
        
            [image: Learn Wireshark - Fundamentals of Wireshark.]
        
    
        

            
            
                
Learn Wireshark






 

 

 

Confidently navigate the Wireshark interface and solve

real-world networking problems

 



 

 

 

 

 

 

 

 

 



 

Lisa Bock



 

 

 

 

 

 

 

 

 

 

 

 

 

 



BIRMINGHAM - MUMBAI



            

            
        
    
        

            
            
                


            

            
        
    
        

                            
                    Learn Wireshark

                
            
            
                
Copyright © 2019 Packt Publishing



All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 

Commissioning Editor: Vijin Boricha

Acquisition Editor: Rahul Nair

Content Development Editor: Drashti Panchal

Senior Editor: Rahul Dsouza

Technical Editor: Dinesh Pawar

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant

Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Production Designer: Joshua Misquitta

First published: August 2019

Production reference: 1220819

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78913-450-6

www.packtpub.com



            

            
        
    
        

            
            
                
 

















































I dedicate this book to my husband, Michael Bock, who encouraged me, believed in me, and told me long ago that I should be a teacher. Writing my first book was one of the most significant challenges I have had to face in my life. Thank you for supporting me through the years, for your advice, sense of humor, and kindness while helping me succeed.



            

            
        
    
        

            
            
                
 



Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.



            

            
        
    
        

                            
                    Why subscribe?

                
            
            
                

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals



	
Improve your learning with Skill Plans built especially for you



	
Get a free eBook or video every month



	
Fully searchable for easy access to vital information



	
Copy and paste, print, and bookmark content





Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks. 



            

            
        
    
        

                            
                    Contributors

                
            
            
                


            

            
        
    
        

                            
                    About the author

                
            
            
                
Lisa Bock is an associate professor in the IT department at Pennsylvania College of Technology, in Williamsport, PA. Some of the courses she has taught since 2003 include networking, security, biometrics, protocol vulnerabilities using Wireshark, CCNA security, and unified communications. In addition to this, she is a LinkedIn learning instructor and has published over 30 courses, mainly in cybersecurity and networking. She holds an MS from UMUC along with numerous other certifications. She has had training in forensics, biometrics, networking, steganography, and network security. She is involved with various volunteer activities, has evaluated professional journals, and is an award-winning, nationally known speaker.

I would like to thank my friends Denise Leete, Missy Miller, and Pat Coulter who have been a part of my fabric for many years and have been supportive in so many personal ways. You each deserve all the kindness and patience the world has to give, as you so freely give it from yourselves. And also, to my colleagues Jeffrey Weaver and Edward Henninger. Thank you both for sharing your gift of time to mentor and guide me throughout my journey.



            

            
        
    
        

                            
                    About the reviewer

                
            
            
                
Dario Lombardo is a computer engineer. He graduated in 2001 from Politecnico di Torino, Italy. Dario specializes in computer networks and security. His main interests include network protocol security and Linux OS. He has contributed to numerous open source projects, such as tcpdump, libpcap, and the Linux kernel, just to name a few. Moreover, he has co-authored several scientific papers published in many scientific conferences. He also has a PMP certification from the PMI institute. He started working on the Wireshark project in 2013 and became a core developer in 2016. His areas of expertise are the development of external capture sources (extcaps), support for Elasticsearch, and continuous integration.

I'd like to thank my wife, Valentina, for always supporting me, my kids, Pietro and Sara, because they remind me everyday that we need to strive for the best. A special acknowledgment goes to Peter Wu, a fellow core developer: he's the youngest and most talented developer I've ever met. Finally, thanks to Gerald and all the Wireshark developers for the fun I have had while working on this project.

 

 

 

 



            

            
        
    
        

                            
                    Packt is searching for authors like you

                
            
            
                
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.



            

            
        
                                           Table of Contents
                                                                 
	             Title Page           
 	             Copyright and Credits          
	             Learn Wireshark           
 
 
 	             Dedication           
 	             About Packt          
	             Why subscribe?           
 
 
 	             Contributors          
	             About the author           
 	             About the reviewer           
 	             Packt is searching for authors like you           
 
 
 	             Preface          
	             Who this book is for           
 	             What this book covers           
 	             To get the most out of this book          
	             Download the example code files           
 	             Download the color images           
 	             Conventions used           
 
 
 	             Get in touch          
	             Reviews           
 
 
 
 
 	             Section 1: Traffic Capture Overview           
 	             Appreciating Traffic Analysis          
	             Reviewing packet analysis          
	             Exploring early packet sniffers            
 	             Evaluating devices that use packet analysis           
 	             Capturing network traffic           
 
 
 	             Recognizing who benefits from using packet analysis          
	             Assisting developers           
 	             Helping network administrators monitor the network          
	             Expert system and intelligent scrollbar           
 	             Subsetting traffic, comment, save, and export           
 
 
 	             Educating students on protocols           
 	             Alerting security analysts of threats           
 	             Arming hackers with information          
	             Outlining passive attacks           
 	             Understanding active attacks          
	             Poisoning the cache           
 
 
 
 
 
 
 	             Identifying where to use packet analysis          
	             Analyzing traffic on a LAN          
	             Sniffing traffic on a host           
 	             Using packet analysis in the real world           
 
 
 
 
 	             Outlining when to use packet analysis          
	             Troubleshooting latency issues           
 	             Testing IoT devices           
 	             Monitoring for threats           
 	             Baselining the network           
 
 
 	             Getting to know Wireshark           
 	             Summary            
 	             Questions           
 
 
 	             Using Wireshark NG          
	             Discovering the beginnings of today's Wireshark          
	             Developing Ethereal           
 
 
 	             Examining the Wireshark interface          
	             Introducing Wireshark next generation           
 	             Enhancements           
 	             Authors           
 
 
 	             Understanding the phases of packet analysis          
	             Gathering network traffic          
	             Capturing in promiscuous mode           
 	             Using a capture engine           
 
 
 	             Decoding the raw bits          
	             Enhanced Packet Analyzer (EPAN)           
 
 
 	             Displaying the captured data           
 	             Analyzing the packet capture           
 
 
 	             Using command-line tools          
	             Exploring tshark           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Installing Wireshark on a PC or macOS          
	             Discovering support for different OS          
	             Using Wireshark on Windows           
 	             Running Wireshark on Unix            
 	             Installing Wireshark on macOS           
 	             Deploying Wireshark on Linux          
	             Downloading premade virtual images           
 
 
 	             Working with Wireshark on other systems           
 
 
 	             Comparing different capture engines          
	             Understanding libpcap           
 	             Examining WinPcap           
 	             Reviewing AirPCap           
 	             Grasping Npcap          
	             Understanding Npcap features           
 
 
 
 
 	             Performing a standard Windows installation          
	             Beginning the installation           
 	             Choosing components           
 	             Creating shortcuts and selecting an install location           
 	             Capturing packets and completing the installation           
 
 
 	             Reviewing the resources available at Wireshark.org          
	             Evaluating different download options           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Exploring the Wireshark Interface          
	             Understanding the Wireshark welcome screen          
	             Opening files           
 	             Capturing traffic           
 	             Learning about Wireshark           
 
 
 	             Exploring the File menu          
	             Opening a file, close, and save           
 	             Exporting packets, bytes, and objects           
 	             Printing packets and closing Wireshark           
 
 
 	             Discovering the Edit menu          
	             Copying items and finding packets           
 	             Marking or ignoring packets           
 	             Setting a time reference           
 	             Personalizing your work area           
 
 
 	             Exploring the View menu          
	             Enhancing the interface           
 	             Adjusting time formats and name resolution           
 	             Modifying the display           
 	             Refreshing the view           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Section 2: Getting Started with Wireshark           
 	             Tapping into the Data Stream          
	             Reviewing the network architecture          
	             Comparing different types of networks          
	             Discovering the PAN           
 	             Checking out LANs           
 	             Exploring CANs           
 	             Navigating WANs           
 
 
 	             Exploring various types of media          
	             Exploring copper           
 	             Using fiber optic           
 	             Discovering wireless           
 
 
 
 
 	             Learning various capture methods          
	             Providing input           
 	             Directing output           
 	             Selecting options           
 
 
 	             Tapping into the stream          
	             Comparing conversations and endpoints           
 
 
 	             Realizing the importance of baselining          
	             Planning the baseline           
 	             Capturing traffic           
 	             Analyzing the captured traffic           
 	             Saving the baselines           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Personalizing the Interface          
	             Personalizing the layout and general appearance          
	             Changing the layout           
 	             Altering the appearance           
 
 
 	             Creating a tailored configuration profile           
 	             Adjusting columns, font, and colors          
	             Adding, editing, and deleting columns          
	             Demonstrating how to use field occurrence           
 
 
 	             Refining the font and colors           
 
 
 	             Adding comments          
	             Attaching comments to files           
 	             Entering packet comments           
 	             Viewing and saving comments           
 
 
 	             Modifying complex expressions          
	             Creating expressions           
 	             Crafting buttons           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Using Display and Capture Filters          
	             Filtering network traffic          
	             Comparing display and capture filters           
 
 
 	             Comprehending display filters          
	             Using bookmarks           
 	             Editing display filters           
 
 
 	             Creating capture filters          
	             Saving to bookmarks           
 	             Modifying capture filters           
 
 
 	             Understanding the expression builder          
	             Building an expression           
 
 
 	             Discovering shortcuts and handy filters          
	             Embracing filter shortcuts           
 	             Applying useful filters           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Outlining the OSI Model          
	             Comprehending the OSI model           
 	             Discovering the purpose, protocols, and PDUs          
	             Evaluating the application layer          
	             Exploring protocols and the PDU           
 
 
 	             Understanding the presentation layer          
	             Describing the protocols and the PDU           
 
 
 	             Learning about the session layer          
	             Recognizing protocols and the PDU           
 
 
 	             Appreciating the transport layer          
	             Differentiating protocols and the PDU          
	             TCP           
 	             UDP           
 
 
 	             Providing port addressing           
 
 
 	             Explaining the network layer          
	             Distinguishing the protocols and the PDU          
	             IP           
 	             ARP           
 	             ICMP           
 
 
 	             Supplying an IP address for the packet           
 
 
 	             Examining the data link layer          
	             Investigating protocols and the PDU           
 	             Describing the data link layer address           
 
 
 	             Traveling over the physical layer          
	             Exemplifying protocols and the PDU           
 
 
 
 
 	             Exploring the encapsulation process          
	             Viewing the data           
 	             Identifying the segment           
 	             Identifying the packet           
 	             Forming the frame           
 
 
 	             Demonstrating frame formation in Wireshark          
	             Examining the network bindings           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Section 3: The Internet Suite TCP/IP           
 	             Decoding TCP and UDP          
	             Reviewing the purpose of the transport layer           
 	             Describing TCP          
	             Exploring a single TCP frame           
 
 
 	             Examining the eleven-field TCP header          
	             Navigating the TCP header fields          
	             Exploring TCP ports           
 	             Sequencing and acknowledging data           
 	             Following the flags           
 	             Dissecting the window size           
 	             Additional header values           
 
 
 
 
 	             Understanding UDP          
	             A single UDP frame           
 
 
 	             Discovering the four-field UDP header          
	             Analyzing the UDP header fields           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Managing TCP Connections          
	             Dissecting the three-way handshake          
	             Isolating a single stream          
	             Marking the TCP handshake           
 
 
 	             Identifying the handshake packets          
	             Sending the SYN packet           
 	             Returning the SYN-ACK packet           
 	             Finalizing with an ACK packet           
 
 
 
 
 	             Learning TCP options          
	             Grasping the EOL           
 	             Using NOP           
 	             Defining the MSS           
 	             Scaling the window size           
 	             Permitting SACK           
 	             Using timestamps           
 
 
 	             Understanding TCP protocol preferences          
	             Modifying TCP preferences           
 
 
 	             Tearing down a connection           
 	             Summary           
 	             Questions           
 
 
 	             Analyzing IPv4 and IPv6          
	             Understanding the purpose of the IP           
 	             Outlining IPv4          
	             Dissecting the IPv4 header          
	             Discovering the version and the length           
 	             Breaking down the type of service          
	             Ensuring QoS           
 	             Sending an ECN           
 
 
 	             Fragmenting the data           
 	             Viewing TTL, protocol, and checksum           
 	             Learning IPv4 addressing          
	             Comparing IPv4 classes and addresses           
 	             Reviewing special and private IP addressing           
 
 
 
 
 	             Modifying options for IPv4           
 
 
 	             Exploring IPv6          
	             Navigating the IPv6 header fields          
	             Identifying the version, traffic class, and flow label           
 	             Evaluating the length, next header, and hop limit           
 	             Examining IPv6 addresses and address types           
 	             Comparing IPv6 address types           
 
 
 
 
 	             Editing protocol preferences          
	             Reviewing IPv4 preferences           
 	             Adjusting preferences for IPv6           
 
 
 	             Discovering tunneling protocols           
 	             Summary           
 	             Questions           
 
 
 	             Discovering ICMP          
	             Understanding the purpose of ICMP          
	             Understanding the ICMP header           
 	             Investigating the data payload           
 
 
 	             Dissecting ICMPv4 and ICMPv6          
	             Reviewing ICMPv4           
 	             Outlining ICMPv6           
 
 
 	             Sending ICMP messages          
	             Reporting errors           
 	             Issuing queries          
	             Providing information using ICMPv6           
 
 
 
 
 	             Evaluating type and code values          
	             Reviewing ICMP type and code values           
 	             Defining ICMPv6 type and code values           
 
 
 	             Configuring firewall rules          
	             Sending malicious ping sweeps           
 	             Allowing only necessary types           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Understanding ARP          
	             Understanding the role and purpose of ARP          
	             Resolving MAC addresses           
 	             Investigating an ARP cache           
 	             Replacing ARP with NDP in IPv6           
 
 
 	             Exploring ARP headers and fields          
	             Identifying a standard ARP request/reply            
 	             Breaking down the ARP header fields           
 
 
 	             Examining different types of ARP          
	             Reversing ARP           
 	             Evaluating InARP           
 	             Issuing a gratuitous ARP           
 	             Working on behalf of ARP           
 
 
 	             Analyzing ARP attacks          
	             Comparing ARP attacks and tools          
	             Discovering ARP spoofing           
 	             Reviewing the ARP storm           
 	             Understanding ARP attack tools           
 
 
 	             Defending against ARP attacks           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Section 4: Working with Packet Captures           
 	             Troubleshooting Latency Issues          
	             Analyzing latency issues          
	             Grasping latency, throughput, and packet loss          
	             Computing latency           
 	             Measuring throughput           
 	             Experiencing packet loss           
 
 
 	             Learning the importance of time values           
 
 
 	             Understanding the coloring rules           
 	             Exploring the Intelligent Scrollbar          
	             Common transmission errors          
	             Seeing duplicate acknowledgments           
 	             Observing keep-alive segments           
 	             Issuing retransmissions           
 
 
 
 
 	             Discovering the expert system          
	             Viewing the column headers           
 	             Assessing the severity           
 	             Organizing the information          
	             Sorting the data           
 
 
 	             Searching for values           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Subsetting, Saving, and Exporting Captures          
	             Discovering ways to subset traffic          
	             Dissecting the capture by IP address           
 	             Narrowing down by conversations           
 	             Minimizing by port number           
 	             Breaking down by protocol           
 	             Subsetting by stream           
 
 
 	             Understanding options to save a file          
	             Using Save as           
 
 
 	             Recognizing ways to export components          
	             Selecting specified packets           
 	             Exporting various objects           
 
 
 	             Identifying why and how to add comments          
	             Providing file and packet comments           
 	             Saving and viewing comments           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Using CloudShark for Packet Analysis          
	             Diving into an overview of CS          
	             Finding CS           
 
 
 	             Sharing captures in CS           
	             Modifying the preferences           
 	             Uploading captures           
 
 
 	             Outlining the various filters and graphs          
	             Displaying data using filters           
 	             Viewing data using graphs           
 
 
 	             Evaluating the different analysis tools          
	             Following the stream and view conversations           
 	             Viewing packet lengths and VoIP activity           
 	             Exploring wireless, protocols, and possible threats           
 
 
 	             Discovering where to find sample captures          
	             Downloading captures           
 
 
 	             Summary           
 	             Questions           
 
 
 	             Assessment          
	             Chapter 1: Appreciating Traffic Analysis           
 	             Chapter 2: Using Wireshark NG           
 	             Chapter 3: Installing on a PC or macOS           
 	             Chapter 4: Exploring the Wireshark Interface           
 	             Chapter 5: Tapping into the Data Stream           
 	             Chapter 6: Personalizing the Interface           
 	             Chapter 7: Using Display and Capture Filters           
 	             Chapter 8: Outlining the OSI Model           
 	             Chapter 9: Decoding TCP and UDP           
 	             Chapter 10: Managing TCP Connections           
 	             Chapter 11: Analyzing IPv4 and IPv6           
 	             Chapter 12: Discovering ICMP           
 	             Chapter 13: Understanding ARP           
 	             Chapter 14: Troubleshooting Latency Issues           
 	             Chapter 15: Subsetting, Saving, and Exporting Captures           
 	             Chapter 16:Using CloudShark for Packet Analysis           
 
 
 	             Other Books You May Enjoy          
	             Leave a review - let other readers know what you think           
 
 
 
                                                          
        

                            
                    Preface

                
            
            
                
This book provides a solid overview of basic protocol analysis using Wireshark. This book will show you how to navigate the Wireshark interface so that you can confidently examine common protocols such as Transmission Control Protocol (TCP), Internet Protocol (IP), and Internet Control Message Protocol (ICMP). We'll begin by outlining the benefits of traffic analysis. We'll then walk through the evolution of Wireshark, and step through the phases of packet analysis. We'll review some of the command-line tools and outline how to download and install Wireshark on either a PC or Mac. 

Then, we'll gain a better understanding of what happens when you tap into a data stream. You'll learn how to personalize the Wireshark interface, and then we'll compare display and capture filters and summarize the Open Systems Interconnection (OSI) model and data encapsulation. We'll then take a closer look at some of the protocols that move data in the TCP/IP suite, and dissect the TCP handshake and teardown process. We'll conclude with advanced ways to work with packet captures, including how to troubleshoot network latency issues; how to subset, save, and export; and how to use and share captures with colleagues using CloudShark. 




            

            
        
    
        

                            
                    Who this book is for

                
            
            
                
This book is for network administrators, security analysts, students, teachers, and anyone interested in learning about packet analysis using Wireshark. Basic knowledge of network fundamentals, devices, and protocols, along with understanding of different topologies, will be beneficial.



            

            
        
    
        

                            
                    What this book covers

                
            
            
                
Chapter 1, Appreciating Traffic Analysis, describes the countless places and reasons to conduct packet analysis. In addition to this, we'll cover the many benefits of using Wireshark, an open source software that includes many rich features.

Chapter 2, Using Wireshark NG, starts with an overview of the beginnings of today's Wireshark. We'll examine the interface and review the phases of packet analysis. Finally, we'll cover the built-in tools, with a closer look at tshark (or terminal-based Wireshark), a lightweight alternative to Wireshark.





Chapter 3, Installing Wireshark on a PC or macOS, illustrates how Wireshark provides support for different operating systems (OSes). We'll compare the different capture engines, walk through a standard Windows installation, and then review the resources available at https://www.wireshark.org/.

Chapter 4, Exploring the Wireshark Interface, provides a deeper dive into some of the common elements of Wireshark to improve your workflow. We'll investigate the welcome screen and common menu choices, such as File, Edit, and View, so that you can easily navigate the interface during an analysis.

Chapter 5, Tapping into the Data Stream, starts with a comparison of the different network architectures and then moves onto the various capture options. You'll discover the conversations and endpoints you'll see when tapping into the stream, and then learn about the importance of baselining network traffic.

Chapter 6, Personalizing the Interface, helps you to realize all the ways you can customize the many aspects of the interface. You'll learn how to personalize the layout and general appearance, create a tailored configuration profile, adjust the columns, font, and color, and create buttons.

Chapter 7, Using Display and Capture Filters, helps to make examining a packet capture less overwhelming. We'll take a look at how to narrow your scope by filtering network traffic. We'll compare and contrast display and capture filters. We'll conclude with a good look at the expression builder, and discover the shortcuts used to build filters.

Chapter 8, Outlining the OSI Model, provides an overview of the OSI model, a seven-layer framework that outlines how the OS prepares data for transport on the network. We'll review the purpose, protocols, and Protocol Data Units (PDUs) of each layer, explore the encapsulation process, and demonstrate the frame formation in Wireshark. 


Chapter 9, Decoding TCP and UDP, is a deep dive into two of the key protocols in the transport layer: the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). We'll review the purpose of the transport layer and then evaluate the header and field values of both TCP and UDP

Chapter 10, Managing TCP Connections, begins by examining the three-way handshake. We'll discover the TCP options, get a better understanding of the TCP protocol preferences, and then conclude with an overview of the TCP teardown process.

Chapter 11, Analyzing IPv4 and IPv6, provides a solid understanding of the purpose of the Internet Protocol (IP). We'll outline IPv4 and the header fields and then explore IPv6 along with the streamlined header. We'll take a look at the protocol preferences, and see how IPv4 and IPv6 can coexist by using tunneling protocols.

Chapter 12, Discovering ICMP, details the purpose of the Internet Control Message Protocol (ICMP). We'll dissect ICMP and ICMPv6 and compare query and error messages. We'll look at the ICMP type and code values. We'll cover how ICMP can be used in malicious ways and outline the importance of configuring firewall rules.

Chapter 13, Understanding ARP, takes a closer look at the Address Resolution Protocol (ARP), which is a significant protocol in delivering data. We'll outline the role and purpose of ARP, explore the header and fields, describe the different types of ARP, and take a brief look at ARP attacks.

Chapter 14, Troubleshooting Latency Issues, outlines how even a beginner can diagnose network problems. We'll explore the coloring rules and the Intelligent Scrollbar, and then conclude with an overview of the expert system, which subdivides the alerts into categories and guides you through a more targeted evaluation.

Chapter 15, Subsetting, Saving, and Exporting Captures, helps you to discover the many different ways in which to break down a packet capture into smaller files for analysis. We'll cover the different options when saving a file; discover ways to export components, such as objects, session keys, and packet bytes; and then outline why and how to add comments.

Chapter 16, Using CloudShark for Packet Analysis, covers CloudShark, which is an online application that is similar to Wireshark. You'll learn how to filter traffic and generate graphs. We'll then review how you can share captures with colleagues, and show you where you can find sample captures so that you can continue improving your skills.



            

            
        
    
        

                            
                    To get the most out of this book

                
            
            
                
With Wireshark, you can capture data live from a network interface or open and examine pre-captured packets. Once you start working with a packet capture, you will want to make sense of the file and what the packets are telling you.

This book will teach you how to conduct a detailed search, follow the data stream, and identify endpoints so that you can troubleshoot latency issues and actively recognize network attacks.

To prepare for working with Wireshark, download and install the latest version on your system. Detailed instructions are listed in Chapter 3, Installing Wireshark on a PC or macOS, on how to install on a Windows OS.

To get the most out of each chapter, when there is a reference to a packet capture, download the files so that you can follow along with the lessons.





In addition to this, practice your skills on your own and, in particular, review the common protocols in the TCP/IP suite so that you can deepen your knowledge and become more proficient in packet analysis.



            

            
        
    
        

                            
                    Download the example code files

                
            
            
                
All Wireshark capture files are referenced within the book. We will download the capture files from the many online repositories so that you can follow along with the lessons.



            

            
        
    
        

                            
                    Download the color images

                
            
            
                
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781789134506_ColorImages.pdf.



            

            
        
    
        

                            
                    Conventions used

                
            
            
                
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "To write to a file, use -w, then the filename and path."

Any command-line input or output is written as follows:

C:\Program Files\Wireshark>tshark -i "ethernet 2" -w Test-Tshark.pcap -a duration:10

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Once, you're on CloudShark, select the Export | Download File drop-down menu."

Warnings or important notes appear like this.

Tips and tricks appear like this.



            

            
        
    
        

                            
                    Get in touch

                
            
            
                
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.



            

            
        
    
        

                            
                    Reviews

                
            
            
                
Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.



            

            
        
    
        

                            
                    Section 1: Traffic Capture Overview

                
            
            
                
This section will enable you to understand the benefits of traffic analysis, learn about the evolution of Wireshark, step through the phases of packet analysis, review Wireshark CLI tools, outline how to download and install Wireshark on either PC or macOS, and explore the Wireshark interface.

This section is comprised of the following chapters:


	Chapter 1, Appreciating Traffic Analysis

	Chapter 2, Using Wireshark NG

	Chapter 3, Installing Wireshark on PC or macOS

	Chapter 4, Exploring the Wireshark Interface





            

            
        
    
        

                            
                    Appreciating Traffic Analysis

                
            
            
                
Today's networks are complex, and if there are issues, then, on many occasions, the only way you can solve the problem is if you can see the problem. Packet sniffers such as Wireshark have been around for that very reason for many years. In addition to manually conducting packet analysis using Wireshark, today's devices incorporate the ability to pull data from the network and examine the contents to determine whether the data should be allowed on the network.

This chapter will help you recognize the many benefits of using Wireshark for packet analysis. You'll learn about Wireshark and its history as an exceptional open source software product that includes many rich features. You'll see how everyone can benefit from using packet analysis, including network administrators, students, and security analysts. You'll be able to identify the many places to conduct packet analysis, including on a LAN, on a host, or in the real world. Finally, you will gain a better understanding of the many ways in which Wireshark can provide a key role in troubleshooting, testing, baselining, and monitoring for threats.

This chapter will address all of this by covering the following:


	Reviewing packet analysis

	Recognizing who benefits from using packet analysis

	Identifying where to use packet analysis

	Outlining when to use packet analysis

	Getting to know Wireshark





            

            
        
    
        

                            
                    Reviewing packet analysis

                
            
            
                
Packet analysis is the process of examining packets to understand the characteristics and structure of the traffic flow.

When monitoring the network for analysis, we capture traffic using specialized software. Once the data is captured and we save the file, the software stores the capture, in a file that is commonly called a packet capture or PCAP file.

The analyst can complete packet analysis by either studying one packet at a time or as a complete capture. Packet analysis can be done during a live capture or by using a previously captured packet.

Network administrators use packet analysis to gain information about current network conditions. Security analysts use packet analysis to determine whether there is anything unusual or suspicious about the traffic when carrying out a forensic investigation. Students use packet analysis as a learning tool, to better understand the protocols. In addition, packet analysis is also used by hackers to sniff network traffic in order to gain valuable information about the network while conducting footprinting and reconnaissance.

We use packet analysis in many places, including on a LAN, on a host, or in the real world. We also use packet analysis when troubleshooting latency issues, testing Internet of Things (IoT) devices, and as a tool to baseline the network.

Today, packet analysis using Wireshark is a valuable skill. However, analyzing packets has been around in the networking world for many years. As early as the 1990s, there were various tools that enabled analysts to carry out packet analysis on the network to troubleshoot errors and to monitor server and network behavior. In the next section, we'll examine some of the early tools used to monitor network activity.



            

            
        
    
        

                            
                    Exploring early packet sniffers 

                
            
            
                
Packet analysis has been around in some form for over 20 years as a diagnostic tool, to observe data and other information traveling across the network. Packet analysis is also referred to as sniffing. The term refers to early packet sniffers, which sniffed or captured traffic as it traveled across the network. In the 1990s, Novell, a software company, developed the Novell LANalyzer, which had a graphical UI and a dashboard feature, as shown in the following diagram:



LANalyzer interface

At the same time, Microsoft introduced its network monitor. Over the last 20 years, there have been many other packet analyzers and tools to sniff traffic that include the following:




	
Tool


	
Description





	
Cain and Abel


	
Can gather passwords and can record VoIP conversations





	
NarusInsight


	
Formerly Carnivore, can monitor all internet traffic





	
dSniff


	
Passively monitors a network for interesting traffic





	
Ettercap


	
Eavesdrops to capture passwords, emails, and files





	
Tcpdump


	
Protocol analyzer that runs from the command line





	
Security Onion


	
Open source tool that combines packet capture with an Intrusion Detection System (IDS)





	
Wireshark


	
Packet sniffer used to analyze network traffic







 

Most packet analyzers have similar features. They capture the data, decode the raw bits in the headers to field values according to the appropriate Request for Comment (RFC) or other specifications, and present the data in a meaningful fashion.

The packet analysis tools range from very simple text-based analysis, such as terminal based Wireshark (tshark), as shown in the screenshot below, or tools that have a rich graphical UI with advanced AI-based expert systems that guide the analyst through a more targeted evaluation:



Sample output from Tshark

In the next section, we'll take a look at the various devices in use today that use packet analysis.



            

            
        
    
        

                            
                    Evaluating devices that use packet analysis

                
            
            
                
Packet analysis and packet sniffing are used by many devices on the network, including routers, switches, and firewall appliances. As data flows across the network, it passes through various network devices, which interpret the packet's raw bits and examine the field values in each packet to decide on what action should be taken.

A router captures the traffic and examines the IP header to determine where to send the traffic, as a part of the routing process. An IDS will capture the traffic and examine the contents and alert the network administrator if there is any unusual or suspicious behavior.

A firewall monitors all traffic and will drop any packets that are not in line with the Access Control List (ACL). For example, when data passes through a firewall, the device examines the traffic and determines whether to allow or deny the packets according to the ACL. For example, this ACL has the following entries:


	Allow outbound SYN packets. The destination port is 80.

	Allow inbound SYN-ACK packets. The source port is 80.



As shown in the following diagram firewall with an ACL, in order to decide whether to allow or deny a packet, the firewall must evaluate the packet header and check to see what TCP flags are set and what port numbers are in use. If the packet does not meet the ACL entry, then the firewall will drop the packet:



Firewall with an ACL

It's important to note that a packet sniffer sniffs traffic but doesn't modify the contents in any way. It simply gathers the traffic for analysis as it travels across the network.

As we can see, packet sniffing and analysis have been influential for many years as elements of managing networks. The first step in analysis is capturing traffic, which we will explore in the next section.



            

            
        
    
        

                            
                    Capturing network traffic

                
            
            
                
On today's networks, a Network Interface Card (NIC) will only monitor traffic that is addressed to that host. We can, however, put the card into a state called promiscuous mode. Promiscuous mode is when the network adapter gathers not only traffic that is destined to that host, but all the traffic that is on the network, and is commonly used to monitor network activity. Therefore, to capture all network traffic, the NIC must be in promiscuous mode.

On a Windows machine, you can check to see whether the interface card is in promiscuous mode by running the following command in PowerShell:

Windows PowerShell
Copyright (C) 2014 Microsoft Corporation. All rights reserved.
PS C:\Users\Admin> Get-NetAdapter | Format-List -Property PromiscuousMode
PromiscuousMode : False

We use packet analysis to understand the characteristics of the traffic flow. Although you can conduct packet analysis during a live capture, it's common to capture traffic and save it for further analysis. Common steps to capture packets for analysis are as follows:


	Install Wireshark and the appropriate packet capture engine. 

	Launch Wireshark and select the appropriate capture options.

	Start the capture and run until you capture 1,000 – 2,000 packets.

	Stop the capture and save the trace file in the appropriate format.

	Analyze the capture by studying one packet at a time, or as a complete capture.



In some cases, you may need to send a packet capture to the corporate or security analyst for further analysis.

Wireshark allows us to capture, display, and filter data live from a single or multiple network interface(s). In addition you can examine pre-captured packets, search with granular details, and follow the data stream. As a result, packet analysis is advantageous as it helps to understand the nature of the network. The following section outlines the many different individuals who can benefit from using Wireshark for packet analysis.



            

            
        
    
        

                            
                    Recognizing who benefits from using packet analysis

                
            
            
                
Everyone can benefit from using packet analysis, including developers, network administrators, students, and security analysts. Let's look at each and explore the benefits that can be reaped through packet analysis. We'll start with developers, who can see how their program responds to requests on the network in real time.



            

            
        
    
        

                            
                    Assisting developers

                
            
            
                
Application performance issues can affect the bottom line, especially in a mission-critical situation. Developers diligently strive to produce elegant and efficient software. Prior to releasing an application, developers run functional and regression tests, along with stressing the server to ensure an optimized application.

Developers typically test applications in a perfect environment, with high bandwidth and low latency. However, once the application moves from the local (or test) environment to the production network, clients may complain about the slow response times. The programmers carefully check the application, however, are unable to find anything unusual.

The developer must determine the reasons for the slow response times. Once further testing determines that it is not the application that is causing the issue, a packet analysis tool such as Wireshark can assist the developer in determining the root cause of the delayed response times.

By using Wireshark, the developer can uncover common problems in transmissions, such as round-trip time and signs of congestion within an organization, which can occur in a network and impact response time.

Developers will understand that simply optimizing an application is not enough, and all development life cycles should include seeing what is happening on the network, as issues can affect overall performance.

In addition to developers, network administrators commonly use Wireshark to troubleshoot the network, as we will see next.



            

            
        
    
        

                            
                    Helping network administrators monitor the network

                
            
            
                
Network administrators use packet analysis to gain information about current network conditions. Wireshark can help identify errors and/or problems on the network that might require device tuning and/or replacement to improve overall performance.

A powerful feature in Wireshark is the ability to quickly see issues in the capture. The network administrator can use both the expert system and the intelligent scrollbar, which color codes potential problems and helps with analysis, as we'll see in the next section.



            

            
        
    
        

                            
                    Expert system and intelligent scrollbar

                
            
            
                
Wireshark allows us to visualize issues while performing an analysis. The expert system categorizes various traffic conditions. It has a color code for each level that allows for easy identification of general workflow and possible critical events:


	Chat color: Gray provides information about typical workflows, such as a TCP window update or connection finish

	Note color: Cyan indicates items of interest, such as duplicate acknowledgments and TCP keep-alive segments

	Warn color: Yellow indicates a warning, such as a TCP zero window or connection reset

	Error color: Red is the highest level as there may be a serious problem, such as a retransmission or a malformed packet



The visual for the expert system is in the lower left-hand corner, as shown in the following screenshot:



Expert system and intelligent scrollbar

Wireshark also has an intelligent scrollbar, which also provides a visual to detect issues. In the preceding screenshot, we see a distinct coloring pattern on the right-hand side based on the coloring rules set in the application.

With the intelligent scrollbar, the administrator can easily click on a color band to zero in on a possible problem. Bear in mind that the intelligent scrollbar is only visible if the coloring rules are active; however, coloring rules are on by default.

Once problems are identified, you can then subset traffic, add comments, save, and export the packet captures. 



            

            
        
    
        

                            
                    Subsetting traffic, comment, save, and export

                
            
            
                
At times, the network administrator may want to share the packet capture with other members of the team. Wireshark can subset traffic to break apart large packet captures and focus on the problem areas.

For example, a large packet capture will most likely have several different types of traffic in addition to data, such as management traffic and 802.11 control frames. You can easily apply a filter using the and NOT option to exclude traffic that you don't want to see.

Within the subset, you can include comments. You can find comments either by selecting the comments icon in the lower left-hand corner that looks like a pad and pencil, or go to Statistics | Capture file properties and include your comments in the space below marked comments. If you do add comments, then you must save the file in the PCAPNG format as not all file formats will support the use of comments.

Once you have created a smaller file and added any (optional) comments, you can export the specified packets and save in a wide variety of formats. Formats include the default PCAPNG, along with PCAP, Sun Snoop, DMP, and many others.

In addition to network administrators, students will gain valuable insight into what is actually happening on the network by using Wireshark to examine headers and field values of the protocols.



            

            
        
    
        

                            
                    Educating students on protocols

                
            
            
                
Let's learn about how students can use packet analysis as a learning tool to better understand protocols. For example, when reviewing the DHCP process, the student might see the DORA process, as shown in the following diagram. While the diagram displays each of the four-part transaction, it does not show the details of each part of the four-packet exchange:



Dora process

In the following screenshot, we can see an actual DHCP transaction. The student can easily identify each of the four stages of the DORA process: Discover, Offer, Request, and Acknowledge. In addition, the student can see the specifics of each exchange, including the transport protocol, the IP and MAC addresses, and the DHCP header flags:



DORA process in Wireshark

By learning the normal behavior and purposes of common protocols, students will be able to troubleshoot problems that may occur in the future.

As you can see, packet analysis has many benefits for many people. Because of the ability to really examine what is happening on the network, another key group that uses packet analysis are security analysts.



            

            
        
    
        

                            
                    Alerting security analysts of threats

                
            
            
                
Security analysts use packet analysis to determine whether there is anything unusual or suspicious about the traffic or discover what transpired on the network by completing a forensic investigation. To effectively discover potential problems, the security analyst must be an expert at packet analysis.

Wireshark can help the security analyst to better understand specific types of attacks so they can craft firewall rules. To hone security analysis skills, the analyst can discover and download many PCAPs on various repositories. The Honeynet project, which is found at https://www.honeynet.org, is a great place to start. Navigate to the section on challenges, which offers many examples of forensic exercises to review and learn about many common threats found on today's networks.

For example, if you go to https://www.honeynet.org/node/906, then you will see a completed challenge entitled Forensic Challenge 12 – Hiding in Plain Sight. Read the details on the challenge, which are outlined so you have a better understanding of the challenge. To strengthen your analysis skills, download the files found at the bottom of the page and work through the questions. The answers can also be found at the bottom of the page, along with other files of interest.

Security analysts feel that Wireshark is a valuable tool, as it provides valuable insight into what is happening on the network. Because of the ability to have so much insight on what is happening on the network, Wireshark is also used by hackers for reconnaissance to gather and analyze traffic—many times prior to an attack, or during an active attack, which we will discuss next.



            

            
        
    
        

                            
                    Arming hackers with information

                
            
            
                
Hackers use packet analysis to sniff network traffic in order to gain valuable information about the network as a precursor to an attack. Sometimes called a passive attack, a hacker can use Wireshark to sniff network traffic with the goal of obtaining sensitive information. In addition, hackers can use the information gathered to launch an active attack.

As a precursor to an attack, hackers gather information during reconnaissance, which is also called footprinting. The goal of reconnaissance is to gather as much information about the target as possible. Let's take a look at a couple of ways in which hackers use Wireshark as part of a passive attack.



            

            
        
    
        

                            
                    Outlining passive attacks

                
            
            
                
Using Wireshark, a hacker will try to obtain confidential information, such as usernames and passwords exchanged, while traveling through the network. Using packet analysis to sniff network traffic can achieve the following goals:


	Footprinting and reconnaissance: As a precursor to an active attack, hackers use Wireshark to capture unencrypted traffic in order to gather as much information about the target as possible. In addition, Wireshark can also be used to gather additional information such as IP and MAC address, open ports and services, and possible defense methods in place.

	Sniffing plain text passwords: Another use of packet sniffing by hackers is looking for passwords that are sent in plain text. Common protocols that are susceptible to packet sniffers are the protocols that are in plain text, such as SNMP, HTTP, FTP, Telnet, and VoIP.



An organization can defend against unauthorized packet sniffing in a couple of ways. There is anti-sniffer software that can detect sniffers on the network. However, one of the best ways to prevent data exposure is to use encryption. If someone captures the traffic, then the encrypted data will appear meaningless.

Next, we'll take a look at how hackers can also use Wireshark by actively sniffing and monitoring traffic as part of an Address Resolution Protocol (ARP) spoofing attack.



            

            
        
    
        

                            
                    Understanding active attacks

                
            
            
                
Hackers can launch many different types of attacks on the network, such as Denial of Service (DoS) attacks, phishing attacks, or Structured Query Language (SQL) injection attacks. Hackers can also use Wireshark to passively gather information so they can launch a more effective attack. One example is an ARP spoofing attack.



            

            
        
    
        

                            
                    Poisoning the cache

                
            
            
                
ARP spoofing, also known as ARP cache poisoning, is used in a man-in-the-middle attack. In order to understand why this is an effective attack, let's step through the normal use of ARP on a LAN.

On a LAN, hosts are identified by their MAC or physical addresses. In order to communicate with the correct host, each device keeps track of all LAN hosts' MAC addresses in an ARP or MAC address table, also known as an ARP cache table.

Entries in the ARP or MAC address table will time out after a while. Under normal circumstances, when the device needs to communicate with another device on the network, it needs the MAC address. The device will first check the ARP cache and, if there is no entry in the table, the device will send an ARP request broadcast out to all hosts on the network. 

The ARP request asks the question, who has (the requested) IP address? Tell me (the requesting) IP address. The device will then wait for an ARP reply, as shown in the following screenshot:



ARP broadcast on a network

The ARP reply is a response that holds information on the host's IP address and the requested MAC address. Once received, the ARP cache is updated to reflect the MAC address.

In an ARP spoofing attack, an attacker will do the following:


	Send an unsolicited, spoofed ARP reply message that contains a spoofed MAC address for the attacker's machine to all hosts on the LAN.

	After the ARP reply is received, all devices on the LAN will update their ARP or MAC address tables with the incorrect MAC address. This effectively poisons the cache on the end devices. 

	Once the ARP tables are poisoned, this will allow an intruder to impersonate another host to gain access to sensitive information.



In the following graphic, ARP spoof attack, a bogus reply was sent by the attacker, which poisoned the cache in the devices. All hosts on the network now think that 10.40.10.103 is at 46:89:FF:4C:57, instead of 00:80:68:B4:87, and will go to the attacker with the spoofed MAC address:.



ARP spoof attack

Once the attacker begins to receive the traffic destined to another host, they will use active sniffing to gather the misdirected traffic in an attempt to gain sensitive information. 

We now see the many individuals who can benefit from using packet analysis. The next section covers where packet analysis is most effective.



            

            
        
    
        

                            
                    Identifying where to use packet analysis

                
            
            
                
To conduct an effective packet analysis, the first step is to get a good capture. There are many places to conduct packet analysis, including on a LAN, on a host, or in the real world. Let's start with using packet analysis on a LAN.



            

            
        
    
        

                            
                    Analyzing traffic on a LAN

                
            
            
                
Today's networks are complex, as the following diagram shows. An enterprise network provides connectivity, data applications, and services to the clients on the network:



LAN

Most LANs are heterogeneous, with various operating systems such as Windows, Linux, and macOS, along with a mixture of devices, such as softphones, tablets, laptops, and mobile devices. Depending on business requirements, the network may include wide area network connectivity along with telephony.

To effectively use packet analysis, placement is key. All traffic is not created equally. Depending on placement, you may only capture a portion of the total network traffic. If the packet sniffer is on a host or end device, then it will be able to see the traffic on the segment's collision domain. If the sniffer is mirroring all traffic on a backbone, then it will be able to see all the traffic.

In certain instances, you may need to perform packet analysis on an individual host, such as a PC, to only monitor traffic destined to that host, or on a switch to see the traffic as it passes through the switchports.



            

            
        
    
        

                            
                    Sniffing traffic on a host

                
            
            
                
Packet analysis can be done on an individual host. If the protocol analyzer is sniffing traffic on a switch, then the view of network traffic is limited as each switchport has its own collision domain. Therefore, on a switch on a specific port, you will only see broadcasts, multicast, and your own Unicast traffic.

To see all traffic on a switch, the network administrator can use port monitoring or SPAN (short for Switched Port Analyzer). Another option is to use a full-duplex tap in line with traffic. The tap makes a copy or mirror of the traffic, which is pulled into the device for analysis. If this option is used, then you may need a special adapter. In some cases, you may be able to monitor within the switch, as Wireshark is built into the Cisco Nexus 7000 series and many other devices.

In addition to using packet analysis on a LAN or on a host, packet analysis can be used in the real world to monitor traffic for threats.



            

            
        
    
        

                            
                    Using packet analysis in the real world

                
            
            
                
Packet analysis is used in the real world in many forms. One example is the Department of Homeland Security (DHS) EINSTEIN system, which has an active role in federal government cybersecurity. The United States government is constantly at risk of many types of attacks, including DoS attacks, malware, unauthorized access, and active scanning and probing.

The EINSTEIN system actively monitors the traffic for threats. The two main functions are as follows:


	To observe and report possible cyberthreats

	To detect and block attacks from compromising federal agencies



The EINSTEIN system provides the situational awareness necessary to take a proactive approach against an active attack. The intelligence gathered helps agencies to defend against ongoing threats. 

As illustrated, packet analysis is effective in many locations. The following section provides guidance on what circumstances packet analysis will reap the most benefits under.



            

            
        
    
        

                            
                    Outlining when to use packet analysis

                
            
            
                
We use packet analysis to troubleshoot latency issues, test IoT devices monitoring for threats, and as a tool to baseline the network. Let's start with troubleshooting, which is a common use of packet analysis.



            

            
        
    
        

                            
                    Troubleshooting latency issues

                
            
            
                
Wireshark can be a valuable tool for troubleshooting issues on the network. There are many built-in tools designed to gather and report network statistics. We can analyze network problems and monitor bandwidth usage per application and process. The information gathered can help identify choke points and maintain efficient network data transmission.

Protocol analysis enables the network administrator to monitor the traffic on the networks, unearthing problems that determine where performance can be fine-tuned. For example, if you suspect latency, then you can obtain a capture in the area where you suspect trouble and then run a Stevens graph, as shown in the following screenshot:



Stevens graph


In addition to troubleshooting the network, many are discovering how Wireshark can be a valuable asset in testing IoT devices prior to their implementation in an organization.





            

            
        
    
        

                            
                    Testing IoT devices

                
            
            
                
The IoT is a ubiquitous transformation of intelligent devices embedded in everyday objects that connect to the internet, enabling them to send and receive data. The IoT has several components: people, infrastructure, things, processes, and data. The IoT has become a billion-dollar industry as consumers, along with industries, are seeing the benefits of the IoT. 

Even with all of the benefits, prior to connecting an IoT device to the network, it's best to test the device. Using Wireshark can help you see what happens when you plug the device into the network.  The following are some of the questions Wireshark can help determine:


	How do the devices communicate once they are active? Do they phone home without being prompted?

	What information do they communicate? Are the username and password sent in plain text? 



The only way you can understand the behavior of these devices is by plugging one in, capturing the data exchange, and analyzing the packet capture. The information obtained can provide valuable insights into the vulnerabilities of IoT devices.

Along with troubleshooting and testing, Wireshark can be instrumental in proactive threat assessment.



            

            
        
    
        

                            
                    Monitoring for threats

                
            
            
                
Monitoring for threats occurs in one of three ways:


	Proactive: Monitoring your systems and preventing threats by using a device such as an IDS

	Reactive: A system has fallen victim to an attack and the incident response team manages the attack, followed by a forensic exercise

	Active: Proactively seeking threats by conducting packet analysis and monitoring log files



Wireshark can help the security analyst take an active role in monitoring for threats. While Wireshark does not provide any alerts, it can be used in conjunction with an IDS to investigate possible malicious network activity.

For example, while using snort (an open source IDS), the sensor produced the following alert, which may be an indication of malicious activity on the protected network:

DELETED WEB-MISC text/html content-type without HTML – possible malware C&C (Detection of a non-standard protocol or event) [16460] 

This alert indicates that an infected host may be communicating with an external entity and sending information gathered on the network to a botmaster. The security analyst should take immediate action by running a capture in different segments of the network to identify and mitigate the threat.

Industries see the value in using Wireshark for threat monitoring as well. For example, in Cisco's CCNA Cyber Ops certification prep course, students learn how to observe and monitor for unusual traffic patterns using Wireshark, as they hone their skills in preparing to work alongside cybersecurity analysts within a Security Operations Center (SOC).

In order to determine what traffic is unusual, or to properly troubleshoot the network, you must be able to determine what is normal network activity. This is achieved by conducting a baseline, as outlined in the following section.



            

            
        
    
        

                            
                    Baselining the network

                
            
            
                
A network baseline is a set of parameters that define normal activity. The baseline provides a snapshot of network traffic during a window of time using Wireshark or Tshark. Characteristics to baseline can include utilization, network protocols, effective throughput forwarding rates, and network latency. The network team can use the baseline for forecasting and planning, along with optimization, tuning, and troubleshooting.

The baseline process goes through several stages: plan, capture, save, and analyze. Once the baseline is complete, the network analyst can review the captured data in order to assess general performance for end-to-end communications. Baselining the network helps to gain valuable information on the health of the network, and possibly identify current network problems. In addition, subsequent baselining exercises can help predict future problems.

Whenever the installation of new equipment is planned, it's best to do a baseline prior to the change. After implementation, do another capture to identify possible issues in the trace and to fine-tune the configuration.

As you can see, there are many ways we can use packet analysis to monitor, test, baseline, and troubleshoot. However, you should also be aware of when you shouldn't use packet analysis.

As you can see, we can use packet analysis in many ways. However, because of the ability to obtain sensitive information or as a precursor to an attack, packet analysis should only be done on a network you own or where you have explicit permission to conduct packet analysis for security scans or to troubleshoot network connectivity issues. In addition, consideration should be given to maintaining the privacy of the data collected during capture and have a proper method to obtain, analyze, and retain the packet captures.

As shown in the chapter, we have now learned about the many reasons to use packet analysis. Let's summarize by embracing Wireshark, which is one of the most powerful packet analysis tools available today.



            

            
        
    
        

                            
                    Getting to know Wireshark

                
            
            
                
In the late 1990s, Gerald Combs needed a tool to analyze network problems. Portable sniffers were available at the time, but they were costly. Gerald developed Ethereal with the help of some friends, and this later became Wireshark. It has been around for over 20 years and continues to evolve and improve over time.

Wireshark's strength is the ability to decode the captured bits into a readable form by using decoders or dissectors.


Dissectors provide information on how to break down the protocols into the proper format according to the appropriate RFC, or other specifications.



Wireshark can decode hundreds of different protocols. New dissectors are periodically added to the library. In addition, you can decode priority and specialty protocols by developing your own dissector.

Wireshark is compatible with many other sniffers and has a wide range of file formats for import and export. Some of the other features include the following:


	Merge packet captures.

	Provide a detailed analysis of VoIP traffic.

	Create basic and advanced I/O graphs.



Wireshark can be installed on most OSes, including Windows, Solaris, Linux, and macOS. In the following graphic, we can see the simple and streamlined Wireshark welcome screen on a Windows OS:



The Wireshark interface


After using Wireshark for any length of time, you can see how it can help network administrators to understand traffic flows, troubleshoot performance problems, or conduct a network baseline.





            

            
        
    
        

                            
                    Summary 

                
            
            
                
With the variety and amount of data that travels on today's networks, it's easy to see why packet analysis using Wireshark should be in everyone's skill set. In this chapter, we took a brief look at how packet analysis began in the 1990s with the use of hardware sniffers. Fast forwarding to today, we can see that packet analysis is used by nearly every device on the network to gather traffic, examine the contents, and then decide what action to take.

We learned about how developers, network administrators, students, and security analysts can all benefit from using packet analysis. We saw the many places where we conduct packet analysis: on a LAN, on a host, and in the real world. In addition, we have learned about how packet analysis has a variety of uses on today's networks, including troubleshooting, testing IoT devices, monitoring threats, and baselining. We have learned about how Wireshark is an exceptional open source software product that includes many rich features, has many tools available to easily solve visual problems, and provides one of the best ways to analyze network traffic. 

In the next chapter, we will learn about Wireshark's predecessor, Ethereal, and how it evolved to become Wireshark. We will then compare and contrast Legacy with Wireshark Next Generation, and learn about the many improvements to the software. Because Wireshark can be resource intensive, we will learn about how Tshark can provide a lightweight alternative to Wireshark. At the end of the chapter, you will embrace the benefits of Wireshark Next Generation.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now it's time to check your knowledge. Select the best response, and then check your answers, which can be found in the Assessment:


	Packet analysis has been around in some form since the _____ as a diagnostic tool to observe data and other information traveling across the network.

	1950s

	1960s

	1970s

	1990s








	Packet analysis is used in the real world in many forms. One is the DHS _____system, which monitors for threats.

	CARVER

	Packet

	EINSTEIN

	DESTINY3








	In the expert system, _____ provides information about typical workflows such as TCP window updates or connection finishes.

	Note

	Chat

	Error

	Warn





	A ____ provides a snapshot of network traffic during a window of time using Wireshark or Tshark. Characteristics can include utilization, network protocols, and effective throughput forwarding rates.

	Round Robin

	DORA process

	Baseline

	WinCheck








	Monitoring for threats occurs in one of three ways. _____ is when a system has fallen victim to an attack and the incident response team manages the attack, followed by a forensic exercise.

	Proactive

	Reactive

	Active

	Redactive









            

            
        
    
        

                            
                    Using Wireshark NG

                
            
            
                
In this chapter, we will see how it all began by learning about Ethereal, and how over time it become Wireshark. During this journey, you'll gain insight into the many enhancements that improve the overall functionality of Wireshark. In addition, you will appreciate the work of the many authors that contribute to this project, and who help make Wireshark an exceptional tool. So that you can navigate the interface and embrace all of the improvements of Wireshark, we will take a look at the interface so that you can confidently capture and analyze packets. 

In order to better understand the packet analysis process, we'll briefly review each of the phases; gather, decode, display, and analyze. We will then review the built-in command-line tools and finish with a closer look at tshark, a lightweight command-line interface (CLI) application, to use when you need to capture traffic without the resource-intensive overhead of using Wireshark.

This chapter will address all of this by covering the following topics:


	Discovering the beginnings of today's Wireshark

	Examining the Wireshark interface

	Understanding the phases of packet analysis

	Learning Wireshark CLI tools





            

            
        
    
        

                            
                    Discovering the beginnings of today's Wireshark

                
            
            
                
The term ethereal is defined as meaning delicate, airy, elegant, and exquisite; almost magical. The definition seems fitting, as Ethereal, and then later Wireshark, almost magically allows us to understand what is happening on a network.

In the late 1990s, Gerald Combs developed Ethereal as a tool to analyze network problems. In July 1998, Ethereal version 0.2.0. was released. In the following image, we can see an email sharing news of the release of Ethereal version 0.3.14 (https://www.wireshark.org/lists/ethereal-announce/199809/msg00000.html). Even in the beginning, developers joined the effort and collectively sought to create a solid application:



Email about the release of Ethereal 0.3.14

Combs invested a great deal of his time and money to keep the project alive. He developed and shared information about Ethereal during a time when hosting a website was difficult and expensive, and the internet was so new that nearly every website was under construction.  However, despite the odds, the project continued to grow and expand, as we’ll see in the next section.



            

            
        
    
        

                            
                    Developing Ethereal

                
            
            
                
 Early iterations of Ethereal provided basic functionality and could run on Unix, Linux, and macOS. At that time, Ethereal could not run on Windows, primarily because there was not a capture engine for Windows at the time. In the early 2000s, Loris Degioanni and Gianluca Varenni released WinPcap. One of the early Ethereal developers, Gilbert Ramirez, used WinPcap to grab traffic using Windows. Some time after that, the developers added a Windows installer.

With the addition of a Windows installer, the Ethereal community responded positively and grew significantly, as many saw the need to do packet analysis on a Windows machine. As a result, Ethereal expanded from the academic world, which was predominantly Unix and Linux, to the rest of the world, where the Windows OS was quickly becoming the predominant player.

In 2001, a significant early development in Ethereal's history was the ability to follow a stream. This was a powerful improvement over sniffers, many of which at the time could not reconstruct a stream.

In 2006, Gerald Combs began working for CACE Technologies, the developers of WinPcap, and had to leave the name Ethereal and any active development behind due to trademark issues.

Ethereal had a new name, yet the functionality of Wireshark remained the same. At that point, the Ethereal project officially became Wireshark. In 2008, the developers released Wireshark 1.0. After the release of Wireshark 2.0, developers referred to Wireshark 1.0 as Wireshark Legacy.

This early development—until today—grew quickly as more and more people began to see the benefits of packet analysis using Wireshark.

If you used Wireshark in the past, you know that the interface was different. The next section gives an overview of the graphical user interface of the past and the current interface of today's Wireshark.



            

            
        
    
        

                            
                    Examining the Wireshark interface

                
            
            
                
As shown in the following screenshot, Wireshark Legacy has been around for over 10 years. In 2015, Wireshark 2.0 was released, which featured a new user interface. This evolution saw Wireshark moving from the GIMP (short for GNU Image Manipulation Program) Toolkit, or GTK, to the Qt framework.

Ethereal's graphical user interface was developed using GTK+ (https://www.gtk.org/) or the GIMP Toolkit. Because of the versatile nature of GTK+, and the ability to work on a wide variety of platforms, it was a logical choice for developing a user interface for Ethereal. The following screenshot represents Legacy interface:



Legacy interface

The original GTK+—or GTK—allowed developers to provide a highly usable and feature-rich graphical user interface for Wireshark. However, GTK doesn't effectively support all operating systems, which over time became problematic.

Although Ethereal, and then later, Wireshark, maintained the original appearance for many years, developers knew it was time to change.

Because of GTK's limitations in providing support for the various platforms, the developers moved to the Qt framework. Qt is a comprehensive framework, is more Windows friendly, and performs well on most operating systems.



            

            
        
    
        

                            
                    Introducing Wireshark next generation

                
            
            
                
In 2015, developers released Wireshark 2.0. The next generation of Wireshark featured a new user interface, as well as many functional enhancements. The streamlined Qt framework is shown in the following screenshot:



Wireshark NG

Although the interface looks as if there is not as much going on, there are many improvements, as we will see in the next section.



            

            
        
    
        

                            
                    Enhancements

                
            
            
                
The Wireshark interface has significant improvements to get you up and running with your analysis. The interface is intuitive, with shortcuts and methods to make navigation easier. The following is a list of some of the many ways the interface improves your experience:


	Quickly begin capturing traffic by selecting an active sparkline, as shown in the previous screenshot.

	Easily add columns—simply right-click on a value in the packet details area and select Apply as a Column:





Apply as a column


	Intelligent scrollbar coloring—found on the right-hand side of the packet list, as shown in the following screenshot. When coloring rules are on, you can see indication of any problems and quickly go to trouble spots, as follows:





Wireshark Interface with Enhancements


	Enhanced graphs—flow graphs and IO graphs are easier to use.

	Coloring rules are easier to create and edit.

	Related packets—you can simply click to see related packets (shown in the preceding screenshot).

	Capable of translating to several different languages.



With approximately 1.5 million downloads per month, Wireshark has become a significant tool. It has proven to be flexible as an open source utility that encourages developers to add functionality, along with improving the overall appearance.

Each new version improves the application, adding things such as fixing a simple visual or display issue, to more significant problems that can cause an application to crash, such as dissectors. When you update Wireshark, take the time to read the notes, which will include information such as the following:


	What's new

	Bug fixes

	New and updated features

	New protocol support

	Updated protocol support

	New and updated capture file support

	New and updated capture interfaces support

	Getting help

	Frequently asked questions



All of the improvements over the years have been possible because of the generosity of the open source community. The following section will outline how to see who is involved in creating Wireshark.



            

            
        
    
        

                            
                    Authors

                
            
            
                
Wireshark is open source and distributed under the GNU (GNU's not Unix) General Public License (GPL). The success is attributed to the many contributing developers over the years.

Developers have added dissectors, functionality, and ease of use. As a result, Wireshark has become one of the most predominant network protocol analyzers in use today.

Many authors have contributed to the success of Wireshark with ongoing development and maintenance of the application. Many will jump in to add their expertise, and some contribute when they need a specific protocol dissector. 

Anyone can be involved, as there is plenty of documentation on how to add a basic dissector. If you do modify Wireshark to add a dissector or visual enhancement, share your enhancement with the Wireshark team.

To see a current list of Wireshark authors, go to Help and About Wireshark and select the Authors tab, as shown in the following screenshot:



List of authors

Next, let's take a look at packet analysis, the process of gathering traffic on the network, decoding and dissecting the raw bits, and presenting it in a human-readable format for analysis.



            

            
        
    
        

                            
                    Understanding the phases of packet analysis

                
            
            
                
Regardless of the software, there are four main phases of packet analysis: gather, decode, display, and analyze, as shown in the following diagram:



Phases of packet analysis

The first step in packet analysis is to obtain network traffic in some way. The following steps go through the gather process of packet analysis, which involves capturing the network traffic. We'll start with the first step, Gather, where we collect the data from the network.



            

            
        
    
        

                            
                    Gathering network traffic

                
            
            
                
When you launch Wireshark, a welcome screen displays a list of available network connections on your current device. In most cases, you will have more than one interface. 

To begin capturing immediately, you can select an active sparkline, shown as A in the Wireshark NG screenshot, and begin the capture. Alternatively, you can go to the Capture menu, and then go to Options. This will open the following window. Once in, there are a few key areas that will enable you to more effectively capture traffic: capturing in promiscuous mode, and using a capture engine, which we will discuss in the next section:



Enabling promiscuous mode



            

            
        
    
        

                            
                    Capturing in promiscuous mode

                
            
            
                
You can capture on all interfaces, but make sure you check Promiscuous, as shown in the preceding screenshot, as one of the column headers. This will allow you to see all the traffic that is coming into the network interface card. You can also check Enable promiscuous mode on all interfaces, as shown in the lower left-hand corner of the preceding screenshot. After choosing an interface to listen on, and placing it in promiscuous mode, the interface gathers up network traffic.



            

            
        
    
        

                            
                    Using a capture engine

                
            
            
                
Part of effectively capturing traffic is the capture engine. A packet capture or pcap engine provides an Application Programming Interface (API) to capture traffic from the network before the traffic is processed by the operating system.

As a result, when installing Wireshark, you will see a window appear, prompting you to install Npcap. A lot of times, people aren't really sure if we should install Npcap. However, as shown in the following screenshot, Wireshark requires either Npcap or WinPcap to capture data. If you don't install it, Wireshark won't run as expected. The following screenshot represents the prompt to install Npcap:



Prompt to install Npcap

Once you have gathered the traffic, the next step is to convert the raw bits and decode them into the proper protocol.



            

            
        
    
        

                            
                    Decoding the raw bits

                
            
            
                
Traffic enters a network interface card in binary form one frame at a time. While capturing data from the network is possible, it will enter the interface as random binary data. The following diagram represents the illustration of converting bits into a human-readable format:



Converting bits into a human-readable form


While in this phase, Wireshark uses the Enhanced Packet Analyzer (EPAN), which decodes the bits into human-readable form.





            

            
        
    
        

                            
                    Enhanced Packet Analyzer (EPAN)

                
            
            
                
Wireshark was called Ethereal before 2006, but the main core is the same. EPAN is the packet-analyzing engine for Wireshark. EPAN uses decoders or dissectors which provide information on how to recreate the protocols in the proper format:



Enhanced packet analyzer

The EPAN contains four main Application Programming Interfaces (APIs), as shown in the preceding diagram:


	Protocol tree: Detailed analysis of a single packet

	Dissectors: Provide information on how to break down the protocols into the proper format according to the appropriate Request for Comment (RFC) or other specification

	Dissector plugins: Uses dissectors as separate functions

	Display filters: Allows you to filter captured data



In most cases, Wireshark is able to correctly identify and decode the protocol. However, there are times when you will need to help Wireshark decode the protocol. That is achieved by right-clicking the frame and selecting Decode As…, which will bring up the following window. Once in the window, you can modify the values to match the appropriate protocol:



Decode As...

This function is very useful when protocols either don't have a dedicated port or they're running on a different port than usual. For example, you should use Decode As… when HTTP is running on port 8080 instead of port 80.

Once the bits have been converted into the proper format, the next step is to display the results in a human-readable format.



            

            
        
    
        

                            
                    Displaying the captured data

                
            
            
                
In Wireshark, along with many other packet analysis tools, there are many options to enhance your graphical experience. When you open a packet capture in Wireshark, the default layout displays three panels, as shown in the following screenshot:


	Packet list

	Packet details

	Packet bytes:





The Wireshark interface with three panels

The appearance of the display can be modified in the preferences by going to Edit, and then Preferences:


	Packet list: This is a list of all the captured packets, where each line represents a single packet. If there are too many packets to fit in the pane, the user can use the scroll bar on the right to navigate through the capture.




	Packet details: This displays the details of a single packet and includes the protocols and field values. It also displays Wireshark-specific hints. For example, there is no field value called stream index, but Wireshark lists [Stream index: 0] in a Transmission Control Protocol (TCP) header underneath the source and destination ports as a way to keep track of all the streams, as shown in the following screenshot:





Packet details pane


	Packet bytes: This is a hexadecimal representation of the single packet, as shown in the packet details pane. Any data will be displayed on the right-hand side, as shown in the following screenshot:





Packet bytes

The appearance of the display can be modified in the preferences by going to Edit, and then Preferences:



Preferences—Layout

Once in Preferences, and then Layout, you can change your layout to one of many different configurations, as shown in the previous screenshot.

After displaying the result, we then move to taking a good look at the captured data and doing an analysis of what we have captured. The next section provides a summary on the final stage of packet analysis: analyze.



            

            
        
    
        

                            
                    Analyzing the packet capture

                
            
            
                
Once you have the capture, you can start analysis in real time or use a pre-captured file. Use the built-in tools to troubleshoot and examine the traffic:


	Filter traffic to display specific types of flows, such as DNS or HTTP traffic.

	Search for specific packets, that is, tcp.port = = 443.

	Turn on the coloring rules or use the expert system to easily spot problems.

	Follow the stream to see the details of a single conversation.

	Do a deep packet analysis of individual frames and examine the field values of the headers.



Wireshark's statistics can range from basic information such as Capture File Properties to more detailed information such as Conversations, Flow Graphs, and Stream Graphs.

In addition to the tools within Wireshark, you can subset the data to share the smaller file with coworkers and add comments to the file or in an individual frame.

Although the Wireshark GUI is easy to use and understand, the Wireshark interface, with all its enhancements, coloring rules, and shortcuts, can be resource-intensive. As a result, it's best to become familiar with some of the command-line tools, which is what the next section is all about.



            

            
        
    
        

                            
                    Using command-line tools

                
            
            
                
Wireshark has several command-line tools that complement Wireshark's basic functionality and will allow you to do several tasks, such as edit, split, and manipulate packet captures. The following table lists some of the tools available. All the CLI tools are baked into Wireshark; however, they are also available to use as lightweight tools to work with packet captures:




	Tool
	Function



	dumpcap
	A program used to capture network traffic



	editcap
	Can edit and subset capture files



	capinfos
	Provides basic statistics on the capture file



	mergecap
	Can merge multiple capture files into one



	text2pcap
	Converts a hexdump of ASCII (short for American Standard Code for Information Interchange) packets into a capture file



	tshark
	A lightweight command-line equivalent of Wireshark






 

As you can see, there are many command-line tools to capture network traffic. Let's take a look at tshark, which is a great alternative to use when you need to conserve resources.





            

            
        
    
        

                            
                    Exploring tshark

                
            
            
                
Part of the Ethereal development process included Terminal Ethereal (Tethereal), which was a CLI tool. Tethereal was later renamed tshark or Terminal Wireshark.

tshark is a lightweight CLI tool. To capture using tshark on a Windows machine, go into the CLI. If you have multiple interfaces, find which interface is active using ipconfig, then build a command, as the following code shows. Keep in mind that the commands on a Windows machine are not case-sensitive:

C:\Program Files\Wireshark>tshark -i "ethernet 2" -w Test-Tshark.pcap -a duration:10

To run the tshark example, follow these steps:


	Begin the command with tshark.

	Identify the interface by using -i, then the interface name.

	To write to a file, use -w, then the filename and path. Make sure you add the extension.

	To set the duration, use -a, which is capture auto stop, and set the duration in seconds.

	Press Enter to begin the capture.



When complete, locate and open the pcap file in Wireshark. If you don't send the output to a file, you will see a list of packets captured on the screen:



Output from running tshark

The Wireshark documentation lists a number of switches to use with tshark. The following table of command-line tools are from the documentation, which can be found at https://www.wireshark.org/docs/wsug_html_chunked/ChCustCommandLine.html.

Many are the same options that you can use while using Wireshark's graphical user interface, such as adding filters and specific field values. The following table represents the options in tshark:




	Output



	-w <outfile|->
	Set the output filename (or - for stdout)



	-i <interface>
	Name or idx of interface (def: first non-loopback)



	Capture stop conditions



	-c <packet count>
	Stop after n packets (def: infinite)



	-a <autostop cond.> ...
	

	duration:NUM - stop after NUM seconds

	filesize:NUM - stop this file after NUM KB

	files:NUM - stop after NUM files









 

When Gerald Combs and the original development team first released Ethereal, it had limited functionality and could decode less than six protocols. The Wireshark developer's goal today is to ensure functionality on Windows, macOS, and Linux. You can use Wireshark on any number of computers as necessary. All the source code is available under the General Public License (GPL) and can be found in the current Wireshark source code repository. Here is a snap of Wireshark preferences—protocols:



Wireshark Preferences—protocols

Wireshark NG is loaded with protocols to dissect, with new protocols added every year. To see whether a specific protocol is supported, go to Edit, then Preferences—as shown in the preceding screenshot—and then scroll to see the desired protocol.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we learned about the evolution of Wireshark and how the current interface allows you to quickly begin capturing by clicking on a sparkline, easily add columns to the interface, and use intelligent scrollbar coloring. 

You can now appreciate how each new version of Wireshark improves the application. We learned about how Wireshark developers constantly update the software as many people contribute to the success of Wireshark. We then explored the phases of packet capture, as it progresses from gathering the traffic from the network to processing it into a human-readable format that allows you to conduct an analysis. Finally, we saw how Wireshark can be resource intensive; therefore, it's important to understand why sometimes, it's better to use CLI tools such as tshark, a lightweight application for capturing packets.

In the next chapter, we will explore downloading and installing Wireshark on various OSes, such as Windows, macOS, and Linux. We will take the time to explore the different capture engines. Once you do decide to download Wireshark, we will evaluate the different available download options. During installation on a PC or Mac, you'll see the various options. Finally, we will look at the various resources that are available at https://www.wireshark.org/.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now, it's time to check your knowledge. Select the best response, then check your answers, which can be found in the Assessment:


	When Gerald Combs began working for CACE Technologies, he had to leave the name Ethereal, and any active development behind due to trademark issues. In May _____, Ethereal officially became Wireshark.

	1998

	2001

	2006

	2015








	In July _____, Ethereal version 0.2.0. was initially released. 

