This method has its uses;

we’ll talk more about it later.

result.expect(message)

This the same as .unwrap(), but lets you provide a message that it prints

in case of panic.

Lastly, methods for working with references in a Result:

result.as_ref()

Converts a Result<T, E> to a Result<&T, &E>.

result.as_mut()

This is the same, but borrows a mutable reference. The return type is

Result<&mut T, &mut E>.

One reason these last two methods are useful is that all of the other methods
listed here, except .is_ok() and .is_err(), consume the result they operate on.
That is, they take the self argument by value. Sometimes it’s quite handy to
access data inside a result without destroying it, and this is what .as_ref() and
.as_mut() do for us. For example, suppose you’d like to call result.ok(), but
you need result to be left intact. You can write result.as_ref().ok(), which
merely borrows result, returning an Option<&T> rather than an Option<T>.

Result Type Aliases
Sometimes you’ll see Rust documentation that seems to omit the error type of
a Result:

fn remove_file(path: &Path) -> Result<()>

This means that a Result type alias is being used.

A type alias is a kind of shorthand for type names. Modules often define a
Result type alias to avoid having to repeat an error type that’s used
consistently by almost every function in the module. For example, the
standard library’s std::io module includes this line of code:

pub type Result<T> = result::Result<T, Error>;

This defines a public type std::io::Result<T>. It’s an alias for Result<T, E>,
but hardcodes std::io::Error as the error type. In practical terms, this means
that if you write use std::io;, then Rust will understand io::Result<String> as
shorthand for Result<String, io::Error>.

When something like Result<()> appears in the online documentation, you
can click on the identifier Result to see which type alias is being used and
learn the error type. In practice, it’s usually obvious from context.

Printing Errors
Sometimes the only way to handle an error is by dumping it to the terminal
and moving on. We already showed one way to do this:

println!("error querying the weather: {}", err);

The standard library defines several error types with boring names:
std::io::Error, std::fmt::Error, std::str::Utf8Error, and so on. All of them
implement a common interface, the std::error::Error trait, which means they
share the following features and methods:

println!()

All error types are printable using this. Printing an error with the {}
format specifier typically displays only a brief error message.
Alternatively, you can print with the {:?} format specifier, to get a Debug
view of the error. This is less user-friendly, but includes extra technical
information.

// result of `println!("error: {}", err);`

error: failed to look up address information: No address associated with

hostname

// result of `println!("error: {:?}", err);`

error: Error { repr: Custom(Custom { kind: Other, error: StringError(

"failed to look up address information: No address associated with

hostname") }) }

err.to_string()

Returns an error message as a String.

err.source()

Returns an Option of the underlying error, if any, that caused err. For

example, a networking error might cause a banking transaction to fail,

which could in turn cause your boat to be repossessed. If err.to_string() is

"boat was repossessed", then err.source() might return an error about the

failed transaction. That error’s .to_string() might be "failed to transfer

$300 to United Yacht Supply", and its .source() might be an io::Error

with details about the specific network outage that caused all the fuss.

This third error is the root cause, so its .source() method would return

None. Since the standard library only includes rather low-level features,

the source of errors returned from the standard library is usually None.

Printing an error value does not also print out its source. If you want to be
sure to print all the available information, use this function:

use std::error::Error;
use std::io::{Write, stderr};

/// Dump an error message to `stderr`.
///
/// If another error happens while building the error message or
/// writing to `stderr`, it is ignored.
fn print_error(mut err: &dyn Error) {
 let _ = writeln!(stderr(), "error: {}", err);
 while let Some(source) = err.source() {
 let _ = writeln!(stderr(), "caused by: {}", source);
 err = source;
 }
}

The writeln! macro works like println!, except that it writes the data to a
stream of your choice. Here, we write the error messages to the standard error
stream, std::io::stderr. We could use the eprintln! macro to do the same thing,
but eprintln! panics if an error occurs. In print_error, we want to ignore errors

that arise while writing the message; we explain why in “Ignoring Errors”,
later in the chapter.

The standard library’s error types do not include a stack trace, but the popular
anyhow crate provides a ready-made error type that does, when used with an
unstable version of the Rust compiler. (As of Rust 1.56, the standard library’s
functions for capturing backtraces were not yet stabilized.)

Propagating Errors
In most places where we try something that could fail, we don’t want to catch
and handle the error immediately. It is simply too much code to use a 10-line
match statement every place where something could go wrong.

Instead, if an error occurs, we usually want to let our caller deal with it. We
want errors to propagate up the call stack.

Rust has a ? operator that does this. You can add a ? to any expression that
produces a Result, such as the result of a function call:

let weather = get_weather(hometown)?;

The behavior of ? depends on whether this function returns a success result or
an error result:

On success, it unwraps the Result to get the success value inside.
The type of weather here is not Result<WeatherReport, io::Error>
but simply WeatherReport.

On error, it immediately returns from the enclosing function, passing
the error result up the call chain. To ensure that this works, ? can
only be used on a Result in functions that have a Result return type.

There’s nothing magical about the ? operator. You can express the same thing
using a match expression, although it’s much wordier:

let weather = match get_weather(hometown) {
 Ok(success_value) => success_value,
 Err(err) => return Err(err)
};

The only differences between this and the ? operator are some fine points
involving types and conversions. We’ll cover those details in the next section.

In older code, you may see the try!() macro, which was the usual way to
propagate errors until the ? operator was introduced in Rust 1.13:

let weather = try!(get_weather(hometown));

The macro expands to a match expression, like the one earlier.

It’s easy to forget just how pervasive the possibility of errors is in a program,
particularly in code that interfaces with the operating system. The ? operator
sometimes shows up on almost every line of a function:

use std::fs;
use std::io;
use std::path::Path;

fn move_all(src: &Path, dst: &Path) -> io::Result<()> {
 for entry_result in src.read_dir()? { // opening dir could fail
 let entry = entry_result?; // reading dir could fail
 let dst_file = dst.join(entry.file_name());
 fs::rename(entry.path(), dst_file)?; // renaming could fail
 }
 Ok(()) // phew!
}

? also works similarly with the Option type. In a function that returns Option,
you can use ? to unwrap a value and return early in the case of None:

let weather = get_weather(hometown).ok()?;

Working with Multiple Error Types
Often, more than one thing could go wrong. Suppose we are simply reading
numbers from a text file:

use std::io::{self, BufRead};

/// Read integers from a text file.
/// The file should have one number on each line.
fn read_numbers(file: &mut dyn BufRead) -> Result<Vec<i64>, io::Error> {
 let mut numbers = vec![];
 for line_result in file.lines() {
 let line = line_result?; // reading lines can fail
 numbers.push(line.parse()?); // parsing integers can fail
 }
 Ok(numbers)
}

Rust gives us a compiler error:

error: `?` couldn't convert the error to `std::io::Error`

 numbers.push(line.parse()?); // parsing integers can fail
 ^
 the trait `std::convert::From<std::num::ParseIntError>`
 is not implemented for `std::io::Error`

note: the question mark operation (`?`) implicitly performs a conversion
on the error value using the `From` trait

The terms in this error message will make more sense when we reach
Chapter 11, which covers traits. For now, just note that Rust is complaining
that the ? operator can’t convert a std::num::ParseIntError value to the type
std::io::Error.

The problem here is that reading a line from a file and parsing an integer
produce two different potential error types. The type of line_result is
Result<String, std::io::Error>. The type of line.parse() is Result<i64,
std::num::ParseIntError>. The return type of our read_numbers() function
only accommodates io::Errors. Rust tries to cope with the ParseIntError by

converting it to a io::Error, but there’s no such conversion, so we get a type
error.

There are several ways of dealing with this. For example, the image crate that
we used in Chapter 2 to create image files of the Mandelbrot set defines its
own error type, ImageError, and implements conversions from io::Error and
several other error types to ImageError. If you’d like to go this route, try the
thiserror crate, which is designed to help you define good error types with
just a few lines of code.

A simpler approach is to use what’s built into Rust. All of the standard library
error types can be converted to the type Box<dyn std::error::Error + Send +
Sync + 'static>. This is a bit of a mouthful, but dyn std::error::Error
represents “any error,” and Send + Sync + 'static makes it safe to pass
between threads, which you’ll often want. For convenience, you can define
type aliases:

type GenericError = Box<dyn std::error::Error + Send + Sync + 'static>;
type GenericResult<T> = Result<T, GenericError>;

Then, change the return type of read_numbers() to
GenericResult<Vec<i64>>. With this change, the function compiles. The ?
operator automatically converts either type of error into a GenericError as
needed.

Incidentally, the ? operator does this automatic conversion using a standard
method that you can use yourself. To convert any error to the GenericError
type, call GenericError::from():

let io_error = io::Error::new(// make our own io::Error
 io::ErrorKind::Other, "timed out");
return Err(GenericError::from(io_error)); // manually convert to GenericError

We’ll cover the From trait and its from() method fully in Chapter 13.

The downside of the GenericError approach is that the return type no longer
communicates precisely what kinds of errors the caller can expect. The caller
must be ready for anything.

1

If you’re calling a function that returns a GenericResult and you want to
handle one particular kind of error but let all others propagate out, use the
generic method error.downcast_ref::<ErrorType>(). It borrows a reference to
the error, if it happens to be the particular type of error you’re looking for:

loop {
 match compile_project() {
 Ok(()) => return Ok(()),
 Err(err) => {
 if let Some(mse) = err.downcast_ref::<MissingSemicolonError>() {
 insert_semicolon_in_source_code(mse.file(), mse.line())?;
 continue; // try again!
 }
 return Err(err);
 }
 }
}

Many languages have built-in syntax to do this, but it turns out to be rarely
needed. Rust has a method for it instead.

Dealing with Errors That “Can’t Happen”
Sometimes we just know that an error can’t happen. For example, suppose
we’re writing code to parse a configuration file, and at one point we find that
the next thing in the file is a string of digits:

if next_char.is_digit(10) {
 let start = current_index;
 current_index = skip_digits(&line, current_index);
 let digits = &line[start..current_index];
 ...

We want to convert this string of digits to an actual number. There’s a
standard method that does this:

let num = digits.parse::<u64>();

Now the problem: the str.parse::<u64>() method doesn’t return a u64. It
returns a Result. It can fail, because some strings aren’t numeric:

"bleen".parse::<u64>() // ParseIntError: invalid digit

But we happen to know that in this case, digits consists entirely of digits.
What should we do?

If the code we’re writing already returns a GenericResult, we can tack on a ?
and forget about it. Otherwise, we face the irritating prospect of having to
write error-handling code for an error that can’t happen. The best choice then
would be to use .unwrap(), a Result method that panics if the result is an Err,
but simply returns the success value of an Ok:

let num = digits.parse::<u64>().unwrap();

This is just like ? except that if we’re wrong about this error, if it can happen,
then in that case we would panic.

In fact, we are wrong about this particular case. If the input contains a long

enough string of digits, the number will be too big to fit in a u64:

"99999999999999999999".parse::<u64>() // overflow error

Using .unwrap() in this particular case would therefore be a bug. Bogus input
shouldn’t cause a panic.

That said, situations do come up where a Result value truly can’t be an error.
For example, in Chapter 18, you’ll see that the Write trait defines a common
set of methods (.write() and others) for text and binary output. All of those
methods return io::Results, but if you happen to be writing to a Vec<u8>,
they can’t fail. In such cases, it’s acceptable to use .unwrap() or
.expect(message) to dispense with the Results.

These methods are also useful when an error would indicate a condition so
severe or bizarre that panic is exactly how you want to handle it:

fn print_file_age(filename: &Path, last_modified: SystemTime) {
 let age = last_modified.elapsed().expect("system clock drift");
 ...
}

Here, the .elapsed() method can fail only if the system time is earlier than
when the file was created. This can happen if the file was created recently,
and the system clock was adjusted backward while our program was running.
Depending on how this code is used, it’s a reasonable judgment call to panic
in that case, rather than handle the error or propagate it to the caller.

Ignoring Errors
Occasionally we just want to ignore an error altogether. For example, in our
print_error() function, we had to handle the unlikely situation where printing
the error triggers another error. This could happen, for example, if stderr is
piped to another process, and that process is killed. The original error we
were trying to report is probably more important to propagate, so we just
want to ignore the troubles with stderr, but the Rust compiler warns about
unused Result values:

writeln!(stderr(), "error: {}", err); // warning: unused result

The idiom let _ = ... is used to silence this warning:

let _ = writeln!(stderr(), "error: {}", err); // ok, ignore result

Handling Errors in main()
In most places where a Result is produced, letting the error bubble up to the
caller is the right behavior. This is why ? is a single character in Rust. As
we’ve seen, in some programs it’s used on many lines of code in a row.

But if you propagate an error long enough, eventually it reaches main(), and
something has to be done with it. Normally, main() can’t use ? because its
return type is not Result:

fn main() {
 calculate_tides()?; // error: can't pass the buck any further
}

The simplest way to handle errors in main() is to use .expect():

fn main() {
 calculate_tides().expect("error"); // the buck stops here
}

If calculate_tides() returns an error result, the .expect() method panics.
Panicking in the main thread prints an error message and then exits with a
nonzero exit code, which is roughly the desired behavior. We use this all the
time for tiny programs. It’s a start.

The error message is a little intimidating, though:

$ tidecalc --planet mercury
thread 'main' panicked at 'error: "moon not found"', src/main.rs:2:23
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

The error message is lost in the noise. Also, RUST_BACKTRACE=1 is bad
advice in this particular case.

However, you can also change the type signature of main() to return a Result
type, so you can use ?:

fn main() -> Result<(), TideCalcError> {

 let tides = calculate_tides()?;
 print_tides(tides);
 Ok(())
}

This works for any error type that can be printed with the {:?} formatter,
which all standard error types, like std::io::Error, can be. This technique is
easy to use and gives a somewhat nicer error message, but it’s not ideal:

$ tidecalc --planet mercury
Error: TideCalcError { error_type: NoMoon, message: "moon not found" }

If you have more complex error types or want to include more details in your
message, it pays to print the error message yourself:

fn main() {
 if let Err(err) = calculate_tides() {
 print_error(&err);
 std::process::exit(1);
 }
}

This code uses an if let expression to print the error message only if the call
to calculate_tides() returns an error result. For details about if let expressions,
see Chapter 10. The print_error function is listed in “Printing Errors”.

Now the output is nice and tidy:

$ tidecalc --planet mercury
error: moon not found

Declaring a Custom Error Type
Suppose you are writing a new JSON parser, and you want it to have its own
error type. (We haven’t covered user-defined types yet; that’s coming up in a
few chapters. But error types are handy, so we’ll include a bit of a sneak
preview here.)

Approximately the minimum code you would write is:

// json/src/error.rs

#[derive(Debug, Clone)]
pub struct JsonError {
 pub message: String,
 pub line: usize,
 pub column: usize,
}

This struct will be called json::error::JsonError, and when you want to raise
an error of this type, you can write:

return Err(JsonError {
 message: "expected ']' at end of array".to_string(),
 line: current_line,
 column: current_column
});

This will work fine. However, if you want your error type to work like the
standard error types, as your library’s users will expect, then you have a bit
more work to do:

use std::fmt;

// Errors should be printable.
impl fmt::Display for JsonError {
 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
 write!(f, "{} ({}:{})", self.message, self.line, self.column)
 }
}

// Errors should implement the std::error::Error trait,
// but the default definitions for the Error methods are fine.
impl std::error::Error for JsonError { }

Again, the meaning of the impl keyword, self, and all the rest will be
explained in the next few chapters.

As with many aspects of the Rust language, crates exist to make error
handling much easier and more concise. There is quite a variety, but one of
the most used is thiserror, which does all of the previous work for you,
allowing you to write errors like this:

use thiserror::Error;
#[derive(Error, Debug)]
#[error("{message:} ({line:}, {column})")]
pub struct JsonError {
 message: String,
 line: usize,
 column: usize,
}

The #[derive(Error)] directive tells thiserror to generate the code shown
earlier, which can save a lot of time and effort.

Why Results?
Now we know enough to understand what Rust is getting at by choosing
Results over exceptions. Here are the key points of the design:

Rust requires the programmer to make some sort of decision, and
record it in the code, at every point where an error could occur. This
is good because otherwise it’s easy to get error handling wrong
through neglect.

The most common decision is to allow errors to propagate, and
that’s written with a single character, ?. Thus, error plumbing does
not clutter up your code the way it does in C and Go. Yet it’s still
visible: you can look at a chunk of code and see at a glance all places
where errors are propagated.

Since the possibility of errors is part of every function’s return type,
it’s clear which functions can fail and which can’t. If you change a
function to be fallible, you’re changing its return type, so the
compiler will make you update that function’s downstream users.

Rust checks that Result values are used, so you can’t accidentally let
an error pass silently (a common mistake in C).

Since Result is a data type like any other, it’s easy to store success
and error results in the same collection. This makes it easy to model
partial success. For example, if you’re writing a program that loads
millions of records from a text file and you need a way to cope with
the likely outcome that most will succeed, but some will fail, you
can represent that situation in memory using a vector of Results.

The cost is that you’ll find yourself thinking about and engineering error
handling more in Rust than you would in other languages. As in many other
areas, Rust’s take on error handling is wound just a little tighter than what
you’re used to. For systems programming, it’s worth it.

1 You should also consider using the popular anyhow crate, which provides error and result types
very much like our GenericError and GenericResult, but with some nice additional features.

Chapter 8. Crates and Modules

This is one note in a Rust theme: systems programmers can have nice
things.

—Robert O’Callahan, “Random Thoughts on Rust: crates.io
and IDEs”

Suppose you’re writing a program that simulates the growth of ferns, from
the level of individual cells on up. Your program, like a fern, will start out
very simple, with all the code, perhaps, in a single file—just the spore of an
idea. As it grows, it will start to have internal structure. Different pieces will
have different purposes. It will branch out into multiple files. It may cover a
whole directory tree. In time it may become a significant part of a whole
software ecosystem. For any program that grows beyond a few data
structures or a few hundred lines, some organization is necessary.

This chapter covers the features of Rust that help keep your program
organized: crates and modules. We’ll also cover other topics related to the
structure and distribution of a Rust crate, including how to document and test
Rust code, how to silence unwanted compiler warnings, how to use Cargo to
manage project dependencies and versioning, how to publish open source
libraries on Rust’s public crate repository, crates.io, how Rust evolves
through language editions, and more, using the fern simulator as our running
example.

https://oreil.ly/Y22sV

Crates
Rust programs are made of crates. Each crate is a complete, cohesive unit: all
the source code for a single library or executable, plus any associated tests,
examples, tools, configuration, and other junk. For your fern simulator, you
might use third-party libraries for 3D graphics, bioinformatics, parallel
computation, and so on. These libraries are distributed as crates (see
Figure 8-1).

Figure 8-1. A crate and its dependencies

The easiest way to see what crates are and how they work together is to use
cargo build with the --verbose flag to build an existing project that has some
dependencies. We did this using “A Concurrent Mandelbrot Program” as our
example. The results are shown here:

$ cd mandelbrot

$ cargo clean # delete previously compiled code
$ cargo build --verbose
 Updating registry `https://github.com/rust-lang/crates.io-index`
 Downloading autocfg v1.0.0
 Downloading semver-parser v0.7.0
 Downloading gif v0.9.0
 Downloading png v0.7.0

... (downloading and compiling many more crates)

Compiling jpeg-decoder v0.1.18
 Running `rustc
 --crate-name jpeg_decoder
 --crate-type lib
 ...
 --extern byteorder=.../libbyteorder-29efdd0b59c6f920.rmeta
 ...
 Compiling image v0.13.0
 Running `rustc
 --crate-name image
 --crate-type lib
 ...
 --extern byteorder=.../libbyteorder-29efdd0b59c6f920.rmeta
 --extern gif=.../libgif-a7006d35f1b58927.rmeta
 --extern jpeg_decoder=.../libjpeg_decoder-5c10558d0d57d300.rmeta
 Compiling mandelbrot v0.1.0 (/tmp/rustbook-test-files/mandelbrot)
 Running `rustc
 --edition=2021
 --crate-name mandelbrot
 --crate-type bin
 ...
 --extern crossbeam=.../libcrossbeam-f87b4b3d3284acc2.rlib
 --extern image=.../libimage-b5737c12bd641c43.rlib
 --extern num=.../libnum-1974e9a1dc582ba7.rlib -C link-arg=-fuse-ld=lld`
 Finished dev [unoptimized + debuginfo] target(s) in 16.94s
$

We reformatted the rustc command lines for readability, and we deleted a lot
of compiler options that aren’t relevant to our discussion, replacing them with
an ellipsis (...).

You might recall that by the time we were done, the Mandelbrot program’s
main.rs contained several use declarations for items from other crates:

use num::Complex;

// ...
use image::ColorType;
use image::png::PNGEncoder;

We also specified in our Cargo.toml file which version of each crate we
wanted:

[dependencies]
num = "0.4"
image = "0.13"
crossbeam = "0.8"

The word dependencies here just means other crates this project uses: code
we’re depending on. We found these crates on crates.io, the Rust
community’s site for open source crates. For example, we found out about
the image library by going to crates.io and searching for an image library.
Each crate’s page on crates.io shows its README.md file and links to
documentation and source, as well as a line of configuration like image =
"0.13" that you can copy and add to your Cargo.toml. The version numbers
shown here are simply the latest versions of these three packages at the time
we wrote the program.

The Cargo transcript tells the story of how this information is used. When we
run cargo build, Cargo starts by downloading source code for the specified
versions of these crates from crates.io. Then, it reads those crates’ Cargo.toml
files, downloads their dependencies, and so on recursively. For example, the
source code for version 0.13.0 of the image crate contains a Cargo.toml file
that includes this:

[dependencies]
byteorder = "1.0.0"
num-iter = "0.1.32"
num-rational = "0.1.32"
num-traits = "0.1.32"
enum_primitive = "0.1.0"

Seeing this, Cargo knows that before it can use image, it must fetch these
crates as well. Later we’ll see how to tell Cargo to fetch source code from a

https://crates.io

Git repository or the local filesystem rather than crates.io.

Since mandelbrot depends on these crates indirectly, through its use of the
image crate, we call them transitive dependencies of mandelbrot. The
collection of all these dependency relationships, which tells Cargo everything
it needs to know about what crates to build and in what order, is known as the
dependency graph of the crate. Cargo’s automatic handling of the
dependency graph and transitive dependencies is a huge win in terms of
programmer time and effort.

Once it has the source code, Cargo compiles all the crates. It runs rustc, the
Rust compiler, once for each crate in the project’s dependency graph. When
compiling libraries, Cargo uses the --crate-type lib option. This tells rustc not
to look for a main() function but instead to produce an .rlib file containing
compiled code that can be used to create binaries and other .rlib files.

When compiling a program, Cargo uses --crate-type bin, and the result is a
binary executable for the target platform: mandelbrot.exe on Windows, for
example.

With each rustc command, Cargo passes --extern options, giving the filename
of each library the crate will use. That way, when rustc sees a line of code
like use image::png::PNGEncoder, it can figure out that image is the name of
another crate, and thanks to Cargo, it knows where to find that compiled crate
on disk. The Rust compiler needs access to these .rlib files because they
contain the compiled code of the library. Rust will statically link that code
into the final executable. The .rlib also contains type information so Rust can
check that the library features we’re using in our code actually exist in the
crate and that we’re using them correctly. It also contains a copy of the
crate’s public inline functions, generics, and macros, features that can’t be
fully compiled to machine code until Rust sees how we use them.

cargo build supports all sorts of options, most of which are beyond the scope
of this book, but we will mention one here: cargo build --release produces an
optimized build. Release builds run faster, but they take longer to compile,
they don’t check for integer overflow, they skip debug_assert!() assertions,
and the stack traces they generate on panic are generally less reliable.

Editions
Rust has extremely strong compatibility guarantees. Any code that compiled
on Rust 1.0 must compile just as well on Rust 1.50 or, if it’s ever released,
Rust 1.900.

But sometimes there are compelling proposals for extensions to the language
that would cause older code to no longer compile. For example, after much
discussion, Rust settled on a syntax for asynchronous programming support
that repurposes the identifiers async and await as keywords (see Chapter 20).
But this language change would break any existing code that uses async or
await as the name of a variable.

To evolve without breaking existing code, Rust uses editions. The 2015
edition of Rust is compatible with Rust 1.0. The 2018 edition changed async
and await into keywords and streamlined the module system, while the 2021
edition improved array ergonomics and made some widely-used library
definitions available everywhere by default. These were all important
improvements to the language, but would have broken existing code. To
avoid this, each crate indicates which edition of Rust it is written in with a
line like this in the [package] section atop its Cargo.toml file:

edition = "2021"

If that keyword is absent, the 2015 edition is assumed, so old crates don’t
have to change at all. But if you want to use asynchronous functions or the
new module system, you’ll need edition = "2018" or later in your Cargo.toml
file.

Rust promises that the compiler will always accept all extant editions of the
language, and programs can freely mix crates written in different editions.
It’s even fine for a 2015 edition crate to depend on a 2021 edition crate. In
other words, a crate’s edition only affects how its source code is construed;
edition distinctions are gone by the time the code has been compiled. This
means there’s no pressure to update old crates just to continue to participate

in the modern Rust ecosystem. Similarly, there’s no pressure to keep your
crate on an older edition to avoid inconveniencing its users. You only need to
change editions when you want to use new language features in your own
code.

Editions don’t come out every year, only when the Rust project decides one
is necessary. For example, there’s no 2020 edition. Setting edition to "2020"
causes an error. The Rust Edition Guide covers the changes introduced in
each edition and provides good background on the edition system.

It’s almost always a good idea to use the latest edition, especially for new
code. cargo new creates new projects on the latest edition by default. This
book uses the 2021 edition throughout.

If you have a crate written in an older edition of Rust, the cargo fix command
may be able to help you automatically upgrade your code to the newer
edition. The Rust Edition Guide explains the cargo fix command in detail.

https://oreil.ly/bKEO7

Build Profiles
There are several configuration settings you can put in your Cargo.toml file
that affect the rustc command lines that cargo generates (Table 8-1).

Table 8-1. Cargo.toml configuration
setting sections

Command line Cargo.toml section used

cargo build [profile.dev]

cargo build --release [profile.release]

cargo test [profile.test]

The defaults are usually fine, but one exception we’ve found is when you
want to use a profiler—a tool that measures where your program is spending
its CPU time. To get the best data from a profiler, you need both
optimizations (usually enabled only in release builds) and debug symbols
(usually enabled only in debug builds). To enable both, add this to your
Cargo.toml:

[profile.release]
debug = true # enable debug symbols in release builds

The debug setting controls the -g option to rustc. With this configuration,
when you type cargo build --release, you’ll get a binary with debug symbols.
The optimization settings are unaffected.

The Cargo documentation lists many other settings you can adjust in
Cargo.toml.

https://oreil.ly/mTNiN

Modules
Whereas crates are about code sharing between projects, modules are about
code organization within a project. They act as Rust’s namespaces, containers
for the functions, types, constants, and so on that make up your Rust program
or library. A module looks like this:

mod spores {
 use cells::{Cell, Gene};

 /// A cell made by an adult fern. It disperses on the wind as part of
 /// the fern life cycle. A spore grows into a prothallus -- a whole
 /// separate organism, up to 5mm across -- which produces the zygote
 /// that grows into a new fern. (Plant sex is complicated.)
 pub struct Spore {
 ...
 }

 /// Simulate the production of a spore by meiosis.
 pub fn produce_spore(factory: &mut Sporangium) -> Spore {
 ...
 }

 /// Extract the genes in a particular spore.
 pub(crate) fn genes(spore: &Spore) -> Vec<Gene> {
 ...
 }

 /// Mix genes to prepare for meiosis (part of interphase).
 fn recombine(parent: &mut Cell) {
 ...
 }

 ...
}

A module is a collection of items, named features like the Spore struct and
the two functions in this example. The pub keyword makes an item public, so
it can be accessed from outside the module.

One function is marked pub(crate), meaning that it is available anywhere

inside this crate, but isn’t exposed as part of the external interface. It can’t be
used by other crates, and it won’t show up in this crate’s documentation.

Anything that isn’t marked pub is private and can only be used in the same
module in which it is defined, or any child modules:

let s = spores::produce_spore(&mut factory); // ok

spores::recombine(&mut cell); // error: `recombine` is private

Marking an item as pub is often known as “exporting” that item.

The rest of this section covers the details you’ll need to know to make full
use of modules:

We show how to nest modules and distribute them across different
files and directories, if needed.

We explain the path syntax Rust uses to refer to items from other
modules and show how to import items so that you can use them
without having to write out their full paths.

We touch on Rust’s fine-grained control for struct fields.

We introduce prelude modules, which reduce boilerplate by
gathering together common imports that almost any user will need.

We present constants and statics, two ways to define named values,
for clarity and consistency.

Nested Modules
Modules can nest, and it’s fairly common to see a module that’s just a
collection of submodules:

mod plant_structures {
 pub mod roots {
 ...
 }
 pub mod stems {
 ...
 }
 pub mod leaves {
 ...
 }
}

If you want an item in a nested module to be visible to other crates, be sure to
mark it and all enclosing modules as public. Otherwise you may see a
warning like this:

warning: function is never used: `is_square`
 |
23 | / pub fn is_square(root: &Root) -> bool {
24 | | root.cross_section_shape().is_square()
25 | | }
 | |_________^
 |

Perhaps this function really is dead code at the moment. But if you meant to
use it in other crates, Rust is letting you know that it’s not actually visible to
them. You should make sure its enclosing modules are all pub as well.

It’s also possible to specify pub(super), making an item visible to the parent
module only, and pub(in <path>), which makes it visible in a specific parent
module and its descendants. This is especially useful with deeply nested
modules:

mod plant_structures {
 pub mod roots {

 pub mod products {
 pub(in crate::plant_structures::roots) struct Cytokinin {
 ...
 }
 }

 use products::Cytokinin; // ok: in `roots` module
 }

 use roots::products::Cytokinin; // error: `Cytokinin` is private
}

// error: `Cytokinin` is private
use plant_structures::roots::products::Cytokinin;

In this way, we could write out a whole program, with a huge amount of code
and a whole hierarchy of modules, related in whatever ways we wanted, all in
a single source file.

Actually working that way is a pain, though, so there’s an alternative.

Modules in Separate Files
A module can also be written like this:

mod spores;

Earlier, we included the body of the spores module, wrapped in curly braces.
Here, we’re instead telling the Rust compiler that the spores module lives in a
separate file, called spores.rs:

// spores.rs

/// A cell made by an adult fern...
pub struct Spore {
 ...
}

/// Simulate the production of a spore by meiosis.
pub fn produce_spore(factory: &mut Sporangium) -> Spore {
 ...
}

/// Extract the genes in a particular spore.
pub(crate) fn genes(spore: &Spore) -> Vec<Gene> {
 ...
}

/// Mix genes to prepare for meiosis (part of interphase).
fn recombine(parent: &mut Cell) {
 ...
}

spores.rs contains only the items that make up the module. It doesn’t need
any kind of boilerplate to declare that it’s a module.

The location of the code is the only difference between this spores module
and the version we showed in the previous section. The rules about what’s
public and what’s private are exactly the same either way. And Rust never
compiles modules separately, even if they’re in separate files: when you build
a Rust crate, you’re recompiling all of its modules.

A module can have its own directory. When Rust sees mod spores;, it checks
for both spores.rs and spores/mod.rs; if neither file exists, or both exist, that’s
an error. For this example, we used spores.rs, because the spores module did
not have any submodules. But consider the plant_structures module we wrote
out earlier. If we decide to split that module and its three submodules into
their own files, the resulting project would look like this:

fern_sim/
├── Cargo.toml
└── src/
 ├── main.rs
 ├── spores.rs
 └── plant_structures/
 ├── mod.rs
 ├── leaves.rs
 ├── roots.rs
 └── stems.rs

In main.rs, we declare the plant_structures module:

pub mod plant_structures;

This causes Rust to load plant_structures/mod.rs, which declares the three
submodules:

// in plant_structures/mod.rs
pub mod roots;
pub mod stems;
pub mod leaves;

The content of those three modules is stored in separate files named leaves.rs,
roots.rs, and stems.rs, located alongside mod.rs in the plant_structures
directory.

It’s also possible to use a file and directory with the same name to make up a
module. For instance, if stems needed to include modules called xylem and
phloem, we could choose to keep stems in plant_structures/stems.rs and add
a stems directory:

fern_sim/
├── Cargo.toml
└── src/
 ├── main.rs
 ├── spores.rs
 └── plant_structures/
 ├── mod.rs
 ├── leaves.rs
 ├── roots.rs
 ├── stems/
 │ ├── phloem.rs
 │ └── xylem.rs
 └── stems.rs

Then, in stems.rs, we declare the two new submodules:

// in plant_structures/stems.rs
pub mod xylem;
pub mod phloem;

These three options—modules in their own file, modules in their own
directory with a mod.rs, and modules in their own file with a supplementary
directory containing submodules—give the module system enough flexibility
to support almost any project structure you might desire.

Paths and Imports
The :: operator is used to access features of a module. Code anywhere in your
project can refer to any standard library feature by writing out its path:

if s1 > s2 {
 std::mem::swap(&mut s1, &mut s2);
}

std is the name of the standard library. The path std refers to the top-level
module of the standard library. std::mem is a submodule within the standard
library, and std::mem::swap is a public function in that module.

You could write all your code this way, spelling out std::f64::consts::PI and
std::collections::HashMap::new every time you want a circle or a dictionary,
but it would be tedious to type and hard to read. The alternative is to import
features into the modules where they’re used:

use std::mem;

if s1 > s2 {
 mem::swap(&mut s1, &mut s2);
}

The use declaration causes the name mem to be a local alias for std::mem
throughout the enclosing block or module.

We could write use std::mem::swap; to import the swap function itself
instead of the mem module. However, what we did earlier is generally
considered the best style: import types, traits, and modules (like std::mem)
and then use relative paths to access the functions, constants, and other
members within.

Several names can be imported at once:

use std::collections::{HashMap, HashSet}; // import both

use std::fs::{self, File}; // import both `std::fs` and `std::fs::File`.

use std::io::prelude::*; // import everything

This is just shorthand for writing out all the individual imports:

use std::collections::HashMap;
use std::collections::HashSet;

use std::fs;
use std::fs::File;

// all the public items in std::io::prelude:
use std::io::prelude::Read;
use std::io::prelude::Write;
use std::io::prelude::BufRead;
use std::io::prelude::Seek;

You can use as to import an item but give it a different name locally:

use std::io::Result as IOResult;

// This return type is just another way to write `std::io::Result<()>`:
fn save_spore(spore: &Spore) -> IOResult<()>
...

Modules do not automatically inherit names from their parent modules. For
example, suppose we have this in our proteins/mod.rs:

// proteins/mod.rs
pub enum AminoAcid { ... }
pub mod synthesis;

Then the code in synthesis.rs does not automatically see the type AminoAcid:

// proteins/synthesis.rs
pub fn synthesize(seq: &[AminoAcid]) // error: can't find type `AminoAcid`
 ...

Instead, each module starts with a blank slate and must import the names it
uses:

// proteins/synthesis.rs

use super::AminoAcid; // explicitly import from parent

pub fn synthesize(seq: &[AminoAcid]) // ok
 ...

By default, paths are relative to the current module:

// in proteins/mod.rs

// import from a submodule
use synthesis::synthesize;

self is also a synonym for the current module, so we could write either:

// in proteins/mod.rs

// import names from an enum,
// so we can write `Lys` for lysine, rather than `AminoAcid::Lys`
use self::AminoAcid::*;

or simply:

// in proteins/mod.rs

use AminoAcid::*;

(The AminoAcid example here is, of course, a departure from the style rule
we mentioned earlier about only importing types, traits, and modules. If our
program includes long amino acid sequences, this is justified under Orwell’s
Sixth Rule: “Break any of these rules sooner than say anything outright
barbarous.”)

The keywords super and crate have a special meaning in paths: super refers to
the parent module, and crate refers to the crate containing the current module.

Using paths relative to the crate root rather than the current module makes it
easier to move code around the project, since all the imports won’t break if
the path of the current module changes. For example, we could write
synthesis.rs using crate:

// proteins/synthesis.rs
use crate::proteins::AminoAcid; // explicitly import relative to crate root

pub fn synthesize(seq: &[AminoAcid]) // ok
 ...

Submodules can access private items in their parent modules with use
super::*.

If you have a module with the same name as a crate that you are using, then
referring to their contents takes some care. For example, if your program lists
the image crate as a dependency in its Cargo.toml file, but also has a module
named image, then paths starting with image are ambiguous:

mod image {
 pub struct Sampler {
 ...
 }
}

// error: Does this refer to our `image` module, or the `image` crate?
use image::Pixels;

Even though the image module has no Pixels type, the ambiguity is still
considered an error: it would be confusing if adding such a definition later
could silently change what paths elsewhere in the program refer to.

To resolve the ambiguity, Rust has a special kind of path called an absolute
path, starting with ::, which always refers to an external crate. To refer to the
Pixels type in the image crate, you can write:

use ::image::Pixels; // the `image` crate's `Pixels`

To refer to your own module’s Sampler type, you can write:

use self::image::Sampler; // the `image` module's `Sampler`

Modules aren’t the same thing as files, but there is a natural analogy between
modules and the files and directories of a Unix filesystem. The use keyword

creates aliases, just as the ln command creates links. Paths, like filenames,
come in absolute and relative forms. self and super are like the . and .. special
directories.

The Standard Prelude
We said a moment ago that each module starts with a “blank slate,” as far as
imported names are concerned. But the slate is not completely blank.

For one thing, the standard library std is automatically linked with every
project. This means you can always go with use std::whatever or refer to std
items by name, like std::mem::swap() inline in your code. Furthermore, a few
particularly handy names, like Vec and Result, are included in the standard
prelude and automatically imported. Rust behaves as though every module,
including the root module, started with the following import:

use std::prelude::v1::*;

The standard prelude contains a few dozen commonly used traits and types.

In Chapter 2, we mentioned that libraries sometimes provide modules named
prelude. But std::prelude::v1 is the only prelude that is ever imported
automatically. Naming a module prelude is just a convention that tells users
it’s meant to be imported using *.

Making use Declarations pub
Even though use declarations are just aliases, they can be public:

// in plant_structures/mod.rs
...
pub use self::leaves::Leaf;
pub use self::roots::Root;

This means that Leaf and Root are public items of the plant_structures
module. They are still simple aliases for plant_structures::leaves::Leaf and
plant_structures::roots::Root.

The standard prelude is written as just such a series of pub imports.

Making Struct Fields pub
A module can include user-defined struct types, introduced using the struct
keyword. We cover these in detail in Chapter 9, but this is a good point to
mention how modules interact with the visibility of struct fields.

A simple struct looks like this:

pub struct Fern {
 pub roots: RootSet,
 pub stems: StemSet
}

A struct’s fields, even private fields, are accessible throughout the module
where the struct is declared, and its submodules. Outside the module, only
public fields are accessible.

It turns out that enforcing access control by module, rather than by class as in
Java or C++, is surprisingly helpful for software design. It cuts down on
boilerplate “getter” and “setter” methods, and it largely eliminates the need
for anything like C++ friend declarations. A single module can define several
types that work closely together, such as perhaps frond::LeafMap and
frond::LeafMapIter, accessing each other’s private fields as needed, while
still hiding those implementation details from the rest of your program.

Statics and Constants
In addition to functions, types, and nested modules, modules can also define
constants and statics.

The const keyword introduces a constant. The syntax is just like let except
that it may be marked pub, and the type is required. Also,
UPPERCASE_NAMES are conventional for constants:

pub const ROOM_TEMPERATURE: f64 = 20.0; // degrees Celsius

The static keyword introduces a static item, which is nearly the same thing:

pub static ROOM_TEMPERATURE: f64 = 68.0; // degrees Fahrenheit

A constant is a bit like a C++ #define: the value is compiled into your code
every place it’s used. A static is a variable that’s set up before your program
starts running and lasts until it exits. Use constants for magic numbers and
strings in your code. Use statics for larger amounts of data, or any time you
need to borrow a reference to the constant value.

There are no mut constants. Statics can be marked mut, but as discussed in
Chapter 5, Rust has no way to enforce its rules about exclusive access on mut
statics. They are, therefore, inherently non-thread-safe, and safe code can’t
use them at all:

static mut PACKETS_SERVED: usize = 0;

println!("{} served", PACKETS_SERVED); // error: use of mutable static

Rust discourages global mutable state. For a discussion of the alternatives,
see “Global Variables”.

Turning a Program into a Library
As your fern simulator starts to take off, you decide you need more than a
single program. Suppose you’ve got one command-line program that runs the
simulation and saves results in a file. Now, you want to write other programs
for performing scientific analysis of the saved results, displaying 3D
renderings of the growing plants in real time, rendering photorealistic
pictures, and so on. All these programs need to share the basic fern
simulation code. You need to make a library.

The first step is to factor your existing project into two parts: a library crate,
which contains all the shared code, and an executable, which contains the
code that’s only needed for your existing command-line program.

To show how you can do this, let’s use a grossly simplified example
program:

struct Fern {
 size: f64,
 growth_rate: f64
}

impl Fern {
 /// Simulate a fern growing for one day.
 fn grow(&mut self) {
 self.size *= 1.0 + self.growth_rate;
 }
}

/// Run a fern simulation for some number of days.
fn run_simulation(fern: &mut Fern, days: usize) {
 for _ in 0 .. days {
 fern.grow();
 }
}

fn main() {
 let mut fern = Fern {
 size: 1.0,
 growth_rate: 0.001
 };

 run_simulation(&mut fern, 1000);
 println!("final fern size: {}", fern.size);
}

We’ll assume that this program has a trivial Cargo.toml file:

[package]
name = "fern_sim"
version = "0.1.0"
authors = ["You <you@example.com>"]
edition = "2021"

Turning this program into a library is easy. Here are the steps:

1. Rename the file src/main.rs to src/lib.rs.

2. Add the pub keyword to items in src/lib.rs that will be public
features of our library.

3. Move the main function to a temporary file somewhere. We’ll come
back to it in a minute.

The resulting src/lib.rs file looks like this:

pub struct Fern {
 pub size: f64,
 pub growth_rate: f64
}

impl Fern {
 /// Simulate a fern growing for one day.
 pub fn grow(&mut self) {
 self.size *= 1.0 + self.growth_rate;
 }
}

/// Run a fern simulation for some number of days.
pub fn run_simulation(fern: &mut Fern, days: usize) {
 for _ in 0 .. days {
 fern.grow();
 }
}

Note that we didn’t need to change anything in Cargo.toml. This is because
our minimal Cargo.toml file leaves Cargo to its default behavior. By default,
cargo build looks at the files in our source directory and figures out what to
build. When it sees the file src/lib.rs, it knows to build a library.

The code in src/lib.rs forms the root module of the library. Other crates that
use our library can only access the public items of this root module.

The src/bin Directory
Getting the original command-line fern_sim program working again is also
straightforward: Cargo has some built-in support for small programs that live
in the same crate as a library.

In fact, Cargo itself is written this way. The bulk of the code is in a Rust
library. The cargo command-line program that we’ve been using throughout
this book is a thin wrapper program that calls out to the library for all the
heavy lifting. Both the library and the command-line program live in the
same source repository.

We can keep our program and our library in the same crate, too. Put this code
into a file named src/bin/efern.rs:

use fern_sim::{Fern, run_simulation};

fn main() {
 let mut fern = Fern {
 size: 1.0,
 growth_rate: 0.001
 };
 run_simulation(&mut fern, 1000);
 println!("final fern size: {}", fern.size);
}

The main function is the one we set aside earlier. We’ve added a use
declaration for some items from the fern_sim crate, Fern and run_simulation.
In other words, we’re using that crate as a library.

Because we’ve put this file into src/bin, Cargo will compile both the fern_sim
library and this program the next time we run cargo build. We can run the
efern program using cargo run --bin efern. Here’s what it looks like, using --
verbose to show the commands Cargo is running:

$ cargo build --verbose
 Compiling fern_sim v0.1.0 (file:///.../fern_sim)
 Running `rustc src/lib.rs --crate-name fern_sim --crate-type lib ...`

https://oreil.ly/aJKOk

 Running `rustc src/bin/efern.rs --crate-name efern --crate-type bin ...`
$ cargo run --bin efern --verbose
 Fresh fern_sim v0.1.0 (file:///.../fern_sim)
 Running `target/debug/efern`
final fern size: 2.7169239322355985

We still didn’t have to make any changes to Cargo.toml, because, again,
Cargo’s default is to look at your source files and figure things out. It
automatically treats .rs files in src/bin as extra programs to build.

We can also build larger programs in the src/bin directory using
subdirectories. Suppose we want to provide a second program that draws a
fern on the screen, but the drawing code is large and modular, so it belongs in
its own file. We can give the second program its own subdirectory:

fern_sim/
├── Cargo.toml
└── src/
 └── bin/
 ├── efern.rs
 └── draw_fern/
 ├── main.rs
 └── draw.rs

This has the advantage of letting larger binaries have their own submodules
without cluttering up either the library code or the src/bin directory.

Of course, now that fern_sim is a library, we also have another option. We
could have put this program in its own isolated project, in a completely
separate directory, with its own Cargo.toml listing fern_sim as a dependency:

[dependencies]
fern_sim = { path = "../fern_sim" }

Perhaps that is what you’ll do for other fern-simulating programs down the
road. The src/bin directory is just right for simple programs like efern and
draw_fern.

Attributes
Any item in a Rust program can be decorated with attributes. Attributes are
Rust’s catchall syntax for writing miscellaneous instructions and advice to
the compiler. For example, suppose you’re getting this warning:

libgit2.rs: warning: type `git_revspec` should have a camel case name
 such as `GitRevspec`, #[warn(non_camel_case_types)] on by default

But you chose this name for a reason, and you wish Rust would shut up about
it. You can disable the warning by adding an #[allow] attribute on the type:

#[allow(non_camel_case_types)]
pub struct git_revspec {
 ...
}

Conditional compilation is another feature that’s written using an attribute,
namely, #[cfg]:

// Only include this module in the project if we're building for Android.
#[cfg(target_os = "android")]
mod mobile;

The full syntax of #[cfg] is specified in the Rust Reference; the most
commonly used options are listed in Table 8-2.

Table 8-2. Most commonly used #[cfg] options

#[cfg(...)] option Enabled when

test Tests are enabled (compiling with cargo test or rustc --test).

debug_assertions Debug assertions are enabled (typically in nonoptimized builds).

unix Compiling for Unix, including macOS.

windows Compiling for Windows.

target_pointer_widt
h = "64"

Targeting a 64-bit platform. The other possible value is "32".

https://oreil.ly/F7gqB

target_arch = "x86_
64"

Targeting x86-64 in particular. Other values: "x86", "arm", "aarch64", "powerpc
", "powerpc64", "mips".

target_os = "macos
"

Compiling for macOS. Other values: "windows", "ios", "android", "linux", "free
bsd", "openbsd", "netbsd", "dragonfly".

feature = "robots" The user-defined feature named "robots" is enabled (compiling with cargo build
--feature robots or rustc --cfg feature='"robots"'). Features are declared in the [fe
atures] section of Cargo.toml.

not(A) A is not satisfied. To provide two different implementations of a function, mark
one with #[cfg(X)] and the other with #[cfg(not(X))].

all(A,B) Both A and B are satisfied (the equivalent of &&).

any(A,B) Either A or B is satisfied (the equivalent of ||).

Occasionally, we need to micromanage the inline expansion of functions, an
optimization that we’re usually happy to leave to the compiler. We can use
the #[inline] attribute for that:

/// Adjust levels of ions etc. in two adjacent cells
/// due to osmosis between them.
#[inline]
fn do_osmosis(c1: &mut Cell, c2: &mut Cell) {
 ...
}

There’s one situation where inlining won’t happen without #[inline]. When a
function or method defined in one crate is called in another crate, Rust won’t
inline it unless it’s generic (it has type parameters) or it’s explicitly marked #
[inline].

Otherwise, the compiler treats #[inline] as a suggestion. Rust also supports
the more insistent #[inline(always)], to request that a function be expanded
inline at every call site, and #[inline(never)], to ask that a function never be
inlined.

Some attributes, like #[cfg] and #[allow], can be attached to a whole module
and apply to everything in it. Others, like #[test] and #[inline], must be
attached to individual items. As you might expect for a catchall feature, each
attribute is custom-made and has its own set of supported arguments. The
Rust Reference documents the full set of supported attributes in detail.

https://oreil.ly/IfEpj
https://oreil.ly/FtJWN

To attach an attribute to a whole crate, add it at the top of the main.rs or lib.rs
file, before any items, and write #! instead of #, like this:

// libgit2_sys/lib.rs
#![allow(non_camel_case_types)]

pub struct git_revspec {
 ...
}

pub struct git_error {
 ...
}

The #! tells Rust to attach an attribute to the enclosing item rather than
whatever comes next: in this case, the #![allow] attribute attaches to the
whole libgit2_sys crate, not just struct git_revspec.

#! can also be used inside functions, structs, and so on, but it’s only typically
used at the beginning of a file, to attach an attribute to the whole module or
crate. Some attributes always use the #! syntax because they can only be
applied to a whole crate.

For example, the #![feature] attribute is used to turn on unstable features of
the Rust language and libraries, features that are experimental, and therefore
might have bugs or might be changed or removed in the future. For instance,
as we’re writing this, Rust has experimental support for tracing the expansion
of macros like assert!, but since this support is experimental, you can only
use it by (1) installing the nightly version of Rust and (2) explicitly declaring
that your crate uses macro tracing:

#![feature(trace_macros)]

fn main() {
 // I wonder what actual Rust code this use of assert_eq!
 // gets replaced with!
 trace_macros!(true);
 assert_eq!(10*10*10 + 9*9*9, 12*12*12 + 1*1*1);
 trace_macros!(false);
}

Over time, the Rust team sometimes stabilizes an experimental feature so that
it becomes a standard part of the language. The #![feature] attribute then
becomes superfluous, and Rust generates a warning advising you to remove
it.

Tests and Documentation
As we saw in “Writing and Running Unit Tests”, a simple unit testing
framework is built into Rust. Tests are ordinary functions marked with the #
[test] attribute:

#[test]
fn math_works() {
 let x: i32 = 1;
 assert!(x.is_positive());
 assert_eq!(x + 1, 2);
}

cargo test runs all the tests in your project:

$ cargo test
 Compiling math_test v0.1.0 (file:///.../math_test)
 Running target/release/math_test-e31ed91ae51ebf22

running 1 test
test math_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

(You’ll also see some output about “doc-tests,” which we’ll get to in a
minute.)

This works the same whether your crate is an executable or a library. You can
run specific tests by passing arguments to Cargo: cargo test math runs all
tests that contain math somewhere in their name.

Tests commonly use the assert! and assert_eq! macros from the Rust standard
library. assert!(expr) succeeds if expr is true. Otherwise, it panics, which
causes the test to fail. assert_eq!(v1, v2) is just like assert!(v1 == v2) except
that if the assertion fails, the error message shows both values.

You can use these macros in ordinary code, to check invariants, but note that
assert! and assert_eq! are included even in release builds. Use debug_assert!

and debug_assert_eq! instead to write assertions that are checked only in
debug builds.

To test error cases, add the #[should_panic] attribute to your test:

/// This test passes only if division by zero causes a panic,
/// as we claimed in the previous chapter.
#[test]
#[allow(unconditional_panic, unused_must_use)]
#[should_panic(expected="divide by zero")]
fn test_divide_by_zero_error() {
 1 / 0; // should panic!
}

In this case, we also need to add an allow attribute to tell the compiler to let
us do things that it can statically prove will panic, and perform divisions and
just throw away the answer, because normally, it tries to stop that kind of
silliness.

You can also return a Result<(), E> from your tests. As long as the error
variant is Debug, which is usually the case, you can simply return a Result by
using ? to throw away the Ok variant:

use std::num::ParseIntError;

/// This test will pass if "1024" is a valid number, which it is.
#[test]
fn explicit_radix() -> Result<(), ParseIntError> {
 i32::from_str_radix("1024", 10)?;
 Ok(())
}

Functions marked with #[test] are compiled conditionally. A plain cargo
build or cargo build --release skips the testing code. But when you run cargo
test, Cargo builds your program twice: once in the ordinary way and once
with your tests and the test harness enabled. This means your unit tests can
live right alongside the code they test, accessing internal implementation
details if they need to, and yet there’s no run-time cost. However, it can result
in some warnings. For example:

fn roughly_equal(a: f64, b: f64) -> bool {
 (a - b).abs() < 1e-6
}

#[test]
fn trig_works() {
 use std::f64::consts::PI;
 assert!(roughly_equal(PI.sin(), 0.0));
}

In builds that omit the test code, roughly_equal appears unused, and Rust will
complain:

$ cargo build
 Compiling math_test v0.1.0 (file:///.../math_test)
warning: function is never used: `roughly_equal`
 |
7 | / fn roughly_equal(a: f64, b: f64) -> bool {
8 | | (a - b).abs() < 1e-6
9 | | }
 | |_^
 |
 = note: #[warn(dead_code)] on by default

So the convention, when your tests get substantial enough to require support
code, is to put them in a tests module and declare the whole module to be
testing-only using the #[cfg] attribute:

#[cfg(test)] // include this module only when testing
mod tests {
 fn roughly_equal(a: f64, b: f64) -> bool {
 (a - b).abs() < 1e-6
 }

 #[test]
 fn trig_works() {
 use std::f64::consts::PI;
 assert!(roughly_equal(PI.sin(), 0.0));
 }
}

Rust’s test harness uses multiple threads to run several tests at a time, a nice
side benefit of your Rust code being thread-safe by default. To disable this,

either run a single test, cargo test testname, or run cargo test -- --test-threads
1. (The first -- ensures that cargo test passes the --test-threads option through
to the test executable.) This means that, technically, the Mandelbrot program
we showed in Chapter 2 was not the second multithreaded program in that
chapter, but the third! The cargo test run in “Writing and Running Unit
Tests” was the first.

Normally, the test harness only shows the output of tests that failed. To show
the output from tests that pass too, run cargo test -- --no-capture.

Integration Tests
Your fern simulator continues to grow. You’ve decided to put all the major
functionality into a library that can be used by multiple executables. It would
be nice to have some tests that link with the library the way an end user
would, using fern_sim.rlib as an external crate. Also, you have some tests
that start by loading a saved simulation from a binary file, and it is awkward
having those large test files in your src directory. Integration tests help with
these two problems.

Integration tests are .rs files that live in a tests directory alongside your
project’s src directory. When you run cargo test, Cargo compiles each
integration test as a separate, standalone crate, linked with your library and
the Rust test harness. Here is an example:

// tests/unfurl.rs - Fiddleheads unfurl in sunlight

use fern_sim::Terrarium;
use std::time::Duration;

#[test]
fn test_fiddlehead_unfurling() {
 let mut world = Terrarium::load("tests/unfurl_files/fiddlehead.tm");
 assert!(world.fern(0).is_furled());
 let one_hour = Duration::from_secs(60 * 60);
 world.apply_sunlight(one_hour);
 assert!(world.fern(0).is_fully_unfurled());
}

Integration tests are valuable in part because they see your crate from the
outside, just as a user would. They test the crate’s public API.

cargo test runs both unit tests and integration tests. To run only the
integration tests in a particular file—for example, tests/unfurl.rs—use the
command cargo test --test unfurl.

Documentation
The command cargo doc creates HTML documentation for your library:

$ cargo doc --no-deps --open
 Documenting fern_sim v0.1.0 (file:///.../fern_sim)

The --no-deps option tells Cargo to generate documentation only for fern_sim
itself, and not for all the crates it depends on.

The --open option tells Cargo to open the documentation in your browser
afterward.

You can see the result in Figure 8-2. Cargo saves the new documentation
files in target/doc. The starting page is target/doc/fern_sim/index.html.

Figure 8-2. Example of documentation generated by rustdoc

The documentation is generated from the pub features of your library, plus
any doc comments you’ve attached to them. We’ve seen a few doc comments
in this chapter already. They look like comments:

/// Simulate the production of a spore by meiosis.
pub fn produce_spore(factory: &mut Sporangium) -> Spore {

 ...
}

But when Rust sees comments that start with three slashes, it treats them as a
#[doc] attribute instead. Rust treats the preceding example exactly the same
as this:

#[doc = "Simulate the production of a spore by meiosis."]
pub fn produce_spore(factory: &mut Sporangium) -> Spore {
 ...
}

When you compile a library or binary, these attributes don’t change anything,
but when you generate documentation, doc comments on public features are
included in the output.

Likewise, comments starting with //! are treated as #![doc] attributes and are
attached to the enclosing feature, typically a module or crate. For example,
your fern_sim/src/lib.rs file might begin like this:

//! Simulate the growth of ferns, from the level of
//! individual cells on up.

The content of a doc comment is treated as Markdown, a shorthand notation
for simple HTML formatting. Asterisks are used for *italics* and **bold
type**, a blank line is treated as a paragraph break, and so on. You can also
include HTML tags, which are copied verbatim into the formatted
documentation.

One special feature of doc comments in Rust is that Markdown links can use
Rust item paths, like leaves::Leaf, instead of relative URLs, to indicate what
they refer to. Cargo will look up what the path refers to and subtitute a link to
the right place in the right documentation page. For example, the
documentation generated from this code links to the documentation pages for
VascularPath, Leaf, and Root:

/// Create and return a [`VascularPath`] which represents the path of
/// nutrients from the given [`Root`][r] to the given [`Leaf`](leaves::Leaf).

///
/// [r]: roots::Root
pub fn trace_path(leaf: &leaves::Leaf, root: &roots::Root) -> VascularPath {
 ...
}

You can also add search aliases to make it easier to find things using the
built-in search feature. Searching for either “path” or “route” in this crate’s
documentation will lead to VascularPath:

#[doc(alias = "route")]
pub struct VascularPath {
 ...
}

For longer blocks of documentation, or to streamline your workflow, you can
include external files in your documentation. For example, if your
repository’s README.md file holds the same text you’d like to use as your
crate’s top-level documentation, you could put this at the top of lib.rs or
main.rs:

#![doc = include_str!("../README.md")]

You can use `backticks` to set off bits of code in the middle of running text.
In the output, these snippets will be formatted in a fixed-width font. Larger
code samples can be added by indenting four spaces:

/// A block of code in a doc comment:
///
/// if samples::everything().works() {
/// println!("ok");
/// }

You can also use Markdown-fenced code blocks. This has exactly the same
effect:

/// Another snippet, the same code, but written differently:
///
/// ```

/// if samples::everything().works() {
/// println!("ok");
/// }
/// ```

Whichever format you use, an interesting thing happens when you include a
block of code in a doc comment. Rust automatically turns it into a test.

Doc-Tests
When you run tests in a Rust library crate, Rust checks that all the code that
appears in your documentation actually runs and works. It does this by taking
each block of code that appears in a doc comment, compiling it as a separate
executable crate, linking it with your library, and running it.

Here is a standalone example of a doc-test. Create a new project by running
cargo new --lib ranges (the --lib flag tells Cargo we’re creating a library crate,
not an executable crate) and put the following code in ranges/src/lib.rs:

use std::ops::Range;

/// Return true if two ranges overlap.
///
/// assert_eq!(ranges::overlap(0..7, 3..10), true);
/// assert_eq!(ranges::overlap(1..5, 101..105), false);
///
/// If either range is empty, they don't count as overlapping.
///
/// assert_eq!(ranges::overlap(0..0, 0..10), false);
///
pub fn overlap(r1: Range<usize>, r2: Range<usize>) -> bool {
 r1.start < r1.end && r2.start < r2.end &&
 r1.start < r2.end && r2.start < r1.end
}

The two small blocks of code in the doc comment appear in the
documentation generated by cargo doc, as shown in Figure 8-3.

Figure 8-3. Documentation showing some doc-tests

They also become two separate tests:

$ cargo test
 Compiling ranges v0.1.0 (file:///.../ranges)
...
 Doc-tests ranges

running 2 tests
test overlap_0 ... ok
test overlap_1 ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

If you pass the --verbose flag to Cargo, you’ll see that it’s using rustdoc --test
to run these two tests. rustdoc stores each code sample in a separate file,
adding a few lines of boilerplate code, to produce two programs. Here’s the
first:

use ranges;
fn main() {
 assert_eq!(ranges::overlap(0..7, 3..10), true);
 assert_eq!(ranges::overlap(1..5, 101..105), false);
}

And here’s the second:

use ranges;
fn main() {
 assert_eq!(ranges::overlap(0..0, 0..10), false);
}

The tests pass if these programs compile and run successfully.

These two code samples contain assertions, but that’s just because in this
case, the assertions make decent documentation. The idea behind doc-tests is
not to put all your tests into comments. Rather, you write the best possible
documentation, and Rust makes sure the code samples in your documentation
actually compile and run.

Very often a minimal working example includes some details, such as
imports or setup code, that are necessary to make the code compile, but just
aren’t important enough to show in the documentation. To hide a line of a
code sample, put a # followed by a space at the beginning of that line:

/// Let the sun shine in and run the simulation for a given
/// amount of time.
///
/// # use fern_sim::Terrarium;
/// # use std::time::Duration;
/// # let mut tm = Terrarium::new();
/// tm.apply_sunlight(Duration::from_secs(60));
///
pub fn apply_sunlight(&mut self, time: Duration) {
 ...
}

Sometimes it’s helpful to show a complete sample program in
documentation, including a main function. Obviously, if those pieces of code
appear in your code sample, you do not also want rustdoc to add them
automatically. The result wouldn’t compile. rustdoc therefore treats any code
block containing the exact string fn main as a complete program and doesn’t
add anything to it.

Testing can be disabled for specific blocks of code. To tell Rust to compile

your example, but stop short of actually running it, use a fenced code block
with the no_run annotation:

/// Upload all local terrariums to the online gallery.
///
/// ```no_run
/// let mut session = fern_sim::connect();
/// session.upload_all();
/// ```
pub fn upload_all(&mut self) {
 ...
}

If the code isn’t even expected to compile, use ignore instead of no_run.
Blocks marked with ignore don’t show up in the output of cargo run, but
no_run tests show up as having passed if they compile. If the code block isn’t
Rust code at all, use the name of the language, like c++ or sh, or text for plain
text. rustdoc doesn’t know the names of hundreds of programming languages;
rather, it treats any annotation it doesn’t recognize as indicating that the code
block isn’t Rust. This disables code highlighting as well as doc-testing.

Specifying Dependencies
We’ve seen one way of telling Cargo where to get source code for crates your
project depends on: by version number.

image = "0.6.1"

There are several ways to specify dependencies, and some rather nuanced
things you might want to say about which versions to use, so it’s worth
spending a few pages on this.

First of all, you may want to use dependencies that aren’t published on
crates.io at all. One way to do this is by specifying a Git repository URL and
revision:

image = { git = "https://github.com/Piston/image.git", rev = "528f19c" }

This particular crate is open source, hosted on GitHub, but you could just as
easily point to a private Git repository hosted on your corporate network. As
shown here, you can specify the particular rev, tag, or branch to use. (These
are all ways of telling Git which revision of the source code to check out.)

Another alternative is to specify a directory that contains the crate’s source
code:

image = { path = "vendor/image" }

This is convenient when your team has a single version control repository
that contains source code for several crates, or perhaps the entire dependency
graph. Each crate can specify its dependencies using relative paths.

Having this level of control over your dependencies is powerful. If you ever
decide that any of the open source crates you use isn’t exactly to your liking,
you can trivially fork it: just hit the Fork button on GitHub and change one
line in your Cargo.toml file. Your next cargo build will seamlessly use your

fork of the crate instead of the official version.

Versions
When you write something like image = "0.13.0" in your Cargo.toml file,
Cargo interprets this rather loosely. It uses the most recent version of image
that is considered compatible with version 0.13.0.

The compatibility rules are adapted from Semantic Versioning.

A version number that starts with 0.0 is so raw that Cargo never
assumes it’s compatible with any other version.

A version number that starts with 0.x, where x is nonzero, is
considered compatible with other point releases in the 0.x series. We
specified image version 0.6.1, but Cargo would use 0.6.3 if
available. (This is not what the Semantic Versioning standard says
about 0.x version numbers, but the rule proved too useful to leave
out.)

Once a project reaches 1.0, only new major versions break
compatibility. So if you ask for version 2.0.1, Cargo might use
2.17.99 instead, but not 3.0.

Version numbers are flexible by default because otherwise the problem of
which version to use would quickly become overconstrained. Suppose one
library, libA, used num = "0.1.31" while another, libB, used num = "0.1.29".
If version numbers required exact matches, no project would be able to use
those two libraries together. Allowing Cargo to use any compatible version is
a much more practical default.

Still, different projects have different needs when it comes to dependencies
and versioning. You can specify an exact version or range of versions by
using operators, as illustrated in Table 8-3.

Table 8-3. Specifying versions in a Cargo.toml file

Cargo.toml line Meaning

image = "=0.10.0" Use only the exact version 0.10.0

http://semver.org

image = ">=1.0.5" Use 1.0.5 or any higher version (even 2.9, if it’s available)

image = ">1.0.5 <1.1.9" Use a version that’s higher than 1.0.5, but lower than 1.1.9

image = "<=2.7.10" Use any version up to 2.7.10

Another version specification you’ll occasionally see is the wildcard *. This
tells Cargo that any version will do. Unless some other Cargo.toml file
contains a more specific constraint, Cargo will use the latest available
version. The Cargo documentation at doc.crates.io covers version
specifications in even more detail.

Note that the compatibility rules mean that version numbers can’t be chosen
purely for marketing reasons. They actually mean something. They’re a
contract between a crate’s maintainers and its users. If you maintain a crate
that’s at version 1.7 and you decide to remove a function or make any other
change that isn’t fully backward compatible, you must bump your version
number to 2.0. If you were to call it 1.8, you’d be claiming that the new
version is compatible with 1.7, and your users might find themselves with
broken builds.

https://oreil.ly/gI1Lq

Cargo.lock
The version numbers in Cargo.toml are deliberately flexible, yet we don’t
want Cargo to upgrade us to the latest library versions every time we build.
Imagine being in the middle of an intense debugging session when suddenly
cargo build upgrades you to a new version of a library. This could be
incredibly disruptive. Anything changing in the middle of debugging is bad.
In fact, when it comes to libraries, there’s never a good time for an
unexpected change.

Cargo therefore has a built-in mechanism to prevent this. The first time you
build a project, Cargo outputs a Cargo.lock file that records the exact version
of every crate it used. Later builds will consult this file and continue to use
the same versions. Cargo upgrades to newer versions only when you tell it to,
either by manually bumping up the version number in your Cargo.toml file or
by running cargo update:

$ cargo update
 Updating registry `https://github.com/rust-lang/crates.io-index`
 Updating libc v0.2.7 -> v0.2.11
 Updating png v0.4.2 -> v0.4.3

cargo update only upgrades to the latest versions that are compatible with
what you’ve specified in Cargo.toml. If you’ve specified image = "0.6.1",
and you want to upgrade to version 0.10.0, you’ll have to change that in
Cargo.toml. The next time you build, Cargo will update to the new version of
the image library and store the new version number in Cargo.lock.

The preceding example shows Cargo updating two crates that are hosted on
crates.io. Something very similar happens for dependencies that are stored in
Git. Suppose our Cargo.toml file contains this:

image = { git = "https://github.com/Piston/image.git", branch = "master" }

cargo build will not pull new changes from the Git repository if it sees that
we’ve got a Cargo.lock file. Instead, it reads Cargo.lock and uses the same

revision as last time. But cargo update will pull from master so that our next
build uses the latest revision.

Cargo.lock is automatically generated for you, and you normally won’t edit it
by hand. Nonetheless, if your project is an executable, you should commit
Cargo.lock to version control. That way, everyone who builds your project
will consistently get the same versions. The history of your Cargo.lock file
will record your dependency updates.

If your project is an ordinary Rust library, don’t bother committing
Cargo.lock. Your library’s downstream users will have Cargo.lock files that
contain version information for their entire dependency graph; they will
ignore your library’s Cargo.lock file. In the rare case that your project is a
shared library (i.e., the output is a .dll, .dylib, or .so file), there is no such
downstream cargo user, and you should therefore commit Cargo.lock.

Cargo.toml’s flexible version specifiers make it easy to use Rust libraries in
your project and maximize compatibility among libraries. Cargo.lock’s
bookkeeping supports consistent, reproducible builds across machines.
Together, they go a long way toward helping you avoid dependency hell.

Publishing Crates to crates.io
You’ve decided to publish your fern-simulating library as open source
software. Congratulations! This part is easy.

First, make sure Cargo can pack the crate for you.

$ cargo package
warning: manifest has no description, license, license-file, documentation,
homepage or repository. See http://doc.crates.io/manifest.html#package-metadata
for more info.
 Packaging fern_sim v0.1.0 (file:///.../fern_sim)
 Verifying fern_sim v0.1.0 (file:///.../fern_sim)
 Compiling fern_sim v0.1.0 (file:///.../fern_sim/target/package/fern_sim-0.1.0)

The cargo package command creates a file (in this case,
target/package/fern_sim-0.1.0.crate) containing all your library’s source
files, including Cargo.toml. This is the file that you’ll upload to crates.io to
share with the world. (You can use cargo package --list to see which files are
included.) Cargo then double-checks its work by building your library from
the .crate file, just as your eventual users will.

Cargo warns that the [package] section of Cargo.toml is missing some
information that will be important to downstream users, such as the license
under which you’re distributing the code. The URL in the warning is an
excellent resource, so we won’t explain all the fields in detail here. In short,
you can fix the warning by adding a few lines to Cargo.toml:

[package]
name = "fern_sim"
version = "0.1.0"
edition = "2021"
authors = ["You <you@example.com>"]
license = "MIT"
homepage = "https://fernsim.example.com/"
repository = "https://gitlair.com/sporeador/fern_sim"
documentation = "http://fernsim.example.com/docs"
description = """
Fern simulation, from the cellular level up.

"""

NOTE
Once you publish this crate on crates.io, anyone who downloads your crate can see the
Cargo.toml file. So if the authors field contains an email address that you’d rather keep
private, now is the time to change it.

Another problem that sometimes arises at this stage is that your Cargo.toml
file might be specifying the location of other crates by path, as shown in
“Specifying Dependencies”:

image = { path = "vendor/image" }

For you and your team, this might work fine. But naturally, when other
people download the fern_sim library, they will not have the same files and
directories on their computer that you have. Cargo therefore ignores the path
key in automatically downloaded libraries, and this can cause build errors.
The fix, however, is straightforward: if your library is going to be published
on crates.io, its dependencies should be on crates.io too. Specify a version
number instead of a path:

image = "0.13.0"

If you prefer, you can specify both a path, which takes precedence for your
own local builds, and a version for all other users:

image = { path = "vendor/image", version = "0.13.0" }

Of course, in that case it’s your responsibility to make sure that the two stay
in sync.

Lastly, before publishing a crate, you’ll need to log in to crates.io and get an
API key. This step is straightforward: once you have an account on crates.io,
your “Account Settings” page will show a cargo login command, like this

one:

$ cargo login 5j0dV54BjlXBpUUbfIj7G9DvNl1vsWW1

Cargo saves the key in a configuration file, and the API key should be kept
secret, like a password. So run this command only on a computer you control.

That done, the final step is to run cargo publish:

$ cargo publish
 Updating registry `https://github.com/rust-lang/crates.io-index`
 Uploading fern_sim v0.1.0 (file:///.../fern_sim)

With this, your library joins thousands of others on crates.io.

Workspaces
As your project continues to grow, you end up writing many crates. They live
side by side in a single source repository:

fernsoft/
├── .git/...
├── fern_sim/
│ ├── Cargo.toml
│ ├── Cargo.lock
│ ├── src/...
│ └── target/...
├── fern_img/
│ ├── Cargo.toml
│ ├── Cargo.lock
│ ├── src/...
│ └── target/...
└── fern_video/
 ├── Cargo.toml
 ├── Cargo.lock
 ├── src/...
 └── target/...

The way Cargo works, each crate has its own build directory, target, which
contains a separate build of all that crate’s dependencies. These build
directories are completely independent. Even if two crates have a common
dependency, they can’t share any compiled code. This is wasteful.

You can save compilation time and disk space by using a Cargo workspace, a
collection of crates that share a common build directory and Cargo.lock file.

All you need to do is create a Cargo.toml file in your repository’s root
directory and put these lines in it:

[workspace]
members = ["fern_sim", "fern_img", "fern_video"]

Here fern_sim etc. are the names of the subdirectories containing your crates.
Delete any leftover Cargo.lock files and target directories that exist in those

subdirectories.

Once you’ve done this, cargo build in any crate will automatically create and
use a shared build directory under the root directory (in this case,
fernsoft/target). The command cargo build --workspace builds all crates in
the current workspace. cargo test and cargo doc accept the --workspace
option as well.

More Nice Things
In case you’re not delighted yet, the Rust community has a few more odds
and ends for you:

When you publish an open source crate on crates.io, your
documentation is automatically rendered and hosted on docs.rs
thanks to Onur Aslan.

If your project is on GitHub, Travis CI can build and test your code
on every push. It’s surprisingly easy to set up; see travis-ci.org for
details. If you’re already familiar with Travis, this .travis.yml file
will get you started:

language: rust

rust:

 - stable

You can generate a README.md file from your crate’s top-level
doc-comment. This feature is offered as a third-party Cargo plug-in
by Livio Ribeiro. Run cargo install cargo-readme to install the plug-
in, then cargo readme --help to learn how to use it.

We could go on.

Rust is new, but it’s designed to support large, ambitious projects. It has great
tools and an active community. System programmers can have nice things.

https://crates.io
https://travis-ci.org

Chapter 9. Structs

Long ago, when shepherds wanted to see if two herds of sheep were
isomorphic, they would look for an explicit isomorphism.

—John C. Baez and James Dolan, “Categorification”

Rust structs, sometimes called structures, resemble struct types in C and
C++, classes in Python, and objects in JavaScript. A struct assembles several
values of assorted types together into a single value so you can deal with
them as a unit. Given a struct, you can read and modify its individual
components. And a struct can have methods associated with it that operate on
its components.

Rust has three kinds of struct types, named-field, tuple-like, and unit-like,
which differ in how you refer to their components: a named-field struct gives
a name to each component, whereas a tuple-like struct identifies them by the
order in which they appear. Unit-like structs have no components at all; these
are not common, but more useful than you might think.

In this chapter, we’ll explain each kind in detail and show what they look like
in memory. We’ll cover how to add methods to them, how to define generic
struct types that work with many different component types, and how to ask
Rust to generate implementations of common handy traits for your structs.

https://oreil.ly/EpGpb

Named-Field Structs
The definition of a named-field struct type looks like this:

/// A rectangle of eight-bit grayscale pixels.
struct GrayscaleMap {
 pixels: Vec<u8>,
 size: (usize, usize)
}

This declares a type GrayscaleMap with two fields named pixels and size, of
the given types. The convention in Rust is for all types, structs included, to
have names that capitalize the first letter of each word, like GrayscaleMap, a
convention called CamelCase (or PascalCase). Fields and methods are
lowercase, with words separated by underscores. This is called snake_case.

You can construct a value of this type with a struct expression, like this:

let width = 1024;
let height = 576;
let image = GrayscaleMap {
 pixels: vec![0; width * height],
 size: (width, height)
};

A struct expression starts with the type name (GrayscaleMap) and lists the
name and value of each field, all enclosed in curly braces. There’s also
shorthand for populating fields from local variables or arguments with the
same name:

fn new_map(size: (usize, usize), pixels: Vec<u8>) -> GrayscaleMap {
 assert_eq!(pixels.len(), size.0 * size.1);
 GrayscaleMap { pixels, size }
}

The struct expression GrayscaleMap { pixels, size } is short for
GrayscaleMap { pixels: pixels, size: size }. You can use key: value syntax for
some fields and shorthand for others in the same struct expression.

To access a struct’s fields, use the familiar . operator:

assert_eq!(image.size, (1024, 576));
assert_eq!(image.pixels.len(), 1024 * 576);

Like all other items, structs are private by default, visible only in the module
where they’re declared and its submodules. You can make a struct visible
outside its module by prefixing its definition with pub. The same goes for
each of its fields, which are also private by default:

/// A rectangle of eight-bit grayscale pixels.
pub struct GrayscaleMap {
 pub pixels: Vec<u8>,
 pub size: (usize, usize)
}

Even if a struct is declared pub, its fields can be private:

/// A rectangle of eight-bit grayscale pixels.
pub struct GrayscaleMap {
 pixels: Vec<u8>,
 size: (usize, usize)
}

Other modules can use this struct and any public associated functions it might
have, but can’t access the private fields by name or use struct expressions to
create new GrayscaleMap values. That is, creating a struct value requires all
the struct’s fields to be visible. This is why you can’t write a struct expression
to create a new String or Vec. These standard types are structs, but all their
fields are private. To create one, you must use public type-associated
functions like Vec::new().

When creating a named-field struct value, you can use another struct of the
same type to supply values for fields you omit. In a struct expression, if the
named fields are followed by .. EXPR, then any fields not mentioned take
their values from EXPR, which must be another value of the same struct type.
Suppose we have a struct representing a monster in a game:

// In this game, brooms are monsters. You'll see.
struct Broom {
 name: String,
 height: u32,
 health: u32,
 position: (f32, f32, f32),
 intent: BroomIntent
}

/// Two possible alternatives for what a `Broom` could be working on.
#[derive(Copy, Clone)]
enum BroomIntent { FetchWater, DumpWater }

The best fairy tale for programmers is The Sorcerer’s Apprentice: a novice
magician enchants a broom to do his work for him, but doesn’t know how to
stop it when the job is done. Chopping the broom in half with an axe just
produces two brooms, each of half the size, but continuing the task with the
same blind dedication as the original:

// Receive the input Broom by value, taking ownership.
fn chop(b: Broom) -> (Broom, Broom) {
 // Initialize `broom1` mostly from `b`, changing only `height`. Since
 // `String` is not `Copy`, `broom1` takes ownership of `b`'s name.
 let mut broom1 = Broom { height: b.height / 2, .. b };

 // Initialize `broom2` mostly from `broom1`. Since `String` is not
 // `Copy`, we must clone `name` explicitly.
 let mut broom2 = Broom { name: broom1.name.clone(), .. broom1 };

 // Give each fragment a distinct name.
 broom1.name.push_str(" I");
 broom2.name.push_str(" II");

 (broom1, broom2)
}

With that definition in place, we can create a broom, chop it in two, and see
what we get:

let hokey = Broom {
 name: "Hokey".to_string(),
 height: 60,
 health: 100,

 position: (100.0, 200.0, 0.0),
 intent: BroomIntent::FetchWater
};

let (hokey1, hokey2) = chop(hokey);
assert_eq!(hokey1.name, "Hokey I");
assert_eq!(hokey1.height, 30);
assert_eq!(hokey1.health, 100);

assert_eq!(hokey2.name, "Hokey II");
assert_eq!(hokey2.height, 30);
assert_eq!(hokey2.health, 100);

The new hokey1 and hokey2 brooms have received adjusted names, half the
height, and all the health of the original.

Tuple-Like Structs
The second kind of struct type is called a tuple-like struct, because it
resembles a tuple:

struct Bounds(usize, usize);

You construct a value of this type much as you would construct a tuple,
except that you must include the struct name:

let image_bounds = Bounds(1024, 768);

The values held by a tuple-like struct are called elements, just as the values of
a tuple are. You access them just as you would a tuple’s:

assert_eq!(image_bounds.0 * image_bounds.1, 786432);

Individual elements of a tuple-like struct may be public or not:

pub struct Bounds(pub usize, pub usize);

The expression Bounds(1024, 768) looks like a function call, and in fact it is:
defining the type also implicitly defines a function:

fn Bounds(elem0: usize, elem1: usize) -> Bounds { ... }

At the most fundamental level, named-field and tuple-like structs are very
similar. The choice of which to use comes down to questions of legibility,
ambiguity, and brevity. If you will use the . operator to get at a value’s
components much at all, identifying fields by name provides the reader more
information and is probably more robust against typos. If you will usually use
pattern matching to find the elements, tuple-like structs can work nicely.

Tuple-like structs are good for newtypes, structs with a single component that
you define to get stricter type checking. For example, if you are working with

ASCII-only text, you might define a newtype like this:

struct Ascii(Vec<u8>);

Using this type for your ASCII strings is much better than simply passing
around Vec<u8> buffers and explaining what they are in the comments. The
newtype helps Rust catch mistakes where some other byte buffer is passed to
a function expecting ASCII text. We’ll give an example of using newtypes
for efficient type conversions in Chapter 22.

Unit-Like Structs
The third kind of struct is a little obscure: it declares a struct type with no
elements at all:

struct Onesuch;

A value of such a type occupies no memory, much like the unit type (). Rust
doesn’t bother actually storing unit-like struct values in memory or
generating code to operate on them, because it can tell everything it might
need to know about the value from its type alone. But logically, an empty
struct is a type with values like any other—or more precisely, a type of which
there is only a single value:

let o = Onesuch;

You’ve already encountered a unit-like struct when reading about the .. range
operator in “Fields and Elements”. Whereas an expression like 3..5 is
shorthand for the struct value Range { start: 3, end: 5 }, the expression .., a
range omitting both endpoints, is shorthand for the unit-like struct value
RangeFull.

Unit-like structs can also be useful when working with traits, which we’ll
describe in Chapter 11.

Struct Layout
In memory, both named-field and tuple-like structs are the same thing: a
collection of values, of possibly mixed types, laid out in a particular way in
memory. For example, earlier in the chapter we defined this struct:

struct GrayscaleMap {
 pixels: Vec<u8>,
 size: (usize, usize)
}

A GrayscaleMap value is laid out in memory as diagrammed in Figure 9-1.

Figure 9-1. A GrayscaleMap structure in memory

Unlike C and C++, Rust doesn’t make specific promises about how it will
order a struct’s fields or elements in memory; this diagram shows only one
possible arrangement. However, Rust does promise to store fields’ values
directly in the struct’s block of memory. Whereas JavaScript, Python, and
Java would put the pixels and size values each in their own heap-allocated
blocks and have GrayscaleMap’s fields point at them, Rust embeds pixels

and size directly in the GrayscaleMap value. Only the heap-allocated buffer
owned by the pixels vector remains in its own block.

You can ask Rust to lay out structures in a way compatible with C and C++,
using the #[repr(C)] attribute. We’ll cover this in detail in Chapter 23.

Defining Methods with impl
Throughout the book we’ve been calling methods on all sorts of values.
We’ve pushed elements onto vectors with v.push(e), fetched their length with
v.len(), checked Result values for errors with r.expect("msg"), and so on. You
can define methods on your own struct types as well. Rather than appearing
inside the struct definition, as in C++ or Java, Rust methods appear in a
separate impl block.

An impl block is simply a collection of fn definitions, each of which becomes
a method on the struct type named at the top of the block. Here, for example,
we define a public struct Queue, and then give it two public methods, push
and pop:

/// A first-in, first-out queue of characters.
pub struct Queue {
 older: Vec<char>, // older elements, eldest last.
 younger: Vec<char> // younger elements, youngest last.
}

impl Queue {
 /// Push a character onto the back of a queue.
 pub fn push(&mut self, c: char) {
 self.younger.push(c);
 }

 /// Pop a character off the front of a queue. Return `Some(c)` if there
 /// was a character to pop, or `None` if the queue was empty.
 pub fn pop(&mut self) -> Option<char> {
 if self.older.is_empty() {
 if self.younger.is_empty() {
 return None;
 }

 // Bring the elements in younger over to older, and put them in
 // the promised order.
 use std::mem::swap;
 swap(&mut self.older, &mut self.younger);
 self.older.reverse();
 }

 // Now older is guaranteed to have something. Vec's pop method
 // already returns an Option, so we're set.
 self.older.pop()
 }
}

Functions defined in an impl block are called associated functions, since
they’re associated with a specific type. The opposite of an associated function
is a free function, one that is not defined as an impl block’s item.

Rust passes a method the value it’s being called on as its first argument,
which must have the special name self. Since self’s type is obviously the one
named at the top of the impl block, or a reference to that, Rust lets you omit
the type, and write self, &self, or &mut self as shorthand for self: Queue,
self: &Queue, or self: &mut Queue. You can use the longhand forms if you
like, but almost all Rust code uses the shorthand, as shown before.

In our example, the push and pop methods refer to the Queue’s fields as
self.older and self.younger. Unlike C++ and Java, where the members of the
“this” object are directly visible in method bodies as unqualified identifiers, a
Rust method must explicitly use self to refer to the value it was called on,
similar to the way Python methods use self, and the way JavaScript methods
use this.

Since push and pop need to modify the Queue, they both take &mut self.
However, when you call a method, you don’t need to borrow the mutable
reference yourself; the ordinary method call syntax takes care of that
implicitly. So with these definitions in place, you can use Queue like this:

let mut q = Queue { older: Vec::new(), younger: Vec::new() };

q.push('0');
q.push('1');
assert_eq!(q.pop(), Some('0'));

q.push('∞');
assert_eq!(q.pop(), Some('1'));
assert_eq!(q.pop(), Some('∞'));
assert_eq!(q.pop(), None);

Simply writing q.push(...) borrows a mutable reference to q, as if you had
written (&mut q).push(...), since that’s what the push method’s self requires.

If a method doesn’t need to modify its self, then you can define it to take a
shared reference instead. For example:

impl Queue {
 pub fn is_empty(&self) -> bool {
 self.older.is_empty() && self.younger.is_empty()
 }
}

Again, the method call expression knows which sort of reference to borrow:

assert!(q.is_empty());
q.push('☉');
assert!(!q.is_empty());

Or, if a method wants to take ownership of self, it can take self by value:

impl Queue {
 pub fn split(self) -> (Vec<char>, Vec<char>) {
 (self.older, self.younger)
 }
}

Calling this split method looks like the other method calls:

let mut q = Queue { older: Vec::new(), younger: Vec::new() };

q.push('P');
q.push('D');
assert_eq!(q.pop(), Some('P'));
q.push('X');

let (older, younger) = q.split();
// q is now uninitialized.
assert_eq!(older, vec!['D']);
assert_eq!(younger, vec!['X']);

But note that, since split takes its self by value, this moves the Queue out of q,

leaving q uninitialized. Since split’s self now owns the queue, it’s able to
move the individual vectors out of it and return them to the caller.

Sometimes, taking self by value like this, or even by reference, isn’t enough,
so Rust also lets you pass self via smart pointer types.

Passing Self as a Box, Rc, or Arc
A method’s self argument can also be a Box<Self>, Rc<Self>, or Arc<Self>.
Such a method can only be called on a value of the given pointer type.
Calling the method passes ownership of the pointer to it.

You won’t usually need to do this. A method that expects self by reference
works fine when called on any of those pointer types:

let mut bq = Box::new(Queue::new());

// `Queue::push` expects a `&mut Queue`, but `bq` is a `Box<Queue>`.
// This is fine: Rust borrows a `&mut Queue` from the `Box` for the
// duration of the call.
bq.push('■');

For method calls and field access, Rust automatically borrows a reference
from pointer types like Box, Rc, and Arc, so &self and &mut self are almost
always the right thing in a method signature, along with the occasional self.

But if it does come to pass that some method needs ownership of a pointer to
Self, and its callers have such a pointer handy, Rust will let you pass it as the
method’s self argument. To do so, you must spell out the type of self, as if it
were an ordinary parameter:

impl Node {
 fn append_to(self: Rc<Self>, parent: &mut Node) {
 parent.children.push(self);
 }
}

Type-Associated Functions
An impl block for a given type can also define functions that don’t take self
as an argument at all. These are still associated functions, since they’re in an
impl block, but they’re not methods, since they don’t take a self argument. To
distinguish them from methods, we call them type-associated functions.

They’re often used to provide constructor functions, like this:

impl Queue {
 pub fn new() -> Queue {
 Queue { older: Vec::new(), younger: Vec::new() }
 }
}

To use this function, we refer to it as Queue::new: the type name, a double
colon, and then the function name. Now our example code becomes a bit
more svelte:

let mut q = Queue::new();

q.push('*');
...

It’s conventional in Rust for constructor functions to be named new; we’ve
already seen Vec::new, Box::new, HashMap::new, and others. But there’s
nothing special about the name new. It’s not a keyword, and types often have
other associated functions that serve as constructors, like Vec::with_capacity.

Although you can have many separate impl blocks for a single type, they
must all be in the same crate that defines that type. However, Rust does let
you attach your own methods to other types; we’ll explain how in
Chapter 11.

If you’re used to C++ or Java, separating a type’s methods from its definition
may seem unusual, but there are several advantages to doing so:

It’s always easy to find a type’s data members. In large C++ class

definitions, you might need to skim hundreds of lines of member
function definitions to be sure you haven’t missed any of the class’s
data members; in Rust, they’re all in one place.

Although one can imagine fitting methods into the syntax for
named-field structs, it’s not so neat for tuple-like and unit-like
structs. Pulling methods out into an impl block allows a single
syntax for all three. In fact, Rust uses this same syntax for defining
methods on types that are not structs at all, such as enum types and
primitive types like i32. (The fact that any type can have methods is
one reason Rust doesn’t use the term object much, preferring to call
everything a value.)

The same impl syntax also serves neatly for implementing traits,
which we’ll go into in Chapter 11.

Associated Consts
Another feature of languages like C# and Java that Rust adopts in its type
system is the idea of values associated with a type, rather than a specific
instance of that type. In Rust, these are known as associated consts.

As the name implies, associated consts are constant values. They’re often
used to specify commonly used values of a type. For instance, you could
define a two-dimensional vector for use in linear algebra with an associated
unit vector:

pub struct Vector2 {
 x: f32,
 y: f32,
}

impl Vector2 {
 const ZERO: Vector2 = Vector2 { x: 0.0, y: 0.0 };
 const UNIT: Vector2 = Vector2 { x: 1.0, y: 0.0 };
}

These values are associated with the type itself, and you can use them
without referring to another instance of Vector2. Much like associated
functions, they are accessed by naming the type with which they’re
associated, followed by their name:

let scaled = Vector2::UNIT.scaled_by(2.0);

Nor does an associated const have to be of the same type as the type it’s
associated with; we could use this feature to add IDs or names to types. For
example, if there were several types similar to Vector2 that needed to be
written to a file and then loaded into memory later, an associated const could
be used to add names or numeric IDs that could be written next to the data to
identify its type:

impl Vector2 {
 const NAME: &'static str = "Vector2";

 const ID: u32 = 18;
}

Generic Structs
Our earlier definition of Queue is unsatisfying: it is written to store
characters, but there’s nothing about its structure or methods that is specific
to characters at all. If we were to define another struct that held, say, String
values, the code could be identical, except that char would be replaced with
String. That would be a waste of time.

Fortunately, Rust structs can be generic, meaning that their definition is a
template into which you can plug whatever types you like. For example,
here’s a definition for Queue that can hold values of any type:

pub struct Queue<T> {
 older: Vec<T>,
 younger: Vec<T>
}

You can read the <T> in Queue<T> as “for any element type T...”. So this
definition reads, “For any type T, a Queue<T> is two fields of type Vec<T>.”
For example, in Queue<String>, T is String, so older and younger have type
Vec<String>. In Queue<char>, T is char, and we get a struct identical to the
char-specific definition we started with. In fact, Vec itself is a generic struct,
defined in just this way.

In generic struct definitions, the type names used in <angle brackets> are
called type parameters. An impl block for a generic struct looks like this:

impl<T> Queue<T> {
 pub fn new() -> Queue<T> {
 Queue { older: Vec::new(), younger: Vec::new() }
 }

 pub fn push(&mut self, t: T) {
 self.younger.push(t);
 }

 pub fn is_empty(&self) -> bool {
 self.older.is_empty() && self.younger.is_empty()

 }

 ...
}

You can read the line impl<T> Queue<T> as something like, “for any type T,
here are some associated functions available on Queue<T>.” Then, you can
use the type parameter T as a type in the associated function definitions.

The syntax may look a bit redundant, but the impl<T> makes it clear that the
impl block covers any type T, which distinguishes it from an impl block
written for one specific kind of Queue, like this one:

impl Queue<f64> {
 fn sum(&self) -> f64 {
 ...
 }
}

This impl block header reads, “Here are some associated functions
specifically for Queue<f64>.” This gives Queue<f64> a sum method,
available on no other kind of Queue.

We’ve used Rust’s shorthand for self parameters in the preceding code;
writing out Queue<T> everywhere becomes a mouthful and a distraction. As
another shorthand, every impl block, generic or not, defines the special type
parameter Self (note the CamelCase name) to be whatever type we’re adding
methods to. In the preceding code, Self would be Queue<T>, so we can
abbreviate Queue::new’s definition a bit further:

pub fn new() -> Self {
 Queue { older: Vec::new(), younger: Vec::new() }
}

You might have noticed that, in the body of new, we didn’t need to write the
type parameter in the construction expression; simply writing Queue { ... }
was good enough. This is Rust’s type inference at work: since there’s only
one type that works for that function’s return value—namely, Queue<T>—
Rust supplies the parameter for us. However, you’ll always need to supply

type parameters in function signatures and type definitions. Rust doesn’t infer
those; instead, it uses those explicit types as the basis from which it infers
types within function bodies.

Self can also be used in this way; we could have written Self { ... } instead.
It’s up to you to decide which you find easiest to understand.

For associated function calls, you can supply the type parameter explicitly
using the ::<> (turbofish) notation:

let mut q = Queue::<char>::new();

But in practice, you can usually just let Rust figure it out for you:

let mut q = Queue::new();
let mut r = Queue::new();

q.push("CAD"); // apparently a Queue<&'static str>
r.push(0.74); // apparently a Queue<f64>

q.push("BTC"); // Bitcoins per USD, 2019-6
r.push(13764.0); // Rust fails to detect irrational exuberance

In fact, this is exactly what we’ve been doing with Vec, another generic struct
type, throughout the book.

It’s not just structs that can be generic. Enums can take type parameters as
well, with a very similar syntax. We’ll show that in detail in “Enums”.

Generic Structs with Lifetime Parameters
As we discussed in “Structs Containing References”, if a struct type contains
references, you must name those references’ lifetimes. For example, here’s a
structure that might hold references to the greatest and least elements of some
slice:

struct Extrema<'elt> {
 greatest: &'elt i32,
 least: &'elt i32
}

Earlier, we invited you to think of a declaration like struct Queue<T> as
meaning that, given any specific type T, you can make a Queue<T> that
holds that type. Similarly, you can think of struct Extrema<'elt> as meaning
that, given any specific lifetime 'elt, you can make an Extrema<'elt> that
holds references with that lifetime.

Here’s a function to scan a slice and return an Extrema value whose fields
refer to its elements:

fn find_extrema<'s>(slice: &'s [i32]) -> Extrema<'s> {
 let mut greatest = &slice[0];
 let mut least = &slice[0];

 for i in 1..slice.len() {
 if slice[i] < *least { least = &slice[i]; }
 if slice[i] > *greatest { greatest = &slice[i]; }
 }
 Extrema { greatest, least }
}

Here, since find_extrema borrows elements of slice, which has lifetime 's, the
Extrema struct we return also uses 's as the lifetime of its references. Rust
always infers lifetime parameters for calls, so calls to find_extrema needn’t
mention them:

let a = [0, -3, 0, 15, 48];

let e = find_extrema(&a);
assert_eq!(*e.least, -3);
assert_eq!(*e.greatest, 48);

Because it’s so common for the return type to use the same lifetime as an
argument, Rust lets us omit the lifetimes when there’s one obvious candidate.
We could also have written find_extrema’s signature like this, with no
change in meaning:

fn find_extrema(slice: &[i32]) -> Extrema {
 ...
}

Granted, we might have meant Extrema<'static>, but that’s pretty unusual.
Rust provides a shorthand for the common case.

Generic Structs with Constant Parameters
A generic struct can also take parameters that are constant values. For
example, you could define a type representing polynomials of arbitrary
degree like so:

/// A polynomial of degree N - 1.
struct Polynomial<const N: usize> {
 /// The coefficients of the polynomial.
 ///
 /// For a polynomial a + bx + cx² + ... + zxⁿ⁻¹,
 /// the `i`'th element is the coefficient of xi .
 coefficients: [f64; N]
}

With this definition, Polynomial<3> is a quadratic polynomial, for example.
The <const N: usize> clause says that the Polynomial type expects a usize
value as its generic parameter, which it uses to decide how many coefficients
to store.

Unlike Vec, which has fields holding its length and capacity and stores its
elements in the heap, Polynomial stores its coefficients directly in the value,
and nothing else. The length is given by the type. (The capacity isn’t needed,
because Polynomials can’t grow dynamically.)

We can use the parameter N in the type’s associated functions:

impl<const N: usize> Polynomial<N> {
 fn new(coefficients: [f64; N]) -> Polynomial<N> {
 Polynomial { coefficients }
 }

 /// Evaluate the polynomial at `x`.
 fn eval(&self, x: f64) -> f64 {
 // Horner's method is numerically stable, efficient, and simple:
 // c₀ + x(c₁ + x(c₂ + x(c₃ + ... x(c[n-1] + x c[n]))))
 let mut sum = 0.0;
 for i in (0..N).rev() {
 sum = self.coefficients[i] + x * sum;
 }

 sum
 }
}

Here, the new function accepts an array of length N, and takes its elements as
the coefficients of a fresh Polynomial value. The eval method iterates over
the range 0..N to find the value of the polynomial at a given point x.

As with type and lifetime parameters, Rust can often infer the right values for
constant parameters:

use std::f64::consts::FRAC_PI_2; // π/2

// Approximate the `sin` function: sin x ≅ x - 1/6 x³ + 1/120 x⁵
// Around zero, it's pretty accurate!
let sine_poly = Polynomial::new([0.0, 1.0, 0.0, -1.0/6.0, 0.0,
 1.0/120.0]);
assert_eq!(sine_poly.eval(0.0), 0.0);
assert!((sine_poly.eval(FRAC_PI_2) - 1.).abs() < 0.005);

Since we pass Polynomial::new an array with six elements, Rust knows we
must be constructing a Polynomial<6>. The eval method knows how many
iterations the for loop should run simply by consulting its Self type. Since the
length is known at compile time, the compiler will probably replace the loop
entirely with straight-line code.

A const generic parameter may be any integer type, char, or bool. Floating-
point numbers, enums, and other types are not permitted.

If the struct takes other kinds of generic parameters, lifetime parameters must
come first, followed by types, followed by any const values. For example, a
type that holds an array of references could be declared like this:

struct LumpOfReferences<'a, T, const N: usize> {
 the_lump: [&'a T; N]
}

Constant generic parameters are a relatively new addition to Rust, and their
use is somewhat restricted for now. For example, it would have been nicer to

define Polynomial like this:

/// A polynomial of degree N.
struct Polynomial<const N: usize> {
 coefficients: [f64; N + 1]
}

However, Rust rejects this definition:

error: generic parameters may not be used in const operations
 |
6 | coefficients: [f64; N + 1]
 | ^ cannot perform const operation using `N`
 |
 = help: const parameters may only be used as standalone arguments, i.e. `N`

While it’s fine to say [f64; N], a type like [f64; N + 1] is apparently too
risqué for Rust. But Rust imposes this restriction for the time being to avoid
confronting issues like this:

struct Ketchup<const N: usize> {
 tomayto: [i32; N & !31],
 tomahto: [i32; N - (N % 32)],
}

As it turns out, N & !31 and N - (N % 32) are equal for all values of N, so
tomayto and tomahto always have the same type. It should be permitted to
assign one to the other, for example. But teaching Rust’s type checker the bit-
fiddling algebra it would need to be able to recognize this fact risks
introducing confusing corner cases to an aspect of the language that is
already quite complicated. Of course, simple expressions like N + 1 are much
more well-behaved, and there is work underway to teach Rust to handle those
smoothly.

Since the concern here is with the type checker’s behavior, this restriction
applies only to constant parameters appearing in types, like the length of an
array. In an ordinary expression, you can use N however you like: N + 1 and
N & !31 are perfectly acceptable.

If the value you want to supply for a const generic parameter is not simply a
literal or a single identifier, then you must wrap it in braces, as in
Polynomial<{5 + 1}>. This rule allows Rust to report syntax errors more
accurately.

Deriving Common Traits for Struct Types
Structs can be very easy to write:

struct Point {
 x: f64,
 y: f64
}

However, if you were to start using this Point type, you would quickly notice
that it’s a bit of a pain. As written, Point is not copyable or cloneable. You
can’t print it with println!("{:?}", point); and it does not support the == and
!= operators.

Each of these features has a name in Rust—Copy, Clone, Debug, and
PartialEq. They are called traits. In Chapter 11, we’ll show how to implement
traits by hand for your own structs. But in the case of these standard traits,
and several others, you don’t need to implement them by hand unless you
want some kind of custom behavior. Rust can automatically implement them
for you, with mechanical accuracy. Just add a #[derive] attribute to the struct:

#[derive(Copy, Clone, Debug, PartialEq)]
struct Point {
 x: f64,
 y: f64
}

Each of these traits can be implemented automatically for a struct, provided
that each of its fields implements the trait. We can ask Rust to derive
PartialEq for Point because its two fields are both of type f64, which already
implements PartialEq.

Rust can also derive PartialOrd, which would add support for the comparison
operators <, >, <=, and >=. We haven’t done so here, because comparing two
points to see if one is “less than” the other is actually a pretty weird thing to
do. There’s no one conventional order on points. So we choose not to support

those operators for Point values. Cases like this are one reason that Rust
makes us write the #[derive] attribute rather than automatically deriving
every trait it can. Another reason is that implementing a trait is automatically
a public feature, so copyability, cloneability, and so forth are all part of your
struct’s public API and should be chosen deliberately.

We’ll describe Rust’s standard traits in detail and explain which ones are #
[derive]able in Chapter 13.

Interior Mutability
Mutability is like anything else: in excess, it causes problems, but you often
want just a little bit of it. For example, say your spider robot control system
has a central struct, SpiderRobot, that contains settings and I/O handles. It’s
set up when the robot boots, and the values never change:

pub struct SpiderRobot {
 species: String,
 web_enabled: bool,
 leg_devices: [fd::FileDesc; 8],
 ...
}

Every major system of the robot is handled by a different struct, and each one
has a pointer back to the SpiderRobot:

use std::rc::Rc;

pub struct SpiderSenses {
 robot: Rc<SpiderRobot>, // <-- pointer to settings and I/O
 eyes: [Camera; 32],
 motion: Accelerometer,
 ...
}

The structs for web construction, predation, venom flow control, and so forth
also all have an Rc<SpiderRobot> smart pointer. Recall that Rc stands for
reference counting, and a value in an Rc box is always shared and therefore
always immutable.

Now suppose you want to add a little logging to the SpiderRobot struct, using
the standard File type. There’s a problem: a File has to be mut. All the
methods for writing to it require a mut reference.

This sort of situation comes up fairly often. What we need is a little bit of
mutable data (a File) inside an otherwise immutable value (the SpiderRobot
struct). This is called interior mutability. Rust offers several flavors of it; in

this section, we’ll discuss the two most straightforward types: Cell<T> and
RefCell<T>, both in the std::cell module.

A Cell<T> is a struct that contains a single private value of type T. The only
special thing about a Cell is that you can get and set the field even if you
don’t have mut access to the Cell itself:

Cell::new(value)

Creates a new Cell, moving the given value into it.

cell.get()

Returns a copy of the value in the cell.

cell.set(value)

Stores the given value in the cell, dropping the previously stored value.

This method takes self as a non-mut reference:

fn set(&self, value: T) // note: not `&mut self`

This is, of course, unusual for methods named set. By now, Rust has
trained us to expect that we need mut access if we want to make changes
to data. But by the same token, this one unusual detail is the whole point
of Cells. They’re simply a safe way of bending the rules on immutability
—no more, no less.

Cells also have a few other methods, which you can read about in the
documentation.

A Cell would be handy if you were adding a simple counter to your
SpiderRobot. You could write:

use std::cell::Cell;

pub struct SpiderRobot {
 ...

https://oreil.ly/WqRrt

 hardware_error_count: Cell<u32>,
 ...
}

Then even non-mut methods of SpiderRobot can access that u32, using the
.get() and .set() methods:

impl SpiderRobot {
 /// Increase the error count by 1.
 pub fn add_hardware_error(&self) {
 let n = self.hardware_error_count.get();
 self.hardware_error_count.set(n + 1);
 }

 /// True if any hardware errors have been reported.
 pub fn has_hardware_errors(&self) -> bool {
 self.hardware_error_count.get() > 0
 }
}

This is easy enough, but it doesn’t solve our logging problem. Cell does not
let you call mut methods on a shared value. The .get() method returns a copy
of the value in the cell, so it works only if T implements the Copy trait. For
logging, we need a mutable File, and File isn’t copyable.

The right tool in this case is a RefCell. Like Cell<T>, RefCell<T> is a
generic type that contains a single value of type T. Unlike Cell, RefCell
supports borrowing references to its T value:

RefCell::new(value)

Creates a new RefCell, moving value into it.

ref_cell.borrow()

Returns a Ref<T>, which is essentially just a shared reference to the value
stored in ref_cell.

This method panics if the value is already mutably borrowed; see details
to follow.

ref_cell.borrow_mut()

Returns a RefMut<T>, essentially a mutable reference to the value in
ref_cell.

This method panics if the value is already borrowed; see details to follow.

ref_cell.try_borrow(), ref_cell.try_borrow_mut()

Work just like borrow() and borrow_mut(), but return a Result. Instead of

panicking if the value is already mutably borrowed, they return an Err

value.

Again, RefCell has a few other methods, which you can find in the
documentation.

The two borrow methods panic only if you try to break the Rust rule that mut
references are exclusive references. For example, this would panic:

use std::cell::RefCell;

let ref_cell: RefCell<String> = RefCell::new("hello".to_string());

let r = ref_cell.borrow(); // ok, returns a Ref<String>
let count = r.len(); // ok, returns "hello".len()
assert_eq!(count, 5);

let mut w = ref_cell.borrow_mut(); // panic: already borrowed
w.push_str(" world");

To avoid panicking, you could put these two borrows into separate blocks.
That way, r would be dropped before you try to borrow w.

This is a lot like how normal references work. The only difference is that
normally, when you borrow a reference to a variable, Rust checks at compile
time to ensure that you’re using the reference safely. If the checks fail, you
get a compiler error. RefCell enforces the same rule using run-time checks.
So if you’re breaking the rules, you get a panic (or an Err, for try_borrow and
try_borrow_mut).

Now we’re ready to put RefCell to work in our SpiderRobot type:

https://oreil.ly/FtnIO

pub struct SpiderRobot {
 ...
 log_file: RefCell<File>,
 ...
}

impl SpiderRobot {
 /// Write a line to the log file.
 pub fn log(&self, message: &str) {
 let mut file = self.log_file.borrow_mut();
 // `writeln!` is like `println!`, but sends
 // output to the given file.
 writeln!(file, "{}", message).unwrap();
 }
}

The variable file has type RefMut<File>. It can be used just like a mutable
reference to a File. For details about writing to files, see Chapter 18.

Cells are easy to use. Having to call .get() and .set() or .borrow() and
.borrow_mut() is slightly awkward, but that’s just the price we pay for
bending the rules. The other drawback is less obvious and more serious: cells
—and any types that contain them—are not thread-safe. Rust therefore will
not allow multiple threads to access them at once. We’ll describe thread-safe
flavors of interior mutability in Chapter 19, when we discuss “Mutex<T>”,
“Atomics”, and “Global Variables”.

Whether a struct has named fields or is tuple-like, it is an aggregation of other
values: if I have a SpiderSenses struct, then I have an Rc pointer to a shared
SpiderRobot struct, and I have eyes, and I have an accelerometer, and so on.
So the essence of a struct is the word “and”: I have an X and a Y. But what if
there were another kind of type built around the word “or”? That is, when
you have a value of such a type, you’d have either an X or a Y? Such types
turn out to be so useful that they’re ubiquitous in Rust, and they are the
subject of the next chapter.

Chapter 10. Enums and Patterns

Surprising how much computer stuff makes sense viewed as tragic
deprivation of sum types (cf. deprivation of lambdas).

—Graydon Hoare

The first topic of this chapter is potent, as old as the hills, happy to help you
get a lot done in short order (for a price), and known by many names in many
cultures. But it’s not the devil. It’s a kind of user-defined data type, long
known to ML and Haskell hackers as sum types, discriminated unions, or
algebraic data types. In Rust, they are called enumerations, or simply enums.
Unlike the devil, they are quite safe, and the price they ask is no great
privation.

C++ and C# have enums; you can use them to define your own type whose
values are a set of named constants. For example, you might define a type
named Color with values Red, Orange, Yellow, and so on. This kind of enum
works in Rust, too. But Rust takes enums much further. A Rust enum can
also contain data, even data of varying types. For example, Rust’s
Result<String, io::Error> type is an enum; such a value is either an Ok value
containing a String or an Err value containing an io::Error. This is beyond
what C++ and C# enums can do. It’s more like a C union—but unlike unions,
Rust enums are type-safe.

Enums are useful whenever a value might be either one thing or another. The
“price” of using them is that you must access the data safely, using pattern
matching, our topic for the second half of this chapter.

Patterns, too, may be familiar if you’ve used unpacking in Python or
destructuring in JavaScript, but Rust takes patterns further. Rust patterns are a
little like regular expressions for all your data. They’re used to test whether or
not a value has a particular desired shape. They can extract several fields
from a struct or tuple into local variables all at once. And like regular
expressions, they are concise, typically doing it all in a single line of code.

https://oreil.ly/cyYQc

This chapter starts with the basics of enums, showing how data can be
associated with enum variants and how enums are stored in memory. Then
we’ll show how Rust’s patterns and match statements can concisely specify
logic based on enums, structs, arrays, and slices. Patterns can also include
references, moves, and if conditions, making them even more capable.

Enums
Simple, C-style enums are straightforward:

enum Ordering {
 Less,
 Equal,
 Greater,
}

This declares a type Ordering with three possible values, called variants or
constructors: Ordering::Less, Ordering::Equal, and Ordering::Greater. This
particular enum is part of the standard library, so Rust code can import it,
either by itself:

use std::cmp::Ordering;

fn compare(n: i32, m: i32) -> Ordering {
 if n < m {
 Ordering::Less
 } else if n > m {
 Ordering::Greater
 } else {
 Ordering::Equal
 }
}

or with all its constructors:

use std::cmp::Ordering::{self, *}; // `*` to import all children

fn compare(n: i32, m: i32) -> Ordering {
 if n < m {
 Less
 } else if n > m {
 Greater
 } else {
 Equal
 }
}

After importing the constructors, we can write Less instead of
Ordering::Less, and so on, but because this is less explicit, it’s generally
considered better style not to import them except when it makes your code
much more readable.

To import the constructors of an enum declared in the current module, use a
self import:

enum Pet {
 Orca,
 Giraffe,
 ...
}

use self::Pet::*;

In memory, values of C-style enums are stored as integers. Occasionally it’s
useful to tell Rust which integers to use:

enum HttpStatus {
 Ok = 200,
 NotModified = 304,
 NotFound = 404,
 ...
}

Otherwise Rust will assign the numbers for you, starting at 0.

By default, Rust stores C-style enums using the smallest built-in integer type
that can accommodate them. Most fit in a single byte:

use std::mem::size_of;
assert_eq!(size_of::<Ordering>(), 1);
assert_eq!(size_of::<HttpStatus>(), 2); // 404 doesn't fit in a u8

You can override Rust’s choice of in-memory representation by adding a #
[repr] attribute to the enum. For details, see “Finding Common Data
Representations”.

Casting a C-style enum to an integer is allowed:

assert_eq!(HttpStatus::Ok as i32, 200);

However, casting in the other direction, from the integer to the enum, is not.
Unlike C and C++, Rust guarantees that an enum value is only ever one of
the values spelled out in the enum declaration. An unchecked cast from an
integer type to an enum type could break this guarantee, so it’s not allowed.
You can either write your own checked conversion:

fn http_status_from_u32(n: u32) -> Option<HttpStatus> {
 match n {
 200 => Some(HttpStatus::Ok),
 304 => Some(HttpStatus::NotModified),
 404 => Some(HttpStatus::NotFound),
 ...
 _ => None,
 }
}

or use the enum_primitive crate. It contains a macro that autogenerates this
kind of conversion code for you.

As with structs, the compiler will implement features like the == operator for
you, but you have to ask:

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum TimeUnit {
 Seconds, Minutes, Hours, Days, Months, Years,
}

Enums can have methods, just like structs:

impl TimeUnit {
 /// Return the plural noun for this time unit.
 fn plural(self) -> &'static str {
 match self {
 TimeUnit::Seconds => "seconds",
 TimeUnit::Minutes => "minutes",
 TimeUnit::Hours => "hours",
 TimeUnit::Days => "days",
 TimeUnit::Months => "months",
 TimeUnit::Years => "years",
 }

https://oreil.ly/8BGLH

 }

 /// Return the singular noun for this time unit.
 fn singular(self) -> &'static str {
 self.plural().trim_end_matches('s')
 }
}

So much for C-style enums. The more interesting sort of Rust enum is the
kind whose variants hold data. We’ll show how these are stored in memory,
how to make them generic by adding type parameters, and how to build
complex data structures from enums.

Enums with Data
Some programs always need to display full dates and times down to the
millisecond, but for most applications, it’s more user-friendly to use a rough
approximation, like “two months ago.” We can write an enum to help with
that, using the enum defined earlier:

/// A timestamp that has been deliberately rounded off, so our program
/// says "6 months ago" instead of "February 9, 2016, at 9:49 AM".
#[derive(Copy, Clone, Debug, PartialEq)]
enum RoughTime {
 InThePast(TimeUnit, u32),
 JustNow,
 InTheFuture(TimeUnit, u32),
}

Two of the variants in this enum, InThePast and InTheFuture, take
arguments. These are called tuple variants. Like tuple structs, these
constructors are functions that create new RoughTime values:

let four_score_and_seven_years_ago =
 RoughTime::InThePast(TimeUnit::Years, 4 * 20 + 7);

let three_hours_from_now =
 RoughTime::InTheFuture(TimeUnit::Hours, 3);

Enums can also have struct variants, which contain named fields, just like
ordinary structs:

enum Shape {
 Sphere { center: Point3d, radius: f32 },
 Cuboid { corner1: Point3d, corner2: Point3d },
}

let unit_sphere = Shape::Sphere {
 center: ORIGIN,
 radius: 1.0,
};

In all, Rust has three kinds of enum variant, echoing the three kinds of struct

we showed in the previous chapter. Variants with no data correspond to unit-
like structs. Tuple variants look and function just like tuple structs. Struct
variants have curly braces and named fields. A single enum can have variants
of all three kinds:

enum RelationshipStatus {
 Single,
 InARelationship,
 ItsComplicated(Option<String>),
 ItsExtremelyComplicated {
 car: DifferentialEquation,
 cdr: EarlyModernistPoem,
 },
}

All constructors and fields of an enum share the same visibility as the enum
itself.

Enums in Memory
In memory, enums with data are stored as a small integer tag, plus enough
memory to hold all the fields of the largest variant. The tag field is for Rust’s
internal use. It tells which constructor created the value and therefore which
fields it has.

As of Rust 1.56, RoughTime fits in 8 bytes, as shown in Figure 10-1.

Figure 10-1. RoughTime values in memory

Rust makes no promises about enum layout, however, in order to leave the
door open for future optimizations. In some cases, it would be possible to
pack an enum more efficiently than the figure suggests. For instance, some
generic structs can be stored without a tag at all, as we’ll see later.

Rich Data Structures Using Enums
Enums are also useful for quickly implementing tree-like data structures. For
example, suppose a Rust program needs to work with arbitrary JSON data. In
memory, any JSON document can be represented as a value of this Rust type:

use std::collections::HashMap;

enum Json {
 Null,
 Boolean(bool),
 Number(f64),
 String(String),
 Array(Vec<Json>),
 Object(Box<HashMap<String, Json>>),
}

The explanation of this data structure in English can’t improve much upon
the Rust code. The JSON standard specifies the various data types that can
appear in a JSON document: null, Boolean values, numbers, strings, arrays of
JSON values, and objects with string keys and JSON values. The Json enum
simply spells out these types.

This is not a hypothetical example. A very similar enum can be found in
serde_json, a serialization library for Rust structs that is one of the most-
downloaded crates on crates.io.

The Box around the HashMap that represents an Object serves only to make
all Json values more compact. In memory, values of type Json take up four
machine words. String and Vec values are three words, and Rust adds a tag
byte. Null and Boolean values don’t have enough data in them to use up all
that space, but all Json values must be the same size. The extra space goes
unused. Figure 10-2 shows some examples of how Json values actually look
in memory.

A HashMap is larger still. If we had to leave room for it in every Json value,
they would be quite large, eight words or so. But a Box<HashMap> is a
single word: it’s just a pointer to heap-allocated data. We could make Json

even more compact by boxing more fields.

Figure 10-2. Json values in memory

What’s remarkable here is how easy it was to set this up. In C++, one might
write a class for this:

class JSON {
private:
 enum Tag {
 Null, Boolean, Number, String, Array, Object
 };
 union Data {
 bool boolean;
 double number;
 shared_ptr<string> str;
 shared_ptr<vector<JSON>> array;
 shared_ptr<unordered_map<string, JSON>> object;

 Data() {}
 ~Data() {}
 ...
 };

 Tag tag;
 Data data;

public:
 bool is_null() const { return tag == Null; }
 bool is_boolean() const { return tag == Boolean; }
 bool get_boolean() const {
 assert(is_boolean());
 return data.boolean;
 }

 void set_boolean(bool value) {
 this->~JSON(); // clean up string/array/object value
 tag = Boolean;
 data.boolean = value;
 }
 ...
};

At 30 lines of code, we have barely begun the work. This class will need
constructors, a destructor, and an assignment operator. An alternative would
be to create a class hierarchy with a base class JSON and subclasses
JSONBoolean, JSONString, and so on. Either way, when it’s done, our C++
JSON library will have more than a dozen methods. It will take a bit of
reading for other programmers to pick it up and use it. The entire Rust enum
is eight lines of code.

Generic Enums
Enums can be generic. Two examples from the standard library are among
the most-used data types in the language:

enum Option<T> {
 None,
 Some(T),
}

enum Result<T, E> {
 Ok(T),
 Err(E),
}

These types are familiar enough by now, and the syntax for generic enums is
the same as for generic structs.

One unobvious detail is that Rust can eliminate the tag field of Option<T>
when the type T is a reference, Box, or other smart pointer type. Since none
of those pointer types is allowed to be zero, Rust can represent
Option<Box<i32>>, say, as a single machine word: 0 for None and nonzero
for Some pointer. This makes such Option types close analogues to C or C++
pointer values that could be null. The difference is that Rust’s type system
requires you to check that an Option is Some before you can use its contents.
This effectively eliminates null pointer dereferences.

Generic data structures can be built with just a few lines of code:

// An ordered collection of `T`s.
enum BinaryTree<T> {
 Empty,
 NonEmpty(Box<TreeNode<T>>),
}

// A part of a BinaryTree.
struct TreeNode<T> {
 element: T,
 left: BinaryTree<T>,
 right: BinaryTree<T>,

}

These few lines of code define a BinaryTree type that can store any number
of values of type T.

A great deal of information is packed into these two definitions, so we will
take the time to translate the code word for word into English. Each
BinaryTree value is either Empty or NonEmpty. If it’s Empty, then it
contains no data at all. If NonEmpty, then it has a Box, a pointer to a heap-
allocated TreeNode.

Each TreeNode value contains one actual element, as well as two more
BinaryTree values. This means a tree can contain subtrees, and thus a
NonEmpty tree can have any number of descendants.

