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preface

No one knows whether reading a technical book is going to be worth the
effort. These books can be expensive, dull, and poorly written. Even worse,
there’s a good chance that you won’t learn anything. Luckily, this book is
written by someone who understands that.

This book’s first aim is to teach you Rust. Rust in Action presents large,
working projects to promote your learning. Over the course of the book,
you’ll write a database, a CPU emulator, an operating system kernel, and
several other interesting projects. You’ll even dabble with generative art.
Each project is designed to enable you to explore the Rust programming
language at your own pace. For those readers who know little Rust, there are
many opportunities to expand the projects in whatever direction you choose.

There is more to learning a programming language than studying its syntax
and semantics, however. You are also joining a community. Unfortunately,
established communities can create invisible barriers for new entrants
because of their shared knowledge, jargon, and practices.

One such barrier for many new Rust programmers is the concept of systems
programming. Lots of programmers come to Rust without a background in
that area. To compensate for this, Rust in Action has a second aim—to teach
you systems programming. And, among other topics, you’ll learn about how
memory, digital timekeeping, and device drivers work in the book’s 12
chapters. I hope this enables you to feel more comfortable when becoming a
member of the Rust community. And we need you!

Our societies depend on software, yet critical security holes are accepted as
normal and, perhaps, inevitable. Rust demonstrates that these are neither.



Moreover, our computers are filled with bloated, energy-intensive
applications. Rust provides a viable alternative for developing software that is
less demanding on these finite resources.

Rust in Action is about empowerment. This book’s ultimate objective is to
convince you of that. Rust is not reserved for a select group of experts. It is a
tool that’s available for everyone. Well done for making it this far through
your learning journey; it’s my pleasure to take you a few more steps.
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about this book

Rust in Action is primarily intended for people who may have explored
Rust’s free material online, but who then have asked themselves, “What’s
next?” This book contains dozens of examples that are interesting and can be
extended as creativity and time allow. Those examples allow the book’s 12
chapters to cover a productive subset of Rust and many of the ecosystem’s
most important third-party libraries.

The code examples emphasize accessiblity to beginners over elegant,
idiomatic Rust. If you are already a knowledgeable Rust programmer, you
may find yourself disagreeing with some style decisions in the examples. I
hope that you will tolerate this for the sake of learners.

Rust in Action is not intended as a comprehensive reference text book. There
are parts of the languages and standard library that have been omitted.
Typically, these are highly specialized and deserve specific treatment.
Instead, this book aims to provide readers with enough basic knowledge and
confidence to learn specialized topics when necessary. Rust in Action is also
unique from the point of view of systems programming books as almost
every example works on Microsoft Windows.

Who should read this book

Anyone who is interested in Rust, who learns by applying practical examples,
or who is intimidated by the fact that Rust is a systems programming
language will enjoy Rust in Action. Readers with prior programming
experience will benefit most as some computer programming concepts are
assumed.



How this book is organized: A roadmap

Rust in Action has two parts. The first introduces Rust’s syntax and some of
its distinctive characteristics. The second part applies the knowledge gained
in part one to several projects. In each chapter, one or two new Rust concepts
are introduced. That said, part 1 provides a quick-fire introduction to Rust:

Chapter 1, “Introducing Rust,” explains why Rust exists and how to get
started programming with it. 

Chapter 2, “Language foundations,” provides a solid base of Rust
syntax. Examples include a Mandelbrot set renderer and a grep clone.

Chapter 3, “Compound data types,” explains how to compose Rust data
types and its error-handling facilities.

Chapter 4, “Lifetimes, ownership, and borrowing,” discusses the
mechanisms for ensuring that accessing data is always valid.

Part 2 applies Rust to introductory systems programming areas:

Chapter 5, “Data in Depth,” covers how information is represented in
digital computers with a special emphasis on how numbers are
approximated. Examples include a bespoke number format and a CPU
emulator.

Chapter 6, “Memory,” explains the terms references, pointers, virtual
memory, stack, and heap. Examples include a memory scanner and a
generative art project.

Chapter 7, “Files and storage,” explains the process for storing data
structures into storage devices. Examples include a hex dump clone and
a working database.

Chapter 8, “Networking,” provides an explanation of how computers
communicate by reimplementing HTTP multiple times, stripping away a



layer of abstraction each time.

Chapter 9, “Time and timekeeping,” explores the process for keeping
track of time within a digital computer. Examples include a working
NTP client.

Chapter 10, “Processes, threads, and containers,” explains processes,
threads, and related abstractions. Examples include a turtle graphics
application and a parallel parser.

Chapter 11, “Kernel,” describes the role of the operating system and
how computers boot up. Examples include compiling your own
bootloader and an operating system kernel.

Chapter 12, “Signals, interrupts, and exceptions,” explains how the
external world communicates with the CPU and operating systems.

The book is intended to be read linearly. Latter chapters assume knowledge
taught in earlier ones. However, projects from each chapter are standalone.
Therefore, you are welcome to jump backward and forward if there are topics
that you would like to cover.

About the code

The code examples in Rust in Action are written with the 2018 edition of Rust
and have been tested with Windows and Ubuntu Linux. No special software
is required outside of a working Rust installation. Installation instructions are
provided in chapter 2.

This book contains many examples of source code both in numbered listings
and inline with normal text. In both cases, source code is formatted in a
fixed-width font, like this, to separate it from ordinary
text. Sometimes code is also in bold to highlight code that has changed
from the previous steps in the chapter, such as when a new feature is added to



an existing line of code.

In many cases, the original source code has been reformatted; we’ve added
line breaks and reworked indentation to accommodate the available page
space in the book. In rare cases, even this was not enough, and listings
include line-continuation markers (➥). Additionally, comments in the source
code have often been removed from the listings when the code is described in
the text. Code annotations accompany many of the listings, highlighting
important concepts.

liveBook discussion forum

Purchase of Rust in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users:

To access the forum, go to https://livebook.manning.com/book/rust-in-
action/ welcome/v-16/.

You can also learn more about Manning’s forums and the rules of
conduct at this location: https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialogue between individual readers and between readers and the
author can take place. It is not a commitment to any specific amount of
participation on the part of the author, whose contribution to the forum
remains voluntary (and unpaid). We suggest you try asking the author some
challenging questions lest his interest stray! The forum and the archives of
previous discussions will be accessible from the publisher’s website as long
as the book is in print.

Other online resources

https://livebook.manning.com/book/rust-in-action/welcome/v-16/
https://livebook.manning.com/#!/discussion


Tim can be found on social media as @timClicks. His primary channels are
Twitter (https://twitter.com/timclicks), YouTube
(https://youtube.com/c/timclicks), and Twitch (https://twitch.tv/timclicks).
You are also welcome to join his Discord server
at https://discord.gg/vZBX2bDa7W.

https://twitter.com/timclicks
https://youtube.com/c/timclicks
https://twitch.tv/timclicks
https://discord.gg/vZBX2bDa7W
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works by many artists, edited by Louis Curmer and published in Paris in
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covers based on the rich diversity of regional life of two centuries ago,
brought back to life by pictures from collections such as this one.



1 Introducing Rust

This chapter covers

Introducing Rust’s features and goals
Exposing Rust’s syntax
Discussing where to use Rust and when to avoid it
Building your first Rust program
Explaining how Rust compares to object-oriented and wider languages

Welcome to Rust—the empowering programming language. Once you
scratch its surface, you will not only find a programming language with
unparalleled speed and safety, but one that is enjoyable enough to use every
day.

When you begin to program in Rust, it’s likely that you will want to continue
to do so. And this book, Rust in Action, will build your confidence as a Rust
programmer. But it will not teach you how to program from the beginning.
This book is intended to be read by people who are considering Rust as their
next language and for those who enjoy implementing practical working
examples. Here is a list of some of the larger examples this book includes:

Mandelbrot set renderer

A grep clone

CPU emulator

Generative art

A database



HTTP, NTP, and hexdump clients

LOGO language interpreter

Operating system kernel

As you may gather from scanning through that list, reading this book will
teach you more than just Rust. It also introduces you to systems programming
and low-level programming. As you work through Rust in Action, you’ll learn
about the role of an operating system (OS), how a CPU works, how
computers keep time, what pointers are, and what a data type is. You will
gain an understanding of how the computer’s internal systems interoperate.
Learning more than syntax, you will also see why Rust was created and the
challenges that it addresses.



1.1 Where is Rust used?

Rust has won the “most loved programming language” award in Stack
Overflow’s annual developer survey every year in 2016-2020. Perhaps that’s
why large technology leaders such as the following have adopted Rust:

Amazon Web Services (AWS) has used Rust since 2017 for its
serverless computing offerings, AWS Lambda and AWS Fargate. With
that, Rust has gained further inroads. The company has written the
Bottlerocket OS and the AWS Nitro System to deliver its Elastic
Compute Cloud (EC2) service.1

Cloudflare develops many of its services, including its public DNS,
serverless computing, and packet inspection offerings with Rust.2

Dropbox rebuilt its backend warehouse, which manages exabytes of
storage, with Rust.3

Google develops parts of Android, such as its Bluetooth module, with
Rust. Rust is also used for the crosvm component of Chrome OS and
plays an important role in Google’s new operating system, Fuchsia.4

Facebook uses Rust to power Facebook’s web, mobile, and API
services, as well as parts of HHVM, the HipHop virtual machine used
by the Hack programming language.5

Microsoft writes components of its Azure platform including a security
daemon for its Internet of Things (IoT) service in Rust.6

Mozilla uses Rust to enhance the Firefox web browser, which contains
15 million lines of code. Mozilla’s first two Rust-in-Firefox projects, its
MP4 metadata parser and text encoder/decoder, led to overall
performance and stability improvements.



GitHub’s npm, Inc., uses Rust to deliver “upwards of 1.3 billion package
downloads per day.”7

Oracle developed a container runtime with Rust to overcome problems
with the Go reference implementation.8

Samsung, via its subsidiary SmartThings, uses Rust in its Hub, which is
the firmware backend for its Internet of Things (IoT) service.

Rust is also productive enough for fast-moving startups to deploy it. Here are
a few examples:

Sourcegraph uses Rust to serve syntax highlighting across all of its
languages.9

Figma employs Rust in the performance-critical components of its
multi-player server.10

Parity develops its client to the Ethereum blockchain with Rust.11



1.2 Advocating for Rust at work

What is it like to advocate for Rust at work? After overcoming the initial
hurdle, it tends to go well. A 2017 discussion, reprinted below, provides a
nice anecdote. One member of Google’s Chrome OS team discusses what it
was like to introduce the language to the project:12

indy on Sept 27, 2017

Is Rust an officially sanctioned language at Google?

 

  zaxcellent on Sept 27, 2017

  Author here: Rust is not officially sanctioned at Google, but there are

  pockets of folks using it here. The trick with using Rust in this

  component was convincing my coworkers that no other language was right

  for job, which I believe to be the case in this instance.

 

  That being said, there was a ton of work getting Rust to play nice

  within the Chrome OS build environment. The Rust folks have been super

  helpful in answering my questions though.

 

    ekidd on Sept 27, 2017

    > The trick with using Rust in this component was convincing my

    > coworkers that no other language was right for job, which I believe

    > to be the case in this instance.

 

    I ran into a similar use case in one of my own projects—a vobsub

    subtitle decoder, which parses complicated binary data, and which I

    someday want to run as web service.  So obviously, I want to ensure

    that there are no vulnerabilities in my code.

 

    I wrote the code in Rust, and then I used 'cargo fuzz' to try and

    find vulnerabilities. After running a billion(!) fuzz iterations, I

    found 5 bugs (see the 'vobsub' section of the trophy case for a list

    https:/ /github.com/rust-fuzz/trophy-case).

 

    Happily, not _one_ of those bugs could actually be escalated into an

    actual exploit. In each case, Rust's various runtime checks

    successfully caught the problem and turned it into a controlled panic.

    (In practice, this would restart the web server cleanly.)

 

    So my takeaway from this was that whenever I want a language (1) with

    no GC, but (2) which I can trust in a security-critical context, Rust

    is an excellent choice. The fact that I can statically link Linux

    binaries (like with Go) is a nice plus.

 



      Manishearth on Sept 27, 2017

      > Happily, not one of those bugs could actually be escalated into

      > an actual exploit. In each case, Rust's various runtime checks

      > successfully caught the problem and turned it into a controlled

      > panic.

 

      This has been more or less our experience with fuzzing rust code in

      firefox too, fwiw. Fuzzing found a lot of panics (and debug

      assertions / "safe" overflow assertions). In one case it actually

      found a bug that had been under the radar in the analogous Gecko

      code for around a decade.

From this excerpt, we can see that language adoption has been “bottom up”
by engineers looking to overcome technical challenges in relatively small
projects. Experience gained from these successes is then used as evidence to
justify undertaking more ambitious work.

In the time since late 2017, Rust has continued to mature and strengthen. It
has become an accepted part of Google’s technology landscape, and is now
an officially sanctioned language within the Android and Fuchsia operating
systems.



1.3 A taste of the language

This section gives you a chance to experience Rust firsthand. It demonstrates
how to use the compiler and then moves on to writing a quick program. We
tackle full projects in later chapters.

NOTE To install Rust, use the official installers provided at https://rustup.rs/.

1.3.1 Cheating your way to “Hello, world!”

The first thing that most programmers do when they reach for a new
programming language is to learn how to print “Hello, world!” to the
console. You’ll do that too, but with flair. You’ll verify that everything is in
working order before you encounter annoying syntax errors.

If you use Windows, open the Rust command prompt that is available in the
Start menu after installing Rust. Then execute this command:

C:\> cd %TMP%

If you are running Linux or macOS, open a Terminal window. Once open,
enter the following:

$ cd $TMP 

From this point forward, the commands for all operating systems should be
the same. If you installed Rust correctly, the following three commands will
display “Hello, world!” on the screen (as well as a bunch of other output):

$ cargo new hello

https://rustup.rs/


$ cd hello

$ cargo run 

Here is an example of what the entire session looks like when running
cmd.exe on MS Windows:

C:\> cd %TMP% 

 

C:\Users\Tim\AppData\Local\Temp\> cargo new hello 

     Created binary (application) `hello` project

 

C:\Users\Tim\AppData\Local\Temp\> cd hello 

 

C:\Users\Tim\AppData\Local\Temp\hello\> cargo run 

   Compiling hello v0.1.0 (file:/ / /C:/Users/Tim/AppData/Local/Temp/hello)

    Finished dev [unoptimized + debuginfo] target(s) in 0.32s

     Running `target\debug\hello.exe`

Hello, world!

And on Linux or macOS, your console would look like this:

$ cd $TMP 

 

$ cargo new hello 

     Created binary (application) `hello` package

 

$ cd hello 

 

$ cargo run 

   Compiling hello v0.1.0 (/tmp/hello)

    Finished dev [unoptimized + debuginfo] target(s) in 0.26s

     Running `target/debug/hello`

Hello, world!

If you have made it this far, fantastic! You have run your first Rust code
without needing to write any Rust. Let’s take a look at what just happened.

Rust’s cargo tool provides both a build system and a package manager. That
means cargo knows how to convert your Rust code into executable binaries
and also can manage the process of downloading and compiling the project’s
dependencies.



cargo new creates a project for you that follows a standard template. The
tree command can reveal the default project structure and the files that are
created after issuing cargo new:

$ tree hello 

hello

├── Cargo.toml

└── src

    └── main.rs

 

1 directory, 2 files

All Rust projects created with cargo have the same structure. In the base
directory, a file called Cargo.toml describes the project’s metadata, such as
the project’s name, its version, and its dependencies. Source code appears in
the src directory. Rust source code files use the .rs filename extension. To
view the files that cargo new creates, use the tree command.

The next command that you executed was cargo run. This line is much
simpler to grasp, but cargo actually did much more work than you realized.
You asked cargo to run the project. As there was nothing to actually run
when you invoked the command, it decided to compile the code in debug
mode on your behalf to provide maximal error information. As it happens,
the src/main.rs file always includes a “Hello, world!” stub. The result of that
compilation was a file called hello (or hello.exe). The hello file was executed,
and the result printed to your screen.

Executing cargo run has also added new files to the project. We now
have a Cargo.lock file in the base of our project and a target/ directory. Both
that file and the directory are managed by cargo. Because these are artifacts
of the compilation process, we won’t need to touch these. Cargo.lock is a file
that specifies the exact version numbers of all the dependencies so that future
builds are reliably built the same way until Cargo.toml is modified.



Running tree again reveals the new structure created by invoking cargo
run to compile the hello project:

$ tree --dirsfirst hello 

hello

├── src

│   └── main.rs

├── target

│   └── debug

│       ├── build

│       ├── deps

│       ├── examples

│       ├── native

│       └── hello

├── Cargo.lock

└── Cargo.toml

For getting things up and running, well done! Now that we’ve cheated our
way to “Hello, World!”, let’s get there via the long way.

1.3.2 Your first Rust program

For our first program, we want to write something that outputs the following
text in multiple languages:

Hello, world!

Grüß Gott!

ハロー・ワールド

You have probably seen the first line in your travels. The other two are there
to highlight a few of Rust’s features: easy iteration and built-in support for
Unicode. For this program, we’ll use cargo to create it as before. Here are the
steps to follow:

1. Open a console prompt.

2. Run cd %TMP% on MS Windows; otherwise cd $TMP.



3. Run cargo new hello2 to create a new project.

4. Run cd hello2 to move into the project’s root directory.

5. Open the file src/main.rs in a text editor.

6. Replace the text in that file with the text in listing 1.1.

The code for the following listing is in the source code repository. Open
ch1/ch1-hello2/src/hello2.rs.

Listing 1.1 “Hello World!” in three languages

 1 fn greet_world() {

 2     println!("Hello, world!");                   ①

 3     let southern_germany = "Grüß Gott!";         ②

 4     let japan = "ハロー・ワールド";                    ③

 5     let regions = [southern_germany, japan];     ④

 6     for region in regions.iter() {               ⑤

 7             println!("{}", &region);             ⑥

 8     }

 9 }

10 

11 fn main() {

12     greet_world();                               ⑦

13 }

① The exclamation mark indicates the use of a macro, which we’ll discuss shortly.

② Assignment in Rust, more properly called variable binding, uses the let keyword.

③ Unicode support is provided out of the box.

④ Array literals use square brackets.

⑤ Many types can have an iter() method to return an iterator.

⑥ The ampersand “borrows” region for read-only access.

⑦ Calls a function. Note that parentheses follow the function name.

Now that src/main.rs is updated, execute cargo run from the hello2/
directory. You should see three greetings appear after some output generated
from cargo itself:

$ cargo run 

   Compiling hello2 v0.1.0 (/path/to/ch1/ch1-hello2)



    Finished dev [unoptimized + debuginfo] target(s) in 0.95s

     Running `target/debug/hello2`

Hello, world!

Grüß Gott!

ハロー・ワールド

Let’s take a few moments to touch on some of the interesting elements of
Rust from listing 1.2.

One of the first things that you are likely to notice is that strings in Rust are
able to include a wide range of characters. Strings are guaranteed to be
encoded as UTF-8. This means that you can use non-English languages with
relative ease.

The one character that might look out of place is the exclamation mark after
println. If you have programmed in Ruby, you may be used to thinking
that it is used to signal a destructive operation. In Rust, it signals the use of a
macro. Macros can be thought of as fancy functions for now. These offer the
ability to avoid boilerplate code. In the case of println!, there is a lot of
type detection going on under the hood so that arbitrary data types can be
printed to the screen.



1.4 Downloading the book’s source code

In order to follow along with the examples in this book, you might want to
access the source code for the listings. For your convenience, source code for
every example is available from two sources:

https://manning.com/books/rust-in-action

https://github.com/rust-in-action/code

https://manning.com/books/rust-in-action
https://github.com/rust-in-action/code


1.5 What does Rust look and feel like?

Rust is the programming language that allows Haskell and Java programmers
to get along. Rust comes close to the high-level, expressive feel of dynamic
languages like Haskell and Java while achieving low-level, bare-metal
performance.

We looked at a few “Hello, world!” examples in section 1.3, so let’s try
something slightly more complex to get a better feel for Rust’s features.
Listing 1.2 provides a quick look at what Rust can do for basic text
processing. The source code for this listing is in the ch1/ch1-
penguins/src/main.rs file. Some features to notice include

Common control flow mechanisms—This includes for loops and the
continue keyword.

Method syntax—Although Rust is not object-oriented as it does not
support inheritance, it carries over this feature of object-oriented
languages.

Higher-order programming—Functions can both accept and return
functions. For example, line 19 (.map(|field|
field.trim())) includes a closure, also known as an
anonymous function or lambda function.

Type annotations—Although relatively rare, these are occasionally
required as a hint to the compiler (for example, see line 27 beginning
with if let Ok(length)).

Conditional compilation—In the listing, lines 21–24 (if cfg!
(...);) are not included in release builds of the program.



Implicit return—Rust provides a return keyword, but it’s usually
omitted. Rust is an expression-based language.

Listing 1.2 Example of Rust code showing some basic processing of CSV
data

 1 fn main() {                                           ①

 2   let penguin_data = "\                               ②

 3   common name,length (cm)

 4   Little penguin,33

 5   Yellow-eyed penguin,65

 6   Fiordland penguin,60

 7   Invalid,data

 8   ";

 9 

10   let records = penguin_data.lines();

11 

12   for (i, record) in records.enumerate() {

13     if i == 0 || record.trim().len() == 0 {           ③

14       continue;

15     }

16 

17     let fields: Vec<_> = record                       ④

18       .split(',')                                     ⑤

19       .map(|field| field.trim())                      ⑥

20       .collect();                                     ⑦

21     if cfg!(debug_assertions) {                       ⑧

22       eprintln!("debug: {:?} -> {:?}",

23              record, fields);                         ⑨

24     }

25 

26     let name = fields[0];

27     if let Ok(length) = fields[1].parse::<f32>() {    ⑩

28         println!("{}, {}cm", name, length);           ⑪

29     }

30   }

31 }

① Executable projects require a main() function.

② Escapes the trailing newline character

③ Skips header row and lines with only whitespace

④ Starts with a line of text

⑤ Splits record into fields

⑥ Trims whitespace of each field

⑦ Builds a collection of fields



⑧ cfg! checks configuration at compile time.

⑨ eprintln! prints to standard error (stderr).

⑩ Attempts to parse field as a floating-point number

⑪ println! prints to standard out (stdout).

Listing 1.2 might be confusing to some readers, especially those who have
never seen Rust before. Here are some brief notes before moving on:

On line 17, the fields variable is annotated with the type Vec<_>.
Vec is shorthand for _vector_, a collection type that can expand
dynamically. The underscore (_) instructs Rust to infer the type of the
elements.

On lines 22 and 28, we instruct Rust to print information to the console.
The println! macro prints its arguments to standard out (stdout),
whereas eprintln! prints to standard error (stderr).

Macros are similar to functions except that instead of returning data,
these return code. Macros are often used to simplify common patterns.

eprintln! and println! both use a string literal with an
embedded mini-language in their first argument to control their output.
The {} placeholder tells Rust to use a programmer-defined method to
represent the value as a string rather than the default representation
available with {:?}.

Line 27 contains some novel features. if let Ok(length) =
fields[1].parse ::<f32>() reads as “attempt to parse
fields[1] as a 32-bit floating-point number and, if that is
successful, then assign the number to the length variable.”

The if let construct is a concise method of conditionally processing



data that also provides a local variable assigned to that data. The
parse() method returns Ok(T) (where T stands for any type)
when it can successfully parse the string; otherwise, it returns Err(E)
(where E stands for an error type). The effect of if let Ok(T) is
to skip any error cases like the one that’s encountered while processing
the line Invalid,data.

When Rust is unable to infer the types from the surrounding context, it
will ask for you to specify those. The call to parse() includes an
inline type annotation as parse::<f32>().

Converting source code into an executable file is called compiling. To
compile Rust code, we need to install the Rust compiler and run it against the
source code. To compile listing 1.2, follow these steps:

1. Open a console prompt (such as cmd.exe, PowerShell, Terminal, or
Alacritty).

2. Move to the ch1/ch1-penguins directory (not ch1/ch1-penguins/src) of
the source code you downloaded in section 1.4.

3. Execute cargo run. Its output is shown in the following code
snippet:

$ cargo run 

   Compiling ch1-penguins v0.1.0 (../code/ch1/ch1-penguins)

    Finished dev [unoptimized + debuginfo] target(s) in 0.40s

     Running `target/debug/ch1-penguins`

dbg: "  Little penguin,33" -> ["Little penguin", "33"]

Little penguin, 33cm

dbg: "  Yellow-eyed penguin,65" -> ["Yellow-eyed penguin", "65"]

Yellow-eyed penguin, 65cm

dbg: "  Fiordland penguin,60" -> ["Fiordland penguin", "60"]

Fiordland penguin, 60cm

dbg: "  Invalid,data" -> ["Invalid", "data"]

You probably noticed the distracting lines starting with dbg:. We can



eliminate these by compiling a release build using cargo’s --release
flag. This conditional compilation functionality is provided by the cfg!
(debug_assertions) { ... } block within lines 22–24 of
listing 1.2. Release builds are much faster at runtime, but incur longer
compilation times:

$ cargo run --release 

   Compiling ch1-penguins v0.1.0 (.../code/ch1/ch1-penguins)

    Finished release [optimized] target(s) in 0.34s

     Running `target/release/ch1-penguins`

Little penguin, 33cm

Yellow-eyed penguin, 65cm

Fiordland penguin, 60cm

It’s possible to further reduce the output by adding the -q flag to cargo
commands. -q is shorthand for quiet. The following snippet shows what that
looks like:

$ cargo run -q --release 

Little penguin, 33cm

Yellow-eyed penguin, 65cm

Fiordland penguin, 60cm

Listing 1.1 and listing 1.2 were chosen to pack as many representative
features of Rust into examples that are easy to understand. Hopefully these
demonstrated that Rust programs have a high-level feel, paired with low-level
performance. Let’s take a step back from specific language features now and
consider some of the thinking behind the language and where it fits within the
programming language ecosystem.



1.6 What is Rust?

Rust’s distinguishing feature as a programming language is its ability to
prevent invalid data access at compile time. Research projects by Microsoft’s
Security Response Center and the Chromium browser project both suggest
that issues relating to invalid data access account for approximately 70% of
serious security bugs.13 Rust eliminates that class of bugs. It guarantees that
your program is memory-safe without imposing any runtime costs.

Other languages can provide this level of safety, but these require adding
checks that execute while your program is running, thus slowing it down.
Rust manages to break out of this continuum, creating its own space as
illustrated by figure 1.1.



Figure 1.1 Rust provides both safety and control. Other languages have
tended to trade one against the other.

Rust’s distinguishing feature as a professional community is its willingness to
explicitly include values into its decision-making process. This ethos of
inclusion is pervasive. Public messaging is welcoming. All interactions
within the Rust community are governed by its code of conduct. Even the
Rust compiler’s error messages are ridiculously helpful.

Until late 2018, visitors to the Rust home page were greeted with the
(technically heavy) message, “Rust is a systems programming language that
runs blazingly fast, prevents segfaults, and guarantees thread safety.” At that
point, the community implemented a change to its wording to put its users



(and its potential users) at the center (table 1.1).

Table 1.1 Rust slogans over time. As Rust has developed its confidence, it
has increasingly embraced the idea of acting as a facilitator and
supporter of everyone wanting to achieve their programming
aspirations.

Until late 2018 From that point onward
“Rust is a systems programming language
that runs blazingly fast, prevents segfaults,
and guarantees thread safety.”

“Empowering everyone to build reliable and
efficient software.”

Rust is labelled as a systems programming language, which tends to be seen
as quite a specialized, almost esoteric branch of programming. However,
many Rust programmers have discovered that the language is applicable to
many other domains. Safety, productivity, and control are useful in all
software engineering projects. Moreover, the Rust community’s inclusiveness
means that the language benefits from a steady stream of new voices with
diverse interests.

Let’s flesh out those three goals: safety, productivity, and control. What are
these and why do these matter?

1.6.1 Goal of Rust: Safety

Rust programs are free from

Dangling pointers—Live references to data that has become invalid over
the course of the program (see listing 1.3)

Data races—The inability to determine how a program will behave
from run to run because external factors change (see listing 1.4)



Buffer overflow—An attempt to access the 12th element of an array with
only 6 elements (see listing 1.5)

Iterator invalidation—An issue caused by something that is iterated
over after being altered midway through (see listing 1.6)

When programs are compiled in debug mode, Rust also protects against
integer overflow. What is integer overflow? Well, integers can only represent
a finite set of numbers; these have a fixed-width in memory. Integer overflow
is what happens when the integers hit their limit and flow over to the
beginning again.

The following listing shows a dangling pointer. Note that you’ll find this
source code in the ch1/ch1-cereals/src/main.rs file.

Listing 1.3 Attempting to create a dangling pointer

 1 #[derive(Debug)]                             ①

 2 enum Cereal {                                ②

 3     Barley, Millet, Rice,

 4     Rye, Spelt, Wheat,

 5 }

 6 

 7 fn main() {

 8     let mut grains: Vec<Cereal> = vec![];    ③

 9     grains.push(Cereal::Rye);                ④

10     drop(grains);                            ⑤

11     println!("{:?}", grains);                ⑥

12 }

① Allows the println! macro to print the Cereal enum

② An enum (enumeration) is a type with a fixed number of legal variants.

③ Initializes an empty vector of Cereal

④ Adds one item to the grains vector

⑤ Deletes grains and its contents

⑥ Attempts to access the deleted value

Listing 1.3 contains a pointer within grains, which is created on line 8.



Vec<Cereal> is implemented with an internal pointer to an underlying
array. But the listing does not compile. An attempt to do so triggers an error
message that complains about attempting to “borrow” a “moved” value.
Learning how to interpret that error message and to fix the underlying error
are topics for the pages to come. Here’s the output from attempting to
compile the code for listing 1.4:

$ cargo run 

   Compiling ch1-cereals v0.1.0 (/rust-in-action/code/ch1/ch1-cereals)

error[E0382]: borrow of moved value: `grains`

  --> src/main.rs:12:22

   |

8  |     let mut grains: Vec<Cereal> = vec![];

   |         ------- move occurs because `grains` has type

                    `std::vec::Vec<Cereal>`, which does not implement

                     the `Copy` trait

9  |     grains.push(Cereal::Rye);

10 |     drop(grains);

   |          ------ value moved here

11 |

12 |     println!("{:?}", grains);

   |                      ^^^^^^ value borrowed here after move

 

error: aborting due to previous error

 

For more information about this error, try `rustc --explain E0382`.

error: could not compile `ch1-cereals`.

Listing 1.4 shows an example of a data race condition. If you remember, this
condition results from the inability to determine how a program behaves from
run to run due to changing external factors. You’ll find this code in the
ch1/ch1-race/src/ main.rs file.

Listing 1.4 Example of Rust preventing a race condition

 1 use std::thread;                           ①

 2 fn main() {

 3     let mut data = 100;

 4 

 5     thread::spawn(|| { data = 500; });     ②

 6     thread::spawn(|| { data = 1000; });    ②

 7     println!("{}", data);

 8 }



① Brings multi-threading into local scope

② thread::spawn() takes a closure as an argument.

If you are unfamiliar with the term thread, the upshot is that this code is not
deterministic. It’s impossible to know what value data will hold when
main() exits. On lines 6 and 7 of the listing, two threads are created by
calls to thread::spawn(). Each call takes a closure as an argument,
denoted by vertical bars and curly braces (e.g., || {...}). The thread
spawned on line 5 is attempting to set the data variable to 500, whereas the
thread spawned on line 6 is attempting to set it to 1,000. Because the
scheduling of threads is determined by the OS rather than the program, it’s
impossible to know if the thread defined first will be the one that runs first.

Attempting to compile listing 1.5 results in a stampede of error messages.
Rust does not allow multiple places in an application to have write access to
data. The code attempts to allow this in three places: once within the main
thread running main() and once in each child thread created by
thread::spawn(). Here’s the compiler message:

$ cargo run 

   Compiling ch1-race v0.1.0 (rust-in-action/code/ch1/ch1-race)

error[E0373]: closure may outlive the current function, but it

              borrows `data`, which is owned by the current function

 --> src/main.rs:6:19

  |

6 |     thread::spawn(|| { data = 500; });

  |                   ^^   ---- `data` is borrowed here

  |                   |

  |                   may outlive borrowed value `data`

  |

note: function requires argument type to outlive `'static`

 --> src/main.rs:6:5

  |

6 |     thread::spawn(|| { data = 500; });

  |     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

help: to force the closure to take ownership of `data`

      (and any other referenced variables), use the `move` keyword

  |



6 |     thread::spawn(move || { data = 500; });

  |                   ^^^^^^^

 

...                                        ①

error: aborting due to 4 previous errors

 

Some errors have detailed explanations: E0373, E0499, E0502.

For more information about an error, try `rustc --explain E0373`.

error: could not compile `ch1-race`.

① Three other errors omitted.

Listing 1.5 provides an example of a buffer overflow. A buffer overflow
describes situations where an attempt is made to access items in memory that
do not exist or that are illegal. In our case, an attempt to access fruit[4]
results in the program crashing, as the fruit variable only contains three
fruit. The source code for this listing is in the file ch1/ch1-fruit/src/main.rs.

Listing 1.5 Example of invoking a panic via a buffer overflow

 1 fn main() {

 2     let fruit = vec![' ', ' ', ' '];

 3 

 4     let buffer_overflow = fruit[4];      ①

 5     assert_eq!(buffer_overflow, ' ')    ②

 6 }

① Rust will cause a crash rather than assign an invalid memory location to a variable.

② assert_eq!() tests that arguments are equal.

When listing 1.5 is compiled and executed, you’ll encounter this error
message:

$ cargo run 

   Compiling ch1-fruit v0.1.0 (/rust-in-action/code/ch1/ch1-fruit)

    Finished dev [unoptimized + debuginfo] target(s) in 0.31s

     Running `target/debug/ch1-fruit`

thread 'main' panicked at 'index out of bounds:

    the len is 3 but the index is 4', src/main.rs:3:25

note: run with `RUST_BACKTRACE=1` environment variable

    to display a backtrace



The next listing shows an example of iterator invalidation, where an issue is
caused by something that’s iterated over after being altered midway through.
The source code for this listing is in ch1/ch1-letters/src/main.rs.

Listing 1.6 Attempting to modify an iterator while iterating over it

 1 fn main() {

 2     let mut letters = vec![               ①

 3         "a", "b", "c"

 4     ];

 5 

 6     for letter in letters {

 7         println!("{}", letter);

 8         letters.push(letter.clone());     ②

 9     }

10 }

① Creates a mutable vector letters

② Copies each letter and appends it to the end of letters

Listing 1.6 fails to compile because Rust does not allow the letters
variable to be modified within the iteration block. Here’s the error message:

$ cargo run 

   Compiling ch1-letters v0.1.0 (/rust-in-action/code/ch1/ch1-letters)

error[E0382]: borrow of moved value: `letters`

 --> src/main.rs:8:7

  |

2 |   let mut letters = vec![

  |       ----------- move occurs because `letters` has type

  |                   `std::vec::Vec<&str>`, which does not

  |                   implement the `Copy` trait

...

6 |   for letter in letters {

  |                 -------

  |                 |

  |                 `letters` moved due to this implicit call

  |                 to `.into_iter()`

  |                 help: consider borrowing to avoid moving

  |                 into the for loop: `&letters`

7 |       println!("{}", letter);

8 |       letters.push(letter.clone());

  |       ^^^^^^^ value borrowed here after move

 

error: aborting due to previous error

 



For more information about this error, try `rustc --explain E0382`.

error: could not compile `ch1-letters`.

 

To learn more, run the command again with --verbose.

While the language of the error message is filled with jargon (borrow, move,
trait, and so on), Rust has protected the programmer from stepping into a trap
that many others fall into. And fear not—that jargon will become easier to
understand as you work through the first few chapters of this book.

Knowing that a language is safe provides programmers with a degree of
liberty. Because they know their program won’t implode, they become much
more willing to experiment. Within the Rust community, this liberty has
spawned the expression fearless concurrency.

1.6.2 Goal of Rust: Productivity

When given a choice, Rust prefers the option that is easiest for the developer.
Many of its more subtle features are productivity boosts. But programmer
productivity is a difficult concept to demonstrate through an example in a
book. Let’s start with something that can snag beginners—using assignment
(=) within an expression that should use an equality (==) test:

1 fn main() {

2     let a = 10;

3 

4     if a = 10 {

5         println!("a equals ten");

6     }

7 }

In Rust, the preceding code fails to compile. The Rust compiler generates the
following message:

error[E0308]: mismatched types

 --> src/main.rs:4:8



  |

4 |     if a = 10 {

  |        ^^^^^^

  |        |

  |        expected `bool`, found `()`

  |        help: try comparing for equality: `a == 10`

 

error: aborting due to previous error

 

For more information about this error, try `rustc --explain E0308`.

error: could not compile `playground`.

 

To learn more, run the command again with --verbose.

At first, “mismatched types” might feel like a strange error message to
encounter. Surely we can test variables for equality against integers.

After some thought, it becomes apparent why the if test receives the wrong
type. The if is not receiving an integer. It’s receiving the result of an
assignment. In Rust, this is the blank type: (). () is pronounced unit.14

When there is no other meaningful return value, expressions return (). As
the following shows, adding a second equals sign on line 4 results in a
working program that prints a equals ten:

1 fn main() {

2     let a = 10;

3 

4     if a == 10 {      ①

5         println!("a equals ten");

6     }

7 }

① Using a valid assignment operator (==) allows the program to compile.

Rust has many ergonomic features. It offers generics, sophisticated data
types, pattern matching, and closures.15 Those who have worked with other
ahead-of-time compilation languages are likely to appreciate Rust’s build
system and its comprehensive package manager: cargo.



At first glance, we see that cargo is a front end for rustc, the Rust compiler,
but cargo provides several additional utilities including the following:

cargo new creates a skeleton Rust project in a new directory
(cargo init uses the current directory).

cargo build downloads dependencies and compiles the code.

cargo run executes cargo build and then also runs the
resulting executable file.

cargo doc builds HTML documentation for every dependency in
the current project.

1.6.3 Goal of Rust: Control

Rust offers programmers fine-grained control over how data structures are
laid out in memory and their access patterns. While Rust uses sensible
defaults that align with its “zero cost abstractions” philosophy, those defaults
do not suit all situations.

At times, it is imperative to manage your application’s performance. It might
matter to you that data is stored in the stack rather than on the heap. Perhaps,
it might make sense to add reference counting to create a shared reference to
a value. Occasionally, it might be useful to create one’s own type of pointer
for a particular access pattern. The design space is large and Rust provides
the tools to allow you to implement your preferred solution.

NOTE If terms such as stack, heap, and reference counting are new, don’t put the book down! We’ll
spend lots of time explaining these and how they work together throughout the rest of the book.

Listing 1.7 prints the line a: 10, b: 20, c: 30, d: Mutex
{ data: 40 }. Each representation is another way to store an integer.



As we progress through the next few chapters, the trade-offs related to each
level become apparent. For the moment, the important thing to remember is
that the menu of types is comprehensive. You are welcome to choose exactly
what’s right for your specific use case.

Listing 1.7 also demonstrates multiple ways to create integers. Each form
provides differing semantics and runtime characteristics. But programmers
retain full control of the trade-offs that they want to make.

Listing 1.7 Multiple ways to create integer values

 1 use std::rc::Rc;

 2 use std::sync::{Arc, Mutex};

 3 

 4 fn main() {

 5     let a = 10;                                ①

 6     let b = Box::new(20);                      ②

 7     let c = Rc::new(Box::new(30));             ③

 8     let d = Arc::new(Mutex::new(40));          ④

 9     println!("a: {:?}, b: {:?}, c: {:?}, d: {:?}", a, b, c, d);

10 }

① Integer on the stack

② Integer on the heap, also known as a boxed integer

③ Boxed integer wrapped within a reference counter

④ Integer wrapped in an atomic reference counter and protected by a mutual exclusion lock

To understand why Rust is doing something the way it is, it can be helpful to
refer back to these three principles:

The language’s first priority is safety.

Data within Rust is immutable by default.

Compile-time checks are strongly preferred. Safety should be a “zero-
cost abstraction.”



1.7 Rust’s big features

Our tools shape what we believe we can create. Rust enables you to build the
software that you want to make, but were too scared to try. What kind of tool
is Rust? Flowing from the three principles discussed in the last section are
three overarching features of the language:

Performance

Concurrency

Memory efficiency

1.7.1 Performance

Rust offers all of your computer’s available performance. Famously, Rust
does not rely on a garbage collector to provide its memory safety.

There is, unfortunately, a problem with promising you faster programs: the
speed of your CPU is fixed. Thus, for software to run faster, it needs to do
less. Yet, the language is large. To resolve this conflict, Rust pushes the
burden onto the compiler.

The Rust community prefers a bigger language with a compiler that does
more, rather than a simpler language where the compiler does less. The Rust
compiler aggressively optimizes both the size and speed of your program.
Rust also has some less obvious tricks:

Cache-friendly data structures are provided by default. Arrays usually
hold data within Rust programs rather than deeply nested tree structures
that are created by pointers. This is referred to as data-oriented



programming.

The availability of a modern package manager (cargo) makes it trivial
to benefit from tens of thousands of open source packages. C and C++
have much less consistency here, and building large projects with many
dependencies is typically difficult.

Methods are always dispatched statically unless you explicitly request
dynamic dispatch. This enables the compiler to heavily optimize code,
sometimes to the point of eliminating the cost of a function call entirely.

1.7.2 Concurrency

Asking a computer to do more than one thing at the same time has proven
difficult for software engineers. As far as an OS is concerned, two
independent threads of execution are at liberty to destroy each other if a
programmer makes a serious mistake. Yet Rust has spawned the expression
fearless concurrency. Its emphasis on safety crosses the bounds of
independent threads. There is no global interpreter lock (GIL) to constrain a
thread’s speed. We explore some of the implications of this in part 2.

1.7.3 Memory efficiency

Rust enables you to create programs that require minimal memory. When
needed, you can use fixed-size structures and know exactly how every byte is
managed. High-level constructs, such as iteration and generic types, incur
minimal runtime overhead.



1.8 Downsides of Rust

It’s easy to talk about this language as if it is the panacea for all software
engineering. For example

“A high-level syntax with low-level performance!”

“Concurrency without crashes!”

“C with perfect safety!”

These slogans (sometimes overstated) are great. But for all of its merits, Rust
does have some disadvantages.

1.8.1 Cyclic data structures

In Rust, it is difficult to model cyclic data like an arbitrary graph structure.
Implementing a doubly-linked list is an undergraduate-level computer science
problem. Yet Rust’s safety checks do hamper progress here. If you’re new to
the language, avoid implementing these sorts of data structures until you’re
more familiar with Rust.

1.8.2 Compile times

Rust is slower at compiling code than its peer languages. It has a complex
compiler toolchain that receives multiple intermediate representations and
sends lots of code to the LLVM compiler. The unit of compilation for a Rust
program is not an individual file but a whole package (known affectionately
as a crate). As crates can include multiple modules, these can be exceedingly
large units to compile. Although this enables whole-of-crate optimization, it
requires whole-of-crate compilation as well.



1.8.3 Strictness

It’s impossible—well, difficult—to be lazy when programming with Rust.
Programs won’t compile until everything is just right. The compiler is strict,
but helpful.

Over time, it’s likely that you’ll come to appreciate this feature. If you’ve
ever programmed in a dynamic language, then you may have encountered the
frustration of your program crashing because of a misnamed variable. Rust
brings that frustration forward so that your users don’t have to experience the
frustration of things crashing.

1.8.4 Size of the language

Rust is large! It has a rich type system, several dozen keywords, and includes
some features that are unavailable in other languages. These factors all
combine to create a steep learning curve. To make this manageable, I
encourage learning Rust gradually. Start with a minimal subset of the
language and give yourself time to learn the details when you need these.
That is the approach taken in this book. Advanced concepts are deferred until
much later.

1.8.5 Hype

The Rust community is wary of growing too quickly and being consumed by
hype. Yet, a number of software projects have encountered this question in
their Inbox: “Have you considered rewriting this in Rust?” Unfortunately,
software written in Rust is still software. It not immune to security problems
and does not offer a panacea to all of software engineering’s ills.



1.9 TLS security case studies

To demonstrate that Rust will not alleviate all errors, let’s examine two
serious exploits that threatened almost all internet-facing devices and
consider whether Rust would have prevented those.

By 2015, as Rust gained prominence, implementations of SSL/TLS (namely,
OpenSSL and Apple’s own fork) were found to have serious security holes.
Known informally as Heartbleed and goto fail;, both exploits provide
opportunities to test Rust’s claims of memory safety. Rust is likely to have
helped in both cases, but it is still possible to write Rust code that suffers
from similar issues.

1.9.1 Heartbleed

Heartbleed, officially designated as CVE-2014-0160,16 was caused by re-
using a buffer incorrectly. A buffer is a space set aside in memory for
receiving input. Data can leak from one read to the next if the buffer’s
contents are not cleared between writes.

Why does this situation occur? Programmers hunt for performance. Buffers
are reused to minimize how often memory applications ask for memory from
the OS.

Imagine that we want to process some secret information from multiple users.
We decide, for whatever reason, to reuse a single buffer through the course of
the program. If we don’t reset this buffer once we use it, information from
earlier calls will leak to the latter ones. Here is a précis of a program that
would encounter this error:



let buffer = &mut[0u8; 1024];     ①

read_secrets(&user1, buffer);     ②

store_secrets(buffer);

 

read_secrets(&user2, buffer);     ③

store_secrets(buffer);

① Binds a reference (&) to a mutable (mut) array ([...]) that contains 1,024 unsigned 8-bit integers (u8)
initialized to 0 to the variable buffer

② Fills buffer with bytes from the data from user1

③ The buffer still contains data from user1 that may or may not be overwritten by user2.

Rust does not protect you from logical errors. It ensures that your data is
never able to be written in two places at the same time. It does not ensure that
your program is free from all security issues.

1.9.2 Goto fail;

The goto fail; bug, officially designated as CVE-2014-1266,17 was
caused by programmer error coupled with C design issues (and potentially by
its compiler not pointing out the flaw). A function that was designed to verify
a cryptographic key pair ended up skipping all checks. Here is a selected
extract from the original
SSLVerifySignedServerKeyExchange function with a fair
amount of obfuscatory syntax retained:18

 1 static OSStatus

 2 SSLVerifySignedServerKeyExchange(SSLContext *ctx,

 3                                  bool isRsa,

 4                                  SSLBuffer signedParams,

 5                                 uint8_t *signature,

 6                                 UInt16 signatureLen)

 7{

 8    OSStatus        err;                      ①

 9    ...

10 

11     if ((err = SSLHashSHA1.update(

12         &hashCtx, &serverRandom)) != 0)      ②

13         goto fail;



14 

15     if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

 

16         goto fail;

17         goto fail;                           ③

18     if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

19         goto fail;

20 

21     err = sslRawVerify(ctx,

22                        ctx->peerPubKey,

23                        dataToSign,              /* plaintext \*/

24                        dataToSignLen,           /* plaintext length \*/

25                        signature,

26                        signatureLen);

27     if(err) {

28         sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify "

29                     "returned %d\n", (int)err);

30         goto fail;

31     }

32 

33 fail:

34     SSLFreeBuffer(&signedHashes);

35     SSLFreeBuffer(&hashCtx);

36     return err;                              ④

37 }

① Initializes OSStatus with a pass value (e.g., 0)

② A series of defensive programming checks

③ Unconditional goto skips SSLHashSHA1.final() and the (significant) call to sslRawVerify().

④ Returns the pass value of 0, even for inputs that should have failed the verification test

In the example code, the issue lies between lines 15 and 17. In C, logical tests
do not require curly braces. C compilers interpret those three lines like this:

    if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0) {

        goto fail;

    }

    goto fail;

Would Rust have helped? Probably. In this specific case, Rust’s grammar
would have caught the bug. It does not allow logical tests without curly
braces. Rust also issues a warning when code is unreachable. But that doesn’t
mean the error is made impossible in Rust. Stressed programmers under tight
deadlines make mistakes. In general, similar code would compile and run.



TIP Code with caution.



1.10 Where does Rust fit best?

Although it was designed as a systems programming language, Rust is a
general-purpose language. It has been successfully deployed in many areas,
which we discuss next.

1.10.1 Command-line utilities

Rust offers three main advantages for programmers creating command-line
utilities: minimal startup time, low memory use, and easy deployment.
Programs start their work quickly because Rust does not need to initialize an
interpreter (Python, Ruby, etc.) or virtual machine (Java, C#, etc.).

As a bare metal language, Rust produces memory-efficient programs.19 As
you’ll see throughout the book, many types are zero-sized. That is, these only
exist as hints to the compiler and take up no memory at all in the running
program.

Utilities written in Rust are compiled as static binaries by default. This
compilation method avoids depending on shared libraries that you must
install before the program can run. Creating programs that can run without
installation steps makes these easy to distribute.

1.10.2 Data processing

Rust excels at text processing and other forms of data wrangling.
Programmers benefit from control over memory use and fast startup times.
As of mid-2017, Rust touts the world’s fastest regular expression engine. In
2019, the Apache Arrow data-processing project—foundational to the Python



and R data science ecosystems—accepted the Rust-based DataFusion project.

Rust also underlies the implementation of multiple search engines, data-
processing engines, and log-parsing systems. Its type system and memory
control provide you with the ability to create high throughput data pipelines
with a low and stable memory footprint. Small filter programs can be easily
embedded into the larger framework via Apache Storm, Apache Kafka, or
Apache Hadoop streaming.

1.10.3 Extending applications

Rust is well suited for extending programs written in a dynamic language.
This enables JNI (Java Native Interface) extensions, C extensions, or
Erlang/Elixir NIFs (native implemented functions) in Rust. C extensions are
typically a scary proposition. These tend to be quite tightly integrated with
the runtime. Make a mistake and you could be looking at runaway memory
consumption due to a memory leak or a complete crash. Rust takes away a lot
of this anxiety.

Sentry, a company that processes application errors, finds that Rust is an
excellent candidate for rewriting CPU-intensive components of their
Python system.20

Dropbox used Rust to rewrite the file synchronization engine of its
client-side application: “More than performance, [Rust’s] ergonomics
and focus on correctness have helped us tame sync’s complexity.”21

1.10.4 Resource-constrained environments

C has occupied the domain of microcontrollers for decades. Yet, the Internet
of Things (IoT) is coming. That could mean many billions of insecure
devices exposed to the network. Any input parsing code will be routinely



probed for weaknesses. Given how infrequently firmware updates for these
devices occur, it’s critical that these are as secure as possible from the outset.
Rust can play an important role here by adding a layer of safety without
imposing runtime costs.

1.10.5 Server-side applications

Most applications written in Rust live on the server. These could be serving
web traffic or supporting businesses running their operations. There is also a
tier of services that sit between the OS and your application. Rust is used to
write databases, monitoring systems, search appliances, and messaging
systems. For example

The npm package registry for the JavaScript and node.js communities is
written in Rust.22

sled (https://github.com/spacejam/sled), an embedded database, can
process a workload of 1 billion operations that includes 5% writes in
less than a minute on a 16-core machine.

Tantivy, a full text search engine, can index 8 GB of English Wikipedia
in approximately 100 s on a 4-core desktop machine.23

1.10.6 Desktop applications

There is nothing inherent in Rust’s design that prevents it from being
deployed to develop user-facing software. Servo, the web browser engine that
acted as an incubator for Rust’s early development, is a user-facing
application. Naturally, so are games.

1.10.7 Desktop

https://github.com/spacejam/sled


There is still a significant need to write applications that live on people’s
computers. Desktop applications are often complex, difficult to engineer, and
hard to support. With Rust’s ergonomic approach to deployment and its rigor,
it is likely to become the secret sauce for many applications. To start, these
will be built by small, independent developers. As Rust matures, so will the
ecosystem.

1.10.8 Mobile

Android, iOS, and other smartphone operating systems generally provide a
blessed path for developers. In the case of Android, that path is Java. In the
case of macOS, developers generally program in Swift. There is, however,
another way.

Both platforms provide the ability for native applications to run on them. This
is generally intended for applications written in C++, such as games, to be
able to be deployed to people’s phones. Rust is able to talk to the phone via
the same interface with no additional runtime cost.

1.10.9 Web

As you are probably aware, JavaScript is the language of the web. Over time
though, this will change. Browser vendors are developing a standard called
WebAssembly (Wasm) that promises to be a compiler target for many
languages. Rust is one of the first. Porting a Rust project to the browser
requires only two additional command-line commands. Several companies
are exploring the use of Rust in the browser via Wasm, notably CloudFlare
and Fastly.

1.10.10 Systems programming



In some sense, systems programming is Rust’s raison d’être. Many large
programs have been implemented in Rust, including compilers (Rust itself),
video game engines, and operating systems. The Rust community includes
writers of parser generators, databases, and file formats.

Rust has proven to be a productive environment for programmers who share
Rust’s goals. Three standout projects in this area include the following:

Google is sponsoring the development of Fuchsia OS, an operating
system for devices.24

Microsoft is actively exploring writing low-level components in Rust for
Windows.25

Amazon Web Services (AWS) is building Bottlerocket, a bespoke OS
for hosting containers in the cloud.26



1.11 Rust’s hidden feature: Its community

It takes more than software to grow a programming language. One of the
things that the Rust team has done extraordinarily well is to foster a positive
and welcoming community around the language. Everywhere you go within
the Rust world, you’ll find that you’ll be treated with courtesy and respect.



1.12 Rust phrase book

When you interact with members of the Rust community, you’ll soon
encounter a few terms that have special meaning. Understanding the
following terms makes it easier to understand why Rust has evolved the way
that it has and the problems that it attempts to solve:

Empowering everyone—All programmers regardless of ability or
background are welcome to participate. Programming, and particularly
systems programming, should not be restricted to a blessed few.

Blazingly fast—Rust is a fast programming language. You’ll be able to
write programs that match or exceed the performance of its peer
languages, but you will have more safety guarantees.

Fearless concurrency—Concurrent and parallel programming have
always been seen as difficult. Rust frees you from whole classes of
errors that have plagued its peer languages.

No Rust 2.0—Rust code written today will always compile with a future
Rust compiler. Rust is intended to be a reliable programming language
that can be depended upon for decades to come. In accordance with
semantic versioning, Rust is never backward-incompatible, so it will
never release a new major version.

Zero-cost abstractions—The features you gain from Rust impose no
runtime cost. When you program in Rust, safety does not sacrifice
speed.



Summary

Many companies have successfully built large software projects in Rust.

Software written in Rust can be compiled for the PC, the browser, and
the server, as well as mobile and IoT devices.

The Rust language is well loved by software developers. It has
repeatedly won Stack Overflow’s “most loved programming language”
title.

Rust allows you to experiment without fear. It provides correctness
guarantees that other tools are unable to provide without imposing
runtime costs.

With Rust, there are three main command_line tools to learn:

cargo, which manages a whole crate

rustup, which manages Rust installations

rustc, which manages compilation of Rust source code

Rust projects are not immune from all bugs.

Rust code is stable, fast, and light on resources.

1.See “How our AWS Rust team will contribute to Rust’s future successes,” http://mng.bz/BR4J.
2.See “Rust at Cloudflare,” https://news.ycombinator.com/item?id=17077358.
3.See “The Epic Story of Dropbox’s Exodus From the Amazon Cloud Empire,” http://mng.bz/d45Q.
4.See “Google joins the Rust Foundation,” http://mng.bz/ryOX.
5.See “HHVM 4.20.0 and 4.20.1,” https://hhvm.com/blog/2019/08/27/hhvm-4.20.0.html.
6.See https://github.com/Azure/iotedge/tree/master/edgelet.
7.See “Rust Case Study: Community makes Rust an easy choice for npm,” http://mng.bz/xm9B.
8.See “Building a Container Runtime in Rust,” http://mng.bz/d40Q.
9.See “HTTP code syntax highlighting server written in Rust,”

https://github.com/sourcegraph/syntect_server.
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10.See “Rust in Production at Figma,” https://www.figma.com/blog/rust-in-production-at-figma/.
11.See “The fast, light, and robust EVM and WASM client,” https://github.com/paritytech/parity-

ethereum.
12.See “Chrome OS KVM—A component written in Rust,” https://news.ycombinator.com/item?

id=15346557.
13.See the articles “We need a safer systems programming language,” http://mng.bz/VdN5 and

“Memory safety,” http://mng.bz/xm7B for more information.
14.The name unit reveals some of Rust’s heritage as a descendant of the ML family of programming

languages that includes OCaml and F#. The term stems from mathematics. Theoretically, a unit type
only has a single value. Compare this with Boolean types that have two values, true or false, or
strings that have an infinite number of valid values.

15.If these terms are unfamiliar, do keep reading. These are explained throughout the book. They are
language features that you will miss in other languages.

16.See “CVE-2014-0160 Detail,” https://nvd.nist.gov/vuln/detail/CVE-2014-0160.
17.See “CVE-2014-1266 Detail,” https://nvd.nist.gov/vuln/detail/CVE-2014-1266.
18.Original available at http://mng.bz/RKGj.
19.The joke goes that Rust is as close to bare metal as possible.
20.See “Fixing Python Performance with Rust,” http://mng.bz/ryxX.
21.See “Rewriting the heart of our sync engine,” http://mng.bz/Vdv5.
22.See “Community makes Rust an easy choice for npm: The npm Registry uses Rust for its CPU-

bound bottlenecks,” http://mng.bz/xm9B.
23.See “Of tantivy’s indexing,” https://fulmicoton.com/posts/behold-tantivy-part2/.
24.See “Welcome to Fuchsia!,” https://fuchsia.dev/.
25.See “Using Rust in Windows,” http://mng.bz/A0vW.
26.See “Bottlerocket: Linux-based operating system purpose-built to run containers,”

https://aws.amazon.com/ bottlerocket/.
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Part 1 Rust language distinctives

Part 1 of the book is a quick-fire introduction to the Rust programming

language. By the end of the chapters in this part, you will have a good
understanding of Rust syntax and know what motivates people to choose
Rust. You will also understand some fundamental differences between Rust
and its peer languages.



2 Language foundations

This chapter covers

Coming to grips with the Rust syntax
Learning fundamental types and data structures
Building command-line utilities
Compiling programs

This chapter introduces you to the fundamentals of Rust programming. By
the end of the chapter, you will be able to create command-line utilities and
should be able to get the gist of most Rust programs. We’ll work through
most of the language’s syntax, but defer much of the detail about why things
are how they are for later in the book.

NOTE Programmers who have experience with another programming language will benefit the most
from this chapter. If you are an experienced Rust programmer, feel free to skim through it.

Beginners are welcomed. Rust’s community strives to be responsive to
newcomers. At times, you may strike a mental pothole when you encounter
terms such as lifetime elision, hygienic macros, move semantics, and
algebraic data types without context. Don’t be afraid to ask for help. The
community is much more welcoming than these helpful, yet opaque, terms
might suggest.

In this chapter, we will build grep-lite, a greatly stripped-down version of the
ubiquitous grep utility. Our grep-lite program looks for patterns within text
and prints lines that match. This simple program allows us to focus on the



unique features of Rust.

The chapter takes a spiral approach to learning. A few concepts will be
discussed multiple times. With each iteration, you will find yourself learning
more. Figure 2.1 shows a completely unscientific map of the chapter.

Figure 2.1 Chapter topic outline. Starting with primitive types, the
chapter progresses through several concepts with increasing levels of
depth.

It’s highly recommended that you follow along with the examples in this
book. As a reminder, to access or download the source code for the listings,
use either of these two sources:



https://manning.com/books/rust-in-action

https://github.com/rust-in-action/code

https://manning.com/books/rust-in-action
https://github.com/rust-in-action/code


2.1 Creating a running program

Every plain text file has a hidden superpower: when it includes the right
symbols, it can be converted into something that can be interpreted by a CPU.
That is the magic of a programming language. This chapter’s aim is to allow
you to become familiar with the process of converting Rust source code into
a running program.

Understanding this process is more fun than it sounds! And it sets you up for
an exciting learning journey. By the end of chapter 4, you will have
implemented a virtual CPU that can also interpret programs that you create.

2.1.1 Compiling single files with rustc

Listing 2.1 is a short, yet complete Rust program. To translate it into a
working program, we use software called a compiler. The compiler’s role is
to translate the source code into machine code, as well as take care of lots of
bookkeeping to satisfy the operating system (OS) and CPU that it is a
runnable program. The Rust compiler is called rustc. You’ll find the source
code for listing 2.1 in the file ch2/ok.rs.

Listing 2.1 Almost the shortest valid Rust program

 1 fn main() {

 2   println!("OK")

 3 }

To compile a single file written in Rust into a working program

1. Save your source code to a file. In our case, we’ll use the filename ok.rs.



2. Make sure that the source code includes a main() function.

3. Open a shell window such as Terminal, cmd.exe, Powershell, bash, zsh,
or any other.

4. Execute the command rustc <file>, where <file> is the file
you want to compile.

When compilation succeeds, rustc sends no output to the console. Behind the
scenes, rustc has dutifully created an executable, using the input filename to
choose the output filename.

Assuming that you’ve saved listing 2.1 to a file called ok.rs, let’s see what
that looks like. The following snippet provides a short demonstration of the
process:

$ rustc ok.rs 

$ ./ok           ①

OK

① For Windows, include the .exe filename extension (for example, ok.exe).

2.1.2 Compiling Rust projects with cargo

Most Rust projects are larger than a single file. These typically include
dependencies. To prepare ourselves for that, we’ll use a higher-level tool than
rustc, called cargo. cargo understands how to drive rustc (and much more).

Migrating from a single file workflow managed by rustc to one managed by
cargo is a two-stage process. The first is to move that original file into an
empty directory. Then execute the cargo init command.

Here is a detailed overview of that process, assuming that you are starting
from a file called ok.rs generated by following the steps in the previous



section:

1. Run mkdir <project> to create an empty directory (e.g.,
mkdir ok).

2. Move your source code into the <project> directory (e.g., mv ok.rs
ok).

3. Change to the <project> directory (e.g., cd ok).

4. Run cargo init.

From this point on, you can issue cargo run to execute your project’s
source code. One difference from rustc is that compiled executables are found
in a <project>/target subdirectory. Another is that cargo provides much more
output by default:

$ cargo run 

    Finished dev [unoptimized + debuginfo] target(s) in 0.03s

    Running `target/debug/ok`

OK

If you’re ever curious about what cargo is doing under the hood to drive
rustc, add the verbose flag (-v) to your command:

$ rm -rf target/         ①

$ cargo run -v 

   Compiling ok v0.1.0 (/tmp/ok)

     Running `rustc

     --crate-name ok

     --edition=2018

     ok.rs

     --error-format=json

     --json=diagnostic-rendered-ansi

     --crate-type bin

     --emit=dep-info,link

     -C embed-bitcode=no

     -C debuginfo=2

     -C metadata=55485250d3e77978

     -C extra-filename=-55485250d3e77978

     --out-dir /tmp/ok/target/debug/deps



     -C incremental=/tmp/target/debug/incremental

     -L dependency=/tmp/ok/target/debug/deps

     -C link-arg=-fuse-ld=lld`

    Finished dev [unoptimized + debuginfo] target(s) in 0.31s

     Running `target/debug/ok`

OK

① Added here to provoke cargo into compiling the project from scratch



2.2 A glance at Rust’s syntax

Rust is boring and predictable where possible. It has variables, numbers,
functions, and other familiar things that you have seen in other languages.
For example, it delimits blocks with curly brackets ({ and }), it uses a single
equals sign as its assignment operator (=), and it is whitespace-agnostic.

2.2.1 Defining variables and calling functions

Let’s look at another short listing to introduce some fundamentals: defining
variables with type annotations and calling functions. Listing 2.2 prints a +
b = 30 to the console. As you can see from lines 2–5 in the listing, there
are multiple syntactic choices for annotating data types to integers. Use
whichever feels most natural for the situation at hand. The source code for
this listing is in ch2/ch2-first-steps.rs.

Listing 2.2 Adding integers using variables and declaring types

 1 fn main() {                             ①

 2   let a = 10;                           ②

 3   let b: i32 = 20;                      ③

 4   let c = 30i32;                        ④

 5   let d = 30_i32;                       ⑤

 6   let e = add(add(a, b), add(c, d));

 7 

 8   println!("( a + b ) + ( c + d ) = {}", e);

 9 }

10 

11 fn add(i: i32, j: i32) -> i32 {         ⑥

12   i + j                                 ⑦

13 }

① Rust is flexible with the location of the main() function.

② Types can be inferred by the compiler...

③ ...or declared by the programmer when creating variables.



④ Numeric types can include a type annotation in their literal form.

⑤ Numbers can include underscores, which are intended to increase readability and have no functional
impact.

⑥ Type declarations are required when defining functions.

⑦ Functions return the last expression’s result so that return is not required.

NOTE In the listing, be careful about adding a semicolon to the add() function declaration. This
changes the semantics, returning () (unit) rather than i32.

Although there are only 13 lines of code, there is quite a lot packed into
listing 2.2. Here’s a brief description that should provide the gist of what’s
going on. We will cover the details in the rest of the chapter.

In line 1 (fn main() {), the fn keyword begins a function definition.
The entry point to all Rust programs is main(). It takes no arguments and
returns no value.1 Code blocks, also known as lexical scopes, are defined with
curly braces: { and }.

In line 2 (let a = 10;), we use let to declare variable bindings.
Variables are immutable by default, meaning that they are read-only rather
than read-write. And finally, statements are delimited with semicolons (;).

In line 3 (let b: i32 = 20;), you can designate a specific data type
for the compiler. At times, this will be required as the compiler will be unable
to deduce a unique type on your behalf.

In line 4 (let c = 30i32;), you’ll note that Rust’s numeric literals
can include types annotations. This can be helpful when navigating complex
numerical expressions. And in line 5 (let c = 30_i32;), you’ll see
that Rust permits the use of underscores within numeric literals. These
increase readability but are insignificant to the compiler. In line 6 (let e
= add(add(a, b), add(c, d));), it should be easy to see that



calling functions looks like what you’ve experienced in most other
programming languages.

In line 8 (println!("( a + b ) + ( c + d ) = {}",
e); ), println!() is a macro, which is function-like but returns
code rather than values. When printing to the console, every input data type
has its own way of being represented as a text string. println!() takes
care of figuring out the exact methods to call on its arguments.

Strings use double quotes (") rather than single quotes ('). Rust uses single
quotes for single characters, which are a distinct type, char. And with Rust,
string formatting uses {} as a placeholder, rather than the C-like printf
style of %s or other variants.

Finally, in line 10 (fn add(...) -> i32 {), you can see that
Rust’s syntax for defining functions is similar to those programming
languages that use explicit type declarations. Commas delimit parameters,
and type declarations follow variable names. The dagger (->) or thin arrow
syntax indicates the return type.



2.3 Numbers

Computers have been associated with numbers for longer than you have been
able to say “formula translator.” This section discusses how to create numeric
types in Rust and how to perform operations on these.

2.3.1 Integers and decimal (floating-point) numbers

Rust uses a relatively conventional syntax for creating integers (1, 2, ...) and
floating-point numbers (1.0, 1.1, ...). Operations on numbers use infix
notation, meaning that numeric expressions look like those that you’re used
to seeing in most programming languages. To operate on multiple types, Rust
also allows the same token (+) for addition. This is called operator
overloading. Some notable differences from other languages follow:

Rust includes a large number of numeric types. You will become used to
declaring the size in bytes, which affects how many numbers the type
can represent and whether your type is able to represent negative
numbers.

Conversions between types are always explicit. Rust does not
automatically convert your 16-bit integer into a 32-bit integer.

Rust’s numbers can have methods. For example, to round 24.5 to the
nearest integer, Rust programmers use 24.5_f32.round()
rather than (round(24.5_f32)). Here, the type suffix is required
because a concrete type is necessary.

To start, let’s consider a small example. You’ll find the code in ch2/ch2-
intro-to-numbers.rs in the examples for this book. Listing 2.3 prints these few



lines to the console:

20 + 21 + 22 = 63

1000000000000

42

Listing 2.3 Numeric literals and basic operations on numbers in Rust

 1 fn main() {

 2   let twenty = 20;                       ①

 3   let twenty_one: i32 = 21;              ②

 4   let twenty_two = 22i32;                ③

 5 

 6   let addition = twenty + twenty_one + twenty_two;

 7   println!("{} + {} + {} = {}", twenty, twenty_one, twenty_two, addition);

 8 

 9   let one_million: i64 = 1_000_000;      ④

10   println!("{}", one_million.pow(2));    ⑤

11 

12   let forty_twos = [                     ⑥

13     42.0,                                ⑦

14     42f32,                               ⑧

15     42.0_f32,                            ⑨

16   ];

17 

18/   println!("{:02}", forty_twos[0]);     ⑩

19 }

① Rust infers a type on your behalf if you don’t supply one...

② ...which is done by adding type annotations (i32)...

③ ...or type suffixes.

④ Underscores increase readability and are ignored by the compiler.

⑤ Numbers have methods.

⑥ Creates an array of numbers, which must all be the same type, by surrounding those with square
brackets

⑦ Floating-point literals without an explicit type annotation become 32-bit or 64-bit, depending on
context.

⑧ Floating-point literals can also have type suffixes...

⑨ ...and optional underscores.

⑩ Elements within arrays can be indexed numerically, starting at 0.



2.3.2 Integers with base 2, base 8, and base 16
notation

Rust also has built-in support for numeric literals that allow you to define
integers in base 2 (binary), base 8 (octal), and base 16 (hexadecimal). This
notation is also available within the formatting macros like println!.
Listing 2.4 demonstrates the three styles. You can find the source code for
this listing in ch2/ch2-non-base2.rs. It produces the following output:

base 10: 3 30 300

base 2:  11 11110 100101100

base 8:  3 36 454

base 16: 3 1e 12c

Listing 2.4 Using base 2, base 8, and base 16 numeric literals

 1 fn main() {

 2   let three = 0b11;             ①

 3   let thirty = 0o36;            ②

 4   let three_hundred = 0x12C;    ③

 5 

 6   println!("base 10: {} {} {}", three, thirty, three_hundred);

 7   println!("base 2:  {:b} {:b} {:b}", three, thirty, three_hundred);

 8   println!("base 8:  {:o} {:o} {:o}", three, thirty, three_hundred);

 9   println!("base 16: {:x} {:x} {:x}", three, thirty, three_hundred);

10 }

① The 0b prefix indicates binary (base 2) numerals.

② The 0o prefix indicates octal (base 8) numerals.

③ The 0x prefix indicates hexadecimal (base 16) numerals.

In binary (base 2) numerals, 0b11 equals 3 because 3 = 2 × 1 + 1 × 1. With
octal (base 8) numerals, 0o36 equals 30 because 30 = 8 × 3 + 1 × 6. And
with hexadecimal (base 16) numerals, 0x12C equals 300 because 300 = 256
× 1 + 16 × 2 + 1 × 12. Table 2.1 shows the types that represent scalar
numbers.



Table 2.1 Rust types for representing scalar (single) numbers

i8, i16, i32, i64 Signed integers ranging from 8 bit to 64 bit.

u8, u16, u32, u64 Unsigned integers ranging from 8 bit to 64 bit.

f32, f64 Floating-point numbers in 32-bit and 64-bit variants.

isize, usize Integers that assume the CPU’s “native” width. For example,
in 64-bit CPUs, usize and isize will be 64-bits wide.

Rust contains a full complement of numeric types. The types are grouped into
a few families:

Signed integers (i) represent negative as well as positive integers.

Unsigned integers (u) only represent positive integers but can go twice
as high as their signed counterparts.

Floating-point types (f) represent real numbers with special bit patterns
to represent infinity, negative infinity, and “not a number” values.

Integer width is the number of bits that the type uses in RAM and in the CPU.
Types that take up more space, such as u32 vs. i8, can represent a wider
range of numbers. But this incurs the expense of needing to store extra zeros
for smaller numbers, as table 2.2 shows.

Table 2.2 Multiple bit patterns can represent the same number.

Number Type Bit pattern in memory
20 u32 00000000000000000000000000010100

20 i8 00010100

20 f32 01000001101000000000000000000000

Although we’ve only touched on numbers, we nearly have enough exposure
to Rust to create a prototype of our pattern-matching program. But let’s look



at comparing numbers before we create our program.

2.3.3 Comparing numbers

Rust’s numeric types support a large suite of comparisons that you’re
probably familiar with. Enabling support for these comparisons is provided
by a feature that you have not encountered yet. It is called traits.2 Table 2.3
summarizes the comparison operators available to you.

Table 2.3 Mathematical operators supported by Rust’s numeric types

Operator Rust syntax Example
Less than (<) < 1.0 < 2.0

Greater than (>) > 2.0 > 1.0

Equal to (=) == 1.0 == 1.0

Unequal to (≠) != 1.0 != 2.0

Equal to or less than (≤) <= 1.0 <= 2.0

Equal to greater than or (≥) >= 2.0 >= 1.0

That support does include a few caveats. We’ll look at these conditions in the
rest of this section.

IMPOSSIBLE TO COMPARE DIFFERENT TYPES

Rust’s type safety requirements prevent comparisons between types. For
example, this code does not compile:

 fn main() {

   let a: i32 = 10;

   let b: u16 = 100;

  

   if a < b {

     println!("Ten is less than one hundred.");



   }

 }

To appease the compiler, we need to use an as operator to cast one of the
operands to the other’s type. The following code shows this type cast: b as
i32:

 fn main() {

   let a: i32 = 10;

   let b: u16 = 100;

  

   if a < (b as i32) {

     println!("Ten is less than one hundred.");

   }

 }

It is safest to cast the smaller type to a larger one (for example, a 16-bit type
to a 32-bit type). This is sometimes referred to as promotion. In this case, we
could have demoted a down to a u16, but such a move is generally more
risky.

WARNING Using type casts carelessly will cause your program to behave unexpectedly. For
example, the expression 300_i32 as i8 returns 44.

In some cases, using the as keyword is too restrictive. It’s possible to regain
fuller control over the type conversion process at the cost of introducing
some bureaucracy. The following listing shows a Rust method to use instead
of the as keyword when the conversion might fail.

Listing 2.5 The try_into() method converts between types

 1 use std::convert::TryInto;    ①

 2 

 3 fn main() {

 4   let a: i32 = 10;

 5   let b: u16 = 100;

 6 

 7   let b_ = b.try_into()



 8             .unwrap();        ②

 9 

10   if a < b_ {

11     println!("Ten is less than one hundred.");

12   }

13 }

① Enables try_into() to be called on those types that have implemented it (such as u16)

② try_into() returns a Result type that provides access to the conversion attempt.

Listing 2.5 introduces two new Rust concepts: traits and error handling. On
line 1, the use keyword brings the std::convert::TryInto trait
into local scope. This unlocks the try_into() method of the b variable.
We’ll bypass a full explanation of why this occurs for now. In the meantime,
consider a trait as a collection of methods. If you are from an object-oriented
background, traits can be thought of as abstract classes or interfaces. If your
programming experience is in functional languages, you can think of traits as
type classes.

Line 7 provides a glimpse of error handling in Rust. b.try_into()
returns an i32 value wrapped within a Result. Result is introduced
properly in chapter 3. It can contain either a success value or an error value.
The unwrap() method can handle the success value and returns the value
of b as an i32 here. If the conversion between u16 and i32 were to fail,
then calling unsafe() would crash the program. As the book progresses,
you will learn safer ways of dealing with Result rather than risking the
program’s stability!

A distinguishing characteristic of Rust is that it only allows a type’s methods
to be called when the trait is within local scope. An implicit prelude enables
common operations such as addition and assignment to be used without
explicit imports.



TIP To understand what is included in local scope by default, you should investigate the
std::prelude module. Its documentation is available online at https://doc.rust-
lang.org/std/prelude/index.html.

Floating-point hazards

Floating-point types (f32 and f64, for example) can cause serious errors for the unwary. There
are (at least) two reasons for this:

These often approximate the numbers that they’re representing. Floating-point types
are implemented in base 2, but we often want to calculate numbers in base 10. This
mismatch creates ambiguity. Moreover, although often described as representing the
real numbers, floating point values have a limited precision. Representing all of the
reals would require infinite precision.

These can represent values that have unintuitive semantics. Unlike integers, floating-
point types have some values that do not play well together (by design). Formally,
these only have a partial equivalence relation. This is encoded in Rust’s type system.
f32 and f64 types only implement the std::cmp::PartialEq trait, whereas
other numeric types also implement std::cmp::Eq.

To prevent these hazards, here are two guidelines to follow:

Avoid testing floating-point numbers for equality.

Be wary when results may be mathematically undefined.

Using equality to compare floating-point numbers can be highly problematic. Floating-point
numbers are implemented by computing systems that use binary (base 2) mathematics, but are
often asked to perform operations on decimal (base 10) numbers. This poses a problem because
many values we care about, such as 0.1, have no exact representation in binary.a

To illustrate the problem, consider the following snippet. Should it run successfully, or should it
crash? Although the expression that is being evaluated (0.1 + 0.2 = 0.3) is a mathematical
tautology, it crashes on most systems that run it:

fn main() {

  assert!(0.1 + 0.2 == 0.3);    ①

}

https://doc.rust-lang.org/std/prelude/index.html


① assert! crashes the program unless its argument evaluates to true.
But not all. It turns out that the data type can affect whether the program succeeds or fails. The
following code, available at ch2/ch2-add-floats.rs, interrogates the internal bit patterns of each
value to find where the differences lie. It then performs the test in the previous example against
both f32 and f64 types. Only one test passes:

 1 fn main() {

 2     let abc: (f32, f32, f32) = (0.1, 0.2, 0.3);

 3     let xyz: (f64, f64, f64) = (0.1, 0.2, 0.3);

 4 

 5     println!("abc (f32)");

 6     println!("   0.1 + 0.2: {:x}", (abc.0 + abc.1).to_bits());

 7     println!("         0.3: {:x}", (abc.2).to_bits());

 8     println!();

 9 

10     println!("xyz (f64)");

11     println!("   0.1 + 0.2: {:x}", (xyz.0 + xyz.1).to_bits());

12     println!("         0.3: {:x}", (xyz.2).to_bits());

13     println!();

14 

15     assert!(abc.0 + abc.1 == abc.2);     ①

16     assert!(xyz.0 + xyz.1 == xyz.2);     ②

17 }

① Runs successfully

② Triggers a crash
When executed, the program successfully generates the short report that follows, which reveals
the error. After that, it crashes. Significantly, it crashes on line 14, when it compares the result of
the f64 values:

abc (f32)

   0.1 + 0.2: 3e99999a

         0.3: 3e99999a

 

xyz (f64)

   0.1 + 0.2: 3fd3333333333334

         0.3: 3fd3333333333333

 

thread 'main' panicked at 'assertion failed: xyz.0 + xyz.1 == xyz.2',

➥ch2-add-floats.rs.rs:14:5

note: run with `RUST_BACKTRACE=1` environment variable to display

➥a backtrace

Generally speaking, it is safer to test whether mathematical operations fall within an acceptable
margin of their true mathematical result. This margin is often referred to as the epsilon.
Rust includes some tolerances to allow comparisons between floating-point values. These
tolerances are defined as f32::EPSILON and f64::EPSILON. To be more precise, it’s



possible to get closer to how Rust is behaving under the hood, as the following small example
shows:

fn main() {

  let result: f32 = 0.1 + 0.1;

  let desired: f32 = 0.2;

  let absolute_difference = (desired - result).abs();

  assert!(absolute_difference <= f32::EPSILON);

}

In the example, what actually happens is interesting, but mostly irrelevant. The Rust compiler
actually delegates the comparison to the CPU. Floating-point operations are implemented using
bespoke hardware within the chip.b

Operations that produce mathematically undefined results, such as taking the square root of a
negative number (-42.0.sqrt()), present particular problems. Floating-point types include
“not a number” values (represented in Rust syntax as NAN values) to handle these cases.
NAN values poison other numbers. Almost all operations interacting with NAN return NAN.
Another thing to be mindful of is that, by definition, NAN values are never equal. This small
program will always crash:

fn main() {

  let x = (-42.0_f32).sqrt();

  assert_eq!(x, x);

}

To program defensively, make use of the is_nan() and is_finite() methods. Inducing
a crash, rather than silently proceeding with a mathematical error, allows you to debug close to
what has caused the problem. The following illustrates using the is_finite() method to
bring about this condition:

fn main() {

  let x: f32 = 1.0 / 0.0;

  assert!(x.is_finite());

}

a If this is confusing to think about, consider that many values, such as 1/3 (one third), have no
exact representation within the decimal number system.

b Illegal or undefined operations trigger a CPU exception. You will read about those in chapter
12.

2.3.4 Rational, complex numbers, and other numeric



types

Rust’s standard library is comparatively slim. It excludes numeric types that
are often available within other languages. These include

Many mathematical objects for working with rational numbers and
complex numbers

Arbitrary size integers and arbitrary precision floating-point numbers for
working with very large or very small numbers

Fixed-point decimal numbers for working with currencies

To access these specialized numeric types, you can use the num crate. Crates
are Rust’s name for packages. Open source crates are shared at the
https://crates.io repository, which is where cargo downloads num from.

Listing 2.6 demonstrates adding two complex numbers together. If you’re
unfamiliar with the term complex numbers, these are two-dimensional,
whereas numbers that you deal with day to day are one-dimensional.
Complex numbers have “real” and “imaginary” parts and are denoted as
<real> + <imaginary>i.3 For example, 2.1 + –1.2i is a single
complex number. That’s enough mathematics. Let’s look at the code.

Here is the recommended workflow to compile and run listing 2.6:

1. Execute the following commands in a terminal:

git clone --depth=1 https:/ /github.com/rust-in-action/code rust-in-action

cd rust-in-action/ch2/ch2-complex

cargo run

2. For those readers who prefer to learn by doing everything by hand, the
following instructions will achieve the same end result:

a. Execute the following commands in a terminal:

https://crates.io


cargo new ch2-complex

cd ch2-complex

b. Add version 0.4 of the num crate into the [dependencies]
section of Cargo.toml. That section will look like this:

[dependencies]

num = "0.4"

c. Replace src/main.rs with the source code from listing 2.6 (available
at ch2/ch2-complex/src/main.rs).

d. Execute cargo run.

After several lines of intermediate output, cargo run should produce the
following output:

13.2 + 21.02i

Listing 2.6 Calculating values with complex numbers

 1 use num::complex::Complex;                     ①

 2 

 3 fn main() {

 4   let a = Complex { re: 2.1, im: -1.2 };       ②

 5   let b = Complex::new(11.1, 22.2);            ③

 6   let result = a + b;

 7 

 8   println!("{} + {}i", result.re, result.im)   ④

 9 }

① The use keyword brings the Complex type into local scope.

② Every Rust type has a literal syntax.

③ Most types implement a new() static method.

④ Accesses fields with the dot operator

Some points from the listing are worth pausing to consider:

The use keyword pulls crates into local scope, and the namespace



operator ( ::) restricts what’s imported. In our case, only a single type
is required: Complex.

Rust does not have constructors; instead, every type has a literal form.
You can initialize types by using the type name (Complex) and
assigning their fields (re, im) values (such as 2.1 or –1.2) within
curly braces ({ }).

Many types implement a new() method for simplicity. This
convention, however, is not part of the Rust language.

To access fields, Rust programmers use the dot operator ( .). For
example, the num:: complex::Complex type has two fields:
re represents the real part, and im represents the imaginary part. Both
are accessible with the dot operator.

Listing 2.6 also introduces some new commands. It demonstrates two forms
of initializing non-primitive data types.

One is a literal syntax available as part of the Rust language (line 4). The
other is the new() static method, which is implemented by convention only
and isn’t defined as part of the language (line 5). A static method is a
function that’s available for a type, but it’s not an instance of that type.4

The second form is often preferred in real-world code because library authors
use a type’s new() method to set defaults. It also involves less clutter.

Shortcut for adding a third-party dependency to
a project



I recommend that you install the cargo-edit crate to enable the cargo add subcommand. You
can do this with the following code:

$ cargo install cargo-edit 

    Updating crates.io index

  Installing cargo-edit v0.6.0

  ...