	1998

	2001

	2006

	2015





	A _____ engine provides an API to capture traffic from the network, before the traffic is processed by the operating system.

	CACE

	Pcap

	Tcap

	Capinfos








	_____ provides information on how to break down the protocols into the proper format, according to the appropriate RFC or other specification.

	Protocol Tree

	Dissector Filters

	Capinfos

	Dissectors





	Wireshark has several CLI tools that complement the basic functionality, ____ can merges multiple capture files into one.

	Tshark

	Capinfos

	Mergecap

	Text2pcap









            

            
        
    
        

                            
                    Installing Wireshark on a PC or macOS

                
            
            
                
To start capturing and analyzing packets, you'll first have to download and install Wireshark on your computer or laptop. In this chapter, we will discover how easy it is to install Wireshark on a variety of different OS. We will learn about the importance of a capture engine, and why it is necessary to capture network traffic.

You will see that when installing Wireshark on a PC, several options are presented. We will review the different options so that you can confidently navigate the installation and make the correct selections so that you can begin capturing traffic. Finally, because Wireshark is open source, with constant enhancements and improvements, you will learn about the many online resources to see the latest news and updates, download options, and access help to improve your workflow.

This chapter will address all of this by covering the following:


	Discovering support for different OS

	Comparing the different capture engines

	Performing a standard Windows installation

	Reviewing the resources available at Wireshark.org





            

            
        
    
        

                            
                    Discovering support for different OS

                
            
            
                
Wireshark is an open source packet analysis tool developed as a cross-platform application. Wireshark now uses the Qt graphical UI library, which is capable of running on a variety of hardware and software platforms with little or no modification to the underlying code. The three main OS Wireshark supports are Microsoft Windows, Linux, and macOS.

Of all the OS systems today, Windows has the highest market share. The following section outlines support for the Windows OS family.



            

            
        
    
        

                            
                    Using Wireshark on Windows

                
            
            
                
Wireshark will run on most supported Windows systems as it natively interacts with the Windows API. Currently, Wireshark can be compiled and run on the following: Windows 7, Windows 8, Windows 8.1, and Windows 10. In addition, Wireshark will run on several of the Windows Server OS, including Windows Server 2008 R2, 2012, 2012 R2, 2016, and 2019. 

Running Wireshark or Wireshark Legacy may be possible on older OS, such as Windows Vista, XP, or Server 2008. However, Wireshark Legacy is no longer supported on those OS and may not perform as expected. Currently, there are still users who require a solution for Windows XP, as XP still has a small percentage of the market share worldwide. Users can obtain a copy of Wireshark for Windows XP at https://www.wireshark.org/download/win32/all-versions/Wireshark-win32-1.10.14.exe.

Now that we have discussed how Wireshark operates in a Windows environment, let's take our discussion further and explore how Wireshark functions in the Unix platform.



            

            
        
    
        

                            
                    Running Wireshark on Unix 

                
            
            
                
In addition to standard Windows install options, Wireshark can be installed on several Unix systems. You can also run Wireshark on other Unix systems such as Oracle Solaris, FreeBSD, and NetBSD. For those and other OS that do not have a standard install, you can access Wireshark packages for most platforms by going to https://www.wireshark.org/download.html, and then scrolling to third-party packages where you can see the packages that are available for many other platforms.

In addition to Unix, the following section outlines how Wireshark provides enhanced support for macOS.



            

            
        
    
        

                            
                    Installing Wireshark on macOS

                
            
            
                
On Wireshark.org, you will find an install for macOS (10.12 and later). The install for macOS is a significant improvement since Wireshark moved from GTK to Qt in that now, there is a native interface for macOS.

Prior to that, when you downloaded Wireshark on your macOS, you had to use X11, which is the X Windows system. Version 1.12 was the final release that required the X Windows system. Now, you can download and install Wireshark on a macOS just like any other OS. The installer will guide you through the installation in much the same manner as installing on a Windows machine.

As you can see, this has made Wireshark more user-friendly to the growing population of macOS users. Because of the widespread use of Linux, the following provides information on how Wireshark is also easy to install and use on a Linux machine. 



            

            
        
    
        

                            
                    Deploying Wireshark on Linux

                
            
            
                
Wireshark is supported on many Linux platforms, including Ubuntu, Debian, SUSE, and Red Hat. Installing Wireshark on Linux may be possible, but you may run into errors during the build and installation phases.

Common problems arise when you don't have the necessary development package on your system, or when the development package is outdated. Other issues may be that you are missing libpcap.

Running Wireshark as a root user also causes problems as Linux systems defend themselves against what is perceived as risky behavior, which can cause harm to the OS. As a result, Wireshark may not run while in root mode, and further configuration may be necessary to make this possible.

If you are able to install Wireshark, then you may have an issue with capturing packets and you may see a permission error:

No interface can be used for capturing in this system with the current configuration. (Couldn't run /usr/bin/dumpcap in child process: Permission denied)  

If you see this error, then additional permission modifications and advanced configuration are required to capture traffic. The Wireshark community is very helpful in trying to assist users with issues, but there are options that are more reasonable, especially for novice users.

If you need to become familiar with working with Wireshark on a Linux machine, then there are other options. The following section provides guidance on how to easily download and begin using a premade Linux VM in order to get a feel of how to use Wireshark on a Linux OS for training or testing purposes.



            

            
        
    
        

                            
                    Downloading premade virtual images

                
            
            
                
Premade virtual images are available at https://www.osboxes.org/ where it is easy to download and run a Linux OS that has Wireshark pre-installed and ready to run. Once on osboxes.org, you'll find you can choose from one of many OS.

Using the premade images for testing on a production network is not practical, as the VM doesn't have the same visibility as the host. However, using a VM is beneficial when learning about how to use Wireshark on a Linux OS in a classroom setting for training or testing purposes.

As new OS come into the market, it's nice to know that Wireshark evolves to keep up with the changing demands in today's networked environment. The following section outlines how versatile Wireshark is when working with a variety of OS.



            

            
        
    
        

                            
                    Working with Wireshark on other systems

                
            
            
                
Wireshark can be used on network devices and servers to monitor and analyze traffic in order to understand the traffic flow. Several Cisco devices are Wireshark capable. The devices provide the network specialist with comprehensive documentation on best practices while capturing network traffic.

Some guidelines for capturing traffic while in a Cisco networking device include the following:


	Prior to capture, make sure the CPU is not overburdened and that you have at least 200 MB of free memory.

	When possible, limit captures by either size or duration.



In addition to Cisco, IBM provides extensive documentation on how to obtain a Wireshark trace file. When done, technicians are encouraged to send their trace files to IBM support for further analysis.

Many other companies have found the value of packet analysis using Wireshark and have integrated the software within their respective products.

Regardless of what OS Wireshark runs on, the OS will need a way to gather or capture the raw bits from the network. A capture engine pulls or captures the network traffic so it can be sent to the OS for dissection and analysis. The next section provides a comparison of the capture engines available today.



            

            
        
    
        

                            
                    Comparing different capture engines

                
            
            
                
To effectively capture and analyze traffic, there must be a way to gather the raw traffic from the network, before being processed by the OS. A packet capture or PCap engine provides an API to capture traffic. Wireshark uses one of several capture engines, such as libpcap, WinPCap, AirPCap, and NPCap. Let's begin with libpcap.



            

            
        
    
        

                            
                    Understanding libpcap

                
            
            
                
Libpcap is a capture engine that was originally developed for Unix-like OS and is incorporated into TCPDUMP, Snort, and other packet analyzers to grab packets as they come off the network interface.

Wireshark and TShark work with libpcap and generate PCAPNG files by default. libpcap and TCPDUMP are developed and maintained at http://www.tcpdump.org/. A version of libpcap was adapted for Windows and is called WinPcap, as we will discuss next.



            

            
        
    
        

                            
                    Examining WinPcap

                
            
            
                
WinPcap is a capture engine that has drivers specific to a Windows OS and can be found at https://www.winpcap.org/. WinPcap has been around for many years, and works in a Windows environment, specifically the Windows NT family. 

WinPcap enables packet capture right from a network adapter and presents it to Wireshark before any processing is done by the OS. WinPcap (or a similar capture engine) must be installed on a Windows OS in order to capture packets. During the installation process, Wireshark will look for a copy of WinPcap and prompt the user to install WinPcap if it is not present.

WinPcap uses the Network Driver Interface Specification (NDIS) version 5.x API and has not had any recent updates, as evidenced by the changelog found at https://www.winpcap.org/misc/changelog.htm. As a result, WinPcap may not perform well on certain versions of Windows 10. To overcome performance issues, users are directed to use NPCap, as it might perform better.

For many years anyone who needed to analyze 802.11 management or control packets used AirPCap wireless capture devices, as we'll see in this next section.



            

            
        
    
        

                            
                    Reviewing AirPCap

                
            
            
                
For analyzing wireless traffic, Wireshark users could capture traffic using AirPCap. The adapter was a USB Windows-friendly device that provided 802.11 capture support and worked well with Wireshark. 

AirPCap was compatible with several versions of Windows, from Windows 2000 through Windows 7, and many reported having successes when using AirPCap after installing the AirPCap Nx driver, which adds support for Windows 8 and Windows 10. As of writing this, the parent company, Riverbed, no longer lists AirPCap adapters or sells the devices.

Over time, OS have changed, along with wireless in general, and 802.11ac is becoming more commonplace. AirPCap has support for 802.11a/b/g/n, but does not list 802.11ac.

If you do need to capture raw 802.11 traffic, then you could use Linux, macOS, or try NPcap, a driver that will provide support for raw 802.11 packet capture.

Let's take a look at the newest packet capture engine, Npcap.



            

            
        
    
        

                            
                    Grasping Npcap

                
            
            
                
When installing Wireshark, users will now see an option to install NPpcp. Npcap comes from the Nmap project and is the packet sniffing library for Windows. Npcap is based on WinPcap/LibPcap but has improved features for enhanced ability to capture.



            

            
        
    
        

                            
                    Understanding Npcap features

                
            
            
                
Npcap provides support for NDIS 6.0, which is a major version enhancement. Having this support overcomes the limitations of WinPcap and will most likely improve capture on Windows 7 and later machines.

A standard Wi-Fi card on a Windows machine can only be put into promiscuous mode, not monitor mode. As a result, you won't see raw 802.11 traffic or the radiotap headers, as they are wrapped so they look like an Ethernet packet, and are sometimes called fake Ethernet packets. With Npcap, users can capture raw 802.11 packets when using an unsupported wireless adapter.

This is easily achieved by selecting the following option during installation of Npcap:

Support raw 802.11 traffic (and monitor mode) for wireless adapters

Npcap will then have two modes:


	Managed mode: Captures Ethernet packets only

	Monitor mode: Uses wlanhelper.exe, which will allow you to switch into monitor mode and gather all 802.11 traffic, including data and control, along with the management packets that have radiotap headers



Radiotap headers can be used when troubleshooting Wi-Fi, as they can provide a lot of information such as antennae noise and channel frequency. To see an example of a radiotap header, go to https://www.cloudshark.org/captures/ca7828d13464?filter=frame%20and%20radiotap%20and%20wlan%20and%20wlan_aggregate.

Once you're on Cloudshark, select Export | Download File from the menu. This is found on the right-hand side of the screen, as shown here:



Download file from Cloudshark

When the Download window opens, select Download the original file and open it in Wireshark.

Select Frame 1 and expand the radiotap header to see the details, as shown in the following screenshot:



Radiotap header

Other Npcap features include loopback packet capture, which can be helpful during troubleshooting, along with support for the libpcap API. Npcap can also ensure enhanced security in that it can be set to restrict access to admin only on a Windows machine. If this option is set, then the user will have to authorize using the driver in the Windows User Account Control (UAC) dialog box.

Npcap is compatible with WinPcap and can run alongside WinPcap, or you can uninstall WinPcap and use the Npcap driver exclusively. However, Wireshark documentation suggests using Npcap if you are using Windows 10. Users can compare the features of WinPcap or Npcap by going to https://nmap.org/npcap/vs-winpcap.html.

Now that we have learned about the different capture engines, let's explore the various options to choose from while installing Wireshark on a Windows OS.



            

            
        
    
        

                            
                    Performing a standard Windows installation

                
            
            
                
The Windows installation is a straightforward process that presents the user with a series of prompts, which offer default values that the user may choose to accept or decline. Prior to installing, make sure you meet any system requirements. In most cases, UAC will dim the screen and ask for confirmation to run the program.

With each new version, the components, options, and order of installation may change. The following is a list of dialog boxes you should expect to see when doing a routine setup. We'll start with the first two you will typically see, the welcome and the license agreement.



            

            
        
    
        

                            
                    Beginning the installation

                
            
            
                
As you begin the installation, Wireshark displays a series of prompts. The following are generally the first two screens you will see:


	Welcome Screen: The Wireshark installation begins with a Welcome Screen with a warning to make sure Wireshark is not running before launching the wizard. The wizard will then guide you through the installation. 

	License Agreement: The next screen is the License Agreement, which must be read and agreed upon before moving on to the next step. It might be worthwhile to read this as it provides a detailed overview of the license agreement, specifically that Wireshark is distributed under the GNU (not Unix) General Public License.



The first two prompts are fairly straightforward. This next section provides detailed information on what components to select during installation.



            

            
        
    
        

                            
                    Choosing components

                
            
            
                
During the installation, you may be given the choice to accept or reject certain components. Choose Components has a number of choices. The user may accept all choices or select specific components to install. Keep in mind that these options periodically change, as shown here:



The Choose Components screen

The following are the options that appear when selecting a component to install:


	Wireshark: Select this choice if you want to install Wireshark. While this may be obvious, the user may only want to install TShark.

	TShark: TShark is a lightweight CLI tool that is not as resource intensive as the full Wireshark GUI.




	Plugins & Extensions: These are extra features and protocol dissectors for Wireshark and TShark:

	Dissector Plugins: Plugins with some extended dissections.

	Tree Statistics Plugins: Extended statistics.

	Meta Analysis and Tracing Engine (MATE): This is experimental; MATE offers configurable extensions for display filters.

	Transum: A newer tool developed by https://community.tribelab.com/ that computes response time with a number of different protocols.

	Codec Plugins: Provides additional support for codecs.

	Simple Network Monitor Protocol (SNMP) MIBs: Provides a more extensive dissection of the SNMP.





	Tools: Provides a list of command tools to select, and includes the following: 

	editcap: This allows you to adjust timestamps, delete packets, and convert file formats.

	text2pcap: This provides the ability to take an ASCII hexdump and convert the file to a libpcap-format capture file.

	mergecap: This is used when you need to combine two capture files as it merges two or more capture files into one, either by appending or by merging by timestamp.

	reordercap: Rearranges packets from an input file by sorting the timestamps and converting them to an output file.

	dftest: When you have to debug a display filter (dfilter), dftest will show the display filter byte code.

	capinfos: This provides information such as the number of packets, duration, and other information about a capture file.

	raw shark: This outputs and analyzes raw PCap data when required for external (third-party) integration or exports.

	mmdbresolve: This program will identify and print a packet's geolocation by using an IPv4 and IPv6 address. You will need to obtain the latest GeoLite2 at https://dev.maxmind.com/geoip/geoip2/geolite2/.

	androiddump: When it's necessary to capture from an Android device, androiddump provides an interface. You'll need to have the Android Software Development Kit (SDK) along with permission to access the device.

	sshdump: This provides an interface to capture from a remote host when in a Secure Shell (SSH) connection.

	UDPdump: This offers a capture interface that pulls UDP packets from network devices when debugging applications that run over UDP.

	randpktdump: This is a tool that enables access to the Random Packet Generator (randpkt) during testing or for educational purposes.

	extcap: This is an external interface that can be used for testing, fetching and displaying data from a non-traditional remote source, or conducting Bluetooth sniffing.





	User's Guide: This is a copy of the user guide that you can access offline.



As you can see, there are many components included that you can to select within the Wireshark installation. The next two prompts offer choices on shortcuts, outlining file extensions, and deciding where to house the install folder.



            

            
        
    
        

                            
                    Creating shortcuts and selecting an install location

                
            
            
                
Within the installation, you'll have choices on whether you would like some shortcuts, along with outlining the available file extensions. In addition, you'll need to decide where to store the installation folder, as outlined here:


	Additional Tasks: This prompt will provide choices on whether to create shortcuts for in the Wireshark Start Menu, Wireshark Desktop, or Wireshark Quick Launch icon, as shown here:





 Additional Tasks screen


	Choose install location: The user selects the default location or browses to a user-defined folder. Wireshark will provide information on how much space is required. 




As with most software installations, the user is given some choices. In addition to those listed earlier, the user will have a few more selections to make on capture engines and USB capture before completing the installation.



            

            
        
    
        

                            
                    Capturing packets and completing the installation

                
            
            
                
Wireshark needs a capture engine to gather network traffic, and will query the system to see if one is present. Wireshark also offers a USB capture, which is optional. 

The following prompts deal with capturing traffic, along with what you should expect to see when Wireshark completes the installation:


	Packet Capture: At this point, Wireshark will check whether Npcap or WinPcap is installed. The user is presented with a screen that states Wireshark requires either Npcap or WinPcap to capture live network data, as shown here:





The Packet Capture Screen

If you have Windows 7 or higher, then Npcap is most likely an appropriate choice. Wireshark presents links for the user to do the following:


	

	Get Npcap if needed

	Learn more about Npcap and WinPcap








	USB Capture: At times, it is necessary to capture USB traffic. This option checks to make sure you have the USBPcap currently installed and gives you an option to install it, which is shown as follows:





The USB capture screen

You may find the need to use a USB capture, for example, for troubleshooting or monitoring transactions. If you choose not to install the USB capture, then you can install this at a later date.


	Completing Wireshark Setup: Once you have made all of your selections, Wireshark will present a notification that the process has completed. The screen will show the output of the files extracted during the installation. At this time, you can choose to Run Wireshark. In addition, you can also select Show News, which will bring up the latest Wireshark news and information. 



Because of the variety of options available, it may seem overwhelming. There is help. The next section provides an overview of many of the resources found at the Wireshark home page.



            

            
        
    
        

                            
                    Reviewing the resources available at Wireshark.org

                
            
            
                
When you first visit https://www.wireshark.org/, you are presented with a splash page that offers download options. In addition, across the top, there are several hyperlinks to resources such as news, where to find help, and where to go to meet other Wireshark users.

The News section is where you will find the latest on Wireshark improvements, vulnerabilities, and bug fixes. Once there, you can drill down to specific versions of release notes and find more information. On the lower part of the page, you will find links to archived news events for past Wireshark releases, as shown here:



News section at Wireshark.org

The Get Acquainted menu choice provides a link to the About page, where you will find general information on Wireshark, including features, authors, awards, and accolades. You will also find another link to download Wireshark, but you will also find a blog. It's worth visiting the blog because there are personal insights from developers, including Gerald Combs, the original developer.

The Get Help menu lists many opportunities to ask questions, various online tools, the Wireshark Wiki, Bug Tracker, and Mailing Lists that help you keep up to date on Wireshark. Users are encouraged to post questions to the forum where you can view the question and registered users can post a response. As shown in the following diagram, there are several topics to investigate:



Questions in a Wireshark forum

While most of us are Wireshark users, there are hundreds of developers that have worked hard to improve Wireshark over the years. The Develop menu choice lists various links to Get involved, Developers guide, Browse the code, and the Latest build. 

Everyone needs a sponsor. The Our Sponsor menu choice takes you to Riverbed's home page, which is an IT company that provides a variety of products and services.

SharkFest is the Wireshark conference, where you can undergo training, gain practical experience, and network among the Wireshark community and the developers that make Wireshark possible.

Because most of the time you visit the Wireshark home page to download Wireshark, the following sections explore options you may find when downloading Wireshark.



            

            
        
    
        

                            
                    Evaluating different download options

                
            
            
                
Once on the Download page at https://www.wireshark.org/, you will see options for the type of file you want, along with what release. You can choose from stable, old stable, and development. The following screenshot shows the choices for downloads under Stable Release:



Choices for downloads under stable release

In most cases, you will select an option under Stable Release, as this is the most recent version of Wireshark, which has most of the bugs resolved and functions at an optimal level. The following lists the available choices:


	Windows Installer (64-bit): This provides a standard download for a 64-bit Windows OS.

	Windows Installer (32-bit): This provides a standard download for a 32-bit Windows OS.




	Wireshark PortableApps (32-bit): This is an option that you can run from a flash drive for troubleshooting without having to install on a system. However, the app is limited for use only with Windows 2000, XP, or Vista.

	macOS 10.12 and later Intel 64-bit .dmg: This is an option for macOS users. To install, download, and unpack the Disk Image (DMG) and then run the install. In some cases, you may have to complete additional configuration options in Wireshark to resolve any errors.

	Source Code: This provides an archive of the source code, where you can study the various files. If you are serious about development, then you should obtain and update your code from Wireshark's Git repository. Git will automatically merge changes into your personal source, so you can keep your source updated. The following is a screenshot of the Source Code option on the Download page:





Source Code option in the download page

Below the stable release, you will find two other options:


	Old Stable: This includes the same options as the stable release, but are older versions, rather than the latest build. This might be used if your organization has a strict change management policy that doesn't allow any new software until you run vulnerability testing. In that case, you can select an Old Stable option. 

	Development Release: If you would like to test new features, then you can select one of the choices under the Development section.



It's worth taking the time to explore all the resources on https://www.wireshark.org/, to help you learn more about packet analysis and find the latest information on Wireshark.



            

            
        
    
        

                            
                    Summary

                
            
            
                
One of the first things that must be done in order to conduct packet analysis is to download and install Wireshark. This chapter went through how Wireshark has support for many different OS so that you can confidently download and install it on your own system. By now, you have a better understanding of the different capture engines and how they in provide a way to gather the traffic from the network before passing the data to the OS.

When you're ready to install Wireshark on a Windows machine, you'll be more confident as you step through all the prompts, from the Welcome Screen to completing the installation. So that you are more aware of the many choices for download, we reviewed the various options for the type of file you want, along with what type of release. And finally, you now understand that if you do run into trouble, there is help, as evidenced by the many resources on https://www.wireshark.org/.

Now that you have installed Wireshark, you're ready for the next chapter where we explore the Wireshark interface. We will take a look at all the elements to help you navigate better as you begin capturing and analyzing packets. We will then examine the Wireshark Welcome Screen and go through the various icons and shortcuts. Then, we will explore the three most commonly used access menu choices: File, Edit, and View, all of which will help improve your workflow.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now it's time to check your knowledge. Select the best response and then check your answers, which can be found in the Assessment:


	A significant improvement since moving from GTK to Qt is that Wireshark provides a native interface for macOS that doesn't require the use of _____.

	MATE

	X11

	Transum

	Capinfos





	_____is a capture engine originally developed for Unix-like OS, and is baked into Snort, TCPDUMP, and other packet analyzers to grab packets as they come off the network interface.

	capinfos

	Mate

	libpcap

	Transum





	_____ is a lightweight CLI tool that is not as resource intensive.

	TShark

	mergecap

	dftest

	androiddump





	This program will identify and print a packet's geolocation by using an IPv4 and IPv6 addresses.

	dftest

	TShark

	mergecap

	mmdbresolve





	This is the newest capture engine option for Wireshark, with many benefits and features to enhance your packet capture:

	AirPcap

	NpCap

	WinPcap

	libpcap









            

            
        
    
        

                            
                    Exploring the Wireshark Interface

                
            
            
                
When you launch Wireshark for the first time, you might find it hard to navigate around the interface until you are familiar with all of the elements required to begin capturing and analyzing traffic. In this chapter, we will step through the Wireshark interface. You will come to understand all of the elements of the welcome page, the sparklines, capture filters, and select interfaces.

Although Wireshark currently has over ten menu choices, in most cases, you'll find that there are a few that are more commonly accessed. We'll take a look at those so that you are more confident when moving about the interface. We'll examine the File menu, where you will not only open a packet capture, but can also save, print, and export the capture. We will also investigate the Edit menu where you can mark packets, set time references, and add comments. Finally, we'll take a look at the View menu so you can learn how to customize the look and feel of the Wireshark interface.

This chapter will address all of this by covering the following:


	Understanding the welcome screen

	Exploring the File menu options

	Discover the Edit menu options

	Grasping the View menu options





            

            
        
    
        

                            
                    Understanding the Wireshark welcome screen

                
            
            
                
When you first launch Wireshark, you may think that there isn't much on the welcome screen, as shown here:



The Wireshark welcome screen

While it is a streamlined interface, you will find that there is everything you need to begin capturing packets and analyzing traffic.

Across the top, you will find the menu choices. If you don't have a capture file loaded, you will see the menu choices that are all available; however, the icons may be dimmed. The icons will become active once you have a packet capture open or are actively capturing packets.

One of the first things you will do while in Wireshark is open a capture. The next section explains the many options available when opening a packet capture.



            

            
        
    
        

                            
                    Opening files

                
            
            
                
Below the icons, you will see a banner reading Welcome to Wireshark. Underneath the banner, you will see the label Open, which will identify any previously opened packet captures that are available. If you right-click on a file, you will have the following choices:


	Show in Folder

	Copy file path

	Remove



While in Windows, if you select Show in Folder, as shown here, you can select a file and then drag it onto the Wireshark screen and the file will open:



Right-click and Show in Folder

Once you begin capturing packets, you may have a dozen or so files in the Open file area. Although the files are shortcuts for ease of access, they may be distracting:



The Clear Menu choice

If you want to remove the files, go to the menu File | Open Recent | Clear Menu, as shown in the preceding screenshot.

Next, let's take a look at the options for gathering network traffic.



            

            
        
    
        

                            
                    Capturing traffic

                
            
            
                
If you are getting ready to capture traffic, you'll want to set Wireshark up properly. You can find the Capture label in the middle of the screen. Once there, you can apply a capture filter in the space provided. Below the capture filter area, you'll see a list of interfaces, with a moving symbol next to the active interface(s). The moving symbol is called a sparkline, which identifies an interface, and the lines represent actively exchanging data.

The capture filter allows you to add a capture filter. If you do use a capture filter, be aware that it will limit what you capture to only what you have filtered on, and you may miss the traffic that can help with your analysis.

To the right of the capture filter, you will see a drop-down menu reading All interfaces shown. If you want to remove any of the classes of interfaces (such as Wired or Virtual), you can select one from the drop-down menu, as shown in the following screenshot:



Capture options

In the list of interfaces, you will see the various connections. One of the interfaces may be the USBPcap, which will be available if you installed the USBPcap driver. This is a fairly new option that may be helpful to use during troubleshooting.

The last thing on the interface you'll find is a few links that can provide more information.



            

            
        
    
        

                            
                    Learning about Wireshark

                
            
            
                
Across the bottom on the right-hand side, you will see the Learn label, where you will find links to the User's Guide, Wiki, Questions and Answers, and Mailing Lists. Below the links, Wireshark also lists what version you are running and whether or not you are receiving automatic updates.

Once you have either opened a packet capture or run a capture for analysis, you will most likely use one of the many menu choices. The following covers what is possible in the File menu.



            

            
        
    
        

                            
                    Exploring the File menu

                
            
            
                
When working with the Wireshark interface, File is the go-to menu as it has all of the tasks commonly associated with working with a file, as shown in this screenshot:



The File menu

In this section, we'll walk through the many options found in the File menu. If you would like to follow along, go to https://www.cloudshark.org/captures/0012f52602a3. Download the original file, open the packet capture file, HTTP.cap, in Wireshark, and select frame 36.

There are many options found in the File menu. Let's begin with ways to locate and open a file, save a capture, and what options are available when you close a file.



            

            
        
    
        

                            
                    Opening a file, close, and save

                
            
            
                
This first section has many choices for locating and opening files so you can begin your analysis:


	Open will launch a dialog box that will allow you to select any file; it'll go to the location of that file and allow you to select that file.

	Open Recent will list the recently accessed files.

	Merge will allow you to merge a file with the capture you have open. When merging, it's important that the time values are synchronized, as that is what Wireshark uses to merge the two files.

	Import from Hex Dump is convenient when someone has sent you a hex dump from another device for analysis. The import dialog box will step through selecting the appropriate choices when importing the file.

	Close will close the current capture. Prior to closing, Wireshark will ask you if you'd like to save the file.

	Save allows you to save the current file. This would be useful if you have added comments or modified the file and want to preserve the changes.

	Save As allows you to save the file as something other than the default extension, .pcapng. Once in the dialog box, you can select from the many different file formats that Wireshark has available.

	File Set offers the ability to work with a set of files. For example, if you're doing a firewall ruleset and you're going through a whole month of files, you can work through the list one by one.



 This next File menu section takes a look at the many ways to export parts of a capture.



            

            
        
    
        

                            
                    Exporting packets, bytes, and objects

                
            
            
                
Instead of saving an entire file, you may want to save only a portion of the file or even just the objects found within the file. Within this section, you'll find several export options:


	Export Specified Packets: This provides a wide range of options that include only displayed packets, a range of packets, and marked packets, as shown here:





The Export Specified Packets dialog box


	Export Packet Dissections: This offers many choices to export, as shown in the screenshot, including CVS, plaintext, and JSON:





The Export Packet Dissections menu



	Export Packet Bytes: This feature exports the packet bytes into C arrays so you can import the stream into a C program.

	Export PDUs to File: This menu choice offers many selections to export; however, this feature may not show a usable output and may only work with specific applications.

	Export TLS Session Keys: If there are session keys within the file, select this option to export the keys that can be used to decrypt the data. Wireshark will display a popup if there are no TLS (short for Transport Layer Security) keys to save.

	Export Objects: This exports objects found within the file, such as images, documents, and executables. For frame 36, select Export Objects | HTTP, which will display a list of objects found, as shown here:





The Export Objects—HTTP dialog box

Within this window, you can select Save, Save All, or even use the Text Filter:



The Export Objects—Save As dialog box

I selected Save and then navigated to a temporary folder, Export. For the filename, I selected logo.png. I included the extension to ensure the object is saved in the correct format. When done, navigate to the folder and open the image and you should see the Packet Life logo.

 If there are other objects within the capture, you can save them in a similar manner.

As you can see, there are many ways to export components in Wireshark. In the lower part of the File menu, we see options to print and quit, which we'll evaluate next.



            

            
        
    
        

                            
                    Printing packets and closing Wireshark

                
            
            
                
Within this final section, let's take a look at the last two options, Print and Quit:


	Print: While examining packets, Wireshark offers many ways to print different sections of the capture. You can print all of the packets, selected packets only, or a range of packets to PDF, which you can then include in a report. Once you select Print, you will see the following:






The File | Print option


	Quit: Once you are done using Wireshark, you'll want to quit the application. If you select Quit, and you have a new capture, Wireshark will ask you whether you'd like to save the file.



In addition to the File menu, you will want to work with your capture file. The following section will cover the Edit menu to help you can discover the many possibilities available when working with a packet capture.



            

            
        
    
        

                            
                    Discovering the Edit menu

                
            
            
                
The Edit menu allows you to find and mark packets, set a time reference, copy and provide detailed information on creating a configuration profile, or modify preferences. The following is a screenshot of the Edit menu:



The Edit menu

As you can see in the screenshot, there are many options. The following discussion outlines ways to copy various items and find packets within Wireshark.



            

            
        
    
        

                            
                    Copying items and finding packets

                
            
            
                
While analyzing packets, you may see an item or value you would like to copy. Wireshark makes this easy to accomplish as the Copy menu choice has many submenus to further define copy options. In addition, we'll see how we can locate a specific packet or a string value within the capture.

Copy allows you to copy various items to the clipboard. For example, in frame 5, expand the IP header and select the source IP address. Go to Edit | Copy and then expand the selections, as shown here:



Copy options

The Copy submenu has the following options to select from: 


	Value: This will copy the 168.1.140 IPv4 address.

	As Filter: This will create a filter based on the IPv4 address you selected or any other value. You can then paste the filter in the display filter area, press Enter, and Wireshark will run the filter.



Within the Edit menu choice, there are a few groupings of selections. We'll start with the first grouping, which offers ways to find packets:


	Find Packet: This is where you can search for specific packets and even find string values within a packet capture.

	Find Next: If Wireshark finds what you are looking for, Find Next will go to the next instance.

	Find Previous: If Wireshark finds what you are looking for, Find Previous will go back to the previous packet.





            

            
        
    
        

                            
                    Marking or ignoring packets

                
            
            
                
While working with packets, you might find and mark packets that are interesting, so you can return to them at a later date. In addition, you may want to ignore specific packets.

This next grouping of selections offers ways to mark packets:


	Mark/Unmark Packet: This allows you to mark a specified packet or packets, which turns the packet(s) black for easy visual reference.

	Mark All Displayed: This will mark all displayed packets, meaning if you used a display, filter Wireshark will only mark the packets that are displayed.

	Unmark All Displayed: If all displayed packets are already marked then this will unmark all displayed packets.

	Next Mark: When packets are marked, this option allows you to move to the next marked packet.

	Previous Mark: When packets are marked, this option allows you to navigate back to the previous marked packet.



In addition to marking packets to identify items of interest, you may want to ignore specific packets. The following shows how you can select specific packets to ignore while doing your analysis:


	Ignore/Unignore Packet: This allows you to select a packet and, once selected, it will be as if the packet never existed, and it won't show up in statistics or a flow graph; it's simply ignored. Once you select ignore, the packet line will have a reference reading <Ignored>, as shown here:





Using the Ignore Packet option


	Ignore All Displayed: This will ignore all displayed packets, meaning if you used a display filter, Wireshark will ignore only the displayed packets.

	Unignore All Displayed: If the displayed packets are ignored, when selected, Wireshark will unignore all displayed packets.



While some packets may be ignored as they hold no value in the analysis, you may want to use some method to determine delays, as we'll see next.



            

            
        
    
        

                            
                    Setting a time reference

                
            
            
                
In your analysis, you may have a group of packets where you want to see exactly how long the delay was within those packets. In Wireshark, you can set a time reference on the packet where you think the trouble began and watch the time values to see gaps in the transmission. Wireshark provides a variety of ways to set a time reference and then offers ways to navigate through the time references:


	Set/Unset Time Reference: This is a selection that allows you to set/unset a time reference.

	Unset All Time References: This will unset all time references.

	Next Time Reference: Once a reference is set, this allows you to navigate to the next time reference.

	Previous Time Reference: Once a reference is set, this allows you to navigate to the previous time reference.




	Time Shift: This is an option you can use when you need to adjust the time reference. For example, if you are examining two captures that each used a different file format—that is, one file used NTP (short for Network Time Protocol) and the other file used PTP (short for Precision Timing Protocol)—you may want to do a time shift. If you select this option, it will launch a dialog box where you can set your values, as shown here:





The Time Shift option

The last option shows where you can undo all shifts if you get unexpected results.

Now that we understand how we can reference or shift time in Wireshark, let's take a look at ways to personalize your work area.



            

            
        
    
        

                            
                    Personalizing your work area

                
            
            
                
While working with a capture, you can record your changes by using comments. In addition, you can fine-tune the interface by creating a tailored configuration profile and/or modify individual settings using the Preferences menu:


	Packet Comments: This allows you to include comments on a single packet.

	Delete all Packet Comments: This removes all comments.






	Configuration Profile: This allows you to create a customized profile, specific to your workflow. This is a powerful feature, as you can create several profiles, so they can be used for specific applications or clients.

	Preferences: This brings up the Preferences dialog box where you can alter the appearance and elements that influence the functionality of Wireshark. Here, you can adjust the font and color or even the layout, as shown in the following screenshot:





Wireshark Preferences

Although the Edit menu is widely used, let's take a look at the View menu, so you can see the many ways to modify the look and feel of your capture during analysis.



            

            
        
    
        

                            
                    Exploring the View menu

                
            
            
                
The View menu is where you can alter the appearance of the captured packets, and it includes ways to colorize packets, expand the subtrees, or show a packet in a separate window:



The View menu

Let's start with ways to adjust the toolbars and panels and how to go into full-screen mode. If you would like to follow along, use the HTTP.cap file.



            

            
        
    
        

                            
                    Enhancing the interface

                
            
            
                
In Wireshark, there are several ways to alter and enhance the interface, such as how we view the toolbars and which panels we would like to be visible. We'll start at the top with the toolbars.

The toolbar section represents a grouping where similar items are combined in many menus. Once in this section, you will see a list of the three available toolbars that are currently available, as shown here:



The View menu—toolbars

 If you see a checkmark as shown in the preceding screenshot, that indicates the toolbar is visible. The toolbars are explained as follows:


	Main Toolbar: This holds all of the commonly accessed icons:





Main Toolbar


	Filter Toolbar: This is where you will find the display filter.

	Status Bar: This is found at the bottom of the Wireshark screen. The Status Bar tells how many packets are captured and how many are displayed, what profile is applied, and the name of the file.

	Full Screen: This is used when we want Wireshark to go full screen, which will fill the current window.



Once you get used to the toolbars, you will see they provide a handy way to help you to navigate the interface. Now, let's take a look at the next grouping, which is the panel view, so you can modify what is visible on the screen. A checkmark indicates the panel is visible. If you do not want a panel to be visible, uncheck the panel and it will be hidden from view:


	Packet List: This is a list of all of the captured packets, where each line represents a single packet.

	Packet Details: This displays the details of a single packet.

	Packet Bytes: This is a hexadecimal representation of a single packet.



The next section outlines the options for display the time in Wireshark, along with how to provide name resolution.



            

            
        
    
        

                            
                    Adjusting time formats and name resolution

                
            
            
                
The Time Display Format and Name Resolution menu choices both have several options within the submenus. We'll start with the Time Display Format, which provides several ways to view the time values in Wireshark.

Once you expand the Time Display Format menu choice, you will see several options with how you want your time displayed, which include the following:


	Date and Time of Day

	Year, Day of Year, and Time of Day

	Time of Day

	Seconds Since 1970-01-01



When doing an analysis, you will most likely use a format that helps you to visualize gaps in transmission. In that case, the following are used:


	Seconds Since Beginning of Capture: This will show you how many seconds have passed since the capture was started.

	Seconds Since Previously Captured Packet: This will show how many seconds have passed since the previously captured packet.

	Seconds Since Previously Displayed Packet: This is used when you apply a display filter, as it will show how many seconds have passed since the previously displayed packet, which will more accurately show gaps in time.



Time precision is also a consideration. When selecting a format, you have a choice in how many decimal places are displayed, as shown here: 


	Automatic (from Capture File)

	Seconds

	Tenths of a second

	Hundredths of a second

	Milliseconds

	Microseconds

	Nanoseconds



Most of the time, it is best to use Automatic, which is the default, and that will be the best precision the operating system can provide. 

The whole concept of time is important in packet analysis. Now, you understand how you can easily modify the way time is represented. Name Resolution is another menu choice that has several selections. The following will outline the options available to resolve names and the rationale behind why you would select each one.

Under the Name Resolution menu, you can resolve physical, network, and transport addresses. In most cases, Wireshark can resolve physical and transport addresses without any problems as they both come from a file found in the local Wireshark folder.

To resolve physical addresses, Wireshark looks at the first six digits of a MAC address, which is the Organizational Unique Identifier (OUI), and this comes from the manuf.txt file, as shown here:



The manuf file listing NIC card vendors

To Resolve the Transport Address (or port number), Wireshark consults the services file, which is a text file that holds a list of services and the associated port number. The list uses the IANA port-numbers file for consistency.

For example, the service smtp uses port 25.  When Wireshark identifies that port 25 is in use, it will display smtp as the service, as long as you have requested name resolution.

The following is a screenshot of the services.txt file, which is found in the Wireshark folder:



The services file listing ports and associated services

The Resolve Network Addresses will resolve a hostname to an IP address. Normally, this option is not checked because, if it is, Wireshark will contact the DNS server(s) to do the resolution and cause a lot of additional traffic.

If necessary, it is possible to change either the manuf or services files. In addition, you can also select Edit Resolved Names, which will bring up a Name Resolution Preferences toolbar where you can edit or add a name.

When working with a capture, there are ways to enhance your view, as we shall see in the next section.



            

            
        
    
        

                            
                    Modifying the display

                
            
            
                
To see the details of your capture, there are a few enhancements that include the ability to zoom in, expand the subtrees, and colorize the conversation:


	Zoom: This allows you to zoom in, zoom out, or return to normal size.

	Subtrees: Within a packet capture, Wireshark will collapse the details of a protocol header. When you expand the subtree, you can see the details of the protocol. With the subtrees, you can do the following:

	Expand subtrees

	Collapse subtrees

	Expand all

	Collapse all







As shown in the following screenshot, the expanded UDP subtree provides a detailed view of all of the field values in the UDP header:



A UDP header with expanded subtree


	Colorize Packet List: This is a shortcut to turn on or off the coloring rules. This shortcut is also available on the main toolbar (under the Telephony menu).

	Coloring Rules: This opens a dialog box where you can modify the coloring rules or create a new coloring rule.

	Colorize Conversation: This will colorize a conversation between two endpoints. You will have a choice as to what you would like to colorize—that is, Ethernet, IPv4, or UDP—along with providing a choice of colors from which you can select, as shown in the following screenshot:





Colorize conversation



The last grouping of menu choices provides ways to refresh the view to reload, resize, show the packet in a new window, or view the internals.



            

            
        
    
        

                            
                    Refreshing the view

                
            
            
                
Wireshark doesn't limit the way you can view the data in the interface. In fact, in this last section, we'll see the many options to view the captured packets:


	Resize Layout: This option, when selected will resize the visible panels so they have a uniform appearance.

	Resize Columns: Much like you can resize the columns in Excel to autofit to their contents, Resize Columns will adjust the columns, so the contents fit. When using IPv4, the columns may adjust nicely, but using IPv6 takes up much more space and may not give you an optimal view.



If you are a developer, the next section outlines what is available behind the scenes to allow Wireshark to dissect and display the various protocols:


	Internals: The Internals menu choice provides advanced options that include the following:

	Conversation Hash Tables: This shows the address and port combinations that identify each conversation, as shown here:









Conversation Hash Tables information

Select a single packet and then click Conversation Hash Tables to bring up the information.


	

	Dissector Tables: This provides tables of relationships among subdissectors, as shown in the following example:









Dissector Table subset showing HTTP


	

	Supported Protocols: This will bring up an extensive list of all currently supported protocols and the protocol fields, along with the suggested filter and a brief description.








	Show Packet in New window: At times, you may want a single packet in its own window as a popup. This option may be ideal for training or to show a single packet, but doesn't offer any functionality—meaning, you can't right-click or use any shortcuts while in that window.

	Reload: This option will reload the capture, which will freshen the capture file. This can be helpful if you have marked packets and manipulated the file already, and you want a fresh start with the file.





            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we explored all of the elements of the Wireshark welcome page, to give you a better understanding of what is available, even before opening a packet capture. We then took a closer look at commonly accessed menu choices to make navigating around Wireshark easier. First, we evaluated the File menu that has all of the tasks commonly associated with working with a file.

Next, we studied the Edit menu, which allows you to find and mark packets, set a time reference, or modify preferences. We concluded with the View menu, where you can alter the appearance of the captured packets including how to colorize them, zoom in, or show a packet in a separate window.

In the next chapter, we will learn where and how to tap into a data stream. To help you understand how what you see will be dependent on the type of network you are accessing, we will review the different network architectures. Then, when you are ready to capture, we will discover the various capture options, which include display options, using multiple files and name resolution, and understanding conversations and endpoints.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now, it's time to check your knowledge. Select the best response, then check the answers found in the Assessment:


	Once you begin capturing packets, you may have a dozen or so files in the Open file area. If you want to remove the files, go to the File menu and then choose Open Recent and then the _____ menu.


	Clear

	Purge

	Delete

	Freshen





	Seconds Since _____ is used when you apply a display filter, as it will show how many seconds have passed since the previously displayed packet, which will more accurately show gaps in time.

	Recently Created Epoch

	Previously Captured Packet

	Beginning of Capture

	Previously Displayed Packet





	___ is a shortcut to turn on or off the coloring rules. The shortcut is also available on the main toolbar (under the Telephony menu).

	Colorize Conversation

	Coloring Rules

	Stop Color Filters

	Colorize Packet List








	The _____ menu choice in Wireshark allows you to control the look of the displayed packets including the ability to zoom in, colorize packets, and show a packet in a separate window.

	File

	Edit

	View

	Go








	When working with a packet capture, the _____ menu choice edit allows you to find and mark packets, set a time reference, copy and provide detailed information for creating a configuration profile, or modify your preferences.

	File

	Edit

	View

	Go









            

            
        
    
        

                            
                    Section 2: Getting Started with Wireshark

                
            
            
                
This section will enable you to tap into the data stream, personalize the Wireshark interface, compare display and capture filters, and review the OSI model and data encapsulation.

This section is comprised of the following chapters:


	Chapter 5, Tapping into the Data Stream

	Chapter 6, Personalizing the Interface

	Chapter 7, Using Display and Capture Filters

	Chapter 8, Outlining the OSI Model





            

            
        
    
        

                            
                    Tapping into the Data Stream

                
            
            
                
 When you need to draw liquid from a container, you use a tap. When you tap into the data stream, you capture the data from the network. Once you capture network traffic, you can analyze the packets to understand the traffic flow. In this chapter, we'll review the network architectures and various types of media that may be found on today's networks to help you to get a better understanding of the complex nature of today's networked environment.

So that you can confidently begin capturing traffic, we'll look at the various options including capture, input, and output. We'll then review what happens when you tap into a network, so you can identify what types of traffic you'll see. We'll also compare and contrast conversations and endpoints, so you understand the difference between the two. Finally, so you can better identify abnormal network behavior, this chapter ends with a discussion on why it's important to baseline network traffic.

This chapter will address all of this by covering the following topics:


	Reviewing the network architecture

	Learning various capture options

	Tapping into the stream

	Realizing the importance of baselining





            

            
        
    
        

                            
                    Reviewing the network architecture

                
            
            
                
We live in an exciting, yet challenging period in history. Today, our internet-based ecosystem demands that business networks are available nearly 100 percent of the time. Enterprise networks must be able to adjust to changing traffic demands and maintain constant response times. In addition, they have to be agile enough to respond to unexpected security incidents.

In today's networked environments, administrators face numerous challenges to keep the network up and operational. Effective packet analysis begins by understanding the network architecture. In order to determine where to tap in to identify trouble spots, it's important to recognize the way that different media and devices influence network traffic. And to that end, we will begin our discussion by learning the various types of networks.



            

            
        
    
        

                            
                    Comparing different types of networks

                
            
            
                
Today's networked environments are complex and can include mobile phones, cloud computing, virtualization, social media, and the Internet of Things (IoT). The network specialist deals with many different types of networks, which include Personal Area Networks (PANs), Local Area Networks (LANs), Campus Area Networks (CANs), and Wide Area Networks (WANs). All of these different types of networks will influence how data is transmitted and will possibly be the cause of system failures and bottlenecks.

To begin, we will review the smallest network, a PAN, which you may encounter in your analysis.



            

            
        
    
        

                            
                    Discovering the PAN

                
            
            
                
A PAN is a network that shares data between devices that are close, normally within a range of 30 feet. Devices can connect to the internet or other networks. Because devices in a PAN generally communicate using low-powered wireless technology, we also use the term Wireless Personal Area Network (WPAN).

A WPAN is a short-range network that connects personal devices to exchange information using the IEEE 802.15 standard and includes technologies such as Bluetooth, ZigBee, and Ultra-Wide Band.

Conducting packet analysis on a PAN may be done to troubleshoot or test IoT devices that connect to the internet, enabling them to send and receive data. Using Wireshark, you can study protocols such as Message Queuing Telemetry Transport (MQTT), a lightweight messaging protocol used for machine-to-machine communication.

One of the most common types of networks, where you will capture traffic is a LAN. The following provides an overview of the characteristics of a LAN.



            

            
        
    
        

                            
                    Checking out LANs

                
            
            
                
A local area network is a private network in a localized area that an organization or individual owns, controls, and manages. A LAN is generally within a restricted geographic area such as a corporate office, manufacturing plant, or healthcare facility and shares resources. The LAN provides high-speed bandwidth using Ethernet technology on a fixed frequency, connecting network devices and enabling the ability to communicate and exchange data on a common channel:



An example of a networked environment

Within the LAN, the network might have a data center, which is a large group of servers that provide storage, processing, and distribution of critical company data for network clients. The data center is the heart of any enterprise network and is located in a central location, generally in a secure computer or server room.

In today's large, multifaceted companies, there may be a larger network than a LAN that requires remote locations to serve all of the clients. The following section takes a look at the concept of a CAN.



            

            
        
    
        

                            
                    Exploring CANs

                
            
            
                
A CAN is a large private local area network in a common entity such as a college, hospital, corporate campus, or military base that has two or more interconnected LANs.

The CAN has a main campus where the central elements of a network reside, such as the data center and telephony, and provides connectivity, data, applications, and services to clients. Away from the main campus, there are remote locations.

Because the CAN, at times, is spread across a larger geographic area such as a city, remote locations communicate over a WAN using an internet connection. Let's now discover the qualities of a WAN.



            

            
        
    
        

                            
                    Navigating WANs

                
            
            
                
A WAN is a geographically-dispersed collection of LANs that span a large distance. The internet is the largest WAN, spanning the globe, and is a network of globally connected networks that bring people, processes, data, and things together.

A WAN is different than a LAN in several ways. In most cases, no one entity owns a WAN; rather, WANs exist with shared or distributed ownership and management. WANs use common technology such as Multiprotocol Label Switching (MPLS), which is a data transport method for high-performance telecommunications networks. WANs carry the signal using the Plain Old Telephone System (POTS), fiber optic cables, wireless transmissions, and satellites.

As you can see, there are many different types of networks, from very small PANs to large WANs. In the next section, let's explore each of the different types of media used to carry the signals.



            

            
        
    
        

                            
                    Exploring various types of media

                
            
            
                
Devices on the network share access to a common network medium, which provides a channel for network traffic. Media can be either of the following:


	Bounded signals, which are controlled or confined to a specific path by traveling over copper or fiber optic cable

	Unbounded signals, which travel using a wireless radio wave



The following is a diagram that represents various types of network media:



Various types of network media

For enterprise networks, multiple types of media make up the networking environment and include copper ad fiber optic cable, and wireless transmissions. Each media type will influence the data flow.

Let's begin by reviewing copper, which is subdivided into two categories, coaxial and twisted pair.



            

            
        
    
        

                            
                    Exploring copper

                
            
            
                
Copper is the most commonly used media type in today's networks for data communications. The two types of media that use copper are coaxial and twisted pair.

Coaxial, also called coax, was originally used to transmit data on a LAN. Coax consists of a single copper wire encased by a layer of insulation and then by a grounded shield of braided wire. Coax is able to support high bandwidth but is no longer used by LANs to transmit data. However, you will still see coax, as it is used by cable television companies to transmit signals to clients in homes and businesses. Although rare, it is possible to troubleshoot differences in traffic transmitted between the cable modem and router, as Wireshark has a DOCSIS (short for Data Over Cable Service Interface Specification) dissector for that purpose.

Today, LANs use twisted pair cable, which consists of twisted pairs of copper wire that use pulses of electricity to carry a signal. The twists provide a shielding effect that minimizes crosstalk. Twisted pair cabling has eight wires with four pairs of twists and comes in two forms:


	Unshielded Twisted Pair (UTP): This is the most commonly used wire.

	Shielded Twisted Pair (STP): This is used when protection from Electromagnetic Interference (EMI) is necessary.



Twisted pair cabling is so popular because it is reasonably priced, easy to install, and in most cases, provides high bandwidth for carrying both data and multimedia traffic.

In addition to copper, many companies employ fiber within their organization to provide a high-speed, high-bandwidth option over copper. The following section outlines the characteristics of fiber, which is subdivided into two categories, multimode and single mode.



            

            
        
    
        

                            
                    Using fiber optic

                
            
            
                
Fiber optic cable uses pulses of light to carry network traffic over longer distances. Fiber has high throughput that is naturally resistant to EMI. The signals are sent via laser or Light-Emitting Diode (LED) using a core of glass or plastic. Many times, fiber is used as the backbone on a LAN and comes in two forms:


	Multimode (MMF): This uses multiple light signals, has a higher bandwidth than UTP, and is used to carry backbone traffic in a LAN. MMF can use either glass or plastic, using either LED or laser signals, over a distance to up to 2 km.

	Single mode (SMF): This uses a single light signal. Single mode fiber has a higher bandwidth than MMF and can carry a signal for many miles. SMF must use a laser to produce a bright, coherent light.



Fiber optic has many benefits, but it is more expensive than twisted pair and requires special equipment to manage. As a result, LANs use fiber primarily for backbone traffic and use twisted pair for work areas. 

Today, it is common to see wireless network communication, which uses radio waves to transmit signals. The following section outlines the various ways you may work with analyzing a wireless connection.



            

            
        
    
        

                            
                    Discovering wireless

                
            
            
                
Wireless networks use unbound media, which allows users to roam freely while still being connected to the network. Over time, wireless networks have improved in speed and bandwidth, and as a result, you will most likely capture wireless traffic during a troubleshooting exercise.

Wireless can provide connectivity for a LAN using Wi-Fi, or for a PAN using Bluetooth. Here, we will compare the two:


	Wi-Fi provides networking on a LAN using the IEEE 802.11 standards. The 802.11 family has several standards; however, 802.11a, 802.11b/g/n and 802.11ac are currently the most widely used standards.

	Bluetooth provides networking on a PAN over short distances from fixed and mobile devices, which allows devices to communicate with each other to transfer files, control IoT devices, and provide hands-free calling in your car.



As you can see, there are many variables that you may deal with while capturing and analyzing traffic using Wireshark. The type of network and the media will influence how you capture traffic and what you might see once it has been captured. In most cases, however, packet capture using Wireshark is done on a LAN.

In the next section, we will explore how to properly set up a capture and examine each of the capture option tabs: input, output, and options.



            

            
        
    
        

                            
                    Learning various capture methods

                
            
            
                
When capturing traffic with Wireshark, most of us are familiar with the main interface, as shown in the following screenshot, where we would go to the lower part of the screen to see what interfaces are active by viewing the sparklines. The following screenshot shows the main Wireshark interface:



Wireshark interface

Once here, you can select an active interface and begin capturing traffic. In addition, you can put in a capture filter and begin capturing traffic. However, there are a few other capture options that allow you to do advanced configuration before capturing:


	Go to the Capture drop-down menu and then into Options.

	Select the Capture Interfaces icon.





Whatever you choose will open the advanced options dialog box. Across the top, you will see three tabs, Input, Output, and Options, as shown in the following screenshot:



Capture options

To that end, let's start with how to set up a capture by selecting an input interface.



            

            
        
    
        

                            
                    Providing input

                
            
            
                
In the Capture Interfaces dialog box, the Input tab will show a list of available interfaces on your device. Across the top, you will see various column headers that include Interfaces, Traffic, Link-layer Header, and Capture Filter. In the lower-left corner, there is a checkbox called Enable promiscuous mode on all interfaces. If you uncheck the box, it will take off promiscuous mode on all interfaces. In that case, you can then select the interface you want to be in promiscuous mode by checking the box to the right of the interface. At the bottom, you can create a capture filter for the selected interface.



On the lower-right, you can select Manage Interfaces..., which will allow you to hide interfaces you do not want to be visible on the Input tab. For example, we can see five unchecked USBPcap interfaces here:



Capture options—Input tab

Once you have selected what you would like for input, you may want to save your file in a specific way. The next section outlines the output tab.



            

            
        
    
        

                            
                    Directing output

                
            
            
                
The Output tab directs where and how you want to save your file. Within this tab there are several choices. The first choice is to Capture to a permanent file. In most cases, this box is left blank. When you begin capturing traffic, Wireshark will save the capture to a temporary file until you save it as something else. The Output format defaults at saving the file as pcapng (PCAP next generation); however, you can force Wireshark to save the file as a pcap. Most of the time, pcapng is the best choice as it allows you to add comments. The following screenshot shows the Output tab of the Capture Interfaces dialog:



Capture options—manage interfaces

The next selection allows you to use a ring buffer to monitor traffic. Although you may be tempted to launch Wireshark and let it run while monitoring traffic for a long period of time, that isn't the best option. This is mainly because Wireshark will consume all of your memory if you leave a capture running, as Wireshark holds the capture in a temporary file until you stop the capture and save to a permanent file.

A ring buffer is handy if you want to run a capture to watch for a specific protocol or signature on your network. To use a ring buffer, you create multiple files and set a parameter to create a file automatically after either a specific file size is reached, such as after 1 megabyte, or after a period of time has passed, such as 10 seconds.

If you do want to create multiple files, you must specify a filename and location for the file if you want to use multiple files; otherwise, you will throw an error, as shown here:



Error message in the capture options

At the bottom, select Use a ring buffer and enter how many files you want to overwrite. 

In addition to providing ways to select input and output options, Wireshark provides some custom options that you can modify. Let's take a look.



            

            
        
    
        

                            
                    Selecting options

                
            
            
                
The Display Options are generally set to Update list of packets in real-time and Automatically scroll during live capture, as shown in the following screenshot:



 Options tab

The Name Resolution choices include the following:


	Resolve MAC Addresses

	Resolve network names

	Resolve transport names



It's okay to resolve MAC addresses and transport names, as these are changed into human-readable format using static text files found in the local Wireshark folder. The files include the following:


	manuf.txt is a list of Ethernet vendor codes and well-known MAC addresses.

	services.txt holds a local copy of the IANA port numbers file.



However, if you select Resolve network names, this will contact the DNS server multiple times while resolving the IP addresses and will most likely impact system performance and cause additional traffic on the network.

The last selection on the Options tab is Stop capture automatically after… whatever option you select. There are four choices:


	Packets

	Files

	Size of file

	After a specified time period



This last option can be used when baselining and you can specify to stop capturing after 1,000 packets and then start your capture; Wireshark will capture 1,000 packets and then automatically stop the capture.

After you understand the network architecture and the topology and have selected your capture options, you're ready to tap into the network. This next section will review the different types of packets you will see, along with how to look at the conversations and endpoints that are gathered while capturing traffic.



            

            
        
    
        

                            
                    Tapping into the stream

                
            
            
                
While tapping into a LAN with the NIC in promiscuous mode, the adapter captures the traffic and sends the packets up through the Enhanced Packet Analyzer (EPAN) for dissection and decoding, and then on to the Wireshark interface.

You'll then see the packets filling the screen. If you are on an end device and communicating with another host, you will most likely see three types of packets, namely, broadcast, multicast, and unicast:


	Broadcast: Packets are sent from one to everyone on a network—that is, ARP broadcast.

	Multicast: Packets are sent from one to many—that is, routing protocol EIGRP (short for Enhanced Interior Gateway Routing Protocol) multicasts.

	Unicast: This sends packets from one to one—that is, from your computer to a web server.



In a normal conversation with another host, once you have a connection, the operating system creates a socket, which consists of an IP address and a port. During a capture, Wireshark will keep track of all of the connections or streams, which you can examine.

This next section explains how you can take a look at the conversations and endpoints in a capture.



            

            
        
    
        

                            
                    Comparing conversations and endpoints

                
            
            
                
Whenever you are actively connecting with other hosts on the network, the OS keeps track of all the connections. To see all of your active connections on a Windows machine, open a command line and run netstat with the parameters -an , as shown in the following screenshot:



The netstat command showing TCP connections

In Wireshark, a conversation consists of two endpoints that are in a connection together. An endpoint is one side of the conversation. To view all of the conversations in a capture, go to Statistics and then Conversations. Once the window opens, there are tabs along the top that allow you to view a specific type of conversation. In the following screenshot, you can see the five tabs, Ethernet, IPv4, IPv6, TCP, and UDP: 



Conversations

Each tab provides details of the type of conversation you selected. For example, the Ethernet tab shows Ethernet conversations listing the MAC addresses of the endpoints. Each row represents one conversation. Wireshark has advanced options within this window. We can select any of the conversations by right-clicking and selecting any of the following options:


	Apply as a filter: This will select the highlighted conversation and run the filter.

	Prepare as a filter: This will select the highlighted conversation and prepare the filter; to run the filter you must press Enter.

	Find: This will select the highlighted conversation and place the variables in the search toolbar.

	Colorize: This will select the highlighted conversation and allow you to create a custom coloring rule.





The following screenshot shows the search toolbar that is launched when you select Find:



The Find packets toolbar

All of these options allow you to further refine your selection. Right-click and select one of several options that include A to B, B to A, A to Any, among others.

At the bottom of the window, there are additional choices with which you can refine and customize your view:


	Name resolution: Wireshark will resolve the physical, network, and transport addresses for the specific conversation type. For example, if the TCP tab is selected, the transport address will be resolved.

	Limit to display filter: This will show only conversations included in the current display filter.

	Absolute start time: This will change the start time column to the absolute start time, which is in the Time of Day display format. If you uncheck this, the time will revert to the relative start time, which is in the Seconds since Beginning of Capture time display format.

	Copy: This will copy the list to the clipboard in either CSV or YAML (short for Yet Another Markup Language) format. You can then paste it into a notepad file or a spreadsheet.

	Follow Stream: This allows you to see the details of a single conversation. You must first select either a TCP or UDP conversation.

	Graph: This will launch and display a TCP Stream graph on the selected TCP conversation, as shown here:





TCP stream graph

As you become more experienced with using Wireshark, you will be able to navigate around the interface with ease. Until then, experiment with some of the menu choices and options.

In order to more effectively troubleshoot a network, it is important to have a packet capture to compare possible changes. One way to achieve this is by creating a baseline, which we will cover in this next section.



            

            
        
    
        

                            
                    Realizing the importance of baselining

                
            
            
                
Every network is like a snowflake in that no two are alike. Each network has its own signature that includes characteristics such as utilization, network protocols, and latency issues.

A baseline is a packet capture on a subnetwork that is obtained using Wireshark or tshark during normal working conditions. If the network is experiencing problems, the network administrator can then use the baseline to identify any changes. Once you learn what normal network behavior is, you can better identify abnormal network behavior.

In addition to troubleshooting, a network baseline can be used for optimizing, forecasting, planning, and tuning the network. The baseline process goes through several stages: plan, capture, analyze, and save.

We will begin with planning, which provides steps for the best way to go through the process.



            

            
        
    
        

                            
                    Planning the baseline

                
            
            
                
To plan the baseline, create a network map and list all of the subnetworks including all VoIP VLANs. You should have a strategy on how you are going to go about the process, including the time of day, whether you are going to capture wireless or wired traffic, and details about the location and what applications may be in use on a particular subnetwork.

Once planning is complete, we can then move on to the next step, which is where we actually capture network traffic. 



            

            
        
    
        

                            
                    Capturing traffic

                
            
            
                
When it's time to capture the traffic, limit the packet capture to 1,000-2,000 packets so that you have a consistent capture size for the baselines. The process of capturing should be documented; for example, where and what time of day it was and what equipment you used during capture.

The key is to be as consistent as possible with your captures, so you compare apples to apples. If you select Statistics and then Capture File Properties, you can add a comment to provide additional information about the capture, as shown in the following screenshot:



The Capture File Properties window

After you complete the capture phase, we then move to the analyze phase, where we take a look a closer look at the capture.



            

            
        
    
        

                            
                    Analyzing the captured traffic

                
            
            
                
You'll want to review the packet capture to see whether anything stands out as unusual or suspicious, including what protocols are being used and what ports are in use. Within Wireshark, there are various statistics you can run, such as going to Statistics and then Protocol Hierarchy to spot-check what protocols appear on the subnetwork, as shown here:



The Protocol Hierarchy Statistics window


In addition, you can go to Statistics and then Conversations to identify what ports are in use. After all of the captures are complete, we move to the final phase where we save the captures for later comparison.





            

            
        
    
        

                            
                    Saving the baselines

                
            
            
                
Once you have completed the capture, analyzed the capture, and made any appropriate comments, it's time to preserve the baseline. Whether you work on your own or within a team, you should have a standard format and procedure to document the findings.

The format for saving the information can be a sharable spreadsheet, so the whole team can update and record their findings. Suggested guidelines for documentation include the following:


	List where the capture was taken, include the name of the building and/or the subnetwork.

	List the name of the technician who performed the capture. If someone has questions about the capture, they can contact the individual.

	List the date and time of the capture.

	Outline or summarize the overall findings, such as normal traffic flow with no unusual or unauthorized protocols in use.

	List the name of the file and location of the baseline.



Although much of the information in the preceding list can be recorded within the capture as well in the form of comments, it's best to document the information to preserve the information.

When naming the capture files, have your team agree on a standard format. This is so you can easily search through the captures later. One format or standard might be to use the building name and room or even the subnetwork IP address. For example, you might use this format: building-room-subnet (or BLD-RM-SN). Then, if you have a capture from the aviation building - room 78 - subnetwork 192.168.10.112, you can save the file as AV-78-10.112.pcap.

Save the information on a sharable spreadsheet, so the whole team can update and record the findings.



            

            
        
    
        

                            
                    Summary

                
            
            
                
By now, you understand the many different types of networks that can influence how data travels. In addition to the various network types, we saw how we must also contend with the media that transmits the data. So that you can effectively capture traffic, we took a closer look at various capture options that include display options, using multiple files, and name resolution.

We then moved into a discussion on the different types of traffic you will see when tapping into a switched network. We then took a look at conversations and endpoints within the Statistics menu so you could understand the difference between the two. We also looked at the many options within the Conversations window. We summarized the importance of baselining the network and suggested some steps on how to conduct the baseline.

In the next chapter, we will discover the many ways to personalize the Wireshark interface. You will learn ways to adjust the appearance and basic layout. I'll show you ways to add, modify, and personalize the configuration profiles. Then, we will evaluate how to add comments to a single packet or an entire capture. Finally, we'll take a look at creating a complex filter expression and a button for your toolbar to simplify your analysis.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now, it's time to check your knowledge. Select the best response, then check your answers with those found in the Assessment:


	 A _____ is a private network in a localized area that an organization or individual owns, controls, and manages.

	LAN

	WAN

	CAN

	PAN





	When using Name Resolution, it is okay to select Resolve MAC Addresses and Resolve transport names as these come from static text files. _____ is a list of Ethernet vendor codes and well-known MAC addresses.

	vendor.txt

	services.txt

	manuf.txt

	network.txt








	In the capture options, the ___ tab allows you to specify where and how you want to save your file.

	Input

	Output

	Options

	Baseline





	In fiber optic cable, ___ carries a single light beam that can carry a signal for many miles and must use a laser.

	Mutimode

	Coaxial

	STP

	Single mode





	In the output tab of the capture options, the Output format defaults at saving the file as  ___; however, you can force Wireshark to save the file as .pcap.

	.pcapng

	dmp.gz

	cap.gz

	.txt









            

            
        
    
        

                            
                    Personalizing the Interface

                
            
            
                
Everyone likes to arrange their desks in their own way. Working with Wireshark is no different, as you can personalize the settings to suit your needs. In this chapter, we'll dive into the Wireshark interface and look at ways to enhance the appearance and layout, as well as create custom configuration profiles. You'll gain a better appreciation of how you can design the interface to meet your specifications and evaluate ways to manipulate columns, change the font, and fine-tune the color choices.

So that you get a better understanding of how to document capture information in Wireshark, we'll go through tips on how to add comments to a single packet or to the entire capture. Finally, we will look at how to build and modify a complex filter expression so that you can feel more comfortable with display filters during packet analysis. We'll finish by learning about how to create a filter button on the toolbar as a shortcut for commonly used filters in Wireshark.

This chapter will address all of this by covering the following topics:


	Personalizing the layout and general appearance

	Creating a tailored configuration profile

	Adjusting columns, font, and color

	Adding comments

	Modifying complex expressions









            

            
        
    
        

                            
                    Personalizing the layout and general appearance

                
            
            
                
Although Wireshark is functional in the default mode, it's easy to modify the appearance and layout to optimize your workflow. In addition to personalizing the layout and general appearance, you can change the language, as well as customize the number of icons, recent filters, and folders, and what you want to appear in the status bar. Let's start with ways to modify the layout.



            

            
        
    
        

                            
                    Changing the layout

                
            
            
                
When working with Wireshark, it's easy to modify the standard layout of the three stacked panels, which are as follows:


	Packet List

	Packet Details

	Packet Bytes



In addition to the default setting, where the three panes are stacked one above the other, you can also rearrange them in one of five other layouts, as shown in the following screenshot:



Wireshark Preferences dialog box—Layout

Once the dialog box is open, you have choices where you can make and modify your selections, as follows:


	Packet List settings: The Show packet separator option will insert a fine white line in between each frame in the packet list.

	Status Bar settings: The status bar is found at the bottom of the Wireshark interface, and can include Show selected packet number and Show file load time. If the latter is checked, then you will see the load time in the lower right-hand corner of the interface, as shown in the following screenshot:





Status bar

Next, let's evaluate the best way to customize your appearance.



            

            
        
    
        

                            
                    Altering the appearance

                
            
            
                
In Wireshark, you can customize the general appearance to perform the following:


	Identify the default location to open files

	List how many display filters to show

	Define how you want the main toolbar to appear



To make changes to the appearance, go to Edit and then Preferences, which will bring up the dialog box shown in the following screenshot:



Wireshark Preferences dialog box—Appearance

In order to see the choices, select the Appearance menu choice. Once the dialog box is open, you have choices where you can make and modify your selections, as follows:


	Remember main window size and placement: If selected, this will retain the window size and placement after you shut down Wireshark. For example, if the main window was the one-quarter size and positioned in the top left-hand quarter of your screen before shutting down, then when you re-open the window, it will appear in the same location and size.








	Open files in: Wireshark allows you to point to a location to open files. The default is The most recently used folder; however, if you have a standard preference for packet captures, then you might want to choose This folder, and then select Browse... to select the appropriate folder.

	Show up to: When working with files in Wireshark, this is where you would indicate how many recent files to keep visible when you go to File, and then Open Recent. In addition, you can also select how many filter entries to display. In the screenshot captioned as Wireshark Preferences dialog box—Appearance, I have selected 10 filter entries and 10 recent files to display.