A sketch of a value of type BinaryTree<&str> is shown in Figure 10-3. As
with Option<Box<T>>, Rust eliminates the tag field, so a BinaryTree value
is just one machine word.

Building any particular node in this tree is straightforward:

use self::BinaryTree::*;
let jupiter_tree = NonEmpty(Box::new(TreeNode {
 element: "Jupiter",
 left: Empty,
 right: Empty,
}));

Larger trees can be built from smaller ones:

let mars_tree = NonEmpty(Box::new(TreeNode {
 element: "Mars",
 left: jupiter_tree,
 right: mercury_tree,
}));

Naturally, this assignment transfers ownership of jupiter_node and
mercury_node to their new parent node.

Figure 10-3. A BinaryTree containing six strings

The remaining parts of the tree follow the same patterns. The root node is no
different from the others:

let tree = NonEmpty(Box::new(TreeNode {
 element: "Saturn",
 left: mars_tree,
 right: uranus_tree,
}));

Later in this chapter, we’ll show how to implement an add method on the
BinaryTree type so that we can instead write:

let mut tree = BinaryTree::Empty;
for planet in planets {
 tree.add(planet);

}

No matter what language you’re coming from, creating data structures like
BinaryTree in Rust will likely take some practice. It won’t be obvious at first
where to put the Boxes. One way to find a design that will work is to draw a
picture like Figure 10-3 that shows how you want things laid out in memory.
Then work backward from the picture to the code. Each collection of
rectangles is a struct or tuple; each arrow is a Box or other smart pointer.
Figuring out the type of each field is a bit of a puzzle, but a manageable one.
The reward for solving the puzzle is control over your program’s memory
usage.

Now comes the “price” we mentioned in the introduction. The tag field of an
enum costs a little memory, up to eight bytes in the worst case, but that is
usually negligible. The real downside to enums (if it can be called that) is that
Rust code cannot throw caution to the wind and try to access fields regardless
of whether they are actually present in the value:

let r = shape.radius; // error: no field `radius` on type `Shape`

The only way to access the data in an enum is the safe way: using patterns.

Patterns
Recall the definition of our RoughTime type from earlier in this chapter:

enum RoughTime {
 InThePast(TimeUnit, u32),
 JustNow,
 InTheFuture(TimeUnit, u32),
}

Suppose you have a RoughTime value and you’d like to display it on a web
page. You need to access the TimeUnit and u32 fields inside the value. Rust
doesn’t let you access them directly, by writing rough_time.0 and
rough_time.1, because after all, the value might be RoughTime::JustNow,
which has no fields. But then, how can you get the data out?

You need a match expression:

 1 fn rough_time_to_english(rt: RoughTime) -> String {
 2 match rt {
 3 RoughTime::InThePast(units, count) =>
 4 format!("{} {} ago", count, units.plural()),
 5 RoughTime::JustNow =>
 6 format!("just now"),
 7 RoughTime::InTheFuture(units, count) =>
 8 format!("{} {} from now", count, units.plural()),
 9 }
10 }

match performs pattern matching; in this example, the patterns are the parts
that appear before the => symbol on lines 3, 5, and 7. Patterns that match
RoughTime values look just like the expressions used to create RoughTime
values. This is no coincidence. Expressions produce values; patterns consume
values. The two use a lot of the same syntax.

Let’s step through what happens when this match expression runs. Suppose rt
is the value RoughTime::InTheFuture(TimeUnit::Months, 1). Rust first tries
to match this value against the pattern on line 3. As you can see in Figure 10-

4, it doesn’t match.

Figure 10-4. A RoughTime value and pattern that do not match

Pattern matching an enum, struct, or tuple works as though Rust is doing a
simple left-to-right scan, checking each component of the pattern to see if the
value matches it. If it doesn’t, Rust moves on to the next pattern.

The patterns on lines 3 and 5 fail to match. But the pattern on line 7 succeeds
(Figure 10-5).

Figure 10-5. A successful match

When a pattern contains simple identifiers like units and count, those become
local variables in the code following the pattern. Whatever is present in the
value is copied or moved into the new variables. Rust stores
TimeUnit::Months in units and 1 in count, runs line 8, and returns the string
"1 months from now".

That output has a minor grammatical issue, which can be fixed by adding
another arm to the match:

RoughTime::InTheFuture(unit, 1) =>
 format!("a {} from now", unit.singular()),

This arm matches only if the count field is exactly 1. Note that this new code
must be added before line 7. If we add it at the end, Rust will never get to it,

because the pattern on line 7 matches all InTheFuture values. The Rust
compiler will warn about an “unreachable pattern” if you make this kind of
mistake.

Even with the new code, RoughTime::InTheFuture(TimeUnit::Hours, 1) still
presents a problem: the result "a hour from now" is not quite right. Such is
the English language. This too can be fixed by adding another arm to the
match.

As this example shows, pattern matching works hand in hand with enums and
can even test the data they contain, making match a powerful, flexible
replacement for C’s switch statement. So far, we’ve only seen patterns that
match enum values. There’s more to it than that. Rust patterns are their own
little language, summarized in Table 10-1. We’ll spend most of the rest of the
chapter on the features shown in this table.

Table 10-1. Patterns

Pattern type Example Notes

Literal 100
"name"

Matches an exact value; the name of a const is also
allowed

Range 0 ..= 100
'a' ..= 'k'
256..

Matches any value in range, including the end value if
given

Wildcard _ Matches any value and ignores it

Variable name
mut count

Like _ but moves or copies the value into a new local
variable

ref variable ref field
ref mut field

Borrows a reference to the matched value instead of
moving or copying it

Binding with
subpattern

val @ 0 ..= 99
ref circle @ Shape::Cir
cle { .. }

Matches the pattern to the right of @, using the variable
name to the left

Enum pattern Some(value)
None
Pet::Orca

Tuple pattern (key, value)
(r, g, b)

Array pattern [a, b, c, d, e, f, g]

[heading, carom, correc
tion]

Slice pattern [first, second]
[first, _, third]
[first, .., nth]
[]

Struct pattern Color(r, g, b)
Point { x, y }
Card { suit: Clubs, rank
: n }
Account { id, name, ..
}

Reference &value
&(k, v)

Matches only reference values

Or patterns 'a' | 'A'
Some("left" | "right")

Guard expression x if x * x <= r2 In match only (not valid in let, etc.)

Literals, Variables, and Wildcards in Patterns
So far, we’ve shown match expressions working with enums. Other types can
be matched too. When you need something like a C switch statement, use
match with an integer value. Integer literals like 0 and 1 can serve as patterns:

match meadow.count_rabbits() {
 0 => {} // nothing to say
 1 => println!("A rabbit is nosing around in the clover."),
 n => println!("There are {} rabbits hopping about in the meadow", n),
}

The pattern 0 matches if there are no rabbits in the meadow. 1 matches if
there is just one. If there are two or more rabbits, we reach the third pattern,
n. This pattern is just a variable name. It can match any value, and the
matched value is moved or copied into a new local variable. So in this case,
the value of meadow.count_rabbits() is stored in a new local variable n,
which we then print.

Other literals can be used as patterns too, including Booleans, characters, and
even strings:

let calendar = match settings.get_string("calendar") {
 "gregorian" => Calendar::Gregorian,
 "chinese" => Calendar::Chinese,
 "ethiopian" => Calendar::Ethiopian,
 other => return parse_error("calendar", other),
};

In this example, other serves as a catchall pattern like n in the previous
example. These patterns play the same role as a default case in a switch
statement, matching values that don’t match any of the other patterns.

If you need a catchall pattern, but you don’t care about the matched value,
you can use a single underscore _ as a pattern, the wildcard pattern:

let caption = match photo.tagged_pet() {
 Pet::Tyrannosaur => "RRRAAAAAHHHHHH",
 Pet::Samoyed => "*dog thoughts*",

 _ => "I'm cute, love me", // generic caption, works for any pet
};

The wildcard pattern matches any value, but without storing it anywhere.
Since Rust requires every match expression to handle all possible values, a
wildcard is often required at the end. Even if you’re very sure the remaining
cases can’t occur, you must at least add a fallback arm, perhaps one that
panics:

// There are many Shapes, but we only support "selecting"
// either some text, or everything in a rectangular area.
// You can't select an ellipse or trapezoid.
match document.selection() {
 Shape::TextSpan(start, end) => paint_text_selection(start, end),
 Shape::Rectangle(rect) => paint_rect_selection(rect),
 _ => panic!("unexpected selection type"),
}

Tuple and Struct Patterns
Tuple patterns match tuples. They’re useful any time you want to get multiple
pieces of data involved in a single match:

fn describe_point(x: i32, y: i32) -> &'static str {
 use std::cmp::Ordering::*;
 match (x.cmp(&0), y.cmp(&0)) {
 (Equal, Equal) => "at the origin",
 (_, Equal) => "on the x axis",
 (Equal, _) => "on the y axis",
 (Greater, Greater) => "in the first quadrant",
 (Less, Greater) => "in the second quadrant",
 _ => "somewhere else",
 }
}

Struct patterns use curly braces, just like struct expressions. They contain a
subpattern for each field:

match balloon.location {
 Point { x: 0, y: height } =>
 println!("straight up {} meters", height),
 Point { x: x, y: y } =>
 println!("at ({}m, {}m)", x, y),
}

In this example, if the first arm matches, then balloon.location.y is stored in
the new local variable height.

Suppose balloon.location is Point { x: 30, y: 40 }. As always, Rust checks
each component of each pattern in turn Figure 10-6.

Figure 10-6. Pattern matching with structs

The second arm matches, so the output would be at (30m, 40m).

Patterns like Point { x: x, y: y } are common when matching structs, and the
redundant names are visual clutter, so Rust has a shorthand for this: Point {x,
y}. The meaning is the same. This pattern still stores a point’s x field in a
new local x and its y field in a new local y.

Even with the shorthand, it is cumbersome to match a large struct when we
only care about a few fields:

match get_account(id) {
 ...
 Some(Account {
 name, language, // <--- the 2 things we care about
 id: _, status: _, address: _, birthday: _, eye_color: _,
 pet: _, security_question: _, hashed_innermost_secret: _,
 is_adamantium_preferred_customer: _, }) =>
 language.show_custom_greeting(name),
}

To avoid this, use .. to tell Rust you don’t care about any of the other fields:

Some(Account { name, language, .. }) =>
 language.show_custom_greeting(name),

Array and Slice Patterns
Array patterns match arrays. They’re often used to filter out some special-
case values and are useful any time you’re working with arrays whose values
have a different meaning based on position.

For example, when converting hue, saturation, and lightness (HSL) color
values to red, green, blue (RGB) color values, colors with zero lightness or
full lightness are just black or white. We could use a match expression to deal
with those cases simply.

fn hsl_to_rgb(hsl: [u8; 3]) -> [u8; 3] {
 match hsl {
 [_, _, 0] => [0, 0, 0],
 [_, _, 255] => [255, 255, 255],
 ...
 }
}

Slice patterns are similar, but unlike arrays, slices have variable lengths, so
slice patters match not only on values but also on length. .. in a slice pattern
matches any number of elements:

fn greet_people(names: &[&str]) {
 match names {
 [] => { println!("Hello, nobody.") },
 [a] => { println!("Hello, {}.", a) },
 [a, b] => { println!("Hello, {} and {}.", a, b) },
 [a, .., b] => { println!("Hello, everyone from {} to {}.", a, b) }
 }
}

Reference Patterns
Rust patterns support two features for working with references. ref patterns
borrow parts of a matched value. & patterns match references. We’ll cover
ref patterns first.

Matching a noncopyable value moves the value. Continuing with the account
example, this code would be invalid:

match account {
 Account { name, language, .. } => {
 ui.greet(&name, &language);
 ui.show_settings(&account); // error: borrow of moved value: `account`
 }
}

Here, the fields account.name and account.language are moved into local
variables name and language. The rest of account is dropped. That’s why we
can’t borrow a reference to it afterward.

If name and language were both copyable values, Rust would copy the fields
instead of moving them, and this code would be fine. But suppose these are
Strings. What can we do?

We need a kind of pattern that borrows matched values instead of moving
them. The ref keyword does just that:

match account {
 Account { ref name, ref language, .. } => {
 ui.greet(name, language);
 ui.show_settings(&account); // ok
 }
}

Now the local variables name and language are references to the
corresponding fields in account. Since account is only being borrowed, not
consumed, it’s OK to continue calling methods on it.

You can use ref mut to borrow mut references:

match line_result {
 Err(ref err) => log_error(err), // `err` is &Error (shared ref)
 Ok(ref mut line) => { // `line` is &mut String (mut ref)
 trim_comments(line); // modify the String in place
 handle(line);
 }
}

The pattern Ok(ref mut line) matches any success result and borrows a mut
reference to the success value stored inside it.

The opposite kind of reference pattern is the & pattern. A pattern starting
with & matches a reference:

match sphere.center() {
 &Point3d { x, y, z } => ...
}

In this example, suppose sphere.center() returns a reference to a private field
of sphere, a common pattern in Rust. The value returned is the address of a
Point3d. If the center is at the origin, then sphere.center() returns &Point3d {
x: 0.0, y: 0.0, z: 0.0 }.

Pattern matching proceeds as shown in Figure 10-7.

Figure 10-7. Pattern matching with references

This is a bit tricky because Rust is following a pointer here, an action we
usually associate with the * operator, not the & operator. The thing to
remember is that patterns and expressions are natural opposites. The
expression (x, y) makes two values into a new tuple, but the pattern (x, y)
does the opposite: it matches a tuple and breaks out the two values. It’s the

same with &. In an expression, & creates a reference. In a pattern, & matches
a reference.

Matching a reference follows all the rules we’ve come to expect. Lifetimes
are enforced. You can’t get mut access via a shared reference. And you can’t
move a value out of a reference, even a mut reference. When we match
&Point3d { x, y, z }, the variables x, y, and z receive copies of the
coordinates, leaving the original Point3d value intact. It works because those
fields are copyable. If we try the same thing on a struct with noncopyable
fields, we’ll get an error:

match friend.borrow_car() {
 Some(&Car { engine, .. }) => // error: can't move out of borrow
 ...
 None => {}
}

Scrapping a borrowed car for parts is not nice, and Rust won’t stand for it.
You can use a ref pattern to borrow a reference to a part. You just don’t own
it:

 Some(&Car { ref engine, .. }) => // ok, engine is a reference

Let’s look at one more example of an & pattern. Suppose we have an iterator
chars over the characters in a string, and it has a method chars.peek() that
returns an Option<&char>: a reference to the next character, if any. (Peekable
iterators do in fact return an Option<&ItemType>, as we’ll see in
Chapter 15.)

A program can use an & pattern to get the pointed-to character:

match chars.peek() {
 Some(&c) => println!("coming up: {:?}", c),
 None => println!("end of chars"),
}

Match Guards
Sometimes a match arm has additional conditions that must be met before it
can be considered a match. Suppose we’re implementing a board game with
hexagonal spaces, and the player just clicked to move a piece. To confirm
that the click was valid, we might try something like this:

fn check_move(current_hex: Hex, click: Point) -> game::Result<Hex> {
 match point_to_hex(click) {
 None =>
 Err("That's not a game space."),
 Some(current_hex) => // try to match if user clicked the current_hex
 // (it doesn't work: see explanation below)
 Err("You are already there! You must click somewhere else."),
 Some(other_hex) =>
 Ok(other_hex)
 }
}

This fails because identifiers in patterns introduce new variables. The pattern
Some(current_hex) here creates a new local variable current_hex, shadowing
the argument current_hex. Rust emits several warnings about this code—in
particular, the last arm of the match is unreachable. One way to fix this is
simply to use an if expression in the match arm:

match point_to_hex(click) {
 None => Err("That's not a game space."),
 Some(hex) => {
 if hex == current_hex {
 Err("You are already there! You must click somewhere else")
 } else {
 Ok(hex)
 }
 }
}

But Rust also provides match guards, extra conditions that must be true in
order for a match arm to apply, written as if CONDITION, between the
pattern and the arm’s => token:

match point_to_hex(click) {
 None => Err("That's not a game space."),
 Some(hex) if hex == current_hex =>
 Err("You are already there! You must click somewhere else"),
 Some(hex) => Ok(hex)
}

If the pattern matches, but the condition is false, matching continues with the
next arm.

Matching Multiple Possibilities
A pattern of the form pat1 | pat2 matches if either subpattern matches:

let at_end = match chars.peek() {
 Some(&'\r' | &'\n') | None => true,
 _ => false,
};

In an expression, | is the bitwise OR operator, but here it works more like the
| symbol in a regular expression. at_end is set to true if chars.peek() is None,
or a Some holding a carriage return or line feed.

Use ..= to match a whole range of values. Range patterns include the begin
and end values, so '0' ..= '9' matches all the ASCII digits:

match next_char {
 '0'..='9' => self.read_number(),
 'a'..='z' | 'A'..='Z' => self.read_word(),
 ' ' | '\t' | '\n' => self.skip_whitespace(),
 _ => self.handle_punctuation(),
}

Rust also permits range patterns like x.., which match any value from x up to
the maximum value of the type. However, the other varieties of end-exclusive
ranges, like 0..100 or ..100, and unbounded ranges like .. aren’t allowed in
patterns yet.

Binding with @ Patterns
Finally, x @ pattern matches exactly like the given pattern, but on success,
instead of creating variables for parts of the matched value, it creates a single
variable x and moves or copies the whole value into it. For example, say you
have this code:

match self.get_selection() {
 Shape::Rect(top_left, bottom_right) => {
 optimized_paint(&Shape::Rect(top_left, bottom_right))
 }
 other_shape => {
 paint_outline(other_shape.get_outline())
 }
}

Note that the first case unpacks a Shape::Rect value, only to rebuild an
identical Shape::Rect value on the next line. This can be rewritten to use an
@ pattern:

 rect @ Shape::Rect(..) => {
 optimized_paint(&rect)
 }

@ patterns are also useful with ranges:

match chars.next() {
 Some(digit @ '0'..='9') => read_number(digit, chars),
 ...
},

Where Patterns Are Allowed
Although patterns are most prominent in match expressions, they are also
allowed in several other places, typically in place of an identifier. The
meaning is always the same: instead of just storing a value in a single
variable, Rust uses pattern matching to take the value apart.

This means patterns can be used to...

// ...unpack a struct into three new local variables
let Track { album, track_number, title, .. } = song;

// ...unpack a function argument that's a tuple
fn distance_to((x, y): (f64, f64)) -> f64 { ... }

// ...iterate over keys and values of a HashMap
for (id, document) in &cache_map {
 println!("Document #{}: {}", id, document.title);
}

// ...automatically dereference an argument to a closure
// (handy because sometimes other code passes you a reference
// when you'd rather have a copy)
let sum = numbers.fold(0, |a, &num| a + num);

Each of these saves two or three lines of boilerplate code. The same concept
exists in some other languages: in JavaScript, it’s called destructuring, while
in Python, it’s unpacking.

Note that in all four examples, we use patterns that are guaranteed to match.
The pattern Point3d { x, y, z } matches every possible value of the Point3d
struct type, (x, y) matches any (f64, f64) pair, and so on. Patterns that always
match are special in Rust. They’re called irrefutable patterns, and they’re the
only patterns allowed in the four places shown here (after let, in function
arguments, after for, and in closure arguments).

A refutable pattern is one that might not match, like Ok(x), which doesn’t
match an error result, or '0' ..= '9', which doesn’t match the character 'Q'.
Refutable patterns can be used in match arms, because match is designed for

them: if one pattern fails to match, it’s clear what happens next. The four
preceding examples are places in Rust programs where a pattern can be
handy, but the language doesn’t allow for match failure.

Refutable patterns are also allowed in if let and while let expressions, which
can be used to...

// ...handle just one enum variant specially
if let RoughTime::InTheFuture(_, _) = user.date_of_birth() {
 user.set_time_traveler(true);
}

// ...run some code only if a table lookup succeeds
if let Some(document) = cache_map.get(&id) {
 return send_cached_response(document);
}

// ...repeatedly try something until it succeeds
while let Err(err) = present_cheesy_anti_robot_task() {
 log_robot_attempt(err);
 // let the user try again (it might still be a human)
}

// ...manually loop over an iterator
while let Some(_) = lines.peek() {
 read_paragraph(&mut lines);
}

For details about these expressions, see “if let” and “Loops”.

Populating a Binary Tree
Earlier we promised to show how to implement a method, BinaryTree::add(),
that adds a node to a BinaryTree of this type:

// An ordered collection of `T`s.
enum BinaryTree<T> {
 Empty,
 NonEmpty(Box<TreeNode<T>>),
}

// A part of a BinaryTree.
struct TreeNode<T> {
 element: T,
 left: BinaryTree<T>,
 right: BinaryTree<T>,
}

You now know enough about patterns to write this method. An explanation
of binary search trees is beyond the scope of this book, but for readers
already familiar with the topic, it’s worth seeing how it plays out in Rust.

 1 impl<T: Ord> BinaryTree<T> {
 2 fn add(&mut self, value: T) {
 3 match *self {
 4 BinaryTree::Empty => {
 5 *self = BinaryTree::NonEmpty(Box::new(TreeNode {
 6 element: value,
 7 left: BinaryTree::Empty,
 8 right: BinaryTree::Empty,
 9 }))
10 }
11 BinaryTree::NonEmpty(ref mut node) => {
12 if value <= node.element {
13 node.left.add(value);
14 } else {
15 node.right.add(value);
16 }
17 }
18 }
19 }
20 }

Line 1 tells Rust that we’re defining a method on BinaryTrees of ordered
types. This is exactly the same syntax we use to define methods on generic
structs, explained in “Defining Methods with impl”.

If the existing tree *self is empty, that’s the easy case. Lines 5–9 run,
changing the Empty tree to a NonEmpty one. The call to Box::new() here
allocates a new TreeNode in the heap. When we’re done, the tree contains
one element. Its left and right subtrees are both Empty.

If *self is not empty, we match the pattern on line 11:

BinaryTree::NonEmpty(ref mut node) => {

This pattern borrows a mutable reference to the Box<TreeNode<T>>, so we
can access and modify data in that tree node. That reference is named node,
and it’s in scope from line 12 to line 16. Since there’s already an element in
this node, the code must recursively call .add() to add the new element to
either the left or the right subtree.

The new method can be used like this:

let mut tree = BinaryTree::Empty;
tree.add("Mercury");
tree.add("Venus");
...

The Big Picture
Rust’s enums may be new to systems programming, but they are not a new
idea. Traveling under various academic-sounding names, like algebraic data
types, they’ve been used in functional programming languages for more than
forty years. It’s unclear why so few other languages in the C tradition have
ever had them. Perhaps it is simply that for a programming language
designer, combining variants, references, mutability, and memory safety is
extremely challenging. Functional programming languages dispense with
mutability. C unions, by contrast, have variants, pointers, and mutability—
but are so spectacularly unsafe that even in C, they’re a last resort. Rust’s
borrow checker is the magic that makes it possible to combine all four
without compromise.

Programming is data processing. Getting data into the right shape can be the
difference between a small, fast, elegant program and a slow, gigantic tangle
of duct tape and virtual method calls.

This is the problem space enums address. They are a design tool for getting
data into the right shape. For cases when a value may be one thing, or another
thing, or perhaps nothing at all, enums are better than class hierarchies on
every axis: faster, safer, less code, easier to document.

The limiting factor is flexibility. End users of an enum can’t extend it to add
new variants. Variants can be added only by changing the enum declaration.
And when that happens, existing code breaks. Every match expression that
individually matches each variant of the enum must be revisited—it needs a
new arm to handle the new variant. In some cases, trading flexibility for
simplicity is just good sense. After all, the structure of JSON is not expected
to change. And in some cases, revisiting all uses of an enum when it changes
is exactly what we want. For example, when an enum is used in a compiler to
represent the various operators of a programming language, adding a new
operator should involve touching all code that handles operators.

But sometimes more flexibility is needed. For those situations, Rust has

traits, the topic of our next chapter.

Chapter 11. Traits and Generics

[A] computer scientist tends to be able to deal with nonuniform structures
—case 1, case 2, case 3—while a mathematician will tend to want one
unifying axiom that governs an entire system.

—Donald Knuth

One of the great discoveries in programming is that it’s possible to write code
that operates on values of many different types, even types that haven’t been
invented yet. Here are two examples:

Vec<T> is generic: you can create a vector of any type of value,
including types defined in your program that the authors of Vec
never anticipated.

Many things have .write() methods, including Files and TcpStreams.
Your code can take a writer by reference, any writer, and send data
to it. Your code doesn’t have to care what type of writer it is. Later,
if someone adds a new type of writer, your code will already support
it.

Of course, this capability is hardly new with Rust. It’s called polymorphism,
and it was the hot new programming language technology of the 1970s. By
now it’s effectively universal. Rust supports polymorphism with two related
features: traits and generics. These concepts will be familiar to many
programmers, but Rust takes a fresh approach inspired by Haskell’s
typeclasses.

Traits are Rust’s take on interfaces or abstract base classes. At first, they look
just like interfaces in Java or C#. The trait for writing bytes is called
std::io::Write, and its definition in the standard library starts out like this:

trait Write {
 fn write(&mut self, buf: &[u8]) -> Result<usize>;
 fn flush(&mut self) -> Result<()>;

 fn write_all(&mut self, buf: &[u8]) -> Result<()> { ... }
 ...
}

This trait offers several methods; we’ve shown only the first three.

The standard types File and TcpStream both implement std::io::Write. So
does Vec<u8>. All three types provide methods named .write(), .flush(), and
so on. Code that uses a writer without caring about its type looks like this:

use std::io::Write;

fn say_hello(out: &mut dyn Write) -> std::io::Result<()> {
 out.write_all(b"hello world\n")?;
 out.flush()
}

The type of out is &mut dyn Write, meaning “a mutable reference to any
value that implements the Write trait.” We can pass say_hello a mutable
reference to any such value:

use std::fs::File;
let mut local_file = File::create("hello.txt")?;
say_hello(&mut local_file)?; // works

let mut bytes = vec![];
say_hello(&mut bytes)?; // also works
assert_eq!(bytes, b"hello world\n");

This chapter begins by showing how traits are used, how they work, and how
to define your own. But there is more to traits than we’ve hinted at so far.
We’ll use them to add extension methods to existing types, even built-in
types like str and bool. We’ll explain why adding a trait to a type costs no
extra memory and how to use traits without virtual method call overhead.
We’ll see that built-in traits are the hook into the language that Rust provides
for operator overloading and other features. And we’ll cover the Self type,
associated functions, and associated types, three features Rust lifted from
Haskell that elegantly solve problems that other languages address with

workarounds and hacks.

Generics are the other flavor of polymorphism in Rust. Like a C++ template,
a generic function or type can be used with values of many different types:

/// Given two values, pick whichever one is less.
fn min<T: Ord>(value1: T, value2: T) -> T {
 if value1 <= value2 {
 value1
 } else {
 value2
 }
}

The <T: Ord> in this function means that min can be used with arguments of
any type T that implements the Ord trait—that is, any ordered type. A
requirement like this is called a bound, because it sets limits on which types T
could possibly be. The compiler generates custom machine code for each
type T that you actually use.

Generics and traits are closely related: generic functions use traits in bounds
to spell out what types of arguments they can be applied to. So we’ll also talk
about how &mut dyn Write and <T: Write> are similar, how they’re
different, and how to choose between these two ways of using traits.

Using Traits
A trait is a feature that any given type may or may not support. Most often, a
trait represents a capability: something a type can do.

A value that implements std::io::Write can write out bytes.

A value that implements std::iter::Iterator can produce a sequence of
values.

A value that implements std::clone::Clone can make clones of itself
in memory.

A value that implements std::fmt::Debug can be printed using
println!() with the {:?} format specifier.

Those four traits are all part of Rust’s standard library, and many standard
types implement them. For example:

std::fs::File implements the Write trait; it writes bytes to a local file.
std::net::TcpStream writes to a network connection. Vec<u8> also
implements Write. Each .write() call on a vector of bytes appends
some data to the end.

Range<i32> (the type of 0..10) implements the Iterator trait, as do
some iterator types associated with slices, hash tables, and so on.

Most standard library types implement Clone. The exceptions are
mainly types like TcpStream that represent more than just data in
memory.

Likewise, most standard library types support Debug.

There is one unusual rule about trait methods: the trait itself must be in scope.
Otherwise, all its methods are hidden:

let mut buf: Vec<u8> = vec![];
buf.write_all(b"hello")?; // error: no method named `write_all`

In this case, the compiler prints a friendly error message that suggests adding
use std::io::Write; and indeed that fixes the problem:

use std::io::Write;

let mut buf: Vec<u8> = vec![];
buf.write_all(b"hello")?; // ok

Rust has this rule because, as we’ll see later in this chapter, you can use traits
to add new methods to any type—even standard library types like u32 and
str. Third-party crates can do the same thing. Clearly, this could lead to
naming conflicts! But since Rust makes you import the traits you plan to use,
crates are free to take advantage of this superpower. To get a conflict, you’d
have to import two traits that add a method with the same name to the same
type. This is rare in practice. (If you do run into a conflict, you can spell out
what you want using fully qualified method syntax, covered later in the
chapter.)

The reason Clone and Iterator methods work without any special imports is
that they’re always in scope by default: they’re part of the standard prelude,
names that Rust automatically imports into every module. In fact, the prelude
is mostly a carefully chosen selection of traits. We’ll cover many of them in
Chapter 13.

C++ and C# programmers will already have noticed that trait methods are
like virtual methods. Still, calls like the one shown above are fast, as fast as
any other method call. Simply put, there’s no polymorphism here. It’s
obvious that buf is a vector, not a file or a network connection. The compiler
can emit a simple call to Vec<u8>::write(). It can even inline the method.
(C++ and C# will often do the same, although the possibility of subclassing
sometimes precludes this.) Only calls through &mut dyn Write incur the
overhead of a dynamic dispatch, also known as a virtual method call, which
is indicated by the dyn keyword in the type. dyn Write is known as a trait
object; we’ll look at the technical details of trait objects, and how they
compare to generic functions, in the following sections.

Trait Objects
There are two ways of using traits to write polymorphic code in Rust: trait
objects and generics. We’ll present trait objects first and turn to generics in
the next section.

Rust doesn’t permit variables of type dyn Write:

use std::io::Write;

let mut buf: Vec<u8> = vec![];
let writer: dyn Write = buf; // error: `Write` does not have a constant size

A variable’s size has to be known at compile time, and types that implement
Write can be any size.

This may be surprising if you’re coming from C# or Java, but the reason is
simple. In Java, a variable of type OutputStream (the Java standard interface
analogous to std::io::Write) is a reference to any object that implements
OutputStream. The fact that it’s a reference goes without saying. It’s the same
with interfaces in C# and most other languages.

What we want in Rust is the same thing, but in Rust, references are explicit:

let mut buf: Vec<u8> = vec![];
let writer: &mut dyn Write = &mut buf; // ok

A reference to a trait type, like writer, is called a trait object. Like any other
reference, a trait object points to some value, it has a lifetime, and it can be
either mut or shared.

What makes a trait object different is that Rust usually doesn’t know the type
of the referent at compile time. So a trait object includes a little extra
information about the referent’s type. This is strictly for Rust’s own use
behind the scenes: when you call writer.write(data), Rust needs the type
information to dynamically call the right write method depending on the type
of *writer. You can’t query the type information directly, and Rust does not

support downcasting from the trait object &mut dyn Write back to a concrete
type like Vec<u8>.

Trait object layout

In memory, a trait object is a fat pointer consisting of a pointer to the value,
plus a pointer to a table representing that value’s type. Each trait object
therefore takes up two machine words, as shown in Figure 11-1.

Figure 11-1. Trait objects in memory

C++ has this kind of run-time type information as well. It’s called a virtual
table, or vtable. In Rust, as in C++, the vtable is generated once, at compile
time, and shared by all objects of the same type. Everything shown in the
darker shade in Figure 11-1, including the vtable, is a private implementation
detail of Rust. Again, these aren’t fields and data structures that you can
access directly. Instead, the language automatically uses the vtable when you
call a method of a trait object, to determine which implementation to call.

Seasoned C++ programmers will notice that Rust and C++ use memory a bit

differently. In C++, the vtable pointer, or vptr, is stored as part of the struct.
Rust uses fat pointers instead. The struct itself contains nothing but its fields.
This way, a struct can implement dozens of traits without containing dozens
of vptrs. Even types like i32, which aren’t big enough to accommodate a vptr,
can implement traits.

Rust automatically converts ordinary references into trait objects when
needed. This is why we’re able to pass &mut local_file to say_hello in this
example:

let mut local_file = File::create("hello.txt")?;
say_hello(&mut local_file)?;

The type of &mut local_file is &mut File, and the type of the argument to
say_hello is &mut dyn Write. Since a File is a kind of writer, Rust allows
this, automatically converting the plain reference to a trait object.

Likewise, Rust will happily convert a Box<File> to a Box<dyn Write>, a
value that owns a writer in the heap:

let w: Box<dyn Write> = Box::new(local_file);

Box<dyn Write>, like &mut dyn Write, is a fat pointer: it contains the
address of the writer itself and the address of the vtable. The same goes for
other pointer types, like Rc<dyn Write>.

This kind of conversion is the only way to create a trait object. What the
compiler is actually doing here is very simple. At the point where the
conversion happens, Rust knows the referent’s true type (in this case, File),
so it just adds the address of the appropriate vtable, turning the regular
pointer into a fat pointer.

Generic Functions and Type Parameters
At the beginning of this chapter, we showed a say_hello() function that took a
trait object as an argument. Let’s rewrite that function as a generic function:

fn say_hello<W: Write>(out: &mut W) -> std::io::Result<()> {
 out.write_all(b"hello world\n")?;
 out.flush()
}

Only the type signature has changed:

fn say_hello(out: &mut dyn Write) // plain function

fn say_hello<W: Write>(out: &mut W) // generic function

The phrase <W: Write> is what makes the function generic. This is a type
parameter. It means that throughout the body of this function, W stands for
some type that implements the Write trait. Type parameters are usually single
uppercase letters, by convention.

Which type W stands for depends on how the generic function is used:

say_hello(&mut local_file)?; // calls say_hello::<File>
say_hello(&mut bytes)?; // calls say_hello::<Vec<u8>>

When you pass &mut local_file to the generic say_hello() function, you’re
calling say_hello::<File>(). Rust generates machine code for this function
that calls File::write_all() and File::flush(). When you pass &mut bytes,
you’re calling say_hello::<Vec<u8>>(). Rust generates separate machine
code for this version of the function, calling the corresponding Vec<u8>
methods. In both cases, Rust infers the type W from the type of the argument.
This process is known as monomorphization, and the compiler handles it all
automatically.

You can always spell out the type parameters:

say_hello::<File>(&mut local_file)?;

This is seldom necessary, because Rust can usually deduce the type
parameters by looking at the arguments. Here, the say_hello generic function
expects a &mut W argument, and we’re passing it a &mut File, so Rust infers
that W = File.

If the generic function you’re calling doesn’t have any arguments that
provide useful clues, you may have to spell it out:

// calling a generic method collect<C>() that takes no arguments
let v1 = (0 .. 1000).collect(); // error: can't infer type
let v2 = (0 .. 1000).collect::<Vec<i32>>(); // ok

Sometimes we need multiple abilities from a type parameter. For example, if
we want to print out the top ten most common values in a vector, we’ll need
for those values to be printable:

use std::fmt::Debug;

fn top_ten<T: Debug>(values: &Vec<T>) { ... }

But this isn’t good enough. How are we planning to determine which values
are the most common? The usual way is to use the values as keys in a hash
table. That means the values need to support the Hash and Eq operations. The
bounds on T must include these as well as Debug. The syntax for this uses
the + sign:

use std::hash::Hash;
use std::fmt::Debug;

fn top_ten<T: Debug + Hash + Eq>(values: &Vec<T>) { ... }

Some types implement Debug, some implement Hash, some support Eq, and
a few, like u32 and String, implement all three, as shown in Figure 11-2.

Figure 11-2. Traits as sets of types

It’s also possible for a type parameter to have no bounds at all, but you can’t
do much with a value if you haven’t specified any bounds for it. You can
move it. You can put it into a box or vector. That’s about it.

Generic functions can have multiple type parameters:

/// Run a query on a large, partitioned data set.
/// See <http://research.google.com/archive/mapreduce.html>.
fn run_query<M: Mapper + Serialize, R: Reducer + Serialize>(
 data: &DataSet, map: M, reduce: R) -> Results
{ ... }

As this example shows, the bounds can get to be so long that they are hard on
the eyes. Rust provides an alternative syntax using the keyword where:

fn run_query<M, R>(data: &DataSet, map: M, reduce: R) -> Results
 where M: Mapper + Serialize,
 R: Reducer + Serialize
{ ... }

The type parameters M and R are still declared up front, but the bounds are
moved to separate lines. This kind of where clause is also allowed on generic
structs, enums, type aliases, and methods—anywhere bounds are permitted.

Of course, an alternative to where clauses is to keep it simple: find a way to
write the program without using generics quite so intensively.

“Receiving References as Function Arguments” introduced the syntax for
lifetime parameters. A generic function can have both lifetime parameters
and type parameters. Lifetime parameters come first:

/// Return a reference to the point in `candidates` that's
/// closest to the `target` point.
fn nearest<'t, 'c, P>(target: &'t P, candidates: &'c [P]) -> &'c P
 where P: MeasureDistance
{
 ...
}

This function takes two arguments, target and candidates. Both are
references, and we give them distinct lifetimes 't and 'c (as discussed in
“Distinct Lifetime Parameters”). Furthermore, the function works with any
type P that implements the MeasureDistance trait, so we might use it on
Point2d values in one program and Point3d values in another.

Lifetimes never have any impact on machine code. Two calls to nearest()
using the same type P, but different lifetimes, will call the same compiled
function. Only differing types cause Rust to compile multiple copies of a
generic function.

In addition to types and lifetimes, generic functions can take constant
parameters as well, like the Polynomial struct we presented in “Generic
Structs with Constant Parameters”:

fn dot_product<const N: usize>(a: [f64; N], b: [f64; N]) -> f64 {
 let mut sum = 0.;
 for i in 0..N {
 sum += a[i] * b[i];
 }
 sum

}

Here, the phrase <const N: usize> indicates that the function dot_product
expects a generic parameter N, which must be a usize. Given N, the function
takes two arguments of type [f64; N], and adds up the products of their
corresponding elements. What distinguishes N from an ordinary usize
argument is that you can use it in the types in dot_product’s signature or
body.

As with type parameters, you can either provide constant parameters
explicitly, or let Rust infer them:

// Explicitly provide `3` as the value for `N`.
dot_product::<3>([0.2, 0.4, 0.6], [0., 0., 1.])

// Let Rust infer that `N` must be `2`.
dot_product([3., 4.], [-5., 1.])

Of course, functions are not the only kind of generic code in Rust:

We’ve already covered generic types in “Generic Structs” and
“Generic Enums”.

An individual method can be generic, even if the type it’s defined on
is not generic:

impl PancakeStack {

 fn push<T: Topping>(&mut self, goop: T) -> PancakeResult<()> {

 goop.pour(&self);

 self.absorb_topping(goop)

 }

}

Type aliases can be generic, too:

type PancakeResult<T> = Result<T, PancakeError>;

We’ll cover generic traits later in this chapter.

All the features introduced in this section—bounds, where clauses, lifetime
parameters, and so forth—can be used on all generic items, not just functions.

Which to Use
The choice of whether to use trait objects or generic code is subtle. Since
both features are based on traits, they have a lot in common.

Trait objects are the right choice whenever you need a collection of values of
mixed types, all together. It is technically possible to make generic salad:

trait Vegetable {
 ...
}

struct Salad<V: Vegetable> {
 veggies: Vec<V>
}

However, this is a rather severe design. Each such salad consists entirely of a
single type of vegetable. Not everyone is cut out for this sort of thing. One of
your authors once paid $14 for a Salad<IcebergLettuce> and has never quite
gotten over the experience.

How can we build a better salad? Since Vegetable values can be all different
sizes, we can’t ask Rust for a Vec<dyn Vegetable>:

struct Salad {
 veggies: Vec<dyn Vegetable> // error: `dyn Vegetable` does
 // not have a constant size
}

Trait objects are the solution:

struct Salad {
 veggies: Vec<Box<dyn Vegetable>>
}

Each Box<dyn Vegetable> can own any type of vegetable, but the box itself
has a constant size—two pointers—suitable for storing in a vector. Apart
from the unfortunate mixed metaphor of having boxes in one’s food, this is
precisely what’s called for, and it would work out just as well for shapes in a

drawing app, monsters in a game, pluggable routing algorithms in a network
router, and so on.

Another possible reason to use trait objects is to reduce the total amount of
compiled code. Rust may have to compile a generic function many times,
once for each type it’s used with. This could make the binary large, a
phenomenon called code bloat in C++ circles. These days, memory is
plentiful, and most of us have the luxury of ignoring code size; but
constrained environments do exist.

Outside of situations involving salad or low-resource environments, generics
have three important advantages over trait objects, with the result that in
Rust, generics are the more common choice.

The first advantage is speed. Note the absence of the dyn keyword in generic
function signatures. Because you specify the types at compile time, either
explicitly or through type inference, the compiler knows exactly which write
method to call. The dyn keyword isn’t used because there are no trait objects
—and thus no dynamic dispatch—involved.

The generic min() function shown in the introduction is just as fast as if we
had written separate functions min_u8, min_i64, min_string, and so on. The
compiler can inline it, like any other function, so in a release build, a call to
min::<i32> is likely just two or three instructions. A call with constant
arguments, like min(5, 3), will be even faster: Rust can evaluate it at compile
time, so that there’s no run-time cost at all.

Or consider this generic function call:

let mut sink = std::io::sink();
say_hello(&mut sink)?;

std::io::sink() returns a writer of type Sink that quietly discards all bytes
written to it.

When Rust generates machine code for this, it could emit code that calls
Sink::write_all, checks for errors, and then calls Sink::flush. That’s what the
body of the generic function says to do.

Or, Rust could look at those methods and realize the following:

Sink::write_all() does nothing.

Sink::flush() does nothing.

Neither method ever returns an error.

In short, Rust has all the information it needs to optimize away this function
call entirely.

Compare that to the behavior with trait objects. Rust never knows what type
of value a trait object points to until run time. So even if you pass a Sink, the
overhead of calling virtual methods and checking for errors still applies.

The second advantage of generics is that not every trait can support trait
objects. Traits support several features, such as associated functions, that
work only with generics: they rule out trait objects entirely. We’ll point out
these features as we come to them.

The third advantage of generics is that it’s easy to bound a generic type
parameter with several traits at once, as our top_ten function did when it
required its T parameter to implement Debug + Hash + Eq. Trait objects can’t
do this: types like &mut (dyn Debug + Hash + Eq) aren’t supported in Rust.
(You can work around this with subtraits, defined later in this chapter, but it’s
a bit involved.)

Defining and Implementing Traits
Defining a trait is simple. Give it a name and list the type signatures of the
trait methods. If we’re writing a game, we might have a trait like this:

/// A trait for characters, items, and scenery -
/// anything in the game world that's visible on screen.
trait Visible {
 /// Render this object on the given canvas.
 fn draw(&self, canvas: &mut Canvas);

 /// Return true if clicking at (x, y) should
 /// select this object.
 fn hit_test(&self, x: i32, y: i32) -> bool;
}

To implement a trait, use the syntax impl TraitName for Type:

impl Visible for Broom {
 fn draw(&self, canvas: &mut Canvas) {
 for y in self.y - self.height - 1 .. self.y {
 canvas.write_at(self.x, y, '|');
 }
 canvas.write_at(self.x, self.y, 'M');
 }

 fn hit_test(&self, x: i32, y: i32) -> bool {
 self.x == x
 && self.y - self.height - 1 <= y
 && y <= self.y
 }
}

Note that this impl contains an implementation for each method of the
Visible trait, and nothing else. Everything defined in a trait impl must
actually be a feature of the trait; if we wanted to add a helper method in
support of Broom::draw(), we would have to define it in a separate impl
block:

impl Broom {

 /// Helper function used by Broom::draw() below.
 fn broomstick_range(&self) -> Range<i32> {
 self.y - self.height - 1 .. self.y
 }
}

These helper functions can be used within the trait impl blocks:

impl Visible for Broom {
 fn draw(&self, canvas: &mut Canvas) {
 for y in self.broomstick_range() {
 ...
 }
 ...
 }
 ...
}

Default Methods
The Sink writer type we discussed earlier can be implemented in a few lines
of code. First, we define the type:

/// A Writer that ignores whatever data you write to it.
pub struct Sink;

Sink is an empty struct, since we don’t need to store any data in it. Next, we
provide an implementation of the Write trait for Sink:

use std::io::{Write, Result};

impl Write for Sink {
 fn write(&mut self, buf: &[u8]) -> Result<usize> {
 // Claim to have successfully written the whole buffer.
 Ok(buf.len())
 }

 fn flush(&mut self) -> Result<()> {
 Ok(())
 }
}

So far, this is very much like the Visible trait. But we have also seen that the
Write trait has a write_all method:

let mut out = Sink;
out.write_all(b"hello world\n")?;

Why does Rust let us impl Write for Sink without defining this method? The
answer is that the standard library’s definition of the Write trait contains a
default implementation for write_all:

trait Write {
 fn write(&mut self, buf: &[u8]) -> Result<usize>;
 fn flush(&mut self) -> Result<()>;

 fn write_all(&mut self, buf: &[u8]) -> Result<()> {
 let mut bytes_written = 0;

 while bytes_written < buf.len() {
 bytes_written += self.write(&buf[bytes_written..])?;
 }
 Ok(())
 }

 ...
}

The write and flush methods are the basic methods that every writer must
implement. A writer may also implement write_all, but if not, the default
implementation shown earlier will be used.

Your own traits can include default implementations using the same syntax.

The most dramatic use of default methods in the standard library is the
Iterator trait, which has one required method (.next()) and dozens of default
methods. Chapter 15 explains why.

Traits and Other People’s Types
Rust lets you implement any trait on any type, as long as either the trait or the
type is introduced in the current crate.

This means that any time you want to add a method to any type, you can use
a trait to do it:

trait IsEmoji {
 fn is_emoji(&self) -> bool;
}

/// Implement IsEmoji for the built-in character type.
impl IsEmoji for char {
 fn is_emoji(&self) -> bool {
 ...
 }
}

assert_eq!('$'.is_emoji(), false);

Like any other trait method, this new is_emoji method is only visible when
IsEmoji is in scope.

The sole purpose of this particular trait is to add a method to an existing type,
char. This is called an extension trait. Of course, you can add this trait to
types, too, by writing impl IsEmoji for str { ... } and so forth.

You can even use a generic impl block to add an extension trait to a whole
family of types at once. This trait could be implemented on any type:

use std::io::{self, Write};

/// Trait for values to which you can send HTML.
trait WriteHtml {
 fn write_html(&mut self, html: &HtmlDocument) -> io::Result<()>;
}

Implementing the trait for all writers makes it an extension trait, adding a
method to all Rust writers:

/// You can write HTML to any std::io writer.
impl<W: Write> WriteHtml for W {
 fn write_html(&mut self, html: &HtmlDocument) -> io::Result<()> {
 ...
 }
}

The line impl<W: Write> WriteHtml for W means “for every type W that
implements Write, here’s an implementation of WriteHtml for W.”

The serde library offers a nice example of how useful it can be to implement
user-defined traits on standard types. serde is a serialization library. That is,
you can use it to write Rust data structures to disk and reload them later. The
library defines a trait, Serialize, that’s implemented for every data type the
library supports. So in the serde source code, there is code implementing
Serialize for bool, i8, i16, i32, array and tuple types, and so on, through all
the standard data structures like Vec and HashMap.

The upshot of all this is that serde adds a .serialize() method to all these
types. It can be used like this:

use serde::Serialize;
use serde_json;

pub fn save_configuration(config: &HashMap<String, String>)
 -> std::io::Result<()>
{
 // Create a JSON serializer to write the data to a file.
 let writer = File::create(config_filename())?;
 let mut serializer = serde_json::Serializer::new(writer);

 // The serde `.serialize()` method does the rest.
 config.serialize(&mut serializer)?;

 Ok(())
}

We said earlier that when you implement a trait, either the trait or the type
must be new in the current crate. This is called the orphan rule. It helps Rust
ensure that trait implementations are unique. Your code can’t impl Write for
u8, because both Write and u8 are defined in the standard library. If Rust let

crates do that, there could be multiple implementations of Write for u8, in
different crates, and Rust would have no reasonable way to decide which
implementation to use for a given method call.

(C++ has a similar uniqueness restriction: the One Definition Rule. In typical
C++ fashion, it isn’t enforced by the compiler, except in the simplest cases,
and you get undefined behavior if you break it.)

Self in Traits
A trait can use the keyword Self as a type. The standard Clone trait, for
example, looks like this (slightly simplified):

pub trait Clone {
 fn clone(&self) -> Self;
 ...
}

Using Self as the return type here means that the type of x.clone() is the same
as the type of x, whatever that might be. If x is a String, then the type of
x.clone() is String—not dyn Clone or any other cloneable type.

Likewise, if we define this trait:

pub trait Spliceable {
 fn splice(&self, other: &Self) -> Self;
}

with two implementations:

impl Spliceable for CherryTree {
 fn splice(&self, other: &Self) -> Self {
 ...
 }
}

impl Spliceable for Mammoth {
 fn splice(&self, other: &Self) -> Self {
 ...
 }
}

then inside the first impl, Self is simply an alias for CherryTree, and in the
second, it’s an alias for Mammoth. This means that we can splice together
two cherry trees or two mammoths, not that we can create a mammoth-cherry
hybrid. The type of self and the type of other must match.

A trait that uses the Self type is incompatible with trait objects:

// error: the trait `Spliceable` cannot be made into an object
fn splice_anything(left: &dyn Spliceable, right: &dyn Spliceable) {
 let combo = left.splice(right);
 // ...
}

The reason is something we’ll see again and again as we dig into the
advanced features of traits. Rust rejects this code because it has no way to
type-check the call left.splice(right). The whole point of trait objects is that
the type isn’t known until run time. Rust has no way to know at compile time
if left and right will be the same type, as required.

Trait objects are really intended for the simplest kinds of traits, the kinds that
could be implemented using interfaces in Java or abstract base classes in
C++. The more advanced features of traits are useful, but they can’t coexist
with trait objects because with trait objects, you lose the type information
Rust needs to type-check your program.

Now, had we wanted genetically improbable splicing, we could have
designed a trait-object-friendly trait:

pub trait MegaSpliceable {
 fn splice(&self, other: &dyn MegaSpliceable) -> Box<dyn MegaSpliceable>;
}

This trait is compatible with trait objects. There’s no problem type-checking
calls to this .splice() method because the type of the argument other is not
required to match the type of self, as long as both types are MegaSpliceable.

Subtraits
We can declare that a trait is an extension of another trait:

/// Someone in the game world, either the player or some other
/// pixie, gargoyle, squirrel, ogre, etc.
trait Creature: Visible {
 fn position(&self) -> (i32, i32);
 fn facing(&self) -> Direction;
 ...
}

The phrase trait Creature: Visible means that all creatures are visible. Every
type that implements Creature must also implement the Visible trait:

impl Visible for Broom {
 ...
}

impl Creature for Broom {
 ...
}

We can implement the two traits in either order, but it’s an error to implement
Creature for a type without also implementing Visible. Here, we say that
Creature is a subtrait of Visible, and that Visible is Creature’s supertrait.

Subtraits resemble subinterfaces in Java or C#, in that users can assume that
any value that implements a subtrait implements its supertrait as well. But in
Rust, a subtrait does not inherit the associated items of its supertrait; each
trait still needs to be in scope if you want to call its methods.

In fact, Rust’s subtraits are really just a shorthand for a bound on Self. A
definition of Creature like this is exactly equivalent to the one shown earlier:

trait Creature where Self: Visible {
 ...
}

Type-Associated Functions
In most object-oriented languages, interfaces can’t include static methods or
constructors, but traits can include type-associated functions, Rust’s analog to
static methods:

trait StringSet {
 /// Return a new empty set.
 fn new() -> Self;

 /// Return a set that contains all the strings in `strings`.
 fn from_slice(strings: &[&str]) -> Self;

 /// Find out if this set contains a particular `value`.
 fn contains(&self, string: &str) -> bool;

 /// Add a string to this set.
 fn add(&mut self, string: &str);
}

Every type that implements the StringSet trait must implement these four
associated functions. The first two, new() and from_slice(), don’t take a self
argument. They serve as constructors. In nongeneric code, these functions
can be called using :: syntax, just like any other type-associated function:

// Create sets of two hypothetical types that impl StringSet:
let set1 = SortedStringSet::new();
let set2 = HashedStringSet::new();

In generic code, it’s the same, except the type is often a type variable, as in
the call to S::new() shown here:

/// Return the set of words in `document` that aren't in `wordlist`.
fn unknown_words<S: StringSet>(document: &[String], wordlist: &S) -> S {
 let mut unknowns = S::new();
 for word in document {
 if !wordlist.contains(word) {
 unknowns.add(word);
 }
 }

 unknowns
}

Like Java and C# interfaces, trait objects don’t support type-associated
functions. If you want to use &dyn StringSet trait objects, you must change
the trait, adding the bound where Self: Sized to each associated function that
doesn’t take a self argument by reference:

trait StringSet {
 fn new() -> Self
 where Self: Sized;

 fn from_slice(strings: &[&str]) -> Self
 where Self: Sized;

 fn contains(&self, string: &str) -> bool;

 fn add(&mut self, string: &str);
}

This bound tells Rust that trait objects are excused from supporting this
particular associated function. With these additions, StringSet trait objects are
allowed; they still don’t support new or from_slice, but you can create them
and use them to call .contains() and .add(). The same trick works for any
other method that is incompatible with trait objects. (We will forgo the rather
tedious technical explanation of why this works, but the Sized trait is covered
in Chapter 13.)

Fully Qualified Method Calls
All the ways for calling trait methods we’ve seen so far rely on Rust filling in
some missing pieces for you. For example, suppose you write the following:

"hello".to_string()

It’s understood that to_string refers to the to_string method of the ToString
trait, of which we’re calling the str type’s implementation. So there are four
players in this game: the trait, the method of that trait, the implementation of
that method, and the value to which that implementation is being applied. It’s
great that we don’t have to spell all that out every time we want to call a
method. But in some cases you need a way to say exactly what you mean.
Fully qualified method calls fit the bill.

First of all, it helps to know that a method is just a special kind of function.
These two calls are equivalent:

"hello".to_string()

str::to_string("hello")

The second form looks exactly like a associated function call. This works
even though the to_string method takes a self argument. Simply pass self as
the function’s first argument.

Since to_string is a method of the standard ToString trait, there are two more
forms you can use:

ToString::to_string("hello")

<str as ToString>::to_string("hello")

All four of these method calls do exactly the same thing. Most often, you’ll
just write value.method(). The other forms are qualified method calls. They
specify the type or trait that a method is associated with. The last form, with

the angle brackets, specifies both: a fully qualified method call.

When you write "hello".to_string(), using the . operator, you don’t say
exactly which to_string method you’re calling. Rust has a method lookup
algorithm that figures this out, depending on the types, deref coercions, and
so on. With fully qualified calls, you can say exactly which method you
mean, and that can help in a few odd cases:

When two methods have the same name. The classic hokey example
is the Outlaw with two .draw() methods from two different traits,
one for drawing it on the screen and one for interacting with the law:

outlaw.draw(); // error: draw on screen or draw pistol?

Visible::draw(&outlaw); // ok: draw on screen

HasPistol::draw(&outlaw); // ok: corral

Usually you’re better off renaming one of the methods, but
sometimes you can’t.

When the type of the self argument can’t be inferred:

let zero = 0; // type unspecified; could be `i8`, `u8`, ...

zero.abs(); // error: can't call method `abs`

 // on ambiguous numeric type

i64::abs(zero); // ok

When using the function itself as a function value:

let words: Vec<String> =

 line.split_whitespace() // iterator produces &str values

 .map(ToString::to_string) // ok

 .collect();

When calling trait methods in macros. We’ll explain in Chapter 21.

Fully qualified syntax also works for associated functions. In the previous
section, we wrote S::new() to create a new set in a generic function. We could
also have written StringSet::new() or <S as StringSet>::new().

Traits That Define Relationships Between Types
So far, every trait we’ve looked at stands alone: a trait is a set of methods that
types can implement. Traits can also be used in situations where there are
multiple types that have to work together. They can describe relationships
between types.

The std::iter::Iterator trait relates each iterator type with the type of
value it produces.

The std::ops::Mul trait relates types that can be multiplied. In the
expression a * b, the values a and b can be either the same type, or
different types.

The rand crate includes both a trait for random number generators
(rand::Rng) and a trait for types that can be randomly generated
(rand::Distribution). The traits themselves define exactly how these
types work together.

You won’t need to create traits like these every day, but you’ll come across
them throughout the standard library and in third-party crates. In this section,
we’ll show how each of these examples is implemented, picking up relevant
Rust language features as we need them. The key skill here is the ability to
read traits and method signatures and figure out what they say about the types
involved.

Associated Types (or How Iterators Work)
We’ll start with iterators. By now every object-oriented language has some
sort of built-in support for iterators, objects that represent the traversal of
some sequence of values.

Rust has a standard Iterator trait, defined like this:

pub trait Iterator {
 type Item;

 fn next(&mut self) -> Option<Self::Item>;
 ...
}

The first feature of this trait, type Item;, is an associated type. Each type that
implements Iterator must specify what type of item it produces.

The second feature, the next() method, uses the associated type in its return
value. next() returns an Option<Self::Item>: either Some(item), the next
value in the sequence, or None when there are no more values to visit. The
type is written as Self::Item, not just plain Item, because Item is a feature of
each type of iterator, not a standalone type. As always, self and the Self type
show up explicitly in the code everywhere their fields, methods, and so on are
used.

Here’s what it looks like to implement Iterator for a type:

// (code from the std::env standard library module)
impl Iterator for Args {
 type Item = String;

 fn next(&mut self) -> Option<String> {
 ...
 }
 ...
}

std::env::Args is the type of iterator returned by the standard library function

std::env::args() that we used in Chapter 2 to access command-line arguments.
It produces String values, so the impl declares type Item = String;.

Generic code can use associated types:

/// Loop over an iterator, storing the values in a new vector.
fn collect_into_vector<I: Iterator>(iter: I) -> Vec<I::Item> {
 let mut results = Vec::new();
 for value in iter {
 results.push(value);
 }
 results
}

Inside the body of this function, Rust infers the type of value for us, which is
nice; but we must spell out the return type of collect_into_vector, and the
Item associated type is the only way to do that. (Vec<I> would be simply
wrong: we would be claiming to return a vector of iterators!)

The preceding example is not code that you would write out yourself,
because after reading Chapter 15, you’ll know that iterators already have a
standard method that does this: iter.collect(). So let’s look at one more
example before moving on:

/// Print out all the values produced by an iterator
fn dump<I>(iter: I)
 where I: Iterator
{
 for (index, value) in iter.enumerate() {
 println!("{}: {:?}", index, value); // error
 }
}

This almost works. There is just one problem: value might not be a printable
type.

error: `<I as Iterator>::Item` doesn't implement `Debug`
 |
8 | println!("{}: {:?}", index, value); // error
 | ^^^^^
 | `<I as Iterator>::Item` cannot be formatted

 | using `{:?}` because it doesn't implement `Debug`
 |
 = help: the trait `Debug` is not implemented for `<I as Iterator>::Item`
 = note: required by `std::fmt::Debug::fmt`
help: consider further restricting the associated type
 |
5 | where I: Iterator, <I as Iterator>::Item: Debug
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The error message is slightly obfuscated by Rust’s use of the syntax <I as
Iterator>::Item, which is an explicit but verbose way of saying I::Item. This is
valid Rust syntax, but you’ll rarely actually need to write a type out that way.

The gist of the error message is that to make this generic function compile,
we must ensure that I::Item implements the Debug trait, the trait for
formatting values with {:?}. As the error message suggests, we can do this by
placing a bound on I::Item:

use std::fmt::Debug;

fn dump<I>(iter: I)
 where I: Iterator, I::Item: Debug
{
 ...
}

Or, we could write, “I must be an iterator over String values”:

fn dump<I>(iter: I)
 where I: Iterator<Item=String>
{
 ...
}

Iterator<Item=String> is itself a trait. If you think of Iterator as the set of all
iterator types, then Iterator<Item=String> is a subset of Iterator: the set of
iterator types that produce Strings. This syntax can be used anywhere the
name of a trait can be used, including trait object types:

fn dump(iter: &mut dyn Iterator<Item=String>) {
 for (index, s) in iter.enumerate() {

 println!("{}: {:?}", index, s);
 }
}

Traits with associated types, like Iterator, are compatible with trait methods,
but only if all the associated types are spelled out, as shown here. Otherwise,
the type of s could be anything, and again, Rust would have no way to type-
check this code.

We’ve shown a lot of examples involving iterators. It’s hard not to; they’re
by far the most prominent use of associated types. But associated types are
generally useful whenever a trait needs to cover more than just methods:

In a thread pool library, a Task trait, representing a unit of work,
could have an associated Output type.

A Pattern trait, representing a way of searching a string, could have
an associated Match type, representing all the information gathered
by matching the pattern to the string:

trait Pattern {

 type Match;

 fn search(&self, string: &str) -> Option<Self::Match>;

}

/// You can search a string for a particular character.

impl Pattern for char {

 /// A "match" is just the location where the

 /// character was found.

 type Match = usize;

 fn search(&self, string: &str) -> Option<usize> {

 ...

 }

}

If you’re familiar with regular expressions, it’s easy to see how impl
Pattern for RegExp would have a more elaborate Match type,
probably a struct that would include the start and length of the
match, the locations where parenthesized groups matched, and so on.

A library for working with relational databases might have a
DatabaseConnection trait with associated types representing
transactions, cursors, prepared statements, and so on.

Associated types are perfect for cases where each implementation has one
specific related type: each type of Task produces a particular type of Output;
each type of Pattern looks for a particular type of Match. However, as we’ll
see, some relationships among types are not like this.

Generic Traits (or How Operator Overloading Works)
Multiplication in Rust uses this trait:

/// std::ops::Mul, the trait for types that support `*`.
pub trait Mul<RHS> {
 /// The resulting type after applying the `*` operator
 type Output;

 /// The method for the `*` operator
 fn mul(self, rhs: RHS) -> Self::Output;
}

Mul is a generic trait. The type parameter, RHS, is short for righthand side.

The type parameter here means the same thing that it means on a struct or
function: Mul is a generic trait, and its instances Mul<f64>, Mul<String>,
Mul<Size>, etc., are all different traits, just as min::<i32> and min::<String>
are different functions and Vec<i32> and Vec<String> are different types.

A single type—say, WindowSize—can implement both Mul<f64> and
Mul<i32>, and many more. You would then be able to multiply a
WindowSize by many other types. Each implementation would have its own
associated Output type.

Generic traits get a special dispensation when it comes to the orphan rule:
you can implement a foreign trait for a foreign type, so long as one of the
trait’s type parameters is a type defined in the current crate. So, if you’ve
defined WindowSize yourself, you can implement Mul<WindowSize> for
f64, even though you didn’t define either Mul or f64. These implementations
can even be generic, such as impl<T> Mul<WindowSize> for Vec<T>. This
works because there’s no way any other crate could define
Mul<WindowSize> on anything, and thus no way a conflict among
implementations could arise. (We introduced the orphan rule back in “Traits
and Other People’s Types”.) This is how crates like nalgebra define
arithmetic operations on vectors.

The trait shown earlier is missing one minor detail. The real Mul trait looks

like this:

pub trait Mul<RHS=Self> {
 ...
}

The syntax RHS=Self means that RHS defaults to Self. If I write impl Mul
for Complex, without specifying Mul’s type parameter, it means impl
Mul<Complex> for Complex. In a bound, if I write where T: Mul, it means
where T: Mul<T>.

In Rust, the expression lhs * rhs is shorthand for Mul::mul(lhs, rhs). So
overloading the * operator in Rust is as simple as implementing the Mul trait.
We’ll show examples in the next chapter.

impl Trait
As you might imagine, combinations of many generic types can get messy.
For example, combining just a few iterators using standard library
combinators rapidly turns your return type into an eyesore:

use std::iter;
use std::vec::IntoIter;
fn cyclical_zip(v: Vec<u8>, u: Vec<u8>) ->
 iter::Cycle<iter::Chain<IntoIter<u8>, IntoIter<u8>>> {
 v.into_iter().chain(u.into_iter()).cycle()
}

We could easily replace this hairy return type with a trait object:

fn cyclical_zip(v: Vec<u8>, u: Vec<u8>) -> Box<dyn Iterator<Item=u8>> {
 Box::new(v.into_iter().chain(u.into_iter()).cycle())
}

However, taking the overhead of dynamic dispatch and an unavoidable heap
allocation every time this function is called just to avoid an ugly type
signature doesn’t seem like a good trade, in most cases.

Rust has a feature called impl Trait designed for precisely this situation. impl
Trait allows us to “erase” the type of a return value, specifying only the trait
or traits it implements, without dynamic dispatch or a heap allocation:

fn cyclical_zip(v: Vec<u8>, u: Vec<u8>) -> impl Iterator<Item=u8> {
 v.into_iter().chain(u.into_iter()).cycle()
}

Now, rather than specifying a particular nested type of iterator combinator
structs, cyclical_zip’s signature just states that it returns some kind of iterator
over u8. The return type expresses the intent of the function, rather than its
implementation details.

This has definitely cleaned up the code and made it more readable, but impl
Trait is more than just a convenient shorthand. Using impl Trait means that

you can change the actual type being returned in the future as long as it still
implements Iterator<Item=u8>, and any code calling the function will
continue to compile without an issue. This provides a lot of flexibility for
library authors, because only the relevant functionality is encoded in the type
signature.

For example, if the first version of a library uses iterator combinators as in
the preceding, but a better algorithm for the same process is discovered, the
library author can use different combinators or even make a custom type that
implements Iterator, and users of the library can get the performance
improvements without changing their code at all.

It might be tempting to use impl Trait to approximate a statically dispatched
version of the factory pattern that’s commonly used in object-oriented
languages. For example, you might define a trait like this:

trait Shape {
 fn new() -> Self;
 fn area(&self) -> f64;
}

After implementing it for a few types, you might want to use different Shapes
depending on a run-time value, like a string that a user enters. This doesn’t
work with impl Shape as the return type:

fn make_shape(shape: &str) -> impl Shape {
 match shape {
 "circle" => Circle::new(),
 "triangle" => Triangle::new(), // error: incompatible types
 "shape" => Rectangle::new(),
 }
}

From the perspective of the caller, a function like this doesn’t make much
sense. impl Trait is a form of static dispatch, so the compiler has to know the
type being returned from the function at compile time in order to allocate the
right amount of space on the stack and correctly access fields and methods on
that type. Here, it could be Circle, Triangle, or Rectangle, which could all

take up different amounts of space and all have different implementations of
area().

It’s important to note that Rust doesn’t allow trait methods to use impl Trait
return values. Supporting this will require some improvements in the
languages’s type system. Until that work is done, only free functions and
functions associated with specific types can use impl Trait returns.

impl Trait can also be used in functions that take generic arguments. For
instance, consider this simple generic function:

fn print<T: Display>(val: T) {
 println!("{}", val);
}

It is identical to this version using impl Trait:

fn print(val: impl Display) {
 println!("{}", val);
}

There is one important exception. Using generics allows callers of the
function to specify the type of the generic arguments, like print::<i32>(42),
while using impl Trait does not.

Each impl Trait argument is assigned its own anonymous type parameter, so
impl Trait for arguments is limited to only the simplest generic functions,
with no relationships between the types of arguments.

Associated Consts
Like structs and enums, traits can have associated constants. You can declare
a trait with an associated constant using the same syntax as for a struct or
enum:

trait Greet {
 const GREETING: &'static str = "Hello";
 fn greet(&self) -> String;
}

Associated consts in traits have a special power, though. Like associated
types and functions, you can declare them but not give them a value:

trait Float {
 const ZERO: Self;
 const ONE: Self;
}

Then, implementors of the trait can define these values:

impl Float for f32 {
 const ZERO: f32 = 0.0;
 const ONE: f32 = 1.0;
}

impl Float for f64 {
 const ZERO: f64 = 0.0;
 const ONE: f64 = 1.0;
}

This allows you to write generic code that uses these values:

fn add_one<T: Float + Add<Output=T>>(value: T) -> T {
 value + T::ONE
}

Note that associated constants can’t be used with trait objects, since the
compiler relies on type information about the implementation in order to pick

the right value at compile time.

Even a simple trait with no behavior at all, like Float, can give enough
information about a type, in combination with a few operators, to implement
common mathematical functions like Fibonacci:

fn fib<T: Float + Add<Output=T>>(n: usize) -> T {
 match n {
 0 => T::ZERO,
 1 => T::ONE,
 n => fib::<T>(n - 1) + fib::<T>(n - 2)
 }
}

In the last two sections, we’ve shown different ways traits can describe
relationships between types. All of these can also be seen as ways of avoiding
virtual method overhead and downcasts, since they allow Rust to know more
concrete types at compile time.

Reverse-Engineering Bounds
Writing generic code can be a real slog when there’s no single trait that does
everything you need. Suppose we have written this nongeneric function to do
some computation:

fn dot(v1: &[i64], v2: &[i64]) -> i64 {
 let mut total = 0;
 for i in 0 .. v1.len() {
 total = total + v1[i] * v2[i];
 }
 total
}

Now we want to use the same code with floating-point values. We might try
something like this:

fn dot<N>(v1: &[N], v2: &[N]) -> N {
 let mut total: N = 0;
 for i in 0 .. v1.len() {
 total = total + v1[i] * v2[i];
 }
 total
}

No such luck: Rust complains about the use of * and the type of 0. We can
require N to be a type that supports + and * using the Add and Mul traits. Our
use of 0 needs to change, though, because 0 is always an integer in Rust; the
corresponding floating-point value is 0.0. Fortunately, there is a standard
Default trait for types that have default values. For numeric types, the default
is always 0:

use std::ops::{Add, Mul};

fn dot<N: Add + Mul + Default>(v1: &[N], v2: &[N]) -> N {
 let mut total = N::default();
 for i in 0 .. v1.len() {
 total = total + v1[i] * v2[i];
 }

 total
}

This is closer, but still does not quite work:

error: mismatched types
 |
5 | fn dot<N: Add + Mul + Default>(v1: &[N], v2: &[N]) -> N {
 | - this type parameter
...
8 | total = total + v1[i] * v2[i];
 | ^^^^^^^^^^^^^ expected type parameter `N`,
 | found associated type
 |
 = note: expected type parameter `N`
 found associated type `<N as Mul>::Output`
help: consider further restricting this bound
 |
5 | fn dot<N: Add + Mul + Default + Mul<Output = N>>(v1: &[N], v2: &[N]) -> N {
 | ^^^^^^^^^^^^^^^^^

Our new code assumes that multiplying two values of type N produces
another value of type N. This isn’t necessarily the case. You can overload the
multiplication operator to return whatever type you want. We need to
somehow tell Rust that this generic function only works with types that have
the normal flavor of multiplication, where multiplying N * N returns an N.
The suggestion in the error message is almost right: we can do this by
replacing Mul with Mul<Output=N>, and the same for Add:

fn dot<N: Add<Output=N> + Mul<Output=N> + Default>(v1: &[N], v2: &[N]) -> N
{
 ...
}

At this point, the bounds are starting to pile up, making the code hard to read.
Let’s move the bounds into a where clause:

fn dot<N>(v1: &[N], v2: &[N]) -> N
 where N: Add<Output=N> + Mul<Output=N> + Default
{
 ...

}

Great. But Rust still complains about this line of code:

error: cannot move out of type `[N]`, a non-copy slice
 |
8 | total = total + v1[i] * v2[i];
 | ^^^^^
 | |
 | cannot move out of here
 | move occurs because `v1[_]` has type `N`,
 | which does not implement the `Copy` trait

Since we haven’t required N to be a copyable type, Rust interprets v1[i] as an
attempt to move a value out of the slice, which is forbidden. But we don’t
want to modify the slice at all; we just want to copy the values out to operate
on them. Fortunately, all of Rust’s built-in numeric types implement Copy, so
we can simply add that to our constraints on N:

where N: Add<Output=N> + Mul<Output=N> + Default + Copy

With this, the code compiles and runs. The final code looks like this:

use std::ops::{Add, Mul};

fn dot<N>(v1: &[N], v2: &[N]) -> N
 where N: Add<Output=N> + Mul<Output=N> + Default + Copy
{
 let mut total = N::default();
 for i in 0 .. v1.len() {
 total = total + v1[i] * v2[i];
 }
 total
}

#[test]
fn test_dot() {
 assert_eq!(dot(&[1, 2, 3, 4], &[1, 1, 1, 1]), 10);
 assert_eq!(dot(&[53.0, 7.0], &[1.0, 5.0]), 88.0);
}

This occasionally happens in Rust: there is a period of intense arguing with

the compiler, at the end of which the code looks rather nice, as if it had been
a breeze to write, and runs beautifully.

What we’ve been doing here is reverse-engineering the bounds on N, using
the compiler to guide and check our work. The reason it was a bit of a pain is
that there wasn’t a single Number trait in the standard library that included all
the operators and methods we wanted to use. As it happens, there’s a popular
open source crate called num that defines such a trait! Had we known, we
could have added num to our Cargo.toml and written:

use num::Num;

fn dot<N: Num + Copy>(v1: &[N], v2: &[N]) -> N {
 let mut total = N::zero();
 for i in 0 .. v1.len() {
 total = total + v1[i] * v2[i];
 }
 total
}

Just as in object-oriented programming, the right interface makes everything
nice, in generic programming, the right trait makes everything nice.

Still, why go to all this trouble? Why didn’t Rust’s designers make the
generics more like C++ templates, where the constraints are left implicit in
the code, à la “duck typing”?

One advantage of Rust’s approach is forward compatibility of generic code.
You can change the implementation of a public generic function or method,
and if you didn’t change the signature, you haven’t broken any of its users.

Another advantage of bounds is that when you do get a compiler error, at
least the compiler can tell you where the trouble is. C++ compiler error
messages involving templates can be much longer than Rust’s, pointing at
many different lines of code, because the compiler has no way to tell who’s
to blame for a problem: the template, or its caller, which might also be a
template, or that template’s caller...

Perhaps the most important advantage of writing out the bounds explicitly is
simply that they are there, in the code and in the documentation. You can

look at the signature of a generic function in Rust and see exactly what kind
of arguments it accepts. The same can’t be said for templates. The work that
goes into fully documenting argument types in C++ libraries like Boost is
even more arduous than what we went through here. The Boost developers
don’t have a compiler that checks their work.

Traits as a Foundation
Traits are one of the main organizing features in Rust, and with good reason.
There’s nothing better to design a program or library around than a good
interface.

This chapter was a blizzard of syntax, rules, and explanations. Now that
we’ve laid a foundation, we can start talking about the many ways traits and
generics are used in Rust code. The fact is, we’ve only begun to scratch the
surface. The next two chapters cover common traits provided by the standard
library. Upcoming chapters cover closures, iterators, input/output, and
concurrency. Traits and generics play a central role in all of these topics.

Chapter 12. Operator Overloading

In the Mandelbrot set plotter we showed in Chapter 2, we used the num
crate’s Complex type to represent a number on the complex plane:

#[derive(Clone, Copy, Debug)]
struct Complex<T> {
 /// Real portion of the complex number
 re: T,

 /// Imaginary portion of the complex number
 im: T,
}

We were able to add and multiply Complex numbers just like any built-in
numeric type, using Rust’s + and * operators:

z = z * z + c;

You can make your own types support arithmetic and other operators, too,
just by implementing a few built-in traits. This is called operator
overloading, and the effect is much like operator overloading in C++, C#,
Python, and Ruby.

The traits for operator overloading fall into a few categories depending on
what part of the language they support, as shown in Table 12-1. In this
chapter, we’ll cover each category. Our goal is not just to help you integrate
your own types nicely into the language, but also to give you a better sense of
how to write generic functions like the dot product function described in
“Reverse-Engineering Bounds” that operate on types most naturally used via
these operators. The chapter should also give some insight into how some
features of the language itself are implemented.

Table 12-1. Summary of traits for operator overloading

Category Trait Operator

Unary operators std::ops::Neg -x

std::ops::Not !x

Arithmetic operators std::ops::Add x + y

std::ops::Sub x - y

std::ops::Mul x * y

std::ops::Div x / y

std::ops::Rem x % y

Bitwise operators std::ops::BitAnd x & y

std::ops::BitOr x | y

std::ops::BitXor x ^ y

std::ops::Shl x << y

std::ops::Shr x >> y

Compound assignment
arithmetic operators

std::ops::AddAssign x += y

std::ops::SubAssign x -= y

std::ops::MulAssign x *= y

std::ops::DivAssign x /= y

std::ops::RemAssign x %= y

Compound assignment
bitwise operators

std::ops::BitAndAssign x &= y

std::ops::BitOrAssign x |= y

std::ops::BitXorAssign x ^= y

std::ops::ShlAssign x <<= y

std::ops::ShrAssign x >>= y

Comparison std::cmp::PartialEq x == y, x != y

std::cmp::PartialOrd x < y, x <= y, x > y, x >= y

Indexing std::ops::Index x[y], &x[y]

std::ops::IndexMut x[y] = z, &mut x[y]

Arithmetic and Bitwise Operators
In Rust, the expression a + b is actually shorthand for a.add(b), a call to the
add method of the standard library’s std::ops::Add trait. Rust’s standard
numeric types all implement std::ops::Add. To make the expression a + b
work for Complex values, the num crate implements this trait for Complex as
well. Similar traits cover the other operators: a * b is shorthand for a.mul(b),
a method from the std::ops::Mul trait, std::ops::Neg covers the prefix -
negation operator, and so on.

If you want to try writing out z.add(c), you’ll need to bring the Add trait into
scope so that its method is visible. That done, you can treat all arithmetic as
function calls:

use std::ops::Add;

assert_eq!(4.125f32.add(5.75), 9.875);
assert_eq!(10.add(20), 10 + 20);

Here’s the definition of std::ops::Add:

trait Add<Rhs = Self> {
 type Output;
 fn add(self, rhs: Rhs) -> Self::Output;
}

In other words, the trait Add<T> is the ability to add a T value to yourself.
For example, if you want to be able to add i32 and u32 values to your type,
your type must implement both Add<i32> and Add<u32>. The trait’s type
parameter Rhs defaults to Self, so if you’re implementing addition between
two values of the same type, you can simply write Add for that case. The
associated type Output describes the result of the addition.

For example, to be able to add Complex<i32> values together,
Complex<i32> must implement Add<Complex<i32>>. Since we’re adding a
type to itself, we just write Add:

1

use std::ops::Add;

impl Add for Complex<i32> {
 type Output = Complex<i32>;
 fn add(self, rhs: Self) -> Self {
 Complex {
 re: self.re + rhs.re,
 im: self.im + rhs.im,
 }
 }
}

Of course, we shouldn’t have to implement Add separately for
Complex<i32>, Complex<f32>, Complex<f64>, and so on. All the
definitions would look exactly the same except for the types involved, so we
should be able to write a single generic implementation that covers them all,
as long as the type of the complex components themselves supports addition:

use std::ops::Add;

impl<T> Add for Complex<T>
where
 T: Add<Output = T>,
{
 type Output = Self;
 fn add(self, rhs: Self) -> Self {
 Complex {
 re: self.re + rhs.re,
 im: self.im + rhs.im,
 }
 }
}

By writing where T: Add<Output=T>, we restrict T to types that can be
added to themselves, yielding another T value. This is a reasonable
restriction, but we could loosen things still further: the Add trait doesn’t
require both operands of + to have the same type, nor does it constrain the
result type. So a maximally generic implementation would let the left- and
righthand operands vary independently and produce a Complex value of
whatever component type that addition produces:

use std::ops::Add;

impl<L, R> Add<Complex<R>> for Complex<L>
where
 L: Add<R>,
{
 type Output = Complex<L::Output>;
 fn add(self, rhs: Complex<R>) -> Self::Output {
 Complex {
 re: self.re + rhs.re,
 im: self.im + rhs.im,
 }
 }
}

In practice, however, Rust tends to avoid supporting mixed-type operations.
Since our type parameter L must implement Add<R>, it usually follows that
L and R are going to be the same type: there simply aren’t that many types
available for L that implement anything else. So in the end, this maximally
generic version may not be much more useful than the prior, simpler generic
definition.

Rust’s built-in traits for arithmetic and bitwise operators come in three
groups: unary operators, binary operators, and compound assignment
operators. Within each group, the traits and their methods all have the same
form, so we’ll cover one example from each.

Unary Operators
Aside from the dereferencing operator *, which we’ll cover separately in
“Deref and DerefMut”, Rust has two unary operators that you can customize,
shown in Table 12-2.

Table 12-2. Built-in traits for unary operators

Trait name Expression Equivalent expression

std::ops::Neg -x x.neg()

std::ops::Not !x x.not()

All of Rust’s signed numeric types implement std::ops::Neg, for the unary
negation operator -; the integer types and bool implement std::ops::Not, for
the unary complement operator !. There are also implementations for
references to those types.

Note that ! complements bool values and performs a bitwise complement
(that is, flips the bits) when applied to integers; it plays the role of both the !
and ~ operators from C and C++.

These traits’ definitions are simple:

trait Neg {
 type Output;
 fn neg(self) -> Self::Output;
}

trait Not {
 type Output;
 fn not(self) -> Self::Output;
}

Negating a complex number simply negates each of its components. Here’s
how we might write a generic implementation of negation for Complex
values:

use std::ops::Neg;

impl<T> Neg for Complex<T>
where
 T: Neg<Output = T>,
{
 type Output = Complex<T>;
 fn neg(self) -> Complex<T> {
 Complex {
 re: -self.re,
 im: -self.im,
 }
 }
}

Binary Operators
Rust’s binary arithmetic and bitwise operators and their corresponding built-
in traits appear in Table 12-3.

Table 12-3. Built-in traits for binary operators

Category Trait name Expression Equivalent expression

Arithmetic operators std::ops::Add x + y x.add(y)

std::ops::Sub x - y x.sub(y)

std::ops::Mul x * y x.mul(y)

std::ops::Div x / y x.div(y)

std::ops::Rem x % y x.rem(y)

Bitwise operators std::ops::BitAnd x & y x.bitand(y)

std::ops::BitOr x | y x.bitor(y)

std::ops::BitXor x ^ y x.bitxor(y)

std::ops::Shl x << y x.shl(y)

std::ops::Shr x >> y x.shr(y)

All of Rust’s numeric types implement the arithmetic operators. Rust’s
integer types and bool implement the bitwise operators. There are also
implementations that accept references to those types as either or both
operands.

All of the traits here have the same general form. The definition of
std::ops::BitXor, for the ^ operator, looks like this:

trait BitXor<Rhs = Self> {
 type Output;
 fn bitxor(self, rhs: Rhs) -> Self::Output;
}

At the beginning of this chapter, we also showed std::ops::Add, another trait
in this category, along with several sample implementations.

You can use the + operator to concatenate a String with a &str slice or

another String. However, Rust does not permit the left operand of + to be a
&str, to discourage building up long strings by repeatedly concatenating
small pieces on the left. (This performs poorly, requiring time quadratic in the
final length of the string.) Generally, the write! macro is better for building
up strings piece by piece; we show how to do this in “Appending and
Inserting Text”.

Compound Assignment Operators
A compound assignment expression is one like x += y or x &= y: it takes two
operands, performs some operation on them like addition or a bitwise AND,
and stores the result back in the left operand. In Rust, the value of a
compound assignment expression is always (), never the value stored.

Many languages have operators like these and usually define them as
shorthand for expressions like x = x + y or x = x & y. However, Rust doesn’t
take that approach. Instead, x += y is shorthand for the method call
x.add_assign(y), where add_assign is the sole method of the
std::ops::AddAssign trait:

trait AddAssign<Rhs = Self> {
 fn add_assign(&mut self, rhs: Rhs);
}

Table 12-4 shows all of Rust’s compound assignment operators and the built-
in traits that implement them.

Table 12-4. Built-in traits for compound assignment operators

Category Trait name Expression Equivalent expression

Arithmetic operators std::ops::AddAssign x += y x.add_assign(y)

std::ops::SubAssign x -= y x.sub_assign(y)

std::ops::MulAssign x *= y x.mul_assign(y)

std::ops::DivAssign x /= y x.div_assign(y)

std::ops::RemAssign x %= y x.rem_assign(y)

Bitwise operators std::ops::BitAndAssign x &= y x.bitand_assign(y)

std::ops::BitOrAssign x |= y x.bitor_assign(y)

std::ops::BitXorAssign x ^= y x.bitxor_assign(y)

std::ops::ShlAssign x <<= y x.shl_assign(y)

std::ops::ShrAssign x >>= y x.shr_assign(y)

All of Rust’s numeric types implement the arithmetic compound assignment

operators. Rust’s integer types and bool implement the bitwise compound
assignment operators.

A generic implementation of AddAssign for our Complex type is
straightforward:

use std::ops::AddAssign;

impl<T> AddAssign for Complex<T>
where
 T: AddAssign<T>,
{
 fn add_assign(&mut self, rhs: Complex<T>) {
 self.re += rhs.re;
 self.im += rhs.im;
 }
}

The built-in trait for a compound assignment operator is completely
independent of the built-in trait for the corresponding binary operator.
Implementing std::ops::Add does not automatically implement
std::ops::AddAssign; if you want Rust to permit your type as the lefthand
operand of a += operator, you must implement AddAssign yourself.

Equivalence Comparisons
Rust’s equality operators, == and !=, are shorthand for calls to the
std::cmp::PartialEq trait’s eq and ne methods:

assert_eq!(x == y, x.eq(&y));
assert_eq!(x != y, x.ne(&y));

Here’s the definition of std::cmp::PartialEq:

trait PartialEq<Rhs = Self>
where
 Rhs: ?Sized,
{
 fn eq(&self, other: &Rhs) -> bool;
 fn ne(&self, other: &Rhs) -> bool {
 !self.eq(other)
 }
}

Since the ne method has a default definition, you only need to define eq to
implement the PartialEq trait, so here’s a complete implementation for
Complex:

impl<T: PartialEq> PartialEq for Complex<T> {
 fn eq(&self, other: &Complex<T>) -> bool {
 self.re == other.re && self.im == other.im
 }
}

In other words, for any component type T that itself can be compared for
equality, this implements comparison for Complex<T>. Assuming we’ve also
implemented std::ops::Mul for Complex somewhere along the line, we can
now write:

let x = Complex { re: 5, im: 2 };
let y = Complex { re: 2, im: 5 };
assert_eq!(x * y, Complex { re: 0, im: 29 });

Implementations of PartialEq are almost always of the form shown here: they
compare each field of the left operand to the corresponding field of the right.
These get tedious to write, and equality is a common operation to support, so
if you ask, Rust will generate an implementation of PartialEq for you
automatically. Simply add PartialEq to the type definition’s derive attribute
like so:

#[derive(Clone, Copy, Debug, PartialEq)]
struct Complex<T> {
 ...
}

Rust’s automatically generated implementation is essentially identical to our
hand-written code, comparing each field or element of the type in turn. Rust
can derive PartialEq implementations for enum types as well. Naturally, each
of the values the type holds (or might hold, in the case of an enum) must
itself implement PartialEq.

Unlike the arithmetic and bitwise traits, which take their operands by value,
PartialEq takes its operands by reference. This means that comparing non-
Copy values like Strings, Vecs, or HashMaps doesn’t cause them to be
moved, which would be troublesome:

let s = "d\x6fv\x65t\x61i\x6c".to_string();
let t = "\x64o\x76e\x74a\x69l".to_string();
assert!(s == t); // s and t are only borrowed...

// ... so they still have their values here.
assert_eq!(format!("{} {}", s, t), "dovetail dovetail");

This leads us to the trait’s bound on the Rhs type parameter, which is of a
kind we haven’t seen before:

where
 Rhs: ?Sized,

This relaxes Rust’s usual requirement that type parameters must be sized
types, letting us write traits like PartialEq<str> or PartialEq<[T]>. The eq and

ne methods take parameters of type &Rhs, and comparing something with a
&str or a &[T] is completely reasonable. Since str implements
PartialEq<str>, the following assertions are equivalent:

assert!("ungula" != "ungulate");
assert!("ungula".ne("ungulate"));

Here, both Self and Rhs would be the unsized type str, making ne’s self and
rhs parameters both &str values. We’ll discuss sized types, unsized types, and
the Sized trait in detail in “Sized”.

Why is this trait called PartialEq? The traditional mathematical definition of
an equivalence relation, of which equality is one instance, imposes three
requirements. For any values x and y:

If x == y is true, then y == x must be true as well. In other words,
swapping the two sides of an equality comparison doesn’t affect the
result.

If x == y and y == z, then it must be the case that x == z. Given any
chain of values, each equal to the next, each value in the chain is
directly equal to every other. Equality is contagious.

It must always be true that x == x.

That last requirement might seem too obvious to be worth stating, but this is
exactly where things go awry. Rust’s f32 and f64 are IEEE standard floating-
point values. According to that standard, expressions like 0.0/0.0 and others
with no appropriate value must produce special not-a-number values, usually
referred to as NaN values. The standard further requires that a NaN value be
treated as unequal to every other value—including itself. For example, the
standard requires all the following behaviors:

assert!(f64::is_nan(0.0 / 0.0));
assert_eq!(0.0 / 0.0 == 0.0 / 0.0, false);
assert_eq!(0.0 / 0.0 != 0.0 / 0.0, true);

Furthermore, any ordered comparison with a NaN value must return false:

assert_eq!(0.0 / 0.0 < 0.0 / 0.0, false);
assert_eq!(0.0 / 0.0 > 0.0 / 0.0, false);
assert_eq!(0.0 / 0.0 <= 0.0 / 0.0, false);
assert_eq!(0.0 / 0.0 >= 0.0 / 0.0, false);

So while Rust’s == operator meets the first two requirements for equivalence
relations, it clearly doesn’t meet the third when used on IEEE floating-point
values. This is called a partial equivalence relation, so Rust uses the name
PartialEq for the == operator’s built-in trait. If you write generic code with
type parameters known only to be PartialEq, you may assume the first two
requirements hold, but you should not assume that values always equal
themselves.

That can be a bit counterintuitive and may lead to bugs if you’re not vigilant.
If you’d prefer your generic code to require a full equivalence relation, you
can instead use the std::cmp::Eq trait as a bound, which represents a full
equivalence relation: if a type implements Eq, then x == x must be true for
every value x of that type. In practice, almost every type that implements
PartialEq should implement Eq as well; f32 and f64 are the only types in the
standard library that are PartialEq but not Eq.

The standard library defines Eq as an extension of PartialEq, adding no new
methods:

trait Eq: PartialEq<Self> {}

If your type is PartialEq and you would like it to be Eq as well, you must
explicitly implement Eq, even though you need not actually define any new
functions or types to do so. So implementing Eq for our Complex type is
quick:

impl<T: Eq> Eq for Complex<T> {}

We could implement it even more succinctly by just including Eq in the
derive attribute on the Complex type definition:

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct Complex<T> {

 ...
}

Derived implementations on a generic type may depend on the type
parameters. With the derive attribute, Complex<i32> would implement Eq,
because i32 does, but Complex<f32> would only implement PartialEq, since
f32 doesn’t implement Eq.

When you implement std::cmp::PartialEq yourself, Rust can’t check that your
definitions for the eq and ne methods actually behave as required for partial
or full equivalence. They could do anything you like. Rust simply takes your
word that you’ve implemented equality in a way that meets the expectations
of the trait’s users.

Although the definition of PartialEq provides a default definition for ne, you
can provide your own implementation if you like. However, you must ensure
that ne and eq are exact complements of each other. Users of the PartialEq
trait will assume this is so.

Ordered Comparisons
Rust specifies the behavior of the ordered comparison operators <, >, <=, and
>= all in terms of a single trait, std::cmp::PartialOrd:

trait PartialOrd<Rhs = Self>: PartialEq<Rhs>
where
 Rhs: ?Sized,
{
 fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;

 fn lt(&self, other: &Rhs) -> bool { ... }
 fn le(&self, other: &Rhs) -> bool { ... }
 fn gt(&self, other: &Rhs) -> bool { ... }
 fn ge(&self, other: &Rhs) -> bool { ... }
}

Note that PartialOrd<Rhs> extends PartialEq<Rhs>: you can do ordered
comparisons only on types that you can also compare for equality.

The only method of PartialOrd you must implement yourself is partial_cmp.
When partial_cmp returns Some(o), then o indicates self’s relationship to
other:

enum Ordering {
 Less, // self < other
 Equal, // self == other
 Greater, // self > other
}

But if partial_cmp returns None, that means self and other are unordered with
respect to each other: neither is greater than the other, nor are they equal.
Among all of Rust’s primitive types, only comparisons between floating-
point values ever return None: specifically, comparing a NaN (not-a-number)
value with anything else returns None. We give some more background on
NaN values in “Equivalence Comparisons”.

Like the other binary operators, to compare values of two types Left and

Right, Left must implement PartialOrd<Right>. Expressions like x < y or x
>= y are shorthand for calls to PartialOrd methods, as shown in Table 12-5.

Table 12-5. Ordered comparison operators and PartialOrd methods

Expression Equivalent method call Default definition

x < y x.lt(y) x.partial_cmp(&y) == Some(Less)

x > y x.gt(y) x.partial_cmp(&y) == Some(Greater)

x <= y x.le(y) matches!(x.partial_cmp(&y), Some(Less | Equal))

x >= y x.ge(y) matches!(x.partial_cmp(&y), Some(Greater | Equal))

As in prior examples, the equivalent method call code shown assumes that
std::cmp::PartialOrd and std::cmp::Ordering are in scope.

If you know that values of two types are always ordered with respect to each
other, then you can implement the stricter std::cmp::Ord trait:

trait Ord: Eq + PartialOrd<Self> {
 fn cmp(&self, other: &Self) -> Ordering;
}

The cmp method here simply returns an Ordering, instead of an
Option<Ordering> like partial_cmp: cmp always declares its arguments equal
or indicates their relative order. Almost all types that implement PartialOrd
should also implement Ord. In the standard library, f32 and f64 are the only
exceptions to this rule.

Since there’s no natural ordering on complex numbers, we can’t use our
Complex type from the previous sections to show a sample implementation
of PartialOrd. Instead, suppose you’re working with the following type,
representing the set of numbers falling within a given half-open interval:

#[derive(Debug, PartialEq)]
struct Interval<T> {
 lower: T, // inclusive
 upper: T, // exclusive
}

You’d like to make values of this type partially ordered: one interval is less
than another if it falls entirely before the other, with no overlap. If two
unequal intervals overlap, they’re unordered: some element of each side is
less than some element of the other. And two equal intervals are simply
equal. The following implementation of PartialOrd implements those rules:

use std::cmp::{Ordering, PartialOrd};

impl<T: PartialOrd> PartialOrd<Interval<T>> for Interval<T> {
 fn partial_cmp(&self, other: &Interval<T>) -> Option<Ordering> {
 if self == other {
 Some(Ordering::Equal)
 } else if self.lower >= other.upper {
 Some(Ordering::Greater)
 } else if self.upper <= other.lower {
 Some(Ordering::Less)
 } else {
 None
 }
 }
}

With that implementation in place, you can write the following:

assert!(Interval { lower: 10, upper: 20 } < Interval { lower: 20, upper: 40 });
assert!(Interval { lower: 7, upper: 8 } >= Interval { lower: 0, upper: 1 });
assert!(Interval { lower: 7, upper: 8 } <= Interval { lower: 7, upper: 8 });

// Overlapping intervals aren't ordered with respect to each other.
let left = Interval { lower: 10, upper: 30 };
let right = Interval { lower: 20, upper: 40 };
assert!(!(left < right));
assert!(!(left >= right));

While PartialOrd is what you’ll usually see, total orderings defined with Ord
are necessary in some cases, such as the sorting methods implemented in the
standard library. For example, sorting intervals isn’t possible with only a
PartialOrd implementation. If you do want to sort them, you’ll have to fill in
the gaps of the unordered cases. You might want to sort by upper bound, for
instance, and it’s easy to do that with sort_by_key:

intervals.sort_by_key(|i| i.upper);

The Reverse wrapper type takes advantage of this by implementing Ord with
a method that simply inverts any ordering. For any type T that implements
Ord, std::cmp::Reverse<T> implements Ord too, but with reversed ordering.
For example, sorting our intervals from high to low by lower bound is
simple:

use std::cmp::Reverse;
intervals.sort_by_key(|i| Reverse(i.lower));

Index and IndexMut
You can specify how an indexing expression like a[i] works on your type by
implementing the std::ops::Index and std::ops::IndexMut traits. Arrays
support the [] operator directly, but on any other type, the expression a[i] is
normally shorthand for *a.index(i), where index is a method of the
std::ops::Index trait. However, if the expression is being assigned to or
borrowed mutably, it’s instead shorthand for *a.index_mut(i), a call to the
method of the std::ops::IndexMut trait.

Here are the traits’ definitions:

trait Index<Idx> {
 type Output: ?Sized;
 fn index(&self, index: Idx) -> &Self::Output;
}

trait IndexMut<Idx>: Index<Idx> {
 fn index_mut(&mut self, index: Idx) -> &mut Self::Output;
}

Note that these traits take the type of the index expression as a parameter.
You can index a slice with a single usize, referring to a single element,
because slices implement Index<usize>. But you can refer to a subslice with
an expression like a[i..j] because they also implement Index<Range<usize>>.
That expression is shorthand for:

*a.index(std::ops::Range { start: i, end: j })

Rust’s HashMap and BTreeMap collections let you use any hashable or
ordered type as the index. The following code works because
HashMap<&str, i32> implements Index<&str>:

use std::collections::HashMap;
let mut m = HashMap::new();
m.insert("十", 10);
m.insert("百", 100);

m.insert("千", 1000);
m.insert("万", 1_0000);
m.insert("億", 1_0000_0000);

assert_eq!(m["十"], 10);
assert_eq!(m["千"], 1000);

Those indexing expressions are equivalent to:

use std::ops::Index;
assert_eq!(*m.index("十"), 10);
assert_eq!(*m.index("千"), 1000);

The Index trait’s associated type Output specifies what type an indexing
expression produces: for our HashMap, the Index implementation’s Output
type is i32.

The IndexMut trait extends Index with an index_mut method that takes a
mutable reference to self, and returns a mutable reference to an Output value.
Rust automatically selects index_mut when the indexing expression occurs in
a context where it’s necessary. For example, suppose we write the following:

let mut desserts =
 vec!["Howalon".to_string(), "Soan papdi".to_string()];
desserts[0].push_str(" (fictional)");
desserts[1].push_str(" (real)");

Because the push_str method operates on &mut self, those last two lines are
equivalent to:

use std::ops::IndexMut;
(*desserts.index_mut(0)).push_str(" (fictional)");
(*desserts.index_mut(1)).push_str(" (real)");

One limitation of IndexMut is that, by design, it must return a mutable
reference to some value. This is why you can’t use an expression like
m["十"] = 10; to insert a value into the HashMap m: the table would need to
create an entry for "十" first, with some default value, and return a mutable
reference to that. But not all types have cheap default values, and some may

be expensive to drop; it would be a waste to create such a value only to be
immediately dropped by the assignment. (There are plans to improve this in
later versions of the language.)

The most common use of indexing is for collections. For example, suppose
we are working with bitmapped images, like the ones we created in the
Mandelbrot set plotter in Chapter 2. Recall that our program contained code
like this:

pixels[row * bounds.0 + column] = ...;

It would be nicer to have an Image<u8> type that acts like a two-dimensional
array, allowing us to access pixels without having to write out all the
arithmetic:

image[row][column] = ...;

To do this, we’ll need to declare a struct:

struct Image<P> {
 width: usize,
 pixels: Vec<P>,
}

impl<P: Default + Copy> Image<P> {
 /// Create a new image of the given size.
 fn new(width: usize, height: usize) -> Image<P> {
 Image {
 width,
 pixels: vec![P::default(); width * height],
 }
 }
}

And here are implementations of Index and IndexMut that would fit the bill:

impl<P> std::ops::Index<usize> for Image<P> {
 type Output = [P];
 fn index(&self, row: usize) -> &[P] {
 let start = row * self.width;
 &self.pixels[start..start + self.width]

 }
}

impl<P> std::ops::IndexMut<usize> for Image<P> {
 fn index_mut(&mut self, row: usize) -> &mut [P] {
 let start = row * self.width;
 &mut self.pixels[start..start + self.width]
 }
}

When you index into an Image, you get back a slice of pixels; indexing the
slice gives you an individual pixel.

Note that when we write image[row][column], if row is out of bounds, our
.index() method will try to index self.pixels out of range, triggering a panic.
This is how Index and IndexMut implementations are supposed to behave:
out-of-bounds access is detected and causes a panic, the same as when you
index an array, slice, or vector out of bounds.

Other Operators
Not all operators can be overloaded in Rust. As of Rust 1.56, the error-
checking ? operator works only with Result and a few other standard library
types, but work is in progress to expand this to user-defined types as well.
Similarly, the logical operators && and || are limited to Boolean values only.
The .. and ..= operators always create a struct representing the range’s
bounds, the & operator always borrows references, and the = operator always
moves or copies values. None of them can be overloaded.

The dereferencing operator, *val, and the dot operator for accessing fields
and calling methods, as in val.field and val.method(), can be overloaded
using the Deref and DerefMut traits, which are covered in the next chapter.
(We did not include them here because these traits do more than just overload
a few operators.)

Rust does not support overloading the function call operator, f(x). Instead,
when you need a callable value, you’ll typically just write a closure. We’ll
explain how this works and cover the Fn, FnMut, and FnOnce special traits in
Chapter 14.

1 Lisp programmers rejoice! The expression <i32 as Add>::add is the + operator on i32, captured
as a function value.

Chapter 13. Utility Traits

Science is nothing else than the search to discover unity in the wild variety
of nature—or, more exactly, in the variety of our experience. Poetry,
painting, the arts are the same search, in Coleridge’s phrase, for unity in
variety.

—Jacob Bronowski

This chapter describes what we call Rust’s “utility” traits, a grab bag of
various traits from the standard library that have enough of an impact on the
way Rust is written that you’ll need to be familiar with them in order to write
idiomatic code and design public interfaces for your crates that users will
judge to be properly “Rustic.” They fall into three broad categories:

Language extension traits

Just as the operator overloading traits we covered in the previous chapter

make it possible for you to use Rust’s expression operators on your own

types, there are several other standard library traits that serve as Rust

extension points, allowing you to integrate your own types more closely

with the language. These include Drop, Deref and DerefMut, and the

conversion traits From and Into. We’ll describe those in this chapter.

Marker traits

These are traits mostly used to bound generic type variables to express

constraints you can’t capture otherwise. These include Sized and Copy.

Public vocabulary traits

These don’t have any magical compiler integration; you could define

equivalent traits in your own code. But they serve the important goal of

setting down conventional solutions for common problems. These are

especially valuable in public interfaces between crates and modules: by

reducing needless variation, they make interfaces easier to understand,

but they also increase the likelihood that features from different crates can

simply be plugged together directly, without boilerplate or custom glue

code. These include Default, the reference-borrowing traits AsRef,

AsMut, Borrow and BorrowMut; the fallible conversion traits TryFrom

and TryInto; and the ToOwned trait, a generalization of Clone.

These are summarized in Table 13-1.

Table 13-1. Summary of utility traits

Trait Description

Drop Destructors. Cleanup code that Rust runs automatically whenever a value is
dropped.

Sized Marker trait for types with a fixed size known at compile time, as opposed to
types (such as slices) that are dynamically sized.

Clone Types that support cloning values.

Copy Marker trait for types that can be cloned simply by making a byte-for-byte copy
of the memory containing the value.

Deref and DerefMu
t

Traits for smart pointer types.

Default Types that have a sensible “default value.”

AsRef and AsMut Conversion traits for borrowing one type of reference from another.

Borrow and Borrow
Mut

Conversion traits, like AsRef/AsMut, but additionally guaranteeing consistent
hashing, ordering, and equality.

From and Into Conversion traits for transforming one type of value into another.

TryFrom and TryIn
to

Conversion traits for transforming one type of value into another, for
transformations that might fail.

ToOwned Conversion trait for converting a reference to an owned value.

There are other important standard library traits as well. We’ll cover Iterator

and IntoIterator in Chapter 15. The Hash trait, for computing hash codes, is
covered in Chapter 16. And a pair of traits that mark thread-safe types, Send
and Sync, are covered in Chapter 19.

Drop
When a value’s owner goes away, we say that Rust drops the value.
Dropping a value entails freeing whatever other values, heap storage, and
system resources the value owns. Drops occur under a variety of
circumstances: when a variable goes out of scope; at the end of an expression
statement; when you truncate a vector, removing elements from its end; and
so on.

For the most part, Rust handles dropping values for you automatically. For
example, suppose you define the following type:

struct Appellation {
 name: String,
 nicknames: Vec<String>
}

An Appellation owns heap storage for the strings’ contents and the vector’s
buffer of elements. Rust takes care of cleaning all that up whenever an
Appellation is dropped, without any further coding necessary on your part.
However, if you want, you can customize how Rust drops values of your type
by implementing the std::ops::Drop trait:

trait Drop {
 fn drop(&mut self);
}

An implementation of Drop is analogous to a destructor in C++, or a finalizer
in other languages. When a value is dropped, if it implements std::ops::Drop,
Rust calls its drop method, before proceeding to drop whatever values its
fields or elements own, as it normally would. This implicit invocation of drop
is the only way to call that method; if you try to invoke it explicitly yourself,
Rust flags that as an error.

Because Rust calls Drop::drop on a value before dropping its fields or
elements, the value the method receives is always still fully initialized. An

implementation of Drop for our Appellation type can make full use of its
fields:

impl Drop for Appellation {
 fn drop(&mut self) {
 print!("Dropping {}", self.name);
 if !self.nicknames.is_empty() {
 print!(" (AKA {})", self.nicknames.join(", "));
 }
 println!("");
 }
}

Given that implementation, we can write the following:

{
 let mut a = Appellation {
 name: "Zeus".to_string(),
 nicknames: vec!["cloud collector".to_string(),
 "king of the gods".to_string()]
 };

 println!("before assignment");
 a = Appellation { name: "Hera".to_string(), nicknames: vec![] };
 println!("at end of block");
}

When we assign the second Appellation to a, the first is dropped, and when
we leave the scope of a, the second is dropped. This code prints the
following:

before assignment
Dropping Zeus (AKA cloud collector, king of the gods)
at end of block
Dropping Hera

Since our std::ops::Drop implementation for Appellation does nothing but
print a message, how, exactly, does its memory get cleaned up? The Vec type
implements Drop, dropping each of its elements and then freeing the heap-
allocated buffer they occupied. A String uses a Vec<u8> internally to hold its
text, so String need not implement Drop itself; it lets its Vec take care of

freeing the characters. The same principle extends to Appellation values:
when one gets dropped, in the end it is Vec’s implementation of Drop that
actually takes care of freeing each of the strings’ contents, and finally freeing
the buffer holding the vector’s elements. As for the memory that holds the
Appellation value itself, it too has some owner, perhaps a local variable or
some data structure, which is responsible for freeing it.

If a variable’s value gets moved elsewhere, so that the variable is
uninitialized when it goes out of scope, then Rust will not try to drop that
variable: there is no value in it to drop.

This principle holds even when a variable may or may not have had its value
moved away, depending on the flow of control. In cases like this, Rust keeps
track of the variable’s state with an invisible flag indicating whether the
variable’s value needs to be dropped or not:

let p;
{
 let q = Appellation { name: "Cardamine hirsuta".to_string(),
 nicknames: vec!["shotweed".to_string(),
 "bittercress".to_string()] };
 if complicated_condition() {
 p = q;
 }
}
println!("Sproing! What was that?");

Depending on whether complicated_condition returns true or false, either p or
q will end up owning the Appellation, with the other uninitialized. Where it
lands determines whether it is dropped before or after the println!, since q
goes out of scope before the println!, and p after. Although a value may be
moved from place to place, Rust drops it only once.

You usually won’t need to implement std::ops::Drop unless you’re defining a
type that owns resources Rust doesn’t already know about. For example, on
Unix systems, Rust’s standard library uses the following type internally to
represent an operating system file descriptor:

struct FileDesc {

 fd: c_int,
}

The fd field of a FileDesc is simply the number of the file descriptor that
should be closed when the program is done with it; c_int is an alias for i32.
The standard library implements Drop for FileDesc as follows:

impl Drop for FileDesc {
 fn drop(&mut self) {
 let _ = unsafe { libc::close(self.fd) };
 }
}

Here, libc::close is the Rust name for the C library’s close function. Rust
code may call C functions only within unsafe blocks, so the library uses one
here.

If a type implements Drop, it cannot implement the Copy trait. If a type is
Copy, that means that simple byte-for-byte duplication is sufficient to
produce an independent copy of the value. But it is typically a mistake to call
the same drop method more than once on the same data.

The standard prelude includes a function to drop a value, drop, but its
definition is anything but magical:

fn drop<T>(_x: T) { }

In other words, it receives its argument by value, taking ownership from the
caller—and then does nothing with it. Rust drops the value of _x when it goes
out of scope, as it would for any other variable.

Sized
A sized type is one whose values all have the same size in memory. Almost
all types in Rust are sized: every u64 takes eight bytes, every (f32, f32, f32)
tuple twelve. Even enums are sized: no matter which variant is actually
present, an enum always occupies enough space to hold its largest variant.
And although a Vec<T> owns a heap-allocated buffer whose size can vary,
the Vec value itself is a pointer to the buffer, its capacity, and its length, so
Vec<T> is a sized type.

All sized types implement the std::marker::Sized trait, which has no methods
or associated types. Rust implements it automatically for all types to which it
applies; you can’t implement it yourself. The only use for Sized is as a bound
for type variables: a bound like T: Sized requires T to be a type whose size is
known at compile time. Traits of this sort are called marker traits, because
the Rust language itself uses them to mark certain types as having
characteristics of interest.

However, Rust also has a few unsized types whose values are not all the same
size. For example, the string slice type str (note, without an &) is unsized.
The string literals "diminutive" and "big" are references to str slices that
occupy ten and three bytes. Both are shown in Figure 13-1. Array slice types
like [T] (again, without an &) are unsized, too: a shared reference like &[u8]
can point to a [u8] slice of any size. Because the str and [T] types denote sets
of values of varying sizes, they are unsized types.

Figure 13-1. References to unsized values

The other common kind of unsized type in Rust is a dyn type, the referent of
a trait object. As we explained in “Trait Objects”, a trait object is a pointer to
some value that implements a given trait. For example, the types &dyn
std::io::Write and Box<dyn std::io::Write> are pointers to some value that
implements the Write trait. The referent might be a file or a network socket or
some type of your own for which you have implemented Write. Since the set
of types that implement Write is open-ended, dyn Write considered as a type
is unsized: its values have various sizes.

Rust can’t store unsized values in variables or pass them as arguments. You
can only deal with them through pointers like &str or Box<dyn Write>,
which themselves are sized. As shown in Figure 13-1, a pointer to an unsized
value is always a fat pointer, two words wide: a pointer to a slice also carries
the slice’s length, and a trait object also carries a pointer to a vtable of
method implementations.

Trait objects and pointers to slices are nicely symmetrical. In both cases, the
type lacks information necessary to use it: you can’t index a [u8] without
knowing its length, nor can you invoke a method on a Box<dyn Write>
without knowing the implementation of Write appropriate to the specific
value it refers to. And in both cases, the fat pointer fills in the information
missing from the type, carrying a length or a vtable pointer. The omitted
static information is replaced with dynamic information.

Since unsized types are so limited, most generic type variables should be

restricted to Sized types. In fact, this is necessary so often that it is the
implicit default in Rust: if you write struct S<T> { ... }, Rust understands you
to mean struct S<T: Sized> { ... }. If you do not want to constrain T this way,
you must explicitly opt out, writing struct S<T: ?Sized> { ... }. The ?Sized
syntax is specific to this case and means “not necessarily Sized.” For
example, if you write struct S<T: ?Sized> { b: Box<T> }, then Rust will
allow you to write S<str> and S<dyn Write>, where the box becomes a fat
pointer, as well as S<i32> and S<String>, where the box is an ordinary
pointer.

Despite their restrictions, unsized types make Rust’s type system work more
smoothly. Reading the standard library documentation, you will occasionally
come across a ?Sized bound on a type variable; this almost always means that
the given type is only pointed to, and allows the associated code to work with
slices and trait objects as well as ordinary values. When a type variable has
the ?Sized bound, people often say it is questionably sized: it might be Sized,
or it might not.

Aside from slices and trait objects, there is one more kind of unsized type. A
struct type’s last field (but only its last) may be unsized, and such a struct is
itself unsized. For example, an Rc<T> reference-counted pointer is
implemented internally as a pointer to the private type RcBox<T>, which
stores the reference count alongside the T. Here’s a simplified definition of
RcBox:

struct RcBox<T: ?Sized> {
 ref_count: usize,
 value: T,
}

The value field is the T to which Rc<T> is counting references; Rc<T>
dereferences to a pointer to this field. The ref_count field holds the reference
count.

The real RcBox is just an implementation detail of the standard library and
isn’t available for public use. But suppose we are working with the preceding
definition. You can use this RcBox with sized types, like RcBox<String>; the

result is a sized struct type. Or you can use it with unsized types, like
RcBox<dyn std::fmt::Display> (where Display is the trait for types that can
be formatted by println! and similar macros); RcBox<dyn Display> is an
unsized struct type.

You can’t build an RcBox<dyn Display> value directly. Instead, you first
need to create an ordinary, sized RcBox whose value type implements
Display, like RcBox<String>. Rust then lets you convert a reference
&RcBox<String> to a fat reference &RcBox<dyn Display>:

let boxed_lunch: RcBox<String> = RcBox {
 ref_count: 1,
 value: "lunch".to_string()
};

use std::fmt::Display;
let boxed_displayable: &RcBox<dyn Display> = &boxed_lunch;

This conversion happens implicitly when passing values to functions, so you
can pass an &RcBox<String> to a function that expects an &RcBox<dyn
Display>:

fn display(boxed: &RcBox<dyn Display>) {
 println!("For your enjoyment: {}", &boxed.value);
}

display(&boxed_lunch);

This would produce the following output:

For your enjoyment: lunch

Clone
The std::clone::Clone trait is for types that can make copies of themselves.
Clone is defined as follows:

trait Clone: Sized {
 fn clone(&self) -> Self;
 fn clone_from(&mut self, source: &Self) {
 *self = source.clone()
 }
}

The clone method should construct an independent copy of self and return it.
Since this method’s return type is Self and functions may not return unsized
values, the Clone trait itself extends the Sized trait: this has the effect of
bounding implementations’ Self types to be Sized.

Cloning a value usually entails allocating copies of anything it owns, as well,
so a clone can be expensive, in both time and memory. For example, cloning
a Vec<String> not only copies the vector, but also copies each of its String
elements. This is why Rust doesn’t just clone values automatically, but
instead requires you to make an explicit method call. The reference-counted
pointer types like Rc<T> and Arc<T> are exceptions: cloning one of these
simply increments the reference count and hands you a new pointer.

The clone_from method modifies self into a copy of source. The default
definition of clone_from simply clones source and then moves that into *self.
This always works, but for some types, there is a faster way to get the same
effect. For example, suppose s and t are Strings. The statement s = t.clone();
must clone t, drop the old value of s, and then move the cloned value into s;
that’s one heap allocation and one heap deallocation. But if the heap buffer
belonging to the original s has enough capacity to hold t’s contents, no
allocation or deallocation is necessary: you can simply copy t’s text into s’s
buffer and adjust the length. In generic code, you should use clone_from
whenever possible to take advantage of optimized implementations when
present.

If your Clone implementation simply applies clone to each field or element of
your type and then constructs a new value from those clones, and the default
definition of clone_from is good enough, then Rust will implement that for
you: simply put #[derive(Clone)] above your type definition.

Pretty much every type in the standard library that makes sense to copy
implements Clone. Primitive types like bool and i32 do. Container types like
String, Vec<T>, and HashMap do, too. Some types don’t make sense to copy,
like std::sync::Mutex; those don’t implement Clone. Some types like
std::fs::File can be copied, but the copy might fail if the operating system
doesn’t have the necessary resources; these types don’t implement Clone,
since clone must be infallible. Instead, std::fs::File provides a try_clone
method, which returns a std::io::Result<File>, which can report a failure.

Copy
In Chapter 4, we explained that, for most types, assignment moves values,
rather than copying them. Moving values makes it much simpler to track the
resources they own. But in “Copy Types: The Exception to Moves”, we
pointed out the exception: simple types that don’t own any resources can be
Copy types, where assignment makes a copy of the source, rather than
moving the value and leaving the source uninitialized.

At that time, we left it vague exactly what Copy was, but now we can tell
you: a type is Copy if it implements the std::marker::Copy marker trait,
which is defined as follows:

trait Copy: Clone { }

This is certainly easy to implement for your own types:

impl Copy for MyType { }

But because Copy is a marker trait with special meaning to the language,
Rust permits a type to implement Copy only if a shallow byte-for-byte copy
is all it needs. Types that own any other resources, like heap buffers or
operating system handles, cannot implement Copy.

Any type that implements the Drop trait cannot be Copy. Rust presumes that
if a type needs special cleanup code, it must also require special copying code
and thus can’t be Copy.

As with Clone, you can ask Rust to derive Copy for you, using #
[derive(Copy)]. You will often see both derived at once, with #[derive(Copy,
Clone)].

Think carefully before making a type Copy. Although doing so makes the
type easier to use, it places heavy restrictions on its implementation. Implicit
copies can also be expensive. We explain these factors in detail in “Copy
Types: The Exception to Moves”.

Deref and DerefMut
You can specify how dereferencing operators like * and . behave on your
types by implementing the std::ops::Deref and std::ops::DerefMut traits.
Pointer types like Box<T> and Rc<T> implement these traits so that they can
behave as Rust’s built-in pointer types do. For example, if you have a
Box<Complex> value b, then *b refers to the Complex value that b points to,
and b.re refers to its real component. If the context assigns or borrows a
mutable reference to the referent, Rust uses the DerefMut (“dereference
mutably”) trait; otherwise, read-only access is enough, and it uses Deref.

The traits are defined like this:

trait Deref {
 type Target: ?Sized;
 fn deref(&self) -> &Self::Target;
}

trait DerefMut: Deref {
 fn deref_mut(&mut self) -> &mut Self::Target;
}

The deref and deref_mut methods take a &Self reference and return a
&Self::Target reference. Target should be something that Self contains, owns,
or refers to: for Box<Complex> the Target type is Complex. Note that
DerefMut extends Deref: if you can dereference something and modify it,
certainly you should be able to borrow a shared reference to it as well. Since
the methods return a reference with the same lifetime as &self, self remains
borrowed for as long as the returned reference lives.

The Deref and DerefMut traits play another role as well. Since deref takes a
&Self reference and returns a &Self::Target reference, Rust uses this to
automatically convert references of the former type into the latter. In other
words, if inserting a deref call would prevent a type mismatch, Rust inserts
one for you. Implementing DerefMut enables the corresponding conversion
for mutable references. These are called the deref coercions: one type is

being “coerced” into behaving as another.