  Installed package `cargo-edit v0.6.0` (executables `cargo-add`,

    `cargo-rm`, `cargo-upgrade`)

Up to this point, we have manually added dependencies to Cargo.toml. The cargo add
command simplifies this process by editing the file correctly on your behalf:

$ cargo add num 

    Updating 'https:/ /github.com/rust-lang/crates.io-index' index

      Adding num v0.4.0 to dependencies

We’ve now addressed how to access built-in numeric types and types
available from third-party libraries. We’ll move on to discussing some more
of Rust’s features.



2.4 Flow control

Programs execute from top to bottom, except when you don’t want that. Rust
has a useful set of flow control mechanisms to facilitate this. This section
provides a brief tour of the fundamentals.

2.4.1 For: The central pillar of iteration

The for loop is the workhorse of iteration in Rust. Iterating through
collections of things, including iterating over collections that may have
infinitely many values, is easy. The basic form is

for item in container {

  // ...

}

This basic form makes each successive element in container available
as item. In this way, Rust emulates many dynamic languages with an easy-
to-use, high-level syntax. However, it does have some pitfalls.

Counterintuitively, once the block ends, accessing the container another time
becomes invalid. Even though the container variable remains within
local scope, its lifetime has ended. For reasons that are explained in chapter 4,
Rust assumes that container is no longer needed once the block
finishes.

When you want to reuse container later in your program, use a
reference. Again, for reasons that are explained in chapter 4, when a
reference is omitted, Rust assumes that container is no longer needed.



To add a reference to the container, prefix it with an ampersand (&) as this
example shows:

for item in &container {

  // ...

}

If you need to modify each item during the loop, you can use a mutable
reference by including the mut keyword:

for item in &mut collection {

  // ...

}

As an implementation detail, Rust’s for loop construct is expanded to
method calls by the compiler. As the following table shows, these three forms
of for each map to a different method.

Shorthand Equivalent to Access
for item in

collection

for item in

IntoIterator::into_iter(collection)

Ownership

for item in

&collection

for item in collection.iter() Read-only

for item in

&mut

collection

for item in collection.iter_mut() Read-
write

ANONYMOUS LOOPS

When a local variable is not used within a block, by convention, you’ll use an
underscore (_). Using this pattern in conjunction with the _exclusive range
syntax_ (n..m) and the inclusive range syntax (n..=m) makes it clear that



the intent is to perform a loop for a fixed number of times. Here’s an
example:

for _ in 0..10 {

  // ...

}

AVOID MANAGING AN INDEX VARIABLE

In many programming languages, it’s common to loop through things by
using a temporary variable that’s incremented at the end of each iteration.
Conventionally, this variable is named i (for index). A Rust version of that
pattern is

let collection = [1, 2, 3, 4, 5];

for i in 0..collection.len() {

  let item = collection[i];

  // ...

}

This is legal Rust. It’s also essential in cases when iterating directly over
collection via for item in collection is impossible.
However, it is generally discouraged. The manual approach introduces two
problems with this:

Performance—Indexing values with the collection[index]
syntax incurs run-time costs for bounds checking. That is, Rust checks
that index currently exists within collection as valid data.
Those checks are not necessary when iterating directly over
collection. The compiler can use compile-time analysis to prove
that illegal access is impossible.

Safety—Periodically accessing collection over time introduces



the possibility that it has changed. Using a for loop over
collection directly allows Rust to guarantee that the
collection remains untouched by other parts of the program.

2.4.2 Continue: Skipping the rest of the current
iteration

The continue keyword operates as you would expect. Here’s an
example:

for n in 0..10 {

  if n % 2 == 0 {

    continue;

  }

  // ...

}

2.4.3 While: Looping until a condition changes its
state

The while loop proceeds as long as a condition holds. The condition,
formally known as a predicate, can be any expression that evaluates to
true or false. This (non-functioning) snippet takes air quality samples,
checking to avoid anomalies:

let mut samples = vec![];

 

while samples.len() < 10 {

  let sample = take_sample();

  if is_outlier(sample) {

    continue;

  }

 

  samples.push(sample);

}



USING WHILE TO STOP ITERATING ONCE A
DURATION IS REACHED

Listing 2.7 (source code available at ch2/ch2-while-true-incr-count.rs)
provides a working example of while. It isn’t an ideal method for
implementing benchmarks, but can be a useful tool to have in your toolbox.
In the listing, while continues to execute a block when a time limit is not
reached.

Listing 2.7 Testing how fast your computer can increment a counter

 1 use std::time::{Duration, Instant};                ①

 2 

 3 fn main() {

 4    let mut count = 0;

 5    let time_limit = Duration::new(1,0);            ②

 6    let start = Instant::now();                     ③

 7 

 8    while (Instant::now() - start) < time_limit {   ④

 9        count += 1;

10    }

11    println!("{}", count);

12 }

① This form of an import hasn’t been seen before. It brings the Duration and Instant types from
std::time into local scope.

② Creates a Duration that represents 1 second

③ Accesses time from the system’s clock

④ An Instant minus an Instant returns a Duration.

AVOID WHILE WHEN ENDLESSLY LOOPING

Most Rust programmers avoid the following idiom to express looping
forever. The preferred alternative is to use the loop keyword, explained in
the next section.



while true {

  println!("Are we there yet?");

}

2.4.4 Loop: The basis for Rust’s looping constructs

Rust contains a loop keyword for providing more control than for and
while. loop executes a code block again and again, never stopping for a
tea (or coffee) break. loop continues to execute until a break keyword is
encountered or the program is terminated from the outside. Here’s an
example showing the loop syntax:

loop {

  // ...

}

loop is often seen when implementing long-running servers, as the
following example shows:

loop {

  let requester, request = accept_request();

  let result = process_request(request);

  send_response(requester, result);

}

2.4.5 Break: Aborting a loop

The break keyword breaks out of a loop. In this regard, Rust’s generally
operates as you are used to:

for (x, y) in (0..).zip(0..) {

  if x + y > 100 {

    break;

  }

  // ...



}

BREAK FROM NESTED LOOPS

You can break out of a nested loop with loop labels.5 A loop label is an
identifier prefixed with an apostrophe ('), like this example shows:

'outer: for x in 0.. {

  for y in 0.. {

    for z in 0.. {

      if x + y + z > 1000 {

        break 'outer;

      }

 

      // ...

    }

  }

}

Rust does not include the goto keyword, which provides the ability to jump
to other parts of the program. The goto keyword can make control flow
confusing, and its use is generally discouraged. One place where it is still
commonly used, though, is to jump to and clean up a section of a function
when an error condition is detected. Use loop labels to enable that pattern.

2.4.6 If, if else, and else: Conditional branching

So far, we’ve indulged in the exciting pursuit of looking for numbers within
lists of numbers. Our tests have involved utilizing the if keyword. Here’s an
example:

if item == 42 {

  // ...

}



if accepts any expression that evaluates to a Boolean value (e.g., true or
false). When you want to test multiple expressions, it’s possible to add a
chain of if else blocks. The else block matches anything that has not
already been matched. For example

if item == 42 {

  // ...

} else if item == 132 {

  // ...

} else {

  // ...

}

Rust has no concept of “truthy” or “falsey” types. Other languages allow
special values such as 0 or an empty string to stand in for false and for
other values to represent true, but Rust doesn’t allow this. The only value
that can be used for true is true, and for false, use false.

Rust is an expression-based language

In programming languages from this heritage, all expressions return values and almost
everything is an expression. This heritage reveals itself through some constructs that are not legal
in other languages. In idiomatic Rust, the return keyword is omitted from functions as shown
in the following snippet:

fn is_even(n: i32) -> bool {

  n % 2 == 0

}

For example, Rust programmers assign variables from conditional expressions:

fn main() {

  let n = 123456;

  let description = if is_even(n) {

    "even"

  } else {

    "odd"



  };

  println!("{} is {}", n, description);      ①

}

① Prints "123456 is even"
This can be extended to other blocks including match like this:

fn main() {

  let n = 654321;

  let description = match is_even(n) {

    true => "even",

    false => "odd",

  };

  println!("{} is {}", n, description);     ①

}

① Prints "654321 is odd"
Perhaps most surprisingly, the break keyword also returns a value. This can be used to allow
“infinite” loops to return values:

fn main() {

  let n = loop {

      break 123;

  };

 

  println!("{}", n);    ①

}

① Prints "123"
You may wonder what parts of Rust are not expressions and, thus, do not return values.
Statements are not expressions. These appear in Rust in three places:

Expressions delimited by the semicolon (;)

Binding a name to a value with the assignment operator (=)

Type declarations, which include functions (fn) and data types created with the
struct and enum keywords

Formally, the first form is referred to as an expression statement. The last two are both called
declaration statements. In Rust, no value is represented as () (the “unit” type).

2.4.7 Match: Type-aware pattern matching



While it’s possible to use if/else blocks in Rust, match provides a
safer alternative. match warns you if you haven’t considered a relevant
alternative. It is also elegant and concise:

match item {

  0          => {},    ①

 

  10 ..= 20  => {},    ②

 

  40  |  80  => {},    ③

 

  _          => {},    ④

}

① To match a single value, provide the value. No operator is required.

② The ..= syntax matches an inclusive range.

③ The vertical bar (|) matches values on either side of it.

④ The underscore (_) matches every value.

match offers a sophisticated and concise syntax for testing multiple
possible values. Some examples are

Inclusive ranges (10 ..= 20) to match any value within the range.

A Boolean OR (|) will match when either side matches.

The underscore (_) to match everything.

match is analogous to the switch keyword in other languages. Unlike
C’s switch, however, match guarantees that all possible options for a
type are explicitly handled. Failing to provide a branch for every possible
value triggers a compiler error. Additionally, a match does not “fall through”
to the next option by default. Instead, match returns immediately when a
match is found.

Listing 2.8 demonstrates a larger example of match. The source code for



this listing is in ch2/ch2-match-needles.rs. The code prints these two lines to
the screen:

42: hit!

132: hit!

Listing 2.8 Using match to match multiple values

fn main() {

  let needle = 42;                ①

  let haystack = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862];

 

  for item in &haystack {

    let result = match item {     ②

      42 | 132 => "hit!",         ③

      _ => "miss",                ④

    };

 

    if result == "hit!" {

      println!("{}: {}", item, result);

    }

  }

}

① The variable needle is now redundant.

② This match expression returns a value that can be bound to a variable.

③ Success! 42 | 132 matches both 42 and 132.

④ A wildcard pattern that matches everything

The match keyword plays an important role within the Rust language.
Many control structures (like looping) are defined in terms of match under
the hood. These really shine when combined with the Option type that’s
discussed in depth in the next chapter.

Now that we have taken a good look at defining numbers and working with
some of Rust’s flow control mechanisms, let’s move on to adding structure to
programs with functions.



2.5 Defining functions

Looking back to where the chapter begins, the snippet in listing 2.2 contained
a small function, add(). add takes two i32 values and returns their sum.
The following listing repeats the function.

Listing 2.9 Defining a function (extract of listing 2.2)

10 fn add(i: i32, j: i32) -> i32 {     ①

11   i + j

12 }

① add() takes two integer parameters and returns an integer. The two arguments are bound to the local
variables i and j.

For the moment, let’s concentrate on the syntax of each of the elements in
listing 2.9. Figure 2.2 provides a visual picture of each of the pieces. Anyone
who has programmed in a strongly-typed programming language should be
able to squint their way through the diagram.

Figure 2.2 Rust’s function definition syntax



Rust’s functions require that you specify your parameter’s types and the
function’s return type. This is the foundational knowledge that we’ll need for
the majority of our work with Rust. Let’s put it to use with our first non-
trivial program.



2.6 Using references

If you have only used a dynamic programming language so far in your career,
the syntax and semantics of references can be frustrating. It can be difficult to
form a mental picture of what is happening. That makes it difficult to
understand which symbols to put where. Thankfully, the Rust compiler is a
good coach.

A reference is a value that stands in place for another value. For example,
imagine that variable a is a large array that is costly to duplicate. In some
sense, a reference r is a cheap copy of a. But instead of creating a duplicate,
the program stores a’s address in memory. When the data from a is required,
r can be dereferenced to make a available. The following listing shows the
code for this.

Listing 2.10 Creating a reference to a large array

fn main() {

  let a = 42;

  let r = &a;                   ①

  let b = a + *r;               ②

 

  println!("a + a = {}", b);    ③

}

① r is a reference to a.

② Adds a to a (via dereferencing r) and assigns it to b

③ Prints "a + a = 84"

References are created with the reference operator (&) and dereferencing
occurs with the dereference operator (*). These operators act as unary
operators, meaning that these only take one operand. One of the limitations



of source code written in ASCII text is that multiplication and dereferencing
use the same symbol. Let’s see these in use as part of a larger example.

Listing 2.11 searches for a number (the needle defined on line 2) within
an array of numbers (the haystack defined on line 3). The code then
prints 42 to the console when compiled. The code for this listing is in
ch2/ch2-needle-in-haystack.rs.

Listing 2.11 Searching for an integer in an array of integers

 1 fn main() {

 2   let needle = 0o204;

 3   let haystack = [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147];

 4 

 5   for item in &haystack {         ①

 6     if *item == needle {          ②

 7       println!("{}", item);

 8     }

 9   }

10 }

① Iterates over references to elements within haystack

② The syntax *item returns the item’s referent.

Each iteration changes the value of item to refer to the next item within
haystack. On 2.7 the first iteration, *item returns 1, and on the last, it
returns 21147.



2.7 Project: Rendering the Mandelbrot set

So far, we haven’t learned much Rust, but we already have the tools to create
some interesting pictures of fractals. So let’s do that now with listing 2.12. To
begin

1. In a terminal window, execute the following commands to create a
project that can render the Mandelbrot set:

a. cd $TMP (or cd %TMP% on MS Windows) to move to a
directory that’s not critical.

b. cargo new mandelbrot --vcs none creates a new
blank project.

c. cd mandelbrot moves into the new project root.

d. cargo add num to edit Cargo.toml, adding the num crate as
a dependency (see the sidebar entitled “2.2” in section 2.3.4 for
instructions to enable this cargo feature).

2. Replace src/main.rs with the code in listing 2.12, which you’ll
also find in ch2/ch2-mandelbrot/src/main.rs.

3. Execute cargo run. You should see the Mandelbrot set rendered in
the terminal:



Listing 2.12 Rendering the Mandelbrot set

 1 use num::complex::Complex;                                      ①

 2 

 3 fn calculate_mandelbrot(                                        ②

 4 

 5   max_iters: usize,                                             ③

 6   x_min: f64,                                                   ④

 7   x_max: f64,                                                   ④

 8   y_min: f64,                                                   ④

 9   y_max: f64,                                                   ④

10   width: usize,                                                 ⑤

11   height: usize,                                                ⑤

12   ) -> Vec<Vec<usize>> {

13 

14   let mut rows: Vec<_> = Vec::with_capacity(width);             ⑥

15   for img_y in 0..height {                                      ⑦

16 

17     let mut row: Vec<usize> = Vec::with_capacity(height);

18     for img_x in 0..width {

19 

20       let x_percent = (img_x as f64 / width as f64);

21       let y_percent = (img_y as f64 / height as f64);

22       let cx = x_min + (x_max - x_min) * x_percent;             ⑧

23       let cy = y_min + (y_max - y_min) * y_percent;             ⑧

24       let escaped_at = mandelbrot_at_point(cx, cy, max_iters);

25       row.push(escaped_at);



26     }

27 

28     all_rows.push(row);

29   }

30   rows

31 }

32 

33 fn mandelbrot_at_point(                                         ⑨

34   cx: f64,

35   cy: f64,

36   max_iters: usize,

37   ) -> usize {

38   let mut z = Complex { re: 0.0, im: 0.0 };                     ⑩

39   let c = Complex::new(cx, cy);                                 ⑪

40 

41   for i in 0..=max_iters {

42     if z.norm() > 2.0 {                                         ⑫

43       return i;

44     }

45     z = z * z + c;                                              ⑬

46   }

47   max_iters                                                     ⑭

48 }

49 

50 fn render_mandelbrot(escape_vals: Vec<Vec<usize>>) {

51   for row in escape_vals {

52     let mut line = String::with_capacity(row.len());

53     for column in row {

54       let val = match column {

55         0..=2 => ' ',

56         2..=5 => '.',

57         5..=10 => '•',

58         11..=30 => '*',

59         30..=100 => '+',

60         100..=200 => 'x',

61         200..=400 => '$',

62         400..=700 => '#',

63         _ => '%',

64       };

65 

66       line.push(val);

67     }

68     println!("{}", line);

69   }

70 }

71 

72 fn main() {

73   let mandelbrot = calculate_mandelbrot(1000, 2.0, 1.0, -1.0,

74                                         1.0, 100, 24);

75 

76   render_mandelbrot(mandelbrot);

77 }



① Imports the Complex number type from num crate and its complex submodule

② Converts between the output space (a grid of rows and columns) and a range that surrounds the
Mandelbrot set (a continuous region near (0,0))

③ If a value has not escaped before reaching the maximum number of iterations, it’s considered to be
within the Mandelbrot set.

④ Parameters that specify the space we’re searching for to look for members of the set

⑤ Parameters that represent the size of the output in pixels

⑥ Creates a container to house the data from each row

⑦ Iterates row by row, allowing us to print the output line by line

⑧ Calculates the proportion of the space covered in our output and converts that to points within the
search space

⑨ Called at every pixel (e.g., every row and column that’s printed to stdout)

⑩ Initializes a complex number at the origin with real (re) and imaginary (im) parts at 0.0

⑪ Initializes a complex number from the coordinates provided as function arguments

⑫ Checks the escape condition and calculates the distance from the origin (0, 0), an absolute value of a
complex number

⑬ Repeatedly mutates z to check whether c lies within the Mandelbrot set

⑭ As i is no longer in scope, we fall back to max_iters.

So far in this section, we’ve put the basics of Rust into practice. Let’s
continue our exploration by learning how to define functions and types.



2.8 Advanced function definitions

Rust’s functions can get somewhat scarier than the add(i: i32, j:
i32) -> i32 from listing 2.2. To assist those who are reading more
Rust source code than writing it, the following sections provide some extra
content.

2.8.1 Explicit lifetime annotations

As a bit of forewarning, allow me to introduce some more complicated
notation. As you read through Rust code, you might encounter definitions
that are hard to decipher because those look like hieroglyphs from an ancient
civilizations. Listing 2.13 provides an extract from listing 2.14 that shows
one such example.

Listing 2.13 A function signature with explicit lifetime annotations

 1 fn add_with_lifetimes<'a, 'b>(i: &'a i32, j: &'b i32) -> i32 {

 2   *i + *j

 3 }

Like all unfamiliar syntax, it can be difficult to know what’s happening at
first. This improves with time. Let’s start by explaining what is happening,
and then go on to discuss why it is happening. The following bullet points
break line 1 of the previous snippet into its parts:

fn add_with_lifetimes(...) -> i32 should be
familiar to you already. From this we can infer that
add_with_lifetimes() is a function that returns an i32
value.



<'a, 'b> declares two lifetime variables, 'a and 'b, within the
scope of add_with_lifetimes(). These are normally spoken
as lifetime a and lifetime b.

i: &'a i32 binds lifetime variable 'a to the lifetime of i. The
syntax reads as “parameter i is a reference to an i32 with lifetime a.”

j: &'b i32 binds the lifetime variable 'b to the lifetime of j. The
syntax reads as “parameter j is a reference to an i32 with lifetime b.”

The significance of binding a lifetime variable to a value probably isn’t
obvious. Underpinning Rust’s safety checks is a lifetime system that verifies
that all attempts to access data are valid. Lifetime annotations allow
programmers to declare their intent. All values bound to a given lifetime must
live as long as the last access to any value bound to that lifetime.

The lifetime system usually works unaided. Although every parameter has a
lifetime, these checks are typically invisible as the compiler can infer most
lifetimes by itself.6 But the compiler needs assistance in difficult cases.
Functions that accept multiple references as arguments or return a reference
are often when the compiler will request assistance via an error message.

No lifetime annotations are required when calling a function. When used in a
complete example as in the next listing, you can see lifetime annotations at
the function definition (line 1), but not when it’s used (line 8). The source
code for the listing is in ch2-add-with-lifetimes.rs.

Listing 2.14 Type signature of a function with lifetime explicit
annotations

 1 fn add_with_lifetimes<'a, 'b>(i: &'a i32, j: &'b i32) -> i32 {

 2   *i + *j                                   ①

 3 }

 4 

 5 fn main() {



 6   let a = 10;

 7   let b = 20;

 8   let res = add_with_lifetimes(&a, &b);     ②

 9 

10   println!("{}", res);

11 }

① Adds the values referred to by i and j rather than adding the references directly

② &10 and &20 mean reference 10 and 20, respectively. No lifetime notation is required when calling
a function.

On line 2, *i + *j adds together the referent values held by the i and j
variables. It’s common to see lifetime parameters when using references.
While Rust can infer lifetimes in other cases, references require the
programmer to specify the intent. Using two lifetime parameters (a and b)
indicates that the lifetimes of i and j are decoupled.

NOTE Lifetime parameters are a way of providing control to the programmer while maintaining
high-level code.

2.8.2 Generic functions

Another special case of function syntax appears when programmers write
Rust functions to handle many possible input types. So far, we have seen
functions that accept 32-bit integers (i32). The following listing shows a
function signature that can be called by many input types as long as these are
all the same.

Listing 2.15 Type signature of a generic function

fn add<T>(i: T, j: T) -> T {     ①

  i + j

 

}

① The type variable T is introduced with angle brackets (<T>). This function takes two arguments of
the same type and returns a value of that type.



Capital letters in place of a type indicate a generic type. Conventionally, the
variables T, U, and V are used as placeholder values, but this is arbitrary. E is
often used to denote an error type. We’ll look at error handling in detail in
chapter 3.

Generics enable significant code reuse and can greatly increase the usability
of a strongly-typed language. Unfortunately, listing 2.15 doesn’t compile as
is. The Rust compiler complains that it cannot add two values of any type T
together. The following shows the output produced when attempting to
compile listing 2.15:

error[E0369]: cannot add `T` to `T`

 --> add.rs:2:5

  |

2 |   i + j

  |   - ^ - T

  |   |

  |   T

  |

help: consider restricting type parameter `T`

  |

1 | fn add<T: std::ops::Add<Output = T>>(i: T, j: T) -> T {

  |         ^^^^^^^^^^^^^^^^^^^^^^^^^^^

 

error: aborting due to previous error

 

For more information about this error, try `rustc --explain E0369`.

This issue arises because T really means any type at all, even types where
addition is not supported. Figure 2.3 provides a visual representation of the
problem. Listing 2.15 attempts to refer to the outer ring, whereas addition is
only supported by types within the inner ring.



Figure 2.3 Only a subset of types have implement operators. When
creating generic functions that include such an operator, that operation’s
trait must be included as a trait bound.

How do we specify that type T must implement addition? Answering this
requires introducing some new terminology.

All of Rust’s operators, including addition, are defined within traits. To
require that type T must support addition, we include a trait bound alongside
the type variable in the function’s definition. The following listing gives an
example of this syntax.

Listing 2.16 Type signature of a generic function with trait bounds

fn add<T: std::ops::Add<Output = T>>(i: T, j: T) -> T  {

  i + j

}

The fragment <T: std::ops::Add<Output = T>> says that T
must implement std::ops::Add. Using a single type variable T with
the trait bound ensures that arguments i and j, as well as the result type, are



the same type and that their type supports addition.

What is a trait? A trait is a language feature that is analogous to an interface,
protocol, or contract. If you have a background in object-oriented
programming, consider a trait to be an abstract base class. If you have a
background in functional programming, Rust’s traits are close to Haskell’s
type classes. For now, it’s enough to say that traits enable types to advertise
that they are using common behavior.

All of Rust’s operations are defined with traits. For example, the addition
operator (+) is defined as the std::ops::Add trait. Traits are properly
introduced in chapter 3 and are progressively explained in depth during the
course of the book.

To reiterate: all of Rust’s operators are syntactic sugar for a trait’s methods.
Rust supports operator overloading this way. During the compilation process,
a + b is converted to a.add(b).

Listing 2.17 is a full example that demonstrates that generic functions can be
called by multiple types. The listing prints these three lines to the console:

4.6

30

15s

Listing 2.17 A generic function with a type variable and trait bounds

 1 use std::ops::{Add};                             ①

 2 use std::time::{Duration};                       ②

 3 

 4 fn add<T: Add<Output = T>>(i: T, j: T) -> T {    ③

 5   i + j

 6 }

 7 

 8 fn main() {

 9   let floats = add(1.2, 3.4);                    ④

10   let ints = add(10, 20);                        ⑤



11   let durations = add(                           ⑥

12     Duration::new(5, 0),                         ⑥

13     Duration::new(10, 0)                         ⑥

14   );

15 

16   println!("{}", floats);

17   println!("{}", ints);

18   println!("{:?}", durations);                   ⑦

19 

20 }

① Brings the Add trait from std::ops into local scope

② Brings the Duration type from std::time into local scope

③ The arguments to add() can accept any type that implements std::ops::Add.

④ Calls add() with floating-point values

⑤ Calls add() with integer values

⑥ Calls add() with Duration values, representing a duration between two points in time

⑦ Because std::time::Duration does not implement the std::fmt::Display trait, we can fall back to
requesting std::fmt::Debug.

As you can see, function signatures can become somewhat convoluted.
Interpreting these can take some patience. Hopefully, you now have the tools
to break the pieces apart in case you get stuck down the track. Here are a few
principles that should assist you when reading Rust code:

Terms in lowercase (i, j) denote variables.

Single uppercase letters (T) denote generic type variables.

Terms beginning with uppercase (Add) are either traits or concrete
types, such as String or Duration.

Labels ('a) denote lifetime parameters.



2.9 Creating grep-lite

We’ve spent most of the chapter discussing numbers. It’s time for another
practical example. We’ll use it to learn a little bit about how Rust handles
text.

Listing 2.18 is our first iteration of grep-lite. The code for this program is in
the ch2-str-simple-pattern.rs file. Its hard-coded parameters restrict flexibility
somewhat, but these are useful illustrations of string literals. The code prints
a line to the console:

dark square is a picture feverishly turned--in search of what?

Listing 2.18 Searching for a simple pattern within lines of a string

 1 fn main() {

 2   let search_term = "picture";

 3   let quote = "\

 4 Every face, every shop, bedroom window, public-house, and

 5 dark square is a picture feverishly turned--in search of what?

 6 It is the same with books.

 7 What do we seek through millions of pages?";     ①

 8 

 9   for line in quote.lines() {                    ②

10     if line.contains(search_term) {

11       println!("{}", line);

12     }

13   }

14 }

① Multilined strings do not require special syntax. The \ character on line 3 escapes the new line.

② lines() returns an iterator over quote where each iteration is a line of text. Rust uses each operating
system’s conventions on what constitutes a new line.

As you can see, Rust’s strings can do quite a lot by themselves. Some
features of listing 2.18 that are worth highlighting include the following.



From here, we’ll expand the functionality of our proto-application:

Line 9 (quote.lines()) demonstrates iterating line-by-line in a
platform-independent manner.

Line 10 (line.contains()) demonstrates searching for text
using the method syntax.

Navigating Rust’s rich collection of string types

Strings are complicated for newcomers to Rust. Implementation details tend to bubble up from
below and make comprehension difficult. How computers represent text is complicated, and
Rust chooses to expose some of that complexity. This enables programmers to have full control
but does place a burden on those learning the language.
String and &str both represent text, yet are distinct types. Interacting with values from both
types can be an annoying exercise at first as different methods are required to perform similar
actions. Prepare yourself for irritating type errors as your intuition develops. Until that intuition
develops, however, you will usually have fewer issues if you convert your data to the String
type.
A String is (probably) closest to what you know as a string type from other languages. It
supports familiar operations such as concatenation (joining two strings together), appending new
text onto an existing string, and trimming whitespace.
str is a high-performance, relatively feature-poor type. Once created, str values cannot
expand or shrink. In this sense, these are similar to interacting with a raw memory array. Unlike
a raw memory array, though, str values are guaranteed to be valid UTF-8 characters.
str is usually seen in this form: &str. A &str (pronounced string slice) is a small type that
contains a reference to str data and a length. Attempting to assign a variable to type str will
fail. The Rust compiler wants to create fixed-sized variables within a function’s stack frame. As
str values can be of arbitrary length, these can only be stored as local variables by reference.
For those readers that have prior experience with systems programming, String uses dynamic
memory allocation to store the text that it represents. Creating &str values avoids a memory
allocation.
String is an owned type. Ownership has a particular meaning within Rust. An owner is able to
make any changes to the data and is responsible for deleting values that it owns when it leaves
scope (this is fully explained in chapter 3). A &str is a borrowed type. In practical terms, this
means that &str can be thought of as read-only data, whereas String is read-write.



String literals (e.g., "Rust in Action") have the type &str. The full type signature
including the lifetime parameter is &'static str. The 'static lifetime is somewhat
special. It too owes its name to implementation details. Executable programs can contain a
section of memory that is hard-coded with values. That section is known as static memory
because it is read-only during execution.
Some other types may be encountered in your travels. Here’s a short list:a

char—A single character encoded as 4 bytes. The internal representation of char is
equivalent to UCS-4/UTF-32. This differs from &str and String, which encodes
single characters as UTF-8. Conversion does impose a penalty, but it means that char
values are of fixed-width and are, therefore, easier for the compiler to reason about.
Characters encoded as UTF-8 can span 1 to 4 bytes.

[u8]—A slice of raw bytes, usually found when dealing with streams of binary data.

Vec<u8>—A vector of raw bytes, usually created when consuming [u8] data.
String is to Vec<u8> as str is to [u8].

std::ffi::OSString—A platform-native string. It’s behavior is close to
String but without a guarantee that it’s encoded as UTF-8 and that it won’t contain
the zero byte (0x00).

std::path::Path—A string-like type that is dedicated to handling filesystem
paths.

Fully understanding the distinction between String and &str requires knowledge of arrays
and vectors. Textual data is similar to these two types with added convenience methods applied
over the top.
a Unfortunately, this is not an exhaustive list. Specific use cases sometimes require special

handling.

Let’s start adding functionality to grep-lite by printing the line number along
with the match. This is equivalent to the -n option within the POSIX.1-2008
standard for the grep utility (http://mng.bz/ZPdZ).

Adding a few lines to our previous example, we now see the following line
printed to the screen. Listing 2.19 shows the code that adds this functionality,
which you’ll find in ch2/ch2-simple-with-linenums.rs:

2: dark square is a picture feverishly turned--in search of what?

http://mng.bz/ZPdZ


Listing 2.19 Manually incrementing an index variable

 1 fn main() {

 2   let search_term = "picture";

 3   let quote = "\                              ①

 4 Every face, every shop, bedroom window, public-house, and

 5 dark square is a picture feverishly turned--in search of what?

 6 It is the same with books. What do we seek through millions of pages?";

 7   let mut line_num: usize = 1;                ②

 8 

 9   for line in quote.lines() {

10     if line.contains(search_term) {

11       println!("{}: {}", line_num, line);     ③

12     }

13     line_num += 1;                            ④

14   }

15 }

① A backslash escapes the newline character in the string literal.

② Declares line_num as mutable via let mut and initializes it with 1

③ Updates the println! macro to allow for both values to be printed

④ Increments line_num in place

Listing 2.20 shows a more ergonomic approach to incrementing i. The
output is the same, but here the code makes use of the enumerate()
method and method chaining. enumerate() takes an iterator I,
returning another (N, I), where N is a number that starts at 0 and
increments by 1 each iteration. The source code for this listing can be found
in ch2/ch2-simple-with-enumerate.rs.

Listing 2.20 Automatically incrementing an index variable

 1 fn main() {

 2   let search_term = "picture";

 3   let quote = "\

 4 Every face, every shop, bedroom window, public-house, and

 5 dark square is a picture feverishly turned--in search of what?

 6 It is the same with books. What do we seek through millions of pages?";

 7 

 8   for (i, line) in quote.lines().enumerate() {    ①

 9     if line.contains(search_term) {



10       let line_num = i + 1;                       ②

11       println!("{}: {}", line_num, line);

12     }

13   }

14 }

① Because lines() returns an iterator, it can be chained with enumerate().

② Performs addition to calculate the line number, avoiding calculations at every step

Another feature of grep that is extremely useful is to print some context
before and after the line that matches. In the GNU grep implementation, this
is the -C NUM switch. To add support for that feature in grep-lite, we need
to be able to create lists.



2.10 Making lists of things with arrays, slices,
and vectors

Lists of things are incredibly common. The two types that you will work with
most often are arrays and vectors. Arrays are fixed-width and extremely
lightweight. Vectors are growable but incur a small runtime penalty because
of the extra bookkeeping that these do. To understand the underlying
mechanisms with text data in Rust, it helps to have a cursory understanding
of what is happening.

The goal of this section is to support printing out n lines of context that
surround a match. To get there, we need to segue somewhat and explain more
fully arrays, slices, and vectors. The most useful type for this exercise is the
vector. To learn about vectors, though, we need to start by learning about its
two simpler cousins: arrays and slices.

2.10.1 Arrays

An array, at least as far as Rust is concerned, is a tightly-packed collection of
the same thing. It’s possible to replace items within an array, but its size
cannot change. Because variable-length types like String add a degree of
complication, we’ll revert back to discussing numbers for a little while.

Creating arrays takes two forms. We can provide a comma-delimited list
within square brackets (for example, [1, 2, 3]) or a repeat expression,
where you furnish two values delimited by a semicolon (for example, [0;
100]). The value on the left (0) is repeated by the number of times on the
right (100). Listing 2.21 shows each variation on lines 2–5. The source code



for this listing is in the ch2-3arrays.rs file. It prints these four lines to the
console:

[1, 2, 3]:     1 + 10 = 11    2 + 10 = 12    3 + 10 = 13    (Σ[1, 2, 3] = 6)

[1, 2, 3]:     1 + 10 = 11    2 + 10 = 12    3 + 10 = 13    (Σ[1, 2, 3] = 6)

[0, 0, 0]:     0 + 10 = 10    0 + 10 = 10    0 + 10 = 10    (Σ[0, 0, 0] = 0)

[0, 0, 0]:     0 + 10 = 10    0 + 10 = 10    0 + 10 = 10    (Σ[0, 0, 0] = 0)

Listing 2.21 Defining arrays and iterating over their elements

fn main() {

  let one             = [1, 2, 3];

  let two: [u8; 3]    = [1, 2, 3];

  let blank1          = [0; 3];

  let blank2: [u8; 3] = [0; 3];

 

  let arrays = [one, two, blank1, blank2];

 

  for a in &arrays {

    print!("{:?}: ", a);

    for n in a.iter() {

      print!("\t{} + 10 = {}", n, n+10);

    }

 

    let mut sum = 0;

    for i in 0..a.len() {

      sum += a[i];

    }

    println!("\t({:?} = {})", a, sum);

  }

}

Arrays are a simple data structure from the machine’s point of view. These
are a contiguous block of memory with elements of a uniform type. The
simplicity is still somewhat deceptive. Arrays can cause a few learning
difficulties for newcomers:

The notation can be confusing. [T; n ] describes an array’s type,
where T is the elements’ type and n is a non-negative integer. [f32;
12] denotes an array of 12 32-bit floating-point numbers. It’s easy to
get confused with slices [T], which do not have a compile-time length.



[u8; 3] is a different type than [u8; 4]. The size of the array
matters to the type system.

In practice, most interaction with arrays occurs via another type called
a slice ( [T]). The slice is itself interacted with by reference (&[T]).
And to add some linguistic confusion into the mix, both slices and
references to slices are called slices.

Rust maintains its focus on safety. Array indexing is bounds checked.
Requesting an item that’s out of bounds crashes (panics in Rust terminology)
the program rather than returning erroneous data.

2.10.2 Slices

Slices are dynamically sized array-like objects. The term dynamically sized
means that their size is not known at compile time. Yet, like arrays, these
don’t expand or contract. The use of the word dynamic in dynamically sized
is closer in meaning to dynamic typing rather than movement. The lack of
compile-time knowledge explains the distinction in the type signature
between an array ([T; n ]) and a slice ([T]).

Slices are important because it’s easier to implement traits for slices than
arrays. Traits are how Rust programmers add methods to objects. As [T;
1], [T; 2], ..., [T; n ] are all different types, implementing traits for
arrays can become unwieldy. Creating a slice from an array is easy and cheap
because it doesn’t need to be tied to any specific size.

Another important use for slices is their ability to act as a view on arrays (and
other slices). The term view here is taken from database technology and
means that slices can gain fast, read-only access to data without needing to
copy anything around.



The problem with slices is that Rust wants to know the size of every object in
your program, and slices are defined as not having a compile-time size.
References to the rescue. As mentioned in the discussion about the use of the
term dynamically sized, slice size is fixed in memory. These are made up of
two usize components (a pointer and a length). That’s why you typically
see slices referred to in their referenced form, &[T] (like string slices that
take the notation &str).

NOTE Don’t worry too much about the distinctions between arrays and slices yet. In practice, it’s
not material. Each term is an artifact of implementation details. Those implementation details are
important when dealing with performance-critical code but not when learning the basics of the
language.

2.10.3 Vectors

Vectors (Vec<T>) are growable lists of T. Using vectors is extremely
common in Rust code. These incur a small runtime penalty compared to
arrays because of the extra bookkeeping that must be done to enable their size
to change over time. But vectors almost always make up for this with their
added flexibility.

The task at hand is to expand the feature set of the grep-lite utility.
Specifically, we want the ability to store n lines of context around a match.
Naturally, there are many ways to implement such a feature.

To minimize code complexity, we’ll use a two-pass strategy. In the first pass,
we’ll tag lines that match. During the second pass, we’ll collect lines that are
within n lines of each of the tags.

The code in listing 2.22 (available at ch2/ch2-introducing-vec.rs) is the
longest you’ve seen so far. Take your time to digest it.



The most confusing syntax in the listing is probably
Vec<Vec<(usize, String)>>, which appears on line 15.
Vec<Vec<(usize, String)>> is a vector of vectors (e.g.,
Vec<Vec<T>>), where T is a pair of values of type (usize,
String). (usize, String) is a tuple that we’ll use to store line
numbers along with the text that’s a near match. When the needle
variable on line 3 is set to "oo", the following text is printed to the console:

1: Every face, every shop,

2: bedroom window, public-house, and

3: dark square is a picture

4: feverishly turned--in search of what?

3: dark square is a picture

4: feverishly turned--in search of what?

5: It is the same with books.

6: What do we seek

7: through millions of pages?

Listing 2.22 Enabling context lines to be printed out with a
Vec<Vec<T>>

 1 fn main() {

 2   let ctx_lines = 2;

 3   let needle = "oo";

 4   let haystack = "\

 5 Every face, every shop,

 6 bedroom window, public-house, and

 7 dark square is a picture

 8 feverishly turned--in search of what?

 9 It is the same with books.

10 What do we seek

11 through millions of pages?";

12 

13   let mut tags: Vec<usize> = vec![];                     ①

14   let mut ctx: Vec<Vec<(

15                usize, String)>> = vec![];                ②

16 

17   for (i, line) in haystack.lines().enumerate() {        ③

18     if line.contains(needle) {

19       tags.push(i);

20 

21       let v = Vec::with_capacity(2*ctx_lines + 1);       ④

22       ctx.push(v);



23     }

24   }

25 

26   if tags.is_empty() {                                   ⑤

27     return;

28   }

29 

30   for (i, line) in haystack.lines().enumerate() {        ⑥

31     for (j, tag) in tags.iter().enumerate() {

32       let lower_bound =

33           tag.saturating_sub(ctx_lines);                 ⑦

34       let upper_bound =

35           tag + ctx_lines;

36 

37       if (i >= lower_bound) && (i <= upper_bound) {

38           let line_as_string = String::from(line);       ⑧

39           let local_ctx = (i, line_as_string);

40           ctx[j].push(local_ctx);

41       }

42     }

43   }

44 

45   for local_ctx in ctx.iter() {

46     for &(i, ref line) in local_ctx.iter() {             ⑨

47      let line_num = i + 1;

48       println!("{}: {}", line_num, line);

49     }

50   }

51 }

① tags holds line numbers where matches occur.

② ctx contains a vector per match to hold the context lines.

③ Iterates through the lines, recording line numbers where matches are encountered

④ Vec::with_capacity(n) reserves space for n items. No explicit type signature is required as it can be
inferred via the definition of ctx on line 15.

⑤ When there are no matches, exits early

⑥ For each tag, at every line, checks to see if we are near a match. When we are, adds that line to the
relevant Vec<T> within ctx.

⑦ saturating_sub() is subtraction that returns 0 on integer underflow rather than crashing the program
(CPUs don’t like attempting to send usize below zero).

⑧ Copies line into a new String and stores that locally for each match

⑨ ref line informs the compiler that we want to borrow this value rather than move it. These two terms
are explained fully in later chapters.

Vec<T> performs best when you can provide it with a size hint via



Vec::with_ capacity(). Providing an estimate minimizes the
number of times memory will need to be allocated from the OS.

NOTE When considering this approach in real text files, encodings can cause issues. String is
guaranteed to be UTF-8. Naively reading in a text file to a String causes errors if invalid bytes are
detected. A more robust approach is to read in data as [u8] (a slice of u8 values), then decode those
bytes with help from your domain knowledge.



2.11 Including third-party code

Incorporating third-party code is essential to productive Rust programming.
Rust’s standard library tends to lack many things that other languages
provide, like random number generators and regular expression support. That
means it’s common to incorporate third-party crates into your project. To get
your feet wet, let’s start with the regex crate.

Crates are the name the Rust community uses where others use terms such as
package, distribution, or library. The regex crate provides the ability to match
regular expressions rather than simply looking for exact matches.

To use third-party code, we’ll rely on the cargo command-line tool. Follow
these instructions:

1. Open a command prompt.

2. Move to a scratch directory with cd /tmp (cd %TMP% on MS
Windows).

3. Run cargo new grep-lite --vcs none. It produces a
short confirmation message:

Created binary (application) `grep-lite` package

4. Run cd grep-lite to move into the project directory.

5. Execute cargo add regex@1 to add version 1 of the regex crate
as a dependency. This alters the file /tmp/grep-lite/Cargo.toml. If
cargo add is unavailable for you, see the sidebar, “2.2,” in section
2.3.4.

6. Run cargo build. You should see output fairly similar to the



following begin to appear:

  Updating crates.io index

Downloaded regex v1.3.6

 Compiling lazy_static v1.4.0

 Compiling regex-syntax v0.6.17

 Compiling thread_local v1.0.1

 Compiling aho-corasick v0.7.10

 Compiling regex v1.3.6

 Compiling grep-lite v0.1.0 (/tmp/grep-lite)

  Finished dev [unoptimized + debuginfo] target(s) in 4.47s

Now that you have the crate installed and compiled, let’s put it into action.
First, we’ll support searching for exact matches in listing 2.23. Later, in
listing 2.26, the project grows to support regular expressions.

2.11.1 Adding support for regular expressions

Regular expressions add great flexibility to the patterns that we are able to
search for. The following listing is a copy of an early example that we’ll
modify.

Listing 2.23 Matching on exact strings with the contains() method

fn main() {

  let search_term = "picture";

  let quote = "Every face, every shop, bedroom window, public-house, and

dark square is a picture feverishly turned--in search of what?

It is the same with books. What do we seek through millions of pages?";

 

  for line in quote.lines() {

    if line.contains(search_term) {     ①

      println!("{}", line);

    }

  }

}

① Implements a contains() method that searches for a substring

Make sure that you have updated grep-lite/Cargo.toml to include regex as



a dependency as described in the previous section. Now, open grep-
lite/src/main.rs in a text editor and fill it in with the code in the following
listing. The source code for this listing is available in ch2/ch2-with-regex.rs.

Listing 2.24 Searching for patterns with regular expressions

use regex::Regex;                               ①

 

fn main() {

  let re = Regex::new("picture").unwrap();      ②

 

  let quote = "Every face, every shop, bedroom window, public-house, and

dark square is a picture feverishly turned--in search of what?

It is the same with books. What do we seek through millions of pages?";

 

  for line in quote.lines() {

    let contains_substring = re.find(line);

    match contains_substring {                  ③

 

        Some(_) => println!("{}", line),        ④

        None => (),                             ⑤

    }

  }

}

① Brings the Regex type from the regex crate into local scope

② unwrap() unwraps a Result, crashing if an error occurs. Handling errors more robustly is discussed
in depth later in the book.

③ Replaces the contains() method from listing 2.23 with a match block that requires that we handle all
possible cases

④ Some(T) is the positive case of an Option, meaning that re.find() was successful: it matches all
values.

⑤ None is the negative case of an Option; () can be thought of as a null placeholder value here.

Open a command prompt and move to the root directory of your grep-lite
project. Executing cargo run should produce output similar to the
following text:

$ cargo run 

   Compiling grep-lite v0.1.0 (file:/ / /tmp/grep-lite)

    Finished dev [unoptimized + debuginfo] target(s) in 0.48s

     Running `target/debug/grep-lite`



dark square is a picture feverishly turned--in search of what?

Admittedly, the code within listing 2.24 hasn’t taken significant advantage of
its newfound regular expression capabilities. Hopefully, you’ll have the
confidence to be able to slot those into some of the more complex examples.

2.11.2 Generating the third-party crate
documentation locally

Documentation for third-party crates is typically available online. Still, it can
be useful to know how to generate a local copy in case the internet fails you:

1. Move to the root of the project directory in a terminal: /tmp/grep-lite or
%TMP%\grep-lite

2. Execute cargo doc. It will inform you of its progress in the
console:

$ cargo doc 

    Checking lazy_static v1.4.0

 Documenting lazy_static v1.4.0

    Checking regex-syntax v0.6.17

 Documenting regex-syntax v0.6.17

    Checking memchr v2.3.3

 Documenting memchr v2.3.3

    Checking thread_local v1.0.1

    Checking aho-corasick v0.7.10

 Documenting thread_local v1.0.1

 Documenting aho-corasick v0.7.10

    Checking regex v1.3.6

 Documenting regex v1.3.6

 Documenting grep-lite v0.1.0 (file:/ / /tmp/grep-lite)

    Finished dev [unoptimized + debuginfo] target(s) in 3.43s

Congratulations. You have now created HTML documentation. By opening
/tmp/grep-lite/target/doc/grep_lite/index.html in a web browser (also try
cargo doc --open from the command line), you’ll be able to view
the documentation for all the crates that yours depend on. It’s also possible to



inspect the output directory to take a look at what is available to you:

$ tree -d -L 1 target/doc/ 

target/doc/

├── aho_corasick

├── grep_lite

├── implementors

├── memchr

├── regex

├── regex_syntax

├── src

└── thread_local

2.11.3 Managing Rust toolchains with rustup

rustup is another handy command-line tool, along with cargo. Where cargo
manages projects, rustup manages your Rust installation(s). rustup cares
about Rust toolchains and enables you to move between versions of the
compiler. This means it’s possible to compile your projects for multiple
platforms and experiment with nightly features of the compiler while keeping
the stable version nearby.

rustup also simplifies accessing Rust’s documentation. Typing rustup
doc opens your web browser to a local copy of Rust’s standard library.



2.12 Supporting command-line arguments

Our program is rapidly increasing its feature count. Yet, there is no way for
any options to be specified. To become an actual utility, grep-lite needs to be
able to interact with the world.

Sadly, though, Rust has a fairly tight standard library. As with regular
expressions, another area with relatively minimalist support is handling
command-line arguments. A nicer API is available through a third-party crate
called clap (among others).

Now that we’ve seen how to bring in third-party code, let’s take advantage of
that to enable users of grep-lite to choose their own pattern. (We’ll get to
choosing their own input source in the next section.) First, add clap as a
dependency in your Cargo.toml:

$ cargo add clap@2 

    Updating 'https:/ /github.com/rust-lang/crates.io-index' index

      Adding clap v2 to dependencies

You can confirm that the crate has been added to your project by inspecting
its Cargo.toml file.

Listing 2.25 Adding a dependency to grep-lite/Cargo.toml

[package]

name = "grep-lite"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

 

[dependencies]

regex = "1"

clap = "2"



Now, adjust src/main.rs.

Listing 2.26 Editing grep-lite/src/main.rs

 1 use regex::Regex;

 2 use clap::{App,Arg};                                  ①

 3 

 4 fn main() {

 5   let args = App::new("grep-lite")                    ②

 6     .version("0.1")

 7     .about("searches for patterns")

 8     .arg(Arg::with_name("pattern")

 9       .help("The pattern to search for")

10       .takes_value(true)

11       .required(true))

12     .get_matches();

13 

14   let pattern = args.value_of("pattern").unwrap();    ③

15   let re = Regex::new(pattern).unwrap();

16 

17   let quote = "Every face, every shop, bedroom window, public-house, and

18 dark square is a picture feverishly turned--in search of what?

19 It is the same with books. What do we seek through millions of pages?";

20 

21   for line in quote.lines() {

22     match re.find(line) {

23         Some(_) => println!("{}", line),

24         None => (),

25     }

26   }

27 }

① Brings clap::App and clap::Arg objects into local scope

② Incrementally builds a command argument parser, where each argument takes an Arg. In our case,
we only need one.

③ Extracts the pattern argument

With your project updated, executing cargo run should set off a few
lines in your console:

$ cargo run 

    Finished dev [unoptimized + debuginfo] target(s) in 2.21 secs

     Running `target/debug/grep-lite`

error: The following required arguments were not provided:

    <pattern>

 



USAGE:

    grep-lite <pattern>

 

For more information try --help

The error is due to the fact that we haven’t passed sufficient arguments
through to our resulting executable. To pass arguments through, cargo
supports some special syntax. Any arguments appearing after -- are sent
through to the resulting executable binary:

$ cargo run -- picture 

    Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs

     Running `target/debug/grep-lite picture`

dark square is a picture feverishly turned--in search of what?

But clap does more than provide parsing. It also generates usage
documentation on your behalf. Running grep-lite --help provides
an expanded view:

$ ./target/debug/grep-lite --help 

grep-lite 0.1

searches for patterns

 

USAGE:

    grep-lite <pattern>

 

FLAGS:

    -h, --help       Prints help information

    -V, --version    Prints version information

 

ARGS:

    <pattern>    The pattern to search for



2.13 Reading from files

Searching for text wouldn’t be complete without being able to search within
files. File I/O can be surprisingly finicky and so has been left until last.

Before adding this functionality to grep-lite, let’s take a look at a standalone
example in listing 2.27. The code for this listing is in the ch2-read-file.rs file.
The general pattern is to open a File object, then wrap that in a
BufReader. BufReader takes care of providing buffered I/O, which
can reduce system calls to the OS if the hard disk is congested.

Listing 2.27 Reading a file manually line by line

 1 use std::fs::File;

 2 use std::io::BufReader;

 3 use std::io::prelude::*;

 4 

 5 fn main() {

 6   let f = File::open("readme.md").unwrap();    ①

 7   let mut reader = BufReader::new(f);

 8 

 9   let mut line = String::new();                ②

10 

11   loop {

12     let len = reader.read_line(&mut line)

13                     .unwrap();                 ③

14     if len == 0 {

15       break

16     }

17 

18     println!("{} ({} bytes long)", line, len);

19 

20     line.truncate(0);                          ④

21   }

22 }

① Creates a File object that requires a path argument and error handling if the file does not exist. This
program crashes if a readme.md is not present.

② Reuses a single String object over the lifetime of the program



③ Because reading from disk can fail, we need to explicitly handle this. In our case, errors crash the
program.

④ Shrinks the String back to length 0, preventing lines from persisting into the following ones

Manually looping through a file can be cumbersome, despite its usefulness in
some cases. For the common case of iterating through lines, Rust provides a
helper iterator as the following listing shows. The source code for this listing
is in the file ch2/ch2-bufreader-lines.rs.

Listing 2.28 Reading a file line by line via BufReader::lines()

 1 use std::fs::File;

 2 use std::io::BufReader;

 3 use std::io::prelude::*;

 4 

 5 fn main() {

 6   let f = File::open("readme.md").unwrap();

 7   let reader = BufReader::new(f);

 8 

 9   for line_ in reader.lines() {                        ①

10     let line = line_.unwrap();                         ②

11     println!("{} ({} bytes long)", line, line.len());

12   }

13 }

① A subtle behavior change occurs here. BufReader::lines() removes the trailing newline character
from each line.

② Unwraps the Result, but at the risk of crashing the program if an error occurs

We’re now in a position to add reading from a file into grep-lite’s feature list.
The following listing creates a complete program that takes a regular
expression pattern and an input file as arguments.

Listing 2.29 Reading lines from a file

 1 use std::fs::File;

 2 use std::io::BufReader;

 3 use std::io::prelude::*;

 4 use regex::Regex;

 5 use clap::{App,Arg};

 6 

 7 fn main() {



 8   let args = App::new("grep-lite")

 9     .version("0.1")

10     .about("searches for patterns")

11     .arg(Arg::with_name("pattern")

12       .help("The pattern to search for")

13       .takes_value(true)

14       .required(true))

15     .arg(Arg::with_name("input")

16       .help("File to search")

17       .takes_value(true)

18       .required(true))

19     .get_matches();

20 

21   let pattern = args.value_of("pattern").unwrap();

22   let re = Regex::new(pattern).unwrap();

23 

24   let input = args.value_of("input").unwrap();

25   let f = File::open(input).unwrap();

26   let reader = BufReader::new(f);

27 

28   for line_ in reader.lines() {

29     let line = line_.unwrap();

30     match re.find(&line) {                 ①

31         Some(_) => println!("{}", line),

32         None => (),

33     }

34   }

35 }

① line is a String, but re.find() takes an &str as an argument.



2.14 Reading from stdin

A command-line utility wouldn’t be complete if it wasn’t able to read from
stdin. Unfortunately for those readers who skimmed over earlier parts of this
chapter, some of the syntax on line 8 might look quite unfamiliar. In short,
rather than duplicate code within main(), we’ll use a generic function to
abstract away the details of whether we are dealing with files or stdin:

Listing 2.30 Searching through a file or stdin

 1 use std::fs::File;

 2 use std::io;

 3 use std::io::BufReader;

 4 use std::io::prelude::*;

 5 use regex::Regex;

 6 use clap::{App,Arg};

 7 

 8 fn process_lines<T: BufRead + Sized>(reader: T, re: Regex) {

 9   for line_ in reader.lines() {

10     let line = line_.unwrap();

11     match re.find(&line) {                 ①

12         Some(_) => println!("{}", line),

13         None => (),

14     }

15   }

16 }

17 

18 fn main() {

19   let args = App::new("grep-lite")

20     .version("0.1")

21     .about("searches for patterns")

22     .arg(Arg::with_name("pattern")

23       .help("The pattern to search for")

24       .takes_value(true)

25       .required(true))

26     .arg(Arg::with_name("input")

27       .help("File to search")

28       .takes_value(true)

29       .required(false))

30     .get_matches();

31 

32   let pattern = args.value_of("pattern").unwrap();

33   let re = Regex::new(pattern).unwrap();

34 



35   let input = args.value_of("input").unwrap_or("-");

36 

37   if input == "-" {

38     let stdin = io::stdin();

39     let reader = stdin.lock();

40     process_lines(reader, re);

41   } else {

42     let f = File::open(input).unwrap();

43     let reader = BufReader::new(f);

44     process_lines(reader, re);

45   }

46 }

① line is a String, but re.find() takes an &str as an argument.



Summary

Rust has full support for primitive types, such as integers and floating-
point numbers.

Functions are strongly typed and require types to be specified for their
parameters and return values.

Rust features, such as iteration and mathematical operations, rely on
traits. The for loop is a shorthand for the
std::iter::IntoIterator trait, for example.

List-like types are tailored to specific use cases. You will typically reach
for Vec<T> first.

All Rust programs have a single entry function: main().

Every crate has a Cargo.toml file that specifies its metadata.

The cargo tool is able to compile your code and fetch its dependencies.

The rustup tool provides access to multiple compiler toolchains and to
the language’s documentation.

1.This isn’t technically correct, but is accurate enough for now. If you’re an experienced Rust
programmer skimming through this chapter, you’ll know that main() returns () (unit) by default and
can also return a Result.

2.For the curious and eager, the traits involved here are std::cmp::PartialOrd and
std::cmp::PartialEq.

3.Mechanical engineers use j rather than i.
4.Although Rust is not object-oriented (it’s impossible to create a subclass, for example), Rust makes

use of some terminology from that domain. It’s common to hear of Rust programmers discussing
instances, methods, and objects.

5.This functionality is also available with continue, but it’s less common.
6.Omitting lifetime annotations is formally referred to as lifetime elision.



3 Compound data types

This chapter covers

Composing data with structs
Creating enumerated data types
Adding methods and handling errors in a type-safe manner
Defining and implementing common behavior with traits
Understanding how to keep implementation details private
Using cargo to build documentation for your project

Welcome to chapter 3. If we spent the last chapter looking at Rust’s atoms,
this chapter is focused more on its molecules.

This chapter focuses on two key building blocks for Rust programmers,
struct and enum. Both are forms of compound data types. Together,
struct and enum can compose other types to create something more
useful than what those other types would be alone. Consider how a 2D point
(x,y) is composed from two numbers, x and y. We wouldn’t want to maintain
two variables, x and y, in our program. Instead, we would like to refer to the
point as a whole entity. In this chapter, we also discuss how to add methods
to types with impl blocks. Lastly, we take a deeper look at traits, Rust’s
system for defining interfaces.

Throughout this chapter, you’ll work through how to represent files in code.
Although conceptually simple—if you’re reading this book, it’s highly likely
you’ve interacted with a file through code before—there are enough edge



cases to make things interesting. Our strategy will be to create a mock
version of everything using our own imaginary API. Then, toward the latter
part of the chapter, you’ll learn how to interact with your actual operating
system (OS) and its filesystem(s).



3.1 Using plain functions to experiment with
an API

To start, let’s see how far we can get by making use of the tools we already
know. Listing 3.1 lays out a few things that we would expect, such as
opening and closing a file. We’ll use a rudimentary mock type to model one:
a simple alias around String that holds a filename and little else.

To make things slightly more interesting than writing lots of boilerplate code,
listing 3.1 sprinkles in a few new concepts. These show you how to tame the
compiler while you’re experimenting with your design. It provides attributes
(#![allow(unused _variables)]) to relax compiler
warnings. The read function illustrates how to define a function that never
returns. The code actually doesn’t do anything, however. That will come
shortly. You’ll find the source for this listing in the file ch3/ch3-not-quite-
file-1.rs.

Listing 3.1 Using type aliases to stub out a type

 1 #![allow(unused_variables)]              ①

 2 

 3 type File = String;                      ②

 4 

 5 fn open(f: &mut File) -> bool {

 6     true                                 ③

 7 

 8 fn close(f: &mut File) -> bool {

 9     true                                 ③

10 }

11 

12 #[allow(dead_code)]                      ④

13 fn read(f: &mut File,

14         save_to: &mut Vec<u8>) -> ! {    ⑤

15     unimplemented!()                     ⑥

16 }

17 



18 fn main() {

19     let mut f1 = File::from("f1.txt");   ⑦

20     open(&mut f1);

21     //read(f1, vec![]);                  ⑧

22     close(&mut f1);

23 }

① Relaxes compiler warnings while working through ideas

② Creates a type alias. The compiler won’t distinguish between String & File, but your source code
will.

③ Let’s assume for the moment that these two functions always succeed.

④ Relaxes a compiler warning about an unused function

⑤ The ! return type indicates to the Rust compiler that this function never returns.

⑥ A macro that crashes the program if it’s encountered

⑦ With the type declaration at line 3, File inherits all of String’s methods.

⑧ There’s little point in calling this method.

There are lots of things that needs to be built on from listing 3.1. For example

We haven’t created a persistent object that would represent a file.
There’s only so much that can be encoded in a string.

There’s no attempt to implement read(). If we did, how would we
handle the failure case?

open() and close() return bool. Perhaps there is a way to
provide a more sophisticated result type that might be able to contain an
error message if the OS reports one.

None of our functions are methods. From a stylistic point of view, it
might be nice to call f.open() rather than open(f).

Let’s begin at the top and work our way through this list. Brace yourself for a
few scenic detours along the way as we encounter a few side roads that will
be profitable to explore.



Special return types in Rust

If you are new to the language, some return types are difficult to interpret. These are also
especially difficult to search for because they are made from symbols rather than words.
Known as the unit type, () formally is a zero-length tuple. It is used to express that a function
returns no value. Functions that appear to have no return type return (), and expressions that are
terminated with a semicolon (;) return (). For example, the report() function in the
following code block returns the unit type implicitly:

use std::fmt::Debug;

 

fn report<T: Debug>(item: T) {    ①

  println!("{:?}", item);         ②

 

}

① item can be any type that implements std::fmt::Debug.

② {:?} directs the println! macro to use std::fmt::Debug to convert item to a printable string.
And this example returns the unit type explicitly:

fn clear(text: &mut String) -> () {

  *text = String::from("");           ①

}

① Replaces the string at text with an empty string
The unit type often occurs in error messages. It’s common to forget that the last expression of a
function shouldn’t end with a semicolon.
The exclamation symbol, !, is known as the “Never” type. Never indicates that a function
never returns, especially when it is guaranteed to crash. For example, take this code:

fn dead_end() -> ! {

  panic!("you have reached a dead end");     ①

}

① The panic! macro causes the program to crash. This means the function is guaranteed never to
return.

The following example creates an infinite loop that prevents the function from returning:

fn forever() -> ! {

  loop {              ①



    //...

  };

}

① Unless it contains a break, the loop never finishes. This prevents the function from returning.
As with the unit type, Never sometimes occurs within error messages. The Rust compiler
complains about mismatched types when you forget to add a break in your loop block if
you’ve indicated that the function returns a non-Never type.



3.2 Modeling files with struct

We need something to represent that thing we’re trying to model. struct
allows you to create a composite type made up of other types. Depending on
your programming heritage, you may be more familiar with terms such as
object or record.

We’ll start with requiring that our files have a name and zero or more bytes
of data. Listing 3.2 prints the following two lines to the console:

File { name: "f1.txt", data: [] }

f1.txt is 0 bytes long

To represent data, listing 3.2 uses Vec<u8>, which is a growable list of u8
(single byte) values. The bulk of the main() function demonstrates usage
(e.g., field access). The file ch3/ch3-mock-file.rs contains the code for this
listing.

Listing 3.2 Defining an instance of struct to represent files

 1 #[derive(Debug)]                     ①

 2 struct File {

 3   name: String,

 4   data: Vec<u8>,                     ②

 5 }

 6 

 7 fn main() {

 8   let f1 = File {

 9     name: String::from("f1.txt"),    ③

10     data: Vec::new(),                ④

11   };

12 

13   let f1_name = &f1.name;            ⑤

14   let f1_length = &f1.data.len();    ⑤

15 

16   println!("{:?}", f1);

17   println!("{} is {} bytes long", f1_name, f1_length);



18 }

① Allows println! to print File. The std::fmt::Debug trait works in conjunction with {:?} within the
macro to enable File as a printable string.

② Using Vec<u8>, provides access to some useful conveniences like dynamic sizing, which makes it
possible to simulate writing to a file

③ String::from generates owned strings from string literals, which are slices.

④ Here the vec! macro simulates an empty file.

⑤ Accessing fields uses the . operator. Accessing fields by reference prevents their use after move
issues.

Here is a detailed overview of listing 3.2:

Lines 1–5 define the File struct. Definitions include fields and their
associated types. These also include each field’s lifetimes, which
happened to be elided here. Explicit lifetimes are required when a field
is a reference to another object.

Lines 8–11 create our first instance of File. We use a literal syntax
here, but typically structs in the wild are created via a convenience
method. String::from() is one of those convenience methods.
It takes a value of another type; in this case, a string slice (&str),
which returns a String instance. Vec::new() is the more
common case.

Lines 13–17 demonstrate accessing our new instance’s fields. We
prepend an ampersand to indicate that we want to access this data by
reference. In Rust parlance, this means that the variables f1_name
and f1_length are borrowing the data these refer to.

You have probably noticed that our File struct doesn’t actually store
anything to disk at all. That’s actually OK for now. If you’re interested,
figure 3.1 shows its internals. In the figure, its two fields (name and data)
are themselves both created by structs. If you’re unfamiliar with the term



pointer (ptr), consider pointers to be the same thing as references for now.
Pointers are variables that refer to some location in memory. The details are
explained at length in chapter 6.

Figure 3.1 Inspecting the internals of the File struct

We’ll leave interacting with the hard disk drive or other persistent storage
until later in the chapter. For the meantime, let’s recreate listing 3.1 and add
the File type as promised.

The newtype pattern

Sometimes the type keyword is all that you need. But what about when you need the compiler
to treat your new “type” as a fully-fledged, distinct type rather than just an alias? Enter
newtype. The newtype pattern consists of wrapping a core type within a single field
struct (or perhaps a tuple). The following code shows how to distinguish network
hostnames from ordinary strings. You’ll find this code in ch3/ch3-newtype-pattern.rs:

struct Hostname(String);                ①

 

fn connect(host: Hostname) {            ②

  println!("connected to {}", host.0);  ③

}

 

fn main() {



    let ordinary_string = String::from("localhost");

    let host = Hostname ( ordinary_string.clone() );

 

    connect(ordinary_string);

}

① Hostname is our new type.

② Uses the type system to guard against invalid usage

③ Accesses the underlying data with a numeric index
Here is the compiler output from rustc:

$ rustc ch3-newtype-pattern.rs 

error[E0308]: mismatched types

  --> ch3-newtype-pattern.rs:11:13

   |

11 |     connect(ordinary_string);

   |             ^^^^^^^^^^^^^^^ expected struct `Hostname`,

                                 found struct `String`

 

error: aborting due to previous error

 

For more information about this error, try `rustc --explain E0308`.

Using the newtype pattern can strengthen a program by preventing data from being silently
used in inappropriate contexts. The downside of using the pattern is that each new type must opt
in to all of its intended behavior. This can feel cumbersome.

We can now add a little bit of functionality to the first listing of the chapter.
Listing 3.3 (available at ch3/ch3-not-quite-file-2.rs) adds the ability to read a
file that has some data in it. It demonstrates how to use a struct to mimic
a file and simulate reading its contents. It then converts opaque data into a
String. All functions are assumed to always succeed, but the code is still
littered with hard-coded values. Still, the code finally prints something to the
screen. Here is partially obscured output from the program:

File { name: "2.txt", data: [114, 117, 115, 116, 33] }

2.txt is 5 bytes long

*****                    ①

① Revealing this line would spoil all of the fun!



Listing 3.3 Using struct to mimic a file and simulate reading its
contents

 1 #![allow(unused_variables)]                       ①

 2  

 3 #[derive(Debug)]                                  ②

 4 struct File {

 5   name: String,

 6   data: Vec<u8>,

 7 }

 8  

 9 fn open(f: &mut File) -> bool {                   ③

10   true

11 }

12  

13 fn close(f: &mut File) -> bool {                  ③

14   true

15 }

16  

17fn read(

18   f: &File,

19   save_to: &mut Vec<u8>,

20 ) -> usize {                                      ④

21   let mut tmp = f.data.clone();                   ⑤

22   let read_length = tmp.len();

23  

24   save_to.reserve(read_length);                   ⑥

25   save_to.append(&mut tmp);                       ⑦

26   read_length

27 }

28  

29 fn main() {

30   let mut f2 = File {

31     name: String::from("2.txt"),

32      data: vec![114, 117, 115, 116, 33],

33   };

34  

35   let mut buffer: Vec<u8> = vec![];

36  

37   open(&mut f2);                                  ⑧

38   let f2_length = read(&f2, &mut buffer);         ⑧

39   close(&mut f2);                                 ⑧

40  

41   let text = String::from_utf8_lossy(&buffer);    ⑨

42  

43   println!("{:?}", f2);

44   println!("{} is {} bytes long", &f2.name, f2_length);

45   println!("{}", text)                            ⑩

46 }

47  



① Silences warnings

② Enables File to work with println! and its fmt! sibling macros (used at the bottom of the listing)

③ These two functions remain inert for now.

④ Returns the number of bytes read

⑤ Makes a copy of the data here because save_to.append() shrinks the input Vec<T>

⑥ Ensures that there is sufficient space to fit the incoming data

⑦ Allocates sufficient data in the save_to buffer to hold the contents of f

⑧ Does the hard work of interacting with the file

⑨ Converts Vec<u8> to String. Any bytes that are not valid UTF-8 are replaced with .

⑩ Views the bytes 114, 117, 115, 116, and 33 as an actual word

The code so far has tackled two of the four issues raised at the end of listing
3.1:

Our File struct is a bona fide type.

read() is implemented, albeit in a memory-inefficient manner.

These last two points remain:

open() and close() return bool.

None of our functions are methods.



3.3 Adding methods to a struct with impl

This section explains briefly what methods are and describes how to make
use of them in Rust. Methods are functions that are coupled to some object.
From a syntactic point of view, these are just functions that don’t need to
specify one of their arguments. Rather than calling open() and passing a
File object in as an argument (read(f, buffer)), methods allow
the main object to be implicit in the function call (f.read(buffer))
using the dot operator.1

Rust is different than other languages that support methods: there is no
class keyword. Types created with struct (and enum, which is
described later) feel like classes at times, but as they don’t support
inheritance, it’s probably a good thing that they’re named something
different.

To define methods, Rust programmers use an impl block, which is
physically distinct in source code from the struct and enum blocks that
you have already encountered. Figure 3.2 shows the differences.



Figure 3.2 Illustrating syntactic differences between Rust and most
object oriented languages. Within Rust, methods are defined separately
from fields.

3.3.1 Simplifying object creation by implementing
new()

Creating objects with reasonable defaults is done through the new()
method. Every struct can be instantiated through a literal syntax. This is
handy for getting started, but leads to unnecessary verbosity in most code.

Using new() is a convention within the Rust community. Unlike other
languages, new is not a keyword and isn’t given some sort of blessed status
above other methods. Table 3.1 summarizes the conventions.



Table 3.1 Comparing Rust’s literal syntax for creating objects with the
use of the new() method

Current usage With File::new()

File {

    name: 

String::from("f1.txt"),

    data: Vec::new(),

};

File::new("f1.txt", vec![]);

File {

  name: String::from("f2.txt"),

  data: vec![114, 117, 115, 

116, 33],

};

File::new("f2.txt", vec![114, 

117, 115, 116, 33]);

To enable these changes, make use of an impl block as the next listing
shows (see ch3/ch3-defining-files-neatly.rs). The resulting executable should
print out the same message as listing 3.3, substituting f3.txt for the
original’s f1.txt.

Listing 3.4 Using impl blocks to add methods to a struct

 1 #[derive(Debug)]

 2 struct File {

 3   name: String,

 4   data: Vec<u8>,

 5 }

 6 

 7 impl File {

 8   fn new(name: &str) -> File {    ①

 9     File {                        ②

10       name: String::from(name),   ②

11       data: Vec::new(),           ②

12     }

13   }

14 }



15 

16 fn main() {

17   let f3 = File::new("f3.txt");

18 

19   let f3_name = &f3.name;         ③

20   let f3_length = f3.data.len();

21 

22   println!("{:?}", f3);

23   println!("{} is {} bytes long", f3_name, f3_length);

24 }

① As File::new() is a completely normal function, we need to tell Rust that it will return a File from
this function.

② File::new() does little more than encapsulate the object creation syntax, which is normal.

③ Fields are private by default but can be accessed within the module that defines the struct. The
module system is discussed later in the chapter.

Merging this new knowledge with the example that we already have, listing
3.5 is the result (see ch3/ch3-defining-files-neatly.rs). It prints the following
three lines to the console:

File { name: "2.txt", data: [114, 117, 115, 116, 33] }

2.txt is 5 bytes long

*****                   ①

① Still hidden!

Listing 3.5 Using impl to improve the ergonomics of File

 1 #![allow(unused_variables)]

 2  

 3 #[derive(Debug)]

 4 struct File {

 5   name: String,

 6   data: Vec<u8>,

 7 }

 8  

 9 impl File {

10   fn new(name: &str) -> File {

11     File {

12       name: String::from(name),

13       data: Vec::new(),

14     }

15   }

16  



17   fn new_with_data(

18     name: &str,

19     data: &Vec<u8>,

20   ) -> File {                                 ①

21     let mut f = File::new(name);

22     f.data = data.clone();

23     f

24   }

25  

26   fn read(

27     self: &File,

28     save_to: &mut Vec<u8>,

29   ) -> usize {                                ②

30     let mut tmp = self.data.clone();

31     let read_length = tmp.len();

32     save_to.reserve(read_length);

33     save_to.append(&mut tmp);

34     read_length

35   }

36 }

37  

38 fn open(f: &mut File) -> bool {               ③

39   true

40 }

41  

42 fn close(f: &mut File) -> bool {

43   true

44 }

45  

46 fn main() { 

47   let f3_data: Vec<u8> = vec![                ③

48     114, 117, 115, 116, 33

49   ];

50   let mut f3 = File::new_with_data("2.txt", &f3_data);

51  

52   let mut buffer: Vec<u8> = vec![];

53  

54   open(&mut f3);

55   let f3_length = f3.read(&mut buffer);      ④

56   close(&mut f3);

57  

58   let text = String::from_utf8_lossy(&buffer);

59  

60   println!("{:?}", f3);

61   println!("{} is {} bytes long", &f3.name, f3_length);

62   println!("{}", text);

63 }

① This method sneaked in to deal with cases where we want to simulate that a file has pre-existing
data.

② Replaces the f argument with self



③ An explicit type needs to be provided as vec! and can’t infer the necessary type through the function
boundary.

④ Here is the change in the calling code.



3.4 Returning errors

Early on in the chapter, two points were raised discussing dissatisfaction with
being unable to properly signify errors:

There was no attempt at implementing read(). If we did, how would
we handle the failure case?

The methods open() and close() return bool. Is there a way to
provide a more sophisticated result type to contain an error message if
the OS reports one?

The issue arises because dealing with hardware is unreliable. Even ignoring
hardware faults, the disk might be full or the OS might intervene and tell you
that you don’t have permission to delete a particular file. This section
discusses different methods for signalling that an error has occurred,
beginning with approaches common in other languages and finishing with
idiomatic Rust.

3.4.1 Modifying a known global variable

One of the simplest methods for signalling that an error has occurred is by
checking the value of a global variable. Although notoriously error-prone,
this is a common idiom in systems programming.

C programmers are used to checking the value of errno once system calls
return. As an example, the close() system call closes a file descriptor (an
integer representing a file with numbers assigned by the OS) and can modify
errno. The section of the POSIX standard discussing the close()



system call includes this snippet:

“If close() is interrupted by a signal that is to be caught, it shall
return -1 with errno set to EINTR and the state of fildes [file
descriptor] is unspecified. If an I/O error occurred while reading from
or writing to the file system during close(), it may return -1 with errno
set to EIO; if this error is returned, the state of fildes is unspecified.”

—The Open Group Base Specifications (2018)

Setting errno to either EIO or EINTR means to set it to some magical
internal constant. The specific values are arbitrary and defined per OS. With
the Rust syntax, checking global variables for error codes would look
something like the following listing.

Listing 3.6 Rust-like code that checks error codes from a global variable

static mut ERROR: i32 = 0;                  ①

 

// ...

 

fn main() {

  let mut f = File::new("something.txt");

 

  read(f, buffer);

  unsafe {                                  ②

    if ERROR != 0 {                         ③

      panic!("An error has occurred while reading the file ")

    }

  }

 

  close(f);

  unsafe {                                  ②

    if ERROR != 0 {                         ③

      panic!("An error has occurred while closing the file ")

    }

  }

}

① A global variable, static mut (or mutable static), with a static lifetime that’s valid for the life of the
program



② Accessing and modifying static mut variables requires the use of an unsafe block. This is Rust’s way
of disclaiming all responsibility.

③ Checks the ERROR value. Error checking relies on the convention that 0 means no error.

Listing 3.7, presented next, introduces some new syntax. The most significant
is probably the unsafe keyword, whose significance we’ll discuss later in
the book. In the meantime, consider unsafe to be a warning sign rather
than an indicator that you’re embarking on anything illegal. Unsafe means
“the same level of safety offered by C at all times.” There are also some other
small additions to the Rust language that you know already:

Mutable global variables are denoted with static mut.

By convention, global variables use ALL CAPS.

A const keyword is included for values that never change.

Figure 3.3 provides a visual overview of the flow control error and error
handling in listing 3.7.





Figure 3.3 A visual overview of listing 3.7, including explanations of
problems with using global error codes

Listing 3.7 Using global variables to propagate error information

 1 use rand::{random};                                  ①

 2  

 3 static mut ERROR: isize = 0;                         ②

 4  

 5 struct File;                                         ③

 6  

 7 #[allow(unused_variables)]

 8 fn read(f: &File, save_to: &mut Vec<u8>) -> usize {

 9     if random() && random() && random() {            ④

10         unsafe {

11             ERROR = 1;                               ⑤

12         }

13     }

14     0                                                ⑥

15 }

16  

17 #[allow(unused_mut)]                                 ⑦

18 fn main() {

19     let mut f = File;

20     let mut buffer = vec![];

21  

22     read(&f, &mut buffer);

23     unsafe {                                         ⑧

24         if ERROR != 0 {

25             panic!("An error has occurred!")

26         }

27     }

28 }

① Brings the rand crate into local scope

② Initializes ERROR to 0

③ Creates a zero-sized type to stand in for a struct while we’re experimenting

④ Returns true one out of eight times this function is called

⑤ Sets ERROR to 1, notifying the rest of the system that an error has occurred

⑥ Always reads 0 bytes

⑦ Keeping buffer mutable for consistency with other code even though it isn’t touched here

⑧ Accessing static mut variables is an unsafe operation.



Here are the commands that you will need to use to experiment with the
project at listing 3.7:

1. git clone --depth=1 https:/
/github.com/rust-in-action/code rust-in-

action to download the book’s source code

2. cd rust-in-action/ch3/globalerror to move into
the project directory

3. cargo run to execute the code

If you prefer to do things manually, there are more steps to follow:

1. cargo new --vcs none globalerror to create a new
blank project.

2. cd globalerror to move into the project directory.

3. cargo add rand@0.8 to add version 0.8 of the rand crate as a
dependency (run cargo install cargo-edit if you
receive an error message that cargo add command is unavailable).

4. As an optional step, you can verify that the rand crate is now a
dependency by inspecting Cargo.toml at the root of the project. It will
contain the following two lines:

[dependencies]

rand = "0.8"

5. Replace the contents of src/main.rs with the code in listing 3.7 (see
ch3/globalerror/src/main.rs).

6. Now that your source code is in place, execute cargo run.

You should see output like this:



$ cargo run    

   Compiling globalerror v0.1.0 (file:/ / /path/to/globalerror)

    *Finished* dev [unoptimized + debuginfo] target(s) in 0.74 secs

     *Running* `target/debug/globalerror`

Most of the time, the program will not do anything. Occasionally, if the book
has enough readers with sufficient motivation, it will print a much louder
message:

$ cargo run 

thread 'main' panicked at 'An error has occurred!',

<linearrow />src/main.rs:27:13

note: run with `RUST_BACKTRACE=1` environment variable to display

      a backtrace

Experienced programmers will know that using the global variable errno
is commonly adjusted by the OS during system calls. This style of
programming would typically be discouraged in Rust because it omits both
type safety (errors are encoded as plain integers) and can reward sloppy
programmers with unstable programs when they forget to check the errno
value. However, it’s an important style to be aware of because

Systems programmers may need to interact with OS-defined global
values.

Software that interacts with CPU registers and other low-level hardware
needs to get used to inspecting flags to check that operations were
completed successfully.

The difference between const and let

If variables defined with let are immutable, then why does Rust include a const keyword?
The short answer is that data behind let can change. Rust allows types to have an apparently
contradictory property of interior mutability.



Some types such as std:sync::Arc and std:rc::Rc present an immutable façade, yet
change their internal state over time. In the case of those two types, these increment a reference
count as references to those are made and decrement that count when those references expire.
At the level of the compiler, let relates more to aliasing than immutability. Aliasing in
compiler terminology refers to having multiple references to the same location in memory at the
same time. Read-only references (borrows) to variables declared with let can alias the same
data. Read-write references (mutable borrows) are guaranteed to never alias data.

3.4.2 Making use of the Result return type

Rust’s approach to error handling is to use a type that stands for both the
standard case and the error case. This type is known as Result. Result
has two states, Ok and Err. This two-headed type is versatile and is put to
work all through the standard library.

We’ll consider how a single type can act as two later on. For the moment,
let’s investigate the mechanics of working with it. Listing 3.8 makes changes
from previous iterations:

Functions that interact with the file system, such as open() on line
39, return Result<File, String>. This effectively allows
two types to be returned. When the function successfully executes,
File is returned within a wrapper as Ok(File). When the function
encounters an error, it returns a String within its own wrapper as
Err(String). Using a String as an error type provides an easy
way to report error messages.

Calling functions that return Result<File, String> requires
an extra method (unwrap()) to actually extract the value. The
unwrap() call unwraps Ok(File) to produce File. It will
crash the program if it encounters Err(String). More



sophisticated error handling is explained in chapter 4.

open() and close() now take full ownership of their File
arguments. While we’ll defer a full explanation of the term ownership
until chapter 4, it deserves a short explanation here.

Rust’s ownership rules dictate when values are deleted. Passing the
File argument to open() or close() without prepending an
ampersand, e.g. &File or &mut File, passes ownership to the
function that is being called. This would ordinarily mean that the
argument is deleted when the function ends, but these two also return
their arguments at the end.

The f4 variable now needs to reclaim ownership. Associated with the
changes to the open() and close() functions is a change to the
number of times that let f4 is used. f4 is now rebound after each
call to open() and close(). Without this, we would run into
issues with using data that is no longer valid.

To run the code in listing 3.8, execute these commands from a terminal
window:

$ git clone --depth=1 https:/ /github.com/rust-in-action/code rust-in-action

$ cd rust-in-action/ch3/fileresult

$ cargo run

To do things by hand, here are the recommended steps:

1. Move to a scratch directory, such as /tmp; for example, cd $TMP
(cd %TMP% on MS Windows).

2. Execute cargo new --bin --vcs none
fileresult.



3. Ensure that the crate’s Cargo.toml file specifies the 2018 edition and
includes the rand crate as a dependency:

[package]

name = "fileresult"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

rand = "0.8"

4. Replace the contents of fileresult/src/main.rs with the code in listing 3.8
(ch3/fileresult/src/main.rs).

5. Execute cargo run.

Executing cargo run produces debugging output, but nothing from the
executable itself:

$ cargo run 

   Compiling fileresult v0.1.0 (file:/ / /path/to/fileresult)

    Finished dev [unoptimized + debuginfo] target(s) in 1.04 secs

     Running `target/debug/fileresult`

Listing 3.8 Using Result to mark functions liable to filesystem errors

 1 use rand::prelude::*;                               ①

 2 

 3 fn one_in(denominator: u32) -> bool {               ②

 4   thread_rng().gen_ratio(1, denominator)            ③

 5 }

 6 

 7 #[derive(Debug)]

 8 struct File {

 9   name: String,

10   data: Vec<u8>,

11 }

12 

13 impl File {

14   fn new(name: &str) -> File {

15     File {

16       name: String::from(name),

17      data: Vec::new()



18     }                                               ④

19   }

20 

21   fn new_with_data(name: &str, data: &Vec<u8>) -> File {

22     let mut f = File::new(name);

23     f.data = data.clone();

24     f

25   }

26 

27   fn read(

28     self: &File,

29     save_to: &mut Vec<u8>,

30   ) -> Result<usize, String> {                      ⑤

31     let mut tmp = self.data.clone();

32     let read_length = tmp.len();

33     save_to.reserve(read_length);

34     save_to.append(&mut tmp);

35     Ok(read_length)                                 ⑥

36   }

37 }

38 

39 fn open(f: File) -> Result<File, String> {

40   if one_in(10_000) {                               ⑦

41     let err_msg = String::from("Permission denied");

42     return Err(err_msg);

43   }

44   Ok(f)

45 }

46 

47 fn close(f: File) -> Result<File, String> {

48   if one_in(100_000) {                              ⑧

49     let err_msg = String::from("Interrupted by signal!");

50     return Err(err_msg);

51   }

52   Ok(f)

53 }

54 

55 fn main() {

56   let f4_data: Vec<u8> = vec![114, 117, 115, 116, 33];

57   let mut f4 = File::new_with_data("4.txt", &f4_data);

58 

59   let mut buffer: Vec<u8> = vec![];

60 

61   f4 = open(f4).unwrap();                           ⑨

62   let f4_length = f4.read(&mut buffer).unwrap();    ⑨

63   f4 = close(f4).unwrap();                          ⑨

67 

65   let text = String::from_utf8_lossy(&buffer);

66 

67   println!("{:?}", f4);

68   println!("{} is {} bytes long", &f4.name, f4_length);

69   println!("{}", text);

70 }



① Brings common traits and types from the rand crate into this crate’s scope

② Helper function that triggers sporadic errors

③ thread_rng() creates a thread-local random number generator; gen_ratio(n, m) returns a Boolean
value with an n/m probability.