	Confirm unsaved capture files: If this is checked, then before closing the application or opening another file, Wireshark will ask you if you want to save the captured packets, as shown here:





Prompt before closing


	Main toolbar style: The main toolbar is across the top, underneath the menu choices. You can alter the appearance to display as Icons only, as shown in the following screenshot:



 



Main toolbar—Icons only

You can also alter the appearance to display Icons only, Text only, or even Icons and text, as shown here:



Main toolbar—Icons and text


	Language: When installing Wireshark, the wizard prompts you to select a language. In the Preferences panel, Use system setting is the default. However, the developers have added a powerful feature: the ability to select from a variety of languages, including Chinese, English, French, German, Italian, Japanese, and Polish.



Now that we have set up our workspace, we can examine ways to generate a custom configuration profile, which is a unique set of preferences and configurations.



            

            
        
    
        

                            
                    Creating a tailored configuration profile

                
            
            
                
A configuration profile is a set of preferences and configurations. Once you launch Wireshark, at the lower right-hand corner of the interface, you will see Profile: Default, as shown in the graphic status bar, which is found at the end of the Changing the layout section.

In Wireshark, users can create their own custom configuration profiles, which can include personalized preferences, coloring rules, font styles, or even disabled protocols.

To create a custom profile, go to Edit and then Configuration Profiles. One the dialog box is open, you will see that Wireshark has three standard configurations: Default, Bluetooth, and Classic, as shown in italics in the following screenshot:



Configuration Profiles dialog box

It's easy to create a new profile: simply select the + sign and assign the profile a name. For example, I created a profile named Malware, as shown in the preceding screenshot. Once you add the profile, close the dialog box, and then you can modify the profile.

You can make several changes to suit your needs, such as the following:


	Modify the layout by going to View and then unchecking Packet Bytes.

	Go to Edit and then to Preferences, and make changes such as changes to font color and size, or even disable or change some of the protocols.



Wireshark will save any changes in the custom profile.

In my Malware profile, I wanted to modify the settings so I could hunt for an Ettercap signature. Ettercap is a tool that is used to launch man-in-the-middle attacks on a LAN. I want to be able to quickly identify the Ettercap signature e77e, which translates to ette (short for Ettercap) in Leetspeak. You can check by visiting https://www.dcode.fr/leet-speak-1337. This signature identifies Ettercap as it searches for other poisoners on a LAN.

To customize my profile, I adjusted the columns, removed the lower panel Packet Bytes, and added an Ette button (discussed in the Modifying complex expressions section), as shown at the top right-hand side of the following screenshot:



Profile: Malware

Using my Malware profile I can easily check for Ettercap poisoners by hitting my button, which will apply and run an icmp.ident == 0xe77e display filter and show all the packets with that signature, if any are present in the capture.

If you want to return back to the default profile, then right-click on the lower right-hand corner and select the profile you want to use, as shown in the following screenshot:



Modify Profile


This next section illustrates how you can add or remove columns, and also adjust font and color to suit your needs.





            

            
        
    
        

                            
                    Adjusting columns, font, and colors

                
            
            
                
While working with a packet capture, most users are comfortable with the default values used in the interface. However, you can adjust font styles and size to personalize the look and feel of the interface. In addition, you can also modify the colors Wireshark uses for the various packet identifiers and display filters.

Once you are on the interface, you will see the columns and column headers that are along the top of the interface. While you are working in the interface, you might not ever manipulate the columns. However, you can add, delete, align, and customize the column at any time.

Wireshark makes it easy to add and modify columns, as we'll see in the next section.



            

            
        
    
        

                            
                    Adding, editing, and deleting columns

                
            
            
                
In Wireshark, you can do more than simply expand or shrink the column headers while in the interface. This section explains some ways to improve the way you visualize columns.

To customize your columns, go to Edit, then Preferences, and then Columns, as shown in the following screenshot:



Wireshark Preferences dialog box—Columns

Once selected, you will see a list of columns. Some are present by default, and some are columns you may have added. You can select the checkbox to make the column visible or deselect the checkbox to hide the column. In addition, you can add or remove columns.

Along the top of the dialog box, you will see the following selections:


	Displayed: When checked, this column will be displayed on the interface.

	Title: This is the name of the column header. Wireshark will automatically create a name if you right-click and add a column. However, you can change the title name to personalize the column header.








	Type: This lists the type of value that is in the column. Within the drop-down menu, there are many pre-loaded column types, as shown in the following screenshot, where I have dropped down the type selection for the Info column header:





Columns—type selections


	Fields: This identifies the field where the column value originated from. In the preceding screenshot, there is a column header called Packet Comments (pkt_comment). That is because that column header was generated by right-clicking on a packet comment and selecting Apply a Column. Wireshark identifies that column header as the pkt_comment field value.




	Field Occurrence: This only used on a custom column definition. In the Wireshark Preferences dialog box—Columns screenshot, you can see there are values of 1 and 2 in the Field Occurrence column. When selected, the column headers will appear in this order:


	IP Main ICMP will appear first.

	IP Nested ICMP will appear second.







To add a column, select the plus sign. Identify the name by typing in an appropriate label where it says New Column, and then identify the type by using the drop-down menu and selecting a type. You can also remove columns by selecting the column you don't want and hitting the minus sign.

In addition, once in the interface, you can align the columns by right-clicking and selecting the way you want your columns to align: either left, center, or right as shown here:



Aligning columns

Most other column headers are fairly straightforward in how they are used. However, one you may not be familiar with or use very often is Field Occurrence. Therefore, let's walk through how and why you would use a Field occurrence column header.



            

            
        
    
        

                            
                    Demonstrating how to use field occurrence

                
            
            
                
When an ICMP error message is sent, the ICMP packet also includes the IP header and the first 8 bytes (64 bits) of the original datagram that caused the error.

We can use a field occurrence so that we can see the ID field of the first IP header along with the ID field of the nested IP header, so we can see whether the two are the same or different.

To compare the two, complete these steps to modify the column headers:


	Go to any frame that has an ICMP packet that has an error. For example, use the icmp.type == 3 display filter to see all ICMP destination unreachable packets.

	Drop down the main IP header and select the Identification field; right-click and then select Apply as Column. This will add the Identification column header.

	Next, go into Column Preferences and then modify the settings for the newly created column header.

	Displayed: Checked

	Title: IP Main ICMP

	Type: Custom (unchanged)

	Fields: ip.id (unchanged)

	Field Occurrence: 1





	Drop down the nested IP header and select the Identification field; right-click and then select Apply as Column. This will add the Identification column header.

	I selected the ID field in the nested ICMP packet, right-clicked, and then selected Apply as Column.

	Then, go into Column Preferences and modify the settings for the newly created column header.

	Displayed: Checked

	Title: IP Main ICMP

	Type: Custom (unchanged)

	Fields: ip.id (unchanged)

	Field Occurrence: 2







The result is shown in the following screenshot, where, right after the Protocol column header, you will see IP Main ICMP followed by IP Nested ICMP:



Field occurrence

Now, you can see how versatile Wireshark is in modifying columns to adjust your view. Next, let's take a look at an overlooked feature in Wireshark, which is the ability to adjust the font and change the default colors.



            

            
        
    
        

                            
                    Refining the font and colors

                
            
            
                
In the main window, you may feel the text is too small, as the classic profile uses Consolas 10 as the font and size. It's easy to change the font and colors, make the text bold or italic, and change the font size and style.

Go to Edit, then to Preferences, and select Font and Colors, as shown in the screenshot here:



Wireshark Preferences dialog box—Font and Colors

Along the top, if you select Main window font then it will display a dialog box that will allow you to make changes to the font, as shown here:



Main window font

Below the Main window font, you'll see defaults for the way Wireshark colorizes the text and background for active and inactive items along with marked and ignored packets. After that, you will see the defaults for the client and server text when you right-click on a packet and select Follow the Stream, as shown here:



Follow the Stream

The colors help identify whether the client or the server is talking. The default value for the client text, when you follow the stream, is red, but this value can be changed.

The last three samples listed refer to the display filters. The syntax checker within Wireshark checks the filter once you enter something in Display Filter. By default, a valid filter turns green, an invalid filter turns red, and a warning filter turns yellow. As with all the other choices, you can change this as well.

In Wireshark, we can indicate information on a particular packet or capture file in the form of comments, as we'll see in the next section.



            

            
        
    
        

                            
                    Adding comments

                
            
            
                
While conducting packet analysis, there may be issues that you will want to highlight and identify, so you can reference them at a later date. You might need to make a note on a single packet or an entire capture for future reference.

All of this is possible in Wireshark, as you can write a note in the capture outlining the key issues that were found, so that you or your coworkers can reference the comments at a later date. While commenting is optional, it is always good practice.

Let's start with adding file comments.



            

            
        
    
        

                            
                    Attaching comments to files

                
            
            
                
Adding a comment to a packet capture is a very handy tool. When adding a comment, you can view it later to refresh your memory on key issues related to that packet capture. For example, you may have identified possible illegal or malicious activity such as cryptocurrency mining, and you can list the details right in the capture file.

There are a few ways to add a comment to the file. I have listed them here:


	Go to the status bar and select the icon that looks like a pencil and paper, which is found to the immediate right of the expert system icon, as shown on the left-hand side of the Status bar screenshot.

	Go to Statistics and then Capture File Properties. You can add comments in the lower pane of the dialog box. Once done, you should select Save Comment.



Adding a comment to the file can help remind you or your team of what was significant about the capture. However, it's also possible to add a comment to a single packet, as discussed in the next section.



            

            
        
    
        

                            
                    Entering packet comments

                
            
            
                
To add a comment to a single packet, go to Edit and then Packet Comment. A dialog box will be displayed, where you can enter your comment. Once entered, Wireshark will append a note with bright green coloring at the top of the frame, as shown in the following screenshot:



Packet comments in the Packet Details panel

Once you have added comments to either the entire capture or a single packet, you'll want to save them, and then at some point, go back in and reference the notes. The following section reviews how we can take a look at the comments and how to preserve our remarks.



            

            
        
    
        

                            
                    Viewing and saving comments

                
            
            
                
Comments can be a powerful tool, as you can use them in many ways to preserve what you felt was significant in the capture. Even after several years have passed, I still find the comments valuable as they help me to remember my train of thought when I captured the packet. However, in order for the comments to be of value, you must save them. Let's discuss how we save our comments.

Once you have created a comment, you will see an asterisk by the title across the top of the Wireshark interface, as shown here:



Asterisk indicating that there are file comments

Once you have created a comment, you will see an asterisk by the title across the top of the Wireshark interface.

The asterisk will remain until you save the file. To preserve the comments, the file must be saved in the PCAP next generation (.pcapng) format.

If you or your team has taken the time to make a comment, then it's well worth your time to read them. You can view the comments in one of several ways:


	Use the pkt_comment display filter to see all packets that have comments.

	Open the Expert System.

	Go to the lower right-hand side to the drop-down menu named Show and select Comment from the list. This will display any comments that are in the capture.

	Go to Statistics then Capture File Properties, and view the comments in the lower pane.




Hopefully, by now, you can appreciate the many ways in which you can personalize your work area. Most of the time while working with packet captures, there is a need to refine our view by filtering traffic. We can use display filters along with complex expressions. In the next section, let's explore how we can do this, and if you find you're using the same expression repeatedly, then Wireshark can easily create a button that you can place on your toolbar for easy reference.





            

            
        
    
        

                            
                    Modifying complex expressions

                
            
            
                
A display filter allows you to show only specific traffic. However, there are times you may need to use the expression builder so that you can create a more complex filter. For example, you may need to construct a filter that compares a specific protocol field against a value using logical operators. If you use the expression often, then you can create and attach a button to the toolbar. Let's first take a look at how to create an expression.



            

            
        
    
        

                            
                    Creating expressions

                
            
            
                
In addition to display filters, which allow you to filter only the traffic you want to see, Wireshark has the ability to create a more complex expression. On the right-hand side of the display filter is the Expression... link. Click the link to launch the expression builder.

Once open, you will see a list of field names, as shown in the following screenshot:



Display Filter Expression

From there, you can select a protocol and, in some cases, drill down for a specific field name. In some cases when in a protocol, you can select from several field values. On the right, you can use a logical operator and, also, a value. For example, if you want to filter all traffic where the TCP SYN flag is present, then the expression builder will create the tcp.flags.syn display filter. Once you are confident with your selections, close the expression builder and press Enter, and then Wireshark will run the filter.

If you have created a complex filter that you find you will need to run often, then you can create a handy toolbar button. This next section explains how you can easily craft a custom filter button.



            

            
        
    
        

                            
                    Crafting buttons

                
            
            
                
Once you create an expression and it is visible in the display filter, you can effortlessly create a button. In the right-hand corner, right after the Expression... link, hit the plus sign, and Wireshark will display a drop-down dialog box, as shown in the following screenshot:



Filter buttons

Once the dialog box is open, you can enter an appropriate label and add a comment for the filter button. Wireshark will automatically enter the display filter for the button to run when clicked. When done, select OK and the new button will appear on the toolbar.

After working with Wireshark and adding buttons, you may want to remove some to clean up the toolbar. The following list shows the steps to edit filter buttons:


	Go to Edit and then Preferences, where you will see Filter Buttons, as shown in the following screenshot:





Wireshark Preferences dialog box—Filter Buttons

When selected, you will see whatever buttons are currently on your toolbar.


	To add a filter button, select the plus sign in the lower left-hand corner. Add what you would like as a Button Label. This (Button Label) is not case sensitive.

	Next, add Filter Expression, which must adhere to the expression and display filter rules.



If you want to remove any filter buttons, highlight the button you want to remove and select the minus sign in the lower left-hand corner.



            

            
        
    
        

                            
                    Summary

                
            
            
                
By now, you can see how easy it is to make minor changes in Wireshark to fit your workflow. In this chapter, we examined the many ways to customize the Wireshark interface. We covered how to modify choices such as recent filters and folders, along with personalizing the layout and general appearance. We learned about how easy it is to create personalized configuration profiles to include preferences, coloring rules, and font styles.

Furthermore, we discovered how to adjust columns and column headers, and how to add or remove columns. We learned about how to fine-tune the font to make packets easier to read. We also reviewed how we can change the default colors for the various identifiers, such as the text color for marked packets and the default colors for the client and server when you right-click on a packet and select Follow the Stream.

We illustrated the ability to add comments to a single packet or to the entire capture, as well as how to communicate issues to team members observed in either a single packet or the entire capture. We then learned about how to create a complex filter expression, and then create a filter button on the toolbar for commonly used filters in Wireshark to manage the workflow. Finally, we saw how to create a filter button to help manage our workflow.

In the next chapter, we will take a closer look at using display and capture filters, as well as learn about some tricks and specific rules for using display filters. We will then learn about using capture filters, including using default capture filters and how you can build your own. Finally, we will learn about how to use shortcuts to create filters and review some commonly used filters.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now, it's time to check your knowledge. Select the best response, and then check your answers, which can be found in the Assessment:


	Normally, when you open Wireshark, the configuration profile will be the _____ profile.

	Marquee

	Bluetooth

	Classic

	Default





	You can set Wireshark to open files from a specific location. Go to ____, then Preferences, and then select the file location under ____.

	Tools and Folder

	Edit and Appearance

	View and Appearance

	View and Folder





	The default value for the client text for Follow the Stream is _____, but this value can be changed.

	Black

	Blue

	Red

	Cyan





	When working with Wireshark, you can easily create and add a button to automatically run a custom filter when selected. To remove the button, go to _____, then _____, and select Filter Buttons, where you can remove any buttons that you no longer need.

	Edit and Preferences

	View and Appearance

	View and Buttons

	Tools and Buttons





	When you want to add a comment to a packet, select the packet, go to ___, and then go to Packet Comments.

	Tools

	Edit

	View

	Analyze









            

            
        
    
        

                            
                    Using Display and Capture Filters

                
            
            
                
Whether you have done an analysis in real time while capturing traffic, or you have analyzed a pre-captured file, you're generally faced with a huge amount of data. How do you make sense of all this data? Most likely, you will benefit from filtering the traffic to narrow the scope. To achieve this, we use filters, so that Wireshark only displays the traffic that you want to see.

This chapter reviews the many ways Wireshark can filter traffic. To help your learning of the different ways to refine your view, we'll cover when to filter traffic and outline the difference between display and capture filters. So that you can refine your skills when filtering traffic, we'll review ways to create more complex filters by using the expression builder. We'll then go through capture filters and how they use syntax that is different than display filters. Finally, because filters are so handy, we'll cover some tricks, shortcuts, and common filters that will help you achieve a more effective analysis.

This chapter will address all of this by covering the following topics:


	Filtering network traffic

	Comprehending display filters

	Creating capture filters

	Understanding the expression builder

	Discovering shortcuts and handy filters





            

            
        
    
        

                            
                    Filtering network traffic

                
            
            
                
While in the course of your daily routine, the network starts to experience a significant slowdown. You check your Intrusion Detection System (IDS) and anti-malware protection, and there is no evidence of intrusion. At that point, you grab a quick capture to determine the source of the slowdown. Wireshark, along with many other packet analysis tools, has the ability to take a large capture, filter on specific traffic, and refine your view to help with analysis. Wireshark has several options to filter traffic:


	Display filters: Used during an active capture or on a pre-captured packet

	Capture filters: Applied prior to capture to only display a certain type of traffic

	Expressions: Creates complex filters using logical operators



When filtering traffic, there is a difference between display filters and capture filters. In the next section, let's explore the difference.



            

            
        
    
        

                            
                    Comparing display and capture filters

                
            
            
                
When working with packet captures, it appears as if capture and display filters are the same. However, although the two work in similar ways, capture and display filters each use their own syntax.

While using Wireshark, there are four main phases of packet analysis, as discussed in Chapter 2, Using Wireshark NG, which are Gather, Decode, Analyze, and Display, as shown in the following diagram:



Phases of packet analysis

While gathering network traffic, the packets pass through the appropriate capture engine, such as NPcap or WinPcap. Capture filters use the Berkley packet filter syntax, and when used, Wireshark drops any packets that are not in the filter. You can read more about this in The BSD Packet Filter: A New Architecture for User-level Packet Capture, which is found at https://www.tcpdump.org/papers/bpf-usenix93.pdf.

Once the packets go through Wireshark's Enhanced Packet ANalyzer (EPAN), it then passes the dissected traffic through the GUI to be displayed and analyzed. While displaying packets in the Wireshark interface, you can apply a display filter using the appropriate syntax, and apply the filter before, during, or after capture.

Within Wireshark, there are two text files that you can modify or copy to share with a coworker. The filter files include dfilters.txt and cfilters.txt. These hold a list of filters and are found in the Wireshark folder.

You'll find a list that holds the display filters in dfilters.txt and can open the file in Notepad, as shown here:



dfilters.txt

The cfilters.txt file holds a list of the capture filters, as shown in the following screenshot:



cfilters.txt

While it is possible to open and modify either file in Notepad, as shown, it's safer and easier to use the Wireshark interface to make changes to the filters.

Now that you have seen the main differences, let's take a closer look at the display filters.



            

            
        
    
        

                            
                    Comprehending display filters

                
            
            
                
While capturing traffic, or analyzing a pre-captured file, display filters help to narrow the scope and home in on specific types of traffic. It's not uncommon to have a capture with 2,000 to 3,000 packets and more, along with many different types of traffic.

When you launch Wireshark, you will see the startup screen, as shown in the following screenshot:



Wireshark startup screen

Across the top, below the icons, you will see the filter toolbar. Within the toolbar is the text Apply a display filter, where you can easily apply and edit display filters.

You can create a simple filter on any of the protocols Wireshark supports by using a single protocol or a logical operator. For example, if you want to see Transmission Control Protocol (TCP) or Address Resolution Protocol (ARP) traffic, then you would use the tcp || arp display filter. While you are building the filter, Wireshark will check the syntax to see whether the string is valid. The syntax checker works as follows:


	A valid display filter will turn the background green and the filter will run.

	An invalid or incomplete string will turn the background red and the filter will not run.

	An unknown display filter or string will turn the background yellow and the filter might run.



While it is common to see a green or red background, in rare cases, you may see a yellow background, as shown in the following screenshot, which indicates that you may get unexpected results:



Syntax checker with a yellow background

Working with display filters can be confusing at times, so when you do get a filter that works and you would like to reuse it, you can save it to a bookmark, as discussed in the next section.



            

            
        
    
        

                            
                    Using bookmarks

                
            
            
                
On the right-hand side of the display filter, is a blue toolbar icon called bookmarks, where Wireshark's built-in filters and any saved filters reside. Other choices when working with the bookmark include Manage Display Filters and Manage Filter Expressions.

Below the save and manage selections, you will see a list of filters. Even if you have never saved a filter, you will see the list, as Wireshark has several pre-loaded filters that you can use, as shown here:



Display filter bookmark drop-down

After you create a filter, you can save the filter to the bookmark by dropping down the bookmark icon and selecting Save this filter. 

Once you create your own filter or select one from the drop-down list, you can press Enter or click the blue arrow on the right-hand side of the display filter to run the filter. 

On the far-right side of the display filter is an arrow that, when selected, is a drop-down menu where you can see previously used filters, also shown in the following screenshot:



Previously used display filters

A display filter can be applied before, during, or after packet capture. When you are ready to clear the filter, select the X on the right-hand side of the filter, as shown in the screenshot named Syntax checker with a yellow background.


Wireshark's display filters can easily be modified. The following section illustrates how you can edit the display filters to customize your workflow.





            

            
        
    
        

                            
                    Editing display filters

                
            
            
                
After working with the display filters, you may need to change an IP address, port number, or make some other change. To edit the display filter, go to the blue bookmark on the left of the display filter, and then select Manage Display Filters, which will bring up the dialog box, as shown in the following screenshot:



Display Filters dialog box

Once there, you can select one of the three icons:


	A plus icon to add a new display filter

	A minus icon to delete a display filter

	A copy icon to copy a display filter



When you select the plus icon and add a display filter, Wireshark will create a space in which you can enter a display filter name on the left and the actual filter on the right, as shown here:



Add a display filter

When you select Copy, this will copy and allow you to modify the filter without changing the original filter.

As we can see, display filters can be very helpful in providing a more targeted view of the capture. However, when capturing traffic for analysis, there may be times that you only want to capture a certain type of traffic. In that case, you would use a capture filter, which we'll discuss in this next section.



            

            
        
    
        

                            
                    Creating capture filters

                
            
            
                
Understanding how to use display filters is important, as you may get a packet capture file from a co-worker who has captured all the traffic coming through the interface, in which case, you would have to make sense of the capture.

However, when you have control of capturing traffic when working on an enterprise network, capture filters help target only the traffic you want to see and remove much of the noise.

There is one thing to keep in mind when using a capture filter; although the capture filters interface may look like the display filter toolbar, the syntax for the capture filters is different. Therefore, when creating a capture filter, you need to be careful that you use the correct syntax.

You can create a capture filter in a couple of ways:


	Go to the center of the startup screen and enter the filter in ...using this filter:, as shown in the following screenshot:





Startup screen capture filter


	Go to the Capture menu and then select Options..., as shown here:





Capture menu drop-down


Although both will give you the ability to create a capture filter, I generally go to the Capture menu choice and select Options..., as this will allow me to see all the interfaces and options.

You might have used a capture filter that works well, and you would like to preserve the filter for future use. Next, let's take a look at how you can save your capture filter to a bookmark.



            

            
        
    
        

                            
                    Saving to bookmarks

                
            
            
                
On the right-hand side of the capture filter is a green toolbar icon called bookmarks, where the built-in capture filters are stored. Any time you create and save a filter, Wireshark will store the filter in the bookmark.

If you click on the green toolbar icon, then you will see a list of capture filters, as shown in the following screenshot:



Capture filter bookmark drop-down

Once there, you can select one of the filters, and Wireshark will populate the capture filter field.

If you create a filter and want to save it, then drop down the bookmark icon and select Save this filter, and Wireshark will store the filter in the bookmark.

To clear the capture filter, select the X on the right-hand side of the capture filter.

To see your previously used capture filters, go to the right-hand side of the capture filter and select the down arrow to display the list.


Similar to modifying the display filters, you can customize the capture filters, as outlined in the following section.





            

            
        
    
        

                            
                    Modifying capture filters

                
            
            
                
To edit the capture filters, go to the Capture, menu choice and then select Capture Filters, which will display a list of prebuilt filters, as shown in the following screenshot:



Capture Filters dialog box

At the bottom of the dialog box, there are three icons:


	A plus icon to add a new capture filter

	A minus icon to delete a capture filter

	A copy icon to copy a capture filter



Similar to the plus icon used to add a display filter, you can do the same to add a capture filter. However, you'll need to be careful when crafting a capture filter as it uses different syntax than a display filter. 

For example, if I need a filter to capture File Transfer Protocol (FTP) traffic only, then I might enter ftp in the capture filter, as I would in the display filter. However, you will see the syntax checker turn red, as shown here. Although this filter would work as a display filter, you must write a capture filter that uses the correct syntax:



Invalid capture filter syntax

If you do need to create a new capture filter, try using one of the prebuilt filters as a guide to properly build your filter. Find a capture filter similar to the one you need, select the filter, and click the copy icon. Wireshark will copy the filter and place it at the end where you can edit the filter

Let's go through an example of creating a capture filter for FTP by copying an existing filter:


	Go to the Capture menu and select Capture Filters.

	Select the HTTP TCP port (80) capture filter and then click the copy icon. Wireshark will place the copied filter at the end of the list, as shown in the following screenshot:





Copy capture filter


	To edit the filter, change the name to FTP and change the filter to tcp port ftp or tcp port 21.

	Close the Capture Filters dialog box.



To use the newly created filter, follow these steps:


	Go to the Capture menu choice, and then select Options....

	Click the interface that will be used to capture traffic. For example, in the following screenshot, the Microsoft: Wi-Fi interface is selected.




	In the capture filter area, drop down the green bookmark and select the filter you just created. The bookmark will turn yellow, as shown here:





FTP capture filter

Once you click Start to begin your capture, you will only capture FTP traffic.

When you are done using a capture filter, make sure you remove any trace of the filter by going into the Capture menu and then Options.... Once open, delete the capture filter so that you can capture all traffic again.

For an extensive list of examples, go to the Wireshark Wiki at https://wiki.wireshark.org/CaptureFilters.

Capture filters can be useful, however, keep in mind that while using a capture filter, you might miss important traffic that can help during troubleshooting or malware analysis. 

After building a few simple filters, you may need to create a more complex filter or expression. The following section outlines how to use the expression builder.



            

            
        
    
        

                            
                    Understanding the expression builder

                
            
            
                
On the right-hand side of the display filter is the Expression button, which, when clicked, will open a dialog box, as shown in the following screenshot:



Display Filter Expression


On the left-hand side, you will see a list of all of Wireshark's supported protocols. Wireshark is capable of dissecting hundreds of protocols, with more added all the time, so the list will be long. In order to find a protocol, you can use the search tool. In the preceding screenshot, I have entered tcp in the search tool and then expanded the available field names. To further refine the filter, you can select from the four variables listed on the right-hand side:


	Relation: This is a list of comparison operators to compare a field value against another value using logical operators:

	is present: Indicates the selected field exists in the capture

	==: Equal to

	!=: Not equal to

	>: Greater than

	<: Less than

	>=: Greater than or equal to

	<=: Less than or equal to








	Value: Indicates the appropriate value required. Wireshark populates this with the appropriate type of value, that is, Boolean or string.

	Predefined Values: Wireshark populates this with the appropriate values for a given field.

	Range (offset:length): Allows you to enter a range of integers such as 4-8 or 12-20, if they are an appropriate selection for this field or filter.



Now that you have a good understanding of what the expression builder can do, let's go through a simple example of building a custom filter.



            

            
        
    
        

                            
                    Building an expression

                
            
            
                
In this example, I want the filter to show me all the packets that have the Syn flag present. On the left-hand side of the Display Filter Expression dialog box, I have drilled down and selected the tcp.flag.syn value. Wireshark will populate the following on the right-hand side of the dialog box:


	Relation: ==

	Value: 1

	Predefined Values: Set



The Range is grayed out as this is not an appropriate selection for this field value.

Once all the values are selected, Wireshark populates the display filter area along the bottom with the generated expression. In this case, the filter is tcp.flags.syn == 1, as shown here:



TCP SYN flag filter

At that point, we can select either of the following:


	Cancel: This will exit the expression builder and will not create a filter.

	OK: This will place the filter in the display filter toolbar.



Once the filter is in the display filter toolbar, you can make any necessary modifications, such as changing tcp.flags.syn == 1 to a modified filter such as tcp.flags.syn == 0. Once you are satisfied with the filter, you can run the filter by pressing Enter or clicking the blue arrow on the right-hand side of the display filter.

As you can see, the expression builder is an easy way to go through the process of building a complex filter. To find a complete list of built-in field values used in building filters, go to https://www.wireshark.org/docs/dfref/, where you can select a protocol link and learn more about the supported field values.

While working with packet capture, Wireshark has many shortcuts that allow you to quickly create a filter to streamline your workflow. Let's take a look.




            

            
        
    
        

                            
                    Discovering shortcuts and handy filters

                
            
            
                
Over the years, Wireshark has evolved. Now, more than ever, it's very easy to create a display filter on the fly while doing analysis by simply right-clicking and choosing to apply or prepare a filter.

In this section, let's take a look at the many ways in which we can apply a filter, without going through the complicated exercise of launching the expression builder. In addition, we'll see some handy filters that you can use to get right down to the issue. We'll start with an overview of the many shortcuts to use when filtering traffic.



            

            
        
    
        

                            
                    Embracing filter shortcuts

                
            
            
                
While working with Wireshark in the Packet Details panel, you might want to filter on a specific IP address or a particular port number. Once you identify the item of interest, you can right-click to view filter shortcuts and you will see several shortcuts, as shown here:



Right-click to view filter shortcuts


Although there are many options when you right-click, in the center are the shortcuts that deal with filters. The following options are available:




	Apply as a Filter: When selected, it will create and run a selected field value.

	Prepare a Filter: When selected, it will create and place a selected field value in the display filter area, giving you a chance to make any modifications or add to the filter.




	Conversation Filter: When selected, it allows you to follow the conversations according to protocols, such as Ethernet, IPv4, and TCP, as shown in the  following screenshot:





Conversation filter selections


	Colorize with Filter: This allows you to colorize a specific conversation. As you can see, you can select from the many available colors, or you can create your own coloring rule, as shown in the following screenshot:





 Colorize with filter

When you right-click and select either Apply as a Filter or Prepare a Filter, you will see additional choices, as shown in the screenshot named Right-click to view filter shortcuts. The following list shows how you can select simple filters or add logical operators:


	Selected: Selects the current field value.

	Not Selected: Creates a filter that removes the selected field. For example, if I right-click on destination port 443 and select Not Selected, then Wireshark will generate !(tcp.dstport == 443) and place it in the display filter.

	...and Selected: Adds a field value to the filter.

	...or Selected: Creates an OR filter.

	...and not Selected: Adds a filter that removes the selected field.

	...or not Selected: Creates an OR filter with a filter that removes the selected field.




After working with Wireshark for a while, you may learn some new techniques that will help improve your workflow. Using filters is one of the tools that helps you home in on a problem. The next section provides some suggestions on useful filters that can help you when searching for specific types of traffic.





            

            
        
    
        

                            
                    Applying useful filters

                
            
            
                
Wireshark is a common tool used by developers, network administrators, students, and security analysts. Network administrators use Wireshark to investigate the many issues that can surface and cause the network to degrade or spread malware. 

For example, some handy display filters include the following:


	http.request: This searches the capture file for any HTTP GET or POST requests.

	tcp.port==xxx: Use this filter if you are monitoring TCP traffic by using a specific port.


	tcp.stream eq X: This filter will follow a specific stream, where X is the stream index.

	!(arp or icmp or dns): This filter will eliminate arp, dns, and icmp traffic.

	vlan.id ==X: This shows a specific vlan.



Wireshark also provides a handy drag-and-drop feature where you can simply drag a field from the packet tree and drop it into the display filter.

In addition to display filters, there are times when capture filters are appropriate to collect specific traffic, such as the following:


	port ftp || port ftp-data: This will capture FTP traffic.

	ip host x.x.x.x: This will capture traffic from a specific host.

	ip multicast: This will capture multicast traffic.



The Wireshark Wiki also lists several capture filters that are used to detect malware. For example, dst port 135 and tcp port 135 and ip[2:2]==48 will display evidence of the Blaster Worm.

There are many ways to filter traffic to only display the traffic you want to see, which helps remove the unnecessary traffic and improve your analysis skills. Depending on the type of network you work with on a daily basis, you will most likely build your own arsenal of filters. 



            

            
        
    
        

                            
                    Summary

                
            
            
                
Wireshark is a powerful tool that allows us to capture and analyze traffic. In this chapter, we reviewed how to look at traffic more effectively by using the built-in filter functions. We have compared the differences between display and capture filters. In order to filter traffic, we learned how to use a display filter and discussed how it can provide a simple filter showing only a protocol or a combination of field values. We have reviewed how to edit the display or capture filters, as well as creating your own and storing them for easy reference in the bookmarks.

In addition to display filters, we covered capture filters that you apply prior to capture, and the result will display only the traffic that you have captured. To carry out a granular investigation, we have discussed how to create an expression that includes logical operators and specific field values. With the many ways to filter traffic, we looked at the shortcuts to build filters on the fly while conducting analyses, and then evaluated the benefits of having several useful filters in your arsenal.

In the next chapter, we will take a look at encapsulation in the OSI model, which is an essential concept to grasp in order to be effective at packet analysis. So that you have a better understanding of this important concept, we'll review the seven layers, discuss addressing, the protocol data units, and the protocols in each layer, and the process of encapsulation as the data is readied for frame formation in order to be sent on the appropriate media.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now, it's time to check your knowledge. Select the best response, then check your answers with those provided in the Assessment:


	When creating a display filter, if the background is ____, then you have entered a valid filter.

	Red

	Green

	Yellow

	Cyan





	When creating an expression using the expression builder, you can refine the filter by modifying any of the four variables listed on the right-hand side, which are Relation, _____, Predefined Values, and Range.

	Float

	Integer

	Value

	Boolean





	To create a capture filter to see only DNS requests and responses you would enter _____ in the capture filter.

	tcp port 53

	DNS

	dns

	udp port 53





	If you need to build a complex filter, then use the _____ Builder.

	Expression

	Berkley

	EPAN

	Dissector





	When using either Apply as a Filter or Prepare a Filter, you will see additional choices to create a simple filter or add logical operators. _____ adds a filter that removes the selected field.

	 ...or Selected

	...and Selected

	Not Selected

	...and not Selected









            

            
        
    
        

                            
                    Outlining the OSI Model

                
            
            
                
Effective packet analysis begins with a solid understanding of the Open Systems Interconnection (OSI) model. The OSI model is a seven-layer framework that outlines how the OS transforms, encapsulates, and prepares data for transport on the network. In this chapter, we'll cover the seven layers, along with the role and purpose of each layer. So that you understand the significance of a port, IP, and MAC address, we'll go through addressing at the transport, network, and data link layer. We'll then take a look at the Protocol Data Unit (PDU) for each layer. 

Once done, you will be more familiar with the terminology, along with having a better understanding of some of the protocols in each layer. From the HTTP request when retrieving data from a web page, to the bits as it travels across the network, you'll know how data transforms and feeds into the next layer to properly format the frame, so the data can be sent on the appropriate media.


This chapter will cover the following:


	Outlining an overview of the OSI model

	Discovering the purpose, protocols, and PDUs

	Exploring the encapsulation process

	Demonstrating frame formation in Wireshark





            

            
        
    
        

                            
                    Comprehending the OSI model

                
            
            
                
The OSI model is a reference model that outlines the main functions of each layer. Developing the framework began long ago. We started this journey from the late 1960s to the mid-1970s, where we saw an expansion in computing, along with advances in technology in general. In addition, there was the development of computers, from small personal computers to large supercomputers such as the Cray in 1976, along with video games such as Pong in 1972.

Concurrent to this development, two international organizations, the International Organization for Standardization (ISO) and the International Telegraph and Telephone Consultative Committee (CCITT), began working on a reference model to define and standardize networking interoperability. Ultimately, in 1983, the two developed the OSI model.

The OSI model and serves many purposes, such as the following: 


	Providing a common framework for developers

	Narrowing down problems for network administrators

	Enabling interoperability among layers and communicating devices

	Breaking down each layer to help students better understand the overall process of data encapsulation.




Developers reference the OSI model to outline how systems communicate with one another. When troubleshooting, it's common to refer to problems according to the layer they feel is responsible for the malfunction. Equipment manufacturers rely on the OSI model to ensure their products will work across all layers.

Networking students use the model to begin their journey into networking. A staple of every freshman networking class is an introduction to the OSI model. In most cases, the students have never heard of this, so presenting a complex topic in a simple manner can be difficult. Although this is their first encounter, it's important to convey this information in an easy-to-learn manner.

In addition, the model provides a visual description of what is going on in each layer, in terms of protocols, PDUs, and the purpose of each layer, as outlined in the following section.



            

            
        
    
        

                            
                    Discovering the purpose, protocols, and PDUs

                
            
            
                
The OSI model has seven layers. The next diagram shows several elements of the OSI model. From the left, we see the following:


	The number that identifies the layer

	The name of the layer

	An appropriate address for the transport, network, and data link layers

	The corresponding PDU





The OSI model

The seven layers are, from layer seven to layer one: Application, Presentation, Session, Transport, Network, Data Link, and Physical. 

Before diving into the layers, it is helpful to use a mnemonic device to remember the first letter of each layer. With the OSI, we have two, as shown in the following diagram:



OSI mnemonics

During encapsulation, the transport, network, and data link layers use appropriate source and destination addressing:


	Transport layer: Uses a port address

	Network layer: Uses an IP address

	Data link layer: Uses a MAC address



At each layer, the data is in a specific format—called a PDU—that defines what shape the data is in as it is passed to the layer above or the layer below and includes Data, Segment, Packet, Frame, and Bits. A mnemonic device to remember the PDU is Do Some People Fear Binary?

Once you know the names of the layers, the next step is to tackle the role, purpose, and protocols of each of the layers. When outlining each layer, I commonly start with layer 7, or the application layer, as this is the layer where we initiate contact with the network, as discussed next.



            

            
        
    
        

                            
                    Evaluating the application layer

                
            
            
                
At the top of the OSI model graphic is the application layer, or layer 7. This layer contains protocols that allow process-to-process communications, and it's where we initiate contact with the network to perform the following:


	Retrieve a web page.

	Fetch or send our email.

	Upload files to an FTP server.

	Request a dynamically assigned IP address.



On the IP network, each application layer protocol follows specific recommendations, requirements, and options, according to its function. Let's talk about a few application layer protocols along with the PDU.



            

            
        
    
        

                            
                    Exploring protocols and the PDU

                
            
            
                
The application layer has hundreds of protocols. Some common protocols were developed and standardized very early in the 1980s. Some are deprecated and we rarely see them, such as Telnet and CharGEN. New protocols are developed as needed to keep up with today's demands, such as Bitcoin and MQTT. The following is a shortlist of application layer protocols:




	Protocol
	Purpose



	Simple Mail Transfer Protocol (SMTP)
	Transports email



	Hypertext Transfer Protocol (HTTP)
	Ensures delivery (transfer) of web pages the proper format.



	File Transfer Protocol (FTP)
	Transfers files between a client and server across the network



	Message Queuing Telemetry Transport (MQTT)
	
Used with IoT devices, sensors, and mobile devices as a lightweight messaging protocol







 

All protocols have a specific purpose on the network. Today, Wireshark has dissectors for most, but not all protocols. However, new dissectors are added all the time.

The PDU for the application layer is data. In many cases, the protocols in this layer are involved in a series of client requests and server responses.

The header structure will vary as each is application specific. In addition, the header for the client is generally different than the header for the server. 

Most protocols will have an associated port, which will be found in the transport layer header. The following is a summary of the application layer:




	Layer
	Purpose
	Protocols
	PDU



	Application
	Initiates contact with the network
	HTTP, DNS, FTP
	Data





 

After the data leaves the application layer, it is then passed to the presentation layer, in order to properly format the data. Let's explore this next.



            

            
        
    
        

                            
                    Understanding the presentation layer

                
            
            
                
Layer 6 is the presentation layer and is responsible for proper data formatting, along with optional compression and encryption. The presentation layer ensures that the data is in the proper format, either before presenting the data to the application, or before sending it to the network. For example, if you download a file from the internet with the .gz extension, then the presentation layer will search for an application to associate it with, so the OS can open the file correctly. If the application is not installed, then you will see a message, as shown in the following screenshot:



Dialog box to select an application

If you do not have the application installed, then you can go in and manually select the application with which you want to open the file, or obtain and install the correct application.

The presentation layer also provides optional services to compress and decompress data. Compression removes redundancy and makes data smaller. This function is optional, as not all data is compressed.

This layer also handles encryption, which is scrambling data by using a key so that it is in an unreadable form that does not make sense to anyone unless they have the key. Because encryption is also an optional function, this may not be required. 

In the presentation layer, we do see a few protocols, which we'll investigate in the following section, along with the PDU.



            

            
        
    
        

                            
                    Describing the protocols and the PDU

                
            
            
                
Protocols in the presentation layer deal with proper data translation and encoding/decoding, such as External Data Representation (XDR). In addition, because of of the presentation layers role in encryption, you'll find the following protocols:


	Transport Layer Security (TLS)/Secure Socket Layer (SSL): Secures end-to-end communications such as bank transactions and web page retrieval using encryption

	Secure/Multipart Internet Mail Extensions (S/MIME): Digitally signs and encrypts email messages



At the presentation layer, the PDU is still data, where we see the data being translated or converted into the correct format. The following is a summary of the presentation layer:




	Layer
	Purpose
	Protocols
	PDU



	Presentation
	Formatting and optional compression and encryption
	TLS/SSL, S/MIME
	Data





 

In many ways, the presentation layer is an extension of the application layer. The next layer is the session layer, where we see all key elements of session management.



            

            
        
    
        

                            
                    Learning about the session layer

                
            
            
                
The session layer, or layer 5, is responsible for setting up, maintaining, and tearing down a session. Before any data is exchanged after initiating contact with the network, the OS must establish a session. The OS creates the appropriate socket, which is an IP address, and a port, so the two endpoints can communicate with one another.

When communicating on the network, you will have multiple concurrent sessions and connections established. You can see your active connections by going to the command line and running netstat, as shown in the following screenshot:



Netstat showing active connections

In this screenshot, we only see Transmission Control Protocol (TCP) connections. TCP is a connection-oriented protocol and both endpoints need to communicate the status of the data transaction with one another. As a result, you will see a local and foreign address, along with the state of the transaction.

In addition to setting up a session, this provides other services that include the following:


	Authentication: This validates and identifies an entity by requiring a password or another form of authentication.

	Authorization: This allows access to resources if the entity has the appropriate permissions.

	Checkpointing: This monitors the session for errors and ensures that all data has been received. If there are errors in transmission, the session layer may re-request any missing data.



After the session has ended, the session layer safely closes the session. Next, let's look at some key protocols in this layer.



            

            
        
    
        

                            
                    Recognizing protocols and the PDU

                
            
            
                
There are several protocols that exist in the session layer. Although most protocols may originate in other layers, these protocols begin in part in the session layer:


	Real-Time Transport Control Protocol (RTCP): This works along with RTP to deliver control information to all participants in a call.

	Domain Name System (DNS): This resolves a hostname to an IP address in order for a session to take place.

	Point-to-Point Tunneling Protocol (PPTP): This creates a VPN by using a generic routing encapsulation tunnel to provide a more secure way to deliver data than using plain text.

	Remote Procedure Call (RPC): This allows a program to run a subroutine on another host on a shared network.



At the session layer, the PDU is data. The following is a summary of the session layer:




	Layer
	Purpose
	Protocols
	PDU



	Session
	Set up, maintain, and tear down a session
	DNS, RPC
	Data





 

The session layer manages all aspects of a session that enable hosts to communicate in a conversation with one another. At this point, the data then moves to the transport layer, where it now becomes a segment that has the necessary port addressing in the transport layer header.



            

            
        
    
        

                            
                    Appreciating the transport layer

                
            
            
                
The transport layer, or layer 4, is responsible for transporting the data, either using a connectionless or connection-oriented protocol across the network. The encapsulation process starts at this layer. The data will have additional headers added as it traverses down the layers to become a frame, ready to be sent on the network.

The transport protocol selected will depend on the application. Data is transported primarily using either TCP or User Datagram Protocol (UDP). However, the transport layer has several other protocols. Let's take a look.



            

            
        
    
        

                            
                    Differentiating protocols and the PDU

                
            
            
                
The transport layer has several protocols to transport data, including the following:




	Protocol
	Purpose 



	TCP
	Connection-oriented protocol that ensures reliable data transfer



	UDP
	Connectionless protocol used when speed, not reliability, is required



	Stream Control Transmission Protocol (SCTP)
	Reliably transmits data streams that have more than one IP address



	Reliable User Datagram Protocol (RUDP)
	Extends UDP by providing TCP-like qualities, such as flow control, acknowledgments, and re-transmitting lost packets





 

Although there are other lesser-known transport layer protocols, we will discuss the two predominant protocols, TCP and UDP, starting with the more widely used protocol, TCP.



            

            
        
    
        

                            
                    TCP

                
            
            
                
TCP is a connection-oriented protocol that has end-to-end reliability. TCP begins a session with a three-way handshake and ends the session with an exchange of FIN packets. TCP has an 11-field header, and sequences and acknowledges data, to ensure that all the data arrives at the end device. 

Once in a connection, TCP progresses through a series of states. For example, in the screenshot named Netstat showing active connections, you can see the ESTABLISHED and TIME-WAIT states.

TCP states are as follows:


	LISTEN: The system waits for a request from a remote host to connect.

	SYN-SENT: After the client sends a request for a connection, the system waits for a response.

	SYN-RECEIVED: After the SYN request has been returned to the client, the server waits for a final ACK to start the connection.

	ESTABLISHED: A normal state where the two endpoints are actively communicating.

	FIN-WAIT-1: The host waits for either an ACK in response to a FIN set to the remote host, or a FIN from the remote host.




	FIN-WAIT-2: The host waits for a FIN request from the remote host.

	CLOSE-WAIT: This means the server has received a FIN packet from the client and is waiting to end the session.

	CLOSING: After the FIN packet has been sent, the host begins closing the connection and waits for a corresponding acknowledgment, in order to fully close the session.

	LAST-ACK: A final acknowledgment after sending the FIN packet is to make sure the remote host has received the termination request.

	TIME-WAIT: After sending a termination request, this state waits to ensure that the remote host has received the request to end the conversation.

	CLOSED: This is not a state at all; it represents a closed connection.



For a connection-oriented session where it is important to get all the parts of the communication stream, TCP is the transport layer protocol of choice. However, when speed in data transport is required, UDP is the better choice. UDP is a connectionless protocol with only four field values, as we can see in this next section.



            

            
        
    
        

                            
                    UDP

                
            
            
                
UDP is a connectionless and lightweight transport layer protocol that has a four-field header. UDP doesn't have any handshake or connection process, ordering or reliability services, and there's no teardown. As a lightweight protocol, it's ideal where speed is an issue, and is used with time-sensitive applications such as Dynamic Host Configuration Protocol (DHCP), Routing Information Protocol (RIP), Voice over IP (VoIP), or Trivial File Transfer Protocol (TFTP).

Whether TCP or UDP is in use, the transport layer is a critical component of ensuring data transport. During the encapsulation process, the data begins to transform, and the PDU is now a segment. At this point, the transport layer requires a port number (or address), that is associated with an application or process that is in use, as discussed in the following section. 



            

            
        
    
        

                            
                    Providing port addressing

                
            
            
                
At the transport layer, we add a port address, which is used to identify a specific application or process. Port numbers fall into three main groups:


	Well-known ports range between 1 – 1,023 and include protocols such as HTTP, DNS, and SMTP.

	Registered ports range between 1,024 – 49,151 and are assigned and used for specific services such as gaming applications, OpenVPN, and IPSec.

	Dynamic, private, or ephemeral ports are in the range of 49,152 – 65,535 and are not assigned to any specific application. They are used temporarily during a session, generally by the client.



When the transport layer header is applied to the data, a source and destination port are added. The type of port used depends on whether the packet is coming from the client or the server:


	If a client sends a packet, then the source port will be (in most cases) a randomly assigned dynamic or ephemeral port that is used, so when the server delivers a packet to the host, it uses that port to deliver the data.

	If a server sends a packet, then the source port will be either a well-known or a registered port.



The transport layer provides inter-host communication between endpoints. The following outlines a summary of the transport layer:




	Layer
	Purpose
	Protocols
	PDU



	Transport
	Transports the data
	TCP/UDP
	Segment





 

After the transport layer, the next layer is the network layer. As we'll see in the next section, the network layer is all about getting the data to the correct network.



            

            
        
    
        

                            
                    Explaining the network layer

                
            
            
                
The network layer, or layer 3, has two key roles: addressing and routing data. This layer provides addressing using a logical IP address. While the transport layer transports the data, the network layer determines the best logical path to take for packets that travel through other networks, so they can get to their destination. It does this by communicating with other devices during the routing process.

In addition to data forwarding, the network layer communicates errors in transmission. In order to achieve this, the network layer has a few key protocols, as we will see in the following section.



            

            
        
    
        

                            
                    Distinguishing the protocols and the PDU

                
            
            
                
The network layer is responsible for addressing and routing. There are three main protocols in this layer: IP, Address Resolution Protocol (ARP), and Internet Control Message Protocol (ICMP). Let's start with IP.



            

            
        
    
        

                            
                    IP

                
            
            
                
IP is a best-effort, connectionless protocol that routes packets from source to destination using a logical IP address. The original RFC for IP was written in 1981, as seen at https://tools.ietf.org/html/rfc791. IP was standardized shortly after that.

Many of the original protocols in the TCP/IP suite have had minor changes, updates, and modifications over the years. However, IP had to make a major change, which was mainly due to a lack of address space. As a result, there are two versions of IP: IPv4 and IPv6. The following outlines a brief comparison of the two:


	IPv4 has a 32-bit address space. The use of private IP addresses has extended IPv4's lifespan on a LAN, but there is a slow migration to IPv6.

	IPv6 has a 128-bit address space and enhancements to the protocol in general, such as simplified network configuration and more efficient routing.



Next, we will look at ARP, which resolves an IP address to a MAC address.



            

            
        
    
        

                            
                    ARP

                
            
            
                
IP routes traffic through networks to its destination LAN. When a packet arrives on the LAN, it no longer needs an IP address. It requires a physical or MAC address to go to its destination. ARP issues a broadcast to resolve an IP address to a MAC address on a local area network so the frame can be delivered.

ARP is an unusual protocol because it is in between layer three and layer two of the OSI model. ARP resolves an IP (network layer) address to a MAC (data link layer) address. However, many consider it to be a layer 3 protocol.

In addition to IP and ARP, we also need ICMP to help report any problems that may have occurred during data transport, as discussed in the following segment.



            

            
        
    
        

                            
                    ICMP

                
            
            
                
ICMP is another critical network protocol that does not exchange or transport data. Its primary role is error reporting. Because IP is a best-effort, unreliable protocol, ICMP must be implemented by every IP module, as outlined in the original RFC, which is found at https://tools.ietf.org/html/rfc792. ICMP reports on issues encountered during transit such as network unreachable and host unreachable. Because there are two IP versions, there are two versions of ICMP:


	IPv4 uses ICMP

	IPv6 uses ICMPv6



During the encapsulation process, the PDU at the network layer is a packet. The network layer is responsible for routing and addressing data. One key element is an IP or logical address, as described next.



            

            
        
    
        

                            
                    Supplying an IP address for the packet

                
            
            
                
In this layer, the IP header will hold source and destination addresses in either IPv4 or IPv6 format. Both are referred to as logical addresses and are represented as follows:


	An IPv4 address has 32 bits, which Wireshark will display using dotted decimal notation.

	An IPv6 address has 128 bits, which Wireshark will display using hexadecimal numbers, separated by colons.



In the previous section, we discussed two other protocols: ARP and ICMP. Let's discuss these two in relation to the need for addressing.

We know that IP uses a header that houses an IP address. However, ARP and ICMP are both unique, as outlined here:


	ARP does not have an IP address because ARP is a service protocol that resolves IPv4 addresses to MAC addresses.

	ICMP is the sister protocol to IP, and reports on matters encountered during transit, such as network unreachable and host unreachable. ICMP itself does not need an IP address, as it is encapsulated in an IP header, as shown in the following screenshot of an ICMP echo request:





ICMP echo request

By now, you should understand that the network layer allows hosts on separate networks to communicate with one another by providing logical addressing and path determination.

The following chart outlines a summary of the network layer:




	Layer
	Purpose
	Protocols
	PDU



	Network
	Addressing, routing
	IP, ICMP
	Packet





Network layer summary

As data is encapsulated and passed down the OSI model, the next step is the data link layer, where a key role is proper frame formation so the frame can travel on the LAN. Let's take a look.



            

            
        
    
        

                            
                    Examining the data link layer

                
            
            
                
The data link layer, or layer 2, is primarily concerned with proper frame formation and prepares the data before it is sent out on the network. Within the data link layer, there are several protocols that are responsible for properly formatting the data so that it can successfully traverse on the destination network. Let's focus on a few key data link layer protocols next.



            

            
        
    
        

                            
                    Investigating protocols and the PDU

                
            
            
                
The data link is the final stop as data travels down the OSI model, as this layer adds a frame header and trailer to ready the frame for the network. Protocols used in this layer include the following:


	Ethernet II is the most widely used Ethernet technology today. It establishes connections on a LAN using the physical or MAC address.

	High-Level Data Link Control (HDLC) uses frames to deliver data from point to point.



The PDU at this layer is a frame. Each frame requires an address, as outlined next.



            

            
        
    
        

                            
                    Describing the data link layer address

                
            
            
                
On a LAN, the data link layer uses the MAC address of the destination machine rather than the IP address. The data link layer has a frame header that contains the source and destination MAC address, which is also referred to as a physical address. The trailer, or frame check sequence, holds a value called a Cyclic Redundancy Check (CRC), which is used for error detection on a network.

The following chart provides a summary of the data link layer:




	Layer
	Purpose
	Protocols
	PDU



	Data link
	Frame formation
	Ethernet, HLDC
	Frame





Data link layer summary

The data link layer ensures proper frame formation and link access, along with error detection, while traveling across the network media. Data then travels on the physical layer, as we will see in the following section.



            

            
        
    
        

                            
                    Traveling over the physical layer

                
            
            
                
The physical layer, or layer 1, transmits data over media in a stream of bits.

Once data is formatted into a frame, the Network Interface Card (NIC) sends it on to the network media in a stream of bits. The method of transmission will depend on the medium.

Network media includes the following:


	Copper cable using Unshielded Twisted Pairs (UTP), Shielded Twisted Pairs (STP), or coaxial; transmits with pulses of electricity

	Fiber using a multimode or single-mode cable; transmits with pulses of light

	Wireless using 802.11 specifications; transmits over radio waves





            

            
        
    
        

                            
                    Exemplifying protocols and the PDU

                
            
            
                
In the physical layer, there are several different protocols used to transmit data across the media:


	Digital Subscriber Line (DSL) provides broadband to residences and businesses using a phone line.

	Integrated Services Digital Network (ISDN) transmits voice, video, and data using the Public Switched Telephone Network (PSTN). ISDN is primarily used in the broadcasting industry.

	IEEE 802.3—the Ethernet physical layer—defines the transmission properties according to the media type, such as fast Ethernet and GB Ethernet.



The physical layer is where binary transmission takes place across the network media. At this layer, the PDU is the most basic form, which is bits.

The following chart provides a summary of the physical layer:




	Layer
	Purpose
	Protocols
	PDU



	Physical
	Binary transmission
	DSL, ISDN, 802.3
	Bits





Physical layer summary

Prior to traveling across the media, the data must be in the correct format. The next section explores the encapsulation process, which adds headers and addresses and readies the data for transport across the media.



            

            
        
    
        

                            
                    Exploring the encapsulation process

                
            
            
                
Now that we know the layers, let's look at how each of the layers work together during the encapsulation process to create a frame.

During frame formation, the process begins with data. As the data moves down the layers, a header is added one by one until the frame is complete. Each frame has the following components:


	Data and appropriate application layer header (if applicable)

	Segment header

	Packet header

	Frame header



We'll start with the data portion of the frame.



            

            
        
    
        

                            
                    Viewing the data

                
            
            
                
In most cases when frame formation begins and the encapsulation takes place, we start with the data, as shown here:



The encapsulation process—data

The data might be any of the following:


	An HTTP get request

	A DNS request to resolve a hostname to an IP address

	A DHCP broadcast to request a dynamically assigned IP address



The data then continues its journey to becoming a segment.



            

            
        
    
        

                            
                    Identifying the segment

                
            
            
                
The next thing that happens is that the data will (in most cases) become a segment that will use either a TCP or UDP header:



The encapsulation process—segment

The segment holds a source and destination port address, as shown in the preceding diagram. The next stop in the encapsulation process is to add an IP header in order for it to become a packet, as discussed next.



            

            
        
    
        

                            
                    Identifying the packet

                
            
            
                
As data is encapsulated, we now have data, along with a segment that holds either a TCP or UDP port. The next part of encapsulation is creating a packet by adding the source and destination IPv4 or IPv6 address in the IP header, as shown here:



The encapsulation process—packet

The last part of the encapsulation process is the addition of the frame header, as shown in the next section.



            

            
        
    
        

                            
                    Forming the frame

                
            
            
                
The last stop on the journey of creating a frame is the addition of the header. Within the frame, we have data, a transport layer header or segment, and a network layer or packet. And now, we complete the frame by adding the source and destination MAC address, as shown here:



The encapsulation process—frame

With a frame, not only do we also have a header, but we also have a trailer, which is called the frame check sequence. The frame check sequence holds a value called a cyclic redundancy check, which is used for error detection on the network that is checked while traveling along on its journey.

The next section covers how the frame formation looks when Wireshark captures the traffic and presents it to the user.



            

            
        
    
        

                            
                    Demonstrating frame formation in Wireshark

                
            
            
                
Once you understand encapsulation and frame formation, this will help you to to learn about how Wireshark represents frame formation, as shown in the following screenshot:



Frame formation in Wireshark

Not all frames contain data, but this one does, so it is a good example of a fully encapsulated frame.

When looking at a single frame, you will see, at the top in the Frame 4371 line, the metadata about that single frame. After the frame metadata is the following:


	Frame: The frame header shows Ethernet II, and after that are the source and destination MAC addresses.

	Packet: The IP header represents the network layer that holds the source and destination IP addresses.

	Segment: The TCP header represents the transport layer, which holds the source and destination port addresses.

	Data: The HTTP header represents the application layer. In this case, it is a web request.



This is an example of how Wireshark displays the encapsulation process and how it relates to the OSI model.

Now that you have learned about the encapsulation process and frame formation in Wireshark, let's take a look at the NIC and see the OSI model in action on your own system.



            

            
        
    
        

                            
                    Examining the network bindings

                
            
            
                
Within your own laptop or desktop, you can easily see the OSI model in action. If you check your network connections and then select the properties of your network interface card, as shown in the following screenshot, you can see how the layer in the OSI model are represented:



Network bindings

The following represents the various layers and how they are represented in Ethernet Properties:


	Data link and physical layers are represented in the NIC.

	Application, presentation, and session layers are represented in Client for Microsoft Networks, along with File and print sharing for Microsoft Networks.

	Network layers are shown as Internet Protocol (TCP/IP).





            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we took a closer look at an important concept, the OSI model and the encapsulation process. The OSI model is essential and serves many purposes that include providing a common framework for developers and a method to help students understand what process occurs at each layer. Understanding each of the layers, the protocol data unit, and the addressing will help you to better understand the process in Wireshark.

By now, you should have a better understanding of the role, purpose, and protocols, along with the PDU of each layer. We explored the encapsulation process along with taking a look at frame formation as it is seen in Wireshark. To help you learn about how your system uses the OSI model, we looked at how the model is represented in the network bindings.

In the next chapter, we'll take a closer look at decoding two main transport layers: TCP and UDP. We'll review TCP, and then examine the 11-field header format in Wireshark. We'll cover the three-way handshake that is used to start a session along with the four-way FIN exchange to end a session. Then, we'll go through an overview of UDP and examine the four-field header.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now it's time to check your knowledge. Select the best responses, and then check your answers with those in the Assessment:


	The _____ layer, or layer 5, is responsible for setting up, maintaining, and tearing down a session.

	Transport

	Application

	Session

	Presentation





	The _____ layer, or layer 4, is responsible for transporting the data, either using a connectionless or connection-oriented protocol.

	Transport

	Application

	Session

	Presentation








	The _____ layer, or layer 6, is responsible for proper data formatting along with optional compression and encryption.

	Transport

	Application

	Session

	Presentation





	TCP port 334 is in the range of the _____ ports.

	Ephemeral

	Well-known

	Registered

	Secure





	The PDU at the transport layer is _____.

	Data

	Frame

	Packet

	Segment









            

            
        
    
        

                            
                    Section 3: The Internet Suite TCP/IP

                
            
            
                
The internet suite examines protocols that move data – TCP, UDP, IP, ICMP, and ARP – and takes a close look at the handshake and teardown processes.

This section is comprised of the following chapters:


	Chapter 9, Decoding TCP and UDP

	Chapter 10, Managing TCP Connections

	Chapter 11, Analyzing IPv4 and IPv6

	Chapter 12, Discovering ICMP

	Chapter 13, Understanding ARP





            

            
        
    
        

                            
                    Decoding TCP and UDP

                
            
            
                
Since its standardization in 1983, the Transmission Control Protocol/Internet Protocol (TCP/IP) suite has defined how data is addressed, packetized, transmitted, and routed. Over the years, modifications have been made to the TCP/IP suite to provide more efficiency in today's changing network. This chapter will focus on the TCP portion of the Suite, that is, the transport layer or layer 4 of the Open System Interconnection (OSI) model. Layer 4 has several protocols to transport data; however, we will focus on the most widely used transport layer protocols, TCP and UDP.

In this chapter, we will review the role and purpose of the Transport Layer. So that you have a better understanding of this connection-oriented protocol, we will take a closer look at TCP. We'll examine the header format and field values in detail, such as sequence number, offset, and window size, and review the TCP flags. In addition, we'll review UDP, along with the common uses for this lightweight, connectionless protocol and examine the streamlined four-field header.

The following topics will address all of this:


	Reviewing the purpose of the transport layer

	Describing the TCP

	Examining the eleven-field TCP header

	Understanding the UDP

	Discovering the four-field UDP header





            

            
        
    
        

                            
                    Reviewing the purpose of the transport layer

                
            
            
                
The transport layer of the OSI model is responsible for providing end-to-end data transport, by either using a connectionless or connection-oriented protocol across an IP network. The transport protocol that's selected will depend on the application. There are several protocols in this layer, including the following:


	Reliable data protocol: Used to transfer data in a connection-oriented manner

	Stream control transmission protocol: Provides the reliable transmission of data streams that have more than one IP address 



Although there are other, less well-known transport layer protocols, the two predominant protocols are TCP or UDP, as shown in the following diagram:



The OSI model—transport layer

UDP is connectionless and is used when data transport needs to be fast. UDP has a lightweight four-field header. Unlike TCP, UDP currently does not have any header options. However, because of the changing nature of the internet, there has been an active discussion on possibly including options for UDP, as evidenced in a draft called Transport Options for UDP, which can be found at https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-05.

TCP is a connection-oriented protocol. The eleven-field TCP header tells the story of how impressive this protocol is in its ability to ensure complete delivery of data while monitoring for congestion and providing flow control.



            

            
        
    
        

                            
                    Describing TCP

                
            
            
                
TCP is a connection-oriented protocol that has end-to-end reliability. Connection-oriented means that both endpoints must setup a connection before any data is transferred. To begin a session, TCP starts with a (three-way) handshake.

In many cases, there are TCP header options that outline and further define the parameters of the conversation. 

The TCP options are in the first two packets of the three-way handshake and are as follows:


	Window scaling: A value that expands the actual Window size by providing a multiplier that more accurately reflects the true Window size

	Selective Acknowledgements or SACK: When these are enabled, the receiver will notify the sender if there are any missing packets



Once you have a connection, your operating system creates a socket, which is an IP address and a port. To see all your active TCP connections on a Window machine, open a command-line prompt and run netstat -anp tcp, as shown in the following screenshot:



Netstat showing TCP connection status

During the conversation, TCP monitors the communication and acknowledges all the data that's received to ensure complete delivery of the data. Every time TCP receives data, the receiving host sends an acknowledgment (ACK) packet back to the sender, notifying the sender of what data was received. That is why, in the image, you will see a local IP address and port, along with a sender (or foreign) IP address and port.

Once the conversation is over, TCP ends the session with an exchange of FIN packets.

This powerful protocol also has methods to assist in flow control and congestion control:


	Flow control is an end-to-end control method using window size, so the sender doesn't overwhelm the host

	Congestion control prevents a node from sending too much data and overwhelming the network



There are two state variables involved in congestion control:


	Congestion Window (Cwnd): The sender-side limit that defines the amount of data a host can send before receiving an acknowledgement

	Receiver Window (Rwnd): The receiver-side limit defines the amount of data a host can receive



The two variables work together in a TCP connection to regulate the flow of data, minimize congestion, and improve network performance.

It's hard to believe, but there is a great deal of detail in one single frame. Depending on the protocol and the purpose, there are many components, such as the various headers, field values within the headers, along with optional data. In the next section, we'll look at all the information that's found in a single TCP frame.



            

            
        
    
        

                            
                    Exploring a single TCP frame

                
            
            
                
For a deep dive into the TCP header, go to https://www.cloudshark.org/captures/0012f52602a3. Download and open the packet capture file, HTTP.cap, in Wireshark.

To follow along, select frame five (5) and focus on the packet details pane, as shown in the following screenshot:



The packet details pane for frame 5

Starting from the top, Wireshark lists the contents of this single frame. Each header has a summary, followed by the details of the header. You can expand the header by clicking on the arrow (or caret, >) on the right-hand side to see the details. In frame 5, we can see the following:


	Frame 5: Frame is not a protocol. Frame is a list of values generated by Wireshark that describes information about a single frame. Expand the frame by clicking on the arrow on the right-hand side to see the details, as shown in the following screenshot:





 Frame metadata on a single frame—TCP


	Ethernet II: The (true) frame header follows the metadata summary and provides information about the source and destination MAC address, as shown in the following screenshot:





Frame header


	Internet Protocol Version 4: The IP header summary includes the source and destination IP address, followed by the IPv4 field values.

	Transmission Control Protocol: The TCP header lists the summary, including source and destination ports, sequence and acknowledgement numbers, and length (len), followed by the TCP field values



Now that we have covered the details that are found in a single frame, let's examine the TCP header and each of the field values.



            

            
        
    
        

                            
                    Examining the eleven-field TCP header

                
            
            
                
TCP has an eleven-field header that holds the values that keep track of the conversation, as shown in the following diagram:



The TCP header

TCP uses the field values to monitor communication. TCP will indicate that the end device has successfully received all of the data. If there is trouble during the data transport, TCP will alert other hosts of any missing segments.

Next, we'll take a look at each of the header fields so that you have a better understanding of how TCP is able to provide reliable communication between hosts.



            

            
        
    
        

                            
                    Navigating the TCP header fields

                
            
            
                
Starting at the top of the TCP header, we can see the Transmission Control Protocol, followed by a summary of what the header represents, as shown in the following screenshot:



TCP header

Below the summary is the TCP header fields. Whenever there is additional information, you will see an arrow on the right-hand side of the field, which you can expand to see the details.

When looking at the TCP header contents, any information in brackets is generated by Wireshark to help you better understand the details of the header, such as [SEQ/ACK analysis] and [Timestamps], as shown near the bottom of the preceding screenshot.

Let's step through the header fields, starting with the ports.



            

            
        
    
        

                            
                    Exploring TCP ports

                
            
            
                
In Wireshark, you can resolve physical, network, and transport addresses. The packet capture, HTTP.cap, uses transport layer name resolution so that whenever a well-known or registered port is used, Wireshark will identify the application associated with the port number.





The following lists the port numbers, along with the generated information Wireshark provides, such as Stream Index and Segment Length:


	Source port 16-bit: This is the port on the sender side. In frame 5, the sender is most likely a web server, as the value is Source Port: http (80).

	Destination port 16-bit: This is the port on the receiver (client) side that tells the sender, When you deliver the data, use this port. In this case, the value is Destination Port: 57678 (57678), which is not associated with any application; it is an ephemeral or temporarily assigned port that is used in this connection. As a result, you will not see a protocol listed before the port number.

	Stream index: This value is shown in brackets, as Wireshark calculates this to keep track of the streams. A stream is a communication between two endpoints. In frame 5, we can see [Stream index: 0], which means this is the first stream in this capture. This value is a useful tool when doing an analysis, as you can easily right-click on a frame and select Follow | [TCP, UDP, SSL, HTTP] stream, as shown in the following screenshot:





Following the stream


	TCP segment length: In the transport layer, the PDU is a segment. The segment length is the value of the TCP payload, which is the data that follows the TCP header, and any options. This value is in brackets, as it is calculated by Wireshark. In frame 5, we can see [TCP Segment Length: 0]. This means there is no data following the header, which would make sense, as frame 5 is an acknowledgment of the data received in frame 4.



Next, we'll take a look at the fields that keep track of the data that's sent and received during data transmission.



            

            
        
    
        

                            
                    Sequencing and acknowledging data

                
            
            
                
Because TCP is a connection-oriented protocol, the operating system keeps track of every byte (or octet) of data. Each byte is sequenced and, once received, is acknowledged. The following are the fields that help provide a snapshot of the data that's exchanged during a TCP connection:


	Sequence number 32-bit: The three-way handshake starts the sequencing. The Synchronization (SYN) packets found in the first two packets of the three-way handshake are responsible for synchronizing the sequence numbers that are used during the connection.