Although the deref coercions aren’t anything you couldn’t write out explicitly
yourself, they’re convenient:

If you have some Rc<String> value r and want to apply String::find
to it, you can simply write r.find('?'), instead of (*r).find('?'): the
method call implicitly borrows r, and &Rc<String> coerces to
&String, because Rc<T> implements Deref<Target=T>.

You can use methods like split_at on String values, even though
split_at is a method of the str slice type, because String implements
Deref<Target=str>. There’s no need for String to reimplement all of
str’s methods, since you can coerce a &str from a &String.

If you have a vector of bytes v and you want to pass it to a function
that expects a byte slice &[u8], you can simply pass &v as the
argument, since Vec<T> implements Deref<Target=[T]>.

Rust will apply several deref coercions in succession if necessary. For
example, using the coercions mentioned before, you can apply split_at
directly to an Rc<String>, since &Rc<String> dereferences to &String,
which dereferences to &str, which has the split_at method.

For example, suppose you have the following type:

struct Selector<T> {
 /// Elements available in this `Selector`.
 elements: Vec<T>,

 /// The index of the "current" element in `elements`. A `Selector`
 /// behaves like a pointer to the current element.
 current: usize
}

To make the Selector behave as the doc comment claims, you must
implement Deref and DerefMut for the type:

use std::ops::{Deref, DerefMut};

impl<T> Deref for Selector<T> {
 type Target = T;
 fn deref(&self) -> &T {
 &self.elements[self.current]
 }
}

impl<T> DerefMut for Selector<T> {
 fn deref_mut(&mut self) -> &mut T {
 &mut self.elements[self.current]
 }
}

Given those implementations, you can use a Selector like this:

let mut s = Selector { elements: vec!['x', 'y', 'z'],
 current: 2 };

// Because `Selector` implements `Deref`, we can use the `*` operator to
// refer to its current element.
assert_eq!(*s, 'z');

// Assert that 'z' is alphabetic, using a method of `char` directly on a
// `Selector`, via deref coercion.
assert!(s.is_alphabetic());

// Change the 'z' to a 'w', by assigning to the `Selector`'s referent.
*s = 'w';

assert_eq!(s.elements, ['x', 'y', 'w']);

The Deref and DerefMut traits are designed for implementing smart pointer
types, like Box, Rc, and Arc, and types that serve as owning versions of
something you would also frequently use by reference, the way Vec<T> and
String serve as owning versions of [T] and str. You should not implement
Deref and DerefMut for a type just to make the Target type’s methods appear
on it automatically, the way a C++ base class’s methods are visible on a
subclass. This will not always work as you expect and can be confusing when
it goes awry.

The deref coercions come with a caveat that can cause some confusion: Rust
applies them to resolve type conflicts, but not to satisfy bounds on type

variables. For example, the following code works fine:

let s = Selector { elements: vec!["good", "bad", "ugly"],
 current: 2 };

fn show_it(thing: &str) { println!("{}", thing); }
show_it(&s);

In the call show_it(&s), Rust sees an argument of type &Selector<&str> and
a parameter of type &str, finds the Deref<Target=str> implementation, and
rewrites the call as show_it(s.deref()), just as needed.

However, if you change show_it into a generic function, Rust is suddenly no
longer cooperative:

use std::fmt::Display;
fn show_it_generic<T: Display>(thing: T) { println!("{}", thing); }
show_it_generic(&s);

Rust complains:

 error: `Selector<&str>` doesn't implement `std::fmt::Display`
 |
 31 | show_it_generic(&s);
 | ^^
 | |
 | `Selector<&str>` cannot be formatted with
 | the default formatter
 | help: consider adding dereference here: `&*s`
 |
 note: required by a bound in `show_it_generic`
 |
 30 | fn show_it_generic<T: Display>(thing: T) { println!("{}", thing); }
 | ^^^^^^^ required by this bound
 | in `show_it_generic`

This can be bewildering: How could making a function generic introduce an
error? True, Selector<&str> does not implement Display itself, but it
dereferences to &str, which certainly does.

Since you’re passing an argument of type &Selector<&str> and the

function’s parameter type is &T, the type variable T must be Selector<&str>.
Then, Rust checks whether the bound T: Display is satisfied: since it does not
apply deref coercions to satisfy bounds on type variables, this check fails.

To work around this problem, you can spell out the coercion using the as
operator:

show_it_generic(&s as &str);

Or, as the compiler suggests, you can force the coercion with &*:

show_it_generic(&*s);

Default
Some types have a reasonably obvious default value: the default vector or
string is empty, the default number is zero, the default Option is None, and so
on. Types like this can implement the std::default::Default trait:

trait Default {
 fn default() -> Self;
}

The default method simply returns a fresh value of type Self. String’s
implementation of Default is straightforward:

impl Default for String {
 fn default() -> String {
 String::new()
 }
}

All of Rust’s collection types—Vec, HashMap, BinaryHeap, and so on—
implement Default, with default methods that return an empty collection.
This is helpful when you need to build a collection of values but want to let
your caller decide exactly what sort of collection to build. For example, the
Iterator trait’s partition method splits the values the iterator produces into two
collections, using a closure to decide where each value goes:

use std::collections::HashSet;
let squares = [4, 9, 16, 25, 36, 49, 64];
let (powers_of_two, impure): (HashSet<i32>, HashSet<i32>)
 = squares.iter().partition(|&n| n & (n-1) == 0);

assert_eq!(powers_of_two.len(), 3);
assert_eq!(impure.len(), 4);

The closure |&n| n & (n-1) == 0 uses some bit fiddling to recognize numbers
that are powers of two, and partition uses that to produce two HashSets. But
of course, partition isn’t specific to HashSets; you can use it to produce any

sort of collection you like, as long as the collection type implements Default,
to produce an empty collection to start with, and Extend<T>, to add a T to the
collection. String implements Default and Extend<char>, so you can write:

let (upper, lower): (String, String)
 = "Great Teacher Onizuka".chars().partition(|&c| c.is_uppercase());
assert_eq!(upper, "GTO");
assert_eq!(lower, "reat eacher nizuka");

Another common use of Default is to produce default values for structs that
represent a large collection of parameters, most of which you won’t usually
need to change. For example, the glium crate provides Rust bindings for the
powerful and complex OpenGL graphics library. The glium::DrawParameters
struct includes 24 fields, each controlling a different detail of how OpenGL
should render some bit of graphics. The glium draw function expects a
DrawParameters struct as an argument. Since DrawParameters implements
Default, you can create one to pass to draw, mentioning only those fields you
want to change:

let params = glium::DrawParameters {
 line_width: Some(0.02),
 point_size: Some(0.02),
 .. Default::default()
};

target.draw(..., ¶ms).unwrap();

This calls Default::default() to create a DrawParameters value initialized with
the default values for all its fields and then uses the .. syntax for structs to
create a new one with the line_width and point_size fields changed, ready for
you to pass it to target.draw.

If a type T implements Default, then the standard library implements Default
automatically for Rc<T>, Arc<T>, Box<T>, Cell<T>, RefCell<T>,
Cow<T>, Mutex<T>, and RwLock<T>. The default value for the type
Rc<T>, for example, is an Rc pointing to the default value for type T.

If all the element types of a tuple type implement Default, then the tuple type

does too, defaulting to a tuple holding each element’s default value.

Rust does not implicitly implement Default for struct types, but if all of a
struct’s fields implement Default, you can implement Default for the struct
automatically using #[derive(Default)].

AsRef and AsMut
When a type implements AsRef<T>, that means you can borrow a &T from it
efficiently. AsMut is the analogue for mutable references. Their definitions
are as follows:

trait AsRef<T: ?Sized> {
 fn as_ref(&self) -> &T;
}

trait AsMut<T: ?Sized> {
 fn as_mut(&mut self) -> &mut T;
}

So, for example, Vec<T> implements AsRef<[T]>, and String implements
AsRef<str>. You can also borrow a String’s contents as an array of bytes, so
String implements AsRef<[u8]> as well.

AsRef is typically used to make functions more flexible in the argument
types they accept. For example, the std::fs::File::open function is declared
like this:

fn open<P: AsRef<Path>>(path: P) -> Result<File>

What open really wants is a &Path, the type representing a filesystem path.
But with this signature, open accepts anything it can borrow a &Path from—
that is, anything that implements AsRef<Path>. Such types include String
and str, the operating system interface string types OsString and OsStr, and of
course PathBuf and Path; see the library documentation for the full list. This
is what allows you to pass string literals to open:

let dot_emacs = std::fs::File::open("/home/jimb/.emacs")?;

All of the standard library’s filesystem access functions accept path
arguments this way. For callers, the effect resembles that of an overloaded
function in C++, although Rust takes a different approach toward establishing

which argument types are acceptable.

But this can’t be the whole story. A string literal is a &str, but the type that
implements AsRef<Path> is str, without an &. And as we explained in “Deref
and DerefMut”, Rust doesn’t try deref coercions to satisfy type variable
bounds, so they won’t help here either.

Fortunately, the standard library includes the blanket implementation:

impl<'a, T, U> AsRef<U> for &'a T
 where T: AsRef<U>,
 T: ?Sized, U: ?Sized
{
 fn as_ref(&self) -> &U {
 (*self).as_ref()
 }
}

In other words, for any types T and U, if T: AsRef<U>, then &T: AsRef<U>
as well: simply follow the reference and proceed as before. In particular,
since str: AsRef<Path>, then &str: AsRef<Path> as well. In a sense, this is a
way to get a limited form of deref coercion in checking AsRef bounds on
type variables.

You might assume that if a type implements AsRef<T>, it should also
implement AsMut<T>. However, there are cases where this isn’t appropriate.
For example, we’ve mentioned that String implements AsRef<[u8]>; this
makes sense, as each String certainly has a buffer of bytes that can be useful
to access as binary data. However, String further guarantees that those bytes
are a well-formed UTF-8 encoding of Unicode text; if String implemented
AsMut<[u8]>, that would let callers change the String’s bytes to anything
they wanted, and you could no longer trust a String to be well-formed UTF-8.
It only makes sense for a type to implement AsMut<T> if modifying the
given T cannot violate the type’s invariants.

Although AsRef and AsMut are pretty simple, providing standard, generic
traits for reference conversion avoids the proliferation of more specific
conversion traits. You should avoid defining your own AsFoo traits when
you could just implement AsRef<Foo>.

Borrow and BorrowMut
The std::borrow::Borrow trait is similar to AsRef: if a type implements
Borrow<T>, then its borrow method efficiently borrows a &T from it. But
Borrow imposes more restrictions: a type should implement Borrow<T> only
when a &T hashes and compares the same way as the value it’s borrowed
from. (Rust doesn’t enforce this; it’s just the documented intent of the trait.)
This makes Borrow valuable in dealing with keys in hash tables and trees or
when dealing with values that will be hashed or compared for some other
reason.

This distinction matters when borrowing from Strings, for example: String
implements AsRef<str>, AsRef<[u8]>, and AsRef<Path>, but those three
target types will generally have different hash values. Only the &str slice is
guaranteed to hash like the equivalent String, so String implements only
Borrow<str>.

Borrow’s definition is identical to that of AsRef; only the names have been
changed:

trait Borrow<Borrowed: ?Sized> {
 fn borrow(&self) -> &Borrowed;
}

Borrow is designed to address a specific situation with generic hash tables
and other associative collection types. For example, suppose you have a
std::collections::HashMap<String, i32>, mapping strings to numbers. This
table’s keys are Strings; each entry owns one. What should the signature of
the method that looks up an entry in this table be? Here’s a first attempt:

impl<K, V> HashMap<K, V> where K: Eq + Hash
{
 fn get(&self, key: K) -> Option<&V> { ... }
}

This makes sense: to look up an entry, you must provide a key of the

appropriate type for the table. But in this case, K is String; this signature
would force you to pass a String by value to every call to get, which is clearly
wasteful. You really just need a reference to the key:

impl<K, V> HashMap<K, V> where K: Eq + Hash
{
 fn get(&self, key: &K) -> Option<&V> { ... }
}

This is slightly better, but now you have to pass the key as a &String, so if
you wanted to look up a constant string, you’d have to write:

hashtable.get(&"twenty-two".to_string())

This is ridiculous: it allocates a String buffer on the heap and copies the text
into it, just so it can borrow it as a &String, pass it to get, and then drop it.

It should be good enough to pass anything that can be hashed and compared
with our key type; a &str should be perfectly adequate, for example. So
here’s the final iteration, which is what you’ll find in the standard library:

impl<K, V> HashMap<K, V> where K: Eq + Hash
{
 fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V>
 where K: Borrow<Q>,
 Q: Eq + Hash
 { ... }
}

In other words, if you can borrow an entry’s key as an &Q and the resulting
reference hashes and compares just the way the key itself would, then clearly
&Q ought to be an acceptable key type. Since String implements
Borrow<str> and Borrow<String>, this final version of get allows you to pass
either &String or &str as a key, as needed.

Vec<T> and [T: N] implement Borrow<[T]>. Every string-like type allows
borrowing its corresponding slice type: String implements Borrow<str>,
PathBuf implements Borrow<Path>, and so on. And all the standard library’s
associative collection types use Borrow to decide which types can be passed

to their lookup functions.

The standard library includes a blanket implementation so that every type T
can be borrowed from itself: T: Borrow<T>. This ensures that &K is always
an acceptable type for looking up entries in a HashMap<K, V>.

As a convenience, every &mut T type also implements Borrow<T>, returning
a shared reference &T as usual. This allows you to pass mutable references to
collection lookup functions without having to reborrow a shared reference,
emulating Rust’s usual implicit coercion from mutable references to shared
references.

The BorrowMut trait is the analogue of Borrow for mutable references:

trait BorrowMut<Borrowed: ?Sized>: Borrow<Borrowed> {
 fn borrow_mut(&mut self) -> &mut Borrowed;
}

The same expectations described for Borrow apply to BorrowMut as well.

From and Into
The std::convert::From and std::convert::Into traits represent conversions that
consume a value of one type and return a value of another. Whereas the
AsRef and AsMut traits borrow a reference of one type from another, From
and Into take ownership of their argument, transform it, and then return
ownership of the result back to the caller.

Their definitions are nicely symmetrical:

trait Into<T>: Sized {
 fn into(self) -> T;
}

trait From<T>: Sized {
 fn from(other: T) -> Self;
}

The standard library automatically implements the trivial conversion from
each type to itself: every type T implements From<T> and Into<T>.

Although the traits simply provide two ways to do the same thing, they lend
themselves to different uses.

You generally use Into to make your functions more flexible in the arguments
they accept. For example, if you write:

use std::net::Ipv4Addr;
fn ping<A>(address: A) -> std::io::Result<bool>
 where A: Into<Ipv4Addr>
{
 let ipv4_address = address.into();
 ...
}

then ping can accept not just an Ipv4Addr as an argument, but also a u32 or a
[u8; 4] array, since those types both conveniently happen to implement
Into<Ipv4Addr>. (It’s sometimes useful to treat an IPv4 address as a single

32-bit value, or an array of 4 bytes.) Because the only thing ping knows about
address is that it implements Into<Ipv4Addr>, there’s no need to specify
which type you want when you call into; there’s only one that could possibly
work, so type inference fills it in for you.

As with AsRef in the previous section, the effect is much like that of
overloading a function in C++. With the definition of ping from before, we
can make any of these calls:

println!("{:?}", ping(Ipv4Addr::new(23, 21, 68, 141))); // pass an Ipv4Addr
println!("{:?}", ping([66, 146, 219, 98])); // pass a [u8; 4]
println!("{:?}", ping(0xd076eb94_u32)); // pass a u32

The From trait, however, plays a different role. The from method serves as a
generic constructor for producing an instance of a type from some other
single value. For example, rather than Ipv4Addr having two methods named
from_array and from_u32, it simply implements From<[u8;4]> and
From<u32>, allowing us to write:

let addr1 = Ipv4Addr::from([66, 146, 219, 98]);
let addr2 = Ipv4Addr::from(0xd076eb94_u32);

We can let type inference sort out which implementation applies.

Given an appropriate From implementation, the standard library
automatically implements the corresponding Into trait. When you define your
own type, if it has single-argument constructors, you should write them as
implementations of From<T> for the appropriate types; you’ll get the
corresponding Into implementations for free.

Because the from and into conversion methods take ownership of their
arguments, a conversion can reuse the original value’s resources to construct
the converted value. For example, suppose you write:

let text = "Beautiful Soup".to_string();
let bytes: Vec<u8> = text.into();

The implementation of Into<Vec<u8>> for String simply takes the String’s

heap buffer and repurposes it, unchanged, as the returned vector’s element
buffer. The conversion has no need to allocate or copy the text. This is
another case where moves enable efficient implementations.

These conversions also provide a nice way to relax a value of a constrained
type into something more flexible, without weakening the constrained type’s
guarantees. For example, a String guarantees that its contents are always
valid UTF-8; its mutating methods are carefully restricted to ensure that
nothing you can do will ever introduce bad UTF-8. But this example
efficiently “demotes” a String to a block of plain bytes that you can do
anything you like with: perhaps you’re going to compress it, or combine it
with other binary data that isn’t UTF-8. Because into takes its argument by
value, text is no longer initialized after the conversion, meaning that we can
freely access the former String’s buffer without being able to corrupt any
extant String.

However, cheap conversions are not part of Into and From’s contract.
Whereas AsRef and AsMut conversions are expected to be cheap, From and
Into conversions may allocate, copy, or otherwise process the value’s
contents. For example, String implements From<&str>, which copies the
string slice into a new heap-allocated buffer for the String. And
std::collections::BinaryHeap<T> implements From<Vec<T>>, which
compares and reorders the elements according to its algorithm’s
requirements.

The ? operator uses From and Into to help clean up code in functions that
could fail in multiple ways by automatically converting from specific error
types to general ones when needed.

For instance, imagine a system that needs to read binary data and convert
some portion of it from base-10 numbers written out as UTF-8 text. That
means using std::str::from_utf8 and the FromStr implementation for i32,
which can each return errors of different types. Assuming we use the
GenericError and GenericResult types we defined in Chapter 7 when
discussing error handling, the ? operator will do the conversion for us:

type GenericError = Box<dyn std::error::Error + Send + Sync + 'static>;

type GenericResult<T> = Result<T, GenericError>;

fn parse_i32_bytes(b: &[u8]) -> GenericResult<i32> {
 Ok(std::str::from_utf8(b)?.parse::<i32>()?)
}

Like most error types, Utf8Error and ParseIntError implement the Error trait,
and the standard library gives us a blanket From impl for converting from
anything that implements Error to a Box<dyn Error>, which ? automatically
uses:

impl<'a, E: Error + Send + Sync + 'a> From<E>
 for Box<dyn Error + Send + Sync + 'a> {
 fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
 Box::new(err)
 }
}

This turns what would have been a fairly large function with two match
statements into a one-liner.

Before From and Into were added to the standard library, Rust code was full
of ad hoc conversion traits and construction methods, each specific to a single
type. From and Into codify conventions that you can follow to make your
types easier to use, since your users are already familiar with them. Other
libraries and the language itself can also rely on these traits as a canonical,
standardized way to encode conversions.

From and Into are infallible traits—their API requires that conversions will
not fail. Unfortunately, many conversions are more complex than that. For
example, large integers like i64 can store numbers far larger than i32, and
converting a number like 2_000_000_000_000i64 into i32 doesn’t make
much sense without some additional information. Doing a simple bitwise
conversion, in which the first 32 bits are thrown out, doesn’t often yield the
result we would hope for:

let huge = 2_000_000_000_000i64;
let smaller = huge as i32;
println!("{}", smaller); // -1454759936

There are many options for handling this situation. Depending on the context,
such a “wrapping” conversion might be appropriate. On the other hand,
applications such as digital signal processing and control systems can often
make do with a “saturating” conversion, in which numbers larger than the
maximum possible value are limited to that maximum.

TryFrom and TryInto
Since it’s not clear how such a conversion should behave, Rust doesn’t
implement From<i64> for i32, or any other conversion between numerical
types that would lose information. Instead, i32 implements TryFrom<i64>.
TryFrom and TryInto are the fallible cousins of From and Into and are
similarly reciprocal; implementing TryFrom means that TryInto is
implemented as well.

Their definitions are only a little more complex than From and Into.

pub trait TryFrom<T>: Sized {
 type Error;
 fn try_from(value: T) -> Result<Self, Self::Error>;
}

pub trait TryInto<T>: Sized {
 type Error;
 fn try_into(self) -> Result<T, Self::Error>;
}

The try_into() method gives us a Result, so we can choose what to do in the
exceptional case, such as a number that’s too large to fit in the resulting type:

// Saturate on overflow, rather than wrapping
let smaller: i32 = huge.try_into().unwrap_or(i32::MAX);

If we want to also handle the negative case, we can use the unwrap_or_else()
method of Result:

let smaller: i32 = huge.try_into().unwrap_or_else(|_|{
 if huge >= 0 {
 i32::MAX
 } else {
 i32::MIN
 }
});

Implementing fallible conversions for your own types is easy, too. The Error
type can be as simple, or as complex, as a particular application demands.
The standard library uses an empty struct, providing no information beyond
the fact that an error occurred, since the only possible error is an overflow.
On the other hand, conversions between more complex types might want to
return more information:

impl TryInto<LinearShift> for Transform {
 type Error = TransformError;

 fn try_into(self) -> Result<LinearShift, Self::Error> {
 if !self.normalized() {
 return Err(TransformError::NotNormalized);
 }
 ...
 }
}

Where From and Into relate types with simple conversions, TryFrom and
TryInto extend the simplicity of From and Into conversions with the
expressive error handling afforded by Result. These four traits can be used
together to relate many types in a single crate.

ToOwned
Given a reference, the usual way to produce an owned copy of its referent is
to call clone, assuming the type implements std::clone::Clone. But what if
you want to clone a &str or a &[i32]? What you probably want is a String or
a Vec<i32>, but Clone’s definition doesn’t permit that: by definition, cloning
a &T must always return a value of type T, and str and [u8] are unsized; they
aren’t even types that a function could return.

The std::borrow::ToOwned trait provides a slightly looser way to convert a
reference to an owned value:

trait ToOwned {
 type Owned: Borrow<Self>;
 fn to_owned(&self) -> Self::Owned;
}

Unlike clone, which must return exactly Self, to_owned can return anything
you could borrow a &Self from: the Owned type must implement
Borrow<Self>. You can borrow a &[T] from a Vec<T>, so [T] can
implement ToOwned<Owned=Vec<T>>, as long as T implements Clone, so
that we can copy the slice’s elements into the vector. Similarly, str
implements ToOwned<Owned=String>, Path implements
ToOwned<Owned=PathBuf>, and so on.

Borrow and ToOwned at Work: The Humble Cow
Making good use of Rust involves thinking through questions of ownership,
like whether a function should receive a parameter by reference or by value.
Usually you can settle on one approach or the other, and the parameter’s type
reflects your decision. But in some cases you cannot decide whether to
borrow or own until the program is running; the std::borrow::Cow type (for
“clone on write”) provides one way to do this.

Its definition is shown here:

enum Cow<'a, B: ?Sized>
 where B: ToOwned
{
 Borrowed(&'a B),
 Owned(<B as ToOwned>::Owned),
}

A Cow either borrows a shared reference to a B or owns a value from
which we could borrow such a reference. Since Cow implements Deref, you
can call methods on it as if it were a shared reference to a B: if it’s Owned, it
borrows a shared reference to the owned value; and if it’s Borrowed, it just
hands out the reference it’s holding.

You can also get a mutable reference to a Cow’s value by calling its to_mut
method, which returns a &mut B. If the Cow happens to be Cow::Borrowed,
to_mut simply calls the reference’s to_owned method to get its own copy of
the referent, changes the Cow into a Cow::Owned, and borrows a mutable
reference to the newly owned value. This is the “clone on write” behavior the
type’s name refers to.

Similarly, Cow has an into_owned method that promotes the reference to an
owned value, if necessary, and then returns it, moving ownership to the caller
and consuming the Cow in the process.

One common use for Cow is to return either a statically allocated string
constant or a computed string. For example, suppose you need to convert an

error enum to a message. Most of the variants can be handled with fixed
strings, but some of them have additional data that should be included in the
message. You can return a Cow<'static, str>:

use std::path::PathBuf;
use std::borrow::Cow;
fn describe(error: &Error) -> Cow<'static, str> {
 match *error {
 Error::OutOfMemory => "out of memory".into(),
 Error::StackOverflow => "stack overflow".into(),
 Error::MachineOnFire => "machine on fire".into(),
 Error::Unfathomable => "machine bewildered".into(),
 Error::FileNotFound(ref path) => {
 format!("file not found: {}", path.display()).into()
 }
 }
}

This code uses Cow’s implementation of Into to construct the values. Most
arms of this match statement return a Cow::Borrowed referring to a statically
allocated string. But when we get a FileNotFound variant, we use format! to
construct a message incorporating the given filename. This arm of the match
statement produces a Cow::Owned value.

Callers of describe that don’t need to change the value can simply treat the
Cow as a &str:

println!("Disaster has struck: {}", describe(&error));

Callers who do need an owned value can readily produce one:

let mut log: Vec<String> = Vec::new();
...
log.push(describe(&error).into_owned());

Using Cow helps describe and its callers put off allocation until the moment
it becomes necessary.

Chapter 14. Closures

Save the environment! Create a closure today!
—Cormac Flanagan

Sorting a vector of integers is easy:

integers.sort();

It is, therefore, a sad fact that when we want some data sorted, it’s hardly ever
a vector of integers. We typically have records of some kind, and the built-in
sort method typically does not work:

struct City {
 name: String,
 population: i64,
 country: String,
 ...
}

fn sort_cities(cities: &mut Vec<City>) {
 cities.sort(); // error: how do you want them sorted?
}

Rust complains that City does not implement std::cmp::Ord. We need to
specify the sort order, like this:

/// Helper function for sorting cities by population.
fn city_population_descending(city: &City) -> i64 {
 -city.population
}

fn sort_cities(cities: &mut Vec<City>) {
 cities.sort_by_key(city_population_descending); // ok
}

The helper function, city_population_descending, takes a City record and
extracts the key, the field by which we want to sort our data. (It returns a

negative number because sort arranges numbers in increasing order, and we
want decreasing order: the most populous city first.) The sort_by_key method
takes this key-function as a parameter.

This works fine, but it’s more concise to write the helper function as a
closure, an anonymous function expression:

fn sort_cities(cities: &mut Vec<City>) {
 cities.sort_by_key(|city| -city.population);
}

The closure here is |city| -city.population. It takes an argument city and
returns -city.population. Rust infers the argument type and return type from
how the closure is used.

Other examples of standard library features that accept closures include:

Iterator methods such as map and filter, for working with sequential
data. We’ll cover these methods in Chapter 15.

Threading APIs like thread::spawn, which starts a new system
thread. Concurrency is all about moving work to other threads, and
closures conveniently represent units of work. We’ll cover these
features in Chapter 19.

Some methods that conditionally need to compute a default value,
like the or_insert_with method of HashMap entries. This method
either gets or creates an entry in a HashMap, and it’s used when the
default value is expensive to compute. The default value is passed in
as a closure that is called only if a new entry must be created.

Of course, anonymous functions are everywhere these days, even in
languages like Java, C#, Python, and C++ that didn’t originally have them.
From now on we’ll assume you’ve seen anonymous functions before and
focus on what makes Rust’s closures a little different. In this chapter, you’ll
learn the three types of closures, how to use closures with standard library
methods, how a closure can “capture” variables in its scope, how to write
your own functions and methods that take closures as arguments, and how to

store closures for later use as callbacks. We’ll also explain how Rust closures
are implemented and why they’re faster than you might expect.

Capturing Variables
A closure can use data that belongs to an enclosing function. For example:

/// Sort by any of several different statistics.
fn sort_by_statistic(cities: &mut Vec<City>, stat: Statistic) {
 cities.sort_by_key(|city| -city.get_statistic(stat));
}

The closure here uses stat, which is owned by the enclosing function,
sort_by_statistic. We say that the closure “captures” stat. This is one of the
classic features of closures, so naturally, Rust supports it; but in Rust, this
feature comes with a string attached.

In most languages with closures, garbage collection plays an important role.
For example, consider this JavaScript code:

// Start an animation that rearranges the rows in a table of cities.
function startSortingAnimation(cities, stat) {
 // Helper function that we'll use to sort the table.
 // Note that this function refers to stat.
 function keyfn(city) {
 return city.get_statistic(stat);
 }

 if (pendingSort)
 pendingSort.cancel();

 // Now kick off an animation, passing keyfn to it.
 // The sorting algorithm will call keyfn later.
 pendingSort = new SortingAnimation(cities, keyfn);
}

The closure keyfn is stored in the new SortingAnimation object. It’s meant to
be called after startSortingAnimation returns. Now, normally when a function
returns, all its variables and arguments go out of scope and are discarded. But
here, the JavaScript engine must keep stat around somehow, since the closure
uses it. Most JavaScript engines do this by allocating stat in the heap and
letting the garbage collector reclaim it later.

Rust doesn’t have garbage collection. How will this work? To answer this
question, we’ll look at two examples.

Closures That Borrow
First, let’s repeat the opening example of this section:

/// Sort by any of several different statistics.
fn sort_by_statistic(cities: &mut Vec<City>, stat: Statistic) {
 cities.sort_by_key(|city| -city.get_statistic(stat));
}

In this case, when Rust creates the closure, it automatically borrows a
reference to stat. It stands to reason: the closure refers to stat, so it must have
a reference to it.

The rest is simple. The closure is subject to the rules about borrowing and
lifetimes that we described in Chapter 5. In particular, since the closure
contains a reference to stat, Rust won’t let it outlive stat. Since the closure is
only used during sorting, this example is fine.

In short, Rust ensures safety by using lifetimes instead of garbage collection.
Rust’s way is faster: even a fast GC allocation will be slower than storing stat
on the stack, as Rust does in this case.

Closures That Steal
The second example is trickier:

use std::thread;

fn start_sorting_thread(mut cities: Vec<City>, stat: Statistic)
 -> thread::JoinHandle<Vec<City>>
{
 let key_fn = |city: &City| -> i64 { -city.get_statistic(stat) };

 thread::spawn(|| {
 cities.sort_by_key(key_fn);
 cities
 })
}

This is a bit more like what our JavaScript example was doing: thread::spawn
takes a closure and calls it in a new system thread. Note that || is the closure’s
empty argument list.

The new thread runs in parallel with the caller. When the closure returns, the
new thread exits. (The closure’s return value is sent back to the calling thread
as a JoinHandle value. We’ll cover that in Chapter 19.)

Again, the closure key_fn contains a reference to stat. But this time, Rust
can’t guarantee that the reference is used safely. Rust therefore rejects this
program:

error: closure may outlive the current function, but it borrows `stat`,
 which is owned by the current function
 |
33 | let key_fn = |city: &City| -> i64 { -city.get_statistic(stat) };
 | ^^^^^^^^^^^^^^^^^^^^ ^^^^
 | | `stat` is borrowed here
 | may outlive borrowed value `stat`

In fact, there are two problems here, because cities is shared unsafely as well.
Quite simply, the new thread created by thread::spawn can’t be expected to
finish its work before cities and stat are destroyed at the end of the function.

The solution to both problems is the same: tell Rust to move cities and stat
into the closures that use them instead of borrowing references to them.

fn start_sorting_thread(mut cities: Vec<City>, stat: Statistic)
 -> thread::JoinHandle<Vec<City>>
{
 let key_fn = move |city: &City| -> i64 { -city.get_statistic(stat) };

 thread::spawn(move || {
 cities.sort_by_key(key_fn);
 cities
 })
}

The only thing we’ve changed is to add the move keyword before each of the
two closures. The move keyword tells Rust that a closure doesn’t borrow the
variables it uses: it steals them.

The first closure, key_fn, takes ownership of stat. Then the second closure
takes ownership of both cities and key_fn.

Rust thus offers two ways for closures to get data from enclosing scopes:
moves and borrowing. Really there is nothing more to say than that; closures
follow the same rules about moves and borrowing that we already covered in
Chapters 4 and 5. A few cases in point:

Just as everywhere else in the language, if a closure would move a
value of a copyable type, like i32, it copies the value instead. So if
Statistic happened to be a copyable type, we could keep using stat
even after creating a move closure that uses it.

Values of noncopyable types, like Vec<City>, really are moved: the
preceding code transfers cities to the new thread, by way of the
move closure. Rust would not let us access cities by name after
creating the closure.

As it happens, this code doesn’t need to use cities after the point
where the closure moves it. If we did, though, the workaround would
be easy: we could tell Rust to clone cities and store the copy in a

different variable. The closure would only steal one of the copies—
whichever one it refers to.

We get something important by accepting Rust’s strict rules: thread safety. It
is precisely because the vector is moved, rather than being shared across
threads, that we know the old thread won’t free the vector while the new
thread is modifying it.

Function and Closure Types
Throughout this chapter, we’ve seen functions and closures used as values.
Naturally, this means that they have types. For example:

fn city_population_descending(city: &City) -> i64 {
 -city.population
}

This function takes one argument (a &City) and returns an i64. It has the type
fn(&City) -> i64.

You can do all the same things with functions that you do with other values.
You can store them in variables. You can use all the usual Rust syntax to
compute function values:

let my_key_fn: fn(&City) -> i64 =
 if user.prefs.by_population {
 city_population_descending
 } else {
 city_monster_attack_risk_descending
 };

cities.sort_by_key(my_key_fn);

Structs may have function-typed fields. Generic types like Vec can store
scads of functions, as long as they all share the same fn type. And function
values are tiny: a fn value is the memory address of the function’s machine
code, just like a function pointer in C++.

A function can take another function as an argument. For example:

/// Given a list of cities and a test function,
/// return how many cities pass the test.
fn count_selected_cities(cities: &Vec<City>,
 test_fn: fn(&City) -> bool) -> usize
{
 let mut count = 0;
 for city in cities {

 if test_fn(city) {
 count += 1;
 }
 }
 count
}

/// An example of a test function. Note that the type of
/// this function is `fn(&City) -> bool`, the same as
/// the `test_fn` argument to `count_selected_cities`.
fn has_monster_attacks(city: &City) -> bool {
 city.monster_attack_risk > 0.0
}

// How many cities are at risk for monster attack?
let n = count_selected_cities(&my_cities, has_monster_attacks);

If you’re familiar with function pointers in C/C++, you’ll see that Rust’s
function values are exactly the same thing.

After all this, it may come as a surprise that closures do not have the same
type as functions:

let limit = preferences.acceptable_monster_risk();
let n = count_selected_cities(
 &my_cities,
 |city| city.monster_attack_risk > limit); // error: type mismatch

The second argument causes a type error. To support closures, we must
change the type signature of this function. It needs to look like this:

fn count_selected_cities<F>(cities: &Vec<City>, test_fn: F) -> usize
 where F: Fn(&City) -> bool
{
 let mut count = 0;
 for city in cities {
 if test_fn(city) {
 count += 1;
 }
 }
 count
}

We have changed only the type signature of count_selected_cities, not the
body. The new version is generic. It takes a test_fn of any type F as long as F
implements the special trait Fn(&City) -> bool. This trait is automatically
implemented by all functions and most closures that take a single &City as an
argument and return a Boolean value:

fn(&City) -> bool // fn type (functions only)
Fn(&City) -> bool // Fn trait (both functions and closures)

This special syntax is built into the language. The -> and return type are
optional; if omitted, the return type is ().

The new version of count_selected_cities accepts either a function or a
closure:

count_selected_cities(
 &my_cities,
 has_monster_attacks); // ok

count_selected_cities(
 &my_cities,
 |city| city.monster_attack_risk > limit); // also ok

Why didn’t our first attempt work? Well, a closure is callable, but it’s not a
fn. The closure |city| city.monster_attack_risk > limit has its own type that’s
not a fn type.

In fact, every closure you write has its own type, because a closure may
contain data: values either borrowed or stolen from enclosing scopes. This
could be any number of variables, in any combination of types. So every
closure has an ad hoc type created by the compiler, large enough to hold that
data. No two closures have exactly the same type. But every closure
implements an Fn trait; the closure in our example implements Fn(&City) ->
i64.

Since every closure has its own type, code that works with closures usually
needs to be generic, like count_selected_cities. It’s a little clunky to spell out
the generic types each time, but to see the advantages of this design, just read

on.

Closure Performance
Rust’s closures are designed to be fast: faster than function pointers, fast
enough that you can use them even in red-hot, performance-sensitive code. If
you’re familiar with C++ lambdas, you’ll find that Rust closures are just as
fast and compact, but safer.

In most languages, closures are allocated in the heap, dynamically
dispatched, and garbage collected. So creating, calling, and collecting each of
them costs a tiny bit of extra CPU time. Worse, closures tend to rule out
inlining, a key technique compilers use to eliminate function call overhead
and enable a raft of other optimizations. All told, closures are slow enough in
these languages that it can be worth manually removing them from tight inner
loops.

Rust closures have none of these performance drawbacks. They’re not
garbage collected. Like everything else in Rust, they aren’t allocated on the
heap unless you put them in a Box, Vec, or other container. And since each
closure has a distinct type, whenever the Rust compiler knows the type of the
closure you’re calling, it can inline the code for that particular closure. This
makes it OK to use closures in tight loops, and Rust programs often do so,
enthusiastically, as you’ll see in Chapter 15.

Figure 14-1 shows how Rust closures are laid out in memory. At the top of
the figure, we show a couple of local variables that our closures will refer to:
a string food and a simple enum weather, whose numeric value happens to be
27.

Figure 14-1. Layout of closures in memory

Closure (a) uses both variables. Apparently we’re looking for cities that have
both tacos and tornadoes. In memory, this closure looks like a small struct
containing references to the variables it uses.

Note that it doesn’t contain a pointer to its code! That’s not necessary: as
long as Rust knows the closure’s type, it knows which code to run when you
call it.

Closure (b) is exactly the same, except it’s a move closure, so it contains
values instead of references.

Closure (c) doesn’t use any variables from its environment. The struct is
empty, so this closure does not take up any memory at all.

As the figure shows, these closures don’t take up much space. But even those
few bytes are not always needed in practice. Often, the compiler can inline all
calls to a closure, and then even the small structs shown in this figure are
optimized away.

In “Callbacks”, we’ll show how to allocate closures in the heap and call them

dynamically, using trait objects. That is a bit slower, but it is still as fast as
any other trait object method.

Closures and Safety
Throughout the chapter so far, we’ve talked about how Rust ensures that
closures respect the language’s safety rules when they borrow or move
variables from the surrounding code. But there are some further
consequences that are not exactly obvious. In this section, we’ll explain a bit
more about what happens when a closure drops or modifies a captured value.

Closures That Kill
We have seen closures that borrow values and closures that steal them; it was
only a matter of time before they went all the way bad.

Of course, kill is not really the right terminology. In Rust, we drop values.
The most straightforward way to do it is to call drop():

let my_str = "hello".to_string();
let f = || drop(my_str);

When f is called, my_str is dropped.

So what happens if we call it twice?

f();
f();

Let’s think it through. The first time we call f, it drops my_str, which means
the memory where the string is stored is freed, returned to the system. The
second time we call f, the same thing happens. It’s a double free, a classic
mistake in C++ programming that triggers undefined behavior.

Dropping a String twice would be an equally bad idea in Rust. Fortunately,
Rust can’t be fooled so easily:

f(); // ok
f(); // error: use of moved value

Rust knows this closure can’t be called twice.

A closure that can be called only once may seem like a rather extraordinary
thing, but we’ve been talking throughout this book about ownership and
lifetimes. The idea of values being used up (that is, moved) is one of the core
concepts in Rust. It works the same with closures as with everything else.

FnOnce
Let’s try once more to trick Rust into dropping a String twice. This time,
we’ll use this generic function:

fn call_twice<F>(closure: F) where F: Fn() {
 closure();
 closure();
}

This generic function may be passed any closure that implements the trait
Fn(): that is, closures that take no arguments and return (). (As with
functions, the return type can be omitted if it’s (); Fn() is shorthand for Fn() -
> ().)

Now what happens if we pass our unsafe closure to this generic function?

let my_str = "hello".to_string();
let f = || drop(my_str);
call_twice(f);

Again, the closure will drop my_str when it’s called. Calling it twice would
be a double free. But again, Rust is not fooled:

error: expected a closure that implements the `Fn` trait, but
 this closure only implements `FnOnce`
 |
 8 | let f = || drop(my_str);
 | ^^^^^^^^------^
 | | |
 | | closure is `FnOnce` because it moves the variable `my_str`
 | | out of its environment
 | this closure implements `FnOnce`, not `Fn`
 9 | call_twice(f);
 | ---------- the requirement to implement `Fn` derives from here

This error message tells us more about how Rust handles “closures that kill.”
They could have been banned from the language entirely, but cleanup
closures are useful sometimes. So instead, Rust restricts their use. Closures

that drop values, like f, are not allowed to have Fn. They are, quite literally,
no Fn at all. They implement a less powerful trait, FnOnce, the trait of
closures that can be called once.

The first time you call a FnOnce closure, the closure itself is used up. It’s as
though the two traits, Fn and FnOnce, were defined like this:

// Pseudocode for `Fn` and `FnOnce` traits with no arguments.
trait Fn() -> R {
 fn call(&self) -> R;
}

trait FnOnce() -> R {
 fn call_once(self) -> R;
}

Just as an arithmetic expression like a + b is shorthand for a method call,
Add::add(a, b), Rust treats closure() as shorthand for one of the two trait
methods shown in the preceding example. For an Fn closure, closure()
expands to closure.call(). This method takes self by reference, so the closure
is not moved. But if the closure is only safe to call once, then closure()
expands to closure.call_once(). That method takes self by value, so the
closure is used up.

Of course we’ve been deliberately stirring up trouble here by using drop(). In
practice, you’ll mostly get into this situation by accident. It doesn’t happen
often, but once in a great while you’ll write some closure code that
unintentionally uses up a value:

let dict = produce_glossary();
let debug_dump_dict = || {
 for (key, value) in dict { // oops!
 println!("{:?} - {:?}", key, value);
 }
};

Then, when you call debug_dump_dict() more than once, you’ll get an error
message like this:

error: use of moved value: `debug_dump_dict`
 |
19 | debug_dump_dict();
 | ----------------- `debug_dump_dict` moved due to this call
20 | debug_dump_dict();
 | ^^^^^^^^^^^^^^^ value used here after move
 |
note: closure cannot be invoked more than once because it moves the variable
`dict` out of its environment
 |
13 | for (key, value) in dict {
 | ^^^^

To debug this, we have to figure out why the closure is an FnOnce. Which
value is being used up here? The compiler helpfully points out that it’s dict,
which in this case is the only one we’re referring to at all. Ah, there’s the
bug: we’re using up dict by iterating over it directly. We should be looping
over &dict, rather than plain dict, to access the values by reference:

let debug_dump_dict = || {
 for (key, value) in &dict { // does not use up dict
 println!("{:?} - {:?}", key, value);
 }
};

This fixes the error; the function is now an Fn and can be called any number
of times.

FnMut
There is one more kind of closure, the kind that contains mutable data or mut
references.

Rust considers non-mut values safe to share across threads. But it wouldn’t
be safe to share non-mut closures that contain mut data: calling such a closure
from multiple threads could lead to all sorts of race conditions as multiple
threads try to read and write the same data at the same time.

Therefore, Rust has one more category of closure, FnMut, the category of
closures that write. FnMut closures are called by mut reference, as if they
were defined like this:

// Pseudocode for `Fn`, `FnMut`, and `FnOnce` traits.
trait Fn() -> R {
 fn call(&self) -> R;
}

trait FnMut() -> R {
 fn call_mut(&mut self) -> R;
}

trait FnOnce() -> R {
 fn call_once(self) -> R;
}

Any closure that requires mut access to a value, but doesn’t drop any values,
is an FnMut closure. For example:

let mut i = 0;
let incr = || {
 i += 1; // incr borrows a mut reference to i
 println!("Ding! i is now: {}", i);
};
call_twice(incr);

The way we wrote call_twice, it requires an Fn. Since incr is an FnMut and
not an Fn, this code fails to compile. There’s an easy fix, though. To
understand the fix, let’s take a step back and summarize what you’ve learned

about the three categories of Rust closures.

Fn is the family of closures and functions that you can call multiple
times without restriction. This highest category also includes all fn
functions.

FnMut is the family of closures that can be called multiple times if
the closure itself is declared mut.

FnOnce is the family of closures that can be called once, if the caller
owns the closure.

Every Fn meets the requirements for FnMut, and every FnMut meets the
requirements for FnOnce. As shown in Figure 14-2, they’re not three separate
categories.

Instead, Fn() is a subtrait of FnMut(), which is a subtrait of FnOnce(). This
makes Fn the most exclusive and most powerful category. FnMut and
FnOnce are broader categories that include closures with usage restrictions.

Figure 14-2. Venn diagram of the three closure categories

Now that we’ve organized what we know, it’s clear that to accept the widest
possible swath of closures, our call_twice function really ought to accept all
FnMut closures, like this:

fn call_twice<F>(mut closure: F) where F: FnMut() {
 closure();
 closure();
}

The bound on the first line was F: Fn(), and now it’s F: FnMut(). With this
change, we still accept all Fn closures, and we additionally can use call_twice
on closures that mutate data:

let mut i = 0;
call_twice(|| i += 1); // ok!
assert_eq!(i, 2);

Copy and Clone for Closures
Just as Rust automatically figures out which closures can be called only once,
it can figure out which closures can implement Copy and Clone, and which
cannot.

As we explained earlier, closures are represented as structs that contain either
the values (for move closures) or references to the values (for non-move
closures) of the variables they capture. The rules for Copy and Clone on
closures are just like the Copy and Clone rules for regular structs. A non-
move closure that doesn’t mutate variables holds only shared references,
which are both Clone and Copy, so that closure is both Clone and Copy as
well:

let y = 10;
let add_y = |x| x + y;
let copy_of_add_y = add_y; // This closure is `Copy`, so...
assert_eq!(add_y(copy_of_add_y(22)), 42); // ... we can call both.

On the other hand, a non-move closure that does mutate values has mutable
references within its internal representation. Mutable references are neither
Clone nor Copy, so neither is a closure that uses them:

let mut x = 0;
let mut add_to_x = |n| { x += n; x };

let copy_of_add_to_x = add_to_x; // this moves, rather than copies
assert_eq!(add_to_x(copy_of_add_to_x(1)), 2); // error: use of moved value

For a move closure, the rules are even simpler. If everything a move closure
captures is Copy, it’s Copy. If everything it captures is Clone, it’s Clone. For
instance:

let mut greeting = String::from("Hello, ");
let greet = move |name| {
 greeting.push_str(name);
 println!("{}", greeting);
};

greet.clone()("Alfred");
greet.clone()("Bruce");

This .clone()(...) syntax is a little weird, but it just means that we clone the
closure and then call the clone. This program outputs:

Hello, Alfred
Hello, Bruce

When greeting is used in greet, it’s moved into the struct that represents greet
internally, because it’s a move closure. So, when we clone greet, everything
inside it is cloned, too. There are two copies of greeting, which are each
modified separately when the clones of greet are called. This isn’t so useful
on its own, but when you need to pass the same closure into more than one
function, it can be very helpful.

Callbacks
A lot of libraries use callbacks as part of their API: functions provided by the
user, for the library to call later. In fact, you’ve seen some APIs like that
already in this book. Back in Chapter 2, we used the actix-web framework to
write a simple web server. One important part of that program was the router,
which looked like this:

App::new()
 .route("/", web::get().to(get_index))
 .route("/gcd", web::post().to(post_gcd))

The purpose of the router is to route incoming requests from the internet to
the bit of Rust code that handles that particular kind of request. In this
example, get_index and post_gcd were the names of functions that we
declared elsewhere in the program, using the fn keyword. But we could have
passed closures instead, like this:

App::new()
 .route("/", web::get().to(|| {
 HttpResponse::Ok()
 .content_type("text/html")
 .body("<title>GCD Calculator</title>...")
 }))
 .route("/gcd", web::post().to(|form: web::Form<GcdParameters>| {
 HttpResponse::Ok()
 .content_type("text/html")
 .body(format!("The GCD of {} and {} is {}.",
 form.n, form.m, gcd(form.n, form.m)))
 }))

This is because actix-web was written to accept any thread-safe Fn as an
argument.

How can we do that in our own programs? Let’s try writing our own very
simple router from scratch, without using any code from actix-web. We can
begin by declaring a few types to represent HTTP requests and responses:

struct Request {
 method: String,
 url: String,
 headers: HashMap<String, String>,
 body: Vec<u8>
}

struct Response {
 code: u32,
 headers: HashMap<String, String>,
 body: Vec<u8>
}

Now the job of a router is simply to store a table that maps URLs to callbacks
so that the right callback can be called on demand. (For simplicity’s sake,
we’ll only allow users to create routes that match a single exact URL.)

struct BasicRouter<C> where C: Fn(&Request) -> Response {
 routes: HashMap<String, C>
}

impl<C> BasicRouter<C> where C: Fn(&Request) -> Response {
 /// Create an empty router.
 fn new() -> BasicRouter<C> {
 BasicRouter { routes: HashMap::new() }
 }

 /// Add a route to the router.
 fn add_route(&mut self, url: &str, callback: C) {
 self.routes.insert(url.to_string(), callback);
 }
}

Unfortunately, we’ve made a mistake. Did you notice it?

This router works fine as long as we add only one route to it:

let mut router = BasicRouter::new();
router.add_route("/", |_| get_form_response());

This much compiles and runs. Unfortunately, if we add another route:

router.add_route("/gcd", |req| get_gcd_response(req));

then we get errors:

error: mismatched types
 |
41 | router.add_route("/gcd", |req| get_gcd_response(req));
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | expected closure, found a different closure
 |
 = note: expected type `[closure@closures_bad_router.rs:40:27: 40:50]`
 found type `[closure@closures_bad_router.rs:41:30: 41:57]`
note: no two closures, even if identical, have the same type
help: consider boxing your closure and/or using it as a trait object

Our mistake was in how we defined the BasicRouter type:

struct BasicRouter<C> where C: Fn(&Request) -> Response {
 routes: HashMap<String, C>
}

We unwittingly declared that each BasicRouter has a single callback type C,
and all the callbacks in the HashMap are of that type. Back in “Which to
Use”, we showed a Salad type that had the same problem:

struct Salad<V: Vegetable> {
 veggies: Vec<V>
}

The solution here is the same as for the salad: since we want to support a
variety of types, we need to use boxes and trait objects:

type BoxedCallback = Box<dyn Fn(&Request) -> Response>;

struct BasicRouter {
 routes: HashMap<String, BoxedCallback>
}

Each box can contain a different type of closure, so a single HashMap can
contain all sorts of callbacks. Note that the type parameter C is gone.

This requires a few adjustments to the methods:

impl BasicRouter {
 // Create an empty router.
 fn new() -> BasicRouter {
 BasicRouter { routes: HashMap::new() }
 }

 // Add a route to the router.
 fn add_route<C>(&mut self, url: &str, callback: C)
 where C: Fn(&Request) -> Response + 'static
 {
 self.routes.insert(url.to_string(), Box::new(callback));
 }
}

NOTE
Note the two bounds on C in the type signature for add_route: a particular Fn trait and the
'static lifetime. Rust makes us add this 'static bound. Without it, the call to
Box::new(callback) would be an error, because it’s not safe to store a closure if it contains
borrowed references to variables that are about to go out of scope.

Finally, our simple router is ready to handle incoming requests:

impl BasicRouter {
 fn handle_request(&self, request: &Request) -> Response {
 match self.routes.get(&request.url) {
 None => not_found_response(),
 Some(callback) => callback(request)
 }
 }
}

At the cost of some flexibility, we could also write a more space-efficient
version of this router that, rather than storing trait objects, uses function
pointers, or fn types. These types, such as fn(u32) -> u32, act a lot like
closures:

fn add_ten(x: u32) -> u32 {
 x + 10
}

let fn_ptr: fn(u32) -> u32 = add_ten;
let eleven = fn_ptr(1); //11

In fact, closures that don’t capture anything from their environment are
identical to function pointers, since they don’t need to hold any extra
information about captured variables. If you specify the appropriate fn type,
either in a binding or in a function signature, the compiler is happy to let you
use them that way:

let closure_ptr: fn(u32) -> u32 = |x| x + 1;
let two = closure_ptr(1); // 2

Unlike capturing closures, these function pointers take up only a single usize.

A routing table that holds function pointers would look like this:

struct FnPointerRouter {
 routes: HashMap<String, fn(&Request) -> Response>
}

Here, the HashMap is storing just a single usize per String, and critically,
there’s no Box. Aside from the HashMap itself, there’s no dynamic allocation
at all. Of course, the methods need to be adjusted as well:

impl FnPointerRouter {
 // Create an empty router.
 fn new() -> FnPointerRouter {
 FnPointerRouter { routes: HashMap::new() }
 }

 // Add a route to the router.
 fn add_route(&mut self, url: &str, callback: fn(&Request) -> Response)
 {
 self.routes.insert(url.to_string(), callback);
 }
}

As laid out in Figure 14-1, closures have unique types because each one
captures different variables, so among other things, they’re each a different
size. If they don’t capture anything, though, there’s nothing to store. By using

fn pointers in functions that take callbacks, you can restrict a caller to use
only these noncapturing closures, gaining some perfomance and flexibility
within the code using callbacks at the cost of flexibility for the users of your
API.

Using Closures Effectively
As we’ve seen, Rust’s closures are different from closures in most other
languages. The biggest difference is that in languages with GC, you can use
local variables in a closure without having to think about lifetimes or
ownership. Without GC, things are different. Some design patterns that are
commonplace in Java, C#, and JavaScript won’t work in Rust without
changes.

For example, take the Model-View-Controller design pattern (MVC for
short), illustrated in Figure 14-3. For every element of a user interface, an
MVC framework creates three objects: a model representing that UI
element’s state, a view that’s responsible for its appearance, and a controller
that handles user interaction. Countless variations on MVC have been
implemented over the years, but the general idea is that three objects divvy
up the UI responsibilities somehow.

Here’s the problem. Typically, each object has a reference to one or both of
the others, directly or through a callback, as shown in Figure 14-3. Whenever
anything happens to one of the objects, it notifies the others, so everything
updates promptly. The question of which object “owns” the others never
comes up.

Figure 14-3. The Model-View-Controller design pattern

You can’t implement this pattern in Rust without making some changes.
Ownership must be made explicit, and reference cycles must be eliminated.
The model and the controller can’t have direct references to each other.

Rust’s radical wager is that good alternative designs exist. Sometimes you
can fix a problem with closure ownership and lifetimes by having each
closure receive the references it needs as arguments. Sometimes you can
assign each thing in the system a number and pass around the numbers
instead of references. Or you can implement one of the many variations on
MVC where the objects don’t all have references to each other. Or model
your toolkit after a non-MVC system with unidirectional data flow, like
Facebook’s Flux architecture, shown in Figure 14-4.

Figure 14-4. The Flux architecture, an alternative to MVC

In short, if you try to use Rust closures to make a “sea of objects,” you’re
going to have a hard time. But there are alternatives. In this case, it seems
software engineering as a discipline is already gravitating to the alternatives
anyway, because they’re simpler.

In the next chapter, we turn to a topic where closures really shine. We’ll be
writing a kind of code that takes full advantage of the concision, speed, and
efficiency of Rust closures and that’s fun to write, easy to read, and
eminently practical. Up next: Rust iterators.

Chapter 15. Iterators

It was the end of a very long day.
—Phil

An iterator is a value that produces a sequence of values, typically for a loop
to operate on. Rust’s standard library provides iterators that traverse vectors,
strings, hash tables, and other collections, but also iterators to produce lines
of text from an input stream, connections arriving at a network server, values
received from other threads over a communications channel, and so on. And
of course, you can implement iterators for your own purposes. Rust’s for loop
provides a natural syntax for using iterators, but iterators themselves also
provide a rich set of methods for mapping, filtering, joining, collecting, and
so on.

Rust’s iterators are flexible, expressive, and efficient. Consider the following
function, which returns the sum of the first n positive integers (often called
the nth triangle number):

fn triangle(n: i32) -> i32 {
 let mut sum = 0;
 for i in 1..=n {
 sum += i;
 }
 sum
}

The expression 1..=n is a RangeInclusive<i32> value. A
RangeInclusive<i32> is an iterator that produces the integers from its start
value to its end value (both inclusive), so you can use it as the operand of the
for loop to sum the values from 1 to n.

But iterators also have a fold method, which you can use in the equivalent
definition:

fn triangle(n: i32) -> i32 {

 (1..=n).fold(0, |sum, item| sum + item)
}

Starting with 0 as the running total, fold takes each value that 1..=n produces
and applies the closure |sum, item| sum + item to the running total and the
value. The closure’s return value is taken as the new running total. The last
value it returns is what fold itself returns—in this case, the total of the entire
sequence. This may look strange if you’re used to for and while loops, but
once you’ve gotten used to it, fold is a legible and concise alternative.

This is pretty standard fare for functional programming languages, which put
a premium on expressiveness. But Rust’s iterators were carefully designed to
ensure that the compiler can translate them into excellent machine code as
well. In a release build of the second definition shown before, Rust knows the
definition of fold and inlines it into triangle. Next, the closure |sum, item| sum
+ item is inlined into that. Finally, Rust examines the combined code and
recognizes that there’s a simpler way to sum the numbers from one to n: the
sum is always equal to n * (n+1) / 2. Rust translates the entire body of
triangle, loop, closure, and all, into a single multiplication instruction and a
few other bits of arithmetic.

This example happens to involve simple arithmetic, but iterators also perform
well when put to heavier use. They’re another example of Rust providing
flexible abstractions that impose little or no overhead in typical use.

In this chapter, we’ll explain:

The Iterator and IntoIterator traits, which are the foundation of
Rust’s iterators

The three stages of a typical iterator pipeline: creating an iterator
from some sort of value source; adapting one sort of iterator into
another by selecting or processing values as they go by; and then
consuming the values the iterator produces

How to implement iterators for your own types

There are a lot of methods, so it’s fine to skim a section once you’ve got the

general idea. But iterators are very common in idiomatic Rust, and being
familiar with the tools that come with them is essential to mastering the
language.

The Iterator and IntoIterator Traits
An iterator is any value that implements the std::iter::Iterator trait:

trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
 ... // many default methods
}

Item is the type of value the iterator produces. The next method either returns
Some(v), where v is the iterator’s next value, or returns None to indicate the
end of the sequence. Here we’ve omitted Iterator’s many default methods;
we’ll cover them individually throughout the rest of this chapter.

If there’s a natural way to iterate over some type, that type can implement
std::iter::IntoIterator, whose into_iter method takes a value and returns an
iterator over it:

trait IntoIterator where Self::IntoIter: Iterator<Item=Self::Item> {
 type Item;
 type IntoIter: Iterator;
 fn into_iter(self) -> Self::IntoIter;
}

IntoIter is the type of the iterator value itself, and Item is the type of value it
produces. We call any type that implements IntoIterator an iterable, because
it’s something you could iterate over if you asked.

Rust’s for loop brings all these parts together nicely. To iterate over a
vector’s elements, you can write:

println!("There's:");
let v = vec!["antimony", "arsenic", "aluminum", "selenium"];

for element in &v {
 println!("{}", element);
}

Under the hood, every for loop is just shorthand for calls to IntoIterator and
Iterator methods:

let mut iterator = (&v).into_iter();
while let Some(element) = iterator.next() {
 println!("{}", element);
}

The for loop uses IntoIterator::into_iter to convert its operand &v into an
iterator and then calls Iterator::next repeatedly. Each time that returns
Some(element), the for loop executes its body; and if it returns None, the
loop finishes.

With this example in mind, here’s some terminology for iterators:

As we’ve said, an iterator is any type that implements Iterator.

An iterable is any type that implements IntoIterator: you can get an
iterator over it by calling its into_iter method. The vector reference
&v is the iterable in this case.

An iterator produces values.

The values an iterator produces are items. Here, the items are
"antimony", "arsenic", and so on.

The code that receives the items an iterator produces is the
consumer. In this example, the for loop is the consumer.

Although a for loop always calls into_iter on its operand, you can also pass
iterators to for loops directly; this occurs when you loop over a Range, for
example. All iterators automatically implement IntoIterator, with an into_iter
method that simply returns the iterator.

If you call an iterator’s next method again after it has returned None, the
Iterator trait doesn’t specify what it should do. Most iterators will just return
None again, but not all. (If this causes problems, the fuse adapter covered in
“fuse” can help.)

Creating Iterators
The Rust standard library documentation explains in detail what sort of
iterators each type provides, but the library follows some general conventions
to help you get oriented and find what you need.

iter and iter_mut Methods
Most collection types provide iter and iter_mut methods that return the
natural iterators over the type, producing a shared or mutable reference to
each item. Array slices like &[T] and &mut [T] have iter and iter_mut
methods too. These methods are the most common way to get an iterator, if
you’re not going to let a for loop take care of it for you:

let v = vec![4, 20, 12, 8, 6];
let mut iterator = v.iter();
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), Some(&20));
assert_eq!(iterator.next(), Some(&12));
assert_eq!(iterator.next(), Some(&8));
assert_eq!(iterator.next(), Some(&6));
assert_eq!(iterator.next(), None);

This iterator’s item type is &i32: each call to next produces a reference to the
next element, until we reach the end of the vector.

Each type is free to implement iter and iter_mut in whatever way makes the
most sense for its purpose. The iter method on std::path::Path returns an
iterator that produces one path component at a time:

use std::ffi::OsStr;
use std::path::Path;

let path = Path::new("C:/Users/JimB/Downloads/Fedora.iso");
let mut iterator = path.iter();
assert_eq!(iterator.next(), Some(OsStr::new("C:")));
assert_eq!(iterator.next(), Some(OsStr::new("Users")));
assert_eq!(iterator.next(), Some(OsStr::new("JimB")));
...

This iterator’s item type is &std::ffi::OsStr, a borrowed slice of a string of the
sort accepted by operating system calls.

If there’s more than one common way to iterate over a type, the type usually
provides specific methods for each sort of traversal, since a plain iter method

would be ambiguous. For example, there is no iter method on the &str string
slice type. Instead, if s is a &str, then s.bytes() returns an iterator that
produces each byte of s, whereas s.chars() interprets the contents as UTF-8
and produces each Unicode character.

IntoIterator Implementations
When a type implements IntoIterator, you can call its into_iter method
yourself, just as a for loop would:

// You should usually use HashSet, but its iteration order is
// nondeterministic, so BTreeSet works better in examples.
use std::collections::BTreeSet;
let mut favorites = BTreeSet::new();
favorites.insert("Lucy in the Sky With Diamonds".to_string());
favorites.insert("Liebesträume No. 3".to_string());

let mut it = favorites.into_iter();
assert_eq!(it.next(), Some("Liebesträume No. 3".to_string()));
assert_eq!(it.next(), Some("Lucy in the Sky With Diamonds".to_string()));
assert_eq!(it.next(), None);

Most collections actually provide several implementations of IntoIterator, for
shared references (&T), mutable references (&mut T), and moves (T):

Given a shared reference to the collection, into_iter returns an
iterator that produces shared references to its items. For example, in
the preceding code, (&favorites).into_iter() would return an iterator
whose Item type is &String.

Given a mutable reference to the collection, into_iter returns an
iterator that produces mutable references to the items. For example,
if vector is some Vec<String>, the call (&mut vector).into_iter()
returns an iterator whose Item type is &mut String.

When passed the collection by value, into_iter returns an iterator that
takes ownership of the collection and returns items by value; the
items’ ownership moves from the collection to the consumer, and the
original collection is consumed in the process. For example, the call
favorites.into_iter() in the preceding code returns an iterator that
produces each string by value; the consumer receives ownership of
each string. When the iterator is dropped, any elements remaining in
the BTreeSet are dropped too, and the set’s now-empty husk is

disposed of.

Since a for loop applies IntoIterator::into_iter to its operand, these three
implementations are what create the following idioms for iterating over
shared or mutable references to a collection, or consuming the collection and
taking ownership of its elements:

for element in &collection { ... }
for element in &mut collection { ... }
for element in collection { ... }

Each of these simply results in a call to one of the IntoIterator
implementations listed here.

Not every type provides all three implementations. For example, HashSet,
BTreeSet, and BinaryHeap don’t implement IntoIterator on mutable
references, since modifying their elements would probably violate the type’s
invariants: the modified value might have a different hash value, or be
ordered differently with respect to its neighbors, so modifying it would leave
it incorrectly placed. Other types do support mutation, but only partially. For
example, HashMap and BTreeMap produce mutable reference to their
entries’ values, but only shared references to their keys, for similar reasons to
those given earlier.

The general principle is that iteration should be efficient and predictable, so
rather than providing implementations that are expensive or could exhibit
surprising behavior (for example, rehashing modified HashSet entries and
potentially encountering them again later in the iteration), Rust omits them
entirely.

Slices implement two of the three IntoIterator variants; since they don’t own
their elements, there is no “by value” case. Instead, into_iter for &[T] and
&mut [T] returns an iterator that produces shared and mutable references to
the elements. If you imagine the underlying slice type [T] as a collection of
some sort, this fits neatly into the overall pattern.

You may have noticed that the first two IntoIterator variants, for shared and
mutable references, are equivalent to calling iter or iter_mut on the referent.

Why does Rust provide both?

IntoIterator is what makes for loops work, so that’s obviously necessary. But
when you’re not using a for loop, it’s clearer to write favorites.iter() than
(&favorites).into_iter(). Iteration by shared reference is something you’ll
need frequently, so iter and iter_mut are still valuable for their ergonomics.

IntoIterator can also be useful in generic code: you can use a bound like T:
IntoIterator to restrict the type variable T to types that can be iterated over.
Or, you can write T: IntoIterator<Item=U> to further require the iteration to
produce a particular type U. For example, this function dumps values from
any iterable whose items are printable with the "{:?}" format:

use std::fmt::Debug;

fn dump<T, U>(t: T)
 where T: IntoIterator<Item=U>,
 U: Debug
{
 for u in t {
 println!("{:?}", u);
 }
}

You can’t write this generic function using iter and iter_mut, since they’re
not methods of any trait: most iterable types just happen to have methods by
those names.

from_fn and successors
One simple and general way to produce a sequence of values is to provide a
closure that returns them.

Given a function returning Option<T>, std::iter::from_fn returns an iterator
that simply calls the function to produce its items. For example:

use rand::random; // In Cargo.toml dependencies: rand = "0.7"
use std::iter::from_fn;

// Generate the lengths of 1000 random line segments whose endpoints
// are uniformly distributed across the interval [0, 1]. (This isn't a
// distribution you're going to find in the `rand_distr` crate, but
// it's easy to make yourself.)
let lengths: Vec<f64> =
 from_fn(|| Some((random::<f64>() - random::<f64>()).abs()))
 .take(1000)
 .collect();

This calls from_fn to make an iterator producing random numbers. Since the
iterator always returns Some, the sequence never ends, but we call take(1000)
to limit it to the first 1,000 elements. Then collect builds the vector from the
resulting iteration. This is an efficient way of constructing initialized vectors;
we explain why in “Building Collections: collect and FromIterator”, later in
this chapter.

If each item depends on the one before, the std::iter::successors function
works nicely. You provide an initial item and a function that takes one item
and returns an Option of the next. If it returns None, the iteration ends. For
example, here’s another way to write the escape_time function from our
Mandelbrot set plotter in Chapter 2:

use num::Complex;
use std::iter::successors;

fn escape_time(c: Complex<f64>, limit: usize) -> Option<usize> {
 let zero = Complex { re: 0.0, im: 0.0 };
 successors(Some(zero), |&z| { Some(z * z + c) })
 .take(limit)

 .enumerate()
 .find(|(_i, z)| z.norm_sqr() > 4.0)
 .map(|(i, _z)| i)
}

Starting with zero, the successors call produces a sequence of points on the
complex plane by repeatedly squaring the last point and adding the parameter
c. When plotting the Mandelbrot set, we want to see whether this sequence
orbits near the origin forever or flies away to infinity. The call take(limit)
establishes a limit on how long we’ll chase the sequence, and enumerate
numbers each point, turning each point z into a tuple (i, z). We use find to
look for the first point that gets far enough away from the origin to escape.
The find method returns an Option: Some((i, z)) if one exists, or None
otherwise. The call to Option::map turns Some((i, z)) into Some(i), but
returns None unchanged: this is exactly the return value we want.

Both from_fn and successors accept FnMut closures, so your closures can
capture and modify variables from the surrounding scopes. For example, this
fibonacci function uses a move closure to capture a variable and use it as its
running state:

fn fibonacci() -> impl Iterator<Item=usize> {
 let mut state = (0, 1);
 std::iter::from_fn(move || {
 state = (state.1, state.0 + state.1);
 Some(state.0)
 })
}

assert_eq!(fibonacci().take(8).collect::<Vec<_>>(),
 vec![1, 1, 2, 3, 5, 8, 13, 21]);

A note of caution: the from_fn and successors methods are flexible enough
that you could turn pretty much any use of iterators into a single call to one or
the other, passing complex closures to get the behavior you need. But doing
so neglects the opportunity that iterators provide to clarify how data flows
through the computation and use standard names for common patterns. Make
sure you’ve familiarized yourself with the other iterator methods in this
chapter before you lean on these two; there are often nicer ways to get the job

done.

drain Methods
Many collection types provide a drain method that takes a mutable reference
to the collection and returns an iterator that passes ownership of each element
to the consumer. However, unlike the into_iter() method, which takes the
collection by value and consumes it, drain merely borrows a mutable
reference to the collection, and when the iterator is dropped, it removes any
remaining elements from the collection and leaves it empty.

On types that can be indexed by a range, like Strings, vectors, and
VecDeques, the drain method takes a range of elements to remove, rather
than draining the entire sequence:

let mut outer = "Earth".to_string();
let inner = String::from_iter(outer.drain(1..4));

assert_eq!(outer, "Eh");
assert_eq!(inner, "art");

If you do need to drain the entire sequence, use the full range, .., as the
argument.

Other Iterator Sources
The previous sections are mostly concerned with collection types like vectors
and HashMap, but there are many other types in the standard library that
support iteration. Table 15-1 summarizes the more interesting ones, but there
are many more. We cover some of these methods in more detail in the
chapters dedicated to the specific types (namely, Chapters 16, 17, and 18).

Table 15-1. Other iterators in the standard library

Type or trait Expression Notes

std::ops::Range 1..10 Endpoints must be an integer type to be iterable. Range
includes start value and excludes end value.

(1..10).step_by(2) Produces 1, 3, 5, 7, 9.

std::ops::RangeFro
m

1.. Unbounded iteration. Start must be an integer. May panic
or overflow if the value reaches the limit of the type.

std::ops::RangeIncl
usive

1..=10 Like Range, but includes end value.

Option<T> Some(10).iter() Behaves like a vector whose length is either 0 (None) or 1 (
Some(v)).

Result<T, E> Ok("blah").iter() Similar to Option, producing Ok values.

Vec<T>, &[T] v.windows(16) Produces every contiguous slice of the given length, from
left to right. The windows overlap.

v.chunks(16) Produces nonoverlapping, contiguous slices of the given
length, from left to right.

v.chunks_mut(1024
)

Like chunks, but slices are mutable.

v.split(|byte| byte &
 1 != 0)

Produces slices separated by elements that match the given
predicate.

v.split_mut(...) As above, but produces mutable slices.

v.rsplit(...) Like split, but produces slices from right to left.

v.splitn(n, ...) Like split, but produces at most n slices.

String, &str s.bytes() Produces the bytes of the UTF-8 form.

s.chars() Produces the chars the UTF-8 represents.

s.split_whitespace() Splits string by whitespace, and produces slices of
nonspace characters.

s.lines() Produces slices of the lines of the string.

s.split('/') Splits string on a given pattern, producing the slices
between matches. Patterns can be many things: characters,
strings, closures.

s.matches(char::is_
numeric)

Produces slices matching the given pattern.

std::collections::Ha
shMap,
std::collections::BT
reeMap

map.keys(),
map.values()

Produces shared references to keys or values of the map.

map.values_mut() Produces mutable references to entries’ values.

std::collections::Ha
shSet,
std::collections::BT
reeSet

set1.union(set2) Produces shared references to elements of union of set1
and set2.

set1.intersection(set
2)

Produces shared references to elements of intersection of se
t1 and set2.

std::sync::mpsc::Re
ceiver

recv.iter() Produces values sent from another thread on the
corresponding Sender.

std::io::Read stream.bytes() Produces bytes from an I/O stream.

stream.chars() Parses stream as UTF-8 and produces chars.

std::io::BufRead bufstream.lines() Parses stream as UTF-8, produces lines as Strings.

bufstream.split(0) Splits stream on given byte, produces inter-byte Vec<u8>
buffers.

std::fs::ReadDir std::fs::read_dir(pat
h)

Produces directory entries.

std::net::TcpListene
r

listener.incoming() Produces incoming network connections.

Free functions std::iter::empty() Returns None immediately.

std::iter::once(5) Produces the given value and then ends.

std::iter::repeat("#9
")

Produces the given value forever.

Iterator Adapters
Once you have an iterator in hand, the Iterator trait provides a broad selection
of adapter methods, or simply adapters, that consume one iterator and build a
new one with useful behaviors. To see how adapters work, we’ll start with
two of the most popular adapters, map and filter. Then we’ll cover the rest of
the adapter toolbox, covering almost any way you can imagine to make
sequences of values from other sequences: truncation, skipping, combination,
reversal, concatenation, repetition, and more.

map and filter
The Iterator trait’s map adapter lets you transform an iterator by applying a
closure to its items. The filter adapter lets you filter out items from an
iterator, using a closure to decide which to keep and which to drop.

For example, suppose you’re iterating over lines of text and want to omit
leading and trailing whitespace from each line. The standard library’s
str::trim method drops leading and trailing whitespace from a single &str,
returning a new, trimmed &str that borrows from the original. You can use
the map adapter to apply str::trim to each line from the iterator:

let text = " ponies \n giraffes\niguanas \nsquid".to_string();
let v: Vec<&str> = text.lines()
 .map(str::trim)
 .collect();
assert_eq!(v, ["ponies", "giraffes", "iguanas", "squid"]);

The text.lines() call returns an iterator that produces the string’s lines. Calling
map on that iterator returns a second iterator that applies str::trim to each line
and produces the results as its items. Finally, collect gathers those items into
a vector.

The iterator that map returns is, of course, itself a candidate for further
adaptation. If you want to exclude iguanas from the result, you can write the
following:

let text = " ponies \n giraffes\niguanas \nsquid".to_string();
let v: Vec<&str> = text.lines()
 .map(str::trim)
 .filter(|s| *s != "iguanas")
 .collect();
assert_eq!(v, ["ponies", "giraffes", "squid"]);

Here, filter returns a third iterator that produces only those items from the
map iterator for which the closure |s| *s != "iguanas" returns true. A chain of
iterator adapters is like a pipeline in the Unix shell: each adapter has a single
purpose, and it’s clear how the sequence is being transformed as one reads

from left to right.

These adapters’ signatures are as follows:

fn map<B, F>(self, f: F) -> impl Iterator<Item=B>
 where Self: Sized, F: FnMut(Self::Item) -> B;

fn filter<P>(self, predicate: P) -> impl Iterator<Item=Self::Item>
 where Self: Sized, P: FnMut(&Self::Item) -> bool;

In the standard library, map and filter actually return specific opaque struct
types named std::iter::Map and std::iter::Filter. However, just seeing their
names is not very informative, so in this book, we’re just going to write ->
impl Iterator<Item=...> instead, since that tells us what we really want to
know: the method returns an Iterator that produces items of the given type.

Since most adapters take self by value, they require Self to be Sized (which
all common iterators are).

A map iterator passes each item to its closure by value and, in turn, passes
along ownership of the closure’s result to its consumer. A filter iterator
passes each item to its closure by shared reference, retaining ownership in
case the item is selected to be passed on to its consumer. This is why the
example must dereference s to compare it with "iguanas": the filter iterator’s
item type is &str, so the type of the closure’s argument s is &&str.

There are two important points to notice about iterator adapters.

First, simply calling an adapter on an iterator doesn’t consume any items; it
just returns a new iterator, ready to produce its own items by drawing from
the first iterator as needed. In a chain of adapters, the only way to make any
work actually get done is to call next on the final iterator.

So in our earlier example, the method call text.lines() itself doesn’t actually
parse any lines from the string; it just returns an iterator that would parse
lines if asked. Similarly, map and filter just return new iterators that would
map or filter if asked. No work takes place until collect starts calling next on
the filter iterator.

This point is especially important if you use adapters that have side effects.

For example, this code prints nothing at all:

["earth", "water", "air", "fire"]
 .iter().map(|elt| println!("{}", elt));

The iter call returns an iterator over the array’s elements, and the map call
returns a second iterator that applies the closure to each value the first
produces. But there is nothing here that ever actually demands a value from
the whole chain, so no next method ever runs. In fact, Rust will warn you
about this:

warning: unused `std::iter::Map` that must be used
 |
7 | / ["earth", "water", "air", "fire"]
8 | | .iter().map(|elt| println!("{}", elt));
 | |___^
 |
 = note: iterators are lazy and do nothing unless consumed

The term “lazy” in the error message is not a disparaging term; it’s just jargon
for any mechanism that puts off a computation until its value is needed. It is
Rust’s convention that iterators should do the minimum work necessary to
satisfy each call to next; in the example, there are no such calls at all, so no
work takes place.

The second important point is that iterator adapters are a zero-overhead
abstraction. Since map, filter, and their companions are generic, applying
them to an iterator specializes their code for the specific iterator type
involved. This means that Rust has enough information to inline each
iterator’s next method into its consumer and then translate the entire
arrangement into machine code as a unit. So the lines/map/filter chain of
iterators we showed before is as efficient as the code you would probably
write by hand:

for line in text.lines() {
 let line = line.trim();
 if line != "iguanas" {
 v.push(line);
 }

}

The rest of this section covers the various adapters available on the Iterator
trait.

filter_map and flat_map
The map adapter is fine in situations where each incoming item produces one
outgoing item. But what if you want to delete certain items from the iteration
instead of processing them or replace single items with zero or more items?
The filter_map and flat_map adapters grant you this flexibility.

The filter_map adapter is similar to map except that it lets its closure either
transform the item into a new item (as map does) or drop the item from the
iteration. Thus, it’s a bit like a combination of filter and map. Its signature is
as follows:

fn filter_map<B, F>(self, f: F) -> impl Iterator<Item=B>
 where Self: Sized, F: FnMut(Self::Item) -> Option;

This is the same as map’s signature, except that here the closure returns
Option, not simply B. When the closure returns None, the item is
dropped from the iteration; when it returns Some(b), then b is the next item
the filter_map iterator produces.

For example, suppose you want to scan a string for whitespace-separated
words that can be parsed as numbers, and process the numbers, dropping the
other words. You can write:

use std::str::FromStr;

let text = "1\nfrond .25 289\n3.1415 estuary\n";
for number in text
 .split_whitespace()
 .filter_map(|w| f64::from_str(w).ok())
{
 println!("{:4.2}", number.sqrt());
}

This prints the following:

1.00
0.50
17.00

1.77

The closure given to filter_map tries to parse each whitespace-separated slice
using f64::from_str. That returns a Result<f64, ParseFloatError>, which .ok()
turns into an Option<f64>: a parse error becomes None, whereas a successful
parse result becomes Some(v). The filter_map iterator drops all the None
values and produces the value v for each Some(v).

But what’s the point in fusing map and filter into a single operation like this,
instead of just using those adapters directly? The filter_map adapter shows its
value in situations like the one just shown, when the best way to decide
whether to include the item in the iteration is to actually try to process it. You
can do the same thing with only filter and map, but it’s a bit ungainly:

text.split_whitespace()
 .map(|w| f64::from_str(w))
 .filter(|r| r.is_ok())
 .map(|r| r.unwrap())

You can think of the flat_map adapter as continuing in the same vein as map
and filter_map, except that now the closure can return not just one item (as
with map) or zero or one items (as with filter_map), but a sequence of any
number of items. The flat_map iterator produces the concatenation of the
sequences the closure returns.

The signature of flat_map is shown here:

fn flat_map<U, F>(self, f: F) -> impl Iterator<Item=U::Item>
 where F: FnMut(Self::Item) -> U, U: IntoIterator;

The closure passed to flat_map must return an iterable, but any sort of
iterable will do.

For example, suppose we have a table mapping countries to their major cities.
Given a list of countries, how can we iterate over their major cities?

use std::collections::HashMap;

let mut major_cities = HashMap::new();

1

major_cities.insert("Japan", vec!["Tokyo", "Kyoto"]);
major_cities.insert("The United States", vec!["Portland", "Nashville"]);
major_cities.insert("Brazil", vec!["São Paulo", "Brasília"]);
major_cities.insert("Kenya", vec!["Nairobi", "Mombasa"]);
major_cities.insert("The Netherlands", vec!["Amsterdam", "Utrecht"]);

let countries = ["Japan", "Brazil", "Kenya"];

for &city in countries.iter().flat_map(|country| &major_cities[country]) {
 println!("{}", city);
}

This prints the following:

Tokyo
Kyoto
São Paulo
Brasília
Nairobi
Mombasa

One way to look at this would be to say that, for each country, we retrieve the
vector of its cities, concatenate all the vectors together into a single sequence,
and print that.

But remember that iterators are lazy: it’s only the for loop’s calls to the
flat_map iterator’s next method that cause work to be done. The full
concatenated sequence is never constructed in memory. Instead, what we
have here is a little state machine that draws from the city iterator, one item at
a time, until it’s exhausted, and only then produces a new city iterator for the
next country. The effect is that of a nested loop, but packaged up for use as
an iterator.

flatten
The flatten adapter concatenates an iterator’s items, assuming each item is
itself an iterable:

use std::collections::BTreeMap;

// A table mapping cities to their parks: each value is a vector.
let mut parks = BTreeMap::new();
parks.insert("Portland", vec!["Mt. Tabor Park", "Forest Park"]);
parks.insert("Kyoto", vec!["Tadasu-no-Mori Forest", "Maruyama Koen"]);
parks.insert("Nashville", vec!["Percy Warner Park", "Dragon Park"]);

// Build a vector of all parks. `values` gives us an iterator producing
// vectors, and then `flatten` produces each vector's elements in turn.
let all_parks: Vec<_> = parks.values().flatten().cloned().collect();

assert_eq!(all_parks,
 vec!["Tadasu-no-Mori Forest", "Maruyama Koen", "Percy Warner Park",
 "Dragon Park", "Mt. Tabor Park", "Forest Park"]);

The name “flatten” comes from the image of flattening a two-level structure
into a one-level structure: the BTreeMap and its Vecs of names are flattened
into an iterator producing all the names.

The signature of flatten is as follows:

fn flatten(self) -> impl Iterator<Item=Self::Item::Item>
 where Self::Item: IntoIterator;

In other words, the underlying iterator’s items must themselves implement
IntoIterator so that it is effectively a sequence of sequences. The flatten
method then returns an iterator over the concatenation of those sequences. Of
course, this is done lazily, drawing a new item from self only when we’re
done iterating over the last one.

The flatten method gets used in a few surprising ways. If you have a
Vec<Option<...>> and you want to iterate over only the Some values, flatten
works beautifully:

assert_eq!(vec![None, Some("day"), None, Some("one")]
 .into_iter()
 .flatten()
 .collect::<Vec<_>>(),
 vec!["day", "one"]);

This works because Option itself implements IntoIterator, representing a
sequence of either zero or one elements. The None elements contribute
nothing to the iteration, whereas each Some element contributes a single
value. Similarly, you can use flatten to iterate over Option<Vec<...>> values:
None behaves the same as an empty vector.

Result also implements IntoIterator, with Err representing an empty
sequence, so applying flatten to an iterator of Result values effectively
squeezes out all the Errs and throws them away, resulting in a stream of the
unwrapped success values. We do not recommend ignoring errors in your
code, but this is a neat trick people use when they think they know what’s
going on.

You may find yourself reaching for flatten when what you actually need is
flat_map. For example, the standard library’s str::to_uppercase method,
which converts a string to uppercase, works something like this:

fn to_uppercase(&self) -> String {
 self.chars()
 .map(char::to_uppercase)
 .flatten() // there's a better way
 .collect()
}

The reason the flatten is necessary is that ch.to_uppercase() returns not a
single character, but an iterator producing one or more characters. Mapping
each character to its uppercase equivalent results in an iterator of iterators of
characters, and the flatten takes care of splicing them all together into
something we can finally collect into a String.

But this combination of map and flatten is so common that Iterator provides
the flat_map adapter for just that case. (In fact, flat_map was added to the
standard library before flatten.) So the preceding code could instead be

written:

fn to_uppercase(&self) -> String {
 self.chars()
 .flat_map(char::to_uppercase)
 .collect()
}

take and take_while
The Iterator trait’s take and take_while adapters let you end an iteration after
a certain number of items or when a closure decides to cut things off. Their
signatures are as follows:

fn take(self, n: usize) -> impl Iterator<Item=Self::Item>
 where Self: Sized;

fn take_while<P>(self, predicate: P) -> impl Iterator<Item=Self::Item>
 where Self: Sized, P: FnMut(&Self::Item) -> bool;

Both take ownership of an iterator and return a new iterator that passes along
items from the first one, possibly ending the sequence earlier. The take
iterator returns None after producing at most n items. The take_while iterator
applies predicate to each item and returns None in place of the first item for
which predicate returns false and on every subsequent call to next.

For example, given an email message with a blank line separating the headers
from the message body, you can use take_while to iterate over only the
headers:

let message = "To: jimb\r\n\
 From: superego <editor@oreilly.com>\r\n\
 \r\n\
 Did you get any writing done today?\r\n\
 When will you stop wasting time plotting fractals?\r\n";
for header in message.lines().take_while(|l| !l.is_empty()) {
 println!("{}" , header);
}

Recall from “String Literals” that when a line in a string ends with a
backslash, Rust doesn’t include the indentation of the next line in the string,
so none of the lines in the string has any leading whitespace. This means that
the third line of message is blank. The take_while adapter terminates the
iteration as soon as it sees that blank line, so this code prints only the two
lines:

To: jimb
From: superego <editor@oreilly.com>

skip and skip_while
The Iterator trait’s skip and skip_while methods are the complement of take
and take_while: they drop a certain number of items from the beginning of an
iteration, or drop items until a closure finds one acceptable, and then pass the
remaining items through unchanged. Their signatures are as follows:

fn skip(self, n: usize) -> impl Iterator<Item=Self::Item>
 where Self: Sized;

fn skip_while<P>(self, predicate: P) -> impl Iterator<Item=Self::Item>
 where Self: Sized, P: FnMut(&Self::Item) -> bool;

One common use for the skip adapter is to skip the command name when
iterating over a program’s command-line arguments. In Chapter 2, our
greatest common denominator calculator used the following code to loop
over its command-line arguments:

for arg in std::env::args().skip(1) {
 ...
}

The std::env::args function returns an iterator that produces the program’s
arguments as Strings, the first item being the name of the program itself.
That’s not a string we want to process in this loop. Calling skip(1) on that
iterator returns a new iterator that drops the program name the first time it’s
called and then produces all the subsequent arguments.

The skip_while adapter uses a closure to decide how many items to drop
from the beginning of the sequence. You can iterate over the body lines of the
message from the previous section like this:

for body in message.lines()
 .skip_while(|l| !l.is_empty())
 .skip(1) {
 println!("{}" , body);
}

This uses skip_while to skip nonblank lines, but that iterator does produce the
blank line itself—after all, the closure returned false for that line. So we use
the skip method as well to drop that, giving us an iterator whose first item
will be the message body’s first line. Taken together with the declaration of
message from the previous section, this code prints:

Did you get any writing done today?
When will you stop wasting time plotting fractals?

peekable
A peekable iterator lets you peek at the next item that will be produced
without actually consuming it. You can turn any iterator into a peekable
iterator by calling the Iterator trait’s peekable method:

fn peekable(self) -> std::iter::Peekable<Self>
 where Self: Sized;

Here, Peekable<Self> is a struct that implements Iterator<Item=Self::Item>,
and Self is the type of the underlying iterator.

A Peekable iterator has an additional method peek that returns an
Option<&Item>: None if the underlying iterator is done and otherwise
Some(r), where r is a shared reference to the next item. (Note that if the
iterator’s item type is already a reference to something, this ends up being a
reference to a reference.)

Calling peek tries to draw the next item from the underlying iterator, and if
there is one, caches it until the next call to next. All the other Iterator methods
on Peekable know about this cache: for example, iter.last() on a peekable
iterator iter knows to check the cache after exhausting the underlying iterator.

Peekable iterators are essential when you can’t decide how many items to
consume from an iterator until you’ve gone too far. For example, if you’re
parsing numbers from a stream of characters, you can’t decide where the
number ends until you’ve seen the first nonnumber character following it:

use std::iter::Peekable;

fn parse_number<I>(tokens: &mut Peekable<I>) -> u32
 where I: Iterator<Item=char>
{
 let mut n = 0;
 loop {
 match tokens.peek() {
 Some(r) if r.is_digit(10) => {
 n = n * 10 + r.to_digit(10).unwrap();
 }

 _ => return n
 }
 tokens.next();
 }
}

let mut chars = "226153980,1766319049".chars().peekable();
assert_eq!(parse_number(&mut chars), 226153980);
// Look, `parse_number` didn't consume the comma! So we will.
assert_eq!(chars.next(), Some(','));
assert_eq!(parse_number(&mut chars), 1766319049);
assert_eq!(chars.next(), None);

The parse_number function uses peek to check the next character and
consumes it only if it is a digit. If it isn’t a digit or the iterator is exhausted
(that is, if peek returns None), we return the number we’ve parsed and leave
the next character in the iterator, ready to be consumed.

fuse
Once an Iterator has returned None, the trait doesn’t specify how it ought to
behave if you call its next method again. Most iterators just return None
again, but not all. If your code counts on that behavior, you may be in for a
surprise.

The fuse adapter takes any iterator and produces one that will definitely
continue to return None once it has done so the first time:

struct Flaky(bool);

impl Iterator for Flaky {
 type Item = &'static str;
 fn next(&mut self) -> Option<Self::Item> {
 if self.0 {
 self.0 = false;
 Some("totally the last item")
 } else {
 self.0 = true; // D'oh!
 None
 }
 }
}

let mut flaky = Flaky(true);
assert_eq!(flaky.next(), Some("totally the last item"));
assert_eq!(flaky.next(), None);
assert_eq!(flaky.next(), Some("totally the last item"));

let mut not_flaky = Flaky(true).fuse();
assert_eq!(not_flaky.next(), Some("totally the last item"));
assert_eq!(not_flaky.next(), None);
assert_eq!(not_flaky.next(), None);

The fuse adapter is probably most useful in generic code that needs to work
with iterators of uncertain origin. Rather than hoping that every iterator you’ll
have to deal with will be well-behaved, you can use fuse to make sure.

Reversible Iterators and rev
Some iterators are able to draw items from both ends of the sequence. You
can reverse such iterators by using the rev adapter. For example, an iterator
over a vector could just as easily draw items from the end of the vector as
from the start. Such iterators can implement the
std::iter::DoubleEndedIterator trait, which extends Iterator:

trait DoubleEndedIterator: Iterator {
 fn next_back(&mut self) -> Option<Self::Item>;
}

You can think of a double-ended iterator as having two fingers marking the
current front and back of the sequence. Drawing items from either end
advances that finger toward the other; when the two meet, the iteration is
done:

let bee_parts = ["head", "thorax", "abdomen"];

let mut iter = bee_parts.iter();
assert_eq!(iter.next(), Some(&"head"));
assert_eq!(iter.next_back(), Some(&"abdomen"));
assert_eq!(iter.next(), Some(&"thorax"));

assert_eq!(iter.next_back(), None);
assert_eq!(iter.next(), None);

The structure of an iterator over a slice makes this behavior easy to
implement: it is literally a pair of pointers to the start and end of the range of
elements we haven’t yet produced; next and next_back simply draw an item
from the one or the other. Iterators for ordered collections like BTreeSet and
BTreeMap are double-ended too: their next_back method draws the greatest
elements or entries first. In general, the standard library provides double-
ended iteration whenever it’s practical.

But not all iterators can do this so easily: an iterator producing values from
other threads arriving at a channel’s Receiver has no way to anticipate what

the last value received might be. In general, you’ll need to check the standard
library’s documentation to see which iterators implement
DoubleEndedIterator and which don’t.

If an iterator is double-ended, you can reverse it with the rev adapter:

fn rev(self) -> impl Iterator<Item=Self>
 where Self: Sized + DoubleEndedIterator;

The returned iterator is also double-ended: its next and next_back methods
are simply exchanged:

let meals = ["breakfast", "lunch", "dinner"];

let mut iter = meals.iter().rev();
assert_eq!(iter.next(), Some(&"dinner"));
assert_eq!(iter.next(), Some(&"lunch"));
assert_eq!(iter.next(), Some(&"breakfast"));
assert_eq!(iter.next(), None);

Most iterator adapters, if applied to a reversible iterator, return another
reversible iterator. For example, map and filter preserve reversibility.

inspect
The inspect adapter is handy for debugging pipelines of iterator adapters, but
it isn’t used much in production code. It simply applies a closure to a shared
reference to each item and then passes the item through. The closure can’t
affect the items, but it can do things like print them or make assertions about
them.

This example shows a case in which converting a string to uppercase changes
its length:

let upper_case: String = "große".chars()
 .inspect(|c| println!("before: {:?}", c))
 .flat_map(|c| c.to_uppercase())
 .inspect(|c| println!(" after: {:?}", c))
 .collect();
assert_eq!(upper_case, "GROSSE");

The uppercase equivalent of the lowercase German letter “ß” is “SS,” which
is why char::to_uppercase returns an iterator over characters, not a single
replacement character. The preceding code uses flat_map to concatenate all
the sequences that to_uppercase returns into a single String, printing the
following as it does so:

before: 'g'
 after: 'G'
before: 'r'
 after: 'R'
before: 'o'
 after: 'O'
before: 'ß'
 after: 'S'
 after: 'S'
before: 'e'
 after: 'E'

chain
The chain adapter appends one iterator to another. More precisely,
i1.chain(i2) returns an iterator that draws items from i1 until it’s exhausted
and then draws items from i2.

The chain adapter’s signature is as follows:

fn chain<U>(self, other: U) -> impl Iterator<Item=Self::Item>
 where Self: Sized, U: IntoIterator<Item=Self::Item>;

In other words, you can chain an iterator together with any iterable that
produces the same item type.

For example:

let v: Vec<i32> = (1..4).chain([20, 30, 40]).collect();
assert_eq!(v, [1, 2, 3, 20, 30, 40]);

A chain iterator is reversible, if both of its underlying iterators are:

let v: Vec<i32> = (1..4).chain([20, 30, 40]).rev().collect();
assert_eq!(v, [40, 30, 20, 3, 2, 1]);

A chain iterator keeps track of whether each of the two underlying iterators
has returned None and directs next and next_back calls to one or the other as
appropriate.

enumerate
The Iterator trait’s enumerate adapter attaches a running index to the
sequence, taking an iterator that produces items A, B, C, ... and returning an
iterator that produces pairs (0, A), (1, B), (2, C), It looks trivial at first
glance, but it’s used surprisingly often.

Consumers can use that index to distinguish one item from another and
establish the context in which to process each one. For example, the
Mandelbrot set plotter in Chapter 2 splits the image into eight horizontal
bands and assigns each one to a different thread. That code uses enumerate to
tell each thread which portion of the image its band corresponds to.

It starts with a rectangular buffer of pixels:

let mut pixels = vec![0; columns * rows];

Next, it uses chunks_mut to split the image into horizontal bands, one per
thread:

let threads = 8;
let band_rows = rows / threads + 1;
...
let bands: Vec<&mut [u8]> = pixels.chunks_mut(band_rows * columns).collect();

And then it iterates over the bands, starting a thread for each one:

for (i, band) in bands.into_iter().enumerate() {
 let top = band_rows * i;
 // start a thread to render rows `top..top + band_rows`
 ...
}

Each iteration gets a pair (i, band), where band is the &mut [u8] slice of the
pixel buffer the thread should draw into, and i is the index of that band in the
overall image, courtesy of the enumerate adapter. Given the boundaries of the
plot and the size of the bands, this is enough information for the thread to

determine which portion of the image it has been assigned and thus what to
draw into band.

You can think of the (index, item) pairs that enumerate produces as
analogous to the (key, value) pairs that you get when iterating over a
HashMap or other associative collection. If you’re iterating over a slice or
vector, the index is the “key” under which the item appears.

zip
The zip adapter combines two iterators into a single iterator that produces
pairs holding one value from each iterator, like a zipper joining its two sides
into a single seam. The zipped iterator ends when either of the two
underlying iterators ends.

For example, you can get the same effect as the enumerate adapter by zipping
the unbounded-end range 0.. with the other iterator:

let v: Vec<_> = (0..).zip("ABCD".chars()).collect();
assert_eq!(v, vec![(0, 'A'), (1, 'B'), (2, 'C'), (3, 'D')]);

In this sense, you can think of zip as a generalization of enumerate: whereas
enumerate attaches indices to the sequence, zip attaches any arbitrary
iterator’s items. We suggested before that enumerate can help provide context
for processing items; zip is a more flexible way to do the same.

The argument to zip doesn’t need to be an iterator itself; it can be any
iterable:

use std::iter::repeat;

let endings = ["once", "twice", "chicken soup with rice"];
let rhyme: Vec<_> = repeat("going")
 .zip(endings)
 .collect();
assert_eq!(rhyme, vec![("going", "once"),
 ("going", "twice"),
 ("going", "chicken soup with rice")]);

by_ref
Throughout this section, we’ve been attaching adapters to iterators. Once
you’ve done so, can you ever take the adapter off again? Usually, no:
adapters take ownership of the underlying iterator and provide no method to
give it back.

An iterator’s by_ref method borrows a mutable reference to the iterator so
that you can apply adapters to the reference. When you’re done consuming
items from these adapters, you drop them, the borrow ends, and you regain
access to your original iterator.

For example, earlier in the chapter we showed how to use take_while and
skip_while to process the header lines and body of a mail message. But what
if you want to do both, using the same underlying iterator? Using by_ref, we
can use take_while to handle the headers, and when that’s done, get the
underlying iterator back, which take_while has left exactly in position to
handle the message body:

let message = "To: jimb\r\n\
 From: id\r\n\
 \r\n\
 Oooooh, donuts!!\r\n";

let mut lines = message.lines();

println!("Headers:");
for header in lines.by_ref().take_while(|l| !l.is_empty()) {
 println!("{}" , header);
}

println!("\nBody:");
for body in lines {
 println!("{}" , body);
}

The call lines.by_ref() borrows a mutable reference to the iterator, and it is
this reference that the take_while iterator takes ownership of. That iterator
goes out of scope at the end of the first for loop, meaning that the borrow has

ended, so you can use lines again in the second for loop. This prints the
following:

Headers:
To: jimb
From: id

Body:
Oooooh, donuts!!

The by_ref adapter’s definition is trivial: it returns a mutable reference to the
iterator. Then, the standard library includes this strange little implementation:

impl<'a, I: Iterator + ?Sized> Iterator for &'a mut I {
 type Item = I::Item;
 fn next(&mut self) -> Option<I::Item> {
 (**self).next()
 }
 fn size_hint(&self) -> (usize, Option<usize>) {
 (**self).size_hint()
 }
}

In other words, if I is some iterator type, then &mut I is an iterator too, whose
next and size_hint methods defer to its referent. When you call an adapter on
a mutable reference to an iterator, the adapter takes ownership of the
reference, not the iterator itself. That’s just a borrow that ends when the
adapter goes out of scope.

cloned, copied
The cloned adapter takes an iterator that produces references and returns an
iterator that produces values cloned from those references, much like
iter.map(|item| item.clone()). Naturally, the referent type must implement
Clone. For example:

let a = ['1', '2', '3', '∞'];

assert_eq!(a.iter().next(), Some(&'1'));
assert_eq!(a.iter().cloned().next(), Some('1'));

The copied adapter is the same idea, but more restrictive: the referent type
must implement Copy. A call like iter.copied() is roughly the same as
iter.map(|r| *r). Since every type that implements Copy also implements
Clone, cloned is strictly more general, but depending on the item type, a
clone call can do arbitrary amounts of allocation and copying. If you’re
assuming that would never happen because your item type is something
simple, it’s best to use copied to make the type checker check your
assumptions.

cycle
The cycle adapter returns an iterator that endlessly repeats the sequence
produced by the underlying iterator. The underlying iterator must implement
std::clone::Clone so that cycle can save its initial state and reuse it each time
the cycle starts again.

For example:

let dirs = ["North", "East", "South", "West"];
let mut spin = dirs.iter().cycle();
assert_eq!(spin.next(), Some(&"North"));
assert_eq!(spin.next(), Some(&"East"));
assert_eq!(spin.next(), Some(&"South"));
assert_eq!(spin.next(), Some(&"West"));
assert_eq!(spin.next(), Some(&"North"));
assert_eq!(spin.next(), Some(&"East"));

Or, for a really gratuitous use of iterators:

use std::iter::{once, repeat};

let fizzes = repeat("").take(2).chain(once("fizz")).cycle();
let buzzes = repeat("").take(4).chain(once("buzz")).cycle();
let fizzes_buzzes = fizzes.zip(buzzes);

let fizz_buzz = (1..100).zip(fizzes_buzzes)
 .map(|tuple|
 match tuple {
 (i, ("", "")) => i.to_string(),
 (_, (fizz, buzz)) => format!("{}{}", fizz, buzz)
 });

for line in fizz_buzz {
 println!("{}", line);
}

This plays a children’s word game, now sometimes used as a job interview
question for coders, in which the players take turns counting, replacing any
number divisible by three with the word fizz, and any number divisible by
five with buzz. Numbers divisible by both become fizzbuzz.

Consuming Iterators
So far we’ve covered creating iterators and adapting them into new iterators;
here we finish off the process by showing ways to consume them.

Of course, you can consume an iterator with a for loop, or call next explicitly,
but there are many common tasks that you shouldn’t have to write out again
and again. The Iterator trait provides a broad selection of methods to cover
many of these.

Simple Accumulation: count, sum, product
The count method draws items from an iterator until it returns None and tells
you how many it got. Here’s a short program that counts the number of lines
on its standard input:

use std::io::prelude::*;

fn main() {
 let stdin = std::io::stdin();
 println!("{}", stdin.lock().lines().count());
}

The sum and product methods compute the sum or product of the iterator’s
items, which must be integers or floating-point numbers:

fn triangle(n: u64) -> u64 {
 (1..=n).sum()
}
assert_eq!(triangle(20), 210);

fn factorial(n: u64) -> u64 {
 (1..=n).product()
}
assert_eq!(factorial(20), 2432902008176640000);

(You can extend sum and product to work with other types by implementing
the std::iter::Sum and std::iter::Product traits, which we won’t describe in this
book.)

max, min
The min and max methods on Iterator return the least or greatest item the
iterator produces. The iterator’s item type must implement std::cmp::Ord so
that items can be compared with one another. For example:

assert_eq!([-2, 0, 1, 0, -2, -5].iter().max(), Some(&1));
assert_eq!([-2, 0, 1, 0, -2, -5].iter().min(), Some(&-5));

These methods return an Option<Self::Item> so that they can return None if
the iterator produces no items.

As explained in “Equivalence Comparisons”, Rust’s floating-point types f32
and f64 implement only std::cmp::PartialOrd, not std::cmp::Ord, so you can’t
use the min and max methods to compute the least or greatest of a sequence
of floating-point numbers. This is not a popular aspect of Rust’s design, but it
is deliberate: it’s not clear what such functions should do with IEEE NaN
values. Simply ignoring them would risk masking more serious problems in
the code.

If you know how you would like to handle NaN values, you can use the
max_by and min_by iterator methods instead, which let you supply your own
comparison function.

max_by, min_by
The max_by and min_by methods return the maximum or minimum item the
iterator produces, as determined by a comparison function you provide:

use std::cmp::Ordering;

// Compare two f64 values. Panic if given a NaN.
fn cmp(lhs: &f64, rhs: &f64) -> Ordering {
 lhs.partial_cmp(rhs).unwrap()
}

let numbers = [1.0, 4.0, 2.0];
assert_eq!(numbers.iter().copied().max_by(cmp), Some(4.0));
assert_eq!(numbers.iter().copied().min_by(cmp), Some(1.0));

let numbers = [1.0, 4.0, std::f64::NAN, 2.0];
assert_eq!(numbers.iter().copied().max_by(cmp), Some(4.0)); // panics

The max_by and min_by methods pass items to the comparison function by
reference so that they can work efficiently with any sort of iterator, so cmp
expects to take its arguments by reference, even though we’ve used copied to
get an iterator that produces f64 items.

max_by_key, min_by_key
The max_by_key and min_by_key methods on Iterator let you select the
maximum or minimum item as determined by a closure applied to each item.
The closure can select some field of the item or perform a computation on the
items. Since you’re often interested in data associated with some minimum or
maximum, not just the extremum itself, these functions are often more useful
than min and max. Their signatures are as follows:

fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
 where Self: Sized, F: FnMut(&Self::Item) -> B;

fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
 where Self: Sized, F: FnMut(&Self::Item) -> B;

That is, given a closure that takes an item and returns any ordered type B,
return the item for which the closure returned the maximum or minimum B,
or None if no items were produced.

For example, if you need to scan a hash table of cities to find the cities with
the largest and smallest populations, you could write:

use std::collections::HashMap;

let mut populations = HashMap::new();
populations.insert("Portland", 583_776);
populations.insert("Fossil", 449);
populations.insert("Greenhorn", 2);
populations.insert("Boring", 7_762);
populations.insert("The Dalles", 15_340);

assert_eq!(populations.iter().max_by_key(|&(_name, pop)| pop),
 Some((&"Portland", &583_776)));
assert_eq!(populations.iter().min_by_key(|&(_name, pop)| pop),
 Some((&"Greenhorn", &2)));

The closure |&(_name, pop)| pop gets applied to each item the iterator
produces and returns the value to use for comparison—in this case, the city’s
population. The value returned is the entire item, not just the value the

closure returns. (Naturally, if you were making queries like this often, you’d
probably want to arrange for a more efficient way to find the entries than
making a linear search through the table.)

Comparing Item Sequences
You can use the < and == operators to compare strings, vectors, and slices,
assuming their individual elements can be compared. Although iterators do
not support Rust’s comparison operators, they do provide methods like eq
and lt that do the same job, drawing pairs of items from the iterators and
comparing them until a decision can be reached. For example:

let packed = "Helen of Troy";
let spaced = "Helen of Troy";
let obscure = "Helen of Sandusky"; // nice person, just not famous

assert!(packed != spaced);
assert!(packed.split_whitespace().eq(spaced.split_whitespace()));

// This is true because ' ' < 'o'.
assert!(spaced < obscure);

// This is true because 'Troy' > 'Sandusky'.
assert!(spaced.split_whitespace().gt(obscure.split_whitespace()));

The calls to split_whitespace return iterators over the whitespace-separated
words of the string. Using the eq and gt methods on these iterators performs a
word-by-word comparison, instead of a character-by-character comparison.
These are all possible because &str implements PartialOrd and PartialEq.

Iterators provide the eq and ne methods for equality comparisons, and lt, le,
gt, and ge methods for ordered comparisons. The cmp and partial_cmp
methods behave like the corresponding methods of the Ord and PartialOrd
traits.

any and all
The any and all methods apply a closure to each item the iterator produces
and return true if the closure returns true for any item, or for all the items:

let id = "Iterator";

assert!(id.chars().any(char::is_uppercase));
assert!(!id.chars().all(char::is_uppercase));

These methods consume only as many items as they need to determine the
answer. For example, if the closure ever returns true for a given item, then
any returns true immediately, without drawing any more items from the
iterator.

position, rposition, and ExactSizeIterator
The position method applies a closure to each item from the iterator and
returns the index of the first item for which the closure returns true. More
precisely, it returns an Option of the index: if the closure returns true for no
item, position returns None. It stops drawing items as soon as the closure
returns true. For example:

let text = "Xerxes";
assert_eq!(text.chars().position(|c| c == 'e'), Some(1));
assert_eq!(text.chars().position(|c| c == 'z'), None);

The rposition method is the same, except that it searches from the right. For
example:

let bytes = b"Xerxes";
assert_eq!(bytes.iter().rposition(|&c| c == b'e'), Some(4));
assert_eq!(bytes.iter().rposition(|&c| c == b'X'), Some(0));

The rposition method requires a reversible iterator so that it can draw items
from the right end of the sequence. It also requires an exact-size iterator so
that it can assign indices the same way position would, starting with 0 at the
left. An exact-size iterator is one that implements the
std::iter::ExactSizeIterator trait:

trait ExactSizeIterator: Iterator {
 fn len(&self) -> usize { ... }
 fn is_empty(&self) -> bool { ... }
}

The len method returns the number of items remaining, and the is_empty
method returns true if iteration is complete.

Naturally, not every iterator knows how many items it will produce in
advance. For example, the str::chars iterator used earlier does not (since UTF-
8 is a variable-width encoding), so you can’t use rposition on strings. But an
iterator over an array of bytes certainly knows the array’s length, so it can

implement ExactSizeIterator.

fold and rfold
The fold method is a very general tool for accumulating some sort of result
over the entire sequence of items an iterator produces. Given an initial value,
which we’ll call the accumulator, and a closure, fold repeatedly applies the
closure to the current accumulator and the next item from the iterator. The
value the closure returns is taken as the new accumulator, to be passed to the
closure with the next item. The final accumulator value is what fold itself
returns. If the sequence is empty, fold simply returns the initial accumulator.

Many of the other methods for consuming an iterator’s values can be written
as uses of fold:

let a = [5, 6, 7, 8, 9, 10];

assert_eq!(a.iter().fold(0, |n, _| n+1), 6); // count
assert_eq!(a.iter().fold(0, |n, i| n+i), 45); // sum
assert_eq!(a.iter().fold(1, |n, i| n*i), 151200); // product

// max
assert_eq!(a.iter().cloned().fold(i32::min_value(), std::cmp::max),
 10);

The fold method’s signature is as follows:

fn fold<A, F>(self, init: A, f: F) -> A
 where Self: Sized, F: FnMut(A, Self::Item) -> A;

Here, A is the accumulator type. The init argument is an A, as is the closure’s
first argument and return value, and the return value of fold itself.

Note that the accumulator values are moved into and out of the closure, so
you can use fold with non-Copy accumulator types:

let a = ["Pack", "my", "box", "with",
 "five", "dozen", "liquor", "jugs"];

// See also: the `join` method on slices, which won't
// give you that extra space at the end.

let pangram = a.iter()
 .fold(String::new(), |s, w| s + w + " ");
assert_eq!(pangram, "Pack my box with five dozen liquor jugs ");

The rfold method is the same as fold, except that it requires a double-ended
iterator, and processes its items from last to first:

let weird_pangram = a.iter()
 .rfold(String::new(), |s, w| s + w + " ");
assert_eq!(weird_pangram, "jugs liquor dozen five with box my Pack ");

try_fold and try_rfold
The try_fold method is the same as fold, except that iteration can exit early,
without consuming all the values from the iterator. The value returned by the
closure you pass to try_fold indicates whether it should return immediately,
or continue folding the iterator’s items.

Your closure can return any one of several types, indicating how folding
should proceed:

If your closure returns Result<T, E>, perhaps because it does I/O or
carries out some other fallible operation, then returning Ok(v) tells
try_fold to continue folding, with v as the new accumulator value.
Returning Err(e) causes folding to stop immediately. The fold’s final
value is a Result carrying the final accumulator value, or the error
returned by the closure.

If your closure returns Option<T>, then Some(v) indicates that
folding should continue with v as the new accumulator value, and
None indicates that iteration should stop immediately. The fold’s
final value is also an Option.

Finally, the closure can return a std::ops::ControlFlow value. This
type is an enum with two variants, Continue(c) and Break(b),
meaning to continue with new accumulator value c, or stop early.
The result of the fold is a ControlFlow value: Continue(v) if the fold
consumed the entire iterator, yielding the final accumulator value v;
or Break(b), if the closure returned that value.

Continue(c) and Break(b) behave exactly like Ok(c) and Err(b). The
advantage of using ControlFlow instead of Result is that it makes
your code a little more legible when an early exit doesn’t indicate an
error, but merely that the answer is ready early. We show an
example of this below.

Here’s a program that sums numbers read from its standard input:

use std::error::Error;
use std::io::prelude::*;
use std::str::FromStr;

fn main() -> Result<(), Box<dyn Error>> {
 let stdin = std::io::stdin();
 let sum = stdin.lock()
 .lines()
 .try_fold(0, |sum, line| -> Result<u64, Box<dyn Error>> {
 Ok(sum + u64::from_str(&line?.trim())?)
 })?;
 println!("{}", sum);
 Ok(())
}

The lines iterator on buffered input streams produces items of type
Result<String, std::io::Error>, and parsing the String as an integer may fail as
well. Using try_fold here lets the closure return Result<u64, ...>, so we can
use the ? operator to propagate failures from the closure out to the main
function.

Because try_fold is so flexible, it is used to implement many of Iterator’s
other consumer methods. For example, here’s an implementation of all:

fn all<P>(&mut self, mut predicate: P) -> bool
 where P: FnMut(Self::Item) -> bool,
 Self: Sized
{
 use std::ops::ControlFlow::*;
 self.try_fold((), |_, item| {
 if predicate(item) { Continue(()) } else { Break(()) }
 }) == Continue(())
}

Note that this cannot be written with ordinary fold: all promises to stop
consuming items from the underlying iterator as soon as predicate returns
false, but fold always consumes the entire iterator.

If you are implementing your own iterator type, it’s worth investigating
whether your iterator could implement try_fold more efficiently than the
default definition from the Iterator trait. If you can speed up try_fold, all the
other methods built on it will benefit as well.

The try_rfold method, as its name suggests, is the same as try_fold, except
that it draws values from the back, instead of the front, and requires a double-
ended iterator.

nth, nth_back
The nth method takes an index n, skips that many items from the iterator, and
returns the next item, or None if the sequence ends before that point. Calling
.nth(0) is equivalent to .next().

It doesn’t take ownership of the iterator the way an adapter would, so you can
call it many times:

let mut squares = (0..10).map(|i| i*i);

assert_eq!(squares.nth(4), Some(16));
assert_eq!(squares.nth(0), Some(25));
assert_eq!(squares.nth(6), None);

Its signature is shown here:

fn nth(&mut self, n: usize) -> Option<Self::Item>
 where Self: Sized;

The nth_back method is much the same, except that it draws from the back of
a double-ended iterator. Calling .nth_back(0) is equivalent to .next_back(): it
returns the last item, or None if the iterator is empty.

last
The last method returns the last item the iterator produces, or None if it’s
empty. Its signature is as follows:

fn last(self) -> Option<Self::Item>;

For example:

let squares = (0..10).map(|i| i*i);
assert_eq!(squares.last(), Some(81));

This consumes all the iterator’s items starting from the front, even if the
iterator is reversible. If you have a reversible iterator and don’t need to
consume all its items, you should instead just write iter.next_back().

find, rfind, and find_map
The find method draws items from an iterator, returning the first item for
which the given closure returns true, or None if the sequence ends before a
suitable item is found. Its signature is:

fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
 where Self: Sized,
 P: FnMut(&Self::Item) -> bool;

The rfind method is similar, but it requires a double-ended iterator and
searches values from back to front, returning the last item for which the
closure returns true.

For example, using the table of cities and populations from “max_by_key,
min_by_key”, you could write:

assert_eq!(populations.iter().find(|&(_name, &pop)| pop > 1_000_000),
 None);
assert_eq!(populations.iter().find(|&(_name, &pop)| pop > 500_000),
 Some((&"Portland", &583_776)));

None of the cities in the table has a population above a million, but there is
one city with half a million people.

Sometimes your closure isn’t just a simple predicate casting a Boolean
judgment on each item and moving on: it might be something more complex
that produces an interesting value in its own right. In this case, find_map is
just what you want. Its signature is:

fn find_map<B, F>(&mut self, f: F) -> Option where
 F: FnMut(Self::Item) -> Option;

This is just like find, except that instead of returning bool, the closure should
return an Option of some value. find_map returns the first Option that is
Some.

For example, if we have a database of each city’s parks, we might want to see

if any of them are volcanoes and provide the name of the park if so:

let big_city_with_volcano_park = populations.iter()
 .find_map(|(&city, _)| {
 if let Some(park) = find_volcano_park(city, &parks) {
 // find_map returns this value, so our caller knows
 // *which* park we found.
 return Some((city, park.name));
 }

 // Reject this item, and continue the search.
 None
 });

assert_eq!(big_city_with_volcano_park,
 Some(("Portland", "Mt. Tabor Park")));

Building Collections: collect and FromIterator
Throughout the book, we’ve been using the collect method to build vectors
holding an iterator’s items. For example, in Chapter 2, we called
std::env::args() to get an iterator over the program’s command-line arguments
and then called that iterator’s collect method to gather them into a vector:

let args: Vec<String> = std::env::args().collect();

But collect isn’t specific to vectors: in fact, it can build any kind of collection
from Rust’s standard library, as long as the iterator produces a suitable item
type:

use std::collections::{HashSet, BTreeSet, LinkedList, HashMap, BTreeMap};

let args: HashSet<String> = std::env::args().collect();
let args: BTreeSet<String> = std::env::args().collect();
let args: LinkedList<String> = std::env::args().collect();

// Collecting a map requires (key, value) pairs, so for this example,
// zip the sequence of strings with a sequence of integers.
let args: HashMap<String, usize> = std::env::args().zip(0..).collect();
let args: BTreeMap<String, usize> = std::env::args().zip(0..).collect();

// and so on

Naturally, collect itself doesn’t know how to construct all these types. Rather,
when some collection type like Vec or HashMap knows how to construct
itself from an iterator, it implements the std::iter::FromIterator trait, for which
collect is just a convenient veneer:

trait FromIterator<A>: Sized {
 fn from_iter<T: IntoIterator<Item=A>>(iter: T) -> Self;
}

If a collection type implements FromIterator<A>, then its type-associated
function from_iter builds a value of that type from an iterable producing
items of type A.

In the simplest case, the implementation could simply construct an empty
collection and then add the items from the iterator one by one. For example,
std::collections::LinkedList’s implementation of FromIterator works this
way.

However, some types can do better than that. For example, constructing a
vector from some iterator iter could be as simple as:

let mut vec = Vec::new();
for item in iter {
 vec.push(item)
}
vec

But this isn’t ideal: as the vector grows, it may need to expand its buffer,
requiring a call to the heap allocator and a copy of the extant elements.
Vectors do take algorithmic measures to keep this overhead low, but if there
were some way to simply allocate a buffer of the right size to begin with,
there would be no need to resize at all.

This is where the Iterator trait’s size_hint method comes in:

trait Iterator {
 ...
 fn size_hint(&self) -> (usize, Option<usize>) {
 (0, None)
 }
}

This method returns a lower bound and optional upper bound on the number
of items the iterator will produce. The default definition returns zero as the
lower bound and declines to name an upper bound, saying, in effect, “I have
no idea,” but many iterators can do better than this. An iterator over a Range,
for example, knows exactly how many items it will produce, as does an
iterator over a Vec or HashMap. Such iterators provide their own specialized
definitions for size_hint.

These bounds are exactly the information that Vec’s implementation of
FromIterator needs to size the new vector’s buffer correctly from the start.

Insertions still check that the buffer is large enough, so even if the hint is
incorrect, only performance is affected, not safety. Other types can take
similar steps: for example, HashSet and HashMap also use Iterator::size_hint
to choose an appropriate initial size for their hash table.