④ Stylistic change to shorten the code block

⑤ First appearance of Result<T, E>, where T is an integer of type usize and E is a String. Using String
provides arbitrary error messages.

⑥ In this code, read() never fails, but we still wrap read_length in Ok because we’re returning Result.

⑦ Once in 10,000 executions, returns an error

⑧ Once in 100,000 executions, returns an error

⑨ Unwraps T from Ok, leaving T

NOTE Calling .unwrap() on a Result is often considered poor style. When called on an error
type, the program crashes without a helpful error message. As the chapter progresses, we’ll encounter
sophisticated mechanisms to handle errors.

Using Result provides compiler-assisted code correctness: your code
won’t compile unless you’ve taken the time to handle the edge cases. This
program will fail on error, but at least we have made this explicit.

So, what is a Result? Result is an enum defined in Rust’s standard
library. It has the same status as any other type but is tied together with the
rest of the language through strong community conventions. You may be
wondering, “Wait. What is an enum?” I’m glad you asked. That’s the topic of
our next section.



3.5 Defining and making use of an enum

An enum, or enumeration, is a type that can represent multiple known
variants. Classically, an enum represents several predefined known options
like the suits of playing cards or planets in the solar system. The following
listing shows one such enum.

Listing 3.9 Defining an enum to represent the suits in a deck of cards

enum Suit {

  Clubs,

  Spades,

  Diamonds,

  Hearts,

}

If you haven’t programmed in a language that makes use of enums,
understanding their value takes some effort. As you program with these for a
while, though, you’re likely to experience a minor epiphany.

Consider creating some code that parses event logs. Each event has a name,
perhaps UPDATE or DELETE. Rather than storing those values as strings
in your application, which can lead to subtle bugs later on when string
comparisons become unwieldy, enums allow you to give the compiler some
knowledge of the event codes. Later, you’ll be given a warning such as “Hi
there, I see that you have considered the UPDATE case, but it looks like
you’ve forgotten the DELETE case. You should fix that.”

Listing 3.10 shows the beginnings of an application that parses text and emits
structured data. When run, the program produces the following output. You’ll
find the code for this listing in ch3/ch3-parse-log.rs:



(Unknown, "BEGIN Transaction XK342")

(Update, "234:LS/32231 {\"price\": 31.00} -> {\"price\": 40.00}")

(Delete, "342:LO/22111") 

Listing 3.10 Defining an enum and using it to parse an event log

 1 #[derive(Debug)]                                    ①

 2 enum Event {

 3     Update,                                         ②

 4     Delete,                                         ②

 5     Unknown,                                        ②

 6 }

 7 

 8 type Message = String;                              ③

 9 

10 fn parse_log(line: &str) -> (Event, Message) {      ④

11   let parts: Vec<_> = line                          ⑤

12                       .splitn(2, ' ')

13                       .collect();                   ⑥

14   if parts.len() == 1 {                             ⑦

15     return (Event::Unknown, String::from(line))

16   }

17 

18   let event = parts[0];                             ⑧

19   let rest = String::from(parts[1]);                ⑧

20 

21   match event {

22     "UPDATE" | "update" => (Event::Update, rest),   ⑨

23     "DELETE" | "delete" => (Event::Delete, rest),   ⑨

24     _ => (Event::Unknown, String::from(line)),      ⑩

25   }

26 }

27 

28 fn main() {

29   let log = "BEGIN Transaction XK342

30 UPDATE 234:LS/32231 {\"price\": 31.00} -> {\"price\": 40.00}

31 DELETE 342:LO/22111";

32 

33   for line in log.lines() {

34     let parse_result = parse_log(line);

35     println!("{:?}", parse_result);

36   }

37 }

① Prints this enum to the screen via auto-generated code

② Creates three variants of Event, including a value for unrecognized events

③ A convenient name for String for use in this crate’s context

④ A function for parsing a line and converting it into semi-structured data



⑤ Vec<_> asks Rust to infer the elements’ type.

⑥ collect() consumes an iterator from line.splitn() and returns Vec<T>.

⑦ If line.splitn() doesn’t split log into two parts, returns an error

⑧ Assigns each part of parts to a variable to ease future use

⑨ When we match a known event, returns structured data

⑩ If we don’t recognize the event type, returns the whole line

Enums have a few tricks up their sleeves:

These work together with Rust’s pattern-matching capabilities to help
you build robust, readable code (visible on lines 19–3 of listing 3.10).

Like structs, enums support methods via impl blocks.

Rust’s enums are more powerful than a set of constants.

It’s possible to include data within an enum’s variants, granting them a struct-
like persona. For example

enum Suit {

  Clubs,

  Spades,

  Diamonds,

  Hearts,              ①

}

 

enum Card {

  King(Suit),          ②

  Queen(Suit),         ②

  Jack(Suit),          ②

  Ace(Suit),           ②

  Pip(Suit, usize),    ③

}

① The last element of enums also ends with a comma to ease refactoring.

② Face cards have a suit.

③ Pip cards have a suit and a rank.

3.5.1 Using an enum to manage internal state



Now that you’ve seen how to define and use an enum, how is this useful
when applied to modelling files? We can expand our File type and allow it
to change as it is opened and closed. Listing 3.11 (ch3/ch3-file-states.rs)
produces code that prints a short alert to the console:

Error checking is working

File { name: "5.txt", data: [], state: Closed }

5.txt is 0 bytes long

Listing 3.11 An enum that represents a File being open or closed

 1 #[derive(Debug,PartialEq)]

 2 enum FileState {

 3   Open,

 4   Closed,

 5 }

 6 

 7 #[derive(Debug)]

 8 struct File {

 9   name: String,

10   data: Vec<u8>,

11   state: FileState,

12 }

13 

14 impl File {

15   fn new(name: &str) -> File {

16     File {

17       name: String::from(name),

18       data: Vec::new(),

19       state: FileState::Closed,

20     }

21   }

22 

23   fn read(

24     self: &File,

25     save_to: &mut Vec<u8>,

26   ) -> Result<usize, String> {

27     if self.state != FileState::Open {

28       return Err(String::from("File must be open for reading"));

29     }

30     let mut tmp = self.data.clone();

31     let read_length = tmp.len();

32     save_to.reserve(read_length);

33     save_to.append(&mut tmp);

34     Ok(read_length)

35   }

36 }



37 

38 fn open(mut f: File) -> Result<File, String> {

39   f.state = FileState::Open;

40   Ok(f)

41 }

42 

43 fn close(mut f: File) -> Result<File, String> {

44   f.state = FileState::Closed;

45   Ok(f)

46 }

47 

48 fn main() {

49   let mut f5 = File::new("5.txt");

50 

51   let mut buffer: Vec<u8> = vec![];

52 

53   if f5.read(&mut buffer).is_err() {

54     println!("Error checking is working");

55   }

56 

57   f5 = open(f5).unwrap();

58   let f5_length = f5.read(&mut buffer).unwrap();

59   f5 = close(f5).unwrap();

60 

61   let text = String::from_utf8_lossy(&buffer);

62 

63   println!("{:?}", f5);

64   println!("{} is {} bytes long", &f5.name, f5_length);

65   println!("{}", text);

66 }

Enums can be a powerful aide in your quest to produce reliable, robust
software. Consider them for your code when you discover yourself
introducing “stringly-typed” data, such as message codes.



3.6 Defining common behavior with traits

A robust definition of the term file needs to be agnostic to storage medium.
Files support two main operations: reading and writing streams of bytes.
Focusing on those two capabilities allows us to ignore where the reads and
writes are actually taking place. These actions can be from a hard disk drive,
an in-memory cache, over a network, or via something more exotic.

Irrespective of whether a file is a network connection, a spinning metal
platter, or a superposition of an electron, it’s possible to define rules that say,
“To call yourself a file, you must implement this.”

You have already seen traits in action several times. Traits have close
relatives in other languages. These are often named interfaces, protocols, type
classes, abstract base classes, or, perhaps, contracts.

Every time you’ve used #[derive(Debug)] in a type definition,
you’ve implemented the Debug trait for that type. Traits permeate the Rust
language. Let’s see how to create one.

3.6.1 Creating a Read trait

Traits enable the compiler (and other humans) to know that multiple types are
attempting to perform the same task. Types that use #
[derive(Debug)] all print to the console via the println! macro
and its relatives. Allowing multiple types to implement a Read trait enables
code reuse and allows the Rust compiler to perform its zero cost abstraction
wizardry.



For the sake of brevity, listing 3.12 (ch3/ch3-skeleton-read-trait.rs) is a bare-
bones version of the code that we’ve already seen. It shows the distinction
between the trait keyword, which is used for definitions, and the impl
keyword, which attaches a trait to a specific type. When built with rustc and
executed, listing 3.12 prints the following line to the console:

0 byte(s) read from File

Listing 3.12 Defining the bare bones of a Read trait for File

 1 #![allow(unused_variables)]        ①

 2 

 3 #[derive(Debug)]

 4 struct File;                       ②

 5 

 6 trait Read {                       ③

 7     fn read(

 8       self: &Self,

 9       save_to: &mut Vec<u8>,

10     ) -> Result<usize, String>;    ④

11 }

12 

13 impl Read for File {

14     fn read(self: &File, save_to: &mut Vec<u8>) -> Result<usize, String> {

15         Ok(0)                      ⑤

16     }

17 }

18 

19 fn main() {

20     let f = File{};

21     let mut buffer = vec!();

22     let n_bytes = f.read(&mut buffer).unwrap();

23     println!("{} byte(s) read from {:?}", n_bytes, f);

24 }

① Silences any warnings relating to unused variables within functions

② Defines a stub File type

③ Provides a specific name for the trait

④ A trait block includes the type signatures of functions that implementors must comply with. The
pseudo-type Self is a placeholder for the type that eventually implements Read.

⑤ A simple stub value that complies with the type signature required



Defining a trait and implementing it on the same page can feel quite drawn
out in small examples such as this. File is spread across three code blocks
within listing 3.12. The flip side of this is that many common traits become
second nature as your experience grows. Once you’ve learned what the
PartialEq trait does for one type, you’ll understand it for every other
type.

What does PartialEq do for types? It enables comparisons with the ==
operator. “Partial” allows for cases where two values that match exactly
should not be treated as equal, such as the floating point’s NAN value or
SQL’s NULL.

NOTE If you’ve spent some time looking through the Rust community’s forums and documentation,
you might have noticed that they’ve formed their own idioms of English grammar. When you see a
sentence with the following structure, “...T is Debug...”, what they’re saying is that T implements the
Debug trait.

3.6.2 Implementing std::fmt::Display for your own
types

The println! macro and a number of others live within a family of
macros that all use the same underlying machinery. The macros
println!, print!, write!, writeln!, and format! all rely
on the Display and Debug traits, and these rely on trait
implementations provided by programmers to convert from {} to what is
printed to the console.

Looking back a few pages to listing 3.11, the File type was composed of a
few fields and a custom subtype, FileState. If you recall, that listing
illustrated the use of the Debug trait as repeated in the following listing.



Listing 3.13 Snippets from listing 3.11

#[derive(Debug,PartialEq)]

enum FileState {

  Open,

  Closed,

}

 

#[derive(Debug)]

struct File {

  name: String,

  data: Vec<u8>,

  state: FileState,

}

 

//...                       ①

 

fn main() {

  let f5 = File::new("f5.txt");

 

  //...                     ①

  println!("{:?}", f5);     ②

  // ...                    ①

}

① Lines skipped from the original

② Debug relies on the colon and question mark syntax.

It’s possible to rely on the Debug trait auto-implementations as a crutch,
but what should you do if you want to provide custom text? Display
requires that types implement a fmt method, which returns
fmt::Result. The following listing shows this implementation.

Listing 3.14 Using std::fmt::Display for File and its
associated FileState

impl Display for FileState {

  fn fmt(&self, f:

         &mut fmt::Formatter,

  ) -> fmt::Result {                      ①

    match *self {

      FileState::Open => write!(f, "OPEN"),

      FileState::Closed => write!(f, "CLOSED"),

    }



  }

}

 

impl Display for File {

   fn fmt(&self, f:

          &mut fmt::Formatter,

   ) -> fmt::Result {                     ①

      write!(f, "<{} ({})>",

             self.name, self.state)       ②

   }

}

① To implement std::fmt::Display, a single fmt method must be defined for your type.

② It is common to defer to the inner types’ Display implementation via the write! macro.

The following listing shows how to implement Display for a struct that
includes fields that also need to implement Display. You’ll find the code
for this listing in ch3/ch3-implementing-display.rs.

Listing 3.15 Working code snippet to implement Display

#![allow(dead_code)]                                 ①

 

use std::fmt;                                        ②

use std::fmt::{Display};                             ③

 

#[derive(Debug,PartialEq)]

enum FileState {

  Open,

  Closed,

}

 

#[derive(Debug)]

struct File {

  name: String,

  data: Vec<u8>,

  state: FileState,

}

 

impl Display for FileState {

   fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

     match *self {

         FileState::Open => write!(f, "OPEN"),       ④

         FileState::Closed => write!(f, "CLOSED"),   ④

     }

   }

}

 



impl Display for File {

   fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

      write!(f, "<{} ({})>",

             self.name, self.state)                  ⑤

   }

}

 

impl File {

  fn new(name: &str) -> File {

    File {

        name: String::from(name),

        data: Vec::new(),

        state: FileState::Closed,

    }

  }

}

 

fn main() {

  let f6 = File::new("f6.txt");

  //...

  println!("{:?}", f6);                             ⑥

  println!("{}", f6);                               ⑦

}

① Silences warnings related to FileState::Open not being used

② Brings the std::fmt crate into local scope, making use of fmt::Result

③ Brings Display into local scope, avoiding the need to prefix it as fmt::Display

④ Sneakily, we can make use of write! to do the grunt work for us. Strings already implement Display,
so there’s little left for us to do.

⑤ We can rely on this FileState Display implementation.

⑥ The Debug implementation prints a familiar message in common with all other implementors of
Debug: File { ... }.

⑦ Our Display implementation follows its own rules, displaying itself as <f6.txt (CLOSED)>.

We’ll see many uses of traits throughout the course of the book. These
underlie Rust’s generics system and the language’s robust type checking.
With a little bit of abuse, these also support a form of inheritance that’s
common in most object oriented languages. For now, though, the thing to
remember is that traits represent common behavior that types opt into via the
syntax impl Trait for Type.



3.7 Exposing your types to the world

Your crates will interact with others that you build over time. You might
want to make that process easier for your future self by hiding internal details
and documenting what’s public. This section describes some of the tooling
available within the language and within cargo to make that process easier.

3.7.1 Protecting private data

Rust defaults to keeping things private. If you were to create a library with
only the code that you have seen so far, importing your crate would provide
no extra benefit. To remedy this, use the pub keyword to make things
public.

Listing 3.16 provides a few examples of prefixing types and methods with
pub. As you’ll note, its output is not very exciting:

File { name: "f7.txt", data: [], state: Closed }

Listing 3.16 Using pub to mark the name and state fields of File
public

#[derive(Debug,PartialEq)]

pub enum FileState {                   ①

  Open,

  Closed,

}

 

#[derive(Debug)]

pub struct File {

  pub name: String,

  data: Vec<u8>,                       ②

  pub state: FileState,

}



 

impl File {

  pub fn new(name: &str) -> File {     ③

    File {

        name: String::from(name),

        data: Vec::new(),

        state: FileState::Closed

    }

  }

}

 

fn main() {

  let f7 = File::new("f7.txt");

  //...

  println!("{:?}", f7);

}

① An enum’s variants are assumed to be public if the overall type is made public.

② File.data remains private if a third party were to import this crate via use.

③ Even though the File struct is public, its methods must also be explicitly marked as public.



3.8 Creating inline documentation for your
projects

When software systems become larger, it becomes more important to
document one’s progress. This section walks through adding documentation
to your code and generating HTML versions of that content.

In listing 3.17, you’ll see the familiar code with some added lines beginning
with /// or //!. The first form is much more common. It generates
documents that refer to the item that immediately follows. The second form
refers to the current item as the compiler scans the code. By convention, it is
only used to annotate the current module but is available in other places as
well. The code for this listing is in the file ch3-file-doced.rs.

Listing 3.17 Adding doc comments to code

 1 //! Simulating files one step at a time.      ①

 2 

 3 /// Represents a "file",

 4 /// which probably lives on a file system.    ②

 5 #[derive(Debug)]

 6 pub struct File {

 7   name: String,

 8   data: Vec<u8>,

 9 }

10 

11 impl File {

12   /// New files are assumed to be empty, but a name is required.

13   pub fn new(name: &str) -> File {

14     File {

15       name: String::from(name),

16       data: Vec::new(),

17     }

18   }

19 

20   /// Returns the file's length in bytes.

21   pub fn len(&self) -> usize {

22     self.data.len()



23   }

24 

25   /// Returns the file's name.

26   pub fn name(&self) -> String {

27     self.name.clone()

28   }

29 }

30 

31 fn main() {

32   let f1 = File::new("f1.txt");

33 

34   let f1_name = f1.name();

35   let f1_length = f1.len();

36 

37   println!("{:?}", f1);

38   println!("{} is {} bytes long", f1_name, f1_length);

39 }

① //! refers to the current item, the module that’s just been entered by the compiler.

② /// annotates whatever immediately follows it.

3.8.1 Using rustdoc to render docs for a single source
file

You may not know it, but you also installed a command-line tool called
rustdoc when you installed Rust. rustdoc is like a special-purpose Rust
compiler. Instead of producing executable code, it produces HTML versions
of your inline documentation.

Here is how to use it. Assuming that you have the code from listing 3.17
saved as ch3-file-doced.rs, follow these steps:

1. Open a terminal.

2. Move to the location of your source file.

3. Execute rustdoc ch3-file-doced.rs.

rustdoc creates a directory (doc/) for you. The documentation’s entry point is
actually within a subdirectory: doc/ch3_file_doced/index.html.



When your programs start to get larger and span multiple files, invoking
rustdoc manually can become a bit of a pain. Thankfully, cargo can do the
grunt work on your behalf. That’s discussed in the next section.

3.8.2 Using cargo to render docs for a crate and its
dependencies

Your documentation can be rendered as rich HTML output with cargo. cargo
works with crates rather than the individual files as we’ve worked with so far.
To get around this, we’ll move our project into a crate documentation: To
manually create the crate, following these instructions:

1. Open a terminal.

2. Move to a working directory, such as /tmp/, or for Windows, type cd
%TEMP%.

3. Run cargo new filebasics.

You should end up with a project directory tree that looks like this:

filebasics

├──Cargo.toml

└──src

   └──main.rs     ①

① This file is what you’ll edit in the following steps.

4. Now save the source code from listing 3.17 to filebasics/src/main.rs,
overwriting the “Hello World!” boilerplate code that is already in the
file.

To skip a few steps, clone the repository. Execute these commands from a
terminal:



$ git clone https:/ /github.com/rust-in-action/code rust-in-action

$ cd rust-in-action/ch3/filebasics 

To build an HTML version of the crate’s documentation, follow these steps:

1. Move to the project’s root directory (filebasics/), which includes the
Cargo .toml file.

2. Run cargo doc --open.

Rust will now starts to compile an HTML version of your code’s
documentation. You should see output similar to the following in the console:

Documenting filebasics v0.1.0 (file:/ / /C:/.../Temp/filebasics)

   Finished dev [unoptimized + debuginfo] target(s) in 1.68 secs

    Opening C:\...\Temp\files\target\doc\filebasics\index.html

  Launching cmd /C

If you added the --open flag, your web browser will automatically. Figure
3.4 shows the documentation that should now be visible.



Figure 3.4 Rendered output of cargo doc

TIP If you have lots of dependencies in your crate, the build process may take a while. A useful flag
is cargo doc --no-deps. Adding --no-deps can significantly restrict the work rustdoc has
to do.

rustdoc supports rendering rich text written in Markdown. That allows you to
add headings, lists, and links within your documentation. Code snippets that
are wrapped in triple backticks (```) are given syntax highlighting.

Listing 3.18 Documenting Rust code with in-line comments

 1 //! Simulating files one step at a time.

 2 

 3 

 4 impl File {

 5   /// Creates a new, empty `File`.



 6   ///

 7   /// # Examples

 8   ///

 9   /// ```

10   /// let f = File::new("f1.txt");

11   /// ```

12   pub fn new(name: &str) -> File {

13     File {

14       name: String::from(name),

15       data: Vec::new(),

16     }

17   }

18 }



Summary

A struct is the foundational compound data type. Paired with traits,
structs are the closest thing to objects from other domains.

An enum is more powerful than a simple list. Enum’s strength lies in
its ability to work with the compiler to consider all edge cases.

Methods are added to types via impl blocks.

You can use global error codes in Rust, but this can be cumbersome and
generally is frowned on.

The Result type is the mechanism the Rust community prefers to use
to signal the possibility of error.

Traits enable common behavior through Rust programs.

Data and methods remain private until they are declared public with
pub.

You can use cargo to build the documentation for your crate and all of
its dependencies.

1.There are a number of theoretical differences between methods and functions, but a detailed
discussion of those computer science topics is available in other books. Briefly, functions are
regarded as pure, meaning their behavior is determined solely by their arguments. Methods are
inherently impure, given that one of their arguments is effectively a side effect. These are muddy
waters, though. Functions are perfectly capable of acting on side effects themselves. Moreover,
methods are implemented with functions. And, to add an exception to an exception, objects
sometimes implement static methods, which do not include implicit arguments.



4 Lifetimes, ownership, and borrowing

This chapter covers

Discovering what the term lifetime means in Rust programming
Working with the borrow checker rather than against it
Multiple tactics for dealing with issues when these crop up
Understanding the responsibilities of an owner
Learning how to borrow values that are owned elsewhere

This chapter explains one of the concepts that trip up most newcomers to
Rust—its borrow checker. The borrow checker checks that all access to data
is legal, which allows Rust to prevent safety issues. Learning how this works
will, at the very least, speed up your development time by helping you avoid
run-ins with the compiler. More significantly though, learning to work with
the borrow checker allows you to build larger software systems with
confidence. It underpins the term fearless concurrency.

This chapter will explain how this system operates and help you learn how to
comply with it when an error is discovered. It uses the somewhat lofty
example of simulating a satellite constellation to explain the trade-offs
relating to different ways to provide shared access to data. The details of
borrow checking are thoroughly explored within the chapter. However, a few
points might be useful for readers wanting to quickly get the gist. Borrow
checking relies on three interrelated concepts—lifetimes, ownership, and
borrowing:

Ownership is a stretched metaphor. There is no relationship to property



rights. Within Rust, ownership relates to cleaning values when these are
no longer needed. For example, when a function returns, the memory
holding its local variables needs to be freed. Owners cannot prevent
other parts of the program from accessing their values or report data
theft to some overarching Rust authority.

A value’s lifetime is the period when accessing that value is valid
behavior. A function’s local variables live until the function returns,
while global variables might live for the life of the program.

To borrow a value means to access it. This terminology is somewhat
confusing as there is no obligation to return the value to its owner. Its
meaning is used to emphasize that while values can have a single owner,
it’s possible for many parts of the program to share access to those
values.



4.1 Implementing a mock CubeSat ground
station

Our strategy for this chapter is to use an example that compiles. Then we’ll
make a minor change that triggers an error that appears to emerge without
any adjustment to the program’s flow. Working through the fixes to those
issues should make the concepts more complete.

The learning example for the chapter is a CubeSat constellation. If you’ve
never encountered that phrase before, here are some definitions:

CubeSat—A miniature artificial satellite, as compared to a conventional
satellite, that has increasingly expanded the accessibility of space
research.

Ground station—An intermediary between the operators and the
satellites themselves. It listens on a radio, checking the status of every
satellite in the constellation and transmitting messages to and fro. When
introduced in our code, it acts as the gateway between the user and the
satellites.

Constellation—The collective noun for satellites in orbit.

Figure 4.1 shows several CubeSats orbiting our ground station.



Figure 4.1 CubeSats in orbit

In figure 4.1, we have three CubeSats. To model this, we’ll create a variable
for each. This model can happily implement integers for the moment. We
don’t need to model the ground station explicitly because we’re not yet
sending messages around the constellations. We’ll omit that model for now.
These are the variables:

let sat_a = 0;

let sat_b = 1;

let sat_c = 2;

To check on the status of each of our satellites, we’ll use a stub function and
an enum to represent potential status messages:

#[derive(Debug)]

enum StatusMessage {

  Ok,                                       ①

}

 

fn check_status(sat_id: u64) -> StatusMessage {

  StatusMessage::Ok                         ①

}

① For now, all of our CubeSats function perfectly all the time

The check_status() function would be extremely complicated in a



production system. For our purposes, though, returning the same value every
time is perfectly sufficient. Pulling these two snippets into a whole program
that “checks” our satellites twice, we end up with something like the
following listing. You’ll find this code in the file ch4/ch4-check-sats-1.rs.

Listing 4.1 Checking the status of our integer-based CubeSats

 1 #![allow(unused_variables)]

 2 

 3 #[derive(Debug)]

 4 enum StatusMessage {

 5   Ok,

 6 }

 7 

 8 fn check_status(sat_id: u64) -> StatusMessage {

 9   StatusMessage::Ok

10 }

11 

12 fn main () {

13   let sat_a = 0;     ①

14   let sat_b = 1;     ①

15   let sat_c = 2;     ①

16 

17   let a_status = check_status(sat_a);

18   let b_status = check_status(sat_b);

19   let c_status = check_status(sat_c);

20   println!("a: {:?}, b: {:?}, c: {:?}", a_status, b_status, c_status);

21 

22   // "waiting" ...

23   let a_status = check_status(sat_a);

24   let b_status = check_status(sat_b);

25   let c_status = check_status(sat_c);

26   println!("a: {:?}, b: {:?}, c: {:?}", a_status, b_status, c_status);

27 }

① Each satellite variable is represented by an integer.

Running the code in listing 4.1 should be fairly uneventful. The code
compiles, albeit begrudgingly. We encounter the following output from our
program:

a: Ok, b: Ok, c: Ok

a: Ok, b: Ok, c: Ok



4.1.1 Encountering our first lifetime issue

Let’s move closer to idiomatic Rust by introducing type safety. Instead of
integers, let’s create a type to model our satellites. A real implementation of a
CubeSat type would probably include lots of information about its position,
its RF frequency band, and more. In the following listing, we stick with only
recording an identifier.

Listing 4.2 Modeling a CubeSat as its own type

#[derive(Debug)]

struct CubeSat {

  id: u64,

}

Now that we have a struct definition, let’s inject it into our code. The
next listing will not compile (yet). Understanding the details of why it won’t
is the goal of much of this chapter. The source for this listing is in ch4/ch4-
check-sats-2.rs.

Listing 4.3 Checking the status of our integer-based CubeSats

 1 #[derive(Debug)]                     ①

 2 struct CubeSat {

 3   id: u64,

 4 }

 5 

 6 #[derive(Debug)]

 7 enum StatusMessage {

 8   Ok,

 9 }

10 

11 fn check_status(

12   sat_id: CubeSat

13 ) -> StatusMessage {                 ②

14   StatusMessage::Ok

15 }

16 

17 fn main() {

18   let sat_a = CubeSat { id: 0 };     ③

19   let sat_b = CubeSat { id: 1 };     ③



20   let sat_c = CubeSat { id: 2 };     ③

21 

22   let a_status = check_status(sat_a);

23   let b_status = check_status(sat_b);

24   let c_status = check_status(sat_c);

25   println!("a: {:?}, b: {:?}, c: {:?}", a_status, b_status, c_status);

26 

27   // "waiting" ...

28   let a_status = check_status(sat_a);

29   let b_status = check_status(sat_b);

30   let c_status = check_status(sat_c);

31   println!("a: {:?}, b: {:?}, c: {:?}", a_status, b_status, c_status);

32 }

① Modification 1 adds the definition.

② Modification 2 uses the new type within check_status().

③ Modification 3 creates three new instances.

When you attempt to compile the code for listing 4.3, you will receive a
message similar to the following (which has been edited for brevity):

error[E0382]: use of moved value: `sat_a`

  --> code/ch4-check-sats-2.rs:26:31

   |

20 |   let a_status = check_status(sat_a);

   |                               ----- value moved here

...

26 |   let a_status = check_status(sat_a);

   |                               ^^^^^ value used here after move

   |

   = note: move occurs because `sat_a` has type `CubeSat`,

   = which does not implement the `Copy` trait

 

...      ①

 

error: aborting due to 3 previous errors

① Lines removed for brevity

To trained eyes, the compiler’s message is helpful. It tells us exactly where
the problem is and provides us with a recommendation on how to fix it. To
less experienced eyes, it’s significantly less useful. We are using a “moved”
value and are fully advised to implement the Copy trait on CubeSat.
Huh? It turns out that although it is written in English, the term move means



something very specific within Rust. Nothing physically moves.

Movement within Rust code refers to movement of ownership, rather than the
movement of data. Ownership is a term used within the Rust community to
refer to the compile-time process that checks that every use of a value is valid
and that every value is destroyed cleanly.

Every value in Rust is owned. In both listings 4.1 and 4.3, sat_a, sat_b,
and sat_c own the data that these refer to. When calls to
check_status() are made, ownership of the data moves from the
variables in the scope of main() to the variable sat_id within the
check_status() function. The significant difference is that listing 4.3
places that integer within a CubeSat struct.1 This type change alters the
semantics of how the program behaves.

The next listing provides a stripped-down version of the main() function
from listing 4.3. It is centered on sat_a and attempts to show how
ownership moves from main() into check_status().

Listing 4.4 Extract of listing 4.3, focusing on main()

fn main() {

  let sat_a = CubeSat { id: 0 };         ①

  // ...                                 ②

 

  let a_status = check_status(sat_a);    ③

  // ...                                 ②

 

  // "waiting" ...

  let a_status = check_status(sat_a);    ④

  // ...                                 ②

}

① Ownership originates here at the creation of the CubeSat object.

② Lines skipped for brevity

③ Ownership of the object moves to check_status() but is not returned to main().



④ At line 27, sat_a is no longer the owner of the object, making access invalid.

Rebinding is legal when values are not borrowed

If you have experience with programming languages such as JavaScript (from 2015 onward),
you may have been surprised to see that the variables for each of the CubeSats were redefined in
listing 4.3. In that listing on line 20, a_status is assigned to the result of the first call to
check_status(sat_a). On line 26, it is reassigned to the result of the second call. The
original value is overwritten.
This is legal Rust code, but one must be aware of ownership issues and lifetime here too. It’s
possible in this context because there are no live borrows to contend with. Attempting to
overwrite a value that’s still available from elsewhere in the program causes the compiler to
refuse to compile your program.

Figure 4.2 provides a visual walk-through of the interrelated processes of
control flow, ownership, and lifetimes. During the call to
check_status(sat_a), ownership moves to the
check_status() function. When check_status() returns a
StatusMessage, it drops the sat_a value. The lifetime of sat_a
ends here. Yet, sat_a remains in the local scope of main() after the
first call to check_status(). Attempting to access that variable will
incur the wrath of the borrow checker.



Figure 4.2 Visual explanation of Rust’s ownership movement

The distinction between a value’s lifetime and its scope—which is what
many programmers are trained to rely on—can make things difficult to
disentangle. Avoiding and overcoming this type of issue makes up the bulk of



this chapter. Figure 4.2 helps to shed some light on this.

4.1.2 Special behavior of primitive types

Before carrying on, it might be wise to explain why listing 4.1 compiled at
all. Indeed, the only change that we made in listing 4.3 was to wrap our
satellite variables in a custom type. As it happens, primitive types in Rust
have special behavior. These implement the Copy trait.

Types implementing Copy are duplicated at times that would otherwise be
illegal. This provides some day-to-day convenience at the expense of adding
a trap for newcomers. As you grow out from toy programs using integers,
your code suddenly breaks.

Formally, primitive types are said to possess copy semantics, whereas all
other types have move semantics. Unfortunately, for learners of Rust, that
special case looks like the default case because beginners typically encounter
primitive types first. Listings 4.5 and 4.6 illustrate the difference between
these two concepts. The first compiles and runs; the other does not. The only
difference is that these listings use different types. The following listing
shows not only the primitive types but also the types that implement Copy.

Listing 4.5 The copy semantics of Rust’s primitive types

 1 fn use_value(_val: i32) {     ①

 2 }

 3 

 4 fn main() {

 5   let a = 123 ;

 6   use_value(a);

 7 

 8   println!("{}", a);          ②

 9 

10 }

① use_value() takes ownership of the _val argument. The use_value() function is generic as it’s used in



the next example.

② It’s perfectly legal to access a after use_value() has returned.

The following listing focuses on those types that do not implement the Copy
trait. When used as an argument to a function that takes ownership, values
cannot be accessed again from the outer scope.

Listing 4.6 The move semantics of types not implementing Copy

 1 fn use_value(_val: Demo) {     ①

 2 }

 3 

 4 struct Demo {

 5   a: i32,

 6 }

 7 

 8 fn main() {

 9   let demo = Demo { a: 123 };

10   use_value(demo);

11 

12   println!("{}", demo.a);      ②

13 }

① use_value() takes ownership of _val.

② It’s illegal to access demo.a, even after use_value() has returned.



4.2 Guide to the figures in this chapter

The figures used in this chapter use a bespoke notation to illustrate the three
interrelated concepts of scope, lifetimes, and ownership. Figure 4.3 illustrates
this notation.

Figure 4.3 How to interpret the figures in this chapter



4.3 What is an owner? Does it have any
responsibilities?

In the world of Rust, the notion of ownership is rather limited. An owner
cleans up when its values’ lifetimes end.

When values go out of scope or their lifetimes end for some other reason,
their destructors are called. A destructor is a function that removes traces of
the value from the program by deleting references and freeing memory. You
won’t find a call to any destructors in most Rust code. The compiler injects
that code itself as part of the process of tracking every value’s lifetime.

To provide a custom destructor for a type, we implement Drop. This
typically is needed in cases where we have used unsafe blocks to allocate
memory. Drop has one method, drop(&mut self), that you can use
to conduct any necessary wind-up activities.

An implication of this system is that values cannot outlive their owner. This
kind of situation can make data structures built with references, such as trees
and graphs, feel slightly bureaucratic. If the root node of a tree is the owner
of the whole tree, it can’t be removed without taking ownership into account.

Finally, unlike the Lockean notion of personal property, ownership does not
imply control or sovereignty. In fact, the “owners” of values do not have
special access to their owned data. Nor do these have the ability to restrict
others from trespassing. Owners don’t get a say on other sections of code
borrowing their values.



4.4 How ownership moves

There are two ways to shift ownership from one variable to another within a
Rust program. The first is by assignment.2 The second is by passing data
through a function barrier, either as an argument or a return value. Revisiting
our original code from listing 4.3, we can see that sat_a starts its life with
ownership over a CubeSat object:

fn main() {

  let sat_a = CubeSat { id: 0 };

  // ...

The CubeSat object is then passed into check_status() as an
argument. This moves ownership to the local variable sat_id:

fn main() {

  let sat_a = CubeSat { id: 0 };

  // ...

  let a_status = check_status(sat_a);

  // ...

Another possibility is that sat_a relinquishes its ownership to another
variable within main(). That would look something like this:

fn main() {

  let sat_a = CubeSat { id: 0 };

  // ...

  let new_sat_a = sat_a;

  // ...

Lastly, if there is a change in the check_status() function signature,
it too could pass ownership of the CubeSat to a variable within the calling
scope. Here is our original function:



fn check_status(sat_id: CubeSat) -> StatusMessage {

  StatusMessage::Ok

}

And here is an adjusted function that achieves its message notification
through a side effect:

fn check_status(sat_id: CubeSat) -> CubeSat {

 

  println!("{:?}: {:?}", sat_id,               ①

                         StatusMessage::Ok);

  sat_id                                       ②

 

}

① Uses the Debug formatting syntax as our types have been annotated with #[derive(Debug)]

② Returns a value by omitting the semicolon at the end of the last line

With the adjusted check_status() function used in conjunction with
a new main(), it’s possible to send ownership of the CubeSat objects
back to their original variables. The following listing shows the code. Its
source is found in ch4/ch4-check-sats-3.rs.

Listing 4.7 Returning ownership back to the original scope

 1 #![allow(unused_variables)]

 2 

 3 #[derive(Debug)]

 4 struct CubeSat {

 5   id: u64,

 6 }

 7 

 8 #[derive(Debug)]

 9 enum StatusMessage {

10   Ok,

11 }

12 

13 fn check_status(sat_id: CubeSat) -> CubeSat {

14   println!("{:?}: {:?}", sat_id, StatusMessage::Ok);

15   sat_id

16 }

17 

18 fn main () {



19   let sat_a = CubeSat { id: 0 };

20   let sat_b = CubeSat { id: 1 };

21   let sat_c = CubeSat { id: 2 };

22 

23   let sat_a = check_status(sat_a);      ①

24   let sat_b = check_status(sat_b);

25   let sat_c = check_status(sat_c);

26 

27   // "waiting" ...

28 

29   let sat_a = check_status(sat_a);

30   let sat_b = check_status(sat_b);

31   let sat_c = check_status(sat_c);

32 }

① Now that the return value of check_status() is the original sat_a, the new let binding is reset.

The output from the new main() function in listing 4.7 now looks like
this:

CubeSat { id: 0 }: Ok

CubeSat { id: 1 }: Ok

CubeSat { id: 2 }: Ok

CubeSat { id: 0 }: Ok

CubeSat { id: 1 }: Ok

CubeSat { id: 2 }: Ok

Figure 4.4 shows a visual overview of the ownership movements within
listing 4.7.



Figure 4.4 The ownership changes within listing 4.7



4.5 Resolving ownership issues

Rust’s ownership system is excellent. It provides a route to memory safety
without needing a garbage collector. There is a “but,” however.

The ownership system can trip you up if you don’t understand what’s
happening. This is particularly the case when you bring the programming
style from your past experience to a new paradigm. Four general strategies
can help with ownership issues:

Use references where full ownership is not required.

Duplicate the value.

Refactor code to reduce the number of long-lived objects.

Wrap your data in a type designed to assist with movement issues.

To examine each of these strategies, let’s extend the capabilities of our
satellite network. Let’s give the ground station and our satellites the ability to
send and receive messages. Figure 4.5 shows what we want to achieve: create
a message at Step 1, then transfer it at Step 2. After Step 2, no ownership
issues should arise.



Figure 4.5 Goal: Enable messages to be sent while avoiding ownership
issues

Ignoring the details of implementing the methods, we want to avoid code that
looks like the following. Moving ownership of sat_a to a local variable in
base.send() ends up hurting us. That value will no longer be
accessible for the rest of main():

base.send(sat_a, "hello!");     ①

sat_a.recv();

① Moves ownership of sat_a to a local variable in base.send()

To get to a “toy” implementation, we need a few more types to help us out
somewhat. In listing 4.8, we add a new field, mailbox, to CubeSat.
CubeSat.mailbox is a Mailbox struct that contains a vector of
Messages within its messages field. We alias String to
Message, giving us the functionality of the String type without
needing to implement it ourselves.



Listing 4.8 Adding a Mailbox type to our system

 1 #[derive(Debug)]

 2 struct CubeSat {

 3   id: u64,

 4   mailbox: Mailbox,

 5 }

 6 

 7 #[derive(Debug)]

 8 enum StatusMessage {

 9   Ok,

10 }

11 

12 #[derive(Debug)]

13 struct Mailbox {

14   messages: Vec<Message>,

15 }

16 

17 type Message = String;

Creating a CubeSat instance has become slightly more complicated. To
create one now, we also need to create its associated Mailbox and the
mailbox’s associated Vec<Message>. The following listing shows this
addition.

Listing 4.9 Creating a new CubeSat with Mailbox

CubeSat { id: 100, mailbox: Mailbox { messages: vec![] } }

Another type to add is one that represents the ground station itself. We will
use a bare struct for the moment, as shown in the following listing. That
allows us to add methods to it and gives us the option of adding a mailbox as
a field later on as well.

Listing 4.10 Defining a struct to represent our ground station

struct GroundStation;

Creating an instance of GroundStation should be trivial for you now.



The following listing shows this implementation.

Listing 4.11 Creating a new ground station

GroundStation {};

Now that we have our new types in place, let’s put these to work. You’ll see
how in the next section.

4.5.1 Use references where full ownership is not
required

The most common change you will make to your code is to reduce the level
of access you require. Instead of requesting ownership, you can use a
“borrow” in your function definitions. For read-only access, use & T. For
read-write access, use &mut T.

Ownership might be needed in advanced cases, such as when functions want
to adjust the lifetime of their arguments. Table 4.1 compares the two different
approaches.

Table 4.1 Comparing ownership and mutable references

Using ownership Using a mutable reference

fn send(to: CubeSat, msg: 

Message) {

  

to.mailbox.messages.push(msg);

}

fn send(to: &mut CubeSat, msg: 

Message) {

  

to.mailbox.messages.push(msg);

}

Ownership of the to variable moves into
send(). When send() returns, to is

Adding the &mut prefix to the CubeSat
type allows the outer scope to retain



deleted. ownership of data referred to by the to
variable.

Sending messages will eventually be wrapped up in a method, but with
essence functions, implementing that modifies the internal mailbox of the
CubeSat. For simplicity’s sake, we’ll return () and hope for the best in
case of transmission difficulties caused by solar winds.

The following snippet shows the flow that we want to end up with. The
ground station can send a message to sat_a with its send() method,
and sat_a then receives the message with its recv() method:

base.send(sat_a, "hello!".to_string());

 

let msg = sat_a.recv();

println!("sat_a received: {:?}", msg); // -> Option("hello!")

The next listing shows the implementations of these methods. To achieve that
flow, add the implementations to GroundStation and CubeSat
types.

Listing 4.12 Adding the GroundStation.send() and
CubeSat.recv() methods

 1 impl GroundStation {

 2     fn send(

 3       &self,                              ①

 4       to: &mut CubeSat,                   ①

 5       msg: Message,                       ①

 6     ) {

 7         to.mailbox.messages.push(msg);    ②

 8     }

 9 }

10 

11 impl CubeSat {

12     fn recv(&mut self) -> Option<Message> {

13         self.mailbox.messages.pop()

14     }

15 }



① &self indicates that GroundStation.send() only requires a read-only reference to self. The recipient
takes a mutable borrow (&mut) of the CubeSat instance, and msg takes full ownership of its
Message instance.

② Ownership of the Message instance transfers from msg to messages.push() as a local variable.

Notice that both GroundStation.send() and
CubeSat.recv() require mutable access to a CubeSat instance
because both methods modify the underlying CubeSat.messages
vector. We move ownership of the message that we’re sending into the
messages.push(). This provides us with some quality assurance
later, notifying us if we access a message after it’s already sent. Figure 4.6
illustrates how we can avoid ownership issues.





Figure 4.6 Game plan: Use references to avoid ownership issues.

Listing 4.13 (ch4/ch4-sat-mailbox.rs) brings together all of the code snippets
in this section thus far and prints the following output. The messages starting
with t0 through t2 are added to assist your understanding of how data is
flowing through the program:

t0: CubeSat { id: 0, mailbox: Mailbox { messages: [] } }

t1: CubeSat { id: 0, mailbox: Mailbox { messages: ["hello there!"] } }

t2: CubeSat { id: 0, mailbox: Mailbox { messages: [] } }

msg: Some("hello there!")

 

 

Listing 4.13 Avoiding ownership issues with references

 1 #[derive(Debug)]

 2 struct CubeSat {

 3   id: u64,

 4   mailbox: Mailbox,

 5 }

 6 

 7 #[derive(Debug)]

 8 struct Mailbox {

 9   messages: Vec<Message>,

10 }

11 

12 type Message = String;

13 

14 struct GroundStation;

15 

16 impl GroundStation {

17     fn send(&self, to: &mut CubeSat, msg: Message) {

18         to.mailbox.messages.push(msg);

19     }

20 }

21 

22 impl CubeSat {

23     fn recv(&mut self) -> Option<Message> {

24         self.mailbox.messages.pop()

25     }

26 }

27 

28 fn main() {

29     let base = GroundStation {};



30     let mut sat_a = CubeSat {

31       id: 0,

32       mailbox: Mailbox {

33         messages: vec![],

34       },

35     };

36 

37     println!("t0: {:?}", sat_a);

38 

39     base.send(&mut sat_a,

40               Message::from("hello there!"));     ①

41 

42     println!("t1: {:?}", sat_a);

43 

44     let msg = sat_a.recv();

45     println!("t2: {:?}", sat_a);

46 

47     println!("msg: {:?}", msg);

48 }

① We don’t have a completely ergonomic way to create Message instances yet. Instead, we’ll take
advantage of the String.from() method that converts &str to String (aka Message).

4.5.2 Use fewer long-lived values

If we have a large, long-standing object such as a global variable, it can be
somewhat unwieldy to keep this around for every component of your
program that needs it. Rather than using an approach involving long-standing
objects, consider making objects that are more discrete and ephemeral.
Ownership issues can sometimes be resolved by considering the design of the
overall program.

In our CubeSat case, we don’t need to handle much complexity at all. Each of
our four variables—base, sat_a, sat_b, and sat_c—live for the
duration of main(). In a production system, there can be hundreds of
different components and many thousands of interactions to manage. To
increase the manageability of this kind of scenario, let’s break things apart.
Figure 4.7 presents the game plan for this section.





Figure 4.7 Game plan: Short-lived variables to avoid ownership issues

To implement this kind of strategy, we will create a function that returns
CubeSat identifiers. That function is assumed to be a black box that’s
responsible for communicating with some store of identifiers, such as a
database. When we need to communicate with a satellite, we’ll create a new
object, as the following code snippet shows. In this way, there is no
requirement for us to maintain live objects for the whole of the program’s
duration. It also has the dual benefit that we can afford to transfer ownership
of our short-lived variables to other functions:

fn fetch_sat_ids() -> Vec<u64> {    ①

  vec![1,2,3]

}

① Returns a vector of CubeSat IDs

We’ll also create a method for GroundStation. This method allows us
to create a CubeSat instance on demand once:

impl GroundStation {

  fn connect(&self, sat_id: u64) -> CubeSat {

    CubeSat { id: sat_id, mailbox: Mailbox { messages: vec![] } }

  }

}

Now we are a bit closer to our intended outcome. Our main function looks
like the following code snippet. In effect, we’ve implemented the first half of
figure 4.7.

fn main() {

  let base = GroundStation();

 

  let sat_ids = fetch_sat_ids();

 

  for sat_id in sat_ids {



    let mut sat = base.connect(sat_id);

 

    base.send(&mut sat, Message::from("hello"));

  }

}

But there’s a problem. Our CubeSat instances die at the end of the for
loop’s scope, along with any messages that base sends to them. To carry on
with our design decision of short-lived variables, the messages need to live
somewhere outside of the CubeSat instances. In a real system, these
would live on the RAM of a device in zero gravity. In our not-really-a-
simulator, let’s put these in a buffer object that lives for the duration of our
program.

Our message store will be a Vec<Message> (our Mailbox type
defined in one of the first code examples of this chapter). We’ll change the
Message struct to add a sender and recipient field, as the following code
shows. That way our now-proxy CubeSat instances can match their IDs to
receive messages:

#[derive(Debug)]

struct Mailbox {

  messages: Vec<Message>,

}

 

#[derive(Debug)]

struct Message {

    to: u64,

    content: String,

}

We also need to reimplement sending and receiving messages. Up until now,
CubeSat objects have had access to their own mailbox object. The central
GroundStation also had the ability to sneak into those mailboxes to
send messages. That needs to change now because only one mutable borrow
can exist per object.



In the modifications in listing 4.14, the Mailbox instance is given the
ability to modify its own message vector. When any of the satellites transmit
messages, these take a mutable borrow to the mailbox. These then defer the
delivery to the mailbox object. According to this API, although our satellites
are able to call Mailbox methods, these are not allowed to touch any
internal Mailbox data themselves.

Listing 4.14 Modifications to Mailbox

 1 impl GroundStation {

 2     fn send(

 3       &self,

 4       mailbox: &mut Mailbox,

 5       to: &CubeSat,

 6       msg: Message,

 7     ) {                                   ①

 8         mailbox.post(to, msg);

 9     }

10 }

11 

12 impl CubeSat {

13     fn recv(

14       &self,

15       mailbox: &mut Mailbox

16     ) -> Option<Message> {                ②

17         mailbox.deliver(&self)

18     }

19 }

20 

21 impl Mailbox {

22     fn post(&mut self, msg: Message) {    ③

23         self.messages.push(msg);

24     }

25 

26     fn deliver(

27       &mut self,

28       recipient: &CubeSat

29     ) -> Option<Message> {                ④

30         for i in 0..self.messages.len() {

31             if self.messages[i].to == recipient.id {

32                 let msg = self.messages.remove(i);

33                 return Some(msg);         ⑤

34             }

35         }

36 

37         None                              ⑥

38     }



39 }

① Calls Mailbox.post() to send messages, yielding ownership of a Message

② Calls Mailbox.deliver() to receive messages, gaining ownership of a Message

③ Mailbox.post() requires mutable access to itself and ownership over a Message.

④ Mailbox.deliver() requires a shared reference to a CubeSat to pull out its id field.

⑤ When we find a message, returns early with the Message wrapped in Some per the Option type

⑥ When no messages are found, returns None

NOTE Astute readers of listing 4.14 will notice a strong anti-pattern. On line 32, the
self.messages collection is modified while it is being iterated over. In this instance, this is legal
because of the return on the next line. The compiler can prove that another iteration will not occur
and allows the mutation to proceed.

With that groundwork in place, we’re now able to fully implement the
strategy laid out in figure 4.7. Listing 4.15 (ch4/ch4-short-lived-strategy.rs) is
the full implementation of the short-lived variables game plan. The output
from a compiled version of that listing follows:

CubeSat { id: 1 }: Some(Message { to: 1, content: "hello" })

CubeSat { id: 2 }: Some(Message { to: 2, content: "hello" })

CubeSat { id: 3 }: Some(Message { to: 3, content: "hello" })

Listing 4.15 Implementing the short-lived variables strategy

 1 #![allow(unused_variables)]

 2  

 3 #[derive(Debug)]

 4 struct CubeSat {

 5   id: u64,

 6 }

 7  

 8 #[derive(Debug)]

 9 struct Mailbox {

10   messages: Vec<Message>,

11 }

12  

13 #[derive(Debug)]

14 struct Message {

15     to: u64,

16     content: String,

17 }



18  

19 struct GroundStation {}

20  

21 impl Mailbox {

22     fn post(&mut self, msg: Message) {

23         self.messages.push(msg);

24     }

25  

26     fn deliver(&mut self, recipient: &CubeSat) -> Option<Message> {

27         for i in 0..self.messages.len() {

28             if self.messages[i].to == recipient.id {

29                 let msg = self.messages.remove(i);

30                 return Some(msg);

31             }

32         }

33  

34         None

35     }

36 }

37  

38 impl GroundStation {

39     fn connect(&self, sat_id: u64) -> CubeSat {

40         CubeSat {

41             id: sat_id,

42         }

43     }

44  

45     fn send(&self, mailbox: &mut Mailbox, msg: Message) {

46         mailbox.post(msg);

47     }

48 }

49  

50 impl CubeSat {

51     fn recv(&self, mailbox: &mut Mailbox) -> Option<Message> {

52         mailbox.deliver(&self)

53     }

54 }

55 fn fetch_sat_ids() -> Vec<u64> {

56   vec![1,2,3]

57 }

58  

59  

60 fn main() {

61   let mut mail = Mailbox { messages: vec![] };

62  

63   let base = GroundStation {};

64  

65   let sat_ids = fetch_sat_ids();

66  

67   for sat_id in sat_ids {

68     let sat = base.connect(sat_id);

69     let msg = Message { to: sat_id, content: String::from("hello") };

70     base.send(&mut mail, msg);

71   }



72  

73   let sat_ids = fetch_sat_ids();

74  

75   for sat_id in sat_ids {

76     let sat = base.connect(sat_id);

77  

78     let msg = sat.recv(&mut mail);

79     println!("{:?}: {:?}", sat, msg);

80   }

81 }

4.5.3 Duplicate the value

Having a single owner for every object can mean significant up-front
planning and/or refactoring of your software. As we saw in the previous
section, it can be quite a lot of work to wriggle out of an early design
decision.

One alternative to refactoring is to simply copy values. Doing this often is
typically frowned upon, however, but it can be useful in a pinch. Primitive
types like integers are a good example of that. Primitive types are cheap for a
CPU to duplicate—so cheap, in fact, that Rust always copies these if it would
otherwise worry about ownership being moved.

Types can opt into two modes of duplication: cloning and copying. Each
mode is provided by a trait. Cloning is defined by
std::clone::Clone, and the copying mode is defined by
std::marker::Copy. Copy acts implicitly. Whenever ownership
would otherwise be moved to an inner scope, the value is duplicated instead.
(The bits of object a are replicated to create object b.) Clone acts
explicitly. Types that implement Clone have a .clone() method that
is permitted to do whatever it needs to do to create a new value. Table 4.2
outlines the major differences between the two modes.



Table 4.2 Distinguishing cloning from copying

Cloning
(std::clone::Clone)

Copying
(std::marker::Copy)

May be slow and
expensive.

Never implicit. A call to the
.clone() method is
always required.

May differ from original.
Crate authors define what
cloning means for their
types.

Always fast and cheap.

Always implicit.

Always identical. Copies
are bit-for-bit duplicates of
the original value.

So why do Rust programmers not always use Copy? There are three main
reasons:

The Copy trait implies that there will only be negligible performance
impact. This is true for numbers but not true for types that are arbitrarily
large, such as String.

Because Copy creates exact copies, it cannot treat references
correctly. Naïvely copying a reference to T would (attempt to) create a
second owner of T. That would cause problems later on because there
would be multiple attempts to delete T as each reference is deleted.

Some types overload the Clone trait. This is done to provide
something similar to, yet different from, creating duplicates. For
example, std::rc::Rc<T> uses Clone to create additional
references when .clone() is called.

NOTE Throughout your time with Rust, you will normally see the std::clone ::Clone and



std::marker::Copy traits referred to simply as Clone and Copy. These are included in every
crate’s scope via the standard prelude.

IMPLEMENTING COPY

Let’s go back to our original example (listing 4.3), which caused the original
movement issue. Here it is replicated for convenience, with sat_b and
sat_c removed for brevity:

#[derive(Debug)]

struct CubeSat {

  id: u64,

}

 

#[derive(Debug)]

enum StatusMessage {

  Ok,

}

 

fn check_status(sat_id: CubeSat) -> StatusMessage {

  StatusMessage::Ok

}

 

fn main() {

  let sat_a = CubeSat { id: 0 };

 

  let a_status = check_status(sat_a);

  println!("a: {:?}", a_status);

 

  let a_status = check_status(sat_a);    ①

  println!("a: {:?}", a_status);

}

① The second call to check_status(sat_a) is the location of error.

At this early stage, our program consisted of types that contain types, which
themselves implement Copy. That’s good because it means implementing it
ourselves is fairly straightforward, as the following listing shows.

Listing 4.16 Deriving Copy for types made up of types that implement
Copy



#[derive(Copy,Clone,Debug)]   ①

struct CubeSat {

  id: u64,

}

 

#[derive(Copy,Clone,Debug)]   ①

enum StatusMessage {

  Ok,

}

① #[derive(Copy,Clone,Debug)] tells the compiler to add an implementation of each of the traits.

The following listing shows how it’s possible to implement Copy manually.
The impl blocks are impressively terse.

Listing 4.17 Implementing the Copy trait manually

impl Copy for CubeSat { }

 

impl Copy for StatusMessage { }

 

impl Clone for CubeSat {        ①

  fn clone(&self) -> Self {

    CubeSat { id: self.id }     ②

  }

}

 

impl Clone for StatusMessage {

  fn clone(&self) -> Self {

    *self                       ③

  }

}

① Implementing Copy requires an implementation of Clone.

② If desired, we can write out the creation of a new object ourselves...

③ ...but often we can simply dereference self.

USING CLONE AND COPY

Now that we know how to implement them, let’s put Clone and Copy to
work. We’ve discussed that Copy is implicit. When ownership would



otherwise move, such as during assignment and passing through function
barriers, data is copied instead.

Clone requires an explicit call to .clone(). That’s a useful marker in
non-trivial cases, such as in listing 4.18, because it warns the programmer
that the process may be expensive. You’ll find the source for this listing in
ch4/ch4-check-sats-clone-and-copy-traits.rs.

Listing 4.18 Using Clone and Copy

 1 #[derive(Debug,Clone,Copy)]                     ①

 2 struct CubeSat {

 3   id: u64,

 4 }

 5 

 6 #[derive(Debug,Clone,Copy)]                     ①

 7 enum StatusMessage {

 8   Ok,

 9 }

10 

11 fn check_status(sat_id: CubeSat) -> StatusMessage {

12   StatusMessage::Ok

13 }

14 

15 fn main () {

16   let sat_a = CubeSat { id: 0 };

17 

18   let a_status = check_status(sat_a.clone());   ②

19   println!("a: {:?}", a_status.clone());        ②

20 

21   let a_status = check_status(sat_a);           ③

22   println!("a: {:?}", a_status);                ③

23 }

① Copy implies Clone, so we can use either trait later.

② Cloning each object is as easy as calling .clone().

③ Copy works as expected.

4.5.4 Wrap data within specialty types

So far in this chapter, we have discussed Rust’s ownership system and ways



to navigate the constraints it imposes. A final strategy that is quite common is
to use wrapper types, which allow more flexibility than what is available by
default. These, however, incur costs at runtime to ensure that Rust’s safety
guarantees are maintained. Another way to phrase this is that Rust allows
programmers to opt in to garbage collection.3

To explain the wrapper type strategy, let’s introduce a wrapper type:
std:rc::Rc. std:rc::Rc takes a type parameter T and is typically
referred to as Rc<T>. Rc<T> reads as “R. C. of T” and stands for “a
reference-counted value of type T.” Rc<T> provides shared ownership of
T. Shared ownership prevents T from being removed from memory until
every owner is removed.

As indicated by the name, reference counting is used to track valid
references. As each reference is created, an internal counter increases by one.
When a reference is dropped, the count decreases by one. When the count
hits zero, T is also dropped.

Wrapping T involves a calling Rc::new(). The following listing, at
ch4/ch4-rc-groundstation.rs, shows this approach.

Listing 4.19 Wrapping a user-defined type in Rc

 1 use std::rc::Rc;                           ①

 2 

 3 #[derive(Debug)]

 4 struct GroundStation {}

 5 

 6 fn main() {

 7   let base = Rc::new(GroundStation {});    ②

 8 

 9   println!("{:?}", base);                  ③

10 }

① The use keyword brings modules from the standard library into local scope.

② Wrapping involves enclosing the GroundStation instance in a call to Rc::new().



③ Prints “GroundStation”

Rc<T> implements Clone. Every call to base.clone() increments
an internal counter. Every Drop decrements that counter. When the internal
counter reaches zero, the original instance is freed.

Rc<T> does not allow mutation. To permit that, we need to wrap our
wrapper. Rc<RefCell<T>> is a type that can be used to perform
interior mutability, first introduced at the end of of chapter 3 in section 3.4.1.
An object that has interior mutability presents an immutable façade while
internal values are being modified.

In the following example, we can modify the variable base despite being
marked as an immutable variable. It’s possible to visualize this by looking at
the changes to the internal base.radio_freq:

base: RefCell { value: GroundStation { radio_freq: 87.65 } }

base_2: GroundStation { radio_freq: 75.31 }

base: RefCell { value: GroundStation { radio_freq: 75.31 } }

base: RefCell { value: "<borrowed>" }                          ①

base_3: GroundStation { radio_freq: 118.52000000000001 }

① value: "<borrowed>" indicates that base is mutably borrowed somewhere else and is no longer
generally accessible.

The following listing, found at ch4/ch4-rc-refcell-groundstation.rs, uses
Rc<RefCell<T>> to permit mutation within an object marked as
immutable. Rc<RefCell<T>> incurs some additional runtime cost over
Rc<T> while allowing shared read/write access to T.

Listing 4.20 Using Rc<RefCell<T>> to mutate an immutable object

 1 use std::rc::Rc;

 2 use std::cell::RefCell;

 3 



 4 #[derive(Debug)]

 5 struct GroundStation {

 6   radio_freq: f64  // Mhz

 7 }

 8 

 9 fn main() {

10   let base: Rc<RefCell<GroundStation>> = Rc::new(RefCell::new(

11     GroundStation {

12       radio_freq: 87.65

13     }

14   ));

15 

16   println!("base: {:?}", base);

17 

18   {                                       ①

19     let mut base_2 = base.borrow_mut();

20     base_2.radio_freq -= 12.34;

21     println!("base_2: {:?}", base_2);

22   }

23 

24   println!("base: {:?}", base);

25 

26   let mut base_3 = base.borrow_mut();

27   base_3.radio_freq += 43.21;

28 

29   println!("base: {:?}", base);

30   println!("base_3: {:?}", base_3);

31 }

① Introduces a new scope where base can be mutably borrowed

There are two things to note from this example:

Adding more functionality (e.g., reference-counting semantics rather
than move semantics) to types by wrapping these in other types typically
reduces their run-time performance.

If implementing Clone would be prohibitively expensive, Rc<T>
can be a handy alternative. This allows two places to “share” ownership.

NOTE Rc<T> is not thread-safe. In multithreaded code, it’s much better to replace Rc<T> with
Arc<T> and Rc<RefCell<T>> with Arc<Mutex<T>>. Arc stands for atomic reference
counter.



Summary

A value’s owner is responsible for cleaning up after that value when its
lifetime ends.

A value’s lifetime is the period when accessing that value is valid
behavior. Attempting to access a value after its lifetime has expired
leads to code that won’t compile.

To borrow a value means to access that value.

If you find that the borrow checker won’t allow your program to
compile, several tactics are available to you. This often means that you
will need to rethink the design of your program.

Use shorter-lived values rather than values that stick around for a long
time.

Borrows can be read-only or read-write. Only one read-write borrow can
exist at any one time.

Duplicating a value can be a pragmatic way to break an impasse with the
borrow checker. To duplicate a value, implement Clone or Copy.

It’s possible to opt in to reference counting semantics through Rc<T>.

Rust supports a feature known as interior mutability, which enables
types to present themselves as immutable even though their values can
change over time.

1.Remember the phrase zero-cost abstractions ? One of the ways this manifests is by not adding extra
data around values within structs.

2.Within the Rust community, the term variable binding is preferred because it is more technically
correct.

3.Garbage collection (often abbreviated as GC) is a strategy for memory management used by many
programming languages, including Python and JavaScript, and all languages built on the JVM (Java,



Scala, Kotlin) or the CLR (C#, F#).



Part 2 Demystifying systems programming

Part 2 extends your base Rust knowledge by applying Rust to examples

from the field of systems programming. Every chapter includes at least one
large project that includes a new language feature. You will build command-
line utilities, libraries, graphical applications, networked applications, and
even your own operating system kernel.



5 Data in depth

This chapter covers

Learning how the computer represents data
Building a working CPU emulator
Creating your own numeric data type
Understanding floating-point numbers

This chapter is all about understanding how zeroes and ones can become
much larger objects like text, images, and sound. We will also touch on how
computers do computation.

By the end of the chapter, you will have emulated a fully functional computer
with CPU, memory, and user-defined functions. You will break apart
floating-point numbers to create a numeric data type of your own that only
takes a single byte. The chapter introduces a number of terms, such as
endianness and integer overflow, that may not be familiar to programmers
who have never done systems programming.



5.1 Bit patterns and types

A small but important lesson is that a single bit pattern can mean different
things. The type system of a higher-level language, such as Rust, is just an
artificial abstraction over reality. Understanding this becomes important as
you begin to unravel some of that abstraction and to gain a deeper
understanding of how computers work.

Listing 5.1 (in ch5-int-vs-int.rs) is an example that uses the same bit pattern
to represent two different numbers. The type system—not the CPU—is what
makes this distinction. The following shows the listing’s output:

a: 1100001111000011 50115

b: 1100001111000011 -15421

Listing 5.1 The data type determines what a sequence of bits represents

 1 fn main() {

 2   let a: u16 = 50115;

 3   let b: i16 = -15421;

 4 

 5   println!("a: {:016b} {}", a, a);    ①

 6   println!("b: {:016b} {}", b, b);    ①

 7 }

① These two values have the same bit pattern but different types.

The different mapping between bit strings and numbers explains part of the
distinction between binary files and text files. Text files are just binary files
that happen to follow a consistent mapping between bit strings and
characters. This mapping is called an encoding. Arbitrary files don’t describe
their meaning to the outside world, which makes these opaque.

We can take this process one step further. What happens if we ask Rust to



treat a bit pattern produced by one type as another? The following listing
provides an answer. The source code for this listing is in ch5/ch5-f32-as-
u32.rs.

Listing 5.2 Interpreting a float’s bit string as an integer

 1 fn main() {

 2   let a: f32 = 42.42;

 3   let frankentype: u32 = unsafe {

 4     std::mem::transmute(a)             ①

 5   };

 6 

 7   println!("{}", frankentype);         ②

 8   println!("{:032b}", frankentype);    ③

 9 

10   let b: f32 = unsafe {

11     std::mem::transmute(frankentype)

12   };

13   println!("{}", b);

14   assert_eq!(a, b);                    ④

15 }

① No semicolon here. We want the result of this expression to feed into the outer scope.

② Views the bits of a 42.42_f32 value as a decimal integer

③ {:032b} means to format as a binary via the std::fmt::Binary trait with 32 zeroes padded on the left.

④ Confirms that the operation is symmetrical

When compiled and run, the code from listing 5.2 produces the following
output:

1110027796

01000010001010011010111000010100

42.42

Some further remarks about some of the unfamiliar Rust that listing 5.2
introduces includes the following:

Line 8 demonstrates a new directive to the println!() macro:
{:032b}. The 032 reads as “left-pad with 32 zeros” and the right-



hand b invokes the std::fmt::Binary trait. This contrasts with
the default syntax ({}), which invokes the std::fmt
::Display trait, or the question mark syntax ({:?}), which
invokes std::fmt:: Debug.

Unfortunately for us, f32 doesn’t implement
std::fmt::Binary. Luckily, Rust’s integer types do. There are
two integer types guaranteed to take up the same number of bits as f32
—i32 and u32. The decision about which to choose is somewhat
arbitrary.

Lines 3–5 perform the conversion discussed in the previous bulleted
point. The std:: mem::transmute() function asks Rust to
naïvely interpret an f32 as an u32 without affecting any of the
underlying bits. The inverse conversion is repeated later on lines 10–12.

Mixing data types in a program is inherently chaotic, so we need to wrap
these operation within unsafe blocks. unsafe tells the Rust compiler,
“Stand back, I’ll take care of things from here. I’ve got this.” It’s a signal to
the compiler that you have more context than it does to verify the correctness
of the program.

Using the unsafe keyword does not imply that code is inherently
dangerous. For example, it does not allow you to bypass Rust’s borrow
checker. It indicates that the compiler is not able to guarantee that the
program’s memory is safe by itself. Using unsafe means that the
programmer is fully responsible for maintaining the program’s integrity.

WARNING Some functionality allowed within unsafe blocks is more difficult to verify than
others. For example, the std::mem::transmute() function is one of the least safe in the



language. It shreds all type safety. Investigate alternatives before using it in your own code.

Needlessly using unsafe blocks is heavily frowned upon within the Rust
community. It can expose your software to critical security vulnerabilities. Its
primary purpose is to allow Rust to interact with external code, such as
libraries written in other languages and OS interfaces. This book uses
unsafe more frequently than many projects because its code examples are
teaching tools, not industrial software. unsafe allows you to peek at and
poke at individual bytes, which is essential knowledge for people seeking to
understand how computers work.



5.2 Life of an integer

During earlier chapters, we spent some time discussing what it means for an
integer to be an i32, an u8, or an usize. Integers are like small, delicate
fish. They do what they do remarkably well, but take them outside of their
natural range and they die a quick, painful death.

Integers live within a fixed range. When represented inside the computer,
these occupy a fixed number of bits per type. Unlike floating-point numbers,
integers cannot sacrifice their precision to extend their bounds. Once those
bits have been filled with 1s, the only way forward is back to all 0s.

A 16-bit integer can represent numbers between 0 and 65,535, inclusive.
What happens when you want to count to 65,536? Let’s find out.

The technical term for the class of problem that we are investigating is
integer overflow. One of the most innocuous ways of overflowing an integer
is by incrementing forever. The following listing (ch5/ch5-to-oblivion.rs) is a
trivial example of this.

Listing 5.3 Exploring the effect of incrementing an integer past its range

 1 fn main() {

 2   let mut i: u16 = 0;

 3   print!("{}..", i);

 4 

 5   loop {

 6       i += 1000;

 7       print!("{}..", i);

 8       if i % 10000 == 0 {

 9           print!{"\n"}

10       }

11   }

12 }



When we try to run listing 5.3, things don’t end well for our program. Let’s
look at the output:

$ rustc ch5-to-oblivion.rs && ./ch5-to-oblivion 

0..1000..2000..3000..4000..5000..6000..7000..8000..9000..10000..

11000..12000..13000..14000..15000..16000..17000..18000..19000..20000..

21000..22000..23000..24000..25000..26000..27000..28000..29000..30000..

31000..32000..33000..34000..35000..36000..37000..38000..39000..40000..

41000..42000..43000..44000..45000..46000..47000..48000..49000..50000..

51000..52000..53000..54000..55000..56000..57000..58000..59000..60000..

thread 'main' panicked at 'attempt to add with overflow',

                          ch5-to-oblivion.rs:5:7

note: run with `RUST_BACKTRACE=1` environment variable

      to display a backtrace

61000..62000..63000..64000..65000..

A panicked program is a dead program. Panic means that the programmer has
asked the program to do something that’s impossible. It doesn’t know what to
do to proceed and shuts itself down.

To understand why this is such a critical class of bugs, let’s take a look at
what’s going on under the hood. Listing 5.4 (ch5/ch5-bit-patterns.rs) prints
six numbers with their bit patterns laid out in literal form. When compiled,
the listing prints the following short line:

0, 1, 2, ..., 65533, 65534, 65535

Try compiling the code with optimizations enabled via rustc -O ch5-
to-oblivion.rs and running the resulting executable. The behavior is
quite different. The problem we’re interested in is what happens when there’s
no more bits left. 65,536 cannot be represented by u16.

Listing 5.4 How u16 bit patterns translate to a fixed number of integers

fn main() {

  let zero: u16 = 0b0000_0000_0000_0000;

  let one:  u16 = 0b0000_0000_0000_0001;

  let two:  u16 = 0b0000_0000_0000_0010;



  // ...

  let sixtyfivethousand_533: u16 = 0b1111_1111_1111_1101;

  let sixtyfivethousand_534: u16 = 0b1111_1111_1111_1110;

  let sixtyfivethousand_535: u16 = 0b1111_1111_1111_1111;

 

  print!("{}, {}, {}, ..., ", zero, one, two);

  println!("{}, {}, {}", sixty5_533, sixty5_534, sixty5_535);

}

There is another (easy) way to kill a program using a similar technique. In
listing 5.5, we ask Rust to fit 400 into an u8, which can only count up to 255
values. Look in ch5/ch5-impossible-addition.rs for the source code for this
listing.

Listing 5.5 Impossible addition

#[allow(arithmetic_overflow)]      ①

 

fn main() {

  let (a, b) = (200, 200);

  let c: u8 = a + b;               ②

  println!("200 + 200 = {}", c);

}

① Required declaration. The Rust compiler can detect this obvious overflow situation.

② Without the type declaration, Rust won’t assume that you’re trying to create an impossible situation.

The code compiles, but one of two things happen:

The program panics:

thread 'main' panicked at 'attempt to add with overflow',

   5-impossible-add.rs:3:15

note: Run with `RUST_BACKTRACE=1` for a backtrace

This behavior can be invoked via executing rustc with its default
options: rustc ch5-impossible-add.rs && ch5-
impossible-add.



The program gives you the wrong answer:

200 + 200 = 144

This behavior can be invoked by executing rustc with the -O flag:
rustc -O ch5-impossible-add.rs && ch5-

impossible-add.

There are two small lessons here:

It’s important to understand the limitations of your types.

Despite Rust’s strengths, programs written in Rust can still break.

Developing strategies for preventing integer overflow is one of the ways that
system programmers are distinguished from others. Programmers who only
have experience with dynamic languages are extremely unlikely to encounter
an integer overflow. Dynamic languages typically check to see that the results
of integer expressions will fit. When these can’t, the variable that’s receiving
the result is promoted to a wider integer type.

When developing performance critical code, you get to choose which
parameters to adjust. If you use fixed-sized types, you gain speed, but you
need to accept some risk. To mitigate the risk, you can check to see that
overflow won’t occur at runtime. Imposing those checks will slow you down,
however. Another, much more common option, is to sacrifice space by using
a large integer type, such as i64. To go higher still, you’ll need to move to
arbitrarily sized integers, which come with their own costs.

5.2.1 Understanding endianness

CPU vendors argue about how the individual bytes that make up integers



should be laid out. Some CPUs order multibyte sequences left to right and
others are right to left. This characteristic is known as a CPU’s endianness.
The is one of the reasons why copying an executable file from one computer
to another might not work.

Let’s consider a 32-bit integer that represents a number made up of four
bytes: AA, BB, CC, and DD. Listing 5.6 (ch5/ch5-endianness.rs), with the
help of our friend sys::mem::transmute(), demonstrates that
byte order matters. When compiled and executed, the code from listing 5.6
prints one of two things, depending on the endianness of your machine. Most
computers that people run for day-to-day work print the following:1

-573785174 vs. -1430532899

But more exotic hardware swaps the two numbers around like this:

-1430532899 vs. -573785174

Listing 5.6 Inspecting endianness

use std::mem::transmute;

 

fn main() {

  let big_endian: [u8; 4]    = [0xAA, 0xBB, 0xCC, 0xDD];

  let little_endian: [u8; 4] = [0xDD, 0xCC, 0xBB, 0xAA];

 

  let a: i32 = unsafe { transmute(big_endian)    };    ①

  let b: i32 = unsafe { transmute(little_endian) };    ①

 

  println!("{} vs {}", a, b);

}

① std::mem::transmute() instructs the compiler to interpret its argument as the type on the left (i32).

The terminology comes from the significance of the bytes in the sequence. To
take you back to when you learned addition, we can factor the number 123
into three parts:



100 × 1 100

10 × 2 20

1 × 3 3

Summing all of these parts gets us back to our original number. The first part,
100, is labeled as the most significant. When written out in the conventional
way, 123 as 123, we are writing in big endian format. Were we to invert that
ordering by writing 123 as 321, we would be writing in little endian format.

Binary numbers work in a similar way. Each number part is a power of 2 (20,
21, 22,..., 2n), rather than a power of 10 (100, 101, 102,..., 10n).

Before the late-1990s, endianness was a big issue, especially in the server
market. Glossing over the fact that a number of processors can support
bidirectional endianness, Sun Microsystems, Cray, Motorola, and SGI went
one way. ARM decided to hedge its bet and developed a bi-endian
architecture. Intel went the other way. The other way won. Integers are
almost certainly stored in little endian format.

In addition to multibyte sequences, there is a related problem within a byte.
Should an u8 that represents 3 look like 0000_0011, or should it look
like 1100_0000? The computer’s preference for layout of individual bits
is known as its bit numbering or bit endianness. It’s unlikely, however, that
this internal ordering will affect your day-to-day programming. To
investigate further, look for your platform’s documentation to find out on
which end its most significant bit lies.

NOTE The abbreviation MSB can be deceptive. Different authors use the same abbreviation to refer
to two concepts: most significant bit and most significant byte. To avoid confusion, this text uses the
term bit numbering to refer to the most significant bit and endianness to refer to most significant byte.



5.3 Representing decimal numbers

One of the claims made at the start of this chapter was that understanding
more about bit patterns enables you to compress your data. Let’s put that into
practice. In this section, you will learn how to pull bits out of a floating-point
number and inject those into a single byte format of your own creation.

Here is some context for the problem at hand. Machine learning practitioners
often need to store and distribute large models. A model for our purposes
here is just a large array of numbers. The numbers within those models often
fall within the ranges 0..=1 or -1..=1 (using Rust’s range syntax),
depending on the application. Given that we don’t need the whole range that
f32 or f64 supports, why use all of these bytes? Let’s see how far we can
get with 1. Because there is a known limited range, it’s possible to create a
decimal number format that can model that range compactly.

To start, we’re going to need to learn about how decimal numbers are
represented inside today’s computers. This means learning about the internals
of floating-point numbers.



5.4 Floating-point numbers

Each floating-point number is laid out in memory as scientific notation. If
you’re unfamiliar with scientific notation, here is a quick primer.

Scientists describe the mass of Jupiter as 1.898 × 1027 kg and the mass of an
ant as 3.801 × 10–4 kg. The key insight is that the same number of characters
are used to describe vastly different scales. Computer scientists have taken
advantage of that insight to create a fixed-width format that encodes a wide
range of numbers. Each position within a number in scientific notation is
given a role:

A sign, which is implied in our two examples, would be present for
negative numbers (negative infinity to 0).

The mantissa, also known as the significand, can be thought of as being
the value in question (1.898 and 3.801, for example).

The radix, also known as the base, is the value that is raised to the
power of the exponent (10 in both of our examples).

The exponent describes the scale of the values (27 and –4).

This crosses over to floating point quite neatly. A floating-point value is a
container with three fields:

A sign bit

An exponent

A mantissa

Where is the radix? The standard defines it as 2 for all floating-point types.
This definition allows the radix to be omitted from the bit pattern itself.



5.4.1 Looking inside an f32

Figure 5.1 presents the memory layout of the f32 type in Rust. The layout is
called binary32 within the IEEE 754-2019 and IEEE 754-2008 standards and
single by their predecessor, IEE 754-1985.

Figure 5.1 An overview of the three components encoded within the bits
of a floating-point number for the f32 type in Rust

The value 42.42 is encoded as f32 with the bit pattern
01000010001010011010111000010100. That bit pattern is
more compactly represented as 0x4229AE14. Table 5.1 shows the values
of each of the three fields and what these represent..

Table 5.1 The components of 42.42 represented by the bit pattern
0x4229AE14 as a f32 type

Component name Component in binary Component
as base-10

(u32)

Decoded
value

Sign bit (s) 0 0 1

Exponent (t) 10000100 132 5

Mantissa/significand
(m)

01010011010111000010100 2,731,540 1.325625

Base/radix   2

Exponent bias   127



NOTE See lines 32–38 of listing 5.10 and the explanation provided shortly in section 5.3.5 to learn
how 01010011010111000010100 represents 1.325625.

The following equation decodes the fields of a floating-point number into a
single number. Variables from the standard (Radix, Bias) appear in title case.
Variables from the bit pattern (sign_bit, mantissa, exponent)
occur as lowercase and monospace.

n = –1sign_bit × mantissa × Radix(exponent–Bias)

n = –1sign_bit × mantissa × Radix(exponent – 127)

n = –1sign_bit × mantissa × Radix(132 – 127)

n = –1sign_bit × mantissa × 2(132– 127)

n = –1sign_bit × 1.325625 × 2(132–127)

n = –10 × 1.325625 × 25

n = 1 × 1.325625 × 32

n = 42.42

One quirk of floating-point numbers is that their sign bits allow for both 0
and –0. That is, floating-point numbers that have different bit patterns
compare as equal (0 and –0) and have identical bit patterns (NAN values) that
compare as unequal.

5.4.2 Isolating the sign bit

To isolate the sign bit, shift the other bits out of the way. For f32, this
involves a right shift of 31 places (>> 31). The following listing is a short



snippet of code that performs the right shift.

Listing 5.7 Isolating and decoding the sign bit from an f32

1 let n: f32 = 42.42;

2 let n_bits: u32 = n.to_bits();

3 let sign_bit = n_bits >> 31;

To provide you with a deeper intuition about what is happening, these steps
are detailed graphically here:

1. Start with a f32 value:

1 let n: f32 = 42.42;

2. Interpret the bits of the f32 as a u32 to allow for bit manipulation:

2 let n_bits: u32 = n.to_bits();

3. Shift the bits within n 31 places to the right:

3 let sign_bit = n_bits >> 31;

5.4.3 Isolating the exponent

To isolate the exponent, two bit manipulations are required. First, perform a



right shift to overwrite the mantissa’s bits (>> 23). Then use an AND mask
(& 0xff) to exclude the sign bit.

The exponent’s bits also need to go through a decoding step. To decode the
exponent, interpret its 8 bits a signed integer, then subtract 127 from the
result. (As discussed in section 5.3.2, 127 is known as the bias.) The
following listing shows the code that describes the steps given in the last two
paragraphs.

Listing 5.8 Isolating and decoding the exponent from an f32

1 let n: f32 = 42.42;

2 let n_bits: u32 = n.to_bits();

3 let exponent_ = n_bits >> 23;

4 let exponent_ = exponent_ & 0xff;

5 let exponent = (exponent_ as i32) - 127;

And to further explain the process, these steps are repeated graphically as
follows:

1. Start with an f32 number:

1 let n: f32 = 42.42;

2. Interpret the bits of that f32 as u32 to allow for bit manipulation:

2 let n_bits: u32 = n.to_bits();

3. Shift the exponent’s 8 bits to the right, overwriting the mantissa:

3 let exponent_ = n_bits >> 23;



4. Filter the sign bit away with an AND mask. Only the 8 rightmost bits
can pass through the mask:

4 let exponent_ = exponent_ & 0xff;

5. Interpret the remaining bits as a signed integer and subtract the bias as
defined by the standard:

5 let exponent = (exponent_ as i32) - 127;

5.4.4 Isolate the mantissa

To isolate the mantissa’s 23 bits, you can use an AND mask to remove the
sign bit and the exponent (& 0x7fffff). However, it’s actually not
necessary to do so because the following decoding steps can simply ignore
bits as irrelevant. Unfortunately, the mantissa’s decoding step is significantly
more complex than the exponent’s.

To decode the mantissa’s bits, multiply each bit by its weight and sum the
result. The first bit’s weight is 0.5, and each subsequent bit’s weight is half of
the current weight; for example, 0.5 (2–1), 0.25 (2–2),...,
0.00000011920928955078125 (2–23). An implicit 24th bit that represents 1.0
(2–0) is always considered to be on, except when special cases are triggered.
Special cases are triggered by the state of the exponent:



When the exponent’s bits are all 0s, then the treatment of mantissa’s bits
changes to represent subnormal numbers (also known as “denormal
numbers”). In practical terms, this change increases the number of
decimal numbers near zero that can be represented. Formally, a
subnormal number is one between 0 and the smallest number that the
normal behavior would otherwise be able to represent.

When the exponent’s bits are all 1s, then the decimal number is infinity
(∞), negative infinity (–∞), or Not a Number (NAN). NAN values
indicate special cases where the numeric result is mathematically
undefined (such as 0 ÷ 0) or that are otherwise invalid.

Operations involving NAN values are often counterintuitive. For
example, testing whether two values are equal is always false, even
when the two bit patterns are exactly the same. An interesting curiosity
is that f32 has approximately 4.2 million (~222) bit patterns that
represent NAN.

The following listing provides the code that implements nonspecial cases.