For example, as shown in the following screenshot, a client sends a SYN packet to the server with a sequence number of 100.

The server responds by sending a Synchronization Acknowledgement (SYN, ACK) with a sequence number of 300 and an ACK of 101. The client sends a final ACK with a sequence number of 301 and an ACK of 101:





The three-way handshake

After the handshake, the data flow begins. In frame 5, we can see Sequence number: 1 (relative sequence number). Relative sequence numbers are generated by Wireshark, mainly because the actual sequence number is very large. The relative sequence number is easy to understand and represents a value in relation to this conversation.

Without using a relative sequence number, the absolute sequence number is Sequence number: 3344080265, as shown in the following screenshot:



 Absolute sequence numbers

If you would like to use relative rather than actual sequence numbers, right-click on anywhere in the TCP header, select Protocol Preferences, and then select Relative Sequence Numbers, as shown in the following screenshot:



 Protocol preferences—relative sequence numbers

This will adjust the sequence numbers to a more understandable value. To see the use of relative sequence numbers, refer to the figure TCP header, where you will see Sequence number 1.


	Next sequence number: The value is in brackets as it is calculated. Wireshark adds the current sequence number to the TCP segment length to get the next sequence number.

	Acknowledgment number 32-bit: During data transfer, the operating system keeps track of all bytes and reordering by using the sequence numbers. Every time the TCP receives data, the receiving host acknowledges that the data was received and that they are ready to accept more, starting with the next expected byte.

The process occurs concurrent to the server sending data. As a result, it is called an expectational acknowledgment. As shown in the following diagram, the client sends an ACK to the server stating that they have received 524 bytes of data and they are ready for more, starting with 525:





Acknowledging the data


	Offset: The line right after the Acknowledgement number is 1000. This line is the data offset field, which indicates the length of the TCP header. After the TCP header, the data begins. In this case, the offset value is 32 bytes. The following diagram shows how this value is calculated:





Offset value calculation


	The size of a fixed TCP header field is 20 bytes. However, many times in today's networks, the TCP header has additional options, so the value is not always consistent.



While keeping track of the data exchange, another important element in the TCP header is the use of flags, as discussed in the next section.



            

            
        
    
        

                            
                    Following the flags

                
            
            
                
TCP flags are used to indicate a particular state during a conversation. Some are commonly seen, such as ACK, FIN, and SYN; however, some are rarely seen in practical applications. TCP has eight (8) control flags, as shown here:




	Control flag
	Bits
	Function



	Reserved
	3
	The Reserved flag is for future use and should be set to zero.



	Nonce
	1
	Nonce is experimental—possibly use with ECN.



	CWR
	1
	Congestion Window Reduced when set indicates that the sender is responding to indications of network congestion with congestion avoidance.



	ECE
	1
	The Explicit Congestion Notification Echo Explicit Congestion Notification (ECN) will notify the endpoints of any network congestion to avoid dropping packets. Both endpoints must be ECN capable in order for ECN to work. If this flag is set, this means the endpoint is ECN capable.



	URG
	1
	Urgent indicates a packet that should have priority. Rarely seen.



	ACK
	1
	Acknowledgment acknowledges that the data was received and that the client is ready to accept more. All packets after the initial SYN packet sent by the client should have this flag set.



	PSH
	1
	Normally, a buffer will hold data until it has a decent-sized packet to send. Push informs TCP that data should be sent immediately and not wait until the buffer is full.



	RST
	1
	When set, the sender and receiver will abort the TCP connection. A Reset can happen for a number of reasons; many times, it is used to close an abnormal or malicious connection.



	SYN
	1
	Synchronization synchronizes the sequence numbers. Only the first two packets of the handshake will have this flag set.



	FIN
	1
	Finish means the communication has ended and there is no more data—close the connection.







The TCP flags, when set, will tell the story of the TCP connection. Wireshark will reflect this state in the Info column of the packet list pane:



 TCP flags

TCP is widely used, and the flags are important to control each session. However, TCP flags can be used in a malicious way to launch an attack or evade detection. As a result, the security analyst should make sure devices are tuned to monitor for non-standard and inappropriate use of TCP flags.

As we can see, the TCP flags provide an indication of what is happening during a conversation. It's important to keep the data moving. As we'll see in the following section., the window size is used to notify the sender about just how much data that a host can receive at any given time.



            

            
        
    
        

                            
                    Dissecting the window size

                
            
            
                
TCP is a full-duplex communication protocol, in which the sender and receiver communicate with each other. Flow control is an end-to-end control method where a host transmits a window size, with every acknowledgement indicating how many bytes it can accept so that the sender does not transmit too much data and overwhelm the host. The following steps through values provide an indication of how much data the client can receive, which can change at any time during a conversation:


	Window size 16-bit: During an active connection, the server sends data to the client. The client responds with an ACK and the window size value, which will indicate how much data they can accept. In the case of frame 5, we can see Window size value: 108.

	If the client cannot process all the data, the client will send an ACK with a lower Window size value.

	Once the client advertises a smaller window size, the server throttles back the data transfer.

	When the client recovers and is able to accept more data, the client sends an ACK with a window update that reflects the new value.

	The server then can continue to send data.







A related term is called sliding window, as the value will slide back and forth as the end point adjusts the amount of traffic it can accept.


	Calculated Window size: In brackets, we can see [Calculated Window Size 6912]. This value is larger than the actual Window size because this stream uses a scaling factor, which changes the value of the Window Size. Let's talk about why this value is different:

	The original TCP request for comment (RFC) 793 was written in 1981. At that time, buffer space was smaller, and the 16-bit Window size value field would accommodate the actual Window size that was available during the 1980s.

	If all 16 bits are used, this would mean the window size is equal to 216, or 65,536 bytes. As time passed, hardware improved, and the buffer space expanded beyond that limit. Over time, options were used to expand the Window size value in the TCP header.

	In the early 1990's, RFCs were written to address the larger buffer sizes, and a window scaling option provides a way to address the actual window size.

	As a result, Wireshark calculates the Window size by multiplying the scaling factor of 64 by the listed window size field value 108, which gives us a calculated window size of 6,912.









Next, let's take a look at how the scaling factor is determined.


	Window size scaling factor: The [Window Size scaling factor: 64] is calculated by Wireshark. This reflects the scaling factor from the TCP options exchanged during the three-way handshake. As shown in the following screenshot, we can see that the TCP options sent by the server lists the last option as the Window scale is 6 (multiply by 64):





 TCP options

Wireshark will determine the calculated window size by multiplying the scaling factor by the window size field value.

If the capture began after the three-way handshake, Wireshark has no way of knowing what the scaling factor is and will display [Window Size scaling factor: -1 (unknown)]. You may also see [Window size scaling factor: -2 (no window scaling used)]. In that case, Wireshark will display the actual window size.

If you know the scaling factor, you can modify the value by right-clicking anywhere in the TCP header, selecting Protocol Preferences | Scaling factor to use when not available from capture, and then selecting the appropriate value, as shown in the following screenshot:



Protocol preferences

In addition to the field values that monitor the communication, there are some other field values and options in the TCP header. Let's take a look.



            

            
        
    
        

                            
                    Additional header values

                
            
            
                
The last part of the header lists additional values and options. The following are the field values and information that helps keep a TCP connection on track:


	Checksum and Status: During data transmission, errors may occur. A checksum is a calculated value of the data portion of the packet that is periodically recalculated during transmission to ensure data integrity. The checksum is used for error detection, not correction. If the checksum is not accurate during recalculation, the packet is dropped.



In frame 5, we can see the value of the checksum as Checksum: 0x82e4 [unverified]. When doing a packet capture, the captured packet is presented to Wireshark before the hardware or network driver calculates the checksum. It may be incorrectly calculated, which will result in an error.

To avoid a checksum error, you can disable checksum validation by right-clicking anywhere in the TCP header, selecting Protocol Preferences, and unchecking Validate the TCP checksum if possible.


	Urgent pointer: The TCP flags, which include the urgent (URG) flag, indicate the packet that should have priority. If the URG flag is set, the receiving host will need to examine the frame to obtain relevant data. This is rarely used. A more commonly used flag is push (PSH), as it informs the TCP that data should be sent up the stack immediately.

	Options: Before any TCP conversation, there is a three-way handshake. During the handshake, TCP has several options. The options will be listed during the SYN packet exchange. In frame 5, the options include timestamps and no-operation, as shown in the following screenshot:





 TCP header options

These options and others will be covered in detail in Chapter 10, Managing TCP Connections.


	Additional Packet Details: At the bottom of the TCP header, there are two other calculations: [SEQ/ACK analysis] and [Timestamps], as shown in the following screenshot:





Additional Packet Details


	[SEQ/ACK analysis] is a calculated field that includes information such as what frame was acknowledged and the Round-Trip Time (RTT), which is used in function such as the time-sequence graphs found under Statistics | TCP Stream Graphs. The [Timestamps] calculation indicates the elapsed time and is used to provide details about the capture found in Statistics | Capture File Properties.



As you can see, there is a lot going on with TCP, which provides reliable data transport. In the next section, we will take a look at the User Datagram Protocol (UDP), a transport protocol to use when speed—not reliability—is required for data transport.



            

            
        
    
        

                            
                    Understanding UDP

                
            
            
                
UDP is a lightweight, connectionless, TCP used for data transfer. UDP does not have a handshake or connection process, nor does it have a teardown.

To see all your active UDP connections on a Windows machine, open a command line and run netstat -anp udp, as shown in the following screenshot:



Netstat command showing UDP connection status

UDP doesn't have any ordering or reliability services; it simply delivers the data. Because of this, there isn't a need for a sender (or foreign) IP address and port. As a result, as shown in the following diagram, you will see only a local IP address and port for UDP:



The UDP header

Because of UDP's streamlined nature, it is an appropriate protocol for time-sensitive applications such as Dynamic Host Configuration Protocol (DHCP), Domain Name System (DNS), Trivial File Transfer Protocol (TFTP), Voice over IP (VoIP), and other protocols that require speed. Let's take a look at how a single UDP frame works.



            

            
        
    
        

                            
                    A single UDP frame

                
            
            
                
Unlike TCP, UDP is a lightweight protocol with a very simple header. UDP has only four fields and no options.

To examine UDP and for a deep dive into the UDP header, go to https://www.cloudshark.org/captures/0320b9b57d35 and download the DNS Question & Answer.pcapng file. Go to frame one (1) so you can follow along. Once selected, you will see the following details:




Frame one (1), as shown in the packet details pane

Starting from the top, Wireshark lists the contents of this single frame. Expand the frame metadata by clicking on the arrow (or caret, >) on the right-hand side to see the details, as shown in the following screenshot:



 Frame metadata on a single frame—UDP


In frame 1, we can see the following:




	Frame 1: Frame is not a protocol. Frame is a list of values generated by Wireshark that describes information about a single frame.

	Ethernet II: The frame header follows the metadata and provides information about the source and destination MAC address. It is the same as the information found in the section A single TCP frame.

	Internet Protocol Version 4: Provides the details of the IP protocol used and includes the source and destination IP address. It is the same as the information found in the section A single TCP frame.

	User Datagram Protocol: Provides the details of the UDP header as shown in the figure The UDP header. When looking at the UDP header contents, any information in brackets is generated by Wireshark to help you better understand the details of the header, such as Checksum Status and Stream index.



Now that we have taken a look at the information that's found a single UDP frame, let's examine the UDP header and each of the field values.



            

            
        
    
        

                            
                    Discovering the four-field UDP header

                
            
            
                
UDP has a four-field header that holds the values that keep track of the conversation, as shown in the following diagram:



 The UDP header

UDP is always eight bytes long as it does not have any header options. UDP is connectionless; if there is trouble during the data transport, it's up to a higher-level protocol to communicate any issues or request any missing data. Now, let's take a look at each of the four UDP headers.



            

            
        
    
        

                            
                    Analyzing the UDP header fields

                
            
            
                
Starting at the top of the UDP header, we can see User Datagram Protocol, followed by a summary of what the header represents. Below the header and summary are the UDP header fields. Unlike TCP, UDP has a simple header, with no additional communication details listed, such as Timestamps or SEQ/ACK analysis:



The UDP header

Starting at the top of the UDP header, we can see the UDP, followed by a summary of what the header represents with information on the source and destination ports:


	Source Port 16-bit: The source port field is the port on the receiver's side, and this field. In this case, the sender is a DNS client, as the source port in frame 1 is Source Port: 54585, which is not associated with any application; it is an ephemeral or temporarily assigned port that is used in this connection.




	Destination Port 16-bit: The destination port field is the port on the sender's side, and this field is 16bit. In this case, the port in frame 1 is Destination Port: domain (53). Port 53 is associated with DNS, and is the port on the DNS server accepting resolution requests to resolve a domain name.

	Length 16-bit: In a UDP packet, the length represents the number of bytes in the UDP header and any data that follows. In frame 1, we can see Length: 36, which is equal to the UDP header (8 bytes) and the DNS header (28 bytes).

	Checksum 16-bit: The UDP checksum is a calculated value of the data portion of the packet that is periodically recalculated during transmission to ensure data integrity. The UDP checksum is optional in IPv4; however, it is required in IPv6. The checksum is required in IPv6 primarily because IPv6 does not have a checksum, and the value in the UDP header is used to ensure data integrity.





            

            
        
    
        

                            
                    Summary

                
            
            
                
Anyone working on a network should have a solid understanding of the protocols that traverse the network. Although there are hundreds of protocols, this chapter focused on the functions of the transport layer of the OSI model, specifically the two predominant protocols, TCP and UDP.

We evaluated TCP, a connection-oriented protocol. You now understand that, in order to achieve reliability, TCP sequences and acknowledges every octet. We saw that, in addition to transporting data, TCP monitors the transmission and provides not only flow control, but congestion control as well. So that you grasped how TCP is so effective in providing reliable data transport, we took a closer look at the header, along with the eight control flags. 

Along with TCP, we looked at the other transport layer protocol, UDP, which ensures fast transportation of time-sensitive data and protocols such as DHCP and DNS. We discovered the four-field UDP header, which provides enough information to deliver data with no additional overhead.

Now that you have a solid understanding of TCP, the next step is to gain a better understanding of how TCP establishes and tears down a connection in more detail. In the next chapter, we will step through the process of starting a TCP conversation and examine the TCP three-way handshake and resultant socket creation. We will look at the packet exchange and have a closer look at the TCP options. Finally, we'll study how TCP ends data transmission by exchanging FIN packets.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now, it's time to check your knowledge. Select the best response, then check your answers, which can be found in the Assessment:


	A _____ is defined as an IP address and a port.

	Window

	Socket

	Checksum

	Sequence





	ACK 725 means I have received _____ bytes of data and I am ready for more, starting with _____.

	700 and 800

	724 and 725

	725 and 726

	725 and 725





	The _____ flag informs TCP that data should be sent immediately.

	RST

	SYN

	ACK

	PSH





	If the offset value is 0101, the TCP header length = ___.

	32

	8

	20

	64





	In a normal connection, ___ will use UDP.

	HTTP

	SMTP

	DHCP

	FTP









            

            
        
    
        

                            
                    Managing TCP Connections

                
            
            
                
One of the most important, yet least understood, TCP concepts, is the three-way handshake. A TCP handshake initiates the connection and sets up the parameters. No data is exchanged until this process is complete. Similar to the handshake is the teardown, when the two endpoints exchange a series of Finish (FIN) packets, that indicates the session is complete.

In this chapter we'll take a more detailed look at the handshake and resultant socket creation. So that you can home in on a single TCP stream, we'll take a large capture, subset, mark and filter the packets, so we can examine the TCP handshake. As you traverse the chapter, you'll have a greater understanding of the TCP options exchanged during the handshake.  You'll learn what they mean and why they are required to have a conversation on today's networks. In addition, you'll see how you can easily modify protocol preferences, such as analyze TCP sequence numbers with a simple right click. Finally, we will examine the TCP teardown process and see how the FIN flag indicates the end of data transmission.

This chapter will address all of this by covering the following:


	Dissecting the three-way handshake

	Discovering TCP options

	Understanding TCP protocol preferences

	Identifying a TCP teardown





            

            
        
    
        

                            
                    Dissecting the three-way handshake

                
            
            
                
In computing, a handshake is an exchange of information between devices that sets up the parameters of the conversation. Each side sends what is available and the two endpoints agree on the terms before any data is exchanged. The topic of the three-way handshake is outlined in detail in the original TCP RFC 793 found at https://tools.ietf.org/html/rfc793. The TCP handshake is as follows:



The TCP three-way handshake

In most cases, the client initiates the conversation with a synchronization (SYN) packet, the server responds with a synchronization acknowledgment (SYN-ACK), and the client then completes the handshake with an acknowledgment (ACK). After the handshake is complete, the data exchange will follow.

For a closer look at the three-way handshake, go to http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap. Once there, download bigflows.cap so you can follow along. Bigflows is a large capture that has many protocols and conversations. Bigflows  has 791,615 packets, as shown in the lower right-hand corner of the following screenshot:



 BigFlows

Although you could technically work with the entire capture, in the next section, we will isolate a single stream and then create a smaller, more manageable file.



            

            
        
    
        

                            
                    Isolating a single stream

                
            
            
                
When capturing traffic, Wireshark keeps track of all the streams. In a file the size of BigFlows.pcap, there will be many TCP and UDP streams. Although we can filter on any of the streams, for now, let's use TCP stream 312, as this includes the handshake, options, data, and then the FIN exchange to end the session.

To show only stream 312, go to the display filter and enter tcp. stream eq 312, and then press Enter. Because this is such a large file, it will take Wireshark several seconds to run the filter. Once you are done, you will see an example of a complete TCP stream, as shown here:



tcp.stream eq 312

Now that we have a single isolated stream, we'll want to subset the capture and save it as a smaller file. To subset only TCP stream 312, go to File | Export Specified Packets.

This will open a dialog box that offers various ways to export specified packets, as shown in the graphic:



Select All packets and Displayed

Near the bottom of the dialog box, you will see a header, Packet Range, where you will make your selections. If you have filtered the capture, Wireshark will assume that you would like to export only the displayed packets, and the radio button for Displayed will be active. 

Select All Packets and Displayed, as shown in the screenshot, and then save as Flow312.pcapng.

Close Bigflows.pcap and clear the display filter, and then open the newly created file. In the next section, let's zero in on the handshake and examine each of the packets exchanged.



            

            
        
    
        

                            
                    Marking the TCP handshake

                
            
            
                
One of the ways you can isolate a series of packets within Wireshark is by marking them. When we mark the packets, Wireshark will modify the packet to have a black background with white text. Once we mark them, we'll filter according to the marked packets to focus in on the handshake.

In the file, we'll identify the handshake by marking the packets. We know that to begin a session, TCP starts with a handshake that uses three packets as follows:


	The client sends a SYN packet to the server.

	The server responds by sending a SYN ACK packet.

	The client sends a final ACK packet.



Once the handshake is complete, the data flow begins.

Wireshark will identify the three-way handshake and the exchange of packets by showing the transaction details in the info column, (if you have this column header active). In the capture Flow312.pcapng, packets 1, 2, and 3 represents handshake. 

Once the handshake is identified, we'll mark each of the three packets. To mark the packets, select each of the packets and right-click the sub menu choice Mark/Unmark Packet as shown in the graphic:



Mark/Unmark Packet

Once you have marked the packet, the background will turn black and the text will be white, as shown here:



Results of marking a packet

After that, we'll want to view only the marked packets by entering frame.marked==1 in the display filter and pressing Enter. Clear the marks by going to Edit | Unmark all Displayed so that we can begin to dissect the handshake.

Now that we have singled out the three-way handshake. let's take a look at each of the three packets.



            

            
        
    
        

                            
                    Identifying the handshake packets

                
            
            
                
In this section, we'll take a look at each of the packets, examine the flags, along with the sequence and acknowledgement numbers. Let's start with the SYN packet.



            

            
        
    
        

                            
                    Sending the SYN packet

                
            
            
                
In the first packet, the client will initiate the connection by sending a Synchronization (SYN) packet to the server and then wait for a response.

To see all the field values as shown, go to frame 1, and expand the TCP Header as shown:



Flows312.pcapng—frame 1


In frame 1, you'll see the source and destination ports along with other field values in the header. This includes the sequence and acknowledgment numbers, as follows:


	Sequence number: 0 (relative sequence number)

	Acknowledgment number: 0



If we expand the flags, we see that the Syn flag is set as shown in the following screenshot. Keep in mind that the Syn flag will only be used to synchronize the sequence numbers during the first two packets of the handshake:



 TCP Syn flag set

Although all three packets of a handshake are important, the first two packets set up the parameters of the conversation. Select frame 1 and view the TCP header in the Packet Details pane. Then, select the TCP header, and we see Transmission Control Protocol (tcp), 40 bytes in the status bar along the bottom, as shown in the following screenshot:



TCP header—40 bytes

While a normal TCP header is 20 bytes, this header is 40 bytes. The header size is larger because it contains options that are added to the header. In most cases, you will see a larger header size in the first two packets of the three-way handshake. You may also see a larger header size in subsequent frames as well if the TCP header contains options.

In addition, within the field values, we see that Wireshark has identified this conversation as [Stream: 0]. On the client side, the operating system will create a local socket with an IP address and a port number combination of 172.16.133.132: 50405 once the handshake completes. After the handshake, the data flow begins.

Now that we have seen the first packet of the three-way handshake, let's examine the second packet, the SYN-ACK.



            

            
        
    
        

                            
                    Returning the SYN-ACK packet

                
            
            
                
Once the server agrees to take part in the connection, the server will return a SYN-ACK and wait for a final ACK to start the connection.

In frame 2, you will see the field values, which are similar, although the acknowledgment number has changed. The sequence and acknowledgment numbers in frame 2 are as follows:


	Sequence number: 0 (relative sequence number)

	Acknowledgment number: 1



In addition, the TCP flags are now set to SYN-ACK, as shown in the following screenshot:



TCP SYN-ACK flags set

Before any data is exchanged, the handshake must complete with the acknowledgment packet, as discussed next.



            

            
        
    
        

                            
                    Finalizing with an ACK packet

                
            
            
                
Frame 3 is the final packet in the three-way handshake. At this point, the sequence and acknowledgment numbers are as follows:


	Sequence number: 1 (relative sequence number)

	Acknowledgment number: 1



To see the details, go to frame 3 and then to the TCP header, and then expand the TCP flags, which are now set at ACK, as shown in the following screenshot: 



TCP ACK flag set

In addition, we also see Transmission Control Protocol (tcp), 32 Bytes, in the status bar along the bottom, as shown in the preceding screenshot. Again, this is because this connection has TCP options, which adds to the length of the TCP header.

In many cases, there are TCP header options that outline and further define the parameters of the conversation. In the next segment, we'll look at TCP options in general and then focus on the options of this TCP conversation.



            

            
        
    
        

                            
                    Learning TCP options

                
            
            
                
While TCP is already an amazing protocol, it also permits various options that can be added to the TCP header to extend the functionality. The complete list, last updated January 2019, can be found at https://www.iana.org/assignments/tcp-parameters/tcp-parameters.txt.

Not all options are used. Some of the options are experimental, some are used for specific reasons and do not have an associated RFC, and some have been developed and used without proper IANA assignment. The seven most common options are listed in the following table:




	Kind
	Length
	Meaning
	Reference



	0
	1
	End of Option List (EOL)
	[RFC793]



	1
	1
	No-Operation (NOP)
	[RFC793]



	2
	4
	Maximum segment size (MSS)
	[RFC793]



	3
	3
	Window scale
	[RFC7323]



	4
	2
	Selective acknowledgment (SACK) permitted
	[RFC2018]



	5
	N
	SACK
	[RFC2018]



	8
	10
	Timestamps
	[RFC7323]





TCP options

The first three, EOL, NOP, and MSS, are from the original TCP RFC 793. The others were developed over time. Any options will follow the TCP header and are in multiples of 8-bit, or 1 byte. The entire header must be a multiple of 32-bit, or four bytes, for memory alignment. Therefore, in some cases, padding is required to ensure that the header is a multiple of four bytes. The entire TCP header can be up to 40 bytes.

To see the TCP options for Flow312.pcap, select the options header in frame 1, where additional conversation parameters are listed, as shown here:



Flows312 frame 1 options

So that you have a better understanding of each of the seven common options, let's take a look at each of them, starting with End of Option List.



            

            
        
    
        

                            
                    Grasping the EOL

                
            
            
                
EOL is a single byte used at the end of the options. To see an example, open the Flow312.pcap packet capture, put tcp.option_kind == 0 in the display filter, and press Enter. Wireshark will display frame 2. Expand the TCP header options, which will show the EOL at the end of the list:



Flows312 frame 2 options list

Another TCP option is NOP, which isn't an option at all, but a placeholder, as we'll see next.



            

            
        
    
        

                            
                    Using NOP

                
            
            
                
NOP is essentially a placeholder to separate different options. How and where NOP is used is dependent on the operating system. For example, as shown in the preceding screenshot, we can see that two NOPs are placed between the Window scale and Timestamps options.

In addition to using NOP to separate the various options, NOP is used to ensure that the options header is a multiple of 32-bit, or four bytes, for memory alignment. As a result, if there is an option with three bytes, such as a window scale, a single one-byte NOP will be added so that the option's length totals four bytes.

Next, we'll look at an option that helps outline the acceptable receive segment size, which is significant in many ways.







            

            
        
    
        

                            
                    Defining the MSS

                
            
            
                
MSS is an option that defines the maximum receive segment size. This value is important for several reasons:



 MSS and MTU

During a conversation between endpoints, TCP monitors the connection to ensure that the optimal data is sent, so as not to waste bandwidth. In addition, TCP keeps track of the following:


	Window size (WS), for flow control, so as not to overwhelm the receiving host.

	Network, for evidence of congestion by using the congestion window (CWND). When necessary, the server will throttle the data transfer.

	Maximum transfer unit (MTU), so the host sends only the amount of data that the network can handle so as to prevent the need to fragment the datagram.



On the network, the sending host monitors several values, including the WS, CWND, and the MTU, as it can only send the smallest of the three values.

For example, a host needs to send 1,800 bytes of data. The network limits are as follows:


	CWND: 900 bytes

	MTU: 1,500 bytes

	WS: 1,800 bytes



According to the values listed, TCP must send the smallest value, which is CWND, 900 bytes.

The MSS is not always included in the options header. If this option is not used, the server can send a segment of any size, while keeping in line with the network limits.

As we can see, the MSS provides essential information to ensure optimal data flow. Let's now review another common option, WS.



            

            
        
    
        

                            
                    Scaling the window size

                
            
            
                
TCP is a full-duplex communication protocol, in which the sender and receiver communicate with each other. Flow control is an end-to-end control method where a host transmits a window size with every acknowledgment, indicating how many bytes it can accept, so the sender does not transmit too much data and overwhelm the host.

Window scale (WS) is an option that allows the window size to be expanded, according to a scaling factor that is obtained from the TCP options exchanged during the three-way handshake. The WS value is used to increase the maximum window size that is allowed. Although optional, this provides information to the server of a more accurate Window Size value.

Let's outline why this is an important option. In the TCP header, the Windows field value is 16-bit, which permits a maximum size of 65,535 bytes. The original RFC for TCP was written in 1981. In the early 1980s, buffer sizes were small, so this value made sense. However, as time passed, it became evident that a larger value would be required, and the Window scale option provided a way to truly represent that value.

When using the Window scale option, the total value can be up to 230. This value as a metric is beneficial when data travels, especially on high-bandwidth WAN links, because a larger WS will improve performance. Intermediary devices can be tuned to accept larger WS; for example, when configuring a Cisco router that supports Window scaling, you can adjust this value up to 1,073,741,823 bytes.

To illustrate this, the following diagram shows a connection where the client advertises a WS of 35,000 bytes. The server begins to send the packets to the client in line with the WS:



Server sending data in line with a smaller WS


While in the connection, if the WS starts to drop, the server will need to throttle back the data so as not to overwhelm the client. However, if the client uses scaling and now advertises a WS of 70,000 bytes, the server can send twice as many packets and utilize the available bandwidth for a more efficient data transfer:



A larger WS allows the server to send more data

Networks can be unstable, and data transfer does not always go in an orderly fashion. This next option provides an overview of how a client can selectively acknowledge the data it has received, so the server only has to retransmit the missing bytes.



            

            
        
    
        

                            
                    Permitting SACK

                
            
            
                
Over time, there have been improvements to the TCP/IP protocols. One such improvement is Selective Acknowledgment (SACK). In the case of SACK, the client will notify the server only if there are any missing packets, with the goal of keeping the data flowing. Let's discuss how this option improves data flow.

TCP is a connection-oriented protocol. During transmission, all data is sequenced and acknowledged to ensure complete transfer of all data required for that session.

After the server sends data to the client, the client will acknowledge that the data was received and is ready to accept more by sending an ACK to the server with the next expected byte.

To ensure complete data transfer, the server monitors the acknowledgments. However, sometimes, there is a gap in transmission. 

For example, the server has received ACK 1-100 and then ACK 151-200. In this case, there is a perceived gap of ACK 101-150, and the server believes the client is missing bytes 101-150.

The gap may be for the following reasons:


	Some of the data did not arrive.

	The ACK did not reach the server.



The server has no idea why there is a gap in transmission and will resend all the data that it believes is missing. It may be because the client did not receive the data. However, the gap may be because the client received the data, but the server did not receive the acknowledgment. This can lead to unnecessary retransmission of data.

By using SACK, the client selectively acknowledges what data it has received, so the server only has to resend the missing data. While using SACK, there are two options that are sent in the first two packets of the three-way handshake, as shown here:


	The SACK-permitted option indicates that SACK can be used after establishing a connection.

	The SACK option permits selective acknowledgment of data.



The TCP SACK option uses two 16-bit fields, so the client can indicate the bytes it has received.

For example, in the Bigflows.pcap capture, in frame 4006, the client used the TCP option SACK 10852-11096 option. Therefore, the server only needs to send the data from sequence number 10852 to 11096:



 TCP SACK option in Bigflows.pcap

As you can see, SACK can prevent unnecessary retransmissions and keeps the data flowing. Another TCP option is timestamp, which monitors the transmission and keeps track of the round-trip time during the data exchange.



            

            
        
    
        

                            
                    Using timestamps

                
            
            
                
TCP relies on time as part of the functions of flow control and reliable data transfer. Data travels through LANs and over WANs. Every network is different, and TCP needs to understand the degree of latency on each network in order to set appropriate ACK timeout values.

Using the timestamp options, TCP can monitor the round-trip times because the sending host may need to retransmit a packet if it does not receive an acknowledgment in a timely manner.

In the Flow312.pcap capture in frame 2, open the options to view the timestamp option, as shown in the following screenshot:



 TCP timestamp option

Within this option, there are the following:


	Kind: (one byte) 8. The Kind field indicates the type of option, in this case 8, which is the timestamp option.

	Length: (one byte) 10. This indicates the length of this options header; in this case, it is 10 bytes.

	Timestamp value (TSval): (four bytes) 1707407197, which is the timestamp clock on the sender's side.

	Timestamp echo reply (TSecr): (four bytes) 131517608, which is the echo reply sent by the remote host.



TCP uses the timestamp value to monitor the round-trip time in various segments in the path. The timestamp option must be set during the handshake, but you will see the options reporting during the conversation. 

As we can see, TCP can set various options during the handshake that further define the parameters of the conversation.

While working with Wireshark, there may be a preference in the way the protocol responds or is configured. We can modify may of the protocol preferences, as we'll see next.



            

            
        
    
        

                            
                    Understanding TCP protocol preferences

                
            
            
                
In Wireshark, there are several protocols that we can modify so that Wireshark can display the data more in line with the way the protocol should be used, according to our preferences.

In some cases, a protocol won't have any protocol preferences. For example, when selecting IGMP, Wireshark states Internet Group Management Protocol has no preferences, as shown in the following screenshot. However, there are preferences for many protocols, including TCP:



Protocol preferences—IGMP

To modify TCP preferences, go to frame 1 and select the TCP header. Right-click and select Protocol Preferences, as shown in the following screenshot:



 Protocol preferences—TCP

Above Protocol Preferences, there is another option, Open Transmission Control Protocol preferences..., which will open the Wireshark preferences:



TCP preferences

Once the Preferences dialog box is open, you can select and modify some of the TCP preferences.



            

            
        
    
        

                            
                    Modifying TCP preferences

                
            
            
                
When in the preferences dialog box for TCP, you will see a list that outlines your choices, as follows:


	Show TCP summary in protocol tree: When selected, this option will show a summary of what has transpired in that packet.

	Validate the TCP checksum if possible: TCP has a checksum that is used for error detection. In most cases, this option is not selected, as the checksum will offload to the NIC and the value will be invalid and indicate an error.




	Allow subdissector to reassemble TCP streams: When selected, this will allow an upper-layer protocol to reassemble the TCP stream.

	Analyze TCP sequence numbers: This option is helpful with analysis as Wireshark will monitor the sequence numbers that help identify trouble, such as TCP retransmission, TCP duplicate acknowledgments, and TCP zero window.

	Relative sequence numbers: When used, this feature helps make the sequence numbers easier to read and compare. The relative sequence numbers start with 0 for the first packet in each stream and then increment from that point.

	Scaling factor to use not available from capture: Window scale is used to increase the maximum WS that is allowed. There are times that the scaling factor is not known, for example, when the capture started mid-stream and the handshake was not captured. This option allows you to enter a scaling factor, if known.

	Track number of bytes in flight: To see the bytes in flight, in Flow312, use the tcp.analysis.bytes_in_flight display filter, which will result in two frames. Select frame 5 and expand the SEQ/ACK analysis to see the bytes in flight, as shown here:





 TCP bytes in flight


	Calculate conversation timestamps: This option will monitor time values and can help to find delays during TCP conversations.

	Try heuristic sub-dissectors first: This option helps Wireshark attempt to identify what type of application is used by using the port number to properly dissect the packet. By selecting Try heuristic sub-dissectors first, Wireshark will dissect the packet according to the behavior exhibited, and what Wireshark believes is the appropriate protocol.

	Ignore TCP timestamps in summary: Wireshark obtains the timestamp from the operating system kernel. Use this option if you feel the timestamp may not be accurate.




	DO not call subdissectors for error packets: Wireshark does its best to properly dissect each protocol according to the RFC. In some cases, the dissector may have incorrectly identified an error. Therefore, in some cases, it's best to check this option so that Wireshark does not continue to incorrectly dissect the packet and throw more errors.

	TCP experimental options with a magic number: In some cases, the capture may include a conversation where the TCP option is experimental, possibly used for testing. Because the option is experimental and not a standard, Wireshark needs to use a magic number to identify the option, so it can be properly dissected.

	Display process information via IPFIX: IP flow information export is a format used to analyze network traffic. When selected, Wireshark will display the process information that can be used to analyze and troubleshoot IPFIX flows.

	TCP UDP port: Use this option if you want to change the protocol's behavior. For example, the simple service discovery protocol uses UDP port 1900. If you modify this and enter TCP UDP port 1900, Wireshark will recognize and identify UDP port 1900 as TCP.



For any of the options that change the default values, use caution! What you enter may stick and may not allow you to undo the option without a reinstall.

Doing analysis will involve investigating all aspects of a protocol's behavior. Now, you can see how you can personalize your preferences when working with Wireshark. This final section provides an overview of TCP teardown, which properly closes the connection between two endpoints.



            

            
        
    
        

                            
                    Tearing down a connection

                
            
            
                
When a TCP connection is complete, TCP tears down the connection by exchanging a series of FIN packets, closing the port and refusing any more requests to communicate. Let's walk through the entire process.

When two hosts are communicating, a TCP conversation goes through several stages:


	TCP starts with a (three-way) handshake to set up the session. In many cases, there are additional header options that outline and further define the parameters of the conversation.

	During the conversation, TCP monitors the communication and acknowledges all data received to ensure complete delivery of the data.

	Once the conversation is over, TCP ends the session with an exchange of FIN packets between the two endpoints, which indicates that the session is complete.



Let's now take a look at how session teardown is represented in Wireshark.

In the Flows312.pcapng capture, packets 6, 7, 8, and 9 represent the session teardown, as shown here:



 The four-packet FIN exchange

To close the session, TCP uses a FIN flag, as shown in the following screenshot, which indicates that there is no more data:



 The TCP FIN flag set

To completely close a connection, TCP progresses from an established state to FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT, and then CLOSED, as stated in RFC 793. 

TCP will wait until both sides have said their final goodbyes and have sent a FIN packet, and then the operating system will close the socket. Any future attempts at communicating will be refused.



            

            
        
    
        

                            
                    Summary

                
            
            
                
An important concept in establishing a connection-oriented session is to outline the parameters of the conversation before any data is exchanged. In this chapter, we studied how TCP begins a conversation by using a three-way handshake and took a closer look at each step of the handshake. We saw how, once the handshake is complete, the operating system creates a socket so that data exchange can take place.

In addition, we reviewed the TCP options that are exchanged during the three-way handshake, such as SACK, MSS, and timestamps. This chapter also explained the TCP protocol preferences and outlined how you can modify protocol preferences in Wireshark. Then, we saw how TCP ends a session by exchanging FIN packets that signal each host to close the session.

IP is the other dominant protocol in the TCP/IP suite. In the next chapter, we will take a closer look at IPv4 and IPv6. So that you have a better understanding of this network layer protocol, we'll begin with a thorough overview of IPv4 and examine the header format along with each of the field values. We will then take a look at IPv6 along with the corresponding header format and the field values. Because IPv4 is a completely different format to IPv6, we will address how the two can coexist by using various tunneling protocols when in a dual-stack environment.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now it's time to check your knowledge. Select the best response, and then check your answers, which can be found in the Assessment:


	To filter only on packets that you have marked in Wireshark, use _____ in the display filter.

	marked:all

	frame =black

	frame.marked==1

	marked: on





	____ is used to increase the maximum WS that is allowed.

	NOP

	Window scale

	Timestamp

	SACK








	When using _____, the receiver will notify the sender if there are any missing packets.

	NOP

	Window scale

	Timestamp

	SACK





	TCP ends the session by exchanging packets indicating that each side should close their respective socket. TCP uses the _____ flag to indicate that this is the end of a conversation.

	END

	SYN

	FIN

	URG





	If, in the TCP header, the sequence number is 1 and the next sequence number is 937, the packet has _____ bytes of data.

	32

	380

	936

	33,304









            

            
        
    
        

                            
                    Analyzing IPv4 and IPv6

                
            
            
                
Anyone who works in networking will, at some point, work with the Internet Protocol (IP), as it is responsible for delivering data over a network. For that reason, it's important to have a solid understanding of the IP. In this chapter, we'll take a closer look at the IP, which is responsible for two key roles: addressing and routing data. 

To strengthen your analytical skills, we'll start with a thorough overview of IPv4 and IPv6 and examine the header format of each protocol. You'll begin to understand how the field values in each of the versions compare and contrast, along with the significance of each of the fields. Since addressing is an important concept, we'll examine the use of special and private IPv4 addressing. In addition, we'll compare the different address types used in IPv6.

So that you can learn how to customize IPv4 and IPv6 in Wireshark, we'll evaluate the protocol preferences. Finally, because IPv4 is a completely different format to IPv6, we'll investigate how the two can coexist by using various tunneling protocols when in a dual stack environment.

This chapter will address all of this by covering the following:


	Understanding the purpose of the IP

	Outlining IPv4

	Exploring IPv6

	Editing protocol preferences

	Discovering tunneling protocols





            

            
        
    
        

                            
                    Understanding the purpose of the IP

                
            
            
                
The IP has two key roles: addressing using a logical IP address, and routing traffic. While the transport layer transports the data, the network layer communicates with other devices to determine the best logical path for the packets, if they have to pass through other networks to reach their destination. 

One of the main protocols in the network layer is the IP, which provides a best-effort, connectionless service, as outlined here:


	Best-effort means that there is no guarantee the data will be delivered. It's similar to mailing a letter using general delivery. Although some mail is lost, most of the time, it reaches its final destination. 

	Connectionless means that the IP does not retain any state information; that process is left to the higher-level protocols.



Although IP can't guarantee delivery, it can prioritize traffic, so that the data can be delivered faster. Because of the unpredictable nature of the internet, IP can be prioritized so that time-sensitive data such as VoIP and streaming media is delivered at a higher precedence than email or web pages. The priority is marked in a field value in IPv4 using the differentiated services (DiffServ) field, or in IPv6 using the traffic class field.

Wireshark provides exceptional support for IP. In this chapter, we compare IPv4 with IPv6, as both protocols are currently in use. To examine the headers in detail, we will use the bigFlows.pcap packet capture found at http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap. Download the file and open in Wireshark.

Let's begin with an evaluation of IPv4.



            

            
        
    
        

                            
                    Outlining IPv4

                
            
            
                
In 1981, RFC 791 outlined the specifications for IPv4, which had two principal tasks: addressing and fragmentation, as defined in section 1.4, operation, at https://tools.ietf.org/html/rfc791#section-1.4.

As stated, one of the original roles of IPv4 was fragmentation, which breaks packets apart. At the time, this was necessary because, in the early 1980s, most of the networks had limited bandwidth and were unable to transmit large packets.

Over time, efforts have been made to upgrade and replace the antiquated data pathways, and much of the internet has been replaced by high-speed, fiber optic cables. As a result, on today's networks, fragmentation is rarely used. 

As time has passed, we can see that IPv4 is still influential in addressing, along with the role of routing, in order to get data to its final destination.

IPv4 was standardized in 1983, and uses a 32-bit address space. Scientists identified at an early stage the need for a larger address space. IPv6 has a 128-bit address space and provides enhancements to the protocol in general, such as simplified network configuration and more efficient routing. There is a slow migration to IPv6, mainly because the use of private IP addressing on a LAN has extended IPv4's lifespan.

As a result, IPv4 is still widely used. So that you have the skills required to face everyday network-related issues when dealing with IPv4, in this next section, we will examine the header and the field values so that you can be confident when looking at a packet capture that you can quickly drill down to the issue.



            

            
        
    
        

                            
                    Dissecting the IPv4 header

                
            
            
                
The IPv4 header has several fields, as shown in the following diagram:



 IPv4 header 

Some of the fields are rarely used, such as those that deal with fragmentation. Others provide information that can help with troubleshooting, such as the address fields when resolving network conflicts.

To examine an IPv4 header, open bigFlows.pcap, and go to frame 1, as shown here:



 bigFlows frame 1—IPv4 header


The following section will list each field, and how many bits or bytes are used in each field, along with information on what each field represents. We'll start with the version and length fields.





            

            
        
    
        

                            
                    Discovering the version and the length

                
            
            
                
The first two fields in an IPv4 header are as follows:


	Version 4-bit: This field value indicates the version of IP that is in use. Many devices support both IPv4 and IPv6. Therefore, it's important to obtain the version, so the device knows how to treat the traffic. In frame 1, we see Version: 4.

	Header length 4-bit: The header length is in multiples of four bytes, and is equal to the base header and any options. Although the length can vary (due to options), the minimum value must be five, which equals a header length of 20 bytes. In frame 1, the value shows Header Length: 20 bytes (5).



After these two fields, we see a field called DiffServ. Although the IPv4 header is shown in the Type of Service graphic lists, Wireshark will decode an IPv4 Type of Service (TOS) field as a DiffServ field, which is covered in the next section.



            

            
        
    
        

                            
                    Breaking down the type of service

                
            
            
                
The internet can be unpredictable, and this can affect time-sensitive data such as VoIP and streaming media. In IPv4, the TOS field can be used to prioritize traffic so that it is delivered at a higher precedence than email or web pages.

Wireshark presents the TOS field as DiffServ, which is similar to TOS in offering prioritization, but with subtle differences and improvements to handle the real-time protocols in use today:


	DiffServ 8-bit: This field is separated into two functions: Quality of Service (QoS) and Explicit Congestion Notification (ECN).



In frame 1, we can see the Differentiated Services Field: 0X00 (DSCP: CSO, ECN: Not-ECT). Let's step through what this represents. We'll start with the first 6-bit of the DiffServ field, which is used to represent the QoS requested when traveling through a network.



            

            
        
    
        

                            
                    Ensuring QoS

                
            
            
                
QoS provides options to prioritize traffic. Most, but not all, devices support QoS. When the priority is requested, the field value will indicate this by using one of the following class selector (CS) values:




	DSCP
	Binary
	Decimal
	Application
	Uses



	CS0
	000 000
	0
	DEFAULT
	



	CS1
	001 000
	8
	Scavenger
	YouTube, gaming, P2P



	CS2
	010 000
	16
	OAM
	SNMP, SSH, Syslog



	CS3
	011 000
	24
	Signaling
	SCCP, SIP, H.323



	CS4
	100 000
	32
	Real-time
	Telepresence



	CS5
	101 000
	40
	Broadcast video
	Cisco IPVS



	CS6
	110 000
	48
	Network control
	EIGRP, OSPF, HSRP, IKE



	CS7
	111 000
	56
	
	





Differentiated services field values

The first column shows the Differentiated Services Code Point (DSCP), which lists the CS. As shown in frame 1, this field value summary shows DSCP: CS0 or Class Selector 0. CS0 is the default or best-effort setting, in that there is no priority assigned to this packet. Traffic with this setting is delivered normally.

To see an example of a CS that is higher than the best-effort, go to bigFlows.pcap and enter the display filter, ip.dsfield.dscp > 0. Select frame 4, where you will see the CS value listed, as shown here:



 CS 1

Class Selector 1 (8) is used in scavenger applications such as YouTube, gaming, and P2P, as this traffic would benefit from having a (slightly) higher priority when traveling over the internet.

The last two bits of the DiffServ field are used to identify ECN, which helps to manage congestion on the network.



            

            
        
    
        

                            
                    Sending an ECN

                
            
            
                
You may not have been aware of the ECN and its significance; however, this can have an impact in how devices communicate congestion on the network. Let's take a look at how these two bits can improve data flow.

In the original RFC 791, the last two bits of the DiffServ field are Reserved for Future Use, as shown in the following screenshot:



 Service bit assignments

In 2001, RFC 3168 (https://tools.ietf.org/html/rfc3168) found a use for the last two bits. RFC 3168 outlined ECN, which provides a congestion notification on the network. Let's see how ECN improves over the classic method of managing network congestion.

Typically, when TCP experiences congestion, the hosts respond to dropped packets by going into congestion control, which results in the following:


	The client sends duplicate acknowledgments, indicating that there are missing packets.

	The server uses fast retransmission, which resends lost packets.



ECN is an improvement over this behavior by providing a congestion notification. This ultimately prevents the additional traffic that occurs when there are duplicate acknowledgments and fast retransmissions.

ECN uses both the TCP and IP header, as outlined here:


	The IP header uses the two bits at the end of the differentiated services field to indicate ECN-Capable Transport (ECT) and Congestion Experienced (CE).

	The TCP header uses two flags: CWR and ECE.



When using ECN, the two bits of the DiffServ field identify the code point. In the following table you'll see the bits, what the combination indicates, and what you might see in Wireshark as an indicator when displaying the DiffServ field values:




	
Bits


	
Indication


	
Identifier





	
00


	
Non ECN-Capable Transport)


	
Non-ECT





	
10


	
ECN Capable Transport)


	
ECT(0)





	
01


	
ECN Capable Transport


	
ECT(1)





	
11


	
Congestion Encountered


	
CE







 

As you can see, code points 01 and 10 are basically the same.

In bigFlows.pcap frame 1, if we expand the IPv4 header, we see Explicit Congestion Notification: Not ECN-Capable Transport (0), which means this connection doesn't support ECN, as shown here:



Not ECT-Capable 

The devices involved in the connection will communicate with one another and when available, use ECN, which helps notify endpoints on congestion issues.

Although the IP is a connectionless protocol, it provides methods to improve the priority of traffic, along with ways of notifying devices of congestion issues on the network. The next group of field values in the IP header deal with using fragmentation.



            

            
        
    
        

                            
                    Fragmenting the data

                
            
            
                
In RFC 791, the IP was responsible for addressing and fragmentation. We'll discuss addressing in a later section, but for now, let's outline what fragmentation is and why it may be necessary.

On the network, various values are monitored:


	The Maximum Segment Size (MSS) is the data payload.

	The Maximum Transmission Unit (MTU) is the MSS plus the transport layer headers.



When data is routed on the network, it may encounter a segment with an MTU that is smaller than the packet size. If allowed, fragmentation can be used, which divides a datagram into smaller pieces, so that they can be sent on the network with a restrictive MTU.

The following fields are related to fragmentation: Identifier, Flags, and Fragment offset. Total length is, in part, related to fragmentation. However, it has other implications as well.

Although, on today's networks, we rarely see fragmentation, it's a good idea to become familiar with the fields and flags dealing with fragmentation for a couple of reasons:


	During troubleshooting, you may need to look at the fields when determining why data may not be getting through.

	During a security assessment, since use of the fragmentation fields could be an indication of malicious activity.



Let's look at the next four fields in the IP header:


	Total length 16-bit: This indicates the value of the header length and any data. The field value is 16-bit, which means the entire length cannot exceed 216, or 65,535 bytes.



Network devices monitor datagram lengths and may impose size restrictions. In that case, if the packet is too large, it may have to be fragmented or rerouted in order to be delivered.


	Identification 16-bit: This field is used to identify the datagrams when data is fragmented. In that case, all fragments will have the same ID.

	Flags: In an IP header, there are three flags, as shown in the following screenshot:





 IP flags


	Fragment Offset 13-bit: After the three flags in the IP header, there is a Fragment offset field, which provides information on how to reassemble the fragments when using fragmentation.



In most cases, the IP header flags will be set at Don't Fragment, because, in today's networks, fragmentation is not used as most pipelines have generous bandwidth with an acceptable MTU.

Internet Control Message Protocol (ICMP) acts as a scout for the IP. When ICMP encounters a network with an MTU that is smaller than the size of the packet, and the Don't Fragment bit is set, the router will drop that packet. ICMP will then notify the source by sending a type 3 code 4 ICMP message: Destination Unreachable: Fragmentation Needed and Don't Fragment was Set.

To successfully send data through a network with restrictive bandwidth without using fragmentation, the sending host must retransmit the data using a smaller MSS.

The next few fields are more administrative, as they hold values related to the number of hops, the protocol that follows the IP header, and the checksum, which is used for error detection.



            

            
        
    
        

                            
                    Viewing TTL, protocol, and checksum

                
            
            
                
When looking at the IPv4 header, there are a few fields that are not directly related to routing or addressing packets, but provide a role that may influence other types of behavior. The following three fields hold a specific value:


	Time to live 8-bit: The fathers of the internet realized early on that there must be a way to stop a packet from continually traveling through the network. This can happen if there is a misconfiguration and/or the packet is in a routing loop.



During regular operations, this most likely won't happen. However, in case there is a routing loop, the Time to Live (TTL) field value in an IP header is the number of routers or hops a packet can take before dropping the packet. Every time the packet reaches a router, the number decrements by 1. When the TTL value reaches 0, the packet is dropped and an ICMP type 11 (TTL expired in transit) is sent to the sender. The TTL field is 8-bit, so the maximum value is 28, or 255 hops.

In frame 1, the TTL field is set at Time to live: 64, which is the default value for this field. The value varies as it is OS-dependent. To see the TTL values of various OSes, go to https://subinsb.com/default-device-ttl-values/.


	Protocol 8-bit: The protocol field identifies the higher-layer protocol that follows the IP header. The field identifies the protocol (which is usually a transport layer protocol) that is carried in the datagram. In frame 1, we see the value as Protocol: UDP (17).

	Header checksum 16-bit: This field is used to house the checksum value. Similar to the checksum in the TCP header, this value is used for error detection. In frame 1, we see the checksum and notification from Wireshark that the checksum validation is disabled:



Header checksum: 0xee5e [validation disabled]
[Header checksum status: Unverified]

In most cases, it's best to disable validation as the value will be incorrect due to the value offloading to the NIC card.

One of the more significant elements in the IP header is addressing, as we'll discuss in the following section.



            

            
        
    
        

                            
                    Learning IPv4 addressing

                
            
            
                
In this section, we'll examine the last two fields in an IPV4 header. In addition, we'll review the different classes in IPv4, along with an overview of special and private IP addresses:


	Source and destination address 32-bit: Each field houses the source or destination IPv4 address, which is represented in an easy-to-understand dotted decimal format.



Within each class, there are special and private IP addresses. Let's take a look at those concepts.



            

            
        
    
        

                            
                    Comparing IPv4 classes and addresses

                
            
            
                
When the RFC was written, developers had a concept to subdivide IP into five classes or formats of addresses. IPv4 addresses are divided into classes A-E, as shown here:





	
Class


	
Range


	
Use





	
A


	
0.0.0.0 to 127.255.255.255


	
Assignable (to companies)





	
B


	
128.0.0.0 to 191.255.255.255


	
Assignable (to companies)





	
C


	
192.0.0.0 to 223.255.255.255


	
Assignable (to companies)





	
D


	
224.0.0.0 to 239.255.255.255


	
Multicast





	
E


	
240.0.0.0 to 255.255.255.255


	
Experimental









Classes of IPv4 addresses

As outlined, classes A, B, and C are assigned mainly to companies. Class D is for multicast only, and class E is experimental, and not used.

IPv4 has several ranges of special and private IPv4 addresses, as outlined next.



            

            
        
    
        

                            
                    Reviewing special and private IP addressing

                
            
            
                
IPv4 has several ranges of special and private IPv4 addresses:





	
Purpose


	
Range





	
Class A Private IP


	
10.0.0.0 - 10.255.255.255





	
Class B Private IP


	
172.16.0.0 - 172.31.255.255





	
Class C Private IP


	
192.168.0.0 - 192.168.255.255





	
Loopback Range


	
127.0.0.0 - 127.255.255.255





	
APIPA


	
169.254.0.0 - 169.254.255.255





	
Broadcast


	
255.255.255.255









Special and private IPv4 addresses

The table shows a list of the predominant special and private IPv4 addresses. To see a complete list, visit https://en.wikipedia.org/wiki/Reserved_IP_addresses.

While it is rare, options for IPv4 may be used, as discussed in the following section.



            

            
        
    
        

                            
                    Modifying options for IPv4

                
            
            
                
With IPv4, it may be necessary to use options to provide source routing information, timestamps, and others. Several of the IP options have been deprecated and are no longer used. For a more compete discussion, refer to RFC 6814. A current list can be found at https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml#ip-parameters-1, which was updated on May 3, 2018.

When used, the options field must be a multiple of 32-bit, or 4 bytes. Padding may be required so that the header is a multiple of 32-bit.

Now that we have reviewed IPv4, let's take a closer look at IPv6.



            

            
        
    
        

                            
                    Exploring IPv6

                
            
            
                
Early on, scientists realized that IPv4's 32-bit address space would be exhausted. Although no one had an exact date, plans were made to replace IPv4 with an improved version, IPv6. In 1998, the IPv6 RFC was published and can be found at https://www.ietf.org/rfc/rfc2460.txt.

IPv6 has a number of enhancements, including the following.


	Streamlined header: Although the header is larger, due to the expanded address space, it is more streamlined.

	Flow label: In IPv6, there is a flow label. The field value is available for identifying streams that require specialized treatment, such as real-time traffic.

	Support for extensions and options: While IPv4 can add options, IPv6 does so with more ease. IPv6 provides the ability to add options, such as fragmentation, which has parameters to fragment the data, and hop by hop, which ensures that all devices in the path read the option.



The IPv6 header has room for the larger address spaces. However, as shown in the following diagram, the header is streamlined, in that there are not as many field values:



 IPv6 header

To follow along and examine an IPv6 header, open bigFlows.pcap, and go to frame 347. The IPv6 header is as shown in the following screenshot:



bigFlows frame 347—IPv6 header

Note that IPv6 addresses are significantly larger as they are 128-bit as opposed to 32-bit for an IPv4 address. The address is shown using hexadecimal notation, as opposed to dotted decimal notation, which is used in IPv4.

In the next section, we'll review each field in IPv6 and the number of bits or bytes each field contains, along with information on what each field represents.



            

            
        
    
        

                            
                    Navigating the IPv6 header fields

                
            
            
                
As we'll see, the IPv6 header removes unnecessary field values and adds only what is needed to transport data. Let's step through the field values and learn their significance, starting with the version, a field to house the TOS, and a label dedicated to holding a value for a specific flow.



            

            
        
    
        

                            
                    Identifying the version, traffic class, and flow label

                
            
            
                
The first three fields in an IPv6 header are as follows:


	Version 4-bit: This field indicates the IP version that is in use. In frame 347, we see version 6.




	Traffic class 8-bit: When sending data on the internet, some traffic requires special handling and prioritization. The traffic class field houses two (2) values, TOS and ECN:

	TOS: The first 6-bit of this field is used to communicate what type of service is requested. TOS uses the same DSCP values as IPv4. Frame 347 uses the default value, Differentiated Services Codepoint: Default (0).

	ECN: The last 2-bit of this field are used to indicate congestion on the network in the same way as IPv4. In frame 347, this value is Explicit Congestion Notification: Not ECN-Capable Transport (0).





	Flow label 20-bit: This is a new field that can be used to identify a specific flow of information in order to provide sequencing or request special handling by routers in the path. In frame 347, we can see Flow Label: 0x00000. In RFC 2460, Appendix A: Semantics and Usage of the Flow Label Field, there is an expanded discussion on the flow label. However, after two decades, the flow label is considered experimental, and is generally not used.



The next three fields deal with similar values found in an IPv4 header, but have subtle differences, as shown next.



            

            
        
    
        

                            
                    Evaluating the length, next header, and hop limit

                
            
            
                
In an IPv6 header, the next three fields provide information on the length of the payload, the protocol that follows the IP header, and how many hops the packet can take before going away. The fields are as follows:


	Payload length 16-bit: The payload length represents the packet's payload, which includes higher-layer headers, data, and any extension headers. Similar to IPv4, the entire length cannot exceed 216, or 65,535 bytes. In some cases, the payload may exceed 65,535 bytes, which can occur when using extension headers. If the value of this is greater than 65,535 bytes, the field value is set to zero (0).

	Next header 8-bit: This field identifies the higher-layer protocol that follows the IP header. This is similar to the protocol field in IPv4 and uses the same values as IPv4 to identify the higher-layer protocol. However, if there is an extension header, this field will indicate what extension header follows the IPv6 header. In 2017, IANA updated the list for the next header field. The list can be found at https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml.




	Hop limit 8-bit: In IPv4, the TTL field value in an IP header is the number of routers or hops a packet can take before dropping the packet. In IPv6, this is the same concept. However, the field is more reflective of what it does today. This field uses 8-bit to hold a value not greater than 255. If the hop limit reaches 0, the packet is discarded.



In frame 347, the field value is Hop Limit: 1, which makes sense as this frame is DHCPv6 multicast from a host trying to get an IP address.

As with IPv4, the last two fields in an IPv6 header are the address fields, as discussed next.



            

            
        
    
        

                            
                    Examining IPv6 addresses and address types

                
            
            
                
IPv6 has specific addressing requirements. In this section, we'll examine the last two fields, along with an overview of IPv6 address types:


	Source and destination address 128-bit: The source and destination addresses are 128-bit fields to accommodate the IPv6 address. Wireshark displays the address in hexadecimal numbers separated by colons, as opposed to dotted decimal notation, which is used in IPv4.



With IPv6, there are various address types, as opposed to classes. Let's now take a look at the different types you may encounter.



            

            
        
    
        

                            
                    Comparing IPv6 address types

                
            
            
                
IPv6 does not use a broadcast as in IPv4. However, there are several types of addresses, as listed here:


	Global Unicast is like a public IPv4 address. The address is globally recognized and can be routed on the internet.

	Link local is used to communicate with hosts on the same sub-network. This address always starts with FE80.

	Unicast is a single host on a network.

	Multicast packets are delivered to all nodes on a network using a single multicast address.

	Anycast is used to send data to multiple locations with the same IP address. The packets are delivered to the closest (or nearest) destination.



In frame 347, we see the source and destination addresses: 

Source: fe80::9186:dbbd:2a45:50c2
Destination: ff02::1:2

When possible, Wireshark will use appropriate shortcut methods, as shown in the destination address. An IPv6 shortcut removes leading zeros and collapses two or more blocks that contain consecutive zeros. 

For many, but not all, protocols, Wireshark provides a means to modify the way in which Wireshark presents the data. The following gives us some insight of how to adjust preferences for both IPv4 and IPv6.



            

            
        
    
        

                            
                    Editing protocol preferences

                
            
            
                
In Wireshark, you can modify most protocols by doing the following:


	Right-clicking while on the header and selecting Protocol Preferences, where you will see a list of preferences.

	Go to Edit | Preferences | Protocols, and then select the appropriate protocol.



Let's start with the protocol preferences for IPv4, as this is currently the most commonly used protocol on a LAN today.



            

            
        
    
        

                            
                    Reviewing IPv4 preferences

                
            
            
                
To modify IPv4 preferences, you can use one of the methods listed previously, or you can right-click while on the header and select Protocol Preferences, and then select the Open Internet Protocol Version 4 preferences... shortcut, as shown here:



 IPv4 preference shortcut

Once you select the shortcut, a list of preferences will be listed, as shown in the following screenshot:



 IPv4 preferences

Once there, you can modify the selections as follows:


	Decode IPv4 TOS field as DiffServ field: RFC 791 used TOS to classify traffic. Over time, this field was modified to identify traffic using DiffServ, which allows for a wider range of classification. In most cases, this should be enabled.

	Reassemble fragmented IP datagrams: When necessary, IPv4 packets may be fragmented. When enabled, this will reassemble fragmented IP datagrams.

	Show IPv4 summary in protocol tree: When enabled, this summarizes the header contents. For a large capture, enabling this may impact performance.

	Validate the IPv4 checksum if possible: In most cases, this is not enabled.

	Support packet-capture from IP TSO-enabled hardware: TCP Segmentation Offload (TSO) is a performance-boosting technique used in a virtualized environment. When used, the packet length may be inaccurate. Enabling this option will attempt to correct any errors.

	Enable IPv4 geolocation: Wireshark uses the IP addresses to identify packet origin using the GeoIP databases. Select if you want to use this option.

	Interpret Reserved flag as Security flag (RFC 3514): On April 1, 2003 (April Fool's Day), Steven M. Bellovin wrote an RFC that the reserved bit in the IP header should be used by malicious actors to flag the packet if it contains malware, so that IDS and firewalls will know it contains malware. If used, the bit is called the evil bit.

	Try heuristic sub-dissectors first: This option helps Wireshark attempt to identify what type of application is used by using the port number to properly dissect the packet.

	IPv4 UDP port: Use this option if you want to change the protocol behavior to a specific port, when used on the LAN.



For any of the options that make a change to the default values, caution is advised, as what you enter may stick and will not allow you to undo the option without a reinstall.

As you can see, there are many ways to customize the preferences for IPv4. Next, let's take a look at the options for IPv6.



            

            
        
    
        

                            
                    Adjusting preferences for IPv6

                
            
            
                
You can modify the preferences in IPv6 by going to Edit | Preferences and then selecting the Open Internet Protocol Version 6 preferences... shortcut. This will open a dialog box as shown here:



 IPv6 preferences

Once there, you can modify any of the options as described here:


	Reassemble fragmented IPv6 datagrams: When enabled, this will reassemble fragmented IPv6 datagrams.

	Show IPv6 summary in protocol tree: When enabled, this summarizes the header contents.

	Enable IPv6 geolocation: Wireshark uses the IP addresses to identify packet origin using the GeoIP databases. Select if you want to use this option.

	Perform strict checking for RPL Source Routing Header (RFC 6554): If enabled, this will aid in troubleshooting streams using Routing Protocol for Low-Power and Lossy Networks (RPL).

	Try heuristic sub-dissector fist: Wireshark will attempt to identify what type of application is used by using the port number to properly dissect the packet.

	Display IPv6 extension headers under the root protocol tree: IPv6 has several extension headers, such as the routing header and the fragment header. Enabling this option will display the headers under the root protocol tree.

	Use a single field for IPv6 extension header length: Enabling this will display a single field for the IPv6 extension header length (if any). If this is not enabled, the field will appear on two lines as follows:



Length: 0 (8 bytes)
[Length: 8 bytes]


	Support packet-capture from IPv6 TSO-enabled hardware: TSO is a performance-boosting technique used in a virtualized environment. When used, the packet length may be inaccurate. Enabling this option will attempt to correct any errors.

	IPv6 UDP port: Use this option if you want to change the protocol behavior.



For any of the options that will change the default values, caution is advised, as what you enter may stick and will not allow you to undo the option without a reinstall.

The migration from IPv4 to IPv6 has been tepid, as many network administrators continue to use IPv4 on the LAN, mainly because of the flexibility of using private IP addresses. The following outlines how the two protocols can coexist with one another on the same network, using various tunneling protocols.



            

            
        
    
        

                            
                    Discovering tunneling protocols

                
            
            
                
While some organizations have decided to make the switch to a dedicated IPv6 network setting, many are running a dual stack environment, where hosts use both IPv4 and IPv6 and must communicate with one another.

As evidenced, an IPv4 header is completely different to an IPv6 header. In order to have traffic pass from an IPv4 network through an IPv6 network, and vice versa, the traffic must use a tunneling protocol.

A discussion of the various protocols is outlined in RFC 7059, found at https://tools.ietf.org/html/rfc7059, written in 2013. Some of the tunneling protocols include the following:


	ISATAP (short for Intra-Site Automatic Tunnel Addressing Protocol): Transmits data to and from hosts that use IPv6 through an IPv4 network

	Teredo: Generated in a Windows OS to allow IPv4 hosts to connect to an IPv6 network when network address translation (NAT) is in place

	GRE (short for Generic Routing Encapsulation): Creates a point-to-point IPv6 connection within an IPV4 network



The following diagram from RFC 7059 shows the proper format for encapsulation of an IPv6 packet within an IPv4 packet:



Encapsulation of an IPv6

Teredo wraps or encapsulates an IPv4 packet with an IPv6 header so that the packets can travel over an IPv6 environment. To see an example of Teredo tunneling, go to https://www.cloudshark.org/captures/c0b7d1a1d1ec?filter=frame%20and%20eth%20and%20ip%20and%20udp%20and%20teredo, and open in Wireshark. Go to frame 29, where we see the IPv4 packet encapsulated in an IPv6 header using UDP as the transport protocol, as shown here:



IPv4 packet encapsulated in an IPv6 header

Although there are several tunneling protocols, they all do essentially the same thing; encapsulate one header by using another header, so that data can travel through the network. Because of this, there is additional overhead in creating the tunnel, as well as adding the additional headers.

Because of our complex network environment, you will most likely run into tunneling protocols at some point while troubleshooting your own network.



            

            
        
    
        

                            
                    Summary

                
            
            
                
By now, you should have a solid understanding of the role and purpose of the IP, and its influence in addressing and routing data. In this chapter, we covered a brief history of IP. We now know that both versions of IP can do the job of routing and addressing; however, there are several differences between the IPv4 and IPv6 headers. We then examined and explained each of the field values of both IPv4 and IPv6. To give you a better understanding of the two protocols, we compared some of the similarities along with some of the differences between IPv4 and IPv6. 

To help strengthen your knowledge of addressing, we briefly covered the classes of IPv4 addresses, along with reviewing the different types of IPv6 addresses. We then looked at how you can personalize the settings for IPv4 and IPv6 by modifying the protocol preferences. Finally, because of the need for both IP versions to coexist on today's networks, we compared the different types of tunneling protocols in use today.

In the next chapter, we will learn about ICMP, the sister protocol to IP that works in the network layer of the OSI model. We will evaluate both ICMP, which is used for IPv4, and ICMPv6, which is used with IPv6. We'll take a deep dive into how ICMP works in both versions, and you will have a better understanding of the two types of messages: error reporting and queries. At the end of the chapter, you'll see how ICMP is the scout for IP and how its use is essential in delivering data.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now it's time to check your knowledge. Select the best response, and then check your answers, which can be found in the Assessment:


	Class selector 6 in the DiffServ field is used with _____.

	Signaling

	Broadcast video

	Network control

	Realtime





	The IP address 172.18.23.119 is a

	Class C IPv4 address

	Class B private IPv4 address

	Class E IPv4 address

	Class D private IPv4 address








	An IPv6 address has _____ bit.

	32

	48

	64

	128





	In IPv4, we use a TTL value that indicates the number of hops it can take when traveling through the network. In IPv6, this field value is called _____.

	Router pass

	Class stop

	TTL

	Hop count





	An IPv4 header has _____ flags.

	1

	2

	3

	4









            

            
        
    
        

                            
                    Discovering ICMP

                
            
            
                
Everyone is familiar with Internet Protocol (IP), which is responsible for routing and addressing traffic. However, many people are not familiar with Internet Control Message Protocol (ICMP), the unsung hero of the network layer. ICMP is a powerful protocol that helps IP do its job. 

In this chapter, we'll learn about ICMP, which is the sister protocol to IP and works in the network layer of the OSI model. First, we'll go through an overview, so that you have a general understanding of the main functions of ICMP. We will then evaluate both ICMP (used with IPv4) and ICMPv6 (used with IPv6) so that you can compare some of the main differences.

In addition, you'll get a better understanding of the two types of messages: error reporting and queries. We will look at common type and code values, as well as some basic firewall guidelines in terms of what types of ICMP messages to allow on your network. At the end of the chapter, you'll see how ICMP is the scout for IP and plays a major role in delivering data.

This chapter will address all of this by covering the following:


	Understanding the purpose of ICMP

	Dissecting ICMPv4 and ICMPv6

	Sending ICMP messages

	Evaluating type and code values

	Configuring firewall rules





            

            
        
    
        

                            
                    Understanding the purpose of ICMP

                
            
            
                
Early on, scientists developed protocols that drove internet traffic. In addition, they identified potential issues that might prevent traffic from reaching its destination, especially when using IP, as it doesn't guarantee delivery and has no way of communicating network problems with end devices. ICMP overcomes the deficiencies of IP by sending query messages and generating error reports on possible issues that may require attention.