One note about type inference: at the top of this section, it’s a bit strange to
see the same call, std::env::args().collect(), produce four different kinds of
collections depending on its context. The return type of collect is its type
parameter, so the first two calls are equivalent to the following:

let args = std::env::args().collect::<Vec<String>>();
let args = std::env::args().collect::<HashSet<String>>();

But as long as there’s only one type that could possibly work as collect’s
argument, Rust’s type inference will supply it for you. When you spell out
the type of args, you ensure this is the case.

The Extend Trait
If a type implements the std::iter::Extend trait, then its extend method adds an
iterable’s items to the collection:

let mut v: Vec<i32> = (0..5).map(|i| 1 << i).collect();
v.extend([31, 57, 99, 163]);
assert_eq!(v, [1, 2, 4, 8, 16, 31, 57, 99, 163]);

All of the standard collections implement Extend, so they all have this
method; so does String. Arrays and slices, which have a fixed length, do not.

The trait’s definition is as follows:

trait Extend<A> {
 fn extend<T>(&mut self, iter: T)
 where T: IntoIterator<Item=A>;
}

Obviously, this is very similar to std::iter::FromIterator: that creates a new
collection, whereas Extend extends an existing collection. In fact, several
implementations of FromIterator in the standard library simply create a new
empty collection and then call extend to populate it. For example, the
implementation of FromIterator for std::collections::LinkedList works this
way:

impl<T> FromIterator<T> for LinkedList<T> {
 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
 let mut list = Self::new();
 list.extend(iter);
 list
 }
}

partition
The partition method divides an iterator’s items among two collections, using
a closure to decide where each item belongs:

let things = ["doorknob", "mushroom", "noodle", "giraffe", "grapefruit"];

// Amazing fact: the name of a living thing always starts with an
// odd-numbered letter.
let (living, nonliving): (Vec<&str>, Vec<&str>)
 = things.iter().partition(|name| name.as_bytes()[0] & 1 != 0);

assert_eq!(living, vec!["mushroom", "giraffe", "grapefruit"]);
assert_eq!(nonliving, vec!["doorknob", "noodle"]);

Like collect, partition can make any sort of collections you like, although
both must be of the same type. And like collect, you’ll need to specify the
return type: the preceding example writes out the type of living and nonliving
and lets type inference choose the right type parameters for the call to
partition.

The signature of partition is as follows:

fn partition<B, F>(self, f: F) -> (B, B)
 where Self: Sized,
 B: Default + Extend<Self::Item>,
 F: FnMut(&Self::Item) -> bool;

Whereas collect requires its result type to implement FromIterator, partition
instead requires std::default::Default, which all Rust collections implement
by returning an empty collection, and std::default::Extend.

Other languages offer partition operations that just split the iterator into two
iterators, instead of building two collections. But this isn’t a good fit for Rust:
items drawn from the underlying iterator but not yet drawn from the
appropriate partitioned iterator would need to be buffered somewhere; you
would end up building a collection of some sort internally, anyway.

for_each and try_for_each
The for_each method simply applies a closure to each item:

["doves", "hens", "birds"].iter()
 .zip(["turtle", "french", "calling"])
 .zip(2..5)
 .rev()
 .map(|((item, kind), quantity)| {
 format!("{} {} {}", quantity, kind, item)
 })
 .for_each(|gift| {
 println!("You have received: {}", gift);
 });

This prints:

You have received: 4 calling birds
You have received: 3 french hens
You have received: 2 turtle doves

This is very similar to a simple for loop, in which you could also use control
structures like break and continue. But long chains of adapter calls like this
are a little awkward in for loops:

for gift in ["doves", "hens", "birds"].iter()
 .zip(["turtle", "french", "calling"])
 .zip(2..5)
 .rev()
 .map(|((item, kind), quantity)| {
 format!("{} {} {}", quantity, kind, item)
 })
{
 println!("You have received: {}", gift);
}

The pattern being bound, gift, can end up quite far away from the loop body
in which it is used.

If your closure needs to be fallible or exit early, you can use try_for_each:

...
 .try_for_each(|gift| {
 writeln!(&mut output_file, "You have received: {}", gift)
 })?;

Implementing Your Own Iterators
You can implement the IntoIterator and Iterator traits for your own types,
making all the adapters and consumers shown in this chapter available for
use, along with lots of other library and crate code written to work with the
standard iterator interface. In this section, we’ll show a simple iterator over a
range type and then a more complex iterator over a binary tree type.

Suppose we have the following range type (simplified from the standard
library’s std::ops::Range<T> type):

struct I32Range {
 start: i32,
 end: i32
}

Iterating over an I32Range requires two pieces of state: the current value and
the limit at which the iteration should end. This happens to be a nice fit for
the I32Range type itself, using start as the next value, and end as the limit. So
you can implement Iterator like so:

impl Iterator for I32Range {
 type Item = i32;
 fn next(&mut self) -> Option<i32> {
 if self.start >= self.end {
 return None;
 }
 let result = Some(self.start);
 self.start += 1;
 result
 }
}

This iterator produces i32 items, so that’s the Item type. If the iteration is
complete, next returns None; otherwise, it produces the next value and
updates its state to prepare for the next call.

Of course, a for loop uses IntoIterator::into_iter to convert its operand into an

iterator. But the standard library provides a blanket implementation of
IntoIterator for every type that implements Iterator, so I32Range is ready for
use:

let mut pi = 0.0;
let mut numerator = 1.0;

for k in (I32Range { start: 0, end: 14 }) {
 pi += numerator / (2*k + 1) as f64;
 numerator /= -3.0;
}
pi *= f64::sqrt(12.0);

// IEEE 754 specifies this result exactly.
assert_eq!(pi as f32, std::f32::consts::PI);

But I32Range is a special case, in that the iterable and iterator are the same
type. Many cases aren’t so simple. For example, here’s the binary tree type
from Chapter 10:

enum BinaryTree<T> {
 Empty,
 NonEmpty(Box<TreeNode<T>>)
}

struct TreeNode<T> {
 element: T,
 left: BinaryTree<T>,
 right: BinaryTree<T>
}

The classic way to walk a binary tree is to recurse, using the stack of function
calls to keep track of your place in the tree and the nodes yet to be visited.
But when implementing Iterator for BinaryTree<T>, each call to next must
produce exactly one value and return. To keep track of the tree nodes it has
yet to produce, the iterator must maintain its own stack. Here’s one possible
iterator type for BinaryTree:

use self::BinaryTree::*;

// The state of an in-order traversal of a `BinaryTree`.

struct TreeIter<'a, T> {
 // A stack of references to tree nodes. Since we use `Vec`'s
 // `push` and `pop` methods, the top of the stack is the end of the
 // vector.
 //
 // The node the iterator will visit next is at the top of the stack,
 // with those ancestors still unvisited below it. If the stack is empty,
 // the iteration is over.
 unvisited: Vec<&'a TreeNode<T>>
}

When we create a new TreeIter, its initial state should be about to produce the
leftmost leaf node in the tree. According to the rules for the unvisited stack, it
should thus have that leaf on the top, followed by its unvisited ancestors: the
nodes along the left edge of the tree. We can initialize unvisited by walking
the left edge of the tree from root to leaf and pushing each node we
encounter, so we’ll define a method on TreeIter to do that:

impl<'a, T: 'a> TreeIter<'a, T> {
 fn push_left_edge(&mut self, mut tree: &'a BinaryTree<T>) {
 while let NonEmpty(ref node) = *tree {
 self.unvisited.push(node);
 tree = &node.left;
 }
 }
}

Writing mut tree lets the loop change which node tree points to as it walks
down the left edge, but since tree is a shared reference, it can’t mutate the
nodes themselves.

With this helper method in place, we can give BinaryTree an iter method that
returns an iterator over the tree:

impl<T> BinaryTree<T> {
 fn iter(&self) -> TreeIter<T> {
 let mut iter = TreeIter { unvisited: Vec::new() };
 iter.push_left_edge(self);
 iter
 }
}

The iter method constructs a TreeIter with an empty unvisited stack and then
calls push_left_edge to initialize it. The leftmost node ends up on the top, as
required by the unvisited stack’s rules.

Following the standard library’s practices, we can then implement
IntoIterator on a shared reference to a tree with a call to BinaryTree::iter:

impl<'a, T: 'a> IntoIterator for &'a BinaryTree<T> {
 type Item = &'a T;
 type IntoIter = TreeIter<'a, T>;
 fn into_iter(self) -> Self::IntoIter {
 self.iter()
 }
}

The IntoIter definition establishes TreeIter as the iterator type for a
&BinaryTree.

Finally, in the Iterator implementation, we get to actually walk the tree. Like
BinaryTree’s iter method, the iterator’s next method is guided by the stack’s
rules:

impl<'a, T> Iterator for TreeIter<'a, T> {
 type Item = &'a T;
 fn next(&mut self) -> Option<&'a T> {
 // Find the node this iteration must produce,
 // or finish the iteration. (Use the `?` operator
 // to return immediately if it's `None`.)
 let node = self.unvisited.pop()?;

 // After `node`, the next thing we produce must be the leftmost
 // child in `node`'s right subtree, so push the path from here
 // down. Our helper method turns out to be just what we need.
 self.push_left_edge(&node.right);

 // Produce a reference to this node's value.
 Some(&node.element)
 }
}

If the stack is empty, the iteration is complete. Otherwise, node is a reference
to the node to visit now; this call will return a reference to its element field.

But first, we must advance the iterator’s state to the next node. If this node
has a right subtree, the next node to visit is the subtree’s leftmost node, and
we can use push_left_edge to push it, and its unvisited ancestors, onto the
stack. But if this node has no right subtree, push_left_edge has no effect,
which is just what we want: we can count on the new top of the stack to be
node’s first unvisited ancestor, if any.

With IntoIterator and Iterator implementations in place, we can finally use a
for loop to iterate over a BinaryTree by reference. Using the add method on
BinaryTree from “Populating a Binary Tree”:

// Build a small tree.
let mut tree = BinaryTree::Empty;
tree.add("jaeger");
tree.add("robot");
tree.add("droid");
tree.add("mecha");

// Iterate over it.
let mut v = Vec::new();
for kind in &tree {
 v.push(*kind);
}
assert_eq!(v, ["droid", "jaeger", "mecha", "robot"]);

Figure 15-1 shows how the unvisited stack behaves as we iterate through a
sample tree. At every step, the next node to be visited is at the top of the
stack, with all its unvisited ancestors below it.

Figure 15-1. Iterating over a binary tree

All the usual iterator adapters and consumers are ready for use on our trees:

assert_eq!(tree.iter()
 .map(|name| format!("mega-{}", name))
 .collect::<Vec<_>>(),
 vec!["mega-droid", "mega-jaeger",
 "mega-mecha", "mega-robot"]);

Iterators are the embodiment of Rust’s philosophy of providing powerful,
zero-cost abstractions that improve the expressiveness and readability of
code. Iterators don’t replace loops entirely, but they do provide a capable
primitive with built-in lazy evaluation and excellent performance.

1 In fact, since Option is an iterable behaving like a sequence of zero or one items,
iterator.filter_map(closure) is equivalent to iterator.flat_map(closure), assuming closure returns
an Option<T>.

Chapter 16. Collections

We all behave like Maxwell’s demon. Organisms organize. In everyday
experience lies the reason sober physicists across two centuries kept this
cartoon fantasy alive. We sort the mail, build sand castles, solve jigsaw
puzzles, separate wheat from chaff, rearrange chess pieces, collect stamps,
alphabetize books, create symmetry, compose sonnets and sonatas, and put
our rooms in order, and all this we do requires no great energy, as long as
we can apply intelligence.

—James Gleick, The Information: A History, a Theory, a
Flood

The Rust standard library contains several collections, generic types for
storing data in memory. We’ve already been using collections, such as Vec
and HashMap, throughout this book. In this chapter, we’ll cover the methods
of these two types in detail, along with the other half-dozen standard
collections. Before we begin, let’s address a few systematic differences
between Rust’s collections and those in other languages.

First, moves and borrowing are everywhere. Rust uses moves to avoid deep-
copying values. That’s why the method Vec<T>::push(item) takes its
argument by value, not by reference. The value is moved into the vector. The
diagrams in Chapter 4 show how this works out in practice: pushing a Rust
String to a Vec<String> is quick, because Rust doesn’t have to copy the
string’s character data, and ownership of the string is always clear.

Second, Rust doesn’t have invalidation errors—the kind of dangling-pointer
bug where a collection is resized, or otherwise changed, while the program is
holding a pointer to data inside it. Invalidation errors are another source of
undefined behavior in C++, and they cause the occasional
ConcurrentModificationException even in memory-safe languages. Rust’s
borrow checker rules them out at compile time.

Finally, Rust does not have null, so we’ll see Options in places where other

languages would use null.

Apart from these differences, Rust’s collections are about what you’d expect.
If you’re an experienced programmer in a hurry, you can skim here, but don’t
miss “Entries”.

Overview
Table 16-1 shows Rust’s eight standard collections. All of them are generic
types.

Table 16-1. Summary of the standard collections

Collection Description

Similar collection type in...

C++ Java Python

Vec<T> Growable array vector ArrayList list

VecDeque<T> Double-ended
queue
(growable ring
buffer)

deque ArrayDeque collections.deque

LinkedList<T> Doubly linked list list LinkedList —

BinaryHeap<T>
where T: Ord

Max heap priority_queue PriorityQueue heapq

HashMap<K, V>
where K: Eq + Has
h

Key-value hash
table

unordered_map HashMap dict

BTreeMap<K, V>
where K: Ord

Sorted key-value
table

map TreeMap —

HashSet<T>
where T: Eq + Hash

Unordered, hash-
based set

unordered_set HashSet set

BTreeSet<T>
where T: Ord

Sorted set set TreeSet —

Vec<T>, HashMap<K, V>, and HashSet<T> are the most generally useful
collection types. The rest have niche uses. This chapter discusses each
collection type in turn:

Vec<T>

A growable, heap-allocated array of values of type T. About half of this

chapter is dedicated to Vec and its many useful methods.

VecDeque<T>

Like Vec<T>, but better for use as a first-in-first-out queue. It supports

efficiently adding and removing values at the front of the list as well as

the back. This comes at the cost of making all other operations slightly

slower.

BinaryHeap<T>

A priority queue. The values in a BinaryHeap are organized so that it’s

always efficient to find and remove the maximum value.

HashMap<K, V>

A table of key-value pairs. Looking up a value by its key is fast. The

entries are stored in an arbitrary order.

BTreeMap<K, V>

Like HashMap<K, V>, but it keeps the entries sorted by key. A

BTreeMap<String, i32> stores its entries in String comparison order.

Unless you need the entries to stay sorted, a HashMap is faster.

HashSet<T>

A set of values of type T. Adding and removing values is fast, and it’s

fast to ask whether a given value is in the set or not.

BTreeSet<T>

Like HashSet<T>, but it keeps the elements sorted by value. Again,

unless you need the data sorted, a HashSet is faster.

Because LinkedList is rarely used (and there are better alternatives, both in

performance and interface, for most use cases), we do not describe it here.

Vec<T>
We’ll assume some familiarity with Vec, since we’ve been using it
throughout the book. For an introduction, see “Vectors”. Here we’ll finally
describe its methods and its inner workings in depth.

The easiest way to create a vector is to use the vec! macro:

// Create an empty vector
let mut numbers: Vec<i32> = vec![];

// Create a vector with given contents
let words = vec!["step", "on", "no", "pets"];
let mut buffer = vec![0u8; 1024]; // 1024 zeroed-out bytes

As described in Chapter 4, a vector has three fields: the length, the capacity,
and a pointer to a heap allocation where the elements are stored. Figure 16-1
shows how the preceding vectors would appear in memory. The empty
vector, numbers, initially has a capacity of 0. No heap memory is allocated
for it until the first element is added.

Like all collections, Vec implements std::iter::FromIterator, so you can create
a vector from any iterator using the iterator’s .collect() method, as described
in “Building Collections: collect and FromIterator”:

// Convert another collection to a vector.
let my_vec = my_set.into_iter().collect::<Vec<String>>();

Figure 16-1. Vector layout in memory: each element of words is a &str value consisting of a pointer
and a length

Accessing Elements
Getting elements of an array, slice, or vector by index is straightforward:

// Get a reference to an element
let first_line = &lines[0];

// Get a copy of an element
let fifth_number = numbers[4]; // requires Copy
let second_line = lines[1].clone(); // requires Clone

// Get a reference to a slice
let my_ref = &buffer[4..12];

// Get a copy of a slice
let my_copy = buffer[4..12].to_vec(); // requires Clone

All of these forms panic if an index is out of bounds.

Rust is picky about numeric types, and it makes no exceptions for vectors.
Vector lengths and indices are of type usize. Trying to use a u32, u64, or isize
as a vector index is an error. You can use an n as usize cast to convert as
needed; see “Type Casts”.

Several methods provide easy access to particular elements of a vector or
slice (note that all slice methods are available on arrays and vectors too):

slice.first()

Returns a reference to the first element of slice, if any.

The return type is Option<&T>, so the return value is None if slice is
empty and Some(&slice[0]) if it’s not empty:

if let Some(item) = v.first() {

 println!("We got one! {}", item);

}

slice.last()

Similar but returns a reference to the last element.

slice.get(index)

Returns Some reference to slice[index], if it exists. If slice has fewer than
index+1 elements, this returns None:

let slice = [0, 1, 2, 3];

assert_eq!(slice.get(2), Some(&2));

assert_eq!(slice.get(4), None);

slice.first_mut(), slice.last_mut(), slice.get_mut(index)

Variations of the preceding that borrow mut references:

let mut slice = [0, 1, 2, 3];

{

 let last = slice.last_mut().unwrap(); // type of last: &mut i32

 assert_eq!(*last, 3);

 *last = 100;

}

assert_eq!(slice, [0, 1, 2, 100]);

Because returning a T by value would mean moving it, methods that access
elements in place typically return those elements by reference.

An exception is the .to_vec() method, which makes copies:

slice.to_vec()

Clones a whole slice, returning a new vector:

let v = [1, 2, 3, 4, 5, 6, 7, 8, 9];

assert_eq!(v.to_vec(),

 vec![1, 2, 3, 4, 5, 6, 7, 8, 9]);

assert_eq!(v[0..6].to_vec(),

 vec![1, 2, 3, 4, 5, 6]);

This method is available only if the elements are cloneable, that is, where
T: Clone.

Iteration
Vectors, arrays, and slices are iterable, either by value or by reference,
following the pattern described in “IntoIterator Implementations”:

Iterating over a Vec<T> or array [T; N] produces items of type T.
The elements are moved out of the vector or array one by one,
consuming it.

Iterating over a value of type &[T; N], &[T], or &Vec<T>—that is,
a reference to an array, slice, or vector—produces items of type &T,
references to the individual elements, which are not moved.

Iterating over a value of type &mut [T; N], &mut [T], or &mut
Vec<T> produces items of type &mut T.

Arrays, slices, and vectors also have .iter() and .iter_mut() methods
(described in “iter and iter_mut Methods”) for creating iterators that produce
references to their elements.

We’ll cover some fancier ways to iterate over a slice in “Splitting”.

Growing and Shrinking Vectors
The length of an array, slice, or vector is the number of elements it contains:

slice.len()

Returns a slice’s length, as a usize.

slice.is_empty()

Is true if slice contains no elements (that is, slice.len() == 0).

The remaining methods in this section are about growing and shrinking
vectors. They are not present on arrays and slices, which can’t be resized
once created.

All of a vector’s elements are stored in a contiguous, heap-allocated chunk of
memory. The capacity of a vector is the maximum number of elements that
would fit in this chunk. Vec normally manages the capacity for you,
automatically allocating a larger buffer and moving the elements into it when
more space is needed. There are also a few methods for managing capacity
explicitly:

Vec::with_capacity(n)

Creates a new, empty vector with capacity n.

vec.capacity()

Returns vec’s capacity, as a usize. It’s always true that vec.capacity() >=

vec.len().

vec.reserve(n)

Makes sure the vector has at least enough spare capacity for n more

elements: that is, vec.capacity() is at least vec.len() + n. If there’s already

enough room, this does nothing. If not, this allocates a larger buffer and

moves the vector’s contents into it.

vec.reserve_exact(n)

Like vec.reserve(n), but tells vec not to allocate any extra capacity for

future growth, beyond n. Afterward, vec.capacity() is exactly vec.len() +

n.

vec.shrink_to_fit()

Tries to free up the extra memory if vec.capacity() is greater than

vec.len().

Vec<T> has many methods that add or remove elements, changing the
vector’s length. Each of these takes its self argument by mut reference.

These two methods add or remove a single value at the end of a vector:

vec.push(value)

Adds the given value to the end of vec.

vec.pop()

Removes and returns the last element. The return type is Option<T>. This

returns Some(x) if the popped element is x and None if the vector was

already empty.

Note that .push() takes its argument by value, not by reference. Likewise,
.pop() returns the popped value, not a reference. The same is true of most of
the remaining methods in this section. They move values in and out of
vectors.

These two methods add or remove a value anywhere in a vector:

vec.insert(index, value)

Inserts the given value at vec[index], sliding any existing values in
vec[index..] one spot to the right to make room.

Panics if index > vec.len().

vec.remove(index)

Removes and returns vec[index], sliding any existing values in
vec[index+1..] one spot to the left to close the gap.

Panics if index >= vec.len(), since in that case there is no element
vec[index] to remove.

The longer the vector, the slower this operation gets. If you find yourself
doing vec.remove(0) a lot, consider using a VecDeque (explained in
“VecDeque<T>”) instead of a Vec.

Both .insert() and .remove() are slower the more elements have to be shifted.

Four methods change the length of a vector to a specific value:

vec.resize(new_len, value)

Sets vec’s length to new_len. If this increases vec’s length, copies of

value are added to fill the new space. The element type must implement

the Clone trait.

vec.resize_with(new_len, closure)

Just like vec.resize, but calls the closure to construct each new element. It

can be used with vectors of elements that are not Clone.

vec.truncate(new_len)

Reduces the length of vec to new_len, dropping any elements that were in
the range vec[new_len..].

If vec.len() is already less than or equal to new_len, nothing happens.

vec.clear()

Removes all elements from vec. It’s the same as vec.truncate(0).

Four methods add or remove many values at once:

vec.extend(iterable)

Adds all items from the given iterable value at the end of vec, in order.
It’s like a multivalue version of .push(). The iterable argument can be
anything that implements IntoIterator<Item=T>.

This method is so useful that there’s a standard trait for it, the Extend
trait, which all standard collections implement. Unfortunately, this causes
rustdoc to lump .extend() with other trait methods in a big pile at the
bottom of the generated HTML, so it’s hard to find when you need it.
You just have to remember it’s there! See “The Extend Trait” for more.

vec.split_off(index)

Like vec.truncate(index), except that it returns a Vec<T> containing the

values removed from the end of vec. It’s like a multivalue version of

.pop().

vec.append(&mut vec2)

This moves all elements from vec2 into vec, where vec2 is another vector
of type Vec<T>. Afterward, vec2 is empty.

This is like vec.extend(vec2) except that vec2 still exists afterward, with
its capacity unaffected.

vec.drain(range)

This removes the range vec[range] from vec and returns an iterator over

the removed elements, where range is a range value, like .. or 0..4.

There are also a few oddball methods for selectively removing some of a
vector’s elements:

vec.retain(test)

Removes all elements that don’t pass the given test. The test argument is
a function or closure that implements FnMut(&T) -> bool. For each
element of vec, this calls test(&element), and if it returns false, the
element is removed from the vector and dropped.

Apart from performance, this is like writing:

vec = vec.into_iter().filter(test).collect();

vec.dedup()

Drops repeated elements. It’s like the Unix uniq shell utility. It scans vec
for places where adjacent elements are equal and drops the extra equal
values so that only one is left:

let mut byte_vec = b"Misssssssissippi".to_vec();

byte_vec.dedup();

assert_eq!(&byte_vec, b"Misisipi");

Note that there are still two 's' characters in the output. This method only
removes adjacent duplicates. To eliminate all duplicates, you have three
options: sort the vector before calling .dedup(), move the data into a set,
or (to keep the elements in their original order) use this .retain() trick:

let mut byte_vec = b"Misssssssissippi".to_vec();

let mut seen = HashSet::new();

byte_vec.retain(|r| seen.insert(*r));

assert_eq!(&byte_vec, b"Misp");

This works because .insert() returns false when the set already contains
the item we’re inserting.

vec.dedup_by(same)

The same as vec.dedup(), but it uses the function or closure same(&mut

elem1, &mut elem2), instead of the == operator, to check whether two

elements should be considered equal.

vec.dedup_by_key(key)

The same as vec.dedup(), but it treats two elements as equal if key(&mut
elem1) == key(&mut elem2).

For example, if errors is a Vec<Box<dyn Error>>, you can write:

// Remove errors with redundant messages.

errors.dedup_by_key(|err| err.to_string());

Of all the methods covered in this section, only .resize() ever clones values.
The others work by moving values from one place to another.

Joining
Two methods work on arrays of arrays, by which we mean any array, slice,
or vector whose elements are themselves arrays, slices, or vectors:

slices.concat()

Returns a new vector made by concatenating all the slices:

assert_eq!([[1, 2], [3, 4], [5, 6]].concat(),

 vec![1, 2, 3, 4, 5, 6]);

slices.join(&separator)

The same, except a copy of the value separator is inserted between slices:

assert_eq!([[1, 2], [3, 4], [5, 6]].join(&0),

 vec![1, 2, 0, 3, 4, 0, 5, 6]);

Splitting
It’s easy to get many non-mut references into an array, slice, or vector at
once:

let v = vec![0, 1, 2, 3];
let a = &v[i];
let b = &v[j];

let mid = v.len() / 2;
let front_half = &v[..mid];
let back_half = &v[mid..];

Getting multiple mut references is not so easy:

let mut v = vec![0, 1, 2, 3];
let a = &mut v[i];
let b = &mut v[j]; // error: cannot borrow `v` as mutable
 // more than once at a time

*a = 6; // references `a` and `b` get used here,
*b = 7; // so their lifetimes must overlap

Rust forbids this because if i == j, then a and b would be two mut references
to the same integer, in violation of Rust’s safety rules. (See “Sharing Versus
Mutation”.)

Rust has several methods that can borrow mut references to two or more parts
of an array, slice, or vector at once. Unlike the preceding code, these methods
are safe, because by design, they always split the data into nonoverlapping
regions. Many of these methods are also handy for working with non-mut
slices, so there are mut and non-mut versions of each.

Figure 16-2 illustrates these methods.

Figure 16-2. Splitting methods illustrated (note: the little rectangle in the output of slice.split() is an
empty slice caused by the two adjacent separators, and rsplitn produces its output in end-to-start order,

unlike the others)

None of these methods directly modifies an array, slice, or vector; they
merely return new references to parts of the data inside:

slice.iter(), slice.iter_mut()

Produce a reference to each element of slice. We covered them in

“Iteration”.

slice.split_at(index), slice.split_at_mut(index)

Break a slice in two, returning a pair. slice.split_at(index) is equivalent to

(&slice[..index], &slice[index..]). These methods panic if index is out of

bounds.

slice.split_first(), slice.split_first_mut()

Also return a pair: a reference to the first element (slice[0]) and a slice
reference to all the rest (slice[1..]).

The return type of .split_first() is Option<(&T, &[T])>; the result is None
if slice is empty.

slice.split_last(), slice.split_last_mut()

These are analogous but split off the last element rather than the first.

The return type of .split_last() is Option<(&T, &[T])>.

slice.split(is_sep), slice.split_mut(is_sep)

Split slice into one or more subslices, using the function or closure is_sep
to figure out where to split. They return an iterator over the subslices.

As you consume the iterator, it calls is_sep(&element) for each element in
the slice. If is_sep(&element) is true, the element is a separator.
Separators are not included in any output subslice.

The output always contains at least one subslice, plus one per separator.
Empty subslices are included whenever separators appear adjacent to
each other or to the ends of slice.

slice.split_inclusive(is_sep), slice.split_inclusive_mut(is_sep)

These work just like split and split_mut, but include the separator at the

end of the previous subslice rather than excluding it.

slice.rsplit(is_sep), slice.rsplit_mut(is_sep)

Just like slice and slice_mut, but start at the end of the slice.

slice.splitn(n, is_sep), slice.splitn_mut(n, is_sep)

The same but they produce at most n subslices. After the first n-1 slices

are found, is_sep is not called again. The last subslice contains all the

remaining elements.

slice.rsplitn(n, is_sep), slice.rsplitn_mut(n, is_sep)

Just like .splitn() and .splitn_mut() except that the slice is scanned in

reverse order. That is, these methods split on the last n-1 separators in the

slice, rather than the first, and the subslices are produced starting from the

end.

slice.chunks(n), slice.chunks_mut(n)

Return an iterator over nonoverlapping subslices of length n. If n doesn’t

divide slice.len() exactly, the last chunk will contain fewer than n

elements.

slice.rchunks(n), slice.rchunks_mut(n)

Just like slice.chunks and slice.chunks_mut, but start at the end of the

slice.

slice.chunks_exact(n), slice.chunks_exact_mut(n)

Return an iterator over nonoverlapping subslices of length n. If n doesn’t

divide slice.len(), the last chunk (with less than n elements) is available in

the result’s remainder() method.

slice.rchunks_exact(n), slice.rchunks_exact_mut(n)

Just like slice.chunks_exact and slice.chunks_exact_mut, but start at the

end of the slice.

There’s one more method for iterating over subslices:

slice.windows(n)

Returns an iterator that behaves like a “sliding window” over the data in
slice. It produces subslices that span n consecutive elements of slice. The
first value produced is &slice[0..n], the second is &slice[1..n+1], and so
on.

If n is greater than the length of slice, then no slices are produced. If n is
0, the method panics.

For example, if days.len() == 31, then we can produce all seven-day
spans in days by calling days.windows(7).

A sliding window of size 2 is handy for exploring how a data series
changes from one data point to the next:

let changes = daily_high_temperatures

 .windows(2) // get adjacent days' temps

 .map(|w| w[1] - w[0]) // how much did it change?

 .collect::<Vec<_>>();

Because the subslices overlap, there is no variation of this method that
returns mut references.

Swapping
There are convenience methods for swapping the contents of slices:

slice.swap(i, j)

Swaps the two elements slice[i] and slice[j].

slice_a.swap(&mut slice_b)

Swaps the entire contents of slice_a and slice_b. slice_a and slice_b must

be the same length.

Vectors have a related method for efficiently removing any element:

vec.swap_remove(i)

Removes and returns vec[i]. This is like vec.remove(i) except that instead

of sliding the rest of the vector’s elements over to close the gap, it simply

moves vec’s last element into the gap. It’s useful when you don’t care

about the order of the items left in the vector.

Filling
There are two convenience methods for replacing the contents of mutable
slices:

slice.fill(value)

Fills the slice with clones of value.

slice.fill_with(function)

Fills the slice with values made by calling the given function. This is

especially useful for types that implement Default, but are not Clone, like

Option<T> or Vec<T> when T is not Clone.

Sorting and Searching
Slices offer three methods for sorting:

slice.sort()

Sorts the elements into increasing order. This method is present only

when the element type implements Ord.

slice.sort_by(cmp)

Sorts the elements of slice using a function or closure cmp to specify the
sort order. cmp must implement Fn(&T, &T) -> std::cmp::Ordering.

Hand-implementing cmp is a pain, unless you delegate to a .cmp()
method:

students.sort_by(|a, b| a.last_name.cmp(&b.last_name));

To sort by one field, using a second field as a tiebreaker, compare tuples:

students.sort_by(|a, b| {

 let a_key = (&a.last_name, &a.first_name);

 let b_key = (&b.last_name, &b.first_name);

 a_key.cmp(&b_key)

});

slice.sort_by_key(key)

Sorts the elements of slice into increasing order by a sort key, given by
the function or closure key. The type of key must implement Fn(&T) ->
K where K: Ord.

This is useful when T contains one or more ordered fields, so that it could

be sorted multiple ways:

// Sort by grade point average, lowest first.

students.sort_by_key(|s| s.grade_point_average());

Note that these sort-key values are not cached during sorting, so the key
function may be called more than n times.

For technical reasons, key(element) can’t return any references borrowed
from the element. This won’t work:

students.sort_by_key(|s| &s.last_name); // error: can't infer lifetime

Rust can’t figure out the lifetimes. But in these cases, it’s easy enough to
fall back on .sort_by().

All three methods perform a stable sort.

To sort in reverse order, you can use sort_by with a cmp closure that swaps
the two arguments. Taking arguments |b, a| rather than |a, b| effectively
produces the opposite order. Or, you can just call the .reverse() method after
sorting:

slice.reverse()

Reverses a slice in place.

Once a slice is sorted, it can be efficiently searched:

slice.binary_search(&value), slice.binary_search_by(&value, cmp),
slice.binary_search_by_key(&value, key)

All search for value in the given sorted slice. Note that value is passed by
reference.

The return type of these methods is Result<usize, usize>. They return
Ok(index) if slice[index] equals value under the specified sort order. If

there is no such index, then they return Err(insertion_point) such that
inserting value at insertion_point would preserve the order.

Of course, a binary search only works if the slice is in fact sorted in the
specified order. Otherwise, the results are arbitrary—garbage in, garbage out.

Since f32 and f64 have NaN values, they do not implement Ord and can’t be
used directly as keys with the sorting and binary search methods. To get
similar methods that work on floating-point data, use the ord_subset crate.

There’s one method for searching a vector that is not sorted:

slice.contains(&value)

Returns true if any element of slice is equal to value. This simply checks

each element of the slice until a match is found. Again, value is passed by

reference.

To find the location of a value in a slice, like array.indexOf(value) in
JavaScript, use an iterator:

slice.iter().position(|x| *x == value)

This returns an Option<usize>.

Comparing Slices
If a type T supports the == and != operators (the PartialEq trait, described in
“Equivalence Comparisons”), then arrays [T; N], slices [T], and vectors
Vec<T> support them too. Two slices are equal if they’re the same length
and their corresponding elements are equal. The same goes for arrays and
vectors.

If T supports the operators <, <=, >, and >= (the PartialOrd trait, described in
“Ordered Comparisons”), then arrays, slices, and vectors of T do too. Slice
comparisons are lexicographical.

Two convenience methods perform common slice comparisons:

slice.starts_with(other)

Returns true if slice starts with a sequence of values that are equal to the
elements of the slice other:

assert_eq!([1, 2, 3, 4].starts_with(&[1, 2]), true);

assert_eq!([1, 2, 3, 4].starts_with(&[2, 3]), false);

slice.ends_with(other)

Similar but checks the end of slice:

assert_eq!([1, 2, 3, 4].ends_with(&[3, 4]), true);

Random Elements
Random numbers are not built into the Rust standard library. The rand crate,
which provides them, offers these two methods for getting random output
from an array, slice, or vector:

slice.choose(&mut rng)

Returns a reference to a random element of a slice. Like slice.first() and

slice.last(), this returns an Option<&T> that is None only if the slice is

empty.

slice.shuffle(&mut rng)

Randomly reorders the elements of a slice in place. The slice must be

passed by mut reference.

These are methods of the rand::Rng trait, so you need a Rng, a random
number generator, in order to call them. Fortunately, it’s easy to get one by
calling rand::thread_rng(). To shuffle the vector my_vec, we can write:

use rand::seq::SliceRandom;
use rand::thread_rng;

my_vec.shuffle(&mut thread_rng());

Rust Rules Out Invalidation Errors
Most mainstream programming languages have collections and iterators, and
they all have some variation on this rule: don’t modify a collection while
you’re iterating over it. For example, the Python equivalent of a vector is a
list:

my_list = [1, 3, 5, 7, 9]

Suppose we try to remove all values greater than 4 from my_list:

for index, val in enumerate(my_list):
 if val > 4:
 del my_list[index] # bug: modifying list while iterating

print(my_list)

(The enumerate function is Python’s equivalent of Rust’s .enumerate()
method, described in “enumerate”.)

This program, surprisingly, prints [1, 3, 7]. But seven is greater than four.
How did that slip through? This is an invalidation error: the program
modifies data while iterating over it, invalidating the iterator. In Java, the
result would be an exception; in C++ it is undefined behavior. In Python,
while the behavior is well-defined, it’s unintuitive: the iterator skips an
element. val is never 7.

Let’s try to reproduce this bug in Rust:

fn main() {
 let mut my_vec = vec![1, 3, 5, 7, 9];

 for (index, &val) in my_vec.iter().enumerate() {
 if val > 4 {
 my_vec.remove(index); // error: can't borrow `my_vec` as mutable
 }
 }
 println!("{:?}", my_vec);
}

Naturally, Rust rejects this program at compile time. When we call
my_vec.iter(), it borrows a shared (non-mut) reference to the vector. The
reference lives as long as the iterator, to the end of the for loop. We can’t
modify the vector by calling my_vec.remove(index) while a non-mut
reference exists.

Having an error pointed out to you is nice, but of course, you still need to
find a way to get the desired behavior! The easiest fix here is to write:

my_vec.retain(|&val| val <= 4);

Or, you can do what you’d do in Python or any other language: create a new
vector using a filter.

VecDeque<T>
Vec supports efficiently adding and removing elements only at the end.
When a program needs a place to store values that are “waiting in line,” Vec
can be slow.

Rust’s std::collections::VecDeque<T> is a deque (pronounced “deck”), a
double-ended queue. It supports efficient add and remove operations at both
the front and the back:

deque.push_front(value)

Adds a value at the front of the queue.

deque.push_back(value)

Adds a value at the end. (This method is used much more than

.push_front(), because the usual convention for queues is that values are

added at the back and removed at the front, like people waiting in a line.)

deque.pop_front()

Removes and returns the front value of the queue, returning an

Option<T> that is None if the queue is empty, like vec.pop().

deque.pop_back()

Removes and returns the value at the back, again returning an Option<T>.

deque.front(), deque.back()

Work like vec.first() and vec.last(). They return a reference to the front or

back element of the queue. The return value is an Option<&T> that is

None if the queue is empty.

deque.front_mut(), deque.back_mut()

Work like vec.first_mut() and vec.last_mut(), returning Option<&mut T>.

The implementation of VecDeque is a ring buffer, as shown in Figure 16-3.

Like a Vec, it has a single heap allocation where elements are stored. Unlike
Vec, the data does not always start at the beginning of this region, and it can
“wrap around” the end, as shown. The elements of this deque, in order, are
['A', 'B', 'C', 'D', 'E']. VecDeque has private fields, labeled start and stop in the
figure, that it uses to remember where in the buffer the data begins and ends.

Adding a value to the queue, on either end, means claiming one of the unused
slots, illustrated as the darker blocks, wrapping around or allocating a bigger
chunk of memory if needed.

VecDeque manages wrapping, so you don’t have to think about it. Figure 16-
3 is a behind-the-scenes view of how Rust makes .pop_front() fast.

Figure 16-3. How a VecDeque is stored in memory

Oftentimes, when you need a deque, .push_back() and .pop_front() are the
only two methods that you’ll need. The type-associated functions
VecDeque::new() and VecDeque::with_capacity(n), for creating queues, are

just like their counterparts in Vec. Many Vec methods are also implemented
for VecDeque: .len() and .is_empty(), .insert(index, value), .remove(index),
.extend(iterable), and so on.

Deques, like vectors, can be iterated by value, by shared reference, or by mut
reference. They have the three iterator methods .into_iter(), .iter(), and
.iter_mut(). They can be indexed in the usual way: deque[index].

Because deques don’t store their elements contiguously in memory, they
can’t inherit all the methods of slices. But if you’re willing to pay the cost of
shifting the contents around, VecDeque provides a method that will fix that:

deque.make_contiguous()

Takes &mut self and rearranges the VecDeque into contiguous memory,

returning &mut [T].

Vecs and VecDeques are closely related, and the standard library provides
two trait implementations for easily converting between the two:

Vec::from(deque)

Vec<T> implements From<VecDeque<T>>, so this turns a deque into a

vector. This costs O(n) time, since it may require rearranging the

elements.

VecDeque::from(vec)

VecDeque<T> implements From<Vec<T>>, so this turns a vector into a
deque. This is also O(n), but it’s usually fast, even if the vector is large,
because the vector’s heap allocation can simply be moved to the new
deque.

This method makes it easy to create a deque with specified elements,
even though there is no standard vec_deque![] macro:

use std::collections::VecDeque;

let v = VecDeque::from(vec![1, 2, 3, 4]);

BinaryHeap<T>
A BinaryHeap is a collection whose elements are kept loosely organized so
that the greatest value always bubbles up to the front of the queue. Here are
the three most commonly used BinaryHeap methods:

heap.push(value)

Adds a value to the heap.

heap.pop()

Removes and returns the greatest value from the heap. It returns an

Option<T> that is None if the heap was empty.

heap.peek()

Returns a reference to the greatest value in the heap. The return type is

Option<&T>.

heap.peek_mut()

Returns a PeekMut<T>, which acts as a mutable reference to the greatest
value in the heap and provides the type-associated function pop() to pop
this value from the heap. Using this method, we can choose to pop or not
pop from the heap based on the maximum value:

use std::collections::binary_heap::PeekMut;

if let Some(top) = heap.peek_mut() {

 if *top > 10 {

 PeekMut::pop(top);

 }

}

BinaryHeap also supports a subset of the methods on Vec, including
BinaryHeap::new(), .len(), .is_empty(), .capacity(), .clear(), and
.append(&mut heap2).

For example, suppose we populate a BinaryHeap with a bunch of numbers:

use std::collections::BinaryHeap;

let mut heap = BinaryHeap::from(vec![2, 3, 8, 6, 9, 5, 4]);

The value 9 is at the top of the heap:

assert_eq!(heap.peek(), Some(&9));
assert_eq!(heap.pop(), Some(9));

Removing the value 9 also rearranges the other elements slightly so that 8 is
now at the front, and so on:

assert_eq!(heap.pop(), Some(8));
assert_eq!(heap.pop(), Some(6));
assert_eq!(heap.pop(), Some(5));
...

Of course, BinaryHeap is not limited to numbers. It can hold any type of
value that implements the Ord built-in trait.

This makes BinaryHeap useful as a work queue. You can define a task struct
that implements Ord on the basis of priority so that higher-priority tasks are
Greater than lower-priority tasks. Then, create a BinaryHeap to hold all
pending tasks. Its .pop() method will always return the most important item,
the task your program should work on next.

Note: BinaryHeap is iterable, and it has an .iter() method, but the iterators
produce the heap’s elements in an arbitrary order, not from greatest to least.
To consume values from a BinaryHeap in order of priority, use a while loop:

while let Some(task) = heap.pop() {
 handle(task);
}

HashMap<K, V> and BTreeMap<K, V>
A map is a collection of key-value pairs (called entries). No two entries have
the same key, and the entries are kept organized so that if you have a key,
you can efficiently look up the corresponding value in a map. In short, a map
is a lookup table.

Rust offers two map types: HashMap<K, V> and BTreeMap<K, V>. The two
share many of the same methods; the difference is in how the two keep
entries arranged for fast lookup.

A HashMap stores the keys and values in a hash table, so it requires a key
type K that implements Hash and Eq, the standard traits for hashing and
equality.

Figure 16-4 shows how a HashMap is arranged in memory. Darker regions
are unused. All keys, values, and cached hash codes are stored in a single
heap-allocated table. Adding entries eventually forces the HashMap to
allocate a larger table and move all the data into it.

Figure 16-4. A HashMap in memory

A BTreeMap stores the entries in order by key, in a tree structure, so it
requires a key type K that implements Ord. Figure 16-5 shows a BTreeMap.
Again, the darker regions are unused spare capacity.

A BTreeMap stores its entries in nodes. Most nodes in a BTreeMap contain
only key-value pairs. Nonleaf nodes, like the root node shown in this figure,
also have room for pointers to child nodes. The pointer between (20, 'q') and
(30, 'r') points to a child node containing keys between 20 and 30. Adding
entries often requires sliding some of a node’s existing entries to the right, to
keep them sorted, and occasionally involves allocating new nodes.

This picture is a bit simplified to fit on the page. For example, real BTreeMap
nodes have room for 11 entries, not 4.

Figure 16-5. A BTreeMap in memory

The Rust standard library uses B-trees rather than balanced binary trees
because B-trees are faster on modern hardware. A binary tree may use fewer
comparisons per search than a B-tree, but searching a B-tree has better
locality—that is, the memory accesses are grouped together rather than
scattered across the whole heap. This makes CPU cache misses rarer. It’s a
significant speed boost.

There are several ways to create a map:

HashMap::new(), BTreeMap::new()

Create new, empty maps.

iter.collect()

Can be used to create and populate a new HashMap or BTreeMap from

key-value pairs. iter must be an Iterator<Item=(K, V)>.

HashMap::with_capacity(n)

Creates a new, empty hash map with room for at least n entries.

HashMaps, like vectors, store their data in a single heap allocation, so

they have a capacity and the related methods hash_map.capacity(),

hash_map.reserve(additional), and hash_map.shrink_to_fit(). BTreeMaps

do not.

HashMaps and BTreeMaps have the same core methods for working with
keys and values:

map.len()

Returns the number of entries.

map.is_empty()

Returns true if map has no entries.

map.contains_key(&key)

Returns true if the map has an entry for the given key.

map.get(&key)

Searches map for an entry with the given key. If a matching entry is

found, this returns Some(r), where r is a reference to the corresponding

value. Otherwise, this returns None.

map.get_mut(&key)

Similar, but it returns a mut reference to the value.

In general, maps let you have mut access to the values stored inside them,
but not the keys. The values are yours to modify however you like. The
keys belong to the map itself; it needs to ensure that they don’t change,
because the entries are organized by their keys. Modifying a key in-place
would be a bug.

map.insert(key, value)

Inserts the entry (key, value) into map and returns the old value, if any.

The return type is Option<V>. If there’s already an entry for key in the

map, the newly inserted value overwrites the old one.

map.extend(iterable)

Iterates over the (K, V) items of iterable and inserts each of those key-

value pairs into map.

map.append(&mut map2)

Moves all entries from map2 into map. Afterward, map2 is empty.

map.remove(&key)

Finds and removes any entry with the given key from map, returning the

removed value, if any. The return type is Option<V>.

map.remove_entry(&key)

Finds and removes any entry with the given key from map, returning the

removed key and value, if any. The return type is Option<(K, V)>.

map.retain(test)

Removes all elements that don’t pass the given test. The test argument is
a function or closure that implements FnMut(&K, &mut V) -> bool. For

each element of map, this calls test(&key, &mut value), and if it returns
false, the element is removed from the map and dropped.

Apart from performance, this is like writing:

map = map.into_iter().filter(test).collect();

map.clear()

Removes all entries.

A map can also be queried using square brackets: map[&key]. That is, maps
implement the Index built-in trait. However, this panics if there is not already
an entry for the given key, like an out-of-bounds array access, so use this
syntax only if the entry you’re looking up is sure to be populated.

The key argument to .contains_key(), .get(), .get_mut(), and .remove() does
not have to have the exact type &K. These methods are generic over types
that can be borrowed from K. It’s OK to call
fish_map.contains_key("conger") on a HashMap<String, Fish>, even though
"conger" isn’t exactly a String, because String implements Borrow<&str>.
For details, see “Borrow and BorrowMut”.

Because a BTreeMap<K, V> keeps its entries sorted by key, it supports an
additional operation:

btree_map.split_off(&key)

Splits btree_map in two. Entries with keys less than key are left in

btree_map. Returns a new BTreeMap<K, V> containing the other entries.

Entries
Both HashMap and BTreeMap have a corresponding Entry type. The point of
entries is to eliminate redundant map lookups. For example, here’s some code
to get or create a student record:

// Do we already have a record for this student?
if !student_map.contains_key(name) {
 // No: create one.
 student_map.insert(name.to_string(), Student::new());
}
// Now a record definitely exists.
let record = student_map.get_mut(name).unwrap();
...

This works fine, but it accesses student_map two or three times, doing the
same lookup each time.

The idea with entries is that we do the lookup just once, producing an Entry
value that is then used for all subsequent operations. This one-liner is
equivalent to all the preceding code, except that it does the lookup only once:

let record = student_map.entry(name.to_string()).or_insert_with(Student::new);

The Entry value returned by student_map.entry(name.to_string()) acts like a
mutable reference to a place within the map that’s either occupied by a key-
value pair, or vacant, meaning there’s no entry there yet. If vacant, the entry’s
.or_insert_with() method inserts a new Student. Most uses of entries are like
this: short and sweet.

All Entry values are created by the same method:

map.entry(key)

Returns an Entry for the given key. If there’s no such key in the map, this
returns a vacant Entry.

This method takes its self argument by mut reference and returns an Entry
with a matching lifetime:

pub fn entry<'a>(&'a mut self, key: K) -> Entry<'a, K, V>

The Entry type has a lifetime parameter 'a because it’s effectively a fancy
kind of borrowed mut reference to the map. As long as the Entry exists, it
has exclusive access to the map.

Back in “Structs Containing References”, we saw how to store references
in a type and how that affects lifetimes. Now we’re seeing what that looks
like from a user’s perspective. That’s what’s going on with Entry.

Unfortunately, it is not possible to pass a reference of type &str to this
method if the map has String keys. The .entry() method, in that case,
requires a real String.

Entry values provide three methods to deal with vacant entries:

map.entry(key).or_insert(value)

Ensures that map contains an entry with the given key, inserting a new
entry with the given value if needed. It returns a mut reference to the new
or existing value.

Suppose we need to count votes. We can write:

let mut vote_counts: HashMap<String, usize> = HashMap::new();

for name in ballots {

 let count = vote_counts.entry(name).or_insert(0);

 *count += 1;

}

.or_insert() returns a mut reference, so the type of count is &mut usize.

map.entry(key).or_default()

Ensures that map contains an entry with the given key, inserting a new

entry with the value returned by Default::default() if needed. This only

works for types that implement Default. Like or_insert, this method

returns a mut reference to the new or existing value.

map.entry(key).or_insert_with(default_fn)

This is the same, except that if it needs to create a new entry, it calls
default_fn() to produce the default value. If there’s already an entry for
key in the map, then default_fn is not used.

Suppose we want to know which words appear in which files. We can
write:

// This map contains, for each word, the set of files it appears in.

let mut word_occurrence: HashMap<String, HashSet<String>> =

 HashMap::new();

for file in files {

 for word in read_words(file)? {

 let set = word_occurrence

 .entry(word)

 .or_insert_with(HashSet::new);

 set.insert(file.clone());

 }

}

Entry also provides a convenient way to modify only extant fields.

map.entry(key).and_modify(closure)

Calls closure if an entry with the key key exists, passing in a mutable
reference to the value. It returns the Entry, so it can be chained with other
methods.

For instance, we could use this to count the number of occurrences of
words in a string:

// This map contains all the words in a given string,

// along with the number of times they occur.

let mut word_frequency: HashMap<&str, u32> = HashMap::new();

for c in text.split_whitespace() {

 word_frequency.entry(c)

 .and_modify(|count| *count += 1)

 .or_insert(1);

}

The Entry type is an enum, defined like this for HashMap (and similarly for
BTreeMap):

// (in std::collections::hash_map)
pub enum Entry<'a, K, V> {
 Occupied(OccupiedEntry<'a, K, V>),
 Vacant(VacantEntry<'a, K, V>)
}

The OccupiedEntry and VacantEntry types have methods for inserting,
removing, and accessing entries without repeating the initial lookup. You can
find them in the online documentation. The extra methods can occasionally
be used to eliminate a redundant lookup or two, but .or_insert() and
.or_insert_with() cover the common cases.

Map Iteration
There are several ways to iterate over a map:

Iterating by value (for (k, v) in map) produces (K, V) pairs. This
consumes the map.

Iterating over a shared reference (for (k, v) in &map) produces (&K,
&V) pairs.

Iterating over a mut reference (for (k, v) in &mut map) produces
(&K, &mut V) pairs. (Again, there’s no way to get mut access to
keys stored in a map, because the entries are organized by their
keys.)

Like vectors, maps have .iter() and .iter_mut() methods that return by-
reference iterators, just like iterating over &map or &mut map. In addition:

map.keys()

Returns an iterator over just the keys, by reference.

map.values()

Returns an iterator over the values, by reference.

map.values_mut()

Returns an iterator over the values, by mut reference.

map.into_iter(), map.into_keys(), map.into_values()

Consume the map, returning an iterator over tuples (K, V) of keys and

values, keys, or values, respectively.

All HashMap iterators visit the map’s entries in an arbitrary order. BTreeMap
iterators visit them in order by key.

HashSet<T> and BTreeSet<T>
Sets are collections of values arranged for fast membership testing:

let b1 = large_vector.contains(&"needle"); // slow, checks every element
let b2 = large_hash_set.contains(&"needle"); // fast, hash lookup

A set never contains multiple copies of the same value.

Maps and sets have different methods, but behind the scenes, a set is like a
map with only keys, rather than key-value pairs. In fact, Rust’s two set types,
HashSet<T> and BTreeSet<T>, are implemented as thin wrappers around
HashMap<T, ()> and BTreeMap<T, ()>.

HashSet::new(), BTreeSet::new()

Create new sets.

iter.collect()

Can be used to create a new set from any iterator. If iter produces any

values more than once, the duplicates are dropped.

HashSet::with_capacity(n)

Creates an empty HashSet with room for at least n values.

HashSet<T> and BTreeSet<T> have all the basic methods in common:

set.len()

Returns the number of values in set.

set.is_empty()

Returns true if the set contains no elements.

set.contains(&value)

Returns true if the set contains the given value.

set.insert(value)

Adds a value to the set. Returns true if a value was added, false if it was

already a member of the set.

set.remove(&value)

Removes a value from the set. Returns true if a value was removed, false

if it already wasn’t a member of the set.

set.retain(test)

Removes all elements that don’t pass the given test. The test argument is
a function or closure that implements FnMut(&T) -> bool. For each
element of set, this calls test(&value), and if it returns false, the element is
removed from the set and dropped.

Apart from performance, this is like writing:

set = set.into_iter().filter(test).collect();

As with maps, the methods that look up a value by reference are generic over
types that can be borrowed from T. For details, see “Borrow and
BorrowMut”.

Set Iteration
There are two ways to iterate over sets:

Iterating by value (“for v in set”) produces the members of the set
(and consumes the set).

Iterating by shared reference (“for v in &set”) produces shared
references to the members of the set.

Iterating over a set by mut reference is not supported. There’s no way to get a
mut reference to a value stored in a set.

set.iter()

Returns an iterator over the members of set by reference.

HashSet iterators, like HashMap iterators, produce their values in an arbitrary
order. BTreeSet iterators produce values in order, like a sorted vector.

When Equal Values Are Different
Sets have a few odd methods that you need to use only if you care about
differences between “equal” values.

Such differences do often exist. Two identical String values, for example,
store their characters in different locations in memory:

let s1 = "hello".to_string();
let s2 = "hello".to_string();
println!("{:p}", &s1 as &str); // 0x7f8b32060008
println!("{:p}", &s2 as &str); // 0x7f8b32060010

Usually, we don’t care.

But in case you ever do, you can get access to the actual values stored inside
a set by using the following methods. Each one returns an Option that’s None
if set did not contain a matching value:

set.get(&value)

Returns a shared reference to the member of set that’s equal to value, if

any. Returns an Option<&T>.

set.take(&value)

Like set.remove(&value), but it returns the removed value, if any.

Returns an Option<T>.

set.replace(value)

Like set.insert(value), but if set already contains a value that’s equal to

value, this replaces and returns the old value. Returns an Option<T>.

Whole-Set Operations
So far, most of the set methods we’ve seen are focused on a single value in a
single set. Sets also have methods that operate on whole sets:

set1.intersection(&set2)

Returns an iterator over all values that are in both set1 and set2.

For example, if we want to print the names of all students who are taking
both brain surgery and rocket science classes, we could write:

for student in &brain_class {

 if rocket_class.contains(student) {

 println!("{}", student);

 }

}

Or, shorter:

for student in brain_class.intersection(&rocket_class) {

 println!("{}", student);

}

Amazingly, there’s an operator for this.

&set1 & &set2 returns a new set that’s the intersection of set1 and set2.
This is the binary bitwise AND operator, applied to two references. This
finds values that are in both set1 and set2:

let overachievers = &brain_class & &rocket_class;

set1.union(&set2)

Returns an iterator over values that are in either set1 or set2, or both.

&set1 | &set2 returns a new set containing all those values. It finds values
that are in either set1 or set2.

set1.difference(&set2)

Returns an iterator over values that are in set1 but not in set2.

&set1 - &set2 returns a new set containing all those values.

set1.symmetric_difference(&set2)

Returns an iterator over values that are in either set1 or set2, but not both.

&set1 ^ &set2 returns a new set containing all those values.

And there are three methods for testing relationships between sets:

set1.is_disjoint(set2)

True if set1 and set2 have no values in common—the intersection

between them is empty.

set1.is_subset(set2)

True if set1 is a subset of set2—that is, all values in set1 are also in set2.

set1.is_superset(set2)

This is the reverse: it’s true if set1 is a superset of set2.

Sets also support equality testing with == and !=; two sets are equal if they
contain the same values.

Hashing
std::hash::Hash is the standard library trait for hashable types. HashMap keys
and HashSet elements must implement both Hash and Eq.

Most built-in types that implement Eq also implement Hash. The integer
types, char, and String are all hashable; so are tuples, arrays, slices, and
vectors, as long as their elements are hashable.

One principle of the standard library is that a value should have the same
hash code regardless of where you store it or how you point to it. Therefore, a
reference has the same hash code as the value it refers to, and a Box has the
same hash code as the boxed value. A vector vec has the same hash code as
the slice containing all its data, &vec[..]. A String has the same hash code as
a &str with the same characters.

Structs and enums don’t implement Hash by default, but an implementation
can be derived:

/// The ID number for an object in the British Museum's collection.
#[derive(Clone, PartialEq, Eq, Hash)]
enum MuseumNumber {
 ...
}

This works as long as the type’s fields are all hashable.

If you implement PartialEq by hand for a type, you should also implement
Hash by hand. For example, suppose we have a type that represents priceless
historical treasures:

struct Artifact {
 id: MuseumNumber,
 name: String,
 cultures: Vec<Culture>,
 date: RoughTime,
 ...
}

Two Artifacts are considered equal if they have the same ID:

impl PartialEq for Artifact {
 fn eq(&self, other: &Artifact) -> bool {
 self.id == other.id
 }
}

impl Eq for Artifact {}

Since we compare artifacts purely on the basis of their ID, we must hash
them the same way:

use std::hash::{Hash, Hasher};

impl Hash for Artifact {
 fn hash<H: Hasher>(&self, hasher: &mut H) {
 // Delegate hashing to the MuseumNumber.
 self.id.hash(hasher);
 }
}

(Otherwise, HashSet<Artifact> would not work properly; like all hash tables,
it requires that hash(a) == hash(b) if a == b.)

This allows us to create a HashSet of Artifacts:

let mut collection = HashSet::<Artifact>::new();

As this code shows, even when you implement Hash by hand, you don’t need
to know anything about hashing algorithms. .hash() receives a reference to a
Hasher, which represents the hashing algorithm. You simply feed this Hasher
all the data that’s relevant to the == operator. The Hasher computes a hash
code from whatever you give it.

Using a Custom Hashing Algorithm
The hash method is generic, so the Hash implementations shown earlier can
feed data to any type that implements Hasher. This is how Rust supports
pluggable hashing algorithms.

A third trait, std::hash::BuildHasher, is the trait for types that represent the
initial state of a hashing algorithm. Each Hasher is single use, like an iterator:
you use it once and throw it away. A BuildHasher is reusable.

Every HashMap contains a BuildHasher that it uses each time it needs to
compute a hash code. The BuildHasher value contains the key, initial state, or
other parameters that the hashing algorithm needs every time it runs.

The complete protocol for computing a hash code looks like this:

use std::hash::{Hash, Hasher, BuildHasher};

fn compute_hash<B, T>(builder: &B, value: &T) -> u64
 where B: BuildHasher, T: Hash
{
 let mut hasher = builder.build_hasher(); // 1. start the algorithm
 value.hash(&mut hasher); // 2. feed it data
 hasher.finish() // 3. finish, producing a u64
}

HashMap calls these three methods every time it needs to compute a hash
code. All the methods are inlineable, so it’s very fast.

Rust’s default hashing algorithm is a well-known algorithm called SipHash-
1-3. SipHash is fast, and it’s very good at minimizing hash collisions. In fact,
it’s a cryptographic algorithm: there’s no known efficient way to generate
SipHash-1-3 collisions. As long as a different, unpredictable key is used for
each hash table, Rust is secure against a kind of denial-of-service attack
called HashDoS, where attackers deliberately use hash collisions to trigger
worst-case performance in a server.

But perhaps you don’t need that for your application. If you’re storing many

small keys, such as integers or very short strings, it is possible to implement a
faster hash function, at the expense of HashDoS security. The fnv crate
implements one such algorithm, the Fowler–Noll–Vo (FNV) hash. To try it,
add this line to your Cargo.toml:

[dependencies]
fnv = "1.0"

Then import the map and set types from fnv:

use fnv::{FnvHashMap, FnvHashSet};

You can use these two types as drop-in replacements for HashMap and
HashSet. A peek inside the fnv source code reveals how they’re defined:

/// A `HashMap` using a default FNV hasher.
pub type FnvHashMap<K, V> = HashMap<K, V, FnvBuildHasher>;

/// A `HashSet` using a default FNV hasher.
pub type FnvHashSet<T> = HashSet<T, FnvBuildHasher>;

The standard HashMap and HashSet collections accept an optional extra type
parameter specifying the hashing algorithm; FnvHashMap and FnvHashSet
are generic type aliases for HashMap and HashSet, specifying an FNV hasher
for that parameter.

Beyond the Standard Collections
Creating a new, custom collection type in Rust is much the same as in any
other language. You arrange data by combining the parts the language
provides: structs and enums, standard collections, Options, Boxes, and so on.
For an example, see the BinaryTree<T> type defined in “Generic Enums”.

If you’re used to implementing data structures in C++, using raw pointers,
manual memory management, placement new, and explicit destructor calls to
get the best possible performance, you’ll undoubtedly find safe Rust rather
limiting. All of those tools are inherently unsafe. They are available in Rust,
but only if you opt in to unsafe code. Chapter 22 shows how; it includes an
example that uses some unsafe code to implement a safe custom collection.

For now, we’ll just bask in the warm glow of the standard collections and
their safe, efficient APIs. Like much of the Rust standard library, they’re
designed to ensure that the need to write unsafe is as rare as possible.

Chapter 17. Strings and Text

The string is a stark data structure and everywhere it is passed there is
much duplication of process. It is a perfect vehicle for hiding information.

—Alan Perlis, epigram #34

We’ve been using Rust’s main textual types, String, str, and char, throughout
the book. In “String Types”, we described the syntax for character and string
literals and showed how strings are represented in memory. In this chapter,
we cover text handling in more detail.

In this chapter:

We give you some background on Unicode that should help you
make sense of the standard library’s design.

We describe the char type, representing a single Unicode code point.

We describe the String and str types, representing owned and
borrowed sequences of Unicode characters. These have a broad
variety of methods for building, searching, modifying, and iterating
over their contents.

We cover Rust’s string formatting facilities, like the println! and
format! macros. You can write your own macros that work with
formatting strings and extend them to support your own types.

We give an overview of Rust’s regular expression support.

Finally, we talk about why Unicode normalization matters and show
how to do it in Rust.

Some Unicode Background
This book is about Rust, not Unicode, which has entire books devoted to it
already. But Rust’s character and string types are designed around Unicode.
Here are a few bits of Unicode that help explain Rust.

ASCII, Latin-1, and Unicode
Unicode and ASCII match for all of ASCII’s code points, from 0 to 0x7f: for
example, both assign the character * the code point 42. Similarly, Unicode
assigns 0 through 0xff to the same characters as the ISO/IEC 8859-1
character set, an eight-bit superset of ASCII for use with Western European
languages. Unicode calls this range of code points the Latin-1 code block, so
we’ll refer to ISO/IEC 8859-1 by the more evocative name Latin-1.

Since Unicode is a superset of Latin-1, converting Latin-1 to Unicode doesn’t
even require a table:

fn latin1_to_char(latin1: u8) -> char {
 latin1 as char
}

The reverse conversion is trivial as well, assuming the code points fall in the
Latin-1 range:

fn char_to_latin1(c: char) -> Option<u8> {
 if c as u32 <= 0xff {
 Some(c as u8)
 } else {
 None
 }
}

UTF-8
The Rust String and str types represent text using the UTF-8 encoding form.
UTF-8 encodes a character as a sequence of one to four bytes (Figure 17-1).

Figure 17-1. The UTF-8 encoding

There are two restrictions on well-formed UTF-8 sequences. First, only the
shortest encoding for any given code point is considered well-formed; you
can’t spend four bytes encoding a code point that would fit in three. This rule
ensures that there is exactly one UTF-8 encoding for a given code point.
Second, well-formed UTF-8 must not encode numbers from 0xd800 through
0xdfff or beyond 0x10ffff: those are either reserved for noncharacter
purposes or outside Unicode’s range entirely.

Figure 17-2 shows some examples.

Figure 17-2. UTF-8 examples

Note that, even though the crab emoji has an encoding whose leading byte
contributes only zeros to the code point, it still needs a four-byte encoding:
three-byte UTF-8 encodings can only convey 16-bit code points, and 0x1f980

is 17 bits long.

Here’s a quick example of a string containing characters with encodings of
varying lengths:

assert_eq!("うどん: udon".as_bytes(),
 &[0xe3, 0x81, 0x86, // う
 0xe3, 0x81, 0xa9, // ど
 0xe3, 0x82, 0x93, // ん
 0x3a, 0x20, 0x75, 0x64, 0x6f, 0x6e // : udon
]);

Figure 17-2 also shows some very helpful properties of UTF-8:

Since UTF-8 encodes code points 0 through 0x7f as nothing more
than the bytes 0 through 0x7f, a range of bytes holding ASCII text is
valid UTF-8. And if a string of UTF-8 includes only characters from
ASCII, the reverse is also true: the UTF-8 encoding is valid ASCII.

The same is not true for Latin-1: for example, Latin-1 encodes é as
the byte 0xe9, which UTF-8 would interpret as the first byte of a
three-byte encoding.

From looking at any byte’s upper bits, you can immediately tell
whether it is the start of some character’s UTF-8 encoding or a byte
from the midst of one.

An encoding’s first byte alone tells you the encoding’s full length,
via its leading bits.

Since no encoding is longer than four bytes, UTF-8 processing never
requires unbounded loops, which is nice when working with
untrusted data.

In well-formed UTF-8, you can always tell unambiguously where
characters’ encodings begin and end, even if you start from an
arbitrary point in the midst of the bytes. UTF-8 first bytes and
following bytes are always distinct, so one encoding cannot start in
the midst of another. The first byte determines the encoding’s total

length, so no encoding can be a prefix of another. This has a lot of
nice consequences. For example, searching a UTF-8 string for an
ASCII delimiter character requires only a simple scan for the
delimiter’s byte. It can never appear as any part of a multibyte
encoding, so there’s no need to keep track of the UTF-8 structure at
all. Similarly, algorithms that search for one byte string in another
will work without modification on UTF-8 strings, even though some
don’t even examine every byte of the text being searched.

Although variable-width encodings are more complicated than fixed-width
encodings, these characteristics make UTF-8 more comfortable to work with
than you might expect. The standard library handles most aspects for you.

Text Directionality
Whereas scripts like Latin, Cyrillic, and Thai are written from left to right,
other scripts like Hebrew and Arabic are written from right to left. Unicode
stores characters in the order in which they would normally be written or
read, so the initial bytes of a string holding, say, Hebrew text encode the
character that would be written at the right:

assert_eq!("ערב טוב".chars().next(), Some('ע'));

Characters (char)
A Rust char is a 32-bit value holding a Unicode code point. A char is
guaranteed to fall in the range from 0 to 0xd7ff or in the range 0xe000 to
0x10ffff; all the methods for creating and manipulating char values ensure
that this is true. The char type implements Copy and Clone, along with all the
usual traits for comparison, hashing, and formatting.

A string slice can produce an iterator over its characters with slice.chars():

assert_eq!("カニ".chars().next(), Some('カ'));

In the descriptions that follow, the variable ch is always of type char.

Classifying Characters
The char type has methods for classifying characters into a few common
categories, as listed in Table 17-1. These all draw their definitions from
Unicode.

Table 17-1. Classification methods for char type

Method Description Examples

ch.is_numeric() A numeric character. This includes the Unicode general
categories “Number; digit” and “Number; letter” but not
“Number; other”.

'4'.is_numeric()
'ᛮ'.is_numeric()
'⑧'.is_numeric()

ch.is_alphabetic() An alphabetic character: Unicode’s “Alphabetic” derived
property.

'q'.is_alphabetic()
'七'.is_alphabetic()

ch.is_alphanumeric
()

Either numeric or alphabetic, as defined earlier. '9'.is_alphanumeric(
)
'饂'.is_alphanumeri
c()
!'*'.is_alphanumeric
()

ch.is_whitespace() A whitespace character: Unicode character property
“WSpace=Y”.

' '.is_whitespace()
'\n'.is_whitespace()
'\u{A0}'.is_whitesp
ace()

ch.is_control() A control character: Unicode’s “Other, control” general
category.

'\n'.is_control()
'\u{85}'.is_control()

A parallel set of methods restricts itself to ASCII only, returning false for any
non-ASCII char (Table 17-2).

Table 17-2. ASCII classification methods for char

Method Description Examples

ch.is_ascii() An ASCII character: one whose code point falls between 0
and 127 inclusive.

'n'.is_ascii()
!'ñ'.is_ascii()

ch.is_ascii_alphabe
tic()

An upper- or lowercase ASCII letter, in the range 'A'..='Z'
or 'a'..='z'.

'n'.is_ascii_alphabet
ic()
!'1'.is_ascii_alphabe
tic()

!'ñ'.is_ascii_alphabe
tic()

ch.is_ascii_digit() An ASCII digit, in the range '0'..='9'. '8'.is_ascii_digit()
!'-'.is_ascii_digit()
!'⑧'.is_ascii_digit()

ch.is_ascii_hexdigit
()

Any character in the ranges '0'..='9', 'A'..='F', or 'a'..='f'.

ch.is_ascii_alphanu
meric()

An ASCII digit or upper- or lowercase letter. 'q'.is_ascii_alphanu
meric()
'0'.is_ascii_alphanu
meric()

ch.is_ascii_control(
)

An ASCII control character, including ‘DEL’. '\n'.is_ascii_control(
)
'\x7f'.is_ascii_contr
ol()

ch.is_ascii_graphic(
)

Any ASCII character that leaves ink on the page: neither a
space nor a control character.

'Q'.is_ascii_graphic
()
'~'.is_ascii_graphic(
)
!' '.is_ascii_graphic(
)

ch.is_ascii_upperca
se(),
ch.is_ascii_lowerca
se()

ASCII uppercase and lowercase letters. 'z'.is_ascii_lowerca
se()
'Z'.is_ascii_upperca
se()

ch.is_ascii_punctua
tion()

Any ASCII graphic character that is neither alphabetic nor
a digit.

ch.is_ascii_whitesp
ace()

An ASCII whitespace character: a space, horizonal tab, line
feed, form feed, or carriage return.

' '.is_ascii_whitespa
ce()
'\n'.is_ascii_whitesp
ace()
!'\u{A0}'.is_ascii_
whitespace()

All the is_ascii_... methods are also available on the u8 byte type:

assert!(32u8.is_ascii_whitespace());
assert!(b'9'.is_ascii_digit());

Take care when using these functions to implement an existing specification
like a programming language standard or file format, since classifications can

differ in surprising ways. For example, note that is_whitespace and
is_ascii_whitespace differ in their treatment of certain characters:

let line_tab = '\u{000b}'; // 'line tab', AKA 'vertical tab'
assert_eq!(line_tab.is_whitespace(), true);
assert_eq!(line_tab.is_ascii_whitespace(), false);

The char::is_ascii_whitespace function implements a definition of whitespace
common to many web standards, whereas char::is_whitespace follows the
Unicode standard.

Handling Digits
For handling digits, you can use the following methods:

ch.to_digit(radix)

Decides whether ch is a digit in base radix. If it is, it returns Some(num),

where num is a u32. Otherwise, it returns None. This recognizes only

ASCII digits, not the broader class of characters covered by

char::is_numeric. The radix parameter can range from 2 to 36. For radixes

larger than 10, ASCII letters of either case are considered digits with

values from 10 through 35.

std::char::from_digit(num, radix)

A free function that converts the u32 digit value num to a char if possible.
If num can be represented as a single digit in radix, from_digit returns
Some(ch), where ch is the digit. When radix is greater than 10, ch may be
a lowercase letter. Otherwise, it returns None.

This is the reverse of to_digit. If std::char::from_digit(num, radix) is
Some(ch), then ch.to_digit(radix) is Some(num). If ch is an ASCII digit
or lowercase letter, the converse holds as well.

ch.is_digit(radix)

Returns true if ch is an ASCII digit in base radix. This is equivalent to

ch.to_digit(radix) != None.

So, for example:

assert_eq!('F'.to_digit(16), Some(15));
assert_eq!(std::char::from_digit(15, 16), Some('f'));
assert!(char::is_digit('f', 16));

Case Conversion for Characters
For handling character case:

ch.is_lowercase(), ch.is_uppercase()

Indicate whether ch is a lower- or uppercase alphabetic character. These

follow Unicode’s Lowercase and Uppercase derived properties, so they

cover non-Latin alphabets like Greek and Cyrillic and give the expected

results for ASCII as well.

ch.to_lowercase(), ch.to_uppercase()

Return iterators that produce the characters of the lower- and uppercase
equivalents of ch, according to the Unicode Default Case Conversion
algorithms:

let mut upper = 's'.to_uppercase();

assert_eq!(upper.next(), Some('S'));

assert_eq!(upper.next(), None);

These methods return an iterator instead of a single character because
case conversion in Unicode isn’t always a one-to-one process:

// The uppercase form of the German letter "sharp S" is "SS":

let mut upper = 'ß'.to_uppercase();

assert_eq!(upper.next(), Some('S'));

assert_eq!(upper.next(), Some('S'));

assert_eq!(upper.next(), None);

// Unicode says to lowercase Turkish dotted capital 'İ' to 'i'

// followed by `'\u{307}'`, COMBINING DOT ABOVE, so that a

// subsequent conversion back to uppercase preserves the dot.

let ch = 'İ'; // `'\u{130}'`

let mut lower = ch.to_lowercase();

assert_eq!(lower.next(), Some('i'));

assert_eq!(lower.next(), Some('\u{307}'));

assert_eq!(lower.next(), None);

As a convenience, these iterators implement the std::fmt::Display trait, so
you can pass them directly to a println! or write! macro.

Conversions to and from Integers
Rust’s as operator will convert a char to any integer type, silently masking off
any upper bits:

assert_eq!('B' as u32, 66);
assert_eq!('饂' as u8, 66); // upper bits truncated
assert_eq!('二' as i8, -116); // same

The as operator will convert any u8 value to a char, and char implements
From<u8> as well, but wider integer types can represent invalid code points,
so for those you must use std::char::from_u32, which returns Option<char>:

assert_eq!(char::from(66), 'B');
assert_eq!(std::char::from_u32(0x9942), Some('饂'));
assert_eq!(std::char::from_u32(0xd800), None); // reserved for UTF-16

String and str
Rust’s String and str types are guaranteed to hold only well-formed UTF-8.
The library ensures this by restricting the ways you can create String and str
values and the operations you can perform on them, such that the values are
well-formed when introduced and remain so as you work with them. All their
methods protect this guarantee: no safe operation on them can introduce ill-
formed UTF-8. This simplifies code that works with the text.

Rust places text-handling methods on either str or String depending on
whether the method needs a resizable buffer or is content just to use the text
in place. Since String dereferences to &str, every method defined on str is
directly available on String as well. This section presents methods from both
types, grouped by rough function.

These methods index text by byte offsets and measure its length in bytes,
rather than characters. In practice, given the nature of Unicode, indexing by
character is not as useful as it may seem, and byte offsets are faster and
simpler. If you try to use a byte offset that lands in the midst of some
character’s UTF-8 encoding, the method panics, so you can’t introduce ill-
formed UTF-8 this way.

A String is implemented as a wrapper around a Vec<u8> that ensures the
vector’s contents are always well-formed UTF-8. Rust will never change
String to use a more complicated representation, so you can assume that
String shares Vec’s performance characteristics.

In these explanations, the variables have the types given in Table 17-3.

Table 17-3. Types of variables used in explanations

Variable Presumed type

string String

slice &str or something that dereferences to one, like String or Rc<String>

ch char

n usize, a length

i, j usize, a byte offset

range A range of usize byte offsets, either fully bounded like i..j, or partly bounded
like i.., ..j, or ..

pattern Any pattern type: char, String, &str, &[char], or FnMut(char) -> bool

We describe pattern types in “Patterns for Searching Text”.

Creating String Values
There are a few common ways to create String values:

String::new()

Returns a fresh, empty string. This has no heap-allocated buffer, but will

allocate one as needed.

String::with_capacity(n)

Returns a fresh, empty string with a buffer pre-allocated to hold at least n

bytes. If you know the length of the string you’re building in advance,

this constructor lets you get the buffer sized correctly from the start,

instead of resizing the buffer as you build the string. The string will still

grow its buffer as needed if its length exceeds n bytes. Like vectors,

strings have capacity, reserve, and shrink_to_fit methods, but usually the

default allocation logic is fine.

str_slice.to_string()

Allocates a fresh String whose contents are a copy of str_slice. We’ve

been using expressions like "literal text".to_string() throughout the book

to make Strings from string literals.

iter.collect()

Constructs a string by concatenating an iterator’s items, which can be
char, &str, or String values. For example, to remove all spaces from a
string, you can write:

let spacey = "man hat tan";

let spaceless: String =

 spacey.chars().filter(|c| !c.is_whitespace()).collect();

assert_eq!(spaceless, "manhattan");

Using collect this way takes advantage of String’s implementation of the
std::iter::FromIterator trait.

slice.to_owned()

Returns a copy of slice as a freshly allocated String. The str type cannot

implement Clone: the trait would require clone on a &str to return a str

value, but str is unsized. However, &str does implement ToOwned, which

lets the implementer specify its owned equivalent.

Simple Inspection
These methods get basic information from string slices:

slice.len()

The length of slice, in bytes.

slice.is_empty()

True if slice.len() == 0.

slice[range]

Returns a slice borrowing the given portion of slice. Partially bounded
and unbounded ranges are OK; for example:

let full = "bookkeeping";

assert_eq!(&full[..4], "book");

assert_eq!(&full[5..], "eeping");

assert_eq!(&full[2..4], "ok");

assert_eq!(full[..].len(), 11);

assert_eq!(full[5..].contains("boo"), false);

Note that you cannot index a string slice with a single position, like
slice[i]. Fetching a single character at a given byte offset is a bit clumsy:
you must produce a chars iterator over the slice, and ask it to parse one
character’s UTF-8:

let parenthesized = "Rust (饂)";

assert_eq!(parenthesized[6..].chars().next(), Some('饂'));

However, you should rarely need to do this. Rust has much nicer ways to

iterate over slices, which we describe in “Iterating over Text”.

slice.split_at(i)

Returns a tuple of two shared slices borrowed from slice: the portion up

to byte offset i, and the portion after it. In other words, this returns

(slice[..i], slice[i..]).

slice.is_char_boundary(i)

True if the byte offset i falls between character boundaries and is thus

suitable as an offset into slice.

Naturally, slices can be compared for equality, ordered, and hashed. Ordered
comparison simply treats the string as a sequence of Unicode code points and
compares them in lexicographic order.

Appending and Inserting Text
The following methods add text to a String:

string.push(ch)

Appends the character ch to the end string.

string.push_str(slice)

Appends the full contents of slice.

string.extend(iter)

Appends the items produced by the iterator iter to the string. The iterator
can produce char, str, or String values. These are String’s
implementations of std::iter::Extend:

let mut also_spaceless = "con".to_string();

also_spaceless.extend("tri but ion".split_whitespace());

assert_eq!(also_spaceless, "contribution");

string.insert(i, ch)

Inserts the single character ch at byte offset i in string. This entails

shifting over any characters after i to make room for ch, so building up a

string this way can require time quadratic in the length of the string.

string.insert_str(i, slice)

This does the same for slice, with the same performance caveat.

String implements std::fmt::Write, meaning that the write! and writeln!
macros can append formatted text to Strings:

use std::fmt::Write;

let mut letter = String::new();
writeln!(letter, "Whose {} these are I think I know", "rutabagas")?;
writeln!(letter, "His house is in the village though;")?;
assert_eq!(letter, "Whose rutabagas these are I think I know\n\
 His house is in the village though;\n");

Since write! and writeln! are designed for writing to output streams, they
return a Result, which Rust complains if you ignore. This code uses the ?
operator to handle it, but writing to a String is actually infallible, so in this
case calling .unwrap() would be OK too.

Since String implements Add<&str> and AddAssign<&str>, you can write
code like this:

let left = "partners".to_string();
let mut right = "crime".to_string();
assert_eq!(left + " in " + &right, "partners in crime");

right += " doesn't pay";
assert_eq!(right, "crime doesn't pay");

When applied to strings, the + operator takes its left operand by value, so it
can actually reuse that String as the result of the addition. As a consequence,
if the left operand’s buffer is large enough to hold the result, no allocation is
needed.

In an unfortunate lack of symmetry, the left operand of + cannot be a &str, so
you cannot write:

let parenthetical = "(" + string + ")";

You must instead write:

let parenthetical = "(".to_string() + &string + ")";

However, this restriction does discourage building up strings from the end
backward. That approach performs poorly because the text must be

repeatedly shifted toward the end of the buffer.

Building strings from beginning to end by appending small pieces, however,
is efficient. A String behaves the way a vector does, always at least doubling
its buffer’s size when it needs more capacity. This keeps recopying overhead
proportional to the final size. Even so, using String::with_capacity to create
strings with the right buffer size to begin with avoids resizing at all and can
reduce the number of calls to the heap allocator.

Removing and Replacing Text
String has a few methods for removing text (these do not affect the string’s
capacity; use shrink_to_fit if you need to free memory):

string.clear()

Resets string to the empty string.

string.truncate(n)

Discards all characters after the byte offset n, leaving string with a length

of at most n. If string is shorter than n bytes, this has no effect.

string.pop()

Removes the last character from string, if any, and returns it as an

Option<char>.

string.remove(i)

Removes the character at byte offset i from string and returns it, shifting

any following characters toward the front. This takes time linear in the

number of following characters.

string.drain(range)

Returns an iterator over the given range of byte indices and removes the
characters once the iterator is dropped. Characters after the range are
shifted toward the front:

let mut choco = "chocolate".to_string();

assert_eq!(choco.drain(3..6).collect::<String>(), "col");

assert_eq!(choco, "choate");

If you just want to remove the range, you can just drop the iterator
immediately, without drawing any items from it:

let mut winston = "Churchill".to_string();

winston.drain(2..6);

assert_eq!(winston, "Chill");

string.replace_range(range, replacement)

Replaces the given range in string with the given replacement string slice.
The slice doesn’t have to be the same length as the range being replaced,
but unless the range being replaced goes to the end of string, that will
require moving all the bytes after the end of the range:

let mut beverage = "a piña colada".to_string();

beverage.replace_range(2..7, "kahlua"); // 'ñ' is two bytes!

assert_eq!(beverage, "a kahlua colada");

Conventions for Searching and Iterating
Rust’s standard library functions for searching text and iterating over text
follow some naming conventions to make them easier to remember:

r

Most operations process text from start to end, but operations with names
starting with r work from end to start. For example, rsplit is the end-to-
start version of split. In some cases changing direction can affect not only
the order in which values are produced but also the values themselves.
See the diagram in Figure 17-3 for an example of this.

n

Iterators with names ending in n limit themselves to a given number of
matches.

_indices

Iterators with names ending in _indices produce, together with their usual

iteration values, the byte offsets in the slice at which they appear.

The standard library doesn’t provide all combinations for every operation.
For example, many operations don’t need an n variant, as it’s easy enough to
simply end the iteration early.

Patterns for Searching Text
When a standard library function needs to search, match, split, or trim text, it
accepts several different types to represent what to look for:

let haystack = "One fine day, in the middle of the night";

assert_eq!(haystack.find(','), Some(12));
assert_eq!(haystack.find("night"), Some(35));
assert_eq!(haystack.find(char::is_whitespace), Some(3));

These types are called patterns, and most operations support them:

assert_eq!("## Elephants"
 .trim_start_matches(|ch: char| ch == '#' || ch.is_whitespace()),
 "Elephants");

The standard library supports four main kinds of patterns:

A char as a pattern matches that character.

A String or &str or &&str as a pattern matches a substring equal to
the pattern.

A FnMut(char) -> bool closure as a pattern matches a single
character for which the closure returns true.

A &[char] as a pattern (not a &str, but a slice of char values)
matches any single character that appears in the list. Note that if you
write out the list as an array literal, you may need to call as_ref() to
get the type right:

let code = "\t function noodle() { ";

assert_eq!(code.trim_start_matches([' ', '\t'].as_ref()),

 "function noodle() { ");

// Shorter equivalent: &[' ', '\t'][..]

Otherwise, Rust will be confused by the fixed-size array type &
[char; 2], which is unfortunately not a pattern type.

In the library’s own code, a pattern is any type that implements the
std::str::Pattern trait. The details of Pattern are not yet stable, so you can’t
implement it for your own types in stable Rust, but the door is open to permit
regular expressions and other sophisticated patterns in the future. Rust does
guarantee that the pattern types supported now will continue to work in the
future.

Searching and Replacing
Rust has a few methods for searching for patterns in slices and possibly
replacing them with new text:

slice.contains(pattern)

Returns true if slice contains a match for pattern.

slice.starts_with(pattern), slice.ends_with(pattern)

Return true if slice’s initial or final text matches pattern:

assert!("2017".starts_with(char::is_numeric));

slice.find(pattern), slice.rfind(pattern)

Return Some(i) if slice contains a match for pattern, where i is the byte
offset at which the pattern appears. The find method returns the first
match, rfind the last:

let quip = "We also know there are known unknowns";

assert_eq!(quip.find("know"), Some(8));

assert_eq!(quip.rfind("know"), Some(31));

assert_eq!(quip.find("ya know"), None);

assert_eq!(quip.rfind(char::is_uppercase), Some(0));

slice.replace(pattern, replacement)

Returns a new String formed by eagerly replacing all matches for pattern
with replacement:

assert_eq!("The only thing we have to fear is fear itself"

 .replace("fear", "spin"),

 "The only thing we have to spin is spin itself");

assert_eq!("`Borrow` and `BorrowMut`"

 .replace(|ch:char| !ch.is_alphanumeric(), ""),

 "BorrowandBorrowMut");

Because the replacement is done eagerly, .replace()’s behavior on
overlapping matches can be surprising. Here, there are four instances of
the pattern, "aba", but the second and fourth no longer match after the
first and third are replaced:

assert_eq!("cabababababbage"

 .replace("aba", "***"),

 "c***b***babbage")

slice.replacen(pattern, replacement, n)

This does the same, but replaces at most the first n matches.

Iterating over Text
The standard library provides several ways to iterate over a slice’s text.
Figure 17-3 shows examples of some.

You can think of the split and match families as being complements of each
other: splits are the ranges between matches.

Figure 17-3. Some ways to iterate over a slice

Most of these methods return iterators that are reversible (that is, they
implement DoubleEndedIterator): calling their .rev() adapter method gives
you an iterator that produces the same items, but in reverse order.

slice.chars()

Returns an iterator over slice’s characters.

slice.char_indices()

Returns an iterator over slice’s characters and their byte offsets:

assert_eq!("élan".char_indices().collect::<Vec<_>>(),

 vec![(0, 'é'), // has a two-byte UTF-8 encoding

 (2, 'l'),

 (3, 'a'),

 (4, 'n')]);

Note that this is not equivalent to .chars().enumerate(), since it supplies
each character’s byte offset within the slice, instead of just numbering the
characters.

slice.bytes()

Returns an iterator over the individual bytes of slice, exposing the UTF-8
encoding:

assert_eq!("élan".bytes().collect::<Vec<_>>(),

 vec![195, 169, b'l', b'a', b'n']);

slice.lines()

Returns an iterator over the lines of slice. Lines are terminated by "\n" or

"\r\n". Each item produced is a &str borrowing from slice. The items do

not include the lines’ terminating characters.

slice.split(pattern)

Returns an iterator over the portions of slice separated by matches of
pattern. This produces empty strings between immediately adjacent
matches, as well as for matches at the beginning and end of slice.

The returned iterator is not reversible if pattern is a &str. Such patterns
can produce different sequences of matches depending on which direction
you scan from, which reversible iterators are forbidden to do. Instead, you

may be able to use the rsplit method, described next.

slice.rsplit(pattern)

This method is the same, but scans slice from end to start, producing

matches in that order.

slice.split_terminator(pattern), slice.rsplit_terminator(pattern)

These are similar, except that the pattern is treated as a terminator, not a
separator: if pattern matches at the very end of slice, the iterators do not
produce an empty slice representing the empty string between that match
and the end of the slice, as split and rsplit do. For example:

// The ':' characters are separators here. Note the final "".

assert_eq!("jimb:1000:Jim Blandy:".split(':').collect::<Vec<_>>(),

 vec!["jimb", "1000", "Jim Blandy", ""]);

// The '\n' characters are terminators here.

assert_eq!("127.0.0.1 localhost\n\

 127.0.0.1 www.reddit.com\n"

 .split_terminator('\n').collect::<Vec<_>>(),

 vec!["127.0.0.1 localhost",

 "127.0.0.1 www.reddit.com"]);

 // Note, no final ""!

slice.splitn(n, pattern), slice.rsplitn(n, pattern)

These are like split and rsplit, except that they split the string into at most

n slices, at the first or last n-1 matches for pattern.

slice.split_whitespace(), slice.split_ascii_whitespace()

Return an iterator over the whitespace-separated portions of slice. A run
of multiple whitespace characters is considered a single separator.
Trailing whitespace is ignored.

The split_whitespace method uses the Unicode definition of whitespace,
as implemented by the is_whitespace method on char. The split_
ascii_whitespace method uses char::is_ascii_whitespace instead, which
recognizes only ASCII whitespace characters.

let poem = "This is just to say\n\

 I have eaten\n\

 the plums\n\

 again\n";

assert_eq!(poem.split_whitespace().collect::<Vec<_>>(),

 vec!["This", "is", "just", "to", "say",

 "I", "have", "eaten", "the", "plums",

 "again"]);

slice.matches(pattern)

Returns an iterator over the matches for pattern in slice.

slice.rmatches(pattern) is the same, but iterates from end to start.

slice.match_indices(pattern), slice.rmatch_indices(pattern)

These are similar, except that the items produced are (offset, match) pairs,

where offset is the byte offset at which the match begins, and match is the

matching slice.

Trimming
To trim a string is to remove text, usually whitespace, from the beginning or
end of the string. It’s often useful in cleaning up input read from a file where
the user might have indented text for legibility or accidentally left trailing
whitespace on a line.

slice.trim()

Returns a subslice of slice that omits any leading and trailing whitespace.
slice.trim_start() omits only leading whitespace, slice.trim_end() only
trailing whitespace:

assert_eq!("\t*.rs ".trim(), "*.rs");

assert_eq!("\t*.rs ".trim_start(), "*.rs ");

assert_eq!("\t*.rs ".trim_end(), "\t*.rs");

slice.trim_matches(pattern)

Returns a subslice of slice that omits all matches of pattern from the
beginning and end. The trim_start_matches and trim_end_matches
methods do the same for only leading or trailing matches:

assert_eq!("001990".trim_start_matches('0'), "1990");

slice.strip_prefix(pattern), slice.strip_suffix(pattern)

If slice begins with pattern, strip_prefix returns Some holding the slice
with the matching text removed. Otherwise, it returns None. The
strip_suffix method is similar, but checks for a match at the end of the
string.

These are like trim_start_matches and trim_end_matches, except that they
return an Option, and only one copy of pattern is removed:

let slice = "banana";

assert_eq!(slice.strip_suffix("na"),

 Some("bana"))

Case Conversion for Strings
The methods slice.to_uppercase() and slice.to_lowercase() return a freshly
allocated string holding the text of slice converted to uppercase or lowercase.
The result may not be the same length as slice; see “Case Conversion for
Characters” for details.

Parsing Other Types from Strings
Rust provides standard traits for both parsing values from strings and
producing textual representations of values.

If a type implements the std::str::FromStr trait, then it provides a standard
way to parse a value from a string slice:

pub trait FromStr: Sized {
 type Err;
 fn from_str(s: &str) -> Result<Self, Self::Err>;
}

All the usual machine types implement FromStr:

use std::str::FromStr;

assert_eq!(usize::from_str("3628800"), Ok(3628800));
assert_eq!(f64::from_str("128.5625"), Ok(128.5625));
assert_eq!(bool::from_str("true"), Ok(true));

assert!(f64::from_str("not a float at all").is_err());
assert!(bool::from_str("TRUE").is_err());

The char type also implements FromStr, for strings with just one character:

assert_eq!(char::from_str("é"), Ok('é'));
assert!(char::from_str("abcdefg").is_err());

The std::net::IpAddr type, an enum holding either an IPv4 or an IPv6 internet
address, implements FromStr too:

use std::net::IpAddr;

let address = IpAddr::from_str("fe80::0000:3ea9:f4ff:fe34:7a50")?;
assert_eq!(address,
 IpAddr::from([0xfe80, 0, 0, 0, 0x3ea9, 0xf4ff, 0xfe34, 0x7a50]));

String slices have a parse method that parses the slice into whatever type you

like, assuming it implements FromStr. As with Iterator::collect, you will
sometimes need to spell out which type you want, so parse is not always
much more legible than calling from_str directly:

let address = "fe80::0000:3ea9:f4ff:fe34:7a50".parse::<IpAddr>()?;

Converting Other Types to Strings
There are three main ways to convert nontextual values to strings:

Types that have a natural human-readable printed form can
implement the std::fmt::Display trait, which lets you use the {}
format specifier in the format! macro:

assert_eq!(format!("{}, wow", "doge"), "doge, wow");

assert_eq!(format!("{}", true), "true");

assert_eq!(format!("({:.3}, {:.3})", 0.5, f64::sqrt(3.0)/2.0),

 "(0.500, 0.866)");

// Using `address` from above.

let formatted_addr: String = format!("{}", address);

assert_eq!(formatted_addr, "fe80::3ea9:f4ff:fe34:7a50");

All Rust’s machine numeric types implement Display, as do
characters, strings, and slices. The smart pointer types Box<T>,
Rc<T>, and Arc<T> implement Display if T itself does: their
displayed form is simply that of their referent. Containers like Vec
and HashMap do not implement Display, as there’s no single natural
human-readable form for those types.

If a type implements Display, the standard library automatically
implements the std::str::ToString trait for it, whose sole method
to_string can be more convenient when you don’t need the flexibility
of format!:

// Continued from above.

assert_eq!(address.to_string(), "fe80::3ea9:f4ff:fe34:7a50");

The ToString trait predates the introduction of Display and is less
flexible. For your own types, you should generally implement

Display instead of ToString.

Every public type in the standard library implements
std::fmt::Debug, which takes a value and formats it as a string in a
way helpful to programmers. The easiest way to use Debug to
produce a string is via the format! macro’s {:?} format specifier:

// Continued from above.

let addresses = vec![address,

 IpAddr::from_str("192.168.0.1")?];

assert_eq!(format!("{:?}", addresses),

 "[fe80::3ea9:f4ff:fe34:7a50, 192.168.0.1]");

This takes advantage of a blanket implementation of Debug for
Vec<T>, for any T that itself implements Debug. All of Rust’s
collection types have such implementations.

You should implement Debug for your own types, too. Usually it’s
best to let Rust derive an implementation, as we did for the Complex
type in Chapter 12:

#[derive(Copy, Clone, Debug)]

struct Complex { re: f64, im: f64 }

The Display and Debug formatting traits are just two among several that the
format! macro and its relatives use to format values as text. We’ll cover the
others, and explain how to implement them all, in “Formatting Values”.

Borrowing as Other Text-Like Types
You can borrow a slice’s contents in several different ways:

Slices and Strings implement AsRef<str>, AsRef<[u8]>,
AsRef<Path>, and AsRef<OsStr>. Many standard library functions
use these traits as bounds on their parameter types, so you can pass
slices and strings to them directly, even when what they really want
is some other type. See “AsRef and AsMut” for a more detailed
explanation.

Slices and strings also implement the std::borrow::Borrow<str> trait.
HashMap and BTreeMap use Borrow to make Strings work nicely as
keys in a table. See “Borrow and BorrowMut” for details.

Accessing Text as UTF-8
There are two main ways to get at the bytes representing text, depending on
whether you want to take ownership of the bytes or just borrow them:

slice.as_bytes()

Borrows slice’s bytes as a &[u8]. Since this is not a mutable reference,

slice can assume its bytes will remain well-formed UTF-8.

string.into_bytes()

Takes ownership of string and returns a Vec<u8> of the string’s bytes by

value. This is a cheap conversion, as it simply hands over the Vec<u8>

that the string had been using as its buffer. Since string no longer exists,

there’s no need for the bytes to continue to be well-formed UTF-8, and

the caller is free to modify the Vec<u8> as it pleases.

Producing Text from UTF-8 Data
If you have a block of bytes that you believe contains UTF-8 data, you have a
few options for converting them into Strings or slices, depending on how you
want to handle errors:

str::from_utf8(byte_slice)

Takes a &[u8] slice of bytes and returns a Result: either Ok(&str) if

byte_slice contains well-formed UTF-8 or an error otherwise.

String::from_utf8(vec)

Tries to construct a string from a Vec<u8> passed by value. If vec holds
well-formed UTF-8, from_utf8 returns Ok(string), where string has taken
ownership of vec for use as its buffer. No heap allocation or copying of
the text takes place.

If the bytes are not valid UTF-8, this returns Err(e), where e is a
FromUtf8Error error value. The call e.into_bytes() gives you back the
original vector vec, so it is not lost when the conversion fails:

let good_utf8: Vec<u8> = vec![0xe9, 0x8c, 0x86];

assert_eq!(String::from_utf8(good_utf8).ok(), Some("錆".to_string()));

let bad_utf8: Vec<u8> = vec![0x9f, 0xf0, 0xa6, 0x80];

let result = String::from_utf8(bad_utf8);

assert!(result.is_err());

// Since String::from_utf8 failed, it didn't consume the original

// vector, and the error value hands it back to us unharmed.

assert_eq!(result.unwrap_err().into_bytes(),

 vec![0x9f, 0xf0, 0xa6, 0x80]);

String::from_utf8_lossy(byte_slice)

Tries to construct a String or &str from a &[u8] shared slice of bytes.

This conversion always succeeds, replacing any ill-formed UTF-8 with

Unicode replacement characters. The return value is a Cow<str> that

either borrows a &str directly from byte_slice if it contains well-formed

UTF-8 or owns a freshly allocated String with replacement characters

substituted for the ill-formed bytes. Hence, when byte_slice is well-

formed, no heap allocation or copying takes place. We discuss Cow<str>

in more detail in “Putting Off Allocation”.

String::from_utf8_unchecked(vec)

If you know for a fact that your Vec<u8> contains well-formed UTF-8,

then you can call this unsafe function. This simply wraps vec up as a

String and returns it, without examining the bytes at all. You are

responsible for making sure you haven’t introduced ill-formed UTF-8

into the system, which is why this function is marked unsafe.

str::from_utf8_unchecked(byte_slice)

Similarly, this takes a &[u8] and returns it as a &str, without checking to

see if it holds well-formed UTF-8. As with String::from_utf8_unchecked,

you are responsible for making sure this is safe.

Putting Off Allocation
Suppose you want your program to greet the user. On Unix, you could write:

fn get_name() -> String {
 std::env::var("USER") // Windows uses "USERNAME"
 .unwrap_or("whoever you are".to_string())
}

println!("Greetings, {}!", get_name());

For Unix users, this greets them by username. For Windows users and the
tragically unnamed, it provides alternative stock text.

The std::env::var function returns a String—and has good reasons to do so
that we won’t go into here. But that means the alternative stock text must also
be returned as a String. This is disappointing: when get_name returns a static
string, no allocation should be necessary at all.

The nub of the problem is that sometimes the return value of get_name
should be an owned String, sometimes it should be a &'static str, and we
can’t know which one it will be until we run the program. This dynamic
character is the hint to consider using std::borrow::Cow, the clone-on-write
type that can hold either owned or borrowed data.

As explained in “Borrow and ToOwned at Work: The Humble Cow”,
Cow<'a, T> is an enum with two variants: Owned and Borrowed. Borrowed
holds a reference &'a T, and Owned holds the owning version of &T: String
for &str, Vec<i32> for &[i32], and so on. Whether Owned or Borrowed, a
Cow<'a, T> can always produce a &T for you to use. In fact, Cow<'a, T>
dereferences to &T, behaving as a kind of smart pointer.

Changing get_name to return a Cow results in the following:

use std::borrow::Cow;

fn get_name() -> Cow<'static, str> {
 std::env::var("USER")
 .map(|v| Cow::Owned(v))

 .unwrap_or(Cow::Borrowed("whoever you are"))
}

If this succeeds in reading the "USER" environment variable, the map returns
the resulting String as a Cow::Owned. If it fails, the unwrap_or returns its
static &str as a Cow::Borrowed. The caller can remain unchanged:

println!("Greetings, {}!", get_name());

As long as T implements the std::fmt::Display trait, displaying a Cow<'a, T>
produces the same results as displaying a T.

Cow is also useful when you may or may not need to modify some text
you’ve borrowed. When no changes are necessary, you can continue to
borrow it. But the namesake clone-on-write behavior of Cow can give you an
owned, mutable copy of the value on demand. Cow’s to_mut method makes
sure the Cow is Cow::Owned, applying the value’s ToOwned implementation
if necessary, and then returns a mutable reference to the value.

So if you find that some of your users, but not all, have titles by which they
would prefer to be addressed, you can say:

fn get_title() -> Option<&'static str> { ... }

let mut name = get_name();
if let Some(title) = get_title() {
 name.to_mut().push_str(", ");
 name.to_mut().push_str(title);
}

println!("Greetings, {}!", name);

This might produce output like the following:

$ cargo run
Greetings, jimb, Esq.!
$

What’s nice here is that, if get_name() returns a static string and get_title

returns None, the Cow simply carries the static string all the way through to
the println!. You’ve managed to put off allocation unless it’s really necessary,
while still writing straightforward code.

Since Cow is frequently used for strings, the standard library has some
special support for Cow<'a, str>. It provides From and Into conversions from
both String and &str, so you can write get_name more tersely:

fn get_name() -> Cow<'static, str> {
 std::env::var("USER")
 .map(|v| v.into())
 .unwrap_or("whoever you are".into())
}

Cow<'a, str> also implements std::ops::Add and std::ops::AddAssign, so to
add the title to the name, you could write:

if let Some(title) = get_title() {
 name += ", ";
 name += title;
}

Or, since a String can be a write! macro’s destination:

use std::fmt::Write;

if let Some(title) = get_title() {
 write!(name.to_mut(), ", {}", title).unwrap();
}

As before, no allocation occurs until you try to modify the Cow.

Keep in mind that not every Cow<..., str> must be 'static: you can use Cow to
borrow previously computed text until the moment a copy becomes
necessary.

Strings as Generic Collections
String implements both std::default::Default and std::iter::Extend: default
returns an empty string, and extend can append characters, string slices,
Cow<..., str>s, or strings to the end of a string. This is the same combination
of traits implemented by Rust’s other collection types like Vec and HashMap
for generic construction patterns such as collect and partition.

The &str type also implements Default, returning an empty slice. This is
handy in some corner cases; for example, it lets you derive Default for
structures containing string slices.

Formatting Values
Throughout the book, we’ve been using text formatting macros like println!:

println!("{:.3}µs: relocated {} at {:#x} to {:#x}, {} bytes",
 0.84391, "object",
 140737488346304_usize, 6299664_usize, 64);

That call produces the following output:

0.844µs: relocated object at 0x7fffffffdcc0 to 0x602010, 64 bytes

The string literal serves as a template for the output: each {...} in the template
gets replaced by the formatted form of one of the following arguments. The
template string must be a constant so that Rust can check it against the types
of the arguments at compile time. Each argument must be used; Rust reports
a compile-time error otherwise.

Several standard library features share this little language for formatting
strings:

The format! macro uses it to build Strings.

The println! and print! macros write formatted text to the standard
output stream.

The writeln! and write! macros write it to a designated output
stream.

The panic! macro uses it to build an (ideally informative) expression
of terminal dismay.

Rust’s formatting facilities are designed to be open-ended. You can extend
these macros to support your own types by implementing the std::fmt
module’s formatting traits. And you can use the format_args! macro and the
std::fmt::Arguments type to make your own functions and macros support the
formatting language.

Formatting macros always borrow shared references to their arguments; they
never take ownership of them or mutate them.

The template’s {...} forms are called format parameters and have the form
{which:how}. Both parts are optional; {} is frequently used.

The which value selects which argument following the template should take
the parameter’s place. You can select arguments by index or by name.
Parameters with no which value are simply paired with arguments from left to
right.

The how value says how the argument should be formatted: how much
padding, to which precision, in which numeric radix, and so on. If how is
present, the colon before it is required. Table 17-4 presents some examples.

Table 17-4. Formatted string examples

Template string Argument list Result

"number of {}: {}" "elephants", 19 "number of elephants: 19"

"from {1} to {0}" "the grave", "the cradle" "from the cradle to the grave"

"v = {:?}" vec![0,1,2,5,12,29] "v = [0, 1, 2, 5, 12, 29]"

"name = {:?}" "Nemo" "name = \"Nemo\""

"{:8.2} km/s" 11.186 " 11.19 km/s"

"{:20} {:02x} {:02x}" "adc #42", 105, 42 "adc #42 69 2a"

"{1:02x} {2:02x} {0}" "adc #42", 105, 42 "69 2a adc #42"

"{lsb:02x} {msb:02x} {insn}" insn="adc #42", lsb=105, msb=42 "69 2a adc #42"

"{:02?}" [110, 11, 9] "[110, 11, 09]"

"{:02x?}" [110, 11, 9] "[6e, 0b, 09]"

If you want to include { or } characters in your output, double the characters
in the template:

assert_eq!(format!("{{a, c}} ⊂ {{a, b, c}}"),
 "{a, c} ⊂ {a, b, c}");

Formatting Text Values
When formatting a textual type like &str or String (char is treated like a
single-character string), the how value of a parameter has several parts, all
optional:

A text length limit. Rust truncates your argument if it is longer than
this. If you specify no limit, Rust uses the full text.

A minimum field width. After any truncation, if your argument is
shorter than this, Rust pads it on the right (by default) with spaces
(by default) to make a field of this width. If omitted, Rust doesn’t
pad your argument.

An alignment. If your argument needs to be padded to meet the
minimum field width, this says where your text should be placed
within the field. <, ^, and > put your text at the start, middle, and
end, respectively.

A padding character to use in this padding process. If omitted, Rust
uses spaces. If you specify the padding character, you must also
specify the alignment.

Table 17-5 illustrates some examples showing how to write things out and
their effects. All are using the same eight-character argument, "bookends".

Table 17-5. Format string directives for text

Features in use Template string Result

Default "{}" "bookends"

Minimum field width "{:4}" "bookends"

 "{:12}" "bookends "

Text length limit "{:.4}" "book"

 "{:.12}" "bookends"

Field width, length limit "{:12.20}" "bookends "

 "{:4.20}" "bookends"

 "{:4.6}" "booken"

 "{:6.4}" "book "

Aligned left, width "{:<12}" "bookends "

Centered, width "{:^12}" " bookends "

Aligned right, width "{:>12}" " bookends"

Pad with '=', centered, width "{:=^12}" "==bookends=="

Pad '*', aligned right, width, limit "{:*>12.4}" "********book"

Rust’s formatter has a naïve understanding of width: it assumes each
character occupies one column, with no regard for combining characters,
half-width katakana, zero-width spaces, or the other messy realities of
Unicode. For example:

assert_eq!(format!("{:4}", "th\u{e9}"), "th\u{e9} ");
assert_eq!(format!("{:4}", "the\u{301}"), "the\u{301}");

Although Unicode says these strings are both equivalent to "thé", Rust’s
formatter doesn’t know that characters like '\u{301}', COMBINING ACUTE
ACCENT, need special treatment. It pads the first string correctly, but
assumes the second is four columns wide and adds no padding. Although it’s
easy to see how Rust could improve in this specific case, true multilingual
text formatting for all of Unicode’s scripts is a monumental task, best handled
by relying on your platform’s user interface toolkits, or perhaps by generating
HTML and CSS and making a web browser sort it all out. There is a popular
crate, unicode-width, that handles some aspects of this.

Along with &str and String, you can also pass formatting macros smart
pointer types with textual referents, like Rc<String> or Cow<'a, str>, without
ceremony.

Since filename paths are not necessarily well-formed UTF-8, std::path::Path
isn’t quite a textual type; you can’t pass a std::path::Path directly to a
formatting macro. However, a Path’s display method returns a value you can
format that sorts things out in a platform-appropriate way:

println!("processing file: {}", path.display());

Formatting Numbers
When the formatting argument has a numeric type like usize or f64, the
parameter’s how value has the following parts, all optional:

A padding and alignment, which work as they do with textual types.

A + character, requesting that the number’s sign always be shown,
even when the argument is positive.

A # character, requesting an explicit radix prefix like 0x or 0b. See
the “notation” bullet point that concludes this list.

A 0 character, requesting that the minimum field width be satisfied
by including leading zeros in the number, instead of the usual
padding approach.

A minimum field width. If the formatted number is not at least this
wide, Rust pads it on the left (by default) with spaces (by default) to
make a field of the given width.

A precision for floating-point arguments, indicating how many digits
Rust should include after the decimal point. Rust rounds or zero-
extends as necessary to produce exactly this many fractional digits.
If the precision is omitted, Rust tries to accurately represent the
value using as few digits as possible. For arguments of integer type,
the precision is ignored.

A notation. For integer types, this can be b for binary, o for octal, or
x or X for hexadecimal with lower- or uppercase letters. If you
included the # character, these include an explicit Rust-style radix
prefix, 0b, 0o, 0x, or 0X. For floating-point types, a radix of e or E
requests scientific notation, with a normalized coefficient, using e or
E for the exponent. If you don’t specify any notation, Rust formats
numbers in decimal.

Table 17-6 shows some examples of formatting the i32 value 1234.

Table 17-6. Format string directives for integers

Features in use Template string Result

Default "{}" "1234"

Forced sign "{:+}" "+1234"

Minimum field width "{:12}" " 1234"

 "{:2}" "1234"

Sign, width "{:+12}" " +1234"

Leading zeros, width "{:012}" "000000001234"

Sign, zeros, width "{:+012}" "+00000001234"

Aligned left, width "{:<12}" "1234 "

Centered, width "{:^12}" " 1234 "

Aligned right, width "{:>12}" " 1234"

Aligned left, sign, width "{:<+12}" "+1234 "

Centered, sign, width "{:^+12}" " +1234 "

Aligned right, sign, width "{:>+12}" " +1234"

Padded with '=', centered, width "{:=^12}" "====1234===="

Binary notation "{:b}" "10011010010"

Width, octal notation "{:12o}" " 2322"

Sign, width, hexadecimal notation "{:+12x}" " +4d2"

Sign, width, hex with capital digits "{:+12X}" " +4D2"

Sign, explicit radix prefix, width, hex "{:+#12x}" " +0x4d2"

Sign, radix, zeros, width, hex "{:+#012x}" "+0x0000004d2"

 "{:+#06x}" "+0x4d2"

As the last two examples show, the minimum field width applies to the entire
number, sign, radix prefix, and all.

Negative numbers always include their sign. The results are like those shown
in the “forced sign” examples.

When you request leading zeros, alignment and padding characters are
simply ignored, since the zeros expand the number to fill the entire field.

Using the argument 1234.5678, we can show effects specific to floating-point

types (Table 17-7).

Table 17-7. Format string directives for floating-point
numbers

Features in use Template string Result

Default "{}" "1234.5678"

Precision "{:.2}" "1234.57"

 "{:.6}" "1234.567800"

Minimum field width "{:12}" " 1234.5678"

Minimum, precision "{:12.2}" " 1234.57"

 "{:12.6}" " 1234.567800"

Leading zeros, minimum, precision "{:012.6}" "01234.567800"

Scientific "{:e}" "1.2345678e3"

Scientific, precision "{:.3e}" "1.235e3"

Scientific, minimum, precision "{:12.3e}" " 1.235e3"

 "{:12.3E}" " 1.235E3"

Formatting Other Types
Beyond strings and numbers, you can format several other standard library
types:

Error types can all be formatted directly, making it easy to include
them in error messages. Every error type should implement the
std::error::Error trait, which extends the default formatting trait
std::fmt::Display. As a consequence, any type that implements Error
is ready to format.

You can format internet protocol address types like std::net::IpAddr
and std::net::SocketAddr.

The Boolean true and false values can be formatted, although these
are usually not the best strings to present directly to end users.

You should use the same sorts of format parameters that you would for
strings. Length limit, field width, and alignment controls work as expected.

Formatting Values for Debugging
To help with debugging and logging, the {:?} parameter formats any public
type in the Rust standard library in a way meant to be helpful to
programmers. You can use this to inspect vectors, slices, tuples, hash tables,
threads, and hundreds of other types.

For example, you can write the following:

use std::collections::HashMap;
let mut map = HashMap::new();
map.insert("Portland", (45.5237606,-122.6819273));
map.insert("Taipei", (25.0375167, 121.5637));
println!("{:?}", map);

This prints:

{"Taipei": (25.0375167, 121.5637), "Portland": (45.5237606, -122.6819273)}

The HashMap and (f64, f64) types already know how to format themselves,
with no effort required on your part.

If you include the # character in the format parameter, Rust will pretty-print
the value. Changing this code to say println!("{:#?}", map) leads to this
output:

{
 "Taipei": (
 25.0375167,
 121.5637
),
 "Portland": (
 45.5237606,
 -122.6819273
)
}

These exact forms aren’t guaranteed and do sometimes change from one Rust
release to the next.

Debugging formatting usually prints numbers in decimal, but you can put an
x or X before the question mark to request hexadecimal instead. Leading zero
and field width syntax is also respected. For example, you can write:

println!("ordinary: {:02?}", [9, 15, 240]);
println!("hex: {:02x?}", [9, 15, 240]);

This prints:

ordinary: [09, 15, 240]
hex: [09, 0f, f0]

As we’ve mentioned, you can use the #[derive(Debug)] syntax to make your
own types work with {:?}:

#[derive(Copy, Clone, Debug)]
struct Complex { re: f64, im: f64 }

With this definition in place, we can use a {:?} format to print Complex
values:

let third = Complex { re: -0.5, im: f64::sqrt(0.75) };
println!("{:?}", third);

This prints:

Complex { re: -0.5, im: 0.8660254037844386 }

This is fine for debugging, but it might be nice if {} could print them in a
more traditional form, like -0.5 + 0.8660254037844386i. In “Formatting
Your Own Types”, we’ll show how to do exactly that.

Formatting Pointers for Debugging
Normally, if you pass any sort of pointer to a formatting macro—a reference,
a Box, an Rc—the macro simply follows the pointer and formats its referent;
the pointer itself is not of interest. But when you’re debugging, it’s
sometimes helpful to see the pointer: an address can serve as a rough “name”
for an individual value, which can be illuminating when examining structures
with cycles or sharing.

The {:p} notation formats references, boxes, and other pointer-like types as
addresses:

use std::rc::Rc;
let original = Rc::new("mazurka".to_string());
let cloned = original.clone();
let impostor = Rc::new("mazurka".to_string());
println!("text: {}, {}, {}", original, cloned, impostor);
println!("pointers: {:p}, {:p}, {:p}", original, cloned, impostor);

This code prints:

text: mazurka, mazurka, mazurka
pointers: 0x7f99af80e000, 0x7f99af80e000, 0x7f99af80e030

Of course, the specific pointer values will vary from run to run, but even so,
comparing the addresses makes it clear that the first two are references to the
same String, whereas the third points to a distinct value.

Addresses do tend to look like hexadecimal soup, so more refined
visualizations can be worthwhile, but the {:p} style can still be an effective
quick-and-dirty solution.

Referring to Arguments by Index or Name
A format parameter can explicitly select which argument it uses. For
example:

assert_eq!(format!("{1},{0},{2}", "zeroth", "first", "second"),
 "first,zeroth,second");

You can include format parameters after a colon:

assert_eq!(format!("{2:#06x},{1:b},{0:=>10}", "first", 10, 100),
 "0x0064,1010,=====first");

You can also select arguments by name. This makes complex templates with
many parameters much more legible. For example:

assert_eq!(format!("{description:.<25}{quantity:2} @ {price:5.2}",
 price=3.25,
 quantity=3,
 description="Maple Turmeric Latte"),
 "Maple Turmeric Latte..... 3 @ 3.25");

(The named arguments here resemble keyword arguments in Python, but this
is just a special feature of the formatting macros, not part of Rust’s function
call syntax.)

You can mix indexed, named, and positional (that is, no index or name)
parameters together in a single formatting macro use. The positional
parameters are paired with arguments from left to right as if the indexed and
named parameters weren’t there:

assert_eq!(format!("{mode} {2} {} {}",
 "people", "eater", "purple", mode="flying"),
 "flying purple people eater");

Named arguments must appear at the end of the list.

Dynamic Widths and Precisions
A parameter’s minimum field width, text length limit, and numeric precision
need not always be fixed values; you can choose them at run time.

We’ve been looking at cases like this expression, which gives you the string
content right-justified in a field 20 characters wide:

format!("{:>20}", content)

But if you’d like to choose the field width at run time, you can write:

format!("{:>1$}", content, get_width())

Writing 1$ for the minimum field width tells format! to use the value of the
second argument as the width. The cited argument must be a usize. You can
also refer to the argument by name:

format!("{:>width$}", content, width=get_width())

The same approach works for the text length limit as well:

format!("{:>width$.limit$}", content,
 width=get_width(), limit=get_limit())

In place of the text length limit or floating-point precision, you can also write
*, which says to take the next positional argument as the precision. The
following clips content to at most get_limit() characters:

format!("{:.*}", get_limit(), content)

The argument taken as the precision must be a usize. There is no
corresponding syntax for the field width.

Formatting Your Own Types
The formatting macros use a set of traits defined in the std::fmt module to
convert values to text. You can make Rust’s formatting macros format your
own types by implementing one or more of these traits yourself.

The notation of a format parameter indicates which trait its argument’s type
must implement, as illustrated in Table 17-8.

Table 17-8. Format string directive notation

Notation Example Trait Purpose

none {} std::fmt::Display Text, numbers, errors: the catchall
trait

b {bits:#b} std::fmt::Binary Numbers in binary

o {:#5o} std::fmt::Octal Numbers in octal

x {:4x} std::fmt::LowerHex Numbers in hexadecimal, lowercase
digits

X {:016X} std::fmt::UpperHex Numbers in hexadecimal, uppercase
digits

e {:.3e} std::fmt::LowerExp Floating-point numbers in scientific
notation

E {:.3E} std::fmt::UpperExp Same, uppercase E

? {:#?} std::fmt::Debug Debugging view, for developers

p {:p} std::fmt::Pointer Pointer as address, for developers

When you put the #[derive(Debug)] attribute on a type definition so that you
can use the {:?} format parameter, you are simply asking Rust to implement
the std::fmt::Debug trait for you.