Listing 5.9 Isolating and decoding the mantissa from an f32

 1 let n: f32 = 42.42;

 2 let n_bits: u32 = n.to_bits();

 3 let mut mantissa: f32 = 1.0;

 4 

 5 for i in 0..23 {

 6     let mask = 1 << i;

 7     let one_at_bit_i = n_bits & mask;

 8     if one_at_bit_i != 0 {

 9         let i_ = i as f32;

10         let weight = 2_f32.powf( i_ - 23.0 );

11         mantissa += weight;

12     }

13 }

Repeating that process slowly:



1. Start with an f32 value:

 1 let n: f32 = 42.42;

2. Cast f32 as u32 to allow for bit manipulation:

 2 let n_bits: u32 = n.to_bits();

3. Create a mutable f32 value initialized to 1.0 (2–0). This represents the
weight of the implicit 24th bit:

 3 let mut mantissa: f32 = 1.0;

4. Iterate through the fractional bits of the mantissa, adding those bit’s
defined values to the mantissa variable:

 5 for i in 0..23 {

 6     let mask = 1 << i;

 7     let one_at_bit_i = n_bits & mask;

 8     if one_at_bit_i != 0 {

 9         let i_ = i as f32;

10         let weight = 2_f32.powf( i_ - 23.0 );

11         mantissa += weight;

12     }

13 }

a. Iterate from 0 to 23 with a temporary variable i assigned to the
iteration number:

 5 for i in 0..23 {

b. Create a bit mask with the iteration number as the bit allowed to
pass through and assign the result to mask. For example, when i
equals 5, the bit mask is
0b00000000_00000000_00000000_00100000:

 6 let mask = 1 << i;



c. Use mask as a filter against the bits from the original number
stored as n_bits. When the original number’s bit at position i is
non-zero, one_at_ bit_i will be assigned to a non-zero
value:

 7 let one_at_bit_i = n_bits & mask;

d. If one_at_bit_i is non-zero, then proceed:

 8 if one_at_bit_i != 0 {

e. Calculate the weight of the bit at position i, which is 2i–23:

 9 let i_ = i as f32;

10 let weight = 2_f32.powf( i_ - 23.0 );

f. Add the weight to mantissa in place:

11 mantissa += weight;

Parsing Rust’s floating-point literals is harder
than it looks

Rust’s numbers have methods. To return the nearest integer to 1.2, Rust uses the method
1.2_f32.ceil() rather than the function call ceil(1.2). While often convenient, this
can cause some issues when the compiler parses your source code.
For example, unary minus has lower precedence than method calls, which means unexpected
mathematical errors can occur. It is often helpful to use parentheses to make your intent clear to
the compiler. To calculate –10, wrap 1.0 in parentheses

(-1.0_f32).powf(0.0)

rather than



-1.0_f32.powf(0.0)

which is interpreted as –(10). Because both –10 and –(10) are mathematically valid, Rust will
not complain when parentheses are omitted.

5.4.5 Dissecting a floating-point number

As mentioned at the start of section 5.4, floating-point numbers are a
container format with three fields. Sections 5.4.1–5.4.3 have given us the
tools that we need to extract each of these fields. Let’s put those to work.

Listing 5.10 does a round trip. It extracts the fields from the number 42.42
encoded as an f32 into individual parts, then assembles these again to create
another number. To convert the bits within a floating-point number to a
number, there are three tasks:

1. Extract the bits of those values from the container (to_parts() on
lines 1–26)

2. Decode each value from its raw bit pattern to its actual value
(decode() on lines 28–47)

3. Perform the arithmetic to convert from scientific notation to an ordinary
number (from_parts() on lines 49–55)

When we run listing 5.10, it provides two views of the internals of the
number 42.42 encoded as an f32:

42.42 -> 42.42

field    |  as bits | as real number

sign     |        0 | 1

exponent | 10000100 | 32

mantissa | 01010011010111000010100 | 1.325625



In listing 5.10, deconstruct_f32() extracts each field of a floating-
point value with bit manipulation techniques. decode_f32_parts()
demonstrates how to convert those fields to the relevant number. The
f32_from_parts() method combines these to create a single decimal
number. The source for this file is located in ch5/ch5-visualizing-f32.rs.

Listing 5.10 Deconstructing a floating-point value

 1 const BIAS: i32 = 127;                            ①

 2 const RADIX: f32 = 2.0;                           ①

 3 

 4 fn main() {                                       ②

 5   let n: f32 = 42.42;

 6 

 7   let (sign, exp, frac) = to_parts(n);

 8   let (sign_, exp_, mant) = decode(sign, exp, frac);

 9   let n_ = from_parts(sign_, exp_, mant);

10 

11   println!("{} -> {}", n, n_);

12   println!("field    |  as bits | as real number");

13   println!("sign     |        {:01b} | {}", sign, sign_);

14   println!("exponent | {:08b} | {}", exp, exp_);

15   println!("mantissa | {:023b} | {}", frac, mant);

16 }

17 

18 fn to_parts(n: f32) -> (u32, u32, u32) {

19   let bits = n.to_bits();

20 

21   let sign     = (bits >> 31) & 1;                ③

22   let exponent = (bits >> 23) & 0xff;             ④

23   let fraction =  bits & 0x7fffff ;               ⑤

24 

25   (sign, exponent, fraction)                      ⑥

26 }

27 

28 fn decode(

29   sign: u32,

30   exponent: u32,

31   fraction: u32

32 ) -> (f32, f32, f32) {

33   let signed_1 = (-1.0_f32).powf(sign as f32);    ⑦

34 

35   let exponent = (exponent as i32) - BIAS;        ⑧

36   let exponent = RADIX.powf(exponent as f32);     ⑧

37 

38   for i in 0..23 {                                ⑨

39     let mask = 1 << i;                            ⑨

40     let one_at_bit_i = fraction & mask;           ⑨



41     if one_at_bit_i != 0 {                        ⑨

42       let i_ = i as f32;                          ⑨

43       let weight = 2_f32.powf( i_ - 23.0 );       ⑨

44       mantissa += weight;                         ⑨

45     }                                             ⑨

46   }                                               ⑨

47 

48   (signed_1, exponent, mantissa)

49 }

50 

51 fn from_parts(                                    ⑩

52   sign: f32,

53   exponent: f32,

54   mantissa: f32,

55 ) -> f32 {

56     sign *  exponent * mantissa

57 }

① Similar constants are accessible via the std::f32 module.

② main() lives happily at the beginning of a file.

③ Strips 31 unwanted bits away by shifting these nowhere, leaving only the sign bit

④ Filters out the top bit with a logical AND mask, then strips 23 unwanted bits away

⑤ Retains only the 23 least significant bits via an AND mask

⑥ The mantissa part is called a fraction here as it becomes the mantissa once it’s decoded.

⑦ Converts the sign bit to 1.0 or –1.0 (–1sign). Parentheses are required around –1.0_f32 to clarify
operator precedence as method calls rank higher than a unary minus.

⑧ exponent must become an i32 in case subtracting the BIAS results in a negative number; then it
needs to be cast as a f32 so that it can be used for exponentiation.

⑨ Decodes the mantissa using the logic described in section 5.4.4

⑩ Cheats a bit by using f32 values in intermediate steps. Hopefully, it is a forgivable offense.

Understanding how to unpack bits from bytes means that you’ll be in a much
stronger position when you’re faced with interpreting untyped bytes flying in
from the network throughout your career.



5.5 Fixed-point number formats

In addition to representing decimal numbers with floating-point formats,
fixed point is also available. These can be useful for representing fractions
and are an option for performing calculations on CPUs without a floating
point unit (FPU), such as microcontrollers. Unlike floating-point numbers,
the decimal place does not move to dynamically accommodate different
ranges. In our case, we’ll be using a fixed-point number format to compactly
represent values between –1..=1. Although it loses accuracy, it saves
significant space.2

The Q format is a fixed-point number format that uses a single byte.3 It was
created by Texas Instruments for embedded computing devices. The specific
version of the Q format that we will implement is called Q7. This indicates
that there are 7 bits available for the represented number plus 1 sign bit.
We’ll disguise the decimal nature of the type by hiding the 7 bits within an
i8. That means that the Rust compiler will be able to assist us in keeping
track of the value’s sign. We will also be able to derive traits such as
PartialEq and Eq, which provide comparison operators for our type,
for free.

The following listing, an extract from listing 5.14, provides the type’s
definition. You’ll find the source in ch5/ch5-q/src/lib.rs.

Listing 5.11 Definition of the Q7 format

#[derive(Debug,Clone,Copy,PartialEq,Eq)]

pub struct Q7(i8);                          ①

① Q7 is a tuple struct.



A struct created from unnamed fields (for example, Q7(i8)), is known as a
tuple struct. It offers a concise notation when the fields are not intended to be
accessed directly. While not shown in listing 5.11, tuple structs can include
multiple fields by adding further types separated by commas. As a reminder,
the #[derive(...)] block asks Rust to implement several traits on
our behalf:

Debug—Used by the println!() macro (and others); allows Q7
to be converted to a string by the {:?} syntax.

Clone—Enables Q7 to be duplicated with a .clone() method.
This can be derived because i8 implements the Clone trait.

Copy—Enables cheap and implicit duplications where ownership
errors might otherwise occur. Formally, this changes Q7 from a type
that uses move semantics to one that uses copy semantics.

PartialEq—Enables Q7 values to be compared with the equality
operator (==).

Eq—Indicates to Rust that all possible Q7 values can be compared
against any other possible Q7 value.

Q7 is intended as a compact storage and data transfer type only. Its most
important role is to convert to and from floating-point types. The following
listing, an extract from listing 5.14, shows the conversion to f64. The
source for this listing is in ch5/ch5-q/src/lib.rs.

Listing 5.12 Converting from f64 to Q7

 4 impl From<f64> for Q7 {

 5     fn from (n: f64) -> Self {

 6         // assert!(n >= -1.0);

 7         // assert!(n <= 1.0);

 8         if n >= 1.0 {                     ①



 9             Q7(127)

10         } else if n <= -1.0 {             ①

11             Q7(-128)

12         } else {

13             Q7((n * 128.0) as i8)

14         }

15     }

16 }

17 

18 impl From<Q7> for f64 {

19     fn from(n: Q7) -> f64 {

20         (n.0 as f64) * 2_f64.powf(-7.0)   ②

21     }

22 }

① Coerces any out-of-bounds input to fit

② Equivalent to the iteration approach taken in section 5.3.5.

The two impl From<T> for U blocks in listing 5.12 explain to Rust
how to convert from type T to type U. In the listing

Lines 4 and 18 introduce the impl From<T> for U blocks. The
std::convert ::From trait is included in local scope as
From, which is part of the standard prelude. It requires type U to
implement from() that takes a T value as its sole argument.

Lines 6–7 present an option for handling unexpected input data: crashes.
It is not used here, but is available to you in your own projects.

Lines 13–16 truncate out-of-bounds input. For our purposes, we know
that out-of-bounds input will not occur and so accept the risk of losing
information.

TIP Conversions using the From trait should be mathematically equivalent. For type conversions that
can fail, consider implementing the std::convert ::TryFrom trait instead.

We can also quickly implement converting from f32 to Q7 using the
From<f64> implementation that we’ve just seen. The following listing,
an extract from listing 5.14, shows this conversion. Its source is in ch5/ch5-



q/src/lib.rs.

Listing 5.13 Converting from f32 to Q7 via f64

22 impl From<f32> for Q7 {

23     fn from (n: f32) -> Self {

24         Q7::from(n as f64)      ①

25     }

26 }

27 

28 impl From<Q7> for f32 {

29     fn from(n: Q7) -> f32 {

30         f64::from(n) as f32     ②

31     }

32 }

① By design, it’s safe to convert from f32 to f64. A number that can be represented in 32 bits, it can
also be represented in 64 bits.

② Generally, converting an f64 into a f32 risks a loss of precision. In this application, that risk doesn’t
apply as we only have numbers between –1 and 1 to convert from.

Now, we’ve covered both floating-point types. But how do we know that the
code that we’ve written actually does what we intend? And how do we test
what we’ve written? As it happens, Rust has excellent support for unit testing
via cargo.

The Q7 code that you’ve seen is available as a complete listing. But first, to
test the code, enter the root directory of the crate and run cargo test.
The following shows the output from listing 5.14 (the complete listing):

$ cargo test 

   Compiling ch5-q v0.1.0 (file:///path/to/ch5/ch5-q)

    Finished dev [unoptimized + debuginfo] target(s) in 2.86 s

     Running target\debug\deps\ch5_q-013c963f84b21f92

 

running 3 tests

test tests::f32_to_q7 ... ok

test tests::out_of_bounds ... ok

test tests::q7_to_f32 ... ok

 

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 



   Doc-tests ch5-q

 

running 0 tests

 

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

The following listing implements the Q7 format and its conversion to and
from f32 and f64 types. You’ll find the source for this listing in ch5/ch5-
q/src/lib.rs.

Listing 5.14 Full code implementation of the Q7 format

 1 #[derive(Debug,Clone,Copy,PartialEq,Eq)]

 2 pub struct Q7(i8);

 3 

 4 impl From<f64> for Q7 {

 5     fn from (n: f64) -> Self {

 6         if n >= 1.0 {

 7             Q7(127)

 8         } else if n <= -1.0 {

 9             Q7(-128)

10         } else {

11             Q7((n * 128.0) as i8)

12         }

13     }

14 }

15 

16 impl From<Q7> for f64 {

17     fn from(n: Q7) -> f64 {

18         (n.0 as f64) * 2f64.powf(-7.0)

19     }

20 }

21 

22 impl From<f32> for Q7 {

23     fn from (n: f32) -> Self {

24         Q7::from(n as f64)

25     }

26 }

27 

28 impl From<Q7> for f32 {

29     fn from(n: Q7) -> f32 {

30         f64::from(n) as f32

31     }

32 }

33 

34 #[cfg(test)]

35 mod tests {            ①

36     use super::*;      ②



37     #[test]

38     fn out_of_bounds() {

39         assert_eq!(Q7::from(10.), Q7::from(1.));

40         assert_eq!(Q7::from(-10.), Q7::from(-1.));

41     }

42 

43     #[test]

44     fn f32_to_q7() {

45         let n1: f32 = 0.7;

46         let q1 = Q7::from(n1);

47 

48         let n2 = -0.4;

49*         let q2 = Q7::from(n2);

50 

51         let n3 = 123.0;

52         let q3 = Q7::from(n3);

53 

54         assert_eq!(q1, Q7(89));

55         assert_eq!(q2, Q7(-51));

56         assert_eq!(q3, Q7(127));

57     }

58 

59     #[test]

60     fn q7_to_f32() {

61         let q1 = Q7::from(0.7);

62         let n1 = f32::from(q1);

63         assert_eq!(n1, 0.6953125);

64 

65         let q2 = Q7::from(n1);

66         let n2 = f32::from(q2);

67         assert_eq!(n1, n2);

68     }

69 }

① Defines a submodule within this file

② Brings the parent module within the submodule’s local scope. Items that are marked as pub are
accessible here.

A brief look at Rust’s module system

Rust includes a powerful and ergonomic module system. To keep the examples simple, however,
this book does not make heavy use of its system. But here are some basic guidelines:

Modules are combined into crates.

Modules can be defined by a project’s directory structure. Subdirectories under src/



become a module when that directory contains a mod.rs file.

Modules can also be defined within a file with the mod keyword.

Modules can be nested arbitrarily.

All members of a module including its submodules are private by default. Private
items can be accessed within the module and any of the module’s descendants.

Prefix things that you want to make public with the pub keyword. The pub keyword
has some specialized cases:

a. pub(crate) exposes an item to other modules within the crate.

b. pub(super) exposes an item to the parent module.

c. pub(in path ) exposes an item to a module within path.

d. pub(self) explicitly keeps the item private.

Bring items from other modules into local scope with the use keyword.



5.6 Generating random probabilities from
random bytes

Here is an interesting exercise to test the knowledge that you have developed
over the preceding pages. Imagine that you have a source of random bytes
(u8), and you want to convert one of those into a floating-point (f32) value
between 0 and 1. Naively interpreting the incoming bytes as f32/f64 via
mem::transmute results in massive variations in scale. The following
listing demonstrates the division operation that generates an f32 value that
lies between 0 and 1 from an arbitrary input byte.

Listing 5.15 Generating f32 values in interval [0,1] from a u8 with
division

fn mock_rand(n: u8) -> f32 {

    (n as f32) / 255.0           ①

}

① 255 is the maximum value that u8 can represent.

As division is a slow operation, perhaps there is something faster than simply
dividing by the largest value that a byte can represent. Perhaps it’s possible to
assume a constant exponent value, then shift the incoming bits into the
mantissa, such that these would form a range between 0 and 1. Listing 5.16
with bit manipulation is the best result that I could achieve.

With an exponent of –1 represented as 0b01111110 (126 in base 10), the
source byte achieves a range of 0.5 to 0.998. That can be normalized to 0.0 to
0.996 with subtraction and multiplication. But is there a better way to do this?



Listing 5.16 Generating f32 values in interval [0,1] from a u8

 1 fn mock_rand(n: u8) -> f32 {

 2 

 3     let base: u32 = 0b0_01111110_00000000000000000000000;

 4 

 5     let large_n = (n as u32) << 15;      ①

 6 

 7     let f32_bits = base | large_n;       ②

 8 

 9     let m = f32::from_bits(f32_bits);    ③

10 

11     2.0 * ( m - 0.5 )                    ④

12 }

① Aligns the input byte n to 32 bits, then increases its value by shifting its bits 15 places to the left

② Takes a bitwise OR, merging the base with the input byte

③ Interprets f32_bits (which is type u32) as an f32

④ Normalizes the output range

As a complete program, you can incorporate mock_rand() from listing
5.16 into a test program fairly easily. Listing 5.17 (ch5/ch5-u8-to-mock-
rand.rs) generates an f32 value that lies between 0 and 1 from an arbitrary
input byte without division. Here’s its output:

max of input range: 11111111 -> 0.99609375

mid of input range: 01111111 -> 0.49609375

min of input range: 00000000 -> 0

Listing 5.17 Generating an f32 value without division

 1 fn mock_rand(n: u8) -> f32 {

 2     let base: u32 = 0b0_01111110_00000000000000000000000;

 3     let large_n =  (n as u32) << 15;

 4     let f32_bits = base | large_n;

 5     let m = f32::from_bits(f32_bits);

 6     2.0 * ( m - 0.5 )

 7 }

 8 

 9 fn main() {

10     println!("max of input range: {:08b} -> {:?}", 0xff, mock_rand(0xff));

11     println!("mid of input range: {:08b} -> {:?}", 0x7f, mock_rand(0x7f));

12     println!("min of input range: {:08b} -> {:?}", 0x00, mock_rand(0x00));



13 }



5.7 Implementing a CPU to establish that
functions are also data

One of the fairly mundane, yet utterly intriguing details about computing is
that instructions are also just numbers. Operations and the data that is being
operated on share the same encoding. This means that, as a general
computing device, your computer can emulate other computers’ instruction
sets by emulating those in software. While we cannot pull apart a CPU to see
how it works, we can construct one with code.

After working through this section, you will learn how a computer operates at
a fundamental level. This section shows how functions operate and what the
term pointer means. We won’t have an assembly language; we’ll actually be
programming directly in hex. This section also introduces you to another
term you may have heard of in passing: the stack.

We’ll implement a subset of a system called CHIP-8, which was available to
consumers in the 1970s. CHIP-8 was supported by a number of
manufacturers, but it was fairly primitive even by the standards of that time.
(It was created to write games rather than for commercial or scientific
applications.)

One device that used the CHIP-8 CPU was the COSMAC VIP. It had a
single-color display with a resolution of 64x32 (0.0002 megapixels), 2 KB
RAM, 1.76 MHz CPU, and sold for $275 USD. Oh, and you needed to
assemble the computer yourself. It also contained games programmed by the
world’s first female game developer, Joyce Weisbecker.



5.7.1 CPU RIA/1: The Adder

We’ll build our understanding by starting with a minimal core. Let’s first
construct an emulator that only supports a single instruction: addition. To
understand what’s happening within listing 5.22 later in this section, there are
three main things to learn:

Becoming familiar with new terminology

How to interpret opcodes

Understanding the main loop

TERMS RELATED TO CPU EMULATION

Dealing with CPUs and emulation involves learning some terms. Take a
moment to look at and understand the following:

An operation (often shortened to “op”) refers to procedures that are
supported natively by the system. You might also encounter equivalent
phrases such as implemented in hardware or intrinsic operation as you
explore further.

Registers are containers for data that the CPU accesses directly. For
most operations, operands must be moved to registers for an operation to
function. For the CHIP-8, each register is a u8 value.

An opcode is a number that maps to an operation. On the CHIP-8
platform, opcodes include both the operation and the operands’ registers.

DEFINING THE CPU

The first operation that we want to support is addition. The operation takes
two registers (x and y) as operands and adds the value stored in y to x. To



implement this, we’ll use the minimal amount of code possible, as the
following listing shows. Our initial CPU contains only two registers and the
space for a single opcode.

Listing 5.18 Definition of the CPU used in listing 5.22

struct CPU {

 

    current_operation: u16,    ①

    registers: [u8; 2],        ②

 

}

① All CHIP-8 opcodes are u16 values.

② These two registers are sufficient for addition.

So far, the CPU is inert. To perform addition, we’ll need to take the following
steps, but there is no ability to store data in memory as yet:

1. Initialize a CPU.

2. Load u8 values into registers.

3. Load the addition opcode into current_operation.

4. Perform the operation.

LOADING VALUES INTO REGISTERS

The process for booting up the CPU consists of writing to the fields of the
CPU struct. The following listing, an extract from listing 5.22, shows the
CPU initialization process.

Listing 5.19 Initializing the CPU

32 fn main() {

33   let mut cpu = CPU {

34     current_operation: 0,           ①

35     registers: [0; 2],



36   };

37 

38   cpu.current_operation = 0x8014;

39   cpu.registers[0] = 5;             ②

40   cpu.registers[1] = 10;            ②

① Initializes with a no-op (do nothing)

② Registers can only hold u8 values.

Line 38 from listing 5.19 is difficult to interpret without context. The
constant 0x8014 is the opcode that the CPU will interpret. To decode it,
split it into four parts:

8 signifies that the operation involves two registers.

0 maps to cpu.registers[0].

1 maps to cpu.registers[1].

4 indicates addition.

UNDERSTANDING THE EMULATOR’S MAIN
LOOP

Now that we’ve loaded the data, the CPU is almost able to do some work.
The run() method performs the bulk of our emulator’s work. Using the
following steps, it emulates CPU cycles:

1. Reads the opcode (eventually, from memory)

2. Decodes instruction

3. Matches decoded instruction to known opcodes

4. Dispatches execution of the operation to a specific function

The following listing, an extract from listing 5.22, shows the first
functionality being added to the emulator.



Listing 5.20 Reading the opcode

 6 impl CPU {

 7   fn read_opcode(&self) -> u16 {                      ①

 8     self.current_operation                            ①

 9   }                                                   ①

10 

11   fn run(&mut self) {

12     // loop {                                         ②

13       let opcode = self.read_opcode();

14 

15       let c = ((opcode & 0xF000) >> 12) as u8;        ③

16       let x = ((opcode & 0x0F00) >>  8) as u8;        ③

17       let y = ((opcode & 0x00F0) >>  4) as u8;        ③

18       let d = ((opcode & 0x000F) >>  0) as u8;        ③

19 

20       match (c, x, y, d) {

21           (0x8, _, _, 0x4) => self.add_xy(x, y),      ④

22           _  =>  todo!("opcode {:04x}", opcode),      ⑤

23       }

24     // }                                              ⑥

25   }

26 

27   fn add_xy(&mut self, x: u8, y: u8) {

28     self.registers[x as usize] += self.registers[y as usize];

29   }

30 }

① read_opcode() becomes more complex when we introduce reading from memory.

② Avoids running this code in a loop for now

③ The opcode decoding process is explained fully in the next section.

④ Dispatches execution to the hardware circuit responsible for performing it

⑤ A full emulator contains several dozen operations.

⑥ Avoids running this code in a loop for now

HOW TO INTERPRET CHIP-8 OPCODES

It is important for our CPU to be able to interpret its opcode (0x8014).
This section provides a thorough explanation of the process used in the
CHIP-8 and its naming conventions.

CHIP-8 opcodes are u16 values made up of 4 nibbles. A nibble is half of a



byte. That is, a nibble is a 4-bit value. Because there isn’t a 4-bit type in Rust,
splitting the u16 values into those parts is fiddly. To make matters more
complicated, CHIP-8 nibbles are often recombined to form either 8-bit or 12-
bit values depending on context.

To simplify talking about the parts of each opcode, let’s introduce some
standard terminology. Each opcode is made up of two bytes: the high byte
and the low byte. And each byte is made up of two nibbles, the high nibble
and the low nibble, respectively. Figure 5.2 illustrates each term.

Figure 5.2 Terms used to refer to parts of CHIP-8 opcodes

Documentation manuals for the CHIP-8 introduce several variables,
including kk, nnn, x, and y. Table 5.2 explains their role, location, and width.

Table 5.2 Variables used within CHIP-8 opcode descriptions

Variable Bit length Location Description
n* 4 low byte, low

nibble
Number of bytes

x 4 high byte, low
nibble

CPU register

y 4 low byte, high
nibble

CPU register

c† 4 high byte, high Opcode group



nibble

d† * ‡ 4 low byte, low
nibble

Opcode subgroup

kk‡ 8 low byte, both
nibbles

Integer

nnn‡ 12 high byte, low
nibble and low
byte, both nibbles

Memory address

* n and d occupy the same location but are used in mutually exclusive contexts.
† The variable names c and d are used within this book but not in other CHIP-8 documentation.
‡ Used in CPU RIA/3 (listing 5.29).

There are three main forms of opcodes, as illustrated in figure 5.3. The
decoding process involves matching on the high nibble of the first byte and
then applying one of three strategies.



Figure 5.3 CHIP-8 opcodes are decoded in multiple ways. Which to use
depends on the value of the leftmost nibble.

To extract nibbles from bytes, we’ll need to use the right shift (>>) and
logical AND (&) bitwise operations. These operations were introduced in
section 5.4, especially in sections 5.4.1–5.4.3. The following listing
demonstrates applying these bitwise operations to the current problem.

Listing 5.21 Extracting variables from an opcode

fn main() {



  let opcode: u16 = 0x71E4;

 

  let c = (opcode & 0xF000) >> 12;     ①

  let x = (opcode & 0x0F00) >>  8;     ①

  let y = (opcode & 0x00F0) >>  4;     ①

  let d = (opcode & 0x000F) >>  0;     ①

 

  assert_eq!(c, 0x7);                  ②

  assert_eq!(x, 0x1);                  ②

  assert_eq!(y, 0xE);                  ②

  assert_eq!(d, 0x4);                  ②

 

  let nnn = opcode & 0x0FFF;           ③

  let kk  = opcode & 0x00FF;           ③

 

  assert_eq!(nnn, 0x1E4);

  assert_eq!(kk,   0xE4);

}

① Select single nibbles with the AND operator (&) to filter bits that should be retained, then shift to
move the bits to the lowest significant place. Hexadecimal notation is convenient for these
operations as each hexadecimal digit represents 4 bits. A 0xF value selects all bits from a nibble.

② The four nibbles from opcode are available as individual variables after processing.

③ Select multiple nibbles by increasing the width of the filter. For our purposes, shifting bits rightward
is unnecessary.

We’re now able to decode the instructions. The next step is actually
executing these.

5.7.2 Full code listing for CPU RIA/1: The Adder

The following listing is the full code for our proto-emulator, the Adder.
You’ll find its source in ch5/ch5-cpu1/src/main.rs.

Listing 5.22 Implementing the beginnings of CHIP-8 emulator

 1 struct CPU {

 2   current_operation: u16,

 3   registers: [u8; 2],

 4  }

 5  

 6 impl CPU {

 7   fn read_opcode(&self) -> u16 {

 8     self.current_operation



 9   }

10  

11   fn run(&mut self) {

12     // loop {

13       let opcode = self.read_opcode();

14  

15       let c = ((opcode & 0xF000) >> 12) as u8;

16       let x = ((opcode & 0x0F00) >>  8) as u8;

17       let y = ((opcode & 0x00F0) >>  4) as u8;

18       let d = ((opcode & 0x000F) >>  0) as u8;

19  

20       match (c, x, y, d) {

21         (0x8, _, _, 0x4) => self.add_xy(x, y),

22         _  =>  todo!("opcode {:04x}", opcode),

23       }

24     // }

25   }

26  

27   fn add_xy(&mut self, x: u8, y: u8) {

28     self.registers[x as usize] += self.registers[y as usize];

29   }

30 }

31  

32 fn main() {

33   let mut cpu = CPU {

34     current_operation: 0,

35     registers: [0; 2],

36   };

37  

38   cpu.current_operation = 0x8014;

39   cpu.registers[0] = 5;

40   cpu.registers[1] = 10;

41  

42   cpu.run();

43  

44   assert_eq!(cpu.registers[0], 15);

45  

46   println!("5 + 10 = {}", cpu.registers[0]);

47 }

The Adder doesn’t do much. When executed, it prints the following line:

5 + 10 = 15

5.7.3 CPU RIA/2: The Multiplier

CPU RIA/1 can execute a single instruction: addition. CPU RIA/2, the



Multiplier, can execute several instructions in sequence. The Multiplier
includes RAM, a working main loop, and a variable that indicates which
instruction to execute next that we’ll call position_in_memory.
Listing 5.26 makes the following substantive changes to listing 5.22:

Adds 4 KB of memory (line 8).

Includes a fully-fledged main loop and stopping condition (lines 14–31).

At each step in the loop, memory at position_in_memory is
accessed and decoded into an opcode. position_in_memory is
then incremented to the next memory address, and the opcode is
executed. The CPU continues to run forever until the stopping condition
(an opcode of 0x0000) is encountered.

Removes the current_instruction field of the CPU struct,
which is replaced by a section of the main loop that decodes bytes from
memory (lines 15–17).

Writes the opcodes into memory (lines 51–53).

EXPANDING THE CPU TO SUPPORT MEMORY

We need to implement some modifications to make our CPU more useful. To
start, the computer needs memory.

Listing 5.23, an extract from listing 5.26, provides CPU RIA/2’s definition.
CPU RIA/2 contains general-purpose registers for calculations
(registers) and one special-purpose register
(position_in_memory). For convenience, we’ll also include the
system’s memory within the CPU struct itself as the memory field.



Listing 5.23 Defining a CPU struct

1 struct CPU {

2   registers: [u8; 16],

3   position_in_memory: usize,      ①

4   memory: [u8; 0x1000],

5 }

① Using usize rather that u16 diverges from the original spec, but we’ll use usize as Rust allows these
to be used for indexing.

Some features of the CPU are quite novel:

Having 16 registers means that a single hexadecimal number (0 to F)
can address those. That allows all opcodes to be compactly represented
as u16 values.

The CHIP-8 only has 4096 bytes of RAM (0x1000 in hexadecimal). This
allows CHIP-8’s equivalent of a usize type to only be 12 bits wide:
212 = 4,096. Those 12 bits become the nnn variable discussed earlier.

Rust in Action deviates from standard practice in two ways:

What we call the “position in memory” is normally referred to as the
“program counter.” As a beginner, it can be difficult to remember what
the program counter’s role is. So instead, this book uses a name that
reflects its usage.

Within the CHIP-8 specification, the first 512 bytes (0x100) are reserved
for the system, while other bytes are available for programs. This
implementation relaxes that restriction.

READING OPCODES FROM MEMORY

With the addition of memory within the CPU, the read_opcode()
method requires updating. The following listing, an extract from listing 5.26,



does that for us. It reads an opcode from memory by combining two u8
values into a single u16 value.

Listing 5.24 Reading an opcode from memory

 8 fn read_opcode(&self) -> u16 {

 9   let p = self.position_in_memory;

10   let op_byte1 = self.memory[p] as u16;

11   let op_byte2 = self.memory[p + 1] as u16;

12  

13   op_byte1 << 8 | op_byte2       ①

14 }

① To create a u16 opcode, we combine two values from memory with the logical OR operation. These
need to be cast as u16 to start with; otherwise, the left shift sets all of the bits to 0.

HANDLING INTEGER OVERFLOW

Within the CHIP-8, we use the last register as a carry flag. When set, this
flag indicates that an operation has overflowed the u8 register size. The
following listing, an extract from listing 5.26, shows how to handle this
overflow.

Listing 5.25 Handling overflow in CHIP-8 operations

34 fn add_xy(&mut self, x: u8, y: u8) {

35   let arg1 = self.registers[x as usize];

36   let arg2 = self.registers[y as usize];

37  

38   let (val, overflow) = arg1.overflowing_add(arg2);      ①

39   self.registers[x as usize] = val;

40  

41   if overflow {

42     self.registers[0xF] = 1;

43   } else {

44     self.registers[0xF] = 0;

45   }

46 }

① The overflowing_add() method for u8 returns (u8, bool). The bool is true when overflow is detected.



FULL CODE LISTING FOR CPU RIA/2: THE
MULTIPLIER

The following listing shows the complete code for our second working
emulator, the Multiplier. You’ll find the source for this listing in ch5/ch5-
cpu2/src/main.rs.

Listing 5.26 Enabling the emulator to process multiple instructions

 1 struct CPU {

 2   registers: [u8; 16],

 3   position_in_memory: usize,

 4   memory: [u8; 0x1000],

 5 }

 6  

 7 impl CPU {

 8   fn read_opcode(&self) -> u16 {

 9     let p = self.position_in_memory;

10    let op_byte1 = self.memory[p] as u16;

11     let op_byte2 = self.memory[p + 1] as u16;

12  

13     op_byte1 << 8 | op_byte2

14   }

15  

16   fn run(&mut self) {

17     loop {                                                   ①

18       let opcode = self.read_opcode();

19       self.position_in_memory += 2;                          ②

20  

21       let c = ((opcode & 0xF000) >> 12) as u8;

22       let x = ((opcode & 0x0F00) >>  8) as u8;

23       let y = ((opcode & 0x00F0) >>  4) as u8;

24       let d = ((opcode & 0x000F) >>  0) as u8;

25  

26       match (c, x, y, d) {

27           (0, 0, 0, 0)     => { return; },                   ③

28           (0x8, _, _, 0x4) => self.add_xy(x, y),

29           _                => todo!("opcode {:04x}", opcode),

30       }

31     }

32   }

33  

34   fn add_xy(&mut self, x: u8, y: u8) {

35     let arg1 = self.registers[x as usize];

36     let arg2 = self.registers[y as usize];

37  

38     let (val, overflow) = arg1.overflowing_add(arg2);



39     self.registers[x as usize] = val;

40  

41     if overflow {

42       self.registers[0xF] = 1;

43     } else {

44       self.registers[0xF] = 0;

45     }

46   }

47 }

48  

49 fn main() {

50   let mut cpu = CPU {

51     registers: [0; 16],

52     memory: [0; 4096],

53     position_in_memory: 0,

54   };

55  

56   cpu.registers[0] = 5;

57   cpu.registers[1] = 10;

58   cpu.registers[2] = 10;                                   ④

59   cpu.registers[3] = 10;                                   ④

60  

61   let mem = &mut cpu.memory;

62   mem[0] = 0x80; mem[1] = 0x14;                            ⑤

63   mem[2] = 0x80; mem[3] = 0x24;                            ⑥

64   mem[4] = 0x80; mem[5] = 0x34;                            ⑦

65  

66   cpu.run();

67  

68   assert_eq!(cpu.registers[0], 35);

69  

70   println!("5 + 10 + 10 + 10 = {}", cpu.registers[0]);

71 }

① Continues execution beyond processing a single instruction

② Increments position_in_memory to point to the next instruction

③ Short-circuits the function to terminate execution when the opcode 0x0000 is encountered

④ Initializes a few registers with values

⑤ Loads opcode 0x8014, which adds register 1 to register 0

⑥ Loads opcode 0x8024, which adds register 2 to register 0

⑦ Loads opcode 0x8034. which adds register 3 to register 0

When executed, CPU RIA/2 prints its impressive mathematical calculations:

5 + 10 + 10 + 10 = 35



5.7.4 CPU RIA/3: The Caller

We have nearly built all of the emulator machinery. This section adds the
ability for you to call functions. There is no programming language support,
however, so any programs still need to be written in binary. In addition to
implementing functions, this section validates an assertion made at the start—
functions are also data.

EXPANDING THE CPU TO INCLUDE SUPPORT
FOR A STACK

To build functions, we need to implement some additional opcodes. These
are as follows:

The CALL opcode (0x2nnn, where nnn is a memory address) sets
position_ in_memory to nnn, the address of the function.

The RETURN opcode (0x00EE) sets position_in_memory
to the memory address of the previous CALL opcode.

To enable these to opcodes to work together, the CPU needs to have some
specialized memory available for storing addresses. This is known as the
stack. Each CALL opcode adds an address to the stack by incrementing the
stack pointer and writing nnn to that position in the stack. Each RETURN
opcode removes the top address by decrementing the stack pointer. The
following listing, an extract from listing 5.29, provides the details to emulate
the CPU.

Listing 5.27 Including a stack and stack pointer

1 struct CPU {

2   registers: [u8; 16],



3   position_in_memory: usize,

4   memory: [u8; 4096],

5   stack: [u16; 16],        ①

6   stack_pointer: usize,    ②

7 }

① The stack’s maximum height is 16. After 16 nested function calls, the program encounters a stack
overflow.

② Giving the stack_pointer type usize makes it easier to index values within the stack.

DEFINING A FUNCTION AND LOADING IT
INTO MEMORY

Within computer science, a function is just a sequence of bytes that can be
executed by a CPU.4 CPUs start at the first opcode, then make their way to
the end. The next few code snippets demonstrate how it is possible to move
from a sequence of bytes, then convert that into executable code within CPU
RIA/3.

1. Define the function. Our function performs two addition operations and
then returns—modest, yet informative. It is three opcodes long. The
function’s internals look like this in a notation that resembles assembly
language:

add_twice:

    0x8014

    0x8014

    0x00EE

2. Convert opcodes into Rust data types. Translating these three opcodes
into Rust’s array syntax involves wrapping them in square brackets and
using a comma for each number. The function has now become a
[u16;3]:

let add_twice: [u16;3] = [

  0x8014,

  0x8014,



  0x00EE,

];

We want to be able to deal with one byte in the next step, so we’ll
decompose the [u16;3] array further into a [u8;6] array:

let add_twice: [u8;6] = [

  0x80, 0x14,

  0x80, 0x14,

  0x00, 0xEE,

];

3. Load the function into RAM. Assuming that we wish to load that
function into memory address 0x100, here are two options. First, if we
have our function available as a slice, we can copy it across to
memory with the copy_from_slice() method:

fn main() {

  let mut memory: [u8; 4096] = [0; 4096];

  let mem = &mut memory;

 

  let add_twice = [

    0x80, 0x14,

    0x80, 0x14,

    0x00, 0xEE,

  ];

 

  mem[0x100..0x106].copy_from_slice(&add_twice);

 

  println!("{:?}", &mem[0x100..0x106]);     ①

}

① Prints [128, 20, 128, 20, 0, 238]

An alternative approach that achieves the same effect within memory
without requiring a temporary array is to overwrite bytes directly:

fn main() {

  let mut memory: [u8; 4096] = [0; 4096];

  let mem = &mut memory;

 

  mem[0x100] = 0x80; mem[0x101] = 0x14;



  mem[0x102] = 0x80; mem[0x103] = 0x14;

  mem[0x104] = 0x00; mem[0x105] = 0xEE;

 

  println!("{:?}", &mem[0x100..0x106]);    ①

}

① Prints [128, 20, 128, 20, 0, 238]

The approach taken in the last snippet is exactly what is used within the
main() function of lines 96–98 of listing 5.29. Now that we know how to
load a function into memory, it’s time to learn how to instruct a CPU to
actually call it.

IMPLEMENTING THE CALL AND RETURN
OPCODES

Calling a function is a three-step process:

1. Store the current memory location on the stack.

2. Increment the stack pointer.

3. Set the current memory location to the intended memory address.

Returning from a function involves reversing the calling process:

1. Decrement the stack pointer.

2. Retrieve the calling memory address from the stack.

3. Set the current memory location to the intended memory address.

The following listing, an extract from listing 5.29, focuses on the call()
and ret() methods.

Listing 5.28 Adding the call() and ret() methods

41 fn call(&mut self, addr: u16) {



42     let sp = self.stack_pointer;

43     let stack = &mut self.stack;

44  

45     if sp > stack.len() {

46         panic!("Stack overflow!")

47     }

48  

49     stack[sp] = self.position_in_memory as u16;       ①

50     self.stack_pointer += 1;                          ②

51     self.position_in_memory = addr as usize;          ③

52 }

53  

54 fn ret(&mut self) {

55     if self.stack_pointer == 0 {

56         panic!("Stack underflow");

57     }

58  

59     self.stack_pointer -= 1;

60     let call_addr = self.stack[self.stack_pointer];   ④

61     self.position_in_memory = call_addr as usize;     ④

62 }

① Adds the current position_in_memory to the stack. This memory address is two bytes higher than
the calling location as it is incremented within the body of the run() method.

② Increments self.stack_pointer to prevent self.position_in_memory from being overwritten until it
needs to be accessed again in a subsequent return

③ Modifies self.position_in_memory to affect jumping to that address

④ Jumps to the position in memory where an earlier call was made

FULL CODE LISTING FOR CPU RIA/3: THE
CALLER

Now that we have all of the pieces ready, let’s assemble those into a working
program. Listing 5.29 is able to compute a (hard-coded) mathematical
expression. Here’s its output:

5 + (10 * 2) + (10 * 2) = 45

This calculation is made without the source code that you may be used to.
You will need to make do with interpreting hexadecimal numbers. To help,



figure 5.4 illustrates what happens within the CPU during cpu.run().
The arrows reflect the state of the cpu.position_in_memory
variable as it makes its way through the program.

Figure 5.4 Illustrating the control flow of the function implemented
within CPU RIA/3 in listing 5.29

Listing 5.29 shows our completed emulator for CPU RIA/3, the Caller.
You’ll find the source code for this listing in ch5/ch5-cpu3/src/main.rs.



Listing 5.29 Emulating a CPU that incorporates user-defined functions

  1 struct CPU {

  2   registers: [u8; 16],

  3   position_in_memory: usize,

  4   memory: [u8; 4096],

  5   stack: [u16; 16],

  6   stack_pointer: usize,

  7 }

  8  

  9 impl CPU {

 10   fn read_opcode(&self) -> u16 {

 11     let p = self.position_in_memory;

 12     let op_byte1 = self.memory[p] as u16;

 13     let op_byte2 = self.memory[p + 1] as u16;

 14  

 15     op_byte1 << 8 | op_byte2

 16   }

 17  

 18   fn run(&mut self) {

 19     loop {

 20       let opcode = self.read_opcode();

 21       self.position_in_memory += 2;

 22  

 23       let c = ((opcode & 0xF000) >> 12) as u8;

 24       let x = ((opcode & 0x0F00) >>  8) as u8;

 25       let y = ((opcode & 0x00F0) >>  4) as u8;

 26       let d = ((opcode & 0x000F) >>  0) as u8;

 27  

 28       let nnn = opcode & 0x0FFF;

 29       // let kk  = (opcode & 0x00FF) as u8;

 30  

 31       match (c, x, y, d) {

 32           (  0,   0,   0,   0) => { return; },

 33           (  0,   0, 0xE, 0xE) => self.ret(),

 34           (0x2,   _,   _,   _) => self.call(nnn),

 35           (0x8,   _,   _, 0x4) => self.add_xy(x, y),

 36           _                    => todo!("opcode {:04x}", opcode),

 37       }

 38     }

 39   }

 40  

 41   fn call(&mut self, addr: u16) {

 42     let sp = self.stack_pointer;

 43     let stack = &mut self.stack;

 44  

 45     if sp > stack.len() {

 46       panic!("Stack overflow!")

 47     }

 48  

 49     stack[sp] = self.position_in_memory as u16;

 50     self.stack_pointer += 1;



 51     self.position_in_memory = addr as usize;

 52   }

 53  

 54   fn ret(&mut self) {

 55     if self.stack_pointer == 0 {

 56       panic!("Stack underflow");

 57     }

 58  

 59     self.stack_pointer -= 1;

 60     let addr = self.stack[self.stack_pointer];

 61     self.position_in_memory = addr as usize;

 62   }

 63  

 64   fn add_xy(&mut self, x: u8, y: u8) {

 65     let arg1 = self.registers[x as usize];

 66     let arg2 = self.registers[y as usize];

 67  

 68     let (val, overflow_detected) = arg1.overflowing_add(arg2);

 69     self.registers[x as usize] = val;

 70  

 71     if overflow_detected {

 72       self.registers[0xF] = 1;

 73     } else {

 74       self.registers[0xF] = 0;

 75     }

 76   }

 77 }

 78  

 79 fn main() {

 80   let mut cpu = CPU {

 81     registers: [0; 16],

 82     memory: [0; 4096],

 83     position_in_memory: 0,

 84     stack: [0; 16],

 85     stack_pointer: 0,

 86   };

 87  

 88   cpu.registers[0] = 5;

 89   cpu.registers[1] = 10;

 90  

 91   let mem = &mut cpu.memory;

 92   mem[0x000] = 0x21; mem[0x001] = 0x00;     ①

 93   mem[0x002] = 0x21; mem[0x003] = 0x00;     ②

 94   mem[0x004] = 0x00; mem[0x005] = 0x00;     ③

 95  

 96   mem[0x100] = 0x80; mem[0x101] = 0x14;     ④

 97   mem[0x102] = 0x80; mem[0x103] = 0x14;     ⑤

 98   mem[0x104] = 0x00; mem[0x105] = 0xEE;     ⑥

 99  

100   cpu.run();

101  

102   assert_eq!(cpu.registers[0], 45);

103   println!("5 + (10 * 2) + (10 * 2) = {}", cpu.registers[0]);

104 }



① Sets opcode to 0x2100: CALL the function at 0x100

② Sets opcode to 0x2100: CALL the function at 0x100

③ Sets opcode to 0x0000: HALT (not strictly necessary as cpu.memory is initialized with null bytes)

④ Sets opcode to 0x8014: ADD register 1’s value to register 0

⑤ Sets opcode to 0x8014: ADD register 1’s value to register 0

⑥ Sets opcode to 0x00EE: RETURN

As you delve into systems’ documentation, you will find that real-life
functions are more complicated than simply jumping to a predefined memory
location. Operating systems and CPU architectures differ in calling
conventions and in their capabilities. Sometimes operands will need to be
added to the stack; sometimes they’ll need to be inserted into defined
registers. Still, while the specific mechanics can differ, the process is roughly
similar to what you have just encountered. Congratulations on making it this
far.

5.7.5 CPU 4: Adding the rest

With a few extra opcodes, it’s possible to implement multiplication and many
more functions within your inchoate CPU. Check the source code that comes
along with the book, specifically the ch5/ch5-cpu4 directory at
https://github.com/rust-in-action/code for a fuller implementation of the
CHIP-8 specification.

The last step in learning about CPUs and data is to understand how control
flow works. Within CHIP-8, control flow works by comparing values in
registers, then modifying position_in_memory, depending on the
outcome. There are no while or for loops within a CPU. Creating these
in programming languages is the art of the compiler writer.

https://github.com/rust-in-action/code


Summary

The same bit pattern can represent multiple values, depending on its data
type.

Integer types within Rust’s standard library have a fixed width.
Attempting to increment past an integer’s maximum value is an error
called an integer overflow. Decrementing past its lowest value is called
integer underflow.

Compiling programs with optimization enabled (for example, via
cargo build --release) can expose your programs to
integer overflow and underflow as run-time checks are disabled.

Endianness refers to the layout of bytes in multibyte types. Each CPU
manufacturer decides the endianness of its chips. A program compiled
for a little-endian CPU malfunctions if one attempts to run it on a system
with a big-endian CPU.

Decimal numbers are primarily represented by floating-point number
types. The standard that Rust follows for its f32 and f64 types is
IEEE 754. These types are also known as single precision and double
precision floating point.

Within f32 and f64 types, identical bit patterns can compare as
unequal (e.g., f32::NAN != f32::NAN), and differing bit
patterns can compare as equal (e.g., -0 == 0). Accordingly, f32
and f64 only satisfy a partial equivalence relation. Programmers
should be mindful of this when comparing floating-point values for
equality.

Bitwise operations are useful for manipulating the internals of data
structures. However, doing so can often be highly unsafe.



Fixed-point number formats are also available. These represent numbers
by encoding a value as the nominator and using an implicit denominator.

Implement std::convert::From when you want to support
type conversions. But in cases where the conversion may fail, the
std::convert::TryFrom trait is the preferred option.

A CPU opcode is a number that represents an instruction rather than
data. Memory addresses are also just numbers. Function calls are just
sequences of numbers.

1.In 2021, the x86-64/AMD64 CPU architecture is dominant.
2.This practice is known as quantizing the model in the machine learning community.
3.Q, often written as ℚ (this style is called blackboard bold), is the mathematical symbol for the so-

called rational numbers. Rational numbers are numbers that can be represented as a fraction of two
integers, such as 1/3.

4.The sequence of bytes must also be tagged as executable. The tagging process is explained in section
6.1.4.



6 Memory

This chapter covers

What pointers are and why some are smart
What the terms stack and heap mean
How a program views its memory

This chapter provides you with some of the tacit knowledge held by systems
programmers about how a computer’s memory operates. It aims to be the
most accessible guide to pointers and memory management available. You
will learn how applications interact with an operating system (OS).
Programmers who understand these dynamics can use that knowledge to
maximize their programs’ performance, while minimizing their memory
footprint.

Memory is a shared resource, and the OS is an arbiter. To make its life easier,
the OS lies to your program about how much memory is available and where
it’s located. Revealing the truth behind those lies requires us to work through
some prior knowledge. This is the work of the first two sections of the
chapter.

Each of the four sections in this chapter builds on the previous one. None of
these sections assume that you’ve encountered the topic before. There is a
fairly large body of theory to cover, but all of it is explained by examples.

In this chapter, you’ll create your first graphical application. The chapter
introduces little new Rust syntax, as the material is quite dense. You’ll learn



how to construct pointers, how to interact with an OS via its native API, and
how to interact with other programs through Rust’s foreign function
interface.



6.1 Pointers

Pointers are how computers refer to data that isn’t immediately accessible.
This topic tends to have an aura of mystique to it. That’s not necessary. If
you’ve ever read a book’s table of contents, then you’ve used a pointer.
Pointers are just numbers that refer to somewhere else.

If you’ve never encountered systems programming before, there is a lot of
terminology to grapple with that describes unfamiliar concepts. Thankfully,
though, what’s sitting underneath the abstraction is not too difficult to
understand. The first thing to grasp is the notation used in this chapter’s
figures. Figure 6.1 introduces three concepts:

The arrow refers to some location in memory that is determined at
runtime rather than at compile time.

Each box represents a block of memory, and each block refers to a
usize width. Other figures use a byte or perhaps even a bit as the
chunk of memory these refer to.

The rounded box underneath the Value label represents three contiguous
blocks of memory.

Figure 6.1 Depicting notation used in this chapter’s figures for



illustrating a pointer. In Rust, pointers are most frequently encountered
as &T and &mut T, where T is the type of the value.

For newcomers, pointers are scary and, at the same time, awe-inspiring. Their
proper use requires that you know exactly how your program is laid out in
memory. Imagine reading a table of contents that says chapter 4 starts on
page 97, but it actually starts on page 107. That would be frustrating, but at
least you could cope with the mistake.

A computer doesn’t experience frustration. It also lacks any intuition that it
has pointed to the wrong place. It just keeps working, correctly or incorrectly,
as if it had been given the correct location. The fear of pointers is that you
will introduce some impossible-to-debug error.

We can think of data stored within the program’s memory as being scattered
around somewhere within physical RAM. To make use of that RAM, there
needs to be some sort of retrieval system in place. An address space is that
retrieval system.

Pointers are encoded as memory addresses, which are represented as integers
of type usize. An address points to somewhere within the address space.
For the moment, think of the address space as all of your RAM laid out end
to end in a single line.

Why are memory addresses encoded as usize? Surely there’s no 64-bit
computer with 264 bytes of RAM. The range of the address space is a façade
provided by the OS and the CPU. Programs only know an orderly series of
bytes, irrespective of the amount of RAM that is actually available in the
system. We discuss how this works later in the virtual memory section of this
chapter.

NOTE Another interesting example is the Option<T> type. Rust uses null pointer optimization to



ensure that an Option<T> occupies 0 bytes in the compiled binary. The None variant is represented
by a null pointer (a pointer to invalid memory), allowing the Some(T) variant to have no additional
indirection.

What are the differences between references,
pointers, and memory addresses?

References, pointers, and memory addresses are confusingly similar:

A memory address, often shortened to address, is a number that happens to refer to a
single byte in memory. Memory addresses are abstractions provided by assembly
languages.

A pointer, sometimes expanded to raw pointer, is a memory address that points to a
value of some type. Pointers are abstractions provided by higher-level languages.

A reference is a pointer, or in the case of dynamically sized types, a pointer and an
integer with extra guarantees. References are abstractions provided by Rust.

Compilers are able to determine spans of valid bytes for many types. For example, when a
compiler creates a pointer to an i32, it can verify that there are 4 bytes that encode an integer.
This is more useful than simply having a memory address, which may or may not point to any
valid data type. Unfortunately, the programmer bears the responsibility for ensuring the validity
for types with no known size at compile time.
Rust’s references offer substantial benefits over pointers:

References always refer to valid data. Rust’s references can only be used when it’s
legal to access their referent. I’m sure you’re familiar with this core tenet of Rust by
now!

References are correctly aligned to multiples of usize. For technical reasons, CPUs
become quite temperamental when asked to fetch unaligned memory.

They operate much more slowly. To mitigate this problem, Rust’s types actually
include padding bytes so that creating references to these does not slow down your
program.

References are able to provide these guarantees for dynamically sized types. For types
with no fixed width in memory, Rust ensures that a length is kept alongside the
internal pointer. That way Rust can ensure that the program never overruns the type’s



space in memory.

NOTE The distinguishing characteristic between memory addresses and the two higher
abstractions is that the latter two have information about the type of their referent.



6.2 Exploring Rust’s reference and pointer
types

This section teaches you how to work with several of Rust’s pointer types.
Rust in Action tries to stick to the following guidelines when discussing these
types:

References—Signal that the Rust compiler will provide its safety
guarantees.

Pointers—Refer to something more primitive. This also includes the
implication that we are responsible for maintaining safety. (There is an
implied connotation of being unsafe.)

Raw pointers—Used for types where it’s important to make their unsafe
nature explicit.

Throughout this section, we’ll expand on a common code fragment
introduced by listing 6.1. Its source code is available in ch6/ch6-pointer-
intro.rs. In the listing, two global variables, B and C, are pointed to by
references. Those references hold the addresses of B and C, respectively. A
view of what’s happening follows the code in figures 6.2 and 6.3.

Listing 6.1 Mimicking pointers with references

static B: [u8; 10] = [99, 97, 114, 114, 121, 116, 111, 119, 101, 108];

static C: [u8; 11] = [116, 104, 97, 110, 107, 115, 102, 105, 115, 104, 0];

 

fn main() {

    let a = 42;

    let b = &B;                                       ①

    let c = &C;                                       ①

 

    println!("a: {}, b: {:p}, c: {:p}", a, b, c);     ②

}



① For simplicity, uses the same reference type for this example. Later examples distinguish smart
pointers from raw pointers and require different types.

② The {:p} syntax asks Rust to format the variable as a pointer and prints the memory address that the
value points to.

 

Figure 6.2 An abstract view of how two pointers operate alongside a
standard integer. The important lesson here is that the programmer
might not know the location of the referent data beforehand.

Listing 6.1 has three variables within its main() function. a is rather
trivial; it’s just an integer. The other two are more interesting. b and c are
references. These refer to two opaque arrays of data, B and C. For the



moment, consider Rust references as equivalent to pointers. The output from
one execution on a 64-bit machine is as follows:

a: 42, b: 0x556fd40eb480, c: 0x556fd40eb48a       ①

① If you run the code, the exact memory addresses will be different on your machine.

Figure 6.3 provides a view of the same example in an imaginary address
space of 49 bytes. It has a pointer width of two bytes (16 bits). You’ll notice
that the variables b and c look different in memory, despite being the same
type as in listing 6.1. That’s due to that because the listing is lying to you.
The gritty details and a code example that more closely represents the
diagram in figure 6.3 are coming shortly.



Figure 6.3 An illustrative address space of the program provided in
listing 6.1. It provides an illustration of the relationship between
addresses (typically written in hexadecimal) and integers (typically
written in decimal). White cells represent unused memory.

As evidenced in figure 6.2, there’s one problem with portraying pointers as
arrows to disconnected arrays. These tend to de-emphasize that the address
space is contiguous and shared between all variables.

For a more thorough examination of what happens under the hood, listing 6.2
produces much more output. It uses more sophisticated types instead of
references to demonstrate how these differ internally and to correlate more
accurately what is presented in figure 6.3. The following shows the output
from listing 6.2:

a  (an unsigned integer):

  location: 0x7ffe8f7ddfd0

  size:     8 bytes

  value:    42

 

b (a reference to B):

  location:  0x7ffe8f7ddfd8

  size:      8 bytes

  points to: 0x55876090c830

 

c (a "box" for C):

  location:  0x7ffe8f7ddfe0

  size:      16 bytes

  points to: 0x558762130a40

 

B (an array of 10 bytes):

  location: 0x55876090c830

  size:     10 bytes

  value:    [99, 97, 114, 114, 121, 116, 111, 119, 101, 108]

 

C (an array of 11 bytes):

  location: 0x55876090c83a

  size:     11 bytes

  value:    [116, 104, 97, 110, 107, 115, 102, 105, 115, 104, 0

Listing 6.2 Comparing references and Box<T> to several types



 1 use std::mem::size_of;

 2  

 3 static B: [u8; 10] = [99, 97, 114, 114, 121, 116, 111, 119, 101, 108];

 4 static C: [u8; 11] = [116, 104, 97, 110, 107, 115, 102, 105, 115, 104, 0];

 5  

 6 fn main() {

 7     let a: usize     = 42;              ①

 8  

 9     let b: &[u8; 10] = &B;              ②

10  

11     let c: Box<[u8]> = Box::new(C);     ③

12  

13     println!("a (an unsigned integer):");

14     println!("  location: {:p}", &a);

15     println!("  size:     {:?} bytes", size_of::<usize>());

16     println!("  value:    {:?}", a);

17     println!();

18  

19     println!("b (a reference to B):");

20     println!("  location:  {:p}", &b);

21     println!("  size:      {:?} bytes", size_of::<&[u8; 10]>());

22     println!("  points to: {:p}", b);

23     println!();

24  

25     println!("c (a "box" for C):");

26     println!("  location:  {:p}", &c);

27     println!("  size:      {:?} bytes", size_of::<Box<[u8]>>());

28     println!("  points to: {:p}", c);

29     println!();

30  

31     println!("B (an array of 10 bytes):");

32     println!("  location: {:p}",  &B);

33     println!("  size:     {:?} bytes", size_of::<[u8; 10]>());

34     println!("  value:    {:?}", B);

35     println!();

36  

37     println!("C (an array of 11 bytes):");

38     println!("  location: {:p}",  &C);

39     println!("  size:     {:?} bytes", size_of::<[u8; 11]>());

40     println!("  value:    {:?}", C);

41 }

① &[u8; 10] reads as “a reference to an array of 10 bytes.” The array is located in static memory, and
the reference itself (a pointer of width usize bytes) is placed on the stack.

② usize is the memory address size for the CPU the code is compiled for. That CPU is called the
compile target.

③ The Box<[u8]> type is a boxed byte slice. When we place values inside a box, ownership of the
value moves to the owner of the box.



For readers who are interested in decoding the text within B and C, listing 6.3
is a short program that (almost) creates a memory address layout that
resembles figure 6.3 more closely. It contains a number of new Rust features
and some relatively arcane syntax, both of which haven’t been introduced
yet. These will be explained shortly.

Listing 6.3 Printing from strings provided by external sources

use std::borrow::Cow;                                  ①

  

use std::ffi::CStr;                                    ②

 

use std::os::raw::c_char;                              ③

 

static B: [u8; 10] = [99, 97, 114, 114, 121, 116, 111, 119, 101, 108];

static C: [u8; 11] = [116, 104, 97, 110, 107, 115, 102, 105, 115, 104, 0];

 

fn main() {

  let a = 42;                                          ④

 

  let b: String;                                       ⑤

 

  let c: Cow<str>;                                     ⑥

 

  unsafe {

    let b_ptr = &B as *const u8 as *mut u8;            ⑦

 

    b = String::from_raw_parts(b_ptr, 10, 10);         ⑧

 

    let c_ptr = &C as *const u8 as *const c_char;      ⑨

 

    c = CStr::from_ptr(c_ptr).to_string_lossy();       ⑩

  }

 

  println!("a: {}, b: {}, c: {}", a, b, c);

}

① A smart pointer type that reads from its pointer location without needing to copy it first

② CStr is a C-like string type that allows Rust to read in zero-terminated strings.

③ c_char, a type alias for Rust’s i8 type, presents the possibility of a platform-specific nuances.

④ Introduces each of the variables so that these are accessible from println! later. If we created b and c
within the unsafe block, these would be out of scope later.

⑤ String is a smart pointer type that holds a pointer to a backing array and a field to store its size.

⑥ Cow accepts a type parameter for the data it points to; str is the type returned by



CStr.to_string_lossy(), so it is appropriate here.

⑦ References cannot be cast directly to *mut T, the type required by String::from_raw_parts(). But
*const T can be cast to *mut T, leading to this double cast syntax.

⑧ String::from_raw_parts() accepts a pointer (*mut T) to an array of bytes, a size, and a capacity
parameter.

⑨ Converts a *const u8 to a *const i8, aliased to c_char. The conversion to i8 works because we
remain under 128, following the ASCII standard.

⑩ Conceptually, CStr::from_ptr() takes responsibility for reading the pointer until it reaches 0; then it
generates Cow<str> from the result

In listing 6.3, Cow stands for copy on write. This smart pointer type is handy
when an external source provides a buffer. Avoiding copies increases runtime
performance. std::ffi is the foreign function interface module from
Rust’s standard library. use std::os::raw::c_char; is not
strictly needed, but it does make the code’s intent clear. C does not define the
width of its char type in its standard, although it’s one byte wide in
practice. Retrieving the type alias c_char from the std::os:raw
module allows for differences.

To thoroughly understand the code in listing 6.3, there is quite a bit of ground
to cover. We first need to work through what raw pointers are and then
discuss a number of feature-rich alternatives that have been built around
them.

6.2.1 Raw pointers in Rust

A raw pointer is a memory address without Rust’s standard guarantees.
These are inherently unsafe. For example, unlike references (&T), raw
pointers can be null.

If you’ll forgive the syntax, raw pointers are denoted as *const T and



*mut T for immutable and mutable raw pointers, respectively. Even
though each is a single type, these contain three tokens: *, const or mut.
Their type, T, a raw pointer to a String, looks like *const String.
A raw pointer to an i32 looks like *mut i32. But before we put pointers
into practice, here are two other things that are useful to know:

The difference between a *mut T and a *const T is minimal.
These can be freely cast between one another and tend to be used
interchangeably, acting as in-source documentation.

Rust references ( &mut T and &T) compile down to raw pointers.
That means that it’s possible to access the performance of raw pointers
without needing to venture into unsafe blocks.

The next listing provides a small example that coerces a reference to a value
(&T), creating a raw pointer from an i64 value. It then prints the value and
its address in memory via the {:p} syntax.

Listing 6.4 Creating a raw pointer (*const T)

fn main() {

    let a: i64 = 42;

    let a_ptr = &a as *const i64;          ①

 

    println!("a: {} ({:p})", a, a_ptr);    ②

}

① Casts a reference to the variable a (&a) to a constant raw pointer i64 (*const i64)

② Prints the value of the variable a (42) and its address in memory (0x7ff...)

The terms pointer and memory address are sometimes used interchangeably.
These are integers that represent a location in virtual memory. From the
compiler’s point of view, though, there is one important difference. Rust’s
pointer types *const T and *mut T always point to the starting byte of



T, and these also know the width of type T in bytes. A memory address
might refer to anywhere in memory.

An i64 is 8-bytes wide (64 bits ÷ 8 bits per byte). Therefore, if an i64 is
stored at address 0x7fffd, then each of the bytes between
0x7ffd..0x8004 must be fetched from RAM to recreate the integer’s
value. The process of fetching data from RAM from a pointer is known as
dereferencing a pointer. The following listing identifies a value’s address by
casting a reference to it as a raw pointer via std::mem::transmute.

Listing 6.5 Identifying a value’s address

fn main() {

    let a: i64 = 42;

    let a_ptr = &a as *const i64;

    let a_addr: usize = unsafe {

      std::mem::transmute(a_ptr)       ①

    };

 

    println!("a: {} ({:p}...0x{:x})", a, a_ptr, a_addr + 7);

 

}

① Interprets *const i64 as usize. Using transmute() is highly unsafe but is used here to postpone
introducing more syntax.

Under the hood, references (&T and &mut T) are implemented as raw
pointers. These come with extra guarantees and should always be preferred.

WARNING Accessing the value of a raw pointer is always unsafe. Handle with care.

Using raw pointers in Rust code is like working with pyrotechnics. Usually
the results are fantastic, sometimes they’re painful, and occasionally they’re
tragic. Raw pointers are often handled in Rust code by the OS or a third-party
library.



To demonstrate their volatility, let’s work through a quick example with
Rust’s raw pointers. Creating a pointer of arbitrary types from any integer is
perfectly legal. Dereferencing that pointer must occur within an unsafe
block, as the following snippet shows. An unsafe block implies that the
programmer takes full responsibility for any consequences:

fn main() {

    let ptr = 42 as *const Vec<String>;       ①

 

    unsafe {

        let new_addr = ptr.offset(4);

        println!("{:p} -> {:p}", ptr, new_addr);

    }

}

① You can create pointers safely from any integral value. An i32 is not a Vec<String>, but Rust is
quite comfortable ignoring that here.

To reiterate, raw pointers are not safe. These have a number of properties that
mean that their use is strongly discouraged within day-to-day Rust code:

Raw pointers do not own their values. The Rust compiler does not check
that the referent data is still valid when these are accessed.

Multiple raw pointers to the same data are allowed. Every raw pointer
can have write, read-write access to data. This means that there is no
time when Rust can guarantee that shared data is valid.

Notwithstanding those warnings, there are a small number of valid reasons to
make use of raw pointers:

It’s unavoidable. Perhaps some OS call or third-party code requires a
raw pointer. Raw pointers are common within C code that provides an
external interface.

Shared access to something is essential and runtime performance is
paramount. Perhaps multiple components within your application



require equal access to some expensive-to-compute variable. If you’re
willing to take on the risk of one of those components poisoning every
other component with some silly mistake, then raw pointers are an
option of last resort.

6.2.2 Rust’s pointer ecosystem

Given that raw pointers are unsafe, what is the safer alternative? The
alternative is to use smart pointers. In the Rust community, a smart pointer is
a pointer type that has some kind of superpower, over and above the ability to
deference a memory address. You will probably encounter the term wrapper
type as well. Rust’s smart pointer types tend to wrap raw pointers and bestow
them with added semantics.

A narrower definition of smart pointer is common in the C communities.
There authors (generally) imply that the term smart pointer means the C
equivalents of Rust’s core::ptr::Unique,
core::ptr::Shared, and std::rc::Weak types. We will
introduce these types shortly.

NOTE The term fat pointer refers to memory layout. Thin pointers, such as raw pointers, are a single
usize wide. Fat pointers are usually two usize wide, and occasionally more.

Rust has an extensive set of pointer (and pointer-like) types in its standard
library. Each has its own role, strengths, and weaknesses. Given their unique
properties, rather than writing these out as a list, let’s model these as
characters in a card-based role-playing game, as shown in figure 6.4.



Figure 6.4 A fictitious role-playing card game describing the
characteristics of Rust's smart pointer types

Each of the pointer types introduced here are used extensively throughout the
book. As such, we’ll give these fuller treatment when that’s needed. For now,
the two novel attributes that appear within the Powers section of some of



these cards are interior mutability and shared ownership. These two terms
warrant some discussion.

With interior mutability, you may want to provide an argument to a method
that takes immutable values, yet you need to retain mutability. If you’re
willing to pay the runtime performance cost, it’s possible to fake
immutability. If the method requires an owned value, wrap the argument in
Cell<T>. References can also be wrapped in RefCell<T>. It is
common when using the reference counted types Rc<T> and Arc<T>,
which only accept immutable arguments, to also wrap those in Cell<T> or
RefCell<T>. The resulting type might look like Rc<RefCell<T>>.
This means that you pay the runtime cost twice but with significantly more
flexibility.

With shared ownership, some objects, such as a network connection or,
perhaps, access to some OS service, are difficult to mould into the pattern of
having a single place with read-write access at any given time. Code might be
simplified if two parts of the program can share access to that single resource.
Rust allows you to do this, but again, at the expense of a runtime cost.

6.2.3 Smart pointer building blocks

You might find yourself in a situation where you want to build your own
smart pointer type with its own semantics. Perhaps a new research paper has
been released, and you want to incorporate its results into your own work.
Perhaps you’re conducting the research. Regardless, it might be useful to
know that Rust’s pointer types are extensible—these are designed with
extension in mind.

All of the programmer-facing pointer types like Box<T> are built from



more primitive types that live deeper within Rust, often in its core or
alloc modules. Additionally, the C++ smart pointer types have Rust
counterparts. Here are some useful starting points for you when building your
own smart pointer types:

core::ptr::Unique is the basis for types such as String,
Box<T>, and the pointer field Vec<T>.

core::ptr::Shared is the basis for Rc<T> and Arc<T>,
and it can handle situations where shared access is desired.

In addition, the following tools can also be handy in certain situations:

Deeply interlinked data structures can benefit from
std::rc::Weak and std::arc:: Weak for single and
multi-threaded programs, respectively. These allow access to data
within an Rc/Arc without incrementing its reference count. This can
prevent never-ending cycles of pointers.

The alloc::raw_vec::RawVec type underlies Vec<T> and
VecDeq<T>. An expandable, double-ended queue that hasn’t
appeared in the book so far, it understands how to allocate and
deallocate memory in a smart way for any given type.

The std::cell::UnsafeCell type sits behind both
Cell<T> and RefCell<T>. If you would like to provide interior
mutability to your types, its implementation is worth investigating.

A full treatment of building new safe pointers touches on some of Rust’s
internals. These building blocks have their own building blocks.
Unfortunately, explaining every detail will diverge too far from our goals for
this chapter.



NOTE Inquisitive readers should investigate the source code of the standard library’s pointer types.
For example, the std::cell::RefCell type is documented at https://doc.rust-
lang.org/std/cell/struct.RefCell.html. Clicking the [src] button on that web page directs you to the type’s
definition.

https://doc.rust-lang.org/std/cell/struct.RefCell.html


6.3 Providing programs with memory for
their data

This section attempts to demystify the terms the stack and the heap. These
terms often appear in contexts that presuppose you already know what they
mean. That isn’t the case here. We’ll cover the details of what they are, why
they exist, and how to make use of that knowledge to make your programs
leaner and faster.

Some people hate wading through the details, though. For those readers, here
is the salient difference between the stack and the heap:

The stack is fast.

The heap is slow.

That difference leads to the following axiom: “When in doubt, prefer the
stack.” To place data onto the stack, the compiler must know the type’s size
at compile time. Translated to Rust, that means, “When in doubt, use types
that implement Sized.” Now that you’ve got the gist of those terms, it’s
time to learn when to take the slow path and how to avoid it when you want
to take a faster one.

6.3.1 The stack

The stack is often described by analogy. Think of a stack of dinner plates
waiting in the cupboard of a commercial kitchen. Cooks are taking plates off
the stack to serve food, and dishwashers are placing new plates on the top.

The unit (the plate) of a computing stack is the stack frame, also known as



the allocation record. You are probably used to thinking of this as a group of
variables and other data. Like many descriptions in computing, the stack and
the heap are analogies that only partially fit. Even though the stack is often
compared by analogy to a stack of dinner plates waiting in the cupboard,
unfortunately, that mental picture is inaccurate. Here are some differences:

The stack actually contains two levels of objects: stack frames and data.

The stack grants programmers access to multiple elements stored within
it, rather than the top item only.

The stack can include elements of arbitrary size, where the implication
of the dinner plate analogy is that all elements must be of the same size.

So why is the stack called the stack? Because of the usage pattern. Entries on
the stack are made in a Last In, First Out (LIFO) manner.

The entries in the stack are called stack frames. Stack frames are created as
function calls are made. As a program progresses, a cursor within the CPU
updates to reflect the current address of the current stack frame. The cursor is
known as the stack pointer.

As functions are called within functions, the stack pointer decreases in value
as the stack grows. When a function returns, the stack pointer increases.

Stack frames contain a function’s state during the call. When a function is
called within a function, the older function’s values are effectively frozen in
time. Stack frames are also known as activation frames, and less commonly
allocation records.1

Unlike dinner plates, every stack frame is a different size. The stack frame
contains space for its function’s arguments, a pointer to the original call site,
and local variables (except the data which is allocated on the heap).



NOTE If you are unfamiliar with what the term call site means, see the CPU emulation section in
chapter 5.

To understand what is happening more fully, let’s consider a thought
experiment. Imagine a diligent, yet absurdly single-minded cook in a
commercial kitchen. The cook takes each table’s docket and places those in a
queue. The cook has a fairly bad memory, so each current order is written
down a notebook. As new orders come in, the cook updates the notebook to
refer to the new order. When orders are complete, the notebook page is
changed to the next item in the queue. Unfortunately, for customers in this
restaurant, the book operates in a LIFO manner. Hopefully, you will not be
one of the early orders during tomorrow’s lunch rush.

In this analogy, the notebook plays the role of the stack pointer. The stack
itself is comprised of variable-length dockets, representing stack frames. Like
stack frames, restaurant dockets contain some metadata. For example, the
table number can act as the return address.

The stack’s primary role is to make space for local variables. Why is the
stack fast? All of a function’s variables are side by side in memory. That
speeds up access.

Improving the ergonomics of functions that can
only accept String or &str

As a library author, it can simplify downstream application code if your functions can accept
both &str and String types. Unfortunately, these two types have different representations in
memory. One (&str) is allocated on the stack, the other (String) allocates memory on the
heap. That means that types cannot be trivially cast between one another. It’s possible, however,
to work around this with Rust’s generics.
Consider the example of validating a password. For the purposes of the example, a strong



password is one that’s at least 6 characters long. The following shows how to validate the
password by checking its length:

fn is_strong(password: String) -> bool {

    password.len() > 5

}

is_strong can only accept String. That means that the following code won’t work:

let pw = "justok";

let is_strong = is_strong(pw);

But generic code can help. In cases where read-only access is required, use functions with the
type signature fn x<T: AsRef<str>> (a: T) rather than fn x(a: String).
The fairly unwieldy type signature reads “as function x takes an argument password of type
T, where T implements AsRef<str>.” Implementors of AsRef<str> behave as a
reference to str even when these are not.
Here is the code snippet again for the previous listing, accepting any type T that implements
AsRef<str>. It now has the new signature in place:

fn is_strong<T: AsRef<str>>(password: T) -> bool {     ①

    password.as_ref().len() > 5

}

① Provides a String or a &str as password
When read-write access to the argument is required, normally you can make use of
AsRef<T>'s sibling trait AsMut<T>. Unfortunately for this example, &'static str
cannot become mutable and so another strategy can be deployed: implicit conversion.
It’s possible to ask Rust to accept only those types that can be converted to String. The
following example performs that conversion within the function and applies any required
business logic to that newly created String. This can circumvent the issue of &str being an
immutable value.

fn is_strong<T: Into<String>>(password: T) -> bool {

    password.into().len() > 5

}

This implicit conversion strategy does have significant risks, though. If a string-ified version of
the password variable needs to be created multiple times in the pipeline, it would be much
more efficient to require an explicit conversion within the calling application. That way the
String would be created once and reused.



6.3.2 The heap

This section introduces the heap. The heap is an area of program memory for
types that do not have known sizes at compile time.

What does it mean to have no known size at compile time? In Rust, there are
two meanings. Some types grow and shrink over time as required. Obvious
cases are String and Vec<T>. Other types are unable to tell the Rust
compiler how much memory to allocate even though these don’t change size
at runtime. These are known as dynamically sized types. Slices ([T]) are the
commonly cited example. Slices have no compile-time length. Internally,
these are a pointer to some part of an array. But slices actually represent some
number of elements within that array.

Another example is a trait object, which we’ve not described in this book so
far. Trait objects allow Rust programmers to mimic some features of dynamic
languages by allowing multiple types to be wedged into the same container.

WHAT IS THE HEAP?

You will gain a fuller understanding of what the heap is once you work
through the next section on virtual memory. For now, let’s concentrate on
what it is not. Once those points are clarified, we’ll then work our way back
toward some form of truth.

The word “heap” implies disorganization. A closer analogy would be
warehouse space in some medium-sized business. As deliveries arrive (as
variables are created), the warehouse makes space available. As the business
carries out its work, those materials are used, and the warehouse space can
now be made available for new deliveries. At times, there are gaps and
perhaps a bit of clutter. But overall, there is a good sense of order.



Another mistake is that the heap has no relationship to the data structure that
is also known as a heap. That data structure is often used to create priority
queues. It’s an incredibly clever tool in its own right, but right now it’s a
complete distraction. The heap is not a data structure. It’s an area of memory.

Now that those two distinctions are made, let’s inch toward an explanation.
The critical difference from a usage point of view is that variables on the
heap must be accessed via a pointer, whereas this is not required with
variables accessed on the stack.

Although it’s a trivial example, let’s consider two variables, a and b. These
both represent the integers 40 and 60, respectively. In one of those cases
though, the integer happens to live on the heap, as in this example:

let a: i32 = 40;

let b: Box<i32> = Box::new(60);

Now, let’s demonstrate that critical difference. The following code won’t
compile:

let result = a + b;

The boxed value assigned to b is only accessible via a pointer. To access that
value, we need to dereference it. The dereference operator is a unary *,
which prefixes the variable name:

let result = a + *b;

This syntax can be difficult to follow at first because the symbol is also used
for multiplication. It does, however, become more natural over time. The
following listing shows a complete example where creating variables on the
heap implies constructing that variable via a pointer type such as Box<T>.



Listing 6.6  Creating variables on the heap

fn main() {

    let a: i32 = 40;                            ①

    let b: Box<i32> = Box::new(60);             ②

 

    println!("{} + {} = {}", a, b, a + *b);     ③

 

}

① 40 lives on the stack.

② 60 lives on the heap.

③ To access 60, we need to dereference it.

To get a feel for what the heap is and what is happening within memory as a
program runs, let’s consider a tiny example. In this example, all we will do is
to create some numbers on the heap and then add their values together. When
run, the program in listing 6.7 produces some fairly trivial output: two 3s.
Still, it’s really the internals of the program’s memory that are important here,
not its results.

The code for the next listing is in the file ch6/ch6-heap-via-box/src/main.rs.
A pictorial view of the program’s memory as it runs (figure 6.5) follows the
code. Let’s first look at the program’s output:

3 3

Listing 6.7 Allocating and deallocating memory on the heap via
Box<T>

 1 use std::mem::drop;                   ①

 2  

 3 fn main() {

 4     let a = Box::new(1);              ②

 5     let b = Box::new(1);              ②

 6     let c = Box::new(1);              ②

 7  

 8     let result1 = *a + *b + *c;       ③

 9  



10     drop(a);                          ④

11     let d = Box::new(1);

12     let result2 = *b + *c + *d;

13  

14     println!("{} {}", result1, result2);

15 }

① Brings manual drop() into local scope

② Allocates values on the heap

③ The unary *, the dereference operator, returns the value within the box, and result1 holds the value
3.

④ Invokes drop(), freeing memory for other uses

Listing 6.7 places four values on the heap and removes one. It contains some
new or, at least, less familiar syntax that might be worthwhile to cover and/or
recap:

Box::new(T) allocates T on the heap. Box is a term that can be
deceptive if you don’t share its intuition.

Something that has been boxed lives on the heap, with a pointer to it on
the stack. This is demonstrated in the first column of figure 6.5, where
the number 0x100 at address 0xfff points to the value 1 at address
0x100. However, no actual box of bytes encloses a value, nor is the
value hidden or concealed in some way.

std::mem::drop brings the function drop() into local scope.
drop() deletes objects before their scope ends.

Types that implement Drop have a drop() method, but explicitly
calling it is illegal within user code. std::mem::drop is an
escape hatch from that rule.

Asterisks next to variables (*a, *b, *c, and *d) are unary operators.



This is the dereference operator. Dereferencing a Box::(T) returns
T. In our case, the variables a, b, c, and d are references that refer to
integers.

In figure 6.5, each column illustrates what happens inside memory at 6 lines
of code. The stack appears as the boxes along the top, and the heap appears
along the bottom. The figure omits several details, but it should help you gain
an intuition about the relationship between the stack and the heap.

NOTE If you have experience with a debugger and want to explore what is happening, be sure to
compile your code with no optimizations. Compile your code with cargo build (or cargo
run) rather than cargo build --release. Using the --release flag actually ends up
optimizing all the allocations and arithmetic. If you are invoking rustc manually, use the command
rustc --codegen opt-level=0.

 





Figure 6.5 A view into a program’s memory layout during the execution
of listing 6.7

6.3.3 What is dynamic memory allocation?

At any given time, a running program has a fixed number of bytes with which
to get its work done. When the program would like more memory, it needs to
ask for more from the OS. This is known as dynamic memory allocation and
is shown in figure 6.6. Dynamic memory allocation is a three-step process:

1. Request memory from the OS via a system call. In the UNIX family of
operating systems, this system call is alloc(). In MS Windows, the
call is HeapAlloc().

2. Make use of the allocated memory in the program.

3. Release memory that isn’t needed back to the OS via free() for
UNIX systems and HeapFree() for Windows.

Figure 6.6 Conceptual view of dynamic memory allocation. Requests for
memory originate and terminate at the program level but involve several



other components. At each stage, the components may short-circuit the
process and return quickly.

As it turns out, there is an intermediary between the program and the OS: the
allocator, a specialist subprogram that is embedded in your program behind
the scenes. It will often perform optimizations that avoid lots of work within
the OS and CPU.

Let’s examine the performance impact of dynamic memory allocation and
strategies to reduce that impact. Before starting, let’s recap why there’s a
performance difference between the stack and the heap. Remember that the
stack and the heap are conceptual abstractions only. These do not exist as
physical partitions of your computer’s memory. What accounts for their
different performance characteristics?

Accessing data on the stack is fast because a function’s local variables, which
are allocated on the stack, reside next to each other in RAM. This is
sometimes referred to as a contiguous layout.

A contiguous layout is cache-friendly. Alternatively, variables allocated on
the heap are unlikely to reside next to each other. Moreover, accessing data
on the heap involves dereferencing the pointer. That implies a page table
lookup and a trip to main memory. Table 6.1 summarizes these differences.

Table 6.1 A simplistic, yet practical table for comparing the stack and
the heap

Stack Heap
Simple Complex

Safe Dangerous*

Fast Slow

Rigid Flexible



* Not in safe Rust!

There is a trade-off for the stack’s increased speed. Data structures on the
stack must stay the same size during the lifetime of the program. Data
structures allocated on the heap are more flexible. Because these are accessed
via a pointer, that pointer can be changed.

To quantify this impact, we need to learn how to measure the cost. To get a
large number of measurements, we need a program that creates and destroys
many values. Let’s create a toy program. Figure 6.7 shows show a
background element to a video game.



Figure 6.7 Screenshots from the result of running listing 6.9

After running listing 6.9, you should see a window appear on your screen
filled with a dark grey background. White snow-like dots will start to float
from the bottom and fade as they approach the top. If you check the console
output, streams of numbers will appear. Their significance will be explained
once we discuss the code. Listing 6.9 contains three major sections:

A memory allocator (the ReportingAllocator struct) records
the time that dynamic memory allocations take.



Definitions of the structs World and Particle and how these
behave over time.

The main() function deals with window creation and initialization.

The following listing shows the dependencies for our toy program (listing
6.9). The source for the following listing is in ch6/ch6-particles/Cargo.toml.
The source for listing 6.9 is in ch6/ch6-particles/main.rs.