The network layer is responsible for addressing and routing traffic. IP is a best-effort, unreliable protocol. As a result, ICMP is essential for data delivery and must be implemented by every IP module. ICMP communicates issues that prevent data delivery. Common errors include the network or port being unreachable. ICMP can also issue queries such as an echo request/reply, which is used in the ping network utility.

Because there are two IP versions, there are two versions of ICMP, which have roles that are specific to their respective IP version:


	IPv4 uses ICMPv4

	IPv6 uses ICMPv6



An ICMP packet is nested within an IP packet, as shown in the following diagram:



ICMP message within an IP packet

All ICMP messages have a common structure that begins with the type, code, and checksum, as shown along the top of the following diagram:



ICMP message

The three fields are consistent in an ICMP header. After the header, you'll find the data payload, where the contents will depend on the ICMP type and code. Let's start with the three header fields, as outlined in the next section.



            

            
        
    
        

                            
                    Understanding the ICMP header

                
            
            
                
To communicate information, the ICMP message must provide information within the header, as follows:


	8-bit type: This field indicates the type, such as type 0—echo reply.

	8-bit code: The code field further defines the type field. For example, type 3—destination unreachable, might have a corresponding code 2—protocol unreachable.

	16-bit checksum: This field holds a numeric value used for error detection.



Following the type, code, and checksum are the contents of the ICMP message. The contents will depend on what was sent, which can either be an error report or a query message.

To see an example of an echo request/reply, go to CloudShark at https://www.cloudshark.org/captures/fe65ed807bc3 and open icmp.pcap in Wireshark.

In this example, frame 1 of the echo request/reply shows a type 8, code 0 message. Expand the ICMP header, as shown in the following screenshot:



ICMP echo request details

As shown in the preceding screenshot, the details for this type of ICMP message include fields for identifiers and sequence numbers, which help to match corresponding echoes and replies. The entire payload is encapsulated in a frame, as shown in the following diagram:



ICMP message in an Ethernet II frame

Here, we see the various headers, which includes the frame header, the IP header, the ICMP message, and the data. 


ICMP does not have a transport layer header, as it does not exchange or transport data. Its primary role is to test for reachability and report transmission errors.



After the Type, Code, and Checksum fields, there is a data portion within the ICMP message. The following section explains what you might find in the data payload.



            

            
        
    
        

                            
                    Investigating the data payload

                
            
            
                
In an ICMP datagram, the payload is dependent on the type of message. In a standard ICMP request/reply, the data payload is meaningless and will have either ASCII characters or NULL values, depending on the OS. For example, in the Cloudshark icmp.pcap graphic echo request/reply (shown in the Sending messages section), the data portion is a string of characters: 6162636465666768696a6b6c6d6e6f707172737475767761.

With normal ICMP behavior, when there is an error, ICMP must return the IP header, plus the first eight bytes of the original datagram, to the sender. As shown in the following screenshot, ICMP has returned an ICMP type 3 and code 13, which means a firewall is blocking the request:



ICMP type 3 and code 13

The data portion in an ICMP request can be modified. For example, ping monitoring, by Paessler (https://www.paessler.com/ping-monitoring), has a watermark, as shown in the following screenshot:



Ping request with a watermark

In this case, the watermark is not malicious. However, an ICMP packet can be modified to exfiltrate data by using the Loki tool to execute a covert channel attack. Data is embedded within an ICMP packet and is sent through the network, which poses a security risk. As a result, the network administrator should tune devices to enable the inspection of ICMP data, and send an alert if the payload contains a data pattern, as this may be an indication of a covert ICMP tunnel.

We can now see that ICMP is an essential network layer protocol that is used alongside both IPv4 and IPv6 to provide error reporting and informational messages. Let's take a look at the two versions: ICMPv4 and ICMPv6.



            

            
        
    
        

                            
                    Dissecting ICMPv4 and ICMPv6

                
            
            
                
Although IPv4 and IPv6 are both responsible for routing and addressing data, the two protocols have a number of differences. As a result, there are two versions of ICMP. ICMPv4 is used with IPv4, and ICMPv6 is used with IPv6.

In the next section, we'll explore ICMPv4 alongside ICMPv6 so that you understand some of the basic roles and functions in reporting network issues.

Let's start with ICMPv4, which is commonly referred to as ICMP.



            

            
        
    
        

                            
                    Reviewing ICMPv4

                
            
            
                
ICMPv4, or simply ICMP, is used alongside IPv4 to communicate network issues that prevent data from being delivered. ICMP error and query messages can alert end systems when there are connectivity issues, and can also obtain diagnostic information from intermediary systems such as the round-trip time.

As powerful as ICMP is, it cannot make IP a reliable protocol; it only assists in data delivery by providing error messages and information. There are times when the causes of delays in data transmission are outside of the messages ICMP can send and report. In that case, it's up to TCP to notify the host of transmission errors during delivery.

To see an example of an error, we can use this example on CloudShark. Go to https://www.cloudshark.org/captures/155db9732c91 and then open the file in Wireshark, as shown in the following screenshot:



ICMP destination unreachable

I have removed the coloring rules to make the graphic more visible, as Wireshark views this as an error and will show up with black coloring. In this capture, ICMP is reporting an error. In the lower half of the screenshot, we see the IP datagram with an IPv4 header, followed by the ICMP header.

Now that we have reviewed some of the basics of ICMP, let's take a look at ICMPv6, which has many of the same functions, but which also provides additional roles to support IPv6.



            

            
        
    
        

                            
                    Outlining ICMPv6

                
            
            
                
While IPv4 and IPv6 are similar in terms of their overall functions, IPv6 has many additional benefits. The benefits include options and extensions, improved multicast routing, and Stateless Autoconfiguration (SLAAC).

As a result, ICMPv6 was developed for IPv6 and is also an important protocol. Along with ICMPv4 for IPv4, ICMPv6 is used to communicate updates or error messages. As stated in RFC 4443, "the base protocol must be fully implemented by every IP version six node."

An ICMPv6 message is like an ICMPv4 message in that the header contains the type, code, and checksum, followed by the contents, which will depend on the type and the code. In the following screenshot, frame 524 has an ICMPv6 message:



ICMPv6 router solicitation

 In the frame details, we see the following:


	Ethernet II: Frame header

	Internet Protocol Version 6: IP header

	Internet Control Message Protocol v6: Router solicitation



Although, in many ways, ICMPv4 and ICMPv6 are similar, ICMPv6 has more responsibilities. IPv6 no longer uses Address Resolution Protocol (ARP) broadcasts or IGMP. Consequently, ICMPv6 provides additional services to communicate issues on the network.

Both ICMPv4 and ICMPv6 can provide insight into network activity. The next section explores the two main functions of ICMP: reporting errors and queries.



            

            
        
    
        

                            
                    Sending ICMP messages

                
            
            
                
ICMP messages are grouped into two categories: error reporting and queries. Some messages are specific to each version; however, a few are common to both versions, as shown here:



ICMPv6 messages

For both categories, each ICMP packet has a Type, Code, and Checksum field. The payload for queries is different from error messages, as each has a different purpose, as we'll see in the following sections. 

Let's start with a review of how ICMP reports errors.



            

            
        
    
        

                            
                    Reporting errors

                
            
            
                
ICMP error messages report on network issues that prevent data from being delivered. The more commonly sent error messages are grouped into categories that have a specific purpose, as discussed here:


	Destination unreachable is where a router informs the host that the requested destination address can't be reached.

	Time exceeded is sent when the hop limit reaches zero.

	Parameter problems can be reported when there is an issue in determining a field value in the header or extension header.



As discussed, ICMPv6 has many of the same functions as ICMP, but also provides additional roles to support IPv6. As a result, when reporting errors, you may see this on an IPv6 network:


	Packet too big is sent when a device cannot send the data, as the packet is larger than the Maximum Transmission Unit (MTU) of the outgoing link.



In either version, when there is an error, ICMP helps reconstruct the possible reasons why the data did not get to its final destination. If appropriate, the sending host will adjust the payload so that the data can be delivered successfully.

When an error message is sent, the message includes the header, as well as the IP header, and then the first eight bytes (or 64 bits) of the original datagram that caused the error, as shown in this screenshot:



ICMP redirect message

Within the redirect message, you see an IP header, and then an ICMP message followed by the first eight bytes (or 64 bits) of the original IP and ICMP header. 

Common error messages include destination unreachable and redirection. Errors are received and acted upon by TCP, IP, or user applications. In some cases, ICMP messages are ignored. However, some error messages must not be ignored, such as redirect messages, which will cause an automatic update to the host's routing table.

As we can see, ICMP error messages provide additional information so that the host can see exactly what happened. However, ICMP can also request and provide information, as discussed in the following section.



            

            
        
    
        

                            
                    Issuing queries

                
            
            
                
An ICMP query has two messages, a request and a reply, that work together and have a specific purpose: to provide status updates and information. 

Two requests and replies that are common to both ICMP and ICMPv6 are as follows:


	Echo request/reply: Tests for reachability

	Router solicitation/advertisement: Provides a way to solicit and receive router information that provides the IP addresses of that interface



One example is an echo request/reply, which is used in the ping network utility. To see an example, go to CloudShark, at https://www.cloudshark.org/captures/fe65ed807bc3, and open the file in Wireshark, as shown in the following screenshot:



ICMP echo request/reply

ICMPv6 needs to provide more specific information to assist IPv6 in delivering data, as we'll see next.



            

            
        
    
        

                            
                    Providing information using ICMPv6

                
            
            
                
IPv6 no longer uses ARP broadcasts or IGMP. As a result, ICMPv6 provides additional services to communicate issues on the network, which include the following:


	Neighbor solicitation/advertisement: These types are used for the Neighbor Discovery Protocol (NDP) to provide a method for hosts to share their existence on the network.

	Multicast listener query/report: This is used to exchange group multicast information to routers and hosts.



To see an example of the many ICMPv6 messages communicating to other devices on the network, go to CloudShark (https://www.cloudshark.org/captures/fe65ed807bc3) and then download and open the file in Wireshark. Create a flow graph by completing the following steps:


	In the display filter, enter icmpv6 and press Enter to run the filter.

	Go to Statistics, and then Flow Graph.

	Once open, go to the lower left-hand corner and select the Limit to Display filter.



The results are as shown in the following screenshot, where I have zoomed in to show the transactions:



ICMPv6 flow graph: zoomed-in

Some of the ICMPv6 reports have additional details. For example, in the following screenshot, we can see the details provided in a single report:



ICMPv6 multicast listener report

As you can see, ICMPv6 is a powerful protocol. In addition to error and information messages, ICMPv6 provides additional information on IPv6 router and host configuration.

As discussed, ICMP headers hold a value for Type and Code. Let's take a look at these two fields in order to help us understand what ICMP is trying to tell us.



            

            
        
    
        

                            
                    Evaluating type and code values

                
            
            
                
The original objective of ICMP was to provide updates on network status and other informational messages. In this section, we'll review the type and code values for ICMP and ICMPv6. Let's start with ICMP.



            

            
        
    
        

                            
                    Reviewing ICMP type and code values

                
            
            
                
ICMP has been used for IPv4 for many years. There are many different types of ICMP messages, some of which should look familiar, such as these:


	Type 0: Echo reply

	Type 3: Destination unreachable

	Type 5: Redirect

	Type 8: Echo

	Type 9: Router advertisement



Some, but not all, ICMP types have a corresponding set of code values that further define the ICMP message. For example, type 3 and type 9 both have a set of code values.

Type 3 (destination unreachable) has many code values. Some of these code values are as follows:


	Code 0: Net unreachable

	Code 1: Host unreachable

	Code 2: Protocol unreachable

	Code 3: Port unreachable

	Code 4: Fragmentation needed and Don't fragment was Set



Type 9 router advertisement only has two code values:


	Code 0: Normal router advertisement

	Code 16: Does not route common traffic



In the next section, we'll review the type and code values for ICMPv6.



            

            
        
    
        

                            
                    Defining ICMPv6 type and code values

                
            
            
                
Along with ICMP for IPv4, ICMPv6 is used to communicate updates or error messages and has its own set of types to identify messages. Because ICMPv6 provides additional information on IPv6 router and host configuration, you'll find specific type values that help provide this information.

A shortlist of ICMPv6 type values includes the following:


	Type 1: Destination unreachable

	Type 2: Packet too big

	Type 3: Time exceeded

	Type 4: Parameter problem

	Type 130: Multicast listener query

	Type 131: Multicast listener report



In some cases, the type will have a corresponding code value to further define the message. If the type does not have a corresponding code value, the code value will be set to 0, as shown in the ICMPv6 multicast listener report screenshot.

Let's look at the following examples.

Type 1 (destination unreachable) has several code values. Some of them are as follows:


	Code 0: No route to destination

	Code 1: Communication with destination administratively prohibited

	Code 2: Beyond the scope of the source address

	Code 3: Address unreachable 



Type 3 (time exceeded) has two codes, as follows:


	Code 0: Hop limit exceeded in transit

	Code 1: Fragment reassembly time exceeded



As we have learned, ICMP headers hold a value for Type and Code to convey information on what is happening on the network. However, some of the ICMP types are no longer used since, over time, they have been found to be ineffective and are considered deprecated, such as these examples:


	Type 33: IPv6 Where-are-you (deprecated)

	Type 34: IPv6 I-am-here (deprecated)

	Type 35: Mobile registration request (deprecated)



At some point, you may need to reference an ICMP type or code value. To see a summary of the most up-to-date values, visit https://www.iana.org/:


	For ICMP: https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

	For ICMPv6: https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml





Now that you have seen how ICMP works, you should also see that ICMP can provide a great deal of information on a network and devices. As a result, it's important to understand that this protocol can be used in malicious ways, and that the firewall rules should be tuned to prevent malicious activity, as outlined in the next section.



            

            
        
    
        

                            
                    Configuring firewall rules

                
            
            
                
ICMP supports IP to help ensure data delivery; however, it can also be used in malicious ways. For example, ICMP can be used to conduct reconnaissance as a precursor to an attack, or even to help evade firewall rules. In this section, we'll provide an example of how ICMP can be used to obtain information on the network. Then, we'll evaluate some of the firewall rules. 

First, let's start with an overview of a ping sweep, which is used to see which network hosts might be awake.



            

            
        
    
        

                            
                    Sending malicious ping sweeps

                
            
            
                
ICMP can be used as an effective scanning tool as it can determine a great deal of information about a network. Malicious actors use various techniques to scan a network for vulnerable hosts. Using ICMP can determine which hosts are alive and responding:



ICMP ping sweep

A ping sweep, or ping scan, uses a series of ICMP echo request packets on a local area network to see what hosts are alive and responding. Once a responding host is identified, the hacker will send more advanced probes to obtain additional information.

Along with using a series of echo requests/replies, there are several ICMP queries that malicious actors can use to scout information before launching an attack. For example, in the following screenshot, an ICMP timestamp request is sent in the hope of getting a reply to help the software rule out different OSes:



ICMP timestamp request

As you can see, ICMP can be used to obtain information about a network and hosts. As a result, it's best to be aware of the various types and only allow ICMP packets that are absolutely necessary, as we'll see in the next section.



            

            
        
    
        

                            
                    Allowing only necessary types

                
            
            
                
Because ICMP can affect the operation of important system functions and obtain configuration information, hackers use ICMP messages while conducting reconnaissance on a network or in an active attack. As a result, a best practice is to block certain ICMP messages with an Access Control List (ACL) firewall, especially at border routers.

Diagnostic utilities, such as Ping and Tracert, require ICMP. As a result, a network administrator must decide what types of ICMP packets should be allowed on a network. When setting up your firewall, keep in mind the only essential ICMP traffic destination unreachable, along with the corresponding codes, which are type 3 for ICMP and type 1 for ICMPv6.

All other ICMP types are optional, depending on whether you would like to allow them on your network. Depending on your organization, some other types that are allowed may include the following:


	Type 8/0: Echo request/reply

	Type 11: Time exceeded 



ICMP helps to ensure that data gets delivered; however, it can be used in malicious ways. Therefore, you need to make sure that firewalls are properly tuned.



            

            
        
    
        

                            
                    Summary

                
            
            
                
Hopefully, by now, you can see the many aspects of ICMP, which is a significant protocol in the TCP/IP suite. We looked at the purpose of ICMP: a method to communicate issues that prevent data delivery. We compared ICMPv4 and ICMPv6, which have similar functions; however, we identified how ICMPv6 has a bigger role. So that you can use this protocol while troubleshooting, we looked at ICMP messages that communicate with hosts to report on transmission errors, along with query messages that attempt to obtain information from a host.

To better understand the ICMP type and code values, we took a look at how they work in communicating information. In addition, we saw that there are some ICMP types that you will rarely see as they are now deprecated and/or not supported. By now, you should see that ICMP is a powerful protocol that helps to move traffic on a network, but we covered how ICMP can be used in malicious ways. As a result, you now understand the need to configure firewall rules that allow or deny specific types of ICMP traffic in order to reduce the threat of malicious ICMP traffic on the local area network.

In the next chapter, we will review ARP and begin with an overview of the role and purpose of ARP. So that you understand how ARP works and what an ARP packet looks like, we will cover an ARP transaction along with a closer look at ARP headers and fields. We will see the importance of a different type of ARP, called a Gratuitous ARP. Finally, we will look at ARP attacks and how to identify and defend against these types of threats.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now, it's time to check your knowledge. Select the best response, and then check your answers with those in Assessment:


	ICMP communicates issues that prevent data delivery. Common issues include the network or port being _____.

	Stateful

	Inspected

	Unreachable

	ARP enabled





	Some of the ICMP types are no longer used since, over time, they have been found to be ineffective and are considered _____.

	Quenched

	Unreachable

	Digital

	Deprecated





	In ICMPv6, a _____ message can be sent when there is an issue determining a field value in the IPv6 header or the IPv6 extension header.

	Time exceeded

	Parameter problems

	Packet too big

	Source quench








	When setting firewall rules, the only essential ICMP traffic is type _____. The others are optional.

	3

	1

	8

	2





	ICMP can be used in a malicious way. One way is a ______ scan that uses a series of ICMP echo request packets on a network to see what hosts are alive and responding.

	Payload

	Ping

	Port

	Checksum









            

            
        
    
        

                            
                    Understanding ARP

                
            
            
                
We know that on a Local Area Network (LAN), we use a physical address or MAC address. When a packet is delivered from a website back to you on the LAN, how does the device find you when the packet only has an Internet Protocol (IP) address as an address? That is the responsibility of the Address Resolution Protocol (ARP), which resolves an IP address to a MAC address so that your packet gets delivered.

In this chapter, we'll learn how ARP works and why it is an important protocol in ensuring the timely delivery of data. We'll then take a closer look at ARP headers and fields in Wireshark. We'll examine the different types of ARP you may encounter while doing analysis, including gratuitous, reverse, inverse, and proxy. Finally, so that you are aware that ARP may be used in a malicious way, we'll discuss ARP attacks and possible ways to defend against these types of threats.

This chapter will cover the following:


	Understanding the role and purpose of ARP

	Exploring ARP headers and fields

	Examining the different types of ARP

	Analyzing ARP attacks along with some defense methods





            

            
        
    
        

                            
                    Understanding the role and purpose of ARP

                
            
            
                
ARP resolves an IPv4 address to a MAC address on a LAN. ARP is one of the three main network layer protocols that includes ARP, IPv4, and ICMP, all of which are essential in delivering data. 

In the following diagram, we see that ARP is actually in between layer 3 and layer 2, as ARP resolves an IP address (network layer) to a MAC address (data link layer). However, many consider ARP as a layer 3 protocol:



The OSI model: network layer

Now that you can see where ARP resides in the OSI model, let's look at what happens within a LAN and how ARP does its job.



            

            
        
    
        

                            
                    Resolving MAC addresses

                
            
            
                
ARP resolves an IP address to a MAC address on a LAN so that the frame can be delivered to the appropriate host. Now, let's step through why this is important.

When data travels through different networks, packets use a logical address or IP address along with routing to get data to its final destination. The IP provides addressing and routing to get data to its final destination. Once the data is at the desired network, the IP address is no longer needed. The reason is that on a LAN, the data link layer uses the MAC address of the destination machine, rather than the IP address.

Therefore, to deliver the data to its final destination, a MAC or physical address is needed to place in the frame header. The device will first check its local cache, and if there is no entry, the device issues an ARP request (broadcast) and will wait for a reply.

As shown in the following diagram, Host A needs the MAC address for the gateway (which is the router interface for the LAN). Host A issues an ARP broadcast that asks who has the IP address 10.40.10.101, tells 10.40.10.109, and waits for a reply. The gateway then sends an ARP reply that lets the host know that 10.40.10.101 is at MAC address BB:20:62:C4:57:23. 



ARP broadcast on a network

To see an example of an ARP request and reply so that you can follow along, go to https://crnetpackets.files.wordpress.com/2015/08/arptrace.zip, download the file, extract it, and open it in Wireshark, as shown here:



ARP request/reply

In the ARP trace file, the first two packets are the ARP request/reply:


	In frame 1, the device sends an ARP request. The source MAC address is 00:15:5d:0f:49, which is the MAC address of the device requesting the resolution. The destination MAC address is ff:ff:ff:ff:ff:ff, which is a broadcast address. As a result, when this ARP broadcast was sent, every host on the network received the frame. However, only one will respond.



A broadcast message is sent from one host to all devices on a network.


	In frame 2, the device identifies itself with an ARP reply. The source MAC address is d4:be:d9:af:3e:4d, which is the device with the IP address 172.16.2.27, and the destination MAC address is 00:15:5d:0f:49, which is the MAC address of the device requesting the resolution.



When doing a capture in Wireshark, it is normal to see several ARP broadcasts before seeing an ARP reply.

We now know that ARP resolves an IP address to a MAC (or physical) address so the device has a MAC address that can be placed in the frame header in order for the data to be delivered. So that the device is able to quickly retrieve the MAC address of a device on the network, it holds the IP address to MAC address pairings in a temporary holding area called the ARP cache. The next section explains an ARP cache, how it's used, and how long the table entries remain.



            

            
        
    
        

                            
                    Investigating an ARP cache

                
            
            
                
Network devices, such as routers, switches, and PCs, hold a form of an ARP cache table, which is a storage area to store IP to MAC address pairings. To see your own ARP cache on a Windows machine, open Command Prompt. Then, enter arp -a to see entries in the ARP table, as shown here:



The arp -a command

As shown, the ARP cache table lists the following:


	Internet Address: The IP address

	Physical Address: The MAC address

	Type: Either static or dynamic



The ARP cache values will time out after a period of time. Once the timeout limit is reached, the entry will go away. If the OS needs the MAC address and there is no entry in the ARP table, it will need to issue a new ARP request.


The ARP table timeout values are specific to the system. For example, a Cisco switch has a default timeout timer of 4 hours.



In a Windows OS, you can determine the timeout value by going to the Command-Line Interface (CLI) and running the netsh interface ipv4 show interface NNN command, where NNN is the name of the interface you want to check.

As shown in the screenshot, we see the output of running netsh interface ipv4 show interface Wi-Fi, which provides information on that interface:



netsh show interface

Within the output you will see Base Reachable Time is 30000 ms or 30 seconds, which is how long ARP can live in the cache before going away.

That means the ARP cache will out after 30 seconds. After that, if a MAC address is needed for a specific IP address, the system must send an ARP request out on the network.

We can see how ARP works in an IPv4 network, but what about an IPv6 network? The following section outlines how the Neighbor Discovery Protocol (NDP) takes the place of ARP in an IPv6 network.



            

            
        
    
        

                            
                    Replacing ARP with NDP in IPv6

                
            
            
                
ARP is essential in an IPv4 network, but what happens in an IPv6 network? IPv6 doesn't use ARP. ARP is replaced with the NDP, which resolves an IP address to a MAC address. 

To see an example of the NDP, go to http://packetlife.net/captures/protocol/icmpv6/ and open the file in Wireshark. As shown in the following screenshot, the first packet in the IPv6_NDP.pcap trace file is a Neighbor Solicitation (NS), followed by a neighbor advertisement:



Example of the NDP

An NS has the same purpose as an ARP broadcast; however, IPv6 doesn't use broadcasts. It uses Internet Control Message Protocol Version 6 (ICMPv6) with a solicited-node multicast address message that is directed to a specific host. As a result, if you are doing an analysis on a network that only uses IPv6, you may only see a few ARP broadcasts, if any. 

As we can now understand, ARP is a common protocol that you will most likely see while doing analysis, as IPv4 is still widely used. So that you better understand a standard ARP request and reply, the following section provides an overview of an ARP header and the field values.



            

            
        
    
        

                            
                    Exploring ARP headers and fields

                
            
            
                
In a trace file, if you use ARP in the display filter, you will most likely see a series of ARP requests and replies. Within each ARP header, there are several field values, such as opcode, sender, and target IP address, which help ensure that the ARP requests/replies are received. Let's first take a look at a typical ARP transaction.



            

            
        
    
        

                            
                    Identifying a standard ARP request/reply 

                
            
            
                
In the ARPTrace trace file, take a look at the first two packets, which are the ARP request/reply. Expand each ARP request/reply, and you will see that ARP is wrapped in an Ethernet frame. However, there are no IP or transport layer headers.

Expand frame 1 to see a standard ARP request that has several field values, which provide information about the transaction, as shown here:



Frame 1: ARP request

Frame 2 is the ARP reply, where the host at 172.16.2.27 replies with its MAC address, which is d4:be:d9:af:3e:4f, as shown here:



Frame 2: ARP reply

Once the ARP reply is received, the MAC address is resolved. As shown in both the Frame 1: ARP request and Frame 2: ARP reply screenshots, there are several field values, which we'll review next. 



            

            
        
    
        

                            
                    Breaking down the ARP header fields

                
            
            
                
Within an ARP header, there are several values that provide information on the ARP transaction, as outlined in the following list:


	Hardware type: This lists the type of connection for the session. In frame 1, the hardware type is listed as Ethernet (1), which is common in today's networks. However, there are other types, such as IPsec tunnel (31) and Fiber Channel (18), as shown in the list found at https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-2.

	Protocol type: This lists the internetworking protocol in use for the session. In frame 1, the protocol type is listed as IPv4 0x0800, which is standard on today's networks.

	Hardware size: The number of bytes of a hardware address. Frame 1: ARP request lists Hardware size: 6. A MAC address is 6 bytes or 48 bits, which is a standard MAC address length.

	Protocol size: This lists the bytes in the IP address. Frame 1 lists Protocol size: 4. An IPv4 address is 4 bytes or 32 bits, which is the length of an IPv4 address.

	Opcode: This lists what operation the sender is executing. Although there are many, as listed at https://www.iana.org/assignments/arp-parameters/arp-parameters.xhtml#arp-parameters-1, the opcode is most likely request (1), as shown in the Frame 1: ARP request screenshot, or reply (2), as shown in the Frame 2: ARP reply screenshot.

	Sender MAC address: Frame 1 lists the sender MAC address as 00:15:5d:0f:49:18, which is the MAC address of the host sending the request.

	Sender IP address: This is the network address of the sender. Frame 1 lists 172.16.2.3 as the sender's IP address.

	Target MAC address: This is the MAC address of the target. In frame 1, which is an ARP request, the target MAC is listed as all zeros, or 00:00:00:00:00:00. There is no MAC address listed because the target MAC address is unknown.

	Target IP address: This is the network address of the target. Frame 1 lists Target IP address: 172.16.2.27.



Now that we can see the header and fields in a standard ARP header, let's take a look at some other types of ARP you might encounter during an analysis.



            

            
        
    
        

                            
                    Examining different types of ARP

                
            
            
                
On an IPV4 network, the most common types of ARP messages are request/replies:


	A standard ARP request is a broadcast message that is sent out on the network requesting a resolution of an IP address to a MAC address.

	A standard ARP reply is a unicast message that is sent to the requesting host that provides the address resolution.



However, as we'll see next, there are a few other types of ARP messages. We'll start with the Reverse Address Resolution Protocol (RARP), which is the reverse of ARP.



            

            
        
    
        

                            
                    Reversing ARP

                
            
            
                
The opposite of ARP is RARP. With RARP, a client requests its IPv4 address from a computer network by using its MAC address.

Using an example found at https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=view&target=rarp_request.cap, we can see the host requesting its IP address, as shown in the following screenshot:



RARP

The sender's MAC address is 00:00:a1:12:dd:88. The IP address is unknown, so it is listed as 0.0.0.0. The opcode is reverse request (3). RARP is an obsolete protocol that has been replaced by more efficient protocols such as the Dynamic Host Configuration Protocol (DHCP).

Next, let's look at a lesser-known type of ARP called the Inverse Address Resolution Protocol (InARP).



            

            
        
    
        

                            
                    Evaluating InARP

                
            
            
                
InARP is an extension of the ARP protocol. We can see an example of this by going to CloudShark at https://www.cloudshark.org/captures/87be3b4b6625 and opening it in Wireshark, as shown here:



InARP

InARP is used by the frame relay in the same way as a standard ARP in resolving an IP address. However, InARP does not use broadcasts as it already knows the target hardware address, which is the Data Link Connection Identifier (DLCI) of the desired station. As shown in the following diagram, the sending router, 99.0.0.2, attempts to resolve the IP address of DLCI 3091:



InARP over frame relay

While you may not see an InARP very often, while conducting analysis, you may see a type of ARP called a gratuitous ARP, as outlined next.



            

            
        
    
        

                            
                    Issuing a gratuitous ARP

                
            
            
                
On a LAN, it's not uncommon to see a gratuitous ARP, which is an unsolicited ARP used to prevent duplicate IP addresses on a network, which can cause conflicts. To see an example, go to https://www.cloudshark.org/captures/54af88021aa8, and then download and open the file in Wireshark. Or, you can view the details in CloudShark.

In this example, we see a gratuitous ARP where the source and destination IP addresses are both set to the IP of the sending machine. As shown in the following screenshot, you can see Sender IP address: 192.168.130.128, which is the same as Target IP address: 192.168.130.128:



Gratuitous ARP

As shown, a gratuitous ARP request is sent as a broadcast; however, no reply is expected. This type of ARP is a way for a host to share IP and MAC address pairings so that all hosts on the network can update their ARP tables.

Next, we'll see an example that is not actually an ARP type, but a technique used on the network called a proxy ARP.



            

            
        
    
        

                            
                    Working on behalf of ARP

                
            
            
                
A proxy is something that works on behalf of another entity. A proxy ARP is not actually an ARP type but a technique instead. Here are a few examples:


	We can use a proxy when a machine with a public IP address is in a private network behind a firewall. In this case, a way to resolve the MAC address is by using a proxy ARP, which conceals the existence of the hidden host behind the firewall and makes it appear as if it is in front of the firewall. The firewall uses a proxy ARP to and from the hidden device to maintain the illusion that the machine is on the public side.

	A proxy ARP can be used in a LAN when a host in one subnetwork is separated by a proxy router. When an ARP broadcast is sent to a host on another subnetwork, the router responds with its own MAC address and acts as a proxy to the host on the other subnetwork, as shown here:





Proxy ARP

You can now understand that there are many different types of ARP messages and techniques that may be used on a LAN. ARP is an essential protocol but can be a vulnerable target. In the next section, let's take a look at some ARP attacks and some defense methods.



            

            
        
    
        

                            
                    Analyzing ARP attacks

                
            
            
                
ARP is a widely used protocol that resolves an IP address to a MAC address. In most cases, ARP works well to ensure devices can find one another. However, the protocol was standardized many years ago, and there has never been a way to ensure the authenticity of ARP messages.

As a result, there are a few ARP attacks that can misdirect traffic and interfere with normal network behavior. In response, we'll also take a look at some of the ways to defend against these types of attacks.



            

            
        
    
        

                            
                    Comparing ARP attacks and tools

                
            
            
                
ARP is used on a LAN, which can be a vulnerable target. Some of the attacks and techniques used to penetrate an ARP framework include spoofing and storming, which can misdirect traffic or cause problems on the network. Let's start with using ARP in a way that can trick or deceive hosts on a network.



            

            
        
    
        

                            
                    Discovering ARP spoofing

                
            
            
                
We know that ARP resolves an IP address to a MAC address on a LAN, so the frame can be delivered to the appropriate host.

ARP spoofing is also known as an ARP cache poison and is used in man-in-the-middle attacks. The attacker will spoof its MAC address so instead of traffic going to the actual host, traffic will go to the host with the spoofed MAC address.

If a malicious actor redirects traffic, they can intercept traffic to obtain sensitive information, redirect traffic, or prepare for a more advanced attack.

In addition to ARP spoofing, an attacker can launch an ARP storm, as discussed next.



            

            
        
    
        

                            
                    Reviewing the ARP storm

                
            
            
                
On a LAN, it's normal to see ARP request/reply messages. However, when there is a large number of ARP requests, as shown in the following screenshot, this is an indication of an ARP storm, which is a form of Denial of Service (DoS) attack:



ARP storm

Let's step through how an ARP storm works:


	In order to efficiently deliver data, a switch uses a Content Addressable Memory (CAM) table that contains pairings of MAC addresses and their associated physical switch ports.

	An ARP storm floods the CAM table and overwhelms the switch with thousands of bogus entries.

	At that point, the switch simply acts as a hub and sends data out all of the ports, which can do the following:

	Allow sniffing with the possible exposure of sensitive data.

	Prevent the network from functioning normally.







As you can see, an ARP storm is possible. In Wireshark, you can monitor for ARP storms. To modify this, go to the ARP preferences by selecting an ARP header, right-click, and select Protocol Preferences | Open Address Resolution Protocol Preferences…, which will display the following screenshot:



ARP/RARP preferences

Once in the Preferences menu, you can modify the following:


	Number of requests to detect during period: Enter an appropriate value, for example, 30 requests

	Detection period (in ms): Enter an appropriate value, for example, 100 ms



Although Wireshark can't prevent an ARP storm, it can help you identify a potential attack.

We now know that there are attacks such as spoofing and storming. How are these attacks launched? The following section outlines some of the tools that are available to launch an ARP attack on a LAN.



            

            
        
    
        

                            
                    Understanding ARP attack tools

                
            
            
                
ARP attacks can occur on a LAN, as there are many available tools. Many of the tools are built into Kali Linux. Kali Linux is a collection of software tools designed to assist the network administrator with conducting ethical hacking on a network. For a complete list, go to https://tools.kali.org/tools-listing. However, Kali Linux can be used in malicious ways as well. Some of the tools to launch an ARP attack include the following:


	Dsniff is a suite of tools that includes arpspoof, which allows a hacker to advertise a spoofed MAC address as a way to misdirect traffic.

	Ettercap is an easy-to-use tool for ARP attacks, along with other tools that make it possible to intercept network traffic.

	Arpoison is a free command-line tool that allows a hacker to custom build an ARP packet and define the sender and target addresses.



As you can see, there can be several ways to launch an ARP attack, and hackers have many tools at their disposal. The following section outlines some of the ways we can defend against ARP attacks.



            

            
        
    
        

                            
                    Defending against ARP attacks

                
            
            
                
As discussed, ARP can be a vulnerable target. In addition to the attacks listed, there are others as well. The network administrator should be aware of methods to detect as well as defend against these types of attacks. Some possible defensive strategies, so you do not fall victim to an ARP attack, include the following:


	Intrusion Detection/Intrusion Prevention Systems (IDS/IPS): Tune devices to monitor for abnormal ARP activity such as ARP storms, which generally have specific signatures. The device should send an alert if unsolicited replies are detected.

	Static ARP entries: Hardcode address mappings to prevent spoofing. Although an option, this isn't the best method as it doesn't scale well with large networks.

	Firewalls: Use an access-control list with packet filtering to ensure only authorized traffic is on the network segment.

	Anti-ARP software: This software monitors for spoofing, which can present itself as two IP addresses having the same MAC address, as well as other methods, to detect malicious ARP behavior.








	Secure Neighbor Discovery (SEND): On an IPv6 network, it is possible to use the SEND protocol. This is an extension of the NDP that provides authentication by using cryptographic techniques and reduces the ability to successfully launch an ARP spoofing attack on a LAN.





            

            
        
    
        

                            
                    Summary

                
            
            
                
By now, you have a better understanding of ARP, how it works, and why it is important for delivering data. So that you have an appreciation of what takes place during an ARP request and reply, we stepped through the process, and then reviewed the ARP headers and field values. Then, we discussed the fact that, in addition to a standard ARP, you may encounter different types of ARP while doing analysis in Wireshark, such as a gratuitous ARP or InARP. Finally, so that you are aware that ARP may be used in a malicious way, we covered some of the attacks, along with a few of the tools used to launch an ARP attack. We then summarized some of the methods you should employ to defend against this type of attack.

The next chapter will look at how Wireshark can help identify and troubleshoot network latency issues. You'll be able to appreciate the importance of time values on a network and discover several ways to display time. In addition, you'll see the value of coloring rules within Wireshark and the Intelligent Scrollbar that helps highlight interesting traffic. Finally, you'll learn how to use the expert system, so that you can zero in on trouble spots during an analysis.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now, it's time to check your knowledge. Select the best response, and then check your answers with those in Assessment:


	On a LAN, the _____ layer uses the MAC address of the destination machine, rather than the IP address.

	Network

	Presentation

	Data link

	Transport








	The opcode lists what operation the sender is executing. Although there are many, the most common opcodes are _____.

	10 and 12

	0 and 8

	7 and 8

	1 and 2





	With _____, a client requests its IPv4 address from a computer network by using its MAC address.

	InARP

	RARP

	Gratuitous ARP

	Proxy ARP





	The _____ is an unsolicited ARP used to prevent duplicate IP addresses on a network. No reply is expected.

	InARP

	RARP

	Gratuitous ARP

	Proxy ARP





	An ARP_____ is a large number of ARP requests that creates a DoS attack and prevents the network from functioning normally.

	Storm

	Spoof

	Gratuitous

	Inverse









            

            
        
    
        

                            
                    Section 4: Working with Packet Captures

                
            
            
                
This section examines ways to troubleshoot network latency issues, discover how to subset traffic, save and export captures, and how to use CloudShark.

This section is comprised of the following chapters:


	Chapter 14, Troubleshooting Latency Issues

	Chapter 15, Subsetting, Saving, and Exporting Captures

	Chapter 16, Using CloudShark for Packet Analysis





            

            
        
    
        

                            
                    Troubleshooting Latency Issues

                
            
            
                
On an enterprise network, it's challenging to manage the everyday demands of keeping the network operational 99.999 percent of the time. The network administrator constantly monitors for issues that can cause a disruption. This situation can be volatile as one error can cause the network to go down. Is there a solution that can help us mitigate this challenge? Fortunately, there is help, as Wireshark has several built-in tools that help you troubleshoot the network.

In this chapter, we will address network latency and recognize some of the reasons why packet loss and slow response times occur. You'll gain a better appreciation of the importance of time values while troubleshooting. Once you complete the chapter, you'll have gained a better understanding of the coloring rules that help identify issues and are used in the Intelligent Scrollbar, so you can quickly identify and move to trouble spots in the capture. Finally, you'll also learn how to navigate the expert system, which subdivides the alerts into categories and guides the analyst through a more targeted evaluation.

This chapter will address all of this by covering the following:


	Analyzing latency issues

	Understanding the coloring rules

	Exploring the Intelligent Scrollbar

	Discovering the expert system





            

            
        
    
        

                            
                    Analyzing latency issues

                
            
            
                
On today's networks, there are many different types of devices that communicate and exchange information. Applications and devices include Unified Communication (UC) systems, intermediary devices, the Internet of Things (IoT), mobile devices, and the many other types of traffic that are added to the network on a daily basis. As a result, there are multiple reasons that packet loss and slow response times occur. Once it's determined that there is an issue, the troubleshooting process begins.

With troubleshooting connectivity issues, there are many approaches. All have the same goal: identify the trouble spots and narrow the scope to determine the root cause of the problem. Root causes can include misconfiguration and malware or hardware malfunction. In the following sections, we will analyze some of the root causes behind network delays and discuss three main concepts: latency, throughput, and packet loss.



            

            
        
    
        

                            
                    Grasping latency, throughput, and packet loss

                
            
            
                
When users complain of slow response times, the network administrator can do a quick packet capture and observe evidence of trouble. We will walk through some examples to demonstrate how you can identify issues on the network. If you would like to follow along, go to https://www.cloudshark.org/captures/9a5385b43846, download the client-fast-retrans.pcap capture, and open it in Wireshark.

Once the capture is open, we can scroll through the capture. Around packets 20-21, we can see potential problems, as indicated by the black coloring rule seen within the capture:



client-fast-retrans.pcap

As shown, both duplicate acknowledgments and fast retransmission are evident in packets 20-21 and 23-24. Both duplicate acknowledgments and fast retransmissions can occur on a network. However, when there is an excessive number of them, this is generally an indication of congestion.

Generally, there are three indicators in measuring performance: latency, packet loss, and throughput. Let's take a look at each of these and how they can point to evidence of an unstable and sluggish network, beginning with latency.



            

            
        
    
        

                            
                    Computing latency

                
            
            
                
Latency is a measurement of how long it takes to transmit a packet from one point to another. Network latency bogs down the network and can create delays. In addition, it can cause the loading of web pages to slow down and can also have a negative effect on voice and video applications as well.

Latency can be measured using Round-Trip Time (RTT), which is how long it takes to make a complete round trip from A to B, and then from B to A. 

RTT can increase and vary during the course of transmission. To see the RTT for a particular stream in Wireshark, go to the menu and choose Statistics | TCP Stream Graphs | Round Trip Time, as shown here:



Stream Graphs menu

Once you select Round Trip Time, Wireshark will open the graph. Once in, make sure you are viewing the correct stream direction, which you can modify by using the Switch Direction button in the lower right-hand corner.

An optimal RTT remains steady, as shown in the following screenshot. However, you won't always see a steady RTT:

 



Steady RTT

To see an example of an RTT slowly increasing, follow these steps:


	Open the client-fast-retrans.pcap file in Wireshark.

	Generate a stream graph by going to TCP Stream Graphs | Round Trip Time. Once selected, Wireshark will open the graph, as shown here:





RTT graph for stream 0

When looking at the graph from client-fast-retrans.pcap, we see that the RTT  between 230.211.187.172:80 and 74.203.22.229:49683 (or stream 0) is increasing over time. This is most likely due to latency on the network.

Latency refers to how long it takes to transmit a packet and is measured in RTT. When there is high latency, the sender has difficulty sending data, and as a result, less data is able to get to the receiver. Next, let's take a look at throughput.



            

            
        
    
        

                            
                    Measuring throughput

                
            
            
                
Throughput is how much data is sent and received (typically in bits per second) at any given time. In Wireshark, we can measure this as well as goodput, which is useful information that is transmitted.

Network media can affect throughput. For example, fiber optics has better throughput than copper. However, congestion and delays can also affect how much data is getting through. When there is decreased throughput, packet loss can occur, as discussed next.



            

            
        
    
        

                            
                    Experiencing packet loss

                
            
            
                
When there is latency, data may not be getting through, which can lead to packet loss. Losing or dropping packets on a network occurs for a variety of reasons. Packet loss is determined by the number of packets lost for every 100 packets sent. Endpoints and applications work to manage transmission delays and network congestion. However, there are times when excessive packet loss occurs and the network goes into recovery mode. In Wireshark, we see evidence of packet loss with indicators such as keep-alive, duplicate acknowledgments, and retransmissions.

Wireshark is capable of identifying many common transmission errors and can calculate delays in transmission and interruptions in the data flow by using time values. The following section provides an insight into the significance of time while doing analysis.



            

            
        
    
        

                            
                    Learning the importance of time values

                
            
            
                
When doing analysis, time values can provide an insight into the delays in transmission. In Wireshark, there are choices as to how you want your time value displayed, which include the following:


	Seconds Since Beginning of Capture

	Seconds Since Previously Captured Packet

	Seconds Since Previously Displayed Packet



It's important to use the correct time format. In most cases, it's best to select Seconds Since Previously Displayed Packet, which will show delays whether or not you used a display filter.

Network latency and transmission errors occur on the network. Fortunately, Wireshark has a way to help identify common issues in the form of coloring rules. The following section outlines Wireshark's coloring rules and how you can use them in your analysis.



            

            
        
    
        

                            
                    Understanding the coloring rules

                
            
            
                
Built within Wireshark are coloring rules or filters, which identify or highlight specific traffic. Locate the default coloring rules by going to the menu and choosing View | Coloring Rules, as shown in the following screenshot:



Default coloring rules

Once you are in the Coloring Rules menu, you can edit, delete, or add your own as needed. In addition to using the default coloring rules, you can create and share rules. An example can be found at https://wiki.wireshark.org/Jay%27s_Coloring_Rules.

Each rule is processed until Wireshark finds a match, according to the order shown in the console. To modify the order of a particular rule, select the rule and then drag it to the desired position.

A check mark on the left-hand side indicates an active rule. To deactivate, deselect the rule you do not want Wireshark to consider.

To edit a rule, complete the following:


	Select and double-click the coloring rule you want to modify.

	You can then edit the name or the filter used, along with the background and foreground colors.



Although Wireshark can colorize packets, in some cases, the coloring can be distracting. You can disable the coloring rules by selecting the icon. The coloring rules icon is generally underneath the Telephony menu, as shown in the following screenshot. However, the position can vary in different versions, platforms, or layouts:



The coloring rules icon

Wireshark summarizes the coloring rules that are in use in the frame metadata. In addition to the information listed pertaining to the time, frame, and protocols, you will see the coloring rules used. To see an example of the coloring rules summary, follow these steps:


	Open the client-fast-retrans.pcap file.

	Go to frame 20 and expand the frame metadata by clicking the arrow to the right of the label for frame 20.

	At the end of the metadata list, you will see the following:





Coloring rules in the frame metadata

As you can see, the coloring rules provide guidelines on what traffic to home in on during analysis. For the coloring rules to work, they must be enabled; however, they are active in most cases. Next, let's take a look at how Wireshark incorporates the use of the coloring rules within the Intelligent Scrollbar.



            

            
        
    
        

                            
                    Exploring the Intelligent Scrollbar

                
            
            
                
In addition to seeing indications of problems within a capture, you can also easily spot issues using the Intelligent Scrollbar, which is on the right-hand side of the packet list panel. In the following screenshot, we see indications of network congestion within the packet list:



bigFlows using coloring rules

The Info column header on the right-hand side lists several indications of trouble that warrants further investigation. These include the following:


	[TCP Out-Of-Order]

	[TCP Retransmission]

	[TCP Dup ACK 587#1]



In addition to the coloring in the packet list, on the right-hand side, there is a distinct coloring pattern based on the coloring rules set in the application, which is the Intelligent Scrollbar. The administrator can click on a color band and go directly to the specified packet in order to zero in on a possible problem. Once you click on a band, Wireshark will adjust the packet list to display the area of concern.

We can see how the coloring rules and the Intelligent Scrollbar identify transmission errors and trouble spots in the capture. In the next section, we will explore common transmission errors that occur on a network.



            

            
        
    
        

                            
                    Common transmission errors

                
            
            
                
Long delays in the intermediary devices cause latency, delayed, and/or dropped packets and other negative effects. When troubleshooting errors in Wireshark, you will see evidence of transmission errors. 

Some common indications include duplicate acknowledgments, keep-alive segments, and fast retransmissions.

As this information may indicate latency and gaps in the delivery of data, it's important to understand the meaning of what the packets are trying to tell you. Let's start with an overview of duplicate acknowledgments.



            

            
        
    
        

                            
                    Seeing duplicate acknowledgments

                
            
            
                
In a normal TCP conversation, the client acknowledges every byte received by transmitting an acknowledgment, with the ACK field value set as the next expected byte. When more than one acknowledgment is sent by the client (with the same ACK field value), this is said to be a duplicate acknowledgment.

To understand what a duplicate acknowledgment is, let's step through a standard TCP transaction:


	In the course of a normal TCP data transaction, TCP sequences and acknowledges every byte of data.

	The client acknowledges the data received by setting the ACK flag in the TCP header, as shown here:





The TCP-ACK flag set


	The client places a value of the next expected byte in the Acknowledgment field.

	When the client sends an ACK 180 (acknowledgment number: 180) flag, the client is saying to the server, So far, I've received 179 bytes of data, and I am ready for more (bytes), starting with (byte number) 180, as shown in the following diagram:





Normal TCP acknowledgment


	The server doesn't wait for confirmation of delivery to send more data. Instead, the data is sent concurrently with the acknowledgments.



With TCP, an ACK is expectational, in that the ACK is sent with the next expected byte to be sent by the server. 


	
If the client sends another ACK 180 flag, the client is (again) saying to the server: So far, I've received 179 bytes of data and I am ready for more (bytes), starting with (byte number) 180.






	Wireshark recognizes this as the second ACK 180 flag sent by the client and identifies this packet as a duplicate acknowledgment, which means the client did not receive the next expected byte and is politely asking the server to send the data. 



Take a look at the bigFlows using coloring rules screenshot, as shown in the Exploring the Intelligent Scrollbar section, and you will see a duplicate acknowledgment in frame 589.  This indicates that the client is patiently re-requesting the missing data. In the Info column header, you will see [TCP Dup ACK 587#1], which means this is the second (or duplicate) ACK flag sent after the original ACK sent in frame 587.

In the expert system, duplicate acknowledgments are under the category note, as shown in the screenshot, Expert information grouped by severity, in the Discovering the expert system section.

Latency and delays in transmission can be caused by any number of things, such as processing and queuing delays and general network congestion. As a result, duplicate acknowledgments may be sent over and over again by the client until it receives the expected data.

Another indication of transmission errors and congestion are keep-alive packets, which we will explore next.



            

            
        
    
        

                            
                    Observing keep-alive segments

                
            
            
                
Network congestion is part of today's landscape. Latency and delayed packets have many negative effects, such as slow web page retrieval. When communicating with a web server, the client and server both use Hypertext Transport Protocol (HTTP) to communicate with each other.

If, during a session, the network becomes sluggish and both sides begin to experience slow response times, HTTP uses a method called keep-alive that keeps a session alive instead of dropping the connection and having to go through the expensive negotiation of reestablishing the connection.

A keep-alive packet doesn't have any data; it has the ACK flag set, and the sequence number is set to one less than the current sequence number. Keep-alive packets are sent between the client and the server to keep the session active and to verify that both sides are still responding.

If you would like to see an example of a keep-alive packet, go to https://www.cloudshark.org/captures/5618ff446df8. Once the page is open, select Export, which is found on the right-hand side of the interface, and then select Export a new pcapng with CloudShark comments and annotations, as shown here:



Export file from CloudShark

Open the cloushark_tcp-keep alive.pcapng file in Wireshark. Once open, select packet 158, right-click, and then select Follow |TCP Stream. You can also use the tcp.stream eq 17 display filter. Once you have filtered the traffic, you should see the following:

 



HTTP keep-alive packets

I have removed the coloring so you can see the exchange of keep-alive in packets 153 and 158. In this capture, it is most likely that the network is congested and latency is preventing the exchange of data. As a result, HTTP uses keep-alive packets, which are messages between both endpoints to keep the session alive.

Therefore, in addition to seeing duplicate acknowledgments when there is network congestion, you may see also multiple keep-alive packets.

Next, let's take a look at another indication of slow network speeds and congestion: the presence of retransmissions.



            

            
        
    
        

                            
                    Issuing retransmissions

                
            
            
                
Retransmissions, fast retransmissions, and spurious retransmissions are all related. However, each has subtle differences. The following bullets explain them:


	Retransmissions or fast retransmissions: In a TCP connection, each side of a conversation actively monitors the data transaction. When congestion is evident and the data is not getting through, recovery efforts are triggered when certain conditions are met. Depending on the algorithm, you will see retransmissions or fast retransmissions that resend the missing data.

	Spurious retransmissions: During the course of the data transaction, the server may resend data that is not needed. The client has previously acknowledged that it received the data, but the server has resent the data, most likely because it did not receive the acknowledgment. This is called spurious retransmission. Although the data is not needed, this can still be cause for concern, as somehow, the communication to the server has been interrupted.



When just starting out with learning how to do packet analysis, it can be overwhelming. While you may not be able to identify all possible issues, Wireshark provides a guide, in the form of the expert system, which groups common issues together so you can quickly investigate network delays, which we'll explore next.



            

            
        
    
        

                            
                    Discovering the expert system

                
            
            
                
While analyzing a packet capture, you may observe a colored circle in the lower left-hand corner of the interface. That is the expert system, which is a feature built within Wireshark that helps to alert the network administrator of possible issues once a capture has been made.

As shown in the bigFlows using coloring rules screenshot (shown in the Exploring the Intelligent Scrollbar section), the expert system shows a red circle, which indicates an error; this is the highest expert information level. If you double-click on the circle, it will open a console, as shown in the following screenshot:



Expert information grouped by severity

This may take a few minutes to load, depending on the size of the capture. In addition, there may be a lot of information.

The Expert Information console is a GUI that allows you to see details of what Wireshark identified in the capture, so you can investigate further. The interface is intuitive, with column headers, selection checkboxes, and drop-down lists so you can customize your viewing.

Now, let's take a look at each column header in the following section.



            

            
        
    
        

                            
                    Viewing the column headers

                
            
            
                
Across the top of the Expert Information interface, you will see the following column headers:



Note: Duplicate acknowledgment

The following bullets outline what each column header indicates:


	Severity: Indicates the severity of the error identified. In the preceding screenshot, the severity is listed as Note.

	Summary: Provides a summary of the error and combines all the errors that are the same under one drop-down summary. For example, in the preceding screenshot, the summary is Duplicate ACK (#1). Once you expand the line, you can drill down into the individual packets to see more details on each error listed.




	Group: Within each summary, there are several common groupings, including these:

	Checksum: Invalid checksum

	Protocol: A violation of the Request for Comments (RFC) for a particular protocol

	Sequence: Suspicious protocol behavior





	Protocol: Lists the main protocol that was in use that caused the alert, such as TCP, as shown in the preceding screenshot.

	Count: Provides a count of the number of references for the particular event grouping. For example, on the top right-hand side of the Expert information grouped by severity screenshot, we see there is a count of 36104 Duplicate ACK.



As shown, the column headers highlights detail of what the packet contains. Within the expert system, Wireshark outlines the level of severity by using color, as we'll see in the following section.



            

            
        
    
        

                            
                    Assessing the severity

                
            
            
                
When looking at the Expert Information console, there are five possible categories that indicate the severity of the issue, as shown here:




	
Category


	
Color


	
Meaning





	
Error


	
Red


	
Possible serious issue—the highest warning, such as a malformed packet, or new fragment overlapping old data.





	
Warning


	
Yellow


	
This indicates a warning, which means there may be problems that you will want to investigate further.





	
Note


	
Cyan


	
General notes of interest that, many times, are part of a connection, that is, a TCP keep-alive packet. Notes can also list unusual errors or a nonstandard use of a protocol such as reusing previous session keys in a Transport Layer Security (TLS) conversation.





	
Chat


	
Gray


	
Specifies typical workflow and state change such as a connection finish or a Windows update.





	
Comment


	
Green


	
Indicates that there is a comment found in at least one of the packets.







Expert information severity levels

Having a visual of the issues in the packet capture is helpful, but there are even better ways to present the information. In the next section, we'll learn about ways to sort, search, and display the data.



            

            
        
    
        

                            
                    Organizing the information

                
            
            
                
When you open Expert Information, you'll need to make sense of the data. The expert system interface provides ways to sort and search, along with ways to show only a certain kind of data.

We'll start with an overview of ways to sort data within the interface.



            

            
        
    
        

                            
                    Sorting the data

                
            
            
                
After you launch the Expert Information console, all the information may not be sorted. As you'll find, you can easily sort any of the column headers. I typically sort the results in order of severity.

To view all the packets for a specific summary, select the caret on the left-hand side of the summary, as shown in the Note: Duplicate acknowledgment screenshot.

If you have applied a display filter, you can select Limit to Display Filter, which is found in the lower left-hand corner, to show only your filtered results. This could be handy if you are troubleshooting a particular conversation and want to only display the filtered conversation.

You can see an example of this by going to the Expert information search results screenshot, as shown in the Searching for values section. In the lower left-hand corner, directly above Limit to Display Filter, you'll see Display filter: "http".

The default view lists all errors, warnings, notes, and chats. However, you may only be interested in the errors. In that case, you can limit your results by using the drop-down menu in the lower right-hand corner and selecting or deselecting what you would like to display, as shown here:



Expert information show categories

In addition, if there are any comments, you can display them as well.

As you can see, you can easily sort data within the expert system. In the next section, we'll see how searching data helps to improve your ability to focus on specific issues.



            

            
        
    
        

                            
                    Searching for values

                
            
            
                
When you need to locate a specific value while in the expert system, enter the value in the search box and press Enter. The following screenshot shows the results for the ssdp search:



Expert information search results

The Expert Information console has an advanced menu function. As shown in the following screenshot, when you right-click on a value, you can select any of the menu choices listed:



Expert information menu choices

Similar to the menu choices offered when you right-click on the packet details, you can select any of the following:


	Apply as Filter will select the highlighted conversation and run the filter in the main interface.

	Prepare a Filter will select the highlighted conversation and prepare the filter in the main interface. To run the filter, you must press Enter.




	Find, when selected, will place the variables in the search toolbar in the main interface, as shown in the screenshot:





Results of the Find menu choice


	Colorize will open the coloring rules dialog box and allow you to create a custom coloring rule.

	Look Up will open a browser, do a Google search, and present the results.

	Copy will copy the selected line onto the clipboard. For example, if I right-click on packet 10915 and select Copy, Wireshark will copy the results to the clipboard. I can then paste the results, as follows:



10915 SSDP: M-SEARCH * HTTP/1.1


	Collapse All will collapse the results to a single summary line.

	Expand All will expand the results to show all the packets.



The Expert Information console can provide a great deal of insight into possible problems in a packet capture. Wireshark presents the results in an easy-to-read format in the Expert Information console, where you can view and analyze any errors, warnings, notes, and chats.



            

            
        
    
        

                            
                    Summary

                
            
            
                
Networks need to be available nearly 100 percent of the time. A single device failure, malware, or misconfiguration can significantly impact network performance. In this chapter, we reviewed how we measure performance using three main metrics: latency, throughput, and packet loss. We then looked at a few of the many tools Wireshark provides us with in order to identify trouble on the network. 

We learned how coloring rules can highlight specific types of traffic. In addition, we discovered how any of the rules can be edited, deleted, or moved up or down in priority. We also looked at the Intelligent Scrollbar, which provides a visual so that we can easily spot and further investigate trouble in the capture.

We learned about the importance of time values and how they factor in latency issues. The expert system helps to alert the network administrator on possible issues once a capture has been made. The Expert Information console is an easy-to-use GUI that can be used to drill down on specific issues as it can subset the errors, warnings, notes, and chats.

In the next chapter, we will cover ways to work with large packet captures and break them into smaller files for analysis. We will look at filtering packets to narrow down the results, as well as, reasons and ways to add comments to a single packet or an entire capture. We will then conclude with the many ways and formats that allow us to save and export packet captures.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now it's time to check your knowledge. Select the best response, and then check your answers, which can be found in the Assessment:


	____ is a metric that measures the time it takes to transmit a packet from one point to another and can be measured using RTT.

	Latency

	Packet loss

	Goodput

	Throughput








	____ is the amount of data that is sent and received (typically in bits per second) at any given time.

	Latency

	Packet loss

	Goodput

	Throughput








	The _____ is on the right-hand side of the packet list panel and displays a distinct coloring pattern based on the coloring rules set in the application.

	Group metrics

	Time values

	Intelligent Scrollbar

	Goodput meter





	A_____ is a special type of packet that does not have any data. It only has the ACK flag set, so the client knows to keep the session active during an HTTP session.

	Duplicate acknowledgment

	Keep-alive

	Retransmission

	Fast retransmission





	In the expert system, a Cyan circle indicates _____, which is general information, unusual errors, or a nonstandard use of a protocol.

	An error

	A warning

	A note

	A chat









            

            
        
    
        

                            
                    Subsetting, Saving, and Exporting Captures

                
            
            
                
Not every packet capture is the perfect size or representative of the data you need to analyze. Whether you captured the traffic yourself or had someone send a capture to you for analysis, the reality is, some files have to be subdivided down into smaller files for analysis. In addition, when done, you will most likely need to save the file, or in some cases, export the files into a specific format.

In this chapter, we'll cover several methods and techniques that we can use to work with packet captures. So that you can reduce a large file to a more manageable size, we'll look at filtering the capture to narrow down the results. You'll learn how versatile Wireshark is in exporting different components of a capture. Finally, you'll see how you can export files, along with specified packets, packet dissections, and objects. In addition, you'll discover reasons and ways to add comments to a single packet or an entire capture.

This chapter will address all of this by covering the following:


	Discovering ways to subset traffic

	Understanding options to save a file

	Recognizing ways to export components

	Identifying why and how to add comments





            

            
        
    
        

                            
                    Discovering ways to subset traffic

                
            
            
                
Packet analysis is used for a variety of reasons, including troubleshooting, testing, monitoring, and baselining the network. We can reduce the capture before we begin our analysis by using a command-line tool such as TShark or Dumpcap, as covered in Chapter 2, Using Wireshark NG, or by using a capture filter, which is covered in Chapter 7, Using Display and Capture Filters. Once captured, the file can be shared with other members of the team for further analysis or to point out specific issues.

While capturing traffic, it's optimal to get a capture that is the perfect size and includes only the troublesome packets. However, that is not always the case. It might not be your intention to get a large packet capture. Nevertheless, you may find you have to work with one, for a variety of reasons that include the following:


	You may have obtained the capture from a network device with a large amount of traffic. Tapping into the network, even for a short time, can generate a huge number of packets. Even if you used a capture filter while obtaining the file, you may still end up with a large amount of data.

	You may have received a file from someone with good intentions, who felt a large capture would help your analysis. For example, you may have received a large file from a co-worker that captured traffic off of the server, and they need your help in analyzing a specific problem.



Whatever method you've used to obtain the capture, you'll need to work with it in Wireshark. Keep in mind, Wireshark can load a large file, but it can be very resource-intensive and slow in responding, as Wireshark attempts to dissect all the protocols before displaying the capture. In addition, when you apply a display filter to a large capture, it will take a while to filter the traffic. As a result, the best option is to subset the capture and focus on the problem areas.

When we subset traffic, we break it down into smaller files for analysis. We can see that there are many ways to break down or subset traffic. Some of the ways include subsetting by IP address, by port number, by protocol, or even by TCP/UDP stream.

Together, we can examine ways of breaking apart a large file. One such capture that works exceptionally well is bigFlows.cap. You can download the file, open it in Wireshark, and follow along by going to http://tcpreplay.appneta.com/wiki/captures.html#bigflows-pcap.

Once you open bigFlows.cap, you can easily see how cumbersome it is to work with a large file. As shown in the following screenshot, this capture has 791,615 packets. Even when entering a simple display filter such as TCP, it will take time for Wireshark to rescan the capture and present the data. As shown in the lower left-hand corner of the following screenshot, Wireshark has a status bar that indicates the process:



Rescanning the capture

Depending on the system used to analyze the capture, it may run very slowly, freeze up, or even shut down Wireshark.

Once you have opened the file, you'll need to plan what data you want to subset. There are many ways to subset data, and it really depends on what you want to analyze. Let's look at a few ways to break down a large capture. First, we'll examine using an IP address to subset traffic.



            

            
        
    
        

                            
                    Dissecting the capture by IP address

                
            
            
                
One way to break down a large capture is by filtering a specific IPv4 or IPv6 address, and then use that for your analysis. For example, you know that a specific host is having a problem, and you want to home in on that IP address to troubleshoot the issue.

Let's review how to narrow your search. In any large capture, you will most likely have captured many IP addresses. Go to the bottom of the Statistics menu, where you will see menu choices for both IPv4 Statistics and IPv6 Statistics, as shown in the following screenshot:



IPv4 and IPv6 statistics

The IP statistics have four choices for either IPv4 or IPv6, which include All Addresses, Destinations and Ports, IP Protocol Types, and Source and Destination Addresses, as follows:


	All Addresses: Provides a sortable list of IP addresses with additional information such as Count and Burst rate:





Statistics: All Addresses


	Destination and Ports: Provides similar information to All Addresses such as Count and Burst rate. However, this report shows a more advanced list that breaks down each IP address with additional statistics on TCP and UDP, as displayed in this screenshot:





Statistics: Destinations and Ports


	IP Protocol Types: Provides a basic list of transport layer protocols:





Statistics: IP Protocol Types


	Source and Destination Addresses: This currently looks like All Addresses, as shown in the screenshot captioned Statistics: All Addresses, as it may be still in development.



After you run the report, you can search for an IP address with specific characteristics, and then run a filter.

While subsetting traffic by IP addresses may be helpful to home in on troublesome hosts, another way to break down a large capture is by using conversations, which represent two endpoints that are communicating with each other.



            

            
        
    
        

                            
                    Narrowing down by conversations

                
            
            
                
A conversation is two endpoints communicating with one another. In a large capture, you will most likely have many conversations. We can sort within the conversation dialog box to identify top talkers, which are the two endpoints that are exchanging the most data. We can also select a conversation between two known endpoints, such as a VoIP client and server, and create graphs and flow charts to analyze the data. 

Once you have selected the appropriate conversation, you'll need to filter the conversation by going to the Statistics menu and selecting Conversations. 

After the window opens, you will see tabs along the top that allow you to view a specific type of conversation, such as Ethernet, IPv4, TCP, and UDP. Select the type of traffic, such as IPv4, and then apply a filter to narrow the results, so you only see the traffic you want to use as your subset, as shown in the following screenshot:



Conversations: Filter options

Within one capture, there may be many conversations. Although you may find that subsetting a large capture by conversations is helpful, you'll find that, sometimes, you will want to zero in on a specific port and use that as your subset. The following section illustrates how you can filter by port numbers, so you can work with the resulting smaller file.



            

            
        
    
        

                            
                    Minimizing by port number

                
            
            
                
While subsetting by IP address or by conversation may be helpful, sometimes you may want to study a specific port. You might be looking through the conversation under either the TCP or UDP tab and identifying suspicious port usage. Or, you may want to further investigate a specific port used in a multicast stream when checking for bursty traffic.

There are many reasons to subset by port numbers. In Wireshark, you can find a list of UDP/TCP ports in a few areas, which include Conversations, Endpoints, IPv4 or IPv6 Destinations and Ports, and UDP Multicast Streams.

For example, go to Statistics, and then UDP Multicast Streams, as shown in the following screenshot:



UDP Multicast Streams

Once you run the report, you can isolate the port you want to analyze, apply a filter, and select only the traffic you want to use as your subset.

Another way to dissect a large capture is by filtering by a specific protocol. Let's take a look.



            

            
        
    
        

                            
                    Breaking down by protocol

                
            
            
                
Wireshark is capable of dissecting over 700 protocols. To see a list of protocols in the capture, go to Statistics, and then Protocol Hierarchy, which will provide a list of what protocols appear in the capture. As with many other options, within Protocol Hierarchy, you can apply a filter and create your subset, as shown in the following screenshot:



Protocol hierarchy—Apply as Filter

In addition, if you know the protocol you want to review, you can use a display filter and enter a specific protocol and use that as your subset. 

One of the common ways of examining traffic is by examining a particular traffic stream. In the final segment, we will see what elements of a capture we can view by using the follow the stream feature.



            

            
        
    
        

                            
                    Subsetting by stream

                
            
            
                
There are times you may want to see only the details of a single traffic stream. An easy way to do this in Wireshark is to use the follow the stream option.

You must first select either a TCP or UDP conversation, right-click and select Follow, and then select the appropriate stream, either TCP, UDP, TLS, or HTTP.

For our example, in the display filter, enter tcp.stream eq 946. It will take a while to filter. Once complete, you will see the contents of the communication stream, which is a web page, as shown in the following screenshot:



Follow the TCP stream 946

Now that we have reduced the file to a more manageable size by using any of the above methods to subset traffic, the next step is to preserve the file in some way. You can simply save the file in the default .pcapng format, or in any of the many other formats that have been added and enhanced over the years.

As you can see, there are many ways to subset a file to a more practical size. After you have created a smaller file, you will most likely want to save the file to preserve your work. The following section provides various ways to save a file in Wireshark.



            

            
        
    
        

                            
                    Understanding options to save a file

                
            
            
                
Whenever you run, and then stop a capture, Wireshark will hold the capture in a temporary file and display the temporary filename in the Status bar, which is found on the lower left-hand side of the interface. In addition, along the top, you will see the name of the interface used in the capture and an asterisk, as shown in the following screenshot: 



Temporary File in Wireshark

At some point, you will most likely want to save the file in some format. To save the file, go to the File menu choice, and then click on Save. Once you save the file, the filename will appear along the top of the Wireshark interface, as shown in the following screenshot:



File saved in Wireshark

Once you have gone to File, and then Save, you will find that Wireshark will allow you to save the capture file in many different formats, as discussed next.



            

            
        
    
        

                            
                    Using Save as

                
            
            
                
The File menu choice has many common options to work with files such as Open, Import, Save, Print, and Export. One option is to use Save as when you need to save the file as something other than the default extension, which is .pcapng.

When you are ready to save the file, go to the File menu choice and select Save as, which will open a dialog box, as shown in the following screenshot:



The Save file as dialog box 

Over the years, developers have added many different file formats to Wireshark. As a result, when you drop down the Save as type,  you will see a list of all the supported file formats, as shown here:



Wireshark Save as selections 


Here, there are many formats that include Microsoft NetMon (.cap), Novell LANalyzer (.tr1), Sniffer (Windows: .caz), and K12 text file (.txt). While some of the formats are legacy and might not ever be used, it's nice to know you have the option of saving the file in other formats.

One common use of the Save as menu choice is to open a file in one format, and then save in another format. An example is obtaining a file with a .pcap extension. Although you can do many things with the .pcap file, the .pcapng format is a better option. PCAPNG files have several enhancements and are able to dissect and display payloads better. In addition, in the .pcap format, you cannot save any comments. If you do add any comments, when you close the file, Wireshark will prompt you to save as .pcapng if you want to preserve your comments.

While saving an entire file is common, you may want to export only a portion of the file. The next section covers the various ways to export specific packets, along with various objects found within the capture file, such as images or web pages.