The formatting traits all have the same structure, differing only in their
names. We’ll use std::fmt::Display as a representative:

trait Display {
 fn fmt(&self, dest: &mut std::fmt::Formatter)
 -> std::fmt::Result;
}

The fmt method’s job is to produce a properly formatted representation of
self and write its characters to dest. In addition to serving as an output stream,
the dest argument also carries details parsed from the format parameter, like
the alignment and minimum field width.

For example, earlier in this chapter we suggested that it would be nice if
Complex values printed themselves in the usual a + bi form. Here’s a Display
implementation that does that:

use std::fmt;

impl fmt::Display for Complex {
 fn fmt(&self, dest: &mut fmt::Formatter) -> fmt::Result {
 let im_sign = if self.im < 0.0 { '-' } else { '+' };
 write!(dest, "{} {} {}i", self.re, im_sign, f64::abs(self.im))
 }
}

This takes advantage of the fact that Formatter is itself an output stream, so
the write! macro can do most of the work for us. With this implementation in
place, we can write the following:

let one_twenty = Complex { re: -0.5, im: 0.866 };
assert_eq!(format!("{}", one_twenty),
 "-0.5 + 0.866i");

let two_forty = Complex { re: -0.5, im: -0.866 };
assert_eq!(format!("{}", two_forty),
 "-0.5 - 0.866i");

It’s sometimes helpful to display complex numbers in polar form: if you
imagine a line drawn on the complex plane from the origin to the number, the
polar form gives the line’s length, and its clockwise angle to the positive x-
axis. The # character in a format parameter typically selects some alternate
display form; the Display implementation could treat it as a request to use
polar form:

impl fmt::Display for Complex {
 fn fmt(&self, dest: &mut fmt::Formatter) -> fmt::Result {
 let (re, im) = (self.re, self.im);

 if dest.alternate() {
 let abs = f64::sqrt(re * re + im * im);
 let angle = f64::atan2(im, re) / std::f64::consts::PI * 180.0;
 write!(dest, "{} ∠ {}°", abs, angle)
 } else {
 let im_sign = if im < 0.0 { '-' } else { '+' };
 write!(dest, "{} {} {}i", re, im_sign, f64::abs(im))
 }
 }
}

Using this implementation:

let ninety = Complex { re: 0.0, im: 2.0 };
assert_eq!(format!("{}", ninety),
 "0 + 2i");
assert_eq!(format!("{:#}", ninety),
 "2 ∠ 90°");

Although the formatting traits’ fmt methods return an fmt::Result value (a
typical module-specific Result type), you should propagate failures only from
operations on the Formatter, as the fmt::Display implementation does with its
calls to write!; your formatting functions must never originate errors
themselves. This allows macros like format! to simply return a String instead
of a Result<String, ...>, since appending the formatted text to a String never
fails. It also ensures that any errors you do get from write! or writeln! reflect
real problems from the underlying I/O stream, not formatting issues.

Formatter has plenty of other helpful methods, including some for handling
structured data like maps, lists, and so on, which we won’t cover here;
consult the online documentation for the full details.

Using the Formatting Language in Your Own Code
You can write your own functions and macros that accept format templates
and arguments by using Rust’s format_args! macro and the
std::fmt::Arguments type. For example, suppose your program needs to log
status messages as it runs, and you’d like to use Rust’s text formatting
language to produce them. The following would be a start:

fn logging_enabled() -> bool { ... }

use std::fs::OpenOptions;
use std::io::Write;

fn write_log_entry(entry: std::fmt::Arguments) {
 if logging_enabled() {
 // Keep things simple for now, and just
 // open the file every time.
 let mut log_file = OpenOptions::new()
 .append(true)
 .create(true)
 .open("log-file-name")
 .expect("failed to open log file");

 log_file.write_fmt(entry)
 .expect("failed to write to log");
 }
}

You can call write_log_entry like so:

write_log_entry(format_args!("Hark! {:?}\n", mysterious_value));

At compile time, the format_args! macro parses the template string and
checks it against the arguments’ types, reporting an error if there are any
problems. At run time, it evaluates the arguments and builds an Arguments
value carrying all the information necessary to format the text: a pre-parsed
form of the template, along with shared references to the argument values.

Constructing an Arguments value is cheap: it’s just gathering up some
pointers. No formatting work takes place yet, only the collection of the

information needed to do so later. This can be important: if logging is not
enabled, any time spent converting numbers to decimal, padding values, and
so on would be wasted.

The File type implements the std::io::Write trait, whose write_fmt method
takes an Argument and does the formatting. It writes the results to the
underlying stream.

That call to write_log_entry isn’t pretty. This is where a macro can help:

macro_rules! log { // no ! needed after name in macro definitions
 ($format:tt, $($arg:expr),*) => (
 write_log_entry(format_args!($format, $($arg),*))
)
}

We cover macros in detail in Chapter 21. For now, take it on faith that this
defines a new log! macro that passes its arguments along to format_args! and
then calls your write_log_entry function on the resulting Arguments value.
The formatting macros like println!, writeln!, and format! are all roughly the
same idea.

You can use log! like so:

log!("O day and night, but this is wondrous strange! {:?}\n",
 mysterious_value);

Ideally, this looks a little better.

Regular Expressions
The external regex crate is Rust’s official regular expression library. It
provides the usual searching and matching functions. It has good support for
Unicode, but it can search byte strings as well. Although it doesn’t support
some features you’ll often find in other regular expression packages, like
backreferences and look-around patterns, those simplifications allow regex to
ensure that searches take time linear in the size of the expression and in the
length of the text being searched. These guarantees, among others, make
regex safe to use even with untrusted expressions searching untrusted text.

In this book, we’ll provide only an overview of regex; you should consult its
online documentation for details.

Although the regex crate is not in std, it is maintained by the Rust library
team, the same group responsible for std. To use regex, put the following line
in the [dependencies] section of your crate’s Cargo.toml file:

regex = "1"

In the following sections, we’ll assume that you have this change in place.

Basic Regex Use
A Regex value represents a parsed regular expression ready to use. The
Regex::new constructor tries to parse a &str as a regular expression, and
returns a Result:

use regex::Regex;

// A semver version number, like 0.2.1.
// May contain a pre-release version suffix, like 0.2.1-alpha.
// (No build metadata suffix, for brevity.)
//
// Note use of r"..." raw string syntax, to avoid backslash blizzard.
let semver = Regex::new(r"(\d+)\.(\d+)\.(\d+)(-[-.[:alnum:]]*)?")?;

// Simple search, with a Boolean result.
let haystack = r#"regex = "0.2.5""#;
assert!(semver.is_match(haystack));

The Regex::captures method searches a string for the first match and returns a
regex::Captures value holding match information for each group in the
expression:

// You can retrieve capture groups:
let captures = semver.captures(haystack)
 .ok_or("semver regex should have matched")?;
assert_eq!(&captures[0], "0.2.5");
assert_eq!(&captures[1], "0");
assert_eq!(&captures[2], "2");
assert_eq!(&captures[3], "5");

Indexing a Captures value panics if the requested group didn’t match. To test
whether a particular group matched, you can call Captures::get, which returns
an Option<regex::Match>. A Match value records a single group’s match:

assert_eq!(captures.get(4), None);
assert_eq!(captures.get(3).unwrap().start(), 13);
assert_eq!(captures.get(3).unwrap().end(), 14);
assert_eq!(captures.get(3).unwrap().as_str(), "5");

You can iterate over all the matches in a string:

let haystack = "In the beginning, there was 1.0.0. \
 For a while, we used 1.0.1-beta, \
 but in the end, we settled on 1.2.4.";

let matches: Vec<&str> = semver.find_iter(haystack)
 .map(|match_| match_.as_str())
 .collect();
assert_eq!(matches, vec!["1.0.0", "1.0.1-beta", "1.2.4"]);

The find_iter iterator produces a Match value for each nonoverlapping match
of the expression, working from the start of the string to the end. The
captures_iter method is similar, but produces Captures values recording all
capture groups. Searching is slower when capture groups must be reported, so
if you don’t need them, it’s best to use one of the methods that doesn’t return
them.

Building Regex Values Lazily
The Regex::new constructor can be expensive: constructing a Regex for a
1,200-character regular expression can take almost a millisecond on a fast
developer machine, and even a trivial expression takes microseconds. It’s
best to keep Regex construction out of heavy computational loops; instead,
you should construct your Regex once and then reuse the same one.

The lazy_static crate provides a nice way to construct static values lazily the
first time they are used. To start with, note the dependency in your
Cargo.toml file:

[dependencies]
lazy_static = "1"

This crate provides a macro to declare such variables:

use lazy_static::lazy_static;

lazy_static! {
 static ref SEMVER: Regex
 = Regex::new(r"(\d+)\.(\d+)\.(\d+)(-[-.[:alnum:]]*)?")
 .expect("error parsing regex");
}

The macro expands to a declaration of a static variable named SEMVER, but
its type is not exactly Regex. Instead, it’s a macro-generated type that
implements Deref<Target=Regex> and therefore exposes all the same
methods as a Regex. The first time SEMVER is dereferenced, the initializer
is evaluated, and the value is saved for later use. Since SEMVER is a static
variable, not just a local variable, the initializer runs at most once per
program execution.

With this declaration in place, using SEMVER is straightforward:

use std::io::BufRead;

let stdin = std::io::stdin();

for line_result in stdin.lock().lines() {
 let line = line_result?;
 if let Some(match_) = SEMVER.find(&line) {
 println!("{}", match_.as_str());
 }
}

You can put the lazy_static! declaration in a module, or even inside the
function that uses the Regex, if that’s the most appropriate scope. The regular
expression is still always compiled only once per program execution.

Normalization
Most users would consider the French word for tea, thé, to be three characters
long. However, Unicode actually has two ways to represent this text:

In the composed form, “thé” comprises the three characters 't', 'h',
and 'é', where 'é' is a single Unicode character with code point 0xe9.

In the decomposed form, “thé” comprises the four characters 't', 'h',
'e', and '\u{301}', where the 'e' is the plain ASCII character, without
an accent, and code point 0x301 is the “COMBINING ACUTE
ACCENT” character, which adds an acute accent to whatever
character it follows.

Unicode does not consider either the composed or the decomposed form of é
to be the “correct” one; rather, it considers them both equivalent
representations of the same abstract character. Unicode says both forms
should be displayed in the same way, and text input methods are permitted to
produce either, so users will generally not know which form they are viewing
or typing. (Rust lets you use Unicode characters directly in string literals, so
you can simply write "thé" if you don’t care which encoding you get. Here
we’ll use the \u escapes for clarity.)

However, considered as Rust &str or String values, "th\u{e9}" and
"the\u{301}" are completely distinct. They have different lengths, compare as
unequal, have different hash values, and order themselves differently with
respect to other strings:

assert!("th\u{e9}" != "the\u{301}");
assert!("th\u{e9}" > "the\u{301}");

// A Hasher is designed to accumulate the hash of a series of values,
// so hashing just one is a bit clunky.
use std::hash::{Hash, Hasher};
use std::collections::hash_map::DefaultHasher;
fn hash<T: ?Sized + Hash>(t: &T) -> u64 {
 let mut s = DefaultHasher::new();

 t.hash(&mut s);
 s.finish()
}

// These values may change in future Rust releases.
assert_eq!(hash("th\u{e9}"), 0x53e2d0734eb1dff3);
assert_eq!(hash("the\u{301}"), 0x90d837f0a0928144);

Clearly, if you intend to compare user-supplied text or use it as a key in a
hash table or B-tree, you will need to put each string in some canonical form
first.

Fortunately, Unicode specifies normalized forms for strings. Whenever two
strings should be treated as equivalent according to Unicode’s rules, their
normalized forms are character-for-character identical. When encoded with
UTF-8, they are byte-for-byte identical. This means you can compare
normalized strings with ==, use them as keys in a HashMap or HashSet, and
so on, and you’ll get Unicode’s notion of equality.

Failure to normalize can even have security consequences. For example, if
your website normalizes usernames in some cases but not others, you could
end up with two distinct users named bananasflambé, which some parts of
your code treat as the same user, but others distinguish, resulting in one’s
privileges being extended incorrectly to the other. Of course, there are many
ways to avoid this sort of problem, but history shows there are also many
ways not to.

Normalization Forms
Unicode defines four normalized forms, each of which is appropriate for
different uses. There are two questions to answer:

First, do you prefer characters to be as composed as possible or as
decomposed as possible?

For example, the most composed representation of the Vietnamese
word Phở is the three-character string "Ph\u{1edf}", where both the
tonal mark ̉ and the vowel mark ̛ are applied to the base character
“o” in a single Unicode character, '\u{1edf}', which Unicode
dutifully names LATIN SMALL LETTER O WITH HORN AND
HOOK ABOVE.

The most decomposed representation splits out the base letter and its
two marks into three separate Unicode characters: 'o', '\u{31b}'
(COMBINING HORN), and '\u{309}' (COMBINING HOOK
ABOVE), resulting in "Pho\u{31b}\u{309}". (Whenever combining
marks appear as separate characters, rather than as part of a
composed character, all normalized forms specify a fixed order in
which they must appear, so normalization is well specified even
when characters have multiple accents.)

The composed form generally has fewer compatibility problems,
since it more closely matches the representations most languages
used for their text before Unicode became established. It may also
work better with naïve string formatting features like Rust’s format!
macro. The decomposed form, on the other hand, may be better for
displaying text or searching, since it makes the detailed structure of
the text more explicit.

The second question is: if two character sequences represent the
same fundamental text but differ in the way that text should be
formatted, do you want to treat them as equivalent or keep them
distinct?

Unicode has separate characters for the ordinary digit 5, the
superscript digit ⁵ (or '\u{2075}'), and the circled digit ⑤ (or
'\u{2464}'), but declares all three to be compatibility equivalent.
Similarly, Unicode has a single character for the ligature ffi
('\u{fb03}'), but declares this to be compatibility equivalent to the
three-character sequence ffi.

Compatibility equivalence makes sense for searches: a search for
"difficult", using only ASCII characters, ought to match the string
"di\u{fb03}cult", which uses the ffi ligature. Applying compatibility
decomposition to the latter string would replace the ligature with the
three plain letters "ffi", making the search easier. But normalizing
text to a compatibility equivalent form can lose essential
information, so it should not be applied carelessly. For example, it
would be incorrect in most contexts to store "2⁵" as "25".

Unicode Normalization Form C and Normalization Form D (NFC and NFD)
use the maximally composed and maximally decomposed forms of each
character, but do not try to unify compatibility equivalent sequences. The
NFKC and NFKD normalization forms are like NFC and NFD, but normalize
all compatibility equivalent sequences to some simple representative of their
class.

The World Wide Web Consortium’s “Character Model For the World Wide
Web” recommends using NFC for all content. The Unicode Identifier and
Pattern Syntax annex suggests using NFKC for identifiers in programming
languages and offers principles for adapting the form when necessary.

The unicode-normalization Crate
Rust’s unicode-normalization crate provides a trait that adds methods to &str
to put the text in any of the four normalized forms. To use it, add the
following line to the [dependencies] section of your Cargo.toml file:

unicode-normalization = "0.1.17"

With this declaration in place, a &str has four new methods that return
iterators over a particular normalized form of the string:

use unicode_normalization::UnicodeNormalization;

// No matter what representation the left-hand string uses
// (you shouldn't be able to tell just by looking),
// these assertions will hold.
assert_eq!("Phở".nfd().collect::<String>(), "Pho\u{31b}\u{309}");
assert_eq!("Phở".nfc().collect::<String>(), "Ph\u{1edf}");

// The left-hand side here uses the "ffi" ligature character.
assert_eq!("① Di\u{fb03}culty".nfkc().collect::<String>(), "1 Difficulty");

Taking a normalized string and normalizing it again in the same form is
guaranteed to return identical text.

Although any substring of a normalized string is itself normalized, the
concatenation of two normalized strings is not necessarily normalized: for
example, the second string might start with combining characters that should
be placed before combining characters at the end of the first string.

As long as a text uses no unassigned code points when it is normalized,
Unicode promises that its normalized form will not change in future versions
of the standard. This means that normalized forms are generally safe to use in
persistent storage, even as the Unicode standard evolves.

Chapter 18. Input and Output

Doolittle: What concrete evidence do you have that you exist?

Bomb #20: Hmmmm... well... I think, therefore I am.

Doolittle: That’s good. That’s very good. But how do you know that
anything else exists?

Bomb #20: My sensory apparatus reveals it to me.
—Dark Star

Rust’s standard library features for input and output are organized around
three traits, Read, BufRead, and Write:

Values that implement Read have methods for byte-oriented input.
They’re called readers.

Values that implement BufRead are buffered readers. They support
all the methods of Read, plus methods for reading lines of text and
so forth.

Values that implement Write support both byte-oriented and UTF-8
text output. They’re called writers.

Figure 18-1 shows these three traits and some examples of reader and writer
types.

In this chapter, we’ll explain how to use these traits and their methods, cover
the reader and writer types shown in the figure, and show other ways to
interact with files, the terminal, and the network.

Figure 18-1. Rust’s three main I/O traits and selected types that implement them

Readers and Writers
Readers are values that your program can read bytes from. Examples include:

Files opened using std::fs::File::open(filename)

std::net::TcpStreams, for receiving data over the network

std::io::stdin(), for reading from the process’s standard input stream

std::io::Cursor<&[u8]> and std::io::Cursor<Vec<u8>> values, which
are readers that “read” from a byte array or vector that’s already in
memory

Writers are values that your program can write bytes to. Examples include:

Files opened using std::fs::File::create(filename)

std::net::TcpStreams, for sending data over the network

std::io::stdout() and std::io:stderr(), for writing to the terminal

Vec<u8>, a writer whose write methods append to the vector

std::io::Cursor<Vec<u8>>, which is similar but lets you both read
and write data, and seek to different positions within the vector

std::io::Cursor<&mut [u8]>, which is much like
std::io::Cursor<Vec<u8>>, except that it can’t grow the buffer, since
it’s just a slice of some existing byte array

Since there are standard traits for readers and writers (std::io::Read and
std::io::Write), it’s quite common to write generic code that works across a
variety of input or output channels. For example, here’s a function that copies
all bytes from any reader to any writer:

use std::io::{self, Read, Write, ErrorKind};

const DEFAULT_BUF_SIZE: usize = 8 * 1024;

pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W)
 -> io::Result<u64>
 where R: Read, W: Write
{
 let mut buf = [0; DEFAULT_BUF_SIZE];
 let mut written = 0;
 loop {
 let len = match reader.read(&mut buf) {
 Ok(0) => return Ok(written),
 Ok(len) => len,
 Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
 Err(e) => return Err(e),
 };
 writer.write_all(&buf[..len])?;
 written += len as u64;
 }
}

This is the implementation of std::io::copy() from Rust’s standard library.
Since it’s generic, you can use it to copy data from a File to a TcpStream,
from Stdin to an in-memory Vec<u8>, etc.

If the error-handling code here is unclear, revisit Chapter 7. We’ll be using
the Result type constantly in the pages ahead; it’s important to have a good
grasp of how it works.

The three std::io traits Read, BufRead, and Write, along with Seek, are so
commonly used that there’s a prelude module containing only those traits:

use std::io::prelude::*;

You’ll see this once or twice in this chapter. We also make a habit of
importing the std::io module itself:

use std::io::{self, Read, Write, ErrorKind};

The self keyword here declares io as an alias to the std::io module. That way,
std::io::Result and std::io::Error can be written more concisely as io::Result
and io::Error, and so on.

Readers
std::io::Read has several methods for reading data. All of them take the
reader itself by mut reference.

reader.read(&mut buffer)

Reads some bytes from the data source and stores them in the given
buffer. The type of the buffer argument is &mut [u8]. This reads up to
buffer.len() bytes.

The return type is io::Result<u64>, which is a type alias for Result<u64,
io::Error>. On success, the u64 value is the number of bytes read—which
may be equal to or less than buffer.len(), even if there’s more data to
come, at the whim of the data source. Ok(0) means there is no more input
to read.

On error, .read() returns Err(err), where err is an io::Error value. An
io::Error is printable, for the benefit of humans; for programs, it has a
.kind() method that returns an error code of type io::ErrorKind. The
members of this enum have names like PermissionDenied and
ConnectionReset. Most indicate serious errors that can’t be ignored, but
one kind of error should be handled specially. io::ErrorKind::Interrupted
corresponds to the Unix error code EINTR, which means the read
happened to be interrupted by a signal. Unless the program is designed to
do something clever with signals, it should just retry the read. The code
for copy(), in the preceding section, shows an example of this.

As you can see, the .read() method is very low level, even inheriting
quirks of the underlying operating system. If you’re implementing the
Read trait for a new type of data source, this gives you a lot of leeway. If
you’re trying to read some data, it’s a pain. Therefore, Rust provides
several higher-level convenience methods. All of them have default
implementations in terms of .read(). They all handle
ErrorKind::Interrupted, so you don’t have to.

reader.read_to_end(&mut byte_vec)

Reads all remaining input from this reader, appending it to byte_vec,
which is a Vec<u8>. Returns an io::Result<usize>, the number of bytes
read.

There is no limit on the amount of data this method will pile into the
vector, so don’t use it on an untrusted source. (You can impose a limit
using the .take() method, described in the next list.)

reader.read_to_string(&mut string)

This is the same, but appends the data to the given String. If the stream
isn’t valid UTF-8, this returns an ErrorKind::InvalidData error.

In some programming languages, byte input and character input are
handled by different types. These days, UTF-8 is so dominant that Rust
acknowledges this de facto standard and supports UTF-8 everywhere.
Other character sets are supported with the open source encoding crate.

reader.read_exact(&mut buf)

Reads exactly enough data to fill the given buffer. The argument type is

&[u8]. If the reader runs out of data before reading buf.len() bytes, this

returns an ErrorKind::UnexpectedEof error.

Those are the main methods of the Read trait. In addition, there are three
adapter methods that take the reader by value, transforming it into an iterator
or a different reader:

reader.bytes()

Returns an iterator over the bytes of the input stream. The item type is

io::Result<u8>, so an error check is required for every byte. Furthermore,

this calls reader.read() once per byte, which will be very inefficient if the

reader is not buffered.

reader.chain(reader2)

Returns a new reader that produces all the input from reader, followed by

all the input from reader2.

reader.take(n)

Returns a new reader that reads from the same source as reader, but is

limited to n bytes of input.

There is no method for closing a reader. Readers and writers typically
implement Drop so that they are closed automatically.

Buffered Readers
For efficiency, readers and writers can be buffered, which simply means they
have a chunk of memory (a buffer) that holds some input or output data in
memory. This saves on system calls, as shown in Figure 18-2. The
application reads data from the BufReader, in this example by calling its
.read_line() method. The BufReader in turn gets its input in larger chunks
from the operating system.

This picture is not to scale. The actual default size of a BufReader’s buffer is
several kilobytes, so a single system read can serve hundreds of .read_line()
calls. This matters because system calls are slow.

(As the picture shows, the operating system has a buffer too, for the same
reason: system calls are slow, but reading data from a disk is slower.)

Figure 18-2. A buffered file reader

Buffered readers implement both Read and a second trait, BufRead, which
adds the following methods:

reader.read_line(&mut line)

Reads a line of text and appends it to line, which is a String. The newline
character '\n' at the end of the line is included in line. If the input has

Windows-style line endings, "\r\n", both characters are included in line.

The return value is an io::Result<usize>, the number of bytes read,
including the line ending, if any.

If the reader is at the end of the input, this leaves line unchanged and
returns Ok(0).

reader.lines()

Returns an iterator over the lines of the input. The item type is
io::Result<String>. Newline characters are not included in the strings. If
the input has Windows-style line endings, "\r\n", both characters are
stripped.

This method is almost always what you want for text input. The next two
sections show some examples of its use.

reader.read_until(stop_byte, &mut byte_vec), reader.split(stop_byte)

These are just like .read_line() and .lines(), but byte-oriented, producing

Vec<u8>s instead of Strings. You choose the delimiter stop_byte.

BufRead also provides a pair of low-level methods, .fill_buf() and
.consume(n), for direct access to the reader’s internal buffer. For more about
these methods, see the online documentation.

The next two sections cover buffered readers in more detail.

Reading Lines
Here is a function that implements the Unix grep utility. It searches many
lines of text, typically piped in from another command, for a given string:

use std::io;
use std::io::prelude::*;

fn grep(target: &str) -> io::Result<()> {
 let stdin = io::stdin();
 for line_result in stdin.lock().lines() {
 let line = line_result?;
 if line.contains(target) {
 println!("{}", line);
 }
 }
 Ok(())
}

Since we want to call .lines(), we need a source of input that implements
BufRead. In this case, we call io::stdin() to get the data that’s being piped to
us. However, the Rust standard library protects stdin with a mutex. We call
.lock() to lock stdin for the current thread’s exclusive use; it returns an
StdinLock value that implements BufRead. At the end of the loop, the
StdinLock is dropped, releasing the mutex. (Without a mutex, two threads
trying to read from stdin at the same time would cause undefined behavior. C
has the same issue and solves it the same way: all of the C standard input and
output functions obtain a lock behind the scenes. The only difference is that
in Rust, the lock is part of the API.)

The rest of the function is straightforward: it calls .lines() and loops over the
resulting iterator. Because this iterator produces Result values, we use the ?
operator to check for errors.

Suppose we want to take our grep program a step further and add support for
searching files on disk. We can make this function generic:

fn grep<R>(target: &str, reader: R) -> io::Result<()>
 where R: BufRead

{
 for line_result in reader.lines() {
 let line = line_result?;
 if line.contains(target) {
 println!("{}", line);
 }
 }
 Ok(())
}

Now we can pass it either an StdinLock or a buffered File:

let stdin = io::stdin();
grep(&target, stdin.lock())?; // ok

let f = File::open(file)?;
grep(&target, BufReader::new(f))?; // also ok

Note that a File is not automatically buffered. File implements Read but not
BufRead. However, it’s easy to create a buffered reader for a File, or any
other unbuffered reader. BufReader::new(reader) does this. (To set the size of
the buffer, use BufReader::with_capacity(size, reader).)

In most languages, files are buffered by default. If you want unbuffered input
or output, you have to figure out how to turn buffering off. In Rust, File and
BufReader are two separate library features, because sometimes you want
files without buffering, and sometimes you want buffering without files (for
example, you may want to buffer input from the network).

The full program, including error handling and some crude argument parsing,
is shown here:

// grep - Search stdin or some files for lines matching a given string.

use std::error::Error;
use std::io::{self, BufReader};
use std::io::prelude::*;
use std::fs::File;
use std::path::PathBuf;

fn grep<R>(target: &str, reader: R) -> io::Result<()>
 where R: BufRead

{
 for line_result in reader.lines() {
 let line = line_result?;
 if line.contains(target) {
 println!("{}", line);
 }
 }
 Ok(())
}

fn grep_main() -> Result<(), Box<dyn Error>> {
 // Get the command-line arguments. The first argument is the
 // string to search for; the rest are filenames.
 let mut args = std::env::args().skip(1);
 let target = match args.next() {
 Some(s) => s,
 None => Err("usage: grep PATTERN FILE...")?
 };
 let files: Vec<PathBuf> = args.map(PathBuf::from).collect();

 if files.is_empty() {
 let stdin = io::stdin();
 grep(&target, stdin.lock())?;
 } else {
 for file in files {
 let f = File::open(file)?;
 grep(&target, BufReader::new(f))?;
 }
 }

 Ok(())
}

fn main() {
 let result = grep_main();
 if let Err(err) = result {
 eprintln!("{}", err);
 std::process::exit(1);
 }
}

Collecting Lines
Several reader methods, including .lines(), return iterators that produce Result
values. The first time you want to collect all the lines of a file into one big
vector, you’ll run into a problem getting rid of the Results:

// ok, but not what you want
let results: Vec<io::Result<String>> = reader.lines().collect();

// error: can't convert collection of Results to Vec<String>
let lines: Vec<String> = reader.lines().collect();

The second try doesn’t compile: what would happen to the errors? The
straightforward solution is to write a for loop and check each item for errors:

let mut lines = vec![];
for line_result in reader.lines() {
 lines.push(line_result?);
}

Not bad; but it would be nice to use .collect() here, and it turns out that we
can. We just have to know which type to ask for:

let lines = reader.lines().collect::<io::Result<Vec<String>>>()?;

How does this work? The standard library contains an implementation of
FromIterator for Result—easy to overlook in the online documentation—that
makes this possible:

impl<T, E, C> FromIterator<Result<T, E>> for Result<C, E>
 where C: FromIterator<T>
{
 ...
}

This requires some careful reading, but it’s a nice trick. Assume C is any
collection type, like Vec or HashSet. As long we already know how to build a
C from an iterator of T values, we can build a Result<C, E> from an iterator

producing Result<T, E> values. We just need to draw values from the iterator
and build the collection from the Ok results, but if we ever see an Err, stop
and pass that along.

In other words, io::Result<Vec<String>> is a collection type, so the .collect()
method can create and populate values of that type.

Writers
As we’ve seen, input is mostly done using methods. Output is a bit different.

Throughout the book, we’ve used println!() to produce plain-text output:

println!("Hello, world!");

println!("The greatest common divisor of {:?} is {}",
 numbers, d);

println!(); // print a blank line

There’s also a print!() macro, which does not add a newline character at the
end, and eprintln! and eprint! macros that write to the standard error stream.
The formatting codes for all of these are the same as those for the format!
macro, described in “Formatting Values”.

To send output to a writer, use the write!() and writeln!() macros. They are
the same as print!() and println!(), except for two differences:

writeln!(io::stderr(), "error: world not helloable")?;

writeln!(&mut byte_vec, "The greatest common divisor of {:?} is {}",
 numbers, d)?;

One difference is that the write macros each take an extra first argument, a
writer. The other is that they return a Result, so errors must be handled.
That’s why we used the ? operator at the end of each line.

The print macros don’t return a Result; they simply panic if the write fails.
Since they write to the terminal, this is rare.

The Write trait has these methods:

writer.write(&buf)

Writes some of the bytes in the slice buf to the underlying stream. It
returns an io::Result<usize>. On success, this gives the number of bytes
written, which may be less than buf.len(), at the whim of the stream.

Like Reader::read(), this is a low-level method that you should avoid
using directly.

writer.write_all(&buf)

Writes all the bytes in the slice buf. Returns Result<()>.

writer.flush()

Flushes any buffered data to the underlying stream. Returns Result<()>.

Note that while the println! and eprintln! macros automatically flush the
stdout and stderr stream, the print! and eprint! macros do not. You may
have to call flush() manually when using them.

Like readers, writers are closed automatically when they are dropped.

Just as BufReader::new(reader) adds a buffer to any reader,
BufWriter::new(writer) adds a buffer to any writer:

let file = File::create("tmp.txt")?;
let writer = BufWriter::new(file);

To set the size of the buffer, use BufWriter::with_capacity(size, writer).

When a BufWriter is dropped, all remaining buffered data is written to the
underlying writer. However, if an error occurs during this write, the error is
ignored. (Since this happens inside BufWriter’s .drop() method, there is no
useful place to report the error.) To make sure your application notices all
output errors, manually .flush() buffered writers before dropping them.

Files
We’ve already seen two ways to open a file:

File::open(filename)

Opens an existing file for reading. It returns an io::Result<File>, and it’s

an error if the file doesn’t exist.

File::create(filename)

Creates a new file for writing. If a file exists with the given filename, it is

truncated.

Note that the File type is in the filesystem module, std::fs, not std::io.

When neither of these fits the bill, you can use OpenOptions to specify the
exact desired behavior:

use std::fs::OpenOptions;

let log = OpenOptions::new()
 .append(true) // if file exists, add to the end
 .open("server.log")?;

let file = OpenOptions::new()
 .write(true)
 .create_new(true) // fail if file exists
 .open("new_file.txt")?;

The methods .append(), .write(), .create_new(), and so on are designed to be
chained like this: each one returns self. This method-chaining design pattern
is common enough to have a name in Rust: it’s called a builder.
std::process::Command is another example. For more details on
OpenOptions, see the online documentation.

Once a File has been opened, it behaves like any other reader or writer. You
can add a buffer if needed. The File will be closed automatically when you

drop it.

Seeking
File also implements the Seek trait, which means you can hop around within
a File rather than reading or writing in a single pass from the beginning to the
end. Seek is defined like this:

pub trait Seek {
 fn seek(&mut self, pos: SeekFrom) -> io::Result<u64>;
}

pub enum SeekFrom {
 Start(u64),
 End(i64),
 Current(i64)
}

Thanks to the enum, the seek method is nicely expressive: use
file.seek(SeekFrom::Start(0)) to rewind to the beginning and use
file.seek(SeekFrom::Current(-8)) to go back a few bytes, and so on.

Seeking within a file is slow. Whether you’re using a hard disk or a solid-
state drive (SSD), a seek takes as long as reading several megabytes of data.

Other Reader and Writer Types
So far, this chapter has used File as its example workhorse, but there are
many other useful reader and writer types:

io::stdin()

Returns a reader for the standard input stream. Its type is io::Stdin. Since
this is shared by all threads, each read acquires and releases a mutex.

Stdin has a .lock() method that acquires the mutex and returns an
io::StdinLock, a buffered reader that holds the mutex until it’s dropped.
Individual operations on the StdinLock therefore avoid the mutex
overhead. We showed example code using this method in “Reading
Lines”.

For technical reasons, io::stdin().lock() doesn’t work. The lock holds a
reference to the Stdin value, and that means the Stdin value must be
stored somewhere so that it lives long enough:

let stdin = io::stdin();

let lines = stdin.lock().lines(); // ok

io::stdout(), io::stderr()

Return Stdout and Stderr writer types for the standard output and standard

error streams. These too have mutexes and .lock() methods.

Vec<u8>

Implements Write. Writing to a Vec<u8> extends the vector with the new
data.

(String, however, does not implement Write. To build a string using
Write, first write to a Vec<u8>, and then use String::from_utf8(vec) to
convert the vector to a string.)

Cursor::new(buf)

Creates a Cursor, a buffered reader that reads from buf. This is how you
create a reader that reads from a String. The argument buf can be any type
that implements AsRef<[u8]>, so you can also pass a &[u8], &str, or
Vec<u8>.

Cursors are trivial internally. They have just two fields: buf itself and an
integer, the offset in buf where the next read will start. The position is
initially 0.

Cursors implement Read, BufRead, and Seek. If the type of buf is &mut
[u8] or Vec<u8>, then the Cursor also implements Write. Writing to a
cursor overwrites bytes in buf starting at the current position. If you try to
write past the end of a &mut [u8], you’ll get a partial write or an
io::Error. Using a cursor to write past the end of a Vec<u8> is fine,
though: it grows the vector. Cursor<&mut [u8]> and Cursor<Vec<u8>>
thus implement all four of the std::io::prelude traits.

std::net::TcpStream

Represents a TCP network connection. Since TCP enables two-way
communication, it’s both a reader and a writer.

The type-associated function TcpStream::connect(("hostname", PORT))
tries to connect to a server and returns an io::Result<TcpStream>.

std::process::Command

Supports spawning a child process and piping data to its standard input,
like so:

use std::process::{Command, Stdio};

let mut child =

 Command::new("grep")

 .arg("-e")

 .arg("a.*e.*i.*o.*u")

 .stdin(Stdio::piped())

 .spawn()?;

let mut to_child = child.stdin.take().unwrap();

for word in my_words {

 writeln!(to_child, "{}", word)?;

}

drop(to_child); // close grep's stdin, so it will exit

child.wait()?;

The type of child.stdin is Option<std::process::ChildStdin>; here we’ve
used .stdin(Stdio::piped()) when setting up the child process, so
child.stdin is definitely populated when .spawn() succeeds. If we hadn’t,
child.stdin would be None.

Command also has similar methods .stdout() and .stderr(), which can be
used to request readers in child.stdout and child.stderr.

The std::io module also offers a handful of functions that return trivial readers
and writers:

io::sink()

This is the no-op writer. All the write methods return Ok, but the data is

just discarded.

io::empty()

This is the no-op reader. Reading always succeeds, but returns end-of-

input.

io::repeat(byte)

Returns a reader that repeats the given byte endlessly.

Binary Data, Compression, and Serialization
Many open source crates build on the std::io framework to offer extra
features.

The byteorder crate offers ReadBytesExt and WriteBytesExt traits that add
methods to all readers and writers for binary input and output:

use byteorder::{ReadBytesExt, WriteBytesExt, LittleEndian};

let n = reader.read_u32::<LittleEndian>()?;
writer.write_i64::<LittleEndian>(n as i64)?;

The flate2 crate provides adapter methods for reading and writing gzipped
data:

use flate2::read::GzDecoder;
let file = File::open("access.log.gz")?;
let mut gzip_reader = GzDecoder::new(file);

The serde crate, and its associated format crates such as serde_json,
implement serialization and deserialization: they convert back and forth
between Rust structs and bytes. We mentioned this once before, in “Traits
and Other People’s Types”. Now we can take a closer look.

Suppose we have some data—the map for a text adventure game—stored in a
HashMap:

type RoomId = String; // each room has a unique name
type RoomExits = Vec<(char, RoomId)>; // ...and a list of exits
type RoomMap = HashMap<RoomId, RoomExits>; // room names and exits, simple

// Create a simple map.
let mut map = RoomMap::new();
map.insert("Cobble Crawl".to_string(),
 vec![('W', "Debris Room".to_string())]);
map.insert("Debris Room".to_string(),
 vec![('E', "Cobble Crawl".to_string()),
 ('W', "Sloping Canyon".to_string())]);
...

Turning this data into JSON for output is a single line of code:

serde_json::to_writer(&mut std::io::stdout(), &map)?;

Internally, serde_json::to_writer uses the serialize method of the
serde::Serialize trait. The library attaches this trait to all types that it knows
how to serialize, and that includes all of the types that appear in our data:
strings, characters, tuples, vectors, and HashMaps.

serde is flexible. In this program, the output is JSON data, because we chose
the serde_json serializer. Other formats, like MessagePack, are also available.
Likewise, you could send this output to a file, a Vec<u8>, or any other writer.
The preceding code prints the data on stdout. Here it is:

{"Debris Room":[["E","Cobble Crawl"],["W","Sloping Canyon"]],"Cobble Crawl":
[["W","Debris Room"]]}

serde also includes support for deriving the two key serde traits:

#[derive(Serialize, Deserialize)]
struct Player {
 location: String,
 items: Vec<String>,
 health: u32
}

This #[derive] attribute can make your compiles take a bit longer, so you
need to explicitly ask serde to support it when you list it as a dependency in
your Cargo.toml file. Here’s what we used for the preceding code:

[dependencies]
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"

See the serde documentation for more details. In short, the build system
autogenerates implementations of serde::Serialize and serde::Deserialize for
Player, so that serializing a Player value is simple:

serde_json::to_writer(&mut std::io::stdout(), &player)?;

The output looks like this:

{"location":"Cobble Crawl","items":["a wand"],"health":3}

Files and Directories
Now that we’ve shown how to work with readers and writers, the next few
sections cover Rust’s features for working with files and directories, which
live in the std::path and std::fs modules. All of these features involve working
with filenames, so we’ll start with the filename types.

OsStr and Path
Inconveniently, your operating system does not force filenames to be valid
Unicode. Here are two Linux shell commands that create text files. Only the
first uses a valid UTF-8 filename:

$ echo "hello world" > ô.txt
$ echo "O brave new world, that has such filenames in't" > $'\xf4'.txt

Both commands pass without comment, because the Linux kernel doesn’t
know UTF-8 from Ogg Vorbis. To the kernel, any string of bytes (excluding
null bytes and slashes) is an acceptable filename. It’s a similar story on
Windows: almost any string of 16-bit “wide characters” is an acceptable
filename, even strings that are not valid UTF-16. The same is true of other
strings the operating system handles, like command-line arguments and
environment variables.

Rust strings are always valid Unicode. Filenames are almost always Unicode
in practice, but Rust has to cope somehow with the rare case where they
aren’t. This is why Rust has std::ffi::OsStr and OsString.

OsStr is a string type that’s a superset of UTF-8. Its job is to be able to
represent all filenames, command-line arguments, and environment variables
on the current system, whether they’re valid Unicode or not. On Unix, an
OsStr can hold any sequence of bytes. On Windows, an OsStr is stored using
an extension of UTF-8 that can encode any sequence of 16-bit values,
including unmatched surrogates.

So we have two string types: str for actual Unicode strings; and OsStr for
whatever nonsense your operating system can dish out. We’ll introduce one
more: std::path::Path, for filenames. This one is purely a convenience. Path is
exactly like OsStr, but it adds many handy filename-related methods, which
we’ll cover in the next section. Use Path for both absolute and relative paths.
For an individual component of a path, use OsStr.

Lastly, for each string type, there’s a corresponding owning type: a String

owns a heap-allocated str, a std::ffi::OsString owns a heap-allocated OsStr,
and a std::path::PathBuf owns a heap-allocated Path. Table 18-1 outlines
some of the features of each type.

Table 18-1. Filename types

 str OsStr Path

Unsized type, always passed by
reference

Yes Yes Yes

Can contain any Unicode text Yes Yes Yes

Looks just like UTF-8, normally Yes Yes Yes

Can contain non-Unicode data No Yes Yes

Text processing methods Yes No No

Filename-related methods No No Yes

Owned, growable, heap-allocated
equivalent

String OsString PathBuf

Convert to owned type .to_string() .to_os_string() .to_path_buf()

All three of these types implement a common trait, AsRef<Path>, so we can
easily declare a generic function that accepts “any filename type” as an
argument. This uses a technique we showed in “AsRef and AsMut”:

use std::path::Path;
use std::io;

fn swizzle_file<P>(path_arg: P) -> io::Result<()>
 where P: AsRef<Path>
{
 let path = path_arg.as_ref();
 ...
}

All the standard functions and methods that take path arguments use this
technique, so you can freely pass string literals to any of them.

Path and PathBuf Methods
Path offers the following methods, among others:

Path::new(str)

Converts a &str or &OsStr to a &Path. This doesn’t copy the string. The
new &Path points to the same bytes as the original &str or &OsStr:

use std::path::Path;

let home_dir = Path::new("/home/fwolfe");

(The similar method OsStr::new(str) converts a &str to a &OsStr.)

path.parent()

Returns the path’s parent directory, if any. The return type is
Option<&Path>.

This doesn’t copy the path. The parent directory of path is always a
substring of path:

assert_eq!(Path::new("/home/fwolfe/program.txt").parent(),

 Some(Path::new("/home/fwolfe")));

path.file_name()

Returns the last component of path, if any. The return type is
Option<&OsStr>.

In the typical case, where path consists of a directory, then a slash, and
then a filename, this returns the filename:

use std::ffi::OsStr;

assert_eq!(Path::new("/home/fwolfe/program.txt").file_name(),

 Some(OsStr::new("program.txt")));

path.is_absolute(), path.is_relative()

These tell whether the file is absolute, like the Unix path /usr/bin/advent

or the Windows path C:\Program Files, or relative, like src/main.rs.

path1.join(path2)

Joins two paths, returning a new PathBuf:

let path1 = Path::new("/usr/share/dict");

assert_eq!(path1.join("words"),

 Path::new("/usr/share/dict/words"));

If path2 is an absolute path, this just returns a copy of path2, so this
method can be used to convert any path to an absolute path:

let abs_path = std::env::current_dir()?.join(any_path);

path.components()

Returns an iterator over the components of the given path, from left to
right. The item type of this iterator is std::path::Component, an enum that
can represent all the different pieces that can appear in filenames:

pub enum Component<'a> {

 Prefix(PrefixComponent<'a>), // a drive letter or share (on Windows)

 RootDir, // the root directory, `/` or `\`

 CurDir, // the `.` special directory

 ParentDir, // the `..` special directory

 Normal(&'a OsStr) // plain file and directory names

}

For example, the Windows path \\venice\Music\A Love Supreme\04-
Psalm.mp3 consists of a Prefix representing \\venice\Music, followed by a
RootDir, and then two Normal components representing A Love Supreme
and 04-Psalm.mp3.

For details, see the online documentation.

path.ancestors()

Returns an iterator that walks from path up to the root. Each item
produced is a Path: first path itself, then its parent, then its grandparent,
and so on:

let file = Path::new("/home/jimb/calendars/calendar-18x18.pdf");

assert_eq!(file.ancestors().collect::<Vec<_>>(),

 vec![Path::new("/home/jimb/calendars/calendar-18x18.pdf"),

 Path::new("/home/jimb/calendars"),

 Path::new("/home/jimb"),

 Path::new("/home"),

 Path::new("/")]);

This is much like calling parent repeatedly until it returns None. The final
item is always a root or prefix path.

These methods work on strings in memory. Paths also have some methods
that query the filesystem: .exists(), .is_file(), .is_dir(), .read_dir(),
.canonicalize(), and so on. See the online documentation to learn more.

There are three methods for converting Paths to strings. Each one allows for
the possibility of invalid UTF-8 in the Path:

https://oreil.ly/mtHCk

path.to_str()

Converts a Path to a string, as an Option<&str>. If path isn’t valid UTF-8,
this returns None:

if let Some(file_str) = path.to_str() {

 println!("{}", file_str);

} // ...otherwise skip this weirdly named file

path.to_string_lossy()

This is basically the same thing, but it manages to return some sort of
string in all cases. If path isn’t valid UTF-8, these methods make a copy,
replacing each invalid byte sequence with the Unicode replacement
character, U+FFFD ('�').

The return type is std::borrow::Cow<str>: an either borrowed or owned
string. To get a String from this value, use its .to_owned() method. (For
more about Cow, see “Borrow and ToOwned at Work: The Humble
Cow”.)

path.display()

This is for printing paths:

println!("Download found. You put it in: {}", dir_path.display());

The value this returns isn’t a string, but it implements std::fmt::Display,
so it can be used with format!(), println!(), and friends. If the path isn’t
valid UTF-8, the output may contain the � character.

Filesystem Access Functions
Table 18-2 shows some of the functions in std::fs and their approximate
equivalents on Unix and Windows. All of these functions return io::Result
values. They are Result<()> unless otherwise noted.

Table 18-2. Summary of filesystem access functions

 Rust function Unix Windows

Creating and deleting

create_dir(path) mkdir() CreateDirectory()

create_dir_all(path) like mkdir -p like mkdir

remove_dir(path) rmdir() RemoveDirectory()

remove_dir_all(path) like rm -r like rmdir /s

remove_file(path) unlink() DeleteFile()

Copying, moving, and
linking

copy(src_path, dest_path) -> Resu
lt<u64>

like cp -p CopyFileEx()

rename(src_path, dest_path) rename() MoveFileEx()

hard_link(src_path, dest_path) link() CreateHardLink()

Inspecting

canonicalize(path) -> Result<Path
Buf>

realpath() GetFinalPathNameB
yHandle()

metadata(path) -> Result<Metadat
a>

stat() GetFileInformation
ByHandle()

symlink_metadata(path) -> Result
<Metadata>

lstat() GetFileInformation
ByHandle()

read_dir(path) -> Result<ReadDir
>

opendir() FindFirstFile()

read_link(path) -> Result<PathBu
f>

readlink() FSCTL_GET_REP
ARSE_POINT

Permissions set_permissions(path, perm) chmod() SetFileAttributes()

(The number returned by copy() is the size of the copied file, in bytes. For
creating symbolic links, see “Platform-Specific Features”.)

As you can see, Rust strives to provide portable functions that work
predictably on Windows as well as macOS, Linux, and other Unix systems.

A full tutorial on filesystems is beyond the scope of this book, but if you’re
curious about any of these functions, you can easily find more about them
online. We’ll show some examples in the next section.

All of these functions are implemented by calling out to the operating system.
For example, std::fs::canonicalize(path) does not merely use string processing
to eliminate . and .. from the given path. It resolves relative paths using the
current working directory, and it chases symbolic links. It’s an error if the
path doesn’t exist.

The Metadata type that’s produced by std::fs::metadata(path) and
std::fs::symlink_metadata(path) contains such information as the file type and
size, permissions, and timestamps. As always, consult the documentation for
details.

As a convenience, the Path type has a few of these built in as methods:
path.metadata(), for example, is the same thing as std::fs::metadata(path).

Reading Directories
To list the contents of a directory, use std::fs::read_dir or, equivalently, the
.read_dir() method of a Path:

for entry_result in path.read_dir()? {
 let entry = entry_result?;
 println!("{}", entry.file_name().to_string_lossy());
}

Note the two uses of ? in this code. The first line checks for errors opening
the directory. The second line checks for errors reading the next entry.

The type of entry is std::fs::DirEntry, and it’s a struct with just a few
methods:

entry.file_name()

The name of the file or directory, as an OsString.

entry.path()

This is the same, but with the original path joined to it, producing a new

PathBuf. If the directory we’re listing is "/home/jimb", and

entry.file_name() is ".emacs", then entry.path() would return

PathBuf::from("/home/jimb/.emacs").

entry.file_type()

Returns an io::Result<FileType>. FileType has .is_file(), .is_dir(), and

.is_symlink() methods.

entry.metadata()

Gets the rest of the metadata about this entry.

The special directories . and .. are not listed when reading a directory.

Here’s a more substantial example. The following code recursively copies a
directory tree from one place to another on disk:

use std::fs;
use std::io;
use std::path::Path;

/// Copy the existing directory `src` to the target path `dst`.
fn copy_dir_to(src: &Path, dst: &Path) -> io::Result<()> {
 if !dst.is_dir() {
 fs::create_dir(dst)?;
 }

 for entry_result in src.read_dir()? {
 let entry = entry_result?;
 let file_type = entry.file_type()?;
 copy_to(&entry.path(), &file_type, &dst.join(entry.file_name()))?;
 }

 Ok(())
}

A separate function, copy_to, copies individual directory entries:

/// Copy whatever is at `src` to the target path `dst`.
fn copy_to(src: &Path, src_type: &fs::FileType, dst: &Path)
 -> io::Result<()>
{
 if src_type.is_file() {
 fs::copy(src, dst)?;
 } else if src_type.is_dir() {
 copy_dir_to(src, dst)?;
 } else {
 return Err(io::Error::new(io::ErrorKind::Other,
 format!("don't know how to copy: {}",
 src.display())));
 }
 Ok(())
}

Platform-Specific Features
So far, our copy_to function can copy files and directories. Suppose we also
want to support symbolic links on Unix.

There is no portable way to create symbolic links that work on both Unix and
Windows, but the standard library offers a Unix-specific symlink function:

use std::os::unix::fs::symlink;

With this, our job is easy. We need only add a branch to the if expression in
copy_to:

...
} else if src_type.is_symlink() {
 let target = src.read_link()?;
 symlink(target, dst)?;
...

This will work as long as we compile our program only for Unix systems,
such as Linux and macOS.

The std::os module contains various platform-specific features, like symlink.
The actual body of std::os in the standard library looks like this (taking some
poetic license):

//! OS-specific functionality.

#[cfg(unix)] pub mod unix;
#[cfg(windows)] pub mod windows;
#[cfg(target_os = "ios")] pub mod ios;
#[cfg(target_os = "linux")] pub mod linux;
#[cfg(target_os = "macos")] pub mod macos;
...

The #[cfg] attribute indicates conditional compilation: each of these modules
exists only on some platforms. This is why our modified program, using
std::os::unix, will successfully compile only for Unix: on other platforms,
std::os::unix doesn’t exist.

If we want our code to compile on all platforms, with support for symbolic
links on Unix, we must use #[cfg] in our program as well. In this case, it’s
easiest to import symlink on Unix, while defining our own symlink stub on
other systems:

#[cfg(unix)]
use std::os::unix::fs::symlink;

/// Stub implementation of `symlink` for platforms that don't provide it.
#[cfg(not(unix))]
fn symlink<P: AsRef<Path>, Q: AsRef<Path>>(src: P, _dst: Q)
 -> std::io::Result<()>
{
 Err(io::Error::new(io::ErrorKind::Other,
 format!("can't copy symbolic link: {}",
 src.as_ref().display())))
}

It turns out that symlink is something of a special case. Most Unix-specific
features are not standalone functions but rather extension traits that add new
methods to standard library types. (We covered extension traits in “Traits and
Other People’s Types”.) There’s a prelude module that can be used to enable
all of these extensions at once:

use std::os::unix::prelude::*;

For example, on Unix, this adds a .mode() method to std::fs::Permissions,
providing access to the underlying u32 value that represents permissions on
Unix. Similarly, it extends std::fs::Metadata with accessors for the fields of
the underlying struct stat value—such as .uid(), the user ID of the file’s
owner.

All told, what’s in std::os is pretty basic. Much more platform-specific
functionality is available via third-party crates, like winreg for accessing the
Windows registry.

https://oreil.ly/UkEzd

Networking
A tutorial on networking is well beyond the scope of this book. However, if
you already know a bit about network programming this section will help you
get started with networking in Rust.

For low-level networking code, start with the std::net module, which provides
cross-platform support for TCP and UDP networking. Use the native_tls crate
for SSL/TLS support.

These modules provide the building blocks for straightforward, blocking
input and output over the network. You can write a simple server in a few
lines of code, using std::net and spawning a thread for each connection. For
example, here’s an “echo” server:

use std::net::TcpListener;
use std::io;
use std::thread::spawn;

/// Accept connections forever, spawning a thread for each one.
fn echo_main(addr: &str) -> io::Result<()> {
 let listener = TcpListener::bind(addr)?;
 println!("listening on {}", addr);
 loop {
 // Wait for a client to connect.
 let (mut stream, addr) = listener.accept()?;
 println!("connection received from {}", addr);

 // Spawn a thread to handle this client.
 let mut write_stream = stream.try_clone()?;
 spawn(move || {
 // Echo everything we receive from `stream` back to it.
 io::copy(&mut stream, &mut write_stream)
 .expect("error in client thread: ");
 println!("connection closed");
 });
 }
}

fn main() {
 echo_main("127.0.0.1:17007").expect("error: ");
}

An echo server simply repeats back everything you send to it. This kind of
code is not so different from what you’d write in Java or Python. (We’ll
cover std::thread::spawn() in the next chapter.)

However, for high-performance servers, you’ll need to use asynchronous
input and output. Chapter 20 covers Rust’s support for asynchronous
programming, and shows the full code for a network client and server.

Higher-level protocols are supported by third-party crates. For example, the
reqwest crate offers a beautiful API for HTTP clients. Here is a complete
command-line program that fetches any document with an http: or https:
URL and dumps it to your terminal. This code was written using reqwest =
"0.11", with its "blocking" feature enabled. reqwest also provides an
asynchronous interface.

use std::error::Error;
use std::io;

fn http_get_main(url: &str) -> Result<(), Box<dyn Error>> {
 // Send the HTTP request and get a response.
 let mut response = reqwest::blocking::get(url)?;
 if !response.status().is_success() {
 Err(format!("{}", response.status()))?;
 }

 // Read the response body and write it to stdout.
 let stdout = io::stdout();
 io::copy(&mut response, &mut stdout.lock())?;

 Ok(())
}

fn main() {
 let args: Vec<String> = std::env::args().collect();
 if args.len() != 2 {
 eprintln!("usage: http-get URL");
 return;
 }

 if let Err(err) = http_get_main(&args[1]) {
 eprintln!("error: {}", err);
 }

}

The actix-web framework for HTTP servers offers high-level touches such as
the Service and Transform traits, which help you compose an app from
pluggable parts. The websocket crate implements the WebSocket protocol.
And so on. Rust is a young language with a busy open source ecosystem.
Support for networking is rapidly expanding.

Chapter 19. Concurrency

In the long run it is not advisable to write large concurrent programs in
machine-oriented languages that permit unrestricted use of store locations
and their addresses. There is just no way we will be able to make such
programs reliable (even with the help of complicated hardware
mechanisms).

—Per Brinch Hansen (1977)

Patterns for communication are patterns for parallelism.
—Whit Morriss

If your attitude toward concurrency has changed over the course of your
career, you’re not alone. It’s a common story.

At first, writing concurrent code is easy and fun. The tools—threads, locks,
queues, and so on—are a snap to pick up and use. There are a lot of pitfalls,
it’s true, but fortunately you know what they all are, and you are careful not
to make mistakes.

At some point, you have to debug someone else’s multithreaded code, and
you’re forced to conclude that some people really should not be using these
tools.

Then at some point you have to debug your own multithreaded code.

Experience inculcates a healthy skepticism, if not outright cynicism, toward
all multithreaded code. This is helped along by the occasional article
explaining in mind-numbing detail why some obviously correct
multithreading idiom does not work at all. (It has to do with “the memory
model.”) But you eventually find one approach to concurrency that you think
you can realistically use without constantly making mistakes. You can
shoehorn pretty much everything into that idiom, and (if you’re really good)
you learn to say “no” to added complexity.

Of course, there are rather lots of idioms. Approaches that systems

programmers commonly use include the following:

A background thread that has a single job and periodically wakes up
to do it.

General-purpose worker pools that communicate with clients via
task queues.

Pipelines where data flows from one thread to the next, with each
thread doing a little of the work.

Data parallelism, where it is assumed (rightly or wrongly) that the
whole computer will mainly just be doing one large computation,
which is therefore split into n pieces and run on n threads in the
hopes of putting all n of the machine’s cores to work at once.

A sea of synchronized objects, where multiple threads have access to
the same data, and races are avoided using ad hoc locking schemes
based on low-level primitives like mutexes. (Java includes built-in
support for this model, which was quite popular during the 1990s
and 2000s.)

Atomic integer operations allow multiple cores to communicate by
passing information through fields the size of one machine word.
(This is even harder to get right than all the others, unless the data
being exchanged is literally just integer values. In practice, it’s
usually pointers.)

In time, you may come to be able to use several of these approaches and
combine them safely. You are a master of the art. And things would be great,
if only nobody else were ever allowed to modify the system in any way.
Programs that use threads well are full of unwritten rules.

Rust offers a better way to use concurrency, not by forcing all programs to
adopt a single style (which for systems programmers would be no solution at
all), but by supporting multiple styles safely. The unwritten rules are written
down—in code—and enforced by the compiler.

You’ve heard that Rust lets you write safe, fast, concurrent programs. This is
the chapter where we show you how it’s done. We’ll cover three ways to use
Rust threads:

Fork-join parallelism

Channels

Shared mutable state

Along the way, you’re going to use everything you’ve learned so far about
the Rust language. The care Rust takes with references, mutability, and
lifetimes is valuable enough in single-threaded programs, but it is in
concurrent programming that the true significance of those rules becomes
apparent. They make it possible to expand your toolbox, to hack multiple
styles of multithreaded code quickly and correctly—without skepticism,
without cynicism, without fear.

Fork-Join Parallelism
The simplest use cases for threads arise when we have several completely
independent tasks that we’d like to do at once.

For example, suppose we’re doing natural language processing on a large
corpus of documents. We could write a loop:

fn process_files(filenames: Vec<String>) -> io::Result<()> {
 for document in filenames {
 let text = load(&document)?; // read source file
 let results = process(text); // compute statistics
 save(&document, results)?; // write output file
 }
 Ok(())
}

The program would run as shown in Figure 19-1.

Figure 19-1. Single-threaded execution of process_files()

Since each document is processed separately, it’s relatively easy to speed this
task up by splitting the corpus into chunks and processing each chunk on a
separate thread, as shown in Figure 19-2.

This pattern is called fork-join parallelism. To fork is to start a new thread,
and to join a thread is to wait for it to finish. We’ve already seen this
technique: we used it to speed up the Mandelbrot program in Chapter 2.

Fork-join parallelism is attractive for a few reasons:

It’s dead simple. Fork-join is easy to implement, and Rust makes it
easy to get right.

It avoids bottlenecks. There’s no locking of shared resources in fork-
join. The only time any thread has to wait for another is at the end.
In the meantime, each thread can run freely. This helps keep task-
switching overhead low.

The performance math is straightforward. In the best case, by
starting four threads, we can finish our work in a quarter of the time.
Figure 19-2 shows one reason we shouldn’t expect this ideal
speedup: we might not be able to distribute the work evenly across
all threads. Another reason for caution is that sometimes fork-join
programs must spend some time after the threads join combining the
results computed by the threads. That is, isolating the tasks
completely may make some extra work. Still, apart from those two
things, any CPU-bound program with isolated units of work can
expect a significant boost.

It’s easy to reason about program correctness. A fork-join program is
deterministic as long as the threads are really isolated, like the
compute threads in the Mandelbrot program. The program always
produces the same result, regardless of variations in thread speed.
It’s a concurrency model without race conditions.

Figure 19-2. Multithreaded file processing using a fork-join approach

The main disadvantage of fork-join is that it requires isolated units of work.
Later in this chapter, we’ll consider some problems that don’t split up so
cleanly.

For now, let’s stick with the natural language processing example. We’ll
show a few ways of applying the fork-join pattern to the process_files
function.

spawn and join
The function std::thread::spawn starts a new thread:

use std::thread;

thread::spawn(|| {
 println!("hello from a child thread");
});

It takes one argument, an FnOnce closure or function. Rust starts a new
thread to run the code of that closure or function. The new thread is a real
operating system thread with its own stack, just like threads in C++, C#, and
Java.

Here’s a more substantial example, using spawn to implement a parallel
version of the process_files function from before:

use std::{thread, io};

fn process_files_in_parallel(filenames: Vec<String>) -> io::Result<()> {
 // Divide the work into several chunks.
 const NTHREADS: usize = 8;
 let worklists = split_vec_into_chunks(filenames, NTHREADS);

 // Fork: Spawn a thread to handle each chunk.
 let mut thread_handles = vec![];
 for worklist in worklists {
 thread_handles.push(
 thread::spawn(move || process_files(worklist))
);
 }

 // Join: Wait for all threads to finish.
 for handle in thread_handles {
 handle.join().unwrap()?;
 }

 Ok(())
}

Let’s take this function line by line.

fn process_files_in_parallel(filenames: Vec<String>) -> io::Result<()> {

Our new function has the same type signature as the original process_files,
making it a handy drop-in replacement.

 // Divide the work into several chunks.
 const NTHREADS: usize = 8;
 let worklists = split_vec_into_chunks(filenames, NTHREADS);

We use a utility function split_vec_into_chunks, not shown here, to divide up
the work. The result, worklists, is a vector of vectors. It contains eight evenly
sized portions of the original vector filenames.

 // Fork: Spawn a thread to handle each chunk.
 let mut thread_handles = vec![];
 for worklist in worklists {
 thread_handles.push(
 thread::spawn(move || process_files(worklist))
);
 }

We spawn a thread for each worklist. spawn() returns a value called a
JoinHandle, which we’ll use later. For now, we put all the JoinHandles into a
vector.

Note how we get the list of filenames into the worker thread:

worklist is defined and populated by the for loop, in the parent
thread.

As soon as the move closure is created, worklist is moved into the
closure.

spawn then moves the closure (including the worklist vector) over to
the new child thread.

These moves are cheap. Like the Vec<String> moves we discussed in
Chapter 4, the Strings are not cloned. In fact, nothing is allocated or freed.
The only data moved is the Vec itself: three machine words.

Most every thread you create needs both code and data to get started. Rust
closures, conveniently, contain whatever code you want and whatever data
you want.

Moving on:

 // Join: Wait for all threads to finish.
 for handle in thread_handles {
 handle.join().unwrap()?;
 }

We use the .join() method of the JoinHandles we collected earlier to wait for
all eight threads to finish. Joining threads is often necessary for correctness,
because a Rust program exits as soon as main returns, even if other threads
are still running. Destructors are not called; the extra threads are just killed. If
this isn’t what you want, be sure to join any threads you care about before
returning from main.

If we manage to get through this loop, it means all eight child threads
finished successfully. Our function therefore ends by returning Ok(()):

 Ok(())
}

Error Handling Across Threads
The code we used to join the child threads in our example is trickier than it
looks, because of error handling. Let’s revisit that line of code:

handle.join().unwrap()?;

The .join() method does two neat things for us.

First, handle.join() returns a std::thread::Result that’s an error if the child
thread panicked. This makes threading in Rust dramatically more robust than
in C++. In C++, an out-of-bounds array access is undefined behavior, and
there’s no protecting the rest of the system from the consequences. In Rust,
panic is safe and per thread. The boundaries between threads serve as a
firewall for panic; panic doesn’t automatically spread from one thread to the
threads that depend on it. Instead, a panic in one thread is reported as an error
Result in other threads. The program as a whole can easily recover.

In our program, though, we don’t attempt any fancy panic handling. Instead,
we immediately use .unwrap() on this Result, asserting that it is an Ok result
and not an Err result. If a child thread did panic, then this assertion would
fail, so the parent thread would panic too. We’re explicitly propagating panic
from the child threads to the parent thread.

Second, handle.join() passes the return value from the child thread back to
the parent thread. The closure we passed to spawn has a return type of
io::Result<()>, because that’s what process_files returns. This return value
isn’t discarded. When the child thread is finished, its return value is saved,
and JoinHandle::join() transfers that value back to the parent thread.

The full type that’s returned by handle.join() in this program is
std::thread::Result<std::io::Result<()>>. The thread::Result is part of the
spawn/join API; the io::Result is part of our app.

In our case, after unwrapping the thread::Result, we use the ? operator on the
io::Result, explicitly propagating I/O errors from the child threads to the
parent thread.

All of this may seem rather intricate. But consider that it’s just one line of
code, and then compare this with other languages. The default behavior in
Java and C# is for exceptions in child threads to be dumped to the terminal
and then forgotten. In C++, the default is to abort the process. In Rust, errors
are Result values (data) instead of exceptions (control flow). They’re
delivered across threads just like any other value. Any time you use low-level
threading APIs, you end up having to write careful error-handling code, but
given that you have to write it, Result is very nice to have around.

Sharing Immutable Data Across Threads
Suppose the analysis we’re doing requires a large database of English words
and phrases:

// before
fn process_files(filenames: Vec<String>)

// after
fn process_files(filenames: Vec<String>, glossary: &GigabyteMap)

This glossary is going to be big, so we’re passing it in by reference. How can
we update process_files_in_parallel to pass the glossary through to the
worker threads?

The obvious change does not work:

fn process_files_in_parallel(filenames: Vec<String>,
 glossary: &GigabyteMap)
 -> io::Result<()>
{
 ...
 for worklist in worklists {
 thread_handles.push(
 spawn(move || process_files(worklist, glossary)) // error
);
 }
 ...
}

We’ve simply added a glossary argument to our function and passed it along
to process_files. Rust complains:

error: explicit lifetime required in the type of `glossary`
 |
38 | spawn(move || process_files(worklist, glossary)) // error
 | ^^^^^ lifetime `'static` required

Rust is complaining about the lifetime of the closure we’re passing to spawn,
and the “helpful” message the compiler presents here is actually no help at

all.

spawn launches independent threads. Rust has no way of knowing how long
the child thread will run, so it assumes the worst: it assumes the child thread
may keep running even after the parent thread has finished and all values in
the parent thread are gone. Obviously, if the child thread is going to last that
long, the closure it’s running needs to last that long too. But this closure has a
bounded lifetime: it depends on the reference glossary, and references don’t
last forever.

Note that Rust is right to reject this code! The way we’ve written this
function, it is possible for one thread to hit an I/O error, causing
process_files_in_parallel to bail out before the other threads are finished.
Child threads could end up trying to use the glossary after the main thread
has freed it. It would be a race—with undefined behavior as the prize, if the
main thread should win. Rust can’t allow this.

It seems spawn is too open-ended to support sharing references across
threads. Indeed, we already saw a case like this, in “Closures That Steal”.
There, our solution was to transfer ownership of the data to the new thread,
using a move closure. That won’t work here, since we have many threads that
all need to use the same data. One safe alternative is to clone the whole
glossary for each thread, but since it’s large, we want to avoid that.
Fortunately, the standard library provides another way: atomic reference
counting.

We described Arc in “Rc and Arc: Shared Ownership”. It’s time to put it to
use:

use std::sync::Arc;

fn process_files_in_parallel(filenames: Vec<String>,
 glossary: Arc<GigabyteMap>)
 -> io::Result<()>
{
 ...
 for worklist in worklists {
 // This call to .clone() only clones the Arc and bumps the
 // reference count. It does not clone the GigabyteMap.
 let glossary_for_child = glossary.clone();

 thread_handles.push(
 spawn(move || process_files(worklist, &glossary_for_child))
);
 }
 ...
}

We have changed the type of glossary: to run the analysis in parallel, the
caller must pass in an Arc<GigabyteMap>, a smart pointer to a GigabyteMap
that’s been moved into the heap, by using Arc::new(giga_map).

When we call glossary.clone(), we are making a copy of the Arc smart
pointer, not the whole GigabyteMap. This amounts to incrementing a
reference count.

With this change, the program compiles and runs, because it no longer
depends on reference lifetimes. As long as any thread owns an
Arc<GigabyteMap>, it will keep the map alive, even if the parent thread bails
out early. There won’t be any data races, because data in an Arc is
immutable.

Rayon
The standard library’s spawn function is an important primitive, but it’s not
designed specifically for fork-join parallelism. Better fork-join APIs have
been built on top of it. For example, in Chapter 2 we used the Crossbeam
library to split some work across eight threads. Crossbeam’s scoped threads
support fork-join parallelism quite naturally.

The Rayon library, by Niko Matsakis and Josh Stone, is another example. It
provides two ways of running tasks concurrently:

use rayon::prelude::*;

// "do 2 things in parallel"
let (v1, v2) = rayon::join(fn1, fn2);

// "do N things in parallel"
giant_vector.par_iter().for_each(|value| {
 do_thing_with_value(value);
});

rayon::join(fn1, fn2) simply calls both functions and returns both results. The
.par_iter() method creates a ParallelIterator, a value with map, filter, and
other methods, much like a Rust Iterator. In both cases, Rayon uses its own
pool of worker threads to spread out the work when possible. You simply tell
Rayon what tasks can be done in parallel; Rayon manages threads and
distributes the work as best it can.

The diagrams in Figure 19-3 illustrate two ways of thinking about the call
giant_vector.par_iter().for_each(...). (a) Rayon acts as though it spawns one
thread per element in the vector. (b) Behind the scenes, Rayon has one
worker thread per CPU core, which is more efficient. This pool of worker
threads is shared by all your program’s threads. When thousands of tasks
come in at once, Rayon divides the work.

Figure 19-3. Rayon in theory and practice

Here’s a version of process_files_in_parallel using Rayon and a process_file
that takes, rather than Vec<String>, just a &str:

use rayon::prelude::*;

fn process_files_in_parallel(filenames: Vec<String>, glossary: &GigabyteMap)
 -> io::Result<()>
{
 filenames.par_iter()
 .map(|filename| process_file(filename, glossary))
 .reduce_with(|r1, r2| {
 if r1.is_err() { r1 } else { r2 }
 })
 .unwrap_or(Ok(()))
}

This code is shorter and less tricky than the version using std::thread::spawn.
Let’s look at it line by line:

First, we use filenames.par_iter() to create a parallel iterator.

We use .map() to call process_file on each filename. This produces a
ParallelIterator over a sequence of io::Result<()> values.

We use .reduce_with() to combine the results. Here we’re keeping
the first error, if any, and discarding the rest. If we wanted to
accumulate all the errors, or print them, we could do that here.

The .reduce_with() method is also handy when you pass a .map()
closure that returns a useful value on success. Then you can pass
.reduce_with() a closure that knows how to combine two success
results.

reduce_with returns an Option that is None only if filenames was
empty. We use the Option’s .unwrap_or() method to make the result
Ok(()) in that case.

Behind the scenes, Rayon balances workloads across threads dynamically,
using a technique called work-stealing. It will typically do a better job
keeping all the CPUs busy than we can do by manually dividing the work in
advance, as in “spawn and join”.

As a bonus, Rayon supports sharing references across threads. Any parallel
processing that happens behind the scenes is guaranteed to be finished by the
time reduce_with returns. This explains why we were able to pass glossary to
process_file even though that closure will be called on multiple threads.

(Incidentally, it’s no coincidence that we’ve used a map method and a reduce
method. The MapReduce programming model, popularized by Google and
Apache Hadoop, has a lot in common with fork-join. It can be seen as a fork-
join approach to querying distributed data.)

Revisiting the Mandelbrot Set
Back in Chapter 2, we used fork-join concurrency to render the Mandelbrot
set. This made rendering four times as fast—impressive, but not as
impressive as it could be, considering that we had the program spawn eight
worker threads and ran it on an eight-core machine!

The problem is that we didn’t distribute the workload evenly. Computing one
pixel of the image amounts to running a loop (see “What the Mandelbrot Set
Actually Is”). It turns out that the pale gray parts of the image, where the loop
quickly exits, are much faster to render than the black parts, where the loop
runs the full 255 iterations. So although we split the area into equal-sized
horizontal bands, we were creating unequal workloads, as Figure 19-4 shows.

Figure 19-4. Uneven work distribution in the Mandelbrot program

This is easy to fix using Rayon. We can just fire off a parallel task for each
row of pixels in the output. This creates several hundred tasks that Rayon can
distribute across its threads. Thanks to work-stealing, it won’t matter that the

tasks vary in size. Rayon will balance the work as it goes.

Here is the code. The first line and the last line are part of the main function
we showed back in “A Concurrent Mandelbrot Program”, but we’ve changed
the rendering code, which is everything in between:

let mut pixels = vec![0; bounds.0 * bounds.1];

// Scope of slicing up `pixels` into horizontal bands.
{
 let bands: Vec<(usize, &mut [u8])> = pixels
 .chunks_mut(bounds.0)
 .enumerate()
 .collect();

 bands.into_par_iter()
 .for_each(|(i, band)| {
 let top = i;
 let band_bounds = (bounds.0, 1);
 let band_upper_left = pixel_to_point(bounds, (0, top),
 upper_left, lower_right);
 let band_lower_right = pixel_to_point(bounds, (bounds.0, top + 1),
 upper_left, lower_right);
 render(band, band_bounds, band_upper_left, band_lower_right);
 });
}

write_image(&args[1], &pixels, bounds).expect("error writing PNG file");

First, we create bands, the collection of tasks that we will be passing to
Rayon. Each task is just a tuple of type (usize, &mut [u8]): the row number,
since the computation requires that, and the slice of pixels to fill in. We use
the chunks_mut method to break the image buffer into rows, enumerate to
attach a row number to each row, and collect to slurp all the number-slice
pairs into a vector. (We need a vector because Rayon creates parallel iterators
only out of arrays and vectors.)

Next, we turn bands into a parallel iterator, and use the .for_each() method to
tell Rayon what work we want done.

Since we’re using Rayon, we must add this line to main.rs:

use rayon::prelude::*;

and this to Cargo.toml:

[dependencies]
rayon = "1"

With these changes, the program now uses about 7.75 cores on an 8-core
machine. It’s 75% faster than before, when we were dividing the work
manually. And the code is a little shorter, reflecting the benefits of letting a
crate do a job (work distribution) rather than doing it ourselves.

Channels
A channel is a one-way conduit for sending values from one thread to
another. In other words, it’s a thread-safe queue.

Figure 19-5 illustrates how channels are used. They’re something like Unix
pipes: one end is for sending data, and the other is for receiving. The two
ends are typically owned by two different threads. But whereas Unix pipes
are for sending bytes, channels are for sending Rust values. sender.send(item)
puts a single value into the channel; receiver.recv() removes one. Ownership
is transferred from the sending thread to the receiving thread. If the channel is
empty, receiver.recv() blocks until a value is sent.

Figure 19-5. A channel for Strings: ownership of the string msg is transferred from thread 1 to thread
2.

With channels, threads can communicate by passing values to one another.
It’s a very simple way for threads to work together without using locking or
shared memory.

This is not a new technique. Erlang has had isolated processes and message

passing for 30 years now. Unix pipes have been around for almost 50 years.
We tend to think of pipes as providing flexibility and composability, not
concurrency, but in fact, they do all of the above. An example of a Unix
pipeline is shown in Figure 19-6. It is certainly possible for all three
programs to be working at the same time.

Rust channels are faster than Unix pipes. Sending a value moves it rather
than copying it, and moves are fast even when you’re moving data structures
that contain many megabytes of data.

Figure 19-6. Execution of a Unix pipeline

Sending Values
Over the next few sections, we’ll use channels to build a concurrent program
that creates an inverted index, one of the key ingredients of a search engine.
Every search engine works on a particular collection of documents. The
inverted index is the database that tells which words appear where.

We’ll show the parts of the code that have to do with threads and channels.
The complete program is short, about a thousand lines of code all told.

Our program is structured as a pipeline, as shown in Figure 19-7. Pipelines
are only one of the many ways to use channels—we’ll discuss a few other
uses later—but they’re a straightforward way to introduce concurrency into
an existing single-threaded program.

We’ll use a total of five threads, each doing a distinct task. Each thread
produces output continually over the lifetime of the program. The first thread,
for example, simply reads the source documents from disk into memory, one
by one. (We want a thread to do this because we’ll be writing the simplest
possible code here, using fs::read_to_string, which is a blocking API. We
don’t want the CPU to sit idle whenever the disk is working.) The output of
this stage is one long String per document, so this thread is connected to the
next thread by a channel of Strings.

https://oreil.ly/yF3me

Figure 19-7. The index builder pipeline, where the arrows represent values sent via a channel from one
thread to another (disk I/O is not shown)

Our program will begin by spawning the thread that reads files. Suppose
documents is a Vec<PathBuf>, a vector of filenames. The code to start our
file-reading thread looks like this:

use std::{fs, thread};
use std::sync::mpsc;

let (sender, receiver) = mpsc::channel();

let handle = thread::spawn(move || {
 for filename in documents {
 let text = fs::read_to_string(filename)?;

 if sender.send(text).is_err() {
 break;
 }
 }
 Ok(())
});

Channels are part of the std::sync::mpsc module. We’ll explain what this
name means later; first, let’s look at how this code works. We start by
creating a channel:

let (sender, receiver) = mpsc::channel();

The channel function returns a pair of values: a sender and a receiver. The
underlying queue data structure is an implementation detail that the standard
library does not expose.

Channels are typed. We’re going to use this channel to send the text of each
file, so we have a sender of type Sender<String> and a receiver of type
Receiver<String>. We could have explicitly asked for a channel of strings, by
writing mpsc::channel::<String>(). Instead, we let Rust’s type inference
figure it out.

let handle = thread::spawn(move || {

As before, we’re using std::thread::spawn to start a thread. Ownership of

sender (but not receiver) is transferred to the new thread via this move
closure.

The next few lines of code simply read files from disk:

 for filename in documents {
 let text = fs::read_to_string(filename)?;

After successfully reading a file, we send its text into the channel:

 if sender.send(text).is_err() {
 break;
 }
 }

sender.send(text) moves the value text into the channel. Ultimately, it will be
moved again to whoever receives the value. Whether text contains 10 lines of
text or 10 megabytes, this operation copies three machine words (the size of a
String struct), and the corresponding receiver.recv() call will also copy three
machine words.

The send and recv methods both return Results, but these methods fail only if
the other end of the channel has been dropped. A send call fails if the
Receiver has been dropped, because otherwise the value would sit in the
channel forever: without a Receiver, there’s no way for any thread to receive
it. Likewise, a recv call fails if there are no values waiting in the channel and
the Sender has been dropped, because otherwise recv would wait forever:
without a Sender, there’s no way for any thread to send the next value.
Dropping your end of a channel is the normal way of “hanging up,” closing
the connection when you’re done with it.

In our code, sender.send(text) will fail only if the receiver’s thread has exited
early. This is typical for code that uses channels. Whether that happened
deliberately or due to an error, it’s OK for our reader thread to quietly shut
itself down.

When that happens, or the thread finishes reading all the documents, it
returns Ok(()):

 Ok(())
});

Note that this closure returns a Result. If the thread encounters an I/O error, it
exits immediately, and the error is stored in the thread’s JoinHandle.

Of course, just like any other programming language, Rust admits many other
possibilities when it comes to error handling. When an error happens, we
could just print it out using println! and move on to the next file. We could
pass errors along via the same channel that we’re using for data, making it a
channel of Results—or create a second channel just for errors. The approach
we’ve chosen here is both lightweight and responsible: we get to use the ?
operator, so there’s not a bunch of boilerplate code, or even an explicit
try/catch as you might see in Java, and yet errors won’t pass silently.

For convenience, our program wraps all of this code in a function that returns
both the receiver (which we haven’t used yet) and the new thread’s
JoinHandle:

fn start_file_reader_thread(documents: Vec<PathBuf>)
 -> (mpsc::Receiver<String>, thread::JoinHandle<io::Result<()>>)
{
 let (sender, receiver) = mpsc::channel();

 let handle = thread::spawn(move || {
 ...
 });

 (receiver, handle)
}

Note that this function launches the new thread and immediately returns.
We’ll write a function like this for each stage of our pipeline.

Receiving Values
Now we have a thread running a loop that sends values. We can spawn a
second thread running a loop that calls receiver.recv():

while let Ok(text) = receiver.recv() {
 do_something_with(text);
}

But Receivers are iterable, so there’s a nicer way to write this:

for text in receiver {
 do_something_with(text);
}

These two loops are equivalent. Either way we write it, if the channel
happens to be empty when control reaches the top of the loop, the receiving
thread will block until some other thread sends a value. The loop will exit
normally when the channel is empty and the Sender has been dropped. In our
program, that happens naturally when the reader thread exits. That thread is
running a closure that owns the variable sender; when the closure exits,
sender is dropped.

Now we can write code for the second stage of the pipeline:

fn start_file_indexing_thread(texts: mpsc::Receiver<String>)
 -> (mpsc::Receiver<InMemoryIndex>, thread::JoinHandle<()>)
{
 let (sender, receiver) = mpsc::channel();

 let handle = thread::spawn(move || {
 for (doc_id, text) in texts.into_iter().enumerate() {
 let index = InMemoryIndex::from_single_document(doc_id, text);
 if sender.send(index).is_err() {
 break;
 }
 }
 });

 (receiver, handle)

}

This function spawns a thread that receives String values from one channel
(texts) and sends InMemoryIndex values to another channel
(sender/receiver). This thread’s job is to take each of the files loaded in the
first stage and turn each document into a little one-file, in-memory inverted
index.

The main loop of this thread is straightforward. All the work of indexing a
document is done by the function InMemoryIndex::from_single_document.
We won’t show its source code here, but it splits the input string at word
boundaries and then produces a map from words to lists of positions.

This stage doesn’t perform I/O, so it doesn’t have to deal with io::Errors.
Instead of an io::Result<()>, it returns ().

Running the Pipeline
The remaining three stages are similar in design. Each one consumes a
Receiver created by the previous stage. Our goal for the rest of the pipeline is
to merge all the small indexes into a single large index file on disk. The
fastest way we found to do this is in three stages. We won’t show the code
here, just the type signatures of these three functions. The full source is
online.

First, we merge indexes in memory until they get unwieldy (stage 3):

fn start_in_memory_merge_thread(file_indexes: mpsc::Receiver<InMemoryIndex>)
 -> (mpsc::Receiver<InMemoryIndex>, thread::JoinHandle<()>)

We write these large indexes to disk (stage 4):

fn start_index_writer_thread(big_indexes: mpsc::Receiver<InMemoryIndex>,
 output_dir: &Path)
 -> (mpsc::Receiver<PathBuf>, thread::JoinHandle<io::Result<()>>)

Finally, if we have multiple large files, we merge them using a file-based
merging algorithm (stage 5):

fn merge_index_files(files: mpsc::Receiver<PathBuf>, output_dir: &Path)
 -> io::Result<()>

This last stage does not return a Receiver, because it’s the end of the line. It
produces a single output file on disk. It doesn’t return a JoinHandle, because
we don’t bother spawning a thread for this stage. The work is done on the
caller’s thread.

Now we come to the code that launches the threads and checks for errors:

fn run_pipeline(documents: Vec<PathBuf>, output_dir: PathBuf)
 -> io::Result<()>
{
 // Launch all five stages of the pipeline.
 let (texts, h1) = start_file_reader_thread(documents);

 let (pints, h2) = start_file_indexing_thread(texts);
 let (gallons, h3) = start_in_memory_merge_thread(pints);
 let (files, h4) = start_index_writer_thread(gallons, &output_dir);
 let result = merge_index_files(files, &output_dir);

 // Wait for threads to finish, holding on to any errors that they encounter.
 let r1 = h1.join().unwrap();
 h2.join().unwrap();
 h3.join().unwrap();
 let r4 = h4.join().unwrap();

 // Return the first error encountered, if any.
 // (As it happens, h2 and h3 can't fail: those threads
 // are pure in-memory data processing.)
 r1?;
 r4?;
 result
}

As before, we use .join().unwrap() to explicitly propagate panics from child
threads to the main thread. The only other unusual thing here is that instead
of using ? right away, we set aside the io::Result values until we’ve joined all
four threads.

This pipeline is 40% faster than the single-threaded equivalent. That’s not
bad for an afternoon’s work, but paltry looking next to the 675% boost we
got for the Mandelbrot program. We clearly haven’t saturated either the
system’s I/O capacity or all the CPU cores. What’s going on?

Pipelines are like assembly lines in a manufacturing plant: performance is
limited by the throughput of the slowest stage. A brand-new, untuned
assembly line may be as slow as unit production, but assembly lines reward
targeted tuning. In our case, measurement shows that the second stage is the
bottleneck. Our indexing thread uses .to_lowercase() and .is_alphanumeric(),
so it spends a lot of time poking around in Unicode tables. The other stages
downstream from indexing spend most of their time asleep in Receiver::recv,
waiting for input.

This means we should be able to go faster. As we address the bottlenecks, the
degree of parallelism will rise. Now that you know how to use channels and
our program is made of isolated pieces of code, it’s easy to see ways to

address this first bottleneck. We could hand-optimize the code for the second
stage, just like any other code; break up the work into two or more stages; or
run multiple file-indexing threads at once.

Channel Features and Performance
The mpsc part of std::sync::mpsc stands for multiproducer, single-consumer,
a terse description of the kind of communication Rust’s channels provide.

The channels in our sample program carry values from a single sender to a
single receiver. This is a fairly common case. But Rust channels also support
multiple senders, in case you need, say, a single thread that handles requests
from many client threads, as shown in Figure 19-8.

Figure 19-8. A single channel receiving requests from many senders

Sender<T> implements the Clone trait. To get a channel with multiple
senders, simply create a regular channel and clone the sender as many times
as you like. You can move each Sender value to a different thread.

A Receiver<T> can’t be cloned, so if you need to have multiple threads
receiving values from the same channel, you need a Mutex. We’ll show how
to do it later in this chapter.

Rust channels are carefully optimized. When a channel is first created, Rust
uses a special “one-shot” queue implementation. If you only ever send one

object through the channel, the overhead is minimal. If you send a second
value, Rust switches to a different queue implementation. It’s settling in for
the long haul, really, preparing the channel to transfer many values while
minimizing allocation overhead. And if you clone the Sender, Rust must fall
back on yet another implementation, one that is safe when multiple threads
are trying to send values at once. But even the slowest of these three
implementations is a lock-free queue, so sending or receiving a value is at
most a few atomic operations and a heap allocation, plus the move itself.
System calls are needed only when the queue is empty and the receiving
thread therefore needs to put itself to sleep. In this case, of course, traffic
through your channel is not maxed out anyway.

Despite all that optimization work, there is one mistake that’s very easy for
applications to make around channel performance: sending values faster than
they can be received and processed. This causes an ever-growing backlog of
values to accumulate in the channel. For example, in our program, we found
that the file reader thread (stage 1) could load files much faster than the file
indexing thread (stage 2) could index them. The result is that hundreds of
megabytes of raw data would be read from disk and stuffed in the queue at
once.

This kind of misbehavior costs memory and hurts locality. Even worse, the
sending thread keeps running, using up CPU and other system resources to
send ever more values just when those resources are most needed on the
receiving end.

Here Rust again takes a page from Unix pipes. Unix uses an elegant trick to
provide some backpressure so that fast senders are forced to slow down: each
pipe on a Unix system has a fixed size, and if a process tries to write to a pipe
that’s momentarily full, the system simply blocks that process until there’s
room in the pipe. The Rust equivalent is called a synchronous channel:

use std::sync::mpsc;

let (sender, receiver) = mpsc::sync_channel(1000);

A synchronous channel is exactly like a regular channel except that when you

create it, you specify how many values it can hold. For a synchronous
channel, sender.send(value) is potentially a blocking operation. After all, the
idea is that blocking is not always bad. In our example program, changing the
channel in start_file_reader_thread to a sync_channel with room for 32
values cut memory usage by two-thirds on our benchmark data set, without
decreasing throughput.

Thread Safety: Send and Sync
So far we’ve been acting as though all values can be freely moved and shared
across threads. This is mostly true, but Rust’s full thread safety story hinges
on two built-in traits, std::marker::Send and std::marker::Sync.

Types that implement Send are safe to pass by value to another
thread. They can be moved across threads.

Types that implement Sync are safe to pass by non-mut reference to
another thread. They can be shared across threads.

By safe here, we mean the same thing we always mean: free from data races
and other undefined behavior.

For example, in the process_files_in_parallel example , we used a closure to
pass a Vec<String> from the parent thread to each child thread. We didn’t
point it out at the time, but this means the vector and its strings are allocated
in the parent thread, but freed in the child thread. The fact that Vec<String>
implements Send is an API promise that this is OK: the allocator used
internally by Vec and String is thread-safe.

(If you were to write your own Vec and String types with fast but non-thread-
safe allocators, you would have to implement them using types that are not
Send, such as unsafe pointers. Rust would then infer that your
NonThreadSafeVec and NonThreadSafeString types are not Send and restrict
them to single-threaded use. But that’s a rare case.)

As Figure 19-9 illustrates, most types are both Send and Sync. You don’t
even have to use #[derive] to get these traits on structs and enums in your
program. Rust does it for you. A struct or enum is Send if its fields are Send,
and Sync if its fields are Sync.

Some types are Send, but not Sync. This is generally on purpose, as in the
case of mpsc::Receiver, where it guarantees that the receiving end of an mpsc
channel is used by only one thread at a time.

The few types that are neither Send nor Sync are mostly those that use

mutability in a way that isn’t thread-safe. For example, consider
std::rc::Rc<T>, the type of reference-counting smart pointers.

Figure 19-9. Send and Sync types

What would happen if Rc<String> were Sync, allowing threads to share a
single Rc via shared references? If both threads happen to try to clone the Rc
at the same time, as shown in Figure 19-10, we have a data race as both
threads increment the shared reference count. The reference count could
become inaccurate, leading to a use-after-free or double free later—undefined
behavior.

Figure 19-10. Why Rc<String> is neither Sync nor Send

Of course, Rust prevents this. Here’s the code to set up this data race:

use std::thread;
use std::rc::Rc;

fn main() {
 let rc1 = Rc::new("ouch".to_string());
 let rc2 = rc1.clone();
 thread::spawn(move || { // error
 rc2.clone();
 });
 rc1.clone();
}

Rust refuses to compile it, giving a detailed error message:

error: `Rc<String>` cannot be sent between threads safely
 |
10 | thread::spawn(move || { // error
 | ^^^^^ `Rc<String>` cannot be sent between threads safely
 |

 = help: the trait `std::marker::Send` is not implemented for `Rc<String>`
 = note: required because it appears within the type `[closure@...]`
 = note: required by `std::thread::spawn`

Now you can see how Send and Sync help Rust enforce thread safety. They
appear as bounds in the type signature of functions that transfer data across
thread boundaries. When you spawn a thread, the closure you pass must be
Send, which means all the values it contains must be Send. Similarly, if you
want to send values through a channel to another thread, the values must be
Send.

Piping Almost Any Iterator to a Channel
Our inverted index builder is built as a pipeline. The code is clear enough, but
it has us manually setting up channels and launching threads. By contrast, the
iterator pipelines we built in Chapter 15 seemed to pack a lot more work into
just a few lines of code. Can we build something like that for thread
pipelines?

In fact, it would be nice if we could unify iterator pipelines and thread
pipelines. Then our index builder could be written as an iterator pipeline. It
might start like this:

documents.into_iter()
 .map(read_whole_file)
 .errors_to(error_sender) // filter out error results
 .off_thread() // spawn a thread for the above work
 .map(make_single_file_index)
 .off_thread() // spawn another thread for stage 2
 ...

Traits allow us to add methods to standard library types, so we can actually
do this. We start by writing a trait that declares the method we want:

use std::sync::mpsc;

pub trait OffThreadExt: Iterator {
 /// Transform this iterator into an off-thread iterator: the
 /// `next()` calls happen on a separate worker thread, so the
 /// iterator and the body of your loop run concurrently.
 fn off_thread(self) -> mpsc::IntoIter<Self::Item>;
}

Then we implement this trait for iterator types. It helps that mpsc::Receiver is
already iterable:

use std::thread;

impl<T> OffThreadExt for T
 where T: Iterator + Send + 'static,
 T::Item: Send + 'static

{
 fn off_thread(self) -> mpsc::IntoIter<Self::Item> {
 // Create a channel to transfer items from the worker thread.
 let (sender, receiver) = mpsc::sync_channel(1024);

 // Move this iterator to a new worker thread and run it there.
 thread::spawn(move || {
 for item in self {
 if sender.send(item).is_err() {
 break;
 }
 }
 });

 // Return an iterator that pulls values from the channel.
 receiver.into_iter()
 }
}

The where clause in this code was determined via a process much like the
one described in “Reverse-Engineering Bounds”. At first, we just had this:

impl<T> OffThreadExt for T

That is, we wanted the implementation to work for all iterators. Rust was
having none of it. Because we’re using spawn to move an iterator of type T to
a new thread, we must specify T: Iterator + Send + 'static. Because we’re
sending the items back over a channel, we must specify T::Item: Send +
'static. With these changes, Rust was satisfied.

This is Rust’s character in a nutshell: we’re free to add a concurrency power
tool to almost every iterator in the language—but not without first
understanding and documenting the restrictions that make it safe to use.

Beyond Pipelines
In this section, we used pipelines as our examples because pipelines are a
nice, obvious way to use channels. Everyone understands them. They’re
concrete, practical, and deterministic. Channels are useful for more than just
pipelines, though. They’re also a quick, easy way to offer any asynchronous
service to other threads in the same process.

For example, suppose you’d like to do logging on its own thread, as in
Figure 19-8. Other threads could send log messages to the logging thread
over a channel; since you can clone the channel’s Sender, many client threads
can have senders that ship log messages to the same logging thread.

Running a service like logging on its own thread has advantages. The logging
thread can rotate log files whenever it needs to. It doesn’t have to do any
fancy coordination with the other threads. Those threads won’t be blocked.
Messages will accumulate harmlessly in the channel for a moment until the
logging thread gets back to work.

Channels can also be used for cases where one thread sends a request to
another thread and needs to get some sort of response back. The first thread’s
request can be a struct or tuple that includes a Sender, a sort of self-addressed
envelope that the second thread uses to send its reply. This doesn’t mean the
interaction must be synchronous. The first thread gets to decide whether to
block and wait for the response or use the .try_recv() method to poll for it.

The tools we’ve presented so far—fork-join for highly parallel computation,
channels for loosely connecting components—are sufficient for a wide range
of applications. But we’re not done.

Shared Mutable State
In the months since you published the fern_sim crate in Chapter 8, your fern
simulation software has really taken off. Now you’re creating a multiplayer
real-time strategy game in which eight players compete to grow mostly
authentic period ferns in a simulated Jurassic landscape. The server for this
game is a massively parallel app, with requests pouring in on many threads.
How can these threads coordinate to start a game as soon as eight players are
available?

The problem to be solved here is that many threads need access to a shared
list of players who are waiting to join a game. This data is necessarily both
mutable and shared across all threads. If Rust doesn’t have shared mutable
state, where does that leave us?

You could solve this by creating a new thread whose whole job is to manage
this list. Other threads would communicate with it via channels. Of course,
this costs a thread, which has some operating system overhead.

Another option is to use the tools Rust provides for safely sharing mutable
data. Such things do exist. They’re low-level primitives that will be familiar
to any system programmer who’s worked with threads. In this section, we’ll
cover mutexes, read/write locks, condition variables, and atomic integers.
Lastly, we’ll show how to implement global mutable variables in Rust.

What Is a Mutex?
A mutex (or lock) is used to force multiple threads to take turns when
accessing certain data. We’ll introduce Rust’s mutexes in the next section.
First, it makes sense to recall what mutexes are like in other languages. A
simple use of a mutex in C++ might look like this:

// C++ code, not Rust
void FernEmpireApp::JoinWaitingList(PlayerId player) {
 mutex.Acquire();

 waitingList.push_back(player);

 // Start a game if we have enough players waiting.
 if (waitingList.size() >= GAME_SIZE) {
 vector<PlayerId> players;
 waitingList.swap(players);
 StartGame(players);
 }

 mutex.Release();
}

The calls mutex.Acquire() and mutex.Release() mark the beginning and end
of a critical section in this code. For each mutex in a program, only one
thread can be running inside a critical section at a time. If one thread is in a
critical section, all other threads that call mutex.Acquire() will block until the
first thread reaches mutex.Release().

We say that the mutex protects the data: in this case, mutex protects
waitingList. It is the programmer’s responsibility, though, to make sure every
thread always acquires the mutex before accessing the data, and releases it
afterward.

Mutexes are helpful for several reasons:

They prevent data races, situations where racing threads
concurrently read and write the same memory. Data races are
undefined behavior in C++ and Go. Managed languages like Java

and C# promise not to crash, but the results of data races are still (to
summarize) nonsense.

Even if data races didn’t exist, even if all reads and writes happened
one by one in program order, without a mutex the actions of
different threads could interleave in arbitrary ways. Imagine trying
to write code that works even if other threads modify its data while
it’s running. Imagine trying to debug it. It would be like your
program was haunted.

Mutexes support programming with invariants, rules about the
protected data that are true by construction when you set it up and
maintained by every critical section.

Of course, all of these are really the same reason: uncontrolled race
conditions make programming intractable. Mutexes bring some order to the
chaos (though not as much order as channels or fork-join).

However, in most languages, mutexes are very easy to mess up. In C++, as in
most languages, the data and the lock are separate objects. Ideally, comments
explain that every thread must acquire the mutex before touching the data:

class FernEmpireApp {
 ...

private:
 // List of players waiting to join a game. Protected by `mutex`.
 vector<PlayerId> waitingList;

 // Lock to acquire before reading or writing `waitingList`.
 Mutex mutex;
 ...
};

But even with such nice comments, the compiler can’t enforce safe access
here. When a piece of code neglects to acquire the mutex, we get undefined
behavior. In practice, this means bugs that are extremely hard to reproduce
and fix.

Even in Java, where there is some notional association between objects and

mutexes, the relationship does not run very deep. The compiler makes no
attempt to enforce it, and in practice, the data protected by a lock is rarely
exactly the associated object’s fields. It often includes data in several objects.
Locking schemes are still tricky. Comments are still the main tool for
enforcing them.

Mutex<T>
Now we’ll show an implementation of the waiting list in Rust. In our Fern
Empire game server, each player has a unique ID:

type PlayerId = u32;

The waiting list is just a collection of players:

const GAME_SIZE: usize = 8;

/// A waiting list never grows to more than GAME_SIZE players.
type WaitingList = Vec<PlayerId>;

The waiting list is stored as a field of the FernEmpireApp, a singleton that’s
set up in an Arc during server startup. Each thread has an Arc pointing to it. It
contains all the shared configuration and other flotsam our program needs.
Most of that is read-only. Since the waiting list is both shared and mutable, it
must be protected by a Mutex:

use std::sync::Mutex;

/// All threads have shared access to this big context struct.
struct FernEmpireApp {
 ...
 waiting_list: Mutex<WaitingList>,
 ...
}

Unlike C++, in Rust the protected data is stored inside the Mutex. Setting up
the Mutex looks like this:

use std::sync::Arc;

let app = Arc::new(FernEmpireApp {
 ...
 waiting_list: Mutex::new(vec![]),
 ...
});

Creating a new Mutex looks like creating a new Box or Arc, but while Box
and Arc signify heap allocation, Mutex is solely about locking. If you want
your Mutex to be allocated in the heap, you have to say so, as we’ve done
here by using Arc::new for the whole app and Mutex::new just for the
protected data. These types are commonly used together: Arc is handy for
sharing things across threads, and Mutex is handy for mutable data that’s
shared across threads.

Now we can implement the join_waiting_list method that uses the mutex:

impl FernEmpireApp {
 /// Add a player to the waiting list for the next game.
 /// Start a new game immediately if enough players are waiting.
 fn join_waiting_list(&self, player: PlayerId) {
 // Lock the mutex and gain access to the data inside.
 // The scope of `guard` is a critical section.
 let mut guard = self.waiting_list.lock().unwrap();

 // Now do the game logic.
 guard.push(player);
 if guard.len() == GAME_SIZE {
 let players = guard.split_off(0);
 self.start_game(players);
 }
 }
}

The only way to get at the data is to call the .lock() method:

let mut guard = self.waiting_list.lock().unwrap();

self.waiting_list.lock() blocks until the mutex can be obtained. The
MutexGuard<WaitingList> value returned by this method call is a thin
wrapper around a &mut WaitingList. Thanks to deref coercions, discussed ,
we can call WaitingList methods directly on the guard:

guard.push(player);

The guard even lets us borrow direct references to the underlying data. Rust’s
lifetime system ensures those references can’t outlive the guard itself. There

is no way to access the data in a Mutex without holding the lock.

When guard is dropped, the lock is released. Ordinarily that happens at the
end of the block, but you can also drop it manually:

if guard.len() == GAME_SIZE {
 let players = guard.split_off(0);
 drop(guard); // don't keep the list locked while starting a game
 self.start_game(players);
}

mut and Mutex
It may seem odd—certainly it seemed odd to us at first—that our
join_waiting_list method doesn’t take self by mut reference. Its type
signature is:

fn join_waiting_list(&self, player: PlayerId)

The underlying collection, Vec<PlayerId>, does require a mut reference
when you call its push method. Its type signature is:

pub fn push(&mut self, item: T)

And yet this code compiles and runs fine. What’s going on here?

In Rust, &mut means exclusive access. Plain & means shared access.

We’re used to types passing &mut access along from the parent to the child,
from the container to the contents. You only expect to be able to call &mut
self methods on starships[id].engine if you have a &mut reference to
starships to begin with (or you own starships, in which case congratulations
on being Elon Musk). That’s the default, because if you don’t have exclusive
access to the parent, Rust generally has no way of ensuring that you have
exclusive access to the child.

But Mutex does have a way: the lock. In fact, a mutex is little more than a
way to do exactly this, to provide exclusive (mut) access to the data inside,
even though many threads may have shared (non-mut) access to the Mutex
itself.

Rust’s type system is telling us what Mutex does. It dynamically enforces
exclusive access, something that’s usually done statically, at compile time, by
the Rust compiler.

(You may recall that std::cell::RefCell does the same, except without trying
to support multiple threads. Mutex and RefCell are both flavors of interior
mutability, which we covered .)

Why Mutexes Are Not Always a Good Idea
Before we started on mutexes, we presented some approaches to concurrency
that might have seemed weirdly easy to use correctly if you’re coming from
C++. This is no coincidence: these approaches are designed to provide strong
guarantees against the most confusing aspects of concurrent programming.
Programs that exclusively use fork-join parallelism are deterministic and
can’t deadlock. Programs that use channels are almost as well-behaved.
Those that use channels exclusively for pipelining, like our index builder, are
deterministic: the timing of message delivery can vary, but it won’t affect the
output. And so on. Guarantees about multithreaded programs are nice!

The design of Rust’s Mutex will almost certainly have you using mutexes
more systematically and more sensibly than you ever have before. But it’s
worth pausing and thinking about what Rust’s safety guarantees can and can’t
help with.

Safe Rust code cannot trigger a data race, a specific kind of bug where
multiple threads read and write the same memory concurrently, producing
meaningless results. This is great: data races are always bugs, and they are
not rare in real multithreaded programs.

However, threads that use mutexes are subject to some other problems that
Rust doesn’t fix for you:

Valid Rust programs can’t have data races, but they can still have
other race conditions—situations where a program’s behavior
depends on timing among threads and may therefore vary from run
to run. Some race conditions are benign. Some manifest as general
flakiness and incredibly hard-to-fix bugs. Using mutexes in an
unstructured way invites race conditions. It’s up to you to make sure
they’re benign.

Shared mutable state also affects program design. Where channels
serve as an abstraction boundary in your code, making it easy to
separate isolated components for testing, mutexes encourage a “just-

add-a-method” way of working that can lead to a monolithic blob of
interrelated code.

Lastly, mutexes are just not as simple as they seem at first, as the
next two sections will show.

All of these problems are inherent in the tools. Use a more structured
approach when you can; use a Mutex when you must.

Deadlock
A thread can deadlock itself by trying to acquire a lock that it’s already
holding:

let mut guard1 = self.waiting_list.lock().unwrap();
let mut guard2 = self.waiting_list.lock().unwrap(); // deadlock

Suppose the first call to self.waiting_list.lock() succeeds, taking the lock. The
second call sees that the lock is held, so it blocks, waiting for it to be
released. It will be waiting forever. The waiting thread is the one that’s
holding the lock.

To put it another way, the lock in a Mutex is not a recursive lock.

Here the bug is obvious. In a real program, the two lock() calls might be in
two different methods, one of which calls the other. The code for each
method, taken separately, would look fine. There are other ways to get
deadlock, too, involving multiple threads that each acquire multiple mutexes
at once. Rust’s borrow system can’t protect you from deadlock. The best
protection is to keep critical sections small: get in, do your work, and get out.

It’s also possible to get deadlock with channels. For example, two threads
might block, each one waiting to receive a message from the other. However,
again, good program design can give you high confidence that this won’t
happen in practice. In a pipeline, like our inverted index builder, data flow is
acyclic. Deadlock is as unlikely in such a program as in a Unix shell pipeline.

Poisoned Mutexes
Mutex::lock() returns a Result for the same reason that JoinHandle::join()
does: to fail gracefully if another thread has panicked. When we write
handle.join().unwrap(), we’re telling Rust to propagate panic from one thread
to another. The idiom mutex.lock().unwrap() is similar.

If a thread panics while holding a Mutex, Rust marks the Mutex as poisoned.
Any subsequent attempt to lock the poisoned Mutex will get an error result.
Our .unwrap() call tells Rust to panic if that happens, propagating panic from
the other thread to this one.

How bad is it to have a poisoned mutex? Poison sounds deadly, but this
scenario is not necessarily fatal. As we said in Chapter 7, panic is safe. One
panicking thread leaves the rest of the program in a safe state.

The reason mutexes are poisoned on panic, then, is not for fear of undefined
behavior. Rather, the concern is that you’ve probably been programming with
invariants. Since your program panicked and bailed out of a critical section
without finishing what it was doing, perhaps having updated some fields of
the protected data but not others, it’s possible that the invariants are now
broken. Rust poisons the mutex to prevent other threads from blundering
unwittingly into this broken situation and making it worse. You can still lock
a poisoned mutex and access the data inside, with mutual exclusion fully
enforced; see the documentation for PoisonError::into_inner(). But you won’t
do it by accident.

Multiconsumer Channels Using Mutexes
We mentioned earlier that Rust’s channels are multiple producer, single
consumer. Or to put it more concretely, a channel has only one Receiver. We
can’t have a thread pool where many threads use a single mpsc channel as a
shared worklist.

However, it turns out there is a very simple workaround, using only standard
library pieces. We can add a Mutex around the Receiver and share it anyway.
Here is a module that does so:

pub mod shared_channel {
 use std::sync::{Arc, Mutex};
 use std::sync::mpsc::{channel, Sender, Receiver};

 /// A thread-safe wrapper around a `Receiver`.
 #[derive(Clone)]
 pub struct SharedReceiver<T>(Arc<Mutex<Receiver<T>>>);

 impl<T> Iterator for SharedReceiver<T> {
 type Item = T;

 /// Get the next item from the wrapped receiver.
 fn next(&mut self) -> Option<T> {
 let guard = self.0.lock().unwrap();
 guard.recv().ok()
 }
 }

 /// Create a new channel whose receiver can be shared across threads.
 /// This returns a sender and a receiver, just like the stdlib's
 /// `channel()`, and sometimes works as a drop-in replacement.
 pub fn shared_channel<T>() -> (Sender<T>, SharedReceiver<T>) {
 let (sender, receiver) = channel();
 (sender, SharedReceiver(Arc::new(Mutex::new(receiver))))
 }
}

We’re using an Arc<Mutex<Receiver<T>>>. The generics have really piled
up. This happens more often in Rust than in C++. It might seem this would
get confusing, but often, as in this case, just reading off the names can help

explain what’s going on, as shown in Figure 19-11.

Figure 19-11. How to read a complex type

Read/Write Locks (RwLock<T>)
Now let’s move on from mutexes to the other tools provided in std::sync,
Rust’s standard library thread synchronization toolkit. We’ll move quickly,
since a complete discussion of these tools is beyond the scope of this book.

Server programs often have configuration information that is loaded once and
rarely ever changes. Most threads only query the configuration, but since the
configuration can change—it may be possible to ask the server to reload its
configuration from disk, for example—it must be protected by a lock
anyway. In cases like this, a mutex can work, but it’s an unnecessary
bottleneck. Threads shouldn’t have to take turns querying the configuration if
it’s not changing. This is a case for a read/write lock, or RwLock.

Whereas a mutex has a single lock method, a read/write lock has two locking
methods, read and write. The RwLock::write method is like Mutex::lock. It
waits for exclusive, mut access to the protected data. The RwLock::read
method provides non-mut access, with the advantage that it is less likely to
have to wait, because many threads can safely read at once. With a mutex, at
any given moment, the protected data has only one reader or writer (or none).
With a read/write lock, it can have either one writer or many readers, much
like Rust references generally.

FernEmpireApp might have a struct for configuration, protected by an
RwLock:

use std::sync::RwLock;

struct FernEmpireApp {
 ...
 config: RwLock<AppConfig>,
 ...
}

Methods that read the configuration would use RwLock::read():

/// True if experimental fungus code should be used.
fn mushrooms_enabled(&self) -> bool {

 let config_guard = self.config.read().unwrap();
 config_guard.mushrooms_enabled
}

The method to reload the configuration would use RwLock::write():

fn reload_config(&self) -> io::Result<()> {
 let new_config = AppConfig::load()?;
 let mut config_guard = self.config.write().unwrap();
 *config_guard = new_config;
 Ok(())
}

Rust, of course, is uniquely well suited to enforce the safety rules on RwLock
data. The single-writer-or-multiple-reader concept is the core of Rust’s
borrow system. self.config.read() returns a guard that provides non-mut
(shared) access to the AppConfig; self.config.write() returns a different type
of guard that provides mut (exclusive) access.

Condition Variables (Condvar)
Often a thread needs to wait until a certain condition becomes true:

During server shutdown, the main thread may need to wait until all
other threads are finished exiting.

When a worker thread has nothing to do, it needs to wait until there
is some data to process.

A thread implementing a distributed consensus protocol may need to
wait until a quorum of peers have responded.

Sometimes, there’s a convenient blocking API for the exact condition we
want to wait on, like JoinHandle::join for the server shutdown example. In
other cases, there is no built-in blocking API. Programs can use condition
variables to build their own. In Rust, the std::sync::Condvar type implements
condition variables. A Condvar has methods .wait() and .notify_all(); .wait()
blocks until some other thread calls .notify_all().

There’s a bit more to it than that, since a condition variable is always about a
particular true-or-false condition about some data protected by a particular
Mutex. This Mutex and the Condvar are therefore related. A full explanation
is more than we have room for here, but for the benefit of programmers who
have used condition variables before, we’ll show the two key bits of code.

When the desired condition becomes true, we call Condvar::notify_all (or
notify_one) to wake up any waiting threads:

self.has_data_condvar.notify_all();

To go to sleep and wait for a condition to become true, we use
Condvar::wait():

while !guard.has_data() {
 guard = self.has_data_condvar.wait(guard).unwrap();
}

This while loop is a standard idiom for condition variables. However, the
signature of Condvar::wait is unusual. It takes a MutexGuard object by value,
consumes it, and returns a new MutexGuard on success. This captures the
intuition that the wait method releases the mutex and then reacquires it before
returning. Passing the MutexGuard by value is a way of saying, “I bestow
upon you, .wait() method, my exclusive authority to release the mutex.”

Atomics
The std::sync::atomic module contains atomic types for lock-free concurrent
programming. These types are basically the same as Standard C++ atomics,
with some extras:

AtomicIsize and AtomicUsize are shared integer types
corresponding to the single-threaded isize and usize types.

AtomicI8, AtomicI16, AtomicI32, AtomicI64, and their unsigned
variants like AtomicU8 are shared integer types that correspond to
the single-threaded types i8, i16, etc.

An AtomicBool is a shared bool value.

An AtomicPtr<T> is a shared value of the unsafe pointer type *mut
T.

The proper use of atomic data is beyond the scope of this book. Suffice it to
say that multiple threads can read and write an atomic value at once without
causing data races.

Instead of the usual arithmetic and logical operators, atomic types expose
methods that perform atomic operations, individual loads, stores, exchanges,
and arithmetic operations that happen safely, as a unit, even if other threads
are also performing atomic operations that touch the same memory location.
Incrementing an AtomicIsize named atom looks like this:

use std::sync::atomic::{AtomicIsize, Ordering};

let atom = AtomicIsize::new(0);
atom.fetch_add(1, Ordering::SeqCst);

These methods may compile to specialized machine language instructions.
On the x86-64 architecture, this .fetch_add() call compiles to a lock incq
instruction, where an ordinary n += 1 might compile to a plain incq
instruction or any number of variations on that theme. The Rust compiler also

has to forgo some optimizations around the atomic operation, since—unlike a
normal load or store—it can legitimately affect or be affected by other
threads right away.

The argument Ordering::SeqCst is a memory ordering. Memory orderings are
something like transaction isolation levels in a database. They tell the system
how much you care about such philosophical notions as causes preceding
effects and time not having loops, as opposed to performance. Memory
orderings are crucial to program correctness, and they are tricky to
understand and reason about. Happily, the performance penalty for choosing
sequential consistency, the strictest memory ordering, is often quite low—
unlike the performance penalty for putting a SQL database into
SERIALIZABLE mode. So when in doubt, use Ordering::SeqCst. Rust
inherits several other memory orderings from Standard C++ atomics, with
various weaker guarantees about the nature of existence and causality. We
won’t discuss them here.

One simple use of atomics is for cancellation. Suppose we have a thread
that’s doing some long-running computation, such as rendering a video, and
we would like to be able to cancel it asynchronously. The problem is to
communicate to the thread that we want it to shut down. We can do this via a
shared AtomicBool:

use std::sync::Arc;
use std::sync::atomic::AtomicBool;

let cancel_flag = Arc::new(AtomicBool::new(false));
let worker_cancel_flag = cancel_flag.clone();

This code creates two Arc<AtomicBool> smart pointers that point to the
same heap-allocated AtomicBool, whose initial value is false. The first,
named cancel_flag, will stay in the main thread. The second,
worker_cancel_flag, will be moved to the worker thread.

Here is the code for the worker:

use std::thread;
use std::sync::atomic::Ordering;

let worker_handle = thread::spawn(move || {
 for pixel in animation.pixels_mut() {
 render(pixel); // ray-tracing - this takes a few microseconds
 if worker_cancel_flag.load(Ordering::SeqCst) {
 return None;
 }
 }
 Some(animation)
});

After rendering each pixel, the thread checks the value of the flag by calling
its .load() method:

worker_cancel_flag.load(Ordering::SeqCst)

If in the main thread we decide to cancel the worker thread, we store true in
the AtomicBool and then wait for the thread to exit:

// Cancel rendering.
cancel_flag.store(true, Ordering::SeqCst);

// Discard the result, which is probably `None`.
worker_handle.join().unwrap();

Of course, there are other ways to implement this. The AtomicBool here
could be replaced with a Mutex<bool> or a channel. The main difference is
that atomics have minimal overhead. Atomic operations never use system
calls. A load or store often compiles to a single CPU instruction.

Atomics are a form of interior mutability, like Mutex or RwLock, so their
methods take self by shared (non-mut) reference. This makes them useful as
simple global variables.

Global Variables
Suppose we are writing networking code. We would like to have a global
variable, a counter that we increment every time we serve a packet:

/// Number of packets the server has successfully handled.
static PACKETS_SERVED: usize = 0;

This compiles fine. There’s just one problem. PACKETS_SERVED is not
mutable, so we can never change it.

Rust does everything it reasonably can to discourage global mutable state.
Constants declared with const are, of course, immutable. Static variables are
also immutable by default, so there is no way to get a mut reference to one. A
static can be declared mut, but then accessing it is unsafe. Rust’s insistence
on thread safety is a major reason for all of these rules.

Global mutable state also has unfortunate software engineering
consequences: it tends to make the various parts of a program more tightly
coupled, harder to test, and harder to change later. Still, in some cases there’s
just no reasonable alternative, so we had better find a safe way to declare
mutable static variables.

The simplest way to support incrementing PACKETS_SERVED, while
keeping it thread-safe, is to make it an atomic integer:

use std::sync::atomic::AtomicUsize;

static PACKETS_SERVED: AtomicUsize = AtomicUsize::new(0);

Once this static is declared, incrementing the packet count is straightforward:

use std::sync::atomic::Ordering;

PACKETS_SERVED.fetch_add(1, Ordering::SeqCst);

Atomic globals are limited to simple integers and Booleans. Still, creating a

global variable of any other type amounts to solving two problems.

First, the variable must be made thread-safe somehow, because otherwise it
can’t be global: for safety, static variables must be both Sync and non-mut.
Fortunately, we’ve already seen the solution for this problem. Rust has types
for safely sharing values that change: Mutex, RwLock, and the atomic types.
These types can be modified even when declared as non-mut. It’s what they
do. (See “mut and Mutex”.)

Second, static initializers can only call functions specifically marked as const,
which the compiler can evaluate during compile time. Put another way, their
output is deterministic; it depends only on their arguments, not any other state
or I/O. That way, the compiler can embed the results of that computation as a
compile-time constant. This is similar to C++ constexpr.

The constructors for the Atomic types (AtomicUsize, AtomicBool, and so on)
are all const functions, which allowed us to create a static AtomicUsize
earlier. A few other types, like String, Ipv4Addr, and Ipv6Addr, have simple
constructors that are const as well.

You can also define your own const functions by simply prefixing the
function’s signature with const. Rust limits what const functions can do to a
small set of operations, which are enough to be useful while still not allowing
any nondeterministic results. const functions can’t take types as generic
arguments, only lifetimes, and it’s not possible to allocate memory or operate
on raw pointers, even in unsafe blocks. We can, however, use arithmetic
operations (including wrapping and saturating arithmetic), logical operations
that don’t short-circuit, and other const functions. For example, we can create
convenience functions to make defining statics and consts easier and reduce
code duplication:

const fn mono_to_rgba(level: u8) -> Color {
 Color {
 red: level,
 green: level,
 blue: level,
 alpha: 0xFF
 }
}

const WHITE: Color = mono_to_rgba(255);
const BLACK: Color = mono_to_rgba(000);

Combining these techniques, we might be tempted to write:

static HOSTNAME: Mutex<String> =
 Mutex::new(String::new()); // error: calls in statics are limited to
 // constant functions, tuple structs, and
 // tuple variants

Unfortunately, while AtomicUsize::new() and String::new() are const fn,
Mutex::new() is not. In order to get around these limitations, we need to use
the lazy_static crate.

We introduced the lazy_static crate in “Building Regex Values Lazily”.
Defining a variable with the lazy_static! macro lets you use any expression
you like to initialize it; it runs the first time the variable is dereferenced, and
the value is saved for all subsequent uses.