Listing 6.8 Build dependencies for listing 6.9

[package]

name = "ch6-particles"

version = "0.1.0"

authors = ["TS McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

piston_window = "0.117"       ①

 

piston2d-graphics = "0.39"    ②

 

rand = "0.8"                  ③

① Provides a wrapper around the core functionality of the piston game engine, letting us easily draw
things onscreen; largely irrespective of the host environment

② Provides vector mathematics, which is important to simulate movement

③ Provides random number generators and associated functionality

Listing 6.9 A graphical application to create and destroy objects on the
heap

  1 use graphics::math::{Vec2d, add, mul_scalar};            ①

  2  

  3 use piston_window::*;                                    ②

  4  

  5 use rand::prelude::*;                                    ③

  6  

  7 use std::alloc::{GlobalAlloc, System, Layout};           ④

  8  

  9 use std::time::Instant;                                  ⑤

 10  

 11  



 12 #[global_allocator]                                      ⑥

 13 static ALLOCATOR: ReportingAllocator = ReportingAllocator;

 14  

 15 struct ReportingAllocator;                               ⑦

 16  

 17 unsafe impl GlobalAlloc for ReportingAllocator {

 18   unsafe fn alloc(&self, layout: Layout) -> *mut u8 {

 19     let start = Instant::now();

 20     let ptr = System.alloc(layout);                      ⑧

 21     let end = Instant::now();

 22     let time_taken = end - start;

 23     let bytes_requested = layout.size();

 24  

 25     eprintln!("{}\t{}", bytes_requested, time_taken.as_nanos());

 26     ptr

 27   }

 28  

 29   unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {

 30     System.dealloc(ptr, layout);

 31   }

 32 }

 33  

 34 struct World {                                           ⑨

 35   current_turn: u64,                                     ⑨

 36   particles: Vec<Box<Particle>>,                         ⑨

 37   height: f64,                                           ⑨

 38   width: f64,                                            ⑨

 39   rng: ThreadRng,                                        ⑨

 40 }

 41  

 42 struct Particle {                                        ⑩

 43   height: f64,                                           ⑩

 44   width: f64,                                            ⑩

 45   position: Vec2d<f64>,                                  ⑩

 46   velocity: Vec2d<f64>,                                  ⑩

 47   acceleration: Vec2d<f64>,                              ⑩

 48   color: [f32; 4],                                       ⑩

 49 }

 50  

 51 impl Particle {

 52   fn new(world : &World) -> Particle {

 53     let mut rng = thread_rng();

 54     let x = rng.gen_range(0.0..=world.width);            ⑪

 55     let y = world.height;                                ⑪

 56     let x_velocity = 0.0;                                ⑫

 57     let y_velocity = rng.gen_range(-2.0..0.0);           ⑫

 58     let x_acceleration = 0.0;                            ⑬

 59     let y_acceleration = rng.gen_range(0.0..0.15);       ⑬

 60  

 61     Particle {

 62       height: 4.0,

 63       width: 4.0,

 64       position: [x, y].into(),                           ⑭

 65       velocity: [x_velocity, y_velocity].into(),         ⑭



 66       acceleration: [x_acceleration,

 67                      y_acceleration].into(),             ⑭

 68       color: [1.0, 1.0, 1.0, 0.99],                      ⑮

 69     }

 70   }

 71  

 72   fn update(&mut self) {

 73     self.velocity = add(self.velocity,

 74                         self.acceleration);              ⑯

 75     self.position = add(self.position,

 76                         self.velocity);                  ⑯

 77     self.acceleration = mul_scalar(                      ⑰

 78       self.acceleration,                                 ⑰

 79       0.7                                                ⑰

 80     );                                                   ⑰

 81     self.color[3] *= 0.995;                              ⑱

 82   }

 83 }

 84  

 85 impl World {

 86   fn new(width: f64, height: f64) -> World {

 87     World {

 88       current_turn: 0,

 89       particles: Vec::<Box<Particle>>::new(),            ⑲

 90       height: height,

 91       width: width,

 92       rng: thread_rng(),

 93     }

 94   }

 95  

 96   fn add_shapes(&mut self, n: i32) {

 97     for _ in 0..n.abs() {

 98       let particle = Particle::new(&self);               ⑳

 99       let boxed_particle = Box::new(particle);           ㉑

100       self.particles.push(boxed_particle);               ㉒

101     }

102   }

103  

104   fn remove_shapes(&mut self, n: i32) {

105     for _ in 0..n.abs() {

106       let mut to_delete = None;

107  

108       let particle_iter = self.particles                 ㉓

109         .iter()                                          ㉓

110         .enumerate();                                    ㉓

111  

112       for (i, particle) in particle_iter {               ㉔

113         if particle.color[3] < 0.02 {                    ㉔

114           to_delete = Some(i);                           ㉔

115         }                                                ㉔

116         break;                                           ㉔

117       }                                                  ㉔

118                                                          ㉔

119       if let Some(i) = to_delete {                       ㉔



120         self.particles.remove(i);                        ㉔

121       } else {                                           ㉔

122         self.particles.remove(0);                        ㉔

123       };                                                 ㉔

124     }

125   }

126  

127   fn update(&mut self) {

128     let n = self.rng.gen_range(-3..=3);                  ㉕

129  

130     if n > 0 {

131       self.add_shapes(n);

132     } else {

133       self.remove_shapes(n);

134     }

135  

136     self.particles.shrink_to_fit();

137     for shape in &mut self.particles {

138       shape.update();

139     }

140     self.current_turn += 1;

141   }

142 }

143  

144 fn main() {

145   let (width, height) = (1280.0, 960.0);

146   let mut window: PistonWindow = WindowSettings::new(

147     "particles", [width, height]

148   )

149   .exit_on_esc(true)

150   .build()

151   .expect("Could not create a window.");

152  

153   let mut world = World::new(width, height);

154   world.add_shapes(1000);

155  

156   while let Some(event) = window.next() {

157     world.update();

158  

159     window.draw_2d(&event, |ctx, renderer, _device| {

160       clear([0.15, 0.17, 0.17, 0.9], renderer);

161  

162       for s in &mut world.particles {

163         let size = [s.position[0], s.position[1], s.width, s.height];

164         rectangle(s.color, size, ctx.transform, renderer);

165       }

166     });

167   }

168 }

① graphics::math::Vec2d provides mathematical operations and conversion functionality for 2D
vectors.



② piston_window provides the tools to create a GUI program and draws shapes to it.

③ rand provides random number generators and related functionality.

④ std::alloc provides facilities for controlling memory allocation.

⑤ std::time provides access to the system’s clock.

⑥ #[global_allocator] marks the following value (ALLOCATOR) as satisfying the GlobalAlloc trait.

⑦ Prints the time taken for each allocation to STDOUT as the program runs. This provides a fairly
accurate indication of the time taken for dynamic memory allocation.

⑧ Defers the actual memory allocation to the system’s default memory allocator

⑨ Contains the data that is useful for the lifetime of the program

⑲ Defines an object in 2D space

⑪ Starts at a random position along the bottom of the window

⑫ Rises vertically over time

⑬ Increases the speed of the rise over time

⑭ into() converts the arrays of type [f64; 2] into Vec2d.

⑮ Inserts a fully saturated white that has a tiny amount of transparency

⑯ Moves the particle to its next position

⑰ Slows down the particle’s rate of increase as it travels across the screen

⑱ Makes the particle more transparent over time

⑲ Uses Box<Particle> rather than Particle to incur an extra memory allocation when every particle is
created

⑳ Creates a Particle as a local variable on the stack

㉑ Takes ownership of particle, moving its data to the heap, and creates a reference to that data on the
stack

㉒ Pushes the reference into self.shapes

㉓ particle_iter is split into its own variable to more easily fit on the page.

㉔ For n iterations, removes the first particle that’s invisible. If there are no invisible particles, then
removes the oldest.

㉕ Returns a random integer between –3 and 3, inclusive

Listing 6.9 is a fairly long code example, but hopefully, it does not contain
any code that’s too alien compared to what you’ve already seen. Toward the
end, the code example introduces Rust’s closure syntax. If you look at the
call to window.draw_2d(), it has a second argument with vertical
bars surrounding two variable names (|ctx, renderer,



_device| { ... }). Those vertical bars provide space for the
closure’s arguments, and the curly braces are its body.

A closure is a function that is defined in line and can access variables from its
surrounding scope. These are often called anonymous or lambda functions.

Closures are a common feature within idiomatic Rust code, but this book
tends to avoid those where possible to keep examples approachable to
programmers from an imperative or object-oriented background. Closures are
explained fully in chapter 11. In the interim, it’s sufficient to say that these
are a convenient shorthand for defining functions. Let’s next focus on
generating some evidence that allocating variables on the heap (many
millions of times) can have a performance impact on your code.

6.3.4 Analyzing the impact of dynamic memory
allocation

If you run listing 6.9 from a terminal window, you’ll soon see two columns
of numbers filling it up. These columns represent the number of bytes
allocated, and the duration in nanoseconds taken to fulfil the request. That
output can be sent to a file for further analysis, as shown in the following
listing, which redirects stderr from ch6-particles to a file.

Listing 6.10 Creating a report of memory allocations

$ cd ch6-particles 

 

$ cargo run -q 2> alloc.tsv      ①

 

$ head alloc.tsv                 ②

4       219

5       83

48      87

9       78

9       93



19      69

15      960

16      40

14      70

16      53

① Runs ch6-particles in quiet mode

② Views the first 10 lines of output

One interesting aspect from this short extract is that memory allocation speed
is not well-correlated with allocation size. When every heap allocation is
plotted, this becomes even clearer as figure 6.8 shows.

Figure 6.8 Plotting heap allocation times against allocation size shows
that there is no clear relationship between the two. The time taken to
allocate memory is essentially unpredictable, even when requesting the
same amount of memory multiple times.

To generate your own version of figure 6.8, the following listing shows a



gnuplot script that can be tweaked as desired. You’ll find this source in the
file ch6/alloc.plot.

Listing 6.11 Script used to generate figure 6.8 with gnuplot

set key off

set rmargin 5

set grid ytics noxtics nocbtics back

set border 3 back lw 2 lc rgbcolor "#222222"

 

set xlabel "Allocation size (bytes)"

set logscale x 2

set xtics nomirror out

set xrange [0 to 100000]

 

set ylabel "Allocation duration (ns)"

set logscale y

set yrange [10 to 10000]

set ytics nomirror out

 

plot "alloc.tsv" with points \

    pointtype 6 \

    pointsize 1.25 \

    linecolor rgbcolor "#22dd3131"

Although larger memory allocations do tend to take longer than shorter ones,
it’s not guaranteed. The range of durations for allocating memory of the same
number is over an order of magnitude. It might take 100 nanoseconds; it
might take 1,000.

Does it matter? Probably not. But it might. If you have a 3 GHz CPU, then
your processor is capable of performing 3 billion operations per second. If
there is a 100 nanosecond delay between each of those operations, your
computer can only perform 30 million operations in the same time frame.
Perhaps those hundreds of microseconds really do count for your application.
Some general strategies for minimizing heap allocations include

Using arrays of uninitialized objects. Instead of creating objects from
scratch as required, create a bulk lot of those with zeroed values. When
the time comes to activate one of those objects, set its values to non-



zero. This can be a very dangerous strategy because you’re
circumventing Rust’s lifetime checks.

Using an allocator that is tuned for your application’s access memory
profile. Memory allocators are often sensitive to the sizes where these
perform best.

Investigate arena::Arena and arena::TypedArena.
These allow objects to be created on the fly, but alloc() and
free() are only called when the arena is created and destroyed.



6.4 Virtual memory

This section explains what the term virtual memory means and why it exists.
You will be able to use this knowledge to speed up your programs by
building software that goes with the grain. CPUs can compute faster when
they’re able to access memory quickly. Understanding some of the dynamics
of the computer architecture can help to provide CPUs with memory
efficiently.

6.4.1 Background

I have spent far too much of my life playing computer games. As enjoyable
and challenging as I’ve found these, I’ve often wondered about whether I
would have been better off spending my teenage years doing something more
productive. Still, it’s left me with plenty of memories. But some of those
memories still leave a bitter taste.

Occasionally, someone would enter the game and obliterate everyone with
near perfect aim and seemingly impossibly high health ratings. Other players
would decry, “Cheater!” but were more or less helpless in defeat. While
waiting in in-game purgatory, I would sit wondering, “How is that possible?
How are those tweaks to the game actually made?”

By working through this section’s examples, you would have built the core of
a tool that’s capable of inspecting and modifying values of a running
program.

Terms related to virtual memory



Terminology within this area is particularly arcane. It is often tied to decisions made many
decades ago when the earliest computers were being designed. Here is a quick reference to some
of the most important terms:

Page—A fixed-size block of words of real memory. Typically 4 KB in size for 64-bit
operating systems.

Word—Any type that is size of a pointer. This corresponds to the width of the CPU’s
registers. In Rust, usize and isize are word-length types.

Page fault—An error raised by the CPU when a valid memory address is requested
that is not currently in physical RAM. This signals to the OS that at least one page
must be swapped back into memory.

Swapping—Migrating a page of memory stored temporarily on disk from main
memory upon request.

Virtual memory—The program’s view of its memory. All data accessible to a program
is provided in its address space by the OS.

Real memory—The operating system’s view of the physical memory available on the
system. In many technical texts, real memory is defined independently from physical
memory, which becomes much more of an electrical engineering term.

Page table—The data structure maintained by the OS to manage translating from
virtual to real memory.

Segment—A block within virtual memory. Virtual memory is divided into blocks to
minimize the space required to translate between virtual and physical addresses.

Segmentation fault—An error raised by the CPU when an illegal memory address is
requested.

MMU—A component of the CPU that manages memory address translation. Maintains
a cache of recently translated addresses (called the TLB), which stands for the
translation lookaside buffer, although that terminology has fallen from fashion.

One term that has not been defined in any technical sense so far in this book is process. If you’ve
encountered it before and have been wondering why it has been omitted, it will be introduced
properly when we talk about concurrency. For now, consider the terms process and its peer
operating system process to refer to a running program.

6.4.2 Step 1: Having a process scan its own memory

Intuitively, a program’s memory is a series of bytes that starts at location 0



and ends at location n. If a program reports 100 KB of RAM usage, it would
seem that n would be somewhere near 100,000. Let’s test that intuition.

We’ll create a small command-line program that looks through memory,
starting at location 0 and ending at 10,000. As it’s a small program, it
shouldn’t occupy more than 10,000 bytes. But when executed, the program
will not perform as intended. Sadly, it will crash. You’ll learn why the crash
occurs as you follow through this section.

Listing 6.12 shows the command-line program. You can find its source in
ch6/ch6-memscan-1/src/main.rs. The listing scans through a running
program’s memory byte by byte, starting at 0. It introduces the syntax for
creating raw pointers and dereferencing (reading) those.

Listing 6.12 Attempting to scan a running program’s memory byte by
byte

 1 fn main() {

 2     let mut n_nonzero = 0;

 3  

 4     for i in 0..10000 {

 5         let ptr = i as *const u8;              ①

 6         let byte_at_addr = unsafe { *ptr };    ②

 7  

 8         if byte_at_addr != 0 {

 9             n_nonzero += 1;

10         }

11     }

12  

13     println!("non-zero bytes in memory: {}", n_nonzero);

14 }

① Converts i to a *const T, a raw pointer of type u8 to inspect raw memory addresses. We treat every
address as a unit, ignoring the fact that most values span multiple bytes.

② Dereferences the pointer, it reads the value at address i. Another way of saying this is “read the
value being pointed to.”

Listing 6.12 crashes because it is attempting to dereference a NULL pointer.



When i equals 0, ptr can’t really be dereferenced. Incidentally, this is why
all raw pointer dereferences must occur within an unsafe block.

How about we attempt to start from a non-zero memory address? Given that
the program is executable code, there should be at least several thousand
bytes of non-zero data to iterate through. The following listing scans the
process’s memory starting from 1 to avoid dereferencing a NULL pointer.

Listing 6.13 Scanning a process’s memory

 1 fn main() {

 2     let mut n_nonzero = 0;

 3  

 4     for i in 1..10000 {             ①

 5         let ptr = i as *const u8;

 6         let byte_at_addr = unsafe { *ptr };

 7  

 8         if byte_at_addr != 0 {

 9             n_nonzero += 1;

10         }

11     }

12  

13     println!("non-zero bytes in memory: {}", n_nonzero);

14 }

① Starts at 1 rather than 0 to avoid a NULL pointer exception

This unfortunately does not completely solve the issue. Listing 6.13 still
crashes upon execution, and the number of non-zero bytes is never printed to
the console. This is due to what’s known as a segmentation fault.

Segmentation faults are generated when the CPU and OS detect that your
program is attempting to access memory regions that they aren’t entitled to.
Memory regions are divided into segments. That explains the name.

Let’s try a different approach. Rather than attempting to scan through bytes,
let’s look for the addresses of things that we know exist. We’ve spent lots of
time learning about pointers, so let’s put that to use. Listing 6.14 creates



several values, examining their addresses.

Every run of listing 6.14 may generate unique values. Here is the output of
one run:

GLOBAL:    0x7ff6d6ec9310

local_str: 0x7ff6d6ec9314

local_int: 0x23d492f91c

boxed_int: 0x18361b78320

boxed_str: 0x18361b78070

fn_int:    0x23d492f8ec

As you can see, values appear to be scattered across a wide range. So despite
your program (hopefully) only needing a few kilobytes of RAM, a few
variables live in giant locations. These are virtual addresses.

As explained in the heap versus stack section, the stack starts at the top of the
address space and the heap starts near the bottom. In this run, the highest
value is 0x7ff6d6ec9314. That’s approximately 264 ÷ 2. That number
is due to the OS reserving half of the address space for itself.

The following listing returns the address of several variables within a
program to examine its address space. The source for this listing in ch6/ch6-
memscan-3/src/main.rs.

Listing 6.14 Printing the address of variables within a program

static GLOBAL: i32 = 1000;             ①

 

fn noop() -> *const i32 {

    let noop_local = 12345;            ②

    &noop_local as *const i32          ③

}

 

fn main() {

    let local_str = "a";               ④

    let local_int = 123;               ④

    let boxed_str = Box::new('b');     ④

    let boxed_int = Box::new(789);     ④

    let fn_int = noop();               ④



 

    println!("GLOBAL:    {:p}", &GLOBAL as *const i32);

    println!("local_str: {:p}", local_str as *const str);

    println!("local_int: {:p}", &local_int as *const i32);

    println!("boxed_int: {:p}", Box::into_raw(boxed_int));

    println!("boxed_str: {:p}", Box::into_raw(boxed_str));

    println!("fn_int:    {:p}", fn_int);}

① Creates a global static, which is a global variable in Rust programs

② Creates a global static, which is a global variable in Rust programs

③ Creates a local variable within noop() so that something outside of main() has a memory address

④ Creates various values of several types including values on the heap

By now, you should be pretty good at accessing addresses of stored values.
There are actually two small lessons that you may have also picked up on:

Some memory addresses are illegal. The OS will shut your program
down if it attempts to access memory that is out of bounds.

Memory addresses are not arbitrary. Although values seem to be spread
quite far apart within the address space, values are clustered together
within pockets.

Before pressing on with the cheat program, let’s step back and look at the
system that’s operating behind the scenes to translate these virtual addresses
to real memory.

6.4.3 Translating virtual addresses to physical
addresses

Accessing data in a program requires virtual addresses—the only addresses
that the program itself has access to. These get translated into physical
addresses. This process involves a dance between the program, the OS, the
CPU, the RAM hardware, and occasionally hard drives and other devices.
The CPU is responsible for performing this translation, but the OS stores the



instructions.

CPUs contain a memory management unit (MMU) that is designed for this
one job. For every running program, every virtual address is mapped to a
physical address. Those instructions are stored at a predefined address in
memory as well. That means, in the worst case, every attempt at accessing
memory addresses incurs two memory lookups. But it’s possible to avoid the
worst case.

The CPU maintains a cache of recently translated addresses. It has its own
(fast) memory to speed up accessing memory. For historic reasons, this cache
is known as the translation lookaside buffer, often abbreviated as TLB.
Programmers optimizing for performance need to keep data structures lean
and avoid deeply nested structures. Reaching the capacity of the TLB
(typically around 100 pages for x86 processors) can be costly.

Looking into how the translation system operates reveals more, often quite
complex, details. Virtual addresses are grouped into blocks called pages,
which are typically 4 KB in size. This practice avoids the need to store a
translation mapping for every single variable in every program. Having a
uniform size for each page also assists in avoiding a phenomenon known as
memory fragmentation, where pockets of empty, yet unusable, space appear
within available RAM.

NOTE This is a general guide only. The details of how the OS and CPU cooperate to manage
memory differs significantly in some environments. In particular, constrained environments such as
microcontrollers can use real addressing. For those interested in learning more, the research field is
known as computer architecture.

The OS and CPU can play some interesting tricks when data lives within
pages of virtual memory. For example

Having a virtual address space allows the OS to overallocate. Programs



that ask for more memory than the machine can physically provide are
able to be accommodated.

Inactive memory pages can be swapped to disk in a byte-for-byte
manner until it’s requested by the active program. Swapping is often
used during periods of high contention for memory but can be used
more generally, depending on an operating system’s whims.

Other size optimizations such as compression can be performed. A
program sees its memory intact. Behind the scenes, the OS compresses
the program’s wasteful data usage.

Programs are able to share data quickly. If your program requests a
large block of zeroes, say, for a newly created array, the OS might point
you towards a page filled with zeroes that is currently being used by
three other programs. None of the programs are aware that the others are
looking at the same physical memory, and the zeroes have different
positions within their virtual address space.

Paging can speed up the loading of shared libraries. As a special case
of the previous point, if a shared library is already loaded by another
program, the OS can avoid loading it into memory twice by pointing the
new program to the old data.

Paging adds security between programs. As you discovered earlier in
this section, some parts of the address space are illegal to access. The
OS has other attributes that it can add. If an attempt is made to write to a
read-only page, the OS terminates the program.

Making effective use of the virtual memory system in day-to-day programs
requires thinking about how data is represented in RAM. Here are some
guidelines:

Keep hot working portions of your program within 4 KB of size. This
maintains fast lookups.



If 4 KB is unreasonable for your application, then the next target to keep
under is 4 KB * 100. That rough guide should mean that the CPU can
maintain its translation cache (the TLB) in good order to support your
program.

Avoid deeply nested data structures with pointer spaghetti. If a pointer
points to another page, then performance suffers.

Test the ordering of your nested loops. CPUs read small blocks of bytes,
known as a cache line, from the RAM hardware. When processing an
array, you can take advantage of this by investigating whether you are
doing column-wise or row-wise operations.

One thing to note: virtualization makes this situation worse. If you’re running
an app inside a virtual machine, the hypervisor must also translate addresses
for its guest operating systems. This is why many CPUs ship with
virtualization support, which can reduce this extra overhead. Running
containers within virtual machines adds another layer of indirection and,
therefore, latency. For bare-metal performance, run apps on bare metal.

How does an executable file turn into a
program’s virtual address space?

The layout of executable files (aka binaries) has many similarities to the address space diagram
that we saw earlier in the heap versus stack section of the chapter.
While the exact process is dependent on the OS and file format, the following figure shows a
representative example. Each of the segments of the address space that we have discussed are
described by binary files. When the executable is started, the OS loads the right bytes into the
right places. Once the virtual address space is created, the CPU can be told to jump to the start of
the .text segment, and the program begins executing.



6.4.4 Step 2: Working with the OS to scan an address
space

Our task is to scan our program’s memory while it’s running. As we’ve
discovered, the OS maintains the instructions for mapping between a virtual
address and a physical address. Can we ask the OS to tell us what is
happening?

Operating systems provide an interface for programs to be able to make
requests; this is known as a system call. Within Windows, the KERNEL.DLL



provides the necessary functionality to inspect and manipulate the memory of
a running process.

NOTE Why Windows? Well, many Rust programmers use MS Windows as a platform. Also, its
functions are well named and don’t require as much prior knowledge as the POSIX API.

When you run listing 6.16, you should see lots of output with many sections.
This may be similar to the following:

MEMORY_BASIC_INFORMATION {               ①

    BaseAddress: 0x00007ffbe8d9b000,

    AllocationBase: 0x0000000000000000,

    AllocationProtect: 0,                ②

    RegionSize: 17568124928,

    State: 65536,                        ②

    Protect: 1,                          ②

    Type: 0                              ②

}

MEMORY_BASIC_INFORMATION {

    BaseAddress: 0x00007ffffffe0000,

    AllocationBase: 0x00007ffffffe0000,

    AllocationProtect: 2,

    RegionSize: 65536,

    State: 8192,

    Protect: 1,

    Type: 131072

① This struct is defined within the Windows API.

② These fields are the integer representations of enums defined in the Windows API. It’s possible to
decode these to the enum variant names, but this isn’t available without adding extra code to the
listing.

The following listing shows the dependencies for listing 6.16. You can find
its source in ch6/ch6-meminfo-win/Cargo.toml.

Listing 6.15 Dependencies for listing 6.16

[package]

name = "meminfo"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 



[dependencies]

winapi = "0.2" #           ①

kernel32-sys = "0.2" #     ②

① Defines some useful type aliases

② Provides interaction with KERNEL.DLL from the Windows API

The following listing shows how to inspect memory via the Windows API.
The source code for this listing is in ch6/ch6-meminfo-win/src/main.rs.

Listing 6.16 Inspecting a program’s memory

use kernel32;

use winapi;

 

use winapi::{

    DWORD,                                              ①

    HANDLE,                                             ②

    LPVOID,                                             ②

    PVOID,                                              ③

    SIZE_T,                                             ④

    LPSYSTEM_INFO,                                      ⑤

    SYSTEM_INFO,                                        ⑥

    MEMORY_BASIC_INFORMATION as MEMINFO,                ⑥

};

 

fn main() {

    let this_pid: DWORD;                                ⑦

    let this_proc: HANDLE;                              ⑦

    let min_addr: LPVOID;                               ⑦

    let max_addr: LPVOID;                               ⑦

    let mut base_addr: PVOID;                           ⑦

    let mut proc_info: SYSTEM_INFO;                     ⑦

    let mut mem_info: MEMORY_BASIC_INFORMATION;         ⑦

  

    const MEMINFO_SIZE: usize = std::mem::size_of::<MEMINFO>();

 

    unsafe {                                            ⑧

        base_addr = std::mem::zeroed();

        proc_info = std::mem::zeroed();

        mem_info = std::mem::zeroed();

    }

 

    unsafe {                                            ⑨

        this_pid = kernel32::GetCurrentProcessId();

        this_proc = kernel32::GetCurrentProcess();

        kernel32::GetSystemInfo(                        ⑩

          &mut proc_info as LPSYSTEM_INFO               ⑩

        );                                              ⑩



    };

 

    min_addr = proc_info.lpMinimumApplicationAddress;   ⑪

    max_addr = proc_info.lpMaximumApplicationAddress;   ⑪

 

    println!("{:?} @ {:p}", this_pid, this_proc);

    println!("{:?}", proc_info);

    println!("min: {:p}, max: {:p}", min_addr, max_addr);

 

 

    loop {                                              ⑫

        let rc: SIZE_T = unsafe {

            kernel32::VirtualQueryEx(                   ⑬

                                    this_proc, base_addr,

                                    &mut mem_info, MEMINFO_SIZE as SIZE_T)

        };

 

        if rc == 0 {

            break

        }

 

        println!("{:#?}", mem_info);

        base_addr = ((base_addr as u64) + mem_info.RegionSize) as PVOID;

    }

}

① In Rust, this would be a u32.

② Pointer types for various internal APIs without an associated type. In Rust, std::os::raw::c_void
defines void pointers; a HANDLE is a pointer to some opaque resource within Windows.

③ In Windows, data type names are often prefixed with a shorthand for their type. P stands for pointer;
LP stands for long pointer (e.g., 64 bit).

④ u64 is the usize on this machine.

⑤ A pointer to a SYSTEM_INFO struct

⑥ Some structs defined by Windows internally

⑥ Initializes these variables from within unsafe blocks. To make these accessible in the outer scope,
these need to be defined here.

⑧ This block guarantees that all memory is initialized.

⑨ This block of code is where system calls are made.

⑩ Rather than use a return value, this function makes use of a C idiom to provide its result to the caller.
We provide a pointer to some predefined struct, then read that struct’s new values once the function
returns to see the results.

⑪ Renaming these variables for convenience

⑫ This loop does the work of scanning through the address space.

⑬ Provides information about a specific segment of the running program’s memory address space,



starting at base_addr

Finally, we have been able to explore an address space without the OS killing
our program. Now the question remains: How do we inspect individual
variables and modify those?

6.4.5 Step 3: Reading from and writing to process
memory

Operating systems provide tools to read and write memory, even in other
programs. This is essential for Just-In-Time compilers (JITs), debuggers, and
programs to help people “cheat” at games. On Windows, the general process
looks something like this in Rust-like pseudocode:

let pid = some_process_id;

OpenProcess(pid);

 

loop address space {

    *call* VirtualQueryEx() to access the next memory segment

 

    *scan* the segment by calling ReadProcessMemory(),

    looking for a selected pattern

 

    *call* WriteProcessMemory() with the desired value

}

Linux provides an even simpler API via process_vm_readv() and
process_vm_ writev(). These are analogous to
ReadProcessMemory() and WriteProcessMemory() in
Windows.

Memory management is a complicated area with many levels of abstraction
to uncover. This chapter has tried to focus on those elements that are most
salient to your work as a programmer. Now, when you read your next blog
post on some low-level coding technique, you should be able to follow along



with the terminology.



Summary

Pointers, references, and memory addresses are identical from the
CPU’s perspective, but these are significantly different at the
programming language level.

Strings and many other data structures are implemented with a backing
array pointed to by a pointer.

The term smart pointer refers to data structures that behave like pointers
but have additional capabilities. These almost always incur a space
overhead. Additionally, data can include integer length and capacity
fields or things that are more sophisticated, such as locks.

Rust has a rich collection of smart pointer types. Types with more
features typically incur greater runtime costs.

The standard library’s smart pointer types are built from building blocks
that you can also use to define your own smart pointers if required.

The heap and the stack are abstractions provided by operating systems
and programming languages. These do not exist at the level of the CPU.

Operating systems often provide mechanisms such as memory
allocations to inspect a program’s behavior.

1.To be precise, the activation frame is called a stack frame when allocated on the stack.



7 Files and storage

This chapter covers

Learning how data is represented on physical storage devices
Writing data structures to your preferred file format
Building a tool to read from a file and inspect its contents
Creating a working key-value store that’s immune from corruption

Storing data permanently on digital media is trickier than it looks. This
chapter takes you though some of the details. To transfer information held by
ephemeral electrical charges in RAM to (semi)permanent storage media and
then be able to retrieve it again later takes several layers of software
indirection.

The chapter introduces some new concepts such as how to structure projects
into library crates for Rust developers. This task is needed because one of the
projects is ambitious. By the end of the chapter, you’ll have built a working
key-value store that’s guaranteed to be durable to hardware failure at any
stage. During the chapter, we’ll work through a small number of side quests.
For example, we implement parity bit checking and explore what it means to
hash a value. To start with, however, let’s see if we can create patterns from
the raw byte sequence within files.



7.1 What is a file format?

File formats are standards for working with data as an single, ordered
sequence of bytes. Storage media like hard disk drives work faster when
reading or writing large blocks of data in serial. This contrasts with in-
memory data structures, where data layout has less of an impact.

File formats live in a large design space with trade-offs in performance,
human-readability, and portability. Some formats are highly portable and
self-describing. Others restrict themselves to being accessible within a single
environment and are unable to be read by third-party tools, yet they are high
performance.

Table 7.1 illustrates some of the design space for file formats. Each row
reveals the file format’s internal patterns, which are generated from the same
source text. By color-coding each byte within the file, it’s possible to see
structural differences between each representation.

Table 7.1 The internals of four digital versions of William Shakespeare’s
Much Ado About Nothing produced by Project Gutenberg.

The plain text version of the
play contains printable
characters only. These are
indicated by dark grey for
letters and punctuation, and
white for whitespace.
Visually, the image appears to
be noisy. It lacks internal
structure. That’s due to the



variation in length of the
natural language that the file
represents. A file with regular,
repeating structures, such as a
file format designed to hold
arrays of floating-point
numbers, tends to look quite
different.

The EPUB format is actually a
compressed ZIP archive with
a bespoke file extension.
There are many bytes within
the file that fall out of the
range of the printable category
as indicated by the mid-grey
pixels.

MOBI includes four bands of
NULL bytes (0x00),
represented as black pixels.
These bands probably
represent the result of an
engineering trade-off. In some
sense, these empty bytes are
wasted space. They’re
probably added as padding so
that the file’s sections are easy
to parse later on.
The other notable feature of
this file is its size. It’s larger
than the other versions of the
play. This might imply that
the file is harboring more data
than just the text. Candidates
include display elements like
fonts, or encryption keys that
enforce anti-copying
restrictions within the file.



The HTML file contains a
high proportion of whitespace
characters. These are indicated
by white pixels. Markup
languages like HTML tend to
add whitespace to aid
readability.



7.2 Creating your own file formats for data
storage

When working with data that needs to be stored over a long time, the proper
thing to do is to use a battle-tested database. Despite this, many systems use
plain text files for data storage. Configuration files, for example, are
commonly designed to be both human-readable and machine-readable. The
Rust ecosystem has excellent support for converting data to many on-disk
formats.

7.2.1 Writing data to disk with serde and the bincode
format

The serde crate serializes and deserializes Rust values to and from many
formats. Each format has its own strengths: many are human-readable, while
others prefer to be compact so that they can be speedily sent across the
network.

Using serde takes surprisingly little ceremony. As an example, let’s use
statistics about the Nigerian city of Calabar and store those in multiple output
formats. To start, let’s assume that our code contains a City struct. The
serde crate provides the Serialize and Deserialize traits, and
most code implements these with this derived annotation:

#[derive(Serialize)]     ①

struct City {

    name: String,

    population: usize,

    latitude: f64,

    longitude: f64,



}

① Provides the tooling to enable external formats to interact with Rust code

Populating that struct with data about Calabar is straightforward. This code
snippet shows the implementation:

let calabar = City {

    name: String::from("Calabar"),

    population: 470_000,

    latitude: 4.95,

    longitude: 8.33,

};

Now to convert that calabar variable to JSON-encoded String.
Performing the conversion is one line of code:

let as_json = to_json(&calabar).unwrap();

serde understands many more formats than JSON. The code in listing 7.2
(shown later in this section) also provides similar examples for two lesser-
known formats: CBOR and bincode. CBOR and bincode are more compact
than JSON but at the expense of being machine-readable only.

The following shows the output, formatted for the page, that’s produced by
listing 7.2. It provides a view of the bytes of the calabar variable in
several encodings:

$ cargo run 

   Compiling ch7-serde-eg v0.1.0 (/rust-in-action/code/ch7/ch7-serde-eg)

    Finished dev [unoptimized + debuginfo] target(s) in 0.27s

     Running `target/debug/ch7-serde-eg`

json:

{"name":"Calabar","population":470000,"latitude":4.95,"longitude":8.33}

 

cbor:

[164, 100, 110, 97, 109, 101, 103, 67, 97, 108, 97, 98, 97, 114, 106,

112, 111, 112, 117, 108, 97, 116, 105, 111, 110, 26, 0, 7, 43, 240, 104,

108, 97, 116, 105, 116, 117, 100, 101, 251, 64, 19, 204, 204, 204, 204,



204, 205, 105, 108, 111, 110, 103, 105, 116, 117, 100, 101, 251, 64, 32,

168, 245, 194, 143, 92, 41]

 

bincode:

[7, 0, 0, 0, 0, 0, 0, 0, 67, 97, 108, 97, 98, 97, 114, 240, 43, 7, 0, 0,

0, 0, 0, 205, 204, 204, 204, 204, 204, 19, 64, 41, 92, 143, 194, 245, 168,

32, 64]

 

json (as UTF-8):

{"name":"Calabar","population":470000,"latitude":4.95,"longitude":8.33}

 

cbor (as UTF-8):

dnamegCalabarjpopulation+ hlatitude @ ilongitude @ \)

bincode (as UTF-8):

Calabar + @)\  @

To download the project, enter these commands in the console:

$ git clone https://github.com/rust-in-action/code rust-in-action

$ cd rust-in-action/ch7/ch7-serde-eg 

To create the project manually, create a directory structure that resembles the
following snippet and populate its contents with the code in listings 7.1 and
7.2 from the ch7/ch7-serde-eg directory:

ch7-serde-eg

├── src

│   

└── main.rs         ①

└── Cargo.toml      ②

① See listing 7.2.

② See listing 7.1.

Listing 7.1 Declaring dependencies and setting metadata for listing 7.2

[package]

name = "ch7-serde-eg"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]



bincode = "1"

serde = "1"

serde_cbor = "0.8"

serde_derive = "1"

serde_json = "1"

Listing 7.2 Serialize a Rust struct to multiple formats

 1 use bincode::serialize as to_bincode;                   ①

 2 use serde_cbor::to_vec as to_cbor;                      ①

 3 use serde_json::to_string as to_json;                   ①

 4 use serde_derive::{Serialize};

 5  

 6 #[derive(Serialize)]                                    ②

 7 struct City {

 8     name: String,

 9     population: usize,

10     latitude: f64,

11     longitude: f64,

12 }

13  

14 fn main() {

15     let calabar = City {

16         name: String::from("Calabar"),

17         population: 470_000,

18         latitude: 4.95,

19         longitude: 8.33,

20     };

21  

22     let as_json    =    to_json(&calabar).unwrap();     ③

23     let as_cbor    =    to_cbor(&calabar).unwrap();     ③

24     let as_bincode = to_bincode(&calabar).unwrap();     ③

25  

26     println!("json:\n{}\n", &as_json);

27     println!("cbor:\n{:?}\n", &as_cbor);

28     println!("bincode:\n{:?}\n", &as_bincode);

29     println!("json (as UTF-8):\n{}\n",

30        String::from_utf8_lossy(as_json.as_bytes())

31     );

32     println!("cbor (as UTF-8):\n{:?}\n",

33         String::from_utf8_lossy(&as_cbor)

34     );

35     println!("bincode (as UTF-8):\n{:?}\n",

36         String::from_utf8_lossy(&as_bincode)

37     );

38 }

① These functions are renamed to shorten lines where used.

② Instructs the serde_derive crate to write the necessary code to carry out the conversion from an in-
memory City to on-disk City



③ Serializes into different formats



7.3 Implementing a hexdump clone

A handy utility for inspecting a file’s contents is hexdump, which takes a
stream of bytes, often from a file, and then outputs those bytes in pairs of
hexadecimal numbers. Table 7.2 provides an example. As you know from
previous chapters, two hexadecimal numbers can represent all digits from 0
to 255, which is the number of bit patterns representable within a single byte.
We’ll call our clone fview (short for file view).

Table 7.2 fview in operation

fview input
fn main() {

println!("Hello, world!");

}

fview output
[0x00000000] 0a 66 6e 20 6d 61 69 6e 28 29 20 

7b 0a 20 20 20

[0x00000010] 20 70 72 69 6e 74 6c 6e 21 28 22 

48 65 6c 6c 6f

[0x00000020] 2c 20 77 6f 72 6c 64 21 22 29 3b 

0a 7d

Unless you’re familiar with hexadecimal notation, the output from fview
can be fairly opaque. If you’re experienced at looking at similar output, you
may notice that there are no bytes above 0x7e (127). There are also few
bytes less than 0x21 (33), with the exception of 0x0a (10). Ox0a
represents the newline character (\n). These byte patterns are markers for a
plain text input source.



Listing 7.4 provides the source code that builds the complete fview. But
because a few new features of Rust need to be introduced, we’ll take a few
steps to get to the full program.

We’ll start with listing 7.3, which uses a string literal as input and produces
the output in table 7.2. It demonstrates the use of multiline string literals,
importing the std::io traits via std::io::prelude. This enables
&[u8] types to be read as files via the std::io::Read trait. The
source for this listing is in ch7/ch7-fview-str/src/main.rs.

Listing 7.3 A hexdump clone with hard-coded input that mocks file I/O

 1 use std::io::prelude::*;                           ①

 2  

 3 const BYTES_PER_LINE: usize = 16;

 4 const INPUT: &'static [u8] = br#"                  ②

 5 fn main() {

 6     println!("Hello, world!");

 7 }"#;

 8  

 9 fn main() -> std::io::Result<()> {

10     let mut buffer: Vec<u8> = vec!();              ③

11     INPUT.read_to_end(&mut buffer)?;               ④

12  

13     let mut position_in_input = 0;

14     for line in buffer.chunks(BYTES_PER_LINE) {

15         print!("[0x{:08x}] ", position_in_input);  ⑤

16         for byte in line {

17             print!("{:02x} ", byte);

18         }

19         println!();                                ⑥

20         position_in_input += BYTES_PER_LINE;

21     }

22  

23     Ok(())

24 }

① prelude imports heavily used traits such as Read and Write in I/O operations. It’s possible to include
the traits manually, but they’re so common that the standard library provides this convenience line
to help keep your code compact.

② Multiline string literals don’t need double quotes escaped when built with raw string literals (the r
prefix and the # delimiters). The additional b prefix indicates that this should be treated as bytes (&
[u8]) not as UTF-8 text (&str).



③ Makes space for the program’s input with an internal buffer

④ Reads our input and inserts it into our internal buffer

⑤ Writes the current position with up to 8 left-padded zeros

⑥ Shortcut for printing a newline to stdout

Now that we have seen the intended operation of fview, let’s extend its
capabilities to read real files. The following listing provides a basic
hexdump clone that demonstrates how to open a file in Rust and iterate
through its contents. You’ll find this source in ch7/ch7-fview/src/main.rs.

Listing 7.4 Opening a file in Rust and iterating through its contents

 1 use std::fs::File;

 2 use std::io::prelude::*;

 3 use std::env;

 4  

 5 const BYTES_PER_LINE: usize = 16;     ①

 6  

 7 fn main() {

 8   let arg1 = env::args().nth(1);

 9  

10   let fname = arg1.expect("usage: fview FILENAME");

11  

12   let mut f = File::open(&fname).expect("Unable to open file.");

13   let mut pos = 0;

14   let mut buffer = [0; BYTES_PER_LINE];

15  

16     while let Ok(_) = f.read_exact(&mut buffer) {

17         print!("[0x{:08x}] ", pos);

18         for byte in &buffer {

19             match *byte {

20                 0x00 => print!(".  "),

21                 0xff => print!("## "),

22                 _ => print!("{:02x} ", byte),

23             }

24         }

25  

26         println!("");

27         pos += BYTES_PER_LINE;

28     }

29 }

① Changing this constant changes the program’s output.

Listing 7.4 introduces some new Rust. Let’s look at some of those constructs



now:

while let Ok(_) { ... }— With this control-flow
structure, the program continues to loop until f.read_exact()
returns Err, which occurs when it has run out of bytes to read.

f.read_exact()—This method from the Read trait transfers
data from the source (in our case, f) to the buffer provided as an
argument. It stops when that buffer is full.

f.read_exact() provides greater control to you as a programmer for
managing memory than the chunks() option used in listing 7.3, but it
comes with some quirks. If the buffer is longer than the number of available
bytes to read, the file returns an error, and the state of the buffer is undefined.
Listing 7.4 also includes some stylistic additions:

To handle command-line arguments without using third-party libraries,
we make use of std::env::args(). It returns an iterator over
the arguments provided to the program. Iterators have an nth()
method, which extracts the element at the nth position.

Every iterator’s nth() method returns an Option. When n is larger
than the length of the iterator, None is returned. To handle these
Option values, we use calls to expect().

The expect() method is considered a friendlier version of
unwrap(). expect() takes an error message as an argument,
whereas unwrap() simply panics abruptly.

Using std::env::args() directly means that input is not validated.
That’s a problem in our simple example, but is something to consider for
larger programs.



7.4 File operations in Rust

So far in this chapter, we have invested a lot of time considering how data is
translated into sequences of bytes. Let’s spend some time considering another
level of abstraction—the file. Previous chapters have covered basic
operations like opening and reading from a file. This section contains some
other helpful techniques, which provide more granular control.

7.4.1 Opening a file in Rust and controlling its file
mode

Files are an abstraction that’s maintained by the operating system (OS). It
presents a façade of names and hierarchy above a nest of raw bytes.

Files also provide a layer of security. These have attached permissions that
the OS enforces. This (in principle, at least) is what prevents a web server
running under its own user account from reading files owned by others.

std::fs::File is the primary type for interacting with the filesystem.
There are two methods available for creating a file: open() and
create(). Use open() when you know the file already exists. Table
7.3 explains more of their differences.

Table 7.3 Creating File values in Rust and the effects on the
underlying filesystem

Method Return value
when the file

Effect on the
underlying file

Return value
when no file



already exists exists
File::open Ok(File)* Opened as is in

read-only mode.
Err

File::create Ok(File)* All existing bytes
are truncated, and
the file is opened
at the beginning of
the new file.

Ok(File)*

* Assuming the user account has sufficient permission.

When you require more control, std::fs::OpenOptions is
available. It provides the necessary knobs to turn for any intended
application. Listing 7.16 provides a good example of a case where an append
mode is requested. The application requires a writeable file that is also
readable, and if it doesn’t already exist, it’s created. The following shows an
excerpt from listing 7.16 that demonstrates the use of
std::fs:OpenOptions to create a writeable file. The file is not
truncated when it’s opened.

Listing 7.5 Using std::fs:OpenOptions to create a writeable file

let f = OpenOptions::new()     ①

 

        .read(true)            ②

        .write(true)           ③

        .create(true)          ④

 

        .append(true)          ⑤

        .open(path)?;          ⑥

① An example of the Builder pattern where each method returns a new instance of the OpenOptions
struct with the relevant option set

② Opens the file for reading

③ Enables writing. This line isn’t strictly necessary; it’s implied by append.

④ Creates a file at path if it doesn’t already exist

⑤ Doesn’t delete content that’s already written to disk



⑥ Opens the file at path after unwrapping the intermediate Result

7.4.2 Interacting with the filesystem in a type-safe
manner with std::fs::Path

Rust provides type-safe variants of str and String in its standard
library: std::path:: Path and std::path::PathBuf. You
can use these variants to unambiguously work with path separators in a cross-
platform way. Path can address files, directories, and related abstractions,
such as symbolic links. Path and PathBuf values often start their lives
as plain string types, which can be converted with the from() static
method:

let hello = PathBuf::from("/tmp/hello.txt")

From there, interacting with these variants reveals methods that are specific
to paths:

hello.extension()       ①

① Returns Some("txt")

The full API is straightforward for anyone who has used code to manipulate
paths before, so it won’t be fleshed out here. Still, it may be worth discussing
why it’s included within the language because many languages omit this.

NOTE As an implementation detail, std::fs::Path and std::fs::PathBuf are
implemented on top of std::ffi::OsStr and std::ffi::OsString, respectively. This
means that Path and PathBuf are not guaranteed to be UTF-8 compliant.

Why use Path rather than manipulating strings directly? Here are some



good reasons for using Path:

Clear intent—Path provides useful methods like
set_extension() that describe the intended outcome. This can
assist programmers who later read the code. Manipulating strings
doesn’t provide that level of self-documentation.

Portability—Some operating systems treat filesystem paths as case-
insensitive. Others don’t. Using one operating system’s conventions can
result in issues later, when users expect their host system’s conventions
to be followed. Additionally, path separators are specific to operating
systems and, thus, can differ. This means that using raw strings can lead
to portability issues. Comparisons require exact matches.

Easier debugging—If you’re attempting to extract /tmp from the path
/tmp/hello.txt, doing it manually can introduce subtle bugs
that may only appear at runtime. Further, miscounting the correct
number of index values after splitting the string on / introduces a bug
that can’t be caught at compile time.

To illustrate the subtle errors, consider the case of separators. Slashes are
common in today’s operating systems, but those conventions took some time
to become established:

\ is commonly used on MS Windows.

/ is the convention for UNIX-like operating systems.

: was the path separator for the classic Mac OS.

> is used in the Stratus VOS operating system.

Table 7.4 compares the two strings: std::String and
std::path::Path.



Table 7.4 Using std::String and std::path::Path to
extract a file’s parent directory

fn main() {

    let hello = 

String::from("/tmp/hello.txt");

    let tmp_dir = 

hello.split("/").nth(0); ①

    println!("{:?}", tmp_dir);             

②

}

① Splits hello at its backslashes, then takes the
0th element of the resulting Vec<String>

② Mistake! Prints Some("").

use std::path::PathBuf;

 

fn main() {

    let mut hello = 

PathBuf::from("/tmp/hello.txt");

    hello.pop();                       

①

    println!("{:?}", 

hello.display()); ②

}

① Truncates hello in place

② Success! Prints "/tmp".

The plain String code lets you use
familiar methods, but it can introduce subtle
bugs that are difficult to detect at compile
time. In this instance, we’ve used the wrong
index number to access the parent directory
(/tmp).

Using path::Path doesn’t make your
code immune to subtle errors, but it can
certainly help to minimize their likelihood.
Path provides dedicated methods for
common operations such as setting a file’s
extension.



7.5 Implementing a key-value store with a
log-structured, append-only storage
architecture

It’s time to tackle something larger. Let’s begin to lift the lid on database
technology. Along the way, we’ll learn the internal architecture of a family of
database systems using a log-structured, append-only model.

Log-structured, append-only database systems are significant as case studies
because these are designed to be extremely resilient while offering optimal
read performance. Despite storing data on fickle media like flash storage or a
spinning hard disk drive, databases using this model are able to guarantee that
data will never be lost and that backed up data files will never be corrupted.

7.5.1 The key-value model

The key-value store implemented in this chapter, actionkv, stores and
retrieves sequences of bytes ([u8]) of arbitrary length. Each sequence has
two parts: the first is a key and the second is a value. Because the &str type
is represented as [u8] internally, table 7.5 shows the plain text notation
rather than the binary equivalent.

Table 7.5 Illustrating keys and values by matching countries with their
capital cities

Key Value
"Cook Islands" "Avarua"



"Fiji" "Suva"

"Kiribati" "South Tarawa"

"Niue" "Alofi"

The key-value model enables simple queries such as “What is the capital city
of Fiji?” But it doesn’t support asking broader queries such as “What is the
list of capital cities for all Pacific Island states?”

7.5.2 Introducing actionkv v1: An in-memory key-
value store with a command-line interface

The first version of our key-value store, actionkv, exposes us to the API that
we’ll use throughout the rest of the chapter and also introduces the main
library code. The library code will not change as the subsequent two systems
are built on top of it. Before we get to that code, though, there are some
prerequisites that need to be covered.

Unlike other projects in this book, this one uses the library template to start
with (cargo new --lib actionkv). It has the following
structure:

actionkv

├── src

│   ├── akv_mem.rs

│   └── lib.rs

└── Cargo.toml

Using a library crate allows programmers to build reusable abstractions
within their projects. For our purposes, we’ll use the same lib.rs file for
multiple executables. To avoid future ambiguity, we need to describe the
executable binaries the actionkv project produces.



To do so, provide a bin section within two square bracket pairs
([[bin]]) to the project’s Cargo.toml file. See lines 14–16 of the
following listing. Two square brackets indicate that the section can be
repeated. The source for this listing is in ch7/ch7-actionkv/Cargo.toml.

Listing 7.6 Defining dependencies and other metadata

 1 [package]

 2 name = "actionkv"

 3 version = "1.0.0"

 4 authors = ["Tim McNamara <author@rustinaction.com>"]

 5 edition = "2018"

 6  

 7 [dependencies]

 8 byteorder = "1.2"       ①

 9 crc = "1.7"             ②

10  

11 [lib]                   ③

12 name = "libactionkv"    ③

13 path = "src/lib.rs"     ③

14  

15 [[bin]]                 ④

16 name = "akv_mem"

17 path = "src/akv_mem.rs"

① Extends Rust types with extra traits to write those to disk, then reads those back into a program in a
repeatable, easy-to-use way

② Provides the checksum functionality that we want to include

③ This section of Cargo.toml lets you define a name for the library you’re building. Note that a crate
can only have one library.

④ A [[bin]] section, of which there can be many, defines an executable file that’s built from this crate.
The double square bracket syntax is required because it unambiguously describes bin as having one
or more elements.

Our actionkv project will end up with several files. Figure 7.1 illustrates the
relationships and how these work together to build the akv_mem
executable, referred to within the [[bin]] section of the project’s
Cargo.toml file.



Figure 7.1 An outline of how the different files and their dependencies
work together in the actionkv project. The project’s Cargo.toml
coordinates lots of activity that ultimately results in an executable.



7.6 Actionkv v1: The front-end code

The public API of actionkv is comprised of four operations: get, delete,
insert, and update. Table 7.6 describes these operations.

Table 7.6 Operations supported by actionkv v1

Command Description
get <key> Retrieves the value at key from the store

insert <key> <value> Adds a key-value pair to the store

delete <key> Removes a key-value pair from the store

update <key> <value> Replaces an old value with a new one

Naming is difficult

To access stored key-value pairs, should the API provide a get, retrieve, or, perhaps,
fetch? Should setting values be insert, store, or set? actionkv attempts to stay neutral
by deferring these decisions to the API provided by std::collections:: HashMap.

The following listing, an excerpt from listing 7.8, shows the naming
considerations mentioned in the preceding sidebar. For our project, we use
Rust’s matching facilities to efficiently work with the command-line
arguments and to dispatch to the correct internal function.

Listing 7.7 Demonstrating the public API

32 match action {                                         ①

33   "get" => match store.get(key).unwrap() {

34     None => eprintln!("{:?} not found", key),

35     Some(value) => println!("{:?}", value),            ②



36   },

37  

38   "delete" => store.delete(key).unwrap(),

39  

40   "insert" => {

41     let value = maybe_value.expect(&USAGE).as_ref();   ③

42     store.insert(key, value).unwrap()

43   }

44  

45   "update" => {

46     let value = maybe_value.expect(&USAGE).as_ref();

47     store.update(key, value).unwrap()

48   }

49  

50   _ => eprintln!("{}", &USAGE),

51 }

① The action command-line argument has the type &str.

② println! needs to use the Debug syntax ({:?}) because [u8] contains arbitrary bytes and doesn’t
implement Display.

③ A future update that can be added for compatibility with Rust’s HashMap, where insert returns the
old value if it exists.

In full, listing 7.8 presents the code for actionkv v1. Notice that the heavy
lifting of interacting with the filesystem is delegated to an instance of
ActionKV called store. How ActionKV operates is explained in
section 7.7. The source for this listing is in ch7/ch7-
actionkv1/src/akv_mem.rs.

Listing 7.8 In-memory key-value store command-line application

 1 use libactionkv::ActionKV;              ①

 2  

 3 #[cfg(target_os = "windows")]           ②

 4 const USAGE: &str = "                   ②

 5 Usage:                                  ②

 6     akv_mem.exe FILE get KEY            ②

 7     akv_mem.exe FILE delete KEY         ②

 8     akv_mem.exe FILE insert KEY VALUE   ②

 9     akv_mem.exe FILE update KEY VALUE   ②

10 ";

11  

12 #[cfg(not(target_os = "windows"))]

13 const USAGE: &str = "

14 Usage:



15     akv_mem FILE get KEY

16     akv_mem FILE delete KEY

17     akv_mem FILE insert KEY VALUE

18     akv_mem FILE update KEY VALUE

19 ";

20  

21 fn main() {

22   let args: Vec<String> = std::env::args().collect();

23   let fname = args.get(1).expect(&USAGE);

24   let action = args.get(2).expect(&USAGE).as_ref();

25   let key = args.get(3).expect(&USAGE).as_ref();

26   let maybe_value = args.get(4);

27  

28   let path = std::path::Path::new(&fname);

29   let mut store = ActionKV::open(path).expect("unable to open file");

30   store.load().expect("unable to load data");

31  

32   match action {

33     "get" => match store.get(key).unwrap() {

34       None => eprintln!("{:?} not found", key),

35       Some(value) => println!("{:?}", value),

36     },

37  

38     "delete" => store.delete(key).unwrap(),

39  

40     "insert" => {

41       let value = maybe_value.expect(&USAGE).as_ref();

42       store.insert(key, value).unwrap()

43     }

44  

45     "update" => {

46       let value = maybe_value.expect(&USAGE).as_ref();

47       store.update(key, value).unwrap()

48     }

49  

50     _ => eprintln!("{}", &USAGE),

51   }

52 }

① Although src/lib.rs exists within our project, it’s treated the same as any other crate within the
src/bin.rs file.

② The cfg attribute allows Windows users to see the correct file extension in their help documentation.
This attribute is explained in the next section.

7.6.1 Tailoring what is compiled with conditional
compilation



Rust provides excellent facilities for altering what is compiled depending on
the compiler target architecture. Generally, this is the target’s OS but can be
facilities provided by its CPU. Changing what is compiled depending on
some compile-time condition is known as conditional compilation.

To add conditional compilation to your project, annotate your source code
with cfg attributes. cfg works in conjunction with the target parameter
provided to rustc during compilation.

Listing 7.8 provides a usage string common as quick documentation for
command-line utilities for multiple operating systems. It’s replicated in the
following listing, which uses conditional compilation to provide two
definitions of const USAGE in the code. When the project is built for
Windows, the usage string contains a .exe file extension. The resulting binary
files include only the data that is relevant for their target.

Listing 7.9 Demonstrating the use of conditional compilation

 3 #[cfg(target_os = "windows")]

 4 const USAGE: &str = "

 5 Usage:

 6     akv_mem.exe FILE get KEY

 7     akv_mem.exe FILE delete KEY

 8     akv_mem.exe FILE insert KEY VALUE

 9     akv_mem.exe FILE update KEY VALUE

10 ";

11  

12 #[cfg(not(target_os = "windows"))]

13 const USAGE: &str = "

14 Usage:

15     akv_mem FILE get KEY

16     akv_mem FILE delete KEY

17     akv_mem FILE insert KEY VALUE

18     akv_mem FILE update KEY VALUE

19 ";

There is no negation operator for these matches. That is, #
[cfg(target_os != "windows")] does not work. Instead,



there is a function-like syntax for specifying matches. Use #
[cfg(not(...))] for negation. #[cfg(all(...))] and #
[cfg(any(...))] are also available to match elements of a list.
Lastly, it’s possible to tweak cfg attributes when invoking cargo or rustc via
the --cfg ATTRIBUTE command-line argument.

The list of conditions that can trigger compilation changes is extensive. Table
7.7 outlines several of these.

Table 7.7 Options available to match against with cfg attributes

Attribute Valid options Notes
target_arch aarch64,

arm, mips,
powerpc,
powerpc64,
x86, x86_64

Not an exclusive list.

target_os android,
bitrig,
dragonfly,
freebsd,
haiku, ios,
linux,
macos,
netbsd,
redox,
openbsd,
windows

Not an exclusive list.

target_family unix,
windows

target_env "", gnu,
msvc, musl

This is often an empty string
("").

target_endian big, little  

target_pointer_width 32, 64 The size (in bits) of the target



architecture’s pointer. Used for
isize, usize, * const,
and * mut types.

target_has_atomic 8, 16, 32, 64,
ptr

Integer sizes that have support
for atomic operations. During
atomic operations, the CPU takes
responsibility for preventing race
conditions with shared data at the
expense of performance. The
word atomic is used in the sense
of indivisible.

target_vendor apple, pc,
unknown

test No available options; just uses a
simple Boolean check.

debug_assertions No available options; just uses a
simple Boolean check. This
attribute is present for non-
optimized builds and supports
the debug_assert! macro.



7.7 Understanding the core of actionkv: The
libactionkv crate

The command-line application built in section 7.6 dispatches its work to
libactionkv::ActionKV. The responsibilities of the ActionKV
struct are to manage interactions with the filesystem and to encode and
decode data from the on-disk format. Figure 7.2 depicts the relationships.

Figure 7.2 Relationship between libactionkv and other
components of the actionkv project



7.7.1 Initializing the ActionKV struct

Listing 7.10, an excerpt from listing 7.8, shows the initialization process of
libactionkv::ActionKV. To create an instance of
libactionkv::ActionKV, we need to do the following:

1. Point to the file where the data is stored

2. Load an in-memory index from the data within the file

Listing 7.10 Initializing libactionkv::ActionKV

30 let mut store = ActionKV::open(path)

31                .expect("unable to open file");    ①

32  

33 store.load().expect("unable to load data");       ②

① Opens the file at path

② Creates an in-memory index by loading the data from path

Both steps return Result, which is why the calls to .expect() are
also present. Let’s now look inside the code of ActionKV::open()
and ActionKV::load(). open() opens the file from disk, and
load() loads the offsets of any pre-existing data into an in-memory index.
The code uses two type aliases, ByteStr and ByteString:

type ByteStr = [u8];

We’ll use the ByteStr type alias for data that tends to be used as a string
but happens to be in a binary (raw bytes) form. Its text-based peer is the built-
in str. Unlike str, ByteStr is not guaranteed to contain valid UTF-8
text.



Both str and [u8] (or its alias ByteStr) are seen in the wild as &str
and &[u8] (or &ByteStr). These are both called slices.

type ByteString = Vec<u8>;

The alias ByteString will be the workhorse when we want to use a type
that behaves like a String. It’s also one that can contain arbitrary binary
data. The following listing, an excerpt from listing 7.16, demonstrates the use
of ActionKV::open().

Listing 7.11 Using ActionKV::open()

 12 type ByteString = Vec<u8>;                            ①

 13  

 14 type ByteStr = [u8];                                  ②

 15  

 16 #[derive(Debug, Serialize, Deserialize)]              ③

 17 pub struct KeyValuePair {

 18     pub key: ByteString,

 19     pub value: ByteString,

 20 }

 21  

 22 #[derive(Debug)]

 23 pub struct ActionKV {

 24     f: File,

 25     pub index: HashMap<ByteString, u64>,              ④

 26 }

 27  

 28 impl ActionKV {

 29     pub fn open(path: &Path) -> io::Result<Self> {

 30         let f = OpenOptions::new()

 31                 .read(true)

 32                 .write(true)

 33                 .create(true)

 34                 .append(true)

 35                 .open(path)?;

 36         let index = HashMap::new();

 37         Ok(ActionKV { f, index })

 38     }

 79 pub fn load(&mut self) -> io::Result<()> {            ⑤

 80  

 81   let mut f = BufReader::new(&mut self.f);

 82  



 83   loop {

 84     let position = f.seek(SeekFrom::Current(0))?;     ⑥

 85  

 86     let maybe_kv = ActionKV::process_record(&mut f);  ⑦

 87  

 88     let kv = match maybe_kv {

 89       Ok(kv) => kv,

 90       Err(err) => {

 91         match err.kind() {

 92           io::ErrorKind::UnexpectedEof => {           ⑧

 93             break;

 94           }

 95           _ => return Err(err),

 96         }

 97       }

 98     };

 99  

100     self.index.insert(kv.key, position);

101   }

102  

103   Ok(())

104 }

① This code processes lots of Vec<u8> data. Because that’s used in the same way as String tends to be
used, ByteString is a useful alias.

② ByteStr is to &str what ByteString is to Vec<u8>.

③ Instructs the compiler to generate serialized code to enable writing KeyValuePair data to disk.
Serialize and Deserialize are explained in section 7.2.1.

④ Maintains a mapping between keys and file locations

⑤ ActionKV::load() populates the index of the ActionKV struct, mapping keys to file positions.

⑥ File::seek() returns the number of bytes from the start of the file. This becomes the value of the
index.

⑦ ActionKV::process_record() reads a record in the file at its current position.

⑧ Unexpected is relative. The application might not have expected to encounter the end of the file, but
we expect files to be finite, so we’ll deal with that eventuality.

What is EOF?

File operations in Rust might return an error of type std::io::ErrorKind::
UnexpectedEof, but what is Eof? The end of file (EOF) is a convention that operating
systems provide to applications. There is no special marker or delimiter at the end of a file within



the file itself.
EOF is a zero byte (0u8). When reading from a file, the OS tells the application how many
bytes were successfully read from storage. If no bytes were successfully read from disk, yet no
error condition was detected, then the OS and, therefore, the application assume that EOF has
been reached.
This works because the OS has the responsibility for interacting with physical devices. When a
file is read by an application, the application notifies the OS that it would like to access the disk.

7.7.2 Processing an individual record

actionkv uses a published standard for its on-disk representation. It is an
implementation of the Bitcask storage backend that was developed for the
original implementation of the Riak database. Bitcask belongs to a family of
file formats known in the literature as Log-Structured Hash Tables.

What is Riak?

Riak, a NoSQL database, was developed during the height of the NoSQL movement and
competed against similar systems such as MongoDB, Apache CouchDB, and Tokyo Tyrant. It
distinguished itself with its emphasis on resilience to failure.
Although it was slower than its peers, it guaranteed that it never lost data. That guarantee was
enabled in part because of its smart choice of a data format.

Bitcask lays every record in a prescribed manner. Figure 7.3 illustrates a
single record in the Bitcask file format.



Figure 7.3 A single record in the Bitcask file format. To parse a record,
read the header information, then use that information to read the body.
Lastly, verify the body’s contents with the checksum provided in the
header.

Every key-value pair is prefixed by 12 bytes. Those bytes describe its length
(key_len + val_len) and its content (checksum).

The process_record() function does the processing for this within
ActionKV. It begins by reading 12 bytes that represent three integers: a
checksum, the length of the key, and the length of the value. Those values are
then used to read the rest of the data from disk and verify what’s intended.
The following listing, an extract from listing 7.16, shows the code for this
process.

Listing 7.12 Focusing on the ActionKV::process_record()
method

43 fn process_record<R: Read>(

44   f: &mut R                                               ①

45 ) -> io::Result<KeyValuePair> {

46     let saved_checksum =                                  ②

47       f.read_u32::<LittleEndian>()?;                      ②

48     let key_len =                                         ②

49       f.read_u32::<LittleEndian>()?;                      ②

50     let val_len =                                         ②

51       f.read_u32::<LittleEndian>()?;                      ②

52     let data_len = key_len + val_len;



53  

54     let mut data = ByteString::with_capacity(data_len as usize);

55  

56     {

57       f.by_ref()                                          ③

58         .take(data_len as u64)

59         .read_to_end(&mut data)?;

60     }

61     debug_assert_eq!(data.len(), data_len as usize);      ④

62  

63     let checksum = crc32::checksum_ieee(&data);           ⑤

64     if checksum != saved_checksum {

65       panic!(

66         "data corruption encountered ({:08x} != {:08x})",

67         checksum, saved_checksum

68       );

69     }

70  

71     let value = data.split_off(key_len as usize);         ⑥

72     let key = data;

73  

74     Ok( KeyValuePair { key, value } )

75 }

① f may be any type that implements Read, such as a type that reads files, but can also be &[u8].

② The byteorder crate allows on-disk integers to be read in a deterministic manner as discussed in the
following section.

③ f.by_ref() is required because take(n) creates a new Read value. Using a reference within this short-
lived block sidesteps ownership issues.

④ debug_assert! tests are disabled in optimized builds, enabling debug builds to have more runtime
checks.

⑤ A checksum (a number) verifies that the bytes read from disk are the same as what was intended.
This process is discussed in section 7.7.4.

⑥ The split_off(n) method splits a Vec<T> in two at n.

7.7.3 Writing multi-byte binary data to disk in a
guaranteed byte order

One challenge that our code faces is that it needs to be able to store multi-
byte data to disk in a deterministic way. This sounds easy, but computing
platforms differ as to how numbers are read. Some read the 4 bytes of an



i32 from left to right; others read from right to left. That could potentially
be a problem if the program is designed to be written by one computer and
loaded by another.

The Rust ecosystem provides some support here. The byteorder crate can
extend types that implement the standard library’s std::io::Read and
std::io::Write traits. std::io::Read and
std::io::Write are commonly associated with
std::io::File but are also implemented by other types such as
[u8] and TcpStream. The extensions can guarantee how multi-byte
sequences are interpreted, either as little endian or big endian.

To follow what’s going on with our key-value store, it will help to have an
understanding of how byteorder works. Listing 7.14 is a toy application
that demonstrates the core functionality. Lines 11–23 show how to write to a
file and lines 28–35 show how to read from one. The two key lines are

use byteorder::{LittleEndian};

use byteorder::{ReadBytesExt, WriteBytesExt};

byteorder::LittleEndian and its peers BigEndian and
NativeEndian (not used in listing 7.14) are types that declare how
multi-byte data is written to and read from disk.
byteorder::ReadBytesExt and
byteorder::WriteBytesExt are traits. In some sense, these are
invisible within the code.

These extend methods to primitive types such as f32 and i16 without
further ceremony. Bringing those into scope with a use statement
immediately adds powers to the types that are implemented within the source



of byteorder (in practice, that means primitive types). Rust, as a
statically-typed language, makes this transformation at compile time. From
the running program’s point of view, integers always have the ability to write
themselves to disk in a predefined order.

When executed, listing 7.14 produces a visualization of the byte patterns that
are created by writing 1_u32, 2_i8, and 3.0_f32 in little-endian
order. Here’s the output:

[1, 0, 0, 0]

[1, 0, 0, 0, 2]

[1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 8, 64]

The following listing shows the metadata for the project in listing 7.14.
You’ll find the source code for the following listing in ch7/ch7-
write123/Cargo.toml. The source code for listing 7.14 is in ch7/ch7-
write123/src/main.rs.

Listing 7.13 Metadata for listing 7.14

[package]

name = "write123"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

byteorder = "1.2"

Listing 7.14 Writing integers to disk

 1 use std::io::Cursor;                               ①

 2 use byteorder::{LittleEndian};                     ②

 3 use byteorder::{ReadBytesExt, WriteBytesExt};      ③

 4  

 5 fn write_numbers_to_file() -> (u32, i8, f64) {

 6   let mut w = vec![];                              ④

 7  

 8   let one: u32   = 1;



 9   let two: i8    = 2;

10   let three: f64 = 3.0;

11  

12   w.write_u32::<LittleEndian>(one).unwrap();       ⑤

13   println!("{:?}", &w);

14  

15   w.write_i8(two).unwrap();                        ⑥

16   println!("{:?}", &w);

17  

18   w.write_f64::<LittleEndian>(three).unwrap();     ⑤

19   println!("{:?}", &w);

20  

21   (one, two, three)

22 }

23  

24 fn read_numbers_from_file() -> (u32, i8, f64) {

25   let mut r = Cursor::new(vec![1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 8, 64]);

26   let one_ = r.read_u32::<LittleEndian>().unwrap();

27   let two_ = r.read_i8().unwrap();

28   let three_ = r.read_f64::<LittleEndian>().unwrap();

29  

30   (one_, two_, three_)

31 }

32  

33 fn main() {

34   let (one, two, three) = write_numbers_to_file();

35   let (one_, two_, three_) = read_numbers_from_file();

36  

37   assert_eq!(one, one_);

38   assert_eq!(two, two_);

39   assert_eq!(three, three_);

40 }

① As files support the ability to seek(), moving backward and forward to different positions,
something is necessary to enable a Vec<T> to mock being a file. io::Cursor plays that role, enabling
an in-memory Vec<T> to be file-like.

② Used as a type argument for a program’s various read_*() and write_*() methods

③ Traits that provide read_*() and write_*()

④ The variable w stands for writer.

⑤ Writes values to disk. These methods return io::Result, which we swallow here as these won’t fail
unless something is seriously wrong with the computer that’s running the program.

⑥ Single byte types i8 and u8 don’t take an endianness parameter.

7.7.4 Validating I/O errors with checksums

actionkv v1 has no method of validating that what it has read from disk is



what was written to disk. What if something is interrupted during the original
write? We may not be able to recover the original data if this is the case, but
if we could recognize the issue, then we would be in a position to alert the
user.

A well-worn path to overcome this problem is to use a technique called a
checksum. Here’s how it works:

Saving to disk—Before data is written to disk, a checking function (there
are many options as to which function) is applied to those bytes. The
result of the checking function (the checksum) is written alongside the
original data.

No checksum is calculated for the bytes of the checksum. If something
breaks while writing the checksum’s own bytes to disk, this will be
noticed later as an error.

Reading from disk—Read the data and the saved checksum, applying the
checking function to the data. Then compare the results of the two
checking functions. If the two results do not match, an error has
occurred, and the data should be considered corrupted.

Which checking function should you use? Like many things in computer
science, it depends. An ideal checksum function would

Return the same result for the same input

Always return a different result for different inputs

Be fast

Be easy to implement

Table 7.8 compares the different checksum approaches. To summarize



The parity bit is easy and fast, but it is somewhat prone to error.

CRC32 (cyclic redundancy check returning 32 bits) is much more
complex, but its results are more trustworthy.

Cryptographic hash functions are more complex still. Although being
significantly slower, they provide high levels of assurance.

Table 7.8 A simplistic evaluation of different checksum functions

Checksum
technique

Size of
result

Simplicity Speed Reliability

Parity bit 1 bit ★★★★★ ★★★★★ ★★☆☆☆

CRC32 32 bits ★★★☆☆ ★★★★☆ ★★★☆☆

Cryptographic
hash function

128–512 bits
(or more)

★☆☆☆☆ ★★☆☆☆ ★★★★★

Functions that you might see in the wild depend on your application domain.
More traditional areas might see the use of simpler systems, such as a parity
bit or CRC32.

IMPLEMENTING PARITY BIT CHECKING

This section describes one of the simpler checksum schemes: parity checking.
Parity checks count the number of 1s within a bitstream. These store a bit that
indicates whether the count was even or odd.

Parity bits are traditionally used for error detection within noisy
communication systems, such as transmitting data over analog systems such
as radio waves. For example, the ASCII encoding of text has a particular
property that makes it quite convenient for this scheme. Its 128 characters
only require 7 bits of storage (128 = 27). That leaves 1 spare bit in every
byte.



Systems can also include parity bits in larger streams of bytes. Listing 7.15
presents an (overly chatty) implementation. The parity_bit()
function in lines 1–10 takes an arbitrary stream of bytes and returns a u8,
indicating whether the count of the input’s bits was even or odd. When
executed, listing 7.15 produces the following output:

input: [97, 98, 99]               ①

97 (0b01100001) has 3 one bits

98 (0b01100010) has 3 one bits

99 (0b01100011) has 4 one bits

output: 00000001

 

input: [97, 98, 99, 100]          ②

97 (0b01100001) has 3 one bits

98 (0b01100010) has 3 one bits

99 (0b01100011) has 4 one bits

100 (0b01100100) has 3 one bits

result: 00000000

① input: [97, 98, 99] represents b"abc" as seen by the internals of the Rust compiler.

② input: [97, 98, 99, 100] represents b"abcd".

NOTE The code for the following listing is in ch7/ch7-paritybit/src/main.rs.

Listing 7.15 Implementing parity bit checking

 1 fn parity_bit(bytes: &[u8]) -> u8 {     ①

 2   let mut n_ones: u32 = 0;

 3  

 4   for byte in bytes {

 5     let ones = byte.count_ones();       ②

 6     n_ones += ones;

 7     println!("{} (0b{:08b}) has {} one bits", byte, byte, ones);

 8   }

 9   (n_ones % 2 == 0) as u8               ③

10 }

11  

12 fn main() {

13   let abc = b"abc";

14   println!("input: {:?}", abc);

15   println!("output: {:08x}", parity_bit(abc));

16   println!();

17   let abcd = b"abcd";

18   println!("input: {:?}", abcd);

19   println!("result: {:08x}", parity_bit(abcd))



20 }

① Takes a byte slice as the bytes argument and returns a single byte as output. This function could
have easily returned a bool value, but returning u8 allows the result to bit shift into some future
desired position.

② All of Rust’s integer types come equipped with count_ones() and count_zeros() methods.

③ There are plenty of methods to optimize this function. One fairly simple approach is to hard code a
const [u8; 256] array of 0s and 1s, corresponding to the intended result, then index that array with
each byte.

7.7.5 Inserting a new key-value pair into an existing
database

As discussed in section 7.6, there are four operations that our code needs to
support: insert, get, update, and delete. Because we’re using an append-only
design, this means that the last two operations can be implemented as variants
of insert.

You may have noticed that during load(), the inner loop continues until
the end of the file. This allows more recent updates to overwrite stale data,
including deletions. Inserting a new record is almost the inverse of
process_record(), described in section 7.7.2. For example

164 pub fn insert(

165   &mut self,

166   key: &ByteStr,

167   value: &ByteStr

168 ) -> io::Result<()> {

169   let position = self.insert_but_ignore_index(key, value)?;

170  

171   self.index.insert(key.to_vec(), position);   ①

172   Ok(())

173 }

174  

175 pub fn insert_but_ignore_index(

176   &mut self,

177   key: &ByteStr,

178   value: &ByteStr

179 ) -> io::Result<u64> {



180   let mut f = BufWriter::new(&mut self.f);     ②

181  

182   let key_len = key.len();

183   let val_len = value.len();

184   let mut tmp = ByteString::with_capacity(key_len + val_len);

185  

186   for byte in key {                            ③

187       tmp.push(*byte);                         ③

188   }                                            ③

189  

190   for byte in value {                          ③

191       tmp.push(*byte);                         ③

192   }                                            ③

193  

194   let checksum = crc32::checksum_ieee(&tmp);

195  

196   let next_byte = SeekFrom::End(0);

197   let current_position = f.seek(SeekFrom::Current(0))?;

198   f.seek(next_byte)?;

199   f.write_u32::<LittleEndian>(checksum)?;

200   f.write_u32::<LittleEndian>(key_len as u32)?;

201   f.write_u32::<LittleEndian>(val_len as u32)?;

202   f.write_all(&mut tmp)?;

203  

204   Ok(current_position)

205 }

① key.to_vec() converts the &ByteStr to a ByteString.

② The std::io::BufWriter type batches multiple short write() calls into fewer actual disk operations,
resulting in a single one. This increases throughput while keeping the application code neater.

③ Iterating through one collection to populate another is slightly awkward, but gets the job done.

7.7.6 The full code listing for actionkv

libactionkv performs the heavy lifting in our key-value stores. You
have already explored much of the actionkv project throughout section 7.7.
The following listing, which you’ll find in the file ch7/ch7-
actionkv1/src/lib.rs, presents the project code in full.

Listing 7.16 The actionkv project (full code)

  1 use std::collections::HashMap;

  2 use std::fs::{File, OpenOptions};

  3 use std::io;



  4 use std::io::prelude::*;

  5 use std::io::{BufReader, BufWriter, SeekFrom};

  6 use std::path::Path;

  7  

  8 use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};

  9 use crc::crc32;

 10 use serde_derive::{Deserialize, Serialize};

 11  

 12 type ByteString = Vec<u8>;

 13 type ByteStr = [u8];

 14  

 15 #[derive(Debug, Serialize, Deserialize)]

 16 pub struct KeyValuePair {

 17   pub key: ByteString,

 18   pub value: ByteString,

 19 }

 20  

 21 #[derive(Debug)]

 22 pub struct ActionKV {

 23   f: File,

 24   pub index: HashMap<ByteString, u64>,

 25 }

 26  

 27 impl ActionKV {

 28   pub fn open(

 29     path: &Path

 30   ) -> io::Result<Self> {

 31     let f = OpenOptions::new()

 32       .read(true)

 33       .write(true)

 34       .create(true)

 35       .append(true)

 36       .open(path)?;

 37     let index = HashMap::new();

 38     Ok(ActionKV { f, index })

 39   }

 40  

 41   fn process_record<R: Read>(                   ①

 42     f: &mut R

 43   ) -> io::Result<KeyValuePair> {

 44     let saved_checksum =

 45       f.read_u32::<LittleEndian>()?;

 46     let key_len =

 47       f.read_u32::<LittleEndian>()?;

 48     let val_len =

 49       f.read_u32::<LittleEndian>()?;

 50     let data_len = key_len + val_len;

 51  

 52     let mut data = ByteString::with_capacity(data_len as usize);

 53  

 54     {

 55       f.by_ref()                                ②

 56         .take(data_len as u64)

 57         .read_to_end(&mut data)?;



 58     }

 59     debug_assert_eq!(data.len(), data_len as usize);

 60  

 61     let checksum = crc32::checksum_ieee(&data);

 62     if checksum != saved_checksum {

 63       panic!(

 64         "data corruption encountered ({:08x} != {:08x})",

 65         checksum, saved_checksum

 66       );

 67     }

 68  

 69     let value = data.split_off(key_len as usize);

 70     let key = data;

 71  

 72     Ok(KeyValuePair { key, value })

 73   }

 74  

 75   pub fn seek_to_end(&mut self) -> io::Result<u64> {

 76     self.f.seek(SeekFrom::End(0))

 77   }

 78  

 79   pub fn load(&mut self) -> io::Result<()> {

 80     let mut f = BufReader::new(&mut self.f);

 81  

 82     loop {

 83       let current_position = f.seek(SeekFrom::Current(0))?;

 84  

 85       let maybe_kv = ActionKV::process_record(&mut f);

 86       let kv = match maybe_kv {

 87         Ok(kv) => kv,

 88         Err(err) => {

 89           match err.kind() {

 90             io::ErrorKind::UnexpectedEof => {    ③

 91               break;

 92             }

 93             _ => return Err(err),

 94           }

 95         }

 96       };

 97  

 98       self.index.insert(kv.key, current_position);

 99     }

100  

101     Ok(())

102   }

103  

104   pub fn get(

105     &mut self,

106     key: &ByteStr

107   ) -> io::Result<Option<ByteString>> {          ④

108     let position = match self.index.get(key) {

109       None => return Ok(None),

110       Some(position) => *position,

111     };



112  

113     let kv = self.get_at(position)?;

114  

115     Ok(Some(kv.value))

116   }

117  

118   pub fn get_at(

119     &mut self,

120     position: u64

121   ) -> io::Result<KeyValuePair> {

122     let mut f = BufReader::new(&mut self.f);

123     f.seek(SeekFrom::Start(position))?;

124     let kv = ActionKV::process_record(&mut f)?;

125  

126     Ok(kv)

127   }

128  

129   pub fn find(

130     &mut self,

131     target: &ByteStr

132   ) -> io::Result<Option<(u64, ByteString)>> {

133     let mut f = BufReader::new(&mut self.f);

134  

135     let mut found: Option<(u64, ByteString)> = None;

136  

137     loop {

138       let position = f.seek(SeekFrom::Current(0))?;

139  

140       let maybe_kv = ActionKV::process_record(&mut f);

141       let kv = match maybe_kv {

142         Ok(kv) => kv,

143         Err(err) => {

144           match err.kind() {

145             io::ErrorKind::UnexpectedEof => {     ⑤

146               break;

147             }

148             _ => return Err(err),

149           }

150         }

151       };

152  

153       if kv.key == target {

154         found = Some((position, kv.value));

155       }

156  

157       // important to keep looping until the end of the file,

158       // in case the key has been overwritten

159     }

160  

161     Ok(found)

162   }

163  

164   pub fn insert(

165     &mut self,



166     key: &ByteStr,

167     value: &ByteStr

168   ) -> io::Result<()> {

169     let position = self.insert_but_ignore_index(key, value)?;

170  

171     self.index.insert(key.to_vec(), position);

172     Ok(())

173   }

174  

175   pub fn insert_but_ignore_index(

176     &mut self,

177     key: &ByteStr,

178     value: &ByteStr

179   ) -> io::Result<u64> {

180     let mut f = BufWriter::new(&mut self.f);

181  

182     let key_len = key.len();

183     let val_len = value.len();

184     let mut tmp = ByteString::with_capacity(key_len + val_len);

185  

186     for byte in key {

187       tmp.push(*byte);

188     }

189  

190     for byte in value {

191       tmp.push(*byte);

192     }

193  

194     let checksum = crc32::checksum_ieee(&tmp);

195  

196     let next_byte = SeekFrom::End(0);

197     let current_position = f.seek(SeekFrom::Current(0))?;

198     f.seek(next_byte)?;

199     f.write_u32::<LittleEndian>(checksum)?;

200     f.write_u32::<LittleEndian>(key_len as u32)?;

201     f.write_u32::<LittleEndian>(val_len as u32)?;

202     f.write_all(&tmp)?;

203  

204     Ok(current_position)

205   }

206  

207   #[inline]

208   pub fn update(

209     &mut self,

210     key: &ByteStr,

211     value: &ByteStr

212   ) -> io::Result<()> {

213     self.insert(key, value)

214   }

215  

216   #[inline]

217   pub fn delete(

218     &mut self,

219     key: &ByteStr



220   ) -> io::Result<()> {

221     self.insert(key, b"")

222   }

223 }

① process_record() assumes that f is already at the right place in the file.

② f.by_ref() is required because .take(n) creates a new Read instance. Using a reference within this
block allows us to sidestep ownership issues.

③ "Unexpected" is relative. The application may not have expected it, but we expect files to be finite.