            

            
        
    
        

                            
                    Recognizing ways to export components

                
            
            
                
We discussed the many ways you can subset a capture to reduce the file to a more practical size, such as by IP address, by port number, or by a stream. Another option is to export the subset as specified packets, packet dissections, or even export various options that exist in the capture.

Let's take a look at the many export options Wireshark offers, starting with specified packets.



            

            
        
    
        

                            
                    Selecting specified packets

                
            
            
                
After you have filtered a capture, you may want to export a portion of the capture. With Wireshark, you can be very specific in what you select to export. Let's step through an example.

Return to the bigFlows.pcap capture and enter tcp.stream eq 946 in the display filter. Once you have run the filter, you are ready to preserve this subset. In this case, we will go to the File menu choice, and then Export Specified Packets. Once open, you will see that you have several ways to export file components, as shown in the following screenshot:



Export Specified Packets

Near the bottom of the dialog box, you will see a header named Packet Range, where you will make your selections. If you have filtered the capture, Wireshark will assume you would like to export only the displayed packets, and the radio button for Displayed will be active. However, if you want all the packets, select Captured.

Below that, you will see other choices for the packet range you would like:


	All packets: This will export all packets. Wireshark will display how many are either Captured or Displayed.

	Selected packet: This will only export the packet selected. In most cases, you will have placed your cursor on one of the packets, so Wireshark will assume you have selected that packet. That is why Wireshark shows one (1) packet in the Selected packet option.

	Marked packets: This allows you to right-click and mark a specified packet or packets of interest, causing the packet(s) to turn black. This option will only process marked packets.

	First to last marked: If you have marked several packets in your capture, Wireshark will export all marked packets, from the first to the last.

	Range: This will allow you to specify a packet range, such as 233-799, and only export that range.

	Remove Ignored packets: If in a capture, you have ignored certain packets (see Chapter 4, Exploring the Wireshark Interface, under the Marking or ignoring packets section) and you select Remove Ignored packets, Wireshark will not include the ignored packet(s) in the export.



TCP stream 946 is a web page retrieved from a travel site, so we'll name the file Web Page. In the case of this export, you will need to force the file format to .pcapng, as Wireshark will default to the original file format, which is .pcap, for bigFlows.pcap. To export TCP stream 946, follow these steps:


	Go to the File menu choice, and then click on Export Specified Packets.


	Leave the default values as they are, as shown in the Export Specified Packets screenshot.

	Select a location in which to save the file.

	In File name, enter the Web Page filename.

	Under the drop-down menu for Save as type, select Wireshark – pcapng.



Once the export is complete, close bigFlows.pcap, and then open the newly created file: Web Page.pcapng.

Within the File menu choice, we will also find Export, which has many available options to export, including specific packets or bytes, TLS session keys, and objects, as outlined next.



            

            
        
    
        

                            
                    Exporting various objects

                
            
            
                
When working with a capture, there may be a variety of objects such as files, images and applications within the file. Wireshark reassembles the objects, which can be collected and analyzed, as long as the object is unencrypted.

There are several reasons you may need to collect objects within a capture file.  For example, during an active malware investigation, you may need to see what type of files are being transferred. Or there may be some concern that an individual may be sending sensitive information out of the organization. Wireshark makes it easy to export objects, so that you can take a closer look what type of traffic is being sent across the network.

Some of the possible objects that can be exported include those from the following protocols:


	Digital Imaging and Communications in Medicine (DICOM)

	HyperText Transfer Protocol (HTTP)

	Internet Message Format (IMF)

	Server Message Block (SMB)

	Trivial File Transfer Protocol (TFTP)



If you suspect that any of the preceding protocols contains objects, you can export them for examination by going to the File menu choice, and then Export Objects, as shown in the following screenshot:



Export Objects

For example, open the Web Page.pcapng file. Once open, select Export Objects, and then HTTP.... Wireshark will locate all objects such as text/plain, applications/javascript images and text/html. This will take a few seconds, depending on the size of the file. Wireshark will then present a list, as shown in the following screenshot:



HTTP object list

In the dialog box, you can search for text strings. In the lower left-hand corner, you'll see a Text Filter label. Enter footstesp-to-the-summit.jpg, as shown in the following screenshot:



Searching footstesp-to-the-summit.jpg

Select Save, and when the dialog box opens, enter the filename and the appropriate extension. In this case, I used footsteps-to-the-summit.jpg. After you save the object, locate, open, and view the image, as shown in the following screenshot:



Exported HTTP Object

If there are other objects, you can save them as well; alternatively, you can select Save All, and Wireshark will save all objects found in the file.

As you can see, Wireshark provides many ways to preserve and export components and objects. But what happens when you're done working with a file?

While doing analysis, you may know why you are working on a particular capture. However, when you return to the file, you may not remember what caused you to look at the capture in the first place. In addition, if you share the file with a co-worker, they may not be able to identify the significance. In either case, it's best to identify key elements and concerns by adding comments. In order to preserve the reasons why the file was important, Wireshark provides ways to add comments to a single packet or an entire capture, as discussed in the following section.



            

            
        
    
        

                            
                    Identifying why and how to add comments

                
            
            
                
When working with trace files, you might need to make a note on a single packet or to the entire capture, for future reference. 

Wireshark has options when working with comments. You can add file comments to preserve the details of the single capture or even add comments to a single packet. Let's start with how to add comments to the entire file.



            

            
        
    
        

                            
                    Providing file and packet comments

                
            
            
                
Within Wireshark, you can comment on the entire capture to document what you found within the file. You might preserve this information, either for yourself, or to share with others when working with a team. Let's walk through an example of adding a comment using the Web Page.pcapng subset.

To add a comment to the file, you can do one of the following:


	Select the comments icon in the lower left-hand corner, which looks like a pad and pencil.

	Go to Statistics | Capture File Properties and include your comments in the space below the Capture file comments.



In my Web Page.pcapng file, I entered the comment, HTTP traffic with interesting images, and then clicked Save Comments, as shown in the following screenshot:



Capture File Properties-Web Page.pcapng

Keep in mind that when adding comments, Wireshark does not highlight spelling errors. Therefore, if you want the comments in your file to look professional, take the time to do a spellcheck.

While adding a comment to an entire file is handy, sometimes, you may want to preserve the details of one, or possibly a few, packets that you want to identify within the file that you found to be interesting.

Adding a comment to a single packet is similar to adding a comment to the entire file. However, in this case, while in a single packet, go to the Edit menu choice and select Packet Comment…, as shown in the following screenshot:



Packet Comment...

Wireshark will open a form where you can add your comment. If you would like to add more comments later, simply select the same packet and repeat the steps you took to add the original comment.

In addition, you can delete all packet comments by going to the Edit menu choice and selecting Delete all Packet Comments, as shown in the Packet Comment... screenshot.

Once you are done with the comments, you'll need to save them so you can view them later, as discussed next.



            

            
        
    
        

                            
                    Saving and viewing comments

                
            
            
                
Once you are done adding comments, either on the entire file or a single packet, you'll see that the filename has a little asterisk in front of the name, as shown here:



Filename with an asterisk

The asterisk serves as a reminder that you have modified the capture. When you close the capture, Wireshark will prompt you to save the modified file. It's important to note that you must save in .pcapng format when using comments. 

Once you have preserved the comments, there are several ways to view the comments:


	To see comments on a file, go to Statistics | Capture File Properties, as shown in the Capture File Properties-Web Page.pcapng screenshot.

	To see comments on packets, go to Expert System and select Show Comments, which is on the lower right-hand side of Expert Information Console. You will then see the comments listed, as shown in the following screenshot:





Expert Information—show comments

Now, you can see how easy it is to add comments to an entire capture or a single packet. Once done, it's important to save the capture in .pcapng format, so you can view the comments at a later date.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we discovered that you may want to take a large unmanageable file and turn it into a smaller, more manageable file, so that you can share it with co-workers or preserve the capture for future reference. You learned about the many ways to subset traffic, which includes filtering traffic by IP address, conversation, port number, or stream. We discovered that, after working with a packet capture, there are many options and formats available in Wireshark to preserve the capture. You now know about the many ways to export files, objects, session keys, and packet bytes. Finally, in order to preserve the reasons why the file was important, we discovered how we can add comments to a single packet or an entire capture.

In the next chapter, you will discover CloudShark and learn how you can view captures in your browser from anywhere with internet access. We'll cover the benefits of using CloudShark to share and analyze packet captures with your team. You'll get a good understanding of the filters, graphs, and analysis tools that CloudShark has. In addition, we'll take a look at the many online repositories in order to locate sample captures and enhance our packet analysis skills.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now, it's time to check your knowledge. Select the best response, and then check your answers with those in the Assessment:


	A _____ in Wireshark represents two endpoints that are communicating with each other.

	Match point

	Tuple

	Conversation

	Filter





	Wireshark is capable of dissecting over 700 protocols. To see a list of protocols in the capture, go to Statistics, and then _____.

	Protocol Hierarchy

	Conversations

	IPv4 Statistics

	Match point








	Currently, when you save a file, the default file format in Wireshark is _____.

	snoop.gz

	.pcapng

	.pcap

	erf.gz





	When working with packets, right-click on a specified packet or packets of interest and select _____, which will turn the selected packet(s) black.

	Ignore

	Snoop

	Spatter

	Mark





	When you select _____ objects, Wireshark will locate and include all objects that include applications/javascript images and text/html, and then display a list of the objects found.

	DNS

	DICOM

	HTTP

	SMB













 

 



            

            
        
    
        

                            
                    Using CloudShark for Packet Analysis

                
            
            
                
Although Wireshark is a powerful, versatile tool, there are times when you may need to involve your team in a packet analysis exercise. One site that makes it easy to share your packet captures with co-workers is CloudShark (CS). While CS does not have as many features as Wireshark, you can still execute a number of different packet analysis tasks with it.

In this chapter, we'll discover CS, a browser-based solution that offers several of the same benefits as Wireshark. You'll learn that, in addition to the basic tasks you can do with Wireshark, you can create an account and perform more advanced tasks such as uploading and sharing captures.

So that you can get the full benefit of CS, we'll step through basic packet capture analysis, such as applying filters to narrow the scope and creating graphs to provide a visual representation of the data. We'll look at various analysis tools, such as VoIP calls, RTP streams, and HTTP analysis. Finally, so that you continue to improve your packet analysis skills, we will take a look at the many online repositories for sample captures.

This chapter will address all of this by covering the following:


	Diving into an overview of CS

	Sharing captures in CS

	Outlining the various filters and graphs

	Evaluating the different analysis tools

	Discovering where to find sample captures





            

            
        
    
        

                            
                    Diving into an overview of CS

                
            
            
                
Most of us would agree that Wireshark is a great tool for packet analysis, troubleshooting, and identifying malware and other anomalies on a network. However, Wireshark has some limitations, in that it must be installed on a PC or macOS, and the user may not have the skills to zero in on the actual problems. In addition, Wireshark is not designed to be used concurrently by multiple people, such as in a team.

CS is a browser-based solution that provides a way to upload packet captures and share them with your co-workers. You can also do an analysis on the fly, or simply use it as a browser-based solution to learn about packet analysis.

Now that you know about some of the benefits, let's take a look at how you find CS, as discussed next.



            

            
        
    
        

                            
                    Finding CS

                
            
            
                
CS is a browser-based solution that you can find at https://cloudshark.io/. Once on the website, you will see that there are many industries that use CS.

These industries include the following:


	Government

	VoIP service providers

	Cyber defense

	Security

	Educational institutions



Once on the site, you will see that CS has several products. Depending on what solution you need, you'll find CS Personal and Enterprise, along with TraceFrame (DevKit), and a Wireshark plugin. To see an example of how CS can be a collaboration tool, find the list of products, as shown in the following screenshot, and select CS Personal:



CS products 

From there, you can set up a free trial. You can create a trial account and then CS will present you with the welcome page, as shown in the following screenshot:



CS welcome page

Once on the welcome page, CS provides a way to upload files from your PC or laptop or import them from a URL, as shown on the left-hand side of the screenshot of the CS welcome page.

After you have uploaded the files, they will be listed on the right-hand side of the screen. If there are several packet captures, you can use a filter search for a specific capture. 

Now that you can see how easy it is to find CS, let's take a look at how you can share captures with your team.



            

            
        
    
        

                            
                    Sharing captures in CS 

                
            
            
                
CS provides a way to securely share your captures and allows packet analysis from a wide array of devices. Several analysis tools are available via a web interface that is similar to that of Wireshark. Once you have created an account, CS provides a way to customize the interface for you and your team. 

Once you become familiar with the CS interface, you can go in and adjust many aspects of your CS account, as we'll see next.



            

            
        
    
        

                            
                    Modifying the preferences

                
            
            
                
In CS, there are several areas that you can customize and fine-tune, such as account information, managing your uploads, creating collections, and enforcing quotas. To get to the Preferences menu, go to the top right-hand side of the screen, where there is a drop-down menu that allows you to set your preferences, as follows:


	Account: Here, you can view subscription information. For example, mine is a Hosted Trial plan. It offers the option to start a subscription when you are ready.

	Capture Index Preferences: This is where you can customize your column headers. As shown in the following screenshot, you can use the default layout, remove any of the visible fields as shown, or drag additional columns in where you would like them:





CS Index Preferences

When done with your selections, select Save, and CS will rearrange the columns according to your preferences.


	Uploads: CS is designed to be a collaboration tool, so it is assumed you will have interactivity, and other team members will have access to the files you have loaded in CS. The Uploads preferences are where you tell CS to what group you want to assign the files you have uploaded, as shown in the following screenshot:





CS Uploads preferences

Once they are loaded, you can further restrict what the group members can do with the files, either read-only or read/write. In addition, CS can provide guest access to your uploaded files.


	Decode Window: When viewing a capture file, this is where you can enable settings to colorize the packet list or show any annotations.

	API Tokens: You may have your own tools that you want to interact with CS. Here is where you can find the application program interface (API) token so that CS can interact with your software.

	Usage Quotas: Packet captures can consume a great deal of storage. This preference menu choice will list how much storage you have used out of your allocation (the trial provides 2 GB of storage), along with how many uploads you have completed out of your allocation (the trial provides a limit of 500 files). If you are in danger of exceeding the limits, there is a link to upgrade.




	Collections: To organize your captures, you can create collections that can group and share a set of captures that will appear on a separate landing page, as shown in the following screenshot:





CS Capture Collections

The capture collections are similar to a folder, where you can house similar captures together.

After modifying your preferences, you're ready to upload your captures, to share with your team, or the world, as discussed next.



            

            
        
    
        

                            
                    Uploading captures

                
            
            
                
When you're ready to upload and share your captures, go to the left-hand side of the CS welcome page, to the upload files area. You can either drag them from your file manager and drop them in the upload files area, or you can click and browse to a file location. Once a file is uploaded, CloudShark will show a summary of the file, as shown here:



File uploaded

When you are ready, click Done to return to the main menu. Once there, you will see your file along with a menu choice where you can select sharing settings or add to a collection. Select the Collections button. If you do not have any collections to add the files, you can create a new collection from the drop-down menu. 

When you create a new collection, there is a form where you name your collection. In my example, I used the name Basic Analysis. After the name, you then can provide a brief description, as shown in the following screenshot:



New collection 

Below the form is where you can set the access privileges to either private or public. In addition, you can select individual file permissions, as shown in the following screenshot:



Collection Access

When done, select Save to return to the main window, where you can select a file and then double-click to open it in the analysis window.

Once the file is open, you are ready to begin your analysis. The interface looks similar to the Wireshark interface. You can make some modifications; for example, to give you more room, you can pull the lower-pane window down so that you can expand the protocol trees, as shown in this screenshot:



Modified interface

In addition, you can modify the column headers by selecting the Profile drop-down menu choice and selecting Custom Columns, as shown in the following screenshot:



Column header preferences

Now that your capture is open and you have modified and customized the interface, you are ready for your analysis. 

As you can see, CS offers a great solution to share packet captures with your team. In the next section, we'll evaluate the choices for filtering traffic and visually representing traffic.



            

            
        
    
        

                            
                    Outlining the various filters and graphs

                
            
            
                
Within CS, there are several ways to view your captures. Filters narrow a capture to display only the traffic you want to see, and graphs provide a visual representation of the data.

One common task is to apply a display filter. CS's easy-to-use interface provides a way to apply a filter and narrow your scope. Let's undertake a deep dive to learn more in the next section.



            

            
        
    
        

                            
                    Displaying data using filters

                
            
            
                
Display filters in CS are very similar to the way Wireshark filters data. Filters can be applied to identify packets with specific ports, IP addresses, or protocols by entering the filter in the upper left-hand side of the interface. Similar to Wireshark, the syntax must be correct, or you will see an error, as shown here:



Syntax error

After you enter the filter, select Apply to run the filter. I entered the http filter, which narrowed the capture to show only HTTP traffic, as shown here:



HTTP traffic

In addition to the standard filters, you can also create a search by string or hex values. For example, if I am looking for a specific image, I will enter frame contains "adc_pet_dog_336x280" in the display filter, and it will present the results, if any. In addition, you can apply a hex filter to search for hex values. For example, to search for a specific MAC address, you can use frame contains 28:e3:47:8c:02:60.

Filters help to narrow the scope. Now, let's take a look at the various graphs you can quickly apply while in CS to help represent the data visually. 



            

            
        
    
        

                            
                    Viewing data using graphs

                
            
            
                
Once in your capture, you may want to create a graph, of either all traffic or of the filtered capture. In the upper right-hand corner, there is a drop-down menu for graphs, shown here:



Graphs menu

After you select the type of graph you would like, CS presents the graph. If you would like to create a new graph, you can select the button in the lower left-hand corner. In addition, you can select the Graphs button without using the drop-down menu, and this will open a window, where you can select Create a New Graph, shown as follows:



Create a New Graph

Selecting Create a New Graph will bring up a window, as shown in the preceding screenshot, that has more options to personalize and modify the graph.

As shown at the bottom of the preceding screenshot, you can add or modify the following:


	Graph Title: Add a title that is reflective of what the graph represents.

	Time Interval: Set in milliseconds, seconds, or minimum.

	Y-Axis Units: Set by packets, bytes, value, or by packets, bytes, or bits/second.




	Options: To further customize the chart, you can add additional variables:

	Use time of day

	Include packet annotations

	Stack series of the same type








	Display Filters: This is where you would enter a display filter. You can also select a style for how you want the data to be represented; that is, line, column, or spline.



Once you have completed the graph, you can export it as either a PNG, JPG, or SVG. In addition, you can print the completed graph.

In addition to graphs and filters, there are times when you need a more advanced analysis of data. The next section provides an overview of a variety of tools for quickly analyzing data.



            

            
        
    
        

                            
                    Evaluating the different analysis tools

                
            
            
                
In addition to the graphs in CS, there are many other built-in analysis tools. The drop-down menu for the analysis tools is located in the upper-right-hand part of the screen. Once you drop the menu down, the various menu choices are displayed. If any are dimmed, that means the tool is not applicable to the current capture.

From the top of the list, you will find many tools to use in your analysis. Let's begin with viewing conversations, ladder diagrams, and filtering the stream.



            

            
        
    
        

                            
                    Following the stream and view conversations

                
            
            
                
Within Wireshark, we have many tools under Statistics that help us make sense of a packet capture. While CS doesn't have as many features, you'll see that you can do a preliminary evaluation on the fly with the built-in analysis tools.

The following lists the first selections in the analysis tools menu choice, as follows:


	Follow stream, SSL, and HTTP: Similar to the Follow the Stream function in Wireshark, this provides a way to see the details of a single conversation between two endpoints.




	Ladder Diagrams: These are similar to the flow graphs in Wireshark, showing the endpoints communicating back and forth:





Ladder diagram


	Network Endpoints: This will provide a list of endpoints. Similar to Wireshark, while in the window, you can filter by the type of endpoint you would like to see; that is, eth, ipv4, ipv6, tcp, or udp, as shown in the following screenshot:





Endpoints


	GeoIP World Map: At the bottom of the endpoints report, you will see a button to select GeoIP Map. When selected, it will show where the packets originate, as shown here:





GeoIP World Map


	Protocol Conversations: This will provide a list of conversations, similar to Wireshark. While in the window, you can filter by the type of conversation you would like to see: eth, ipv4, ipv6, tcp, or udp.



As you can see, CS is populated with many tools that you can use to analyze data. The next section shows how we can take a look at the details of a VoIP call, graph packet lengths, and DNS activity.



            

            
        
    
        

                            
                    Viewing packet lengths and VoIP activity

                
            
            
                
Some of the analysis tools may not make sense when you look at them; however, they do provide value while troubleshooting. It's worth running a few of the graphs to see the results.

The next grouping of analysis tools includes the following:


	Packet Lengths: This provides an interactive graph of the packet lengths, and other information such as Average, Min, Max, and Rate:





Packet Lengths


	DNS Activity: This provides a count of the DNS queries, responses, and Resource Record (RR) types.

	VoIP Calls: This provides a list of any VoIP calls found in the file along with a sortable summary of the Call, Start Time, Stop Time, Initial Speaker, From, To, Protocol, and Packets, as shown in the following screenshot:





CloudShark VoIP calls


	RTP Streams: This lists the Real-Time Transport Protocol (RTP) streams found in the file.



As you can see, there are several helpful analysis tools. This last section helps dissect wireless problems and conducts a quick threat assessment.



            

            
        
    
        

                            
                    Exploring wireless, protocols, and possible threats

                
            
            
                
While there are many tools that are similar to those found in Wireshark, this last grouping contains an analysis tool unique to CS, which is Threat Assessments. This tool will allow you to run your capture and see whether any suspicious packets are flagged. 

This last section covers the following tools:


	HTTP Analysis: This lists all of the URLs requested in the capture file, along with a count of the requests. 

	Decode Protocol As: If CS doesn't decode the protocol correctly, you can provide values so that CS can properly decode the protocol. 








	Wireless Networks: This provides a list of any wireless networks found in the file along with a sortable summary of the following: BSSID, SSID, vendor, Signal_dBm, channel, and security.

	Wireless Keys: This will open a dialog box to add any decryption keys for the wireless networks in the file.

	Threat Assessments: This is a more advanced option that will scan the capture for potentially malicious traffic within it. If none are found, the report will come back with the all clear!



Now that you have seen the many ways in which you can analyze data using CS, let's take a look at where you can get packet captures to strengthen your analysis skills.



            

            
        
    
        

                            
                    Discovering where to find sample captures

                
            
            
                
While learning about packet analysis, it's important to study a variety of captures until you are proficient. This may take a while, but it will be well worth the effort. There are many online repositories for packet captures. Here are a few websites that can give you a variety of real network traffic:


	https://wiki.wireshark.org/SampleCaptures

	http://tcpreplay.appneta.com/wiki/captures.html

	https://www.netresec.com/?page=PcapFiles

	https://chrissanders.org/packet-captures/



This is only a partial list of where you can get samples to hone your skills. Let's now take a look at a handy way to open a packet capture, right in CS.



            

            
        
    
        

                            
                    Downloading captures

                
            
            
                
Now that you have seen where to get packet captures, you may want to learn about an unfamiliar protocol with your team. As shown, there are many places to obtain packet captures; however, one site I visit often is https://packetlife.net/. 

Once on the PacketLife site, navigate to Captures, found at http://packetlife.net/captures/. On the packet capture page, you can upload a capture or search for captures. For example, I found snmp-ipv4.pcap, as shown in the following screenshot:



 Packet capture found at PacketLife

Once you have found a packet capture, you can either download it and open it in Wireshark, or open it directly in CS, as shown here:



Packet capture opened in CS


Once in CS, you can use its variety of built-in tools to study the capture. You can even download the file and open it in Wireshark, for better visualization or a more advanced analysis of the data.

As you can see, there are many online repositories for sample captures. Visit them, download some captures, and continue to improve your packet analysis skills.



            

            
        
    
        

                            
                    Summary

                
            
            
                
In this chapter, we took a look at CS, which allows you to view and analyze packet captures in a browser. We learned that CS provides several ways of examining captures that are similar to Wireshark.

We discovered that, in general, there are many resources for packet captures that you can visit and download a file to study and improve your packet analysis skills. We then took a look at PacketLife, which has an online repository of capture files for download, or an option to open them and analyze them in CS.

We saw that, with CS, you can filter a capture to show only a specific type of traffic, as well as creating a variety of graphs. In addition, CS has a rich variety of analysis tools that include Follow Stream, network endpoints, a GeoIP world map, packet lengths, DNS activity, VoIP calls, wireless networks, and threat assessments.



            

            
        
    
        

                            
                    Questions

                
            
            
                
Now it's time to check your knowledge. Select the best response, and then check your answers, which can be found in the Assessment:


	In Preferences, _____ is where you can customize your column headers. You can use the default layout, remove any of the visible fields as shown, or drag additional columns to where you would like them.

	Account

	Uploads

	Decode Window

	Capture Index





	In addition to the standard filters, you can also search for a specific image by using a _____ filter.

	Decode

	String

	Hex

	Craft








	__ are similar to the flow graphs in Wireshark, which show the endpoints communicating back and forth.

	Ladder diagrams

	Step charts

	VoIP ladders

	Time intervals





	At the bottom of the endpoints report, you will see a button to select ___. When selected, it will visually show where the packets originate.

	Step charts

	Craft

	Time interval

	GeoIP Map





	__ is a more advanced option that will scan the capture for potentially malicious traffic within the capture.

	Malicious conversations

	Malicious endpoints

	Threat assessments

	Threat maps









            

            
        
    
        

                            
                    Assessment

                
            
            
                


            

            
        
    
        

                            
                    Chapter 1: Appreciating Traffic Analysis

                
            
            
                

	1990s

	EINSTEIN

	Chat

	Baseline

	Reactive





            

            
        
    
        

                            
                    Chapter 2: Using Wireshark NG

                
            
            
                

	2006

	1998

	pcap

	Dissectors

	Mergecap





            

            
        
    
        

                            
                    Chapter 3: Installing on a PC or macOS

                
            
            
                

	X11

	libpcap

	TShark

	mmdbresolve

	NpCap





            

            
        
    
        

                            
                    Chapter 4: Exploring the Wireshark Interface

                
            
            
                

	Clear

	Previously Displayed Packet

	Colorize Packet List

	View

	Edit





            

            
        
    
        

                            
                    Chapter 5: Tapping into the Data Stream

                
            
            
                

	LAN

	manuf.txt

	Output

	Single mode

	.pcapng





            

            
        
    
        

                            
                    Chapter 6: Personalizing the Interface

                
            
            
                

	Default

	Edit and Appearance

	Red

	Edit and Preferences

	Edit





            

            
        
    
        

                            
                    Chapter 7: Using Display and Capture Filters

                
            
            
                

	Green

	Value

	udp port 53

	Expression

	...and not Selected





            

            
        
    
        

                            
                    Chapter 8: Outlining the OSI Model

                
            
            
                

	Session

	Transport

	Presentation

	Well-known

	Segment





            

            
        
    
        

                            
                    Chapter 9: Decoding TCP and UDP

                
            
            
                

	Socket

	724 and 725

	PSH

	20 (0101 =5; 5 x 4 =20)

	DHCP





            

            
        
    
        

                            
                    Chapter 10: Managing TCP Connections

                
            
            
                

	frame.marked==1

	Window scale 

	SACK

	FIN

	936





            

            
        
    
        

                            
                    Chapter 11: Analyzing IPv4 and IPv6

                
            
            
                

	Network control

	Class B private IPv4 address

	128

	Hop count

	3





            

            
        
    
        

                            
                    Chapter 12: Discovering ICMP

                
            
            
                

	Unreachable

	Deprecated

	Parameter problems

	3

	Ping





            

            
        
    
        

                            
                    Chapter 13: Understanding ARP

                
            
            
                

	Data link

	1 and 2

	RARP

	Gratuitous ARP

	Storm





            

            
        
    
        

                            
                    Chapter 14: Troubleshooting Latency Issues

                
            
            
                

	Latency

	Throughput

	Intelligent Scrollbar

	Keep-alive

	A note





            

            
        
    
        

                            
                    Chapter 15: Subsetting, Saving, and Exporting Captures

                
            
            
                

	Conversation

	Protocol Hierarchy

	.pcapng

	Mark

	HTTP





            

            
        
    
        

                            
                    Chapter 16:Using CloudShark for Packet Analysis

                
            
            
                

	Capture Index

	String

	Ladder diagrams

	GeoIP Map

	Threat assessments





            

            
        
    
        

                            
                    Other Books You May Enjoy

                
            
            
                
If you enjoyed this book, you may be interested in these other books by Packt:



Mastering Wireshark 2

Andrew Crouthamel

ISBN: 978-1-78862-652-1


	Understand what network and protocol analysis is and how it can help you

	Use Wireshark to capture packets in your network

	Filter captured traffic to only show what you need

	Explore useful statistic displays to make it easier to diagnose issues

	Customize Wireshark to your own specifications

	Analyze common network and network application protocols





Network Analysis Using Wireshark 2 Cookbook

Yoram Orzach, Nagendra Kumar Nainar, Et al

ISBN: 978-1-78646-167-4


	Configure Wireshark 2 for effective network analysis and troubleshooting

	Set up various display and capture filter

	Understand networking layers, including IPv4 and IPv6 analysis

	Explore performance issues in TCP/IP

	Get to know about Wi-Fi testing and how to resolve problems related to wireless LANs

	Get information about network phenomena, events, and errors

	Locate faults in detecting security failures and breaches in networks





            

            
        
    
        

                            
                    Leave a review - let other readers know what you think

                
            
            
                
Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!



            

            
        
    assets/07f374d7-3450-4d59-9280-0bbfbc7aa582.png
A IPv6_NDP.cap
Fle Edt View [Go] Capture Ansbae Satitcs Telephony Wieless Took Help

- 0

AR @ UmRBRes=FOIEF=Qaan

(WJsep = dspley Hlwr_<cui> 3 ) opresson.._ +

o, Tme Source Destiaton protocal nfo D
10.000000 B ff02::1:fff5:0 ICMPv6 Neighbor Solicitation for fe80::c@00:54ff:fef5:0
20.943960 fe80::c000:54ff:.. ffo2::1 ICMPV6 Neighbor Advertisement fe80::c@00:54ff:fef5:8 (rtr,,

>

> Frame 1: 78 bytes on wire (624 bits), 78 bytes captured (624 bits)

> Ethernet II, Src: c2:00:54:f5:00:00, Dst: 33:33:ff:f5:00:00
> Internet Protocol Version 6, Src: ::, Dst: ff@2::1:fff5:0
> Internet Control Message Protocol vé





assets/8b6112d3-9b83-454e-9449-74760143ae61.png
Capture

using this fiter: [ [Enter a capture fiter -] |vinterface shown, 11 hidden ¥

Microsoft

Learn
User's Guide -

load or capture.

Save this fifter
Manage Capture Filters

Non-HTTP and non-SMITP to/from wwnwwiesharorg: not port 80 and not port 25 and host wawiswireshark.org
No ARP and no DNS: not arp and port not 53

HITP TCP port (80): tep port http

TCP or UDP port 80 (HTTP): port 20

UDP only: udp

TCP onlytep

IPXonly:ipx

1PV adress 2001 host 20011

1PuS only: ip5

1Pud adress 19202.1: host 152021

1Pud onlyip

No ARP:not arp

No Broadcast and no Muticst: not broadcast and not multcast
Ethernet type 0:0806 (ARP): ether proto 00806

Ethernet adress 0D00:5e00:5300: ether host 0000:5200:5300






assets/9aa72619-d189-4b53-8ec7-77c521a85062.png
Packets

Encapsulation

Bandwidth

[u] Date Added -

Name.

Byte Rate
49.2 KB/sec

2073

Ethemet

[0 © Today1222AM

TCP Example peapng

8 Resdonly
© Packet annotations
* File comments

< pusic

) Saved graphs






assets/bddb6eac-74b4-4c0c-a063-561462ab772d.png
v Options: (24 bytes), Maximum segment size, No-Operation (NOP), Window scale, No-Operation
TCP Option - Maximum segment size: 1460 bytes
TCP Option - No-Operation (NOP)
TCP Option - Window scale: 1 (multiply by 2)
TCP Option - No-Operation (NOP)
TCP Option - No-Operation (NOP)
TCP Option - Timestamps: TSval 1707407197, TSecr 131517608
TCP Option - SACK permitted
TCP Option - End of Option List (EOL)





assets/e26aeb67-0ed2-4aa0-9220-7fe46ee0c59c.png
Name: |Basic Analysis

Describe this Collection [preview markdown]

Tnis is a small collection with some basic packet captures for analysis.





assets/2bfe0eb7-1570-455e-bb53-b101d5603183.png
Top down Bottom up
Mnemonic Mnemonic
All Please
People Do
Seem Not
To Throw
Need Sausage
Data Pizza
Processing Away






assets/6fe8bb4f-c10b-4369-af73-58debbb568e6.png
Frame Header
Frame

MAC Address

IP Header
Packet
IPv4/IPv6 Address

ICMP

Message

Data

FCS






assets/7d77ac81-80b9-4f79-99c7-3e72dfd2afee.png
Frame 1: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 3

Ethernet II, Src: ©0:15:5d:0f:49:18, Dst: ff:ff:ff:ff:ff:ff

+ Address Resolution Protocol (request)
Hardware type: Ethernet (1)
Protocol typ IPv4 (©x©860)
Hardware size: 6
Protocol size: 4
Opcode: request (1)
Sender MAC address: ©0:15:5d:0f:49:18
Sender IP address: 172.16.2.3
Target MAC address: ©0:00:00:00:00:00
Target IP address: 172.16.2.27






assets/82fbe5a9-46c8-4cd5-8e34-8bd6c1cd9f75.png
(@cms | +| | @ ooon =
Al Traffic

Current Display Fitter






assets/7d08ffb8-409c-4dcc-b56d-8d755c2c5b9e.png
a Round Trip Time for 230.211.187.172:80 — 74.203.22.229:49683

Round Trip Time for 230.211.187.172:80 — 74.203.22.229:49683

J———
i ]

Round Trip Time (ms)

0.004 p+
0.21 0.225 0.24 0.255 027 0.285 03
Time (5)

Hover overthe graph for decal. 13 pkes, 15 kB — 14 pks, 132 byres

Type Round Trip Tme v Stream [0 [2] [Switch Direction

Mouse @ drags () zooms. [JRTT By Sequence Number Reset





assets/30447617-6c3b-4745-97d3-47dd76dad9e5.png
a client-fast-retrans.pcapng i S

Fie Gt View Go Copwre Anse Sutitics Tephony Wirdew Took Hep
Aamce ipRBRes=FaEEHaaanm
(W Taepl 2 dspley iter -] Expression.

o, Tme Source oestnaton protacs

5 0.20 230.211.187.172 74.203.22.229 TCP [
6 0.20 230.211.187.172 74.203.22.229 TCP L
7 0.20 74.203.22.229 230.211.187.172 TCP ™

Destination: 1c:df:0f:b6:69:bf
Source: b4:99:ba:ad:bc:fa
Type: IPv4 (0x0800)

0010 00 34 ec a0 40 00 40 06 49 f3 4a cb 16 e5 e6 d3
0020 bb ac c2 13 00 50 86 ee bc 64 e4 d6 9b 88 80 10
0030 00 43 48 66 00 00 01 08 0a d3 84 58 11 40 73

© 7 Header checkcum p.checsam), 2bytes Padkets: 27 Dilayed: 27 (100.0%) profe: Defaut

Packet List

Packet
Details

Packet Bytes






assets/64c76a2e-7627-42eb-8e5c-71d3a0199e9b.png
Products.

€S Enterprise
€S Personal

€5 TraceFrame (Devki)
Wireshark Plugin
Product Comparison
Analysis Features





assets/98aa0d9a-fb74-46b9-bcfb-df39f8c58505.png
a
File Edt View Go Capture Analyze Statistics

AN @ ERRE(IRe=

sEEaaea

The Wireshark Network Analyzer

Telephony  Wireless  Tools Help

(R Lo 2 e s <Cof>

53 -] ooresson.

Open

CA\Users\Lisa\SkyDrive\ Documents\PACKT\Captures\A TCP Example.peapng (7352 Bytes)

Capture

sing tis ters (R [Eter = copore i

<) [ mrfces shown =

Wik

Al

VMuware Network Adapter VMnet] __

VirtualBox Host-Only Network

Local Area Connection” 2
Ethernet

Vhware Network Adapter VMinets U~

Learn

You are running Wireshark 2.6.2 (v2.6.2:0-g o3cedbc). You receive automatic updates.

7 Ready toload or capture

|| Nopadets.

|| prfi: efaut





assets/e972e659-7882-4512-83ee-067bd1ee3e2d.png
a Wireshark - Display Filter Expression ?

FeldName Relation
‘tcpfiags.ecn-ECN-Echo | [is present,
tcpflagsfin - Fin
tcpflagsns - Nonce
tcpflags.push - Push in
tcpflagstes -Reserved
tcp flagsreset - Reset o Gy
tcpflagsstr-TCP Flags f
[tepflags:syn-Syn || predefined values
tcpflags.urg - Urgent =
tcphdr_len - Header Length o
tcplen- TCP Segment Len
tcpnop-4NOPinarow -2

tep.mdseq - Next sequence nu...
tep.option.en.nvalid - Invalid... v | Range (offsetiength)

Search: |tep

Gick Ot nsre s fier

o J[Cema [ b |





assets/4f365db5-bf0f-446c-b7c5-4b41eee2a140.png
< Flags: 0x010 (ACK)

000. .... .... = Reserved: Not set
Nonce: Not set
Congestion Window Reduced (CWR): Not set
ECN-Echo: Not set
Urgent: Not set
Acknowledgment: Set
Push: Not set
Reset: Not set
: Not set
: Not set






assets/e0780c81-83ea-4c46-93a4-1cc2697f91ae.png
< [SEQ/ACK analysis]
This is an ACK to the segment frame: 4

[The RTT to ACK the segment was: ©.090943000 seconds]
[iRTT: ©.026754000 seconds]

[Bytes in flight: 936]
[Bytes sent since last PSH flag: 936]






assets/57cca8aa-0115-483b-8640-ff74cb7dfcaa.png
+ Flags: ©x0000

Reserved bit: Not set
Don't fragment: Not set
More fragments: Not set
Fragment offset: @






assets/71ae690a-c6a4-4cee-956a-8fa5d18aa749.png
«Flags: exell (FIN, ACK)
= Reserved: Not set

= Nonce: Not set

= Congestion Window Reduced (CWR): Not set
= ECN-Echo: Not set

= Urgent: Not set

= Acknowledgment: Set

= Push: Not set

= Reset: Not set

= Syn: Not set

i ... ...1=Fin: set






assets/439a64e5-1595-46ed-955c-dae980163b62.png
SYN A

Dest Port=80

SYN-ACK Internet

Source Port=80

Trusted Internet
Network






assets/ed316678-1c39-4b86-89cf-557f02f24bb3.png
A rarp_request.cap -
Fle Edt View Go Capture Analyze Statitics Telephony Wireless Tooks Help

danze ipmBRe>=FIF=aaan

(WJ2ep = dspley Hlwr_<cui> 3 - epresson.. +
o, Tme saurce Destiaton Protocol_Info

10.000:00:21:12:dd:88 ff:ff:ff:ff:ff:ff RARP Who is ©@:00:a1:12:dd:88? Tell ©0:00:a1:12:dd:88
< >

> Frame 1: 60 bytes on wire (480 bits), 6@ bytes captured (480 bits)
» Ethernet II, Src: ©0:00:a1:12:dd:88, Dst: ff:ff:ff:ff:ff:ff
+ Address Resolution Protocol (reverse request)

Hardware type: Ethernet (1)

Protocol type: IPv4 (©x0800)

Hardware size: 6

Protocol size: 4

Opcode: reverse request (3)

Sender MAC address: ©0:00:a1:12:dd:88

Sender IP address: ©.0.0.0

Target MAC address: ©0:00:a1:12:dd:88

Target IP address: ©.0.0.0

[ Bl
© 7 rap requestan Packets: 1 - Displayed: 1(100.0%) Profie: Default






assets/d5423496-50eb-4238-bd55-1af01964ab98.png
A The Wireshark Network Analyzer - E'
Fle Edt View Go Capture Anayze Staisics Telephony Wireless Tools Help

A @ EBREB(]R S SRR

(oo 2 ey s <Covf> S Jeme | +
Capture
. using tisfiter: ([N [Enier o copture Aier =) [1interface shown, 11 hidden

Microsoft: Wi-Fi





assets/55de030d-3c75-46dc-8891-8172e2dc1ad5.png
Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface ©
Ethernet II, Src: Vmware_34:0b:de (©0:0c:29:34:0b:de), Dst: Vmware_e0:14:49 (©0:50:56:€0:14:49)

Internet Protocol Version 4, Src: 192.168.158.139, Dst: 174.137.42.77

« Internet Control Message Protocol
Type: 8 (Echo (ping) request)
Code: ©
Checksum: ©x2a5c [correct]
[Checksum Status: Good]
Identifier (BE): 512 (©x0200)
Identifier (LE): 2 (©x0002)
Sequence number (BE): 8448 (©x2100)
Sequence number (LE): 33 (@xee21)
Response frame: 2
< Data (32 bytes)
Data: 6162636465666768696a6b6c6d6e61707172737475767761...
[Length: 32]





assets/107fa225-466b-43f8-9bfa-0b7d2092e1c0.png
000. .... .... = Reserved: Not set

..0 .... .... = Nonce: Not set
. @... .... = Congestion Window Reduced (CWR): Not set
.0.. .... = ECN-Echo: Not set
..0. .... = Urgent: Not set
..0 .... = Acknowledgment: Not set
. 0... = Push: Not set

4] = Reset: Not set





assets/ccaaba06-709f-4277-ab36-ef91710a6ec6.png
@ 7 Rescanning: bigFlows.pcap Wl B || Packets: 791615 - isplayed: 40411 (5.1%) | Profie: Defauit





assets/f4317101-3fa2-41b8-8f06-a76b9d0b863c.png
a FrameRelay-101.pcapng = &
Fle Edt View Go Copture Anbze Stotitics Telphony Wicless Tools Help

AR @ UmRBRes=FOIEF=Qaan
(Wl = dopley fiter . <cei/> 3 - Eression... +
Y.  Tme Sorce Destnaton ol _1nfo
1 0.000000 Inv.. Who is 30917 Tell eee@
20.012000 Inv.. Who is 30917 Tell eeee
3 0.030000 Inv.. @600 is at 99.0.0.1
4 ©.010000 Inv.. @600 is at 99.6.0.1 v

<

> Frame 1: 34 bytes on wire (272 bits), 34 bytes captured (272 bits) on interface ©
> Frame Relay

+ Address Resolution Protocol (inverse request)
Hardware type: Frame Relay DLCI (15)
Protocol type: IPv4 (©x0800)

Hardware size: 2

Protocol size: 4

Opcode: inverse request (8)

Sender hardware address: 0000
Sender IP address: 99.0.8.2

Target hardware address: 3091
Target IP address: ©.0.0.0

[ =

© 7 FrameRelay-101.pcapng Packets: 4 Displayed: 4 (100.0%) Profie: Default






assets/ddf6f0b1-f110-4760-8461-372d00ec78c4.png
TCP/UDP Header

Segment
Port Address






assets/e8e5f0d9-c0a8-4bda-ade5-ca0f14507efe.png
[oN]]

Model

tear down session

Layer|Name Role Protocols PDU Address
7 |Application |Initiate contact with the |HTTP, FTP, SMTP|Data
network
6 Presentation |Formats data, optional Data
compression and
encryption
5 [Session Initiates, maintains and Data

the media

Network | Addressing, routing P, ICMP Packet 1P
2 [Datalink |Frame formation Ethernet II Frame  |MAC
1 Physical Data is transmitted on Bits






assets/54008348-7177-424a-a9e5-cead98462466.png
SSDP.
SsH

ssL

STANAG 5066 DTS,
STANAG 5066 SIS
StarTeam

Steam IHS Discovery
TP

ST

STUN

sua

EY

SYNC
'SYNCHROPHASOR

Tcp
TCPENCAP.

Wireshark - Preferences

Transmission Control Protocol
‘Show TCP summary n protoco tree:

] valdate the TCP checksumif possble

Allow subdissector o reassemble TCP streams
Analyze TCP sequence numbers:

Relative sequence numbers:

Scaling factor to use when not available from capture. | Not known
Track number of bytes n fight

Calaulate conversation timestamps

[ Try heuristic sub-dissectors first

[ Ignore TCP Timestamps in summary

Do ot call subdissectors for error packets

TCP Experimental Options with a Magic Number

] Display process information via IPFIX

TCP UDP port 0






assets/72b693f7-b529-4b3c-bbc1-e97ec3a455d7.png
a Quick Capture.pcapng - oS
Fle Edt View Go Copture Anbze Stotitics Telphony Wicless Tools Help

4" 50 UDRE e iFEacasn
(W Tsscp B0 -] Expresson... | +
No. Tine Sorce Destinaton
40 4.247127 fe80::b819:45e2:8cb.. ff@2::c
; 414.248417 127.0.0.1 239.255.255.250
| 424.251671 16.0.0.148 239.255.255.250
i 43 4.252472 e £f02::c —

< >

> Frame 52: 1094 bytes on wire (8752 bits), 554 bytes captured
» Ethernet II, Src: ©0:00:00:00:00:00, Dst: ©0:00:00:00:00:00

» Internet Protocol Version 6, Src: fe80::b819:45e2:8cb1:bf75,
> User Datagram Protocol, Src Port: ssdp (1900), Dst Port: ssdp

< >

© 7 Readytoload or capture Packets: 72 - Displayed: 48 (66.7%) - Dropped:

.0%) | Profe: Default





assets/89efd0ae-b87d-4e7f-ae54-4f3406a0f666.png
c:\Program Files\Wireshark>tshark -i "wi-fi" -a duration:10
Capturing on 'Wi-Fi'

1 0.000000 2603:1036:404:f2::2 » 2601:98b:4402:20cd:b819:45e2:8ch1:bf75 TL
Sv1.2 Application Data

2 0.034029 2601:98b:4402:20cd:b819:45e2:8ch1:bf75 - 2603:1036:404:f2::2 TC
P 59203 = https(443) [ACK] Seg=1 Ack=86 Win=66 Len=0

3 0.132176 2a01:111:f100:2002::8975:2da8 ~ 2601:98b:4402:20cd:b819:45e2:8¢c
b1:bf75 TLSv1.2 Application Data

4 0.156495 2601:98b:4402:20cd:b819:45e2:8ch1:bf75 ~ 2a01:111:f100:2002::89
75:2da8 TCP 59576 - https(443) [ACK] Seg=1 Ack=70 Win=63 Len=0

5  1.127444 fe80::5ee3:eff:fed9:e857 - ff02::1 ICMPV6 Router Advertise
ment from 5c:e3:0e:d9:e8:57

6 1.200726 10.0.0.59 - 10.0.0.148  TCP 49627 - 59655 [PSH, ACK] Seq=1
Ack=1 Win=4096 Len=314

7 1.208793 10.0.0.148 - 10.0.0.59 TCP 59655 - 49627 [PSH, ACK] Seq=1
Ack=315 Win=64 Len=314

8 1.209189 10.0.0.148 - 10.0.0.59 TCP 59655 = 49627 [FIN, ACK] Seq=31
5 Ack=315 Win=64 Len=0

9 1.216924 10.0.0.59 - 10.0.0.148  TCP 49627 - 59655 [ACK] Seq=315 Ack
=315 Win=4091 Len=0






assets/5a812d0a-42a1-4785-a2ab-58d654f21fe3.jpg
ICMP Messages

Error Reporting Queries
Destination Unreachable | | Echo Request/Reply
Time Exceeded Router Solicitation
Parameter Problem Router Advertisement






assets/9c19f52b-20a1-4f29-9cb7-aaefdbc29f1a.png
(3
&
33
24
30
38
2
a3
32
32
s

E
&1
0
ad
38
38
52
s
38
20
3

38
&
37
o
20
31
51
se
e
74
20

65
62
35

a2
33
e
73
ea
65
57

62
31
36
69
75
20
&7
65
a3
78
65

5
&
5
3
6e
a7
65
6e
6
73

30
30
51
&
20

73
78

2f
2¢

33
30
35
&
32
54
38
20
7a
&
20

3633 66 66 64 31 38 31
30 62 32 31 38 64 3a 31

f28eb103 63FFd181
bacb1ae eb218d:1

ac 65 6e 67 74 68 3a 20
65 62 74 2 54 79 70 65
74 6d 6c od @a 44 61 74
313120 43 75 6c 20 32

Content- Length
25..Cont ent-Type
: text/h tml..Dat
i Wed, 113ul 2





assets/b3d6f063-17bd-4ef7-8878-a53e2b69c786.png
C:\WINDOWS\system32>arp -a

Interface: 10.0.0.148 --- 0x3

Internet Address
10.0.0.1
10.0.0.59
10.0.0.255
224.0.0.22
224.0.0.251
224.0.0.252
239.255.255.250
255.255.255.255

Interface: 192.168.124.1 -

Internet Address
192.168.124.254
192.168.124.255
224.0.0.22
224.0.0.251
224.0.0.252
226.178.217.5
239.255.255.250
255.255.255.255

Physical Address
S5c-e3-0e-d9-e8-57

0-79-60-33-6d-06
FE-FE-FF-FF-FF-FF
01-00-5e-00-00-16
01-00-5e-00-00-fb.
01-00-5e-00-00-fc.
01-00-5e-7f-ff-fa
FE-FE-FE-FF-FF-FF
Oxf
Physical Address
00-50-56-e8-da-39
FE-FE-FF-FF-FF-FF
01-00-5e-00-00-16
01-00-5e-00-00-fb.
01-00-5e-00-00-fc.
01-00-5e-32-d9-05
01-00-5e-7f-ff-fa
FE-FE-FE-FF-FF-FF

Type
dynamic
dynamic
static
static
static
static
static
static

Type
dynamic
static
static
static
static
static
static
static





assets/67e1e4ab-7261-4ade-a8cf-fded81535ffd.png
M Wireshark - Capture File Properties - South Hall RM312,p.. = &

Detais.

File

Name: C:\Captures\South Hall RM312.peapng

Length: 20048

Hash 7 10cSaes defafd399d 133336 3d52613156b039B6C2cH6 2487030 1390199
(SHAZS6):

Hash FSe7ed22 4320600 13486¢88 10036 36%0ecbaz

(RIPEMD160):

Hash (SHAL): 630b2eca38fa5sacfa03fa00b336ba8ac338369
Fomat:  Wreshark]... -pcapng
Encapsulation: Ethernet

Time

Fistpadet:  2013:02-26 17:02:40
Lastpacket:  2013-02-26 17:06:25

Elapsed: 00:03:45
Capture

Herdware:  Unknown
os: Unknown
Appication:  Unknown
Capture fle comments

‘South Hall on the 10.10.30.0 subretwork

Refiesh 'save Comments| | Close | |CopyTo Cipboard| | Help





assets/ea5951a7-a46e-453a-9a56-f38c747a8df2.jpg
L  *Web Page pcapng - "I
Fle Edt Viw Go Capure Anslyie Satiics Telphony Vel Toos Hep
amco imRE Ie==FIFFacanm
(W ooty 2 dispay A > <] Expression... | +
o Tne Sorce Desnaten ol B
— 1 0.00 172.16.133.41 23.62.105.87 TCP
2 0.05 23.62.105.87 172.16.133.41 TCP
3 0.05 172.16.133.41 23.62.105.87 TCP
4 0.05 172.16.133.41 23.62.105.87  TCP
5 0.05 172.16.133.41 23.62.105.87  HTTP
6 0.10 23.62.105.87 172.16.133.41 TCP
7 0.10 23.62.105.87 172.16.133.41 TCP
8 0.10 23.62.105.87 172.16.133.41 TCP =
9 ©0.10 23.62.105.87 172.16.133.41 TCP ==
10 0.10 172.16.133.41 23.62.105.87 TCP
11 0.10 23.62.105.87 172.16.133.41 TCP W,

@ 7 webPagepeapng

|| Packets: 206  Displayed: 206 (100.0%) | Profie: Defauit






assets/197b7a34-e145-4dfc-8494-af1a6927becc.png
Wireshark - Expert Information - bigFlows.pcap - o S

Severity Summary Group. Protocol Count ~
18 [TCP Dup ACK 17211 49292 ~ fep-addr-srvr](5500) [ACKI S... Sequence T
Ed [TCP Dup ACK 36#1] 52976 — 5440 [ACK] Seq=1 Ack=1Wi... Sequence T
7 [TCP Dup ACK 76#1] 52976 — 5440 [ACK] Seq=212 Ack=18... Sequence T
18 [TCP Dup ACK 11721 62286 — 5440 [ACK] Seq=1 Ack=1W... Sequence T
135 [TCP Dup ACK 13421] 62286 — 5440 [ACK] Seq=212 Ack=1... Sequence T
137 [TCP Dup ACK 136#1] 62285 — 5440 [ACK] Seq=212 Ack=1... Sequence T
181 [TCP Dup ACK 1801 65271 — 40 [ACK] Seq=1 Ack=1W... Sequence T
190 [TCP Dup ACK 18921 65271 — 5440 [ACK] Seq=212 Ack=1... Sequence T
214 [TCP Dup ACK213#1] 55981 — 5440 [ACK] Seq=1 Ack=1W... Sequence T
20 [TCP Dup ACK 226¢1] 55981 — 5440 [ACK] Seq=212 Ack=1... Sequence T
Bl [TCP Dup ACK 250211 60115 — 5440 [ACK] Seq=1 Ack=1W... Sequence T





assets/fe425f3b-29e4-4ce9-89e9-9db0175915e1.jpg
Download cloudshark_tcp-keep alive pcapng

CloudShark retains the originally uploaded file which may be retrieved
unaltered. You may also export a peapng formatted file that includes all the
annotations and comments added by CloudShark users

File selection:

@® Export anew peapng with CloudShark comments and annotations.

O Download the original file

8 Download fle | or cancel





assets/5fca6b75-6ceb-421a-886c-4d8f923daac8.png
Options: (20 bytes), Maximum segment size, SACK permitte

TCP Option - Maximum segment size: 146@ bytes

TCP Option - SACK permitted

TCP Option - Timestamps: TSval 131517608, TSecr ©
TCP Option - No-Operation (NOP)

TCP Option - Window scale: 10 (multiply by 1024)





assets/391b9601-954c-4741-bc9f-d6945ddabdaa.jpg
> Frame 2: 6@ bytes on wire (486 bits), 60 bytes captured (486 bits) on interface 3
> Ethernet II, Src: d4:be:d9:af:3e:4d, Dst: ©0:15:5d:0f:49:18
4+ Address Resolution Protocol (reply)

Hardware type: Ethernet (1)

Protocol typ IPv4 (©x©860)

Hardware size: 6

Protocol size: 4

Opcode: reply (2)

Sender MAC address: d4:be:d9:af:3e:4f

Sender IP address: 172.16.2.27
Target MAC address: ©0:15:5d:0f:49:18
Target IP address: 172.16.2.3





assets/eb11f3a5-5db3-45e6-82d6-47b368c984e0.jpg
Capture | Analyze  Statistics Telephony

® Options. Curlek
A s e |
H sop ce [
g Restart CulR
Capture Fiers
Refresh nteraces 5






assets/5cb74eac-6c51-4660-9d44-87cf6e5143d5.png
Mark/Unmark Packet CtrleM

Ignore/Unignore Packet  Ctrl+D.

Set/Unset Time Reference  Ctrl+T

Time Shift... Ctrl+Shift=T

Packet Comment... Ctri+AltC

Edit Resolved Name

Apply as Fiter »

Prepare a Filter »

Conversation Filter »

Colorize Conversation »

sctp »

Follow 3 TCPStream  Ctrl+Alt+ShiftsT

- R UDPStream  Ctrl+Alt Shift+U
TiSStream  CtrleAlt+ShiftsS

e e 4 HTTP Stream  Ctrl= Alt Shift+H

Decode As...

‘Show Packet in New Window






assets/f03f8060-bc45-4ec5-92ac-418183f19af2.png
+ Differentiated Services Field: ©x2@ (DSCP: CS1, ECN: Not-ECT)
eele eo..

Differentiated Services Codepoint: Class Selector 1 (8)
Explicit Congestion Notification: Not ECN-Capable Transport (@)





assets/961a94e6-dc14-4aee-a0c9-718610b293c5.png
a Wireshark - UDP Multicast Streams - bigFlows.pcap - o

Source Address Source Port Destination Address _ Destination Port Packets Packets/s Avg BW (bps) MaxBW
[172161334 427 239755055253 o7 ) 25
1e80:dB7:314264e545 47 7 o 12
1e80:137:edds:8860:3673 47 7 on 102
feBDiec3fTeat e 14755 47 7 on 142
a7 3 o 15
a7 7 on 102
fe80:dcT1:28ef BAct:8Tde 47 2 oo E)
fe80:dc32:9062dTT7:79%¢ 47 7 om 102
fe80:d9b7:264b:e2efSbb. 47 7 on 102
1e80:d595:602b:85287cTF 47 7 onm 141
1e80:d508:6074: 541412201 47 5 01 7
feBD:d4fe16feiad7ca030 47 7 on 102
a7 7 on 142
1e80:d190:7965:34aT:2¢98 47 4 os7 73
fe80:d0e5:6e50:5272:7666 47 1 000 0
1e80:CI5CHTST:322:3557 47 2 20 2559
fe80:847:2a50:670d:77dc 1 547 7 o 142 v
< >
173 seams, avg bw 5091b0s, max b 241 kbps, max bt 7/ 100ms, max uffrs 4148
Burst measurement nterval (ns): [100 Burst dlarm threshold (packets)s |50 Buffer alarm threshold 8): (10000
Stream empty speed (Kbjs): (5000 Total empty speed (b/s): 100000

il e s dly s

Copy saveas. Close





assets/57ac512c-a52d-4ceb-9ad4-dd016d05ed01.png
Dashboard

100

Utilization% Errors/s

Packets/s

43 8 0

Network Server Router






assets/7abe0ae6-e799-4227-b18d-68720eae30fa.jpg
A client-fast-retrans.pcapng
Fle Edt View Go Capture Analyze Statitics Telephony Wireless Tools Help

® RE QQe=s=Ta laaa®
T2 e =3 -] Bxpresson.. +
o Tine Sorce Destnaton Protwat
| 18 0.31 2302115187 517274 203: 22229 TCPR
0.31 74.203.22.229 230 214171877172 I CR
0 230.211.187.172  74.203.22.229
0. 74:203.22.229 230 21115187072
\ 2] 230.211.187.172 74.203.22.229
(2] 74 .203 22229 230211187 . 172
0 230.211.187.172  74.203.22.229

2500.31 74.203.22.229 230 211°.1'87.. 172N TGP

!Ethernetill, Src: 1c:df:0f:b6:69:bf, Dst: b4:99:ba:ad:bc:fa °
Destination: b4:99:ba:ad:bc:fa

Source: 1c:df:0f:b6:69:bf

>
>

) 7 Intemet Protocol Version 4 (p), 20 bytes Packets: 27  Displayed: 27 (100.0%) Profie: Defauit






assets/05ae0ce1-f97f-430f-b510-b6351c31a6cb.png
Client <SYN><SEQ=100> --> Server

Client (.- <SEQ=300><ACK=101><SYN,ACK> Server

Client <SEQ=1015><ACK=301><ACK>--> Server





assets/cbd0cd73-3795-4289-9e6e-e305f18886f6.png
AgentX
AM

P13

ALC

ALCAP
Allioyn ARDP
Allioyn NS
Amop

AMR

ams

Mt

ANCP.
ANSIBSMAP
ANSIMAP
ANSLTCAP
AODV

AoL

APRS

AR Drone

Armagetronad

[ARP/RARP

Artemis

>

Wireshark - Preferences

Address Resolution Protocol
Detect ARP request storms

Number of requests to detect during perod [30
Detecton period (nms) (100

Detect dupicate IP address configuration
Regiter network address mappings.






assets/d8bfd2e6-cae7-4693-9e72-1cddd2a6e08f.png
C:\WINDOWS\system32>netsh interface ipv4 show interface wi-fi
Interface Wi-Fi Parameters

IfLuid wireless_0
IfIndex 3

State connected
Metric 25

Link MTU 1500 bytes
Reachable Time 26500 ms
Base Reachable Time 30000 ms
Retransmission Interval 1000 ms
DAD Transmits 3

Site Prefix Length 64

Site Id 1
Forwarding disabled
Advertising disabled
Neighbor Discovery enabled
Neighbor Unreachability Detection enabled
Router Discovery dhcp
Managed Address Configuration enabled
other stateful Configuration enabled
Weak Host Sends disabled
Weak Host Receives disabled
Use Automatic Metric enabled
Ignore Default Routes disabled
Advertised Router Lifetime 1800 seconds
Advertise Default Route disabled
current Hop Limit 0

Force ARPND Wake up patterns disabled
Directed MAC Wake up patterns disabled

ECN capability : application





assets/7f3c8ae4-303d-4977-a028-25d2153b27b2.png
Frame 4371: 401 bytes on wire (3208 bits), 401 bytes captured (3208 bits) on interface o

Ethernet II, Src: HonHaiPr_d4:25:a7 (60:6d:c7:d4:25:a7), Dst: Viasat_ad:3b:50 (00:a@:bc:ad:3b:50)
Internet Protocol Version 4, Src: 172.19.0.42, Dst: 172.217.2.1
Transmission Control Protocol, Src Port: 53770, Dst Port: 80, Seq:
Hypertext Transfer Protocol

1, Ack: 1, Len: 347






assets/d76e661f-9178-4802-8a9f-bd8625615f47.png
Expand Subtrees. Shift=Right

Collapse Subtrees. ShiftsLeft
Expand All Ctrl+Right

Collapse All CtrlsLeft

Apply a5 Column Crlsshift+1

Apply as Fiter ,

Prepare a Fitter ,

Conversation Flter ,

Colorize with Fifter » [ color1
Follow » @ color2
— ) |B color3
Show Packet Bytes. Clsshift-0 o
Export Packet Bytes Crlsshift+X e

Color6,
Color7
Colors,
Color
Color 10

Wiki Protocol Page
Filter Feld Reference

Protocol Preferences »

Decode As.
Go to Linked Packet New Coloring Rule.

Show Linked Packet in New Window





assets/eabeb28c-b7eb-41f1-8bba-2c691ef1efc7.png





assets/8fd776f8-95bb-45d2-a6be-a12358804cbf.jpg
Frame 20: 1434 bytes on wire, 1434 bytes captured

Encapsulation type: Ethernet (1)

Arrival Time: Jun 2, 2015 10:11:59.966187000 Eastern Daylight Time
[Time shift for this packet: ©.000000000 seconds]

[Time delta from previous captured frame: ©.000103000 seconds]
[Time delta from previous displayed frame: ©.000103000 seconds]
[Time since reference or first frame: 0.311136000 seconds]

Frame Number: 20

Frame Length: 1434 bytes (11472 bits)

Capture Length: 1434 bytes (11472 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:tcp]

[Coloring Rule Name: Bad TCP]

[Coloring Rule String: tcp.analysis.flags && !tcp.analysis.window_update]





assets/8c7a2937-c9c7-4c19-bb1e-3949862d7d27.png
a Wireshark 3.0.2 64-bit Setup &

Packet Corture
ircareaires thrNoapa iapf ot e ettt y

Currently nstalled Npcap version
Npcap 0.995

Instal
Install Npcap 0.995
1 you vish to nstall Npcap, plesse uninstall Npcap 0,395 manuallyfirst

GetWinPcap

Learn more about Npcap and WinPcap

Wireshark Tnstaller

Next> | [ Concd |






assets/9cc885aa-9808-4c40-b8d8-8124a25e3a08.png
upP
uppP
upP
uppP
upP
uoP

ococoooo
cocoooo

.148:
.148:
.148:
.148:
.148:
.148:

137
138
1900
1900
5353
50561






assets/5cb5982b-cbf7-4173-a22a-ba9ee335f6df.png
Analyze

Display

Decode

Gather

EPAN

Protocol Tree
Dissectors
Dissector-Plugins
Display Filters

Capture






assets/2bf62f55-d6b9-4b8e-bba7-f742cd9a666c.png
Frame 543: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interf
Ethernet II, Src: 88:75:56:3d:5e:00, Dst: e4:a4:71:1b:2d:a8
Internet Protocol Version 4, Src: 10.19.28.1, Dst: 10.22.5.223
« Internet Control Message Protocol
Type: 3 (Destination unreachable)
Code: 13 (Communication administratively filtered)
Checksum: ©xlcef [correct]
[Checksum Status: Good]
Unused: ©©000000
Internet Protocol Version 4, Src: 10.22.5.223, Dst: 10.80.15.169
< Transmission Control Protocol, Src Port: 64599 (64599), Dst Port: ms-wbt-ser
Source Port: 64599 (64599)
Destination Port: ms-wbt-server (3389)
Sequence number: 3981044004






assets/c7f1933c-76b8-4ef2-a302-a687c7ba73ac.png
Fie [Edit| View Go Capture Analyze Stoistics Telephony Wireless Tools Help

Ang@ UimRBRes=F sEHaaqn





assets/ff2129b7-736a-4989-8fd5-6ad7f363705a.png
View| Go Capture Anshze Statisics Telephony
B [ oo

Fiter Toolar
Sttus Br

[<I<]%]

Full Screen 1

Packet List
Packet Details
Packet Bytes

Time Display Format »

Name Resolution 3
Zoom »

Expand Subtrees Shift+Right
Subtrees ShiftsLeft
Expand All Ctrl+Right
Collapse All CrisLeft

Colorize Packet List

Coloring Rules.

Colorize Conversation »
Reset Layout Ctrle ShifteW.

T Resize Columns. Ctrl+Shift+R
Internals »

Show Packet n New Window
Reloadas File Format/Capture  CtlShitoF
B Reload cur





assets/168f318b-9e62-4db2-a7d2-b57c9526d59d.png
15000

12000

000

2

000

3000

Sequence Numbers (Stevens) for 10.5021.163:52258 — 74.125.22.139:443 - o
Sequence Numbers (Stevens) for 10.50.21.163:52258 — 74.125.22.139:443

Stevens Graph.peap.

-~ !

/

Time (5)

~Hoverover thegrah for deta. 625 ok 1748 — 799 ks 97748

Type Time /Sequence (stevens) ~

Stream (22 [2]] [switch Directon

Reset





assets/2d9838a2-007b-49b8-87d6-34f2ffd5f769.png
a Wireshark - Coloring Rules Default

HSRP State Change.
Spanning Tree Topology Change
OSPF State Change

1P errors . y yoe eq 11 || icmpvéity

smb [ bs | nbn | netbios
HTTP it [ cp.port == €0 htp2
DCERPC deerpe

Routing hsrp | eig | ospf [ bop || cdp | vip | crp [ gvrp [ igmp [ imp
TCP SYN/FIN tepfiags & 002 | tep lagsfin

e tp

P udp

System Event systemd journal | sysdig

< >
‘Doublecok o d. Drag 1o move. Ak are procassed inardr el match s o,

copron | | cancel | | oot | | Boont o






assets/37cec8f9-d81e-4de4-a336-0a2cc9a4fe1a.png
s
Haadar
optoral
Encapsuaton
Headar
s 5.
Haadar Haadar
arsport arsport
Layor Hoador | raveroaser
Data Data

Encapsuiating [PV In Pvé






assets/f0b38bf5-0fc7-4dbd-9d66-25b666ee757e.png
< Packet comments
NTP Version 3
Frame 1: 90 bytes on wire (720 bits),





assets/c6f1489f-6016-469e-8fde-54b19fcc1253.png
o *Microsoft: Wi-Fi =
Fle Edt View Go Capture Analze Statisics Telephony >
A@wce iprRBEBIcs=F sFF -
(Rlnsfogsreoder=l B -] Boresson.. +

= = I






assets/848c8856-cdbe-48a5-97fb-6a889472f70c.png
Wireshark - Capture Interfaces

Tnput | output | Optons

Intertace Traffc Link-layer Header Promiscuous  Snaplen ®) _ Buffer (ME)

» MS NDIS 6.0 LoopBack Driver Ethernet 2 Ethernet [m] default 2
Mictosofts Local Aes Connection 2 Ethemet ul defauit 2

» Vicrosoft Wikt Ethemet 0 defautt z

< >

] Enable promiscuous mode on allnterfaces. Manage Interfaces.