We can declare a global Mutex-controlled HashMap with lazy_static like
this:

use lazy_static::lazy_static;

use std::sync::Mutex;

lazy_static! {
 static ref HOSTNAME: Mutex<String> = Mutex::new(String::new());
}

The same technique works for other complex data structures like HashMaps
and Deques. It’s also quite handy for statics that are not mutable at all, but
simply require nontrivial initialization.

Using lazy_static! imposes a tiny performance cost on each access to the
static data. The implementation uses std::sync::Once, a low-level
synchronization primitive designed for one-time initialization. Behind the
scenes, each time a lazy static is accessed, the program executes an atomic
load instruction to check that initialization has already occurred. (Once is

rather special purpose, so we will not cover it in detail here. It is usually more
convenient to use lazy_static! instead. However, it is handy for initializing
non-Rust libraries; for an example, see “A Safe Interface to libgit2”.)

What Hacking Concurrent Code in Rust Is Like
We’ve shown three techniques for using threads in Rust: fork-join
parallelism, channels, and shared mutable state with locks. Our aim has been
to provide a good introduction to the pieces Rust provides, with a focus on
how they can fit together into real programs.

Rust insists on safety, so from the moment you decide to write a
multithreaded program, the focus is on building safe, structured
communication. Keeping threads mostly isolated is a good way to convince
Rust that what you’re doing is safe. It happens that isolation is also a good
way to make sure what you’re doing is correct and maintainable. Again, Rust
guides you toward good programs.

More importantly, Rust lets you combine techniques and experiment. You
can iterate fast: arguing with the compiler gets you up and running correctly a
lot faster than debugging data races.

Chapter 20. Asynchronous
Programming

Suppose you’re writing a chat server. For each network connection, there are
incoming packets to parse, outgoing packets to assemble, security parameters
to manage, chat group subscriptions to track, and so on. Managing all this for
many connections simultaneously is going to take some organization.

Ideally, you could just start a separate thread for each incoming connection:

use std::{net, thread};

let listener = net::TcpListener::bind(address)?;

for socket_result in listener.incoming() {
 let socket = socket_result?;
 let groups = chat_group_table.clone();
 thread::spawn(|| {
 log_error(serve(socket, groups));
 });
}

For each new connection, this spawns a fresh thread running the serve
function, which is able to focus on managing a single connection’s needs.

This works well, until everything goes much better than planned and
suddenly you have tens of thousands of users. It’s not unusual for a thread’s
stack to grow to 100 KiB or more, and that is probably not how you want to
spend gigabytes of server memory. Threads are good and necessary for
distributing work across multiple processors, but their memory demands are
such that we often need complementary ways, used together with threads, to
break the work down.

You can use Rust asynchronous tasks to interleave many independent
activities on a single thread or a pool of worker threads. Asynchronous tasks
are similar to threads, but are much quicker to create, pass control amongst

themselves more efficiently, and have memory overhead an order of
magnitude less than that of a thread. It is perfectly feasible to have hundreds
of thousands of asynchronous tasks running simultaneously in a single
program. Of course, your application may still be limited by other factors like
network bandwidth, database speed, computation, or the work’s inherent
memory requirements, but the memory overhead inherent in the use of tasks
is much less significant than that of threads.

Generally, asynchronous Rust code looks very much like ordinary
multithreaded code, except that operations that might block, like I/O or
acquiring mutexes, need to be handled a bit differently. Treating these
specially gives Rust more information about how your code will behave,
which is what makes the improved performance possible. The asynchronous
version of the previous code looks like this:

use async_std::{net, task};

let listener = net::TcpListener::bind(address).await?;

let mut new_connections = listener.incoming();
while let Some(socket_result) = new_connections.next().await {
 let socket = socket_result?;
 let groups = chat_group_table.clone();
 task::spawn(async {
 log_error(serve(socket, groups).await);
 });
}

This uses the async_std crate’s networking and task modules and adds .await
after the calls that may block. But the overall structure is the same as the
thread-based version.

The goal of this chapter is not only to help you write asynchronous code, but
also to show how it works in enough detail that you can anticipate how it will
perform in your applications and see where it can be most valuable.

To show the mechanics of asynchronous programming, we lay out a
minimal set of language features that covers all the core concepts:
futures, asynchronous functions, await expressions, tasks, and the

block_on and spawn_local executors.

Then we present asynchronous blocks and the spawn executor.
These are essential to getting real work done, but conceptually,
they’re just variants on the features we just mentioned. In the
process, we point out a few issues you’re likely to encounter that are
unique to asynchronous programming and explain how to handle
them.

To show all these pieces working together, we walk through the
complete code for a chat server and client, of which the preceding
code fragment is a part.

To illustrate how primitive futures and executors work, we present
simple but functional implementations of spawn_blocking and
block_on.

Finally, we explain the Pin type, which appears from time to time in
asynchronous interfaces to ensure that asynchronous function and
block futures are used safely.

From Synchronous to Asynchronous
Consider what happens when you call the following (not async, completely
traditional) function:

use std::io::prelude::*;
use std::net;

fn cheapo_request(host: &str, port: u16, path: &str)
 -> std::io::Result<String>
{
 let mut socket = net::TcpStream::connect((host, port))?;

 let request = format!("GET {} HTTP/1.1\r\nHost: {}\r\n\r\n", path, host);
 socket.write_all(request.as_bytes())?;
 socket.shutdown(net::Shutdown::Write)?;

 let mut response = String::new();
 socket.read_to_string(&mut response)?;

 Ok(response)
}

This opens a TCP connection to a web server, sends it a bare-bones HTTP
request in an outdated protocol, and then reads the response. Figure 20-1
shows this function’s execution over time.

This diagram shows how the function call stack behaves as time runs from
left to right. Each function call is a box, placed atop its caller. Obviously, the
cheapo_request function runs throughout the entire execution. It calls
functions from the Rust standard library like TcpStream::connect and
TcpStream’s implementations of write_all and read_to_string. These call
other functions in turn, but eventually the program makes system calls,
requests to the operating system to actually get something done, like open a
TCP connection, or read or write some data.

1

Figure 20-1. Progress of a synchronous HTTP request (darker gray areas are waiting for the operating
system)

The darker gray backgrounds mark the times when the program is waiting for
the operating system to finish the system call. We didn’t draw these times to
scale. If we had, the entire diagram would be darker gray: in practice, this
function spends almost all of its time waiting for the operating system. The
execution of the preceding code would be narrow slivers between the system
calls.

While this function is waiting for the system calls to return, its single thread
is blocked: it can’t do anything else until the system call finishes. It’s not
unusual for a thread’s stack to be tens or hundreds of kilobytes in size, so if
this were a fragment of some larger system, with many threads working away
at similar jobs, locking down those threads’ resources to do nothing but wait
could become quite expensive.

To get around this, a thread needs to be able to take up other work while it
waits for system calls to complete. But it’s not obvious how to accomplish
this. For example, the signature of the function we’re using to read the
response from the socket is:

fn read_to_string(&mut self, buf: &mut String) -> std::io::Result<usize>;

It’s written right into the type: this function doesn’t return until the job is
done, or something goes wrong. This function is synchronous: the caller

resumes when the operation is complete. If we want to use our thread for
other things while the operating system does its work, we’re going need a
new I/O library that provides an asynchronous version of this function.

Futures
Rust’s approach to supporting asynchronous operations is to introduce a trait,
std::future::Future:

trait Future {
 type Output;
 // For now, read `Pin<&mut Self>` as `&mut Self`.
 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;
}

enum Poll<T> {
 Ready(T),
 Pending,
}

A Future represents an operation that you can test for completion. A future’s
poll method never waits for the operation to finish: it always returns
immediately. If the operation is complete, poll returns Poll::Ready(output),
where output is its final result. Otherwise, it returns Pending. If and when the
future is worth polling again, it promises to let us know by invoking a waker,
a callback function supplied in the Context. We call this the “piñata model”
of asynchronous programming: the only thing you can do with a future is
whack it with a poll until a value falls out.

All modern operating systems include variants of their system calls that we
can use to implement this sort of polling interface. On Unix and Windows,
for example, if you put a network socket in nonblocking mode, then reads
and writes return an error if they would block; you have to try again later.

So an asynchronous version of read_to_string would have a signature roughly
like this:

fn read_to_string(&mut self, buf: &mut String)
 -> impl Future<Output = Result<usize>>;

This is the same as the signature we showed earlier, except for the return
type: the asynchronous version returns a future of a Result<usize>. You’ll

need to poll this future until you get a Ready(result) from it. Each time it’s
polled, the read proceeds as far as it can. The final result gives you the
success value or an error value, just like an ordinary I/O operation. This is the
general pattern: the asynchronous version of any function takes the same
arguments as the synchronous version, but the return type has a Future
wrapped around it.

Calling this version of read_to_string doesn’t actually read anything; its sole
responsibility is to construct and return a future that will do the real work
when polled. This future must hold all the information necessary to carry out
the request made by the call. For example, the future returned by this
read_to_string must remember the input stream it was called on, and the
String to which it should append the incoming data. In fact, since the future
holds the references self and buf, the proper signature for read_to_string must
be:

fn read_to_string<'a>(&'a mut self, buf: &'a mut String)
 -> impl Future<Output = Result<usize>> + 'a;

This adds lifetimes to indicate that the future returned can live only as long as
the values that self and buf are borrowing.

The async-std crate provides asynchronous versions of all of std’s I/O
facilities, including an asynchronous Read trait with a read_to_string method.
async-std closely follows the design of std, reusing std’s types in its own
interfaces whenever possible, so errors, results, network addresses, and most
of the other associated data are compatible between the two worlds.
Familiarity with std helps you use async-std, and vice versa.

One of the rules of the Future trait is that, once a future has returned
Poll::Ready, it may assume it will never be polled again. Some futures just
return Poll::Pending forever if they are overpolled; others may panic or hang.
(They must not, however, violate memory or thread safety, or otherwise
cause undefined behavior.) The fuse adaptor method on the Future trait turns
any future into one that simply returns Poll::Pending forever. But all the usual
ways of consuming futures respect this rule, so fuse is usually not necessary.

If polling sounds inefficient, don’t worry. Rust’s asynchronous architecture is
carefully designed so that, as long as your basic I/O functions like
read_to_string are implemented correctly, you’ll only poll a future when it’s
worthwhile. Every time poll is called, something somewhere should return
Ready, or at least make progress toward that goal. We’ll explain how this
works in “Primitive Futures and Executors: When Is a Future Worth Polling
Again?”.

But using futures seems like a challenge: when you poll, what should you do
when you get Poll::Pending? You’ll have to scrounge around for some other
work this thread can do for the time being, without forgetting to come back to
this future later and poll it again. Your entire program will be overgrown with
plumbing keeping track of who’s pending and what should be done once
they’re ready. The simplicity of our cheapo_request function is ruined.

Good news! It isn’t.

Async Functions and Await Expressions
Here’s a version of cheapo_request written as an asynchronous function:

use async_std::io::prelude::*;
use async_std::net;

async fn cheapo_request(host: &str, port: u16, path: &str)
 -> std::io::Result<String>
{
 let mut socket = net::TcpStream::connect((host, port)).await?;

 let request = format!("GET {} HTTP/1.1\r\nHost: {}\r\n\r\n", path, host);
 socket.write_all(request.as_bytes()).await?;
 socket.shutdown(net::Shutdown::Write)?;

 let mut response = String::new();
 socket.read_to_string(&mut response).await?;

 Ok(response)
}

This is token for token the same as our original version, except:

The function starts with async fn instead of fn.

It uses the async_std crate’s asynchronous versions of
TcpStream::connect, write_all, and read_to_string. These all return
futures of their results. (The examples in this section use version 1.7
of async_std.)

After each call that returns a future, the code says .await. Although
this looks like a reference to a struct field named await, it is actually
special syntax built into the language for waiting until a future is
ready. An await expression evaluates to the final value of the future.
This is how the function obtains the results from connect, write_all,
and read_to_string.

Unlike an ordinary function, when you call an asynchronous function, it
returns immediately, before the body begins execution at all. Obviously, the

call’s final return value hasn’t been computed yet; what you get is a future of
its final value. So if you execute this code:

let response = cheapo_request(host, port, path);

then response will be a future of a std::io::Result<String>, and the body of
cheapo_request has not yet begun execution. You don’t need to adjust an
asynchronous function’s return type; Rust automatically treats async fn f(...) -
> T as a function that returns a future of a T, not a T directly.

The future returned by an async function wraps up all the information the
function body will need to run: the function’s arguments, space for its local
variables, and so on. (It’s as if you’d captured the call’s stack frame as an
ordinary Rust value.) So response must hold the values passed for host, port,
and path, since cheapo_request’s body is going to need those to run.

The future’s specific type is generated automatically by the compiler, based
on the function’s body and arguments. This type doesn’t have a name; all you
know about it is that it implements Future<Output=R>, where R is the async
function’s return type. In this sense, futures of asynchronous functions are
like closures: closures also have anonymous types, generated by the
compiler, that implement the FnOnce, Fn, and FnMut traits.

When you first poll the future returned by cheapo_request, execution begins
at the top of the function body and runs until the first await of the future
returned by TcpStream::connect. The await expression polls the connect
future, and if it is not ready, then it returns Poll::Pending to its own caller:
polling cheapo_request’s future cannot proceed past that first await until a
poll of TcpStream::connect’s future returns Poll::Ready. So a rough
equivalent of the expression TcpStream::connect(...).await might be:

{
 // Note: this is pseudocode, not valid Rust
 let connect_future = TcpStream::connect(...);
 'retry_point:
 match connect_future.poll(cx) {
 Poll::Ready(value) => value,
 Poll::Pending => {

 // Arrange for the next `poll` of `cheapo_request`'s
 // future to resume execution at 'retry_point.
 ...
 return Poll::Pending;
 }
 }
}

An await expression takes ownership of the future and then polls it. If it’s
ready, then the future’s final value is the value of the await expression, and
execution continues. Otherwise, it returns the Poll::Pending to its own caller.

But crucially, the next poll of cheapo_request’s future doesn’t start at the top
of the function again: instead, it resumes execution mid-function at the point
where it is about to poll connect_future. We don’t progress to the rest of the
async function until that future is ready.

As cheapo_request’s future continues to be polled, it will work its way
through the function body from one await to the next, moving on only when
the subfuture it’s awaiting is ready. Thus, how many times cheapo_request’s
future must be polled depends on both the behavior of the subfutures and the
function’s own control flow. cheapo_request’s future tracks the point at
which the next poll should resume, and all the local state—variables,
arguments, temporaries—that resumption will need.

The ability to suspend execution mid-function and then resume later is unique
to async functions. When an ordinary function returns, its stack frame is gone
for good. Since await expressions depend on the ability to resume, you can
only use them inside async functions.

As of this writing, Rust does not yet allow traits to have asynchronous
methods. Only free functions and functions inherent to a specific type can be
asynchronous. Lifting this restriction will require a number of changes to the
language. In the meantime, if you need to define traits that include async
functions, consider using the async-trait crate, which provides a macro-based
workaround.

Calling Async Functions from Synchronous Code: block_on
In a sense, async functions just pass the buck. True, it’s easy to get a future’s
value in an async function: just await it. But the async function itself returns a
future, so it’s now the caller’s job to do the polling somehow. Ultimately,
someone has to actually wait for a value.

We can call cheapo_request from an ordinary, synchronous function (like
main, for example) using async_std’s task::block_on function, which takes a
future and polls it until it produces a value:

fn main() -> std::io::Result<()> {
 use async_std::task;

 let response = task::block_on(cheapo_request("example.com", 80, "/"))?;
 println!("{}", response);
 Ok(())
}

Since block_on is a synchronous function that produces the final value of an
asynchronous function, you can think of it as an adapter from the
asynchronous world to the synchronous world. But its blocking character also
means that you should never use block_on within an async function: it would
block the entire thread until the value is ready. Use await instead.

Figure 20-2 shows one possible execution of main.

The upper timeline, “Simplified view,” shows an abstracted view of the
program’s asynchronous calls: cheapo_request first calls TcpStream::connect
to obtain a socket and then calls write_all and read_to_string on that socket.
Then it returns. This is very similar to the timeline for the synchronous
version of cheapo_request earlier in this chapter.

Figure 20-2. Blocking on an asynchronous function

But each of those asynchronous calls is a multistep process: a future is
created and then polled until it’s ready, perhaps creating and polling other
subfutures in the process. The lower timeline, “Implementation,” shows the
actual synchronous calls that implement this asynchronous behavior. This is a
good opportunity to walk through exactly what’s going on in ordinary
asynchronous execution:

First, main calls cheapo_request, which returns future A of its final
result. Then main passes that future to async_std::block_on, which
polls it.

Polling future A allows the body of cheapo_request to begin
execution. It calls TcpStream::connect to obtain a future B of a
socket and then awaits that. More precisely, since
TcpStream::connect might encounter an error, B is a future of a
Result<TcpStream, std::io::Error>.

Future B gets polled by the await. Since the network connection is
not yet established, B.poll returns Poll::Pending, but arranges to
wake up the calling task once the socket is ready.

Since future B wasn’t ready, A.poll returns Poll::Pending to its own
caller, block_on.

Since block_on has nothing better to do, it goes to sleep. The entire
thread is blocked now.

When B’s connection is ready to use, it wakes up the task that polled
it. This stirs block_on into action, and it tries polling the future A
again.

Polling A causes cheapo_request to resume in its first await, where it
polls B again.

This time, B is ready: socket creation is complete, so it returns
Poll::Ready(Ok(socket)) to A.poll.

The asynchronous call to TcpStream::connect is now complete. The
value of the TcpStream::connect(...).await expression is thus
Ok(socket).

The execution of cheapo_request’s body proceeds normally,
building the request string using the format! macro and passing it to
socket.write_all.

Since socket.write_all is an asynchronous function, it returns a future
C of its result, which cheapo_request duly awaits.

The rest of the story is similar. In the execution shown in Figure 20-2, the
future of socket.read_to_string gets polled four times before it is ready; each

of these wakeups reads some data from the socket, but read_to_string is
specified to read all the way to the end of the input, and this takes several
operations.

It doesn’t sound too hard to just write a loop that calls poll over and over. But
what makes async_std::task::block_on valuable is that it knows how to go to
sleep until the future is actually worth polling again, rather than wasting your
processor time and battery life making billions of fruitless poll calls. The
futures returned by basic I/O functions like connect and read_to_string retain
the waker supplied by the Context passed to poll and invoke it when
block_on should wake up and try polling again. We’ll show exactly how this
works by implementing a simple version of block_on ourselves in “Primitive
Futures and Executors: When Is a Future Worth Polling Again?”.

Like the original, synchronous version we presented earlier, this
asynchronous version of cheapo_request spends almost all of its time waiting
for operations to complete. If the time axis were drawn to scale, the diagram
would be almost entirely dark gray, with tiny slivers of computation
occurring when the program gets woken up.

This is a lot of detail. Fortunately, you can usually just think in terms of the
simplified upper timeline: some function calls are sync, others are async and
need an await, but they’re all just function calls. The success of Rust’s
asynchronous support depends on helping programmers work with the
simplified view in practice, without being distracted by the back-and-forth of
the implementation.

Spawning Async Tasks
The async_std::task::block_on function blocks until a future’s value is ready.
But blocking a thread completely on a single future is no better than a
synchronous call: the goal of this chapter is to get the thread doing other
work while it’s waiting.

For this, you can use async_std::task::spawn_local. This function takes a
future and adds it to a pool that block_on will try polling whenever the future
it’s blocking on isn’t ready. So if you pass a bunch of futures to spawn_local
and then apply block_on to a future of your final result, block_on will poll
each spawned future whenever it is able to make progress, running the entire
pool concurrently until your result is ready.

As of this writing, spawn_local is available in async-std only if you enable
that crate’s unstable feature. To do this, you’ll need to refer to async-std in
your Cargo.toml with a line like this:

async-std = { version = "1", features = ["unstable"] }

The spawn_local function is an asynchronous analogue of the standard
library’s std::thread::spawn function for starting threads:

std::thread::spawn(c) takes a closure c and starts a thread running it,
returning a std::thread::JoinHandle whose join method waits for the
thread to finish and returns whatever c returned.

async_std::task::spawn_local(f) takes the future f and adds it to the
pool to be polled when the current thread calls block_on.
spawn_local returns its own async_std::task::JoinHandle type, itself
a future that you can await to retrieve f’s final value.

For example, suppose we want to make a whole set of HTTP requests
concurrently. Here’s a first attempt:

pub async fn many_requests(requests: Vec<(String, u16, String)>)
 -> Vec<std::io::Result<String>>

{
 use async_std::task;

 let mut handles = vec![];
 for (host, port, path) in requests {
 handles.push(task::spawn_local(cheapo_request(&host, port, &path)));
 }

 let mut results = vec![];
 for handle in handles {
 results.push(handle.await);
 }

 results
}

This function calls cheapo_request on each element of requests, passing each
call’s future to spawn_local. It collects the resulting JoinHandles in a vector
and then awaits each of them. It’s fine to await the join handles in any order:
since the requests are already spawned, their futures will be polled as needed
whenever this thread calls block_on and has nothing better to do. All the
requests will run concurrently. Once they’re complete, many_requests returns
the results to its caller.

The previous code is almost correct, but Rust’s borrow checker is worried
about the lifetime of cheapo_request’s future:

error: `host` does not live long enough

 handles.push(task::spawn_local(cheapo_request(&host, port, &path)));
 ---------------^^^^^--------------
 | |
 | borrowed value does not
 | live long enough
 argument requires that `host` is borrowed for `'static`
}
- `host` dropped here while still borrowed

There’s a similar error for path as well.

Naturally, if we pass references to an asynchronous function, the future it
returns must hold those references, so the future cannot safely outlive the

values they borrow. This is the same restriction that applies to any value that
holds references.

The problem is that spawn_local can’t be sure you’ll wait for the task to
finish before host and path are dropped. In fact, spawn_local only accepts
futures whose lifetimes are 'static, because you could simply ignore the
JoinHandle it returns and let the task continue to run for the rest of the
program’s execution. This isn’t unique to asynchronous tasks: you’ll get a
similar error if you try to use std::thread::spawn to start a thread whose
closure captures references to local variables.

One way to fix this is to create another asynchronous function that takes
owned versions of the arguments:

async fn cheapo_owning_request(host: String, port: u16, path: String)
 -> std::io::Result<String> {
 cheapo_request(&host, port, &path).await
}

This function takes Strings instead of &str references, so its future owns the
host and path strings itself, and its lifetime is 'static. The borrow checker can
see that it immediately awaits cheapo_request’s future, and hence, if that
future is getting polled at all, the host and path variables it borrows must still
be around. All is well.

Using cheapo_owning_request, you can spawn off all your requests like so:

for (host, port, path) in requests {
 handles.push(task::spawn_local(cheapo_owning_request(host, port, path)));
}

You can call many_requests from your synchronous main function, with
block_on:

let requests = vec![
 ("example.com".to_string(), 80, "/".to_string()),
 ("www.red-bean.com".to_string(), 80, "/".to_string()),
 ("en.wikipedia.org".to_string(), 80, "/".to_string()),
];

let results = async_std::task::block_on(many_requests(requests));
for result in results {
 match result {
 Ok(response) => println!("{}", response),
 Err(err) => eprintln!("error: {}", err),
 }
}

This code runs all three requests concurrently from within the call to
block_on. Each one makes progress as the opportunity arises while the others
are blocked, all on the calling thread. Figure 20-3 shows one possible
execution of the three calls to cheapo_request.

(We encourage you to try running this code yourself, with eprintln! calls
added at the top of cheapo_request and after each await expression so that
you can see how the calls interleave differently from one execution to the
next.)

Figure 20-3. Running three asynchronous tasks on a single thread

The call to many_requests (not shown, for simplicity) has spawned three
asynchronous tasks, which we’ve labeled A, B, and C. block_on begins by
polling A, which starts connecting to example.com. As soon as this returns
Poll::Pending, block_on turns its attention to the next spawned task, polling
future B, and eventually C, which each begin connecting to their respective
servers.

When all the pollable futures have returned Poll::Pending, block_on goes to
sleep until one of the TcpStream::connect futures indicates that its task is
worth polling again.

In this execution, the server en.wikipedia.org responds more quickly than the
others, so that task finishes first. When a spawned task is done, it saves its
value in its JoinHandle and marks it as ready, so that many_requests can
proceed when it awaits it. Eventually, the other calls to cheapo_request will
either succeed or return an error, and many_requests itself can return. Finally,
main receives the vector of results from block_on.

All this execution takes place on a single thread, the three calls to
cheapo_request being interleaved with each other through successive polls of
their futures. An asynchronous call offers the appearance of a single function
call running to completion, but this asynchronous call is realized by a series
of synchronous calls to the future’s poll method. Each individual poll call
returns quickly, yielding the thread so that another async call can take a turn.

We have finally achieved the goal we set out at the beginning of the chapter:
letting a thread take on other work while it waits for I/O to complete so that
the thread’s resources aren’t tied up doing nothing. Even better, this goal was
met with code that looks very much like ordinary Rust code: some of the
functions are marked async, some of the function calls are followed by
.await, and we use functions from async_std instead of std, but otherwise, it’s
ordinary Rust code.

One important difference to keep in mind between asynchronous tasks and
threads is that switching from one async task to another happens only at await
expressions, when the future being awaited returns Poll::Pending. This means
that if you put a long-running computation in cheapo_request, none of the
other tasks you passed to spawn_local will get a chance to run until it’s done.
With threads, this problem doesn’t arise: the operating system can suspend
any thread at any point and sets timers to ensure that no thread monopolizes
the processor. Asynchronous code depends on the willing cooperation of the
futures sharing the thread. If you need to have long-running computations
coexist with asynchronous code, “Long Running Computations: yield_now

and spawn_blocking” later in this chapter describes some options.

Async Blocks
In addition to asynchronous functions, Rust also supports asynchronous
blocks. Whereas an ordinary block statement returns the value of its last
expression, an async block returns a future of the value of its last expression.
You can use await expressions within an async block.

An async block looks like an ordinary block statement, preceded by the async
keyword:

let serve_one = async {
 use async_std::net;

 // Listen for connections, and accept one.
 let listener = net::TcpListener::bind("localhost:8087").await?;
 let (mut socket, _addr) = listener.accept().await?;

 // Talk to client on `socket`.
 ...
};

This initializes serve_one with a future that, when polled, listens for and
handles a single TCP connection. The block’s body does not begin execution
until serve_one gets polled, just as an async function call doesn’t begin
execution until its future is polled.

If you apply the ? operator to an error in an async block, it just returns from
the block, not from the surrounding function. For example, if the preceding
bind call returns an error, the ? operator returns it as serve_one’s final value.
Similarly, return expressions return from the async block, not the enclosing
function.

If an async block refers to variables defined in the surrounding code, its
future captures their values, just as a closure would. And just like move
closures (see “Closures That Steal”), you can start the block with async move
to take ownership of the captured values, rather than just holding references
to them.

Async blocks provide a concise way to separate out a section of code you’d

like to run asynchronously. For example, in the previous section, spawn_local
required a 'static future, so we defined the cheapo_owning_request wrapper
function to give us a future that took ownership of its arguments. You can get
the same effect without the distraction of a wrapper function simply by
calling cheapo_request from an async block:

pub async fn many_requests(requests: Vec<(String, u16, String)>)
 -> Vec<std::io::Result<String>>
{
 use async_std::task;

 let mut handles = vec![];
 for (host, port, path) in requests {
 handles.push(task::spawn_local(async move {
 cheapo_request(&host, port, &path).await
 }));
 }
 ...
}

Since this is an async move block, its future takes ownership of the String
values host and path, just the way a move closure would. It then passes
references to cheapo_request. The borrow checker can see that the block’s
await expression takes ownership of cheapo_request’s future, so the
references to host and path cannot outlive the captured variables they borrow.
The async block accomplishes the same thing as cheapo_owning_request, but
with less boilerplate.

One rough edge you may encounter is that there is no syntax for specifying
the return type of an async block, analogous to the -> T following the
arguments of an async function. This can cause problems when using the ?
operator:

let input = async_std::io::stdin();
let future = async {
 let mut line = String::new();

 // This returns `std::io::Result<usize>`.
 input.read_line(&mut line).await?;

 println!("Read line: {}", line);

 Ok(())
};

This fails with the following error:

error: type annotations needed
 |
48 | let future = async {
 | ------ consider giving `future` a type
...
60 | Ok(())
 | ^^ cannot infer type for type parameter `E` declared
 | on the enum `Result`

Rust can’t tell what the return type of the async block should be. The
read_line method returns Result<(), std::io::Error>, but because the ? operator
uses the From trait to convert the error type at hand to whatever the situation
requires, the async block’s return type could be Result<(), E> for any type E
that implements From<std::io::Error>.

Future versions of Rust will probably add syntax for indicating an async
block’s return type. For now, you can work around the problem by spelling
out the type of the block’s final Ok:

let future = async {
 ...
 Ok::<(), std::io::Error>(())
};

Since Result is a generic type that expects the success and error types as its
parameters, we can specify those type parameters when using Ok or Err as
shown here.

Building Async Functions from Async Blocks
Asynchronous blocks give us another way to get the same effect as an
asynchronous function, with a little more flexibility. For example, we could
write our cheapo_request example as an ordinary, synchronous function that
returns the future of an async block:

use std::io;
use std::future::Future;

fn cheapo_request<'a>(host: &'a str, port: u16, path: &'a str)
 -> impl Future<Output = io::Result<String>> + 'a
{
 async move {
 ... function body ...
 }
}

When you call this version of the function, it immediately returns the future
of the async block’s value. This captures the function’s arguments and
behaves just like the future the asynchronous function would have returned.
Since we’re not using the async fn syntax, we need to write out the impl
Future in the return type, but as far as callers are concerned, these two
definitions are interchangeable implementations of the same function
signature.

This second approach can be useful when you want to do some computation
immediately when the function is called, before creating the future of its
result. For example, yet another way to reconcile cheapo_request with
spawn_local would be to make it into a synchronous function returning a
'static future that captures fully owned copies of its arguments:

fn cheapo_request(host: &str, port: u16, path: &str)
 -> impl Future<Output = io::Result<String>> + 'static
{
 let host = host.to_string();
 let path = path.to_string();

 async move {

 ... use &*host, port, and path ...
 }
}

This version lets the async block capture host and path as owned String
values, not &str references. Since the future owns all the data it needs to run,
it is valid for the 'static lifetime. (We’ve spelled out + 'static in the signature
shown earlier, but 'static is the default for -> impl return types, so omitting it
would have no effect.)

Since this version of cheapo_request returns futures that are 'static, we can
pass them directly to spawn_local:

let join_handle = async_std::task::spawn_local(
 cheapo_request("areweasyncyet.rs", 80, "/")
);

... other work ...

let response = join_handle.await?;

Spawning Async Tasks on a Thread Pool
The examples we’ve shown so far spend almost all their time waiting for I/O,
but some workloads are more of a mix of processor work and blocking.
When you have enough computation to do that a single processor can’t keep
up, you can use async_std::task::spawn to spawn a future onto a pool of
worker threads dedicated to polling futures that are ready to make progress.

async_std::task::spawn is used like async_std::task::spawn_local:

use async_std::task;

let mut handles = vec![];
for (host, port, path) in requests {
 handles.push(task::spawn(async move {
 cheapo_request(&host, port, &path).await
 }));
}
...

Like spawn_local, spawn returns a JoinHandle value you can await to get the
future’s final value. But unlike spawn_local, the future doesn’t have to wait
for you to call block_on before it gets polled. As soon as one of the threads
from the thread pool is free, it will try polling it.

In practice, spawn is more widely used than spawn_local, simply because
people like to know that their workload, no matter what its mix of
computation and blocking, is balanced across the machine’s resources.

One thing to keep in mind when using spawn is that the thread pool tries to
stay busy, so your future gets polled by whichever thread gets around to it
first. An async call may begin execution on one thread, block on an await
expression, and get resumed in a different thread. So while it’s a reasonable
simplification to view an async function call as a single, connected execution
of code (indeed, the purpose of asynchronous functions and await expressions
is to encourage you to think of it that way), the call may actually be carried
out by many different threads.

If you’re using thread-local storage, it may be surprising to see the data you
put there before an await expression replaced by something entirely different
afterward, because your task is now being polled by a different thread from
the pool. If this is a problem, you should instead use task-local storage; see
the async-std crate’s documentation for the task_local! macro for details.

But Does Your Future Implement Send?
There is one restriction spawn imposes that spawn_local does not. Since the
future is being sent off to another thread to run, the future must implement
the Send marker trait. We presented Send in “Thread Safety: Send and Sync”.
A future is Send only if all the values it contains are Send: all the function
arguments, local variables, and even anonymous temporary values must be
safe to move to another thread.

As before, this requirement isn’t unique to asynchronous tasks: you’ll get a
similar error if you try to use std::thread::spawn to start a thread whose
closure captures non-Send values. The difference is that, whereas the closure
passed to std::thread::spawn stays on the thread that was created to run it, a
future spawned on a thread pool can move from one thread to another any
time it awaits.

This restriction is easy to trip over by accident. For example, the following
code looks innocent enough:

use async_std::task;
use std::rc::Rc;

async fn reluctant() -> String {
 let string = Rc::new("ref-counted string".to_string());

 some_asynchronous_thing().await;

 format!("Your splendid string: {}", string)
}

task::spawn(reluctant());

An asynchronous function’s future needs to hold enough information for the
function to continue from an await expression. In this case, reluctant’s future
must use string after the await, so the future will, at least sometimes, contain
an Rc<String> value. Since Rc pointers cannot be safely shared between
threads, the future itself cannot be Send. And since spawn only accepts
futures that are Send, Rust objects:

error: future cannot be sent between threads safely
 |
17 | task::spawn(reluctant());
 | ^^^^^^^^^^^ future returned by `reluctant` is not `Send`
 |

 |
127 | T: Future + Send + 'static,
 | ---- required by this bound in `async_std::task::spawn`
 |
 = help: within `impl Future`, the trait `Send` is not implemented
 for `Rc<String>`
note: future is not `Send` as this value is used across an await
 |
10 | let string = Rc::new("ref-counted string".to_string());
 | ------ has type `Rc<String>` which is not `Send`
11 |
12 | some_asynchronous_thing().await;
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 await occurs here, with `string` maybe used later
...
15 | }
 | - `string` is later dropped here

This error message is long, but it has a lot of helpful detail:

It explains why the future needs to be Send: task::spawn requires it.

It explains which value is not Send: the local variable string, whose
type is Rc<String>.

It explains why string affects the future: it is in scope across the
indicated await.

There are two ways to fix this problem. One is to restrict the scope of the
non-Send value so that it doesn’t cover any await expressions and thus
doesn’t need to be saved in the function’s future:

async fn reluctant() -> String {
 let return_value = {
 let string = Rc::new("ref-counted string".to_string());
 format!("Your splendid string: {}", string)
 // The `Rc<String>` goes out of scope here...
 };

 // ... and thus is not around when we suspend here.
 some_asynchronous_thing().await;

 return_value
}

Another solution is simply to use std::sync::Arc instead of Rc. Arc uses
atomic updates to manage its reference counts, which makes it a bit slower,
but Arc pointers are Send.

Although eventually you’ll learn to recognize and avoid non-Send types, they
can be a bit surprising at first. (At least, your authors were often surprised.)
For example, older Rust code sometimes uses generic result types like this:

// Not recommended!
type GenericError = Box<dyn std::error::Error>;
type GenericResult<T> = Result<T, GenericError>;

This GenericError type uses a boxed trait object to hold a value of any type
that implements std::error::Error. But it doesn’t place any further restrictions
on it: if someone had a non-Send type that implemented Error, they could
convert a boxed value of that type to a GenericError. Because of this
possibility, GenericError is not Send, and the following code won’t work:

fn some_fallible_thing() -> GenericResult<i32> {
 ...
}

// This function's future is not `Send`...
async fn unfortunate() {
 // ... because this call's value ...
 match some_fallible_thing() {
 Err(error) => {
 report_error(error);
 }
 Ok(output) => {
 // ... is alive across this await ...
 use_output(output).await;
 }
 }
}

// ... and thus this `spawn` is an error.
async_std::task::spawn(unfortunate());

As with the earlier example, the error message from the compiler explains
what’s going on, pointing to the Result type as the culprit. Since Rust
considers the result of some_fallible_thing to be present for the entire match
statement, including the await expression, it determines that the future of
unfortunate is not Send. This error is overcautious on Rust’s part: although
it’s true that GenericError is not safe to send to another thread, the await only
occurs when the result is Ok, so the error value never actually exists when we
await use_output’s future.

The ideal solution is to use stricter generic error types like the ones we
suggested in “Working with Multiple Error Types”:

type GenericError = Box<dyn std::error::Error + Send + Sync + 'static>;
type GenericResult<T> = Result<T, GenericError>;

This trait object explicitly requires the underlying error type to implement
Send, and all is well.

If your future is not Send and you cannot conveniently make it so, then you
can still use spawn_local to run it on the current thread. Of course, you’ll
need to make sure the thread calls block_on at some point, to give it a chance
to run, and you won’t benefit from distributing the work across multiple
processors.

Long Running Computations: yield_now and spawn_blocking
For a future to share its thread nicely with other tasks, its poll method should
always return as quickly as possible. But if you’re carrying out a long
computation, it could take a long time to reach the next await, making other
asynchronous tasks wait longer than you’d like for their turn on the thread.

One way to avoid this is simply to await something occasionally. The
async_std::task::yield_now function returns a simple future designed for this:

while computation_not_done() {
 ... do one medium-sized step of computation ...
 async_std::task::yield_now().await;
}

The first time the yield_now future is polled, it returns Poll::Pending, but
says it’s worth polling again soon. The effect is that your asynchronous call
gives up the thread and other tasks get a chance to run, but your call will get
another turn soon. The second time yield_now’s future is polled, it returns
Poll::Ready(()), and your async function can resume execution.

This approach isn’t always feasible, however. If you’re using an external
crate to do the long-running computation or calling out to C or C++, it may
not be convenient to change that code to be more async-friendly. Or it may be
difficult to ensure that every path through the computation is sure to hit the
await from time to time.

For cases like this, you can use async_std::task::spawn_blocking. This
function takes a closure, starts it running on its own thread, and returns a
future of its return value. Asynchronous code can await that future, yielding
its thread to other tasks until the computation is ready. By putting the hard
work on a separate thread, you can let the operating system take care of
making it share the processor nicely.

For example, suppose we need to check passwords supplied by users against
the hashed versions we’ve stored in our authentication database. For security,
verifying a password needs to be computationally intensive so that even if

attackers get a copy of our database, they can’t simply try trillions of possible
passwords to see if any match. The argonautica crate provides a hash function
designed specifically for storing passwords: a properly generated argonautica
hash takes a significant fraction of a second to verify. We can use argonautica
(version 0.2) in our asynchronous application like this:

async fn verify_password(password: &str, hash: &str, key: &str)
 -> Result<bool, argonautica::Error>
{
 // Make copies of the arguments, so the closure can be 'static.
 let password = password.to_string();
 let hash = hash.to_string();
 let key = key.to_string();

 async_std::task::spawn_blocking(move || {
 argonautica::Verifier::default()
 .with_hash(hash)
 .with_password(password)
 .with_secret_key(key)
 .verify()
 }).await
}

This returns Ok(true) if password matches hash, given key, a key for the
database as a whole. By doing the verification in the closure passed to
spawn_blocking, we push the expensive computation onto its own thread,
ensuring that it will not affect our responsiveness to other users’ requests.

Comparing Asynchronous Designs
In many ways Rust’s approach to asynchronous programming resembles that
taken by other languages. For example, JavaScript, C#, and Rust all have
asynchronous functions with await expressions. And all these languages have
values that represent incomplete computations: Rust calls them “futures,”
JavaScript calls them “promises,” and C# calls them “tasks,” but they all
represent a value that you may have to wait for.

Rust’s use of polling, however, is unusual. In JavaScript and C#, an
asynchronous function begins running as soon as it is called, and there is a
global event loop built into the system library that resumes suspended async
function calls when the values they were awaiting become available. In Rust,
however, an async call does nothing until you pass it to a function like
block_on, spawn, or spawn_local that will poll it and drive the work to
completion. These functions, called executors, play the role that other
languages cover with a global event loop.

Because Rust makes you, the programmer, choose an executor to poll your
futures, Rust has no need for a global event loop built into the system. The
async-std crate offers the executor functions we’ve used in this chapter so far,
but the tokio crate, which we’ll use later in this chapter, defines its own set of
similar executor functions. And toward the end of this chapter, we’ll
implement our own executor. You can use all three in the same program.

A Real Asynchronous HTTP Client
We would be remiss if we did not show an example of using a proper
asynchronous HTTP client crate, since it is so easy, and there are several
good crates to choose from, including reqwest and surf.

Here’s a rewrite of many_requests, even simpler than the one based on
cheapo_request, that uses surf to run a series of requests concurrently. You’ll
need these dependencies in your Cargo.toml file:

[dependencies]
async-std = "1.7"
surf = "1.0"

Then, we can define many_requests as follows:

pub async fn many_requests(urls: &[String])
 -> Vec<Result<String, surf::Exception>>
{
 let client = surf::Client::new();

 let mut handles = vec![];
 for url in urls {
 let request = client.get(&url).recv_string();
 handles.push(async_std::task::spawn(request));
 }

 let mut results = vec![];
 for handle in handles {
 results.push(handle.await);
 }

 results
}

fn main() {
 let requests = &["http://example.com".to_string(),
 "https://www.red-bean.com".to_string(),
 "https://en.wikipedia.org/wiki/Main_Page".to_string()];

 let results = async_std::task::block_on(many_requests(requests));
 for result in results {

 match result {
 Ok(response) => println!("*** {}\n", response),
 Err(err) => eprintln!("error: {}\n", err),
 }
 }
}

Using a single surf::Client to make all our requests lets us reuse HTTP
connections if several of them are directed at the same server. And no async
block is needed: since recv_string is an asynchronous method that returns a
Send + 'static future, we can pass its future directly to spawn.

An Asynchronous Client and Server
It’s time to take the key ideas we’ve discussed so far and assemble them into
a working program. To a large extent, asynchronous applications resemble
ordinary multi-threaded applications, but there are new opportunities for
compact and expressive code that you can look out for.

This section’s example is a chat server and client. Check out the complete
code. Real chat systems are complicated, with concerns ranging from security
and reconnection to privacy and moderation, but we’ve pared ours down to
an austere set of features in order to focus on a few points of interest.

In particular, we want to handle backpressure well. By this we mean that if
one client has a slow net connection or drops its connection entirely, that
must never affect other clients’ ability to exchange messages at their own
pace. And since a slow client should not make the server spend unbounded
memory holding on to its ever-growing backlog of messages, our server
should drop messages for clients that can’t keep up, but notify them that their
stream is incomplete. (A real chat server would log messages to disk and let
clients retrieve those they’ve missed, but we’ve left that out.)

We start the project with the command cargo new --lib async-chat and put the
following text in async-chat/Cargo.toml:

[package]
name = "async-chat"
version = "0.1.0"
authors = ["You <you@example.com>"]
edition = "2021"

[dependencies]
async-std = { version = "1.7", features = ["unstable"] }
tokio = { version = "1.0", features = ["sync"] }
serde = { version = "1.0", features = ["derive", "rc"] }
serde_json = "1.0"

We’re depending on four crates:

https://oreil.ly/QFSUS

The async-std crate is the collection of asynchronous I/O primitives
and utilities we’ve been using throughout the chapter.

The tokio crate is another collection of asynchronous primitives like
async-std, one of the oldest and most mature. It’s widely used and
holds its design and implementation to high standards, but requires a
bit more care to use than async-std.

tokio is a large crate, but we need only one component from it, so
the features = ["sync"] field in the Cargo.toml dependency line pares
tokio down to the parts that we need, making this a light
dependency.

When the asynchronous library ecosystem was less mature, people
avoided using both tokio and async-std in the same program, but the
two projects have been cooperating to make sure this works, as long
as each crate’s documented rules are followed.

The serde and serde_json crates we’ve seen before, in Chapter 18.
These give us convenient and efficient tools for generating and
parsing JSON, which our chat protocol uses to represent data on the
network. We want to use some optional features from serde, so we
select those when we give the dependency.

The entire structure of our chat application, client and server, looks like this:

async-chat
├── Cargo.toml
└── src
 ├── lib.rs
 ├── utils.rs
 └── bin
 ├── client.rs
 └── server
 ├── main.rs
 ├── connection.rs
 ├── group.rs
 └── group_table.rs

This package layout uses a Cargo feature we touched on in “The src/bin

Directory”: in addition to the main library crate, src/lib.rs, with its submodule
src/utils.rs, it also includes two executables:

src/bin/client.rs is a single-file executable for the chat client.

src/bin/server is the server executable, spread across four files:
main.rs holds the main function, and there are three submodules,
connection.rs, group.rs, and group_table.rs.

We’ll present the contents of each source file over the course of the chapter,
but once they’re all in place, if you type cargo build in this tree, that compiles
the library crate and then builds both executables. Cargo automatically
includes the library crate as a dependency, making it a convenient place to
put definitions shared by the client and server. Similarly, cargo check checks
the entire source tree. To run either of the executables, you can use
commands like these:

$ cargo run --release --bin server -- localhost:8088
$ cargo run --release --bin client -- localhost:8088

The --bin option indicates which executable to run, and any arguments
following the -- option get passed to the executable itself. Our client and
server just want to know the server’s address and TCP port.

Error and Result Types
The library crate’s utils module defines the result and error types we’ll use
throughout the application. From src/utils.rs:

use std::error::Error;

pub type ChatError = Box<dyn Error + Send + Sync + 'static>;
pub type ChatResult<T> = Result<T, ChatError>;

These are the general-purpose error types we suggested in “Working with
Multiple Error Types”. The async_std, serde_json, and tokio crates each
define their own error types, but the ? operator can automatically convert
them all into a ChatError, using the standard library’s implementation of the
From trait that can convert any suitable error type to Box<dyn Error + Send +
Sync + 'static>. The Send and Sync bounds ensure that if a task spawned onto
another thread fails, it can safely report the error to the main thread.

In a real application, consider using the anyhow crate, which provides Error
and Result types similar to these. The anyhow crate is easy to use and
provides some nice features beyond what our ChatError and ChatResult can
offer.

The Protocol
The library crate captures our entire chat protocol in these two types, defined
in lib.rs:

use serde::{Deserialize, Serialize};
use std::sync::Arc;

pub mod utils;

#[derive(Debug, Deserialize, Serialize, PartialEq)]
pub enum FromClient {
 Join { group_name: Arc<String> },
 Post {
 group_name: Arc<String>,
 message: Arc<String>,
 },
}

#[derive(Debug, Deserialize, Serialize, PartialEq)]
pub enum FromServer {
 Message {
 group_name: Arc<String>,
 message: Arc<String>,
 },
 Error(String),
}

#[test]
fn test_fromclient_json() {
 use std::sync::Arc;

 let from_client = FromClient::Post {
 group_name: Arc::new("Dogs".to_string()),
 message: Arc::new("Samoyeds rock!".to_string()),
 };

 let json = serde_json::to_string(&from_client).unwrap();
 assert_eq!(json,
 r#"{"Post":{"group_name":"Dogs","message":"Samoyeds rock!"}}"#);

 assert_eq!(serde_json::from_str::<FromClient>(&json).unwrap(),
 from_client);
}

The FromClient enum represents the packets a client can send to the server: it
can ask to join a group and post messages to any group it has joined.
FromServer represents what the server can send back: messages posted to
some group, and error messages. Using a reference-counted Arc<String>
instead of a plain String helps the server avoid making copies of strings as it
manages groups and distributes messages.

The #[derive] attributes tell the serde crate to generate implementations of its
Serialize and Deserialize traits for FromClient and FromServer. This lets us
call serde_json::to_string to convert them to JSON values, send them across
the network, and finally call serde_json::from_str to convert them back into
their Rust forms.

The test_fromclient_json unit test illustrates how this is used. Given the
Serialize implementation derived by serde, we can call serde_json::to_string
to turn the given FromClient value into this JSON:

{"Post":{"group_name":"Dogs","message":"Samoyeds rock!"}}

Then the derived Deserialize implementation parses that back into an
equivalent FromClient value. Note that the Arc pointers in FromClient have
no effect on the serialized form: the reference-counted strings appear directly
as JSON object member values.

Taking User Input: Asynchronous Streams
Our chat client’s first responsibility is to read commands from the user and
send the corresponding packets to the server. Managing a proper user
interface is beyond the scope of this chapter, so we’re going to do the
simplest possible thing that works: reading lines directly from standard input.
The following code goes in src/bin/client.rs:

use async_std::prelude::*;
use async_chat::utils::{self, ChatResult};
use async_std::io;
use async_std::net;

async fn send_commands(mut to_server: net::TcpStream) -> ChatResult<()> {
 println!("Commands:\n\
 join GROUP\n\
 post GROUP MESSAGE...\n\
 Type Control-D (on Unix) or Control-Z (on Windows) \
 to close the connection.");

 let mut command_lines = io::BufReader::new(io::stdin()).lines();
 while let Some(command_result) = command_lines.next().await {
 let command = command_result?;
 // See the GitHub repo for the definition of `parse_command`.
 let request = match parse_command(&command) {
 Some(request) => request,
 None => continue,
 };

 utils::send_as_json(&mut to_server, &request).await?;
 to_server.flush().await?;
 }

 Ok(())
}

This calls async_std::io::stdin to get an asynchronous handle on the client’s
standard input, wraps it in an async_std::io::BufReader to buffer it, and then
calls lines to process the user’s input line by line. It tries to parse each line as
a command corresponding to some FromClient value and, if it succeeds,
sends that value to the server. If the user enters an unrecognized command,

parse_command prints an error message and returns None, so
send_commands can go around the loop again. If the user types an end-of-file
indication, then the lines stream returns None, and send_commands returns.
This is very much like the code you would write in an ordinary, synchronous
program, except that it uses async_std’s versions of the library features.

The asynchronous BufReader’s lines method is interesting. It can’t return an
iterator, the way the standard library does: the Iterator::next method is an
ordinary synchronous function, so calling command_lines.next() would block
the thread until the next line was ready. Instead, lines returns a stream of
Result<String> values. A stream is the asynchronous analogue of an iterator:
it produces a sequence of values on demand, in an async-friendly fashion.
Here’s the definition of the Stream trait, from the async_std::stream module:

trait Stream {
 type Item;

 // For now, read `Pin<&mut Self>` as `&mut Self`.
 fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>)
 -> Poll<Option<Self::Item>>;
}

You can look at this as a hybrid of the Iterator and Future traits. Like an
iterator, a Stream has an associated Item type and uses Option to indicate
when the sequence has ended. But like a future, a stream must be polled: to
get the next item (or learn that the stream has ended), you must call poll_next
until it returns Poll::Ready. A stream’s poll_next implementation should
always return quickly, without blocking. And if a stream returns
Poll::Pending, it must notify the caller when it’s worth polling again via the
Context.

The poll_next method is awkward to use directly, but you won’t generally
need to do that. Like iterators, streams have a broad collection of utility
methods like filter and map. Among these is a next method, which returns a
future of the stream’s next Option<Self::Item>. Rather than polling the
stream explicitly, you can call next and await the future it returns instead.

Putting these pieces together, send_commands consumes the stream of input

lines by looping over the values produced by a stream using next with while
let:

while let Some(item) = stream.next().await {
 ... use item ...
}

(Future versions of Rust will probably introduce an asynchronous variant of
the for loop syntax for consuming streams, just as an ordinary for loop
consumes Iterator values.)

Polling a stream after it has ended—that is, after it has returned
Poll::Ready(None) to indicate the end of the stream—is like calling next on
an iterator after it has returned None, or polling a future after it has returned
Poll::Ready: the Stream trait doesn’t specify what the stream should do, and
some streams may misbehave. Like futures and iterators, streams have a fuse
method to ensure such calls behave predictably, when that’s needed; see the
documentation for details.

When working with streams, it’s important to remember to use the async_std
prelude:

use async_std::prelude::*;

This is because the utility methods for the Stream trait, like next, map, filter,
and so on, are actually not defined on Stream itself. Instead, they are default
methods of a separate trait, StreamExt, which is automatically implemented
for all Streams:

pub trait StreamExt: Stream {
 ... define utility methods as default methods ...
}

impl<T: Stream> StreamExt for T { }

This is an example of the extension trait pattern we described in “Traits and
Other People’s Types”. The async_std::prelude module brings the StreamExt
methods into scope, so using the prelude ensures its methods are visible in

your code.

Sending Packets
For transmitting packets on a network socket, our client and server use the
send_as_json function from our library crate’s utils module:

use async_std::prelude::*;
use serde::Serialize;
use std::marker::Unpin;

pub async fn send_as_json<S, P>(outbound: &mut S, packet: &P) -> ChatResult<()>
where
 S: async_std::io::Write + Unpin,
 P: Serialize,
{
 let mut json = serde_json::to_string(&packet)?;
 json.push('\n');
 outbound.write_all(json.as_bytes()).await?;
 Ok(())
}

This function builds the JSON representation of packet as a String, adds a
newline to the end, and then writes it all to outbound.

From its where clause, you can see that send_as_json is quite flexible. The
type of packet to be sent, P, can be anything that implements serde::Serialize.
The output stream S can be anything that implements async_std::io::Write,
the asynchronous version of the std::io::Write trait for output streams. This is
sufficient for us to send FromClient and FromServer values on an
asynchronous TcpStream. Keeping the definition of send_as_json generic
ensures that it doesn’t depend on the details of the stream or packet types in
surprising ways: send_as_json can only use methods from those traits.

The Unpin constraint on S is required to use the write_all method. We’ll
cover pinning and unpinning later in this chapter, but for the time being, it
should suffice to just add Unpin constraints to type variables where required;
the Rust compiler will point these cases out if you forget.

Rather than serializing the packet directly to the outbound stream,
send_as_json serializes it to a temporary String and then writes that to

outbound. The serde_json crate does provide functions to serialize values
directly to output streams, but those functions only support synchronous
streams. Writing to asynchronous streams would require fundamental
changes to both serde_json and the serde crate’s format-independent core,
since the traits they are designed around have synchronous methods.

As with streams, many of the methods of async_std’s I/O traits are actually
defined on extension traits, so it’s important to remember to use
async_std::prelude::* whenever you are using them.

Receiving Packets: More Asynchronous Streams
For receiving packets, our server and client will use this function from the
utils module to receive FromClient and FromServer values from an
asynchronous buffered TCP socket, an
async_std::io::BufReader<TcpStream>:

use serde::de::DeserializeOwned;

pub fn receive_as_json<S, P>(inbound: S) -> impl Stream<Item = ChatResult<P>>
 where S: async_std::io::BufRead + Unpin,
 P: DeserializeOwned,
{
 inbound.lines()
 .map(|line_result| -> ChatResult<P> {
 let line = line_result?;
 let parsed = serde_json::from_str::<P>(&line)?;
 Ok(parsed)
 })
}

Like send_as_json, this function is generic in the input stream and packet
types:

The stream type S must implement async_std::io::BufRead, the
asynchronous analogue of std::io::BufRead, representing a buffered
input byte stream.

The packet type P must implement DeserializeOwned, a stricter
variant of serde’s Deserialize trait. For efficiency, Deserialize can
produce &str and &[u8] values that borrow their contents directly
from the buffer they were deserialized from, to avoid copying data.
In our case, however, that’s no good: we need to return the
deserialized values to our caller, so they must be able to outlive the
buffers we parsed them from. A type that implements
DeserializeOwned is always independent of the buffer it was
deserialized from.

Calling inbound.lines() gives us a Stream of std::io::Result<String> values.
We then use the stream’s map adapter to apply a closure to each item,
handling errors and parsing each line as the JSON form of a value of type P.
This gives us a stream of ChatResult<P> values, which we return directly.
The function’s return type is:

impl Stream<Item = ChatResult<P>>

This indicates that we return some type that produces a sequence of
ChatResult<P> values asynchronously, but our caller can’t tell exactly which
type that is. Since the closure we pass to map has an anonymous type
anyway, this is the most specific type receive_as_json could possibly return.

Notice that receive_as_json is not, itself, an asynchronous function. It is an
ordinary function that returns an async value, a stream. Understanding the
mechanics of Rust’s asynchronous support more deeply than “just add async
and .await everywhere” opens up the potential for clear, flexible, and efficient
definitions like this one that take full advantage of the language.

To see how receive_as_json gets used, here is our chat client’s handle_replies
function from src/bin/client.rs, which receives a stream of FromServer values
from the network and prints them out for the user to see:

use async_chat::FromServer;

async fn handle_replies(from_server: net::TcpStream) -> ChatResult<()> {
 let buffered = io::BufReader::new(from_server);
 let mut reply_stream = utils::receive_as_json(buffered);

 while let Some(reply) = reply_stream.next().await {
 match reply? {
 FromServer::Message { group_name, message } => {
 println!("message posted to {}: {}", group_name, message);
 }
 FromServer::Error(message) => {
 println!("error from server: {}", message);
 }
 }
 }

 Ok(())

}

This function takes a socket receiving data from the server, wraps a
BufReader around it (note well, the async_std version), and then passes that
to receive_as_json to obtain a stream of incoming FromServer values. Then it
uses a while let loop to handle incoming replies, checking for error results
and printing each server reply for the user to see.

The Client’s Main Function
Since we’ve presented both send_commands and handle_replies, we can
show the chat client’s main function, from src/bin/client.rs:

use async_std::task;

fn main() -> ChatResult<()> {
 let address = std::env::args().nth(1)
 .expect("Usage: client ADDRESS:PORT");

 task::block_on(async {
 let socket = net::TcpStream::connect(address).await?;
 socket.set_nodelay(true)?;

 let to_server = send_commands(socket.clone());
 let from_server = handle_replies(socket);

 from_server.race(to_server).await?;

 Ok(())
 })
}

Having obtained the server’s address from the command line, main has a
series of asynchronous functions it would like to call, so it wraps the
remainder of the function in an asynchronous block and passes the block’s
future to async_std::task::block_on to run.

Once the connection is established, we want the send_commands and
handle_replies functions to run in tandem, so we can see others’ messages
arrive while we type. If we enter the end-of-file indicator or if the connection
to the server drops, the program should exit.

Given what we’ve done elsewhere in the chapter, you might expect code like
this:

let to_server = task::spawn(send_commands(socket.clone()));
let from_server = task::spawn(handle_replies(socket));

to_server.await?;

from_server.await?;

But since we await both of the join handles, that gives us a program that exits
once both tasks have finished. We want to exit as soon as either one has
finished. The race method on futures accomplishes this. The call
from_server.race(to_server) returns a new future that polls both from_server
and to_server and returns Poll::Ready(v) as soon as either of them is ready.
Both futures must have the same output type: the final value is that of
whichever future finished first. The uncompleted future is dropped.

The race method, along with many other handy utilities, is defined on the
async_std::prelude::FutureExt trait, which async_std::prelude makes visible
to us.

At this point, the only part of the client’s code that we haven’t shown is the
parse_command function. That’s pretty straightforward text-handling code,
so we won’t show its definition here. See the complete code in the Git
repository for details.

The Server’s Main Function
Here are the entire contents of the main file for the server,
src/bin/server/main.rs:

use async_std::prelude::*;
use async_chat::utils::ChatResult;
use std::sync::Arc;

mod connection;
mod group;
mod group_table;

use connection::serve;

fn main() -> ChatResult<()> {
 let address = std::env::args().nth(1).expect("Usage: server ADDRESS");

 let chat_group_table = Arc::new(group_table::GroupTable::new());

 async_std::task::block_on(async {
 // This code was shown in the chapter introduction.
 use async_std::{net, task};

 let listener = net::TcpListener::bind(address).await?;

 let mut new_connections = listener.incoming();
 while let Some(socket_result) = new_connections.next().await {
 let socket = socket_result?;
 let groups = chat_group_table.clone();
 task::spawn(async {
 log_error(serve(socket, groups).await);
 });
 }

 Ok(())
 })
}

fn log_error(result: ChatResult<()>) {
 if let Err(error) = result {
 eprintln!("Error: {}", error);
 }
}

The server’s main function resembles the client’s: it does a little bit of setup
and then calls block_on to run an async block that does the real work. To
handle incoming connections from clients, it creates a TcpListener socket,
whose incoming method returns a stream of std::io::Result<TcpStream>
values.

For each incoming connection, we spawn an asynchronous task running the
connection::serve function. Each task also receives a reference to a
GroupTable value representing our server’s current list of chat groups, shared
by all the connections via an Arc reference-counted pointer.

If connection::serve returns an error, we log a message to the standard error
output and let the task exit. Other connections continue to run as usual.

Handling Chat Connections: Async Mutexes
Here’s the server’s workhorse: the serve function from the connection
module in src/bin/server/connection.rs:

use async_chat::{FromClient, FromServer};
use async_chat::utils::{self, ChatResult};
use async_std::prelude::*;
use async_std::io::BufReader;
use async_std::net::TcpStream;
use async_std::sync::Arc;

use crate::group_table::GroupTable;

pub async fn serve(socket: TcpStream, groups: Arc<GroupTable>)
 -> ChatResult<()>
{
 let outbound = Arc::new(Outbound::new(socket.clone()));

 let buffered = BufReader::new(socket);
 let mut from_client = utils::receive_as_json(buffered);
 while let Some(request_result) = from_client.next().await {
 let request = request_result?;

 let result = match request {
 FromClient::Join { group_name } => {
 let group = groups.get_or_create(group_name);
 group.join(outbound.clone());
 Ok(())
 }

 FromClient::Post { group_name, message } => {
 match groups.get(&group_name) {
 Some(group) => {
 group.post(message);
 Ok(())
 }
 None => {
 Err(format!("Group '{}' does not exist", group_name))
 }
 }
 }
 };

 if let Err(message) = result {

 let report = FromServer::Error(message);
 outbound.send(report).await?;
 }
 }

 Ok(())
}

This is almost a mirror image of the client’s handle_replies function: the bulk
of the code is a loop handling an incoming stream of FromClient values, built
from a buffered TCP stream with receive_as_json. If an error occurs, we
generate a FromServer::Error packet to convey the bad news back to the
client.

In addition to error messages, clients would also like to receive messages
from the chat groups they’ve joined, so the connection to the client needs to
be shared with each group. We could simply give everyone a clone of the
TcpStream, but if two of these sources try to write a packet to the socket at
the same time, their output might be interleaved, and the client would end up
receiving garbled JSON. We need to arrange safe concurrent access to the
connection.

This is managed with the Outbound type, defined in
src/bin/server/connection.rs as follows:

use async_std::sync::Mutex;

pub struct Outbound(Mutex<TcpStream>);

impl Outbound {
 pub fn new(to_client: TcpStream) -> Outbound {
 Outbound(Mutex::new(to_client))
 }

 pub async fn send(&self, packet: FromServer) -> ChatResult<()> {
 let mut guard = self.0.lock().await;
 utils::send_as_json(&mut *guard, &packet).await?;
 guard.flush().await?;
 Ok(())
 }
}

When created, an Outbound value takes ownership of a TcpStream and wraps
it in a Mutex to ensure that only one task can use it at a time. The serve
function wraps each Outbound in an Arc reference-counted pointer so that all
the groups the client joins can point to the same shared Outbound instance.

A call to Outbound::send first locks the mutex, returning a guard value that
dereferences to the TcpStream inside. We use send_as_json to transmit
packet, and then finally we call guard.flush() to ensure it won’t languish half-
transmitted in some buffer somewhere. (To our knowledge, TcpStream
doesn’t actually buffer data, but the Write trait permits its implementations to
do so, so we shouldn’t take any chances.)

The expression &mut *guard lets us work around the fact that Rust doesn’t
apply deref coercions to meet trait bounds. Instead, we explicitly dereference
the mutex guard and then borrow a mutable reference to the TcpStream it
protects, producing the &mut TcpStream that send_as_json requires.

Note that Outbound uses the async_std::sync::Mutex type, not the standard
library’s Mutex. There are three reasons for this.

First, the standard library’s Mutex may misbehave if a task is suspended
while holding a mutex guard. If the thread that had been running that task
picks up another task that tries to lock the same Mutex, trouble ensues: from
the Mutex’s point of view, the thread that already owns it is trying to lock it
again. The standard Mutex isn’t designed to handle this case, so it panics or
deadlocks. (It will never grant the lock inappropriately.) There is work
underway to make Rust detect this problem at compile time and issue a
warning whenever a std::sync::Mutex guard is live across an await
expression. Since Outbound::send needs to hold the lock while it awaits the
futures of send_as_json and guard.flush, it must use async_std’s Mutex.

Second, the asynchronous Mutex’s lock method returns a future of a guard,
so a task waiting to lock a mutex yields its thread for other tasks to use until
the mutex is ready. (If the mutex is already available, the lock future is ready
immediately, and the task doesn’t suspend itself at all.) The standard Mutex’s
lock method, on the other hand, pins down the entire thread while it waits to
acquire the lock. Since the preceding code holds the mutex while it transmits

a packet across the network, that might take quite a while.

Finally, the standard Mutex must only be unlocked by the same thread that
locked it. To enforce this, the standard mutex’s guard type does not
implement Send: it cannot be transmitted to other threads. This means that a
future holding such a guard does not itself implement Send, and cannot be
passed to spawn to run on a thread pool; it can only be run with block_on or
spawn_local. The guard for an async_std Mutex does implement Send so
there’s no problem using it in spawned tasks.

The Group Table: Synchronous Mutexes
But the moral of the story is not as simple as, “Always use
async_std::sync::Mutex in asynchronous code.” Often there is no need to
await anything while holding a mutex, and the lock is not held for long. In
such cases, the standard library’s Mutex can be much more efficient. Our
chat server’s GroupTable type illustrates this case. Here are the full contents
of src/bin/server/group_table.rs:

use crate::group::Group;
use std::collections::HashMap;
use std::sync::{Arc, Mutex};

pub struct GroupTable(Mutex<HashMap<Arc<String>, Arc<Group>>>);

impl GroupTable {
 pub fn new() -> GroupTable {
 GroupTable(Mutex::new(HashMap::new()))
 }

 pub fn get(&self, name: &String) -> Option<Arc<Group>> {
 self.0.lock()
 .unwrap()
 .get(name)
 .cloned()
 }

 pub fn get_or_create(&self, name: Arc<String>) -> Arc<Group> {
 self.0.lock()
 .unwrap()
 .entry(name.clone())
 .or_insert_with(|| Arc::new(Group::new(name)))
 .clone()
 }
}

A GroupTable is simply a mutex-protected hash table, mapping chat group
names to actual groups, both managed using reference-counted pointers. The
get and get_or_create methods lock the mutex, perform a few hash table
operations, perhaps some allocations, and return.

In GroupTable, we use a plain old std::sync::Mutex. There is no
asynchronous code in this module at all, so there are no awaits to avoid.
Indeed, if we wanted to use async_std::sync::Mutex here, we would need to
make get and get_or_create into asynchronous functions, which introduces
the overhead of future creation, suspensions, and resumptions for little
benefit: the mutex is locked only for some hash operations and perhaps a few
allocations.

If our chat server found itself with millions of users, and the GroupTable
mutex did become a bottleneck, making it asynchronous wouldn’t address
that problem. It would probably be better to use some sort of collection type
specialized for concurrent access instead of HashMap. For example, the
dashmap crate provides such a type.

Chat Groups: tokio’s Broadcast Channels
In our server, the group::Group type represents a chat group. This type only
needs to support the two methods that connection::serve calls: join, to add a
new member, and post, to post a message. Each message posted needs to be
distributed to all the members.

This is where we address the challenge mentioned earlier of backpressure.
There are several needs in tension with each other:

If one member can’t keep up with the messages being posted to the
group—if they have a slow network connection, for example—other
members in the group should not be affected.

Even if a member falls behind, there should be means for them to
rejoin the conversation and continue to participate somehow.

Memory spent buffering messages should not grow without bound.

Because these challenges are common when implementing many-to-many
communication patterns, the tokio crate provides a broadcast channel type
that implements one reasonable set of tradeoffs. A tokio broadcast channel is
a queue of values (in our case, chat messages) that allows any number of
different threads or tasks to send and receive values. It’s called a “broadcast”
channel because every consumer gets its own copy of each value sent. (The
value type must implement Clone.)

Normally, a broadcast channel retains a message in the queue until every
consumer has gotten their copy. But if the length of the queue would exceed
the channel’s maximum capacity, specified when it is created, the oldest
messages get dropped. Any consumers who couldn’t keep up get an error the
next time they try to get their next message, and the channel catches them up
to the oldest message still available.

For example, Figure 20-4 shows a broadcast channel with a maximum
capacity of 16 values.

Figure 20-4. A tokio broadcast channel

There are two senders enqueuing messages and four receivers dequeueing
them—or more precisely, copying messages out of the queue. Receiver B has
14 messages still to receive, receiver C has 7, and receiver D is fully caught
up. Receiver A has fallen behind, and 11 messages were dropped before it
could see them. Its next attempt to receive a message will fail, returning an
error indicating the situation, and it will be caught up to the current end of the
queue.

Our chat server represents each chat group as a broadcast channel carrying
Arc<String> values: posting a message to the group broadcasts it to all
current members. Here’s the definition of the group::Group type, defined in
src/bin/server/group.rs:

use async_std::task;
use crate::connection::Outbound;
use std::sync::Arc;
use tokio::sync::broadcast;

pub struct Group {
 name: Arc<String>,
 sender: broadcast::Sender<Arc<String>>
}

impl Group {
 pub fn new(name: Arc<String>) -> Group {
 let (sender, _receiver) = broadcast::channel(1000);
 Group { name, sender }
 }

 pub fn join(&self, outbound: Arc<Outbound>) {
 let receiver = self.sender.subscribe();

 task::spawn(handle_subscriber(self.name.clone(),
 receiver,
 outbound));
 }

 pub fn post(&self, message: Arc<String>) {
 // This only returns an error when there are no subscribers. A
 // connection's outgoing side can exit, dropping its subscription,
 // slightly before its incoming side, which may end up trying to send a
 // message to an empty group.
 let _ignored = self.sender.send(message);
 }
}

A Group struct holds the name of the chat group, together with a
broadcast::Sender representing the sending end of the group’s broadcast
channel. The Group::new function calls broadcast::channel to create a
broadcast channel with a maximum capacity of 1,000 messages. The channel
function returns both a sender and a receiver, but we have no need for the
receiver at this point, since the group doesn’t have any members yet.

To add a new member to the group, the Group::join method calls the sender’s
subscribe method to create a new receiver for the channel. Then it spawns a
new asynchronous task to monitor that receiver for messages and write them
back to the client, in the handle_subscribe function.

With those details in hand, the Group::post method is straightforward: it
simply sends the message to the broadcast channel. Since the values carried
by the channel are Arc<String> values, giving each receiver its own copy of a
message just increases the message’s reference count, without any copies or
heap allocation. Once all the subscribers have transmitted the message, the
reference count drops to zero, and the message is freed.

Here’s the definition of handle_subscriber:

use async_chat::FromServer;
use tokio::sync::broadcast::error::RecvError;

async fn handle_subscriber(group_name: Arc<String>,
 mut receiver: broadcast::Receiver<Arc<String>>,
 outbound: Arc<Outbound>)

{
 loop {
 let packet = match receiver.recv().await {
 Ok(message) => FromServer::Message {
 group_name: group_name.clone(),
 message: message.clone(),
 },

 Err(RecvError::Lagged(n)) => FromServer::Error(
 format!("Dropped {} messages from {}.", n, group_name)
),

 Err(RecvError::Closed) => break,
 };

 if outbound.send(packet).await.is_err() {
 break;
 }
 }
}

Although the details are different, the form of this function is familiar: it’s a
loop that receives messages from the broadcast channel and transmits them
back to the client via the shared Outbound value. If the loop can’t keep up
with the broadcast channel, it receives a Lagged error, which it dutifully
reports to the client.

If sending a packet back to the client fails completely, perhaps because the
connection has closed, handle_subscriber exits its loop and returns, causing
the asynchronous task to exit. This drops the broadcast channel’s Receiver,
unsubscribing it from the channel. This way, when a connection is dropped,
each of its group memberships is cleaned up the next time the group tries to
send it a message.

Our chat groups never close down, since we never remove a group from the
group table, but just for completeness, handle_subscriber is ready to handle a
Closed error by exiting the task.

Note that we’re creating a new asynchronous task for every group
membership of every client. This is feasible because asynchronous tasks use
so much less memory than threads and because switching from one

asynchronous task to another within a process is quite efficient.

This, then, is the complete code for the chat server. It is a bit spartan, and
there are many more valuable features in the async_std, tokio, and futures
crates than we can cover in this book, but ideally this extended example
manages to illustrate how some of the features of asynchronous ecosystem
work together: asynchronous tasks, streams, the asynchronous I/O traits,
channels, and mutexes of both flavors.

Primitive Futures and Executors: When Is a Future
Worth Polling Again?
The chat server shows how we can write code using asynchronous primitives
like TcpListener and the broadcast channel, and use executors like block_on
and spawn to drive their execution. Now we can take a look at how these
things are implemented. The key question is, when a future returns
Poll::Pending, how does it coordinate with the executor to poll it again at the
right time?

Think about what happens when we run code like this, from the chat client’s
main function:

task::block_on(async {
 let socket = net::TcpStream::connect(address).await?;
 ...
})

The first time block_on polls the async block’s future, the network
connection is almost certainly not ready immediately, so block_on goes to
sleep. But when should it wake up? Somehow, once the network connection
is ready, TcpStream needs to tell block_on that it should try polling the async
block’s future again, because it knows that this time, the await will complete,
and execution of the async block can make progress.

When an executor like block_on polls a future, it must pass in a callback
called a waker. If the future is not ready yet, the rules of the Future trait say
that it must return Poll::Pending for now, and arrange for the waker to be
invoked later, if and when the future is worth polling again.

So a handwritten implementation of Future often looks something like this:

use std::task::Waker;

struct MyPrimitiveFuture {
 ...
 waker: Option<Waker>,

}

impl Future for MyPrimitiveFuture {
 type Output = ...;

 fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<...> {
 ...

 if ... future is ready ... {
 return Poll::Ready(final_value);
 }

 // Save the waker for later.
 self.waker = Some(cx.waker().clone());
 Poll::Pending
 }
}

In other words, if the future’s value is ready, return it. Otherwise, stash a
clone of the Context’s waker somewhere, and return Poll::Pending.

When the future is worth polling again, the future must notify the last
executor that polled it by calling its waker’s wake method:

// If we have a waker, invoke it, and clear `self.waker`.
if let Some(waker) = self.waker.take() {
 waker.wake();
}

Ideally, the executor and the future take turns polling and waking: the
executor polls the future and goes to sleep, then the future invokes the waker,
so the executor wakes up and polls the future again.

Futures of async functions and blocks don’t deal with wakers themselves.
They simply pass along the context they’re given to the subfutures they
await, delegating to them the obligation to save and invoke wakers. In our
chat client, the first poll of the async block’s future just passes the context
along when it awaits TcpStream::connect’s future. Subsequent polls similarly
pass their context through to whatever future the block awaits next.

TcpStream::connect’s future handles being polled as shown in the preceding
example: it hands the waker over to a helper thread that waits for the

connection to be ready and then invokes the waker.

Waker implements Clone and Send, so a future can always make its own
copy of the waker and send it to other threads as needed. The Waker::wake
method consumes the waker. There is also a wake_by_ref method that does
not, but some executors can implement the consuming version a bit more
efficiently. (The difference is at most a clone.)

It’s harmless for an executor to overpoll a future, just inefficient. Futures,
however, should be careful to invoke a waker only when polling would make
actual progress: a cycle of spurious wakeups and polls can prevent an
executor from ever sleeping at all, wasting power and leaving the processor
less responsive to other tasks.

Now that we have shown how executors and primitive futures communicate,
we’ll implement a primitive future ourselves and then walk through an
implementation of the block_on executor.

Invoking Wakers: spawn_blocking
Earlier in the chapter, we described the spawn_blocking function, which
starts a given closure running on another thread and returns a future of its
return value. We now have all the pieces we need to implement
spawn_blocking ourselves. For simplicity, our version creates a fresh thread
for each closure, rather than using a thread pool, as async_std’s version does.

Although spawn_blocking returns a future, we’re not going to write it as an
async fn. Rather, it’ll be an ordinary, synchronous function that returns a
struct, SpawnBlocking, on which we’ll implement Future ourselves.

The signature of our spawn_blocking is as follows:

pub fn spawn_blocking<T, F>(closure: F) -> SpawnBlocking<T>
where F: FnOnce() -> T,
 F: Send + 'static,
 T: Send + 'static,

Since we need to send the closure to another thread and bring the return value
back, both the closure F and its return value T must implement Send. And
since we don’t have any idea how long the thread will run, they must both be
'static as well. These are the same bounds that std::thread::spawn itself
imposes.

SpawnBlocking<T> is a future of the closure’s return value. Here is its
definition:

use std::sync::{Arc, Mutex};
use std::task::Waker;

pub struct SpawnBlocking<T>(Arc<Mutex<Shared<T>>>);

struct Shared<T> {
 value: Option<T>,
 waker: Option<Waker>,
}

The Shared struct must serve as a rendezvous between the future and the

thread running the closure, so it is owned by an Arc and protected with a
Mutex. (A synchronous mutex is fine here.) Polling the future checks whether
value is present and saves the waker in waker if not. The thread that runs the
closure saves its return value in value and then invokes waker, if present.

Here’s the full definition of spawn_blocking:

pub fn spawn_blocking<T, F>(closure: F) -> SpawnBlocking<T>
where F: FnOnce() -> T,
 F: Send + 'static,
 T: Send + 'static,
{
 let inner = Arc::new(Mutex::new(Shared {
 value: None,
 waker: None,
 }));

 std::thread::spawn({
 let inner = inner.clone();
 move || {
 let value = closure();

 let maybe_waker = {
 let mut guard = inner.lock().unwrap();
 guard.value = Some(value);
 guard.waker.take()
 };

 if let Some(waker) = maybe_waker {
 waker.wake();
 }
 }
 });

 SpawnBlocking(inner)
}

After creating the Shared value, this spawns a thread to run the closure, store
the result in the Shared’s value field, and invoke the waker, if any.

We can implement Future for SpawnBlocking as follows:

use std::future::Future;
use std::pin::Pin;

use std::task::{Context, Poll};

impl<T: Send> Future for SpawnBlocking<T> {
 type Output = T;

 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
 let mut guard = self.0.lock().unwrap();
 if let Some(value) = guard.value.take() {
 return Poll::Ready(value);
 }

 guard.waker = Some(cx.waker().clone());
 Poll::Pending
 }
}

Polling a SpawnBlocking checks if the closure’s value is ready, taking
ownership and returning it if so. Otherwise, the future is still pending, so it
saves a clone of the context’s waker in the future’s waker field.

Once a Future has returned Poll::Ready, you’re not supposed to poll it again.
The usual ways of consuming futures, like await and block_on, all respect
this rule. If a SpawnBlocking future is overpolled, nothing especially terrible
happens, but it doesn’t go to any effort to handle that case, either. This is
typical for handwritten futures.

Implementing block_on
In addition to being able to implement primitive futures, we also have all the
pieces we need to build a simple executor. In this section, we’ll write our
own version of block_on. It will be quite a bit simpler than async_std’s
version; for example, it won’t support spawn_local, task-local variables, or
nested invocations (calling block_on from asynchronous code). But it is
sufficient to run our chat client and server.

Here’s the code:

use waker_fn::waker_fn; // Cargo.toml: waker-fn = "1.1"
use futures_lite::pin; // Cargo.toml: futures-lite = "1.11"
use crossbeam::sync::Parker; // Cargo.toml: crossbeam = "0.8"
use std::future::Future;
use std::task::{Context, Poll};

fn block_on<F: Future>(future: F) -> F::Output {
 let parker = Parker::new();
 let unparker = parker.unparker().clone();
 let waker = waker_fn(move || unparker.unpark());
 let mut context = Context::from_waker(&waker);

 pin!(future);

 loop {
 match future.as_mut().poll(&mut context) {
 Poll::Ready(value) => return value,
 Poll::Pending => parker.park(),
 }
 }
}

This is pretty short, but there’s a lot going on, so let’s take it one piece at a
time.

let parker = Parker::new();
let unparker = parker.unparker().clone();

The crossbeam crate’s Parker type is a simple blocking primitive: calling

parker.park() blocks the thread until someone else calls .unpark() on the
corresponding Unparker, which you obtain beforehand by calling
parker.unparker(). If you unpark a thread that isn’t parked yet, its next call to
park returns immediately, without blocking. Our block_on will use the Parker
to wait whenever the future isn’t ready, and the waker we pass to futures will
unpark it.

let waker = waker_fn(move || unparker.unpark());

The waker_fn function, from the crate of the same name, creates a Waker
from a given closure. Here, we make a Waker that, when invoked, calls the
closure move || unparker.unpark(). You can also create wakers by
implementing the std::task::Wake trait, but waker_fn is a bit more convenient
here.

pin!(future);

Given a variable holding a future of type F, the pin! macro takes ownership
of the future and declares a new variable of the same name whose type is
Pin<&mut F> and that borrows the future. This gives us the Pin<&mut Self>
required by the poll method. For reasons we’ll explain in the next section,
futures of asynchronous functions and blocks must be referenced via a Pin
before they can be polled.

loop {
 match future.as_mut().poll(&mut context) {
 Poll::Ready(value) => return value,
 Poll::Pending => parker.park(),
 }
}

Finally, the polling loop is quite simple. Passing a context carrying our
waker, we poll the future until it returns Poll::Ready. If it returns
Poll::Pending, we park the thread, which blocks until waker is invoked. Then
we try again.

The as_mut call lets us poll future without giving up ownership; we’ll explain

this more in the next section.

Pinning
Although asynchronous functions and blocks are essential for writing clear
asynchronous code, handling their futures requires a bit of care. The Pin type
helps Rust ensure they’re used safely.

In this section, we’ll show why futures of asynchronous function calls and
blocks can’t be handled as freely as ordinary Rust values. Then we’ll show
how Pin serves as a “seal of approval” on pointers that can be counted on to
manage such futures safely. Finally, we’ll show a few ways to work with Pin
values.

The Two Life Stages of a Future
Consider this simple asynchronous function:

use async_std::io::prelude::*;
use async_std::{io, net};

async fn fetch_string(address: &str) -> io::Result<String> {
 ❶
 let mut socket = net::TcpStream::connect(address).await❷?;
 let mut buf = String::new();
 socket.read_to_string(&mut buf).await❸?;
 Ok(buf)
}

This opens a TCP connection to the given address and returns, as a String,
whatever the server there wants to send. The points labeled ❶, ❷, and ❸ are
the resumption points, the points in the asynchronous function’s code at
which execution may be suspended.

Suppose you call it, without awaiting, like so:

let response = fetch_string("localhost:6502");

Now response is a future ready to begin execution at the start of fetch_string,
with the given argument. In memory, the future looks something like
Figure 20-5.

Figure 20-5. The future constructed for a call to fetch_string

Since we just created this future, it says that execution should begin at
resumption point ❶, at the top of the function body. In this state, the only
values a future needs to proceed are the function arguments.

Now suppose that you poll response a few times and it reaches this point in
the function’s body:

socket.read_to_string(&mut buf).await❸?;

Suppose further that the result of read_to_string isn’t ready, so the poll
returns Poll::Pending. At this point, the future looks like Figure 20-6.

A future must always hold all the information needed to resume execution the
next time it is polled. In this case that is:

Resumption point ❸, saying that execution should resume in the
await polling read_to_string’s future.

The variables that are alive at that resumption point: socket and buf.
The value of address is no longer present in the future, since the
function no longer needs it.

The read_to_string subfuture, which the await expression is in the
midst of polling.

Figure 20-6. The same future, in the midst of awaiting read_to_string

Note that the call to read_to_string has borrowed references to socket and
buf. In a synchronous function, all local variables live on the stack, but in an
asynchronous function, local variables that are alive across an await must be
located in the future, so they’ll be available when it is polled again.
Borrowing a reference to such a variable borrows a part of the future.

However, Rust requires that values not be moved while they are borrowed.
Suppose you were to move this future to a new location:

let new_variable = response;

Rust has no means to find all the active references and adjust them
accordingly. Instead of pointing to socket and buf at their new locations, the
references continue to point at their old locations in the now-uninitialized
response. They have become dangling pointers, as shown in Figure 20-7.

Preventing borrowed values from being moved is generally the borrow
checker’s responsibility. The borrow checker treats variables as the roots of
ownership trees, but unlike variables stored on the stack, variables stored in
futures get moved if the future itself moves. This means the borrows of
socket and buf affect not just what fetch_string can do with its own variables,
but what its caller can safely do with response, the future that holds them.

Futures of async functions are a blind spot for the borrow checker, which
Rust must cover somehow if it wants to keep its memory safety promises.

Figure 20-7. fetch_string’s future, moved while borrowed (Rust prevents this)

Rust’s solution to this problem rests on the insight that futures are always
safe to move when they are first created, and only become unsafe to move
when they are polled. A future that has just been created by calling an
asynchronous function simply holds a resumption point and the argument
values. These are only in scope for the asynchronous function’s body, which
has not yet begun execution. Only polling a future can borrow its contents.

From this, we can see that every future has two life stages:

The first stage begins when the future is created. Because the
function’s body hasn’t begun execution, no part of it could possibly
be borrowed yet. At this point, it’s as safe to move as any other Rust
value.

The second stage begins the first time the future is polled. Once the
function’s body has begun execution, it could borrow references to
variables stored in the future and then await, leaving that part of the
future borrowed. Starting after its first poll, we must assume the
future may not be safe to move.

The flexibility of the first life stage is what lets us pass futures to block_on
and spawn and call adapter methods like race and fuse, all of which take
futures by value. In fact, even the asynchronous function call that created the
future in the first place had to return it to the caller; that was a move as well.

To enter its second life stage, the future must be polled. The poll method
requires the future be passed as a Pin<&mut Self> value. Pin is a wrapper for
pointer types (like &mut Self) that restricts how the pointers can be used,
ensuring that their referents (like Self) cannot ever be moved again. So you
must produce a Pin-wrapped pointer to the future before you can poll it.

This, then, is Rust’s strategy for keeping futures safe: a future can’t become
dangerous to move until it’s polled; you can’t poll a future until you’ve
constructed a Pin-wrapped pointer to it; and once you’ve done that, the future
can’t be moved.

“A value you can’t move” sounds impossible: moves are everywhere in Rust.
We’ll explain exactly how Pin protects futures in the next section.

Although this section has discussed asynchronous functions, everything here
applies to asynchronous blocks as well. A freshly created future of an
asynchronous block simply captures the variables it will use from the
surrounding code, like a closure. Only polling the future can create references
to its contents, rendering it unsafe to move.

Keep in mind that this move fragility is limited to futures of asynchronous
functions and blocks, with their special compiler-generated Future
implementations. If you implement Future by hand for your own types, as we
did for our SpawnBlocking type in “Invoking Wakers: spawn_blocking”,
such futures are perfectly safe to move both before and after they’ve been
polled. In any handwritten poll implementation, the borrow checker ensures
that whatever references you had borrowed to parts of self are gone by the
time poll returns. It is only because asynchronous functions and blocks have
the power to suspend execution in the midst of a function call, with borrows
in progress, that we must handle their futures with care.

Pinned Pointers
The Pin type is a wrapper for pointers to futures that restricts how the
pointers may be used to make sure that futures can’t be moved once they’ve
been polled. These restrictions can be lifted for futures that don’t mind being
moved, but they are essential to safely polling futures of asynchronous
functions and blocks.

By pointer, we mean any type that implements Deref, and possibly
DerefMut. A Pin wrapped around a pointer is called a pinned pointer.
Pin<&mut T> and Pin<Box<T>> are typical.

The definition of Pin in the standard library is simple:

pub struct Pin<P> {
 pointer: P,
}

Note that the pointer field is not pub. This means that the only way to
construct or use a Pin is through the carefully chosen methods the type
provides.

Given a future of an asynchronous function or block, there are only a few
ways to get a pinned pointer to it:

The pin! macro, from the futures-lite crate, shadows a variable of
type T with a new one of type Pin<&mut T>. The new variable
points to the original’s value, which has been moved to an
anonymous temporary location on the stack. When the variable goes
out of scope, the value is dropped. We used pin! in our block_on
implementation to pin the future we wanted to poll.

The standard library’s Box::pin constructor takes ownership of a
value of any type T, moves it into the heap, and returns a
Pin<Box<T>>.

Pin<Box<T>> implements From<Box<T>>, so Pin::from(boxed)

takes ownership of boxed and gives you back a pinned box pointing
at the same T on the heap.

Every way to obtain a pinned pointer to these futures entails giving up
ownership of the future, and there is no way to get it back out. The pinned
pointer itself can be moved in any way you please, of course, but moving a
pointer doesn’t move its referent. So possession of a pinned pointer to a
future serves as proof that you have permanently given up the ability to move
that future. This is all we need to know that it can be polled safely.

Once you’ve pinned a future, if you’d like to poll it, all Pin<pointer to T>
types have an as_mut method that dereferences the pointer and returns the
Pin<&mut T> that poll requires.

The as_mut method can also help you poll a future without giving up
ownership. Our block_on implementation used it in this role:

pin!(future);

loop {
 match future.as_mut().poll(&mut context) {
 Poll::Ready(value) => return value,
 Poll::Pending => parker.park(),
 }
}

Here, the pin! macro has redeclared future as a Pin<&mut F>, so we could
just pass that to poll. But mutable references are not Copy, so Pin<&mut F>
cannot be Copy either, meaning that calling future.poll() directly would take
ownership of future, leaving the next iteration of the loop with an
uninitialized variable. To avoid this, we call future.as_mut() to reborrow a
fresh Pin<&mut F> for each loop iteration.

There is no way to get a &mut reference to a pinned future: if you could, you
could use std::mem::replace or std::mem::swap to move it out and put a
different future in its place.

The reason we don’t have to worry about pinning futures in ordinary
asynchronous code is that the most common ways to obtain a future’s value

—awaiting it or passing to an executor—all take ownership of the future and
manage the pinning internally. For example, our block_on implementation
takes ownership of the future and uses the pin! macro to produce the
Pin<&mut F> needed to poll. An await expression also takes ownership of
the future and uses an approach similar to the pin! macro internally.

The Unpin Trait
However, not all futures require this kind of careful handling. For any
handwritten implementation of Future for an ordinary type, like our
SpawnBlocking type mentioned earlier, the restrictions on constructing and
using pinned pointers are unnecessary.

Such durable types implement the Unpin marker trait:

trait Unpin { }

Almost all types in Rust automatically implement Unpin, using special
support in the compiler. Asynchronous function and block futures are the
exceptions to this rule.

For Unpin types, Pin imposes no restrictions whatsoever. You can make a
pinned pointer from an ordinary pointer with Pin::new and get the pointer
back out with Pin::into_inner. The Pin itself passes along the pointer’s own
Deref and DerefMut implementations.

For example, String implements Unpin, so we can write:

let mut string = "Pinned?".to_string();
let mut pinned: Pin<&mut String> = Pin::new(&mut string);

pinned.push_str(" Not");
Pin::into_inner(pinned).push_str(" so much.");

let new_home = string;
assert_eq!(new_home, "Pinned? Not so much.");

Even after making a Pin<&mut String>, we have full mutable access to the
string and can move it to a new variable once the Pin has been consumed by
into_inner and the mutable reference is gone. So for types that are Unpin—
which is almost all of them—Pin is a boring wrapper around pointers to that
type.

This means that when you implement Future for your own Unpin types, your

poll implementation can treat self as if it were &mut Self, not Pin<&mut
Self>. Pinning becomes something you can mostly ignore.

It may be surprising to learn that Pin<&mut F> and Pin<Box<F>> implement
Unpin, even if F does not. This doesn’t read well—how can a Pin be Unpin?
—but if you think carefully about what each term means, it does make sense.
Even if F is not safe to move once it has been polled, a pointer to it is always
safe to move, polled or not. Only the pointer moves; its fragile referent stays
put.

This is useful to know when you would like to pass the future of an
asynchronous function or block to a function that only accepts Unpin futures.
(Such functions are rare in async_std, but less so elsewhere in the async
ecosystem.) Pin<Box<F>> is Unpin even if F is not, so applying Box::pin to
an asynchronous function or block future gives you a future you can use
anywhere, at the cost of a heap allocation.

There are various unsafe methods for working with Pin that let you do
whatever you like with the pointer and its target, even for target types that are
not Unpin. But as explained in Chapter 22, Rust cannot check that these
methods are being used correctly; you become responsible for ensuring the
safety of the code that uses them.

When Is Asynchronous Code Helpful?
Asynchronous code is trickier to write than multithreaded code. You have to
use the right I/O and synchronization primitives, break up long-running
computations by hand or spin them off on other threads, and manage other
details like pinning that don’t arise in threaded code. So what specific
advantages does asynchronous code offer?

Two claims you’ll often hear don’t stand up to careful inspection:

“Async code is great for I/O.” This is not quite correct. If your
application is spending its time waiting for I/O, making it async will
not make that I/O run faster. There is nothing about the
asynchronous I/O interfaces generally used today that makes them
more efficient than their synchronous counterparts. The operating
system has the same work to do either way. (In fact, an
asynchronous I/O operation that isn’t ready must be tried again later,
so it takes two system calls to complete instead of one.)

“Async code is easier to write than multithreaded code.” In
languages like JavaScript and Python, this may well be true. In those
languages, programmers use async/await as well-behaved form of
concurrency: there’s a single thread of execution, and interruptions
only occur at await expressions, so there’s often no need for a mutex
to keep data consistent: just don’t await while you’re in the midst of
using it! It’s much easier to understand your code when task
switches occur only with your explicit permission.

But this argument doesn’t carry over to Rust, where threads aren’t
nearly as troublesome. Once your program compiles, it is free of
data races. Nondeterministic behavior is confined to synchronization
features like mutexes, channels, atomics, and so on, which were
designed to cope with it. So asynchronous code has no unique
advantage at helping you see when other threads might impact you;
that’s clear in all safe Rust code.

And of course, Rust’s asynchronous support really shines when used
in combination with threads. It would be a pity to give that up.

So, what are the real advantages of asynchronous code?

Asynchronous tasks can use less memory. On Linux, a thread’s
memory use starts at 20 KiB, counting both user and kernel space.
Futures can be much smaller: our chat server’s futures are a few
hundred bytes in size and have been getting smaller as the Rust
compiler improves.

Asynchronous tasks are faster to create. On Linux, creating a thread
takes around 15 µs. Spawning an asynchronous task takes around
300 ns, about one-fiftieth the time.

Context switches are faster between asynchronous tasks than
between operating system threads, 0.2 µs versus 1.7 µs on Linux.
However, these are best-case numbers for each: if the switch is due
to I/O readiness, both costs rise to 1.7 µs. Whether the switch is
between threads or tasks on different processor cores also makes a
big difference: communication between cores is very slow.

This gives us a hint as to what sorts of problems asynchronous code can
solve. For example, an asynchronous server might use less memory per task
and thus be able to handle more simultaneous connections. (This is probably
where asynchronous code gets its reputation for being “good for I/O.”) Or, if
your design is naturally organized as many independent tasks communicating
with each other, then low per-task costs, short creation times, and quick
context switches are all important advantages. This is why chat servers are
the classic example for asynchronous programming, but multi-player games
and network routers would probably be good uses too.

In other situations, the case for using async is less clear. If your program has
a pool of threads doing heavy computations or sitting idle waiting for I/O to
finish, the advantages listed earlier are probably not a big influence on its
performance. You’ll have to optimize your computation, find a faster net
connection, or do something else that actually affects the limiting factor.

2

3

In practice, every account of implementing high-volume servers that we
could find emphasized the importance of measurement, tuning, and a
relentless campaign to identify and remove sources of contention between
tasks. An asynchronous architecture won’t let you skip any of this work. In
fact, while there are plenty of off-the-shelf tools for assessing the behavior of
multithreaded programs, Rust asynchronous tasks are invisible to those tools
and thus require tooling of their own. (As a wise elder once said, “Now you
have two problems.”)

Even if you don’t use asynchronous code now, it’s nice to know that the
option is there if you ever have the good fortune to be vastly busier than you
are now.

1 If you actually need an HTTP client, consider using any one of the many excellent crates like
surf or reqwest that will do the job properly and asynchronously. This client mostly just manages
to get HTTPS redirects.

2 This includes kernel memory and counts physical pages allocated for the thread, not virtual, yet-
to-be-allocated pages. The numbers are similar on macOS and Windows.

3 Linux context switches used to be in the 0.2 µs range, too, until the kernel was forced to use
slower techniques due to processor security flaws.

Chapter 21. Macros

A cento (from the Latin for “patchwork”) is a poem made up entirely of
lines quoted from another poet.

—Matt Madden

Rust supports macros, a way to extend the language in ways that go beyond
what you can do with functions alone. For example, we’ve seen the
assert_eq! macro, which is handy for tests:

assert_eq!(gcd(6, 10), 2);

This could have been written as a generic function, but the assert_eq! macro
does several things that functions can’t do. One is that when an assertion
fails, assert_eq! generates an error message containing the filename and line
number of the assertion. Functions have no way of getting that information.
Macros can, because the way they work is completely different.

Macros are a kind of shorthand. During compilation, before types are
checked and long before any machine code is generated, each macro call is
expanded—that is, it’s replaced with some Rust code. The preceding macro
call expands to something roughly like this:

match (&gcd(6, 10), &2) {
 (left_val, right_val) => {
 if !(*left_val == *right_val) {
 panic!("assertion failed: `(left == right)`, \
 (left: `{:?}`, right: `{:?}`)", left_val, right_val);
 }
 }
}

panic! is also a macro, which itself expands to yet more Rust code (not shown
here). That code uses two other macros, file!() and line!(). Once every macro
call in the crate is fully expanded, Rust moves on to the next phase of

compilation.

At run time, an assertion failure would look like this (and would indicate a
bug in the gcd() function, since 2 is the correct answer):

thread 'main' panicked at 'assertion failed: `(left == right)`, (left: `17`,
right: `2`)', gcd.rs:7

If you’re coming from C++, you may have had some bad experiences with
macros. Rust macros take a different approach, similar to Scheme’s syntax-
rules. Compared to C++ macros, Rust macros are better integrated with the
rest of the language and therefore less error prone. Macro calls are always
marked with an exclamation point, so they stand out when you’re reading
code, and they can’t be called accidentally when you meant to call a function.
Rust macros never insert unmatched brackets or parentheses. And Rust
macros come with pattern matching, making it easier to write macros that are
both maintainable and appealing to use.

In this chapter, we’ll show how to write macros using several simple
examples. But like much of Rust, macros reward deep understanding, so
we’ll walk through the design of a more complicated macro that lets us
embed JSON literals directly in our programs. But there’s more to macros
than we can cover in this book, so we’ll end with some pointers for further
study, both of advanced techniques for the tools we’ve shown you here, and
for an even more powerful facility called procedural macros.

Macro Basics
Figure 21-1 shows part of the source code for the assert_eq! macro.

macro_rules! is the main way to define macros in Rust. Note that there is no !
after assert_eq in this macro definition: the ! is only included when calling a
macro, not when defining it.

Not all macros are defined this way: a few, like file!, line!, and macro_rules!
itself, are built into the compiler, and we’ll talk about another approach,
called procedural macros, at the end of this chapter. But for the most part,
we’ll focus on macro_rules!, which is (so far) the easiest way to write your
own.

A macro defined with macro_rules! works entirely by pattern matching. The
body of a macro is just a series of rules:

(pattern1) => (template1);

(pattern2) => (template2);

...

Figure 21-1. The assert_eq! macro

The version of assert_eq! in Figure 21-1 has just one pattern and one
template.

Incidentally, you can use square brackets or curly braces instead of
parentheses around the pattern or the template; it makes no difference to
Rust. Likewise, when you call a macro, these are all equivalent:

assert_eq!(gcd(6, 10), 2);
assert_eq![gcd(6, 10), 2];
assert_eq!{gcd(6, 10), 2}

The only difference is that semicolons are usually optional after curly braces.
By convention, we use parentheses when calling assert_eq!, square brackets
for vec!, and curly braces for macro_rules!.

Now that we’ve shown a simple example of a macro’s expansion and the
definition that generated it, we can get into the details necessary to put this to
work:

We’ll explain exactly how Rust goes about finding and expanding
macro definitions in your program.

We’ll point out some subtleties inherent in the process of generating
code from macro templates.

Finally, we’ll show how patterns handle repetitive structure.

Basics of Macro Expansion
Rust expands macros very early during compilation. The compiler reads your
source code from beginning to end, defining and expanding macros as it
goes. You can’t call a macro before it is defined, because Rust expands each
macro call before it even looks at the rest of the program. (By contrast,
functions and other items don’t have to be in any particular order. It’s OK to
call a function that won’t be defined until later in the crate.)

When Rust expands an assert_eq! macro call, what happens is a lot like
evaluating a match expression. Rust first matches the arguments against the
pattern, as shown in Figure 21-2.

Figure 21-2. Expanding a macro, part 1: pattern-matching the arguments

Macro patterns are a mini-language within Rust. They’re essentially regular
expressions for matching code. But where regular expressions operate on
characters, patterns operate on tokens—the numbers, names, punctuation
marks, and so forth that are the building blocks of Rust programs. This means
you can use comments and whitespace freely in macro patterns to make them
as readable as possible. Comments and whitespace aren’t tokens, so they
don’t affect matching.

Another important difference between regular expressions and macro patterns
is that parentheses, brackets, and braces always occur in matched pairs in
Rust. This is checked before macros are expanded, not only in macro patterns
but throughout the language.

In this example, our pattern contains the fragment $left:expr, which tells Rust
to match an expression (in this case, gcd(6, 10)) and assign it the name $left.
Rust then matches the comma in the pattern with the comma following gcd’s
arguments. Just like regular expressions, patterns have only a few special
characters that trigger interesting matching behavior; everything else, like this
comma, has to match verbatim or else matching fails. Lastly, Rust matches
the expression 2 and gives it the name $right.

Both code fragments in this pattern are of type expr: they expect expressions.
We’ll see other types of code fragments in “Fragment Types”.

Since this pattern matched all of the arguments, Rust expands the
corresponding template (Figure 21-3).

Figure 21-3. Expanding a macro, part 2: filling in the template

Rust replaces $left and $right with the code fragments it found during
matching.

It’s a common mistake to include the fragment type in the output template:
writing $left:expr rather than just $left. Rust does not immediately detect this
kind of error. It sees $left as a substitution, and then it treats :expr just like

everything else in the template: tokens to be included in the macro’s output.
So the errors won’t happen until you call the macro; then it will generate
bogus output that won’t compile. If you get error messages like cannot find
type `expr` in this scope and help: maybe you meant to use a path separator
here when using a new macro, check it for this mistake. (“Debugging
Macros” offers more general advice for situations like this.)

Macro templates aren’t much different from any of a dozen template
languages commonly used in web programming. The only difference—and
it’s a significant one—is that the output is Rust code.

Unintended Consequences
Plugging fragments of code into templates is subtly different from regular
code that works with values. These differences aren’t always obvious at first.
The macro we’ve been looking at, assert_eq!, contains some slightly strange
bits of code for reasons that say a lot about macro programming. Let’s look at
two funny bits in particular.

First, why does this macro create the variables left_val and right_val? Is there
some reason we can’t simplify the template to look like this?

if !($left == $right) {
 panic!("assertion failed: `(left == right)` \
 (left: `{:?}`, right: `{:?}`)", $left, $right)
}

To answer this question, try mentally expanding the macro call assert_eq!
(letters.pop(), Some('z')). What would the output be? Naturally, Rust would
plug the matched expressions into the template in multiple places. It seems
like a bad idea to evaluate the expressions all over again when building the
error message, though, and not just because it would take twice as long: since
letters.pop() removes a value from a vector, it’ll produce a different value the
second time we call it! That’s why the real macro computes $left and $right
only once and stores their values.

Moving on to the second question: why does this macro borrow references to
the values of $left and $right? Why not just store the values in variables, like
this?

macro_rules! bad_assert_eq {
 ($left:expr, $right:expr) => ({
 match ($left, $right) {
 (left_val, right_val) => {
 if !(left_val == right_val) {
 panic!("assertion failed" /* ... */);
 }
 }
 }
 });

}

For the particular case we’ve been considering, where the macro arguments
are integers, this would work fine. But if the caller passed, say, a String
variable as $left or $right, this code would move the value out of the variable!

fn main() {
 let s = "a rose".to_string();
 bad_assert_eq!(s, "a rose");
 println!("confirmed: {} is a rose", s); // error: use of moved value "s"
}

Since we don’t want assertions to move values, the macro borrows references
instead.

(You may have wondered why the macro uses match rather than let to define
the variables. We wondered too. It turns out there’s no particular reason for
this. let would have been equivalent.)

In short, macros can do surprising things. If strange things happen around a
macro you’ve written, it’s a good bet that the macro is to blame.

One bug that you won’t see is this classic C++ macro bug:

// buggy C++ macro to add 1 to a number
#define ADD_ONE(n) n + 1

For reasons familiar to most C++ programmers, and not worth explaining
fully here, unremarkable code like ADD_ONE(1) * 10 or ADD_ONE(1 <<
4) produces very surprising results with this macro. To fix it, you’d add more
parentheses to the macro definition. This isn’t necessary in Rust, because
Rust macros are better integrated with the language. Rust knows when it’s
handling expressions, so it effectively adds parentheses whenever it pastes
one expression into another.

Repetition
The standard vec! macro comes in two forms:

// Repeat a value N times
let buffer = vec![0_u8; 1000];

// A list of values, separated by commas
let numbers = vec!["udon", "ramen", "soba"];

It can be implemented like this:

macro_rules! vec {
 ($elem:expr ; $n:expr) => {
 ::std::vec::from_elem($elem, $n)
 };
 ($($x:expr),*) => {
 <[_]>::into_vec(Box::new([$($x),*]))
 };
 ($($x:expr),+ ,) => {
 vec![$($x),*]
 };
}

There are three rules here. We’ll explain how multiple rules work and then
look at each rule in turn.

When Rust expands a macro call like vec![1, 2, 3], it starts by trying to match
the arguments 1, 2, 3 with the pattern for the first rule, in this case $elem:expr
; $n:expr. This fails to match: 1 is an expression, but the pattern requires a
semicolon after that, and we don’t have one. So Rust then moves on to the
second rule, and so on. If no rules match, it’s an error.

The first rule handles uses like vec![0u8; 1000]. It happens that there is a
standard (but undocumented) function, std::vec::from_elem, that does exactly
what’s needed here, so this rule is straightforward.

The second rule handles vec!["udon", "ramen", "soba"]. The pattern, $(
$x:expr),*, uses a feature we haven’t seen before: repetition. It matches 0 or
more expressions, separated by commas. More generally, the syntax $(

PATTERN),* is used to match any comma-separated list, where each item in
the list matches PATTERN.

The * here has the same meaning as in regular expressions (“0 or more”)
although admittedly regexps do not have a special ,* repeater. You can also
use + to require at least one match, or ? for zero or one match. Table 21-1
gives the full suite of repetition patterns.

Table 21-1. Repetition patterns

Pattern Meaning

$(...)* Match 0 or more times with no separator

$(...),* Match 0 or more times, separated by commas

$(...);* Match 0 or more times, separated by semicolons

$(...)+ Match 1 or more times with no separator

$(...),+ Match 1 or more times, separated by commas

$(...);+ Match 1 or more times, separated by semicolons

$(...)? Match 0 or 1 times with no separator

$(...),? Match 0 or 1 times, separated by commas

$(...);? Match 0 or 1 times, separated by semicolons

The code fragment $x is not just a single expression but a list of expressions.
The template for this rule uses repetition syntax too:

<[_]>::into_vec(Box::new([$($x),*]))

Again, there are standard methods that do exactly what we need. This code
creates a boxed array and then uses the [T]::into_vec method to convert the
boxed array to a vector.

The first bit, <[_]>, is an unusual way to write the type “slice of something,”
while expecting Rust to infer the element type. Types whose names are plain
identifiers can be used in expressions without any fuss, but types like fn(),
&str, or [_] must be wrapped in angle brackets.

Repetition comes in at the end of the template, where we have $($x),*. This

$(...),* is the same syntax we saw in the pattern. It iterates over the list of
expressions that we matched for $x and inserts them all into the template,
separated by commas.

In this case, the repeated output looks just like the input. But that doesn’t
have to be the case. We could have written the rule like this:

($($x:expr),*) => {
 {
 let mut v = Vec::new();
 $(v.push($x);)*
 v
 }
};

Here, the part of the template that reads $(v.push($x);)* inserts a call to
v.push() for each expression in $x. A macro arm can expand to a sequence of
expressions, but here we need just a single expression, so we wrap the
assembly of the vector in a block.

Unlike the rest of Rust, patterns using $(...),* do not automatically support
an optional trailing comma. However, there’s a standard trick for supporting
trailing commas by adding an extra rule. That is what the third rule of our
vec! macro does:

($($x:expr),+ ,) => { // if trailing comma is present,
 vec![$($x),*] // retry without it
};

We use $(...),+ , to match a list with an extra comma. Then, in the template,
we call vec! recursively, leaving the extra comma out. This time the second
rule will match.

Built-In Macros
The Rust compiler supplies several macros that are helpful when you’re
defining your own macros. None of these could be implemented using
macro_rules! alone. They’re hardcoded in rustc:

file!(), line!(), column!()

file!() expands to a string literal: the current filename. line!() and column!
() expand to u32 literals giving the current line and column (counting
from 1).

If one macro calls another, which calls another, all in different files, and
the last macro calls file!(), line!(), or column!(), it will expand to indicate
the location of the first macro call.

stringify!(...tokens...)

Expands to a string literal containing the given tokens. The assert! macro
uses this to generate an error message that includes the code of the
assertion.

Macro calls in the argument are not expanded: stringify!(line!()) expands
to the string "line!()".

Rust constructs the string from the tokens, so there are no line breaks or
comments in the string.

concat!(str0, str1, ...)

Expands to a single string literal made by concatenating its arguments.

Rust also defines these macros for querying the build environment:

cfg!(...)

Expands to a Boolean constant, true if the current build configuration
matches the condition in parentheses. For example, cfg!

(debug_assertions) is true if you’re compiling with debug assertions
enabled.

This macro supports exactly the same syntax as the #[cfg(...)] attribute
described in “Attributes” but instead of conditional compilation, you get a
true or false answer.

env!("VAR_NAME")

Expands to a string: the value of the specified environment variable at
compile time. If the variable doesn’t exist, it’s a compilation error.

This would be fairly worthless except that Cargo sets several interesting
environment variables when it compiles a crate. For example, to get your
crate’s current version string, you can write:

let version = env!("CARGO_PKG_VERSION");

A full list of these environment variables is included in the Cargo
documentation.

option_env!("VAR_NAME")

This is the same as env! except that it returns an Option<&'static str> that

is None if the specified variable is not set.

Three more built-in macros let you bring in code or data from another file:

include!("file.rs")

Expands to the contents of the specified file, which must be valid Rust

code—either an expression or a sequence of items.

include_str!("file.txt")

Expands to a &'static str containing the text of the specified file. You can
use it like this:

https://oreil.ly/CQyuz

const COMPOSITOR_SHADER: &str =

 include_str!("../resources/compositor.glsl");

If the file doesn’t exist or is not valid UTF-8, you’ll get a compilation
error.

include_bytes!("file.dat")

This is the same except the file is treated as binary data, not UTF-8 text.

The result is a &'static [u8].

Like all macros, these are processed at compile time. If the file doesn’t exist
or can’t be read, compilation fails. They can’t fail at run time. In all cases, if
the filename is a relative path, it’s resolved relative to the directory that
contains the current file.

Rust also provides several convenient macros we haven’t covered previously:

todo!(), unimplemented!()

These are equivalent to panic!(), but convey a different intent.

unimplemented!() goes in if clauses, match arms, and other cases that are

not yet handled. It always panics. todo!() is much the same, but conveys

the idea that this code simply has yet to be written; some IDEs flag it for

notice.

matches!(value, pattern)

Compares a value to a pattern, and returns true if it matches, or false
otherwise. It’s equivalent to writing:

match value {

 pattern => true,

 _ => false

}

If you’re looking for an exercise in basic macro-writing, this is a good
macro to replicate—especially since the real implementation, which you
can see in the standard library documentation, is quite simple.

Debugging Macros
Debugging a wayward macro can be challenging. The biggest problem is the
lack of visibility into the process of macro expansion. Rust will often expand
all macros, find some kind of error, and then print an error message that does
not show the fully expanded code that contains the error!

Here are three tools to help troubleshoot macros. (These features are all
unstable, but since they’re really designed to be used during development, not
in code that you’d check in, that isn’t a big problem in practice.)

First and simplest, you can ask rustc to show what your code looks like after
expanding all macros. Use cargo build --verbose to see how Cargo is
invoking rustc. Copy the rustc command line and add -Z unstable-options --
pretty expanded as options. The fully expanded code is dumped to your
terminal. Unfortunately, this works only if your code is free of syntax errors.

Second, Rust provides a log_syntax!() macro that simply prints its arguments
to the terminal at compile time. You can use this for println!-style debugging.
This macro requires the #![feature(log_syntax)] feature flag.

Third, you can ask the Rust compiler to log all macro calls to the terminal.
Insert trace_macros!(true); somewhere in your code. From that point on, each
time Rust expands a macro, it will print the macro name and arguments. For
example, consider this program:

#![feature(trace_macros)]

fn main() {
 trace_macros!(true);
 let numbers = vec![1, 2, 3];
 trace_macros!(false);
 println!("total: {}", numbers.iter().sum::<u64>());
}

It produces this output:

$ rustup override set nightly

...
$ rustc trace_example.rs
note: trace_macro
 --> trace_example.rs:5:19
 |
5 | let numbers = vec![1, 2, 3];
 | ^^^^^^^^^^^^^
 |
 = note: expanding `vec! { 1 , 2 , 3 }`
 = note: to `< [_] > :: into_vec (box [1 , 2 , 3])`

The compiler shows the code of each macro call, both before and after
expansion. The line trace_macros!(false); turns tracing off again, so the call
to println!() is not traced.

Building the json! Macro
We’ve now discussed the core features of macro_rules!. In this section, we’ll
incrementally develop a macro for building JSON data. We’ll use this
example to show what it’s like to develop a macro, present the few remaining
pieces of macro_rules!, and offer some advice on how to make sure your
macros behave as desired.

Back in Chapter 10, we presented this enum for representing JSON data:

#[derive(Clone, PartialEq, Debug)]
enum Json {
 Null,
 Boolean(bool),
 Number(f64),
 String(String),
 Array(Vec<Json>),
 Object(Box<HashMap<String, Json>>)
}

The syntax for writing out Json values is unfortunately rather verbose:

let students = Json::Array(vec![
 Json::Object(Box::new(vec![
 ("name".to_string(), Json::String("Jim Blandy".to_string())),
 ("class_of".to_string(), Json::Number(1926.0)),
 ("major".to_string(), Json::String("Tibetan throat singing".to_string()))
].into_iter().collect())),
 Json::Object(Box::new(vec![
 ("name".to_string(), Json::String("Jason Orendorff".to_string())),
 ("class_of".to_string(), Json::Number(1702.0)),
 ("major".to_string(), Json::String("Knots".to_string()))
].into_iter().collect()))
]);

We would like to be able to write this using a more JSON-like syntax:

let students = json!([
 {
 "name": "Jim Blandy",

 "class_of": 1926,
 "major": "Tibetan throat singing"
 },
 {
 "name": "Jason Orendorff",
 "class_of": 1702,
 "major": "Knots"
 }
]);

What we want is a json! macro that takes a JSON value as an argument and
expands to a Rust expression like the one in the previous example.

Fragment Types
The first job in writing any complex macro is figuring out how to match, or
parse, the desired input.

We can already see that the macro will have several rules, because there are
several different sorts of things in JSON data: objects, arrays, numbers, and
so forth. In fact, we might guess that we’ll have one rule for each JSON type:

macro_rules! json {
 (null) => { Json::Null };
 ([...]) => { Json::Array(...) };
 ({ ... }) => { Json::Object(...) };
 (???) => { Json::Boolean(...) };
 (???) => { Json::Number(...) };
 (???) => { Json::String(...) };
}

This is not quite correct, as macro patterns offer no way to tease apart the last
three cases, but we’ll see how to deal with that later. The first three cases, at
least, clearly begin with different tokens, so let’s start with those.

The first rule already works:

macro_rules! json {
 (null) => {
 Json::Null
 }
}

#[test]
fn json_null() {
 assert_eq!(json!(null), Json::Null); // passes!
}

To add support for JSON arrays, we might try matching the elements as
exprs:

macro_rules! json {
 (null) => {

 Json::Null
 };
 ([$($element:expr),*]) => {
 Json::Array(vec![$($element),*])
 };
}

Unfortunately, this does not match all JSON arrays. Here’s a test that
illustrates the problem:

#[test]
fn json_array_with_json_element() {
 let macro_generated_value = json!(
 [
 // valid JSON that doesn't match `$element:expr`
 {
 "pitch": 440.0
 }
]
);
 let hand_coded_value =
 Json::Array(vec![
 Json::Object(Box::new(vec![
 ("pitch".to_string(), Json::Number(440.0))
].into_iter().collect()))
]);
 assert_eq!(macro_generated_value, hand_coded_value);
}

The pattern $($element:expr),* means “a comma-separated list of Rust
expressions.” But many JSON values, particularly objects, aren’t valid Rust
expressions. They won’t match.

Since not every bit of code you want to match is an expression, Rust supports
several other fragment types, listed in Table 21-2.

Table 21-2. Fragment types supported by macro_rules!

Fragment type Matches (with examples)
Can be followed
by...

expr An expression:
2 + 2, "udon", x.len()

=> , ;

stmt => , ;

An expression or declaration, not including any trailing
semicolon

(hard to use; try expr or block instead)

ty A type:
String, Vec<u8>, (&str, bool), dyn Read + Send

=> , ; = | { [: > as wh
ere

path
A path (discussed):

ferns, ::std::sync::mpsc

=> , ; = | { [: > as wh
ere

pat
A pattern (discussed):

_, Some(ref x)

=> , = | if in

item
An item (discussed):

struct Point { x: f64, y: f64 }, mod ferns;

Anything

block
A block (discussed):

{ s += "ok\n"; true }

Anything

meta
The body of an attribute (discussed):

inline, derive(Copy, Clone), doc="3D models."

Anything

literal A literal value:
1024, "Hello, world!", 1_000_000f64

Anything

lifetime A lifetime:
'a, 'item, 'static

Anything

vis A visibility specifier:
pub, pub(crate), pub(in module::submodule)

Anything

ident
An identifier:

std, Json, longish_variable_name

Anything

tt A token tree (see text):
;, >=, {}, [0 1 (+ 0 1)]

Anything

Most of the options in this table strictly enforce Rust syntax. The expr type
matches only Rust expressions (not JSON values), ty matches only Rust
types, and so on. They’re not extensible: there’s no way to define new
arithmetic operators or new keywords that expr would recognize. We won’t
be able to make any of these match arbitrary JSON data.

The last two, ident and tt, support matching macro arguments that don’t look
like Rust code. ident matches any identifier. tt matches a single token tree:
either a properly matched pair of brackets, (...), [...], or {...}, and everything

in between, including nested token trees, or a single token that isn’t a bracket,
like 1926 or "Knots".