④ Wraps Option within Result to allow for the possibility of an I/O error as well as tolerating missing
values

⑤ "Unexpected" is relative. The application may not have expected it, but we expect files to be finite.

If you’ve made it this far, you should congratulate yourself. You’ve
implemented a key-value store that will happily store and retrieve whatever
you have to throw at it.

7.7.7 Working with keys and values with HashMap
and BTreeMap

Working with key-value pairs happens in almost every programming
language. For the tremendous benefit of learners everywhere, this task and
the data structures that support it have many names:

You might encounter someone with a computer science background who
prefers to use the term hash table.

Perl and Ruby call these hashes.

Lua does the opposite and uses the term table.

Many communities name the structure after a metaphor such as a
dictionary or a map.

Other communities prefer naming based on the role that the structure
plays.

PHP describes these as associative arrays.



JavaScript’s objects tend to be implemented as a key-value pair
collection and so the generic term object suffices.

Static languages tend to name these according to how they are
implemented.

C++ and Java distinguish between a hash map and a tree map.

Rust uses the terms HashMap and BTreeMap to define two
implementations of the same abstract data type. Rust is closest to C++ and
Java in this regard. In this book, the terms collection of key-value pairs and
associative array refer to the abstract data type. Hash table refers to
associative arrays implemented with a hash table, and a HashMap refers to
Rust’s implementation of hash tables.

What is a hash? What is hashing?

If you’ve ever been confused by the term hash, it may help to understand that this relates to an
implementation decision made to enable non-integer keys to map to values. Hopefully, the
following definitions will clarify the term:

A HashMap is implemented with a hash function. Computer scientists will understand
that this implies a certain behavior pattern in common cases. A hash map has a
constant time lookup in general, formally denoted as O(1) in big O notation. (Although
a hash map’s performance can suffer when its underlying hash function encounters
some pathological cases as we’ll see shortly.)

A hash function maps between values of variable-length to fixed-length. In practice, the
return value of a hash function is an integer. That fixed-width value can then be used
to build an efficient lookup table. This internal lookup table is known as a hash table.

The following example shows a basic hash function for &str that simply interprets the first
character of a string as an unsigned integer. It, therefore, uses the first character of the string as
an hash value:

fn basic_hash(key: &str) -> u32 {



    let first = key.chars()                       ①

 

                   .next()                        ②

 

                   .unwrap_or('\0');              ③

 

    unsafe {                                      ④

        std::mem::transmute::<char, u32>(first)   ④

    }                                             ④

}

① The .chars() iterator converts the string into a series of char values, each 4 bytes long.

② Returns an Option that’s either Some(char) or None for empty strings

③ If an empty string, provides NULL as the default. unwrap_or() behaves as unwrap() but
provides a value rather than panicking when it encounters None.

④ Interprets the memory of first as an u32, even though its type is char
basic_hash can take any string as input—an infinite set of possible inputs—and return a
fixed-width result for all of those in a deterministic manner. That’s great! But, although
basic_hash is fast, it has some significant faults.
If multiple inputs start with the same character (for example, Tonga and Tuvalu), these result in
the same output. This happens in every instance when an infinite input space is mapped into a
finite space, but it’s particularly bad here. Natural language text is not uniformly distributed.
Hash tables, including Rust’s HashMap, deal with this phenomenon, which is called a hash
collision. These provide a backup location for keys with the same hash value. That secondary
storage is typically a Vec<T> that we’ll call the collision store. When collisions occur, the
collision store is scanned from front to back when it is accessed. That linear scan takes longer
and longer to run as the store’s size increases. Attackers can make use of this characteristic to
overload the computer that is performing the hash function.
In general terms, faster hash functions do less work to avoid being attacked. These will also
perform best when their inputs are within a defined range.
Fully understanding the internals of how hash tables are implemented is too much detail for this
sidebar. But it’s a fascinating topic for programmers who want to extract optimum performance
and memory usage from their programs.

7.7.8 Creating a HashMap and populating it with
values

The next listing provides a collection of key-value pairs encoded as JSON. It
uses some Polynesian island nations and their capital cities to show the use of



an associative array.

Listing 7.17 Demonstrating the use of an associative array in JSON
notation

{

  "Cook Islands": "Avarua",

  "Fiji": "Suva",

  "Kiribati": "South Tarawa",

  "Niue": "Alofi",

  "Tonga": "Nuku'alofa",

  "Tuvalu": "Funafuti"

}

Rust does not provide a literal syntax for HashMap within the standard
library. To insert items and get them out again, follow the example provided
in listing 7.18, whose source is available in ch7/ch7-pacific-basic/src/main.rs.
When executed, listing 7.18 produces the following line in the console:

Capital of Tonga is: Nuku'alofa

Listing 7.18 An example of the basic operations of HashMap

 1 use std::collections::HashMap;

 2  

 3 fn main() {

 4   let mut capitals = HashMap::new();         ①

 5  

 6   capitals.insert("Cook Islands", "Avarua");

 7   capitals.insert("Fiji", "Suva");

 8   capitals.insert("Kiribati", "South Tarawa");

 9   capitals.insert("Niue", "Alofi");

10   capitals.insert("Tonga", "Nuku'alofa");

11   capitals.insert("Tuvalu", "Funafuti");

12  

13   let tongan_capital = capitals["Tonga"];    ②

14  

15   println!("Capital of Tonga is: {}", tongan_capital);

16 }

① Type declarations of keys and values are not required here as these are inferred by the Rust
compiler.



② HashMap implements Index, which allows for values to be retrieved via the square bracket indexing
style.

Writing everything out as method calls can feel needlessly verbose at times.
With some support from the wider Rust ecosystem, it’s possible to inject
JSON string literals into Rust code. It’s best that the conversion is done at
compile time, meaning no loss of runtime performance. The output of listing
7.19 is also a single line:

Capital of Tonga is: "Nuku'alofa"      ①

① Uses double quotes because the json! macro returns a wrapper around String, its default
representation

The next listing uses a serde-json crate to include JSON literals within your
Rust source code. Its source code is in the ch7/ch7-pacific-json/src/main.rs
file.

Listing 7.19 Including JSON literals with serde-json

 1 #[macro_use]                    ①

 2 extern crate serde_json;        ①

 3  

 4 fn main() {

 5   let capitals = json!({        ②

 6     "Cook Islands": "Avarua",

 7     "Fiji": "Suva",

 8     "Kiribati": "South Tarawa",

 9     "Niue": "Alofi",

10     "Tonga": "Nuku'alofa",

11     "Tuvalu": "Funafuti"

12   });

13  

14   println!("Capital of Tonga is: {}", capitals["Tonga"])

15 }

① Incorporates the serde_json crate and makes use of its macros, bringing the json! macro into scope

② json! takes a JSON literal and some Rust expressions to implement String values. It converts these
into a Rust value of type serde_json::Value, an enum that can represent every type within the JSON
specification.



7.7.9 Retrieving values from HashMap and
BTreeMap

The main advantage that a key-value store provides is the ability to access its
values. There are two ways to achieve this. To demonstrate, let’s assume that
we have initialized capitals from listing 7.19. The approach (already
demonstrated) is to access values via square brackets:

capitals["Tonga"]       ①

① Returns "Nuku’alofa"

This approach returns a read-only reference to the value, which is deceptive
when dealing with examples containing string literals because their status as
references is somewhat disguised. In the syntax used by Rust’s
documentation, this is described as &V, where & denotes a read-only
reference and V is the type of the value. If the key is not present, the program
will panic.

NOTE Index notation is supported by all types that implement the Index trait. Accessing
capitals["Tonga"] is syntactic sugar for capitals.index("Tonga").

It’s also possible to use the .get() method on HashMap. This returns
an Option<&V>, providing the opportunity to recover from cases where
values are missing. For example

capitals.get("Tonga")      ①

① Returns Some("Nuku’alofa")

Other important operations supported by HashMap include



Deleting key-value pairs with the .remove() method

Iterating over keys, values, and key-value pairs with the .keys(),
.values(), and .iter() methods, respectively, as well as their
read-write variants, .keys_mut(), .values_mut(), and
.iter_mut()

There is no method for iterating through a subset of the data. For that, we
need to use BTreeMap.

7.7.10 How to decide between HashMap and
BTreeMap

If you’re wondering about which backing data structure to choose, here is a
simple guideline: use HashMap unless you have a good reason to use
BTreeMap. BTreeMap is faster when there is a natural ordering
between the keys, and your application makes use of that arrangement. Table
7.9 highlights the differences.

Let’s demonstrate these two use cases with a small example from Europe.
The Dutch East India Company, known as VOC after the initials of its Dutch
name, Vereenigde Oostindische Compagnie, was an extremely powerful
economic and political force at its peak. For two centuries, VOC was a
dominant trader between Asia and Europe. It had its own navy and currency,
and established its own colonies (called trading posts). It was also the first
company to issue bonds. In the beginning, investors from six business
chambers (kamers) provided capital for the business.

Let’s use these investments as key-value pairs. When listing 7.20 is
compiled, it produces an executable that generates the following output:



$ cargo run -q 

Rotterdam invested 173000

Hoorn invested 266868

Delft invested 469400

Enkhuizen invested 540000

Middelburg invested 1300405

Amsterdam invested 3697915

smaller chambers: Rotterdam Hoorn Delft

Listing 7.20 Demonstrating range queries and ordered iteration of
BTreeMap

 1 use std::collections::BTreeMap;

 2  

 3 fn main() {

 4   let mut voc = BTreeMap::new();

 5  

 6   voc.insert(3_697_915, "Amsterdam");

 7   voc.insert(1_300_405, "Middelburg");

 8   voc.insert(  540_000, "Enkhuizen");

 9   voc.insert(  469_400, "Delft");

10   voc.insert(  266_868, "Hoorn");

11   voc.insert(  173_000, "Rotterdam");

12  

13   for (guilders, kamer) in &voc {

14     println!("{} invested {}", kamer, guilders);     ①

15   }

16  

17   print!("smaller chambers: ");

18   for (_guilders, kamer) in voc.range(0..500_000) {  ②

19     print!("{} ", kamer);                            ①

20   }

21   println!("");

22 }

① Prints in sorted order

② BTreeMap lets you select a portion of the keys that are iterated through with the range syntax.

Table 7.9 Deciding on which implementation to use to map keys to values

std::collections::HashMap

with a default hash function (known as
SipHash in the literature)

Cryptographically secure and resistant to
denial of service attacks but slower than
alternative hash functions

std::collections::BTreeMap Useful for keys with an inherent ordering,
where cache coherence can provide a boost



in speed

7.7.11 Adding a database index to actionkv v2.0

Databases and filesystems are much larger pieces of software than single
files. There is a large design space involved with storage and retrieval
systems, which is why new ones are always being developed. Common to all
of those systems, however, is a component that is the real smarts behind the
database.

Built in section 7.5.2, actionkv v1 contains a major issue that prevents it from
having a decent startup time. Every time it’s run, it needs to rebuild its index
of where keys are stored. Let’s add the ability for actionkv to store its own
data that indexes within the same file that’s used to store its application data.
It will be easier than it sounds. No changes to libactionkv are
necessary. And the front-end code only requires minor additions. The project
folder now has a new structure with an extra file (shown in the following
listing).

Listing 7.21 The updated project structure for actionkv v2.0

actionkv

├── src

│   ├── akv_disk.rs      ①

│   ├── akv_mem.rs

│   └── lib.rs

└── Cargo.toml           ②

① New file included in the project

② Two updates that add a new binary and dependencies are required in Cargo.toml.

The project’s Cargo.toml adds some new dependencies along with a second
[[bin]] entry, as the last three lines of the following listing show. The
source for this listing is in ch7/ch7-actionkv2/Cargo.toml.



Listing 7.22 Updating the Cargo.toml file for actionkv v2.0

[package]

name = "actionkv"

version = "2.0.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

bincode = "1"              ①

byteorder = "1"

crc = "1"

serde = "1"                ①

serde_derive = "1"         ①

 

[lib]

name = "libactionkv"

path = "src/lib.rs"

 

[[bin]]

name = "akv_mem"

path = "src/akv_mem.rs"

 

[[bin]]

name = "akv_disk"           ②

path = "src/akv_disk.rs"    ②

① New dependencies to assist with writing the index to disk

② New executable definition

When a key is accessed with the get operation, to find its location on disk, we
first need to load the index from disk and convert it to its in-memory form.
The following listing is an excerpt from listing 7.24. The on-disk
implementation of actionkv includes a hidden INDEX_KEY value that
allows it to quickly access other records in the file.

Listing 7.23 Highlighting the main change from listing 7.8

48 match action {

49   "get" => {

50     let index_as_bytes = a.get(&INDEX_KEY)        ①

51                           .unwrap()               ②

52                           .unwrap();              ②

53  

54     let index_decoded = bincode::deserialize(&index_as_bytes);



55  

56     let index: HashMap<ByteString, u64> = index_decoded.unwrap();

57  

58     match index.get(key) {                        ③

59       None => eprintln!("{:?} not found", key),   ③

60       Some(&i) => {                               ③

61         let kv = a.get_at(i).unwrap();            ③

62         println!("{:?}", kv.value)                ③

63       }                                           ③

64     }

65   }

① INDEX_KEY is an internal hidden name of the index within the database.

② Two unwrap() calls are required because a.index is a HashMap that returns Option, and values
themselves are stored within an Option to facilitate possible future deletes.

③ Retrieving a value now involves fetching the index first, then identifying the correct location on
disk.

The following listing shows a key-value store that persists its index data
between runs. The source for this listing is in ch7/ch7-
actionkv2/src/akv_disk.rs.

Listing 7.24 Persisting index data between runs

 1 use libactionkv::ActionKV;

 2 use std::collections::HashMap;

 3  

 4 #[cfg(target_os = "windows")]

 5 const USAGE: &str = "

 6 Usage:

 7     akv_disk.exe FILE get KEY

 8     akv_disk.exe FILE delete KEY

 9     akv_disk.exe FILE insert KEY VALUE

10     akv_disk.exe FILE update KEY VALUE

11 ";

12  

13 #[cfg(not(target_os = "windows"))]

14 const USAGE: &str = "

15 Usage:

16     akv_disk FILE get KEY

17     akv_disk FILE delete KEY

18     akv_disk FILE insert KEY VALUE

19     akv_disk FILE update KEY VALUE

20 ";

21  

22 type ByteStr = [u8];

23 type ByteString = Vec<u8>;



24  

25 fn store_index_on_disk(a: &mut ActionKV, index_key: &ByteStr) {

26   a.index.remove(index_key);

27   let index_as_bytes = bincode::serialize(&a.index).unwrap();

28   a.index = std::collections::HashMap::new();

29   a.insert(index_key, &index_as_bytes).unwrap();

30 }

31  

32 fn main() {

33   const INDEX_KEY: &ByteStr = b"+index";

34  

35   let args: Vec<String> = std::env::args().collect();

36   let fname = args.get(1).expect(&USAGE);

37   let action = args.get(2).expect(&USAGE).as_ref();

38   let key = args.get(3).expect(&USAGE).as_ref();

39   let maybe_value = args.get(4);

40  

41   let path = std::path::Path::new(&fname);

42   let mut a = ActionKV::open(path).expect("unable to open file");

43  

44   a.load().expect("unable to load data");

45  

46   match action {

47     "get" => {

48       let index_as_bytes = a.get(&INDEX_KEY)

49                                     .unwrap()

50                                     .unwrap();

51  

52       let index_decoded = bincode::deserialize(&index_as_bytes);

53  

54       let index: HashMap<ByteString, u64> = index_decoded.unwrap();

55  

56       match index.get(key) {

57         None => eprintln!("{:?} not found", key),

58         Some(&i) => {

59           let kv = a.get_at(i).unwrap();

60           println!("{:?}", kv.value)               ①

61         }

62       }

63     }

64  

65     "delete" => a.delete(key).unwrap(),

66  

67     "insert" => {

68       let value = maybe_value.expect(&USAGE).as_ref();

69       a.insert(key, value).unwrap();

70       store_index_on_disk(&mut a, INDEX_KEY);      ②

71     }

72  

73     "update" => {

74       let value = maybe_value.expect(&USAGE).as_ref();

75       a.update(key, value).unwrap();

76       store_index_on_disk(&mut a, INDEX_KEY);      ②

77     }



78     _ => eprintln!("{}", &USAGE),

79   }

80 }

① To print values, we need to use Debug as an [u8] value contains arbitrary bytes.

② The index must also be updated whenever the data changes.



Summary

Converting between in-memory data structures and raw byte streams to
be stored in files or sent over the network is known as serialization and
deserialization. In Rust, serde is the most popular choice for these two
tasks.

Interacting with the filesystem almost always implies handling
std::io::Result. Result is used for errors that are not part
of normal control flow.

Filesystem paths have their own types: std::path::Path and
std::path:: PathBuf. While it adds to the learning burden,
implementing these allows you to avoid common mistakes that can
occur by treating paths directly as strings.

To mitigate the risk of data corruption during transit and storage, use
checksums and parity bits.

Using a library crate makes it easier to manage complex software
projects. Libraries can be shared between projects, and you can make
these more modular.

There are two primary data structures for handling key-value pairs
within the Rust standard library: HashMap and BTreeMap. Use
HashMap unless you know that you want to make use of the features
offered by BTreeMap.

The cfg attribute and cfg! macro allow you to compile platform-
specific code.

To print to standard error (stderr), use the eprintln! macro. Its API
is identical to the println! macro that is used to print to standard



output (stdout).

The Option type is used to indicate when values may be missing,
such as asking for an item from an empty list.



8 Networking

This chapter covers

Implementing a networking stack
Handling multiple error types within local scope
When to use trait objects
Implementing state machines in Rust

This chapter describes how to make HTTP requests multiple times, stripping
away a layer of abstraction each time. We start by using a user-friendly
library, then boil that away until we’re left with manipulating raw TCP
packets. When we’re finished, you’ll be able to distinguish an IP address
from a MAC address. And you’ll learn why we went straight from IPv4 to
IPv6.

You’ll also learn lots of Rust in this chapter, most of it related to advanced
error handling techniques that become essential for incorporating upstream
crates. Several pages are devoted to error handling. This includes a thorough
introduction to trait objects.

Networking is a difficult subject to cover in a single chapter. Each layer is a
fractal of complexity. Networking experts will hopefully overlook my lack of
depth in treating such a diverse topic.

Figure 8.1 provides an overview of the topics that the chapter covers. Some
of the projects that we cover include implementing DNS resolution and
generating standards-compliant MAC addresses, including multiple examples



of generating HTTP requests. A bit of a role-playing game is added for light
relief.





Figure 8.1 Networking chapter map. The chapter incorporates a healthy
mix of theory and practical exercises.



8.1 All of networking in seven paragraphs

Rather than trying to learn the whole networking stack, let’s focus on
something that’s of practical use. Most readers of this book will have
encountered web programming. Most web programming involves interacting
with some sort of framework. Let’s look there.

HTTP is the protocol that web frameworks understand. Learning more about
HTTP enables us to extract the most performance out of our web
frameworks. It can also help us to more easily diagnose any problems that
occur. Figure 8.2 shows networking protocols for content delivery over the
internet.





Figure 8.2 Several layers of networking protocols involved with
delivering content over the internet. The figure compares some common
models, including the seven-layer OSI model and the four-layer TCP/IP
model.

Networking is comprised of layers. If you’re new to the field, don’t be
intimidated by a flood of acronyms. The most important thing to remember is
that lower levels are unaware of what’s happening above them, and higher
levels are agnostic to what’s happening below them. Lower levels receive a
stream of bytes and pass it on. Higher levels don’t care how messages are
sent; they just want them sent.

Let’s consider one example: HTTP. HTTP is known as an application-level
protocol. Its job is to transport content like HTML, CSS, JavaScript,
WebAssembly modules, images, video, and other formats. These formats
often include other embedded formats via compression and encoding
standards. HTTP itself often redundantly includes information provided by
one of the layers below it, TCP. Between HTTP and TCP sits TLS. TLS
(Transport Layer Security), which has replaced SSL (Secure Sockets Layer),
adds the S to HTTPS.

TLS provides encrypted messaging over an unencrypted connection. TLS is
implemented on top of TCP. TCP sits upon many other protocols. These go
all the way down to specifying how voltages should be interpreted as 0s and
1s. And yet, as complicated as this story is so far, it gets worse. These layers,
as you have probably seen in your dealings with those as a computer user,
bleed together like watercolor paint.

HTML includes a mechanism to supplement or overwrite directives omitted
or specified within HTTP: the <meta> tag’s http-equiv attribute.
HTTP can make adjustments downwards to TCP. The “Connection: keep-



alive” HTTP header instructs TCP to maintain its connection after this HTTP
message has been received. These sorts of interactions occur all through the
stack. Figure 8.2 provides one view of the networking stack. It is more
complicated than most attempts. And even that complicated picture is highly
simplified.

Despite all of that, we’re going to try to implement as many layers as possible
within a single chapter. By the end of it, you will be sending HTTP requests
with a virtual networking device and a minimal TCP implementation that you
created yourself, using a DNS resolver that you also created yourself.



8.2 Generating an HTTP GET request with
reqwest

Our first implementation will be with a high-level library that is focused on
HTTP. We’ll use the reqwest library because its focus is primarily on making
it easy for Rust programmers to create an HTTP request.

Although it’s the shortest, the reqwest implementation is the most feature-
complete. As well as being able to correctly interpret HTTP headers, it also
handles cases like content redirects. Most importantly, it understands how to
handle TLS properly.

In addition to expanded networking capabilities, reqwest also validates the
content’s encoding and ensures that it is sent to your application as a valid
String. None of our lower-level implementations do any of that. The
following shows the project structure for listing 8.2:

ch8-simple/

├── src

│   └── main.rs

└── Cargo.toml

The following listing shows the metadata for listing 8.2. The source code for
this listing is in ch8/ch8-simple/Cargo.toml.

Listing 8.1 Crate metadata for listing 8.2

[package]

name = "ch8-simple"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 



[dependencies]

reqwest = "0.9"

The following listing illustrates how to make an HTTP request with the
reqwest library. You’ll find the source in ch8/ch8-simple/src/main.rs.

Listing 8.2 Making an HTTP request with reqwest

 1 use std::error::Error;

 2  

 3 use reqwest;

 4  

 5 fn main() -> Result<(), Box<dyn Error>> {       ①

 6   let url = "http:/ /www.rustinaction.com/";

 7   let mut response = reqwest::get(url)?;

 8  

 9   let content = response.text()?;

10   print!("{}", content);

11  

12   Ok(())

13 }

① Box<dyn Error> represents a trait object, which we’ll cover in section 8.3.

If you’ve ever done any web programming, listing 8.2 should be
straightforward. reqwest::get() issues an HTTP GET request to the
URL represented by url. The response variable holds a struct
representing the server’s response. The response .text() method
returns a Result that provides access to the HTTP body after validating
that the contents are a legal String.

One question, though: What on earth is the error side of the Result return
type Box<dyn std::error::Error>? This is an example of a
trait object that enables Rust to support polymorphism at runtime. Trait
objects are proxies for concrete types. The syntax Box<dyn
std::error::Error> means a Box (a pointer) to any type that
implements std::error:Error’s.



Using a library that knows about HTTP allows our programs to omit many
details. For example

Knowing when to close the connection. HTTP has rules for telling each
of the parties when the connection ends. This isn’t available to us when
manually making requests. Instead, we keep the connection open for as
long as possible and hope that the server will close.

Converting the byte stream to content. Rules for translating the message
body from [u8] to String (or perhaps an image, video, or some
other content) are handled as part of the protocol. This can be tedious to
handle manually as HTTP allows content to be compressed into several
methods and encoded into several plain text formats.

Inserting or omitting port numbers. HTTP defaults to port 80. A library
that is tailored for HTTP, such as reqwest, allows you to omit port
numbers. When we’re building requests by hand with generic TCP
crates, however, we need to be explicit.

Resolving the IP addresses. The TCP protocol doesn’t actually know
about domain names like www.rustinaction.com, for example. The
library resolves the IP address for www.rustinaction.com on our behalf.



8.3 Trait objects

This section describes trait objects in detail. You will also develop the
world’s next best-selling fantasy role-playing game—the rpg project. If you
would like to focus on networking, feel free to skip ahead to section 8.4.

There is a reasonable amount of jargon in the next several paragraphs. Brace
yourself. You’ll do fine. Let’s start by introducing trait objects by what they
achieve and what they do, rather than focusing on what they are.

8.3.1 What do trait objects enable?

While trait objects have several uses, they are immediately helpful by
allowing you to create containers of multiple types. Although players of our
role-playing game can choose different races, and each race is defined in its
own struct, you’ll want to treat those as a single type. A Vec<T> won’t
work here because we can’t easily have types T, U, and V wedged into
Vec<T> without introducing some type of wrapper object.

8.3.2 What is a trait object?

Trait objects add a form of polymorphism—the ability to share an interface
between types—to Rust via dynamic dispatch. Trait objects are similar to
generic objects. Generics offer polymorphism via static dispatch. Choosing
between generics and type objects typically involves a trade off between disk
space and time:

Generics use more disk space with faster runtimes.



Trait objects use less disk space but incur a small runtime overhead
caused by pointer indirection.

Trait objects are dynamically-sized types, which means that these are always
seen in the wild behind a pointer. Trait objects appear in three forms: &dyn
Trait, &mut dyn Trait, and Box<dyn Trait>.1 The
primary difference between the three forms is that Box<dyn Trait> is
an owned trait object, whereas the other two are borrowed.

8.3.3 Creating a tiny role-playing game: The rpg
project

Listing 8.4 is the start of our game. Characters in the game can be one of
three races: humans, elves, and dwarves. These are represented by the
Human, Elf, and Dwarf structs, respectively.

Characters interact with things. Things are represented by the Thing type.2

Thing is an enum that currently represents swords and trinkets. There’s
only one form of interaction right now: enchantment. Enchanting a thing
involves calling the enchant() method:

character.enchant(&mut thing)

When enchantment is successful, thing glows brightly. When a mistake
occurs, thing is transformed into a trinket. Within listing 8.4, we create a
party of characters with the following syntax:

58 let d = Dwarf {};

59 let e = Elf {};

60 let h = Human {};

61  



62 let party: Vec<&dyn Enchanter> = vec![&d, &h, &e];     ①

① Although d, e, and h are different types, using the type hint &dyn Enchanter tells the compiler to
treat each value as a trait object. These now all have the same type.

Casting the spell involves choosing a spellcaster. We make use of the rand
crate for that:

58 let spellcaster = party.choose(&mut rand::thread_rng()).unwrap();

59 spellcaster.enchant(&mut it)

The choose() method originates from the
rand::seq::SliceRandom trait that is brought into scope in listing
8.4. One of the party is chosen at random. The party then attempts to enchant
the object it. Compiling and running listing 8.4 results in a variation of this:

$ cargo run 

...

   Compiling rpg v0.1.0 (/rust-in-action/code/ch8/ch8-rpg)

    Finished dev [unoptimized + debuginfo] target(s) in 2.13s

     Running `target/debug/rpg`

Human mutters incoherently. The Sword glows brightly.

 

$ target/debug/rpg                                                      ①

Elf mutters incoherently. The Sword fizzes, then turns into a worthless trinket.

① Re-executes the command without recompiling

The following listing shows the metadata for our fantasy role-playing game.
The source code for the rpg project is in ch8/ch8-rpg/Cargo.toml.

Listing 8.3 Crate metadata for the rpg project

[package]

name = "rpg"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

rand = "0.7"



Listing 8.4 provides an example of using a trait object to enable a container to
hold several types. You’ll find its source in ch8/ch8-rpg/src/main.rs.

Listing 8.4 Using the trait object &dyn Enchanter

 1 use rand;

 2 use rand::seq::SliceRandom;

 3 use rand::Rng;

 4  

 5 #[derive(Debug)]

 6 struct Dwarf {}

 7  

 8 #[derive(Debug)]

 9 struct Elf {}

10  

11 #[derive(Debug)]

12 struct Human {}

13  

14 #[derive(Debug)]

15 enum Thing {

16   Sword,

17   Trinket,

18 }

19  

20 trait Enchanter: std::fmt::Debug {

21   fn competency(&self) -> f64;

22  

23   fn enchant(&self, thing: &mut Thing) {

24     let probability_of_success = self.competency();

25     let spell_is_successful = rand::thread_rng()

26       .gen_bool(probability_of_success);                       ①

27  

28     print!("{:?} mutters incoherently. ", self);

29     if spell_is_successful {

30       println!("The {:?} glows brightly.", thing);

31     } else {

32       println!("The {:?} fizzes, \

33              then turns into a worthless trinket.", thing);

34       *thing = Thing::Trinket {};

35     }

36   }

37 }

38  

39 impl Enchanter for Dwarf {

40   fn competency(&self) -> f64 {

41     0.5                                                        ②

42   }

43 }

44 impl Enchanter for Elf {



45   fn competency(&self) -> f64 {

46     0.95                                                       ③

47   }

48 }

49 impl Enchanter for Human {

50   fn competency(&self) -> f64 {

51     0.8                                                        ④

52   }

53 }

54  

55 fn main() {

56   let mut it = Thing::Sword;

57  

58   let d = Dwarf {};

59   let e = Elf {};

60   let h = Human {};

61  

62   let party: Vec<&dyn Enchanter> = vec![&d, &h, &e];           ⑤

63   let spellcaster = party.choose(&mut rand::thread_rng()).unwrap();

64  

65   spellcaster.enchant(&mut it);

66 }

① gen_bool() generates a Boolean value, where true occurs in proportion to its argument. For example,
a value of 0.5 returns true 50% of the time.

② Dwarves are poor spellcasters, and their spells regularly fail.

③ Spells cast by elves rarely fail.

④ Humans are proficient at enchanting things. Mistakes are uncommon.

⑤ We can hold members of different types within the same Vec as all these implement the Enchanter
trait.

Trait objects are a powerful construct in the language. In a sense, they
provide a way to navigate Rust’s rigid type system. As you learn about this
feature in more detail, you will encounter some jargon. For example, trait
objects are a form of type erasure. The compiler does not have access to the
original type during the call to enchant().

Trait vs. type

One of the frustrating things about Rust’s syntax for beginners is that trait objects and type



parameters look similar. But types and traits are used in different places. For example, consider
these two lines:

use rand::Rng;

use rand::rngs::ThreadRng;

Although these both have something to do with random number generators, they’re quite
different. rand::Rng is a trait; rand::rngs::ThreadRng is a struct. Trait objects
make this distinction harder.
When used as a function argument and in similar places, the form &dyn Rng is a reference to
something that implements the Rng trait, whereas &ThreadRng is a reference to a value of
ThreadRng. With time, the distinction between traits and types becomes easier to grasp.
Here’s some common use cases for trait objects:

Creating collections of heterogeneous objects.

Returning a value. Trait objects enable functions to return multiple concrete types.

Supporting dynamic dispatch, whereby the function that is called is determined at
runtime rather than at compile time.

Before the Rust 2018 edition, the situation was even more confusing. The dyn keyword did not
exist. This meant that context was needed to decide between &Rng and &ThreadRng.
Trait objects are not objects in the sense that an object-oriented programmer would understand.
They’re perhaps closer to a mixin class. Trait objects don’t exist on their own; they are agents of
some other type.
An alternative analogy would be a singleton object that is delegated with some authority by
another concrete type. In listing 8.4, the &Enchanter is delegated to act on behalf of three
concrete types.



8.4 TCP

Dropping down from HTTP, we encounter TCP (Transmission Control
Protocol). Rust’s standard library provides us with cross-platform tools for
making TCP requests. Let’s use those. The file structure for listing 8.6, which
creates an HTTP GET request, is provided here:

ch8-stdlib

├── src

│   └── main.rs

└── Cargo.toml

The following listing shows the metadata for listing 8.6. You’ll find the
source for this listing in ch8/ch8-stdlib/Cargo.toml.

Listing 8.5 Project metadata for listing 8.6

[package]

name = "ch8-stdlib"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

The next listing shows how to use the Rust standard library to construct an
HTTP GET request with std::net::TcpStream. The source for
this listing is in ch8/ch8-stdlib/src/main.rs.

Listing 8.6 Constructing an HTTP GET request

 1 use std::io::prelude::*;

 2 use std::net::TcpStream;

 3  

 4 fn main() -> std::io::Result<()> {

 5   let host = "www.rustinaction.com:80";      ①

 6  



 7   let mut conn =

 8     TcpStream::connect(host)?;

 9  

10   conn.write_all(b"GET / HTTP/1.0")?;

11   conn.write_all(b"\r\n")?;                  ②

12  

13   conn.write_all(b"Host: www.rustinaction.com")?;

14   conn.write_all(b"\r\n\r\n")?;              ③

15  

16   std::io::copy(                             ④

17     &mut conn,                               ④

18     &mut std::io::stdout()                   ④

19   )?;                                        ④

20  

21   Ok(())

22 }

① Explicitly specifying the port (80) is required. TcpStream does not know that this will become a
HTTP request.

② In many networking protocols, \r\n signifies a new line.

③ Two blank new lines signify end of request

④ std::io::copy() streams bytes from a Reader to a Writer.

Some remarks about listing 8.6:

On line 10, we specify HTTP 1.0. Using this version of HTTP ensures
that the connection is closed when the server sends its response. HTTP
1.0, however, does not support “keep alive” requests. Specifying HTTP
1.1 actually confuses this code as the server will refuse to close the
connection until it has received another request, and the client will never
send one.

On line 13, we include the hostname. This may feel redundant given that
we used that exact hostname when we connected on lines 7–8. However,
one should remembers that the connection is established over IP, which
does not have host names. When TcpStream::connect()
connects to the server, it only uses an IP address. Adding the Host HTTP
header allows us to inject that information back into the context.



8.4.1 What is a port number?

Port numbers are purely virtual. They are simply u16 values. Port numbers
allow a single IP address to host multiple services.

8.4.2 Converting a hostname to an IP address

So far, we’ve provided the hostname www.rustinaction.com to Rust. But to
send messages over the internet, the IP (internet protocol) address is required.
TCP knows nothing about domain names. To convert a domain name to an IP
address, we rely on the Domain Name System (DNS) and its process called
domain name resolution.

We’re able to resolve names by asking a server, which can recursively ask
other servers. DNS requests can be made over TCP, including encryption
with TLS, but are also sent over UDP (User Datagram Protocol). We’ll use
DNS here because it’s more useful for learning purposes.

To explain how the translation from a domain name to an IP address works,
we’ll create a small application that does the translation. We’ll call the
application resolve. You’ll find its source code in listing 8.9. The application
makes use of public DNS services, but you can easily add your own with the
-s argument.

Public DNS providers

At the time of writing, several companies provide DNS servers for public use. Any of the IP
addresses listed here should offer roughly equivalent service:

1.1.1.1 and 1.0.0.1 by Cloudflare



8.8.8.8 and 8.8.4.4. by Google

9.9.9.9 by Quad9 (founded by IBM)

64.6.64.6 and 64.6.65.6 by VeriSign

Our resolve application only understands a small portion of DNS protocol,
but that portion is sufficient for our purposes. The project makes use of an
external crate, trust-dns, to perform the hard work. The trust-dns crate
implements RFC 1035, which defines DNS and several later RFCs quite
faithfully using terminology derived from it. Table 8.1 outlines some of the
terms that are useful to understand.

Table 8.1 Terms that are used in RFC 1035, the trust_dns crate, and
listing 8.9, and how these interlink

Term Definition Representation in code
Domain
name

A domain name is
almost what you
probably think of
when you use the
term domain name
in your everyday
language.
The technical
definition includes
some special cases
such as the root
domain, which is
encoded as a
single dot, and
domain names that
need to be case-
insensitive.

Defined in trust_dns::domain::Name

pub struct Name {

    is_fqdn: bool,      ①

    labels: Vec<Label>,

}

① fqdn stands for fully-qualified domain name.

Message A message is a
container for both
requests to DNS

Defined in trust_dns::domain::Name

struct Message {



servers (called
queries) and
responses back to
clients (called
answers).
Messages must
contain a header,
but other fields are
not required. A
Message struct
represents this and
includes several
Vec<T> fields.
These do not need
to be wrapped in
Option to
represent missing
values as their
length can be 0.

  header: Header,

  queries: Vec<Query>,

  answers: Vec<Record>,

  name_servers: Vec<Record>,

  additionals: Vec<Record>,

  sig0: Vec<Record>,       ①

  edns: Option<Edns>,      ②

 

}

① sig0, a cryptographically signed record, verifies the
message’s integrity. It is defined in RFC 2535.

② edns indicates whether the message includes extended
DNS.

Message
type

A message type
identifies the
message as a query
or as an answer.
Queries can also
be updates, which
are functionality
that our code
ignores.

Defined in trust_dns::op::MessageType

pub enum MessageType {

    Query,

    Response,

}

Message
ID

A number that is
used for senders to
link queries and
answers.

u16

Resource
record
type

The resource
record type refers
to the DNS codes
that you’ve
probably
encountered if
you’ve ever
configured a

Defined in 

trust_dns::rr::record_type::RecordType

pub enum RecordType {

    A,

    AAAA,

    ANAME,



domain name.
Of note is how
trust_dns handles
invalid codes. The
RecordType

enum contains an
Unknown(u16)

variant that can be
used for codes that
it doesn’t
understand.

    ANY,

    // ...

    Unknown(u16),

    ZERO,

}

Query A Query struct
holds the domain
name and the
record type that
we’re seeking the
DNS details for.
These traits also
describe the DNS
class and allow
queries to
distinguish
between messages
sent over the
internet from other
transport
protocols.

Defined in trust_dns::op::Query

pub struct Query {

    name: Name,

    query_type: RecordType,

    query_class: DNSClass,

}

Opcode An OpCode
enum is, in some
sense, a subtype of
MessageType.
This is an
extensibility
mechanism that
allows future
functionality. For
example, RFC
1035 defines the
Query and

Defined in trust_dns::op::OpCode

pub enum OpCode {

    Query,

    Status,

    Notify,

    Update,

}



Status opcodes
but others were
defined later. The
Notify and
Update opcodes
are defined by
RFC 1996 and
RFC 2136,
respectively.

An unfortunate consequence of the protocol, which I suppose is a
consequence of reality, is that there are many options, types, and subtypes
involved. Listing 8.7, an excerpt from listing 8.9, shows the process of
constructing a message that asks, “Dear DNS server, what is the IPv4 address
for domain_name?” The listing constructs the DNS message, whereas
the trust-dns crate requests an IPv4 address for domain_name.

Listing 8.7 Constructing a DNS message in Rust

35 let mut msg = Message::new();                      ①

36 msg

37   .set_id(rand::random::<u16>())                   ②

38   .set_message_type(MessageType::Query)

39   .add_query(                                      ③

40       Query::query(domain_name, RecordType::A)     ④

41   )

42   .set_op_code(OpCode::Query)

43   .set_recursion_desired(true);                    ⑤

① A Message is a container for queries (or answers).

② Generates a random u16 number

③ Multiple queries can be included in the same message.

④ The equivalent type for IPv6 addresses is AAAA.

⑤ Requests that the DNS server asks other DNS servers if it doesn’t know the answer

We’re now in a position where we can meaningfully inspect the code. It has
the following structure:



Parses command-line arguments

Builds a DNS message using trust_dns types

Converts the structured data into a stream of bytes

Sends those bytes across the wire

After that, we need to accept the response from the server, decode the
incoming bytes, and print the result. Error handling remains relatively ugly,
with many calls to unwrap() and expect(). We’ll address that
problem shortly in section 8.5. The end process is a command-line
application that’s quite simple.

Running our resolve application involves little ceremony. Given a domain
name, it provides an IP address:

$ resolve www.rustinaction.com 35.185.44.232

Listings 8.8 and 8.9 are the project’s source code. While you are
experimenting with the project, you may want to use some features of
cargo run to speed up your process:

$ cargo run -q -- www.rustinaction.com       ①

35.185.44.232

① Sends arguments to the right of -- to the executable it compiles. The -q option mutes any
intermediate output.

To compile the resolve application from the official source code repository,
execute these commands in the console:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action 

Cloning into 'rust-in-action'...

 

$ cd rust-in-action/ch8/ch8-resolve 

  

$ cargo run -q -- www.rustinaction.com      ①



35.185.44.232

① It may take a while to download the project’s dependencies and compile the code. The -q flag mutes
intermediate output. Adding two dashes (--) sends further arguments to the compiled executable.

To compile and build from scratch, follow these instructions to establish the
project structure:

1. At the command-line, enter these commands:

$ cargo new resolve 

     Created binary (application) `resolve` package

 

$ cargo install cargo-edit 

...

 

$ cd resolve 

 

$ cargo add rand@0.6 

    Updating 'https:/ /github.com/rust-lang/crates.io-index' index

      Adding rand v0.6 to dependencies

 

$ cargo add clap@2 

    Updating 'https:/ /github.com/rust-lang/crates.io-index' index

      Adding rand v2 to dependencies

 

$ cargo add trust-dns@0.16 --no-default-features 

    Updating 'https:/ /github.com/rust-lang/crates.io-index' index

      Adding trust-dns v0.16 to dependencies

2. Once the structure has been established, you check that your Cargo.toml
matches listing 8.8, available in ch8/ch8-resolve/Cargo.toml.

3. Replace the contents of src/main.rs with listing 8.9. It is available from
ch8/ch8-resolve/src/main.rs.

The following snippet provides a view of how the files of the project and the
listings are interlinked:

ch8-resolve

├── Cargo.toml      ①

└── src

    └── main.rs     ②



① See listing 8.8

② See listing 8.9

Listing 8.8 Crate metadata for the resolve app

[package]

name = "resolve"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

rand = "0.6"

clap = "2.33"

trust-dns = { version = "0.16", default-features = false }

Listing 8.9 A command-line utility to resolve IP addresses from
hostnames

 1 use std::net::{SocketAddr, UdpSocket};

 2 use std::time::Duration;

 3  

 4 use clap::{App, Arg};

 5 use rand;

 6 use trust_dns::op::{Message, MessageType, OpCode, Query};

 7 use trust_dns::rr::domain::Name;

 8 use trust_dns::rr::record_type::RecordType;

 9 use trust_dns::serialize::binary::*;

10  

11 fn main() {

12   let app = App::new("resolve")

13     .about("A simple to use DNS resolver")

14     .arg(Arg::with_name("dns-server").short("s").default_value("1.1.1.1"))

15     .arg(Arg::with_name("domain-name").required(true))

16     .get_matches();

17  

18   let domain_name_raw = app                            ①

19     .value_of("domain-name").unwrap();                 ①

20   let domain_name =                                    ①

21     Name::from_ascii(&domain_name_raw).unwrap();       ①

22  

23   let dns_server_raw = app                             ②

24     .value_of("dns-server").unwrap();                  ②

25   let dns_server: SocketAddr =                         ②

26     format!("{}:53", dns_server_raw)                   ②

27     .parse()                                           ②

28     .expect("invalid address");                        ②

29  



30   let mut request_as_bytes: Vec<u8> =                  ③

31     Vec::with_capacity(512);                           ③

32   let mut response_as_bytes: Vec<u8> =                 ③

33     vec![0; 512];                                      ③

34  

35   let mut msg = Message::new();                        ④

36   msg

37     .set_id(rand::random::<u16>())

38     .set_message_type(MessageType::Query)              ⑤

39     .add_query(Query::query(domain_name, RecordType::A))

40     .set_op_code(OpCode::Query)

41     .set_recursion_desired(true);

42  

43   let mut encoder =

44     BinEncoder::new(&mut request_as_bytes);            ⑥

45   msg.emit(&mut encoder).unwrap();

46  

47   let localhost = UdpSocket::bind("0.0.0.0:0")         ⑦

48     .expect("cannot bind to local socket");

49   let timeout = Duration::from_secs(3);

50   localhost.set_read_timeout(Some(timeout)).unwrap();

51   localhost.set_nonblocking(false).unwrap();

52  

53   let _amt = localhost

54     .send_to(&request_as_bytes, dns_server)

55     .expect("socket misconfigured");

56  

57   let (_amt, _remote) = localhost

58     .recv_from(&mut response_as_bytes)

59     .expect("timeout reached");

60  

61   let dns_message = Message::from_vec(&response_as_bytes)

62     .expect("unable to parse response");

63  

64   for answer in dns_message.answers() {

65     if answer.record_type() == RecordType::A {

66       let resource = answer.rdata();

67       let ip = resource

68         .to_ip_addr()

69         .expect("invalid IP address received");

70       println!("{}", ip.to_string());

71     }

72   }

73 }

① Converts the command-line argument to a typed domain name

② Converts the command-line argument to a typed DNS server

③ An explanation of why two forms of initializing are used is provided after the listing.

④ Message represents a DNS message, which is a container for queries and other information such as
answers.



⑤ Specifies that this is a DNS query, not a DNS answer. Both have the same representation over the
wire, but not in Rust’s type system.

⑥ Converts the Message type into raw bytes with BinEncoder

⑦ 0.0.0.0:0 means listen to all addresses on a random port. The OS selects the actual port.

Listing 8.9 includes some business logic that deserves explaining. Lines 30–
33, repeated here, use two forms of initializing a Vec<u8>. Why?

30   let mut request_as_bytes: Vec<u8> =

31     Vec::with_capacity(512);

32   let mut response_as_bytes: Vec<u8> =

33     vec![0; 512];

Each form creates a subtly different outcome:

Vec::with_capacity(512) creates a Vec<T> with length
0 and capacity 512.

vec![0; 512] creates a Vec<T> with length 512 and capacity
512.

The underlying array looks the same, but the difference in length is
significant. Within the call to recv_from() at line 58, the trust-dns crate
includes a check that response_as_bytes has sufficient space. That
check uses the length field, which results in a crash. Knowing how to wriggle
around with initialization can be handy for satisfying an APIs’ expectations.

How DNS supports connections within UDP

UDP does not have a notion of long-lived connections. Unlike TCP, all messages are short-lived
and one-way. Put another way, UDP does not support two-way (duplex ) communications. But
DNS requires a response to be sent from the DNS server back to the client.
To enable two-way communications within UDP, both parties must act as clients and servers,



depending on context. That context is defined by the protocol built on top of UDP. Within DNS,
the client becomes a DNS server to receive the server’s reply. The following table provides a
flow chart of the process.

Stage DNS client role DNS server role
Request sent from DNS
client

UDP client UDP server

Reply sent from DNS
server

UDP server UDP client

It’s time to recap. Our overall task in this section was to make HTTP
requests. HTTP is built on TCP. Because we only had a domain name
(www.rustinaction.com) when we made the request, we needed to use DNS.
DNS is primarily delivered over UDP, so we needed to take a diversion and
learn about UDP.

Now it’s almost time to return to TCP. Before we’re able to do that, though,
we need to learn how to combine error types that emerge from multiple
dependencies.



8.5 Ergonomic error handling for libraries

Rust’s error handling is safe and sophisticated. However, it offers a few
challenges. When a function incorporates Result types from two upstream
crates, the ? operator no longer works because it only understands a single
type. This proves to be important when we refactor our domain resolution
code to work alongside our TCP code. This section discusses some of those
challenges as well as strategies for managing them.

8.5.1 Issue: Unable to return multiple error types

Returning a Result<T, E> works great when there is a single error
type E. But things become more complicated when we want to work with
multiple error types.

TIP For single files, compile the code with rustc <filename> rather than using cargo
build. For example, if a file is named io-error.rs, then the shell command is rustc io-
error.rs && ./io-error[.exe].

To start, let’s look at a small example that covers the easy case of a single
error type. We’ll try to open a file that does not exist. When run, listing 8.10
prints a short message in Rust syntax:

$ rustc ch8/misc/io-error.rs && ./io-error 

Error: Os { code: 2, kind: NotFound, message: "No such file or directory" }

We won’t win any awards for user experience here, but we get a chance to
learn a new language feature. The following listing provides the code that
produces a single error type. You’ll find its source in ch8/misc/io-error.rs.



Listing 8.10 A Rust program that always produces an I/O error

1 use std::fs::File;

2  

3 fn main() -> Result<(), std::io::Error> {

4     let _f = File::open("invisible.txt")?;

5  

6     Ok(())

7 }

Now, let’s introduce another error type into main(). The next listing
produces a compiler error, but we’ll work through some options to get the
code to compile. The code for this listing is in ch8/misc/multierror.rs.

Listing 8.11 A function that attempts to return multiple Result types

 1 use std::fs::File;

 2 use std::net::Ipv6Addr;

 3  

 4 fn main() -> Result<(), std::io::Error> {

 5   let _f = File::open("invisible.txt")?;    ①

 6  

 7   let _localhost = "::1"                    ②

 8     .parse::<Ipv6Addr>()?;                  ②

 9  

10   Ok(())

11 }

① File::open() returns Result<(), std::io::Error>.

② "".parse::<Ipv6Addr>() returns Result<Ipv6Addr, std::net::AddrParseError>.

To compile listing 8.11, enter the ch8/misc directory and use rustc. This
produces quite a stern, yet helpful, error message:

$ rustc multierror.rs 

error[E0277]: `?` couldn't convert the error to `std::io::Error`

 --> multierror.rs:8:25

  |

4 | fn main() -> Result<(), std::io::Error> {

  |              -------------------------- expected `std::io::Error`

                                            because of this

...

8 |     .parse::<Ipv6Addr>()?;



  |                         ^ the trait `From<AddrParseError>`

                              is not implemented for `std::io::Error`

  |

  = note: the question mark operation (`?`) implicitly performs a

          conversion on the error value using the `From` trait

  = help: the following implementations were found:

            <std::io::Error as From<ErrorKind>>

            <std::io::Error as From<IntoInnerError<W>>>

            <std::io::Error as From<NulError>>

  = note: required by `from`

 

error: aborting due to previous error

 

For more information about this error, try `rustc --explain E0277`.

The error message can be difficult to interpret if you don’t know what the
question mark operator (?) is doing. Why are there multiple messages about
std::convert::From? Well, the ? operator is syntactic sugar for
the try! macro. try! performs two functions:

When it detects Ok(value), the expression evaluates to value.

When Err(err) occurs, try!/? returns early after attempting to
convert err to the error type defined in the calling function.

In Rust-like pseudocode, the try! macro could be defined as

macro try {

  match expression {

    Result::Ok(val) => val,                        ①

    Result::Err(err) => {

      let converted = convert::From::from(err);    ②

      return Result::Err(converted);               ③

    }

  });

}

① Uses val when an expression matches Result::Ok(val)

② Converts err to the outer function’s error type when it matches Result::Err(err) and then returns early

③ Returns from the calling function, not the try! macro itself



Looking at listing 8.11 again, we can see the try! macro in action as ?:

 4 fn main() -> Result<(), std::io::Error> {

 5   let _f = File::open("invisible.txt")?;     ①

 6  

 7   let _localhost = "::1"                     ②

 8     .parse::<Ipv6Addr>()?;                   ②

 9  

10   Ok(())

11 }

① File::open() returns std::io::Error, so no conversion is necessary.

② "".parse() presents ? with a std::net::AddrParseError. We don’t define how to convert
std::net::AddrParseError to std::io::Error, so the program fails to compile.

In addition to saving you from needing to use explicit pattern matching to
extract the value or return an error, the ? operator also attempts to convert its
argument into an error type if required. Because the signature of main is
main() → Result<(), std::io ::Error>, Rust attempts
to convert the std::net::AddrParseError produced by
parse::<Ipv6Addr>() into a std::io::Error. Don’t
worry, though; we can fix this! Earlier, in section 8.3, we introduced trait
objects. Now we’ll be able to put those to good use.

Using Box<dyn Error> as the error variant in the main() function
allows us to progress. The dyn keyword is short for dynamic, implying that
there is a runtime cost for this flexibility. Running listing 8.12 produces this
output:

$ rustc ch8/misc/traiterror.rs && ./traiterror

Error: Os { code: 2, kind: NotFound, message: "No such file or directory" }

I suppose it’s a limited form of progress, but progress nonetheless. We’ve
circled back to the error we started with. But we’ve passed through the
compiler error, which is what we wanted.



Going forward, let’s look at listing 8.12. It implements a trait object in a
return value to simplify error handling when errors originate from multiple
upstream crates. You can find the source for this listing in
ch8/misc/traiterror.rs.

Listing 8.12 Using a trait object in a return value

 1 use std::fs::File;

 2 use std::error::Error;

 3 use std::net::Ipv6Addr;

 4  

 5 fn main() -> Result<(), Box<dyn Error>> {      ①

 6  

 7   let _f = File::open("invisible.txt")?;       ②

 8  

 9   let _localhost = "::1"

10     .parse::<Ipv6Addr>()?                      ③

11  

12   Ok(())

13 }

① A trait object, Box<dyn Error>, represents any type that implements Error.

② Error type is std::io::Error

③ Error type is std::net::AddrParseError

Wrapping trait objects in Box is necessary because their size (in bytes on the
stack) is unknown at compile time. In the case of listing 8.12, the trait object
might originate from either File::open() or "::1".parse().
What actually happens depends on the circumstances encountered at runtime.
A Box has a known size on the stack. Its raison d’être is to point to things
that don’t, such as trait objects.

8.5.2 Wrapping downstream errors by defining our
own error type

The problem that we are attempting to solve is that each of our dependencies



defines its own error type. Multiple error types in one function prevent
returning Result. The first strategy we looked at was to use trait objects,
but trait objects have a potentially significant downside.

Using trait objects is also known as type erasure. Rust is no longer aware that
an error has originated upstream. Using Box<dyn Error> as the error
variant of a Result means that the upstream error types are, in a sense,
lost. The original errors are now converted to exactly the same type.

It is possible to retain the upstream errors, but this requires more work on our
behalf. We need to bundle upstream errors in our own type. When the
upstream errors are needed later (say, for reporting errors to the user), it’s
possible to extract these with pattern matching. Here is the process:

1. Define an enum that includes the upstream errors as variants.

2. Annotate the enum with #[derive(Debug)].

3. Implement Display.

4. Implement Error, which almost comes for free because we have
implemented Debug and Display.

5. Use map_err() in your code to convert the upstream error to your
omnibus error type.

NOTE You haven’t previously encountered the map_err() function. We’ll explain what it does
when we get there later in this section.

It’s possible to stop with the previous steps, but there’s an optional extra step
that improves the ergonomics. We need to implement
std::convert::From to remove the need to call map_err(). To
begin, let’s start back with listing 8.11, where we know that the code fails:



use std::fs::File;

use std::net::Ipv6Addr;

 

fn main() -> Result<(), std::io::Error> {

  let _f = File::open("invisible.txt")?;

 

  let _localhost = "::1"

    .parse::<Ipv6Addr>()?;

 

  Ok(())

}

This code fails because "".parse::<Ipv6Addr>() does not return
a std::io::Error. What we want to end up with is code that looks a
little more like the following listing.

Listing 8.13 Hypothetical example of the kind of code we want to write

 1 use std::fs::File;

 2 use std::io::Error;              ①

 3 use std::net::AddrParseError;    ①

 4 use std::net::Ipv6Addr;

 5  

 6 enum UpstreamError{

 7   IO(std::io::Error),

 8   Parsing(AddrParseError),

 9 }

10  

11 fn main() -> Result<(), UpstreamError> {

12   let _f = File::open("invisible.txt")?

13     .maybe_convert_to(UpstreamError);

14  

15   let _localhost = "::1"

16     .parse::<Ipv6Addr>()?

17     .maybe_convert_to(UpstreamError);

18  

19   Ok(())

20 }

① Brings upstream errors into local scope

DEFINE AN ENUM THAT INCLUDES THE
UPSTREAM ERRORS AS VARIANTS



The first thing to do is to return a type that can hold the upstream error types.
In Rust, an enum works well. Listing 8.13 does not compile, but does do this
step. We’ll tidy up the imports slightly, though:

use std::io;

use std::net;

 

enum UpstreamError{

  IO(io::Error),

  Parsing(net::AddrParseError),

}

ANNOTATE THE ENUM WITH #
[DERIVE(DEBUG)]

The next change is easy. It’s a single-line change—the best kind of change.
To annotate the enum, we’ll add #[derive(Debug)], as the following
shows:

use std::io;

use std::net;

 

#[derive(Debug)]

enum UpstreamError{

  IO(io::Error),

  Parsing(net::AddrParseError),

}

IMPLEMENT STD::FMT::DISPLAY

We’ll cheat slightly and implement Display by simply using Debug.
We know that this is available to us because errors must define Debug.
Here’s the updated code:

use std::fmt;

use std::io;



use std::net;

 

#[derive(Debug)]

enum UpstreamError{

  IO(io::Error),

  Parsing(net::AddrParseError),

}

 

impl fmt::Display for UpstreamError {

  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

    write!(f, "{:?}", self)                                   ①

  }

}

① Implements Display in terms of Debug via the "{:?}" syntax

IMPLEMENT STD::ERROR::ERROR

Here’s another easy change. To end up with the kind of code that we’d like to
write, let’s make the following change:

use std::error;                            ①

use std::fmt;

use std::io;

use std::net;

 

#[derive(Debug)]

enum UpstreamError{

  IO(io::Error),

  Parsing(net::AddrParseError),

}

 

impl fmt::Display for UpstreamError {

  fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

    write!(f, "{:?}", self)

  }

}

 

impl error::Error for UpstreamError { }    ②

① Brings the std::error::Error trait into local scope

② Defers to default method implementations. The compiler will fill in the blanks.

The impl block is—well, we can rely on default implementations provided
by the compiler—especially terse. Because there are default implementations



of every method defined by std::error::Error, we can ask the
compiler to do all of the work for us.

USE MAP_ERR()

The next fix is to add map_err() to our code to convert the upstream
error to the omnibus error type. Back at listing 8.13, we wanted to have a
main() that looks like this:

fn main() -> Result<(), UpstreamError> {

  let _f = File::open("invisible.txt")?

    .maybe_convert_to(UpstreamError);

 

  let _localhost = "::1"

    .parse::<Ipv6Addr>()?

    .maybe_convert_to(UpstreamError);

 

  Ok(())

}

I can’t offer you that. I can, however, give you this:

fn main() -> Result<(), UpstreamError> {

  let _f = File::open("invisible.txt")

    .map_err(UpstreamError::IO)?;

 

  let _localhost = "::1"

    .parse::<Ipv6Addr>()

    .map_err(UpstreamError::Parsing)?;

 

  Ok(())

}

This new code works! Here’s how. The map_err() function maps an
error to a function. (Variants of our UpstreamError enum can be used
as functions here.) Note that the ? operator needs to be at the end. Otherwise,
the function can return before the code has a chance to convert the error.



Listing 8.14 provides the new code. When run, it produces this message to
the console:

$ rustc ch8/misc/wraperror.rs && ./wraperror 

Error: IO(Os { code: 2, kind: NotFound, message: "No such file or directory" })

To retain type safety, we can use the new code in the following listing. You’ll
find its source in ch8/misc/wraperror.rs.

Listing 8.14 Wrapping upstream errors in our own type

 1 use std::io;

 2 use std::fmt;

 3 use std::net;

 4 use std::fs::File;

 5 use std::net::Ipv6Addr;

 6  

 7 #[derive(Debug)]

 8 enum UpstreamError{

 9   IO(io::Error),

10   Parsing(net::AddrParseError),

11 }

12  

13 impl fmt::Display for UpstreamError {

14   fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

15     write!(f, "{:?}", self)

16   }

17 }

18  

19 impl error::Error for UpstreamError { }

20  

21 fn main() -> Result<(), UpstreamError> {

22   let _f = File::open("invisible.txt")

23     .map_err(UpstreamError::IO)?;

24  

25   let _localhost = "::1"

26     .parse::<Ipv6Addr>()

27     .map_err(UpstreamError::Parsing)?;

28  

29   Ok(())

30 }

It’s also possible to remove the calls to map_err(). But to enable that,
we need to implement From.



IMPLEMENT STD::CONVERT::FROM TO
REMOVE THE NEED TO CALL MAP_ERR()

The std::convert::From trait has a single required method,
from(). We need two impl blocks to enable our two upstream error
types to be convertible. The following snippet shows how:

impl From<io::Error> for UpstreamError {

  fn from(error: io::Error) -> Self {

    UpstreamError::IO(error)

  }

}

 

impl From<net::AddrParseError> for UpstreamError {

  fn from(error: net::AddrParseError) -> Self {

    UpstreamError::Parsing(error)

  }

}

Now the main() function returns to a simple form of itself:

fn main() -> Result<(), UpstreamError> {

  let _f = File::open("invisible.txt")?;

  let _localhost = "::1".parse::<Ipv6Addr>()?;

 

  Ok(())

}

The full code listing is provided in listing 8.15. Implementing From places
the burden of extra syntax on the library writer. It results in a much easier
experience when using your crate, simplifying its use by downstream
programmers. You’ll find the source for this listing in
ch8/misc/wraperror2.rs.

Listing 8.15 Implementing std::convert::From for our wrapper
error type



 1 use std::io;

 2 use std::fmt;

 3 use std::net;

 4 use std::fs::File;

 5 use std::net::Ipv6Addr;

 6  

 7 #[derive(Debug)]

 8 enum UpstreamError{

 9   IO(io::Error),

10   Parsing(net::AddrParseError),

11 }

12  

13 impl fmt::Display for UpstreamError {

14   fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

15     write!(f, "{:?}", self)                                    1((CO20-1)) 

16   }

17 }

18  

19 impl error::Error for UpstreamError { }

20  

21 impl From<io::Error> for UpstreamError {

22   fn from(error: io::Error) -> Self {

23     UpstreamError::IO(error)

24   }

25 }

26  

27 impl From<net::AddrParseError> for UpstreamError {

28   fn from(error: net::AddrParseError) -> Self {

29     UpstreamError::Parsing(error)

30   }

31 }

32  

33 fn main() -> Result<(), UpstreamError> {

34   let _f = File::open("invisible.txt")?;

35   let _localhost = "::1".parse::<Ipv6Addr>()?;

36  

37   Ok(())

38 }

8.5.3 Cheating with unwrap() and expect()

The final approach for dealing with multiple error types is to use
unwrap() and expect(). Now that we have the tools to handle
multiple error types in a function, we can continue our journey.

NOTE This is a reasonable approach when writing a main() function, but it isn’t recommended



for library authors. Your users don’t want their programs to crash because of things outside of their
control.



8.6 MAC addresses

Several pages ago in listing 8.9, you implemented a DNS resolver. That
enabled conversions from a host name such as www.rustinaction.com to an
IP address. Now we have an IP address to connect to.

The internet protocol enables devices to contact each other via their IP
addresses. But that’s not all. Every hardware device also includes a unique
identifier that’s independent of the network it’s connected to. Why a second
number? The answer is partially technical and partially historical.

Ethernet networking and the internet started life independently. Ethernet’s
focus was on local area networks (LANs). The internet was developed to
enable communication between networks, and Ethernet is the addressing
system understood by devices that share a physical link (or a radio link in the
case of WiFi, Bluetooth, and other wireless technologies).

Perhaps a better way to express this is that MAC (short for media access
control ) addresses are used by devices that share electrons (figure 8.3). But
there are a few differences:

IP addresses are hierarchical, but MAC addresses are not. Addresses
appearing close together numerically are not close together physically,
or organizationally.

MAC addresses are 48 bits (6 bytes) wide. IP addresses are 32 bits (4
bytes) wide for IPv4 and 128 bits (16 bytes) for IPv6.



Figure 8.3 In-memory layout for MAC addresses

There are two forms of MAC addresses:

Universally administered (or universal) addresses are set when devices
are manufactured. Manufacturers use a prefix assigned by the IEEE
Registration Authority and a scheme of their choosing for the remaining
bits.

Locally administered (or local) addresses allow devices to create their
own MAC addresses without registration. When setting a device’s MAC
address yourself in software, you should make sure that your address is
set to the local form.

MAC addresses have two modes: unicast and multicast. The transmission
behavior for these forms is identical. The distinction is made when a device
makes a decision about whether to accept a frame. A frame is a term used by
the Ethernet protocol for a byte slice at this level. Analogies to frame include
a packet, wrapper, and envelope. Figure 8.4 shows this distinction.



Figure 8.4 The differences between multicast and unicast MAC
addresses

Unicast addresses are intended to transport information between two points
that are in direct contact (say, between a laptop and a router). Wireless access
points complicate matters somewhat but don’t change the fundamentals. A
multicast address can be accepted by multiple recipients, whereas unicast has
a single recipient. The term unicast is somewhat misleading, though. Sending
an Ethernet packet involves more than two devices. Using a unicast address
alters what devices do when they receive packets but not which data is
transmitted over the wire (or through the radio waves).

8.6.1 Generating MAC addresses

When we begin talking about raw TCP in section 8.8, we’ll create a virtual



hardware device in listing 8.22. To convince anything to talk to us, we need
to learn how to assign our virtual device a MAC address. The macgen project
in listing 8.17 generates the MAC addresses for us. The following listing
shows the metadata for that project. You can find its source in ch8/ch8-
mac/Cargo.toml.

Listing 8.16 Crate metadata for the macgen project

[package]

name = "ch8-macgen"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

rand = "0.7"

The following listing shows the macgen project, our MAC address generator.
The source code for this project is in the ch8/ch8-mac/src/main.rs file.

Listing 8.17 Creating macgen, a MAC address generator

 1 extern crate rand;

 2  

 3 use rand::RngCore;

 4 use std::fmt;

 5 use std::fmt::Display;

 6  

 7 #[derive(Debug)]

 8 struct MacAddress([u8; 6]);                           ①

 9  

10 impl Display for MacAddress {

11   fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

12     let octet = &self.0;

13     write!(

14       f,

15       "{:02x}:{:02x}:{:02x}:{:02x}:{:02x}:{:02x}",    ②

16       octet[0], octet[1], octet[2],                   ②

17       octet[3], octet[4], octet[5]                    ②

18     )

19   }

20 }

21  

22 impl MacAddress {

23   fn new() -> MacAddress {



24     let mut octets: [u8; 6] = [0; 6];

25     rand::thread_rng().fill_bytes(&mut octets);

26     octets[0] |= 0b_0000_0011;                        ③

27     MacAddress { 0: octets }

28   }

29  

30   fn is_local(&self) -> bool {

31     (self.0[0] & 0b_0000_0010) == 0b_0000_0010

32   }

33  

34   fn is_unicast(&self) -> bool {

35     (self.0[0] & 0b_0000_0001) == 0b_0000_0001

36   }

37 }

38  

39 fn main() {

40   let mac = MacAddress::new();

41   assert!(mac.is_local());

42   assert!(mac.is_unicast());

43   println!("mac: {}", mac);

44 }

① Uses the newtype pattern to wrap a bare array without any extra overhead

② Converts each byte to hexadecimal notation

③ Sets the MAC address to local and unicast

The code from listing 8.17 should feel legible. Line 25 contains some
relatively obscure syntax, though. octets[0] |= 0b_0000_0011
coerces the two flag bits described at figure 8.3 to a state of 1. That
designates every MAC address we generate as locally assigned and unicast.



8.7 Implementing state machines with Rust’s
enums

Another prerequisite for handling network messages is being able to define a
state machine. Our code needs to adapt to changes in connectivity.

Listing 8.22 contains a state machine, implemented with a loop, a match,
and a Rust enum. Because of Rust’s expression-based nature, control flow
operators also return values. Every time around the loop, the state is mutated
in place. The following listing shows the pseudocode for how a repeated
match on a enum works together.

Listing 8.18 Pseudocode for a state machine implementation

enum HttpState {

    Connect,

    Request,

    Response,

}

 

loop {

    state = match state {

        HttpState::Connect if !socket.is_active() => {

            socket.connect();

            HttpState::Request

        }

 

        HttpState::Request if socket.may_send() => {

            socket.send(data);

            HttpState::Response

        }

 

        HttpState::Response if socket.can_recv() => {

            received = socket.recv();

            HttpState::Response

        }

 

        HttpState::Response if !socket.may_recv() => {

            break;

        }



        _ => state,

    }

}

More advanced methods to implement finite state machines do exist. This is
the simplest, however. We’ll make use of it in listing 8.22. Making use of an
enum embeds the state machine’s transitions into the type system itself.

But we’re still at a level that is far too high! To dig deeper, we’re going to
need to get some assistance from the OS.



8.8 Raw TCP

Integrating with the raw TCP packets typically requires root/superuser access.
The OS starts to get quite grumpy when an unauthorized user asks to make
raw network requests. We can get around this (on Linux) by creating a proxy
device that non-super users are allowed to communicate with directly.

Don’t have Linux?

If you’re running another OS, there are many virtualization options available. Here are a few:

The Multipass project (https://multipass.run/) provides fast Ubuntu virtual machines on
macOS and Windows hosts.

WSL, the Windows Subsystem for Linux (https://docs.microsoft.com/en-
us/windows/wsl/about), is another option to look into.

Oracle VirtualBox (https://www.virtualbox.org/) is an open source project with
excellent support for many host operating systems.

https://multipass.run/
https://docs.microsoft.com/en-us/windows/wsl/about
https://www.virtualbox.org/


8.9 Creating a virtual networking device

To proceed with this section, you will need to create virtual networking
hardware. Using virtual hardware provides more control to freely assign IP
and MAC addresses. It also avoids changing your hardware settings, which
could affect its ability to connect to the network. To create a TAP device
called tap-rust, execute the following command in your Linux console:

$ sudo \                ①

>  ip tuntap \          ②

>    add \              ③

>    mode tap \         ④

>    name tap-rust \    ⑤

>    user $USER         ⑥

① Executes as the root user

② Tells ip that we’re managing TUN/TAP devices

③ Uses the add subcommand

④ Uses the TUN tunnelling mode

⑤ Gives your device a unique name

⑥ Grants access to your non-root user account

When successful, ip prints no output. To confirm that our tap-rust device
was added, we can use the ip tuntap list subcommand as in the
following snippet. When executed, you should see the tap-rust device in the
list of devices in the output:

$ ip tuntap list 

tap-rust: tap persist user

Now that we have created a networking device, we also need to allocate an IP
address for it and tell our system to forward packets to it. The following
shows the commands to enable this functionality:



$ sudo ip link set tap-rust up                        ①

$ sudo ip addr add 192.168.42.100/24 dev tap-rust     ②

 

$ sudo iptables \                                     ③

>   -t nat\                                           ③

>   -A POSTROUTING \                                  ③

>   -s 192.168.42.0/24 \                              ③

>   -j MASQUERADE                                     ③

 

 

$ sudo sysctl net.ipv4.ip_forward=1                   ④

① Establishes a network device called tap-rust and activates it

② Assigns the IP address 192.168.42.100 to the device

③ Enables internet packets to reach the source IP address mask (-s 192.168.42.100/24) by appending a
rule (-A POSTROUTING) that dynamically maps IP addresses to a device (-j MASQUERADE)

④ Instructs the kernel to enable IPv4 packet forwarding

The following shows how to remove the device (once you have completed
this chapter) by using del rather than add:

$ sudo ip tuntap del mode tap name tap-rust



8.10 “Raw” HTTP

We should now have all the knowledge we need to take on the challenge of
using HTTP at the TCP level. The mget project (mget is short for manually
get ) spans listings 8.20–8.23. It is a large project, but you’ll find it
immensely satisfying to understand and build. Each file provides a different
role:

main.rs (listing 8.20)—Handles command-line parsing and weaves
together the functionality provided by its peer files. This is where we
combine the error types using the process outlined in section 8.5.2.

ethernet.rs (listing 8.21)—Generates a MAC address using the logic
from listing 8.17 and converts between MAC address types (defined by
the smoltcp crate) and our own.

http.rs (listing 8.22)—Carries out the work of interacting with the server
to make the HTTP request.

dns.rs (listing 8.23)—Performs DNS resolution, which converts a
domain name to an IP address.

NOTE The source code for these listings (and every code listing in the book) is available from
https://github.com/rust-in-action/code or https://www .manning.com/books/rust-in-action.

It’s important to acknowledge that listing 8.22 was derived from the HTTP
client example within the smoltcp crate itself. whitequark
(https://whitequark.org/) has built an absolutely fantastic networking library.
Here’s the file structure for the mget project:

ch8-mget

├── Cargo.toml          ①

└── src

    ├── main.rs         ②

https://github.com/rust-in-action/code
https://www.manning.com/books/rust-in-action
https://whitequark.org/


    ├── ethernet.rs     ③

    ├── http.rs         ④

    └── dns.rs          ⑤

① See listing 8.19.

② See listing 8.20.

③ See listing 8.21.

④ See listing 8.22.

⑤ See listing 8.23.

To download and run the mget project from source control, execute these
commands at the command line:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action 

Cloning into 'rust-in-action'...

 

$ cd rust-in-action/ch8/ch8-mget

Here are the project setup instructions for those readers who enjoy doing
things step by step (with the output omitted).

1. Enter these commands at the command-line:

$ cargo new mget

 

$ cd mget

 

$ cargo install cargo-edit

 

$ cargo add clap@2

 

$ cargo add url@02

 

$ cargo add rand@0.7

 

$ cargo add trust-dns@0.16 --no-default-features

 

$ cargo add smoltcp@0.6 --features='proto-igmp proto-ipv4 verbose log'

2. Check that your project’s Cargo.toml matches listing 8.19.

3. Within the src directory, listing 8.20 becomes main.rs, listing 8.21



becomes ethernet.rs, listing 8.22 becomes http.rs, and listing 8.23
becomes dns.rs.

The following listing shows the metadata for mget. You’ll find its source
code in the ch8/ch8-mget/Cargo.toml file.

Listing 8.19 Crate metadata for mget

[package]

name = "mget"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

clap = "2"                        ①

rand = "0.7"                      ②

smoltcp = {                       ③

  version = "0.6",

  features = ["proto-igmp", "proto-ipv4", "verbose", "log"]

}

trust-dns = {                     ④

  version = "0.16",

  default-features = false

}

url = "2"                         ⑤

① Provides command-line argument parsing

② Selects a random port number

③ Provides a TCP implementation

④ Enables connecting to a DNS server

⑤ Parses and validates URLs

The following listing shows the command-line parsing for our project. You’ll
find this source in ch8/ch8-mget/src/main.rs.

Listing 8.20 mget command-line parsing and overall coordination

 1 use clap::{App, Arg};

 2 use smoltcp::phy::TapInterface;

 3 use url::Url;

 4  

 5 mod dns;



 6 mod ethernet;

 7 mod http;

 8  

 9 fn main() {

10   let app = App::new("mget")

11     .about("GET a webpage, manually")

12     .arg(Arg::with_name("url").required(true))           ①

13     .arg(Arg::with_name("tap-device").required(true))    ②

14     .arg(

15       Arg::with_name("dns-server")

16         .default_value("1.1.1.1"),                       ③

17     )

18     .get_matches();                                      ④

19  

20   let url_text = app.value_of("url").unwrap();

21   let dns_server_text =

22     app.value_of("dns-server").unwrap();

23   let tap_text = app.value_of("tap-device").unwrap();

24  

25   let url = Url::parse(url_text)                         ⑤

26     .expect("error: unable to parse <url> as a URL");

27  

28   if url.scheme() != "http" {                            ⑤

29     eprintln!("error: only HTTP protocol supported");

30     return;

31   }

32  

33   let tap = TapInterface::new(&tap_text)                 ⑤

34     .expect(

35       "error: unable to use <tap-device> as a \

36        network interface",

37     );

38  

39   let domain_name =

40     url.host_str()                                       ⑤

41       .expect("domain name required");

42  

43   let _dns_server: std::net::Ipv4Addr =

44     dns_server_text

45       .parse()                                           ⑤

46       .expect(

47         "error: unable to parse <dns-server> as an \

48          IPv4 address",

49       );

50  

51   let addr =

52     dns::resolve(dns_server_text, domain_name)           ⑥

53       .unwrap()

54       .unwrap();

55  

56   let mac = ethernet::MacAddress::new().into();          ⑦

57  

58   http::get(tap, mac, addr, url).unwrap();               ⑧

59  



60 }

① Requires a URL to download data from

② Requires a TAP networking device to connect with

③ Makes it possible for the user to select which DNS server to use

④ Parses the command-line arguments

⑤ Validates the command-line arguments

⑥ Converts the URL’s domain name into an IP address that we can connect to

⑦ Generates a random unicode MAC address

⑧ Makes the HTTP GET request

The following listing generates our MAC address and converts between
MAC address types defined by the smoltcp crate and our own. The code for
this listing is in ch8/ch8-mget/src/ethernet.rs.

Listing 8.21 Ethernet type conversion and MAC address generation

 1 use rand;

 2 use std::fmt;

 3 use std::fmt::Display;

 4  

 5 use rand::RngCore;

 6 use smoltcp::wire;

 7  

 8 #[derive(Debug)]

 9 pub struct MacAddress([u8; 6]);

10  

11 impl Display for MacAddress {

12   fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

13     let octet = self.0;

14     write!(

15       f,

16       "{:02x}:{:02x}:{:02x}:{:02x}:{:02x}:{:02x}",

17       octet[0], octet[1], octet[2],

18       octet[3], octet[4], octet[5]

19     )

20   }

21 }

22  

23 impl MacAddress {

24   pub fn new() -> MacAddress {

25     let mut octets: [u8; 6] = [0; 6];

26     rand::thread_rng().fill_bytes(&mut octets);    ①

27     octets[0] |= 0b_0000_0010;                     ②

28     octets[0] &= 0b_1111_1110;                     ③



29     MacAddress { 0: octets }

30   }

31 }

32  

33 impl Into<wire::EthernetAddress> for MacAddress {

34   fn into(self) -> wire::EthernetAddress {

35     wire::EthernetAddress { 0: self.0 }

36   }

37 }

① Generates a random number

② Ensures that the local address bit is set to 1

③ Ensures the unicast bit is set to 0

The following listing shows how to interact with the server to make the
HTTP request. The code for this listing is in ch8/ch8-mget/src/http.rs.

Listing 8.22 Manually creating an HTTP request using TCP primitives

  1 use std::collections::BTreeMap;

  2 use std::fmt;

  3 use std::net::IpAddr;

  4 use std::os::unix::io::AsRawFd;

  5  

  6 use smoltcp::iface::{EthernetInterfaceBuilder, NeighborCache, Routes};

  7 use smoltcp::phy::{wait as phy_wait, TapInterface};

  8 use smoltcp::socket::{SocketSet, TcpSocket, TcpSocketBuffer};

  9 use smoltcp::time::Instant;

 10 use smoltcp::wire::{EthernetAddress, IpAddress, IpCidr, Ipv4Address};

 11 use url::Url;

 12  

 13 #[derive(Debug)]

 14 enum HttpState {

 15   Connect,

 16   Request,

 17   Response,

 18 }

 19  

 20 #[derive(Debug)]

 21 pub enum UpstreamError {

 22   Network(smoltcp::Error),

 23   InvalidUrl,

 24   Content(std::str::Utf8Error),

 25 }

 26  

 27 impl fmt::Display for UpstreamError {

 28   fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

 29     write!(f, "{:?}", self)

 30   }



 31 }

 32  

 33 impl From<smoltcp::Error> for UpstreamError {

 34   fn from(error: smoltcp::Error) -> Self {

 35     UpstreamError::Network(error)

 36   }

 37 }

 38  

 39 impl From<std::str::Utf8Error> for UpstreamError {

 40   fn from(error: std::str::Utf8Error) -> Self {

 41     UpstreamError::Content(error)

 42   }

 43 }

 44  

 45 fn random_port() -> u16 {

 46   49152 + rand::random::<u16>() % 16384

 47 }

 48  

 49 pub fn get(

 50   tap: TapInterface,

 51   mac: EthernetAddress,

 52   addr: IpAddr,

 53   url: Url,

 54 ) -> Result<(), UpstreamError> {

 55   let domain_name = url.host_str().ok_or(UpstreamError::InvalidUrl)?;

 56  

 57   let neighbor_cache = NeighborCache::new(BTreeMap::new());

 58  

 59   let tcp_rx_buffer = TcpSocketBuffer::new(vec![0; 1024]);

 60   let tcp_tx_buffer = TcpSocketBuffer::new(vec![0; 1024]);

 61   let tcp_socket = TcpSocket::new(tcp_rx_buffer, tcp_tx_buffer);

 62  

 63   let ip_addrs = [IpCidr::new(IpAddress::v4(192, 168, 42, 1), 24)];

 64  

 65   let fd = tap.as_raw_fd();

 66   let mut routes = Routes::new(BTreeMap::new());

 67   let default_gateway = Ipv4Address::new(192, 168, 42, 100);

 68   routes.add_default_ipv4_route(default_gateway).unwrap();

 69   let mut iface = EthernetInterfaceBuilder::new(tap)

 70     .ethernet_addr(mac)

 71     .neighbor_cache(neighbor_cache)

 72     .ip_addrs(ip_addrs)

 73     .routes(routes)

 74     .finalize();

 75  

 76   let mut sockets = SocketSet::new(vec![]);

 77   let tcp_handle = sockets.add(tcp_socket);

 78  

 79   let http_header = format!(

 80     "GET {} HTTP/1.0\r\nHost: {}\r\nConnection: close\r\n\r\n",

 81     url.path(),

 82     domain_name,

 83   );

 84  



 85   let mut state = HttpState::Connect;

 86   'http: loop {

 87     let timestamp = Instant::now();

 88     match iface.poll(&mut sockets, timestamp) {

 89       Ok(_) => {}

 90       Err(smoltcp::Error::Unrecognized) => {}

 91       Err(e) => {

 92         eprintln!("error: {:?}", e);

 93       }

 94     }

 95  

 96     {

 97       let mut socket = sockets.get::<TcpSocket>(tcp_handle);

 98  

 99       state = match state {

100         HttpState::Connect if !socket.is_active() => {

101           eprintln!("connecting");

102           socket.connect((addr, 80), random_port())?;

103           HttpState::Request

104         }

105  

106         HttpState::Request if socket.may_send() => {

107           eprintln!("sending request");

108           socket.send_slice(http_header.as_ref())?;

109           HttpState::Response

110         }

111  

112         HttpState::Response if socket.can_recv() => {

113           socket.recv(|raw_data| {

114             let output = String::from_utf8_lossy(raw_data);

115             println!("{}", output);

116             (raw_data.len(), ())

117           })?;

118           HttpState::Response

119         }

120  

121         HttpState::Response if !socket.may_recv() => {

122           eprintln!("received complete response");

123           break 'http;

124         }

125         _ => state,

126       }

127     }

128  

129     phy_wait(fd, iface.poll_delay(&sockets, timestamp))

130       .expect("wait error");

131   }

132  

133   Ok(())

134 }

And finally, the following listing performs the DNS resolution. The source



for this listing is in ch8/ch8-mget/src/dns.rs.