T [conplerers

o= [

Capture filtr for selected interfaces: 11 |tep port fip






assets/ec077cc1-4533-465d-b4d5-665a4ecf9814.png
o *Ethemet 2 - -l

Fie Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

4" 50 UBRE e iFEacasn
(W Tsscp B0 -] Expresson... | +
No. Tine Sorce Destinaton
40 4.247127 fe80::b819:45e2:8cb.. ff@2::c
; 414.248417 127.0.0.1 239.255.255.250
| 424.251671 16.0.0.148 239.255.255.250
i 43 4.252472 e £f02::c —
< >

> Frame 52: 1094 bytes on wire (8752 bits), 554 bytes captured (
> Ethernet II, Src: ©0:00:00:00:00:00, Dst: ©0:00:00:00:00:00

> Internet Protocol Version 6, Src: fe80::b819:45e2:8cbl:bf75, D
» User Datagram Protocol, Src Port: ssdp (196@), Dst Por ssdp

< >
© 7 wireshark_Ethernet 2_20190608 154628_a09568.pcapng Packets: 72 - Displayed: 48 (66.7%) - Dropped:






assets/a98538e7-f153-4079-b932-bc0fccde4ad5.png
A TCP Trafficpcapng S
Fle Edt View Go Capture Anayze Staisics Telephony Wireless Tools Help
a4 m ® | R B ] - > = T N

Strt Swp Restt Optons Open Swve Cose Rebsd | Fndadet. Previouspadet NextPadet Gotopadet.. Frstpadet
W ooy = dley lter . <Cu/> 3 - Boresson.. + S0P






assets/b8c6c6af-0f69-4bc4-a88a-cba12f425bd5.png
A Wireshark - Follow TCP Stream (tcpstream eq 0) - get http + dnspcapng =

GET / HTTP/1.1 2
User-Agent: Wget/1.16.3 (darwinl4.1.e)

Accept: */*

Accept-Encoding: identity

Host: www.test.tf

Connection: Keep-Alive

HTTP/1.1 2@@ OK

Date: Tue, ©8 Sep 2015 ©8:43:58 GMT

Server: Apache/2.4.1@ (Fedora)
Last-Modified: Sat, ©4 Apr 2015 11:36:58 GMT

ETag: "952-512e47b914250" v
1 chent pkefs). 2 server pkefs), 1 ().
Entire conversation (2828 bytes) = Show and save data as |ASCIT v | Stream 0 %

Fiter OutThis Sream| | print Save . Back Close. Heb





assets/e309b8b7-90d7-4a20-bfac-a930965f950c.png
a Wireshark - Destinations and Ports - bigFlows.pcap

Topic / ltem Count Average Minval Maxval Rate(ms) Percent Burstrate Burststart
4 Destinations and Ports 180736 27985 100% 69900 13045
4 686421682 s641 00673 312% 030 1118
4 upp s641 00673 10000% 03700 11118
1853 s641 00673 10000% 03700 11118
PIRTRUREEESIR Y 00059 021% 04700 0570
o TCp Ed 00058 9974% 04700 0570
61228 39 00006 1034% 01500  7.690
6073 42 00007  T114% 00800 0142
61247 17 00003 451% 00700 0000





assets/e7d71b89-e703-408e-a556-1c2a3b68e0cb.png
Wireshark - Conversations - bigFlowspcap  ~ = IES

Ethemet 425 | Pva- 3981 | ve-59 | TP 22312 | ubp 5036
AddressA  PortA AddressB  PortB Packets Bytes PacketsA—B A
22162199 2 Ras1nIE 121 8 10k 2
501492129 56400 721613378 571 %6 T8k i
oSS SO Tieins W 3 1% o AmptyasFiter Selected A-8
60023898 6150 21613121 M2 64 473 34| PrepareaFiter Not Selected A-B
715660159 64277 1721613378 5183 125 26k 6 | Find and Selected B-A
962421713 60086 121613378 59001 223 18k w7

Colorize or Selecte ~ Any
98.113.186.78 60198 172.16.133.78 59326 150 16k 8 bt A hny
108137222 61312 17216.133.78 59306 585 454k 363 and not Selected A~ Any
12010130136 60873 1721613325 59780 189 14k % or not Selected Any~A
0648164 64216 721613378 5905 195 15k % e
721612485 2985 172161336 M5 1@ 1
17216125220 22318 172.16.133.233 80 7 420 4 v s
< > B Any
ame resobston (] Umitto dspay fiter (] Absolute strt tme | Conversation Types

Copy ~ | [FolowsStream..| | Graph Hep





assets/7def601a-3a1b-4cc7-8b5b-6901701495d5.png
M P& NDP.cap
Fle Edt View Go Capture Amalyze Stotsics Telephony Wirless Tooks Help

Am e [BRB Recs=F = Haaan






assets/e76c0d8a-6f79-4a1a-88a7-8638bbf5d6b9.png
Expand Subtrees Stife Right
Collapse Subtrees ShiteLeft
Expand All CurleFight
Collapse Al CuleLeft
Apply 2 Column Cureshite]
Apply s Fiter ,
Prepare  Fiter ,
Conversation iter | P Connection
Colorize ith Fiter | Ethemet
Follow vl T
- | esuoe
Show Packet Bytes. Ctrl+Shift+0 o
Export Packet Bytes. Ctrl+Shift+X P
s
Wik Protocol Page o
Fiter Fied Reference wop
Protocol Preferences ol e

Decode As.
Goto Linked Packet
Show Linked Packet in New Window

PN-10 AR (with data)
PN-CBA






assets/5d7140a7-5775-4946-ae16-c84ef6811b18.png
Wireshark - Decode As...

Field Value  Type Default_Current

TCP port v 443 v [integer, base 10 SSL__ | (none) -
ok || save [ conel [[ b |






assets/a0543750-4efa-4f3f-80d5-020b74a4f55b.png
a Wireshark: Export Specified Packets

Savein: [ ) Captures v o#rm
Neme - Date modified Type E
% bigFlows. 6/6/20193:27PM__ Wireshark capture.. ¢
< >
@ .. | 1 =
Network
Saveastpe: |WiesharkAcpdump/...-peap ("cnp.gz:"dmp:”cap.gz."cap"p v Cancel
Hep.
] Compress with gzp
Packet Range:
O Captired
© Alpackets 71615
O Selected packet 1

Marked packets
Frst o last marked

0
0
O Range: 0
0

Remove lgnored packets

-





assets/d08812cb-e890-44e6-b3a5-bc7c24509cf4.png
A Wireshark - Capture Filters ?

Name Filter ~
No ARP and no DNS notarp and port not 53

HITP TCP port (20) tep port hitp

TCP or UDP port 0 (HTTP) port 20

UDP only udp.

TCP only o

1PX only px

1PV acdress 2001:dbés:T ost 2001:dbes:T

1P only o6

1P address 192,021 host 192021

Pud only W

No ARP notarp

No Broadcast and no Mulicast ot roadcast and not multca:
Ethenet type (0806 (ARP) ether proto 0:0806

Ethenet address 0000:5€:00:5300 ether host 0000:5€:00:5300
HITTP TCP port (80) .
< >

+ - &

Co [ emm ][ o





assets/dea7f46c-7acf-4db7-9c66-d83db3cd4778.png
41 0.26 23.62.105.87 172.16.133.41 TCP http(80) -» 52678

42 0.26 <Ignored>

43 ©0.32 23.62.105.87 172.16.133.41 TCP http(80) -» 52678





assets/c16bd1c8-aecf-456d-b142-afb2161e3ea5.png
a http
Compuserve GIF

Distributed Computing Environment / Remote Proce...

‘eXtensible Markup Language
HyperText Transfer Protocol 2
IPEG File Interchange Format
Portable Network Graphics
WebSphere MQ

GIF image
DCERPC

XML

HTTP2

JFIF (PEG) image
PNG

M





assets/3b3de5f5-3435-4da5-b191-6d45c0f0b9ac.png
o Wireshark - Expert Information - bigFlows.pcap

Severty” Summary Group. Protocol Count A
4Chat  MSEARCHTHTIP/INAn  Seuence  SSOP 68

3101 M-SEARCH HTTP/1.1 Sequence 550

3158 M-SEARCH HTTP/11 Sequence ssoP

3866 M-SEARCH” HTTP/1.1 Sequence ssoP

4911 M-SEARCH"HITP/11 Sequence ssop

520 M-SEARCH HTTP/1.1 Sequence ssoP

6721 M-SEARCH HTTP/1.1 Sequence s50P

10915 M-SEARCH HTTP/1.1 Sequence 550

1841 M-SEARCH HTTP/1.1 Sequence ssop

1182 M-SEARCH HTTP/1.1 Sequence ssop

12006 M-SEARCH HTTP/1.1 Sequence ssoP

13269 M-SEARCH HTTP/1.1 Sequence sso

1351 M-SEARCH " HTTP/1.1 Sequence ssop

1346 M-SEARCH HTTP/1.1 Sequence ssop

15085 M-SEARCH HTTP/1.1 Sequence ssop

19561 M-SEARCH " HTTP/1.1 Sequence 550

19816 M-SEARCH " HTTP/1.1 Sequence ssop

0541 M-SEARCH ™ HITTP/1.1 Sequence 550

20600 M-SEARCH " HITP/1.1 Sequence ssop

2629 M-SEARCH*HITTP/1.1 Sequence ssoP

20504 M-SEARCH " HITP/1.1 Sequence ssop

21988 M-SEARCH " HITTP/1.1 Sequence 550 v
< >
Dy e "

(] init to Disly Fiter Groupby summary  Search: [sscp Show.

dose || Hep





assets/22af8b00-440b-41e6-9e54-c91f7cb430ef.png
WAN LAN

.
e @_@_ %ﬁ
= 1 =

Who has 172.16.2.27?
| Tell 172.16.2.3






assets/3490bf8d-f652-432a-8798-eb35a824e7dd.png
4 Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), SACK
TCP Option - No-Operation (NOP)
TCP Option - No-Operation (NOP)
<« TCP Option - SACK 10852-11096
Kind: SACK (5)
Length: 10
left edge = 10852 (relative)
right edge = 11096 (relative)
[TCP SACK Count: 1]





assets/d3316a92-4be4-4a2e-be61-662454ecde7d.png
Web Page.pcapng

R = & G i e Ty Vi o
= FEE2eaas

Q Find Packet... Ctrl+F

Find Next N

Find Previous [
Mark/Unmark Packet CtisM
Mark Al Displayed Ctrl+ShiftsM
Unmark All Displayed Ctrl+ Alt-M
Next Mark. CtrlsShift+N
Previous Mark CtrlsShift+B
Ignore/Unignore Packet s
Ignore All Displayed Ctrls Shift+D
Unignore All Displayed Ctrl+Alt+D.

Set/Unset Time Reference  CtrleT
Unset All Time References  Ctrl+Alt=T

Next Time Reference Ctrl+ AltsN
Previous Time Reference Ctrl+ Alt-B
Time Shift... Ctrl+Shift=T
Packet Comment... Ctri+AltC

Delete All Packet Comments

Configuration Profies... Ctrl+Shift+A
Preferences... Ctrl+Shift+P






assets/6eb109d9-b7a7-4a1a-bb0d-7b6f34b154d8.png
Wireshark - Preferences

(Bgpeancs
Columns. 1 : 1]2 2 1
ont and Colors| 2 3 3
ok and ok 5 2]s B s 2
(A
Coptine Pane 1: Pane 2: Pane 3:
Epet . :
Filter Buttons. N EEE (O PacketList ,’ Packet List
Name Reslaion | O Paciet et © Padeetoetais ) Packet etals
Protocols () PacketBytes () PacketBytes ® Packet Bytes
Satisties - - i
Advanced © None ) None ) None
ket st setgs:
[ Show packet separator
Status or settinge
[] Show selected packet number
L] Show file load time
RestoreDefols
>
== S





assets/02f6d3d5-9a2d-4a04-81f8-b6f04da31826.png
Stable Release (:

Windows Installer (64-bit)

Windows Installer (32-bit)

Windows PortableApps® (32-bit)
mac0$ 10.12 and later Intel 64-bit .dmg
Source Code





assets/9ed3b872-ce04-4626-b033-6b0094aabb5c.png
Unsaved packets... E

Do you want to save the captured packets before opening another file?

Your captured packets wil be lostif you don't save them.

Contne ithou sevng] [ Cancel





assets/63ff1de1-c098-45f4-b5be-903b47854fda.png
OSlI Address PDU

Application

Presentation

Session

Transport

Network

Data Link

Physical






assets/ae5619c2-69a8-4720-9efd-a352417a80f5.png
feB01bCSa:f363:5832:fab fe80i219:e2ff feaLibecd oz LiffaLibecd
22 21
o Socaton fom 000529418343 | i

Router Adversement fom 00 15isste

Neightor Solcation for fob015edffeatibecd fom OOCScti3ds |

| Noohbor Solraton for feblubenf5830sb rom 000c294fiddiat

Neshbor Advetssmen e0ubcsafo62 58321 sl ow) s 5 0029563

Neighbor Solcation for 2001706503 T3 111 i

Neighbor Solctation for fo80215ebffeatibecd o OOcSctia3ds |
i i | nootbor Soaton for febic2bfiofiddl fom 00029433

‘ i i Neighbor Advertsement asD:20c29fffidda (o]

Flow type: [AlFlows v





assets/28275ec2-5147-40b1-bcb9-4377bef989c0.png
| bigFlows.pcap -
Fle Edt View Go Capture Analyze Statitics Telephony Wireless Tooks Help

® RE ] &= sEE a ]

No. I Time. Source Destination Protocol Info

[TCP Out-Of-Order] 49854 -

[TCP Out-Of-Order] 49854 -

SIGE o SIGE o [TCP Retransmission] 49283

.25 172.16.133.37 172.16.139.250 TCP 49272 -» fcp-addr-srvrl(5500
[TCP Retransmission] 49854

[TCP Dup ACK 587#1] 49272 -

587

Q.
Q.
Q.
0

Q.
Q.

Frame 565: 1334 bytes on wire, 1334 bytes captured
Ethernet II, Src: 00:90:7f:3e:02:d0, Dst: c0:91:34:ca:fd:80
< Internet Protocol Version 4, Src: 172.16.133.37, Dst: 172.16.139.250
0100 .... = Version: 4
.... 0101 = Header Length: 20 bytes (5)
«Differentiated Services Field: ©x00 (DSCP: CS@, ECN: Not-ECT) o

< >

Intemet Protocol Version 4 (p), 20 bytes. Packets: 791615 - Displayed: 791615 (100.0%) Profie: Defauit





assets/9bd4e3aa-9656-44d9-97b7-65bd9f357746.png
« [SEQ/ACK analysis]
This is an ACK to the segment in frame: 4
[The RTT to ACK the segment was: ©.047200000 seconds]
[iRTT: ©.046956000 seconds]
4 [Timestamps]
[Time since first frame in this TCP stream: ©.094268000 seconds]
[Time since previous frame in this TCP stream: ©.047200000 seconds]





assets/40f517d5-59dc-4214-a9ef-3bb8ff2198bc.png





assets/6a4dcaca-a2f0-4993-bce8-103994e1d772.png
1PSICTL
1Pva

1Pv6

1pvs

Px

IRC
ISAKMP
iscsi

1SDN

ISER
ISMACRYP.
isNS

150 15765
150 8583
1S0bus VT
1sup

oM

[y

1uUP
IXIATRAILER
Imirror
JSON

Wireshark - Preferences

Internet Protocol Version 4
Decode IPV4TOS fied s DiffServ fied

Reassemble fragmented Pv4 datagrams
Show IPvé summary n protocol tree
] valdate the 1Pv4 checksum f possible

Support packet-capture from IP TSO-enabled hardware.

Enable Pv4 geolocation
] Interpret Reserved flag as Security flag (RFC 3514)
[ Try heuristic sub-dissectors first.

Pv4UDP port [0

G

Heb





assets/463fb616-47a8-455d-b9fc-a6769388662b.jpg
Wireshark - Expert Information - bigFlows.pcap

Packet Summary Group Protocol Count ~
St MSBRCHTHTIPANN Sewee  SOP e

S0 MSCARCH-HTIPAL | Seaence  SSOP

S MSCARCH-HTIPAL  Sewnee  550P

5065 MSEARCHHTIPIT— Sequnce 5505

‘4911 M-SEARCH * HTTP/1.1 Sequence S5DP Applysshiter >

5220 M-SEARCH * HTTP/1.1 Sequence ssDP Prepare aFilter >

S MSIRCHHTIPNI  Swece  SOP | Fnd

W55 MSCRCHHTIPNL S SOP | conre

et MSCARCHHTIPAL e 550P

11842 M-SEARCH* HTTP/1.1 Sequence 5P Rl

6 MSCRCHHTIPAL S S0P | Coy

S MSCRGHHTIPAL S S0P | cotepseal

B MSORGHETINL Swee  SDP | et

L6 MSCRCHHTIPNL e 5SOP

S MSCARCHHTIPAL S SSOP

1561 MSCARCHHTIPAL e 550P

6 MSCARCHHTIPAL e 55OP

o MSARCH-HITPIT  Sevence S0

S MSARCH-HITBIT  Sememce S0

S5 MSARCH-HIPIT  Semvemce S0

S MSARCH-HITPIL e S0P

o MSARCH-MITPIL  Sememe S0

D2 MSARCH-HITPIL  semveme S0 v
Dispsy e "
Dlmtaosiyrie @ Gapbysmay  seach s

Close

Heb





assets/80aa8f1c-fe26-4396-b569-6e50395d7da5.png
«Backto Capture Index

Capture Collections

Collections are used to share a small set of captures from a single landing page. You can add markdown-formatted text at the top of each collection to
explain or describe the group of captures it contains

To create a new collection, start at the capture index and select the files to include. Click on the "Collections™ button and choose to create a new collection
or add those files to an existing one

Please go back to the main capture index and choose capture files to add to a Collection





assets/03daf46d-2161-48a4-8fc3-f1835134df9f.png
(W Temp
No. Tme  Source Destnation Protocol Info

> 37136.79172.19.131.120 172.217.0.14  ICMP  Echo (ping) request 1d-0x@001, seq-226/57856, tt1-128 (reply .. .

> Frame 371: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface 0
> Ethernet II, Src: HonHaiPr d4:25:a7 (60:6d:c7:d4:25:a7), Dst: Congatec 2f:06:29 (00:13:95:2f:06:29)
> Internet Protocol Version 4, Src: 172.19.131.120, Dst: 172.217.0.14
v Internet Control Message Protocol

Type: 8 (Echo (ping) request)

Code: @

Checksum: 0x4c79 [correct]

[Checksum Status: Good]

Identifier (BE): 1 (@x0001)

Identifier (LE): 256 (0x0100)

Sequence number (BE): 226 (0x00e2)

Sequence number (LE): 57856 (@xe200)

[Response frame: 374]

> Data (32 bytes)

~) Bxpression... | +






assets/10fc3a02-2bf9-4fb0-b8e1-ab325f57d3c6.png
Packets: 1650 Duration: 1s

snmp-ipv4.cap 4478 k8

‘Submitted Dec 30, 2014 by nacnud

SNMPV3 over IPvd.

DERm

Downloads: 6541






assets/da0befeb-be60-49ac-ad02-4cd7f3d242d9.png
Source Port: 50405
Destination Port: 80
[Stream index: 0]

[TCP Segment Len: 0]

Sequence number: @  (relative sequence number)

[Next sequence number: @  (relative sequence number)]
Acknowledgment number: @

1010 .... = Header Length: 40 bytes (10)

Window size value: 5840
[Calculated window size: 5840]
Checksum: @x9222 [unverified]
[Checksum Status: Unverified]
Urgent pointer: @

> Options: (20 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation (NOP), Window scale
> [Timestamps]





assets/ddd01a82-f964-4466-96f9-31a1429ce230.png
File Edt View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am 0 iBRBE Res=FaEEFaaanm
(I iemp: B30 -] Expression.

]

» Frame 319: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface ©
» Ethernet II, Src: IntelCor_1b:2d:a8 (e4:a4:71:1b:2d:a8), Dst: Cisco_ff:fc:28 (00:08:e3:ff|
» Internet Protocol Version 4, Src: 10.200.6.169, Dst: 10.80.15.167

Type: 8 (Echo (ping) request)

Code: ©

Checksum: ©xcf7@ [correct]

[Checksum Status: Good]

Identifier (BE): 1 (©xeeel)
Identifier (LE): 256 (©x0100)
Sequence number (BE): 62537 (©xf449)
Sequence number (LE): 18932 (ox49f4)

>
< Data (32 bytes)

Data: 500049004e00470020006200790020005000520054004700...
[Length: 32]

0000 00 @8 e3 ff fc 28 e4 a4 71 1b 2d a8 ©8 @0 45 ee
©016 ©0 3c 26 19 00 00 80 ©1 e9 40 ©a c8 06 a9 Pa 50
0020 a7 8 ee 00 49 00 4e

ee3e 00 52 00 54
ee4e

© 7 Type (amp.type), 1byte || Packets: 1185 - Displayed: 59 (5.0%) || Profile: Default





assets/2528b950-7bf5-4adf-befe-372215b85f5e.png
Packet Lengths in TCP Example.pcapng

Click on a bar to fiter the capture file to only those packets.

Number of Packets

750

500

250

Packet Lengths

[ v i | (< o |





assets/65f28a7f-71bc-4d66-909e-236ea8564860.png





assets/f8b7c0b6-bb96-4549-af3a-19868f1a991f.png
SIP-Call-Flow-Over-TCP.pcap 19 4 kb - 84 packels - more info

zop [ v ooty | ciear © AnsiysisToos ~ || @ Graphs |+ | | @ Export
SR = Frtrriin et ) e
T3 430765 10.33.6.100 10,336,000 WP 313 PIoITOT G711 PCHA, SSRC-0A2P433D4, Seq-vad39, Time-1004015835 A
15 0 4.412150 10.33.6.101 10.33.6.100 TP 214 PI-ITUT G.711 ECMA, SSRC-0x42F433D4, Seq54340, Time-1884820003
16 o 4.416138 10.33.6.100 10.33.6.101 TP 214 PI-ITU-T G.711 PQMA, SSRO-OXSA3361E3, Seq29371, Time=95878790
18 o 4.435972 10.83.6.101 10.33.6.100 KT 215 ITU-T G.711 PQMA, SSRC-Ox62F433DS, Seq=54361, Time=1804820163
19 o 4.435976 10.33.6.100 10.33.6.101 TP 214 PI-TTUT G.711 POMA, SSRC-ORSAS3GIE3, Seq28372, Time-S5878950 v

Frame 13: 214 bytes on wire (1712 bits), 214 bytes captured (1712 bits)

Ethernet II, Src: AudioCod 0Oa:7cicc (00:90:8£:0a:7cice), Dst: AudioCod 0a:3!
Internet Protocol Version 4, Src: 10.33.6.101, Dst: 10.33.6.100
User Datagram Protocel, Src Porc: x1l (6050), Dst Borc: x1l (6000) —

Real-Time Transport Protocol





assets/0cf5d2ee-7e44-47f9-aee2-91e206995e1a.png
4 Options: (2@ bytes), Maximum segment size, SACK permitted, Timestamps

TCP Option - Maximum segment size: 146@ bytes

TCP Option - SACK permitted

TCP Option - Timestamps: TSval 835172936, TSecr 2216538
TCP Option - No-Operation (NOP)

TCP Option - Window scale: 6 (multiply by 64)





assets/be077a4d-d590-4d1f-a9d3-d29b25e741a5.png
a Wireshark - Export - HTTP object list - o
Packet Hostname Content Type Size Filename.
18 media-cdnripadisor.com image/jpeg  35kB footstesp-to-the-summitjpg
v T—— ]
= | oor e





assets/a866b46b-9e24-4392-866e-24b21e49e7c3.png
Protocol Ladder View: TCP Example.pcapng 81 packets | 2 endpoints — Apply as Display Filter

« Conversations || @ Protocols || ® Endpoints
Display Fiter: tcp.stream eq 15 v Apply | Clear

Endpoints | Default ]Labet [Ifo v | reset

10.0.0.148 192.81.131.161

49420 — 80 [SYN] Seq=0 Win=8192 Len=0 MSS=1450 WS=256 SACK_PERM=1
>

05
80— 49420 [SYN, ACK] Seq=0 Ack=1 Win=28200 Len=0 HSS=1460 SACK_PERM=1 Ws=128
rossssss
49420 — 80 [ACK] Seq=1 Ack=1 Win=65536 Len=0
rosssez >
GET/HTTPIL1
1088620 >
80 — 49420 [ACK] Seq=1 Ack=350 Win=30336 Len=0

oz -«

HTTPH.1.200 OK [TCP segment of a reassembled PDU]
Ere=n -«

HTTPH.1200 OK [TCP segment of a reassembled PDU]
nassste «

HTTPH.1.200 OK (texthtmi)
1 os “«






assets/f6d084dc-4a63-42da-a0ed-cc4d69017277.png
a Wireshark: Export Specified Packets

Saven: | )| Bpot vV ed e mr
- Neme ° Date modified Type s
<5 No items match your search

Recent places

Deskop
Libraris
LY
Thispe
@ - >
A
Fie e . -
o
Save as type: Wireshark Acpdump/... - pcap ("dmp.gz." dmp;” cap.gz." cap:’p v Cancel
e

] Compress with azip

Packet Range

Diplyed

@ Al packets 1252

O Selectd packet i 1

Matked packets 0 0
Fist to st marked )

Ol o

Remove lgnored packets 0 0





assets/97d28022-c36b-4d19-a3aa-3ed31462ec4a.png
r
o}
S
oy

w

o
®

=

o
e
©

©

=






assets/b799150c-2d94-472a-8a6f-3206e28bfe96.png
4 [Appearance

Columns
Font and Colors|
Layout

Capture

Bxpert

Fiter Buttons

Name Resolution
> Protocols

> Statistics

Advanced

Wireshark - Preferences

Remember main window size and placement
Open fiesin
®) The most recently used folder

O This folder: |C:\Users\Lisa\Documents
Showwp to

10 | ter entries

10 recent fes

Confirm unsaved capture fles

Main toobar stye: |Icons oy~

Language: |Use system settng

o

Browse.

Heb





assets/e95dc805-ffb6-4c2e-a226-52f0d9f42c1c.png
Meark/Unmark Packet
Ignore/Unignore Packet
Set/Unset Time Reference
Time Shitt...

Packet Comment...

Edit Resolved Name.

Apply as Fitter
Prepare a Fitter
Conversation Fier
Colorize Conversation
scp

Follow

Copy.

CtrteM.
ctleD
T
CtreShiftT
CtrleAR-C

Protocol Preferences
Decode As...
‘Show Packet in New Window

Open Transmission Control Protocol preferences...

Show TCP summary in protocol tree
Validate the TCP checksum f possible

Allow subdissector to reassemble TCP streams
Reassemble out:-of-order segments

Analyze TCP sequence numbers

[<<I<]

[<]1]

Relative sequence numbers
Scaling factor to use when not available from capture
Track number of bytes n fight

Calculate conversation timestamps

Ty heurisic sub-dissectors first

Ignore TCP Timestamps in summary

Do not call subdissectors for eror packets

TP Experimental Options with a Magic Number
Display process information via IPFIX

TCP UDP port:0...

Disable TCP...





assets/d4b2d10f-31d9-44af-ba3c-3e059e803b87.png
DICOM...
HTTP...
IMF...

TFTP...

Ctri+p.

CculQ





assets/e264cca5-ef43-4072-ae34-5e076c2e96bb.png
Frane 281 54 bytes on wire (332 bits), 54 bytes captured (432 bits) on interface §
Intarnet Protocol Varsion 4, Sre: 10.0.0.148, Dst: 23.43.165.50
+Transnission Control Protocel, Src Port: 63759 (63759), Ost port: hitp (39), Sea: 1, Ack: 1, Len: ©
Source port: 6375 (63759)
Destination port: htto (50)
[Strean index: 3]
TGP Segment Len: 81
Sequence nusber: 1 (relative sequence nunber)
Acknowledgnent nusber: 1 (relative ack number)
0101 ... = Header Length: 20 bytes (5)
Flags: ox010 (k)
Mindow size value: 64
[Colcuated window size: 16388]
[indou size scaling Factor: 256]
Checksun: 018469 [unveriied)
[Checksum Status: Unverified]
Urgent pointer:
[SEQ/ACK snalysis]






assets/42787817-4a2d-4027-a609-52ea85c6b9cc.png
o Wireshark - Preferences

Appesrance
Columns ; 1 1]2 a 2 1 9
Font and Colors 2 T3 5 3 >
Layout

Captre Pane 2
Expert b
Filter Buttons. @C=2rs
Name Resolution () Packet Details

> Protocols O padetoytes
RA Keys -

b Statistics © Nane






assets/de5b5898-08af-4531-b76d-e809ec199eb8.jpg
bigFlows.pcap

Fie Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am2O k

RERe==FsEFEHaaan

(WTacply 2 dispiay fiter

'
o
H

=3 -] Bxpression

+

No. Time.

10.00
20.00
30.00
40.00
50.00
60.00

<

Source

Destnation

172.16.133.57 68.64.21.62
172.16.133.57 68.64.21.62
172.16.133.57 68.64.21.62

96.43.146.176 172.16.133.82

172.16.133.56 68.64.21.42

68.64.21.62

172.16.133.57

Protocol

UDP
UDP
UbP
TCP
UbP
UbP

Info

53807 -» vids-avtp(1853)
53807 -» vids-avtp(1853)
53807 -» vids-avtp(1853)
https(443) - 61228 [ACK]
49514 » vids-avtp(1853)
vids-avtp(1853) » 53807

(11

»Frame 1: 1168 bytes on wire, 1168 bytes captured
» Ethernet II, Src: 14:10:9f:d4:90:db, Dst: 00:90:7f:3e:02:d0
» Internet Protocol Version 4, Src: 172.16.133.57, Dst: 68.64.21.62

<

<

>

@ 7 bigkows.pcap

Packets: 791615 - Displayed: 791615 (100.0%)

|| profie: Defautt






assets/f2837a98-60b5-40fd-8e97-e2c67a87ff83.png
a Wireshark - Follow TCP Stream (tcp.stream eq 946) - bigFlows.pcap - oKl

GET /media/photo-s/@@/1b/12/b3/the-fin-with-snow.jpg HTTP/
sl
Host: media-cdn.tripadvisor.com

Connection: keep-alive
User-Agent: Mozilla/5.8 (Windows NT 6.1; WOW64) AppleWebKit/

537.22 (KHTML, like Gecko) Chrome/25.8.1364.97 Safari/537.22

Accept: */* v
18 clene e, 116 server e, 13 .

[Entre conversaton (170 8) v Showand save dataas [ASCH v Stream [0 (5
Find: FrdNext

Fiter Out This Stream| | print Saveas. Back Close. Help.






assets/8bfa7b6a-1905-4f06-a774-e962fed1ca9d.png
A icmp.pcapng - O
Fle Edt View Go Capture Analyze Statitics Telephony Wireless Tooks Help

danzeipmBRe>=F3FEHaaan

(WJ2ep = dsploy Hlwr_<cui> 3 ) ooression.._ +
o, Tme Source Destiaton Protocol_Lenghh _nfo
i 10.000000 192.168.158.139 174.137.42.77 ICMP 74 Echo (ping) request id=@xe2ee,
20.216795 174.137.42.77 192.168.158.139 ICMP 74 Echo (ping) reply id=ex0200,
30.784350 192.168.158.139 174.137.42.77 ICMP 74 Echo (ping) request id=exezee,
40.204147 174.137.42.77 192.168.158.139 ICMP 74 Echo (ping) reply id=ex0200,
50.796972 192.168.158.139 174.137.42.77 ICMP 74 Echo (ping) request id=exezee,
60.244260 174.137.42.77 192.168.158.139 ICMP 74 Echo (ping) reply id=ex0200,
7©.756347 192.168.158.139 174.137.42.77 ICMP 74 Echo (ping) request id=exezee,
80.200579 174.137.42.77 192.168.158.139 ICMP 74 Echo (ping) reply id=ex0200,
< >
> Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface ©
» Ethernet II, Src: Vmware_34:0b:de (©0:0c:29:34:0b:de), Dst: Vmware_e©:14:49 (00:50:56:€0:14:49)
> Internet Protocol Version 4, Src: 192.168.158.139, Dst: 174.137.42.77
» Internet Control Message Protocol

© 7 icwp.peapng

Profle: Default





assets/ef35e7dd-70cf-4e9d-8f25-56efc8673eea.png
Command Prompt

TCP  172.20.4.31:51393 104.118.222.227:443  ESTABLISHED ~
TCP  172.20.4.31:51394 104.118.222.227:443  ESTABLISHED
TCP  172.20.4.31:51395 104.118.222.227:443  ESTABLISHED
TCP  172.20.4.31:51396 104.118.222.227:443  ESTABLISHED
TCP  172.20.4.31:51397 35.190.59.101:443 ESTABLISHED
TCP  172.20.4.31:51400 69.172.216.55:443 TIME_WAIT
TCP  172.20.4.31:51401 69.172.216.55:443 TIME_WALT
TCP  172.20.4.31:51402 35.201.67.47:443 ESTABLISHED
TCP  172.20.4.31:51403 172.217.8.110:443 ESTABLISHED
TCP  172.20.4.31:51404 23.60.50.252:443 ESTABLISHED
TCP  172.20.4.31:51405 23.60.50.252:443 ESTABLISHED
TCP  172.20.4.31:51408 13.249.122.116:443 TIME_WAIT
TCP  172.20.4.31:51409 34.195.176.188:443 TIME_WALT
TCP  172.20.4.31:51410 13.249.122.116:443 ESTABLISHED
TCP  172.20.4.31:51411 157.246.14.19:443 ESTABLISHED
TCP 172.20.4.31:51414 23.3.166.143:443 ESTABLISHED
TCP  172.20.4.31:51416 146.88.138.85:443 TIME_WALT
TCP  172.20.4.31:51419 52.6.65.42:443 ESTABLISHED
a.

TCP  172.20.4.31:51420 52.6.65.42:443 TIME_WATT v





assets/92f5e2a4-1db4-44cc-a828-eb3c262a9de3.png
Differentiated Services Field: 0x00 (DSCP: CS@, ECN: Not-ECT)

0000 00.. = Differentiated Services Codepoint: Default (0)
..00 = Explicit Congestion Notification: Not ECN-Capable Transport (0)





assets/f81fe590-445f-4874-9836-0cf422f9f143.png
Frame 5: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface ©

Ethernet II, Src: Actionte_2f:47:87 (©0:26:62:2f:47:87), Dst: AsustekC_b3:01:84 (00:1d:60:b3:01:84)
Internet Protocol Version 4, Src: 174.143.213.184, Dst: 192.168.1.140

Transmission Control Protocol, Src Port: http (86), Dst Port: 57678 (57678), Seq: 1, Ack: 135, Len: ©





assets/723bb9a9-b801-4366-a988-bf6558253b6d.png
Mark/Unmark Packet CtrleM

lgnore/Unignore Packet  Ctit+D

Set/Unset Time Reference  Ctrt+T

Time Shift.. CulsshifteT

Packet Comment... Ctl+Alt+C

Edit Resolved Name

Apply as Fiter »

Prepare aFiter »

Conversation Fiter »

Colorize Conversation | o Connection ]

scre » [ eme @ oot

Follow v et [ colr2
F5UDP B Color3

Copy »
s [ Colors

Protocol Preferences v e B |cotors

Decode As... Pvs [ Color6

Show Packet in New Window P & color?
e [E] Colors
PA-IO AR [ Colors
PN-10 AR (with data) @ color10
PN-CBA New Coloring Rule..






assets/c644b49f-f763-4e04-8398-ae10f41ab4bd.png
IPv4 Header

Version | IHL| Type of Service

Total Length

Identification

Flags

Fragment Offset

Time to Live | Protocol | Header Checksum
Source Address

Destination Address





assets/f0724cf7-16e3-47b7-9e1c-b3fc8d24d274.png
Protocol Preferences.

Decode As...
Goto Linked Packet
‘Show Linked Packet in New Window

Open Transmission Control Protocol preferences...

Show TCP summary in protocol tree
Validate the TCP checksum f possible

v Atlow subdissector to reassemble TCP streams
v Analyze Tcp sequence numbers

| Relative sequence numbers

Scaling factor to use when not available from capture.

v Track number o bytes in fight
] Calculate conversation timestamps
Ty heurisic sub-dissectors first
Ignore TCP Timestamps in summary
v Do not callsubissectors for eror packets

| TCP Experimental Options with a Magic Number
Display process information via IPFIX
TCP UDP port: ...

Disable TCP...

[*] Notknown
0 (no scaling)
1 (muttiply by 2)
2(multply by 4)
3 (multply by 8)
4 (multiply by 16)
5 (multply by 32)
6 (multply by 64)
7 (multply by 128)
8 multply by 256)
9 (multply by 512)
10 (multiply by 1024)
11 (multiply by 2048)

12 (multiply by 409)





assets/bd5774d4-8c18-442a-8a3c-6566b82e5854.png
Server

Client

AR
San

AR
San

AR
NS 54

SYN

SYN-ACK

<

ACK






assets/a4aadfc4-920b-4cb3-9f1b-042c025c8816.png
Frame 29: 82 bytes on wire (656 bits), 82 bytes captured (656 bits) on interface @
Ethernet II, Src: AsustekC 63:c1:12 (60:ad:4c:63:c1:12), Dst: IPvamcast fd (01:00:5e:00:00:fd)

Internet Protocol Version 4, Src: 192.168.1.110, Dst: 224.0.0.253
User Datagram Protocol, Src Port: 56946, Dst Port: 3544

Teredo IPv6 over UDP tunneling
Internet Protocol Version 6, Src: 2001:0:5ef5:79fd:1844:218d:9355:5e5f, Dst: ff02::1





assets/8943d143-71c6-44ff-b521-552f71b2b9e3.png
a ICMPV6.pcapng =
Fle Edt View Go Capture Analyze Statitics Telephony Wireless Tooks Help

430 UnRERes=TsEEHacan

(A Ticmpve. B0 -] Expression... +

o, Tme Source Destiaton Protocal Length  Info
482 0.149384 fe80::102e:fce4d:6.. ff02::16 ICMPV6 90 Multicast Listener Report Mess—
504 2.006360 fe80::102e:fce4:6.. ff02::16 ICMPV6 90 Multicast Listener Report Mess
524 0.685682 fe80::1cbd:ba4f:4.. ffe2::2 ICMPV6 70 Router Solicitation from @@:b3
579 ©.982841 fe80::1c3a:3cd5:1.. ffe2::2 ICMPV6 7@ Router Solicitation from 1c:91 v

< >

> Frame 524: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interface © o

» Ethernet II, Src: Apple_48:55:c@ (00:b3:62:48:55:c@), Dst: IntelCor_1b:2d:a8 (e4:a4:71:1b:2d:a8)
» Internet Protocol Version 6, Src: fe8@::1cbd:ba4f:4ae6:c9fd, Dst: ff@2::2
« Internet Control Message Protocol vé
Type: Router Solicitation (133)
Code: ©
Checksum: ©xd781 [correct]
[Checksum Status: Good]
Reserved: 00000000
+ ICMPv6 Option (Source link-layer address : ©0:b3:62:48:55:c@)
Type: Source link-layer address (1)
Length: 1 (8 bytes)
Link-layer address: Apple_48:55:c© (©0:b3:62:48:55:¢0) v
© 7 Ready toload o capture Packets: 1185 - Displayed: 44 (3.7%) Profie: Default






assets/28288582-253a-4229-bbe8-bb7e3f31a492.png
Upload Files B Deepsearch < erge @ Colectons || « Sharing || @ Addtags || ® Dekte 0 Capture Fies
[ Date Added - User  File Name File Size Packets Tags  Bandwidth
@ Drag & Drop Files Here
ek o onse)
Welcome to CloudShark!
Import from URL Get started by dragging & dropping capture files from your desktop onto the "Upload Files" area to the left

6 Resdaonly
© Packet smotations

Index Filters 7" File comments

Filters can be applied to this table to find - Puslic

©5aves graprs

exactly the capture files you'e looking for
Add a Search Filter

| & searen | reset






assets/056dfb81-106e-4ded-8853-1b474c641da5.png
Packb






assets/04734830-5612-4800-9970-0521c223f67f.png
TCP Trafficpcapng - ok
Fle i el e e e e

NEOEL TR Y T = EREEY

(WTapoly a display fiter ... <ctr

3 <) eresson.. |+ ss0p






assets/b7d26be8-2b27-4d8b-a381-a2257e7fa458.png
TCP Example.pcapng 1 2 mb - 2073 packels - more info

TCp v Apply | Clear TV WY Q Analysis Tools ~ || @ Graphs | +

No. © Time Source Destination Protocol  Length  Info

CloudShark Error: "ICE" is meither a field nor a protocol name.
Having a problem with a display filter?

It appears that the display filter you have entered was not a recognized filter, or had a problem with its syntax.

The CloudShark Support website contains information about specifying display filters.

1f you continue to have difficulties with CloudShark Hosted, please contact support@cloudshark.org and let us know about the





assets/c4b71acf-fff7-442e-b8c7-dccdc6b3e60f.png
A 80mhz-1.pcap -
Fle Edt Viw Go Cpue Ansbye Sutiics Telsphony Wi Tooks Hep
amze unRBRes=FsEEaaanm

(W ep o ity <o

3 ) eresson.. | +

No. Time. Source Destnation Protocol

10.000000 €0:06:€6:25:8c:13.. 802.11 v

<

Frame 1: 39 bytes on wire (312 bits), 39 bytes captured (312 *
«Radiotap Header v@, Length 25
Header revision: @
Header pad: @
Header length: 25
> Present flags
MAC timestamp: 162370
> Flags: 0x12
Data Rate: 24.0 Mb/s
Channel frequency: 2412 [BG 1]
» Channel flags: 0x0480, 2 GHz spectrum, Dynamic CCK-OFDM
Antenna signal: -69dBm
Antenna noise: -92dBm

Antenna: @
» 802.11 radio information
IEEE 802.11 Acknowledgement, Flags: ........ c v
[ >

@ 7 IEEE 802. 11 wireless LAN (wian), 10 bytes Packets: 3363 - Displayed: 3363 (100.0%) || Profie: Defauit





assets/f53606c4-cc08-4f3e-9f28-fbb0aa28d99e.png
Internet Protocol Version 6
Reassenble fragnented IPvs datagrams

Show TPy summary in protoco tree

Ensble 1Pv6 gedlocation

] Perform strict checking for RPL Source Routing Headers (RFC 6554)
[ Try heuristic sub-dissectors first

[ Display 1Pv6 extension headers under the root protocol tree.

] Use a single field for IPv6 extension header length

] support packet-capture from IPv6 TSO-enabled hardware.

1Pv6 UDP port [0





assets/b9e78334-1ae2-424c-bb3c-61346cf6bab2.png
A Wireshark - Export - HTTP object list -

Packet  Hostname. Content Type Size Filename ~
204900 www.emc.com  ted/javascript 788 scriptaculousjs.
204911 wwwemccom  ted/css 215k8 htmi-layout-css-includes-combined-min.css

204932 sT.addthis.com  application/javascript 7019 bytes  addthis_widgetjs?pubz=ra-4dT0fbS6582d bectidomready=1
204985 www.emc.com  application/icjavascript 2792 bytes  utilityBarjs

204998 wwwemccom ted/css 9361 bytes  utilityBar.css
205005 wwwemccom  ted/css Bibytes  supportcss

205091 www.emc.com  ted/javasc 175kB  html-layout-js-header-includes-combinedjs
205098 wwwemccom  ted/css 1445 bytes  integration.css.

205101 wwwemccom ted/css S08bytes  productfamily.css

205121 wwwemccom ted/css Sbytes  frecform.css

205128 wwwemc.com  ted/javascript WKB  jueryjs

205240 wwwemccom  ted/css 391bytes  breadcrumb.css

205242 wwwemccom  ted/css 1894 bytes  integration.css.

205259 wwwiemc.com  ted/javasc 283kB headerjs

205297 wwwemccom  ted/css 2063 bytes  corporate.css

205303 wwwemccom  ted/css 10kB. landing-reskin-nov2011.css

205314 wwwemc.com  ted/javascript 18KB. cufon-yui

205338 www.emccom  application/scjavascript 45 kB cufon-yt
205462 wwwemccom  application/scjavascript 32 kB MetaMediumfontjs

205483 wwwiemccom  application/scjavascript 13 kB modaljs

205517 www.emccom  application/xcjavascript 2059 bytes  cufonReplacejs

205518 www.emccom  application/scjavascript 814 bytes  tableStylerjs.

205559 wwwiemc.com  ted/javasc 156k8  metajs v

Text Fiter:





assets/0203ee8e-fb72-4a22-ad90-4eac69b1efee.png
- 0

a Wireshark - IP Protocol Types - bigFlows.pcap
Topic / ltem Count Average Minval Maxval Rate (ms) Percent Burstrate Burststart
4 1P Protocol Types 791179 267 100% 9800 145166

uop 152664 0508 1930% 14200 7312
e 4795 21160 E023% 9200 145166
NONE 370 00124 047T% 03300 260854

Display fiter: _Enter a isplay fiter






assets/f1a6c654-63fc-4b1d-9c1f-2a65a629c24f.png
A ICMP OS Detection.pcap - B
File Edt View Go Capture Ansyze Statistics Telephony Wirelss Tools Help

Am 0 UERBRe

B0 -] Expresson... +

Time. Source Destination protocol Length  Info ~
10.000000 192.168.0.113 128.241.194.25 ICMP 42 Echo (ping) request id=exe7ff
40.002332 192.168.0.113 128.241.194.25 ICMP 54 Timestamp request id=ex2461
4240 74.418714 192.168.0.113 128.241.194.25 ICMP 162 Echo (ping) request id=excald
4241 0.026919 192.168.0.113 128.241.194.25 ICMP 192 Echo (ping) request id=excale
4244 ©.067329 128.241.194.25 192.168.0.113 ICMP 162 Echo (ping) reply id=excald

) 4746 0.0304ARS  17R.241.194 .05 192 _168.04.113 TCMP 192 Fcho (ning) renlv id=axcate v

> Frame 4: 54 bytes on wire (432 bits), 54 bytes captured (432 bits)
» Ethernet II, Src: Elitegro_40:74:d2 (©0:21:97:40:74:d2), Dst: D-Link_cc:a3:ea (©0:13:46:cc:a3:ea)
»|Internet Protocol Version 4, Src: 192.168.0.113, Dst: 128.241.194.25
« Internet Control Message Protocol

Type: 13 (Timestamp request)

Code: ©

Checksum: ©xce9e [correct]

[Checksum Status: Good]

Identifier (BE): 9313 (©x2461)

Identifier (LE): 24868 (ox6124)

Sequence number (BE): © (©x0000)

Sequence number (LE): © (©xeeee)

Originate timestamp: © (@ seconds after midnight UTC)

Receive timestamp: © (© seconds after midnight UTC)

Transmit timestamp: © (@ seconds after midnight UTC)

© 7 1ntemet Protocol Version 4 (), 20 bytes Packets: 4277 - Displayed: 6 (0.1%) Profie: Default






assets/114a1012-5332-46d6-bf6a-85ae2c35b2bb.png
Mark/Unmark Packet CtrleM

lgnore/Uignore Packet  Ctrl+D
Set/Unset Time Reference  Ctl+T
Time Shitt CtlsshiftsT
Packet Comment. CisAtC

Edit Resolved Name.

Apply as Filter 3
Preparea Fiter »
Conversation Fiter »
Colorize Conversation »
sctp »
Follow »
Copy »
Protocol Preferences »
Decode As.

Show Packet in New Window





assets/dd26bfa8-ac6f-476d-895b-3d09f85bdd18.png
Fie Edit View Go Capture Analyze Statistics Telephony

arp-storm.pcap
Wireless  Tools  Help

aaaH
3 ] Bresson... +

o, Tme Source Destiaton Protocol_Info

10.000000 ©0:07:0d:af:f4:54 ff:ff:ff:ff:ff:ff ARP  Who has 24.166.173.159? Tell 24.166.172.1

20.098594 ©0:07:0d:af:f4:54 ff:ff:ff:ffiff:ff ARP  Who has 24.166.172.141? Tell 24.166.172.1

30.012023 ©0:07:0d:af:f4:54 ff:ff:ff:ff:ff:ff ARP  Who has 24.166.173.161? Tell 24.166.172.1

40.101174 00:07:0d:af:f4:54 ff:ff:ff:ff:ff:ff ARP  Who has 65.28.78.76? Tell 65.28.78.1

50.004953 ©0:07:0d:af:f4:54 ff:ff:ff:ff:ff:ff ARP  Who has 24.166.173.163? Tell 24.166.172.1

60.091165 ©0:07:0d:af:f4:54 ff:ff:ff:ff:ff:ff ARP  Who has 24.166.175.123? Tell 24.166.172.1

7 ©.022524 ©0:07:0d:af:f4:54 ff:ff:ff:ff:ff:ff ARP  Who has 24.166.173.165? Tell 24.166.172.1

80.078123 ©0:07:0d:af:f4:54 ff:ff:ff:ff:ff:ff ARP  Who has 24.166.175.82? Tell 24.166.172.1

90.046548 ©0:07:0d:af:f4:54 ff:ff:ff:ff:ff:ff ARP Who has 69.76.220.131? Tell 69.76.216.1 v
< >
> Frame 1: 6@ bytes on wire (486 bits), 60 bytes captured (486 bits)

> Ethernet II, Src: ©0:07:0d:af:f4:54, Dst: ff:ff:ff:ff:ff:ff
» Address Resolution Protocol (request)

O 7 apstom.pcap

Packets: 622 - Displayed: 622 (100.0%)

Profle: Default






assets/87caefbe-c4b8-4d9e-9436-c9684268e106.png
o Wireshark - Time Shift ? IR

L —

1 e Y —
) tensetpadet B

‘and extrapolate the time fo al other padiets DY 00] s o]

© Undo al shifts.

[ome ]1 wor [ ]





assets/46f5de03-4f36-44b3-b9e8-e6ed3ce9e2cf.png
ARP Request
Who has 10.40.10.101?

g Tell 10.40.10.109

HostA

IP Address 10.40.10.109 Intemet
MAC Address 46:89:FF:4C:57:49
Switch Gateway
1P Address 10.40.10.101
MAC Address BB:20:62:C4:57:23
Host B

IP Address 10.40.10.103 ARP Reply
MAC Address 00:80:68:B4:87:72 10.40.10.101 is at

BB:20:62:C4:57:23






assets/3615ac60-d459-4fb7-865d-979e2c2e3787.png
o Wireshark Save file as

Savein: | | Temp v @02 @
- Name - Date modified Type.
< No items match your search.
Recent places

Fie name:

Save astype: | Wireshark/... - poapng (" ntar " ntar" poapng ge:”peapng)

] Compress with gzp

Size






assets/9c42c778-8f5b-47d7-921a-38d901204bc9.png
Capture

using s fier; (W [Erier cpire i






assets/d3eafbdb-7ce9-49ea-b1fc-11911bda6493.png
FCS





assets/4e1160ba-455e-4800-a891-b00411e11c1a.png
a

Manage Interfaces

Local Interfaces | Ppes | Remote Interfaces

O
O
O
O
O

Show  Friendly Name. Interface Name

\Device\NPF {7D7EB64A-FO60-4B6A-6023-320F ABEBDB62)  Microsoft: Wi-Fi
\Device\NPF _{9ACBICFF-AQ30-4EBA-672A-2EBC2891284E)  VMware Virtual .
\Device\NPF_{D42D66A3-3243-4C6B-BCED-41DCBB718247) Oracle: Virtual.

\Device\NPF_{0617DAS8-BAOB-47CC-8DDC-14815CEBCECD} Microsoft: Loca..

\Device\NPF_{717FOBEA-TBAC-453C-BAGB-EB1BOSGE2167)  Realtek PCle FE .
\Device\NPF_{3385DB1A-FODF-4A33-B7BE-BSA39343C567)  VMware Virtual .

\\\UsBPcapl UsBPeapl
\\\USBPcap2 UsBPeap2
\\\USBPcap3. UsBPeap3
\\\USBPcapd UsBPeap4
\\\USBPcaps UsBPeaps

Comment
Microsoft

VMuware Virtual Ethernet Adapter
Oracle

Microsoft

Realtek PCle FE Farmily Controller
VMuware Virtual Ethernet Adapter






assets/27970ab8-018b-4396-ab07-50e5e758e8a2.png
< Internet Protocol Version 4, Src: 172.16.133.57, Dst: 68.64.21.62
0100 .... = Version: 4

.... 0101 = Header Length: 20 bytes (5)

Differentiated Services Field: ©x@@ (DSCP: CS@, ECN: Not-ECT)
Total Length: 1154

Identification: exfd44 (64836)

Flags: ©xeeee

Time to live: 64

Protocol: UDP (17)

Header checksum: ©xeeSe [validation disabled]

[Header checksum status: Unverified]

Source: 172.16.133.57

Destination: 68.64.21.62





assets/81404c59-39cd-421a-8cc1-7804af510c71.png
A Sequence Numbers (Stevens) for 10.50.21.163:52258 — 74.125.22.139:443 - o

Sequence Numbers (Stevens) for 10.50.21.163:52258 — 74.125.22.139:443

Stevens Gaph
B -
-~ -

1500

1200
£
5

a0

3000 {.‘

ot
0 T 7 3 ] s 0 7 0
e )

~Hoverover thegrah for deta. 625 ok 1748 — 799 ks 97748

Type Time /Sequence (stevens) ~

Stream (22 [2]] [switch Directon

Reset





assets/4a4c4f0d-6bd2-4414-add3-1ab71d1877d2.png
Analyze

Display

Decode

Gather

EPAN

Protocol Tree
Dissectors
Dissector-Plugins
Display Filters

Capture






assets/438f0b19-33b6-4ad2-a56e-c03408500294.png
r The Wireshark Network Analyzer =

Fle Edt View Go Capture Anayze Staisics Telephony Wireless Tools Help
Am e imRERec2=TsEHE QS

(WTapoly a display fiter .._<ctr/> =3 -] Bgresson... +
Open

C:\Captures\Web Page.pcapng (196 KB)

Capture

sing tis ters (R [Eter = copore i =) [zt foces shown, Grcden

MS NDIS 6.0 LoopBack Driver: Ethernet 2
Microsoft: Wi-Fi

Learn
You are running Wireshark 3.0.2 (v3.0.2-0-g621ed351d5c5). You receive automatic updates.

7 Ready toload or aptre || Nopackets || prfi: efaut





assets/fee535c3-d143-4b6d-a264-c90973a78f19.png
< User Datagram Protocol, Src Port: 54585 (54585), Dst Port: domain (53)

Source Port: 54585 (54585)

Destination Port: domain (53)
Length: 36

Checksum: ©x448f [unverified]
[Checksum Status: Unverified]
[Stream index: ©]





assets/78108681-44c8-4f6c-8ece-d78185a9fc8f.png
r Wireshark - Configuration Profiles

Clusersliss ApData Roaming Wreshark

o J[Cema [ b |






assets/7b230795-75d1-4a8b-a3df-bd354349f08d.png
s Wireshark - Protocol Hierarchy Statistics - Wi-Fi

Protocol N PercentPackets  Packets Percent Bytes Bytes Bits/s EndPackets EndBytes EndBits/s
4 Frame 1000 084 1000 1681582 65k 0 [ [
4 Etheret 1000 084 34 57176 2224 0 0 0
4 Internet Protocol Version 6. 08 282 69 115680 4501 0 0 0
4 User Datagram Protocol 101 a2 02 2% 128 0 0 [
Multcast Domain Name System 07 E) 05 71 303 29 B 33
Link-local Multicast Name Resolution 02 10 00 9 10 28 9
Domain Name System 91 m 13 o668 881 I 2668 881
4 Transmission Control Protocol 581 ErE) 537 02499 35k 963 20813 7891
Secure Sockets Layer 350 1430 25 883004 34k 1363 7342 0k
4 Hypertedt Transfer Protocol 02 10 04 6767 263 0 0 0
‘Online Certficate Status Protocol 02 10 02 004 116 10 004 116
Data 04 7 02 o2 13 17 o2 153
Internet Control Message Protocol v6 26 107 05 @2 33 107 @2 3
4 Intenet Protocol Version 4 89 1182 14 2736 93 0 0 0
4 User Datagram Protocol 19 7 00 & # 0 [ [
Simple Service Discovery Protocol 02 7 01 @1 3% 7 @1 E
NetBIOS Name Service 02 9 00 s 179 450 7
Multicast Domain Name System 07 2 05 1 303 29 B 30
ink-local Multicast Name Resolution 02 10 00 9 10 28 9
Domain Name System 04 7 00 s 2 17 589 2
Data 02 7 02 M 137 M 1
4 Transmission Control Protocol 24 1078 311 523414 0k 578 0822 11k
VSS-Monitoring ethernet trailer 22 % 00 w7 0 180 7
Secure Sockets Layer o7 397 310 50728 0k 382 467360 18k
4 Hypertedt Transfer Protocol 00 2 00 03 31 330 2
Line-based text data 00 1 00 w71 182 7
Data 05 2 00 % 1 2% 2 1
4 Internet Group Management Protocol 05 2 00 B U6 28 11
VSS-Monitoring ethernet trailer 02 8 00 ® 0 8 16 0
4 Internet Control Message Protocol 00 1 00 ® 0 0 0 0
VSS-Monitoring ethernet trailer 00 1 00 2 [ 2 0
‘Address Resolution Protocol 02 10 00 2 10 10 20 10

o dply fitr,





assets/b16a99a1-2583-4ae1-a843-70d532184cac.jpg
Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
Ethernet II, Src: Vmware 37:5f:f5 (@0:0c:29:37:5f:f5), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
v Address Resolution Protocol (request/gratuitous ARP)

Hardware type: Ethernet (1)

Protocol type: IPv4 (@x0800)

Hardware size: 6

Protocol size: 4

Opcode: request (1)

[Is gratuitous: True]

Sender MAC address: Vmware 37:5f:f5 (00:0c:29:37:5f:f5)

Sender IP address: 192.168.130.128

Target MAC address: ©0:00:00_00:00:00 (00:00:00:00:00:00)

Target IP address: 192.168.130.128






assets/aa66b6b8-fe97-4256-9ac5-158d03b00d38.jpg
a bigFlows.pcap - 0

Fle Edt View Go Coptre Anayze Statistics Telephony Wircless Tools Help

AR O UBRBR e Qaam
(0=
s Display fiter v http.chat.
I Tme Source Destnaton
1 300 0.15 172.16.133.116 172.16.139.250

302 0.16 172.16.133.116





assets/6fa12035-999f-4b2c-817f-c5e0dd2bc3c2.png
TCP
TCP
TCP
TCP
TCP

10.0.0.148:49559
10.0.0.148:49768
10.0.0.148:62310
10.0.0.148:62789
10.0.0.148:62790

17.249.124.141:5223
34.212.110.138:443
13.89.217.116:443
23.55.20.137:443
204.13.192.141:80

ESTABLISHED
ESTABLISHED
ESTABLISHED
CLOSE_WAIT
CLOSE_WAIT





assets/f9391a65-d7c3-495f-b742-06f55df1bb14.png
A Wireshark - Expert Information - bigFlows.pcap - D

Severty Group Protocol Count A

Warning  TCP Zero Window segment, Sequence TP
Warning  ACKed segment that wasn't captured (common at capture... Sequence TP

Warning  Ignored Unknown Record Protocol s 89
Warning  No response seen to ICMP request Sequence oM an
Warning  Initial AppO segment with "JFIF" dentifier not found Malformed JFIFOPEG)image 117
Warning  Previous segment(s) not captured (common at capture sta... Sequence Tcp 450
Warning  Unknown bitfs): 0x01 Undecoded  XS09CE £

Warning  lllegal characters found in header name. Protocol HTTP 09
Waring  Connection reset (RST) Sequence TP 1960
Warning  This frame is a (suspected) out-of-order segment Sequence Tcp 30156
Note ime To Live” only 1 Sequence 1Pva EX
Note ime To Live’ |= 255 for a packet sent to the Local Netwo... Sequence [ 4
Note This frame is 3 (suspected) fast retransmission Sequence TP 105
Note ACKto 3 TCP keep-alive segment Sequence TP 5536
Note This frame is 2 (suspected) spurious retransrmission Sequence TP 119
Note “This session reuses previously negotiated keys (Session res... Sequence s 41
Note HTTP body subdissector failed, trying heuristic subdissector Maformed HTTP 180
Note TCP keep-alive segment Sequence TP 11563
Note No bind info for interface Context ID 0 - capture starttoo L. Undecoded DCERPC 8550
Note Duplicate ACK (#1) Sequence TP 36104
Note This frame is 3 (suspected) retransmission Sequence TP 26436
Chat Possible traceroute: hop #3, attempt #1 Sequence upp. 219
Chat TCP window update Sequence Tcp. 1527
Chat M-SEARCH * HTTP/1.1\An. Sequence SSDP. &3
Chat Connection establish acknowledge (SYN+ACK): server por.. Sequence Tcp 7075
Chat Connection finish (FIN) Sequence TP 39753
Chat (GET /CSIS/CSISISAPLdll/ request?aach6985-26fc-48a7-a5f8... Sequence HTTP. 28070
Chat Connection establish reauest (SYN): server port 443 Seauence TP 33056 v

o dply fter sec.

Limit o Display Fiter

=

Close Heb





assets/dacfb537-00a1-4cf9-8bb4-c992cd0b51f4.png
http:/ipacketiife.net/captures/snmp-ipva.cap 447.5 kb - 2100 packets - more info

Start cyping a Display Filter | v Aply | Clear Qanalysis
No. © Time Source Destination
T 5 0.000000 10.0.0.150 10.252.0.10 ~
2 s 0.001071 10.254.0.10 10.0.0.150
s s 0.002160 10.0.0.150 10.254.0.10
4 o 0.003304 10.254.0.10 10.0.0.150
B o 0.003848 10.0.0.150 10.254.0.10
i o 0.004854 10.254.0.10 10.0.0.150
7 o 0.005123 10.0.0.150 10.254.0.10





assets/7446cffd-a5f8-434f-8b76-e233745df120.png
client server

Dy
SCovery
oFFER

%ﬁ

c\ 3
l>\G\(\NO\;\J\,ED

<4+———3un

v v

Figure 1 DHCP process





assets/bbbe5712-7051-4c34-8687-6ba0e93d920b.png
Capture
using s ter: (ARl )






assets/d0d5be33-c297-4a5f-a3a5-f678d30ea6e7.png
o About Wireshark

Wreshark | Authors | Folders | Plugins | Keyboard Shorteuts | Acknowledgments | License.

[Search Authors

Neme Emai ~
Gerald Combs gerald[ATlwireshark.org

Gilbert Ramirez ‘gram{ATlalumni.ice.edu

Thomas Bottom tombottom{ATllabxtechnologies.com

Chs Pane chris pane[ATllabxtechnologies.com

Hannes R. Bochm hannes[ATlboehm.org

Mike Hall mikelATlhallzone.net

Bobo Rajec bobolATlbsp-consulting.sk

Laurent Deniel laurent. deniel[ATlfree r

Don Lafontaine Iafont02lATlcn.ca

Guy Haris guylATlalum.mit.edu

Simon Wilkinson ‘Sw{ATldes.ed.ac.uk

Jorg Mayer jmayer(ATloplof.de

Mertin Maciaszek fastjackATli-s-onet v






assets/e84fad8c-6faf-4588-80d7-bef4a786fb3c.png
Wreshari/...-peapng ("rtar gz."tar:” peapng g2:"pcapng) v

o
WiesharkAcpdump...-peap (dmp gz.”dmp;cap gz."cap:"poap g2.”pcap)
WiresharkAcpdump/.-nianosecond pcap (" dmp gz.* 4mp.” cap g2, cap: peap gz poap)
Modfied tcpdump -poap (-dmp gz dmp:-cap 7. Cap:”pcap Gz:”peap)

Nokia tcpdump -pcap (-Gmp gz.” dmp;”cap g2." cap;- poap 92" 5cap)

RedHat 6.1 tepdump - poap (- dmp gz:*dnp.~ cp g2, cap: peap gz poap)

‘SuSE 6.3tcpdump - poap (~dmp gz.* ™ cap g2.*cap: peap gz peap)

InfoVista SView capture (*5vw. gz 5vw)

Endace ERF capture ("ef gz:"erf)

HP-UX netltrace (“tre] gz:*tre1 " tro0.gz;*tre0)

Microsoft Nethlon 1 (cap gz:*cap)

Wicrosoft Nethlon 2x (-cap gz.*cap)

Snfer (DOS) ("syc gz syc:fdo gz fde;"fre gz e enc.gz:"enc: cap gz:"cap)
NetXiay, Sniffer (Windows) 1.1 -cap gz cap)

Sfer (Windows) 2.00c ("caz.gz” caz.” cap g2:"cap)

Network Insruments Observer (*bfrgz:"bf)

Novell LANalyzer (4r1 gz:1r1)

Sun snoop (*cap g2."cap snoop gz oop)

Visual Networks traffic capture ()

Ki2textfle (bt gz:"bd)

‘TamoSoft CommView (ncf.gz*ncf)





assets/dceb00a7-4aa2-469c-b6ef-9fd5f4fea854.png
a services - Notepad -
File Edit Format View Help

# This is a local copy of the IANA port-numbers file. o
#

# Wireshark uses it to resolve port numbers into human
readable

# service names, e.g. TCP port 8@ -> http.

#

# It is subject to copyright and being used with IANA's
permission:

# http://www.wireshark.org/lists/wireshark-
dev/200708/msg@e160.html






assets/f1f8089d-3f08-49bf-807a-aed9607b28b5.png
Wireshark - Capture Interfaces

Input | Output | Options.

Display Optons Name Resolution
Update lst of packets i real-tme. Resolve MAC Addresses
Automatically scroll during live capture ] Resolve network names

Resolve transport names:

[
i P
I—
I
i r—

St





assets/7d64c215-fcec-498e-89f9-e6aef5aa7afe.png





assets/c2289bc0-c509-4d9e-872f-1438db4c8e8b.png
@ manuf - Notepad
File Edit Format View Help

# This file was generated by running ./tools/make-manuf. o
# Don't change it directly, change manuf.tmpl instead.

#

#

# /etc/manuf - Ethernet vendor codes, and well-known MAC

addresses

Laurent Deniel <laurent.deniel [AT] free.fr>

Wireshark - Network traffic analyzer

By Gerald Combs <gerald [AT] wireshark.org>

Copyright 1998 Gerald Combs

SPDX-License-Identifier: GPL-2.@-or-later

The data below has been assembled from the following sources:
The IEEE public OUI listing available from:
<http://standards.ieee.org/develop/regauth/oui/oui.txt>
<http://standards.ieee.org/develop/regauth/iab/iab.txt>
<http://standards.ieee.org/develop/regauth/oui36/oui36.txt>

Michael Patton's "Ethernet Codes Master Page" available from:

HEHEHE SRS

<http://www.cavebear.com/archive/cavebear/Ethernet/Ethernet.txt>






assets/c64d9ad6-2d14-4eca-b3b2-7f8fbaaa34b1.png
a Wireshark - All Addresses - bigFlows.pcap - o
Topic / hem Count Average Minval Maxval Rate(ms) Percent Bursirate Burststart ~
15755235158 4 0000 000% GO0 202316
6 2 0000 000k 00100 296001
732516 2 o0 ook o000 o7em
sl 2 o0 ook o000 78603
el 2 0000 0o0% 00100 201608
RN 2 0000 0o0% 00100 208710
% 2 0000 0% 000 o125
RH 2 000 ook 0000 1925
wRs 2 o0 ook 0000 78608
161130158160 3 0000 000k 00100 s3et





assets/7c0307fc-1145-447e-955d-fede546b11bb.png





assets/49c5fb11-8124-4953-871d-b9b9200df844.jpg
Filter Feld Reference

Protocol Preferences

Decode As.
Goto Linked Packet
Show Linked Packet in New Wi

Open Transmission Control Protocol preferences.

Show TCP summary in protocol tree
Validate the TCP checksum f possible

Allow subdissector to reassemble TCP streams
Reassemble out-of-order segments

Analyze TCP sequence numbers

Relative sequence numbers

Scaling factor to use when not available from capture
Track number of bytes n fight

Calculate conversation timestamps

Try heuristic sub-dissectors first

Ignore TCP Timestamps in summary

Do not callsubdissectors for eror packets

TCP Experimental Options with a Magic Number
Display process information via IPFIX

TCP UDP port:0.

Disable TCP.

»






assets/93a703f6-d68a-46b5-b6a1-1099f5d83ad3.png
Align Left
Align Center
Align Right





assets/5ff108fe-a104-4cb5-8b65-10eb79238db9.png
A client-fast-retrans.pcapng -on

Fle Edt View Go Capture Anabyze Telephony  Wireless Tools Help

ANZOUBRBR e tEEacaxn

(At streameq0 EIET -] Expresson
1 0.00 74.203.22.229 230.211.187.172 |
2 0.l1e 230.211.187.172 74.203.22.229
3 0.10 74.203.22.229 230.211.187.172 =

<

Total Length: 52
Identification: Oxeca@ (60576)

*Flags: 0x4000, Don't fragment

Time to live: 64
Protocol: TCP (6)

Header checksum: 0x49f3 [validation disabled]

Expand Subtrees
Collapse Subtrees.
Expand All
Collapse All

Apply as Column

Apply as Fiter
Prepare a Fitter
Conversation Fiter
Colorize with Flter
Follow

Copy.
Show Packet Bytes..
Export Packet Bytes..

Wiki Protocol Page:
Filter Feld Reference

Protocol Preferences

Decode As...
Goto Linked Packet
‘Show Linked Packet in New Window

Shift+Right
ShiftsLeft
Ctr+Right
CtreLeft

Ctrl+Shift+|

»
»
»
»
»
»

Ctrl+Shift+0

Ctrl+Shift+X

>

<

2]

O 7 Header checksum (ip.checksum), 2bytes.

Padkets: 27 *Displayed: 27 (100.0%)

Profle: Default





assets/80c19fd7-a051-4fd5-86ad-82156ca4eace.png
Wireshark 2

Develop skills for network analysis and address a wide range
of information security threats.

L P TITANIT I e
\ Q -
-





assets/d2523cdb-250f-4932-b23b-9e59c112d9cb.png
IPv6 Header
Version Traffic Class | Flow Label
Payload Length | Next Header | Hop Limit
Source Address
Destination Address





assets/6f37d495-4ef8-4d21-8b55-acc0301c7778.png
UDP Header

Source Port Destination Port
Length Checksum






assets/bb9c2051-87f5-4202-a6fb-aa63459cc5b9.png
Collection Access: ® Private O Public

Private collections are only visible to the owner. A public collection is only accessible to those who have been given the unique URL regardless if they are
logged in to a CloudShark account. This setting does not affect the individual files

idual File Pen

In ns: [ Don't change any individual capture permissions v

1 Capture File:

Uncheck files to remove them from this collection.