Token trees are exactly what we need for our json! macro. Every JSON value
is a single token tree: numbers, strings, Boolean values, and null are all single
tokens; objects and arrays are bracketed. So we can write the patterns like
this:

macro_rules! json {
 (null) => {
 Json::Null
 };
 ([$($element:tt),*]) => {
 Json::Array(...)
 };
 ({ $($key:tt : $value:tt),* }) => {
 Json::Object(...)
 };
 ($other:tt) => {
 ... // TODO: Return Number, String, or Boolean
 };
}

This version of the json! macro can match all JSON data. Now we just need
to produce correct Rust code.

To make sure Rust can gain new syntactic features in the future without
breaking any macros you write today, Rust restricts tokens that appear in
patterns right after a fragment. The “Can be followed by...” column of
Table 21-2 shows which tokens are allowed. For example, the pattern $x:expr
~ $y:expr is an error, because ~ isn’t allowed after an expr. The pattern
$vars:pat => $handler:expr is OK, because $vars:pat is followed by the arrow
=>, one of the allowed tokens for a pat, and $handler:expr is followed by
nothing, which is always allowed.

Recursion in Macros
You’ve already seen one trivial case of a macro calling itself: our
implementation of vec! uses recursion to support trailing commas. Here we
can show a more significant example: json! needs to call itself recursively.

We might try supporting JSON arrays without using recursion, like this:

([$($element:tt),*]) => {
 Json::Array(vec![$($element),*])
};

But this wouldn’t work. We’d be pasting JSON data (the $element token
trees) right into a Rust expression. They’re two different languages.

We need to convert each element of the array from JSON form to Rust.
Fortunately, there’s a macro that does this: the one we’re writing!

([$($element:tt),*]) => {
 Json::Array(vec![$(json!($element)),*])
};

Objects can be supported in the same way:

({ $($key:tt : $value:tt),* }) => {
 Json::Object(Box::new(vec![
 $(($key.to_string(), json!($value))),*
].into_iter().collect()))
};

The compiler imposes a recursion limit on macros: 64 calls, by default.
That’s more than enough for normal uses of json!, but complex recursive
macros sometimes hit the limit. You can adjust it by adding this attribute at
the top of the crate where the macro is used:

#![recursion_limit = "256"]

Our json! macro is nearly complete. All that remains is to support Boolean,

number, and string values.

Using Traits with Macros
Writing complex macros always poses puzzles. It’s important to remember
that macros themselves are not the only puzzle-solving tool at your disposal.

Here, we need to support json!(true), json!(1.0), and json!("yes"), converting
the value, whatever it may be, to the appropriate kind of Json value. But
macros are not good at distinguishing types. We can imagine writing:

macro_rules! json {
 (true) => {
 Json::Boolean(true)
 };
 (false) => {
 Json::Boolean(false)
 };
 ...
}

This approach breaks down right away. There are only two Boolean values,
but rather more numbers than that, and even more strings.

Fortunately, there is a standard way to convert values of various types to one
specified type: the From trait, covered . We simply need to implement this
trait for a few types:

impl From<bool> for Json {
 fn from(b: bool) -> Json {
 Json::Boolean(b)
 }
}

impl From<i32> for Json {
 fn from(i: i32) -> Json {
 Json::Number(i as f64)
 }
}

impl From<String> for Json {
 fn from(s: String) -> Json {
 Json::String(s)
 }

}

impl<'a> From<&'a str> for Json {
 fn from(s: &'a str) -> Json {
 Json::String(s.to_string())
 }
}
...

In fact, all 12 numeric types should have very similar implementations, so it
might make sense to write a macro, just to avoid the copy and paste:

macro_rules! impl_from_num_for_json {
 ($($t:ident)*) => {
 $(
 impl From<$t> for Json {
 fn from(n: $t) -> Json {
 Json::Number(n as f64)
 }
 }
)*
 };
}

impl_from_num_for_json!(u8 i8 u16 i16 u32 i32 u64 i64 u128 i128
 usize isize f32 f64);

Now we can use Json::from(value) to convert a value of any supported type
to Json. In our macro, it’ll look like this:

($other:tt) => {
 Json::from($other) // Handle Boolean/number/string
};

Adding this rule to our json! macro makes it pass all the tests we’ve written
so far. Putting together all the pieces, it currently looks like this:

macro_rules! json {
 (null) => {
 Json::Null
 };
 ([$($element:tt),*]) => {
 Json::Array(vec![$(json!($element)),*])

 };
 ({ $($key:tt : $value:tt),* }) => {
 Json::Object(Box::new(vec![
 $(($key.to_string(), json!($value))),*
].into_iter().collect()))
 };
 ($other:tt) => {
 Json::from($other) // Handle Boolean/number/string
 };
}

As it turns out, the macro unexpectedly supports the use of variables and
even arbitrary Rust expressions inside the JSON data, a handy extra feature:

let width = 4.0;
let desc =
 json!({
 "width": width,
 "height": (width * 9.0 / 4.0)
 });

Because (width * 9.0 / 4.0) is parenthesized, it’s a single token tree, so the
macro successfully matches it with $value:tt when parsing the object.

Scoping and Hygiene
A surprisingly tricky aspect of writing macros is that they involve pasting
code from different scopes together. So the next few pages cover the two
ways Rust handles scoping: one way for local variables and arguments, and
another way for everything else.

To show why this matters, let’s rewrite our rule for parsing JSON objects (the
third rule in the json! macro shown previously) to eliminate the temporary
vector. We can write it like this:

({ $($key:tt : $value:tt),* }) => {
 {
 let mut fields = Box::new(HashMap::new());
 $(fields.insert($key.to_string(), json!($value));)*
 Json::Object(fields)
 }
};

Now we’re populating the HashMap not by using collect() but by repeatedly
calling the .insert() method. This means we need to store the map in a
temporary variable, which we’ve called fields.

But then what happens if the code that calls json! happens to use a variable of
its own, also named fields?

let fields = "Fields, W.C.";
let role = json!({
 "name": "Larson E. Whipsnade",
 "actor": fields
});

Expanding the macro would paste together two bits of code, both using the
name fields for different things!

let fields = "Fields, W.C.";
let role = {
 let mut fields = Box::new(HashMap::new());
 fields.insert("name".to_string(), Json::from("Larson E. Whipsnade"));

 fields.insert("actor".to_string(), Json::from(fields));
 Json::Object(fields)
};

This may seem like an unavoidable pitfall whenever macros use temporary
variables, and you may already be thinking through the possible fixes.
Perhaps we should rename the variable that the json! macro defines to
something that its callers aren’t likely to pass in: instead of fields, we could
call it __json$fields.

The surprise here is that the macro works as is. Rust renames the variable for
you! This feature, first implemented in Scheme macros, is called hygiene, and
so Rust is said to have hygienic macros.

The easiest way to understand macro hygiene is to imagine that every time a
macro is expanded, the parts of the expansion that come from the macro itself
are painted a different color.

Variables of different colors, then, are treated as if they had different names:

let fields = "Fields, W.C.";
let role = {
 let mut fields = Box::new(HashMap::new());
 fields.insert("name".to_string(), Json::from("Larson E. Whipsnade"));
 fields.insert("actor".to_string(), Json::from(fields));
 Json::Object(fields)
};

Note that bits of code that were passed in by the macro caller and pasted into
the output, such as "name" and "actor", keep their original color (black). Only
tokens that originate from the macro template are painted.

Now there’s one variable named fields (declared in the caller) and a separate
variable named fields (introduced by the macro). Since the names are
different colors, the two variables don’t get confused.

If a macro really does need to refer to a variable in the caller’s scope, the
caller has to pass the name of the variable to the macro.

(The paint metaphor isn’t meant to be an exact description of how hygiene

works. The real mechanism is even a little smarter than that, recognizing two
identifiers as the same, regardless of “paint,” if they refer to a common
variable that’s in scope for both the macro and its caller. But cases like this
are rare in Rust. If you understand the preceding example, you know enough
to use hygienic macros.)

You may have noticed that many other identifiers were painted one or more
colors as the macros were expanded: Box, HashMap, and Json, for example.
Despite the paint, Rust had no trouble recognizing these type names. That’s
because hygiene in Rust is limited to local variables and arguments. When it
comes to constants, types, methods, modules, statics, and macro names, Rust
is “colorblind.”

This means that if our json! macro is used in a module where Box, HashMap,
or Json is not in scope, the macro won’t work. We’ll show how to avoid this
problem in the next section.

First, we’ll consider a case where Rust’s strict hygiene gets in the way, and
we need to work around it. Suppose we have many functions that contain this
line of code:

let req = ServerRequest::new(server_socket.session());

Copying and pasting that line is a pain. Can we use a macro instead?

macro_rules! setup_req {
 () => {
 let req = ServerRequest::new(server_socket.session());
 }
}

fn handle_http_request(server_socket: &ServerSocket) {
 setup_req!(); // declares `req`, uses `server_socket`
 ... // code that uses `req`
}

As written, this doesn’t work. It would require the name server_socket in the
macro to refer to the local server_socket declared in the function, and vice
versa for the variable req. But hygiene prevents names in macros from

“colliding” with names in other scopes—even in cases like this, where that’s
what you want.

The solution is to pass the macro any identifiers you plan on using both
inside and outside the macro code:

macro_rules! setup_req {
 ($req:ident, $server_socket:ident) => {
 let $req = ServerRequest::new($server_socket.session());
 }
}

fn handle_http_request(server_socket: &ServerSocket) {
 setup_req!(req, server_socket);
 ... // code that uses `req`
}

Since req and server_socket are now provided by the function, they’re the
right “color” for that scope.

Hygiene makes this macro a little wordier to use, but that’s a feature, not a
bug: it’s easier to reason about hygienic macros knowing that they can’t mess
with local variables behind your back. If you search for an identifier like
server_socket in a function, you’ll find all the places where it’s used,
including macro calls.

Importing and Exporting Macros
Since macros are expanded early in compilation, before Rust knows the full
module structure of your project, the compiler has special affordances for
exporting and importing them.

Macros that are visible in one module are automatically visible in its child
modules. To export macros from a module “upward” to its parent module,
use the #[macro_use] attribute. For example, suppose our lib.rs looks like
this:

#[macro_use] mod macros;
mod client;
mod server;

All macros defined in the macros module are imported into lib.rs and
therefore visible throughout the rest of the crate, including in client and
server.

Macros marked with #[macro_export] are automatically pub and can be
referred to by path, like other items.

For example, the lazy_static crate provides a macro called lazy_static, which
is marked with #[macro_export]. To use this macro in your own crate, you
would write:

use lazy_static::lazy_static;
lazy_static!{ }

Once a macro is imported, it can be used like any other item:

use lazy_static::lazy_static;

mod m {
 crate::lazy_static!{ }
}

Of course, actually doing any of these things means your macro may be

called in other modules. An exported macro therefore shouldn’t rely on
anything being in scope—there’s no telling what will be in scope where it’s
used. Even features of the standard prelude can be shadowed.

Instead, the macro should use absolute paths to any names it uses.
macro_rules! provides the special fragment $crate to help with this. This is
not the same as crate, which is a keyword that can be used in paths anywhere,
not just in macros. $crate acts like an absolute path to the root module of the
crate where the macro was defined. Instead of saying Json, we can write
$crate::Json, which works even if Json was not imported. HashMap can be
changed to either ::std::collections::HashMap or $crate::macros::HashMap. In
the latter case, we’ll have to re-export HashMap, because $crate can’t be used
to access private features of a crate. It really just expands to something like
::jsonlib, an ordinary path. Visibility rules are unaffected.

After moving the macro to its own module macros and modifying it to use
$crate, it looks like this. This is the final version:

// macros.rs
pub use std::collections::HashMap;
pub use std::boxed::Box;
pub use std::string::ToString;

#[macro_export]
macro_rules! json {
 (null) => {
 $crate::Json::Null
 };
 ([$($element:tt),*]) => {
 $crate::Json::Array(vec![$(json!($element)),*])
 };
 ({ $($key:tt : $value:tt),* }) => {
 {
 let mut fields = $crate::macros::Box::new(
 $crate::macros::HashMap::new());
 $(
 fields.insert($crate::macros::ToString::to_string($key),
 json!($value));
)*
 $crate::Json::Object(fields)
 }
 };

 ($other:tt) => {
 $crate::Json::from($other)
 };
}

Since the .to_string() method is part of the standard ToString trait, we use
$crate to refer to that as well, using syntax we introduced in “Fully Qualified
Method Calls”: $crate::macros::ToString::to_string($key). In our case, this
isn’t strictly necessary to make the macro work, because ToString is in the
standard prelude. But if you’re calling methods of a trait that may not be in
scope at the point where the macro is called, a fully qualified method call is
the best way to do it.

Avoiding Syntax Errors During Matching
The following macro seems reasonable, but it gives Rust some trouble:

macro_rules! complain {
 ($msg:expr) => {
 println!("Complaint filed: {}", $msg)
 };
 (user : $userid:tt , $msg:expr) => {
 println!("Complaint from user {}: {}", $userid, $msg)
 };
}

Suppose we call it like this:

complain!(user: "jimb", "the AI lab's chatbots keep picking on me");

To human eyes, this obviously matches the second pattern. But Rust tries the
first rule first, attempting to match all of the input with $msg:expr. This is
where things start to go badly for us. user: "jimb" is not an expression, of
course, so we get a syntax error. Rust refuses to sweep a syntax error under
the rug—macros are already hard enough to debug. Instead, it’s reported
immediately and compilation halts.

If any other token in a pattern fails to match, Rust moves on the next rule.
Only syntax errors are fatal, and they happen only when trying to match
fragments.

The problem here is not so hard to understand: we’re attempting to match a
fragment, $msg:expr, in the wrong rule. It’s not going to match because
we’re not even supposed to be here. The caller wanted the other rule. There
are two easy ways to avoid this.

First, avoid confusable rules. We could, for example, change the macro so
that every pattern starts with a different identifier:

macro_rules! complain {
 (msg : $msg:expr) => {

 println!("Complaint filed: {}", $msg);
 };
 (user : $userid:tt , msg : $msg:expr) => {
 println!("Complaint from user {}: {}", $userid, $msg);
 };
}

When the macro arguments start with msg, we’ll get rule 1. When they start
with user, we’ll get rule 2. Either way, we know we’ve got the right rule
before we try to match a fragment.

The other way to avoid spurious syntax errors is by putting more specific
rules first. Putting the user: rule first fixes the problem with complain!,
because the rule that causes the syntax error is never reached.

Beyond macro_rules!
Macro patterns can parse input that’s even more intricate than JSON, but
we’ve found that the complexity quickly gets out of hand.

The Little Book of Rust Macros, by Daniel Keep et al., is an excellent
handbook of advanced macro_rules! programming. The book is clear and
smart, and it describes every aspect of macro expansion in more detail than
we have here. It also presents several very clever techniques for pressing
macro_rules! patterns into service as a sort of esoteric programming
language, to parse complex input. This we’re less enthusiastic about. Use
with care.

Rust 1.15 introduced a separate mechanism called procedural macros.
Procedural macros support extending the #[derive] attribute to handle custom
derivations, as shown in Figure 21-4, as well as creating custom attributes
and new macros that are invoked just like the macro_rules! macros discussed
earlier.

Figure 21-4. Invoking a hypothetical IntoJson procedural macro via a #[derive] attribute

There is no IntoJson trait, but it doesn’t matter: a procedural macro can use
this hook to insert whatever code it wants (in this case, probably impl
From<Money> for Json { ... }).

What makes a procedural macro “procedural” is that it’s implemented as a
Rust function, not a declarative rule set. This function interacts with the
compiler through a thin layer of abstraction and can be arbitrarily complex.
For example, the diesel database library uses procedural macros to connect to
a database and generate code based on the schema of that database at compile
time.

https://oreil.ly/nZ2HP

Because procedural macros interact with compiler internals, writing effective
macros requires an understanding of how the compiler operates that is out of
the scope of this book. It is, however, extensively covered in the online
documentation.

Perhaps, having read all this, you’ve decided that you hate macros. What
then? An alternative is to generate Rust code using a build script. The Cargo
documentation shows how to do it step by step. It involves writing a program
that generates the Rust code you want, adding a line to Cargo.toml to run that
program as part of the build process and using include! to get the generated
code into your crate.

https://oreil.ly/0xB2x
https://oreil.ly/42irF

Chapter 22. Unsafe Code

Let no one think of me that I am humble or weak or passive;
Let them understand I am of a different kind:
dangerous to my enemies, loyal to my friends.
To such a life glory belongs.

—Euripides, Medea

The secret joy of systems programming is that, underneath every single safe
language and carefully designed abstraction is a swirling maelstrom of wildly
unsafe machine language and bit fiddling. You can write that in Rust, too.

The language we’ve presented up to this point in the book ensures your
programs are free of memory errors and data races entirely automatically,
through types, lifetimes, bounds checks, and so on. But this sort of automated
reasoning has its limits; there are many valuable techniques that Rust cannot
recognize as safe.

Unsafe code lets you tell Rust, “I am opting to use features whose safety you
cannot guarantee.” By marking off a block or function as unsafe, you acquire
the ability to call unsafe functions in the standard library, dereference unsafe
pointers, and call functions written in other languages like C and C++, among
other powers. Rust’s other safety checks still apply: type checks, lifetime
checks, and bounds checks on indices all occur normally. Unsafe code just
enables a small set of additional features.

This ability to step outside the boundaries of safe Rust is what makes it
possible to implement many of Rust’s most fundamental features in Rust
itself, just as C and C++ are used to implement their own standard libraries.
Unsafe code is what allows the Vec type to manage its buffer efficiently; the
std::io module to talk to the operating system; and the std::thread and
std::sync modules to provide concurrency primitives.

This chapter covers the essentials of working with unsafe features:

Rust’s unsafe blocks establish the boundary between ordinary, safe
Rust code and code that uses unsafe features.

You can mark functions as unsafe, alerting callers to the presence of
extra contracts they must follow to avoid undefined behavior.

Raw pointers and their methods allow unconstrained access to
memory, and let you build data structures Rust’s type system would
otherwise forbid. Whereas Rust’s references are safe but
constrained, raw pointers, as any C or C++ programmer knows, are a
powerful, sharp tool.

Understanding the definition of undefined behavior will help you
appreciate why it can have consequences far more serious than just
getting incorrect results.

Unsafe traits, analogous to unsafe functions, impose a contract that
each implementation (rather than each caller) must follow.

Unsafe from What?
At the start of this book, we showed a C program that crashes in a surprising
way because it fails to follow one of the rules prescribed by the C standard.
You can do the same in Rust:

$ cat crash.rs
fn main() {
 let mut a: usize = 0;
 let ptr = &mut a as *mut usize;
 unsafe {
 *ptr.offset(3) = 0x7ffff72f484c;
 }
}
$ cargo build
 Compiling unsafe-samples v0.1.0
 Finished debug [unoptimized + debuginfo] target(s) in 0.44s
$../../target/debug/crash
crash: Error: .netrc file is readable by others.
crash: Remove password or make file unreadable by others.
Segmentation fault (core dumped)
$

This program borrows a mutable reference to the local variable a, casts it to a
raw pointer of type *mut usize, and then uses the offset method to produce a
pointer three words further along in memory. This happens to be where
main’s return address is stored. The program overwrites the return address
with a constant, such that returning from main behaves in a surprising way.
What makes this crash possible is the program’s incorrect use of unsafe
features—in this case, the ability to dereference raw pointers.

An unsafe feature is one that imposes a contract: rules that Rust cannot
enforce automatically, but which you must nonetheless follow to avoid
undefined behavior.

A contract goes beyond the usual type checks and lifetime checks, imposing
further rules specific to that unsafe feature. Typically, Rust itself doesn’t
know about the contract at all; it’s just explained in the feature’s

documentation. For example, the raw pointer type has a contract forbidding
you to dereference a pointer that has been advanced beyond the end of its
original referent. The expression *ptr.offset(3) = ... in this example breaks
this contract. But, as the transcript shows, Rust compiles the program without
complaint: its safety checks do not detect this violation. When you use unsafe
features, you, as the programmer, bear the responsibility for checking that
your code adheres to their contracts.

Lots of features have rules you should follow to use them correctly, but such
rules are not contracts in the sense we mean here unless the possible
consequences include undefined behavior. Undefined behavior is behavior
Rust firmly assumes your code could never exhibit. For example, Rust
assumes you will not overwrite a function call’s return address with
something else. Code that passes Rust’s usual safety checks and complies
with the contracts of the unsafe features it uses cannot possibly do such a
thing. Since the program violates the raw pointer contract, its behavior is
undefined, and it goes off the rails.

If your code exhibits undefined behavior, you have broken your half of your
bargain with Rust, and Rust declines to predict the consequences. Dredging
up irrelevant error messages from the depths of system libraries and crashing
is one possible consequence; handing control of your computer over to an
attacker is another. The effects could vary from one release of Rust to the
next, without warning. Sometimes, however, undefined behavior has no
visible consequences. For example, if the main function never returns
(perhaps it calls std::process::exit to terminate the program early), then the
corrupted return address probably won’t matter.

You may only use unsafe features within an unsafe block or an unsafe
function; we’ll explain both in the sections that follow. This makes it harder
to use unsafe features unknowingly: by forcing you to write an unsafe block
or function, Rust makes sure you have acknowledged that your code may
have additional rules to follow.

Unsafe Blocks
An unsafe block looks just like an ordinary Rust block preceded by the
unsafe keyword, with the difference that you can use unsafe features in the
block:

unsafe {
 String::from_utf8_unchecked(ascii)
}

Without the unsafe keyword in front of the block, Rust would object to the
use of from_utf8_unchecked, which is an unsafe function. With the unsafe
block around it, you can use this code anywhere.

Like an ordinary Rust block, the value of an unsafe block is that of its final
expression, or () if it doesn’t have one. The call to
String::from_utf8_unchecked shown earlier provides the value of the block.

An unsafe block unlocks five additional options for you:

You can call unsafe functions. Each unsafe function must specify its
own contract, depending on its purpose.

You can dereference raw pointers. Safe code can pass raw pointers
around, compare them, and create them by conversion from
references (or even from integers), but only unsafe code can actually
use them to access memory. We’ll cover raw pointers in detail and
explain how to use them safely in “Raw Pointers”.

You can access the fields of unions, which the compiler can’t be sure
contain valid bit patterns for their respective types.

You can access mutable static variables. As explained in “Global
Variables”, Rust can’t be sure when threads are using mutable static
variables, so their contract requires you to ensure all access is
properly synchronized.

You can access functions and variables declared through Rust’s
foreign function interface. These are considered unsafe even when
immutable, since they are visible to code written in other languages
that may not respect Rust’s safety rules.

Restricting unsafe features to unsafe blocks doesn’t really prevent you from
doing whatever you want. It’s perfectly possible to just stick an unsafe block
into your code and move on. The benefit of the rule lies mainly in drawing
human attention to code whose safety Rust can’t guarantee:

You won’t accidentally use unsafe features and then discover you
were responsible for contracts you didn’t even know existed.

An unsafe block attracts more attention from reviewers. Some
projects even have automation to ensure this, flagging code changes
that affect unsafe blocks for special attention.

When you’re considering writing an unsafe block, you can take a
moment to ask yourself whether your task really requires such
measures. If it’s for performance, do you have measurements to
show that this is actually a bottleneck? Perhaps there is a good way
to accomplish the same thing in safe Rust.

Example: An Efficient ASCII String Type
Here’s the definition of Ascii, a string type that ensures its contents are
always valid ASCII. This type uses an unsafe feature to provide zero-cost
conversion into String:

mod my_ascii {
 /// An ASCII-encoded string.
 #[derive(Debug, Eq, PartialEq)]
 pub struct Ascii(
 // This must hold only well-formed ASCII text:
 // bytes from `0` to `0x7f`.
 Vec<u8>
);

 impl Ascii {
 /// Create an `Ascii` from the ASCII text in `bytes`. Return a
 /// `NotAsciiError` error if `bytes` contains any non-ASCII
 /// characters.
 pub fn from_bytes(bytes: Vec<u8>) -> Result<Ascii, NotAsciiError> {
 if bytes.iter().any(|&byte| !byte.is_ascii()) {
 return Err(NotAsciiError(bytes));
 }
 Ok(Ascii(bytes))
 }
 }

 // When conversion fails, we give back the vector we couldn't convert.
 // This should implement `std::error::Error`; omitted for brevity.
 #[derive(Debug, Eq, PartialEq)]
 pub struct NotAsciiError(pub Vec<u8>);

 // Safe, efficient conversion, implemented using unsafe code.
 impl From<Ascii> for String {
 fn from(ascii: Ascii) -> String {
 // If this module has no bugs, this is safe, because
 // well-formed ASCII text is also well-formed UTF-8.
 unsafe { String::from_utf8_unchecked(ascii.0) }
 }
 }
 ...
}

The key to this module is the definition of the Ascii type. The type itself is
marked pub, to make it visible outside the my_ascii module. But the type’s
Vec<u8> element is not public, so only the my_ascii module can construct an
Ascii value or refer to its element. This leaves the module’s code in complete
control over what may or may not appear there. As long as the public
constructors and methods ensure that freshly created Ascii values are well-
formed and remain so throughout their lives, then the rest of the program
cannot violate that rule. And indeed, the public constructor Ascii::from_bytes
carefully checks the vector it’s given before agreeing to construct an Ascii
from it. For brevity’s sake, we don’t show any methods, but you can imagine
a set of text-handling methods that ensure Ascii values always contain proper
ASCII text, just as a String’s methods ensure that its contents remain well-
formed UTF-8.

This arrangement lets us implement From<Ascii> for String very efficiently.
The unsafe function String::from_utf8_unchecked takes a byte vector and
builds a String from it without checking whether its contents are well-formed
UTF-8 text; the function’s contract holds its caller responsible for that.
Fortunately, the rules enforced by the Ascii type are exactly what we need to
satisfy from_utf8_unchecked’s contract. As we explained in “UTF-8”, any
block of ASCII text is also well-formed UTF-8, so an Ascii’s underlying
Vec<u8> is immediately ready to serve as a String’s buffer.

With these definitions in place, you can write:

use my_ascii::Ascii;

let bytes: Vec<u8> = b"ASCII and ye shall receive".to_vec();

// This call entails no allocation or text copies, just a scan.
let ascii: Ascii = Ascii::from_bytes(bytes)
 .unwrap(); // We know these chosen bytes are ok.

// This call is zero-cost: no allocation, copies, or scans.
let string = String::from(ascii);

assert_eq!(string, "ASCII and ye shall receive");

No unsafe blocks are required to use Ascii. We have implemented a safe

interface using unsafe operations and arranged to meet their contracts
depending only on the module’s own code, not on its users’ behavior.

An Ascii is nothing more than a wrapper around a Vec<u8>, hidden inside a
module that enforces extra rules about its contents. A type of this sort is
called a newtype, a common pattern in Rust. Rust’s own String type is
defined in exactly the same way, except that its contents are restricted to be
UTF-8, not ASCII. In fact, here’s the definition of String from the standard
library:

pub struct String {
 vec: Vec<u8>,
}

At the machine level, with Rust’s types out of the picture, a newtype and its
element have identical representations in memory, so constructing a newtype
doesn’t require any machine instructions at all. In Ascii::from_bytes, the
expression Ascii(bytes) simply deems the Vec<u8>’s representation to now
hold an Ascii value. Similarly, String::from_utf8_unchecked probably
requires no machine instructions when inlined: the Vec<u8> is now
considered to be a String.

Unsafe Functions
An unsafe function definition looks like an ordinary function definition
preceded by the unsafe keyword. The body of an unsafe function is
automatically considered an unsafe block.

You may call unsafe functions only within unsafe blocks. This means that
marking a function unsafe warns its callers that the function has a contract
they must satisfy to avoid undefined behavior.

For example, here’s a new constructor for the Ascii type we introduced
before that builds an Ascii from a byte vector without checking if its contents
are valid ASCII:

// This must be placed inside the `my_ascii` module.
impl Ascii {
 /// Construct an `Ascii` value from `bytes`, without checking
 /// whether `bytes` actually contains well-formed ASCII.
 ///
 /// This constructor is infallible, and returns an `Ascii` directly,
 /// rather than a `Result<Ascii, NotAsciiError>` as the `from_bytes`
 /// constructor does.
 ///
 /// # Safety
 ///
 /// The caller must ensure that `bytes` contains only ASCII
 /// characters: bytes no greater than 0x7f. Otherwise, the effect is
 /// undefined.
 pub unsafe fn from_bytes_unchecked(bytes: Vec<u8>) -> Ascii {
 Ascii(bytes)
 }
}

Presumably, code calling Ascii::from_bytes_unchecked already knows
somehow that the vector in hand contains only ASCII characters, so the
check that Ascii::from_bytes insists on carrying out would be a waste of time,
and the caller would have to write code to handle Err results that it knows
will never occur. Ascii::from_bytes_unchecked lets such a caller sidestep the
checks and the error handling.

But earlier we emphasized the importance of Ascii’s public constructors and
methods ensuring that Ascii values are well-formed. Doesn’t
from_bytes_unchecked fail to meet that responsibility?

Not quite: from_bytes_unchecked meets its obligations by passing them on to
its caller via its contract. The presence of this contract is what makes it
correct to mark this function unsafe: despite the fact that the function itself
carries out no unsafe operations, its callers must follow rules Rust cannot
enforce automatically to avoid undefined behavior.

Can you really cause undefined behavior by breaking the contract of
Ascii::from_bytes_unchecked? Yes. You can construct a String holding ill-
formed UTF-8 as follows:

// Imagine that this vector is the result of some complicated process
// that we expected to produce ASCII. Something went wrong!
let bytes = vec![0xf7, 0xbf, 0xbf, 0xbf];

let ascii = unsafe {
 // This unsafe function's contract is violated
 // when `bytes` holds non-ASCII bytes.
 Ascii::from_bytes_unchecked(bytes)
};

let bogus: String = ascii.into();

// `bogus` now holds ill-formed UTF-8. Parsing its first character produces
// a `char` that is not a valid Unicode code point. That's undefined
// behavior, so the language doesn't say how this assertion should behave.
assert_eq!(bogus.chars().next().unwrap() as u32, 0x1fffff);

In certain versions of Rust, on certain platforms, this assertion was observed
to fail with the following entertaining error message:

thread 'main' panicked at 'assertion failed: `(left == right)`
 left: `2097151`,
 right: `2097151`', src/main.rs:42:5

Those two numbers seem equal to us, but this is not Rust’s fault; it’s the fault
of the previous unsafe block. When we say that undefined behavior leads to
unpredictable results, this is the kind of thing we mean.

This illustrates two critical facts about bugs and unsafe code:

Bugs that occur before the unsafe block can break contracts.
Whether an unsafe block causes undefined behavior can depend not
just on the code in the block itself, but also on the code that supplies
the values it operates on. Everything that your unsafe code relies on
to satisfy contracts is safety-critical. The conversion from Ascii to
String based on String::from_utf8_unchecked is well-defined only if
the rest of the module properly maintains Ascii’s invariants.

The consequences of breaking a contract may appear after you leave
the unsafe block. The undefined behavior courted by failing to
comply with an unsafe feature’s contract often does not occur within
the unsafe block itself. Constructing a bogus String as shown before
may not cause problems until much later in the program’s execution.

Essentially, Rust’s type checker, borrow checker, and other static checks are
inspecting your program and trying to construct proof that it cannot exhibit
undefined behavior. When Rust compiles your program successfully, that
means it succeeded in proving your code sound. An unsafe block is a gap in
this proof: “This code,” you are saying to Rust, “is fine, trust me.” Whether
your claim is true could depend on any part of the program that influences
what happens in the unsafe block, and the consequences of being wrong
could appear anywhere influenced by the unsafe block. Writing the unsafe
keyword amounts to a reminder that you are not getting the full benefit of the
language’s safety checks.

Given the choice, you should naturally prefer to create safe interfaces,
without contracts. These are much easier to work with, since users can count
on Rust’s safety checks to ensure their code is free of undefined behavior.
Even if your implementation uses unsafe features, it’s best to use Rust’s
types, lifetimes, and module system to meet their contracts while using only
what you can guarantee yourself, rather than passing responsibilities on to
your callers.

Unfortunately, it’s not unusual to come across unsafe functions in the wild
whose documentation does not bother to explain their contracts. You are

expected to infer the rules yourself, based on your experience and knowledge
of how the code behaves. If you’ve ever uneasily wondered whether what
you’re doing with a C or C++ API is OK, then you know what that’s like.

Unsafe Block or Unsafe Function?
You may find yourself wondering whether to use an unsafe block or just
mark the whole function unsafe. The approach we recommend is to first
make a decision about the function:

If it’s possible to misuse the function in a way that compiles fine but
still causes undefined behavior, you must mark it as unsafe. The
rules for using the function correctly are its contract; the existence of
a contract is what makes the function unsafe.

Otherwise, the function is safe: no well-typed call to it can cause
undefined behavior. It should not be marked unsafe.

Whether the function uses unsafe features in its body is irrelevant; what
matters is the presence of a contract. Before, we showed an unsafe function
that uses no unsafe features, and a safe function that does use unsafe features.

Don’t mark a safe function unsafe just because you use unsafe features in its
body. This makes the function harder to use and confuses readers who will
(correctly) expect to find a contract explained somewhere. Instead, use an
unsafe block, even if it’s the function’s entire body.

Undefined Behavior
In the introduction, we said that the term undefined behavior means
“behavior that Rust firmly assumes your code could never exhibit.” This is a
strange turn of phrase, especially since we know from our experience with
other languages that these behaviors do occur by accident with some
frequency. Why is this concept helpful in setting out the obligations of unsafe
code?

A compiler is a translator from one programming language to another. The
Rust compiler takes a Rust program and translates it into an equivalent
machine language program. But what does it mean to say that two programs
in such completely different languages are equivalent?

Fortunately, this question is easier for programmers than it is for linguists.
We usually say that two programs are equivalent if they will always have the
same visible behavior when executed: they make the same system calls,
interact with foreign libraries in equivalent ways, and so on. It’s a bit like a
Turing test for programs: if you can’t tell whether you’re interacting with the
original or the translation, then they’re equivalent.

Now consider the following code:

let i = 10;
very_trustworthy(&i);
println!("{}", i * 100);

Even knowing nothing about the definition of very_trustworthy, we can see
that it receives only a shared reference to i, so the call cannot change i’s
value. Since the value passed to println! will always be 1000, Rust can
translate this code into machine language as if we had written:

very_trustworthy(&10);
println!("{}", 1000);

This transformed version has the same visible behavior as the original, and

it’s probably a bit faster. But it makes sense to consider the performance of
this version only if we agree it has the same meaning as the original. What if
very_trustworthy were defined as follows?

fn very_trustworthy(shared: &i32) {
 unsafe {
 // Turn the shared reference into a mutable pointer.
 // This is undefined behavior.
 let mutable = shared as *const i32 as *mut i32;
 *mutable = 20;
 }
}

This code breaks the rules for shared references: it changes the value of i to
20, even though it should be frozen because i is borrowed for sharing. As a
result, the transformation we made to the caller now has a very visible effect:
if Rust transforms the code, the program prints 1000; if it leaves the code
alone and uses the new value of i, it prints 2000. Breaking the rules for shared
references in very_trustworthy means that shared references won’t behave as
expected in its callers.

This sort of problem arises with almost every kind of transformation Rust
might attempt. Even inlining a function into its call site assumes, among
other things, that when the callee finishes, control flow returns to the call site.
But we opened the chapter with an example of ill-behaved code that violates
even that assumption.

It’s basically impossible for Rust (or any other language) to assess whether a
transformation to a program preserves its meaning unless it can trust the
fundamental features of the language to behave as designed. And whether
they do or not can depend not just on the code at hand, but on other,
potentially distant, parts of the program. In order to do anything at all with
your code, Rust must assume that the rest of your program is well-behaved.

Here, then, are Rust’s rules for well-behaved programs:

The program must not read uninitialized memory.

The program must not create invalid primitive values:

References, boxes, or fn pointers that are null

bool values that are not either a 0 or 1

enum values with invalid discriminant values

char values that are not valid, nonsurrogate Unicode code
points

str values that are not well-formed UTF-8

Fat pointers with invalid vtables/slice lengths

Any value of the “never” type, written !, for functions that
don’t return

The rules for references explained in Chapter 5 must be followed.
No reference may outlive its referent; shared access is read-only
access; and mutable access is exclusive access.

The program must not dereference null, incorrectly aligned, or
dangling pointers.

The program must not use a pointer to access memory outside the
allocation with which the pointer is associated. We will explain this
rule in detail in “Dereferencing Raw Pointers Safely”.

The program must be free of data races. A data race occurs when
two threads access the same memory location without
synchronization, and at least one of the accesses is a write.

The program must not unwind across a call made from another
language, via the foreign function interface, as explained in
“Unwinding”.

The program must comply with the contracts of standard library
functions.

Since we don’t yet have a thorough model of Rust’s semantics for unsafe
code, this list will probably evolve over time, but these are likely to remain

forbidden.

Any violation of these rules constitutes undefined behavior and renders
Rust’s efforts to optimize your program and translate it into machine
language untrustworthy. If you break the last rule and pass ill-formed UTF-8
to String::from_utf8_unchecked, perhaps 2097151 is not so equal to 2097151
after all.

Rust code that does not use unsafe features is guaranteed to follow all of the
preceding rules, once it compiles (assuming the compiler has no bugs; we’re
getting there, but the curve will never intersect the asymptote). Only when
you use unsafe features do these rules become your responsibility.

In C and C++, the fact that your program compiles without errors or warnings
means much less; as we mentioned in the introduction to this book, even the
best C and C++ programs written by well-respected projects that hold their
code to high standards exhibit undefined behavior in practice.

Unsafe Traits
An unsafe trait is a trait that has a contract Rust cannot check or enforce that
implementers must satisfy to avoid undefined behavior. To implement an
unsafe trait, you must mark the implementation as unsafe. It is up to you to
understand the trait’s contract and make sure your type satisfies it.

A function that bounds its type variables with an unsafe trait is typically one
that uses unsafe features itself, and satisfies their contracts only by depending
on the unsafe trait’s contract. An incorrect implementation of the trait could
cause such a function to exhibit undefined behavior.

std::marker::Send and std::marker::Sync are the classic examples of unsafe
traits. These traits don’t define any methods, so they’re trivial to implement
for any type you like. But they do have contracts: Send requires implementers
to be safe to move to another thread, and Sync requires them to be safe to
share among threads via shared references. Implementing Send for an
inappropriate type, for example, would make std::sync::Mutex no longer safe
from data races.

As a simple example, the Rust standard library used to include an unsafe trait,
core::nonzero::Zeroable, for types that can be safely initialized by setting all
their bytes to zero. Clearly, zeroing a usize is fine, but zeroing a &T gives
you a null reference, which will cause a crash if dereferenced. For types that
were Zeroable, some optimizations were possible: you could initialize an
array of them quickly with std::ptr::write_bytes (Rust’s equivalent of
memset) or use operating system calls that allocate zeroed pages. (Zeroable
was unstable and moved to internal-only use in the num crate in Rust 1.26,
but it’s a good, simple, real-world example.)

Zeroable was a typical marker trait, lacking methods or associated types:

pub unsafe trait Zeroable {}

The implementations for appropriate types were similarly straightforward:

unsafe impl Zeroable for u8 {}
unsafe impl Zeroable for i32 {}
unsafe impl Zeroable for usize {}
// and so on for all the integer types

With these definitions, we could write a function that quickly allocates a
vector of a given length containing a Zeroable type:

use core::nonzero::Zeroable;

fn zeroed_vector<T>(len: usize) -> Vec<T>
 where T: Zeroable
{
 let mut vec = Vec::with_capacity(len);
 unsafe {
 std::ptr::write_bytes(vec.as_mut_ptr(), 0, len);
 vec.set_len(len);
 }
 vec
}

This function starts by creating an empty Vec with the required capacity and
then calls write_bytes to fill the unoccupied buffer with zeros. (The
write_byte function treats len as a number of T elements, not a number of
bytes, so this call does fill the entire buffer.) A vector’s set_len method
changes its length without doing anything to the buffer; this is unsafe,
because you must ensure that the newly enclosed buffer space actually
contains properly initialized values of type T. But this is exactly what the T:
Zeroable bound establishes: a block of zero bytes represents a valid T value.
Our use of set_len was safe.

Here, we put it to use:

let v: Vec<usize> = zeroed_vector(100_000);
assert!(v.iter().all(|&u| u == 0));

Clearly, Zeroable must be an unsafe trait, since an implementation that
doesn’t respect its contract can lead to undefined behavior:

struct HoldsRef<'a>(&'a mut i32);

unsafe impl<'a> Zeroable for HoldsRef<'a> { }

let mut v: Vec<HoldsRef> = zeroed_vector(1);
*v[0].0 = 1; // crashes: dereferences null pointer

Rust has no idea what Zeroable is meant to signify, so it can’t tell when it’s
being implemented for an inappropriate type. As with any other unsafe
feature, it’s up to you to understand and adhere to an unsafe trait’s contract.

Note that unsafe code must not depend on ordinary, safe traits being
implemented correctly. For example, suppose there were an implementation
of the std::hash::Hasher trait that simply returned a random hash value, with
no relation to the values being hashed. The trait requires that hashing the
same bits twice must produce the same hash value, but this implementation
doesn’t meet that requirement; it’s simply incorrect. But because Hasher is
not an unsafe trait, unsafe code must not exhibit undefined behavior when it
uses this hasher. The std::collections::HashMap type is carefully written to
respect the contracts of the unsafe features it uses regardless of how the
hasher behaves. Certainly, the table won’t function correctly: lookups will
fail, and entries will appear and disappear at random. But the table will not
exhibit undefined behavior.

Raw Pointers
A raw pointer in Rust is an unconstrained pointer. You can use raw pointers
to form all sorts of structures that Rust’s checked pointer types cannot, like
doubly linked lists or arbitrary graphs of objects. But because raw pointers
are so flexible, Rust cannot tell whether you are using them safely or not, so
you can dereference them only in an unsafe block.

Raw pointers are essentially equivalent to C or C++ pointers, so they’re also
useful for interacting with code written in those languages.

There are two kinds of raw pointers:

A *mut T is a raw pointer to a T that permits modifying its referent.

A *const T is a raw pointer to a T that only permits reading its
referent.

(There is no plain *T type; you must always specify either const or mut.)

You can create a raw pointer by conversion from a reference, and dereference
it with the * operator:

let mut x = 10;
let ptr_x = &mut x as *mut i32;

let y = Box::new(20);
let ptr_y = &*y as *const i32;

unsafe {
 *ptr_x += *ptr_y;
}
assert_eq!(x, 30);

Unlike boxes and references, raw pointers can be null, like NULL in C or
nullptr in C++:

fn option_to_raw<T>(opt: Option<&T>) -> *const T {
 match opt {

 None => std::ptr::null(),
 Some(r) => r as *const T
 }
}

assert!(!option_to_raw(Some(&("pea", "pod"))).is_null());
assert_eq!(option_to_raw::<i32>(None), std::ptr::null());

This example has no unsafe blocks: creating raw pointers, passing them
around, and comparing them are all safe. Only dereferencing a raw pointer is
unsafe.

A raw pointer to an unsized type is a fat pointer, just as the corresponding
reference or Box type would be. A *const [u8] pointer includes a length
along with the address, and a trait object like a *mut dyn std::io::Write
pointer carries a vtable.

Although Rust implicitly dereferences safe pointer types in various situations,
raw pointer dereferences must be explicit:

The . operator will not implicitly dereference a raw pointer; you
must write (*raw).field or (*raw).method(...).

Raw pointers do not implement Deref, so deref coercions do not
apply to them.

Operators like == and < compare raw pointers as addresses: two raw
pointers are equal if they point to the same location in memory.
Similarly, hashing a raw pointer hashes the address it points to, not
the value of its referent.

Formatting traits like std::fmt::Display follow references
automatically, but don’t handle raw pointers at all. The exceptions
are std::fmt::Debug and std::fmt::Pointer, which show raw pointers
as hexadecimal addresses, without dereferencing them.

Unlike the + operator in C and C++, Rust’s + does not handle raw pointers,
but you can perform pointer arithmetic via their offset and wrapping_offset
methods, or the more convenient add, sub, wrapping_add, and wrapping_sub

methods. Inversely, the offset_from method gives the distance between two
pointers in bytes, though we’re responsible for making sure the beginning
and end are in the same memory region (the same Vec, for instance):

let trucks = vec!["garbage truck", "dump truck", "moonstruck"];
let first: *const &str = &trucks[0];
let last: *const &str = &trucks[2];
assert_eq!(unsafe { last.offset_from(first) }, 2);
assert_eq!(unsafe { first.offset_from(last) }, -2);

No explicit conversion is needed for first and last; just specifying the type is
enough. Rust implicitly coerces references to raw pointers (but not the other
way around, of course).

The as operator permits almost every plausible conversion from references to
raw pointers or between two raw pointer types. However, you may need to
break up a complex conversion into a series of simpler steps. For example:

&vec![42_u8] as *const String; // error: invalid conversion
&vec![42_u8] as *const Vec<u8> as *const String; // permitted

Note that as will not convert raw pointers to references. Such conversions
would be unsafe, and as should remain a safe operation. Instead, you must
dereference the raw pointer (in an unsafe block) and then borrow the resulting
value.

Be very careful when you do this: a reference produced this way has an
unconstrained lifetime: there’s no limit on how long it can live, since the raw
pointer gives Rust nothing to base such a decision on. In “A Safe Interface to
libgit2” later in this chapter, we show several examples of how to properly
constrain lifetimes.

Many types have as_ptr and as_mut_ptr methods that return a raw pointer to
their contents. For example, array slices and strings return pointers to their
first elements, and some iterators return a pointer to the next element they
will produce. Owning pointer types like Box, Rc, and Arc have into_raw and
from_raw functions that convert to and from raw pointers. Some of these
methods’ contracts impose surprising requirements, so check their

documentation before using them.

You can also construct raw pointers by conversion from integers, although
the only integers you can trust for this are generally those you got from a
pointer in the first place. “Example: RefWithFlag” uses raw pointers this
way.

Unlike references, raw pointers are neither Send nor Sync. As a result, any
type that includes raw pointers does not implement these traits by default.
There is nothing inherently unsafe about sending or sharing raw pointers
between threads; after all, wherever they go, you still need an unsafe block to
dereference them. But given the roles raw pointers typically play, the
language designers considered this behavior to be the more helpful default.
We already discussed how to implement Send and Sync yourself in “Unsafe
Traits”.

Dereferencing Raw Pointers Safely
Here are some common-sense guidelines for using raw pointers safely:

Dereferencing null pointers or dangling pointers is undefined
behavior, as is referring to uninitialized memory or values that have
gone out of scope.

Dereferencing pointers that are not properly aligned for their referent
type is undefined behavior.

You may borrow values out of a dereferenced raw pointer only if
doing so obeys the rules for reference safety explained in Chapter 5:
no reference may outlive its referent, shared access is read-only
access, and mutable access is exclusive access. (This rule is easy to
violate by accident, since raw pointers are often used to create data
structures with nonstandard sharing or ownership.)

You may use a raw pointer’s referent only if it is a well-formed
value of its type. For example, you must ensure that dereferencing a
*const char yields a proper, nonsurrogate Unicode code point.

You may use the offset and wrapping_offset methods on raw
pointers only to point to bytes within the variable or heap-allocated
block of memory that the original pointer referred to, or to the first
byte beyond such a region.

If you do pointer arithmetic by converting the pointer to an integer,
doing arithmetic on the integer, and then converting it back to a
pointer, the result must be a pointer that the rules for the offset
method would have allowed you to produce.

If you assign to a raw pointer’s referent, you must not violate the
invariants of any type of which the referent is a part. For example, if
you have a *mut u8 pointing to a byte of a String, you may only
store values in that u8 that leave the String holding well-formed
UTF-8.

The borrowing rule aside, these are essentially the same rules you must
follow when using pointers in C or C++.

The reason for not violating types’ invariants should be clear. Many of Rust’s
standard types use unsafe code in their implementation, but still provide safe
interfaces on the assumption that Rust’s safety checks, module system, and
visibility rules will be respected. Using raw pointers to circumvent these
protective measures can lead to undefined behavior.

The complete, exact contract for raw pointers is not easily stated and may
change as the language evolves. But the principles outlined here should keep
you in safe territory.

Example: RefWithFlag
Here’s an example of how to take a classic bit-level hack made possible by
raw pointers and wrap it up as a completely safe Rust type. This module
defines a type, RefWithFlag<'a, T>, that holds both a &'a T and a bool, like
the tuple (&'a T, bool) and yet still manages to occupy only one machine
word instead of two. This sort of technique is used regularly in garbage
collectors and virtual machines, where certain types—say, the type
representing an object—are so numerous that adding even a single word to
each value would drastically increase memory use:

mod ref_with_flag {
 use std::marker::PhantomData;
 use std::mem::align_of;

 /// A `&T` and a `bool`, wrapped up in a single word.
 /// The type `T` must require at least two-byte alignment.
 ///
 /// If you're the kind of programmer who's never met a pointer whose
 /// 2⁰-bit you didn't want to steal, well, now you can do it safely!
 /// ("But it's not nearly as exciting this way...")
 pub struct RefWithFlag<'a, T> {
 ptr_and_bit: usize,
 behaves_like: PhantomData<&'a T> // occupies no space
 }

 impl<'a, T: 'a> RefWithFlag<'a, T> {
 pub fn new(ptr: &'a T, flag: bool) -> RefWithFlag<T> {
 assert!(align_of::<T>() % 2 == 0);
 RefWithFlag {
 ptr_and_bit: ptr as *const T as usize | flag as usize,
 behaves_like: PhantomData
 }
 }

 pub fn get_ref(&self) -> &'a T {
 unsafe {
 let ptr = (self.ptr_and_bit & !1) as *const T;
 &*ptr
 }
 }

1

 pub fn get_flag(&self) -> bool {
 self.ptr_and_bit & 1 != 0
 }
 }
}

This code takes advantage of the fact that many types must be placed at even
addresses in memory: since an even address’s least significant bit is always
zero, we can store something else there and then reliably reconstruct the
original address just by masking off the bottom bit. Not all types qualify; for
example, the types u8 and (bool, [i8; 2]) can be placed at any address. But we
can check the type’s alignment on construction and refuse types that won’t
work.

You can use RefWithFlag like this:

use ref_with_flag::RefWithFlag;

let vec = vec![10, 20, 30];
let flagged = RefWithFlag::new(&vec, true);
assert_eq!(flagged.get_ref()[1], 20);
assert_eq!(flagged.get_flag(), true);

The constructor RefWithFlag::new takes a reference and a bool value, asserts
that the reference’s type is suitable, and then converts the reference to a raw
pointer and then a usize. The usize type is defined to be large enough to hold
a pointer on whatever processor we’re compiling for, so converting a raw
pointer to a usize and back is well-defined. Once we have a usize, we know it
must be even, so we can use the | bitwise-or operator to combine it with the
bool, which we’ve converted to an integer 0 or 1.

The get_flag method extracts the bool component of a RefWithFlag. It’s
simple: just mask off the bottom bit and check if it’s nonzero.

The get_ref method extracts the reference from a RefWithFlag. First, it masks
off the usize’s bottom bit and converts it to a raw pointer. The as operator
will not convert raw pointers to references, but we can dereference the raw
pointer (in an unsafe block, naturally) and borrow that. Borrowing a raw
pointer’s referent gives you a reference with an unbounded lifetime: Rust will

accord the reference whatever lifetime would make the code around it check,
if there is one. Usually, though, there is some specific lifetime that is more
accurate and would thus catch more mistakes. In this case, since get_ref’s
return type is &'a T, Rust sees that the reference’s lifetime is the same as
RefWithFlag’s lifetime parameter 'a, which is just what we want: that’s the
lifetime of the reference we started with.

In memory, a RefWithFlag looks just like a usize: since PhantomData is a
zero-sized type, the behaves_like field takes up no space in the structure. But
the PhantomData is necessary for Rust to know how to treat lifetimes in code
that uses RefWithFlag. Imagine what the type would look like without the
behaves_like field:

// This won't compile.
pub struct RefWithFlag<'a, T: 'a> {
 ptr_and_bit: usize
}

In Chapter 5, we pointed out that any structure containing references must not
outlive the values they borrow, lest the references become dangling pointers.
The structure must abide by the restrictions that apply to its fields. This
certainly applies to RefWithFlag: in the example code we just looked at,
flagged must not outlive vec, since flagged.get_ref() returns a reference to it.
But our reduced RefWithFlag type contains no references at all and never
uses its lifetime parameter 'a. It’s just a usize. How should Rust know that
any restrictions apply to flagged’s lifetime? Including a PhantomData<&'a
T> field tells Rust to treat RefWithFlag<'a, T> as if it contained a &'a T,
without actually affecting the struct’s representation.

Although Rust doesn’t really know what’s going on (that’s what makes
RefWithFlag unsafe), it will do its best to help you out with this. If you omit
the behaves_like field, Rust will complain that the parameters 'a and T are
unused and suggest using a PhantomData.

RefWithFlag uses the same tactics as the Ascii type we presented earlier to
avoid undefined behavior in its unsafe block. The type itself is pub, but its
fields are not, meaning that only code within the ref_with_flag module can

create or look inside a RefWithFlag value. You don’t have to inspect much
code to have confidence that the ptr_and_bit field is well constructed.

Nullable Pointers
A null raw pointer in Rust is a zero address, just as in C and C++. For any
type T, the std::ptr::null<T> function returns a *const T null pointer, and
std::ptr::null_mut<T> returns a *mut T null pointer.

There are a few ways to check whether a raw pointer is null. The simplest is
the is_null method, but the as_ref method may be more convenient: it takes a
*const T pointer and returns an Option<&'a T>, turning a null pointer into a
None. Similarly, the as_mut method converts *mut T pointers into
Option<&'a mut T> values.

Type Sizes and Alignments
A value of any Sized type occupies a constant number of bytes in memory
and must be placed at an address that is a multiple of some alignment value,
determined by the machine architecture. For example, an (i32, i32) tuple
occupies eight bytes, and most processors prefer it to be placed at an address
that is a multiple of four.

The call std::mem::size_of::<T>() returns the size of a value of type T, in
bytes, and std::mem::align_of::<T>() returns its required alignment. For
example:

assert_eq!(std::mem::size_of::<i64>(), 8);
assert_eq!(std::mem::align_of::<(i32, i32)>(), 4);

Any type’s alignment is always a power of two.

A type’s size is always rounded up to a multiple of its alignment, even if it
technically could fit in less space. For example, even though a tuple like (f32,
u8) requires only five bytes, size_of::<(f32, u8)>() is 8, because align_of::
<(f32, u8)>() is 4. This ensures that if you have an array, the size of the
element type always reflects the spacing between one element and the next.

For unsized types, the size and alignment depend on the value at hand. Given
a reference to an unsized value, the std::mem::size_of_val and
std::mem::align_of_val functions return the value’s size and alignment. These
functions can operate on references to both Sized and unsized types:

// Fat pointers to slices carry their referent's length.
let slice: &[i32] = &[1, 3, 9, 27, 81];
assert_eq!(std::mem::size_of_val(slice), 20);

let text: &str = "alligator";
assert_eq!(std::mem::size_of_val(text), 9);

use std::fmt::Display;
let unremarkable: &dyn Display = &193_u8;
let remarkable: &dyn Display = &0.0072973525664;

// These return the size/alignment of the value the
// trait object points to, not those of the trait object
// itself. This information comes from the vtable the
// trait object refers to.
assert_eq!(std::mem::size_of_val(unremarkable), 1);
assert_eq!(std::mem::align_of_val(remarkable), 8);

Pointer Arithmetic
Rust lays out the elements of an array, slice, or vector as a single contiguous
block of memory, as shown in Figure 22-1. Elements are regularly spaced, so
that if each element occupies size bytes, then the ith element starts with the i
* sizeth byte.

Figure 22-1. An array in memory

One nice consequence of this is that if you have two raw pointers to elements
of an array, comparing the pointers gives the same results as comparing the
elements’ indices: if i < j, then a raw pointer to the ith element is less than a
raw pointer to the jth element. This makes raw pointers useful as bounds on
array traversals. In fact, the standard library’s simple iterator over a slice was
originally defined like this:

struct Iter<'a, T> {
 ptr: *const T,
 end: *const T,
 ...
}

The ptr field points to the next element iteration should produce, and the end
field serves as the limit: when ptr == end, the iteration is complete.

Another nice consequence of array layout: if element_ptr is a *const T or
*mut T raw pointer to the ith element of some array, then

element_ptr.offset(o) is a raw pointer to the (i + o)th element. Its definition is
equivalent to this:

fn offset<T>(ptr: *const T, count: isize) -> *const T
 where T: Sized
{
 let bytes_per_element = std::mem::size_of::<T>() as isize;
 let byte_offset = count * bytes_per_element;
 (ptr as isize).checked_add(byte_offset).unwrap() as *const T
}

The std::mem::size_of::<T> function returns the size of the type T in bytes.
Since isize is, by definition, large enough to hold an address, you can convert
the base pointer to an isize, do arithmetic on that value, and then convert the
result back to a pointer.

It’s fine to produce a pointer to the first byte after the end of an array. You
cannot dereference such a pointer, but it can be useful to represent the limit of
a loop or for bounds checks.

However, it is undefined behavior to use offset to produce a pointer beyond
that point or before the start of the array, even if you never dereference it. For
the sake of optimization, Rust would like to assume that ptr.offset(i) > ptr
when i is positive and that ptr.offset(i) < ptr when i is negative. This
assumption seems safe, but it may not hold if the arithmetic in offset
overflows an isize value. If i is constrained to stay within the same array as
ptr, no overflow can occur: after all, the array itself does not overflow the
bounds of the address space. (To make pointers to the first byte after the end
safe, Rust never places values at the upper end of the address space.)

If you do need to offset pointers beyond the limits of the array they are
associated with, you can use the wrapping_offset method. This is equivalent
to offset, but Rust makes no assumptions about the relative ordering of
ptr.wrapping_offset(i) and ptr itself. Of course, you still can’t dereference
such pointers unless they fall within the array.

Moving into and out of Memory
If you are implementing a type that manages its own memory, you will need
to track which parts of your memory hold live values and which are
uninitialized, just as Rust does with local variables. Consider this code:

let pot = "pasta".to_string();
let plate = pot;

After this code has run, the situation looks like Figure 22-2.

Figure 22-2. Moving a string from one local variable to another

After the assignment, pot is uninitialized, and plate is the owner of the string.

At the machine level, it’s not specified what a move does to the source, but in
practice it usually does nothing at all. The assignment probably leaves pot
still holding a pointer, capacity, and length for the string. Naturally, it would
be disastrous to treat this as a live value, and Rust ensures that you don’t.

The same considerations apply to data structures that manage their own
memory. Suppose you run this code:

let mut noodles = vec!["udon".to_string()];
let soba = "soba".to_string();
let last;

In memory, the state looks like Figure 22-3.

Figure 22-3. A vector with uninitialized, spare capacity

The vector has the spare capacity to hold one more element, but its contents
are junk, probably whatever that memory held previously. Suppose you then
run this code:

noodles.push(soba);

Pushing the string onto the vector transforms that uninitialized memory into a
new element, as illustrated in Figure 22-4.

Figure 22-4. After pushing soba’s value onto the vector

The vector has initialized its empty space to own the string and incremented
its length to mark this as a new, live element. The vector is now the owner of
the string; you can refer to its second element, and dropping the vector would
free both strings. And soba is now uninitialized.

Finally, consider what happens when we pop a value from the vector:

last = noodles.pop().unwrap();

In memory, things now look like Figure 22-5.

Figure 22-5. After popping an element from the vector into last

The variable last has taken ownership of the string. The vector has
decremented its length to indicate that the space that used to hold the string is
now uninitialized.

Just as with pot and pasta earlier, all three of soba, last, and the vector’s free
space probably hold identical bit patterns. But only last is considered to own
the value. Treating either of the other two locations as live would be a
mistake.

The true definition of an initialized value is one that is treated as live.
Writing to a value’s bytes is usually a necessary part of initialization, but
only because doing so prepares the value to be treated as live. A move and a
copy both have the same effect on memory; the difference between the two is
that, after a move, the source is no longer treated as live, whereas after a
copy, both the source and the destination are live.

Rust tracks which local variables are live at compile time and prevents you
from using variables whose values have been moved elsewhere. Types like
Vec, HashMap, Box, and so on track their buffers dynamically. If you
implement a type that manages its own memory, you will need to do the
same.

Rust provides two essential operations for implementing such types:

std::ptr::read(src)

Moves a value out of the location src points to, transferring ownership to
the caller. The src argument should be a *const T raw pointer, where T is
a sized type. After calling this function, the contents of *src are
unaffected, but unless T is Copy, you must ensure that your program
treats them as uninitialized memory.

This is the operation behind Vec::pop. Popping a value calls read to move
the value out of the buffer and then decrements the length to mark that
space as uninitialized capacity.

std::ptr::write(dest, value)

Moves value into the location dest points to, which must be uninitialized
memory before the call. The referent now owns the value. Here, dest must
be a *mut T raw pointer and value a T value, where T is a sized type.

This is the operation behind Vec::push. Pushing a value calls write to
move the value into the next available space and then increments the
length to mark that space as a valid element.

Both are free functions, not methods on the raw pointer types.

Note that you cannot do these things with any of Rust’s safe pointer types.
They all require their referents to be initialized at all times, so transforming
uninitialized memory into a value, or vice versa, is outside their reach. Raw
pointers fit the bill.

The standard library also provides functions for moving arrays of values from
one block of memory to another:

std::ptr::copy(src, dst, count)

Moves the array of count values in memory starting at src to the memory
at dst, just as if you had written a loop of read and write calls to move
them one at a time. The destination memory must be uninitialized before

the call, and afterward the source memory is left uninitialized. The src
and dest arguments must be *const T and *mut T raw pointers, and count
must be a usize.

ptr.copy_to(dst, count)

A more convenient version of copy that moves the array of count values

in memory starting at ptr to dst, rather than taking its start point as an

argument.

std::ptr::copy_nonoverlapping(src, dst, count)

Like the corresponding call to copy, except that its contract further

requires that the source and destination blocks of memory must not

overlap. This may be slightly faster than calling copy.

ptr.copy_to_nonoverlapping(dst, count)

A more convenient version of copy_nonoverlapping, like copy_to.

There are two other families of read and write functions, also in the std::ptr
module:

read_unaligned, write_unaligned

These functions are like read and write, except that the pointer need not

be aligned as normally required for the referent type. These functions

may be slower than the plain read and write functions.

read_volatile, write_volatile

These functions are the equivalent of volatile reads and writes in C or

C++.

Example: GapBuffer
Here’s an example that puts the raw pointer functions just described to use.

Suppose you’re writing a text editor, and you’re looking for a type to
represent the text. You could choose String and use the insert and remove
methods to insert and delete characters as the user types. But if they’re
editing text at the beginning of a large file, those methods can be expensive:
inserting a new character involves shifting the entire rest of the string to the
right in memory, and deletion shifts it all back to the left. You’d like such
common operations to be cheaper.

The Emacs text editor uses a simple data structure called a gap buffer that can
insert and delete characters in constant time. Whereas a String keeps all its
spare capacity at the end of the text, which makes push and pop cheap, a gap
buffer keeps its spare capacity in the midst of the text, at the point where
editing is taking place. This spare capacity is called the gap. Inserting or
deleting elements at the gap is cheap: you simply shrink or enlarge the gap as
needed. You can move the gap to any location you like by shifting text from
one side of the gap to the other. When the gap is empty, you migrate to a
larger buffer.

While insertion and deletion in a gap buffer are fast, changing the position at
which they take place entails moving the gap to the new position. Shifting the
elements requires time proportional to the distance being moved. Fortunately,
typical editing activity involves making a bunch of changes in one
neighborhood of the buffer before going off and fiddling with text someplace
else.

In this section we’ll implement a gap buffer in Rust. To avoid being
distracted by UTF-8, we’ll make our buffer store char values directly, but the
principles of operation would be the same if we stored the text in some other
form.

First, we’ll show a gap buffer in action. This code creates a GapBuffer,
inserts some text in it, and then moves the insertion point to sit just before the

last word:

let mut buf = GapBuffer::new();
buf.insert_iter("Lord of the Rings".chars());
buf.set_position(12);

After running this code, the buffer looks as shown in Figure 22-6.

Figure 22-6. A gap buffer containing some text

Insertion is a matter of filling in the gap with new text. This code adds a word
and ruins the film:

buf.insert_iter("Onion ".chars());

This results in the state shown in Figure 22-7.

Figure 22-7. A gap buffer containing some more text

Here’s our GapBuffer type:

use std;
use std::ops::Range;

pub struct GapBuffer<T> {
 // Storage for elements. This has the capacity we need, but its length
 // always remains zero. GapBuffer puts its elements and the gap in this
 // `Vec`'s "unused" capacity.
 storage: Vec<T>,

 // Range of uninitialized elements in the middle of `storage`.
 // Elements before and after this range are always initialized.
 gap: Range<usize>

}

GapBuffer uses its storage field in a strange way. It never actually stores any
elements in the vector—or not quite. It simply calls Vec::with_capacity(n) to
get a block of memory large enough to hold n values, obtains raw pointers to
that memory via the vector’s as_ptr and as_mut_ptr methods, and then uses
the buffer directly for its own purposes. The vector’s length always remains
zero. When the Vec gets dropped, the Vec doesn’t try to free its elements,
because it doesn’t know it has any, but it does free the block of memory. This
is what GapBuffer wants; it has its own Drop implementation that knows
where the live elements are and drops them correctly.

GapBuffer’s simplest methods are what you’d expect:

impl<T> GapBuffer<T> {
 pub fn new() -> GapBuffer<T> {
 GapBuffer { storage: Vec::new(), gap: 0..0 }
 }

 /// Return the number of elements this GapBuffer could hold without
 /// reallocation.
 pub fn capacity(&self) -> usize {
 self.storage.capacity()
 }

 /// Return the number of elements this GapBuffer currently holds.
 pub fn len(&self) -> usize {
 self.capacity() - self.gap.len()
 }

 /// Return the current insertion position.
 pub fn position(&self) -> usize {
 self.gap.start
 }

 ...
}

It cleans up many of the following functions to have a utility method that
returns a raw pointer to the buffer element at a given index. This being Rust,
we end up needing one method for mut pointers and one for const. Unlike the

2

preceding methods, these are not public. Continuing this impl block:

/// Return a pointer to the `index`th element of the underlying storage,
/// regardless of the gap.
///
/// Safety: `index` must be a valid index into `self.storage`.
unsafe fn space(&self, index: usize) -> *const T {
 self.storage.as_ptr().offset(index as isize)
}

/// Return a mutable pointer to the `index`th element of the underlying
/// storage, regardless of the gap.
///
/// Safety: `index` must be a valid index into `self.storage`.
unsafe fn space_mut(&mut self, index: usize) -> *mut T {
 self.storage.as_mut_ptr().offset(index as isize)
}

To find the element at a given index, you must consider whether the index
falls before or after the gap and adjust appropriately:

/// Return the offset in the buffer of the `index`th element, taking
/// the gap into account. This does not check whether index is in range,
/// but it never returns an index in the gap.
fn index_to_raw(&self, index: usize) -> usize {
 if index < self.gap.start {
 index
 } else {
 index + self.gap.len()
 }
}

/// Return a reference to the `index`th element,
/// or `None` if `index` is out of bounds.
pub fn get(&self, index: usize) -> Option<&T> {
 let raw = self.index_to_raw(index);
 if raw < self.capacity() {
 unsafe {
 // We just checked `raw` against self.capacity(),
 // and index_to_raw skips the gap, so this is safe.
 Some(&*self.space(raw))
 }
 } else {
 None
 }

}

When we start making insertions and deletions in a different part of the
buffer, we need to move the gap to the new location. Moving the gap to the
right entails shifting elements to the left, and vice versa, just as the bubble in
a spirit level moves in one direction when the fluid flows in the other:

/// Set the current insertion position to `pos`.
/// If `pos` is out of bounds, panic.
pub fn set_position(&mut self, pos: usize) {
 if pos > self.len() {
 panic!("index {} out of range for GapBuffer", pos);
 }

 unsafe {
 let gap = self.gap.clone();
 if pos > gap.start {
 // `pos` falls after the gap. Move the gap right
 // by shifting elements after the gap to before it.
 let distance = pos - gap.start;
 std::ptr::copy(self.space(gap.end),
 self.space_mut(gap.start),
 distance);
 } else if pos < gap.start {
 // `pos` falls before the gap. Move the gap left
 // by shifting elements before the gap to after it.
 let distance = gap.start - pos;
 std::ptr::copy(self.space(pos),
 self.space_mut(gap.end - distance),
 distance);
 }

 self.gap = pos .. pos + gap.len();
 }
}

This function uses the std::ptr::copy method to shift the elements; copy
requires that the destination be uninitialized and leaves the source
uninitialized. The source and destination ranges may overlap, but copy
handles that case correctly. Since the gap is uninitialized memory before the
call and the function adjusts the gap’s position to cover space vacated by the
copy, the copy function’s contract is satisfied.

Element insertion and removal are relatively simple. Insertion takes over one
space from the gap for the new element, whereas removal moves one value
out and enlarges the gap to cover the space it used to occupy:

/// Insert `elt` at the current insertion position,
/// and leave the insertion position after it.
pub fn insert(&mut self, elt: T) {
 if self.gap.len() == 0 {
 self.enlarge_gap();
 }

 unsafe {
 let index = self.gap.start;
 std::ptr::write(self.space_mut(index), elt);
 }
 self.gap.start += 1;
}

/// Insert the elements produced by `iter` at the current insertion
/// position, and leave the insertion position after them.
pub fn insert_iter<I>(&mut self, iterable: I)
 where I: IntoIterator<Item=T>
{
 for item in iterable {
 self.insert(item)
 }
}

/// Remove the element just after the insertion position
/// and return it, or return `None` if the insertion position
/// is at the end of the GapBuffer.
pub fn remove(&mut self) -> Option<T> {
 if self.gap.end == self.capacity() {
 return None;
 }

 let element = unsafe {
 std::ptr::read(self.space(self.gap.end))
 };
 self.gap.end += 1;
 Some(element)
}

Similar to the way Vec uses std::ptr::write for push and std::ptr::read for pop,
GapBuffer uses write for insert and read for remove. And just as Vec must

adjust its length to maintain the boundary between initialized elements and
spare capacity, GapBuffer adjusts its gap.

When the gap has been filled in, the insert method must grow the buffer to
acquire more free space. The enlarge_gap method (the last in the impl block)
handles this:

/// Double the capacity of `self.storage`.
fn enlarge_gap(&mut self) {
 let mut new_capacity = self.capacity() * 2;
 if new_capacity == 0 {
 // The existing vector is empty.
 // Choose a reasonable starting capacity.
 new_capacity = 4;
 }

 // We have no idea what resizing a Vec does with its "unused"
 // capacity. So just create a new vector and move over the elements.
 let mut new = Vec::with_capacity(new_capacity);
 let after_gap = self.capacity() - self.gap.end;
 let new_gap = self.gap.start .. new.capacity() - after_gap;

 unsafe {
 // Move the elements that fall before the gap.
 std::ptr::copy_nonoverlapping(self.space(0),
 new.as_mut_ptr(),
 self.gap.start);

 // Move the elements that fall after the gap.
 let new_gap_end = new.as_mut_ptr().offset(new_gap.end as isize);
 std::ptr::copy_nonoverlapping(self.space(self.gap.end),
 new_gap_end,
 after_gap);
 }

 // This frees the old Vec, but drops no elements,
 // because the Vec's length is zero.
 self.storage = new;
 self.gap = new_gap;
}

Whereas set_position must use copy to move elements back and forth in the
gap, enlarge_gap can use copy_nonoverlapping, since it is moving elements
to an entirely new buffer.

Moving the new vector into self.storage drops the old vector. Since its length
is zero, the old vector believes it has no elements to drop and simply frees its
buffer. Neatly, copy_nonoverlapping leaves its source uninitialized, so the
old vector is correct in this belief: all the elements are now owned by the new
vector.

Finally, we need to make sure that dropping a GapBuffer drops all its
elements:

impl<T> Drop for GapBuffer<T> {
 fn drop(&mut self) {
 unsafe {
 for i in 0 .. self.gap.start {
 std::ptr::drop_in_place(self.space_mut(i));
 }
 for i in self.gap.end .. self.capacity() {
 std::ptr::drop_in_place(self.space_mut(i));
 }
 }
 }
}

The elements lie before and after the gap, so we iterate over each region and
use the std::ptr::drop_in_place function to drop each one. The drop_in_place
function is a utility that behaves like drop(std::ptr::read(ptr)), but doesn’t
bother moving the value to its caller (and hence works on unsized types).
And just as in enlarge_gap, by the time the vector self.storage is dropped, its
buffer really is uninitialized.

Like the other types we’ve shown in this chapter, GapBuffer ensures that its
own invariants are sufficient to ensure that the contract of every unsafe
feature it uses is followed, so none of its public methods needs to be marked
unsafe. GapBuffer implements a safe interface for a feature that cannot be
written efficiently in safe code.

Panic Safety in Unsafe Code
In Rust, panics can’t usually cause undefined behavior; the panic! macro is
not an unsafe feature. But when you decide to work with unsafe code, panic
safety becomes part of your job.

Consider the GapBuffer::remove method from the previous section:

pub fn remove(&mut self) -> Option<T> {
 if self.gap.end == self.capacity() {
 return None;
 }

 let element = unsafe {
 std::ptr::read(self.space(self.gap.end))
 };
 self.gap.end += 1;
 Some(element)
}

The call to read moves the element immediately following the gap out of the
buffer, leaving behind uninitialized space. At this point, the GapBuffer is in
an inconsistent state: we’ve broken the invariant that all elements outside the
gap must be initialized. Fortunately, the very next statement enlarges the gap
to cover that space, so by the time we return, the invariant holds again.

But consider what would happen if, after the call to read but before the
adjustment to self.gap.end, this code tried to use a feature that might panic—
say, indexing a slice. Exiting the method abruptly anywhere between those
two actions would leave the GapBuffer with an uninitialized element outside
the gap. The next call to remove could try to read it again; even simply
dropping the GapBuffer would try to drop it. Both are undefined behavior,
because they access uninitialized memory.

It’s all but unavoidable for a type’s methods to momentarily relax the type’s
invariants while they do their job and then put everything back to rights
before they return. A panic mid-method could cut that cleanup process short,
leaving the type in an inconsistent state.

If the type uses only safe code, then this inconsistency may make the type
misbehave, but it can’t introduce undefined behavior. But code using unsafe
features is usually counting on its invariants to meet the contracts of those
features. Broken invariants lead to broken contracts, which lead to undefined
behavior.

When working with unsafe features, you must take special care to identify
these sensitive regions of code where invariants are temporarily relaxed, and
ensure that they do nothing that might panic.

Reinterpreting Memory with Unions
Rust provides many useful abstractions, but ultimately, the software you
write is just pushing bytes around. Unions are one of Rust’s most powerful
features for manipulating those bytes and choosing how they are interpreted.
For instance, any collection of 32 bits—4 bytes—can be interpreted as an
integer or as a floating-point number. Either interpretation is valid, though
interpreting data meant for one as the other will likely result in nonsense.

A union representing a collection of bytes that can be interpreted as either an
integer or a floating-point number would be written as follows:

union FloatOrInt {
 f: f32,
 i: i32,
}

This is a union with two fields, f and i. They can be assigned to just like the
fields of a struct, but when constructing a union, unlike a struct, you must
choose exactly one. Where the fields of a struct refer to different positions in
memory, the fields of a union refer to different interpretations of the same
sequence of bits. Assigning to a different field simply means overwriting
some or all of those bits, in accordance with an appropriate type. Here, one
refers to a single 32-bit memory span, which first stores 1 encoded as a
simple integer, then 1.0 as an IEEE 754 floating-point number. As soon as f
is written to, the value previously written to the FloatOrInt is overwritten:

let mut one = FloatOrInt { i: 1 };
assert_eq!(unsafe { one.i }, 0x00_00_00_01);
one.f = 1.0;
assert_eq!(unsafe { one.i }, 0x3F_80_00_00);

For the same reason, the size of a union is determined by its largest field. For
example, this union is 64 bits in size, even though SmallOrLarge::s is just a
bool:

union SmallOrLarge {
 s: bool,
 l: u64
}

While constructing a union or assigning to its fields is completely safe,
reading from any field of a union is always unsafe:

let u = SmallOrLarge { l: 1337 };
println!("{}", unsafe {u.l}); // prints 1337

This is because, unlike enums, unions don’t have a tag. The compiler adds no
additional bits to tell variants apart. There is no way to tell at run time
whether a SmallOrLarge is meant to be interpreted as a u64 or a bool, unless
the program has some extra context.

There is also no built-in guarantee that a given field’s bit pattern is valid. For
instance, writing to a SmallOrLarge value’s l field will overwrite its s field,
creating a bit pattern that definitely doesn’t mean anything useful and is most
likely not a valid bool. Therefore, while writing to union fields is safe, every
read requires unsafe. Reading from u.s is permitted only when the bits of the
s field form a valid bool; otherwise, this is undefined behavior.

With these restrictions in mind, unions can be a useful way to temporarily
reinterpret some data, especially when doing computations on the
representation of values rather than the values themselves. For instance, the
previously mentioned FloatOrInt type can easily be used to print out the
individual bits of a floating-point number, even though f32 doesn’t
implement the Binary formatter:

let float = FloatOrInt { f: 31337.0 };
// prints 1000110111101001101001000000000
println!("{:b}", unsafe { float.i });

While these simple examples will almost certainly work as expected on any
version of the compiler, there is no guarantee that any field starts at a specific
place unless an attribute is added to the union definition telling the compiler
how to lay out the data in memory. Adding the attribute #[repr(C)] guarantees

that all fields start at offset 0, rather than wherever the compiler likes. With
that guarantee in place, the overwriting behavior can be used to extract
individual bits, like the sign bit of an integer:

#[repr(C)]
union SignExtractor {
 value: i64,
 bytes: [u8; 8]
}

fn sign(int: i64) -> bool {
 let se = SignExtractor { value: int};
 println!("{:b} ({:?})", unsafe { se.value }, unsafe { se.bytes });
 unsafe { se.bytes[7] >= 0b10000000 }
}

assert_eq!(sign(-1), true);
assert_eq!(sign(1), false);
assert_eq!(sign(i64::MAX), false);
assert_eq!(sign(i64::MIN), true);

Here, the sign bit is the most significant bit of the most significant byte.
Because x86 processors are little-endian, the order of those bytes is reversed;
the most significant byte is not bytes[0], but bytes[7]. Normally, this is not
something Rust code has to deal with, but because this code is directly
working with the in-memory representation of the i64, these low-level details
become important.

Because unions can’t tell how to drop their contents, all their fields must be
Copy. However, if you simply must store a String in a union, there is a
workaround; consult the standard library documentation for
std::mem::ManuallyDrop.

Matching Unions
Matching on a Rust union is like matching on a struct, except that each
pattern has to specify exactly one field:

unsafe {
 match u {
 SmallOrLarge { s: true } => { println!("boolean true"); }
 SmallOrLarge { l: 2 } => { println!("integer 2"); }
 _ => { println!("something else"); }
 }
}

A match arm that matches against a union variant without specifying a value
will always succeed. The following code will cause undefined behavior if the
last written field of u was u.i:

// Undefined behavior!
unsafe {
 match u {
 FloatOrInt { f } => { println!("float {}", f) },
 // warning: unreachable pattern
 FloatOrInt { i } => { println!("int {}", i) }
 }
}

Borrowing Unions
Borrowing one field of a union borrows the entire union. This means that,
following the normal borrowing rules, borrowing one field as mutable
precludes any additional borrows on it or other fields, and borrowing one
field as immutable means there can be no mutable borrows on any fields.

As we’ll see in the next chapter, Rust helps you build safe interfaces not only
for your own unsafe code but also for code written in other languages. Unsafe
is, as the name implies, fraught, but used with care it can empower you to
build highly performant code that retains the guarantees Rust programmers
enjoy.

1 Well, it’s a classic where we come from.

2 There are better ways to handle this using the RawVec type from the compiler-internal alloc
crate, but that crate is still unstable.

Chapter 23. Foreign Functions

Cyberspace. Unthinkable complexity. Lines of light ranged in the non-
space of the mind, clusters and constellations of data. Like city lights,
receding . . .

—William Gibson, Neuromancer

Tragically, not every program in the world is written in Rust. There are many
critical libraries and interfaces implemented in other languages that we would
like to be able to use in our Rust programs. Rust’s foreign function interface
(FFI) lets Rust code call functions written in C, and in some cases C++. Since
most operating systems offer C interfaces, Rust’s foreign function interface
allows immediate access to all sorts of low-level facilities.

In this chapter, we’ll write a program that links with libgit2, a C library for
working with the Git version control system. First, we’ll show what it’s like
to use C functions directly from Rust, using the unsafe features demonstrated
in the previous chapter. Then, we’ll show how to construct a safe interface to
libgit2, taking inspiration from the open source git2-rs crate, which does
exactly that.

We’ll assume that you’re familiar with C and the mechanics of compiling and
linking C programs. Working with C++ is similar. We’ll also assume that
you’re somewhat familiar with the Git version control system.

There do exist Rust crates for communicating with many other languages,
including Python, JavaScript, Lua, and Java. We don’t have room to cover
them here, but ultimately, all these interfaces are built using the C foreign
function interface, so this chapter should give you a head start no matter
which language you need to work with.

Finding Common Data Representations
The common denominator of Rust and C is machine language, so in order to
anticipate what Rust values look like to C code, or vice versa, you need to
consider their machine-level representations. Throughout the book, we’ve
made a point of showing how values are actually represented in memory, so
you’ve probably noticed that the data worlds of C and Rust have a lot in
common: a Rust usize and a C size_t are identical, for example, and structs
are fundamentally the same idea in both languages. To establish a
correspondence between Rust and C types, we’ll start with primitives and
then work our way up to more complicated types.

Given its primary use as a systems programming language, C has always
been surprisingly loose about its types’ representations: an int is typically 32
bits long, but could be longer, or as short as 16 bits; a C char may be signed
or unsigned; and so on. To cope with this variability, Rust’s std::os::raw
module defines a set of Rust types that are guaranteed to have the same
representation as certain C types (Table 23-1). These cover the primitive
integer and character types.

Table 23-1. std::os::raw types in Rust

C type Corresponding std::os::raw type

short c_short

int c_int

long c_long

long long c_longlong

unsigned short c_ushort

unsigned, unsigned int c_uint

unsigned long c_ulong

unsigned long long c_ulonglong

char c_char

signed char c_schar

unsigned char c_uchar

float c_float

double c_double

void *, const void * *mut c_void, *const c_void

Some notes about Table 23-1:

Except for c_void, all the Rust types here are aliases for some
primitive Rust type: c_char, for example, is either i8 or u8.

A Rust bool is equivalent to a C or C++ bool.

Rust’s 32-bit char type is not the analogue of wchar_t, whose width
and encoding vary from one implementation to another. C’s
char32_t type is closer, but its encoding is still not guaranteed to be
Unicode.

Rust’s primitive usize and isize types have the same representations
as C’s size_t and ptrdiff_t.

C and C++ pointers and C++ references correspond to Rust’s raw
pointer types, *mut T and *const T.

Technically, the C standard permits implementations to use
representations for which Rust has no corresponding type: 36-bit
integers, sign-and-magnitude representations for signed values, and
so on. In practice, on every platform Rust has been ported to, every
common C integer type has a match in Rust.

For defining Rust struct types compatible with C structs, you can use the #
[repr(C)] attribute. Placing #[repr(C)] above a struct definition asks Rust to
lay out the struct’s fields in memory the same way a C compiler would lay
out the analogous C struct type. For example, libgit2’s git2/errors.h header
file defines the following C struct to provide details about a previously
reported error:

typedef struct {
 char *message;
 int klass;

} git_error;

You can define a Rust type with an identical representation as follows:

use std::os::raw::{c_char, c_int};

#[repr(C)]
pub struct git_error {
 pub message: *const c_char,
 pub klass: c_int
}

The #[repr(C)] attribute affects only the layout of the struct itself, not the
representations of its individual fields, so to match the C struct, each field
must use the C-like type as well: *const c_char for char *, c_int for int, and
so on.

In this particular case, the #[repr(C)] attribute probably doesn’t change the
layout of git_error. There really aren’t too many interesting ways to lay out a
pointer and an integer. But whereas C and C++ guarantee that a structure’s
members appear in memory in the order they’re declared, each at a distinct
address, Rust reorders fields to minimize the overall size of the struct, and
zero-sized types take up no space. The #[repr(C)] attribute tells Rust to
follow C’s rules for the given type.

You can also use #[repr(C)] to control the representation of C-style enums:

#[repr(C)]
#[allow(non_camel_case_types)]
enum git_error_code {
 GIT_OK = 0,
 GIT_ERROR = -1,
 GIT_ENOTFOUND = -3,
 GIT_EEXISTS = -4,
 ...
}

Normally, Rust plays all sorts of games when choosing how to represent
enums. For example, we mentioned the trick Rust uses to store Option<&T>
in a single word (if T is sized). Without #[repr(C)], Rust would use a single

byte to represent the git_error_code enum; with #[repr(C)], Rust uses a value
the size of a C int, just as C would.

You can also ask Rust to give an enum the same representation as some
integer type. Starting the preceding definition with #[repr(i16)] would give
you a 16-bit type with the same representation as the following C++ enum:

#include <stdint.h>

enum git_error_code: int16_t {
 GIT_OK = 0,
 GIT_ERROR = -1,
 GIT_ENOTFOUND = -3,
 GIT_EEXISTS = -4,
 ...
};

As mentioned earlier, #[repr(C)] applies to unions as well. Fields of #
[repr(C)] unions always start at the first bit of the union’s memory—index 0.

Suppose you have a C struct that uses a union to hold some data and a tag
value to indicate which field of the union should be used, similar to a Rust
enum.

enum tag {
 FLOAT = 0,
 INT = 1,
};

union number {
 float f;
 short i;
};

struct tagged_number {
 tag t;
 number n;
};

Rust code can interoperate with this structure by applying #[repr(C)] to the
enum, structure, and union types, and using a match statement that selects a
union field within a larger struct based on the tag:

#[repr(C)]
enum Tag {
 Float = 0,
 Int = 1
}

#[repr(C)]
union FloatOrInt {
 f: f32,
 i: i32,
}

#[repr(C)]
struct Value {
 tag: Tag,
 union: FloatOrInt
}

fn is_zero(v: Value) -> bool {
 use self::Tag::*;
 unsafe {
 match v {
 Value { tag: Int, union: FloatOrInt { i: 0 } } => true,
 Value { tag: Float, union: FloatOrInt { f: num } } => (num == 0.0),
 _ => false
 }
 }
}

Even complex structures can be easily used across the FFI boundary using
this kind of technique.

Passing strings between Rust and C is a little harder. C represents a string as
a pointer to an array of characters, terminated by a null character. Rust, on the
other hand, stores the length of a string explicitly, either as a field of a String
or as the second word of a fat reference &str. Rust strings are not null-
terminated; in fact, they may include null characters in their contents, like any
other character.

This means that you can’t borrow a Rust string as a C string: if you pass C
code a pointer into a Rust string, it could mistake an embedded null character
for the end of the string or run off the end looking for a terminating null that
isn’t there. Going the other direction, you may be able to borrow a C string as

a Rust &str, as long as its contents are well-formed UTF-8.

This situation effectively forces Rust to treat C strings as types entirely
distinct from String and &str. In the std::ffi module, the CString and CStr
types represent owned and borrowed null-terminated arrays of bytes.
Compared to String and str, the methods on CString and CStr are quite
limited, restricted to construction and conversion to other types. We’ll show
these types in action in the next section.

Declaring Foreign Functions and Variables
An extern block declares functions or variables defined in some other library
that the final Rust executable will be linked with. For example, on most
platforms, every Rust program is linked against the standard C library, so we
can tell Rust about the C library’s strlen function like this:

use std::os::raw::c_char;

extern {
 fn strlen(s: *const c_char) -> usize;
}

This gives Rust the function’s name and type, while leaving the definition to
be linked in later.

Rust assumes that functions declared inside extern blocks use C conventions
for passing arguments and accepting return values. They are defined as
unsafe functions. These are the right choices for strlen: it is indeed a C
function, and its specification in C requires that you pass it a valid pointer to
a properly terminated string, which is a contract that Rust cannot enforce.
(Almost any function that takes a raw pointer must be unsafe: safe Rust can
construct raw pointers from arbitrary integers, and dereferencing such a
pointer would be undefined behavior.)

With this extern block, we can call strlen like any other Rust function,
although its type gives it away as a tourist:

use std::ffi::CString;

let rust_str = "I'll be back";
let null_terminated = CString::new(rust_str).unwrap();
unsafe {
 assert_eq!(strlen(null_terminated.as_ptr()), 12);
}

The CString::new function builds a null-terminated C string. It first checks its

argument for embedded null characters, since those cannot be represented in
a C string, and returns an error if it finds any (hence the need to unwrap the
result). Otherwise, it adds a null byte to the end and returns a CString owning
the resulting characters.

The cost of CString::new depends on what type you pass it. It accepts
anything that implements Into<Vec<u8>>. Passing a &str entails an
allocation and a copy, as the conversion to Vec<u8> builds a heap-allocated
copy of the string for the vector to own. But passing a String by value simply
consumes the string and takes over its buffer, so unless appending the null
character forces the buffer to be resized, the conversion requires no copying
of text or allocation at all.

CString dereferences to CStr, whose as_ptr method returns a *const c_char
pointing at the start of the string. This is the type that strlen expects. In the
example, strlen runs down the string, finds the null character that
CString::new placed there, and returns the length, as a byte count.

You can also declare global variables in extern blocks. POSIX systems have
a global variable named environ that holds the values of the process’s
environment variables. In C, it’s declared:

extern char **environ;

In Rust, you would say:

use std::ffi::CStr;
use std::os::raw::c_char;

extern {
 static environ: *mut *mut c_char;
}

To print the environment’s first element, you could write:

unsafe {
 if !environ.is_null() && !(*environ).is_null() {
 let var = CStr::from_ptr(*environ);
 println!("first environment variable: {}",

 var.to_string_lossy())
 }
}

After making sure environ has a first element, the code calls CStr::from_ptr
to build a CStr that borrows it. The to_string_lossy method returns a
Cow<str>: if the C string contains well-formed UTF-8, the Cow borrows its
content as a &str, not including the terminating null byte. Otherwise,
to_string_lossy makes a copy of the text in the heap, replaces the ill-formed
UTF-8 sequences with the official Unicode replacement character, �, and
builds an owning Cow from that. Either way, the result implements Display,
so you can print it with the {} format parameter.

Using Functions from Libraries
To use functions provided by a particular library, you can place a #[link]
attribute atop the extern block that names the library Rust should link the
executable with. For example, here’s a program that calls libgit2’s
initialization and shutdown methods, but does nothing else:

use std::os::raw::c_int;

#[link(name = "git2")]
extern {
 pub fn git_libgit2_init() -> c_int;
 pub fn git_libgit2_shutdown() -> c_int;
}

fn main() {
 unsafe {
 git_libgit2_init();
 git_libgit2_shutdown();
 }
}

The extern block declares the extern functions as before. The #[link(name =
"git2")] attribute leaves a note in the crate to the effect that, when Rust
creates the final executable or shared library, it should link against the git2
library. Rust uses the system linker to build executables; on Unix, this passes
the argument -lgit2 on the linker command line; on Windows, it passes
git2.LIB.

#[link] attributes work in library crates, too. When you build a program that
depends on other crates, Cargo gathers together the link notes from the entire
dependency graph and includes them all in the final link.

In this example, if you would like to follow along on your own machine,
you’ll need to build libgit2 for yourself. We used libgit2 version 0.25.1. To
compile libgit2, you will need to install the CMake build tool and the Python
language; we used CMake version 3.8.0 and Python version 2.7.13.

https://oreil.ly/T1dPr
https://cmake.org
https://www.python.org

The full instructions for building libgit2 are available on its website, but
they’re simple enough that we’ll show the essentials here. On Linux, assume
you’ve already unzipped the library’s source into the directory
/home/jimb/libgit2-0.25.1:

$ cd /home/jimb/libgit2-0.25.1
$ mkdir build
$ cd build
$ cmake ..
$ cmake --build .

On Linux, this produces a shared library /home/jimb/libgit2-
0.25.1/build/libgit2.so. 0.25.1 with the usual nest of symlinks pointing to it,
including one named libgit2.so. On macOS, the results are similar, but the
library is named libgit2.dylib.

On Windows, things are also straightforward. Assume you’ve unzipped the
source into the directory C:\Users\JimB\libgit2-0.25.1. In a Visual Studio
command prompt:

> cd C:\Users\JimB\libgit2-0.25.1
> mkdir build
> cd build
> cmake -A x64 ..
> cmake --build .

These are the same commands as used on Linux, except that you must
request a 64-bit build when you run CMake the first time to match your Rust
compiler. (If you have installed the 32-bit Rust toolchain, then you should
omit the -A x64 flag to the first cmake command.) This produces an import
library git2.LIB and a dynamic-link library git2.DLL, both in the directory
C:\Users\JimB\libgit2-0.25.1\build\Debug. (The remaining instructions are
shown for Unix, except where Windows is substantially different.)

Create the Rust program in a separate directory:

$ cd /home/jimb
$ cargo new --bin git-toy
 Created binary (application) `git-toy` package

Take the code shown earlier and put it in src/main.rs. Naturally, if you try to
build this, Rust has no idea where to find the libgit2 you built:

$ cd git-toy
$ cargo run
 Compiling git-toy v0.1.0 (/home/jimb/git-toy)
error: linking with `cc` failed: exit status: 1
 |
 = note: /usr/bin/ld: error: cannot find -lgit2
 src/main.rs:11: error: undefined reference to 'git_libgit2_init'
 src/main.rs:12: error: undefined reference to 'git_libgit2_shutdown'
 collect2: error: ld returned 1 exit status

error: could not compile `git-toy` due to previous error

You can tell Rust where to search for libraries by writing a build script, Rust
code that Cargo compiles and runs at build time. Build scripts can do all sorts
of things: generate code dynamically, compile C code to be included in the
crate, and so on. In this case, all you need is to add a library search path to the
executable’s link command. When Cargo runs the build script, it parses the
build script’s output for information of this sort, so the build script simply
needs to print the right magic to its standard output.

To create your build script, add a file named build.rs in the same directory as
the Cargo.toml file, with the following contents:

fn main() {
 println!(r"cargo:rustc-link-search=native=/home/jimb/libgit2-0.25.1/build");
}

This is the right path for Linux; on Windows, you would change the path
following the text native= to C:\Users\JimB\libgit2-0.25.1\build\Debug.
(We’re cutting some corners to keep this example simple; in a real
application, you should avoid using absolute paths in your build script. We
cite documentation that shows how to do it right at the end of this section.)

Now you can almost run the program. On macOS it may work immediately;
on a Linux system you will probably see something like the following:

$ cargo run
 Compiling git-toy v0.1.0 (/tmp/rustbook-transcript-tests/git-toy)
 Finished dev [unoptimized + debuginfo] target(s)
 Running `target/debug/git-toy`
target/debug/git-toy: error while loading shared libraries:
libgit2.so.25: cannot open shared object file: No such file or directory

This means that, although Cargo succeeded in linking the executable against
the library, it doesn’t know where to find the shared library at run time.
Windows reports this failure by popping up a dialog box. On Linux, you must
set the LD_LIBRARY_PATH environment variable:

$ export LD_LIBRARY_PATH=/home/jimb/libgit2-0.25.1/build:$LD_LIBRARY_PATH
$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/git-toy`

On macOS, you may need to set DYLD_LIBRARY_PATH instead.

On Windows, you must set the PATH environment variable:

> set PATH=C:\Users\JimB\libgit2-0.25.1\build\Debug;%PATH%
> cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/git-toy`
>

Naturally, in a deployed application you’d want to avoid having to set
environment variables just to find your library’s code. One alternative is to
statically link the C library into your crate. This copies the library’s object
files into the crate’s .rlib file, alongside the object files and metadata for the
crate’s Rust code. The entire collection then participates in the final link.

It is a Cargo convention that a crate that provides access to a C library should
be named LIB-sys, where LIB is the name of the C library. A -sys crate
should contain nothing but the statically linked library and Rust modules
containing extern blocks and type definitions. Higher-level interfaces then
belong in crates that depend on the -sys crate. This allows multiple upstream
crates to depend on the same -sys crate, assuming there is a single version of

the -sys crate that meets everyone’s needs.

For the full details on Cargo’s support for build scripts and linking with
system libraries, see the online Cargo documentation. It shows how to avoid
absolute paths in build scripts, control compilation flags, use tools like pkg-
config, and so on. The git2-rs crate also provides good examples to emulate;
its build script handles some complex situations.

https://oreil.ly/Rxa1D

A Raw Interface to libgit2
Figuring out how to use libgit2 properly breaks down into two questions:

What does it take to use libgit2 functions in Rust?

How can we build a safe Rust interface around them?

We’ll take these questions one at a time. In this section, we’ll write a program
that’s essentially a single giant unsafe block filled with nonidiomatic Rust
code, reflecting the clash of type systems and conventions that is inherent in
mixing languages. We’ll call this the raw interface. The code will be messy,
but it will make plain all the steps that must occur for Rust code to use
libgit2.

Then, in the next section, we’ll build a safe interface to libgit2 that puts
Rust’s types to use enforcing the rules libgit2 imposes on its users.
Fortunately, libgit2 is an exceptionally well-designed C library, so the
questions that Rust’s safety requirements force us to ask all have pretty good
answers, and we can construct an idiomatic Rust interface with no unsafe
functions.

The program we’ll write is very simple: it takes a path as a command-line
argument, opens the Git repository there, and prints out the head commit. But
this is enough to illustrate the key strategies for building safe and idiomatic
Rust interfaces.

For the raw interface, the program will end up needing a somewhat larger
collection of functions and types from libgit2 than we used before, so it
makes sense to move the extern block into its own module. We’ll create a file
named raw.rs in git-toy/src whose contents are as follows:

#![allow(non_camel_case_types)]

use std::os::raw::{c_int, c_char, c_uchar};

#[link(name = "git2")]
extern {

 pub fn git_libgit2_init() -> c_int;
 pub fn git_libgit2_shutdown() -> c_int;
 pub fn giterr_last() -> *const git_error;

 pub fn git_repository_open(out: *mut *mut git_repository,
 path: *const c_char) -> c_int;
 pub fn git_repository_free(repo: *mut git_repository);

 pub fn git_reference_name_to_id(out: *mut git_oid,
 repo: *mut git_repository,
 reference: *const c_char) -> c_int;

 pub fn git_commit_lookup(out: *mut *mut git_commit,
 repo: *mut git_repository,
 id: *const git_oid) -> c_int;

 pub fn git_commit_author(commit: *const git_commit) -> *const git_signature;
 pub fn git_commit_message(commit: *const git_commit) -> *const c_char;
 pub fn git_commit_free(commit: *mut git_commit);
}

#[repr(C)] pub struct git_repository { _private: [u8; 0] }
#[repr(C)] pub struct git_commit { _private: [u8; 0] }

#[repr(C)]
pub struct git_error {
 pub message: *const c_char,
 pub klass: c_int
}

pub const GIT_OID_RAWSZ: usize = 20;

#[repr(C)]
pub struct git_oid {
 pub id: [c_uchar; GIT_OID_RAWSZ]
}

pub type git_time_t = i64;

#[repr(C)]
pub struct git_time {
 pub time: git_time_t,
 pub offset: c_int
}

#[repr(C)]
pub struct git_signature {
 pub name: *const c_char,

 pub email: *const c_char,
 pub when: git_time
}

Each item here is modeled on a declaration from libgit2’s own header files.
For example, libgit2-0.25.1/include/git2/repository.h includes this
declaration:

extern int git_repository_open(git_repository **out, const char *path);

This function tries to open the Git repository at path. If all goes well, it
creates a git_repository object and stores a pointer to it in the location pointed
to by out. The equivalent Rust declaration is the following:

pub fn git_repository_open(out: *mut *mut git_repository,
 path: *const c_char) -> c_int;

The libgit2 public header files define the git_repository type as a typedef for
an incomplete struct type:

typedef struct git_repository git_repository;

Since the details of this type are private to the library, the public headers
never define struct git_repository, ensuring that the library’s users can never
build an instance of this type themselves. One possible analogue to an
incomplete struct type in Rust is this:

#[repr(C)] pub struct git_repository { _private: [u8; 0] }

This is a struct type containing an array with no elements. Since the _private
field isn’t pub, values of this type cannot be constructed outside this module,
which is perfect as the reflection of a C type that only libgit2 should ever
construct, and which is manipulated solely through raw pointers.

Writing large extern blocks by hand can be a chore. If you are creating a Rust
interface to a complex C library, you may want to try using the bindgen crate,
which has functions you can use from your build script to parse C header

files and generate the corresponding Rust declarations automatically. We
don’t have space to show bindgen in action here, but bindgen’s page on
crates.io includes links to its documentation.

Next we’ll rewrite main.rs completely. First, we need to declare the raw
module:

mod raw;

According to libgit2’s conventions, fallible functions return an integer code
that is positive or zero on success, and negative on failure. If an error occurs,
the giterr_last function will return a pointer to a git_error structure providing
more details about what went wrong. libgit2 owns this structure, so we don’t
need to free it ourselves, but it could be overwritten by the next library call
we make. A proper Rust interface would use Result, but in the raw version,
we want to use the libgit2 functions just as they are, so we’ll have to roll our
own function for handling errors:

use std::ffi::CStr;
use std::os::raw::c_int;

fn check(activity: &'static str, status: c_int) -> c_int {
 if status < 0 {
 unsafe {
 let error = &*raw::giterr_last();
 println!("error while {}: {} ({})",
 activity,
 CStr::from_ptr(error.message).to_string_lossy(),
 error.klass);
 std::process::exit(1);
 }
 }

 status
}

We’ll use this function to check the results of libgit2 calls like this:

check("initializing library", raw::git_libgit2_init());

https://oreil.ly/sr8rS

This uses the same CStr methods used earlier: from_ptr to construct the CStr
from a C string and to_string_lossy to turn that into something Rust can print.

Next, we need a function to print out a commit:

unsafe fn show_commit(commit: *const raw::git_commit) {
 let author = raw::git_commit_author(commit);

 let name = CStr::from_ptr((*author).name).to_string_lossy();
 let email = CStr::from_ptr((*author).email).to_string_lossy();
 println!("{} <{}>\n", name, email);

 let message = raw::git_commit_message(commit);
 println!("{}", CStr::from_ptr(message).to_string_lossy());
}

Given a pointer to a git_commit, show_commit calls git_commit_author and
git_commit_message to retrieve the information it needs. These two
functions follow a convention that the libgit2 documentation explains as
follows:

If a function returns an object as a return value, that function is a getter
and the object’s lifetime is tied to the parent object.

In Rust terms, author and message are borrowed from commit: show_commit
doesn’t need to free them itself, but it must not hold on to them after commit
is freed. Since this API uses raw pointers, Rust won’t check their lifetimes for
us: if we do accidentally create dangling pointers, we probably won’t find out
about it until the program crashes.

The preceding code assumes these fields hold UTF-8 text, which is not
always correct. Git permits other encodings as well. Interpreting these strings
properly would probably entail using the encoding crate. For brevity’s sake,
we’ll gloss over those issues here.

Our program’s main function reads as follows:

use std::ffi::CString;
use std::mem;
use std::ptr;
use std::os::raw::c_char;

fn main() {
 let path = std::env::args().skip(1).next()
 .expect("usage: git-toy PATH");
 let path = CString::new(path)
 .expect("path contains null characters");

 unsafe {
 check("initializing library", raw::git_libgit2_init());

 let mut repo = ptr::null_mut();
 check("opening repository",
 raw::git_repository_open(&mut repo, path.as_ptr()));

 let c_name = b"HEAD\0".as_ptr() as *const c_char;
 let oid = {
 let mut oid = mem::MaybeUninit::uninit();
 check("looking up HEAD",
 raw::git_reference_name_to_id(oid.as_mut_ptr(), repo, c_name));
 oid.assume_init()
 };

 let mut commit = ptr::null_mut();
 check("looking up commit",
 raw::git_commit_lookup(&mut commit, repo, &oid));

 show_commit(commit);

 raw::git_commit_free(commit);

 raw::git_repository_free(repo);

 check("shutting down library", raw::git_libgit2_shutdown());
 }
}

This starts with code to handle the path argument and initialize the library, all
of which we’ve seen before. The first novel code is this:

let mut repo = ptr::null_mut();
check("opening repository",
 raw::git_repository_open(&mut repo, path.as_ptr()));

The call to git_repository_open tries to open the Git repository at the given
path. If it succeeds, it allocates a new git_repository object for it and sets repo

to point to that. Rust implicitly coerces references into raw pointers, so
passing &mut repo here provides the *mut *mut git_repository the call
expects.

This shows another libgit2 convention in use (from the libgit2
documentation):

Objects which are returned via the first argument as a pointer-to-pointer
are owned by the caller and it is responsible for freeing them.

In Rust terms, functions like git_repository_open pass ownership of the new
value to the caller.

Next, consider the code that looks up the object hash of the repository’s
current head commit:

let oid = {
 let mut oid = mem::MaybeUninit::uninit();
 check("looking up HEAD",
 raw::git_reference_name_to_id(oid.as_mut_ptr(), repo, c_name));
 oid.assume_init()
};

The git_oid type stores an object identifier—a 160-bit hash code that Git uses
internally (and throughout its delightful user interface) to identify commits,
individual versions of files, and so on. This call to git_reference_name_to_id
looks up the object identifier of the current "HEAD" commit.

In C it’s perfectly normal to initialize a variable by passing a pointer to it to
some function that fills in its value; this is how git_reference_name_to_id
expects to treat its first argument. But Rust won’t let us borrow a reference to
an uninitialized variable. We could initialize oid with zeros, but this is a
waste: any value stored there will simply be overwritten.

It is possible to ask Rust to give us uninitialized memory, but because reading
uninitialized memory at any time is instant undefined behavior, Rust provides
an abstraction, MaybeUninit, to ease its use. MaybeUninit<T> tells the
compiler to set aside enough memory for your type T, but not to touch it until
you say that it’s safe to do so. While this memory is owned by the

MaybeUninit, the compiler will also avoid certain optimizations that could
otherwise cause undefined behavior even without any explicit access to the
uninitialized memory in your code.

MaybeUninit provides a method, as_mut_ptr(), that produces a *mut T
pointing to the potentially uninitialized memory it wraps. By passing that
pointer to a foreign function that initializes the memory and then calling the
unsafe method assume_init on the MaybeUninit to produce a fully initialized
T, you can avoid undefined behavior without the additional overhead that
comes from initializing and immediately throwing away a value. assume_init
is unsafe because calling it on a MaybeUninit without being certain that the
memory is actually initialized will immediately cause undefined behavior.

In this case, it is safe because git_reference_name_to_id initializes the
memory owned by the MaybeUninit. We could use MaybeUninit for the repo
and commit variables as well, but since these are just single words, we just go
ahead and initialize them to null:

let mut commit = ptr::null_mut();
check("looking up commit",
 raw::git_commit_lookup(&mut commit, repo, &oid));

This takes the commit’s object identifier and looks up the actual commit,
storing a git_commit pointer in commit on success.

The remainder of the main function should be self-explanatory. It calls the
show_commit function defined earlier, frees the commit and repository
objects, and shuts down the library.

Now we can try out the program on any Git repository ready at hand:

$ cargo run /home/jimb/rbattle
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/git-toy /home/jimb/rbattle`
Jim Blandy <jimb@red-bean.com>

Animate goop a bit.

A Safe Interface to libgit2
The raw interface to libgit2 is a perfect example of an unsafe feature: it
certainly can be used correctly (as we do here, so far as we know), but Rust
can’t enforce the rules you must follow. Designing a safe API for a library
like this is a matter of identifying all these rules and then finding ways to turn
any violation of them into a type or borrow-checking error.

Here, then, are libgit2’s rules for the features the program uses:

You must call git_libgit2_init before using any other library
function. You must not use any library function after calling
git_libgit2_shutdown.

All values passed to libgit2 functions must be fully initialized,
except for output parameters.

When a call fails, output parameters passed to hold the results of the
call are left uninitialized, and you must not use their values.

A git_commit object refers to the git_repository object it is derived
from, so the former must not outlive the latter. (This isn’t spelled out
in the libgit2 documentation; we inferred it from the presence of
certain functions in the interface and then verified it by reading the
source code.)

Similarly, a git_signature is always borrowed from a given
git_commit, and the former must not outlive the latter. (The
documentation does cover this case.)

The message associated with a commit and the name and email
address of the author are all borrowed from the commit and must not
be used after the commit is freed.

Once a libgit2 object has been freed, it must never be used again.

As it turns out, you can build a Rust interface to libgit2 that enforces all of

these rules, either through Rust’s type system or by managing details
internally.

Before we get started, let’s restructure the project a little bit. We’d like to
have a git module that exports the safe interface, of which the raw interface
from the previous program is a private submodule.

The whole source tree will look like this:

git-toy/
├── Cargo.toml
├── build.rs
└── src/
 ├── main.rs
 └── git/
 ├── mod.rs
 └── raw.rs

Following the rules we explained in “Modules in Separate Files”, the source
for the git module appears in git/mod.rs, and the source for its git::raw
submodule goes in git/raw.rs.

Once again, we’re going to rewrite main.rs completely. It should start with a
declaration of the git module:

mod git;

Then, we’ll need to create the git subdirectory and move raw.rs into it:

$ cd /home/jimb/git-toy
$ mkdir src/git
$ mv src/raw.rs src/git/raw.rs

The git module needs to declare its raw submodule. The file src/git/mod.rs
must say:

mod raw;

Since it’s not pub, this submodule is not visible to the main program.

In a bit we’ll need to use some functions from the libc crate, so we must add
a dependency in Cargo.toml. The full file now reads:

[package]
name = "git-toy"
version = "0.1.0"
authors = ["You <you@example.com>"]
edition = "2021"

[dependencies]
libc = "0.2"

Now that we’ve restructured our modules, let’s consider error handling. Even
libgit2’s initialization function can return an error code, so we’ll need to have
this sorted out before we can get started. An idiomatic Rust interface needs its
own Error type that captures the libgit2 failure code as well as the error
message and class from giterr_last. A proper error type must implement the
usual Error, Debug, and Display traits. Then, it needs its own Result type that
uses this Error type. Here are the necessary definitions in src/git/mod.rs:

use std::error;
use std::fmt;
use std::result;

#[derive(Debug)]
pub struct Error {
 code: i32,
 message: String,
 class: i32
}

impl fmt::Display for Error {
 fn fmt(&self, f: &mut fmt::Formatter) -> result::Result<(), fmt::Error> {
 // Displaying an `Error` simply displays the message from libgit2.
 self.message.fmt(f)
 }
}

impl error::Error for Error { }

pub type Result<T> = result::Result<T, Error>;

To check the result from raw library calls, the module needs a function that
turns a libgit2 return code into a Result:

use std::os::raw::c_int;
use std::ffi::CStr;

fn check(code: c_int) -> Result<c_int> {
 if code >= 0 {
 return Ok(code);
 }

 unsafe {
 let error = raw::giterr_last();

 // libgit2 ensures that (*error).message is always non-null and null
 // terminated, so this call is safe.
 let message = CStr::from_ptr((*error).message)
 .to_string_lossy()
 .into_owned();

 Err(Error {
 code: code as i32,
 message,
 class: (*error).klass as i32
 })
 }
}

The main difference between this and the check function from the raw
version is that this constructs an Error value instead of printing an error
message and exiting immediately.

Now we’re ready to tackle libgit2 initialization. The safe interface will
provide a Repository type that represents an open Git repository, with
methods for resolving references, looking up commits, and so on. Continuing
in git/mod.rs, here’s the definition of Repository:

/// A Git repository.
pub struct Repository {
 // This must always be a pointer to a live `git_repository` structure.
 // No other `Repository` may point to it.
 raw: *mut raw::git_repository
}

A Repository’s raw field is not public. Since only code in this module can
access the raw::git_repository pointer, getting this module right should ensure
the pointer is always used correctly.

If the only way to create a Repository is to successfully open a fresh Git
repository, that will ensure that each Repository points to a distinct
git_repository object:

use std::path::Path;
use std::ptr;

impl Repository {
 pub fn open<P: AsRef<Path>>(path: P) -> Result<Repository> {
 ensure_initialized();

 let path = path_to_cstring(path.as_ref())?;
 let mut repo = ptr::null_mut();
 unsafe {
 check(raw::git_repository_open(&mut repo, path.as_ptr()))?;
 }
 Ok(Repository { raw: repo })
 }
}

Since the only way to do anything with the safe interface is to start with a
Repository value, and Repository::open starts with a call to
ensure_initialized, we can be confident that ensure_initialized will be called
before any libgit2 functions. Its definition is as follows:

fn ensure_initialized() {
 static ONCE: std::sync::Once = std::sync::Once::new();
 ONCE.call_once(|| {
 unsafe {
 check(raw::git_libgit2_init())
 .expect("initializing libgit2 failed");
 assert_eq!(libc::atexit(shutdown), 0);
 }
 });
}

extern fn shutdown() {
 unsafe {
 if let Err(e) = check(raw::git_libgit2_shutdown()) {

 eprintln!("shutting down libgit2 failed: {}", e);
 std::process::abort();
 }
 }
}

The std::sync::Once type helps run initialization code in a thread-safe way.
Only the first thread to call ONCE.call_once runs the given closure. Any
subsequent calls, by this thread or any other, block until the first has
completed and then return immediately, without running the closure again.
Once the closure has finished, calling ONCE.call_once is cheap, requiring
nothing more than an atomic load of a flag stored in ONCE.

In the preceding code, the initialization closure calls git_libgit2_init and
checks the result. It punts a bit and just uses expect to make sure initialization
succeeded, instead of trying to propagate errors back to the caller.

To make sure the program calls git_libgit2_shutdown, the initialization
closure uses the C library’s atexit function, which takes a pointer to a
function to invoke before the process exits. Rust closures cannot serve as C
function pointers: a closure is a value of some anonymous type carrying the
values of whatever variables it captures or references to them; a C function
pointer is just a pointer. However, Rust fn types work fine, as long as you
declare them extern so that Rust knows to use the C calling conventions. The
local function shutdown fits the bill and ensures libgit2 gets shut down
properly.

In “Unwinding”, we mentioned that it is undefined behavior for a panic to
cross language boundaries. The call from atexit to shutdown is such a
boundary, so it is essential that shutdown not panic. This is why shutdown
can’t simply use .expect to handle errors reported from
raw::git_libgit2_shutdown. Instead, it must report the error and terminate the
process itself. POSIX forbids calling exit within an atexit handler, so
shutdown calls std::process::abort to terminate the program abruptly.

It might be possible to arrange to call git_libgit2_shutdown sooner—say,
when the last Repository value is dropped. But no matter how we arrange
things, calling git_libgit2_shutdown must be the safe API’s responsibility.

The moment it is called, any extant libgit2 objects become unsafe to use, so a
safe API must not expose this function directly.

A Repository’s raw pointer must always point to a live git_repository object.
This implies that the only way to close a repository is to drop the Repository
value that owns it:

impl Drop for Repository {
 fn drop(&mut self) {
 unsafe {
 raw::git_repository_free(self.raw);
 }
 }
}

By calling git_repository_free only when the sole pointer to the
raw::git_repository is about to go away, the Repository type also ensures the
pointer will never be used after it’s freed.

The Repository::open method uses a private function called path_to_cstring,
which has two definitions—one for Unix-like systems and one for Windows:

use std::ffi::CString;

#[cfg(unix)]
fn path_to_cstring(path: &Path) -> Result<CString> {
 // The `as_bytes` method exists only on Unix-like systems.
 use std::os::unix::ffi::OsStrExt;

 Ok(CString::new(path.as_os_str().as_bytes())?)
}

#[cfg(windows)]
fn path_to_cstring(path: &Path) -> Result<CString> {
 // Try to convert to UTF-8. If this fails, libgit2 can't handle the path
 // anyway.
 match path.to_str() {
 Some(s) => Ok(CString::new(s)?),
 None => {
 let message = format!("Couldn't convert path '{}' to UTF-8",
 path.display());
 Err(message.into())
 }

 }
}

The libgit2 interface makes this code a little tricky. On all platforms, libgit2
accepts paths as null-terminated C strings. On Windows, libgit2 assumes
these C strings hold well-formed UTF-8 and converts them internally to the
16-bit paths Windows actually requires. This usually works, but it’s not ideal.
Windows permits filenames that are not well-formed Unicode and thus
cannot be represented in UTF-8. If you have such a file, it’s impossible to
pass its name to libgit2.

In Rust, the proper representation of a filesystem path is a std::path::Path,
carefully designed to handle any path that can appear on Windows or POSIX.
This means that there are Path values on Windows that one cannot pass to
libgit2, because they are not well-formed UTF-8. So although
path_to_cstring’s behavior is less than ideal, it’s actually the best we can do
given libgit2’s interface.

The two path_to_cstring definitions just shown rely on conversions to our
Error type: the ? operator attempts such conversions, and the Windows
version explicitly calls .into(). These conversions are unremarkable:

impl From<String> for Error {
 fn from(message: String) -> Error {
 Error { code: -1, message, class: 0 }
 }
}

// NulError is what `CString::new` returns if a string
// has embedded zero bytes.
impl From<std::ffi::NulError> for Error {
 fn from(e: std::ffi::NulError) -> Error {
 Error { code: -1, message: e.to_string(), class: 0 }
 }
}

Next, let’s figure out how to resolve a Git reference to an object identifier.
Since an object identifier is just a 20-byte hash value, it’s perfectly fine to
expose it in the safe API:

/// The identifier of some sort of object stored in the Git object
/// database: a commit, tree, blob, tag, etc. This is a wide hash of the
/// object's contents.
pub struct Oid {
 pub raw: raw::git_oid
}

We’ll add a method to Repository to perform the lookup:

use std::mem;
use std::os::raw::c_char;

impl Repository {
 pub fn reference_name_to_id(&self, name: &str) -> Result<Oid> {
 let name = CString::new(name)?;
 unsafe {
 let oid = {
 let mut oid = mem::MaybeUninit::uninit();
 check(raw::git_reference_name_to_id(
 oid.as_mut_ptr(), self.raw,
 name.as_ptr() as *const c_char))?;
 oid.assume_init()
 };
 Ok(Oid { raw: oid })
 }
 }
}

Although oid is left uninitialized when the lookup fails, this function
guarantees that its caller can never see the uninitialized value simply by
following Rust’s Result idiom: either the caller gets an Ok carrying a
properly initialized Oid value, or it gets an Err.

Next, the module needs a way to retrieve commits from the repository. We’ll
define a Commit type as follows:

use std::marker::PhantomData;

pub struct Commit<'repo> {
 // This must always be a pointer to a usable `git_commit` structure.
 raw: *mut raw::git_commit,
 _marker: PhantomData<&'repo Repository>
}

As we mentioned earlier, a git_commit object must never outlive the
git_repository object it was retrieved from. Rust’s lifetimes let the code
capture this rule precisely.

The RefWithFlag example earlier in this chapter used a PhantomData field to
tell Rust to treat a type as if it contained a reference with a given lifetime,
even though the type apparently contained no such reference. The Commit
type needs to do something similar. In this case, the _marker field’s type is
PhantomData<&'repo Repository>, indicating that Rust should treat
Commit<'repo> as if it held a reference with lifetime 'repo to some
Repository.