Listing 8.23 Creating DNS queries to translate domain names to IP
addresses

  1 use std::error::Error;

  2 use std::net::{SocketAddr, UdpSocket};

  3 use std::time::Duration;

  4  

  5 use trust_dns::op::{Message, MessageType, OpCode, Query};

  6 use trust_dns::proto::error::ProtoError;

  7 use trust_dns::rr::domain::Name;

  8 use trust_dns::rr::record_type::RecordType;

  9 use trust_dns::serialize::binary::*;

 10  

 11 fn message_id() -> u16 {

 12   let candidate = rand::random();

 13   if candidate == 0 {

 14     return message_id();

 15   }

 16   candidate

 17 }

 18  

 19 #[derive(Debug)]

 20 pub enum DnsError {

 21   ParseDomainName(ProtoError),

 22   ParseDnsServerAddress(std::net::AddrParseError),

 23   Encoding(ProtoError),

 24   Decoding(ProtoError),

 25   Network(std::io::Error),

 26   Sending(std::io::Error),

 27   Receving(std::io::Error),

 28 }

 29  

 30 impl std::fmt::Display for DnsError {

 31   fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {

 32     write!(f, "{:#?}", self)

 33   }

 34 }

 35  

 36 impl std::error::Error for DnsError {}                 ①

 37  

 38 pub fn resolve(

 39   dns_server_address: &str,

 40   domain_name: &str,

 41 ) -> Result<Option<std::net::IpAddr>, Box<dyn Error>> {

 42   let domain_name =

 43     Name::from_ascii(domain_name)

 44       .map_err(DnsError::ParseDomainName)?;

 45  

 46   let dns_server_address =



 47     format!("{}:53", dns_server_address);              ②

 48   let dns_server: SocketAddr = dns_server_address

 49     .parse()

 50     .map_err(DnsError::ParseDnsServerAddress)?;

 51  

 52   let mut request_buffer: Vec<u8> =                    ③

 53     Vec::with_capacity(64);                            ③

 54   let mut response_buffer: Vec<u8> =                   ④

 55     vec![0; 512];                                      ④

 56  

 57   let mut request = Message::new();

 58   request.add_query(                                   ⑤

 59     Query::query(domain_name, RecordType::A)           ⑤

 60   );                                                   ⑤

 61  

 62   request

 63     .set_id(message_id())

 64     .set_message_type(MessageType::Query)

 65     .set_op_code(OpCode::Query)

 66     .set_recursion_desired(true);                      ⑥

 67  

 68   let localhost =

 69     UdpSocket::bind("0.0.0.0:0").map_err(DnsError::Network)?;

 70  

 71   let timeout = Duration::from_secs(5);

 72   localhost

 73     .set_read_timeout(Some(timeout))

 74     .map_err(DnsError::Network)?;                      ⑦

 75  

 76   localhost

 77     .set_nonblocking(false)

 78     .map_err(DnsError::Network)?;

 79  

 80   let mut encoder = BinEncoder::new(&mut request_buffer);

 81   request.emit(&mut encoder).map_err(DnsError::Encoding)?;

 82  

 83   let _n_bytes_sent = localhost

 84     .send_to(&request_buffer, dns_server)

 85     .map_err(DnsError::Sending)?;

 86  

 87   loop {                                               ⑧

 88     let (_b_bytes_recv, remote_port) = localhost

 89       .recv_from(&mut response_buffer)

 90       .map_err(DnsError::Receving)?;

 91  

 92     if remote_port == dns_server {

 93       break;

 94     }

 95   }

 96  

 97   let response =

 98     Message::from_vec(&response_buffer)

 99       .map_err(DnsError::Decoding)?;

100  



101   for answer in response.answers() {

102     if answer.record_type() == RecordType::A {

103       let resource = answer.rdata();

104       let server_ip =

105         resource.to_ip_addr().expect("invalid IP address received");

106       return Ok(Some(server_ip));

107     }

108   }

109  

110   Ok(None)

111 }

① Falls back to default methods

② Attempts to build the internal data structures using the raw text input

③ Because our DNS request will be small, we only need a little bit of space to hold it.

④ DNS over UDP uses a maximum packet size of 512 bytes.

⑤ DNS messages can hold multiple queries, but here we only use a single one.

⑥ Asks the DNS server to make requests on our behalf if it doesn’t know the answer

⑦ Binding to port 0 asks the OS to allocate a port on our behalf.

⑧ There is a small chance another UDP message will be received on our port from some unknown
sender. To avoid that, we ignore packets from IP addresses that we don’t expect.

mget is an ambitious project. It brings together all the threads from the
chapter, is dozens of lines long, and yet is less capable than the
request::get(url) call we made in listing 8.2. Hopefully it’s
revealed several interesting avenues for you to explore. Perhaps, surprisingly,
there are several more networking layers to unwrap. Well done for making
your way through a lengthy and challenging chapter.



Summary

Networking is complicated. Standard models such as OSIs are only
partially accurate.

Trait objects allow for runtime polymorphism. Typically, programmers
prefer generics because trait objects incur a small runtime cost.
However, this situation is not always clear-cut. Using trait objects can
reduce space because only a single version of each function needs to be
compiled. Fewer functions also benefits cache coherence.

Networking protocols are particular about which bytes are used. In
general, you should prefer using &[u8] literals (b"...") over
&str literals ("...") to ensure that you retain full control.

There are three main strategies for handling multiple upstream error
types within a single scope:

Create an internal wrapper type and implement From for each of
the upstream types

Change the return type to make use of a trait object that implements
std:: error:Error

Use .unwrap() and its cousin .expect()

Finite state machines can be elegantly modeled in Rust with an enum
and a loop. At each iteration, indicate the next state by returning the
appropriate enum variant.

To enable two-way communications in UDP, each side of the
conversation must be able to act as a client and a server.

1.In old Rust code, you may see &Trait, and Box<Trait>. While legal syntax, these are officially
deprecated. Adding dyn keyword is strongly encouraged.



2.Naming is hard.



9 Time and timekeeping

This chapter covers

Understanding how a computer keeps time
How operating systems represent timestamps
Synchronizing atomic clocks with the Network Time Protocol (NTP)

In this chapter, you’ll produce an NTP (Network Time Protocol) client that
requests the current time from the world’s network of public time servers. It’s
a fully functioning client that can be included in your own computer’s boot
process to keep it in sync with the world.

Understanding how time works within computers supports your efforts to
build resilient applications. The system clock jumps both backwards and
forwards in time. Knowing why this happens allows you to anticipate and
prepare for that eventuality.

Your computer also contains multiple physical and virtual clocks. It takes
some knowledge to understand the limitations of each and when these are
appropriate. Understanding the limitations of each should foster a healthy
skepticism about micro benchmarks and other time-sensitive code.

Some of the hardest software engineering involves distributed systems that
need to agree on what the time is. If you have the resources of Google, then
you’re able to maintain a network atomic clock that provides a worldwide
time synchronization of 7 ms. The closest open source alternative is
CockroachDB (https://www.cockroachlabs.com/). It relies on the NTP, which

https://www.cockroachlabs.com/


can have a (worldwide) latency of approximately dozens of milliseconds. But
that doesn’t make it useless. When deployed within a local network, NTP
allows computers to agree on the time to within a few milliseconds or less.

On the Rust side of the equation, this chapter invests lots of time interacting
with the OS internals. You’ll become more confident with unsafe blocks
and with using raw pointers. Readers will become familiar with chrono, the
de facto standard crate for high-level time and clock operations.



9.1 Background

It’s easy to think that a day has 86,400 seconds (60 s × 60 min × 24 h =
86,400 s). But the earth’s rotation isn’t quite that perfect. The length of each
day fluctuates due to tidal friction with the moon and other effects such as
torque at the boundary of the earth’s core and its mantle.

Software does not tolerate these imperfections. Most systems assume that
most seconds have an equal duration. The mismatch presents several
problems.

In 2012, a large number of services—including high profile sites such as
Reddit and Mozilla’s Hadoop infrastructure—stopped functioning after a leap
second was added to their clocks. And, at times, clocks can go back in time
(this chapter does not, however, cover time travel). Few software systems are
prepared for the same timestamp to appear twice. That makes it difficult to
debug the logs. There are two options for resolving this impasse:

Keep the length of each second fixed. This is good for computers but
irritating for humans. Over time, “midday” drifts towards sunset or
sunrise.

Adjust the length of each year to keep the sun’s position relative to noon
in the same place from year to year. This is good for humans but
sometimes highly irritating for computers.

In practice, we can chose both options as we do in this chapter. The world’s
atomic clocks use their own time zone with fixed-length seconds, called TAI.
Everything else uses time zones that are periodically adjusted; these are
called UTC.



TAI is used by the world’s atomic clocks and maintains a fixed-length year.
UTC adds leap seconds to TAI about once every 18 months. In 1972, TAI
and UTC were 10 seconds apart. By 2016, they had drifted to 36 seconds
apart.

In addition to the issues with earth’s fickle rotational speed, the physics of
your own computer make it challenging to keep accurate time. There are also
(at least) two clocks running on your system. One is a battery-powered
device, called the real-time clock. The other one is known as system time.
System time increments itself based on hardware interrupts provided by the
computer’s motherboard. Somewhere in your system, a quartz crystal is
oscillating rapidly.

Dealing with hardware platforms without a real-
time clock

The Raspberry Pi device does not include a battery-supported, real-time clock. When the
computer turns on, the system clock is set to epoch time. That it, it is set to the number of
elapsed seconds since 1 Jan 1970. During boot, it uses the NTP to identify the current time.
What about situations where there is no network connection? This is the situation faced by the
Cacophony Project (https://cacophony.org.nz/), which develops devices to support New
Zealand’s native bird species by applying computer vision to accurately identify pest species.
The main sensor of the device is a thermal imaging camera. Footage needs to be annotated with
accurate timestamps. To enable this, the Cacophony Project team decided to add an additional
real-time clock, Raspberry Pi Hat, to their custom board. The following figure shows the
internals of the prototype for the Cacophony Project’s automated pest detection system.

https://cacophony.org.nz/




9.2 Sources of time

Computers can’t look at the clock on the wall to determine what time it is.
They need to figure it out by themselves. To explain how this happens, let’s
consider how digital clocks operate generally, then how computer systems
operate given some difficult constraints, such as operating without power.

Digital clocks consist of two main parts. The first part is some component
that ticks at regular intervals. The second part is a pair of counters. One
counter increments as ticks occur. The other increments as seconds occur.
Determining “now” within digital clocks means comparing the number of
seconds against some predetermined starting point. The starting point is
known as the epoch.

Embedded hardware aside, when your computer is turned off, a small battery-
powered clock continues to run. Its electric charge causes a quartz crystal to
oscillate rapidly. The clock measures those oscillations and updates its
internal counters. In a running computer, the CPU clock frequency becomes
the source of regular ticks. A CPU core operates at a fixed frequency.1 Inside
the hardware, a counter can be accessed via CPU instructions and/or by
accessing predefined CPU registers.2

Relying on a CPU’s clock can actually cause problems in niche scientific and
other high-accuracy domains, such as profiling an application’s behavior.
When computers use multiple CPUs, which is especially common in high
performance computing, each CPU has a slightly different clock rate.
Moreover, CPUs perform out-of-order execution. This means that it’s
impossible for someone creating a benchmarking/profiling software suite to
know how long a function takes between two timestamps. The CPU



instructions requesting the current timestamp may have shifted.



9.3 Definitions

Unfortunately, this chapter needs to introduce some jargon:

Absolute time—Describes the time that you would tell someone if they
were to ask for the time. Also referred to as wall clock time and calendar
time.

Real-time clock—A physical clock that’s embedded in the computer’s
motherboard, which keeps time when the power is off. It’s also known
as the CMOS clock.

System clock—The operating system’s view of the time. Upon boot, the
OS takes over timekeeping duties from the real-time clock.

All applications derive their idea of time from the system time. The
system clock experiences jumps, as it can be manually set to a different
position. This jumpiness can confuse some applications.

Monotonically increasing—A clock that never provides the same time
twice. This is a useful property for a computer application because,
among other advantages, log messages will never have a repeated
timestamp. Unfortunately, preventing time adjustments means being
permanently bound to the local clock’s skew. Note that the system clock
is not monotonically increasing.

Steady clock—This clock provides two guarantees: its seconds are all
equal length and it is monotonically increasing. Values from steady
clocks are unlikely to align with the system clock’s time or absolute
time. These typically start at 0 when computers boot up, then count
upwards as an internal counter progresses. Although potentially useless
for knowing the absolute time, these are handy for calculating the



duration between two points in time.

High accuracy—A clock is highly accurate if the length of its seconds
are regular. The difference between two clocks is known as skew.
Highly accurate clocks have little skew against the atomic clocks that
are humanity’s best engineering effort at keeping accurate time.

High resolution—Provides accuracy down to 10 nanoseconds or below.
High resolution clocks are typically implemented within CPU chips
because there are few devices that can maintain time at such high
frequency. CPUs are able to do this. Their units of work are measured in
cycles, and cycles have the same duration. A 1 GHz CPU core takes 1
nanosecond to compute one cycle.

Fast clock—A clock that takes little time to read the time. Fast clocks
sacrifice accuracy and precision for speed, however.



9.4 Encoding time

There are many ways to represent time within a computer. The typical
approach is to use a pair of 32-bit integers. The first counts the number of
seconds that have elapsed. The second represents a fraction of a second. The
precision of the fractional part depends on the device in question.

The starting point is arbitrary. The most common epoch in UNIX-based
systems is 1 Jan 1970 UTC. Alternatives include 1 Jan 1900 (which happens
to be used by NTP), 1 Jan 2000 for more recent applications, and 1 Jan 1601
(which is the beginning of the Gregorian calendar). Using fixed-width
integers presents two key advantages and two main challenges:

Advantages include

Simplicity—It’s easy to understand the format.

Efficiency—Integer arithmetic is the CPU’s favorite activity.

Disadvantages include

Fixed-range—All fixed-integer types are finite, implying that time
eventually wraps around to 0 again.

Imprecise—Integers are discrete, while time is continuous.
Different systems make different trade-offs relating to subsecond
accuracy, leading to rounding errors.

It’s also important to note that the general approach is inconsistently
implemented. Here are some things seen in the wild to represent the seconds
component:

UNIX timestamps, a 32-bit integer, represents milliseconds since epoch
(e.g., 1 Jan 1970).



MS Windows FILETIME structures (since Windows 2000), a 64-bit
unsigned integer, represents 100 nanosecond increments since 1 Jan
1601 (UTC).

Rust community’s chronos crate, a 32-bit signed integer, implements
NaiveTime alongside an enum to represent time zones where
appropriate.3

time_t (meaning time type but also called simple time or calendar
time ) within the C standard library (libc) varies:

Dinkumware’s libc provides an unsigned long int (e.g.,
a 32-bit unsigned integer).

GNU’s libc includes a long int (e.g., a 32-bit signed integer).

AVR’s libc uses a 32-bit unsigned integer, and its epoch begins at
midnight, 1 January 2000 (UTC).

Fractional parts tend to use the same type as their whole-second counterparts,
but this isn’t guaranteed. Now, let’s take a peek a time zones.

9.4.1 Representing time zones

Time zones are political divisions, rather than technical ones. A soft
consensus appears to have been formed around storing another integer that
represents the number of seconds offset from UTC.



9.5 clock v0.1.0: Teaching an application
how to tell the time

To begin coding our NTP client, let’s start by learning how to read time.
Figure 9.1 provides a quick overview of how an application does that.

Figure 9.1 An application gets time information from the OS, usually
functionally provided by the system’s libc implementation.

Listing 9.2, which reads the system time in the local time zone, might almost
feel too small to be a full-fledged example. But running the code results in
the current timestamp formatted according to the ISO 8601 standard. The
following listing provides its configuration. You’ll find the source for this
listing in ch9/ch9-clock0/Cargo.toml.

Listing 9.1 Crate configuration for listing 9.2

[package]

name = "clock"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

chrono = "0.4"

The following listing reads and prints the system time. You’ll find the source



code for the listing in ch9/ch9-clock0/src/main.rs.

Listing 9.2 Reading the system time and printing it on the screen

1 use chrono::Local;

2  

3 fn main() {

4     let now = Local::now();     ①

5     println!("{}", now);

6 }

① Asks for the time in the system’s local time zone

In listing 9.2, there is a lot of complexity hidden by these eight lines of code.
Much of it will be peeled away during the course of the chapter. For now, it’s
enough to know that chrono::Local provides the magic. It returns a
typed value, containing a time zone.

NOTE Interacting with timestamps that don’t include time zones or performing other forms of illegal
time arithmetic results in the program refusing to compile.



9.6 clock v0.1.1: Formatting timestamps to
comply with ISO 8601 and email
standards

The application that we’ll create is called clock, which reports the current
time. You’ll find the full application in listing 9.7. Throughout the chapter,
the application will be incrementally enhanced to support setting the time
manually and via NTP. For the moment, however, the following code shows
the result of compiling and running the code from listing 9.8 and sending it
the --use-standard timestamp flag.

$ cd ch9/ch9-clock1 

 

$ cargo run -- --use-standard rfc2822 

warning: associated function is never used: `set`

  --> src/main.rs:12:8

   |

12 |     fn set() -> ! {

   |        ^^^

   |

   = note: `#[warn(dead_code)]` on by default

warning: 1 warning emitted

    Finished dev [unoptimized + debuginfo] target(s) in 0.01s

     Running `target/debug/clock --use-standard rfc2822`

Sat, 20 Feb 2021 15:36:12 +1300

9.6.1 Refactoring the clock v0.1.0 code to support a
wider architecture

It makes sense to spend a short period of time creating a scaffold for the
larger application that clock will become. Within the application, we’ll first
make a small cosmetic change. Rather than using functions to read the time



and adjust it, we’ll use static methods of a Clock struct. The following
listing, an excerpt from listing 9.7, shows the change from listing 9.2.

Listing 9.3 Reading the time from the local system clock

 2 use chrono::{DateTime};

 3 use chrono::{Local};

 4  

 5 struct Clock;

 6  

 7 impl Clock {

 8     fn get() -> DateTime<Local> {     ①

 9         Local::now()

10     }

11  

12     fn set() -> ! {

13         unimplemented!()

14     }

15 }

① DateTime<Local> is a DateTime with the Local time zone information.

What on earth is the return type of set()? The exclamation mark (!)
indicates to the compiler that the function never returns (a return value is
impossible). It’s referred to as the Never type. If the unimplemented!
() macro (or its shorter cousin todo!()) is reached at runtime, then the
program panics.

Clock is purely acting as a namespace at this stage. Adding a struct now
provides some extensibility later on. As the application grows, it might
become useful for Clock to contain some state between calls or implement
some trait to support new functionality.

NOTE A struct with no fields is known as a zero-sized type or ZST. It does not occupy any memory
in the resulting application and is purely a compile-time construct.

9.6.2 Formatting the time



This section looks at formatting the time as a UNIX timestamp or a formatted
string according to ISO 8601, RFC 2822, and RFC 3339 conventions. The
following listing, an excerpt from listing 9.7, demonstrates how to produce
timestamps using the functionality provided by chrono. The timestamps are
then sent to stdout.

Listing 9.4 Showing the methods used to format timestamps

48     let now = Clock::get();

49     match std {

50         "timestamp" => println!("{}", now.timestamp()),

51         "rfc2822"   => println!("{}", now.to_rfc2822()),

52         "rfc3339"   => println!("{}", now.to_rfc3339()),

53         _ => unreachable!(),

54     }

Our clock application (thanks to chrono) supports three time formats—
timestamp, rfc2822, and rfc3339:

timestamp—Formats the number of seconds since the epoch, also known
as a UNIX timestamp.

rfc2822—Corresponds to RPC 2822 (https://tools.ietf.org/html/rfc2822),
which is how time is formatted within email message headers.

rfc3339—Corresponds to RFC 3339 (https://tools.ietf.org/html/rfc3339).
RFC 3339 formats time in a way that is more commonly associated with
the ISO 8601 standard. However, ISO 8601 is a slightly stricter
standard. Every RFC 3339-compliant timestamp is an ISO 8601-
compliant timestamp, but the inverse is not true.

9.6.3 Providing a full command-line interface

Command-line arguments are part of the environment provided to an
application from its OS when it’s established. These are raw strings. Rust

https://tools.ietf.org/html/rfc2822
https://tools.ietf.org/html/rfc3339


provides some support for accessing the raw Vec<String> via
std::env::args, but it can be tedious to develop lots of parsing logic
for moderately-sized applications.

Our code wants to be able to validate certain input, such that the desired
output format is one that the clock app actually supports. But validating input
tends to be irritatingly complex. To avoid this frustration, clock makes use of
the clap crate.

There are two main types that are useful for getting started: clap::App
and clap::Arg. Each clap::Arg represents a command-line
argument and the options that it can represent. clap::App collects these
into a single application. To support the public API in table 9.1, the code in
listing 9.5 uses three Arg structs that are wrapped together within a single
App.

Table 9.1 Usage examples for executing the clock application from the
command line. Each command needs to be supported by our parser.

Use Description Example output
clock Default usage. Prints the

current time.
2018-06-

17T11:25:19...

clock get Provides a get action
explicitly with default
formatting.

2018-06-

17T11:25:19...

clock get --use-

standard

timestamp

Provides a get action and
a formatting standard.

1529191458

clock get -s

timestamp

Provides a get action and
a formatting standard using
shorter notation.

1529191458

clock set Provides a set action  



<datetime> explicitly with default
parsing rules.

clock set --use-

standard

timestamp

<datetime>

Provides a set action
explicitly and indicates
that the input will be a
UNIX timestamp.

 

Listing 9.5 is an excerpt from listing 9.7. It demonstrates how to implement
the API presented in table 9.1 using clap.

Listing 9.5 Using clap to parse command-line arguments

18   let app = App::new("clock")

19     .version("0.1")

20     .about("Gets and (aspirationally) sets the time.")

21     .arg(

22       Arg::with_name("action")

23         .takes_value(true)

24         .possible_values(&["get", "set"])

25         .default_value("get"),

26     )

27     .arg(

28       Arg::with_name("std")

29         .short("s")

30         .long("standard")

31         .takes_value(true)

32         .possible_values(&[

33           "rfc2822",

34           "rfc3339",

35           "timestamp",

36         ])

37         .default_value("rfc3339"),

38     )

39     .arg(Arg::with_name("datetime").help(

40       "When <action> is 'set', apply <datetime>. \      ①

41        Otherwise, ignore.",

42     ));

43  

44   let args = app.get_matches();

① The backslash asks Rust to escape the newline and the following indentation.

clap automatically generates some usage documentation for our clock
application on your behalf. Using the --help option triggers its output.



9.6.4 clock v0.1.1: Full project

The following terminal session demonstrates the process of downloading and
compiling the clock v0.1.1 project from the public Git repository. It also
includes a fragment for accessing the --help option that is mentioned in
the previous section:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action 

 

$ cd rust-in-action/ch9/ch9-clock1 

 

$ cargo build 

...

   Compiling clock v0.1.1 (rust-in-action/ch9/ch9-clock1)

warning: associated function is never used: `set`    ①

  --> src/main.rs:12:6

   |

12 |   fn set() -> ! {

   |      ^^^

   |

   = note: `#[warn(dead_code)]` on by default

 

warning: 1 warning emitted

 

$ cargo run -- --help                                ②

...

clock 0.1

Gets and sets (aspirationally) the time.

 

USAGE:

    clock.exe [OPTIONS] [ARGS]

 

FLAGS:

    -h, --help       Prints help information

    -V, --version    Prints version information

 

OPTIONS:

    -s, --use-standard <std>     [default: rfc3339]

                                 [possible values: rfc2822,

                                 rfc3339, timestamp]

 

ARGS:

    <action>      [default: get]  [possible values: get, set]

    <datetime>    When <action> is 'set', apply <datetime>.

                  Otherwise, ignore.

 

$ target/debug/clock                                 ③

2021-04-03T15:48:23.984946724+13:00



① This warning is eliminated in clock v0.1.2.

② Arguments to the right of -- are sent to the resulting executable.

③ Executes the target/debug/clock executable directly

Creating the project step by step takes slightly more work. As clock v0.1.1 is
a project managed by cargo, it follows the standard structure:

clock

├── Cargo.toml      ①

└── src

    └── main.rs     ②

① See listing 9.6.

② See listing 9.7.

To create it manually, follow these steps:

1. From the command-line, execute these commands:

$ cargo new clock 

$ cd clock 

$ cargo install cargo-edit 

$ cargo add clap@2 

$ cargo add chrono@0.4 

2. Compare the contents of your project’s Cargo.toml file with listing 9.6.
With the exception of the authors field, these should match.

3. Replace the contents of src/main.rs with listing 9.7.

The next listing is the project’s Cargo.toml file. You’ll find it at ch9/ch9-
clock1/Cargo.toml. Following that is the project’s src/main.rs file, listing 9.7.
Its source is in ch9/ch9-clock1/src/main.rs.

Listing 9.6 Crate configuration for clock v0.1.1

[package]

name = "clock"

version = "0.1.1"



authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

chrono = "0.4"

clap = "2"

Listing 9.7 Producing formatted dates from the command line, clock
v0.1.1

 1 use chrono::DateTime;

 2 use chrono::Local;

 3 use clap::{App, Arg};

 4  

 5 struct Clock;

 6  

 7 impl Clock {

 8   fn get() -> DateTime<Local> {

 9     Local::now()

10   }

11  

12   fn set() -> ! {

13     unimplemented!()

14   }

15 }

16  

17 fn main() {

18   let app = App::new("clock")

19     .version("0.1")

20     .about("Gets and (aspirationally) sets the time.")

21     .arg(

22       Arg::with_name("action")

23         .takes_value(true)

24         .possible_values(&["get", "set"])

25         .default_value("get"),

26     )

27     .arg(

28       Arg::with_name("std")

29         .short("s")

30         .long("use-standard")

31         .takes_value(true)

32         .possible_values(&[

33           "rfc2822",

34           "rfc3339",

35           "timestamp",

36         ])

37         .default_value("rfc3339"),

38     )

39     .arg(Arg::with_name("datetime").help(

40       "When <action> is 'set', apply <datetime>. \

41        Otherwise, ignore.",



42     ));

43  

44   let args = app.get_matches();

45  

46   let action = args.value_of("action").unwrap();    ①

47   let std = args.value_of("std").unwrap();          ①

48  

49   if action == "set" {

50     unimplemented!()                                ②

51   }

52  

53   let now = Clock::get();

54   match std {

55     "timestamp" => println!("{}", now.timestamp()),

56     "rfc2822" => println!("{}", now.to_rfc2822()),

57     "rfc3339" => println!("{}", now.to_rfc3339()),

58     _ => unreachable!(),

59   }

60 }

① Supplies a default value to each argument via default_value("get") and default_value("rfc3339").
It’s safe to call unwrap() on these two lines.

② Aborts early as we’re not ready to set the time yet



9.7 clock v0.1.2: Setting the time

Setting the time is complicated because each OS has its own mechanism for
doing so. This requires that we use OS-specific conditional compilation to
create a cross-portable tool.

9.7.1 Common behavior

Listing 9.11 provides two implementations of setting the time. These both
follow a common pattern:

1. Parsing a command-line argument to create a
DateTime<FixedOffset> value.

The FixedOffset time zone is provided by chrono as a proxy for
“whichever time zone is provided by the user.” chrono doesn’t know at
compile time which time zone will be selected.

2. Converting the DateTime<FixedOffset> to a
DateTime<Local> to enable time zone comparisons.

3. Instantiating an OS-specific struct that’s used as an argument for the
necessary system call (system calls are function calls provided by the
OS).

4. Setting the system’s time within an unsafe block. This block is
required because responsibility is delegated to the OS.

5. Printing the updated time.

WARNING This code uses functions to teleport the system’s clock to a different time. This
jumpiness can cause system instability.



Some applications expect monotonically increasing time. A smarter (but
more complex) approach is to adjust the length of a second for n seconds
until the desired time is reached. Functionality is implemented within the
Clock struct that was introduced in section 9.6.1.

9.7.2 Setting the time for operating systems that use
libc

POSIX-compliant operating systems can have their time set via a call to
settimeofday(), which is provided by libc. libc is the C Standard
Library and has lots of historic connections with UNIX operating systems.
The C language, in fact, was developed to write UNIX. Even today,
interacting with a UNIX derivative involves using the tools provided by the C
language. There are two mental hurdles required for Rust programmers to
understanding the code in listing 9.11, which we’ll address in the following
sections:

The arcane types provided by libc

The unfamiliarity of providing arguments as pointers

LIBC TYPE NAMING CONVENTIONS

libc uses conventions for naming types that differ from Rust’s. libc does not
use PascalCase to denote a type, preferring to use lowercase. That is, where
Rust would use TimeVal, libc uses timeval. The convention changes
slightly when dealing with type aliases. Within libc, type aliases append an
underscore followed by the letter t (_t) to the type’s name. The next two
snippets show some libc imports and the equivalent Rust code for building
those types.



On line 64 of listing 9.8, you will encounter this line:

libc::{timeval, time_t, suseconds_t};

It represents two type aliases and a struct definition. In Rust syntax, these are
defined like this:

#![allow(non_camel_case_types)]

 

type time_t = i64;

type suseconds_t = i64;

 

pub struct timeval {

    pub tv_sec: time_t,

    pub tv_usec: suseconds_t,

}

time_t represents the seconds that have elapsed since the epoch.
suseconds_t represents the fractional component of the current second.

The types and functions relating to timekeeping involve a lot of indirection.
The code is intended to be easy to implement, which means providing local
implementors (hardware designers) the opportunity to change aspects as their
platforms require. The way this is done is to use type aliases everywhere,
rather than sticking to a defined integer type.

NON-WINDOWS CLOCK CODE

The libc library provides a handy function, settimeofday, which we’ll
use in listing 9.8. The project’s Cargo.toml file requires two extra lines to
bring libc bindings into the crate for non-Windows platforms:

[target.'cfg(not(windows))'.dependencies]       ①

libc = "0.2"



① You can add these two lines to the end of the file.

The following listing, an extract from listing 9.11, shows how to set the time
with C’s standard library, libc. In the listing, we use Linux and BSD
operating systems or other similar ones.

Listing 9.8 Setting the time in a libc environment

62 #[cfg(not(windows))]

63 fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {          ①

64   use libc::{timeval, time_t, suseconds_t};            ②

65   use libc::{settimeofday, timezone }                  ②

66  

67   let t = t.with_timezone(&Local);

68   let mut u: timeval = unsafe { zeroed() };

69  

70   u.tv_sec = t.timestamp() as time_t;

71   u.tv_usec =

72     t.timestamp_subsec_micros() as suseconds_t;

73  

74   unsafe {

75     let mock_tz: *const timezone = std::ptr::null();   ①

76     settimeofday(&u as *const timeval, mock_tz);

77   }

78 }

① t is sourced from the command line and has already been parsed.

② The timezone parameter of settimeofday() appears to be some sort of historic accident. Non-null
values generate an error.

Makes OS-specific imports within the function to avoid polluting the global
scope. libc::settimeofday is a function that modifies the system
clock, and suseconds_t, time_t, timeval, and timezone are
all types used to interact with it.

This code cheekily, and probably perilously, avoids checking whether the
settimeofday function is successful. It’s quite possible that it isn’t.
That will be remedied in the next iteration of the clock application.



9.7.3 Setting the time on MS Windows

The code for MS Windows is similar to its libc peers. It is somewhat wordier,
as the struct that sets the time has more fields than the second and subsecond
part. The rough equivalent of the libc library is called kernel32.dll, which is
accessible after including the winapi crate.

WINDOWS API INTEGER TYPES

Windows provides its own take on what to call integral types. This code only
makes use of the WORD type, but it can be useful to remember the two other
common types that have emerged since computers have used 16-bit CPUs.
The following table shows how integer types from kernel32.dll correspond to
Rust types.

Windows type Rust type Remarks
WORD u16 Refers to the width of a CPU “word” as it

was when Windows was initially created

DWORD u32 Double word

QWORD u64 Quadruple word

LARGE_INTEGER i64 A type defined as a crutch to enable 32-bit
and 64-bit platforms to share code

ULARGE_INTEGER u64 An unsigned version of
LARGE_INTEGER

REPRESENTING TIME IN WINDOWS

Windows provides multiple time types. Within our clock application,
however, we’re mostly interested in SYSTEMTIME. Another type that is
provided is FILETIME. The following table describes these types to avoid



confusion.

Windows type Rust type Remarks
SYSTEMTIME winapi::SYSTEMTIME Contains fields for the year, month,

day of the week, day of the month,
hour, minute, second, and
millisecond.

FILETIME winapi::FILETIME Analogous to libc::timeval.
Contains second and millisecond
fields. Microsoft’s documentation
warns that on 64-bit platforms, its
use can cause irritating overflow
bugs without finicky type casting,
which is why it’s not employed
here.

WINDOWS CLOCK CODE

As the SYSTEMTIME struct contains many fields, generating one takes a
little bit longer. The following listing shows this construct.

Listing 9.9 Setting the time using the Windows kernel32.dll API

19   #[cfg(windows)]

20   fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {

21     use chrono::Weekday;

22     use kernel32::SetSystemTime;

23     use winapi::{SYSTEMTIME, WORD};

24  

25     let t = t.with_timezone(&Local);

26  

27     let mut systime: SYSTEMTIME = unsafe { zeroed() };

28  

29     let dow = match t.weekday() {               ①

30       Weekday::Mon => 1,                        ①

31       Weekday::Tue => 2,                        ①

32       Weekday::Wed => 3,                        ①

33       Weekday::Thu => 4,                        ①

34       Weekday::Fri => 5,                        ①

35       Weekday::Sat => 6,                        ①

36       Weekday::Sun => 0,                        ①



37     };

38  

39     let mut ns = t.nanosecond();                ②

40     let mut leap = 0;                           ②

41     let is_leap_second = ns > 1_000_000_000;    ②

42                                                 ②

43     if is_leap_second {                         ②

44       ns -= 1_000_000_000;                      ②

45       leap += 1;                                ②

46     }                                           ②

47  

48     systime.wYear = t.year() as WORD;

49     systime.wMonth = t.month() as WORD;

50     systime.wDayOfWeek = dow as WORD;

51     systime.wDay = t.day() as WORD;

52     systime.wHour = t.hour() as WORD;

53     systime.wMinute = t.minute() as WORD;

54     systime.wSecond = (leap + t.second()) as WORD;

55     systime.wMilliseconds = (ns / 1_000_000) as WORD;

56  

57     let systime_ptr = &systime as *const SYSTEMTIME;

58  

59     unsafe {                                    ③

60       SetSystemTime(systime_ptr);               ③

61     }                                           ③

62   }

① The chrono::Datelike trait provides the weekday() method. Microsoft’s developer documentation
provides the conversion table.

② As an implementation detail, chrono represents leap seconds by adding an extra second within the
nanoseconds field. To convert the nanoseconds to milliseconds as required by Windows, we need to
account for this.

③ From the perspective of the Rust compiler, giving something else direct access to memory is unsafe.
Rust cannot guarantee that the Windows kernel will be well-behaved.

9.7.4 clock v0.1.2: The full code listing

clock v0.1.2 follows the same project structure as v0.1.1, which is repeated
here. To create platform-specific behavior, some adjustments are required to
Cargo.toml.

clock

├── Cargo.toml      ①

└── src

    └── main.rs     ②



① See listing 9.10.

② See listing 9.11.

Listings 9.10 and 9.11 provide the full source code for the project. These are
available for download from ch9/ch9-clock0/Cargo.toml and ch9/ch9-
clock0/src/main.rs, respectively.

Listing 9.10 Crate configuration for listing 9.11

[package]

name = "clock"

version = "0.1.2"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

chrono = "0.4"

clap = "2"

 

[target.'cfg(windows)'.dependencies]

winapi = "0.2"

kernel32-sys = "0.2"

 

[target.'cfg(not(windows))'.dependencies]

libc = "0.2"

Listing 9.11 Cross-portable code for setting the system time

  1 #[cfg(windows)]

  2 use kernel32;

  3 #[cfg(not(windows))]

  4 use libc;

  5 #[cfg(windows)]

  6 use winapi;

  7  

  8 use chrono::{DateTime, Local, TimeZone};

  9 use clap::{App, Arg};

 10 use std::mem::zeroed;

 11  

 12 struct Clock;

 13  

 14 impl Clock {

 15   fn get() -> DateTime<Local> {

 16     Local::now()

 17   }

 18  



 19   #[cfg(windows)]

 20   fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {

 21     use chrono::Weekday;

 22     use kernel32::SetSystemTime;

 23     use winapi::{SYSTEMTIME, WORD};

 24  

 25     let t = t.with_timezone(&Local);

 26  

 27     let mut systime: SYSTEMTIME = unsafe { zeroed() };

 28  

 29     let dow = match t.weekday() {

 30       Weekday::Mon => 1,

 31       Weekday::Tue => 2,

 32       Weekday::Wed => 3,

 33       Weekday::Thu => 4,

 34       Weekday::Fri => 5,

 35       Weekday::Sat => 6,

 36       Weekday::Sun => 0,

 37     };

 38  

 39     let mut ns = t.nanosecond();

 40     let is_leap_second = ns > 1_000_000_000;

 41  

 42     if is_leap_second {

 43       ns -= 1_000_000_000;

 44     }

 45  

 46     systime.wYear = t.year() as WORD;

 47     systime.wMonth = t.month() as WORD;

 48     systime.wDayOfWeek = dow as WORD;

 49     systime.wDay = t.day() as WORD;

 50     systime.wHour = t.hour() as WORD;

 51     systime.wMinute = t.minute() as WORD;

 52     systime.wSecond = t.second() as WORD;

 53     systime.wMilliseconds = (ns / 1_000_000) as WORD;

 54  

 55     let systime_ptr = &systime as *const SYSTEMTIME;

 56  

 57     unsafe {

 58       SetSystemTime(systime_ptr);

 59     }

 60   }

 61  

 62   #[cfg(not(windows))]

 63   fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {

 64       use libc::{timeval, time_t, suseconds_t};

 65   use libc::{settimeofday, timezone};

 66  

 67     let t = t.with_timezone(&Local);

 68     let mut u: timeval = unsafe { zeroed() };

 69  

 70     u.tv_sec = t.timestamp() as time_t;

 71     u.tv_usec =

 72       t.timestamp_subsec_micros() as suseconds_t;



 73  

 74     unsafe {

 75       let mock_tz: *const timezone = std::ptr::null();

 76       settimeofday(&u as *const timeval, mock_tz);

 77     }

 78   }

 79 }

 80  

 81 fn main() {

 82   let app = App::new("clock")

 83     .version("0.1.2")

 84     .about("Gets and (aspirationally) sets the time.")

 85     .after_help(

 86       "Note: UNIX timestamps are parsed as whole \

 87        seconds since 1st January 1970 0:00:00 UTC. \

 88        For more accuracy, use another format.",

 89     )

 90     .arg(

 91       Arg::with_name("action")

 92         .takes_value(true)

 93         .possible_values(&["get", "set"])

 94         .default_value("get"),

 95     )

 96     .arg(

 97       Arg::with_name("std")

 98         .short("s")

 99         .long("use-standard")

100         .takes_value(true)

101         .possible_values(&[

102           "rfc2822",

103           "rfc3339",

104           "timestamp",

105         ])

106         .default_value("rfc3339"),

107     )

108     .arg(Arg::with_name("datetime").help(

109       "When <action> is 'set', apply <datetime>. \

110        Otherwise, ignore.",

111     ));

112  

113   let args = app.get_matches();

114  

115   let action = args.value_of("action").unwrap();

116   let std = args.value_of("std").unwrap();

117  

118   if action == "set" {

119     let t_ = args.value_of("datetime").unwrap();

120  

121     let parser = match std {

122       "rfc2822" => DateTime::parse_from_rfc2822,

123       "rfc3339" => DateTime::parse_from_rfc3339,

124       _ => unimplemented!(),

125     };

126  



127     let err_msg = format!(

128       "Unable to parse {} according to {}",

129       t_, std

130     );

131     let t = parser(t_).expect(&err_msg);

132  

133     Clock::set(t)

134   }

135  

136   let now = Clock::get();

137  

138   match std {

139     "timestamp" => println!("{}", now.timestamp()),

140     "rfc2822" => println!("{}", now.to_rfc2822()),

141     "rfc3339" => println!("{}", now.to_rfc3339()),

142     _ => unreachable!(),

143   }

144 }



9.8 Improving error handling

Those readers who have dealt with operating systems before will probably be
dismayed at some of the code in section 9.7. Among other things, it doesn’t
check to see whether the calls to settimeofday() and
SetSystemTime() were actually successful.

There are multiple reasons why setting the time might fail. The most obvious
one is that the user who is attempting to set the time lacks permission to do
so. The robust approach is to have Clock::set(t) return Result.
As that requires modifying two functions that we have already spent some
time explaining in depth, let’s introduce a workaround that instead makes use
of the operating system’s error reporting:

fn main() {

  // ...

  if action == "set" {

    // ...

 

    Clock::set(t);

 

    let maybe_error =

      std::io::Error::last_os_error();    ①

    let os_error_code =

      &maybe_error.raw_os_error();        ①

 

    match os_error_code {

      Some(0) => (),                      ②

      Some(_) => eprintln!("Unable to set the time: {:?}", maybe_error),

      None => (),

    }

  }

}

① Deconstructs maybe_error, a Rust type, to convert it into a raw i32 value that’s easy to match

② Matching on a raw integer saves importing an enum, but sacrifices type safety. Production-ready
code shouldn’t cheat in this way.



After calls to Clock::set(t), Rust happily talks to the OS via
std::io::Error::last _os_error(). Rust checks to see if
an error code has been generated.



9.9 clock v0.1.3: Resolving differences
between clocks with the Network Time
Protocol (NTP)

Coming to a consensus about the correct time is known formally as clock
synchronization. There are multiple international standards for synchronizing
clocks. This section focuses on the most prominent one—the Network Time
Protocol (NTP).

NTP has existed since the mid-1980s, and it has proven to be very stable. Its
on-wire format has not changed in the first four revisions of the protocol,
with backwards compatibility retained the entire time. NTP operates in two
modes that can loosely be described as always on and request/response.

The always on mode allows multiple computers to work in a peer-to-peer
fashion to converge on an agreed definition of now. It requires a software
daemon or service to run constantly on each device, but it can achieve tight
synchronization within local networks.

The request/response mode is much simpler. Local clients request the time
via a single message and then parse the response, keeping track of the elapsed
time. The client can then compare the original timestamp with the timestamp
sent from the server, alter any delays caused by network latency, and make
any necessary adjustments to move the local clock towards the server’s time.

Which server should your computer connect to? NTP works by establishing a
hierarchy. At the center is a small network of atomic clocks. There are also
national pools of servers.



NTP allows clients to request the time from computers that are closer to
atomic clocks. But that only gets us part of the way. Let’s say that your
computer asks 10 computers what they think the time is. Now we have 10
assertions about the time, and the network lag will differ for each source!

9.9.1 Sending NTP requests and interpreting
responses

Let’s consider a client-server situation where your computer wants to correct
its own time. For every computer that you check with—let’s call these time
servers—there are two messages:

The message from your computer to each time server is the request.

The reply is known as the response.

These two messages generate four time points. Note that these occur in serial:

T1—The client’s timestamp for when the request was sent. Referred to

as t1 in code.

T2—The time server’s timestamp for when the request was received.

Referred to as t2 in code.

T3—The time server’s timestamp for when it sends its response.

Referred to as t3 in code.

T4—The client’s timestamp for when the response was received.

Referred to as t4 in code.

The names T1–T4 are designated by the RFC 2030 specification. Figure 9.2
shows the timestamps.



Figure 9.2 Timestamps that are defined within the NTP standard

To see what this means in code, spend a few moments looking through the
following listing. Lines 2–12 deal with establishing a connection. Lines 14–
21 produce T1–T4.

Listing 9.12 Defining a function that sends NTP messages

 1 fn ntp_roundtrip(

 2   host: &str,

 3   port: u16,

 4 ) -> Result<NTPResult, std::io::Error> {

 5   let destination = format!("{}:{}", host, port);

 6   let timeout = Duration::from_secs(1);

 7  

 8   let request = NTPMessage::client();

 9   let mut response = NTPMessage::new();

10  

11   let message = request.data;

12  

13   let udp = UdpSocket::bind(LOCAL_ADDR)?;

14   udp.connect(&destination).expect("unable to connect");

15  

16   let t1 = Utc::now();                     ①



17  

18   udp.send(&message)?;                     ②

19   udp.set_read_timeout(Some(timeout))?;

20   udp.recv_from(&mut response.data)?;      ③

21  

22   let t4 = Utc::now();

23  

24   let t2: DateTime<Utc> =                  ④

25     response                               ④

26       .rx_time()                           ④

27       .unwrap()                            ④

28       .into();                             ④

29  

30   let t3: DateTime<Utc> =                  ⑤

31     response                               ⑤

32       .tx_time()                           ⑤

33       .unwrap()                            ⑤

34       .into();                             ⑤

35  

36   Ok(NTPResult {

37     t1: t1,

38     t2: t2,

39     t3: t3,

40     t4: t4,

41   })

42 }

① This code cheats slightly by not encoding t1 in the outbound message. In practice, however, this
works perfectly well and requires fractionally less work.

② Sends a request payload (defined elsewhere) to the server

③ Blocks the application until data is ready to be received

④ rx_time() stands for received timestamp and is the time that the server received the client’s message.

⑤ tx_time() stands for transmitted timestamp and is the time that the server sent the reply.

T1–T4, encapsulated in listing 9.12 as NTPResult, are all that’s required
to judge whether the local time matches the server’s time. The protocol
contains more related to error handling, but that’s avoided here for simplicity.
Otherwise, it’s a perfectly capable NTP client.

9.9.2 Adjusting the local time as a result of the
server’s response



Given that our client has received at least one (and hopefully a few more)
NTP responses, all that’s left to do is to calculate the “right” time. But wait,
which time is right? All we have are relative timestamps. There is still no
universal “truth” that we’ve been given access to.

NOTE For those readers who don’t enjoy Greek letters, feel free to skim or even skip the next few
paragraphs.

The NTP documentation provides two equations to help resolve the situation.
Our aim is to calculate two values. Table 9.2 shows the calculations.

The time offset is what we’re ultimately interested in. It is denoted as θ
(theta) by the official documentation. When θ is a positive number, our
clock is fast. When it is negative, our clock is slow.

The delay caused by network congestion, latency, and other noise. This
is denoted as δ (delta). A large δ implies that the reading is less reliable.
Our code uses this value to follow servers that respond quickly.

Table 9.2 How to calculate δ and θ in NTP

δ = (T4 – T1) –
(T3 – T2)

(T4 – T1) calculates the total time spent on the client’s side. (T3 – T2)

calculates the total time spent on the server’s side.
The distinction between the two differences (e.g., δ), is an estimate of
the difference between the clocks, plus a delay caused by network
traffic and processing.

θ = ( (T2 – T1) +
(T4 – T3) ) / 2

We take the average of the two pairs of timestamps.

The mathematics can be confusing because there is always an innate desire to
know what the time actually is. That’s impossible to know. All we have are
assertions.



NTP is designed to operate multiple times per day, with participants nudging
their clocks incrementally over time. Given sufficient adjustments, θ tends to
0 while δ remains relatively stable.

The standard is quite prescriptive about the formula to carry out the
adjustments. For example, the reference implementation of NTP includes
some useful filtering to limit the effect of bad actors and other spurious
results. But we’re going to cheat. We’ll just take a mean of the differences,
weighted by 1 / θ2. This aggressively penalizes slow servers. To minimize
the likelihood of any negative outcomes:

We’ll check the time with known “good” actors. In particular, we’ll use
time servers hosted by major OS vendors and other reliable sources to
minimize the chances of someone sending us a questionable result.

No single result will affect the result too much. We’ll provide a cap of
200 ms on any adjustments we make to the local time.

The following listing, an extract from listing 9.15, shows this process for
multiple time servers.

Listing 9.13 Adjusting the time according to the responses

175 fn check_time() -> Result<f64, std::io::Error> {

176   const NTP_PORT: u16 = 123;

177  

178   let servers = [

179     "time.nist.gov",

180     "time.apple.com",

181     "time.euro.apple.com",

182     "time.google.com",                              ①

183     "time2.google.com",                             ①

184     / /"time.windows.com",                          ②

185   ];

186  

187   let mut times = Vec::with_capacity(servers.len());

188  

189   for &server in servers.iter() {

190     print!("{} =>", server);

191  



192     let calc = ntp_roundtrip(&server, NTP_PORT);

193  

194     match calc {

195       Ok(time) => {

196         println!(" {}ms away from local system time", time.offset());

197         times.push(time);

198       }

199       Err(_) => {

200         println!(" ? [response took too long]")

201       }

202     };

203   }

204  

205   let mut offsets = Vec::with_capacity(servers.len());

206   let mut offset_weights = Vec::with_capacity(servers.len());

207  

208   for time in &times {

209     let offset = time.offset() as f64;

210     let delay = time.delay() as f64;

211  

212     let weight = 1_000_000.0 / (delay * delay);    ③

213     if weight.is_finite() {

214       offsets.push(offset);

215       offset_weights.push(weight);

216     }

217   }

218  

219   let avg_offset = weighted_mean(&offsets, &offset_weights);

220  

221   Ok(avg_offset)

222 }

① Google’s time servers implement leap seconds by expanding the length of a second rather than
adding an extra second. Thus, for one day approximately every 18 months, this server reports a
different time than the others.

② At the time of writing, Microsoft’s time server provides a time that’s 15 s ahead of its peers.

③ Penalizes slow servers by substantially decreasing their relative weights

9.9.3 Converting between time representations that
use different precisions and epochs

chrono represents the fractional part of a second, down to a nanosecond
precision, whereas NTP can represent times that differ by approximately 250
picoseconds. That’s roughly four times more precise! The different internal



representations used imply that some accuracy is likely to be lost during
conversions.

The From trait is the mechanism for telling Rust that two types can be
converted. From provides the from() method, which is encountered
early on in one’s Rust career (in examples such as
String::from("Hello, world!")).

The next listing, a combination of three extracts from listing 9.15, provides
implementations of the std::convert::From trait. This code
enables the .into() calls on lines 28 and 34 of listing 9.13.

Listing 9.14 Converting between chrono::DateTime and NTP
timestamps

19 const NTP_TO_UNIX_SECONDS: i64 = 2_208_988_800;        ①

22 #[derive(Default,Debug,Copy,Clone)]

23 struct NTPTimestamp {                                  ②

24   seconds: u32,                                        ②

25   fraction: u32,                                       ②

26 }

                                                  ②

52  impl From<NTPTimestamp> for DateTime<Utc> {

53    fn from(ntp: NTPTimestamp) -> Self {

54     let secs = ntp.seconds as i64 - NTP_TO_UNIX_SECONDS;

55     let mut nanos = ntp.fraction as f64;

56     nanos *= 1e9;                                      ③

57     nanos /= 2_f64.powi(32);                           ③

58  

59     Utc.timestamp(secs, nanos as u32)

60   }

61 }

62  

63 impl From<DateTime<Utc>> for NTPTimestamp {

64   fn from(utc: DateTime<Utc>) -> Self {

65     let secs = utc.timestamp() + NTP_TO_UNIX_SECONDS;

66     let mut fraction = utc.nanosecond() as f64;

67     fraction *= 2_f64.powi(32);                        ③

68     fraction /= 1e9;                                   ③

69  

70     NTPTimestamp {

71       seconds: secs as u32,

72       fraction: fraction as u32,



73     }

74   }

75 }

① Number of seconds between 1 Jan 1900 (the NTP epoch) and 1 Jan 1970 (the UNIX epoch)

② Our internal type represents an NTP timestamp.

③ You can implement these conversions using bit-shift operations, but at the expense of even less
readability.

From has a reciprocal peer, Into. Implementing From allows Rust to
automatically generate an Into implementation on its own, except in
advanced cases. In those cases, it’s likely that developers already possess the
knowledge required to implement Into manually and so probably don’t
need assistance here.

9.9.4 clock v0.1.3: The full code listing

The complete code listing for our clock application is presented in listing
9.15. Taken in its full glory, the whole of the clock application can look quite
large and imposing. Hopefully, there is no new Rust syntax to digest within
the listing. The source for this listing is in ch9/ch9-clock3/src/main.rs.

Listing 9.15 Full listing for the command-line NTP client, clock

  1 #[cfg(windows)]

  2 use kernel32;

  3 #[cfg(not(windows))]

  4 use libc;

  5 #[cfg(windows)]

  6 use winapi;

  7  

  8 use byteorder::{BigEndian, ReadBytesExt};

  9 use chrono::{

 10   DateTime, Duration as ChronoDuration, TimeZone, Timelike,

 11 };

 12 use chrono::{Local, Utc};

 13 use clap::{App, Arg};

 14 use std::mem::zeroed;

 15 use std::net::UdpSocket;

 16 use std::time::Duration;



 17  

 18 const NTP_MESSAGE_LENGTH: usize = 48;                 ①

 19 const NTP_TO_UNIX_SECONDS: i64 = 2_208_988_800;

 20 const LOCAL_ADDR: &'static str = "0.0.0.0:12300";     ②

 21  

 22 #[derive(Default, Debug, Copy, Clone)]

 23 struct NTPTimestamp {

 24   seconds: u32,

 25   fraction: u32,

 26 }

 27  

 28 struct NTPMessage {

 29   data: [u8; NTP_MESSAGE_LENGTH],

 30 }

 31  

 32 #[derive(Debug)]

 33 struct NTPResult {

 34   t1: DateTime<Utc>,

 35   t2: DateTime<Utc>,

 36   t3: DateTime<Utc>,

 37   t4: DateTime<Utc>,

 38 }

 39  

 40 impl NTPResult {

 41   fn offset(&self) -> i64 {

 42     let duration = (self.t2 - self.t1) + (self.t4 - self.t3);

 43     duration.num_milliseconds() / 2

 44   }

 45  

 46   fn delay(&self) -> i64 {

 47     let duration = (self.t4 - self.t1) - (self.t3 - self.t2);

 48     duration.num_milliseconds()

 49   }

 50 }

 51  

 52 impl From<NTPTimestamp> for DateTime<Utc> {

 53   fn from(ntp: NTPTimestamp) -> Self {

 54     let secs = ntp.seconds as i64 - NTP_TO_UNIX_SECONDS;

 55     let mut nanos = ntp.fraction as f64;

 56     nanos *= 1e9;

 57     nanos /= 2_f64.powi(32);

 58  

 59     Utc.timestamp(secs, nanos as u32)

 60   }

 61 }

 62  

 63 impl From<DateTime<Utc>> for NTPTimestamp {

 64   fn from(utc: DateTime<Utc>) -> Self {

 65     let secs = utc.timestamp() + NTP_TO_UNIX_SECONDS;

 66     let mut fraction = utc.nanosecond() as f64;

 67     fraction *= 2_f64.powi(32);

 68     fraction /= 1e9;

 69  

 70     NTPTimestamp {



 71       seconds: secs as u32,

 72       fraction: fraction as u32,

 73     }

 74   }

 75 }

 76  

 77 impl NTPMessage {

 78   fn new() -> Self {

 79     NTPMessage {

 80       data: [0; NTP_MESSAGE_LENGTH],

 81     }

 82   }

 83  

 84   fn client() -> Self {

 85     const VERSION: u8 = 0b00_011_000;              ③

 86     const MODE: u8    = 0b00_000_011;              ③

 87  

 88     let mut msg = NTPMessage::new();

 89  

 90     msg.data[0] |= VERSION;                        ④

 91     msg.data[0] |= MODE;                           ④

 92     msg                                            ⑤

 93   }

 94  

 95   fn parse_timestamp(

 96     &self,

 97     i: usize,

 98   ) -> Result<NTPTimestamp, std::io::Error> {

 99     let mut reader = &self.data[i..i + 8];         ⑥

100     let seconds    = reader.read_u32::<BigEndian>()?;

101     let fraction   = reader.read_u32::<BigEndian>()?;

102  

103     Ok(NTPTimestamp {

104       seconds:  seconds,

105       fraction: fraction,

106     })

107   }

108  

109   fn rx_time(

110     &self

111   ) -> Result<NTPTimestamp, std::io::Error> {      ⑦

112     self.parse_timestamp(32)

113   }

114  

115   fn tx_time(

116     &self

117   ) -> Result<NTPTimestamp, std::io::Error> {      ⑧

118     self.parse_timestamp(40)

119   }

120 }

121  

122 fn weighted_mean(values: &[f64], weights: &[f64]) -> f64 {

123   let mut result = 0.0;

124   let mut sum_of_weights = 0.0;



125  

126   for (v, w) in values.iter().zip(weights) {

127     result += v * w;

128     sum_of_weights += w;

129   }

130  

131   result / sum_of_weights

132 }

133  

134 fn ntp_roundtrip(

135   host: &str,

136   port: u16,

137 ) -> Result<NTPResult, std::io::Error> {

138   let destination = format!("{}:{}", host, port);

139   let timeout = Duration::from_secs(1);

140  

141   let request = NTPMessage::client();

142   let mut response = NTPMessage::new();

143  

144   let message = request.data;

145  

146   let udp = UdpSocket::bind(LOCAL_ADDR)?;

147   udp.connect(&destination).expect("unable to connect");

148  

149   let t1 = Utc::now();

150  

151   udp.send(&message)?;

152   udp.set_read_timeout(Some(timeout))?;

153   udp.recv_from(&mut response.data)?;

154   let t4 = Utc::now();

155  

156   let t2: DateTime<Utc> =

157     response

158       .rx_time()

159       .unwrap()

160       .into();

161   let t3: DateTime<Utc> =

162     response

163       .tx_time()

164       .unwrap()

165       .into();

166  

167   Ok(NTPResult {

168     t1: t1,

169     t2: t2,

170     t3: t3,

171     t4: t4,

172   })

173 }

174  

175 fn check_time() -> Result<f64, std::io::Error> {

176   const NTP_PORT: u16 = 123;

177  

178   let servers = [



179     "time.nist.gov",

180     "time.apple.com",

181     "time.euro.apple.com",

182     "time.google.com",

183     "time2.google.com",

184     / /"time.windows.com",

185   ];

186  

187   let mut times = Vec::with_capacity(servers.len());

188  

189   for &server in servers.iter() {

190     print!("{} =>", server);

191  

192     let calc = ntp_roundtrip(&server, NTP_PORT);

193  

194     match calc {

195       Ok(time) => {

196         println!(" {}ms away from local system time", time.offset());

197         times.push(time);

198       }

199       Err(_) => {

200         println!(" ? [response took too long]")

201       }

202     };

203   }

204  

205   let mut offsets = Vec::with_capacity(servers.len());

206   let mut offset_weights = Vec::with_capacity(servers.len());

207  

208   for time in &times {

209     let offset = time.offset() as f64;

210     let delay = time.delay() as f64;

211  

212     let weight = 1_000_000.0 / (delay * delay);

213     if weight.is_finite() {

214       offsets.push(offset);

215       offset_weights.push(weight);

216     }

217   }

218  

219   let avg_offset = weighted_mean(&offsets, &offset_weights);

220  

221   Ok(avg_offset)

222 }

223  

224 struct Clock;

225  

226 impl Clock {

227   fn get() -> DateTime<Local> {

228     Local::now()

229   }

230  

231   #[cfg(windows)]

232   fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {



233     use chrono::Weekday;

234     use kernel32::SetSystemTime;

235     use winapi::{SYSTEMTIME, WORD};

236  

237     let t = t.with_timezone(&Local);

238  

239     let mut systime: SYSTEMTIME = unsafe { zeroed() };

240  

241     let dow = match t.weekday() {

242       Weekday::Mon => 1,

243       Weekday::Tue => 2,

244       Weekday::Wed => 3,

245       Weekday::Thu => 4,

246       Weekday::Fri => 5,

247       Weekday::Sat => 6,

248       Weekday::Sun => 0,

249     };

250  

251     let mut ns = t.nanosecond();

252     let is_leap_second = ns > 1_000_000_000;

253  

254     if is_leap_second {

255       ns -= 1_000_000_000;

256     }

257  

258     systime.wYear = t.year() as WORD;

259     systime.wMonth = t.month() as WORD;

260     systime.wDayOfWeek = dow as WORD;

261     systime.wDay = t.day() as WORD;

262     systime.wHour = t.hour() as WORD;

263     systime.wMinute = t.minute() as WORD;

264     systime.wSecond = t.second() as WORD;

265     systime.wMilliseconds = (ns / 1_000_000) as WORD;

266  

267     let systime_ptr = &systime as *const SYSTEMTIME;

268     unsafe {

269       SetSystemTime(systime_ptr);

270     }

271   }

272  

273   #[cfg(not(windows))]

274   fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {

275     use libc::settimeofday;

276     use libc::{suseconds_t, time_t, timeval, timezone};

277  

278     let t = t.with_timezone(&Local);

279     let mut u: timeval = unsafe { zeroed() };

280  

281     u.tv_sec = t.timestamp() as time_t;

282     u.tv_usec = t.timestamp_subsec_micros() as suseconds_t;

283  

284     unsafe {

285       let mock_tz: *const timezone = std::ptr::null();

286       settimeofday(&u as *const timeval, mock_tz);



287     }

288   }

289 }

290  

291 fn main() {

292   let app = App::new("clock")

293     .version("0.1.3")

294     .about("Gets and sets the time.")

295     .after_help(

296       "Note: UNIX timestamps are parsed as whole seconds since 1st \

297        January 1970 0:00:00 UTC. For more accuracy, use another \

298        format.",

299     )

300     .arg(

301       Arg::with_name("action")

302         .takes_value(true)

303         .possible_values(&["get", "set", "check-ntp"])

304         .default_value("get"),

305     )

306     .arg(

307       Arg::with_name("std")

308         .short("s")

309         .long("use-standard")

310         .takes_value(true)

311         .possible_values(&["rfc2822", "rfc3339", "timestamp"])

312         .default_value("rfc3339"),

313     )

314     .arg(Arg::with_name("datetime").help(

315       "When <action> is 'set', apply <datetime>. Otherwise, ignore.",

316     ));

317  

318   let args = app.get_matches();

319  

320   let action = args.value_of("action").unwrap();

321   let std = args.value_of("std").unwrap();

322  

323   if action == "set" {

324     let t_ = args.value_of("datetime").unwrap();

325  

326     let parser = match std {

327       "rfc2822" => DateTime::parse_from_rfc2822,

328       "rfc3339" => DateTime::parse_from_rfc3339,

329       _ => unimplemented!(),

330     };

331  

332     let err_msg =

333       format!("Unable to parse {} according to {}", t_, std);

334     let t = parser(t_).expect(&err_msg);

335  

336     Clock::set(t);

337  

338   } else if action == "check-ntp" {

339     let offset = check_time().unwrap() as isize;

340  



341     let adjust_ms_ = offset.signum() * offset.abs().min(200) / 5;

342     let adjust_ms = ChronoDuration::milliseconds(adjust_ms_ as i64);

343  

344     let now: DateTime<Utc> = Utc::now() + adjust_ms;

345  

346     Clock::set(now);

347   }

348  

349   let maybe_error =

350     std::io::Error::last_os_error();

351   let os_error_code =

352     &maybe_error.raw_os_error();

353  

354   match os_error_code {

355     Some(0) => (),

356     Some(_) => eprintln!("Unable to set the time: {:?}", maybe_error),

357     None => (),

358   }

359  

360   let now = Clock::get();

361  

362   match std {

363     "timestamp" => println!("{}", now.timestamp()),

364     "rfc2822" => println!("{}", now.to_rfc2822()),

365     "rfc3339" => println!("{}", now.to_rfc3339()),

366     _ => unreachable!(),

367   }

368 }

① 12 * 4 bytes (the width of 12, 32-bit integers)

② 12300 is the default port for NTP.

③ Underscores delimit the NTP fields: leap indicator (2 bits), version (3 bits), and mode (3 bits).

④ The first byte of every NTP message contains three fields, but we only need to set two of these.

⑤ msg.data[0] is now equal to 0001_1011 (27 in decimal).

⑥ Takes a slice to the first byte

⑦ RX stands for receive.

⑧ TX stands for transmit.



Summary

Keeping track of elapsed time is difficult. Digital clocks ultimately rely
on fuzzy signals from analog systems.

Representing time is difficult. Libraries and standards disagree about
how much precision is required and when to start.

Establishing truth in a distributed system is difficult. Although we
continually deceive ourselves otherwise, there is no single arbiter of
what time it is. The best we can hope for is that all of the computers in
our network are reasonably close to each other.

A struct with no fields is known as a zero-sized type or ZST. It does not
occupy any memory in the resulting application and is purely a compile-
time construct.

Creating cross-portable applications is possible with Rust. Adding
platform-specific implementations of functions requires the precise use
of the cfg annotation, but it can be done.

When interfacing with external libraries, such as the API provided by
the operating system (OS), a type conversion step is almost always
required. Rust’s type system does not extend to libraries that it did not
create!

System calls are used to make function calls to the OS. This invokes a
complex interaction between the OS, the CPU, and the application.

The Windows API typically uses verbose PascalCase identifiers,
whereas operating systems from the POSIX tradition typically use terse
lowercase identifiers.

Be precise when making assumptions about the meaning of terms such
as epoch and time zone. There is often hidden context lurking beneath



the surface.

Time can go backwards. Never write an application that relies on
monotonically increasing time without ensuring that it requests a
monotonically increasing clock from the OS.

1.Dynamic adjustments to a CPU’s clock speed do occur in many processors to conserve power, but
these happen infrequently enough from the point of view of the clock as to be insignificant.

2.For example, Intel-based processors support the RDTSC instruction, which stands for Read Time Stamp
Counter.

3.chronos has relatively few quirks, but one of which is sneaking leap seconds into the nanoseconds
field.



10 Processes, threads, and containers

This chapter covers

Concurrent programming in Rust
How to distinguish processes, threads, and containers
Channels and message passing
Task queues

So far this book has almost completely avoided two fundamental terms of
systems programming: threads and processes. Instead, the book has used the
single term: program. This chapter expands our vocabulary.

Processes, threads, and containers are abstractions created to enable multiple
tasks to be carried out at the same time. This enables concurrency. Its peer
term, parallelism, means to make use of multiple physical CPU cores at the
same time.

Counterintuitively, it is possible to have a concurrent system on a single CPU
core. Because accessing data from memory and I/O take a long time, threads
requesting data can be set to a blocked state. Blocked threads are rescheduled
when their data is available.

Concurrency, or doing multiple things at the same time, is difficult to
introduce into a computer program. Employing concurrency effectively
involves both new concepts and new syntax.

The aim of this chapter is to give you the confidence to explore more



advanced material. You will have a solid understanding of the different tools
that are available to you as an applications programmer. This chapter exposes
you to the standard library and the well engineered crates crossbeam and
rayon. It will enable you to use them, though it won’t give you sufficient
background to be able to implement your own concurrency crates. The
chapter follows the following structure:

It introduces you to Rust’s closure syntax in section 10.1. Closures are
also known as anonymous functions and lambda functions. The syntax is
important because the standard library and many (perhaps all) external
crates rely on that syntax to provide support for Rust’s concurrency
model.

It provides a quick lesson on spawning threads in section 10.2. You’ll
learn what a thread is and how to create (spawn) those. You’ll also
encounter a discussion of why programmers are warned against
spawning tens of thousands of threads.

It distinguishes between functions and closures in section 10.3.
Conflating these two concepts can be a source of confusion for
programmers new to Rust as these are often indistinguishable in other
languages.

It follows with a large project in section 10.4. You’ll implement a
multithreaded parser and a code generator using multiple strategies. As a
nice aside, you get to create procedural art along the way.

The chapter concludes with an overview of other forms of concurrency.
This includes processes and containers.



10.1 Anonymous functions

This chapter is fairly dense, so let’s get some points on the board quickly
with some basic syntax and practical examples. We’ll circle back to fill in a
lot of the conceptual and theoretical material.

Threads and other forms of code that can run concurrently use a form of
function definition that we’ve avoided for the bulk of the book. Taking a look
at it now, defining a function looks like this:

fn add(a: i32, b: i32) -> i32 {

  a + b

}

The (loosely) equivalent lambda function is

let add = |a,b| { a + b };

Lambda functions are denoted by the pair of vertical bars (|...|) followed
by curly brackets ({...}). The pair of vertical bars lets you define
arguments. Lambda functions in Rust can read variables from within their
scope. These are closures.

Unlike regular functions, lambda functions cannot be defined in global scope.
The following listing gets around this by defining one within its main(). It
defines two functions, a regular function and a lambda function, and then
checks that these produce the same result.

Listing 10.1 Defining two functions and checking the result

fn add(a: i32, b: i32) -> i32 {

  a + b



}

 

fn main() {

  let lambda_add = |a,b| { a + b };

 

 assert_eq!(add(4,5), lambda_add(4,5));

}

When you run listing 10.1, it executes happily (and silently). Let’s now see
how to put this functionality to work.



10.2 Spawning threads

Threads are the primary mechanism that operating systems provide for
enabling concurrent execution. Modern operating systems ensure that each
thread has fair access to the CPU. Understanding how to create threads (often
referred to as spawning treads) and understanding their impact are
fundamental skills for programmers wanting to make use of multi-core CPUs.

10.2.1 Introduction to closures

To spawn a thread in Rust, we pass an anonymous function to
std::thread::spawn(). As described in section 10.1, anonymous
functions are defined with two vertical bars to provide arguments and then
curly brackets for the function’s body. Because spawn() doesn’t take any
arguments, you will typically encounter this syntax:

thread::spawn(|| {

    // ...

});

When the spawned thread wants to access variables that are defined in the
parent’s scope, called a capture, Rust often complains that captures must be
moved into the closure. To indicate that you want to move ownership,
anonymous functions take a move keyword:

thread::spawn(move || {      ①

    // ...

});

① The move keyword allows the anonymous function to access variables from their wider scope.



Why is move required? Closures spawned in subthreads can potentially
outlive their calling scope. As Rust will always ensure that accessing the data
is valid, it requires ownership to move to the closure itself. Here are some
guidelines for using captures while you gain an understanding of how these
work:

To reduce friction at compile time, implement Copy.

Values originating in outer scopes may need to have a static
lifetime.

Spawned subthreads can outlive their parents. That implies that
ownership should pass to the subthread with move.

10.2.2 Spawning a thread

A simple task waits, sleeping the CPU for 300 ms (milliseconds). If you have
a 3 GHz CPU, you’re getting it to rest for nearly 1 billion cycles. Those
electrons will be very relieved. When executed, listing 10.2 prints the total
duration (in “wall clock” time) of both executing threads. Here’s the output:

300.218594ms

Listing 10.2 Sleeping a subthread for 300 ms

 1 use std::{thread, time};

 2  

 3 fn main() {

 4   let start = time::Instant::now();

 5  

 6   let handler = thread::spawn(|| {

 7     let pause = time::Duration::from_millis(300);

 8     thread::sleep(pause.clone());

 9   });

10  

11   handler.join().unwrap();

12  

13   let finish = time::Instant::now();



14  

15   println!("{:02?}", finish.duration_since(start));

16 }

If you had encountered multi-threaded programming before, you would have
been introduced to join on line 11. Using join is fairly common, but
what does it mean?

join is an extension of the thread metaphor. When threads are spawned,
these are said to have forked from their parent thread. To join threads means
to weave these back together again.

In practice, join means wait for the other thread to finish. The join()
function instructs the OS to defer scheduling the calling thread until the other
thread finishes.

10.2.3 Effect of spawning a few threads

In ideal settings, adding a second thread doubles the work we can do in the
same amount of time. Each thread can gets its work done independently.
Reality is not ideal, unfortunately. This has created a myth that threads are
slow to create and bulky to maintain. This section aims to dispel that myth.
When used as intended, threads perform very well.

Listing 10.3 shows a program that measures the overall time taken for two
threads to perform the job that was carried out by a single thread in listing
10.2. If adding threads take a long time, we would expect the duration of
listing 10.3’s code to be longer.

As you’ll notice, there is a negligible impact from creating one or two
threads. As with listing 10.2, listing 10.3 prints almost the same output:

300.242328ms        ①



① Versus 300.218594 ms from listing 10.2

The difference in these two runs on my computer was 0.24 ms. While by no
means a robust benchmark suite, it does indicate that spawning a thread isn’t
a tremendous performance hit.

Listing 10.3 Creating two subthreads to perform work on our behalf

 1 use std::{thread, time};

 2  

 3 fn main() {

 4   let start = time::Instant::now();

 5  

 6   let handler_1 = thread::spawn(move || {

 7     let pause = time::Duration::from_millis(300);

 8       thread::sleep(pause.clone());

 9   });

10  

11   let handler_2 = thread::spawn(move || {

12     let pause = time::Duration::from_millis(300);

13       thread::sleep(pause.clone());

14   });

15  

16   handler_1.join().unwrap();

17   handler_2.join().unwrap();

18  

19   let finish = time::Instant::now();

20  

21   println!("{:?}", finish.duration_since(start));

22 }

If you’ve had any exposure to the field before, you may have heard that
threads “don’t scale.” What does that mean?

Every thread requires its own memory, and by implication, we’ll eventually
exhaust our system’s memory. Before that terminal point, though, thread
creation begins to trigger slowdowns in other areas. As the number of threads
to schedule increases, the OS scheduler’s work increases. When there are
many threads to schedule, deciding which thread to schedule next takes more
time.



10.2.4 Effect of spawning many threads

Spawning threads is not free. It demands memory and CPU time. Switching
between threads also invalidates caches.

Figure 10.1 shows the data generated by successive runs of listing 10.4. The
variance stays quite tight until about 400 threads per batch. After that, there’s
almost no knowing how long a 20 ms sleep will take.

Figure 10.1 Duration needed to wait for threads to sleep 20 ms

And, if you’re thinking that sleeping is not a representative workload, figure
10.2 shows the next plot, which is even more telling. It asks each thread to
enter a spin loop.



Figure 10.2 Comparing the time taken to wait for 20m using the sleep
strategy (circles) versus the spin lock strategy (plus symbols). This chart
shows the differences that occur as hundreds of threads compete.

Figure 10.2 provides features that are worth focusing in on briefly. First, for
the first seven or so batches, the spin loop version returned closer to 20 ms.
The operating system’s sleep functionality isn’t perfectly accurate, however.
If you want to sleep pause a thread for short amounts of time, or if your
application is sensitive to timing, use a spin loop.1

Second, CPU-intensive multithreading doesn’t scale well past the number of
physical cores. The benchmarking was performed on a 6-core CPU (the Intel
i7-8750H) with hyper-threading disabled. Figure 10.3 shows that as soon as
the thread count exceeds the core count, performance degrades quickly.



Figure 10.3 Comparing the time taken to wait for 20m using the sleep
strategy (circles) versus the spin lock strategy (plus symbols). This chart
shows the differences that occur as the number of threads exceeds the
number of CPU cores (6).

10.2.5 Reproducing the results

Now that we’ve seen the effects of threading, let’s look at the code that
generated the input data to the plots in figures 10.1–10.2. You are welcome to
reproduce the results. To do so, write the output of listings 10.4 and 10.5 to
two files, and then analyze the resulting data.

Listing 10.4, whose source code is available at c10/ch10-
multijoin/src/main.rs, suspends threads for 20 ms with a sleep. A sleep is a
request to the OS that the thread should be suspended until the time has
passed. Listing 10.5, whose source code is available at c10/ch10-



busythreads/src/main.rs, uses the busy wait strategy (also known as busy loop
and spin loop) to pause for 20 ms.

Listing 10.4 Using thread::sleep to suspend threads for 20 ms

 1 use std::{thread, time};

 2  

 3 fn main() {

 4   for n in 1..1001 {

 5     let mut handlers: Vec<thread::JoinHandle<()>> = Vec::with_capacity(n);

 6  

 7     let start = time::Instant::now();

 8     for _m in 0..n {

 9       let handle = thread::spawn(|| {

10         let pause = time::Duration::from_millis(20);

11         thread::sleep(pause);

12       });

13       handlers.push(handle);

14     }

15  

16       while let Some(handle) = handlers.pop() {

17           handle.join();

18       }

19  

20     let finish = time::Instant::now();

21     println!("{}\t{:02?}", n, finish.duration_since(start));

22   }

23 }

Listing 10.5 Using a spin loop waiting strategy

 1 use std::{thread, time};

 2  

 3 fn main() {

 4   for n in 1..1001 {

 5     let mut handlers: Vec<thread::JoinHandle<()>> = Vec::with_capacity(n);

 6  

 7     let start = time::Instant::now();

 8     for _m in 0..n {

 9       let handle = thread::spawn(|| {

10         let start = time::Instant::now();

11         let pause = time::Duration::from_millis(20);

12         while start.elapsed() < pause {

13           thread::yield_now();

14         }

15       });

16       handlers.push(handle);

17     }



18  

19     while let Some(handle) = handlers.pop() {

20       handle.join();

21     }

22  

23     let finish = time::Instant::now();

24     println!("{}\t{:02?}", n, finish.duration_since(start));

25   }

26 }

The control flow we’ve chosen for lines 19–21 is slightly odd. Rather than
iterating through the handlers vector, we call pop() and then drain it.
The following two snippets compare the more familiar for loop (listing
10.6) with the control flow mechanism that is actually employed (listing
10.7).

Listing 10.6 What we would expect to see in listing 10.5

19 for handle in &handlers {

20   handle.join();

21 }

Listing 10.7 Code that’s actually used in listing 10.5

19 while let Some(handle) = handlers.pop() {

20   handle.join();

21 }

Why use the more complex control flow mechanism? It might help to
remember that once we join a thread back to the main thread, it ceases to
exist. Rust won’t allow us to retain a reference to something that doesn’t
exist. Therefore, to call join() on a thread handler within handlers,
the thread handler must be removed from handlers. That poses a
problem. A for loop does not permit modifications to the data being
iterated over. Instead, the while loop allows us to repeatedly gain mutable
access when calling handlers.pop().



Listing 10.8 provides a broken implementation of the spin loop strategy. It is
broken because it uses the more familiar for loop control flow that was
avoided in listing 10.5. You’ll find the source for this listing in c10/ch10-
busythreads-broken/src/main.rs. Its output follows the listing.

Listing 10.8 Using a spin loop waiting strategy

 1 use std::{thread, time};

 2  

 3 fn main() {

 4   for n in 1..1001 {

 5     let mut handlers: Vec<thread::JoinHandle<()>> = Vec::with_capacity(n);

 6  

 7     let start = time::Instant::now();

 8     for _m in 0..n {

 9       let handle = thread::spawn(|| {

10         let start = time::Instant::now();

11         let pause = time::Duration::from_millis(20);

12         while start.elapsed() < pause {

13           thread::yield_now();

14         }

15       });

16       handlers.push(handle);

17     }

18  

19     for handle in &handlers {

20       handle.join();

21     }

22  

23     let finish = time::Instant::now();

24     println!("{}\t{:02?}", n, finish.duration_since(start));

25   }

26 }

Here is the output generated when attempting to compile listing 10.8:

$ cargo run -q 

error[E0507]: cannot move out of `*handle` which is behind a

shared reference

  --> src/main.rs:20:13

   |

20 |             handle.join();

   |             ^^^^^^ move occurs because `*handle` has type

   `std::thread::JoinHandle<()>`, which does not implement the

   `Copy` trait

 



error: aborting due to previous error

 

For more information about this error, try `rustc --explain E0507`.

error: Could not compile `ch10-busythreads-broken`.

 

To learn more, run the command again with --verbose.

This error is saying that taking a reference isn’t valid here. That’s because
multiple threads might also be taking their own references to the underlying
threads. And those references need to be valid.

Astute readers know that there is actually a simpler way to get around this
problem than what was used in listing 10.5. As the following listing shows,
simply remove the ampersand.

Listing 10.9 What we could have used in listing 10.5

19 for handle in handlers {

20   handle.join();

21 }

What we’ve encountered is one of those rare cases where taking a reference
to an object causes more issues than using the object directly. Iterating over
handlers directly retains ownership. That pushes any concerns about
shared access to the side, and we can proceed as intended.

YIELDING CONTROL WITH
THREAD::YIELD_NOW()

As a reminder, the busy loop within listing 10.5 includes some unfamiliar
code, repeated in the following listing. This section explains its significance.

Listing 10.10 Showing the current thread-yielding execution

14 while start.elapsed() < pause {

15   thread::yield_now();



16 }

std::thread::yield_now() is a signal to the OS that the current
thread should be unscheduled. This allows other threads to proceed while the
current thread is still waiting for the 20 ms to arrive. A downside to yielding
is that we don’t know if we’ll be able to resume at exactly 20 ms.

An alternative to yielding is to use the function
std::sync::atomic::spin_loop _hint().
spin_loop_hint() avoids the OS; instead, it directly signals the
CPU. A CPU might use that hint to turn off functionality, thus saving power
usage.

NOTE The spin_loop_hint() instruction is not present for every CPU. On platforms that
don’t support it, spin_loop_hint() does nothing.

10.2.6 Shared variables

In our threading benchmarks, we created pause variables in each thread. If
you’re not sure what I’m referring to, the following listing provides an
excerpt from listing 10.5.

Listing 10.11 Emphasizing the needless creation of
time::Duration instances

 9 let handle = thread::spawn(|| {

10    let start = time::Instant::now();

11    let pause = time::Duration::from_millis(20);     ①

12    while start.elapsed() < pause {

13      thread::yield_now();

14    }

15 });

① This variable doesn’t need to be created in each thread.



We want to be able to write something like the following listing. The source
for this listing is ch10/ch10-sharedpause-broken/src/main.rs.

Listing 10.12 Attempting to share a variable in multiple subthreads

 1 use std::{thread,time};

 2  

 3 fn main() {

 4   let pause = time::Duration::from_millis(20);

 5   let handle1 = thread::spawn(|| {

 6     thread::sleep(pause);

 7   });

 8   let handle2 = thread::spawn(|| {

 9     thread::sleep(pause);

10   });

11  

12   handle1.join();

13   handle2.join();

14 }

If we run listing 10.12, we’ll receive a verbose—and surprisingly helpful—
error message:

$ cargo run -q 

error[E0373]: closure may outlive the current function, but it borrows

`pause`, which is owned by the current function

 --> src/main.rs:5:33

  |

5 |     let handle1 = thread::spawn(|| {

  |                                 ^^ may outlive borrowed value `pause`

6 |         thread::sleep(pause);

  |                       ----- `pause` is borrowed here

  |

note: function requires argument type to outlive `'static`

 --> src/main.rs:5:19

  |

5 |       let handle1 = thread::spawn(|| {

  |  ___________________^

6 | |         thread::sleep(pause);

7 | |     });

  | |______^

help: to force the closure to take ownership of `pause` (and any other

references variables), use the `move` keyword

  |

5 |     let handle1 = thread::spawn(move || {

  |                                 ^^^^^^^

 



error[E0373]: closure may outlive the current function, but it borrows

`pause`, which is owned by the current function

 --> src/main.rs:8:33

  |

8 |     let handle2 = thread::spawn(|| {

  |                                 ^^ may outlive borrowed value `pause`

9 |         thread::sleep(pause);

  |                       ----- `pause` is borrowed here

  |

note: function requires argument type to outlive `'static`

 --> src/main.rs:8:19

  |

8 |       let handle2 = thread::spawn(|| {

  |  ___________________^

9 | |         thread::sleep(pause);

10| |     });

  | |______^

help: to force the closure to take ownership of `pause` (and any other

referenced variables), use the `move` keyword

  |

8 |     let handle2 = thread::spawn(move || {

  |                                 ^^^^^^^

 

error: aborting due to 2 previous errors

 

For more information about this error, try `rustc --explain E0373`.

error: Could not compile `ch10-sharedpause-broken`.

 

To learn more, run the command again with --verbose.

The fix is to add the move keyword to where the closures are created, as
hinted at in section 10.2.1. The following listing adds the move keyword,
which switches the closures to use move semantics. That, in turn, relies on
Copy.

Listing 10.13 Using a variable defined in a parent scope in multiple
closures

 1 use std::{thread,time};

 2  

 3 fn main() {

 4   let pause = time::Duration::from_millis(20);

 5   let handle1 = thread::spawn(move || {

 6     thread::sleep(pause);

 7    });

 8   let handle2 = thread::spawn(move || {

 9     thread::sleep(pause);



10   });

11  

12   handle1.join();

13   handle2.join();

14 }

The details of why this works are interesting. Be sure to read the following
section to learn those.



10.3 Differences between closures and
functions

There are some differences between closures (|| {}) and functions (fn).
The differences prevent closures and functions from being used
interchangeably, which can cause problems for learners.

Closures and functions have different internal representations. Closures are
anonymous structs that implement the std::ops::FnOnce trait and
potentially std::ops::Fn and std::ops::FnMut. Those structs
are invisible in source code but contain any variables from the closure’s
environment that are used inside it.

Functions are implemented as function pointers. A function pointer is a
pointer that points to code, not data. Code, when used in this sense, is
computer memory that has been marked as executable. To complicate
matters, closures that do not enclose any variables from their environment are
also function pointers.

Forcing the compiler to reveal the type of
closure

The concrete type of a Rust closure is inaccessible as source code. The compiler creates it. To
retrieve it, force a compiler error like this:

fn main() {

  let a = 20;

 

  let add_to_a = |b| { a + b };     ①



  add_to_a == ();                   ②

}

① Closures are values and can be assigned to a variable.

② A quick method to inspect a value’s type, this attempts to perform an illegal operation on it.
The compiler quickly reports it as an error message.

Among other errors, the compiler produces this one when attempting to compile the snippet as
/tmp/a-plus-b.rs:

$ rustc /tmp/a-plus-b.rs 

error[E0369]: binary operation `==` cannot be applied to type

`[closure@/tmp/a-plus-b.rs:4:20: 4:33]`

 --> /tmp/a-plus-b.rs:6:14

  |

6 |     add_to_a == ();

  |     -------- ^^ -- ()

  |     |

  |     [closure@/tmp/a-plus-b.rs:4:20: 4:33]

 

error: aborting due to previous error

 

For more information about this error, try `rustc --explain E0369`.