File name Packets size
TCP Example peapng 273 12MB

< PublicFile





assets/0eb52f1b-7e45-49f7-80d6-50724d1775f6.png
| DNS Questions & Answers.pcapng -8

Fie Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

dnzouinmppERe>=F s Haaan

(Wl = dosley fiter . <cei/> 3 - Eresson... +
No. e Sorce Destraton Protoo gt o

i 10.000000 192.168.1.52 8.8.8.8 DNS 70 Standard query @xe

< >

> Frame 1: 70 bytes on wire (560 bits), 7@ bytes captured (560 bits) on interface ©

> Ethernet II, Src: ba:ba:ba:ba:ba:ba (ba:ba:ba:ba:ba:ba), Dst: Cisco-Li_26:df:49 (48:f8:b3:26:df:49)
» Internet Protocol Version 4, Src: 192.168.1.52, Dst: 8.8.8.8

» User Datagram Protocol, Src Port: 54585 (54585), Dst Port: domain (53)

> Domain Name System (query)

© 7 Readytoload or capture ‘Selected Packet: 1 +Packets: 2 Displayed: 2 (100.0%) * Load 0.0]| profie: Defauit






assets/82d6956b-ea9f-4fa3-a2f1-58f6290f2b6f.png
< ACK 180

I’'ve received 179 bytes of
data and | am ready for more,
starting with 180.

Client






assets/f38b96ea-25b2-4b62-adc2-b30e9182d724.png
s The Wireshark Network Analyzer -
[Fie] &t View Go Capture Anshye Suatics Telphony Wireless Tooks Hep

AR EBRE(R &= EER

(oo 2 e s <Cof>

Capture

using s fier; (W [Erier cpire i =) [titerfoce show, 11 idden~

] Microsoft Wik
Learn

You are running Wireshark 2.6.6 (v2.6.6-0-gdf342cd). You receive automatic updates.

7 Ready toload or aptre || Nopackets || prfi: efaut





assets/c3a50d6f-9471-4ed5-8b63-0cdc8b7878a3.png
Appearance
Columns
Font and Colors|
Layout

Capture

Bxpert

Filter Buttons

Name Resolution

Protocols

RSA Keys

Statistics

Advanced

Wireshark - Preferences

Displayed Title Type Fields Field Occurren
No. Number
Time Time (format s specified)
Source Source address
Destination  Destination adress
Packet comments Custom pit_comment o
Protocol Protocol
Length Packet length (bytes)
Info Information v

Hardware destaddr &
Hardware src addr

Hw dest a..resolved)
Hw dest a.resolved)
Huw src ad..resolved)
Hw src ad..resolved)
EEE 802,11 Rss!

EEE 802,11 TX rate

P DSCP Value

Cancel reb





assets/1a072068-ae56-4e1d-b967-b3586674d4df.png
4 Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
TCP Option - No-Operation (NOP)
TCP Option - No-Operation (NOP)
TCP Option - Timestamps: TSval 835172948, TSecr 2216543





assets/8063b74f-edd0-4c00-8b3e-c7f024390fe3.png
78

15 16

31

8-bit type

8-hit code

16-bit checksum

(contents depends on type and code)






assets/000b6257-35fe-4f77-983e-b293b701fa84.png
Tnput | output | Options

Wireshark - Capture Interfaces

> Microsoft: Wi-Fi

Interace Trafic Link-layer Header _Promiscuous _Snaplen (B) _ Buffer (MB)_ Monitor Mode_ Capture Fitr
» M NDIS 60 LoopBeck Diver themet 2 Ehemet T — =
Wicrosof: Local Area Connection’ 2 Ethemet etk 2 =]
Ethemet etk 2 o

Enable promiscuous mode on al interfaces

Tentra ot

2

Captre e or slected nterfaces:

| Manage Interfaces

Cose

Compie BPFs

Heb






assets/1c44d8f3-fd8d-4df3-a05d-63876d1413cb.png
A ICMPv4_Destination_unreachable.pcapng s
File Edt View Go Copture Anslyze Statstis Telephony Wirelss Tools Help

dnze inpRBRe>=FIF=aaan

m y e <cuf> 3 ) Epresson..| +
[r. Source Destination Protocol Info

10.00 10.1.2.1 10.1.2.2 ICMP Destination unreachable (Host unreachable)
232.48 10.1.2.1 10.1.2.2 ICMP Destination unreachable (Host unreachable)
333.53 10.1.2.1 10.1.2.2 ICMP Destination unreachable (Host unreachable)
434.58 10.1.2.1 10.1.2.2 ICMP Destination unreachable (Host unreachable)
535.62 10.1.2.1 10.1.2.2 ICMP Destination unreachable (Host unreachable)
636.68 10.1.2.1 10.1.2.2 ICMP Destination unreachable (Host unreachable) |

*Frame 2: 70 bytes on wire, 70 bytes captured on interface ©
Ethernet II, Src: ca:00:0c:68:00:08, Dst: ca:01:0c:68:00:08
 Internet Protocol Version 4, Src: 10.1.2.1, Dst: 10.1.2.2
Internet Control Message Protocol

L |
© 7 Ethemet (eth), 1abytes Packets: 15 - Displayed: 15 (100.0%) Proffe: Defaut






assets/433e9b1f-8cc6-480c-826a-3fa18a3198f9.png
Decode As.
Goto Linked Packet
Show Linked Packet in New Window

Open Internet Protocol Version 4 preferences.

Decode IPvA TOS fild as DifSery feld
Reassemble fragmented IPvA datagrams

Show Pud summary in protocol tree

Validate the IPu4 checksum if possible

Support packet-capture from P TSO-enabled hardware
Enable IPv4 geolocation

Interpret Reserved flag as Security flag (RFC 3514)

Try heuristic sub-lissectors fist

1Pu4 UDP port: 0

Disable IPvA,






assets/5e3224ca-c85e-4995-add5-8126f493e622.png
a Error

Mt le: No capur e name v, You must specy a flename you
A e






assets/17a9f0d9-95e4-4b75-8238-0d8c47bece4c.png
The offset is in increments of four (4) bytes.
Offset value is 1000, which is 8 in binary
TCP Header length =8 X 4 =32





assets/9f3f573a-169c-4d3d-bf96-17b1d3702278.png
A The Wireshark Network Analyzer -8

Fie Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

ds e imRERe>=TFT sEHaac

(R Lo 2 e s <Cof> =3 -] oresson..

Open
CA\Users\Lisa\SkyDrive\ Documents\PACKT\Captures\A TCP Example.peapng (7352 Bytes)

Capture

sing tis ters (R [Eter = copore i =) [aintrfocesshown >

Wik b
VMware Netwrk Adapter Vhnet] __
VirtusiBos Host-Only Network

Local Area Connection" 2.
Ethemet —
VMwere Network Adapter Vhinets I~

Learn
You are running Wireshark 2.6.2 (v2.6.2:0-g o3cedbc). You receive automatic updates.

7 Ready toload or aptre || Nopaceets || prfi: efaut





assets/4bb0b9e0-9019-4cfe-a779-03b3bda9b4c8.png
A Wireshark - Display Filters

Neme Fitter ~
PX only ipx

196 address 2001:cb8:1 ipvb.addr == 2001:dbg:1

1Pu6 only ipv6

1Py address isn't 192.02.1 (don't use I= for this) !(p.addr == 1920..1)

1P address 192021 ip.addr == 192021

1Pud only ip

No ARP notarp

Ethernet broadcast eth.addr

Ethernet type 0:0806 (ARP) ethtype

Ethernet address 0000:5¢00:5300 eth.addr

NETSEE ip.addr == host.example.com )
+][=][m UsersLiso ooDato Roaming Wieshorkdfiters

= o





assets/058b9f76-2868-4491-a2e1-9289b8b1ecff.png
Al Addresses
Destinations and Ports

1P Protocol Types.

Source and Destination Addresses






assets/8dab2d26-8128-4c38-9a3b-0183a91d2026.png
IP Header | TcP/UDP Header

Packet Segment
1Pua/IPus Acdress | PortAddress






assets/4d330a06-acf1-4f33-8897-c04e389329f5.jpg
a Flow312.pcap =
Fle Edt View Go Capture Anabyze Statscs Telephony Wireless Tools Help

Am e LnRB Re~=FsEHaaanm

(W oot = dopley e <coi> - 3 - eresson.. +
Y. Tme Source Destraton Protoca o =

20.02 76.13.6.174 172161330 TEP http(80) » 50405 [SYN,
310,02 172.16.133.132 76.13.6.174 TEP 50405 - http(80) [ACK]

1011 .... = Header Length: 44 bytes (11) I
000. .... .... = Reserved: Not set
..0 .... .... = Nonce: Not set
. @... .... = Congestion Window Reduced (CWR): Not set
.0.. .... = ECN-Echo: Not set
..0. .... = Urgent: Not set
..1 .... = Acknowledgment: Set

. @... = Push: Not set
ceee 4oe. .0.. = Reset: Not set
wees vees +..0 = Fin: Not set
[TCP Flags: «ececv- A-:S-] v
(. 7 Transmission Control Protocol (tcp), 44 bytes. || Packets: 10 - Displayed: 10 (100.0%) Il Pmﬁ\e:ﬂefnu;






assets/03b5be98-2c34-4666-beba-304aa4e4c034.png
Profile:

Defautt
Blutooth
Classic
Malware

No Reassembly






assets/3e8d975f-cc73-41fb-9a49-fe340efd1a4b.png
Frame 5: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface ©
4 Ethernet II, Src: Actionte_2f:47:87 (00:26:62:2f:47:87), Dst: AsustekC_b3:01:84 (00:1d:60:b3:01:84)
Destination: AsustekC_b3:01:84 (00:1d:60:b3:01:84)
Source: Actionte_2f:47:87 (00:26:62:2f:47:87)
Type: IPv4 (©x0800)
Internet Protocol Version 4, Src: 174.143.213.184, Dst: 192.168.1.140

Transmission Control Protocol, Src Port: http (86), Dst Port: 57678 (57678), Seq: 1, Ack: 135, Len: ©






assets/77396066-720d-49d4-97f9-160958316aaa.jpg
bigFlowspcap - O
Edt View Go Copture Analyze Staitis Telephony Wireess Tools Help

0 umRB Recs=sTIEHaaan

105 ©.05 172.16.133.75 157.56.241.150
106 ©.06 172.16.133.99 216.115.216.44
107 0.06 172.16.133.99 216.219.115.17
108 0.06 172.16.133.99 64.74.80.15

& |
Frame 244: 131 bytes on wire, 131 bytes captured

Ethernet II, Src: 00:21:70:67:68:53, Dst: 00:90:7f:3e:02:d0
Internet Protocol Version 4, Src: 172.16.133.75, Dst: 157.56

Transmission Control Protocol, Src Port: 58186 (58186), Dst
i< =
T g e | Packets: 791615 - Displayed: 635017 (80.2%) || Profie: Defaut






assets/55b72ae8-45c6-4042-8003-e7f1ba99b1b2.png
Capture Index Preferences

Choose the columns for the capture table. Drag additional fields into place as
well as reorder columns.

Show in Table:

Date Added | User | File Name | File Size || Packets || Tags | Banawiath

Additional Columns:

Capture Start  CaptursEnd  Duration Group DataSize Type  Encapsulation
ByeRale BitRate AgPacketSize AvgPacketRate SHA-1

Options:

Show me (30 v | captures per page.

®save |or cancel





assets/a5e58e0e-2e0b-4fd3-94c4-07d018163edd.png
a bigFlows.pcap =B
Fle Bt View Go Copre A Sutsics Teephony Wi Tooh Hep
®

No. Time Source Destraton protocel_info

172.16.133.67 172.16.139.250 TCP [TCP Out-Of-Order] 49854 -
172.16.133.67 172.16.139.250 TCP [TCP Out-Of-Order] 49854 -
172.16.133.11 172.16.139.250 TCP [TCP Retransmission] 49283
587 0.25 172.16.133.37 172.16.139.250 TCP 49272 » fcp-addr-srvrl(5500
172.16.133.67 172. 139.250 TCP [TCP Retransmission] 49854

172.16.133.37 172.16.139.250 TCP [TCP Dup ACK 587#1] 49272 -

Frame 565: 1334 bytes on wire, 1334 bytes captured
Ethernet II, Src: 00:90:7f:3e:02:d0, Dst: c0:91:34:ca:fd:80
< Internet Protocol Version 4, Src: 172.16.133.37, Dst: 172.16.139.250
0100 .... = Version: 4
. 0101 = Header Length: 20 bytes (5)
-Differentiated Services Field: 0x0@ (DSCP: CS@, ECN: Not-ECT) N

(7 tnteret Protoce Vesson (), 20 bytes. Packets: 791615 - Dplayed: 791615 (100.0%) Profie: Defout





assets/5ece688f-cec0-4a54-b7dd-997603dbd829.png
Who has
10.10.3.110?

(=)

10.10.1.113

10.10.1.112

10.10.3.120

10.103.1101s on the
opposite side but here
is my MAC address

10.10.3.110






assets/95eb9e90-d0ed-4a93-a211-998fb0a233c6.png
10100101010100100101
01010100101001010010
10100101010010101010
10101010101010101001
01010010100101010101

Source:

Source Port:
Destination:
Destination Port:
Protocol:

174.143.213.1.2
80

192.168.1.3
54841

HTTP





assets/eee73f22-3966-48cf-87e8-2718412fc85f.png
The Wireshark Network Analyzer =
Edit View Go Capture Analyze Statistics Telephony Wircless Tools Help

RGO UBREI] T sEE
\pply a display filter ... <Ctrl-/>

Sovethisiter

Manage Display Filters

e —.

550P: udp dtport==1500

Non-HITP and non-SMITP to/fom 162021 add == 192021 an ot tcpport n 5025}
No ARP and no DNS:not rp and ucp ort == 53

HTTP: hitp

CPor UDP poris 80 (HTTP tep port == 80 udpport == 80

Non-DNS: (udp.port == 53 | tcp port == 53)

UDP only: udp.

TP enytep

IPX only: ipx

1Pk 200t vt e = 2001t

1Pv6 only ipv6 || profie: Defauit
1Pv4 address isn't 192.0.2.1 (don't use I= for this!): ip.addr == 192.02.1)
1Put s 152021 pdr == 192021

IPvd only: ip
NoARPnotarp

Ethernet type 0:0806 (ARP): eth.type == 0x0806

et adres 02005€005300:thadlr == 000050053400

11hidden~.






assets/218bb9e2-86d3-4ecf-b5ac-eef355e2f5f0.png
Bits 0-2

Bic st
Bits 4
Bits 5t
Bic 67

Precedence.
0 = Normal Delay, 1
0 = Normal Tnroughput, 1

0 = Normal Relibility, 1 =

Reserved for Future Use.

Low Delay.
High Throughput.
High Relibilicy.





assets/17d9ba59-f1f6-4108-af5f-a21d4aa580ad.png
Uploads
Cloudshark allows you to automaticaly assign uploaded files to one of your
groups. This is useful if you're always sharing with a specific team

Default Group:
Automaticaly assign any new uploads to |- No Group - v

Group Members can

Read-Only O Read/Wiite
Guest Access

[ Share uploaded files with Guests





assets/746e2aef-28f8-4793-8720-6037deecba72.png
Wireshark - Save Object As...

< 1« temp > Brport vie| | searchpor »
v Newfolder E=Er @
Name. 2 Date modified Type Size

No items match your search.

< >

Fie name: | EEERER v

Save astype [AlFiS o)






assets/685da50b-983d-409f-82ca-dc60e260cbca.png
o Wireshark - Conversations - Microsoft: Wi-Fi - ok
Etemet -6 | Pva-7 | Pve-a | T | w2
Address A Address B Packets Bytes PacketsA—B BytesA—B PacketsB—A BytesB—A RelStart Duration Bits/sA—B Bits/sB—A
010052000016 28:€347:8c:02:60 1o 3 3 1 54 4617201 00000 - -
0100500000b 07460336406 16 4151 0 0 15 4151 355722 7.0659 0 4699
01005600004 Sce3Oeddetis 1% 0 0 1 56 4567901 00000 - —
2BEIUTEOE0 SceI0eddedsT 6 2k 2 983 7 12k 0000000 98814 8005 10k
333300000001 Sce3OeddedisT 3 2 3 3 3 522 2048654 6033 o 691
33330000004 07060336406 14 397 3 3 1 3067 35716%  7.0569 0 95
] Name resolution ] Limit to cisplay fiter [ Absolute start tme (Conversation Types ™
Cor ] [Folowstean.| | Gapn.. | [ ce= ] [_rep





assets/a650ca6a-6e2b-4b59-b8d5-4b7b122efb8c.jpg
Expand Subtrees
Collapse Subtrees.
Expand All
Collapse All

Apply as Column

Apply as Fiter
Prepare a Fitter

Conversation Fitter
Colorize with Fittr

Follow

Copy
‘Show Packet Bytes.
Export Packet Bytes.

Wiki Protocol Page
Filter Feld Reference

Shift+Right
ShiftsLeft
Ctrl+Right
CrisLeft

Ctr Shift

»
CtrlsShift+O.
CtrbsShift+X

Protocol Preferences

Decode As.
Goto Linked Packet
Show Linked Packet in New Window

Internet Group Management Protocol has no preferences

Disable IGMP.






assets/e03404c5-0471-42a3-9f4a-2d6f7118df90.png
TCP Option - Timestamps: TSval 1707407197, TSecr 131517608

Kind: Time Stamp Option (8)
Length: 10

Timestamp value: 1707407197
Timestamp echo reply: 131517608





assets/2411e281-e469-4f2b-9545-86065ae1e3a0.png
Showing 1 VoIP Call from voip-extension2downata.pcap

Click on a row to open the SIP flow diagram for that conversation. If the conversation includes any RTP streams, they may be playable
within CloudShark

Start _ Stop , nial

cotel 220 ol T ¢ cpemer § FOM 4+ T + Protocol ¢ Packets ¢
0 7477406 25500087 192168510 -107'<sip:107@19216855> <sip84254978362@192 168.55> SIP 18
< >

# View entire call fow || @ SP statistcs 8 Open n new window || v Done





assets/5b65a680-a1cc-474d-a93a-9de7709742a3.png
it View G0 Copture nalae o Stafsics e Tekephorym Toolswdemals Hlp
auuo‘u BExZEE a¢esnTi I eaan DB % B

Fier e ———

The World's Most Popular Network Protocol Analyzer

L Gptwe 0 e oniine |

Interface List [= Open f Website
= S—— S Pv—
(o ncoming pecen,
Open Recent: ) User's Guide
@y Start g The Users Guide foca version  nsaed)
hooss ne or mre nataces 0 captrs fom, then Start @ Sample Captures
A i ssorment o sxampiecapur s n e i Security

{8 Vhware VitualEthermet Adapter:\Device\NPF_(2ACTAO3C4206-4CD1-BCEAE|
{5 VMware VitualEthernet Adapter:\Device\NPF_(4DACEFS0-36F1-4B84-B61C.92/
] Sun: \Device\NPF_{4B47EADB-OFE2-41A8-AT8C-T2EE116FF45}

Work vith Wisshark s securely 55 possoe

<[ i ] >

ig| Capture Options

St 3 capture with dessed opsons

Capture Help

@ How to Capture

Stzp by step 0 2 sucessul caprue setp

Network Media

[ J——
oo

o e s s o





assets/3094c12d-c24d-41d7-87c2-614e995b04ba.jpg
A
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools
am @ UERE Ie=>2=F 8

- ~Es

Flow312pcap
Help

BEaaas

(Ao o gy s <>

=3 -] Bxpression

+

o me swe pom—— e s o]
" 20.02 76.13.6.174 152161335 NCP http(80) -» 50405 [SYN,‘

310:0281072 16133 132876136171 TGP 50405 » http(80) [ACK] .

< Flags: .

0x010 (ACK)

000. .... = Reserved: Not set
«.0 ... ... = Nonce: Not set
. @... .... = Congestion Window Reduced (CWR): Not set
«@.. «... = ECN-Echo: Not set
..0. .... = Urgent: Not set
..1 .... = Acknowledgment: Set
| = - @... = Push: Not set
.0.. = Reset: Not set
..0. = Syn: Not set
cres wess eee@ = Eine Not iset
[TCP Flags: =++++-- A----]
Window size value: 6 v

<

>

© 7 Transmission Control Protocol (tcp), 32 bytes

Packets: 10 - Displayed: 10 (100.0%) Profie: Defaut





assets/a165e6dd-f501-4be9-9ef5-d4f7b935616d.png
a

4 Appearance
Columns
Font and Colors,
Layout

Capture
Expert
Fiter Buttons
Name Resolution
> Protocols
RSA Keys
> Statistics
Advanced

Wireshark - Preferences

Main window font: |Consoles 16.0

Lazy badgers move unique waxy jellyfish packets ©123456789

Colrs:

|_lSample active selected item Style: |Default v

- Sample inactive selected item Style: |Default v
|_lSample marked packet text

| Sample ignored packet text

- Sample "Follow Stream" client text

- Sample "Follow Stream" server text

] sample vaiid filter
[ | /sample invald fter

[ |sample warning fiter

oK Cancel reb






assets/ded8a6b9-621d-4cb4-91cc-5eb2e8da2c08.png
a Wireshark: Export Specified Packets | < |
Savein: | )} temp v @@ mr

Notems match your search.

O Captired

packets 791615 o
Selected packet 1 1
Vaked packets o 0
Fist to st marked 0 o

ORemge: [ 0 0
Remove gnored packets 0 0





assets/7ffcc18e-743c-499b-bd1c-3ce6f8294fc5.png
Packet Comment. CtrlsAlt+C
Delete All Packet Comments

Configuration Profiles CtrlsShift+A
Preferences. Ctrl Shift-P.





assets/464f2865-ed9b-404f-b91b-682120e0aa24.png
bigFlows.pcap

Fie Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

- o

dnzouinmrpERe>=F s Haaan

([t stream eq 312 B -] Expression... | +

o. Tine Sorce Destnaton Proo et Info

~ 2880 0.000000 172.16.133.132 76.13.6.174 Tcp 74 50405 > http(80) [SYN]
29310.026610 76.13.6.174  172.16.133.132 TCP 78 http(80) - 50405 [SYN,
2932 0.000144 172.16.133.132 76.13.6.174 Tcp 66 50405 » http(80) [ACK]
2936 ©.000579 172.16.133.132 76.13.6.174 HTTP 445 GET /a?f=76001284&p=ge
3142 0.090943 76.13.6.174  172.16.133.132 HTTP 1002 HTTP/1.1 200 OK (appl
3143 ©.000001 76.13.6.174  172.16.133.132 TCP 66 http(80) - 50405 [FIN,
3146 ©.000131 172.16.133.132 76.13.6.174 Tcp 66 50405 > http(80) [ACK]
3157 ©.001407 172.16.133.132 76.13.6.174 Tcp 66 50405 > http(80) [FIN,
3267 ©.025553 76.13.6.174  172.16.133.132 TCP 66 http(88) - 50405 [ACK]

<

36510.195120 172.16.133.254

172.16.128.233

sFlow 1438 V5, agent 192.168.150.

» Internet Protocol Version 4, Src: 76.13.6.174, Dst: 172.16.133.132 =

<

@ 7 Transmission Control rotocol (cp), #3bytes.

‘Selected Packet: 2931 - Packets: 791615 - Displayed: 10 (0.0%) - Load tme:






assets/fab7e2b6-2c57-4334-bce4-f851fb2b61f5.png
From: owner-ethereal-announce@xxxxxxxx
Date: Sat, 5 Sep 1998 22:24:47 -0500

Ethereal version 0.3.14 has been released. Here is the entry
from the

NEWS file:
Sender: owner-ethereal-announce@xxxXXXXXX

Precedence: bulk
Overview of changes in Ethereal 0.3.14:
* Added Laurent's fixes to pntoh[sl].

* RIP fixes (Laurent)
* Added Gilbert's BOOTP code.

*%4%% *x*%%  Gerald Combs gerald@xxXXXEXXKK





assets/fc074aa8-e09b-4850-8baf-32a7511d7b3c.png
Appearance
Columns
Font and Colors|
Layout

Capture

Bxpert

Fiter Buttons

Name Resolution

Protocols

RSA Keys

Statistics

Advanced

Wireshark - Preferences

Displayed Title Type Fields  Field Occurrence
No. Number
Time Time (format 2 specified)
Source Source address
Destination  Destination address
Protocol  Protocol
Length Packet length (bytes)
1P Main ICMP  Custom ipid 1
1P Nested ICMP Custom ipid 2
Info Information

Cancel

Heb





assets/0ac66580-2baa-4a90-9994-b69c56da5926.png
Opening iwarp_connecttar.gz

You have chosen to open:

7] iwarp_connect.tar.gz
which i gzip (1.4 KE)
from: hitps://wikiawireshark.org

What should Firefox do with this file?
Openvith | Browse...
@3saveFile

[0 this automaticalyfo ile ke this from now on.

oK Cancel





assets/8818c543-45ea-4e0b-ae16-612ffe9fca6e.png
TW|sted BIuetooth
s emoce s PN

-
=N






assets/03ac0f53-7bbe-4b37-94d6-2d7acef5c9bd.png
<

O 7 ssop.peapng || selected Packet: 1 - Packets: 680 - Displayed: 680 (100.0%) - Load time: 0:0.187 | Profie: Default





assets/8fd2d5db-4540-4761-8c85-7eb33e0ea2b6.png
Internet Protocol Version 6

0110 .... = Version: 6
.... OGO ©OOO .... .... .... ... ... Traffic Class: ©x@@ (DSCP: CS@, ECN: Not-ECT)

e+ +2.. .... DOOO OOOO 0OOO 0000 0000 Flow Label: oxeeeee
Payload Length: 106

Next Header: UDP (17)

Hop Limit: 1

Source: fe80::9186:dbbd:2a45:58c2

Destination: ff@2::1:2






assets/5c463d46-4f88-4e9a-a474-c267f77df005.png
Aams@linRrB Re>=F sEHeaanm






assets/85bd3a36-c72f-497f-b4ae-bdc4e78a6583.png
[conversation Hash Tables

conversation_ hashtable_exact, 2 entries

Address 1 Port1 Address 2
100014 5578 204.79.197.213
2601:98:4402: 20cd:44F2c35: 1982:eeae 57839 2607:MEb0:A004B0F:

conversation_hashtable_no_addr2, 0 entries
‘conversaton_hashtable_no_port2, 0 entries
conversation_hashtable_no_addr2_or_port2, 0 enfres.





assets/395a44d2-b634-46b7-8d04-bc8e9c9cd182.png
OS| Model

Layer [Name Role Protocols PDU Address
7 Application |Initiate contact with the |HTTP, FTP, DNS |Data
network
6 Presentation |Formats data, optional Data
compression and
encryption
5 Session Initiates, maintains and Data

tear down session

4 Transport Transports data TCP, UDP Segment |Port
2 Data Link Frame formation Ethernet Il Frame MAC
1 Physical Data is transmitted on Bits

the media






assets/104c62a3-110c-40b3-9f9a-75f7dded994f.png
GeolP World Map for TCP Example.pcapng

op Ot TobiFadists ]






assets/e8cbb63a-ed55-4d0d-9c8a-1c3c3258f644.png
<« Frame 5: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface ©

Interface id: © (unknown)

Encapsulation type: Ethernet (1)
Arrival Time: Mar 1, 2011 15:45:13.361089000 Eastern Standard Time
[Time shift for this packet: ©.000000000 seconds]
Epoch Time: 1299012313.361089000 seconds
[Time delta from previous captured frame: ©.047200000 seconds]
[Time delta from previous displayed frame: ©.047200000 seconds]
[Time since reference or first frame: ©.094268000 seconds]
Frame Number: 5
Frame Length: 66 bytes (528 bits)
Capture Length: 66 bytes (528 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ethertype:ip:tcp]
[Coloring Rule Name: HTTP]
[Coloring Rule String: http || tcp.port == 8@ || http2]
Ethernet II, Src: Actionte_2f:47:87 (00:26:62:2f:47:87), Dst: AsustekC_b3:01:84 (00:1d:60:b3:01:84)
Internet Protocol Version 4, Src: 174.143.213.184, Dst: 192.168.1.140

Transmission Control Protocol, Src Port: http (86), Dst Port: 57678 (57678), Seq: 1, Ack: 135, Len: ©






assets/597762bd-af5c-4ee9-adae-167e990fe530.png
a Wireshark - Capture Interfaces

nput | output | Options.

Interface Traffic Link-layer Header Promi: Snaplen | Buffer (v Monit, Capture Fiter
> Wi o A Ethemet default 2 -
> VMware Network Adapter VMnet L Ethemet O defaut 2 -
> VirtualBox Host-Only Network X Ethemet O defaut 2 -
> Local Area Connection” 2 Ethemet O defaut 2 -
> Ethemet Ethemet O defaut 2 -
> VMware Network Adapter VMinet3 I Ethemet O defaut 2 -
{US8beapt UsBPeap - T -
USePeap? UsgPeap - - - =
USgPap3 UsgPeap - - - =
USEPcapd UsgPeap - - - =
USEPcaps UsgPeap - - - =

] Enable promiscuous mode on allnterfaces. Manage Interfaces..|

Copture it for seeced nterfoces: (L [Enier o cpre s Corpie s

Start Close. Help.





assets/edc4d671-457d-4a25-b727-8521f3e3048a.png
A The Wireshark Network Analyzer e
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AR @ UEBRE R e

W | Apply a display filter ... <Ctrl-/> ion...  +

Ul
Il
Jo)
Jol
‘ o)
[ B

udp.stream eq 45
tcp.stream eq 11
tcp.streameq 1

tcp.stream eq 0
arp

icmp

tep.stream eq 15
tep.streameq 5






assets/b403ce5f-9ab4-4316-8a81-cf55c184b10d.png
File | Edit View Go Capture Analyze Statistics

Open 0.
Open Recent »
Merge..

Import from Hex Dump...

Close W
Save Ctrl+s

Save As.. Ctrl+Shift+S
File Set »
Export Specified Packes...

Export Packet Dissections »
Export Packet Bytes... Ctrl+Shift+X
Export PDUs to File...

Export TLS Session Keys...

Export Objects »
Pri Ctri+p.

Quit CculQ






assets/58eff0aa-c6d2-42cd-873e-e812b4153b8c.png
Ethernet Properties | ~ |

-

vk S
ata Link and Physical “;{"’Jmmwm
Corfigure.
B ——
Application Presentation /@ Cllnt forMcrosotNetworks |

3 l ¥ File and print sharing for Microsoft Networks
and Session % Intoret Protocol (TCPAP)






assets/2c16a122-27eb-4e1b-83d6-84bf74c4d15b.png
\Frame 2: 70 bytes on wire (560 bits), 70 bytes captured (560 bits) on interface ©

Ethernet II, Src: aa:bb:cc:00:02:10 (aa:bb:cc:00:02:10), Dst: aa:bb:cc:00:01:10 (aa:bb:cc:00:01:10)
Internet Protocol Version 4, Src: 10.123.0.2, Dst: 16.123.0.1
« Internet Control Message Protocol
Type: 5 (Redirect)
Code: 1 (Redirect for host)
Checksum: ©x13be [correct]
[Checksum Status: Good]
Gateway address: 10.123.0.3
Internet Protocol Version 4, Src: 10.123.0.1, Dst: 4.4.4.4
Internet Control Message Protocol





assets/81a83bbc-999d-4dab-b849-bc99f65831ce.png
EPAN

Protocol Tree
Dissectors
Dissector-Plugins
Display Filters






assets/4afdf00f-8170-4264-8ea8-88d2adda3ed2.png
TCP
TCP
TCP
TCP
TCP

10.0.0.148:49559
10.0.0.148:49768
10.0.0.148:62310
10.0.0.148:62789
10.0.0.148:62790

17.249.124.141:5223
34.212.110.138:443
13.89.217.116:443
23.55.20.137:443
204.13.192.141:80

ESTABLISHED
ESTABLISHED
ESTABLISHED
CLOSE_WAIT
CLOSE_WAIT





assets/b03015a1-9c3c-493a-bafc-5e8d0f44c715.png
Server ' Client
faany)
& ACK






assets/d0d81336-67fe-45c3-a172-5648bfac54d1.png
< Transmission Control Protocol, Src Port: http
Source Port: http (80)

Destination Port: 57678 (57678)

[Stream index: ©]

[TCP Segment Len: @]

Sequence number: 3344080265

[Next sequence number: 3344086265]
Acknowledgment number: 2387614088

1000 .... = Header Length: 32 bytes (8)
Flags: ©x010 (ACK)

Window size value: 18






assets/d9b3ae4a-5251-4d87-b621-8fa54d4a8f99.png
s The Wireshark Network Analyze
Fle Gt View Go Coptre Ao Sttisics Teephony Wieess Tools Help
dug@umrRE =T Eaaan

W o o oy e <ci>

=3 ] Expression...

Open

\CKT\Captures\A TCP Example.pcapng (7352 Bytes)

Showin Folder
Copyfile path






assets/50e86ae6-769d-44c0-ad3f-de7a32f51f81.png
Wireshark - Capture Interfaces

Tnput | Outut | Options

‘Capture to 2 permanent fie-

Fe: [1eave bk s v s temperary e =

Output format: @ peapng O peap

[ Create a new fie automaticaly after..
O | lkobytes ¥
]S c

st





assets/5b10ff5d-802d-47d5-93e2-38739b1e6d95.png
7] cfilters - Notepad - o

File Edit Format View Help
[Ethernet address @0:00:5e:
©0:00:5¢:00:53:00

"Ethernet type @x8806 (ARP)" ether proto @x8806

"No Broadcast and no Multicast” not broadcast and not
multicast

"No ARP" not arp

Pvd only” ip

Pvd address 192.0.2.1" host 192.0.2.1

"IPv6 only” ip6

"IPv6 address 2001:dbs:
"TCP only” tcp

“UDP only” udp
“Non-DNS™ not port 53
“TCP or UDP port 89 (HTTP)" port 80

"HTTP TCP port (88)" tcp port http

“No ARP and no DNS”" not arp and port not 53
“Non-HTTP and non-SMTP to/from wai.wireshark.org” not
port 88 and not port 25 and host www.wireshark.org

100" ether host

" host 2001:db8::1





assets/43b8e45e-eadd-456b-a1eb-876d712ae7b8.png
Opening wireshark-2.4 8.tarxz

You have chosen to open:

([ wireshark-2.4.8.tarxz
which is: xz Archive (27.7 MB)
from: https://1.na.dlwireshark.org.

What should Firefox do with this file?

@/Gpen withi | 7-Zip File Manager (default) v

SaveFile

1o this automaticalyfo ile ke this from now on.

oK Cancel






assets/6422ea56-6e5a-485a-a03d-669f9448a878.png
a Wireshark 3.0.2 64-bit Setup =

Packe Contures
e reaires thrNoap o iapf e e ot A

Currently nstalled Npcap version
Npcap 0.995

Instal
Install Npcap 0.995
I you wish to nstall Npcap, plesse urinstall pcap 0,395 manuallyfirst





assets/a2a073a1-c3e8-406c-9909-593e4eb7636b.jpg
A Ettercap check for Poisoners.pcap =
Fle Edt View Go Capture Anmabyze Statsics Telephony Wireless Tools Help

A0 UIBREIR e teEEaaas
(1 [icmp.ident == 0xe77e [x] -] Expression...  + Ette

I Time. Source Destnation Protocol  Info ~

39.042822 12.234.13.2.. 12.234.312.4 ICMP Echo (ping) request id=0xe77e,..
4'0.043775 12.234.13.2. 12.234.12.5 ICMP Echo (ping) request id=0xe77e,..
50.044779 12.234.13.2.. 12.234.12.6 ICMP Echo (ping) request id=0xe77e,..
60.045781 12.234.13.2. 12.234.12.7 ICMP Echo (ping) request id=@xe77e,.. .

> Frame 2: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) -
» Ethernet II, Src: Cisco_3c:3f:a8 (00:01:96:3c:3f:a8), Dst: AmbitMic_aa:af:80 (0@:de
» Internet Protocol Version 4, Src: 10.150.160.1, Dst: 12.234.13.202
« Internet Control Message Protocol
Type: 5 (Redirect)
Code: 1 (Redirect for host)
Checksum: @xe211 [correct]
[Checksum Status: Good]
Gateway address: 12.234.12.3
» Internet Protocol Version 4, Src: 12.234.13.202, Dst: 12.234.12.3
« Internet Control Message Protocol
Type: 8 (Echo (ping) request) v

L« >
© 7 dentifer (big endian representation) (cmp.ident), 2bytes Packets: 399 * Diplayed: 399 (100.0%) Profle: Malware:






assets/31addf2c-f292-4d74-80bf-7aa6168fb522.png
Current Columns (Drag & Drop to modify) Quick Preset: | Choose a column preset v

to © [ Time [ Source || Destimaton | Protocol [ Lengtn |[ o |

Additional columns

ATime VLANID CumulativeBytes ~DeltaTime (captured) ~Expertinfo Severity TCPLen Seq NdSeq Ack
Window  BytesinFlight SrcPort DstPort Phytpe Frequency Channel SignaldBm  Rate (Mbls) ~SSID
RSSI TXRale HWDestAddr HWSrcAddr SewerName TCPFlags

Custom column

Title | [Field (#occurance) Add column

Drag existing columns here to custorize:

Time column format
® seconds since beginning of capture

O Time of Day
© Date and Time of day

Options

[ save for everyone viewing this capture.
[ save as my defaultfor all captures

Profile: current  reset 8 save | cancel





assets/012273a3-54a7-4bf7-94b7-90be208d3b95.png
a ARPTrace.pcapng
Fle Edt View Go Copture Anbze Stotitics Telphony Wicless Tools Help

AR @ UmRBRes=FOIEF=Qaan

(WTaoply a display fiter . <ctl-/> -] Expression... +
No.  Tme Sorce Destinaton Proo Lergth o

10.000000 ©00:15:5d:0f:49:18 ff:ff:ff:ff:ff:ff ARP 42 Who has 172.16.2.27? Tell 172.16.2.3
2 0.000203 d4:be:d9:af:3e:4d ©0:15:5d:0f:49:18 ARP 60172.16.2.27 is at d4:be:d9:af:3e:4f .






assets/b9352e5f-0bc5-4f20-8a8c-031ef4be85d2.jpg
A Flow312.pcap =]

T ew G Captire) Ao St ooty Ve ook iy
An 0 iERB Re>=FaEHaqaan

(WTpoly a display fiter__<cti-/> 3 -] Bgression... +

No. Time. Source Destnation Protocol _ Info

60.11 76.13.6.174 172.16.133.132 TCP http(80) -» 50405 [FIN, ACK] Seq=937 Ack
70.11 172.16.133.132 76.13.6.174 TCP 50405 -» http(80) [ACK] Seq=380 Ack=937
80.44 172.16.133:132 76-.13.6.174 TCP 50405 » http(80) [FIN, ACK] Seq=380 Ack
90.14 76.13.6.174 172.16.133.132 TCP http(80) -» 50405 [ACK] Seq=938 Ack=381

% ¥






assets/3c3c53e6-d636-439c-9a2f-6c88e9bcc25c.png
Wireshark

Confidently navigate the Wireshark interface and solve real-world
networking problems

"
i

Lisa Bock





assets/c274950a-161f-4ba2-9adc-fe00c1158c56.png
Frame 5: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface ©
Ethernet II, Src: Actionte_2f:47:87 (00:26:62:2f:47:87), Dst: AsustekC_b3:01:84 (00:1d:60:b3:01:84)
Internet Protocol Version 4, Src: 174.143.213.184, Dst: 192.168.1.140

Transmission Control Protocol, Src Port: http (86), Dst Port: 57678 (57678), Seq: 1, Ack: 135, Len: ©

Source Port: http (80)

Destination Port: 57678 (57678)

[Stream index: ©]

[TCP Segment Len: @]

Sequence number: 1 (relative sequence number)

[Next sequence number: 1 (relative sequence number)]
Acknowledgment number: 135 (relative ack number)
1000 .... = Header Length: 32 bytes (8)

Flags: ©x010 (ACK)

Window size value: 18

[Calculated window size: 6912]

[Window size scaling factor: 64]

Checksum: ©x82e4 [unverified]

[Checksum Status: Unverified]

Urgent pointer: ©

Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
[SEQ/ACK analysis]

[Timestamps]





assets/f35a21cf-4d2b-4691-93b2-06c81b7863aa.png
Hacker

MAC Address 46:89:FF:4C:57
IP Address 10.40.10.105

Victim
MAC Address 00:80:68:B4:87
|P Address 10.40.10.103

ARP Reply
10.40.10.103 is at
46:89:FF:4C:57






assets/5e15d9cc-bb79-453d-aa56-55f2e92ddc5d.jpg
< Flags: 0x010 (ACK)
000. .... .... = Reserved: Not set

.... = Nonce: Not set
.... = Congestion Window Reduced (CWR): Not set
.... = ECN-Echo: Not set
.... = Urgent: Not set
.... = Acknowledgment: Set
.. = Push: Not set

. = Reset: Not set
: Not set
: Not set






assets/c71fd7f9-f3e3-421e-becd-ff2fd7ebedba.png
eth

ipv6

udp





assets/39a847c7-95bf-4252-9c1f-966426686875.png
A Wireshark - Print

Indude column headings
Detai:

O Al collapsed

® s displayed

O Al expanded

[ eytes

(] Print each packet on a new page:

PadketRange
O Captured ® Dispayed

® Alpackets. 0 “w
O Selected packets only 1 1
Marked pacets only 0 o

First o last marked o o

O range: | ] 0 0
[ Remove ignored packets ) 0

eagesep.






assets/385348a0-8bbf-4bb5-b49e-6105cb89ac0f.png
a Wireshark - Capture Filters ?

Name Filter
Non-HTTP and non-SMTP to/from www.wireshark.org not port 80 and not port 25 and
No ARP and no DNS. not arp and port not 53

HTTP TCP port (80) tcp port http.

TCP or UDP port 80 (HTTP) port 80

UDP only. udp

TCP only. tp

1PX only ipx

1PV address 2001:dbg:1 host 2001:dbg:1

1PV only ip6

1Pv4 address 192.021 host 192.021

1Pv4 only ip

No ARP notarp

No Broadcast and no Multicast ot broadcast and not multicast
Ethernet type 00806 (ARP) ether proto 0x0806.

Ethernet address 00:00:5e00:53:00 ether host 00:00:5¢:00:53:00

< >
4] - m

o | [ ][ e





assets/c33dd889-0c94-4f46-a989-5492f89e3ecb.png
A Wireshark 3.0.2 64-bit Setup - o

S8 Coptre
e reired o cpture U3 . ShoudUsccapbe el y
(experimental)?

Currently nstalld US8Pcap version
USBPcap 1.20.3

Instal
Install US8Pcap 1.3.0.0
1 you vish to nstall USBPCsp 1.3.0.0, please urinstall USBPcap 1.2.0.3 manually

Important notce:
In case of issue after installation, please use the system restore point reated or read
itps: fgithub.com/desowinjusbpcap/issues3

Wireshark® Tnstaller .

P =





assets/b7bbcd2f-0cec-4405-99e2-e684dfbed866.png
“; i; " | @ anaysis oos ~ || @ crapns | + [@w-]

Download File =
Destination EBrotocol Lengen
e0:dliez:icile:al LLC 153 s, func=REJ, N
19:0p:51:5ep5: £5 e 155 1, N(R)=0, N(S

26:5d:71:77:£0:4d e 184 1p, NE®)

20,





assets/8ebafa8a-5236-4b2c-8e2a-aa77c3b596f2.png
Transaction 10 00414
~ Transaction 10 oxadle
~ Transaction 10 Gx3dle

“Frane 1: 314 bytes on wire (2512 bits), 314 bytes captured (2512 bits) on interface 0
+ Ethernet T, Src: Grandstr. o1 :00:82:01:fc:42), Dst: Broadcast (£F:FF:Ff:

* Tnternet protocol Version 4, Dt 255.255.255.255

+ User Datagram protocol, Src Port: bootpe (68), Dst Port: bootps (67)

+ Bootstrap Protocol. (Okscover)






assets/4d33dc5d-5c0a-429e-9fc8-5ae40e9ec5d8.png
4 [Appearance
Columns.
Font and Colors|
Layout

Capture

Bxpert

Filter Buttons

Name Resolution
> Protocols

> Statistics

Advanced

Wireshark - Preferences

‘Remember main window size and placement

Open fiesin
® The mostrecently used folder

O This folder: |C:\Jsers\isapocuments
Showup to
10 | fiter entres.

10 | recent fles.

Confim unsaved capture fies.
Main toobar stye: |Icons oy~

Language: |Use system settng






assets/3599e1f7-100d-4709-9009-43c6598da1a7.png
Web Page.pcapng
Edit | View Go Capture Analyze Statistics Telephony Wireless Tools Help

[

Q Find Packet...
Find Ned.
Find Previous

Mark/Unmark Packet
Mark All isplayed
Unmark All Displayed
Next Mark

Previous Mark
Ignore/Unignore Packet
Ignore All Displayed
Unignore All isplayed

Set/Unset Time Reference
Unset All Time References
Next Time Reference

Previous Time Reference
Time Shift...

Packet Comment...
Delete Al Packet Comments
Configuration Profies...
Preferences..

Ctri+F
N
[

ctrem
CtrsShifteM
Ctri+Alt+M
CrlsshiftsN
Crlshift+B

s
Ctrls Shift+D
Ctrl+Alt+D.

T
Cti+ AT
Cti+ AN
Cti+AR+B

Ctrl+Shift=T

Ctri+AltC

Ctrl+Shift+A
Ctrl+Shift+P

Al Visible tems Ctrl Al Shift-A
Al Visble Selected Tree ltems

Description Ctrl+AltsShift-D
Field Name Crl+ At Shift+F
Value Ctrls At Shift+V
AsFitter Ctrlsshift+C






assets/1c687fe5-7638-4fb2-ac2b-a60be559b30b.png
a dfilters - Notepad -
File Edit Format View Help

["Ethernet address ©0©:00:5e:00:53:00" a
eth.addr == ©0:00:5e:00:53:00

"Ethernet type ©x0806 (ARP)" eth.type ==
oxe8e6

"Ethernet broadcast" eth.addr ==
ff:ff:ff:ff:ff:ff

"No ARP" not arp

"IPv4 only" ip

"IPv4 address 192.0.2.1" ip.addr ==






assets/94290e35-a7be-42c2-8b6a-30e823633cd6.png
Server Client

- Il Packets >

ﬁ’é]%h
Q%%U ACK






assets/8f96351e-0f4f-4797-b97e-e1a34754db9a.png
| View | Go Capture Analyze Statistics Te
Main Toolbar

Fiter Toolbar

Status Bar






assets/48c9f47f-bcd4-4f1b-a595-9b0a563cbfc8.png
a TCP Traffic.pcapng =
Fie Edt Viw Go Copture Amayze Siatisics Telephony Wireless Tools Help
Am 10 UEREB Re2=FAEEaaan

W ooy dley ter . <Cj> 3 - eoresson.. + S0P

[Fiter Butions Preferences.. | Label: [Enter a descrption fr the e bution | Fiters Ener  fiter xpressin t be sled |

Conment: [Enter s conment o the fler bution ]






assets/0882c8a6-29a3-4c80-90fe-ab0de276eae0.jpg
A bigFlows.pcap - 0k
Fle Edt View Go Capture Analyze Statitics Telephony Wircless Tools Help

ami0unmE e>=7oEfacan

(oo y fer _<Co ~] Expression...  +
et Nerrow & Wide Ospiy fiter v htinchat Frd Cancel
o Tine Source Destraton Protocl
| 300 0.15 1725161331116 720516 311395250 LGP
3 7 = e 17D,

> 7 il Ch
| 302 0.16 17251651 33541116 172,516 51395250 HTTP o

|73 >





assets/7dcfed57-d1b1-4ea0-9a31-757938b5f539.jpg
a Wireshark - Display Filter Expression

Field Name

Relation

> 802.3 Slow protocols - Slow Protocols
> %.Plang
> A21.A21 Protocol
> AAF. AVTP Audio Format
AALT. ATM AALY
AAL3/A- ATM AAL3/A
> AARP - Appletalk Address Resolution Protocol
> AASP . Aastra Signaling Protocol
> Acbis OML - GSM A-bis OML
> ACAP - Application Configuration Access Protocol
> ACN - Architecture for Control Networks
> ACP133.ACP133 Attribute Syntaxes
b ACR 122 Advanced Card Systems ACR122
> ACSE- IS0 8650-1 0S| Association Control Service
> ACtrace - AudioCodes Trunk Trace
> ADB - Android Debug Bridge

Search;

o display fiter
At

is present

Ve

Predefined Values

Range (offsetenath)

e

Heb






assets/e497fc76-b27c-413f-b36b-dd305ca094da.png
Settings and Display Options

Graph Title:

New Graph

Time Interval: Options:

[ Use time of day

Y-Axis Units: [ Include packet annotations
Display Filters [ Stack series of the same.

o






assets/5455850a-91aa-4211-9cc9-0a9671ae65b8.png
o Wireshark - Font

Font Fontstie size
Conslas Regier 1
Century ~ | [Regulsr 7
Century Gothic Bold 8
Century Schoolbook Italic 9
Chillr Bold talic o
Colonns MT b
Comic Sans Ms 2
CommerciScript BT 1
Consolas 1
Constantia of 18
effects sample
[ srkeout
[ underine AaBbYyZz

Witng System

Ay v

ok Cancel





assets/d8aaa39e-1cc9-4483-82fa-663b3c55ea3a.png
I've received 524
bytes of data and
| am ready for more,
starting with 525.

< ACK 525

Server Client






assets/066aaff2-a350-42ee-8d54-81c42cca693a.png
UDP Header

Source Port Destination Port
Length Checksum






assets/86e2e436-dbd7-4f0d-8a93-2ec8da78b0e3.png
e
El
Network Anal.ysiso
Using Wireshark 2

Cooklbook

Second Edition






assets/55406115-94e4-4cf6-81fb-0a19970e1bcb.png
| IP MTU |

| Ethernet MTU |
Ethernet TCP
Header IP Header Header Payload FCS
14 bytes 20 bytes 20 bytes 1460 bytes 4 bytes






assets/89122375-6313-4105-a26a-b1735cb4be8b.png
which TCP port is open on the target ?

homework

what software is used to scan a target ?

Homework

What is the IP of the target host?

nomework

no
Votes

no
Votes

no

wotes

no | 28

answers | views
23 hours ago dankmuffs

no | 14

answers | views
23 hours ago dankmuffs

no | 14

answers | views
23 hours ago dankmuffs





assets/c64d0547-c468-4bce-bc8f-6551b1842f1f.png
A Wireshark 3.0.2 64-bit Setup - o

Crocee Componerts
Crooe v eoures of sk 502645 you et o el A

The folowing components are avaiable for instalation.

Select components to nstal:

TShark.
Plugins & Extensions
Tools

User's Guide:

Desaripton

Space required: 194.3M8 i your riouse Over & compo
descrpto

et to ses s

Wireshark Trstaller

o[> ] [ s





assets/f7934bb9-6c4e-40ec-9afc-675ea9f5cc5b.png
A The Wireshark Network Analyzer -
Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Open ctis0 TeEEaa

[ openRecent »| CaUsersLise\SyDrive\Documents\PACKT\ Captures\A TCP Bramplepespng  Meta<0
Merge
Clear Menu
Import from Hex Dump.






assets/0fb1b5d0-aa89-4cc5-b7ba-a42a13081feb.png
IP datagram

IP header

ICMP message

20 bytes






assets/ecc846cb-21e5-470a-9eec-57b13d11d992.png
a Wireshark 3.0.2 64-bit Setup =

Addtional Tasks
Create shortcuts and associte fle extensions,

Create Shortcuts

Vireshark Start Menu Ttem

[ wireshark Desktop fcon
Wireshark Quick Launch Icon

Associate File Extensions.

Assodate trace fie extensions with Wireshark
Extensions incude Svw, acp, ape, atc, bf, cap, enc, erf, fic, ipfix lcap,

mplog, out, pcap, pczpng, pkig, pkt, 175, snoop, syc, c, tr, trace, rc,
v, wpe, and wpz.

e et





assets/03c17d09-9c6b-4cdd-8a23-ebf2a11c203a.png





assets/eb46526d-baeb-4ba8-b131-72b4d208190b.png
<« Frame 1: 70 bytes on wire (560 bits), 70 bytes captured (56@ bits) on interface ©
Interface id: @ (\Device\NPF_{@17CA851-8F78-4444-815B-43CBBIADAB3A})
Encapsulation type: Ethernet (1)
Arrival Time: Apr 1@, 2014 22:54:19.628725000 Eastern Daylight Time
[Time shift for this packet: ©.000000000 seconds]
Epoch Time: 1397184859.628725000 seconds
[Time delta from previous captured frame: ©.000000000 seconds]
[Time delta from previous displayed frame: ©.000000000 seconds]
[Time since reference or first frame: ©.000000000 seconds]
Frame Number: 1
Frame Length: 70 bytes (560 bits)
Capture Length: 7@ bytes (560 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ethertype:ip:udp:dns]
[Coloring Rule Name: UDP]
[Coloring Rule String: udp]





assets/a5412c85-11e9-45ea-91b6-695af892dd4f.png
Expand Subtrees Shift=Right
Collapse Subtrees ShiftsLeft

Expand All Ctrl+Right

Collapse All CtrlsLeft

Apply as Column Ctrl Shift

Apply as Filter » Selected

Prepare a Fiter » Not Selected
Conversation Fiter » and Selected
Colorize with Filter » or Selected
Follow » and not Selected
. R or not Selected
Show Packet Bytes. Ctrls Shift+0.

Export Packet Bytes. CtrlShift-X

Wiki Protocol Page
Filter Feld Reference

Protocol Preferences

Decode As.
Goto Linked Packet

Show Linked Packet in New Window






assets/ca3e2444-cb13-4e77-bf4b-5c4a30a7afd5.png
a ICMPV6.pcapng
Fle Edt View Go Capture Analyze Statitics Telephony Wireless Tooks Help

4ng0unRBRe>=TsEEacan

(A Ticmpve. B -] Expression... | +

o, Tme Source Destiaton Protocol Length  nfo [
121 0.253222 fe80::1885:1bd6:45a2:3a95 ffe2::16 ICMPV6 130 Multicast Listene |,

>

> Frame 121: 13@ bytes on wire (1040 bits), 130 bytes captured (1040 bits) on interface ©
» Ethernet II, Src: Apple_50:0a:7a (84:41:67:50:0a:7a), Dst: IntelCor_1b:2d:a8 (e4:a4:71:1b:2d:a8)
» Internet Protocol Version 6, Src: fe80::1885:1bd6:45a2:3a95, Dst: ff@2::16
« Internet Control Message Protocol vé
Type: Multicast Listener Report Message v2 (143)
Code: ©
Checksum: ©xe59e [correct]
[Checksum Status: Good]
Reserved: 0000
Number of Multicast Address Records: 3
4 Multicast Address Record Changed to exclude: ffe2::fb
Record Type: Changed to exclude (4)
Aux Data Len: ©
Number of Sources: @
Multicast Address: ffe2::fb
4 Multicast Address Record Changed to exclude: ff@2::2:ff92:94e0
Record Type: Changed to exclude (4)
Aux Data Len: ©
Number of Sources: @
Multicast Address: ff@2::2:ff92:94e@
< Multicast Address Record Changed to exclude: ff@2::1:ffa2:3a95
Record Type: Changed to exclude (4)
Aux Data Len: ©
Number of Sources: @
Multicast Address: ffe2::1:ffa2:3a95

© 7 Readytoload or capture Padkets: 1185 *Displayed: 44 (3.7%) Profie: Default





assets/9207d9fe-1e68-4bcc-9d0c-95cb04e6dd23.png
a Wireshark - Expert Information - Web Page.pcapng 5

Group. Protocol

ACK to a TCP keep-alive segment Sequence
TCP keep-alive segment Sequence
This frame is a (suspected) spurious retransmission Sequence
This frame is a (suspected) retransmission Sequence
Duplicate ACK (#1) Sequence
Connection finish (FIN) Sequence
TCP window update Sequence
‘GET /medi/photo-s/00/16/12/b3the-fin-with-snowjpg .. Sequence
‘Connection establish acknowledge (SYN+ACK): server por... Sequence
Connection establish request (SYN): server port 80 Sequence

o gty fter sec.

Limit o Display Fiter

Group by summary  Search: | Shon,

Close Heb






assets/d05309de-ac72-412f-acae-8b8dec536d6d.png
Sending INARP to DLCI 3091 e






assets/0d4745fd-6440-45d6-96fb-6325f8364161.png
Wireshark - Preferences

e T

Fontand Colors Open fiesin

Capture O The mostecenty used folder

e e metder [ [ e

Name Resolution

4 Protocols. Show up to

T0dapci 10 fiterentes

> 2owest
Sapertyiec 10] recent les
36PP2ATH Confimunsaved capture fles
SLowpAN
psghiayty ] Automateal scral pacet detais
20211 Radiotap. Packet detai sl perentages 0
% -
— Vi toobar sty | Tconsonly
A Language: | Use system setting v
acap
AN
AcR122
ACtrace
08
0B Cs
ADB Senvice
0P v






assets/4f2a554d-0f0b-4909-8b02-b8c7596ec779.jpg
File Edt View Go Copture Anabyze Stafistics Telephony Wireless Tools Help
Am 2@ 0 m@a:@a sEBaaan

(WTapply = display fiter . <ct/ =3 -] Expression.. | +
o Time Source Destnation Protoca info

10.00 172.16.133.132 76.13.6.174 icP 50405 » http(80) [SYN]
20.02 76.13.6.174 172 .16:133.132 TCP http(80) » 50405 [SYN,
310.024172.16:133.1320 7613 .6.174 NEP 50405 - http(80) [ACK]





assets/c8069ffd-3e53-4690-ad68-b8941b6bf8a4.png
< User Datagram Protocol, Src Port: 57899 (57899), Dst Port: https (443)
Source Port: 57899 (57899)

Destination Port: https (443)
Length: 1358

Checksum: ©xbb69 [unverified]
[Checksum Status: Unverified]
[Stream index: ©]





assets/d902f6a9-6905-4fc0-8f8a-a23876bd75c5.png
a Wireshark - Protocol Hierarchy Statistics - bigFlows.pcap’ - o
Protocol - Percent Packets  Packets Percent Bytes Bytes  Bits/s EndPackets EndBytes End Bits/s ~
+ Frame 1000 796t 10007 355417764 9477k 0 0 0
2 Bhemet 0 et a1 102610 235k 0 13 13
+ (et Protocol Verson's o @ 0 T s 0 0 0
ApplyesFiter *
= UserDatogram Protocel o1 w 00 e 50 0 0
SimpleSenice iscovery Protocel 00 s 00 ™ w6 W . Preparea Fiter >
Mulicest Domain Name System 00 5 00 w8 ™ 5 w8 W Find
Link-foce Mltcast Nome Resoluion 00 » 00 w5 % w1 e
DHCPYS 00 361 00 s w s w
Data 00 i 00 e e 4 s ® e
Intemet Control Message Prtocol vo 00 M 00 W m w5 oL
oy
or reb





assets/26f20715-0bbc-4884-b202-a76a242c56d8.png
a Wireshark - Display Filter Expression

— —
Mt ECRET A [ et -
ety

et e el

| oot e PES odeof
ey
" Sompaart. seppean

* LONPAN - o overLow pover..|
s o a7y e o |
S i

80211 RSNA EAPOL - [EEE 802.11.,
802.3 Slow protocols - Slow Proto...
9 -Plan9

A21 . A21 Protocol

AAF - AVTP Audio Format | Range (offsetiength)

P —

o diplay fiter
ki






assets/a2d644c8-cc37-48c2-baee-7993d671b407.png
TCP Example.pcapng 1 2 mb - 2073 packels - more info

neep  Apply | Clear © Analysis Tools ¥ || @ Graphs | +
No. © Time Source Destination Protocol | Lemgth  Info
57 o s.673875  10.0.0.148 178.255.83.1 ocse 494 Request
101 o s.727288  178.255.83.1 10.0.0.148 ocse o148 Response.
593 o 10.959620  10.0.0.148 192.81.131.161 HTTR 412 GET / HTTR/1.1
608 o 11.089520  192.81.131.161 10.0.0.148 HTTR 719 HTTB/1.1 200 OK (cexc/html)
638 o 11.375502  10.0.0.148 192.81.131.161 HTTR 354 GET /css/bootstrap.css HITR/1.1
662 o 11.57078¢  10.0.0.148 192.81.131.161 HTTR 348 GET /css/main.css HTTP/1.1





assets/666d9e2b-22b5-4fc7-87ce-478285cc4899.png
a The Wireshark Network Analyzer
Fle Edt View Go Copture Analyze Stofisis Telephomy Wireless Tools Help

] =[]

AN @ ERRE(I]R =

(R i = e s <Cof>

Capture

sing tis ters (R [Eter = copore i

~] [Allinterfaces shown

Wik

)

VMware Network Adapter VMnet!
VirtualBox Host-Only Network

Local Area Connection” 2.

Ethernet
VMware Network Adapter VMnets i~

Learn
You are running Wireshark 2.4.6 (v2.4.6-0-ge2f3952a 12). You receive automatic updates.

7 Ready toload or capture:

|| prfi: efaut





assets/251ebf6b-2934-43be-b0ae-09a8c86f3dc5.png
a Wireshark - Export - HTTP objectfist =

Packet Hostname  ContentType Size Filename
3 packetlienct image/png  21kB logo.png

Text Fter:

el | [ e |[ b





assets/df10ce5c-5927-4b53-9053-38cc9fb24ecc.png
W

Time

0
0.002580635
0.013546695

Source

192.168.1.55
192.168.1.55
192.168.1.55

Destination

192.168.1.255
192.168.1.255
192.168.1.255

Protocol
NBNS
NBNS
NBNS

Info

Name query NB WPAD
Name query NB WPAD
Name query NB WPAD





assets/f5f39ced-4bb5-4aa9-b99b-2cea1581a0e7.png
Building A

[

Enterprise Network

Building B

oLl

¢

Campus
Backbone

Servers

LJ

Remote Users






assets/b13a2393-d71a-44ab-bd08-7bb0d246739f.jpg
Flow312.pcap = &
Fle Edt View Go Capture Analyze Statistics Telephony Wireless Tooks Help

Amco inrBRes=FaEEaqan

(R Loy = e e <Corl>

3 - Bresson... +
No. Time Source

Destnation Protocol Info

~10.00 172.16.133.132 76.13.6.174 TCP 56405 - http(80) [SYN]

»Frame 1: 74 bytes on wire, 74 bytes captured -
» Ethernet II, Src: 00:50:43:01:4d:d4, Dst: 00:90:7f:3e:02:d0
» Internet Protocol Version 4, Src: 172.16.133.132, Dst: 76.13.6.174
‘Transmission Control Protocol, Src Port: 50405 (50405), Dst Port:
Source Port: 50405 (50405)
Destination Port: http (80)
[Stream index: 0]
[TCP Segment Len: 0]

<

>
@ 7 Transmission Control Protocol (tcp), 40 bytes. || Packets: 10 - Displayed: 10 (100.0%) || profie: Defauit






assets/22df7e5c-322d-4f97-bcff-1819a183645a.png
Round Trip Time for 204.152.184.134:80 — 10.0.52.164:2646
Round Trip Time for 204.152.184.134:80 — 10.0.52.164:2646
dourload-goodpcap

150
= 1111
Y T T 0 R 1 8 S 6 o O S 8 S et
5 1 1 1 1 1 |
)
)

chesssar NP AN Bl UUEEEKENANNNLNDY

o
1 1 el

s G 7 s g
Tine ()
ko slce pack 474 (5172 o 1460 s 401656 k. 44 w5535 4755 e, 6551 65— 456 ke, 47 by
Type Round Trp Time v stream [0 (2] [swich Drecton
[J RTT By Sequence Number Reset

e | [Came ][

Mouse @ drags () zooms.





assets/b8a01c51-2d02-4e78-9df0-994911dd3a06.png
Packh






assets/7f1bae4f-41d3-4838-ae6f-9b2a93877a31.png
Wireshark 3.0.1, 2.6.8 and 2.4.14 Released

Aprils,2019

Wireshark 3.0.1,2.6.8, and 2.4.14 have been released. Installers for Windows, Mac OS X 10.12 and later, and
source code are now available.

In3.01
Several vulnerabilities have been fixed. See the release notes for details.

Fora complete list of changes, please refer to the 3.0.1 release notes.

In2.6.8
Several vulnerabilities have been fixed. See the release notes for details.

Fora complete list of changes, please refer to the 2.6.8 release notes.

In2.4.14
Several vulnerabilities have been fixed. See the release notes for details.

Fora complete list of changes, please refer to the 2.4.14 release notes.
Official releases are available right now from the download page.

What's Not As New
Wireshark 3.0.0 Rel

sed - February 28,2019

Wireshark 2.6.7 and 2.4.13 Released - February 27, 2019





assets/89210ef0-06fa-4f7f-adfd-16d881e56c7c.jpg
M cloudshark_tcp-keep - o X
Fle Edt View Go Capture Analyze Stafitics Telephony Wireless Tools Help

dE e IMREBRes=F &5 QM

[tcp.stream eq 17 I -] Expression... | +

. Tme  Souce Destnation Proocol  Info

727.09 192.168.0.100 173.230.134.104 TCP 44518 -+ 443 [ACK] Se Wi

16099 Len=1 [TCP segment of a ..

787.20 173.230.134.104 192.168.0.100 TCP 443 » 44518 [ACK] Seq=1 Ack=2 Win=418 Len=0 SLE=1 SRE=2

153 17.20 192.168.0.100 173.230.134.104 TCP [TCP Keep-Alive] 44518 -+ 443 [ACK] Seq=1 Ack=1 Win=16099 Len=1
158 17.32 173.230.134.104 192.168.0.100 TCP [TCP Keep-Alive ACK] 443 - 44518 [ACK] Seq=1 Ack=2 Win=418 Len=0..
201 21.49 173.230.134.104 192.168.0.100  TLSv1.2 Encrypted Alert

202 21.49 192.168.0.100 173.230.134.104 TCP 44518 -+ 443 [FIN, ACK] Se Ack=32 Win=16092 Len=0

203 21.49 173.230.134.104 192.168.0.100 TCP 443 » 44518 [FIN, ACK] Segq=32 Acl Win=418 Len=0

204 21.49 192.168.0.100 173.230.134.104 TCP 44518 » 443 [ACK] Seq=3 Ack=33 Win=16092 Len=0

217 21.60 173.230.134.104 192.168.0.100  TCP 443 » 44518 [ACK] Seq=33 Ack=3 Win=418 Len=0






assets/ebf6715b-b1fd-4eae-93a8-d0abb34d1720.png
TCP Header
Source Port Destination Port
Sequence Number
Acknowledgement Number
Offset | Reserved | Flags Window Size
Checksum | Urgent Pointer






assets/17e5c41c-b9a8-4f32-8dd3-c6a70c479ae0.png
a

Web Page.pcapng

File| Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Open -0 EFeEHaaan
Open Recent I e —
Merge..
Importrom Hex Dump...
Close ctow
S s
Sve s Cutoshites
Fileset ,
BportSpeciied Packets..
Bport Packet Disectons AsPlainTet..
Bport Packet Bytes, CueshiteX | AsCSV
Bport PDUs o File.. As"C Arays.
Bpor TLS Session Keys.. R
jects ,
Export Ob) As PDML XML...
pint.. cuep ASISON...
Quit e P






assets/2409a2b4-c07e-4884-860e-2f82877162c1.png
M Wireshark - Capture File Properties - Web Pagepcapng - = ISl

Detais.

File ~
Name: C:\Captures\Web Page.peapng

Length: 20048

Hash 6e2M0311fid0727e 4067036204 F28609 141cb2 15F1fabSh 114106945778
(SHAZS6):

Hash £3h269182147 70 3baccE0S26 788475333826 7043

(RIPEMD160):

Hash (SHA): cf202dcfe7 1sb16d4eedce2278456602026289

Fomat:  Wreshark]... -pcapng
Encapsulation: Ethernet

Time

Fistpadet:  2013:02-26 17:02:40
Lastpacket:  2013-02-26 17:06:25

Elapsed: 00:03:45
Capture
Herdware:  Unknown
¢ Unknown
Appication:  Unknown
Interfaces
Interface Dropped packets Capture fiter _ Link type Padetszelmt v
Capture fle comments

HTTP traffic with intersting images.

e [ comens] [ e [camyTo o] [tk





assets/996981d5-63b9-4488-b0c9-e8e8ebfe8902.png





assets/cb6fa330-040f-471b-94d1-a824f7481131.png
a

Wireshark - Display Filters

Nome
(5508

No ARP and no DNS.

HTTP.

TCP or UDP port is 80 (HTTP)
Non-DNs.

UDP only.

TCP only.

1PX only

1PV address 2001:dbg:1

<

Non-HTTP and non-SITP tofrom 162.02.1

Fiter
) wdpdstport==1500
62021 and et tepportint

+ [






assets/ed9fcdd9-a03e-4b9c-8614-91803ece7093.png
o Wireshark - Preferences

topcmme oot | eto ae e i |Cormrent
Font and Colors| SSDP ssdp.
i
Cope
P
e
Nehesiiion
b
ot
S A E . T
< 5

[oc ][ et |[mep |





assets/b995d93f-c0b4-4387-98e0-5b62f4591e53.png
A bigFlows.pcap S =

Fie Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AR 0 imRBRes=FoF=Qaan

(e ==3 BEY Jowesn |+
o e source Destraton ot Pranicp Phested 0P
47941.86 219.74.244.2 172.16.133.82 ICMP oxbc45 (48197) 0x2c38 (11320)
75862.86 8.8.8.8 172.16.133.233 ICMP 0x0000 (0) 0x7828 (30760)

104353.87 108.59.243.194 172.16.133.109 ICMP 0x70f7 (28919) 0x0000 (0)

Checksum: ©x24d6 [correct] B
[Checksum Status: Good]
Unused: 00000000
« Internet Protocol Version 4, Src: 172.16.133.109, Dst: 108.59.243.194
0100 .... = Version: 4
. 0101 = Header Length: 20 bytes (5)
» Differentiated Services Field: 0x@@ (DSCP: CS@, ECN: Not-ECT)

[ =
@ 7 dentiication (p.id), 2bytes Packets: 791615 * Displayed: 271 (0.0%) Profle: Defaut