The method for looking up a commit is as follows:

impl Repository {
 pub fn find_commit(&self, oid: &Oid) -> Result<Commit> {
 let mut commit = ptr::null_mut();
 unsafe {
 check(raw::git_commit_lookup(&mut commit, self.raw, &oid.raw))?;
 }
 Ok(Commit { raw: commit, _marker: PhantomData })
 }
}

How does this relate the Commit’s lifetime to the Repository’s? The
signature of find_commit omits the lifetimes of the references involved
according to the rules outlined in “Omitting Lifetime Parameters”. If we were
to write the lifetimes out, the full signature would read:

fn find_commit<'repo, 'id>(&'repo self, oid: &'id Oid)
 -> Result<Commit<'repo>>

This is exactly what we want: Rust treats the returned Commit as if it
borrows something from self, which is the Repository.

When a Commit is dropped, it must free its raw::git_commit:

impl<'repo> Drop for Commit<'repo> {
 fn drop(&mut self) {
 unsafe {

 raw::git_commit_free(self.raw);
 }
 }
}

From a Commit, you can borrow a Signature (a name and email address) and
the text of the commit message:

impl<'repo> Commit<'repo> {
 pub fn author(&self) -> Signature {
 unsafe {
 Signature {
 raw: raw::git_commit_author(self.raw),
 _marker: PhantomData
 }
 }
 }

 pub fn message(&self) -> Option<&str> {
 unsafe {
 let message = raw::git_commit_message(self.raw);
 char_ptr_to_str(self, message)
 }
 }
}

Here’s the Signature type:

pub struct Signature<'text> {
 raw: *const raw::git_signature,
 _marker: PhantomData<&'text str>
}

A git_signature object always borrows its text from elsewhere; in particular,
signatures returned by git_commit_author borrow their text from the
git_commit. So our safe Signature type includes a PhantomData<&'text str>
to tell Rust to behave as if it contained a &str with a lifetime of 'text. Just as
before, Commit::author properly connects this 'text lifetime of the Signature
it returns to that of the Commit without us needing to write a thing. The
Commit::message method does the same with the Option<&str> holding the
commit message.

A Signature includes methods for retrieving the author’s name and email
address:

impl<'text> Signature<'text> {
 /// Return the author's name as a `&str`,
 /// or `None` if it is not well-formed UTF-8.
 pub fn name(&self) -> Option<&str> {
 unsafe {
 char_ptr_to_str(self, (*self.raw).name)
 }
 }

 /// Return the author's email as a `&str`,
 /// or `None` if it is not well-formed UTF-8.
 pub fn email(&self) -> Option<&str> {
 unsafe {
 char_ptr_to_str(self, (*self.raw).email)
 }
 }
}

The preceding methods depend on a private utility function char_ptr_to_str:

/// Try to borrow a `&str` from `ptr`, given that `ptr` may be null or
/// refer to ill-formed UTF-8. Give the result a lifetime as if it were
/// borrowed from `_owner`.
///
/// Safety: if `ptr` is non-null, it must point to a null-terminated C
/// string that is safe to access for at least as long as the lifetime of
/// `_owner`.
unsafe fn char_ptr_to_str<T>(_owner: &T, ptr: *const c_char) -> Option<&str> {
 if ptr.is_null() {
 return None;
 } else {
 CStr::from_ptr(ptr).to_str().ok()
 }
}

The _owner parameter’s value is never used, but its lifetime is. Making the
lifetimes in this function’s signature explicit gives us:

fn char_ptr_to_str<'o, T: 'o>(_owner: &'o T, ptr: *const c_char)
 -> Option<&'o str>

The CStr::from_ptr function returns a &CStr whose lifetime is completely
unbounded, since it was borrowed from a dereferenced raw pointer.
Unbounded lifetimes are almost always inaccurate, so it’s good to constrain
them as soon as possible. Including the _owner parameter causes Rust to
attribute its lifetime to the return value’s type, so callers can receive a more
accurately bounded reference.

It is not clear from the libgit2 documentation whether a git_signature’s email
and author pointers can be null, despite the documentation for libgit2 being
quite good. Your authors dug around in the source code for some time
without being able to persuade themselves one way or the other and finally
decided that char_ptr_to_str had better be prepared for null pointers just in
case. In Rust, this sort of question is answered immediately by the type: if it’s
&str, you can count on the string to be there; if it’s Option<&str>, it’s
optional.

Finally, we’ve provided safe interfaces for all the functionality we need. The
new main function in src/main.rs is slimmed down quite a bit and looks like
real Rust code:

fn main() {
 let path = std::env::args_os().skip(1).next()
 .expect("usage: git-toy PATH");

 let repo = git::Repository::open(&path)
 .expect("opening repository");

 let commit_oid = repo.reference_name_to_id("HEAD")
 .expect("looking up 'HEAD' reference");

 let commit = repo.find_commit(&commit_oid)
 .expect("looking up commit");

 let author = commit.author();
 println!("{} <{}>\n",
 author.name().unwrap_or("(none)"),
 author.email().unwrap_or("none"));

 println!("{}", commit.message().unwrap_or("(none)"));
}

In this chapter, we’ve gone from simplistic interfaces that don’t provide
many safety guarantees to a safe API wrapping an inherently unsafe API by
arranging for any violation of the latter’s contract to be a Rust type error. The
result is an interface that Rust can ensure you use correctly. For the most part,
the rules we’ve made Rust enforce are the sorts of rules that C and C++
programmers end up imposing on themselves anyway. What makes Rust feel
so much stricter than C and C++ is not that the rules are so foreign, but that
this enforcement is mechanical and comprehensive.

Conclusion
Rust is not a simple language. Its goal is to span two very different worlds.
It’s a modern programming language, safe by design, with conveniences like
closures and iterators, yet it aims to put you in control of the raw capabilities
of the machine it runs on, with minimal run-time overhead.

The contours of the language are determined by these goals. Rust manages to
bridge most of the gap with safe code. Its borrow checker and zero-cost
abstractions put you as close to the bare metal as possible without risking
undefined behavior. When that’s not enough or when you want to leverage
existing C code, unsafe code and the foreign function interface stand ready.
But again, the language doesn’t just offer you these unsafe features and wish
you luck. The goal is always to use unsafe features to build safe APIs. That’s
what we did with libgit2. It’s also what the Rust team has done with Box,
Vec, the other collections, channels, and more: the standard library is full of
safe abstractions, implemented with some unsafe code behind the scenes.

A language with Rust’s ambitions was, perhaps, not destined to be the
simplest of tools. But Rust is safe, fast, concurrent—and effective. Use it to
build large, fast, secure, robust systems that take advantage of the full power
of the hardware they run on. Use it to make software better.

Index

Symbols

! operator, Arithmetic, Bitwise, Comparison, and Logical Operators, Unary
Operators

!= operator, Arithmetic, Bitwise, Comparison, and Logical Operators,
Equivalence Comparisons

#![feature] attribute, Attributes

#[allow] attribute, Attributes

#[cfg] attribute, Attributes, Platform-Specific Features

#[derive] attribute, Serving Pages to the Web

#[inline] attribute, Attributes

#[link] attribute, Using Functions from Libraries

#[repr(C)] attribute, Finding Common Data Representations

#[repr(i16)] attribute, Finding Common Data Representations

#[should_panic] attribute, Tests and Documentation

#[test] attribute, Attributes

$ (command prompt), rustup and Cargo

% operator, Arithmetic, Bitwise, Comparison, and Logical Operators

& operator, Handling Command-Line Arguments, References to Values,
Arithmetic, Bitwise, Comparison, and Logical Operators, Reference Patterns

& pattern, Reference Patterns

&& operator, Arithmetic, Bitwise, Comparison, and Logical Operators

&mut operator, References to Values

&mut type, mut and Mutex

&mut [T] type, References

&str (string slice), Strings in Memory

&[T] type, References

* operator

accessing referenced value, Reference Operators

dereferencing, Handling Command-Line Arguments, Rust References
Versus C++ References, Deref and DerefMut, Raw Pointers

multiplication, Arithmetic, Bitwise, Comparison, and Logical Operators

overloading of, Deref and DerefMut

pattern matching and, Reference Patterns

* wildcard, for crate versions, Versions

*const T, Raw Pointers

*mut T, Raw Pointers

+ operator, Arithmetic, Bitwise, Comparison, and Logical Operators, Binary
Operators, Appending and Inserting Text

- operator, Arithmetic, Bitwise, Comparison, and Logical Operators, Unary
Operators

. operator, Rust References Versus C++ References, Fields and Elements,
Deref and DerefMut

.. operator, Fields and Elements

..= operator, Fields and Elements

/ operator, Arithmetic, Bitwise, Comparison, and Logical Operators

/// (documentation comments), What the Mandelbrot Set Actually Is,
Documentation

:: operator, Paths and Imports

::<...> (turbofish symbol), Function and Method Calls, Generic Structs

< operator, Arithmetic, Bitwise, Comparison, and Logical Operators, Ordered
Comparisons, Raw Pointers

<< operator, Arithmetic, Bitwise, Comparison, and Logical Operators

<= operator, Arithmetic, Bitwise, Comparison, and Logical Operators,
Ordered Comparisons

= operator, Assignment

== operator, Arithmetic, Bitwise, Comparison, and Logical Operators,
Equivalence Comparisons, Raw Pointers

=> operator, Arithmetic, Bitwise, Comparison, and Logical Operators

> operator, Arithmetic, Bitwise, Comparison, and Logical Operators, Ordered
Comparisons

>= operator, Ordered Comparisons

>> operator, Arithmetic, Bitwise, Comparison, and Logical Operators

? operator, Propagating Errors

@ patterns, Binding with @ Patterns

^ operator, Arithmetic, Bitwise, Comparison, and Logical Operators

{:?} format parameter, Formatting Values for Debugging

{:p} format parameter, Formatting Pointers for Debugging

| (vertical bar) in matching patterns, Matching Multiple Possibilities

| operator, Arithmetic, Bitwise, Comparison, and Logical Operators

|| operator, Arithmetic, Bitwise, Comparison, and Logical Operators

~ operator, Arithmetic, Bitwise, Comparison, and Logical Operators

A

aborting, Aborting

absolute path, Paths and Imports

"Abstraction and the C++ Machine Model" (Stroustrup), And Yet Rust Is
Still Fast

accumulation methods for iterators, Simple Accumulation: count, sum,
product, fold and rfold

actix-web framework, Serving Pages to the Web-Serving Pages to the Web,
Callbacks, Networking

adapter methods

enumerate, A Concurrent Mandelbrot Program

fuse, Futures

adapter methods for iterators, Iterator Adapters-cycle

by_ref, by_ref-by_ref

chain, chain

cloned, cloned, copied

copied, cloned, copied

cycle, cycle

enumerate, enumerate, zip

filter_map and flat_map, filter_map and flat_map-filter_map and
flat_map

flatten, flatten-flatten

fuse, fuse

inspect, inspect

map and filter, map and filter-map and filter

peekable, peekable

reversible iterators and rev, Reversible Iterators and rev-Reversible
Iterators and rev

skip and skip_while, skip and skip_while

take and take_while, take and take_while, by_ref

zip, zip

adapter methods for readers

bytes method, Readers

chain method, Readers

take method, Readers

algebraic data types, Enums and Patterns

alignment value, required by types, Type Sizes and Alignments

align_of function, Type Sizes and Alignments

align_of_val function, Type Sizes and Alignments

all, iterator method, any and all

#[allow] attribute, Attributes

any, iterator method, any and all

anyhow error handling crate, Working with Multiple Error Types, Error and
Result Types

Arc pointer type, Rc and Arc: Shared Ownership-Rc and Arc: Shared
Ownership, Passing Self as a Box, Rc, or Arc-Passing Self as a Box, Rc, or
Arc, Sharing Immutable Data Across Threads, Mutex<T>

args function, Handling Command-Line Arguments, skip and skip_while

Arguments type, for string formatting, Using the Formatting Language in
Your Own Code

arithmetic operators, Arithmetic, Bitwise, Comparison, and Logical
Operators, Arithmetic and Bitwise Operators-Arithmetic and Bitwise
Operators

compound assignment operators, Compound Assignment Operators-
Compound Assignment Operators

overloading, Binary Operators

arithmetic, pointer, Pointer Arithmetic-Pointer Arithmetic

array patterns, Array and Slice Patterns

arrays, Arrays

concatenating arrays of, Joining

raw pointers to, Pointer Arithmetic-Pointer Arithmetic

slices and, Slices

tuples versus, Tuples

arrays, joining arrays of, Joining

as operator, Conversions to and from Integers

ASCII characters, Integer Types, ASCII, Latin-1, and Unicode, Classifying
Characters, Handling Digits

Ascii string type, unsafe code for conversion into String, Example: An
Efficient ASCII String Type-Unsafe Functions

AsMut trait, AsRef and AsMut

AsRef trait, AsRef and AsMut, OsStr and Path

assert! macro, Rust Functions, Tests and Documentation

assert_eq! macro, Tests and Documentation, Macros, Macro Basics-Macro
Basics

assignment

C++ versus Rust, Moves-Moves

compound assignment operators, Assignment, Compound Assignment
Operators-Compound Assignment Operators

expressions, Assignment

moves and (see moves)

Python versus Rust, Moves-Moves

references, Assigning References

in Rust, More Operations That Move-Moves and Indexed Content

to a variable, More Operations That Move

assignment operators, Assignment

associated consts, Associated Consts, Associated Consts

associated functions, Defining Methods with impl

associated types, Associated Types (or How Iterators Work)-Associated
Types (or How Iterators Work)

associativity, Precedence and Associativity

async functions, Async Functions and Await Expressions-Calling Async
Functions from Synchronous Code: block_on, Building Async Functions
from Async Blocks

async move blocks, Async Blocks

async streams, Receiving Packets: More Asynchronous Streams-Receiving
Packets: More Asynchronous Streams

async-std crate, Asynchronous Programming, Futures, Async Functions and
Await Expressions, Spawning Async Tasks

asynchronous programming, Asynchronous Programming-When Is
Asynchronous Code Helpful?

async blocks, Asynchronous Programming, Async Blocks-Building
Async Functions from Async Blocks

async functions, Async Functions and Await Expressions-Calling Async
Functions from Synchronous Code: block_on, Building Async
Functions from Async Blocks

client and server, An Asynchronous Client and Server-Chat Groups:
tokio’s Broadcast Channels

compared with synchronous programming, From Synchronous to
Asynchronous-A Real Asynchronous HTTP Client

futures and executors, coordinating, Primitive Futures and Executors:
When Is a Future Worth Polling Again?-Implementing block_on

HTTP client crate, A Real Asynchronous HTTP Client

pinning futures, Pinning-The Unpin Trait

tasks versus traditional threads, Asynchronous Programming

useful situations for, When Is Asynchronous Code Helpful?-When Is
Asynchronous Code Helpful?

as_mut_ptr method, Raw Pointers

as_ptr method, Raw Pointers

atomic integer operations, Global Variables

atomic reference count (see Arc pointer type)

Atomic types and operations, Atomics, Global Variables

attributes, Writing and Running Unit Tests, Attributes-Attributes

await expressions, Async Functions and Await Expressions-Calling Async
Functions from Synchronous Code: block_on, Spawning Async Tasks-
Spawning Async Tasks

B

background thread, Concurrency

backpressure

asynchronous client and chat server, Chat Groups: tokio’s Broadcast
Channels-Chat Groups: tokio’s Broadcast Channels

pipeline approach, Channel Features and Performance

bat command, Filesystems and Command-Line Tools

binary input/output, Binary Data, Compression, and Serialization

binary numeric literal, Integer Types

binary operators, Arithmetic, Bitwise, Comparison, and Logical Operators,
Binary Operators

binary, formatting numbers in, Formatting Numbers

BinaryHeap, Overview, BinaryHeap<T>-BinaryHeap<T>

BinaryTree type, Generic Enums, Populating a Binary Tree, Implementing

Your Own Iterators-Implementing Your Own Iterators

bindgen crate, A Raw Interface to libgit2

bitwise operators, Arithmetic, Bitwise, Comparison, and Logical Operators,
Compound Assignment Operators-Compound Assignment Operators

blocks, Blocks and Semicolons-Declarations

asynchronous, Asynchronous Programming, Async Blocks-Building
Async Functions from Async Blocks

declarations in, Declarations

extern block, Declaring Foreign Functions and Variables-Declaring
Foreign Functions and Variables

impl block, Defining Methods with impl-Type-Associated Functions

unsafe, Raw Pointers, Unsafe Code, Unsafe Blocks-Example: An
Efficient ASCII String Type, Unsafe Block or Unsafe Function?

block_on, Calling Async Functions from Synchronous Code: block_on-
Calling Async Functions from Synchronous Code: block_on, Primitive
Futures and Executors: When Is a Future Worth Polling Again?,
Implementing block_on-Implementing block_on

Boolean type (bool), The bool Type, Formatting Other Types

Borrow trait, Borrow and BorrowMut-Borrow and BorrowMut

Borrow<str> trait, Borrowing as Other Text-Like Types

borrowing, References

futures and, Spawning Async Tasks, The Two Life Stages of a Future-
The Two Life Stages of a Future

iteration and, Handling Command-Line Arguments, by_ref

local variables and, Borrowing a Local Variable-Borrowing a Local

Variable

unions, Borrowing Unions

values of arbitrary expressions, Borrowing References to Arbitrary
Expressions

BorrowMut trait, Borrow and BorrowMut-Borrow and BorrowMut

bounds, reverse-engineering, Reverse-Engineering Bounds-Reverse-
Engineering Bounds

Box type, Boxes, Ownership, Passing Self as a Box, Rc, or Arc-Passing Self
as a Box, Rc, or Arc

break expressions, Control Flow in Loops

broadcast channel, Chat Groups: tokio’s Broadcast Channels-Chat Groups:
tokio’s Broadcast Channels

BTreeMap<K, V> collection type, HashMap<K, V> and BTreeMap<K, V>-
Map Iteration

BTreeSet collection type, HashSet<T> and BTreeSet<T>-Whole-Set
Operations

BTreeSet::new, HashSet<T> and BTreeSet<T>

buffered readers, Buffered Readers-Collecting Lines

BufRead trait, Buffered Readers

consume method, Buffered Readers

fill_buf method, Buffered Readers

read_line method, Buffered Readers

read_until method, Buffered Readers

split method, Buffered Readers

BufReader type, Buffered Readers

BufReader<TcpStream>, Receiving Packets: More Asynchronous Streams

BufWriter::with_capacity, Writers

bugs, unsafe code and, Unsafe Functions

build profiles, Build Profiles

build script, Using Functions from Libraries

BuildHasher trait, Using a Custom Hashing Algorithm

by value/by reference

passing a collection, IntoIterator Implementations, Collections

passing function arguments, References to Values-References to Values

byte literals, Integer Types

byte strings, Byte Strings

byteorder crate, Binary Data, Compression, and Serialization

by_ref iterator adapter, by_ref-by_ref

C

C, Systems Programmers Can Have Nice Things

(see also foreign functions)

enums, Enums-Enums

passing strings between Rust and, Finding Common Data
Representations

pointers in, Raw Pointers, Raw Pointers

rules for avoiding undefined behavior, Systems Programmers Can Have

Nice Things

type representations, Finding Common Data Representations-Finding
Common Data Representations

C#

asynchronous functions, Comparing Asynchronous Designs

enums, Enums and Patterns-Enums

traits versus virtual methods, Using Traits

C++, Systems Programmers Can Have Nice Things

(see also foreign functions)

assignment in, Moves-Moves

constexpr, Global Variables

enums, Enums and Patterns-Enums

invalidation errors and, Sharing Versus Mutation, Collections, Rust
Rules Out Invalidation Errors

macros, Macros, Unintended Consequences

mutexes in, What Is a Mutex?-What Is a Mutex?

ownership in, Ownership-Ownership

pointers in, Raw Pointers, Raw Pointers

pointers to const versus shared references, Sharing Versus Mutation

reference creation in, Rust References Versus C++ References

rules for avoiding undefined behavior, Systems Programmers Can Have
Nice Things

traits versus virtual methods, Using Traits

calculate_tides method, Handling Errors in main()

callbacks, closures and, Callbacks-Callbacks

cancellation, atomics and, Atomics

capacity of a vector, Vectors, Growing and Shrinking Vectors

captures_iter method on Regex type, Basic Regex Use

Cargo, Rust Makes Collaboration Easier

build script, Using Functions from Libraries

documentation, Documentation-Doc-Tests

rustup and, rustup and Cargo-rustup and Cargo

src/bin directory, The src/bin Directory-The src/bin Directory

versioning, Specifying Dependencies

cargo build, Crates-Crates

cargo command, rustup and Cargo

cargo doc command, Documentation

cargo package command, Publishing Crates to crates.io

cargo test command, Tests and Documentation-Tests and Documentation

Cargo.lock, Cargo.lock

case conversion

for characters, Case Conversion for Characters

for strings, Case Conversion for Strings

casts, Type Casts

catch_unwind function, Unwinding

Cell type, Interior Mutability

#[cfg] attribute, Attributes, Platform-Specific Features

cfg! macro, Built-In Macros

ch.to_digit method, Handling Digits

chain adapter, chain

channels, Channels-Beyond Pipelines

broadcast channel, Chat Groups: tokio’s Broadcast Channels-Chat
Groups: tokio’s Broadcast Channels

deadlock with, Deadlock

features and performance, Channel Features and Performance-Channel
Features and Performance

multiconsumer channels using mutex, Multiconsumer Channels Using
Mutexes

non-pipeline uses, Beyond Pipelines

piping iterator to, Piping Almost Any Iterator to a Channel-Piping
Almost Any Iterator to a Channel

receiving values, Receiving Values

Send and Sync for thread safety, Thread Safety: Send and Sync-Thread
Safety: Send and Sync

sending values, Channels-Beyond Pipelines

character literals, Characters

characters (char), Characters-Characters, Characters (char)-Conversions to
and from Integers

case conversion, Case Conversion for Characters

classifying, Classifying Characters-Classifying Characters

digits, Handling Digits

integer conversion, Conversions to and from Integers

is_digit method, Handling Digits

is_lowercase method, Case Conversion for Characters

is_uppercase method, Case Conversion for Characters

numeric types versus, Characters

Rust and C type commonalities, Finding Common Data Representations

to_digit method, Handling Digits

to_lowercase method, Case Conversion for Characters

to_uppercase method, Case Conversion for Characters

chat groups, tokio’s broadcast channels, Chat Groups: tokio’s Broadcast
Channels-Chat Groups: tokio’s Broadcast Channels

checked operations, Checked, Wrapping, Saturating, and Overflowing
Arithmetic

child process, Other Reader and Writer Types

ChildStdin type, Other Reader and Writer Types

client and server, asynchronous chat, An Asynchronous Client and Server-
Chat Groups: tokio’s Broadcast Channels

chat connections with async mutexes, Handling Chat Connections:
Async Mutexes-Handling Chat Connections: Async Mutexes

chat groups, tokio’s broadcast channels, Chat Groups: tokio’s Broadcast
Channels-Chat Groups: tokio’s Broadcast Channels

client’s main function, The Client’s Main Function-The Client’s Main

Function

error and result types, Error and Result Types

protocol, The Protocol-The Protocol

receiving packets, Receiving Packets: More Asynchronous Streams-
Receiving Packets: More Asynchronous Streams

sending packets, Sending Packets

server's main function, The Server’s Main Function

streams to take user input, Taking User Input: Asynchronous Streams-
Taking User Input: Asynchronous Streams

clone method, Moves, Using Traits

Clone trait, Clone, Copy and Clone for Closures, Accessing Elements

cloned adapter method for iterators, cloned, copied

closed (end-inclusive) ranges, Fields and Elements

closures, A Concurrent Mandelbrot Program, Closures, Closures-Using
Closures Effectively

borrowing references, Closures That Borrow

callbacks, Callbacks-Callbacks

capturing variables, Capturing Variables

Clone for, Copy and Clone for Closures

Copy for, Copy and Clone for Closures

dropping values, Closures That Kill-FnOnce

effective use of, Using Closures Effectively

FnMut, FnMut-FnMut

FnOnce, FnOnce-FnOnce

inspect adapter and, inspect

layout in memory, Closure Performance

move keyword, Closures That Steal

performance, Closure Performance

safety, Closures and Safety-Copy and Clone for Closures

"that kill", Closures That Kill

types, Function and Closure Types-Function and Closure Types

in web server example, Serving Pages to the Web

code fragments, macros, Basics of Macro Expansion-Unintended
Consequences

collaboration, Rust and, Rust Makes Collaboration Easier

collect method, A Concurrent Mandelbrot Program, The Command-Line
Interface, Building Collections: collect and FromIterator-Building
Collections: collect and FromIterator, partition, Collecting Lines

collections, Collections-Beyond the Standard Collections

BinaryHeap<T>collection type, BinaryHeap<T>-BinaryHeap<T>

BTreeMap<K, V>, HashMap<K, V> and BTreeMap<K, V>-Map
Iteration

BTreeSet<T>, HashSet<T> and BTreeSet<T>-Whole-Set Operations

custom, Beyond the Standard Collections

hashing, Hashing-Using a Custom Hashing Algorithm

HashMap<K, V>, HashMap<K, V> and BTreeMap<K, V>-Map
Iteration

HashSet<T>, HashSet<T> and BTreeSet<T>-Whole-Set Operations

iterating over by value, IntoIterator Implementations, Collections

iterators and, iter and iter_mut Methods

strings as generic, Strings as Generic Collections

Vec<T>, Vec<T>-Rust Rules Out Invalidation Errors

VecDeque<T>, VecDeque<T>-VecDeque<T>

column! macro, Built-In Macros

command prompt ($), rustup and Cargo

Command type, Other Reader and Writer Types

command-line arguments, Handling Command-Line Arguments-Handling
Command-Line Arguments, Parsing Pair Command-Line Arguments-Parsing
Pair Command-Line Arguments

command-line interface, Filesystems and Command-Line Tools-The
Command-Line Interface

community, Rust, More Nice Things

comparison operators, The bool Type, Arithmetic, Bitwise, Comparison, and
Logical Operators

with iterators, Comparing Item Sequences

overloading, Ordered Comparisons

references and, Comparing References

with strings, Using Strings

compatibility equivalence for Unicode characters, Normalization Forms

complex numbers, Parsing Pair Command-Line Arguments

composed versus decomposed Unicode characters, Normalization

compound assignment operators, Assignment, Compound Assignment
Operators-Compound Assignment Operators

compression, Binary Data, Compression, and Serialization

concat method, String

concat! macro, Built-In Macros

concurrency, Parallel Programming Is Tamed, Concurrency-What Hacking
Concurrent Code in Rust Is Like

channels, Channels-Beyond Pipelines

fork-join parallelism, Fork-Join Parallelism-Revisiting the Mandelbrot
Set

Mandelbrot set, A Concurrent Mandelbrot Program-A Concurrent
Mandelbrot Program

Rust's support for, Concurrency-Safety Is Invisible, Ownership and
Moves

shared mutable state, Shared Mutable State-Global Variables

condition (with if statement), if and match

condition variables (Condvar), Condition Variables (Condvar)

const function, Global Variables

const generics, Generic Structs with Constant Parameters, Generic Functions
and Type Parameters

constants, Modules, Statics and Constants, Global Variables

consts, Statics and Constants

*const T, Raw Pointers

associated, Associated Consts, Associated Consts

shared references versus pointers to, Sharing Versus Mutation

consume method, Buffered Readers

consuming iterators, Consuming Iterators-for_each and try_for_each

accumulation methods, Simple Accumulation: count, sum, product

any and all methods, any and all

collect method, Building Collections: collect and FromIterator-Building
Collections: collect and FromIterator

comparing item sequences, Comparing Item Sequences

count method, Simple Accumulation: count, sum, product

ExactSizeIterator, position, rposition, and ExactSizeIterator

Extend trait, The Extend Trait

find, rfind, and find_map methods, find, rfind, and find_map

fold method, fold and rfold

for_each method, for_each and try_for_each

FromIterator trait, Building Collections: collect and FromIterator

last method, last

max_by and min_by methods, max_by, min_by

max_by_key and min_by_key methods, max_by_key, min_by_key

min and max methods, max, min

nth and nth_back methods, nth, nth_back

partition method, partition

position method, position, rposition, and ExactSizeIterator

product method, Simple Accumulation: count, sum, product

rfind method, find, rfind, and find_map

rfold method, fold and rfold

rposition method, position, rposition, and ExactSizeIterator

sum method, Simple Accumulation: count, sum, product

try_fold and try_rfold methods, try_fold and try_rfold-try_fold and
try_rfold

try_for_each method, for_each and try_for_each

contracts

unsafe feature and, Unsafe from What?

unsafe functions and, Unsafe Functions

unsafe traits and, Unsafe Traits

copied adapter, cloned, copied

copy method, Readers and Writers

Copy type, Copy Types: The Exception to Moves-Copy Types: The
Exception to Moves, Copy, Copy and Clone for Closures

count method, Simple Accumulation: count, sum, product

Cow (clone on write) type, Borrow and ToOwned at Work: The Humble
Cow, Putting Off Allocation-Putting Off Allocation

crates, Crates-Build Profiles

#[inline] attribute, Attributes

$crate fragment versus crate keyword, Importing and Exporting Macros

doc-tests, Doc-Tests-Doc-Tests

publishing to crates.io, Publishing Crates to crates.io

specifying dependencies, Specifying Dependencies-Cargo.lock

src/bin directory and, The src/bin Directory-The src/bin Directory

workspaces, Workspaces

crates.io, Publishing Crates to crates.io

critical section in code, What Is a Mutex?

crossbeam crate, A Concurrent Mandelbrot Program

Cursor::new, Other Reader and Writer Types

cycle adapter, cycle

D

dangling pointer, Ownership and Moves, Sharing Versus Mutation

data parallelism, Concurrency

data races, Concurrency, Safety Is Invisible, What Is a Mutex?, Why Mutexes
Are Not Always a Good Idea

deadlock, Deadlock

Debug formatting trait, Converting Other Types to Strings, Raw Pointers

debugging

formatting values for, Formatting Values for Debugging-Formatting
Pointers for Debugging

macros, Debugging Macros-Debugging Macros

debug_assert! macro, Rust Functions, Tests and Documentation

debug_assert_eq! macro, Tests and Documentation

declarations, Declarations, Declaring Foreign Functions and Variables-Using
Functions from Libraries

decomposed versus composed Unicode characters, Normalization

Default trait, Default-Default, partition

default trait implementation, Default Methods

dependencies

Cargo.lock, Cargo.lock

in crate context, Crates

specifying, Specifying Dependencies-Cargo.lock

versions and, Specifying Dependencies

dependency graph, Crates

Deref coercions, Type Casts, Deref and DerefMut, Raw Pointers

Deref trait, Deref and DerefMut-Deref and DerefMut

dereferencing

* operator, Handling Command-Line Arguments, Rust References
Versus C++ References, Raw Pointers

raw pointers, Raw Pointers, Unsafe from What?, Unsafe Blocks,
Dereferencing Raw Pointers Safely-Example: RefWithFlag

DerefMut trait, Deref and DerefMut-Deref and DerefMut

#[derive] attribute, Serving Pages to the Web

Deserialize trait, Receiving Packets: More Asynchronous Streams

digits, handling, Handling Digits

directionality of text, Text Directionality

directories

modules and, Modules in Separate Files

reading, Reading Directories-Reading Directories

src/bin, The src/bin Directory-The src/bin Directory

DirEntry struct, Reading Directories

file_name method, Reading Directories

file_type method, Reading Directories

metadata method, Reading Directories

path method, Reading Directories

discriminated unions, Enums and Patterns

Display formatting trait, Converting Other Types to Strings, Raw Pointers

divergent function, Why Rust Has loop

doc comments, Documentation

doc-tests, Doc-Tests-Doc-Tests

documentation, Documentation-Doc-Tests

documentation comments (///), What the Mandelbrot Set Actually Is,
Documentation

double quotes, Serving Pages to the Web

DoubleEndedIterator trait, Reversible Iterators and rev

drain method, drain Methods

Drop trait, Drop-Drop, Readers

dropping values

in closures, Closures That Kill-FnOnce

FnOnce, FnOnce-FnOnce

ownership and, Ownership

in Rust, Ownership

duck typing, Fundamental Types

dynamic widths and precisions, Dynamic Widths and Precisions

E

editions, Editions

elapsed method, Dealing with Errors That “Can’t Happen”

elements

tuple-like struct values, Tuple-Like Structs

Vec<T> collection type, Accessing Elements-Accessing Elements,
Random Elements

embarrassingly parallel algorithm, Concurrency

end-exclusive (half-open) ranges, Fields and Elements, Matching Multiple
Possibilities

end-inclusive (closed) ranges, Fields and Elements

entries, map key-value pairs as, HashMap<K, V> and BTreeMap<K, V>

Entry type, HashMap and BTreeMap, Entries-Entries

enumerate adapter, A Concurrent Mandelbrot Program, enumerate, zip

enumerated type (enum), What the Mandelbrot Set Actually Is, Enums and
Patterns-The Big Picture

C-style, Enums-Enums

with data, Enums with Data

generic, Generic Enums-Generic Enums

hash implementation, Hashing

in memory, Enums in Memory

rich data structures with, Rich Data Structures Using Enums-Rich Data
Structures Using Enums

env module, Handling Command-Line Arguments

env! macro, Built-In Macros

eprintln! macro, Handling Command-Line Arguments

Eq trait, Hashing

equality operators, Arithmetic, Bitwise, Comparison, and Logical Operators,
Equivalence Comparisons-Equivalence Comparisons

error handling, Error Handling-Why Results?

across threads, Error Handling Across Threads

anyhow crate, Working with Multiple Error Types

asynchronous chat, Error and Result Types

avoiding syntax errors in macro matching, Avoiding Syntax Errors
During Matching

catching errors, Catching Errors-Catching Errors

channels and, Sending Values

declaring a custom error type, Declaring a Custom Error Type

errors that "can't happen", Dealing with Errors That “Can’t Happen”

formatting error types, Formatting Other Types

ignoring errors, Ignoring Errors

invalidation errors, Collections, Rust Rules Out Invalidation Errors

in main function, Handling Errors in main()

with multiple error types, Working with Multiple Error Types-Working
with Multiple Error Types

panic, Panic-Aborting

PoisonError::into_inner, Poisoned Mutexes

printing errors, Printing Errors-Printing Errors

propagating errors, Propagating Errors

Result type, Result-Why Results?, Error and Result Types

unsafe code and, A Safe Interface to libgit2

Error trait

source method, Printing Errors

to_string method, Printing Errors

escape_time function, from_fn and successors

ExactSizeIterator trait, position, rposition, and ExactSizeIterator

exceptions, Result versus, Why Results?

exclusive (half-open) ranges, Fields and Elements

executors (asynchronous)

block_on, Calling Async Functions from Synchronous Code: block_on-
Calling Async Functions from Synchronous Code: block_on, Primitive
Futures and Executors: When Is a Future Worth Polling Again?,

Implementing block_on-Implementing block_on

spawn function, spawn and join-spawn and join, Error Handling Across
Threads, Spawning Async Tasks, Spawning Async Tasks on a Thread
Pool

spawn_local, Spawning Async Tasks-Spawning Async Tasks, Spawning
Async Tasks on a Thread Pool

expect method, Handling Command-Line Arguments, Writing Image Files,
Handling Errors in main()

expressions, Expressions-Onward

assignment, Assignment

blocks and semicolons, Blocks and Semicolons-Declarations

closures, Closures

declarations, Declarations

fields and elements, Fields and Elements

function/method calls, Function and Method Calls

if and match, if and match-if let

if let, if let

loops, Control Flow in Loops-Control Flow in Loops

precedence and associativity, Precedence and Associativity

reference operators, Reference Operators

regular expressions, Regular Expressions-Building Regex Values Lazily

return, return Expressions

Rust as expression language, An Expression Language

statements versus, An Expression Language

struct, Named-Field Structs

type casts, Type Casts

extend function, Sharing Versus Mutation

Extend trait, The Extend Trait

extend_from_slice method, Sharing Versus Mutation

extension traits, Traits and Other People’s Types, Taking User Input:
Asynchronous Streams

extern block, Declaring Foreign Functions and Variables-Declaring Foreign
Functions and Variables

F

fat pointer, Slices, References to Slices and Trait Objects, Raw Pointers

#![feature] attribute, Attributes

FFI (see foreign functions)

fields, expressions and, Fields and Elements

File type, Using the Formatting Language in Your Own Code, Seeking

file! macro, Built-In Macros

File::create, Files

File::open, Files

filename types, OsStr and Path

files, Files and Directories-Platform-Specific Features

filesystem access functions, Filesystem Access Functions-Filesystem
Access Functions

OsStr and Path, OsStr and Path-OsStr and Path

Path and PathBuf types, Path and PathBuf Methods-Path and PathBuf
Methods

platform-specific features, Platform-Specific Features-Platform-Specific
Features

reading and writing, Reading and Writing Files, Files

reading directories, Reading Directories-Reading Directories

filesystems, Filesystems and Command-Line Tools-Find and Replace,
Filesystem Access Functions

fill_buf method, Buffered Readers

filter adapter, map and filter-map and filter

filter_map adapter, filter_map and flat_map-filter_map and flat_map

find and replace, Find and Replace

find method, Parsing Pair Command-Line Arguments, find, rfind, and
find_map

find_iter iterator, Basic Regex Use

find_map method, find, rfind, and find_map

fixed-width numeric types, Fixed-Width Numeric Types-Floating-Point
Types

flate2 crate, Binary Data, Compression, and Serialization

flatten adapter, flatten-flatten

flat_map adapter, filter_map and flat_map-filter_map and flat_map

floating-point literals, Floating-Point Types

floating-point types, Floating-Point Types-Floating-Point Types, max, min,

Formatting Numbers

flow-sensitive analyses, Why Rust Has loop

flush method, Default Methods

Flux architecture, Using Closures Effectively

fmt module, Formatting Your Own Types

fn keyword, Rust Functions, Declarations

Fn trait, FnMut

fn type, Callbacks

FnMut trait, FnMut-FnMut, from_fn and successors

FnOnce trait, FnOnce-FnOnce

fnv crate, Using a Custom Hashing Algorithm

fold method, Iterators, fold and rfold

for loop, Handling Command-Line Arguments

control flow in, Control Flow in Loops

IntoIterator, The Iterator and IntoIterator Traits, IntoIterator
Implementations, IntoIterator Implementations

foreign functions, Foreign Functions-A Safe Interface to libgit2

declaring foreign functions and variables, Declaring Foreign Functions
and Variables-Declaring Foreign Functions and Variables

finding common data representations, Finding Common Data
Representations-Finding Common Data Representations

from libraries, Using Functions from Libraries-Using Functions from
Libraries

raw interface to libgit2, A Raw Interface to libgit2-A Raw Interface to
libgit2

safe interface to libgit2, A Safe Interface to libgit2-A Safe Interface to
libgit2

unsafe code and, Unsafe Blocks

fork-join parallelism, Fork-Join Parallelism-Revisiting the Mandelbrot Set

error handling across threads, Error Handling Across Threads

Mandelbrot set rendering, Revisiting the Mandelbrot Set-Revisiting the
Mandelbrot Set

Rayon library, Rayon-Rayon

shared immutable data across threads, Sharing Immutable Data Across
Threads-Sharing Immutable Data Across Threads

spawn and join, spawn and join-spawn and join

format parameters, Formatting Values

format! macro, String, Formatting Values

formatting arguments, by index or name, Referring to Arguments by Index or
Name

formatting numbers, Formatting Numbers-Formatting Numbers

formatting values, Formatting Values-Using the Formatting Language in
Your Own Code

Boolean values, Formatting Other Types

for debugging, Formatting Values for Debugging-Formatting Pointers
for Debugging

Display trait, Converting Other Types to Strings, Raw Pointers

dynamic widths and precisions, Dynamic Widths and Precisions

error types, Formatting Other Types

format string directive notation, Formatting Your Own Types

formatting language in your own code, Using the Formatting Language
in Your Own Code-Using the Formatting Language in Your Own Code

implementing traits for your own types, Formatting Your Own Types-
Formatting Your Own Types

internet protocol address types, Formatting Other Types

Pointer trait, Raw Pointers

referring to arguments by index or name, Referring to Arguments by
Index or Name

string examples, Formatting Values

text values, Formatting Text Values-Formatting Text Values

format_args! macro, Formatting Values, Using the Formatting Language in
Your Own Code

for_each method, for_each and try_for_each

free functions, Defining Methods with impl

From trait, From and Into-From and Into, Using Traits with Macros

FromIterator trait, Building Collections: collect and FromIterator, The Extend
Trait, Creating String Values

FromStr trait, Parsing Other Types from Strings

from_digit method, Handling Digits

from_fn method, from_fn and successors-from_fn and successors

from_slice function, Type-Associated Functions

from_str method, Handling Command-Line Arguments

fs module, Filesystem Access Functions

fully qualified method calls, Fully Qualified Method Calls-Fully Qualified
Method Calls

function arguments, receiving references as, Receiving References as
Function Arguments-Receiving References as Function Arguments

function pointers (fn type), Callbacks

functional language, Vectors

functions

associated, Defining Methods with impl

async, Async Functions and Await Expressions-Calling Async
Functions from Synchronous Code: block_on, Building Async
Functions from Async Blocks

calling, Function and Method Calls

const, Global Variables

filesystem access, Filesystem Access Functions-Filesystem Access
Functions

foreign (see foreign functions)

free, Defining Methods with impl

generic, Parsing Pair Command-Line Arguments, Fundamental Types,
Generic Functions and Type Parameters-Generic Functions and Type
Parameters

passing references to, Passing References to Functions

syntax for, Rust Functions-Rust Functions

type-associated, Type-Associated Functions, Type-Associated Functions

types, Function and Closure Types-Function and Closure Types

unsafe, Unsafe Code, Unsafe Functions-Unsafe Functions

fuse adapter, fuse, Futures

Future trait, Futures-Futures

FutureExt trait, The Client’s Main Function

futures, From Synchronous to Asynchronous-A Real Asynchronous HTTP
Client, Primitive Futures and Executors: When Is a Future Worth Polling
Again?-Implementing block_on

async blocks, Async Blocks-Building Async Functions from Async
Blocks

async functions, Async Functions and Await Expressions-Calling Async
Functions from Synchronous Code: block_on, Building Async
Functions from Async Blocks

asynchronous HTTP client crate, A Real Asynchronous HTTP Client

await expression, Async Functions and Await Expressions

block_on, Calling Async Functions from Synchronous Code: block_on-
Calling Async Functions from Synchronous Code: block_on,
Implementing block_on-Implementing block_on

borrowing and, Spawning Async Tasks

comparing asynchronous designs, Comparing Asynchronous Designs

implementing Send, But Does Your Future Implement Send?-But Does
Your Future Implement Send?

long-running computations, Long Running Computations: yield_now
and spawn_blocking-Long Running Computations: yield_now and

spawn_blocking

pinning, Pinning-The Unpin Trait

spawning async tasks, Spawning Async Tasks-Spawning Async Tasks,
Spawning Async Tasks on a Thread Pool

spawn_blocking, Invoking Wakers: spawn_blocking-Invoking Wakers:
spawn_blocking

G

GapBuffer, Example: GapBuffer-Panic Safety in Unsafe Code

garbage collection, Pointer Types, Ownership and Moves, Capturing
Variables

gcd function, Rust Functions, Serving Pages to the Web

generic code, Traits and Generics, Traits and Generics

associated types and, Associated Types (or How Iterators Work)-
Associated Types (or How Iterators Work)

consts, Associated Consts

generic functions, Parsing Pair Command-Line Arguments,
Fundamental Types, Generic Functions and Type Parameters-Generic
Functions and Type Parameters

generic traits, Generic Traits (or How Operator Overloading Works)-
impl Trait

IntoIterator and, IntoIterator Implementations

reverse-engineering bounds, Reverse-Engineering Bounds-Reverse-
Engineering Bounds

trait objects versus, Which to Use-Which to Use

generic collections, strings as, Strings as Generic Collections

generic enums, Generic Enums-Generic Enums

generic functions

with constant parameters, Generic Functions and Type Parameters

generic parameters

constants, Generic Structs with Constant Parameters, Generic Functions
and Type Parameters

generic structs, What the Mandelbrot Set Actually Is, Generic Structs-
Generic Structs

generic swaps, Tuples

generic types

with constant parameters, Generic Structs with Constant Parameters

get method, Interior Mutability

get_form function, Concurrency

get_index function, Serving Pages to the Web

git2-rs crate, Foreign Functions

global event loop versus Rust executors, Comparing Asynchronous Designs

global variables, Global Variables-Global Variables

grep utility, Reading Lines

guards, Match Guards

H

half-open (end-exclusive) ranges, Fields and Elements

half-open ranges, Matching Multiple Possibilities

handle.join method, Error Handling Across Threads

hash method, Using a Custom Hashing Algorithm

Hash trait, Hashing-Using a Custom Hashing Algorithm

Hasher, Hashing

HashMap trait, Rich Data Structures Using Enums

HashMap::with_capacity, HashMap<K, V> and BTreeMap<K, V>

HashMap<K, V> collection type, HashMap<K, V> and BTreeMap<K, V>-
Map Iteration

HashSet::new, HashSet<T> and BTreeSet<T>

HashSet::with_capacity, HashSet<T> and BTreeSet<T>

HashSet<T> collection type, HashSet<T> and BTreeSet<T>-Whole-Set
Operations

Hashtable, Sharing Versus Mutation

heap.peek method, BinaryHeap<T>

heap.peek_mut method, BinaryHeap<T>

heap.pop method, BinaryHeap<T>

heap.push method, BinaryHeap<T>

hexadecimal numeric literal, Integer Types, Characters

hexadecimal, formatting numbers in, Formatting Numbers

HTTP client crate, A Real Asynchronous HTTP Client

hygienic macros, Scoping and Hygiene

I

if expression, Rust Functions, if and match-if let

if let expressions, if let

image files, for Mandelbrot set, Writing Image Files-Writing Image Files

image space, mapping to complex number plane, Mapping from Pixels to
Complex Numbers

immutable references, References

impl block, Defining Methods with impl-Type-Associated Functions

impl trait, impl Trait-impl Trait

imports, Paths and Imports

inbound.lines method, Receiving Packets: More Asynchronous Streams

include! macro, Built-In Macros

include_bytes! macro, Built-In Macros

include_str! macro, Built-In Macros

Index trait, Index and IndexMut-Index and IndexMut

indexed content, Moves and Indexed Content-Moves and Indexed Content,
Referring to Arguments by Index or Name, Sending Values-Running the
Pipeline, Piping Almost Any Iterator to a Channel-Piping Almost Any
Iterator to a Channel

IndexMut trait, Index and IndexMut-Index and IndexMut

infinite loops, Loops

#[inline] attribute, Attributes

inlining, Closure Performance

input and output, Input and Output-Networking

files and directories, Files and Directories-Platform-Specific Features

networking, Networking-Networking

readers and writers, Readers and Writers-Binary Data, Compression, and
Serialization

inspect adapter, inspect

installation, Rust, rustup and Cargo-rustup and Cargo

integer literals, Integer Types, Floating-Point Types, Literals, Variables, and
Wildcards in Patterns

integer types, Integer Types-Integer Types, Formatting Numbers

integers, Rust Functions

converting characters to/from, Conversions to and from Integers

converting to raw pointers, Raw Pointers

division by zero panic, Arithmetic, Bitwise, Comparison, and Logical
Operators

Rust and C type commonalities, Finding Common Data Representations

integration tests, Integration Tests

interior mutability, Rc and Arc: Shared Ownership, Interior Mutability-
Interior Mutability

internet protocol address types, formatting, Formatting Other Types

Into trait, From and Into-From and Into

IntoIter, associated type of, The Iterator and IntoIterator Traits

IntoIterator trait, The Iterator and IntoIterator Traits-The Iterator and
IntoIterator Traits, IntoIterator Implementations-IntoIterator

Implementations, Implementing Your Own Iterators

into_iter iterator, A Concurrent Mandelbrot Program

into_iter method, The Iterator and IntoIterator Traits

invalidation errors, Collections, Rust Rules Out Invalidation Errors

invariants, mutexes and, What Is a Mutex?, Poisoned Mutexes

inverted index, Sending Values-Running the Pipeline, Piping Almost Any
Iterator to a Channel-Piping Almost Any Iterator to a Channel

invoking wakers, in spawn_blocking, Invoking Wakers: spawn_blocking-
Invoking Wakers: spawn_blocking

io module, Readers and Writers

IpAddr type, Parsing Other Types from Strings, Formatting Other Types

irrefutable patterns, Where Patterns Are Allowed

isize type, Integer Types

item declarations, Declarations

items, Modules, Attributes-Attributes

iter method, iter and iter_mut Methods, IntoIterator Implementations

iter.collect method, HashMap<K, V> and BTreeMap<K, V>, HashSet<T>
and BTreeSet<T>, Creating String Values

iterable type, The Iterator and IntoIterator Traits

iterating

borrowing and, by_ref

over a map, Map Iteration

over sets, Set Iteration

over text, Iterating over Text-Iterating over Text

iterator adapters (see adapter methods)

Iterator methods, The Iterator and IntoIterator Traits

Iterator trait, Traits That Define Relationships Between Types, The Iterator
and IntoIterator Traits, Implementing Your Own Iterators

iterators, Handling Command-Line Arguments, Iterators-Implementing Your
Own Iterators

adapter methods, Iterator Adapters-cycle

associated types and, Associated Types (or How Iterators Work)-
Associated Types (or How Iterators Work)

consuming (see consuming iterators)

creating, Creating Iterators-Other Iterator Sources

implementing for your own types, Implementing Your Own Iterators-
Implementing Your Own Iterators

in standard library, Other Iterator Sources

traits, The Iterator and IntoIterator Traits-The Iterator and IntoIterator
Traits

iter_mut method, iter and iter_mut Methods, IntoIterator Implementations

J

Java

ConcurrentModificationException, Sharing Versus Mutation

object-mutex relationship in, What Is a Mutex?

JavaScript, asynchronous function, Comparing Asynchronous Designs

join method

combining strings, String

on rayon parallel iterators, Rayon

waiting for thread, spawn and join

JSON (JavaScript Object Notation), Rich Data Structures Using Enums

json! macro, Building the json! Macro-Importing and Exporting Macros

fragment types, Fragment Types-Fragment Types

importing and exporting, Importing and Exporting Macros-Importing
and Exporting Macros

recursion in, Recursion in Macros

scoping and hygiene, Scoping and Hygiene-Scoping and Hygiene

using traits with, Using Traits with Macros-Using Traits with Macros

K

Keep, Daniel

The Little Book of Rust Macros, Beyond macro_rules!

key argument, map, HashMap<K, V> and BTreeMap<K, V>

L

language extension traits, Utility Traits

last method, last

Latin-1 character set, ASCII, Latin-1, and Unicode

lazy_static crate, Building Regex Values Lazily, Global Variables

len method, Vectors, Strings in Memory, position, rposition, and

ExactSizeIterator

let statement, Rust Functions, More Operations That Move, Declarations

Li, Peng, Systems Programmers Can Have Nice Things

libgit2, Foreign Functions, Using Functions from Libraries-Using Functions
from Libraries

raw interface to, A Raw Interface to libgit2-A Raw Interface to libgit2

safe interface to, A Safe Interface to libgit2-A Safe Interface to libgit2

libraries, Turning a Program into a Library-Turning a Program into a Library

doc-tests, Doc-Tests-Doc-Tests

documentation, Documentation-Doc-Tests

foreign functions from, Using Functions from Libraries-Using Functions
from Libraries

src/bin directory, The src/bin Directory-The src/bin Directory

third-party (see crates)

lifetime

parameters for generic functions, Generic Functions and Type
Parameters

parameters for references, Reference Safety, Receiving References as
Function Arguments-Omitting Lifetime Parameters

reference constraints, Raw Pointers

structs with, Generic Structs with Lifetime Parameters

line! macro, Built-In Macros

lines method, on input streams, try_fold and try_rfold, Taking User Input:
Asynchronous Streams

#[link] attribute, Using Functions from Libraries

Linux

Rust package for, rustup and Cargo

using functions from libraries, Using Functions from Libraries

literals, in patterns, Literals, Variables, and Wildcards in Patterns

The Little Book of Rust Macros (Keep), Beyond macro_rules!

lock method, Mutex<T>

locking data

mutexes, Mutex<T>-Multiconsumer Channels Using Mutexes

read/write locks, Read/Write Locks (RwLock<T>)

logging

channels for, Beyond Pipelines

formatting pointers for, Using the Formatting Language in Your Own
Code

formatting values for, Formatting Values for Debugging

logical operators, Arithmetic, Bitwise, Comparison, and Logical Operators

log_syntax! macro, Debugging Macros

long-running computations, asynchronous programming, Long Running
Computations: yield_now and spawn_blocking-Long Running Computations:
yield_now and spawn_blocking

loop (for infinite loops), Loops

looping expressions, Loops-Control Flow in Loops

lvalues, Fields and Elements

M

machine language, Finding Common Data Representations

machine types, integer types, Integer Types-Integer Types

machine word, Fixed-Width Numeric Types

macOS

Rust package for, rustup and Cargo

using functions from libraries, Using Functions from Libraries

macros, Macros-Beyond macro_rules!

built-in, Built-In Macros-Built-In Macros

debugging, Debugging Macros-Debugging Macros

expansion, Macros, Basics of Macro Expansion-Basics of Macro
Expansion

fragment types, Fragment Types-Fragment Types

importing and exporting, Importing and Exporting Macros-Importing
and Exporting Macros

json!, Building the json! Macro-Importing and Exporting Macros

procedural, Beyond macro_rules!

recursion in, Recursion in Macros

repetition, Repetition-Repetition

scoping and hygiene, Scoping and Hygiene-Scoping and Hygiene

unintended consequences, Unintended Consequences-Unintended
Consequences

using traits with, Using Traits with Macros-Using Traits with Macros

macro_rules!, Macro Basics, Fragment Types

main function, Handling Command-Line Arguments, Serving Pages to the
Web, Handling Errors in main()

Mandelbrot set, Concurrency-What the Mandelbrot Set Actually Is

concurrent implementation, Concurrency-Safety Is Invisible

mapping from pixels to complex numbers, Mapping from Pixels to
Complex Numbers

parsing pair command-line arguments, Parsing Pair Command-Line
Arguments-Parsing Pair Command-Line Arguments

plotting, Plotting the Set

rendering with fork-join parallelism, Revisiting the Mandelbrot Set-
Revisiting the Mandelbrot Set

running the plotter, Running the Mandelbrot Plotter

writing image files, Writing Image Files-Writing Image Files

map (HashMap and BTreeMap) methods

append method, HashMap<K, V> and BTreeMap<K, V>

btree_map.split_off method, HashMap<K, V> and BTreeMap<K, V>

clear method, HashMap<K, V> and BTreeMap<K, V>

contains_key method, HashMap<K, V> and BTreeMap<K, V>

entry(key) method, Entries

entry(key).and_modify method, Entries

entry(key).or_default method, Entries

entry(key).or_insert method, Entries

entry(key).or_insert_with method, Entries

extend method, HashMap<K, V> and BTreeMap<K, V>

get method, HashMap<K, V> and BTreeMap<K, V>

get_mut method, HashMap<K, V> and BTreeMap<K, V>

insert method, HashMap<K, V> and BTreeMap<K, V>

into_iter method, Map Iteration

into_keys method, Map Iteration

into_values method, Map Iteration

is_empty method, HashMap<K, V> and BTreeMap<K, V>

keys method, Map Iteration

len method, HashMap<K, V> and BTreeMap<K, V>

remove method, HashMap<K, V> and BTreeMap<K, V>

remove_entry method, HashMap<K, V> and BTreeMap<K, V>

retain method, HashMap<K, V> and BTreeMap<K, V>

values method, Map Iteration

values_mut method, Map Iteration

map adapter, map and filter-map and filter

map and mapping, Mapping from Pixels to Complex Numbers

BTreeMap<K, V>, Overview, HashMap<K, V> and BTreeMap<K, V>-
Map Iteration

filter_map and flat_map adapters, map and filter-filter_map and
flat_map

find_map method, find, rfind, and find_map

HashMap trait, Rich Data Structures Using Enums

HashMap<K, V>, Overview, HashMap<K, V> and BTreeMap<K, V>-
Map Iteration

map and filter, map and filter-map and filter

marker traits, Utility Traits, Thread Safety: Send and Sync-Thread Safety:
Send and Sync, But Does Your Future Implement Send?-But Does Your
Future Implement Send?, The Unpin Trait-The Unpin Trait, Unsafe Traits

match expression, Parsing Pair Command-Line Arguments, if and match,
Patterns-Patterns

match statement, Writing Image Files

matches! macro, Built-In Macros

matching unions, Matching Unions

Matsakis, Niko, Rayon

max method, max, min

max_by method, max_by, min_by

max_by_key method, max_by_key, min_by_key

MaybeUninit type, A Raw Interface to libgit2

memory, Ownership and Moves

(see also ownership)

closure layout in, Closure Performance

enums in, Enums in Memory

raw pointers and, Moving into and out of Memory-Moving into and out
of Memory

reinterpreting with unions, Reinterpreting Memory with Unions-

Borrowing Unions

strings in, Strings in Memory-Strings in Memory

types for representing sequence of values in, Arrays, Vectors, and
Slices-Slices

memory ordering, for atomic operations, Atomics

methods

calling, Function and Method Calls

defining with impl, Defining Methods with impl-Type-Associated
Functions

fully qualified method calls, Fully Qualified Method Calls-Fully
Qualified Method Calls

min method, max, min

min_by method, max_by, min_by

min_by_key method, max_by_key, min_by_key

Model-View-Controller (see MVC)

modules, Modules-Statics and Constants

libraries and, Turning a Program into a Library-Turning a Program into
a Library

nested, Nested Modules

paths and imports, Paths and Imports-Paths and Imports

prelude, Modules

in separate files, Modules in Separate Files

standard prelude, The Standard Prelude

monomorphization, Generic Functions and Type Parameters

Morris worm, Systems Programmers Can Have Nice Things

moves, Moves-Moves and Indexed Content

closures and, Closures That Steal

constructing new values, More Operations That Move

control flow and, Moves and Control Flow

Copy types as exception to, Copy Types: The Exception to Moves-Copy
Types: The Exception to Moves

indexed content and, Moves and Indexed Content-Moves and Indexed
Content

passing values to a function, More Operations That Move

returning values to a function, More Operations That Move

assigning to a variable, More Operations That Move

mpsc (multiproducer, single-consumer) module, Sending Values, Channel
Features and Performance, Multiconsumer Channels Using Mutexes

Mul (multiplication trait), Generic Traits (or How Operator Overloading
Works)

multiple readers, References to Values

multithreaded programming, Concurrency-Concurrency, Thread Safety: Send
and Sync

(see also asynchronous programming; concurrency)

mut (mutable) keyword, Rust Functions

mut (mutable) reference, mut and Mutex

mutability, interior, Interior Mutability-Interior Mutability

mutable references (&mut T), References, References to Values

FnMut, FnMut-FnMut

IntoIterator implementation, IntoIterator Implementations

Mutex and, mut and Mutex

rules for, Sharing Versus Mutation

shared references versus, References to Values, Sharing Versus
Mutation-Sharing Versus Mutation

splitting and, Splitting-Splitting

mutable slice, Arrays, Vectors, and Slices

mutable state, shared, Shared Mutable State-Global Variables

mutable statics, Receiving References as Function Arguments, Statics and
Constants, Unsafe Blocks

Mutex type, The Group Table: Synchronous Mutexes-The Group Table:
Synchronous Mutexes

Mutex::new, Mutex<T>

mutexes, What Is a Mutex?-What Is a Mutex?

chat connections with async mutexes, Handling Chat Connections:
Async Mutexes-Handling Chat Connections: Async Mutexes

creating with Mutex<T>, Mutex<T>-Mutex<T>

deadlocks and, Deadlock

invariants and, What Is a Mutex?, Poisoned Mutexes

limitations, Why Mutexes Are Not Always a Good Idea

multiconsumer channels using, Multiconsumer Channels Using Mutexes

mut reference and, mut and Mutex

poisoned, Poisoned Mutexes

MVC (Model-View-Controller), Using Closures Effectively

N

named-field structs, Named-Field Structs-Named-Field Structs

namespaces (see modules)

NaN (not-a-number) values, Equivalence Comparisons

native_tls crate, Networking

nested modules, Nested Modules

net module, Networking

networking, Networking-Networking

newtypes, Tuple-Like Structs, Example: An Efficient ASCII String Type

next method, Associated Types (or How Iterators Work), by_ref, Taking User
Input: Asynchronous Streams

non-mut references, splitting, Splitting-Splitting

normalization, Unicode, Normalization-The unicode-normalization Crate

not-a-number (NaN) values, Equivalence Comparisons

nth and nth_back methods, nth, nth_back

nth triangle number, Iterators

null pointers, References Are Never Null

null raw pointers, Raw Pointers, Nullable Pointers

null references not allowed, References, References Are Never Null

numbers, complex, Parsing Pair Command-Line Arguments

numeric types

fixed-width, Fixed-Width Numeric Types-Floating-Point Types

floating-point types, Floating-Point Types-Floating-Point Types

integer types, Integer Types-Integer Types, Formatting Numbers

O

OccupiedEntry type, HashMap and BTreeMap, Entries

octal numeric literal, Integer Types

octal, formatting numbers in, Formatting Numbers

offset method, Unsafe from What?, Raw Pointers, Dereferencing Raw
Pointers Safely, Pointer Arithmetic

One Definition Rule, Traits and Other People’s Types

OpenOptions struct, Files

operator overloading, Operator Overloading-Other Operators

arithmetic/bitwise operators, Arithmetic and Bitwise Operators-
Compound Assignment Operators

binary operators, Binary Operators

compound assignment operators, Compound Assignment Operators-
Compound Assignment Operators

equality tests, Equivalence Comparisons-Equivalence Comparisons

generic traits and, Generic Traits (or How Operator Overloading Works)

Index and IndexMut, Index and IndexMut-Index and IndexMut

limitations on, Other Operators

ordered comparisons, Ordered Comparisons-Ordered Comparisons

unary operators, Unary Operators

operator precedence, Precedence and Associativity

operators

arithmetic, Arithmetic, Bitwise, Comparison, and Logical Operators,
Arithmetic and Bitwise Operators-Arithmetic and Bitwise Operators,
Compound Assignment Operators-Compound Assignment Operators

as operator, Conversions to and from Integers

binary, Arithmetic, Bitwise, Comparison, and Logical Operators, Binary
Operators

bitwise, Arithmetic, Bitwise, Comparison, and Logical Operators,
Compound Assignment Operators-Compound Assignment Operators

comparison, The bool Type, Using Strings, Comparing References,
Arithmetic, Bitwise, Comparison, and Logical Operators, max_by,
min_by

equality, Equivalence Comparisons-Equivalence Comparisons

reference, Reference Operators

unary, Unary Operators

Option<&T>, References Are Never Null

option_env! macro, Built-In Macros

ordered comparison operators, Ordered Comparisons-Ordered Comparisons

Ordering::SeqCst, atomic memory ordering, Atomics

orphan rule, Traits and Other People’s Types

os module, Platform-Specific Features

OsStr string type, OsStr and Path-OsStr and Path

Outbound type, Handling Chat Connections: Async Mutexes

overflowing operations, Checked, Wrapping, Saturating, and Overflowing
Arithmetic

ownership, Ownership and Moves-Rc and Arc: Shared Ownership

Arc, Rc and Arc: Shared Ownership-Rc and Arc: Shared Ownership

C++ versus Rust, Ownership-Ownership

Cow, Borrow and ToOwned at Work: The Humble Cow

iteration and, Handling Command-Line Arguments

moves, Moves-Moves and Indexed Content

Rc, Rc and Arc: Shared Ownership-Rc and Arc: Shared Ownership

shared, Rc and Arc: Shared Ownership-Rc and Arc: Shared Ownership

owning type, OsStr and Path

P

panic, Rust Functions, Panic-Aborting

aborting, Aborting

poisoned mutexes, Poisoned Mutexes

safety in unsafe code, Panic Safety in Unsafe Code

unwinding, Unwinding-Unwinding

panic! macro, Panic, Formatting Values, Macros

parallel programming, Parallel Programming Is Tamed

(see also concurrency)

ParallelIterator, Rayon

parameters

formatting, Formatting Values, Formatting Values for Debugging,
Dynamic Widths and Precisions

lifetime, Reference Safety, Receiving References as Function
Arguments-Omitting Lifetime Parameters, Generic Functions and Type
Parameters

type, Parsing Pair Command-Line Arguments, Generic Structs, Generic
Functions and Type Parameters, Equivalence Comparisons

parse method, Parsing Other Types from Strings

parse_args function, Reading and Writing Files

parse_complex function, Parsing Pair Command-Line Arguments

parse_pair function, Parsing Pair Command-Line Arguments

PartialEq trait, Equivalence Comparisons-Equivalence Comparisons

PartialOrd trait, Ordered Comparisons-Ordered Comparisons

partition method, partition

part_iter method, Rayon

Path type, iter and iter_mut Methods, Formatting Text Values, OsStr and
Path-Path and PathBuf Methods

ancestors method, Path and PathBuf Methods

components method, Path and PathBuf Methods

display method, Path and PathBuf Methods

file_name method, Path and PathBuf Methods

is_absolute method, Path and PathBuf Methods

is_relative method, Path and PathBuf Methods

join method, Path and PathBuf Methods

parent method, Path and PathBuf Methods

to_str method, Path and PathBuf Methods

to_string_lossy method, Path and PathBuf Methods

Path::new method, Path and PathBuf Methods

PathBuf type, Path and PathBuf Methods

paths, standard library, Paths and Imports-Paths and Imports

patterns, Patterns-The Big Picture

@ patterns, Binding with @ Patterns

array, Array and Slice Patterns

avoiding syntax errors during matching in macros, Avoiding Syntax
Errors During Matching

guards, Match Guards

literals in, Literals, Variables, and Wildcards in Patterns

match expressions and, if and match

matching multiple possibilities with, Matching Multiple Possibilities

populating a binary tree, Populating a Binary Tree

reference, Reference Patterns-Reference Patterns

searching and replacing, Patterns for Searching Text-Searching and
Replacing

situations that allow, Where Patterns Are Allowed

slice, Array and Slice Patterns

struct, Tuple and Struct Patterns

tuple, Tuple and Struct Patterns

variables in, Literals, Variables, and Wildcards in Patterns

wildcards in, Literals, Variables, and Wildcards in Patterns

peek method, peekable

Peekable iterator, peekable

Pin type, Pinned Pointers

pinned pointer, Pinned Pointers-Pinned Pointers

pinning futures, Pinning-The Unpin Trait

pipeline approach

concurrent programming, Concurrency

iterator stages, Iterators, Creating Iterators

multiple threads, Sending Values-Running the Pipeline, Channel
Features and Performance, Piping Almost Any Iterator to a Channel-
Piping Almost Any Iterator to a Channel

pixel_to_point function, A Concurrent Mandelbrot Program

plotting, Mandelbrot set, Plotting the Set, Running the Mandelbrot Plotter

Pointer formatting trait, Raw Pointers

pointer types, Pointer Types-Raw Pointers

boxes, Boxes

non-owning, References to Values

pinned pointer, Pinned Pointers-Pinned Pointers

raw pointers, Raw Pointers, Raw Pointers-Panic Safety in Unsafe Code

references (see references (pointer type))

pointers, Rust's restrictions on, Ownership and Moves

PoisonError::into_inner, Poisoned Mutexes

poll method, Futures, Long Running Computations: yield_now and
spawn_blocking

polling interface, asynchronous programming, Futures-Futures, Comparing
Asynchronous Designs, Primitive Futures and Executors: When Is a Future
Worth Polling Again?-Implementing block_on

polymorphism, Traits and Generics

position method, position, rposition, and ExactSizeIterator

post_gcd function, Serving Pages to the Web, Concurrency

precedence, operator, Precedence and Associativity

prelude module, Modules, Platform-Specific Features, Taking User Input:
Asynchronous Streams

print! macro, Formatting Values, Writers

println! macro, Serving Pages to the Web, String, Formatting Values, Writers

println! method, Printing Errors

print_error function, Ignoring Errors

print_padovan function, Ownership

print_usage function, The Command-Line Interface

procedural macros, Beyond macro_rules!

process_files function, Fork-Join Parallelism

product method, Simple Accumulation: count, sum, product

profiler, Build Profiles

propagating errors, Propagating Errors

protocol

client and server as asynchronous, The Protocol-The Protocol

internet protocol address types, formatting, Formatting Other Types

ptr module, Moving into and out of Memory

ptr.copy_to, Moving into and out of Memory

ptr.copy_to_nonoverlapping, Moving into and out of Memory

ptr::copy, Moving into and out of Memory

ptr::copy_nonoverlapping, Moving into and out of Memory

ptr::read, Moving into and out of Memory

ptr::write , Moving into and out of Memory

public vocabulary traits, Utility Traits

Python, assignment in, Moves-Moves

R

race method, The Client’s Main Function

rand crate, Random Elements

rand::thread_rng method, Random Elements

ranges

closed, Fields and Elements

end-exclusive, Matching Multiple Possibilities

half-open, Fields and Elements, Matching Multiple Possibilities

in loop expressions, Loops

unbounded, Matching Multiple Possibilities

raw module, Finding Common Data Representations, A Raw Interface to
libgit2-A Raw Interface to libgit2

raw pointers, Raw Pointers, Unsafe Code, Raw Pointers-Panic Safety in
Unsafe Code

dereferencing, Raw Pointers, Unsafe from What?, Unsafe Blocks,
Dereferencing Raw Pointers Safely-Example: RefWithFlag

GapBuffer example, Example: GapBuffer-Example: GapBuffer

moving into/out of memory, Moving into and out of Memory-Moving
into and out of Memory

nullable pointers, Nullable Pointers

panic safety in unsafe code, Panic Safety in Unsafe Code

pointer arithmetic, Pointer Arithmetic-Pointer Arithmetic

RefWithFlag example, Example: RefWithFlag-Example: RefWithFlag

type sizes and alignments, Type Sizes and Alignments

raw strings, String Literals

Rayon library (Matsakis and Stone), Rayon-Rayon

Rc pointer type, Rc and Arc: Shared Ownership-Rc and Arc: Shared
Ownership, Passing Self as a Box, Rc, or Arc-Passing Self as a Box, Rc, or
Arc

Read trait, Input and Output, Readers and Writers

bytes method, Readers

chain method, Readers

lines method, Buffered Readers

read method, Readers

read_exact method, Readers

read_to_end method, Readers

read_to_string method, Readers

take method, Readers

read-only access, shared access as, Sharing Versus Mutation

read/write locks (RwLock), Read/Write Locks (RwLock<T>)

ReadBytesExt trait, Binary Data, Compression, and Serialization

readers, Readers-Collecting Lines

binary data, compression, serialization, Binary Data, Compression, and
Serialization-Binary Data, Compression, and Serialization

buffered, Buffered Readers-Collecting Lines

collecting lines, Collecting Lines

files, Files

other types, Other Reader and Writer Types-Other Reader and Writer
Types

reading lines, Reading Lines-Reading Lines

Seek trait, Seeking

read_dir method, Reading Directories

read_numbers function, Working with Multiple Error Types

read_to_string function, Reading and Writing Files

read_unaligned, Moving into and out of Memory

read_volatile, Moving into and out of Memory

Receiver type, Multiconsumer Channels Using Mutexes

receiving packets, asynchronous chat, Receiving Packets: More
Asynchronous Streams-Receiving Packets: More Asynchronous Streams

recursion, macros, Recursion in Macros

RefCell type

borrow methid, Interior Mutability

borrow_mut method, Interior Mutability

try_borrow method, Interior Mutability

try_borrow_mut method, Interior Mutability

RefCell::new(value), Interior Mutability

RefCell<T> struct, Interior Mutability

reference (ref) patterns, Reference Patterns-Reference Patterns

reference operators, Reference Operators

reference-counted (Rc) pointer type, Rc and Arc: Shared Ownership-Rc and
Arc: Shared Ownership

references (pointer type), References, References-Taking Arms Against a Sea
of Objects

assigning, Assigning References

borrowing, Borrowing References to Arbitrary Expressions, Borrowing
a Local Variable-Borrowing a Local Variable, Closures That Borrow

C++ versus Rust, Rust References Versus C++ References

comparing, Comparing References

constraints on, Reference Safety-Structs Containing References, Raw
Pointers

immutable, References

IntoIterator implementation, IntoIterator Implementations

iteration and, Handling Command-Line Arguments

lifetime parameters and, Reference Safety, Receiving References as
Function Arguments-Omitting Lifetime Parameters

mutable (see mutable references)

null, References

null pointers and, References Are Never Null

passing references to functions, Passing References to Functions

receiving as function arguments, Receiving References as Function
Arguments-Receiving References as Function Arguments

returning, Returning References

safety of, Reference Safety-Omitting Lifetime Parameters

"sea of objects" and, Taking Arms Against a Sea of Objects-Taking
Arms Against a Sea of Objects

shared versus mutable, References to Values, Sharing Versus Mutation-
Sharing Versus Mutation

structs containing, Structs Containing References-Structs Containing
References

to references, References to References

to slices and trait objects, References to Slices and Trait Objects

to values, References to Values-References to Values

refutable patterns, Where Patterns Are Allowed

RefWithFlag<'a, T>, Example: RefWithFlag-Example: RefWithFlag

Regex struct, Find and Replace

Regex::captures method, Basic Regex Use

Regex::new constructor, Building Regex Values Lazily-Building Regex
Values Lazily

regular expressions (regex), Regular Expressions-Building Regex Values
Lazily

basic use, Basic Regex Use-Basic Regex Use

building values on demand, Building Regex Values Lazily

macros versus, Basics of Macro Expansion

relational operators, Arithmetic, Bitwise, Comparison, and Logical Operators

replace_all method, Find and Replace

#[repr(C)] attribute, Finding Common Data Representations

#[repr(i16)] attribute, Finding Common Data Representations

reqwest crate, Networking

resource-constrained programming, Preface

Result type, Handling Command-Line Arguments, Result-Why Results?

as_mut method, Catching Errors

as_ref method, Catching Errors

catching errors, Error Handling, Catching Errors-Catching Errors

dealing with errors that "can't happen", Dealing with Errors That “Can’t
Happen”

declaring a custom error type, Declaring a Custom Error Type

err method, Catching Errors

error handling across threads, Error Handling Across Threads

expect method, Catching Errors

handling errors in main function, Handling Errors in main()

ignoring errors, Ignoring Errors

is_err method, Catching Errors

is_ok method, Catching Errors

key points of design, Why Results?

with multiple error types, Working with Multiple Error Types-Working
with Multiple Error Types

ok method, Catching Errors

printing errors, Printing Errors-Printing Errors

propagating errors, Propagating Errors

type aliases, Result Type Aliases

unwrap method, Catching Errors

unwrap_or method, Catching Errors

unwrap_or_else method, Catching Errors

return expressions, Rust Functions, Rust Functions, return Expressions

rev adapter, Reversible Iterators and rev-Reversible Iterators and rev

reverse method, Vectors

reversible iterators, Reversible Iterators and rev-Reversible Iterators and rev

rfind method, find, rfind, and find_map

rfold method, fold and rfold

Rhs type parameter, Equivalence Comparisons

root module, Turning a Program into a Library

route method, Serving Pages to the Web

routers, callbacks and, Callbacks-Callbacks

rposition method, position, rposition, and ExactSizeIterator

Rust, A Tour of Rust-Find and Replace

command-line arguments, Handling Command-Line Arguments-
Handling Command-Line Arguments

command-line interface, Filesystems and Command-Line Tools-The
Command-Line Interface

community, More Nice Things

concurrency, Concurrency-Safety Is Invisible

filesystems, Filesystems and Command-Line Tools-Find and Replace

find and replace, Find and Replace

functions in, Rust Functions-Rust Functions

installation, rustup and Cargo-rustup and Cargo

reading files, Reading and Writing Files

reasons for using, Rust Shoulders the Load for You-Rust Makes
Collaboration Easier

rules for well-behaved program, Undefined Behavior

simple web server, Serving Pages to the Web-Serving Pages to the Web

unit testing in, Writing and Running Unit Tests

website, rustup and Cargo

rustc command, rustup and Cargo, Crates, Debugging Macros

rustdoc command, rustup and Cargo

rustup, rustup and Cargo-rustup and Cargo

RwLock, Read/Write Locks (RwLock<T>)

S

safe interface to libgit2, A Safe Interface to libgit2-A Safe Interface to libgit2

safety

closures and, Closures and Safety-Copy and Clone for Closures

invisibility of, Safety Is Invisible

with references, Reference Safety-Omitting Lifetime Parameters

thread safety with Send and Sync, Thread Safety: Send and Sync-Thread
Safety: Send and Sync

saturating operations, Checked, Wrapping, Saturating, and Overflowing
Arithmetic

say_hello function, Generic Functions and Type Parameters

scopes and scoping, Rayon, Scoping and Hygiene-Scoping and Hygiene

searching

slices, Sorting and Searching, Searching and Replacing

text, Conventions for Searching and Iterating-Searching and Replacing

Seek trait, Seeking

self argument, Passing Self as a Box, Rc, or Arc-Passing Self as a Box, Rc, or
Arc

self keyword, Paths and Imports

Self type, Self in Traits-Self in Traits

semicolons following expressions, Blocks and Semicolons

SEMVER variable, Building Regex Values Lazily

Send marker trait, Thread Safety: Send and Sync-Thread Safety: Send and
Sync, But Does Your Future Implement Send?-But Does Your Future
Implement Send?, Unsafe Traits

send_as_json, Sending Packets

serde library/crate, Traits and Other People’s Types, Binary Data,
Compression, and Serialization, An Asynchronous Client and Server

serde_json crate, Rich Data Structures Using Enums, Binary Data,
Compression, and Serialization, An Asynchronous Client and Server

serialization, Binary Data, Compression, and Serialization

set method, Interior Mutability

set types (HashMap and BTreeMap)

contains method, HashSet<T> and BTreeSet<T>

difference method, Whole-Set Operations

get method, When Equal Values Are Different

insert method, HashSet<T> and BTreeSet<T>

intersection method, Whole-Set Operations

is_disjoint method, Whole-Set Operations

is_empty method, HashSet<T> and BTreeSet<T>

is_subset method, Whole-Set Operations

is_superset method, Whole-Set Operations

iter method, Set Iteration

len method, HashSet<T> and BTreeSet<T>

remove method, HashSet<T> and BTreeSet<T>

replace method, When Equal Values Are Different

retain method, HashSet<T> and BTreeSet<T>

symmetric_difference method, Whole-Set Operations

take method, When Equal Values Are Different

union method, Whole-Set Operations

sets, HashSet<T> and BTreeSet<T>

(see also Mandelbrot set)

BTreeSet<T>, HashSet<T> and BTreeSet<T>-Whole-Set Operations

HashSet<T> type, HashSet<T> and BTreeSet<T>-Whole-Set
Operations

shadowing, Declarations

shared access, Sharing Versus Mutation

shared immutable data across threads, Sharing Immutable Data Across
Threads-Sharing Immutable Data Across Threads

shared mutable state, Shared Mutable State-Global Variables

atomics, Atomics, Global Variables

condition variables (Condvar), Condition Variables (Condvar)

deadlock, Deadlock

global variables, Global Variables-Global Variables

multiconsumer channels using mutex, Multiconsumer Channels Using
Mutexes

mut and Mutex, mut and Mutex

mutex limitations, Why Mutexes Are Not Always a Good Idea

Mutex<T>, Mutex<T>-Mutex<T>

poisoned mutexes, Poisoned Mutexes

read/write locks (RwLock), Read/Write Locks (RwLock<T>)

shared references (&T), References to Values

C's pointers to const values versus, Sharing Versus Mutation

IntoIterator implementation, IntoIterator Implementations

mutable references versus, Sharing Versus Mutation-Sharing Versus
Mutation

rules for, Sharing Versus Mutation, Sharing Versus Mutation

shared slice of Ts, Arrays, Vectors, and Slices

Shared struct, spawn_blocking, Invoking Wakers: spawn_blocking

#[should_panic] attribute, Tests and Documentation

show_it function, Deref and DerefMut

signed integer types, Integer Types

single writer, multiple readers rule, References to Values

SipHash-1-3, Using a Custom Hashing Algorithm

Sized trait, Sized-Sized, Type Sizes and Alignments

size_hint method, by_ref, Building Collections: collect and FromIterator

size_of_val function, Type Sizes and Alignments

skip and skip_while adapters, skip and skip_while

slice patterns, Array and Slice Patterns

slices, Slices

&str (string slice), String

binary_search method, Sorting and Searching

binary_search_by method, Sorting and Searching

binary_search_by_key method, Sorting and Searching

borrowing as other text-like types, Borrowing as Other Text-Like Types

bytes method, Iterating over Text

case conversion for strings, Case Conversion for Strings

chars method, Iterating over Text

char_indices method, Iterating over Text

choose method, Random Elements

chunks method, Splitting

chunks_exact method, Splitting

chunks_exact_mut method, Splitting

chunks_mut method, Splitting

comparing, Comparing Slices

concat method, Joining

contains method, Sorting and Searching, Searching and Replacing

ends_with method, Comparing Slices, Searching and Replacing

find method, Searching and Replacing

first method, Accessing Elements

first_mut method, Accessing Elements

get method, Accessing Elements

get_mut method, Accessing Elements

IntoIterator implementation, IntoIterator Implementations

is_char_boundary method, Simple Inspection

is_empty method, Growing and Shrinking Vectors, Simple Inspection

iter method, Splitting

iterating over text, Iterating over Text-Iterating over Text

iter_mut method, Splitting

join method, Joining

joining in arrays of arrays, Joining

last method, Accessing Elements

last_mut method, Accessing Elements

len method, Growing and Shrinking Vectors, Simple Inspection

lines method, Iterating over Text

matches method, Iterating over Text

match_indices method, Iterating over Text

random output, Random Elements

rchunks method, Splitting

rchunks_exact method, Splitting

rchunks_exact_mut method, Splitting

rchunks_mut method, Splitting

references to, References to Slices and Trait Objects

replace method, Searching and Replacing

replacen method, Searching and Replacing

reverse method, Sorting and Searching

rfind method, Searching and Replacing

rmatch_indices method, Iterating over Text

rsplit method, Splitting, Iterating over Text

rsplitn method, Splitting, Iterating over Text

rsplitn_mut method, Splitting

rsplit_mut method, Splitting

rsplit_terminator method, Iterating over Text

searching, Sorting and Searching, Searching and Replacing

shuffle method, Random Elements

slice[range], Simple Inspection

sort method, Sorting and Searching

sorting, Sorting and Searching

sort_by method, Sorting and Searching

sort_by_key method, Sorting and Searching

split method, Splitting, Iterating over Text

splitn method, Splitting, Iterating over Text

splitn_mut method, Splitting

splitting non-mut references, Splitting-Splitting

split_ascii_whitespace method, Iterating over Text

split_at method, Splitting, Simple Inspection

split_at_mut method, Splitting

split_first method, Splitting

split_first_mut method, Splitting

split_last method, Splitting

split_last_mut method, Splitting

split_mut method, Splitting

split_terminator method, Iterating over Text

split_whitespace method, Iterating over Text

starts_with method, Comparing Slices, Searching and Replacing

strip_prefix method, Trimming

strip_suffix method, Trimming

swap method, Swapping

swapping contents of, Swapping

to_lowercase method, Case Conversion for Strings

to_owned method, Creating String Values

to_string method, Creating String Values

to_uppercase method, Case Conversion for Strings

to_vec method, Accessing Elements

trim method, Trimming

trimming strings, Trimming

trim_matches method, Trimming

UTF-8 and, Accessing Text as UTF-8-Producing Text from UTF-8 Data

windows method, Splitting

snake-case, Named-Field Structs

SocketAddr type, Formatting Other Types

sorting slices, Sorting and Searching

spawn function

for asynchronous tasks, Asynchronous Programming, Spawning Async
Tasks, Spawning Async Tasks on a Thread Pool

for creating threads, spawn and join-spawn and join, Error Handling
Across Threads

spawning async tasks, Spawning Async Tasks-Spawning Async Tasks,
Spawning Async Tasks on a Thread Pool

spawn_blocking, Long Running Computations: yield_now and
spawn_blocking-Long Running Computations: yield_now and
spawn_blocking, Invoking Wakers: spawn_blocking-Invoking Wakers:
spawn_blocking

spawn_local, Spawning Async Tasks-Spawning Async Tasks, Spawning
Async Tasks on a Thread Pool

splice method, Self in Traits

src/bin directory, The src/bin Directory-The src/bin Directory

stack unwinding, Unwinding-Unwinding

standard prelude, The Standard Prelude

statements, expressions versus, An Expression Language

static keyword, Statics and Constants, Unsafe Blocks

static methods, Function and Method Calls

static values (statics), Receiving References as Function Arguments, Modules

std (standard library), Paths and Imports

Stderr type, Other Reader and Writer Types

Stdin type, Other Reader and Writer Types

StdinLock type, Other Reader and Writer Types

Stdout type, Other Reader and Writer Types

Stone, Josh, Rayon

str::from_utf8, Producing Text from UTF-8 Data

str::from_utf8_unchecked, Producing Text from UTF-8 Data

Stream trait, Taking User Input: Asynchronous Streams

streams

async streams, Receiving Packets: More Asynchronous Streams-
Receiving Packets: More Asynchronous Streams

client and server as asynchronous, Taking User Input: Asynchronous
Streams-Taking User Input: Asynchronous Streams

TcpStream, Other Reader and Writer Types, Receiving Packets: More
Asynchronous Streams

String and str types, Parsing Pair Command-Line Arguments, String Types-
Other String-Like Types, String and str-Strings as Generic Collections

appending text, Appending and Inserting Text-Appending and Inserting
Text

Ascii, Example: An Efficient ASCII String Type-Unsafe Functions

borrowing slice's content, Borrowing as Other Text-Like Types

byte strings, Byte Strings

case conversion, Case Conversion for Strings

clear method, Removing and Replacing Text

converting nontextual values to, Converting Other Types to Strings-
Converting Other Types to Strings

creating String values, Creating String Values

drain method, Removing and Replacing Text

extend method, Appending and Inserting Text

filename types, OsStr and Path

from_utf8, Producing Text from UTF-8 Data

from_utf8_lossy, Producing Text from UTF-8 Data

from_utf8_unchecked, Producing Text from UTF-8 Data

as generic collections, Strings as Generic Collections

insert method, Appending and Inserting Text

inserting text, Appending and Inserting Text-Appending and Inserting
Text

insert_str method, Appending and Inserting Text

iterating over text, Conventions for Searching and Iterating, Iterating
over Text-Iterating over Text

non-Unicode strings, Other String-Like Types

parsing values from, Parsing Other Types from Strings

pop method, Removing and Replacing Text

producing text from UTF-8 data, Producing Text from UTF-8 Data

push method, Appending and Inserting Text

push_str method, Appending and Inserting Text

putting off allocation, Putting Off Allocation-Putting Off Allocation

remove method, Removing and Replacing Text

removing and replacing text, Removing and Replacing Text

replace_range method, Removing and Replacing Text

searching text, Conventions for Searching and Iterating-Searching and
Replacing

simple inspection, Simple Inspection

strings in memory, Strings in Memory-Strings in Memory

trimming text, Trimming

truncate method, Removing and Replacing Text

UTF-8 and, Characters, Accessing Text as UTF-8-Producing Text from
UTF-8 Data

string literals, String Literals, Byte Strings, String

string slice (&str), String

String::new, Creating String Values

String::with_capacity, Creating String Values, Appending and Inserting Text

stringify! macro, Built-In Macros

strings and text, Strings and Text-The unicode-normalization Crate

characters (char), Characters (char)-Conversions to and from Integers

formatting values, Formatting Values-Using the Formatting Language in
Your Own Code

normalization, Normalization-The unicode-normalization Crate

passing between Rust and C, Finding Common Data Representations

regular expressions, Regular Expressions-Building Regex Values Lazily

Unicode background, Some Unicode Background-Text Directionality

unsafe code for conversion of Ascii into String, Example: An Efficient
ASCII String Type-Unsafe Functions

Stroustrup, Bjarne

"Abstraction and the C++ Machine Model", And Yet Rust Is Still Fast

struct expression, Named-Field Structs

struct patterns, Tuple and Struct Patterns

structs, Making Struct Fields pub, Structs-Interior Mutability

defining methods with impl, Defining Methods with impl-Type-
Associated Functions

deriving common traits for struct types, Deriving Common Traits for
Struct Types

generic, Generic Structs-Generic Structs

hash implementation, Hashing

interior mutability, Interior Mutability-Interior Mutability

layout, Struct Layout

with lifetime parameters, Generic Structs with Lifetime Parameters

named-field, Named-Field Structs-Named-Field Structs

references in, Structs Containing References-Structs Containing
References

tuple-like, Tuple-Like Structs

unit-like, Unit-Like Structs

submodules, Nested Modules

subtraits, Subtraits

successors method, from_fn and successors-from_fn and successors

sum method, Simple Accumulation: count, sum, product

sum types, Enums and Patterns

supertrait, Subtraits

switch statement, Literals, Variables, and Wildcards in Patterns

symlink method, Platform-Specific Features-Platform-Specific Features

Sync type, Thread Safety: Send and Sync-Thread Safety: Send and Sync,
Unsafe Traits

synchronized objects, Concurrency

synchronous channel, concurrency, Channel Features and Performance

synchronous to asynchronous programming, From Synchronous to
Asynchronous-A Real Asynchronous HTTP Client

async blocks, Async Blocks-Building Async Functions from Async
Blocks

async functions, Async Functions and Await Expressions-Calling Async
Functions from Synchronous Code: block_on, Building Async

Functions from Async Blocks

asynchronous HTTP client crate, A Real Asynchronous HTTP Client

await expression, Async Functions and Await Expressions

comparing asynchronous designs, Comparing Asynchronous Designs

futures (see futures)

implementing Send, But Does Your Future Implement Send?-But Does
Your Future Implement Send?

long-running computations, Long Running Computations: yield_now
and spawn_blocking-Long Running Computations: yield_now and
spawn_blocking

spawning async tasks, Spawning Async Tasks-Spawning Async Tasks,
Spawning Async Tasks on a Thread Pool

thread pool, spawning async tasks from, Spawning Async Tasks on a
Thread Pool

syntax errors, macros and, Avoiding Syntax Errors During Matching

system calls, From Synchronous to Asynchronous

systems programming, Preface, Systems Programmers Can Have Nice
Things

T

<T>, Tuples

[T] slices, Slices

(see also slices)

take and take_while adapters, take and take_while, by_ref

task_local! macro, Spawning Async Tasks on a Thread Pool

TcpStream, Other Reader and Writer Types, Receiving Packets: More
Asynchronous Streams

templates, macro, Basics of Macro Expansion

#[test] attribute, Attributes

tests, Tests and Documentation-Doc-Tests

doc-tests, Doc-Tests-Doc-Tests

integration tests, Integration Tests

text, ASCII, Latin-1, and Unicode

(see also strings and text; UTF-8)

appending and inserting, Appending and Inserting Text-Appending and
Inserting Text

ASCII, ASCII, Latin-1, and Unicode, Classifying Characters, Handling
Digits, Example: An Efficient ASCII String Type-Unsafe Functions

case conversion, Case Conversion for Characters, Case Conversion for
Strings

conventions for searching/iterating, Conventions for Searching and
Iterating

directionality of, Text Directionality

GapBuffer example, Example: GapBuffer-Panic Safety in Unsafe Code

iterating over, Iterating over Text

removing and replacing, Removing and Replacing Text

searching, Conventions for Searching and Iterating-Searching and
Replacing

trimming, Trimming

text values, formatting, Formatting Text Values-Formatting Text Values

thread pool, spawning async tasks on, Spawning Async Tasks on a Thread
Pool

threads

asynchronous tasks versus, Asynchronous Programming

background thread, Concurrency

channels and, Channels-Beyond Pipelines

deadlock, Deadlock

error handling across, Error Handling Across Threads

safety with Send and Sync, Thread Safety: Send and Sync-Thread
Safety: Send and Sync

shared immutable data across, Sharing Immutable Data Across Threads-
Sharing Immutable Data Across Threads

todo! macro, Built-In Macros

token tree, Fragment Types

tokens, macro patterns, Basics of Macro Expansion

tokio crate, Comparing Asynchronous Designs, An Asynchronous Client and
Server, Chat Groups: tokio’s Broadcast Channels-Chat Groups: tokio’s
Broadcast Channels

ToOwned trait, ToOwned-Borrow and ToOwned at Work: The Humble Cow

to_owned method, String

to_string method, Find and Replace, String

trace_macros! macro, Debugging Macros

trait objects, Trait Objects-Trait object layout

generic code versus, Which to Use-Which to Use

layout, Trait object layout

references to, References to Slices and Trait Objects

unsized types and, Sized

traits, Handling Command-Line Arguments, Copy Types: The Exception to
Moves, Traits and Generics-Traits as a Foundation

associated consts, Associated Consts

defining and implementing, Defining and Implementing Traits-Type-
Associated Functions

for defining relationships between types, Traits That Define
Relationships Between Types-Associated Consts

fully qualified method calls, Fully Qualified Method Calls-Fully
Qualified Method Calls

impl, impl Trait-impl Trait

implementing for your own types, Formatting Your Own Types-
Formatting Your Own Types

iterators and associated types, Associated Types (or How Iterators
Work)-Associated Types (or How Iterators Work)

with macros, Using Traits with Macros-Using Traits with Macros

for operator overloading, Generic Traits (or How Operator Overloading
Works), Operator Overloading

other people's types and, Traits and Other People’s Types-Traits and
Other People’s Types

reverse-engineering bounds, Reverse-Engineering Bounds-Reverse-
Engineering Bounds

Self as type, Self in Traits-Self in Traits

for struct types, Deriving Common Traits for Struct Types

subtraits, Subtraits

type-associated functions, Type-Associated Functions

unsafe, Unsafe Traits-Unsafe Traits

utility (see utility traits)

transitive dependencies, Crates

Travis CI, More Nice Things

trees, Ownership

trimming string text, Trimming

try! macro, Propagating Errors

TryFrom trait, TryFrom and TryInto

TryInto trait, TryFrom and TryInto

try_fold and try_rfold methods, try_fold and try_rfold-try_fold and try_rfold

try_for_each method, for_each and try_for_each

tuple patterns, Tuple and Struct Patterns

tuple-like structs, Tuple-Like Structs

tuples, Tuples-Tuples

type aliases, Type Aliases, Result Type Aliases, Making use Declarations pub

type alignment, raw pointers and, Type Sizes and Alignments

type inference, Fundamental Types

type parameters, Parsing Pair Command-Line Arguments, Generic Structs,

Generic Functions and Type Parameters, Equivalence Comparisons

type size, raw pointers and, Type Sizes and Alignments

type-associated functions, Type-Associated Functions, Type-Associated
Functions

types, Fundamental Types-Beyond the Basics

arrays, Arrays

associated, Associated Types (or How Iterators Work)-Associated Types
(or How Iterators Work)

casts and, Type Casts

of closures and functions, Function and Closure Types-Function and
Closure Types

error handling, Result-Why Results?, Formatting Other Types, Error and
Result Types

filename, OsStr and Path

floating-point, Floating-Point Types-Floating-Point Types, max, min,
Formatting Numbers

formatting values, Formatting Other Types, Formatting Your Own
Types-Formatting Your Own Types

implementing iterators for your own, Implementing Your Own Iterators-
Implementing Your Own Iterators

IntoIterator implementation, IntoIterator Implementations-IntoIterator
Implementations

numeric, Fixed-Width Numeric Types-Floating-Point Types, Formatting
Numbers

operator overloading and, Operator Overloading

parameters, Generic Structs, Generic Functions and Type Parameters,
Equivalence Comparisons

pointers (see pointer types)

for representing sequence of values in memory, Arrays, Vectors, and
Slices-Slices

Sized, Sized-Sized

slices, Slices

String and str (see String and str types)

traits for adding methods to, Traits and Other People’s Types

traits for defining relationships between, Traits That Define
Relationships Between Types-Associated Consts

tuples, Tuples-Tuples

unsized, Sized-Sized

user-defined, Making Struct Fields pub

vectors, Vectors-Vectors

U

unary operators, Unary Operators

unbounded ranges, Matching Multiple Possibilities

undefined behavior, Systems Programmers Can Have Nice Things, Unsafe
from What?, Undefined Behavior-Undefined Behavior

Unicode, Some Unicode Background-Text Directionality

ASCII and, ASCII, Latin-1, and Unicode

character literals, Characters

Latin-1 and, ASCII, Latin-1, and Unicode

normalization, Normalization-The unicode-normalization Crate

OsStr and, OsStr and Path

text directionality, Text Directionality

UTF-8, UTF-8-UTF-8

unicode-normalization crate, The unicode-normalization Crate-The unicode-
normalization Crate

unimplemented! macro, Built-In Macros

unions, Enums and Patterns, Unsafe Blocks, Reinterpreting Memory with
Unions-Borrowing Unions

unit testing, Writing and Running Unit Tests

unit type, Tuples

unit-like structs, Unit-Like Structs

Unix

files and directories, Platform-Specific Features-Platform-Specific
Features

pipes, Channels-Sending Values

Unpin marker trait, The Unpin Trait-The Unpin Trait

Unpin trait, Sending Packets

unsafe blocks, Raw Pointers, Unsafe Code, Unsafe Blocks-Example: An
Efficient ASCII String Type, Unsafe Block or Unsafe Function?

unsafe code, Unsafe Code-Borrowing Unions

foreign functions (see foreign functions)

libgit2 raw interface, A Raw Interface to libgit2-A Raw Interface to
libgit2

raw pointers (see raw pointers)

undefined behavior, Undefined Behavior-Undefined Behavior

unions, Reinterpreting Memory with Unions-Borrowing Unions

unsafe blocks, Raw Pointers, Unsafe Code, Unsafe Blocks-Example: An
Efficient ASCII String Type, Unsafe Block or Unsafe Function?

unsafe feature, Unsafe from What?-Unsafe from What?

unsafe functions, Unsafe Code, Unsafe Functions-Unsafe Functions

unsafe traits, Unsafe Traits-Unsafe Traits

unsafe functions, Unsafe Code, Unsafe Functions-Unsafe Functions

unsafe traits, Unsafe Traits-Unsafe Traits

unsigned integer types, Integer Types

unsized types, Sized-Sized

unwinding, Unwinding-Unwinding

unwrap method, Writing Image Files, Error Handling Across Threads

use declarations, Paths and Imports, Making use Declarations pub

user-defined types, Making Struct Fields pub

usize type, Integer Types, Accessing Elements

UTF-8, UTF-8-UTF-8

accessing text as, Accessing Text as UTF-8

ASCII methods with, Classifying Characters

char type and, Characters

OsStr and, OsStr and Path-OsStr and Path

producing text from data, Producing Text from UTF-8 Data

String and str handling, String and str

strings in memory, Strings in Memory

unsafe code and, Example: An Efficient ASCII String Type-Example:
An Efficient ASCII String Type

utility traits, Utility Traits-Borrow and ToOwned at Work: The Humble Cow

AsRef and AsMut, AsRef and AsMut

Borrow and BorrowMut, Borrow and BorrowMut-Borrow and
BorrowMut

Clone, Clone, Copy and Clone for Closures, Accessing Elements

Copy, Copy, Copy and Clone for Closures

Cow, Borrow and ToOwned at Work: The Humble Cow, Putting Off
Allocation-Putting Off Allocation

Default, Default-Default, partition

Deref and DerefMut, Deref and DerefMut-Deref and DerefMut

Drop, Drop-Drop

From and Into, From and Into-From and Into, Using Traits with Macros

Sized, Sized-Sized

ToOwned, ToOwned-Borrow and ToOwned at Work: The Humble Cow

TryFrom and TryInto, TryFrom and TryInto

utils module, Error and Result Types

V

VacantEntry type, HashMap and BTreeMap, Entries

values

building on demand, Building Regex Values Lazily

dropping, Ownership, Ownership, Closures That Kill-FnOnce

formatting, Formatting Values-Using the Formatting Language in Your
Own Code, Raw Pointers

fundamental types for representing, Fundamental Types-Beyond the
Basics

moves, More Operations That Move

passing by, References to Values, IntoIterator Implementations,
Collections

receiving via channels, Receiving Values

references and, References to Values-References to Slices and Trait
Objects

sending via channels, Sending Values-Sending Values

sets and differences in “equal” values, When Equal Values Are Different

static, Receiving References as Function Arguments, Modules, Statics
and Constants

String and str types, Parsing Other Types from Strings-Converting Other
Types to Strings

variable capture, Capturing Variables

variables

assigning to, More Operations That Move

borrowing local, Borrowing a Local Variable-Borrowing a Local

Variable

condition, Condition Variables (Condvar)

declaring from foreign libraries, Declaring Foreign Functions and
Variables-Declaring Foreign Functions and Variables

global, Global Variables-Global Variables

ownership, Handling Command-Line Arguments, Ownership and
Moves-Rc and Arc: Shared Ownership, Borrow and ToOwned at Work:
The Humble Cow

in patterns, Literals, Variables, and Wildcards in Patterns

static, Global Variables

Vec type, Handling Command-Line Arguments

append method, Growing and Shrinking Vectors

building from VecDeque, VecDeque<T>

capacity method, Growing and Shrinking Vectors

clear method, Growing and Shrinking Vectors

dedup method, Growing and Shrinking Vectors

dedup_by method, Growing and Shrinking Vectors

dedup_by_key method, Growing and Shrinking Vectors

drain method, Growing and Shrinking Vectors

extend method, Growing and Shrinking Vectors

insert method, Growing and Shrinking Vectors

pop method, Growing and Shrinking Vectors

push method, Growing and Shrinking Vectors

remove method, Growing and Shrinking Vectors

reserve method, Growing and Shrinking Vectors

reserve_exact method, Growing and Shrinking Vectors

resize method, Growing and Shrinking Vectors

resize_with method, Growing and Shrinking Vectors

retain method, Growing and Shrinking Vectors

shrink_to_fit method, Growing and Shrinking Vectors

split_off method, Growing and Shrinking Vectors

swap_remove method, Swapping

truncate method, Growing and Shrinking Vectors

with_capacity method, Growing and Shrinking Vectors

vec! macro, Vectors, Vec<T>, Repetition-Repetition

Vec<T> collection type, Arrays, Vectors, and Slices, Vectors, Overview,
Vec<T>-Rust Rules Out Invalidation Errors

accessing elements, Accessing Elements-Accessing Elements

comparing slices, Comparing Slices

growing/shrinking vectors, Growing and Shrinking Vectors-Growing
and Shrinking Vectors

invalidation errors, ruling out, Rust Rules Out Invalidation Errors

iteration, Iteration

joining, Joining

random elements, Random Elements

searching, Sorting and Searching

sorting, Sorting and Searching

splitting, Splitting-Splitting

swapping, Swapping

Vec<u8>, Other Reader and Writer Types

VecDeque, Overview, VecDeque<T>-VecDeque<T>

back method, VecDeque<T>

back_mut method, VecDeque<T>

front method, VecDeque<T>

front_mut method, VecDeque<T>

make_contiguous method, VecDeque<T>

pop_back method, VecDeque<T>

pop_front method, VecDeque<T>

push_back method, VecDeque<T>

push_front method, VecDeque<T>

VecDeque::from(vec), VecDeque<T>

vector of Ts, Arrays, Vectors, and Slices

vectors, Vectors-Vectors, Growing and Shrinking Vectors-Growing and
Shrinking Vectors

versions, file, Specifying Dependencies

vertical bar (|), Matching Multiple Possibilities

virtual table (vtable), Trait object layout

W

waker, Futures, Primitive Futures and Executors: When Is a Future Worth
Polling Again?-Implementing block_on

weak pointers, Rc and Arc: Shared Ownership

web server, creating with Rust, Serving Pages to the Web-Serving Pages to
the Web

well-behaved program, Rust’s rules for, Undefined Behavior

while let loop, Loops

while loop, Rust Functions, Loops, Control Flow in Loops

whole-set operations, Whole-Set Operations

wildcards, Paths and Imports, Versions, Literals, Variables, and Wildcards in
Patterns

Windows

files and directories, Platform-Specific Features

OsStr and, OsStr and Path

Rust package for, rustup and Cargo

using functions from libraries, Using Functions from Libraries

work-stealing, Rayon

worker pools, Concurrency

workspaces, Workspaces

wrapping operations, Checked, Wrapping, Saturating, and Overflowing
Arithmetic, Checked, Wrapping, Saturating, and Overflowing Arithmetic

wrapping_offset method, Raw Pointers, Dereferencing Raw Pointers Safely

write function, Reading and Writing Files

write method, Traits and Generics, Default Methods

Write trait, Input and Output

appending and inserting text, Appending and Inserting Text

flush method, Writers

using formatting language in your code, Using the Formatting Language
in Your Own Code

write method, Writers

write_all method, Writers

write! macro, Binary Operators, Appending and Inserting Text, Formatting
Values, Writers

WriteBytesExt trait, Binary Data, Compression, and Serialization

writeln! macro, Printing Errors, Appending and Inserting Text, Formatting
Values, Writers

writers, Readers and Writers, Writers-Writers

binary data, compression, serialization, Binary Data, Compression, and
Serialization-Binary Data, Compression, and Serialization

files, Files

other types, Other Reader and Writer Types-Other Reader and Writer
Types

Seek trait, Seeking

write_image function, Writing Image Files

write_unaligned, Moving into and out of Memory

write_volatile, Moving into and out of Memory

Y

yield_now, Long Running Computations: yield_now and spawn_blocking-
Long Running Computations: yield_now and spawn_blocking

Z

zero-overhead principle, And Yet Rust Is Still Fast

zero-tuple, Tuples

Zeroable trait, Unsafe Traits

zip adapter, zip

About the Authors

Jim Blandy has been programming since 1981 and writing free software
since 1990. He has been the maintainer of GNU Emacs and GNU Guile, and
a maintainer of GDB, the GNU Debugger. He is one of the original designers
of the Subversion version control system. Jim now works on Firefox’s
graphics and renderiing for Mozilla.

Jason Orendorff works on undisclosed Rust projects at GitHub. He
previously worked on the SpiderMonkey JavaScript engine at Mozilla. He is
interested in grammar, baking, time travel, and helping people learn about
complicated topics.

Leonora Tindall is a type system enthusiast and software engineer who uses
Rust, Elixir, and other advanced languages to build robust and resilient
systems software in high-impact areas like healthcare and data ownership.
She works on a variety of open source projects, from genetic algorithms that
evolve programs in strange languages to the Rust core libraries and crate
ecosystem, and enjoys the experience of contributing to supportive and
diverse community projects. In her free time, Leonora builds electronics for
audio synthesis and is an avid radio hobbyist. Her love of hardware extends
to her software engineering practice as well. She has built applications
software for LoRa radios in Rust and Python and uses software and DIY
hardware to create experimental electronic music on a Eurorack synthesizer.

Colophon

The animal on the cover of Programming Rust is a Montagu’s crab (Xantho
hydrophilus). Montagu’s crab has been found in the northeastern Atlantic
Ocean and in the Mediterranean Sea. It lives under rocks and boulders during
low tide. If one is exposed when a rock is lifted, it will aggressively hold its
pincers up and spread them wide open to make itself appear bigger.

This robust-looking crab has a muscly appearance with a broad carapace
about 70 mm wide. The edge of the carapace is furrowed, and the color is
yellowish or reddish-brown. It has 10 legs: the front pair (the chelipeds) are
equal in size with black-tipped claws or pincers; then there are three pairs of
walking legs that are stout and relatively short; and the last pair of legs are for
swimming. They walk and swim sideways.

This crab is an omnivore. They eat mostly algae, snails, and crabs of other
species. They are mostly active at night. Egg-bearing females are found from
March through July, and the larvae are present in plankton for most of the
summer.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on an image from
Wood’s Natural History. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Systems Programmers Can Have Nice Things
	Rust Shoulders the Load for You
	Parallel Programming Is Tamed
	And Yet Rust Is Still Fast
	Rust Makes Collaboration Easier

	2. A Tour of Rust
	rustup and Cargo
	Rust Functions
	Writing and Running Unit Tests
	Handling Command-Line Arguments
	Serving Pages to the Web
	Concurrency
	What the Mandelbrot Set Actually Is
	Parsing Pair Command-Line Arguments
	Mapping from Pixels to Complex Numbers
	Plotting the Set
	Writing Image Files
	A Concurrent Mandelbrot Program
	Running the Mandelbrot Plotter
	Safety Is Invisible

	Filesystems and Command-Line Tools
	The Command-Line Interface
	Reading and Writing Files
	Find and Replace

	3. Fundamental Types
	Fixed-Width Numeric Types
	Integer Types
	Checked, Wrapping, Saturating, and Overflowing Arithmetic
	Floating-Point Types

	The bool Type
	Characters
	Tuples
	Pointer Types
	References
	Boxes
	Raw Pointers

	Arrays, Vectors, and Slices
	Arrays
	Vectors
	Slices

	String Types
	String Literals
	Byte Strings
	Strings in Memory
	String
	Using Strings
	Other String-Like Types

	Type Aliases
	Beyond the Basics

	4. Ownership and Moves
	Ownership
	Moves
	More Operations That Move
	Moves and Control Flow
	Moves and Indexed Content

	Copy Types: The Exception to Moves
	Rc and Arc: Shared Ownership

	5. References
	References to Values
	Working with References
	Rust References Versus C++ References
	Assigning References
	References to References
	Comparing References
	References Are Never Null
	Borrowing References to Arbitrary Expressions
	References to Slices and Trait Objects

	Reference Safety
	Borrowing a Local Variable
	Receiving References as Function Arguments
	Passing References to Functions
	Returning References
	Structs Containing References
	Distinct Lifetime Parameters
	Omitting Lifetime Parameters

	Sharing Versus Mutation
	Taking Arms Against a Sea of Objects

	6. Expressions
	An Expression Language
	Precedence and Associativity
	Blocks and Semicolons
	Declarations
	if and match
	if let
	Loops
	Control Flow in Loops
	return Expressions
	Why Rust Has loop
	Function and Method Calls
	Fields and Elements
	Reference Operators
	Arithmetic, Bitwise, Comparison, and Logical Operators
	Assignment
	Type Casts
	Closures
	Onward

	7. Error Handling
	Panic
	Unwinding
	Aborting

	Result
	Catching Errors
	Result Type Aliases
	Printing Errors
	Propagating Errors
	Working with Multiple Error Types
	Dealing with Errors That “Can’t Happen”
	Ignoring Errors
	Handling Errors in main()
	Declaring a Custom Error Type
	Why Results?

	8. Crates and Modules
	Crates
	Editions
	Build Profiles

	Modules
	Nested Modules
	Modules in Separate Files
	Paths and Imports
	The Standard Prelude
	Making use Declarations pub
	Making Struct Fields pub
	Statics and Constants

	Turning a Program into a Library
	The src/bin Directory
	Attributes
	Tests and Documentation
	Integration Tests
	Documentation
	Doc-Tests

	Specifying Dependencies
	Versions
	Cargo.lock

	Publishing Crates to crates.io
	Workspaces
	More Nice Things

	9. Structs
	Named-Field Structs
	Tuple-Like Structs
	Unit-Like Structs
	Struct Layout
	Defining Methods with impl
	Passing Self as a Box, Rc, or Arc
	Type-Associated Functions

	Associated Consts
	Generic Structs
	Generic Structs with Lifetime Parameters
	Generic Structs with Constant Parameters
	Deriving Common Traits for Struct Types
	Interior Mutability

	10. Enums and Patterns
	Enums
	Enums with Data
	Enums in Memory
	Rich Data Structures Using Enums
	Generic Enums

	Patterns
	Literals, Variables, and Wildcards in Patterns
	Tuple and Struct Patterns
	Array and Slice Patterns
	Reference Patterns
	Match Guards
	Matching Multiple Possibilities
	Binding with @ Patterns
	Where Patterns Are Allowed
	Populating a Binary Tree

	The Big Picture

	11. Traits and Generics
	Using Traits
	Trait Objects
	Generic Functions and Type Parameters
	Which to Use

	Defining and Implementing Traits
	Default Methods
	Traits and Other People’s Types
	Self in Traits
	Subtraits
	Type-Associated Functions

	Fully Qualified Method Calls
	Traits That Define Relationships Between Types
	Associated Types (or How Iterators Work)
	Generic Traits (or How Operator Overloading Works)
	impl Trait
	Associated Consts

	Reverse-Engineering Bounds
	Traits as a Foundation

	12. Operator Overloading
	Arithmetic and Bitwise Operators
	Unary Operators
	Binary Operators
	Compound Assignment Operators

	Equivalence Comparisons
	Ordered Comparisons
	Index and IndexMut
	Other Operators

	13. Utility Traits
	Drop
	Sized
	Clone
	Copy
	Deref and DerefMut
	Default
	AsRef and AsMut
	Borrow and BorrowMut
	From and Into
	TryFrom and TryInto
	ToOwned
	Borrow and ToOwned at Work: The Humble Cow

	14. Closures
	Capturing Variables
	Closures That Borrow
	Closures That Steal

	Function and Closure Types
	Closure Performance
	Closures and Safety
	Closures That Kill
	FnOnce
	FnMut
	Copy and Clone for Closures

	Callbacks
	Using Closures Effectively

	15. Iterators
	The Iterator and IntoIterator Traits
	Creating Iterators
	iter and iter_mut Methods
	IntoIterator Implementations
	from_fn and successors
	drain Methods
	Other Iterator Sources

	Iterator Adapters
	map and filter
	filter_map and flat_map
	flatten
	take and take_while
	skip and skip_while
	peekable
	fuse
	Reversible Iterators and rev
	inspect
	chain
	enumerate
	zip
	by_ref
	cloned, copied
	cycle

	Consuming Iterators
	Simple Accumulation: count, sum, product
	max, min
	max_by, min_by
	max_by_key, min_by_key
	Comparing Item Sequences
	any and all
	position, rposition, and ExactSizeIterator
	fold and rfold
	try_fold and try_rfold
	nth, nth_back
	last
	find, rfind, and find_map
	Building Collections: collect and FromIterator
	The Extend Trait
	partition
	for_each and try_for_each

	Implementing Your Own Iterators

	16. Collections
	Overview
	Vec<T>
	Accessing Elements
	Iteration
	Growing and Shrinking Vectors
	Joining
	Splitting
	Swapping
	Filling
	Sorting and Searching
	Comparing Slices
	Random Elements
	Rust Rules Out Invalidation Errors

	VecDeque<T>
	BinaryHeap<T>
	HashMap<K, V> and BTreeMap<K, V>
	Entries
	Map Iteration

	HashSet<T> and BTreeSet<T>
	Set Iteration
	When Equal Values Are Different
	Whole-Set Operations

	Hashing
	Using a Custom Hashing Algorithm
	Beyond the Standard Collections

	17. Strings and Text
	Some Unicode Background
	ASCII, Latin-1, and Unicode
	UTF-8
	Text Directionality

	Characters (char)
	Classifying Characters
	Handling Digits
	Case Conversion for Characters
	Conversions to and from Integers

	String and str
	Creating String Values
	Simple Inspection
	Appending and Inserting Text
	Removing and Replacing Text
	Conventions for Searching and Iterating
	Patterns for Searching Text
	Searching and Replacing
	Iterating over Text
	Trimming
	Case Conversion for Strings
	Parsing Other Types from Strings
	Converting Other Types to Strings
	Borrowing as Other Text-Like Types
	Accessing Text as UTF-8
	Producing Text from UTF-8 Data
	Putting Off Allocation
	Strings as Generic Collections

	Formatting Values
	Formatting Text Values
	Formatting Numbers
	Formatting Other Types
	Formatting Values for Debugging
	Formatting Pointers for Debugging
	Referring to Arguments by Index or Name
	Dynamic Widths and Precisions
	Formatting Your Own Types
	Using the Formatting Language in Your Own Code

	Regular Expressions
	Basic Regex Use
	Building Regex Values Lazily

	Normalization
	Normalization Forms
	The unicode-normalization Crate

	18. Input and Output
	Readers and Writers
	Readers
	Buffered Readers
	Reading Lines
	Collecting Lines
	Writers
	Files
	Seeking
	Other Reader and Writer Types
	Binary Data, Compression, and Serialization

	Files and Directories
	OsStr and Path
	Path and PathBuf Methods
	Filesystem Access Functions
	Reading Directories
	Platform-Specific Features

	Networking

	19. Concurrency
	Fork-Join Parallelism
	spawn and join
	Error Handling Across Threads
	Sharing Immutable Data Across Threads
	Rayon
	Revisiting the Mandelbrot Set

	Channels
	Sending Values
	Receiving Values
	Running the Pipeline
	Channel Features and Performance
	Thread Safety: Send and Sync
	Piping Almost Any Iterator to a Channel
	Beyond Pipelines

	Shared Mutable State
	What Is a Mutex?
	Mutex<T>
	mut and Mutex
	Why Mutexes Are Not Always a Good Idea
	Deadlock
	Poisoned Mutexes
	Multiconsumer Channels Using Mutexes
	Read/Write Locks (RwLock<T>)
	Condition Variables (Condvar)
	Atomics
	Global Variables

	What Hacking Concurrent Code in Rust Is Like

	20. Asynchronous Programming
	From Synchronous to Asynchronous
	Futures
	Async Functions and Await Expressions
	Calling Async Functions from Synchronous Code: block_on
	Spawning Async Tasks
	Async Blocks
	Building Async Functions from Async Blocks
	Spawning Async Tasks on a Thread Pool
	But Does Your Future Implement Send?
	Long Running Computations: yield_now and spawn_blocking
	Comparing Asynchronous Designs
	A Real Asynchronous HTTP Client

	An Asynchronous Client and Server
	Error and Result Types
	The Protocol
	Taking User Input: Asynchronous Streams
	Sending Packets
	Receiving Packets: More Asynchronous Streams
	The Client’s Main Function
	The Server’s Main Function
	Handling Chat Connections: Async Mutexes
	The Group Table: Synchronous Mutexes
	Chat Groups: tokio’s Broadcast Channels

	Primitive Futures and Executors: When Is a Future Worth Polling Again?
	Invoking Wakers: spawn_blocking
	Implementing block_on

	Pinning
	The Two Life Stages of a Future
	Pinned Pointers
	The Unpin Trait

	When Is Asynchronous Code Helpful?

	21. Macros
	Macro Basics
	Basics of Macro Expansion
	Unintended Consequences
	Repetition

	Built-In Macros
	Debugging Macros
	Building the json! Macro
	Fragment Types
	Recursion in Macros
	Using Traits with Macros
	Scoping and Hygiene
	Importing and Exporting Macros

	Avoiding Syntax Errors During Matching
	Beyond macro_rules!

	22. Unsafe Code
	Unsafe from What?
	Unsafe Blocks
	Example: An Efficient ASCII String Type
	Unsafe Functions
	Unsafe Block or Unsafe Function?
	Undefined Behavior
	Unsafe Traits
	Raw Pointers
	Dereferencing Raw Pointers Safely
	Example: RefWithFlag
	Nullable Pointers
	Type Sizes and Alignments
	Pointer Arithmetic
	Moving into and out of Memory
	Example: GapBuffer
	Panic Safety in Unsafe Code

	Reinterpreting Memory with Unions
	Matching Unions
	Borrowing Unions

	23. Foreign Functions
	Finding Common Data Representations
	Declaring Foreign Functions and Variables
	Using Functions from Libraries
	A Raw Interface to libgit2
	A Safe Interface to libgit2
	Conclusion

	Index
	About the Authors