10.4 Procedurally generated avatars from a
multithreaded parser and code
generator

This section applies the syntax that we learned in section 10.2 to an
application. Let’s say that we want the users of our app to have unique
pictorial avatars by default. One approach for doing this is to take their
usernames and the digest of a hash function, and then use those digits as
parameter inputs to some procedural generation logic. Using this approach,
everyone will have visually similar yet completely distinctive default avatars.

Our application creates parallax lines. It does this by using the characters
within the Base 16 alphabet as opcodes for a LOGO-like language.

10.4.1 How to run render-hex and its intended output

In this section, we’ll produce three variations. These will all be invoked in the
same way. The following listing demonstrates this. It also shows the output
from invoking our render-hex project (listing 10.18):

$ git clone https:/ /github.com/rust-in-action/code rust-in-action 

...

 

$ cd rust-in-action/ch10/ch10-render-hex 

 

$ cargo run -- $( 

>   echo 'Rust in Action' |                               ①

>   sha1sum |                                             ①

>   cut -f1 -d' '                                         ①

> ) 

$ ls                                                      ②

5deaed72594aaa10edda990c5a5eed868ba8915e.svg  Cargo.toml  target

Cargo.lock                                    src



 

$ cat 5deaed72594aaa10edda990c5a5eed868ba8915e.svg        ③

<svg height="400" style='style="outline: 5px solid #800000;"'

viewBox="0 0 400 400" width="400" xmlns="http:/ /www.w3.org/2000/svg">

<rect fill="#ffffff" height="400" width="400" x="0" y="0"/>

<path d="M200,200 L200,400 L200,400 L200,400 L200,400 L200,400 L200,

400 L480,400 L120,400 L-80,400 L560,400 L40,400 L40,400 L40,400 L40,

400 L40,360 L200,200 L200,200 L200,200 L200,200 L200,200 L200,560 L200,

-160 L200,200 L200,200 L400,200 L400,200 L400,0 L400,0 L400,0 L400,0 L80,

0 L-160,0 L520,0 L200,0 L200,0 L520,0 L-160,0 L240,0 L440,0 L200,0"

fill="none" stroke="#2f2f2f" stroke-opacity="0.9" stroke-width="5"/>

<rect fill="#ffffff" fill-opacity="0.0" height="400" stroke="#cccccc"

stroke-width="15" width="400" x="0" y="0"/>

</svg>

① Generates some input from the Base 16 alphabet (e.g., 0-9 and A-F)

② The project creates a filename that matches the input data.

③ Inspects the output

Any stream of valid Base 16 bytes generates a unique image. The file
generated from echo 'Rust in Action' | sha256sum
renders as shown in figure 10.4. To render SVG files, open the file in a web
browser or a vector image program such as Inkscape (https://inkscape.org/).

https://inkscape.org/


Figure 10.4 The SHA256 digest of Rust in Action displayed as a diagram

10.4.2 Single-threaded render-hex overview

The render-hex project converts its input to an SVG file. The SVG file format
succinctly describes drawings using mathematical operations. You can view
the SVG file in any web browser and many graphics packages. Very little of



the program relates to multithreading at this stage, so I’ll skip much of the
details. The program has a simple pipeline comprised of four steps:

1. Receives input from STDIN

2. Parses the input into operations that describe the movement of a pen
across a sheet of paper

3. Converts the movement operations into its SVG equivalent

4. Generates an SVG file

Why can’t we directly create path data from input? Splitting this process into
two steps allows for more transformations. This pipeline is managed directly
within main().

The following listing shows the main() function for render-hex (listing
10.18). It parses the command-line arguments and manages the SVG
generation pipeline. You’ll find the source for this listing in ch10/ch10-
render-hex/src/main.rs.

Listing 10.14 The main() function of render-hex

166 fn main() {

167     let args = env::args().collect::<Vec<String>>();   ①

168     let input = args.get(1).unwrap();                  ①

169     let default = format!("{}.svg", input);            ①

170     let save_to = args.get(2).unwrap_or(&default);     ①

171  

172     let operations = parse(input);                     ②

173     let path_data = convert(&operations);              ②

174     let document = generate_svg(path_data);            ②

175     svg::save(save_to, &document).unwrap();            ②

176 }

① Command-line argument parsing

② SVG generation pipeline

INPUT PARSING



Our job in this section is to convert hexadecimal digits to instructions for a
virtual pen that travels across a canvas. The Operation enum, shown in
the following code snippet, represents these instructions.

NOTE The term operation is used rather than instruction to avoid colliding with the terminology
used within the SVG specification for path drawing.

21 #[derive(Debug, Clone, Copy)]

22 enum Operation {

23     Forward(isize),

24     TurnLeft,

25     TurnRight,

26     Home,

27     Noop(usize),

28 }

To parse this code, we need to treat every byte as an independent instruction.
Numerals are converted to distances, and letters change the orientation of the
drawing:

123 fn parse(input: &str) -> Vec<Operation> {

124   let mut steps = Vec::<Operation>::new();

125   for byte in input.bytes() {

126     let step = match byte {

127       b'0' => Home,

128       b'1'..=b'9' => {

129         let distance = (byte - 0x30) as isize;     ①

130         Forward(distance * (HEIGHT/10))

131       },

132       b'a' | b'b' | b'c' => TurnLeft,              ②

133       b'd' | b'e' | b'f' => TurnRight,             ②

134       _ => Noop(byte),                             ③

135     }

136   };

137     steps.push(step);

138   }

139   steps

140 }

① In ASCII, numerals start at 0x30 (48 in Base 10), so this converts the u8 value of b'2' to 2.
Performing this operation on the whole range of u8 could cause a panic, but we’re safe here, thanks
to the guarantee provided by our pattern matching.

② There’s plenty of opportunity to add more instructions to produce more elaborate diagrams without



increasing the parsing complexity.

③ Although we don’t expect any illegal characters, there may be some in the input stream. Using a
Noop operation allows us to decouple parsing from producing output.

INTERPRET INSTRUCTIONS

The Artist struct maintains the state of the diagram. Conceptually, the
Artist is holding a pen at the coordinates x and y and is moving it in the
direction of heading:

49 #[derive(Debug)]

50 struct Artist {

51   x: isize,

52   y: isize,

53   heading: Orientation,

54 }

To move, Artist implements several methods of the render-hex project,
two of which are highlighted in the following listing. Rust’s match
expressions are used to succinctly refer to and modify internal state. You’ll
find the source for this listing in ch10-render-hex/src/main.rs.

Listing 10.15 Moving Artist

70   fn forward(&mut self, distance: isize) {

71     match self.heading {

72       North => self.y += distance,

73       South => self.y -= distance,

74        West  => self.x += distance,

75       East  => self.x -= distance,

76     }

77   }

78  

79   fn turn_right(&mut self) {

80     self.heading = match self.heading {

81       North => East,

82       South => West,

83       West  => North,

84       East  => South,

85     }



86   }

The convert() function in listing 10.16, an extract from the render-hex
project (listing 10.18), makes use of the Artist struct. Its role is to
convert the Vec<Operation> from parse() to a
Vec<Command>. That output is used later to generate an SVG. As a nod
to the LOGO language, Artist is given the local variable name
turtle. The source for this listing is in ch10-render-hex/src/main.rs.

Listing 10.16 Focusing on the convert() function

131 fn convert(operations: &Vec<Operation>) -> Vec<Command> {

132   let mut turtle = Artist::new();

133   let mut path_data: Vec<Command> = vec![];

134   let start_at_home = Command::Move(

135       Position::Absolute, (HOME_X, HOME_Y).into()      ①

136   );

137   path_data.push(start_at_home);

138  

139   for op in operations {

140     match *op {

141       Forward(distance) => turtle.forward(distance),   ②

142       TurnLeft => turtle.turn_left(),                  ②

143       TurnRight => turtle.turn_right(),                ②

144       Home => turtle.home(),                           ②

145       Noop(byte) => {

146         eprintln!("warning: illegal byte encountered: {:?}", byte)

147       },

148     };

149     let line = Command::Line(                          ③

150       Position::Absolute,                              ③

151       (turtle.x, turtle.y).into()                      ③

152     );                                                 ③

153     path_data.push(line);

154  

155     turtle.wrap();                                     ④

156   }

157   path_data

158 }

① To start, positions the turtle in the center of the drawing area

② We don’t generate a Command immediately. Instead, we modify the internal state of turtle.

③ Creates a Command::Line (a straight line toward the turtle’s current position)



④ If the turtle is out of bounds, returns it to the center

GENERATING AN SVG

The process of generating the SVG file is rather mechanical.
generate_svg() (lines 161–192 of listing 10.18) does the work.

SVG documents look a lot like HTML documents, although the tags and
attributes are different. The <path> tag is the most important one for our
purposes. It has a d attribute (d is short for data) that describes how the path
should be drawn. convert() produces a Vec<Command> that maps
directly to the path data.

SOURCE CODE FOR THE SINGLE-THREADED
VERSION OF RENDER-HEX

The render-hex project has an orthodox structure. The whole project sits
within a (fairly large) main.rs file managed by cargo. To download the
project’s source code from its public code repository, use the following
commands:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action 

Cloning into 'rust-in-action'...

 

$ cd rust-in-action/ch10/ch10-render-hex

Otherwise, to create the project by hand, follow the commands in the
following snippet, and then copy the code from listing 10.18 into src/main.rs:

$ cargo new ch10-render-hex 

     Created binary (application) `ch10-render-hex` package

 

$ cd ch10-render-hex 



  

$ cargo install cargo-edit 

    Updating crates.io index

  Downloaded cargo-edit v0.7.0

  Downloaded 1 crate (57.6 KB) in 1.35s

  Installing cargo-edit v0.7.0

...

 

$ cargo add svg@0.6 

    Updating 'https:/ /github.com/rust-lang/crates.io-index' index

      Adding svg v0.6 to dependencies

The standard project structure, which you can compare against the following
snippet, has been created for you:

ch10-render-hex/

├── Cargo.toml      ①

└── src

    └── main.rs     ②

① See listing 10.17.

② See listing 10.18.

The following listing shows the metadata for our project. You should check
that your project’s Cargo.toml matches the relevant details. You’ll find the
source for this listing in ch10/ch10-render-hex/Cargo.toml.

Listing 10.17 Project metadata for render-hex

[package]

name = "render-hex"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

svg = "0.6"

The single-threaded version of render-hex appears in the following listing.
You’ll find the source for this listing in ch10-render-hex/src/main.rs.

Listing 10.18 Source code for render-hex



  1 use std::env;

  2  

  3 use svg::node::element::path::{Command, Data, Position};

  4 use svg::node::element::{Path, Rectangle};

  5 use svg::Document;

  6  

  7 use crate::Operation::{                             ①

  8     Forward,                                        ①

  9     Home,                                           ①

 10     Noop,                                           ①

 11     TurnLeft,                                       ①

 12     TurnRight                                       ①

 13 };                                                  ①

 14 use crate::Orientation::{                           ①

 15     East,                                           ①

 16     North,                                          ①

 17     South,                                          ①

 18     West                                            ①

 19 };                                                  ①

 30  

 21 const WIDTH: isize = 400;                           ②

 22 const HEIGHT: isize = WIDTH;                        ②

 23  

 24 const HOME_Y: isize = HEIGHT / 2;                   ③

 25 const HOME_X: isize = WIDTH / 2;                    ③

 26  

 27 const STROKE_WIDTH: usize = 5;                      ④

 28  

 29 #[derive(Debug, Clone, Copy)]

 30 enum Orientation {

 31   North,                                            ⑤

 32   East,                                             ⑤

 33   West,                                             ⑤

 34   South,                                            ⑤

 35 }

 36  

 37 #[derive(Debug, Clone, Copy)]

 38 enum Operation {                                    ⑥

 39   Forward(isize),                                   ⑦

 40   TurnLeft,

 41   TurnRight,

 42   Home,

 43   Noop(u8),                                         ⑧

 44 }

 45  

 46 #[derive(Debug)]

 47 struct Artist {                                     ⑨

 48   x: isize,

 49   y: isize,

 50   heading: Orientation,

 51 }

 52  

 53 impl Artist {



 54   fn new() -> Artist {

 55     Artist {

 56       heading: North,

 57       x: HOME_X,

 58       y: HOME_Y,

 59     }

 60   }

 61  

 62   fn home(&mut self) {

 63     self.x = HOME_X;

 64     self.y = HOME_Y;

 65   }

 66  

 67   fn forward(&mut self, distance: isize) {          ⑩

 68     match self.heading {

 69       North => self.y += distance,

 70       South => self.y -= distance,

 71       West => self.x += distance,

 72       East => self.x -= distance,

 73     }

 74   }

 75  

 76   fn turn_right(&mut self) {                        ⑩

 77     self.heading = match self.heading {

 78       North => East,

 79       South => West,

 80       West => North,

 81       East => South,

 82     }

 83   }

 84  

 85   fn turn_left(&mut self) {                         ⑪

 86     self.heading = match self.heading {

 87       North => West,

 88       South => East,

 89       West => South,

 90       East => North,

 91     }

 92   }

 93   

 94   fn wrap(&mut self) {                              ⑫

 95     if self.x < 0 {

 96       self.x = HOME_X;

 97       self.heading = West;

 98     } else if self.x > WIDTH {

 99       self.x = HOME_X;

100       self.heading = East;

101     }

102  

103     if self.y < 0 {

104       self.y = HOME_Y;

105       self.heading = North;

106     } else if self.y > HEIGHT {

107       self.y = HOME_Y;



108       self.heading = South;

109     }

110   }

111 }

112  

113 fn parse(input: &str) -> Vec<Operation> {

114   let mut steps = Vec::<Operation>::new();

115   for byte in input.bytes() {

116     let step = match byte {

117       b'0' => Home,

118       b'1'..=b'9' => {

119         let distance = (byte - 0x30) as isize;    ⑬

120         Forward(distance * (HEIGHT / 10))

121       }

122       b'a' | b'b' | b'c' => TurnLeft,

123       b'd' | b'e' | b'f' => TurnRight,

124       _ => Noop(byte),                            ⑭

125     };

126     steps.push(step);

127   }

128   steps

129 }

130  

131 fn convert(operations: &Vec<Operation>) -> Vec<Command> {

132   let mut turtle = Artist::new();

133  

134   let mut path_data = Vec::<Command>::with_capacity(operations.len());

135   let start_at_home = Command::Move(

136     Position::Absolute, (HOME_X, HOME_Y).into()

137   );

138   path_data.push(start_at_home);

139  

140   for op in operations {

141     match *op {

142       Forward(distance) => turtle.forward(distance),

143       TurnLeft => turtle.turn_left(),

144       TurnRight => turtle.turn_right(),

145       Home => turtle.home(),

146       Noop(byte) => {

147         eprintln!("warning: illegal byte encountered: {:?}", byte);

148       },

149     };

150  

151     let path_segment = Command::Line(

152       Position::Absolute, (turtle.x, turtle.y).into()

153     );

154     path_data.push(path_segment);

155  

156     turtle.wrap();

157   }

158   path_data

159 }

160  

161 fn generate_svg(path_data: Vec<Command>) -> Document {



162   let background = Rectangle::new()

163     .set("x", 0)

164     .set("y", 0)

165     .set("width", WIDTH)

166     .set("height", HEIGHT)

167     .set("fill", "#ffffff");

168  

169   let border = background

170     .clone()

171     .set("fill-opacity", "0.0")

172     .set("stroke", "#cccccc")

173     .set("stroke-width", 3 * STROKE_WIDTH);

174  

175   let sketch = Path::new()

176     .set("fill", "none")

177     .set("stroke", "#2f2f2f")

178     .set("stroke-width", STROKE_WIDTH)

179     .set("stroke-opacity", "0.9")

180     .set("d", Data::from(path_data));

181  

182   let document = Document::new()

183     .set("viewBox", (0, 0, HEIGHT, WIDTH))

184     .set("height", HEIGHT)

185     .set("width", WIDTH)

186     .set("style", "style=\"outline: 5px solid #800000;\"")

187     .add(background)

188     .add(sketch)

189     .add(border);

190  

191   document

192 }

193  

194 fn main() {

195   let args = env::args().collect::<Vec<String>>();

196   let input = args.get(1).unwrap();

197   let default_filename = format!("{}.svg", input);

198   let save_to = args.get(2).unwrap_or(&default_filename);

199  

200   let operations = parse(input);

201   let path_data = convert(&operations);

202   let document = generate_svg(path_data);

203   svg::save(save_to, &document).unwrap();

204 }

① Operation and Orientation enum types are defined later. Including these with the use keyword
removes a lot of noise from the source code.

② HEIGHT and WIDTH provide the bounds of the drawing.

③ HOME_Y and HOME_X constants allow us to easily reset where we are drawing from. Here y is
the vertical coordinate and x is the horizontal.

④ STROKE_WIDTH, a parameter for the SVG output, defines the look of each drawn line.



⑤ Using descriptions rather than numerical values avoids mathematics.

⑥ To produce richer output, extends the operations available to your programs

⑦ Using isize lets us extend this example to implement a Reverse operation without adding a new
variant.

⑧ Uses Noop when we encounter illegal input. To write error messages, we retain the illegal byte.

⑨ The Artist struct maintains the current state.

⑩ forward() mutates self within the match expression. This contrasts with turn_left() and turn_right(),
which mutate self outside of the match expression.

⑪ forward() mutates self within the match expression. This contrasts with turn_left() and turn_right(),
which mutate self outside of the match expression.

⑫ wrap() ensures that the drawing stays within bounds.

⑬ In ASCII, numerals start at 0x30 (48). byte – 0x30 converts a u8 value of b'2' to 2. Performing this
operation on the whole range of u8 could cause a panic, but we’re safe here, thanks to the guarantee
provided by our pattern matching.

⑭ Although we don’t expect any illegal characters, there may be some in the input stream. A Noop
operation allows us to decouple parsing from producing output.

10.4.3 Spawning a thread per logical task

Our render-hex project (listing 10.18) also presents several opportunities for
parallelism. We’ll focus on one of these, the parse() function. To begin,
adding parallelism is a two-step process:

1. Refactor code to use a functional style.

2. Use the rayon crate and its par_iter() method.

USING A FUNCTIONAL PROGRAMMING STYLE

The first step in adding parallelism is to replace our for. Rather than for,
the toolkit for creating a Vec<T> with functional programming constructs
includes the map() and collect() methods and higher-order
functions, typically created with closures.



To compare the two styles, consider the differences to the parse()
function from listing 10.18 (in ch10-render-hex/src/main.rs), repeated in the
following listing, and a more functional style in listing 10.20 (in ch10-render-
hex-functional/src/main.rs).

Listing 10.19 Implementing parse() with imperative programming
constructs

113 fn parse(input: &str) -> Vec<Operation> {

114   let mut steps = Vec::<Operation>::new();

115   for byte in input.bytes() {

116     let step = match byte {

117       b'0' => Home,

118       b'1'..=b'9' => {

119         let distance = (byte - 0x30) as isize;

120         Forward(distance * (HEIGHT / 10))

121       }

122       b'a' | b'b' | b'c' => TurnLeft,

123       b'd' | b'e' | b'f' => TurnRight,

124       _ => Noop(byte),

125     };

126     steps.push(step);

127   }

128   steps

129 }

Listing 10.20 Implementing parse() with functional programming
constructs

 99 fn parse(input: &str) -> Vec<Operation> {

100   input.bytes().map(|byte|{

101     match byte {

102       b'0' => Home,

103       b'1'..=b'9' => {

104         let distance = (byte - 0x30) as isize;

105         Forward(distance * (HEIGHT/10))

106       },

107       b'a' | b'b' | b'c' => TurnLeft,

108       b'd' | b'e' | b'f' => TurnRight,

109       _ => Noop(byte),

110   }}).collect()

111 }



Listing 10.20 is shorter, more declarative, and closer to idiomatic Rust. At a
surface level, the primary change is that there is no longer a need to create the
temporary variable steps. The partnership of map() and collect()
removes the need for that: map() applies a function to every element of an
iterator, and collect() stores the output of an iterator into a Vec<T>.

There is also a more fundamental change than eliminating temporary
variables in this refactor, though. It has provided more opportunities for the
Rust compiler to optimize your code’s execution.

In Rust, iterators are an efficient abstraction. Working with their methods
directly allows the Rust compiler to create optimal code that takes up
minimal memory. As an example, the map() method takes a closure and
applies it to every element of the iterator. Rust’s trick is that map() also
returns an iterator. This allows many transformations to be chained together.
Significantly, although map() may appear in multiple places in your source
code, Rust often optimizes those function calls away in the compiled binary.

When every step that the program should take is specified, such as when your
code uses for loops, you restrict the number of places where the compiler
can make decisions. Iterators provide an opportunity for you to delegate more
work to the compiler. This ability to delegate is what will shortly unlock
parallelism.

USING A PARALLEL ITERATOR

We’re going to cheat here and make use of a crate from the Rust community:
rayon. rayon is explicitly designed to add data parallelism to your code. Data
parallelism applies the same function (or closure!) on different data (such as a
Vec<T>).



Assuming that you’ve already worked with the base render-hex project, add
rayon to your crate’s dependencies with cargo by executing cargo add
rayon@1:

$ cargo add rayon@1                                                    ①

    Updating 'https://github.com/rust-lang/crates.io-index' index

      Adding rayon v1 to dependencies

① Run cargo install cargo-edit if the cargo add command is unavailable.

Ensure that the [dependencies] section of your project’s Cargo.toml
matches the following listing. You’ll find the source for this listing in ch10-
render-hex-parallel-iterator/Cargo.toml.

Listing 10.21 Adding rayon as a dependency to Cargo.toml

7 [dependencies]

8 svg = "0.6.0"

9 rayon = "1"

At the head of the main.rs file, add rayon and its prelude as listing 10.23
shows. prelude brings several traits into the crate’s scope. This has the
effect of providing a par_bytes() method on string slices and a
par_iter() method on byte slices. Those methods enable multiple
threads to cooperatively process data. The source for this listing is in ch10-
render-hex-parallel-iterator/Cargo.toml.

Listing 10.22 Adding rayon to our render-hex project

use rayon::prelude::*;

100 fn parse(input: &str) -> Vec<Operation> {

101   input

102     .as_bytes()                         ①

103     .par_iter()                         ②

104     .map(|byte| match byte {

105       b'0' => Home,

106       b'1'..=b'9' => {



107         let distance = (byte - 0x30) as isize;

108         Forward(distance * (HEIGHT / 10))

109       }

110       b'a' | b'b' | b'c' => TurnLeft,

111       b'd' | b'e' | b'f' => TurnRight,

112       _ => Noop(*byte),                 ③

113     })

114     .collect()

115 }

① Converts the input string slice into a byte slice

② Converts the byte slice into a parallel iterator

③ The byte variable has the type &u8, whereas the Operation::Noop(u8) variant requires a
dereferenced value.

Using rayon’s par_iter() here is a “cheat mode” available to all Rust
programmers, thanks to Rust’s powerful std::iter::Iterator
trait. rayon’s par_iter() is guaranteed to never introduce race
conditions. But what should you do if you do not have an iterator?

10.4.4 Using a thread pool and task queue

Sometimes, we don’t have a tidy iterator that we want to apply a function to.
Another pattern to consider is the task queue. This allows tasks to originate
anywhere and for the task processing code to be separated from task creation
code. A fleet of worker threads can then pick tasks once these have finished
their current one.

There are many approaches to modeling a task queue. We could create a
Vec<Task> and Vec<Result> and share references to these across
threads. To prevent each thread from overwriting each other, we would need
a data protection strategy.

The most common tool to protect data shared between threads is
Arc<Mutex<T>>. Fully expanded, that’s your value T (e.g.,



Vec<Task> or Vec<Result> here) protected by a
std::sync::Mutex, which itself is wrapped within
std::sync::Arc. A Mutex is a mutually-exclusive lock. Mutually
exclusive in this context means that no one has special rights. A lock held by
any thread prevents all others. Awkwardly, a Mutex must itself be
protected between threads. So we call in extra support. The Arc provides
safe multithreaded access to the Mutex.

Mutex and Arc are not unified into a single type to provide programmers
with added flexibility. Consider a struct with several fields. You may only
need a Mutex on a single field, but you could put the Arc around the
whole struct. This approach provides faster read access to the fields that are
not protected by the Mutex. A single Mutex retains maximum protection
for the field that has read-write access. The lock approach, while workable, is
cumbersome. Channels offer a simpler alternative.

Channels have two ends: sending and receiving. Programmers don’t get
access to what is happening inside the channel. But placing data at the
sending end means it’ll appear at the receiving end at some future stage.
Channels can be used as a task queue because multiple items can be sent,
even if a receiver is not ready to receive any messages.

Channels are fairly abstract. These hide their internal structure, preferring to
delegate access to two helper objects. One can send(); the other can
recv() (receive). Importantly, we don’t get access to how channels
transmit any information sent through the channel.

NOTE By convention, from radio and telegraph operators, the Sender is called tx (shorthand for
transmission ) and the Receiver is called rx.



ONE-WAY COMMUNICATION

This section uses the channels implementation from the crossbeam crate
rather than from the std::sync::mpsc module within the Rust
standard library. Both APIs provide the same API, but crossbeam provides
greater functionality and flexibility. We’ll spend a little time explaining how
to use channels. If you would prefer to see them used as a task queue, feel
free to skip ahead.

The standard library provides a channels implementation, but we’ll make use
of the third-party crate, crossbeam. It provides slightly more features. For
example, it includes both bounded queues and unbounded queues. A bounded
queue applies back pressure under contention, preventing the consumer from
becoming overloaded. Bounded queues (of fixed-width types) have
deterministic maximum memory usage. These do have one negative
characteristic, though. They force queue producers to wait until a space is
available. This can make unbounded queues unsuitable for asynchronous
messages, which cannot tolerate waiting.

The channels-intro project (listings 10.23 and 10.24) provides a quick
example. Here is a console session that demonstrates running the channels-
intro project from its public source code repository and providing its expected
output:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action 

Cloning into 'rust-in-action'...

 

$ cd ch10/ch10-channels-intro 

 

$ cargo run 

...

   Compiling ch10-channels-intro v0.1.0 (/ch10/ch10-channels-intro)

    Finished dev [unoptimized + debuginfo] target(s) in 0.34s

     Running `target/debug/ch10-channels-intro`

Ok(42)



To create the project by hand, follow these instructions:

1. Enter these commands from the command-line:

$ cargo new channels-intro

$ cargo install cargo-edit

$ cd channels-intro

$ cargo add crossbeam@0.7

2. Check that the project’s Cargo.toml file matches listing 10.23.

3. Replace the contents of src/main.rs with listing 10.24.

The following two listings make up the project. Listing 10.23 shows its
Cargo.toml file. Listing 10.24 demonstrates creating a channel for i32
messages from a worker thread.

Listing 10.23 Cargo.toml metadata for channels-intro

[package]

name = "channels-intro"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

crossbeam = "0.7"

Listing 10.24 Creating a channel that receives i32 messages

 1 #[macro_use]                                        ①

 2 extern crate crossbeam;

 3  

 4 use std::thread;

 5 use crossbeam::channel::unbounded;

 6  

 7  

 8 fn main() {

 9     let (tx, rx) = unbounded();

10  

11     thread::spawn(move || {

12         tx.send(42)

13           .unwrap();

14     });



15  

16     select!{                                       ①

17        recv(rx) -> msg => println!("{:?}", msg),   ②

18     }

19 }

① Provides the select! macro, which simplifies receiving messages

② recv(rx) is syntax defined by the macro.

Some notes about the channels-intro project:

Creating a channel with crossbeam involves calling a function that
returns Sender<T> and Receiver<T>. Within listing 10.24, the
compiler infers the type parameter. tx is given the type
Sender<i32> and rx is given the type Receiver<i32>.

The select! macro takes its name from other messaging systems
like the POSIX sockets API. It allows the main thread to block and wait
for a message.

Macros can define their own syntax rules. That is why the select!
macro uses syntax (recv(rx) ->) that is not legal Rust.

WHAT CAN BE SENT THROUGH A CHANNEL?

Mentally, you might be thinking of a channel like you would envision a
network protocol. Over the wire, however, you only have the type [u8]
available to you. That byte stream needs to be parsed and validated before its
contents can be interpreted.

Channels are richer than simply streaming bytes ([u8]). A byte stream is
opaque and requires parsing to have structure extracted out of it. Channels
offer you the full power of Rust’s type system. I recommend using an enum
for messages as it offers exhaustiveness testing for robustness and has a



compact internal representation.

TWO-WAY COMMUNICATION

Bi-directional (duplex) communication is awkward to model with a single
channel. An approach that’s simpler to work with is to create two sets of
senders and receivers, one for each direction.

The channels-complex project provides an example of this two channel
strategy. channels-complex is implemented in listings 10.25 and 10.26. These
are available in ch10/ch10-channels-complex/Cargo.toml and ch10/ch10-
channels-complex/src/main.rs, respectively.

When executed, channels-complex produces three lines of output. Here is a
session that demonstrates running the project from its public source code
repository:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action 

Cloning into 'rust-in-action'...

 

$ cd ch10/ch10-channels-complex 

 

$ cargo run 

...

   Compiling ch10-channels-intro v0.1.0 (/ch10/ch10-channels-complex)

    Finished dev [unoptimized + debuginfo] target(s) in 0.34s

     Running `target/debug/ch10-channels-complex`

Ok(Pong)

Ok(Pong)

Ok(Pong)

Some learners prefer to type everything out by hand. Here are the instructions
to follow if you are one of those people:

1. Enter these commands from the command-line:

$ cargo new channels-intro

$ cargo install cargo-edit



$ cd channels-intro

$ cargo add crossbeam@0.7

2. Check that the project’s Cargo.toml matches listing 10.25.

3. Replace src/main.rs with the contents of listing 10.26.

Listing 10.25 Project metadata for channels-complex

[package]

name = "channels-complex"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

crossbeam = "0.7"

Listing 10.26 Sending messages to and from a spawned thread

 1 #[macro_use]

 2 extern crate crossbeam;

 3  

 4 use crossbeam::channel::unbounded;

 5 use std::thread;

 6  

 7 use crate::ConnectivityCheck::*;

 8  

 9 #[derive(Debug)]

10 enum ConnectivityCheck {                         ①

11   Ping,                                          ①

12   Pong,                                          ①

13   Pang,                                          ①

14 }                                                ①

15  

16 fn main() {

17   let n_messages = 3;

18   let (requests_tx, requests_rx) = unbounded();

19   let (responses_tx, responses_rx) = unbounded();

20  

21   thread::spawn(move || loop {                  ②

22     match requests_rx.recv().unwrap() {

23       Pong => eprintln!("unexpected pong response"),

24       Ping => responses_tx.send(Pong).unwrap(),

25       Pang => return,                           ③

26     }

27   });

28  

29   for _ in 0..n_messages {



30     requests_tx.send(Ping).unwrap();

31   }

32   requests_tx.send(Pang).unwrap();

33  

34   for _ in 0..n_messages {

35     select! {

36        recv(responses_rx) -> msg => println!("{:?}", msg),

37     }

38   }

39 }

① Defining a bespoke message type simplifies interpreting messages later.

② Because all control flow is an expression, Rust allows the loop keyword here.

③ The Pang message indicates the thread should shut down.

IMPLEMENTING A TASK QUEUE

After spending some time discussing channels, it’s time to apply these to the
problem first introduced in listing 10.18. You’ll notice that the code that
follows shortly in listing 10.28 is quite a bit more complex than the parallel
iterator approach seen in listing 10.24.

The following listing displays the metadata for the channel-based task queue
implementation of render-hex. The source for this listing is in ch10/ch10-
render-hex-threadpool/Cargo.toml.

Listing 10.27 The channel-based task queue metadata for render-hex

[package]

name = "render-hex"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

svg = "0.6"

crossbeam = "0.7" #      ①

① The crossbeam crate is a new dependency for the project.



The following listing focuses on the parse() function. The rest of the
code is the same as listing 10.18. You’ll find the code for the following
listing in ch10/ch10-render-hex-threadpool/src/main.rs.

Listing 10.28 Partial code for the channel-based task queue for render-
hex

  1 use std::thread;

  2 use std::env;

  3  

  4 use crossbeam::channel::{unbounded};

 99 enum Work {                                            ①

100     Task((usize, u8)),                                 ②

101     Finished,                                          ③

102 }

103  

104 fn parse_byte(byte: u8) -> Operation {                 ④

105     match byte {

106         b'0' => Home,

107         b'1'..=b'9' => {

108             let distance = (byte - 0x30) as isize;

109             Forward(distance * (HEIGHT/10))

110         },

111         b'a' | b'b' | b'c' => TurnLeft,

112         b'd' | b'e' | b'f' => TurnRight,

113         _ => Noop(byte),

114     }

115 }

116  

117 fn parse(input: &str) -> Vec<Operation> {

118     let n_threads = 2;

119     let (todo_tx, todo_rx) = unbounded();              ⑤

120     let (results_tx, results_rx) = unbounded();        ⑥

121     let mut n_bytes = 0;

122     for (i,byte) in input.bytes().enumerate() {

123         todo_tx.send(Work::Task((i,byte))).unwrap();   ⑦

124         n_bytes += 1;                                  ⑧

125     }

126  

127     for _ in 0..n_threads {                            ⑨

128         todo_tx.send(Work::Finished).unwrap();         ⑨

129     }                                                  ⑨

130  

131     for _ in 0..n_threads {

132         let todo = todo_rx.clone();                    ⑩

133         let results = results_tx.clone();              ⑩

134         thread::spawn(move || {

135             loop {



136                 let task = todo.recv();

137                 let result = match task {

138                     Err(_) => break,

139                     Ok(Work::Finished) => break,

140                     Ok(Work::Task((i, byte))) => (i, parse_byte(byte)),

141                 };

142                 results.send(result).unwrap();

143  

144             }

145         });

146     }

147     let mut ops = vec![Noop(0); n_bytes];              ⑪

148     for _ in 0..n_bytes {

149         let (i, op) = results_rx.recv().unwrap();

150         ops[i] = op;

151     }

152     ops

153 }

① Creates a type for the messages we send through the channels

② The usize field of this tuple indicates the position of the processed byte. This is necessary because
these can be returned out of order.

③ Gives worker threads a marker message to indicate that it’s time to shut down

④ Extracts the functionality that workers will need to carry out to simplify the logic

⑤ Creates one channel for tasks to be completed

⑥ Creates one channel for the decoded instructions to be returned to

⑦ Fills the task queue with work

⑧ Keeps track of how many tasks there are to do

⑨ Sends each thread a signal that it’s time to shut down

⑩ When cloned, channels can be shared between threads.

⑪ Because results can be returned in arbitrary order, initializes a complete Vec<Command> that will
be overwritten by our incoming results. We use a vector rather than an array because that’s what’s
used by the type signature, and we don’t want to refactor the whole program to suit this new
implementation.

When independent threads are introduced, the order in which tasks are
completed becomes non-deterministic. Listing 10.28 includes some
additional complexity to handle this.

Previously, we created an empty Vec<Command> for the commands that
we interpreted from our input. Once parsed, main() repeatedly added



elements via the vector’s push() method. Now, at line 147, we fully
initialize the vector. Its contents don’t matter. It will all be overwritten. Even
so, I’ve chosen to use Command::Noop to ensure that a mistake won’t
result in a corrupt SVG file.



10.5 Concurrency and task virtualization

This section explains the difference between models of concurrency. Figure
10.5 displays some of the trade-offs.

Figure 10.5 Trade-offs relating to different forms of task isolation in
computing. In general terms, increasing the isolation level increases the
overhead.

The primary benefit of more costly forms of task virtualization is isolation.
What is meant by the term isolation?

Isolated tasks cannot interfere with each other. Interference comes in many
forms. Examples include corrupting memory, saturating the network, and
congestion when saving to disk. If a thread is blocked while waiting for the
console to print output to the screen, none of the coroutines acting in that
thread are able to progress.

Isolated tasks cannot access each other’s data without permission.
Independent threads in the same process share a memory address space, and
all threads have equal access to data within that space. Processes, however,



are prohibited from inspecting each other’s memory.

Isolated tasks cannot cause another task to crash. A failure in one task should
not cascade into other systems. If a process induces a kernel panic, all
processes are shut down. By conducting work in virtual machines, tasks can
proceed even when other tasks are unstable.

Isolation is a continuum. Complete isolation is impractical. It implies that
input and output is impossible. Moreover, isolation is often implemented in
software. Running extra software implies taking on extra runtime overhead.

A small glossary of terms relating to
concurrency

This subfield is filled with jargon. Here is a brief introduction to some important terms and how
we use them:

Program—A program, or application, is a brand name. It’s a name that we use to refer
to a software package. When we execute a program, the OS creates a process.

Executable—A file that can be loaded into memory and then run. Running an
executable means creating a process and a thread for it, then changing the CPU’s
instruction pointer to the first instruction of the executable.

Task—This chapter uses the term task in an abstract sense. Its meaning shifts as the
level of abstraction changes:

a. When discussing processes, a task is one of the process’s threads.

b. When referring to a thread, a task might be a function call.

c. When referring to an OS, a task might be a running program, which might be comprised
of multiple processes.

Process—Running programs execute as processes. A process has its own virtual
address space, at least one thread, and lots of bookkeeping managed by the OS. File
descriptors, environment variables, and scheduling priorities are managed per process.



A process has a virtual address space, executable code, open handles to system objects,
a security context, a unique process identifier, environment variables, a priority class,
minimum and maximum working set sizes, and at least one thread of execution.

Each process is started with a single thread, often called the primary thread, but can
create additional threads from any of its threads. Running programs begin their life as
a single process, but it isn’t uncommon to spawn subprocesses to do the work.

Thread—The thread metaphor is used to hint that multiple threads can work together
as a whole.

Thread of execution—A sequence of CPU instructions that appear in serial. Multiple
threads can run concurrently, but instructions within the sequence are intended to be
executed one after another.

Coroutine—Also known as fibre, greenthread, and lightweightthread, a coroutine
indicates tasks that switch within a thread. Switching between tasks becomes the
responsibility of the program itself, rather than the OS. Two theoretical concepts are
important to distinguish:

a. Concurrency, which is multiple tasks of any level of abstraction running at the same
time

b. Parallelism, which is multiple threads executing on multiple CPUs at the same time

Outside of the fundamental terminology, there are also interrelated terms that appear frequently:
asynchronous programming and non-blocking I/O. Many operating systems provide non-
blocking I/O facilities, where data from multiple sockets is batched into queues and periodically
polled as a group. Here are the definitions for these:

Non-blocking I/O—Normally a thread is unscheduled when it asks for data from I/O
devices like the network. The thread is marked as blocked, while it waits for data to
arrive.

When programming with non-blocking I/O, the thread can continue executing even
while it waits for data. But there is a contradiction. How can a thread continue to
execute if it doesn’t have any input data to process? The answer lies in asynchronous
programming.

Asynchronous programming—Asynchronous programming describes programming
for cases where the control flow is not predetermined. Instead, events outside the
control of the program itself impact the sequence of what is executed. Those events are
typically related to I/O, such as a device driver signalling that it is ready, or are related
to functions returning in another thread.

The asynchronous programming model is typically more complicated for the



developer, but results in a faster runtime for I/O-heavy workloads. Speed increases
because there are fewer system calls. This implies fewer context switches between the
user space and the kernel space.

10.5.1 Threads

A thread is the lowest level of isolation that an OS understands. The OS can
schedule threads. Smaller forms of concurrency are invisible to the OS. You
may have encountered terms such as coroutines, fibers, and green threads.

Switching between tasks here is managed by the process itself. The OS is
ignorant of the fact that a program is processing multiple tasks. For threads
and other forms of concurrency, context switching is required.

10.5.2 What is a context switch?

Switching between tasks at the same level of virtualization is known as a
context switch. For threads to switch, CPU registers need to be cleared, CPU
caches might need to be flushed, and variables within the OS need to be reset.
As isolation increases, so does the cost of the context switch.

CPUs can only execute instructions in serial. To do more than one task, a
computer, for example, needs to be able to press the Save Game button,
switch to a new task, and resume at that task’s saved spot. The CPU is save
scum.

Why is the CPU constantly switching tasks? Because it has so much time
available. Programs often need to access data from memory, disk, or the
network. Because waiting for data is incredibly slow, there’s often sufficient
time to do something else in the meantime.



10.5.3 Processes

Threads exist within a process. The distinguishing characteristic of a process
is that its memory is independent from other processes. The OS, in
conjunction with the CPU, protects a process’s memory from all others.

To share data between processes, Rust channels and data protected by
Arc<Mutex<_>> won’t suffice. You need some support from the OS.
For this, reusing network sockets is common. Most operating systems
provide specialized forms of interprocess communication (IPC), which are
faster, while being less portable.

10.5.4 WebAssembly

WebAssembly (Wasm) is interesting because it is an attempt at isolating
tasks within the process boundary itself. It’s impossible for tasks running
inside a Wasm module to access memory available to other tasks. Originating
in web browsers, Wasm treats all code as potentially hostile. If you use third-
party dependencies, it’s likely that you haven’t verified the behavior of all of
the code that your process executes.

In a sense, Wasm modules are given access to address spaces within your
process’s address space. Wasm address spaces are called linear memory.
Runtime interprets any request for data within linear memory and makes its
own request to the actual virtual memory. Code within the Wasm module is
unaware of any memory addresses that the process has access to.

10.5.5 Containers

Containers are extensions to processes with further isolation provided by the



OS. Processes share the same filesystem, whereas containers have a
filesystem created for them. The same is true for other resources, such as the
network. Rather than address space, the term used for protections covering
these other resources is namespaces.

10.5.6 Why use an operating system (OS) at all?

It’s possible to run an application as its own OS. Chapter 11 provides one
implementation. The general term for an application that runs without an OS
is to describe it as freestanding—freestanding in the sense that it does not
require the support of an OS. Freestanding binaries are used by embedded
software developers when there is no OS to rely on.

Using freestanding binaries can involve significant limitations, though.
Without an OS, applications no longer have virtual memory or
multithreading. All of those concerns become your application’s concerns. To
reach a middle ground, it is possible to compile a unikernel. A unikernel is a
minimal OS paired with a single application. The compilation process strips
out everything from the OS that isn’t used by the application that’s being
deployed.



Summary

Closures and functions both feel like they should be the same type, but
they aren’t identical. If you want to create a function that accepts either a
function or a closure as an argument, then make use of the
std::ops::Fn family of traits.

A functional style that makes heavy use of higher-order programming
and iterators is idiomatic Rust. This approach tends to work better with
third-party libraries because std::iter::Iterator is such a
common trait to support.

Threads have less impact than you have probably heard, but spawning
threads without bounds can cause significant problems.

To create a byte (u8) from a literal, use single quotes (e.g., b'a').
Double quotes (e.g., b"a") creates a byte slice ([u8]) of length 1.

To increase the convenience of enums, it can be handy to bring their
variants into local scope with use crate::.

Isolation is provided as a spectrum. In general, as isolation between
software components increases, performance decreases.

1.It’s also possible to use both: sleep for the bulk of the time and a spin loop towards the end.



11 Kernel

This chapter covers

Writing and compiling your own OS kernel
Gaining a deeper understanding of the Rust compiler’s capabilities
Extending cargo with custom subcommands

Let’s build an operating system (OS). By the end of the chapter, you’ll be
running your own OS (or, at least, a minimal subset of one). Not only that,
but you will have compiled your own bootloader, your own kernel, and the
Rust language directly for that new target (which doesn’t exist yet).

This chapter covers many features of Rust that are important for
programming without an OS. Accordingly, the chapter is important for
programmers who intend to work with Rust on embedded devices.



11.1 A fledgling operating system (FledgeOS)

In this section, we’ll implement an OS kernel. The OS kernel performs
several important roles, such as interacting with hardware and memory
management, and coordinating work. Typically, work is coordinated through
processes and threads. We won’t be able to cover much of that in this
chapter, but we will get off the ground. We’ll fledge, so let’s call the system
we’re building FledgeOS.

11.1.1 Setting up a development environment for
developing an OS kernel

Creating an executable for an OS that doesn’t exist yet is a complicated
process. For instance, we need to compile the core Rust language for the OS
from your current one. But your current environment only understands your
current environment. Let’s extend that. We need several tools to help us out.
Here are several components that you will need to install and/or configure
before creating FledgeOS:

QEMU—A virtualization technology. Formally part of a class of
software called virtual machine monitors,” it runs operating systems for
any machine on any of its supported hosted architectures. Visit
https://www.qemu.org/ for installation instructions.

The bootimage crate and some supporting tools—The bootimage crate
does the heavy lifting for our project. Thankfully, installing it and the
tools needed to work with it effectively is a lightweight process. To do
that, enter the following commands from the command line:

$ cargo install cargo-binutils 

https://www.qemu.org/


...

   Installed package `cargo-binutils v0.3.3` (executables `cargo-cov`,

   `cargo-nm`, `cargo-objcopy`, `cargo-objdump`, `cargo-profdata`,

   `cargo-readobj`, `cargo-size`, `cargo-strip`, `rust-ar`, `rust-cov`,

   `rust-ld`, `rust-lld`, `rust-nm`, `rust-objcopy`, `rust-objdump`,

   `rust-profdata`, `rust-readobj`, `rust-size`, `rust-strip`)

 

$ cargo install bootimage 

...

   Installed package `bootimage v0.10.3` (executables `bootimage`,

   `cargo-bootimage`)

 

$ rustup toolchain install nightly 

info: syncing channel updates for 'nightly-x86_64-unknown-linux-gnu'

...

 

$ rustup default nightly 

info: using existing install for 'nightly-x86_64-unknown-linux-gnu'

info: default toolchain set to 'nightly-x86_64-unknown-linux-gnu'

...

 

$ rustup component add rust-src 

info: downloading component 'rust-src'

...

 

$ rustup component add llvm-tools-preview          ①

info: downloading component 'llvm-tools-preview'

...

① Over time, this may become the llvm-tools component.

Each of these tools performs an important role:

The cargo-binutils crate—Enables cargo to directly manipulate
executable files via subcommands using utilities built with Rust and
installed by cargo. Using cargo-binutils rather than installing binutils via
another route prevents any potential version mismatches.

The bootimage crate—Enables cargo to build a boot image, an
executable that can be booted directly on hardware.

The nightly toolchain—Installing the nightly version of the Rust
compiler unlocks features that have not yet been marked as stable, and
thus constrained by Rust’s backward-compatibility guarantees. Some of
the compiler internals that we will be accessing in this chapter are



unlikely to ever be stabilized.

We set nightly to be our default toolchain to simplify the build steps for
projects in this chapter. To revert the change, use the command
rustup default stable.

The rust-src component—Downloads the source code for the Rust
programming language. This enables Rust to compile a compiler for the
new OS.

The llvm-tools-preview component—Installs extensions for the LLVM
compiler, which makes up part of the Rust compiler.

11.1.2 Verifying the development environment

To prevent significant frustration later on, it can be useful to double-check
that everything is installed correctly. To do that, here’s a checklist:

QEMU—The qemu-system-x86_64 utility should be on your PATH.
You can check that this is the case by providing the --version flag:

$ qemu-system-x86_64 --version 

QEMU emulator version 4.2.1 (Debian 1:4.2-3ubuntu6.14)

Copyright (c) 2003-2019 Fabrice Bellard and the QEMU Project developers

The cargo-binutils crate—As indicated by the output of cargo
install cargo-binutils, several executables were
installed on your system. Executing any of those with the --help flag
should indicate that all of these are available. For example, to check that
rust-strip is installed, use this command:

$ rust-strip --help 

OVERVIEW: llvm-strip tool

 

USAGE: llvm-strip [options] inputs..



...

The bootimage crate—Use the following command to check that all of
the pieces are wired together:

$ cargo bootimage --help 

Creates a bootable disk image from a Rust kernel

...

The llvm-tools-preview toolchain component—The LLVM tools are a
set of auxiliary utilities for working with LLVM. On Linux and macOS,
you can use the following commands to check that these are accessible
to rustc:

$ export SYSROOT=$(rustc --print sysroot)

 

$ find "$SYSROOT" -type f -name 'llvm-*' -printf '%f\n' | sort

llvm-ar

llvm-as

llvm-cov

llvm-dis

llvm-nm

llvm-objcopy

llvm-objdump

llvm-profdata

llvm-readobj

llvm-size

llvm-strip

On MS Windows, the following commands produce a similar result:

C:\> rustc --print sysroot

C:\> cd <sysroot>           ①

C:\> dir llvm*.exe /s /b

① Replace <sysroot> with the output of the previous command

Great, the environment has been set up. If you encounter any problems, try
reinstalling the components from scratch.



11.2 Fledgeos-0: Getting something working

FledgeOS requires some patience to fully comprehend. Although the code
may be short, it includes many concepts that are probably novel because they
are not exposed to programmers who make use of an OS. Before getting
started with the code, let’s see FledgeOS fly.

11.2.1 First boot

FledgeOS is not the world’s most powerful operating system. Truthfully, it
doesn’t look like much at all. At least it’s a graphical environment. As you
can see from figure 11.1, it creates a pale blue box in the top-left corner of the
screen.



Figure 11.1 Expected output from running fledgeos-0 (listings 11.1–11.4)

To get fledgeos-0 up and running, execute these commands from a
command-line prompt:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action 

Cloning into 'rust-in-action'...

...

 

$ cd rust-in-action/ch11/ch11-fledgeos-0 

 

$ cargo +nightly run        ①

...

Running:  qemu-system-x86_64 -drive

          format=raw,file=target/fledge/debug/bootimage-fledgeos.bin

① Adding +nightly ensures that the nightly compiler is used.

Don’t worry about how the block at the top left changed color. We’ll discuss
the retro-computing details for that shortly. For now, success is being able to
compile your own version of Rust, an OS kernel using that Rust, a bootloader
that puts your kernel in the right place, and having these all work together.

Getting this far is a big achievement. As mentioned earlier, creating a
program that targets an OS kernel that doesn’t exist yet is complicated.
Several steps are required:

1. Create a machine-readable definition of the conventions that the OS
uses, such as the intended CPU architecture. This is the target platform,
also known as a compiler target or simply target. You have seen targets
before. Try executing rustup target list for a list that you
can compile Rust to.

2. Compile Rust for the target definition to create the new target. We’ll
suffice with a subset of Rust called core that excludes the standard
library (crates under std).

3. Compile the OS kernel for the new target using the “new” Rust.



4. Compile a bootloader that can load the new kernel.

5. Execute the bootloader in a virtual environment, which, in turn, runs the
kernel.

Thankfully, the bootimage crate does all of this for us. With all of that fully
automated, we’re able to focus on the interesting pieces.

11.2.2 Compilation instructions

To make use of the publicly available source code, follow the steps in section
11.1.3. That is, execute these commands from a command prompt:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action 

Cloning into 'rust-in-action'...

...

$ cd rust-in-action/ch11/ch11-fledgeos-0

To create the project by hand, here is the recommended process:

1. From a command-line prompt, execute these commands:

$ cargo new fledgeos-0 

$ cargo install cargo-edit 

$ cd fledgeos-0 

$ mkdir .cargo 

$ cargo add bootloader@0.9 

$ cargo add x86_64@0.13 

2. Add the following snippet to the end of project’s Cargo.toml file.
Compare the result with listing 11.1, which can be downloaded from
ch11/ch11-fledgeos-0/Cargo.toml:

[package.metadata.bootimage]

build-command = ["build"]

 

run-command = [

  "qemu-system-x86_64", "-drive", "format=raw,file={}"

]



3. Create a new fledge.json file at the root of the project with the contents
from listing 11.2. You can download this from the listing in ch11/ch11-
fledgeos-0/fledge.json.

4. Create a new .cargo/config.toml file from listing 11.3, which is available
in ch11/ch11-fledgeos-0/.cargo/config.toml.

5. Replace the contents of src/main with listing 11.4, which is available in
ch11/ch11-fledgeos-0/src/main.rs.

11.2.3 Source code listings

The source code for the FledgeOS projects (code/ch11/ch11-fledgeos-*) uses
a slightly different structure than most cargo projects. Here is a view of their
layout, using fledgeos-0 as a representative example:

fledgeos-0

├── Cargo.toml           ①

├── fledge.json          ②

├── .cargo

│   └── config.toml      ③

└── src

    └── main.rs          ④

① See listing 11.1.

② See listing 11.2.

③ See listing 11.3.

④ See listing 11.4.

The projects include two extra files:

The project root directory contains a fledge.json file. This is the
definition of the compiler target that bootimage and friends will be
building.

The .cargo/config.toml file provides extra configuration parameters.
These tell cargo that it needs to compile the std::core module itself for



this project, rather than relying on it being preinstalled.

The following listing provides the project’s Cargo.toml file. It is available in
ch11/ch11-fledgeos-0/Cargo.toml.

Listing 11.1 Project metadata for fledgeos-0

[package]

name = "fledgeos"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

bootloader = "0.9"

x86_64 = "0.13"

 

[package.metadata.bootimage]

build-command = ["build"]

 

run-command = [                 ①

  "qemu-system-x86_64", "-drive", "format=raw,file={}"

]

① Updates cargo run to invoke a QEMU session. The path to the OS image created during the build
replaces the curly braces ({}).

The project’s Cargo.toml file is slightly unique. It includes a new table,
[package .metadata.bootimage], which contains a few
directives that are probably confusing. This table provides instructions to the
bootimage crate, which is a dependency of bootloader:

bootimage—Creates a bootable disk image from a Rust kernel

build-command—Instructs bootimage to use the cargo
build command rather than cargo xbuild for cross-compiling

run_command—Replaces the default behavior of cargo run to
use QEMU rather than invoking the executable directly

TIP See the documentation at https://github.com/rust-osdev/bootimage/ for more information about

https://github.com/rust-osdev/bootimage/


how to configure bootimage.

The following listing shows our kernel target’s definition. It is available from
ch11/ch11-fledgeos-0/fledge.json.

Listing 11.2 Kernel definition for FledgeOS

{

  "llvm-target": "x86_64-unknown-none",

  "data-layout": "e-m:e-i64:64-f80:128-n8:16:32:64-S128",

  "arch": "x86_64",

  "target-endian": "little",

  "target-pointer-width": "64",

  "target-c-int-width": "32",

  "os": "none",

  "linker": "rust-lld",

  "linker-flavor": "ld.lld",

  "executables": true,

  "features": "-mmx,-sse,+soft-float",

  "disable-redzone": true,

  "panic-strategy": "abort"

}

Among other things, the target kernel’s definition specifies that it is a 64-bit
OS built for x86-64 CPUs. This JSON specification is understood by the Rust
compiler.

TIP Learn more about custom targets from the “Custom Targets” section of the rustc book at
https://doc.rust-lang.org/stable/rustc/targets/custom.html.

The following listing, available from ch11/ch11-fledgeos-
0/.cargo/config.toml, provides an additional configuration for building
FledgeOS. We need to instruct cargo to compile the Rust language for the
compiler target that we defined in the previous listing.

Listing 11.3 Extra build-time configuration for cargo

[build]

target = "fledge.json"

 

[unstable]

https://doc.rust-lang.org/stable/rustc/targets/custom.html


build-std = ["core", "compiler_builtins"]

build-std-features = ["compiler-builtins-mem"]

 

[target.'cfg(target_os = "none")']

runner = "bootimage runner"

We are finally ready to see the kernel’s source code. The next listing,
available from ch11/ch11-fledgeos-0/src/main.rs, sets up the boot process,
and then writes the value 0x30 to a predefined memory address. You’ll read
about how this works in section 11.2.5.

Listing 11.4 Creating an OS kernel that paints a block of color

 1 #![no_std]                              ①

 2 #![no_main]                             ①

 3 #![feature(core_intrinsics)]            ②

 4   

 5 use core::intrinsics;                   ②

 6 use core::panic::PanicInfo;             ③

 7  

 8 #[panic_handler]

 9 #[no_mangle]

10 pub fn panic(_info: &PanicInfo) -> ! {

11   intrinsics::abort();                  ④

12 }

13  

14 #[no_mangle]

15 pub extern "C" fn _start() -> ! {

16   let framebuffer = 0xb8000 as *mut u8;

17  

18   unsafe {

19     framebuffer

20       .offset(1)                        ⑤

21       .write_volatile(0x30);            ⑥

22   }

23  

24   loop {}

25 }

① Prepares the program for running without an OS

② Unlocks the LLVM compiler’s intrinsic functions

③ Allows the panic handler to inspect where the panic occurred

④ Crashes the program

⑤ Increments the pointer’s address by 1 to 0xb8001



⑥ Sets the background to cyan

Listing 11.4 looks very different from the Rust projects that we have seen so
far. Here are some of the changes to ordinary programs that are intended to
be executed alongside an OS:

The central FledgeOS functions never return. There is no place to return
to. There are no other running programs. To indicate this, our functions’
return type is the Never type (!).

If the program crashes, the whole computer crashes. The only thing that
our program can do when an error occurs is terminate. We indicate this
by relying on LLVM’s abort() function. This is explained in more
detail in section 11.2.4.

We must disable the standard library with ![no_std]. As our
application cannot rely on an OS to provide dynamic memory allocation,
it’s important to avoid any code that dynamically allocates memory. The
![no_std] annotation excludes the Rust standard library from our
crate. This has the side effect of preventing many types, such as
Vec<T>, from being available to our program.

We need to unlock the unstable core_intrinsics API with the #!
[core_intrinsics] attribute. Part of the Rust compiler is
provided by LLVM, the compiler produced by the LLVM project.
LLVM exposes parts of its internals to Rust, which are known as
intrinsic functions. As LLVM’s internals are not subject to Rust’s
stability guarantees, there is always a risk that what is offered to Rust
will change. Therefore, this implies that we must use the nightly
compiler toolchain and explicitly opt into the unstable API in our
program.

We need to disable the Rust symbol-naming conventions with the #!



[no_mangle] attribute. Symbol names are strings within the
compiled binary. For multiple libraries to coexist at runtime, it’s
important that these names do not collide. Ordinarily, Rust avoids this
by creating symbols via a process called name mangling. We need to
disable this from occurring in our program; otherwise, the boot process
may fail.

We should opt into C’s calling conventions with extern "C". An
operating system’s calling convention relates to the way function
arguments are laid out in memory, among other details. Rust does not
define its calling convention. By annotating the _start() function
with extern "C", we instruct Rust to use the C language’s calling
conventions. Without this, the boot process may fail.

Writing directly to memory changes the display. Traditionally, operating
systems used a simplistic model for adjusting the screen’s output. A
predefined block of memory, known as the frame buffer, was monitored
by the video hardware. When the frame buffer changed, the display
changed to match. One standard, used by our bootloader, is VGA (Video
Graphics Array). The bootloader sets up address 0xb8000 as the start of
the frame buffer. Changes to its memory are reflected onscreen. This is
explained in detail in section 11.2.5.

We should disable the inclusion of a main() function with the #!
[no_main] attribute. The main() function is actually
quite special because its arguments are provided by a function that is
ordinarily included by the compiler (_start()), and its return values
are interpreted before the program exits. The behavior of main() is
part of the Rust runtime. Read section 11.2.6 for more details.



Where to go to learn more about OS
development

The cargo bootimage command takes care of lots of nuisances and irritation. It provides a
simple interface—a single command—to a complicated process. But if you’re a tinkerer, you
might like to know what’s happening beneath the surface. In that case, you should search Philipp
Oppermann’s blog, “Writing an OS in Rust,” at https://os .phil-opp.com/ and look into the small
ecosystem of tools that has emerged from it at https://github.com/rust-osdev/.

Now that our first kernel is live, let’s learn a little bit about how it works.
First, let’s look at panic handling.

11.2.4 Panic handling

Rust won’t allow you to compile a program that doesn’t have a mechanism to
deal with panics. Normally, it inserts panic handling itself. This is one of the
actions of the Rust runtime, but we started our code with #[no_std].
Avoiding the standard library is useful in that it greatly simplifies
compilation, but manual panic handling is one of its costs. The following
listing is an excerpt from listing 11.4. It introduces our panic-handling
functionality.

Listing 11.5 Focusing on panic handling for FledgeOS

 1 #![no_std]

 2 #![no_main]

 3 #![feature(core_intrinsics)]

 4  

 5 use core::intrinsics;

 6 use core::panic::PanicInfo;

 7  

 8 #[panic_handler]

 9 #[no_mangle]

10 pub fn panic(_info: &PanicInfo) -> ! {

https://os.phil-opp.com/
https://github.com/rust-osdev/


11   unsafe {

12     intrinsics::abort();

13   }

14 }

There is an alternative to intrinsics::abort(). We could use an
infinite loop as the panic handler, shown in the following listing. The
disadvantage of that approach is that any errors in the program trigger the
CPU core to run at 100% until it is shut down manually.

Listing 11.6 Using an infinite loop as a panic handler

#[panic_handler]

#[no_mangle]

pub fn panic(_info: &PanicInfo) -> ! {

  loop { }

}

The PanicInfo struct provides information about where the panic
originates. This information includes the filename and line number of the
source code. It’ll come in handy when we implement proper panic handling.

11.2.5 Writing to the screen with VGA-compatible
text mode

The bootloader sets some magic bytes with raw assembly code in boot mode.
At startup, the bytes are interpreted by the hardware. The hardware switches
its display to an 80x25 grid. It also sets up a fixed-memory buffer that is
interpreted by the hardware for printing to the screen.

VGA-compatible text mode in 20 seconds

Normally, the display is split into an 80x25 grid of cells. Each cell is represented in memory by 2



bytes. In Rust-like syntax, those bytes include several fields. The following code snippet shows
the fields:

struct VGACell {

    is_blinking: u1,        ①

    background_color: u3,   ①

    is_bright: u1,          ①

    character_color: u3,    ①

    character: u8,          ②

}

① These four fields occupy a single byte in memory.

② Available characters are drawn from the code page 437 encoding, which is (approximately)
an extension of ASCII.

VGA text mode has a 16-color palette, where 3 bits make up the main 8 colors. Foreground
colors also have an additional bright variant, shown in the following:

#[repr(u8)]

enum Color {

    Black = 0,    White = 8,

    Blue = 1,     BrightBlue = 9,

    Green = 2,    BrightGreen = 10,

    Cyan = 3,     BrightCyan = 11,

    Red = 4,      BrightRed = 12,

    Magenta = 5,  BrightMagenta = 13,

    Brown = 6,    Yellow = 14,

    Gray = 7,     DarkGray = 15,

}

This initialization at boot time makes it easy to display things onscreen. Each
of the points in the 80x25 grid are mapped to locations in memory. This area
of memory is called the frame buffer.

Our bootloader designates 0xb8000 as the start of a 4,000 byte frame
buffer. To actually set the value, our code uses two new methods,
offset() and write_volatile(), that you haven’t encountered
before. The following listing, an excerpt from listing 11.4, shows how these
are used.

Listing 11.7 Focusing on modifying the VGA frame buffer



18   let mut framebuffer = 0xb8000 as *mut u8;

19   unsafe {

20       framebuffer

21         .offset(1)

22         .write_volatile(0x30);

23   }

Here is a short explanation of the two new methods:

Moving through an address space with offset()—A pointer type’s
offset() method moves through the address space in increments
that align to the size of the pointer. For example, calling
.offset(1) on a *mut u8 (mutable pointer to a u8) adds 1 to
its address. When that same call is made to a *mut u32 (mutable
pointer to a u32), the pointer’s address moves by 4 bytes.

Forcing a value to be written to memory with
write_volatile()—Pointers provide a
write_volatile() method that issues a “volatile” write.
Volatile prevents the compiler’s optimizer from optimizing away the
write instruction. A smart compiler might simply notice that we are
using lots of constants everywhere and initialize the program such that
the memory is simply set to the value that we want it to be.

The following listing shows another way to write
framebuffer.offset(1).write_ volatile(0x30).
Here we use the dereference operator (*) and manually set the memory to
0x30.

Listing 11.8 Manually incrementing a pointer

18   let mut framebuffer = 0xb8000 as *mut u8;

19   unsafe {

20       *(framebuffer + 1) = 0x30;       ①

21   }



① Sets the memory location 0xb8001 to 0x30

The coding style from listing 11.8 may be more familiar to programmers who
have worked heavily with pointers before. Using this style requires diligence.
Without the aid of type safety provided by offset(), it’s easy for a typo
to cause memory corruption. The verbose coding style used in listing 11.7 is
also friendlier to programmers with less experience performing pointer
arithmetic. It declares its own intent.

11.2.6 _start(): The main() function for FledgeOS

An OS kernel does not include the concept of a main() function, in the
sense that you’re used to. For one thing, an OS kernel’s main loop never
returns. Where would it return to? By convention, programs return an error
code when they exit to an OS. But operating systems don’t have an OS to
provide an exit code to. Secondly, starting a program at main() is also a
convention. But that convention also doesn’t exist for OS kernels. To start an
OS kernel, we require some software to talk directly to the CPU. The
software is called a bootloader.

The linker expects to see one symbol defined, _start, which is the
program’s entry point. It links _start to a function that’s defined by your
source code.

In an ordinary environment, the _start() function has three jobs. Its first
is to reset the system. On an embedded system, for example, _start()
might clear registers and reset memory to 0. Its second job is to call
main(). Its third is to call _exit(), which cleans up after main().
Our _start() function doesn’t perform the last two jobs. Job two is



unnecessary as the application’s functionality is simple enough to keep
within _start(). Job three is unnecessary, as is main(). If it were to
be called, it would never return.



11.3 fledgeos-1: Avoiding a busy loop

Now that the foundations are in place, we can begin to add features to
FledgeOS.

11.3.1 Being power conscious by interacting with the
CPU directly

Before proceeding, FledgeOS needs to address one major shortcoming: it is
extremely power hungry. The _start() function from listing 11.4
actually runs a CPU core at 100%. It’s possible to avoid this by issuing the
halt instruction (hlt) to the CPU.

The halt instruction, referred to as HLT in the technical literature, notifies the
CPU that there’s no more work to be done. The CPU resumes operating when
an interrupt triggers new action. As listing 11.9 shows, making use of the
x84_64 crate allows us to issue instructions directly to the CPU. The listing,
an excerpt of listing 11.10, makes use of the x86_64 crate to access the hlt
instruction. It is passed to the CPU during the main loop of _start() to
prevent excessive power consumption.

Listing 11.9 Using the hlt instruction

 7 use x86_64::instructions::{hlt};

17 #[no_mangle]

18 pub extern "C" fn _start() -> ! {

19   let mut framebuffer = 0xb8000 as *mut u8;

20   unsafe {

21     framebuffer

22       .offset(1)

23       .write_volatile(0x30);



24   }

25   loop {

26     hlt();     ①

27   }

28 }

① This saves electricity.

The alternative to using hlt is for the CPU to run at 100% utilization,
performing no work. This turns your computer into a very expensive space
heater.

11.3.2 fledgeos-1 source code

fledgeos-1 is mostly the same as fledgeos-0, except that its src/main.rs file
includes the additions from the previous section. The new file is presented in
the following listing and is available to download from code/ch11/ch11-
fledgeos-1/src/main.rs. To compile the project, repeat the instructions in
section 11.2.1, replacing references to fledgeos-0 with fledgeos-1.

Listing 11.10 Project source code for fledgeos-1

 1 #![no_std]

 2 #![no_main]

 3 #![feature(core_intrinsics)]

 4  

 5 use core::intrinsics;

 6 use core::panic::PanicInfo;

 7 use x86_64::instructions::{hlt};

 8  

 9 #[panic_handler]

10 #[no_mangle]

11 pub fn panic(_info: &PanicInfo) -> ! {

12   unsafe {

13     intrinsics::abort();

14   }

15 }

16  

17 #[no_mangle]

18 pub extern "C" fn _start() -> ! {

19   let mut framebuffer = 0xb8000 as *mut u8;

20   unsafe {



21    framebuffer

22     .offset(1)

23     .write_volatile(0x30);

24   }

25   loop {

26     hlt();

27   }

28 }

The x86_64 crate provided us with the ability to inject assembly instructions
into our code. Another approach to explore is to use inline assembly. The
latter approach is demonstrated briefly in section 12.3.



11.4 fledgeos-2: Custom exception handling

The next iteration of FledgeOS improves on its error-handling capabilities.
FledgeOS still crashes when an error is triggered, but we now have a
framework for building something more sophisticated.

11.4.1 Handling exceptions properly, almost

FledgeOS cannot manage any exceptions generated from the CPU when it
detects an abnormal operation. To handle exceptions, our program needs to
define an exception-handling personality function.

Personality functions are called on each stack frame as the stack is unwound
after an exception. This means the call stack is traversed, invoking the
personality function at each stage. The personality function’s role is to
determine whether the current stack frame is able to handle the exception.
Exception handling is also known as catching an exception.

NOTE What is stack unwinding? When functions are called, stack frames accumulate. Traversing
the stack in reverse is called unwinding. Eventually, unwinding the stack will hit _start().

Because handling exceptions in a rigorous way is not necessary for
FledgeOS, we’ll implement only the bare minimum. Listing 11.11, an excerpt
from listing 11.12, provides a snippet of code with the minimal handler.
Inject it into main.rs. An empty function implies that any exception is fatal
because none will be marked as the handler. When an exception occurs, we
don’t need to do anything.

Listing 11.11 Minimalist exception-handling personality routine



 4 #![feature(lang_items)]

18 #[lang = "eh_personality"]

19 #[no_mangle]

20 pub extern "C" fn eh_personality() { }

NOTE What is a language item? Language items are elements of Rust implemented as libraries
outside of the compiler itself. As we strip away the standard library with #[no_std], we’ll need to
implement some of its functionality ourselves.

Admittedly, that’s a lot of work to do nothing. But at least we can be
comforted knowing that we are doing nothing in the right way.

11.4.2 fledgeos-2 source code

fledgeos-2 builds on fledgeos-0 and fledgeos-1. Its src/main.rs file includes
the additions from the previous listing. The new file is presented in the
following listing and is available to download from code/ch11/ch11-fledgeos-
2/src/main.rs. To compile the project, repeat the instructions in section
11.2.1, replacing references to fledgeos-0 with fledgeos-2.

Listing 11.12 Source code for fledgeos-2

 1 #![no_std]

 2 #![no_main]

 3 #![feature(core_intrinsics)]

 4 #![feature(lang_items)]

 5  

 6 use core::intrinsics;

 7 use core::panic::PanicInfo;

 8 use x86_64::instructions::{hlt};

 9  

10 #[panic_handler]

11 #[no_mangle]

12 pub fn panic(_info: &PanicInfo) -> ! {

13   unsafe {

14     intrinsics::abort();

15   }

16 }

17  

18 #[lang = "eh_personality"]

19 #[no_mangle]



20 pub extern "C" fn eh_personality() { }

21  

22 #[no_mangle]

23 pub extern "C" fn _start() -> ! {

24   let framebuffer = 0xb8000 as *mut u8;

25  

26   unsafe {

27     framebuffer

28       .offset(1)

29       .write_volatile(0x30);

30   }

31  

32   loop {

33     hlt();

34   }



11.5 fledgeos-3: Text output

Let’s write some text to the screen. That way, if we really do encounter a
panic, we can report it properly. This section explains the process of sending
text to the frame buffer in more detail. Figure 11.2 shows the output from
running fledgeos-3.

Figure 11.2 Output produced by fledgeos-3

11.5.1 Writing colored text to the screen

To start, we’ll create a type for the color numeric constants that are used later
in listing 11.16. Using an enum rather than defining a series of const
values provides enhanced type safety. In some sense, it adds a semantic



relationship between the values. These are all treated as members of the same
group.

The following listing defines an enum that represents the VGA-compatible
text mode color palette. The mapping between bit patterns and colors is
defined by the VGA standard, and our code should comply with it.

Listing 11.13 Representing related numeric constants as an enum

 9 #[allow(unused)]                      ①

10 #[derive(Clone,Copy)]                 ②

11 #[repr(u8)]                           ③

12 enum Color {

13   Black = 0x0,    White = 0xF,

14   Blue = 0x1,     BrightBlue = 0x9,

15   Green = 0x2,    BrightGreen = 0xA,

16   Cyan = 0x3,     BrightCyan = 0xB,

17   Red = 0x4,      BrightRed = 0xC,

18   Magenta = 0x5,  BrightMagenta = 0xD,

19   Brown = 0x6,    Yellow = 0xE,

20   Gray = 0x7,     DarkGray = 0x8

21 }

① We won’t be using every color variant in our code, so we can silence warnings.

② Opts into copy semantics

③ Instructs the compiler to use a single byte to represent the values

11.5.2 Controlling the in-memory representation of
enums

We’ve been content to allow the compiler to determine how an enum is
represented. But there are times when we need to pull in the reins. External
systems often demand that our data matches their requirements.

Listing 11.13 provides an example of fitting the colors from the VGA-
compatible text mode palette enum into a single u8. It removes any
discretion from the compiler about which bit pattern (formally called the



discriminant) to associate with particular variants. To prescribe a
representation, add the repr attribute. You are then able to specify any
integer type (i32, u8, i16, u16,...), as well as some special cases.

Using a prescribed representation has some disadvantages. In particular, it
reduces your flexibility. It also prevents Rust from making space
optimizations. Some enums, those with a single variant, require no
representation. These appear in source code but occupy zero space in the
running program.

11.5.3 Why use enums?

You could model colors differently. For instance, it’s possible to create
numeric constants that look identical in memory. The following shows one
such possibility:

const BLACK: u8 = 0x0;

const BLUE: u8 = 0x1;

// ...

Using an enum adds an extra guard. It becomes much more difficult to use an
illegal value in our code than if we were using an u8 directly. You will see
this demonstrated when the Cursor struct is introduced in listing 11.17.

11.5.4 Creating a type that can print to the VGA
frame buffer

To print to the screen, we’ll use a Cursor struct that handles the raw
memory manipulation and can convert between our Color type and what is
expected by VGA. As the following listing shows, this type manages the



interface between our code and the VGA frame buffer. This listing is another
excerpt from listing 11.16.

Listing 11.14 Definition and methods for Cursor

25 struct Cursor {

26   position: isize,

27   foreground: Color,

28   background: Color,

29 }

30  

31 impl Cursor {

32   fn color(&self) -> u8 {

33     let fg = self.foreground as u8;           ①

34     let bg = (self.background as u8) << 4;    ①

35     fg | bg                                   ①

36   }

37  

38   fn print(&mut self, text: &[u8]) {          ②

39     let color = self.color();

40  

41     let framebuffer = 0xb8000 as *mut u8;

42  

43     for &character in text {

44       unsafe {

45         framebuffer.offset(self.position).write_volatile(character);

46         framebuffer.offset(self.position + 1).write_volatile(color);

47       }

48       self.position += 2;

49     }

50   }

51 }

① Uses the foreground color as a base, which occupies the lower 4 bits. Shift the background color left
to occupy the higher bits, then merge these together.

② For expediency, the input uses a raw byte stream rather than a type that guarantees the correct
encoding.

11.5.5 Printing to the screen

Making use of Cursor involves setting its position and then sending a
reference to Cursor.print(). The following listing, an excerpt from
listing 11.16, expands the _start() function to also print to the screen.



Listing 11.15 Demonstrating printing to the screen

67 #[no_mangle]

68 pub extern "C" fn _start() -> ! {

69   let text = b"Rust in Action";

70  

71   let mut cursor = Cursor {

72     position: 0,

73     foreground: Color::BrightCyan,

74     background: Color::Black,

75   };

76   cursor.print(text);

77  

78   loop {

79     hlt();

80   }

81 }

11.5.6 fledgeos-3 source code

fledgeos-3 continues to build on fledgeos-0, fledgeos-1, and fledgeos-2. Its
src/main.rs file includes the additions from the this section. The complete file
is presented in the following listing and is available to download from
code/ch11/ch11-fledgeos-3/src/main.rs. To compile the project, repeat the
instructions in section 11.2.1, replacing references to fledgeos-0 with
fledgeos-3.

Listing 11.16 FledgeOS now prints text to the screen

 1 #![feature(core_intrinsics)]

 2 #![feature(lang_items)]

 3 #![no_std]

 4 #![no_main]

 5  

 6 use core::intrinsics;

 7 use core::panic::PanicInfo;

 8  

 9 use x86_64::instructions::{hlt};

10  

11 #[allow(unused)]

12 #[derive(Clone,Copy)]

13 #[repr(u8)]

14 enum Color {



15   Black = 0x0,    White = 0xF,

16   Blue = 0x1,     BrightBlue = 0x9,

17   Green = 0x2,    BrightGreen = 0xA,

18   Cyan = 0x3,     BrightCyan = 0xB,

19   Red = 0x4,      BrightRed = 0xC,

20   Magenta = 0x5,  BrightMagenta = 0xD,

21   Brown = 0x6,    Yellow = 0xE,

22   Gray = 0x7,     DarkGray = 0x8

23 }

24  

25 struct Cursor {

26   position: isize,

27   foreground: Color,

28   background: Color,

29 }

30  

31 impl Cursor {

32   fn color(&self) -> u8 {

33     let fg = self.foreground as u8;

34     let bg = (self.background as u8) << 4;

35     fg | bg

36   }

37  

38   fn print(&mut self, text: &[u8]) {

39     let color = self.color();

40  

41     let framebuffer = 0xb8000 as *mut u8;

42  

43     for &character in text {

44       unsafe {

45         framebuffer.offset(self.position).write_volatile(character);

46         framebuffer.offset(self.position + 1).write_volatile(color);

47       }

48       self.position += 2;

49     }

50   }

51 }

52  

53 #[panic_handler]

54 #[no_mangle]

55 pub fn panic(_info: &PanicInfo) -> ! {

56   unsafe {

57     intrinsics::abort();

58   }

59 }

60  

61 #[lang = "eh_personality"]

62 #[no_mangle]

63 pub extern "C" fn eh_personality() { }

64  

65 #[no_mangle]

66 pub extern "C" fn _start() -> ! {

67   let text = b"Rust in Action";

68  



69   let mut cursor = Cursor {

70     position: 0,

71     foreground: Color::BrightCyan,

72     background: Color::Black,

73   };

74   cursor.print(text);

75  

76   loop {

77     hlt();

78   }

79 }



11.6 fledgeos-4: Custom panic handling

Our panic handler, repeated in the following snippet, calls
core::intrinsics:: abort(). This shuts down the computer
immediately, without providing any further input:

#[panic_handler]

#[no_mangle]

pub fn panic(_info: &PanicInfo) -> ! {

  unsafe {

    intrinsics::abort();

  }

}

11.6.1 Implementing a panic handler that reports the
error to the user

For the benefit of anyone doing embedded development or wanting to
execute Rust on microcontrollers, it’s important to learn how to report where
a panic occurs. A good place to start is with core::fmt::Write. That
trait can be associated with the panic handler to display a message, as figure
11.3 shows.



Figure 11.3 Displaying a message when a panic occurs

11.6.2 Reimplementing panic() by making use of
core::fmt::Write

The output shown by figure 11.3 is produced by listing 11.17. panic()
now goes through a two-stage process. In the first stage, panic() clears
the screen. The second stage involves the core::write! macro.
core::write! takes a destination object as its first argument
(cursor), which implements the core::fmt::Write trait. The
following listing, an excerpt from listing 11.19, provides a panic handler that
reports that an error has occurred using this process.

Listing 11.17 Clearing the screen and printing the message

61 pub fn panic(info: &PanicInfo) -> ! {



62   let mut cursor = Cursor {

63     position: 0,

64     foreground: Color::White,

65 6    background: Color::Red,

66   };

67   for _ in 0..(80*25) {                    ①

68     cursor.print(b" ");                    ①

69   }                                        ①

70   cursor.position = 0;                     ②

71   write!(cursor, "{}", info).unwrap();     ③

72  

73   loop {}                                  ④

74 }

① Clears the screen by filling it with red

② Resets the position of the cursor

③ Prints PanicInfo to the screen

④ Spins in an infinite loop, allowing the user to read the message and restart the machine manually

11.6.3 Implementing core::fmt::Write

Implementing core::fmt::Write involves calling one method:
write_str(). The trait defines several others, but the compiler can
autogenerate these once an implementation of write_str() is
available. The implementation in the following listing reuses the print()
method and converts the UTF-8 encoded &str into &[u8] with the
to_bytes() method. The code for this listing is in ch11/ch11-fledgeos-
4/src/main.rs.

Listing 11.18 Implementing core::fmt::Write for the Cursor
type

54 impl fmt::Write for Cursor {

55   fn write_str(&mut self, s: &str) -> fmt::Result {

56     self.print(s.as_bytes());

57     Ok(())

58   }

59 }



11.6.4 fledge-4 source code

The following listing shows the user-friendly panic-handling code for
FledgeOS. You’ll find the source for this listing in ch11/ch11-fledgeos-
4/src/main.rs. As with earlier versions, to compile the project, repeat the
instructions at section 11.2.1 but replace references to fledgeos-0 with
fledgeos-4.

Listing 11.19 Full code listing of FledgeOS with complete panic handling

 1 #![feature(core_intrinsics)]

 2 #![feature(lang_items)]

 3#![no_std]

 4 #![no_main]

 5  

 6 use core::fmt;

 7 use core::panic::PanicInfo;

 8 use core::fmt::Write;

 9  

10 use x86_64::instructions::{hlt};

11  

12 #[allow(unused)]

13 #[derive(Copy, Clone)]

14 #[repr(u8)]

15 enum Color {

16   Black = 0x0,    White = 0xF,

17   Blue = 0x1,     BrightBlue = 0x9,

18   Green = 0x2,    BrightGreen = 0xA,

19   Cyan = 0x3,     BrightCyan = 0xB,

20   Red = 0x4,      BrightRed = 0xC,

21   Magenta = 0x5,  BrightMagenta = 0xD,

22   Brown = 0x6,    Yellow = 0xE,

23   Gray = 0x7,     DarkGray = 0x8

24 }

25  

26 struct Cursor {

27   position: isize,

28   foreground: Color,

29   background: Color,

30 }

31  

32 impl Cursor {

33   fn color(&self) -> u8 {

34     let fg = self.foreground as u8;

35     let bg = (self.background as u8) << 4;

36     fg | bg

37   }



38  

39   fn print(&mut self, text: &[u8]) {

40     let color = self.color();

41  

42     let framebuffer = 0xb8000 as *mut u8;

43  

44     for &character in text {

45       unsafe {

46         framebuffer.offset(self.position).write_volatile(character);

47         framebuffer.offset(self.position + 1).write_volatile(color);

48       }

49       self.position += 2;

50     }

51   }

52 }

53  

54 impl fmt::Write for Cursor {

55   fn write_str(&mut self, s: &str) -> fmt::Result {

56     self.print(s.as_bytes());

57     Ok(())

58   }

59 }

60  

61 #[panic_handler]

62 #[no_mangle]

63 pub fn panic(info: &PanicInfo) -> ! {

64   let mut cursor = Cursor {

65     position: 0,

66     foreground: Color::White,

67     background: Color::Red,

68   };

69   for _ in 0..(80*25) {

70     cursor.print(b" ");

71   }

72   cursor.position = 0;

73   write!(cursor, "{}", info).unwrap();

74  

75   loop { unsafe { hlt(); }}

76 }

77  

78 #[lang = "eh_personality"]

79 #[no_mangle]

80 pub extern "C" fn eh_personality() { }

81  

82 #[no_mangle]

83 pub extern "C" fn _start() -> ! {

84   panic!("help!");

85 }



Summary

Writing a program that is intended to run without an operating system
can feel like programming in a barren desert. Functionality that you take
for granted, such as dynamic memory or multithreading, is not available
to you.

In environments such as embedded systems that do not have dynamic
memory management, you will need to avoid the Rust standard library
with the #![no_std] annotation.

When interfacing with external components, naming symbols becomes
significant. To opt out of Rust’s name-mangling facilities, use the #!
[no_mangle] attribute.

Rust’s internal representations can be controlled through annotations.
For example, annotating an enum with #![repr(u8]) forces the
values to be packed into a single byte. If this doesn’t work, Rust refuses
to compile the program.

Raw pointer manipulation is available to you, but type-safe alternatives
exist. When it’s practical to do so, use the offset() method to
correctly calculate the number of bytes to traverse through the address
space.

The compiler’s internals are always accessible to you at the cost of
requiring a nightly compiler. Access compiler intrinsics like
intrinsics::abort() to provide functionality to the program
that’s ordinarily inaccessible.

cargo should be thought of as an extensible tool. It sits at the center of
the Rust programmer’s workflow, but its standard behavior can be
changed when necessary.



To access raw machine instructions, such as HTL, you can use helper
crates like x86_64 or rely on inline assembly.

Don’t be afraid to experiment. With modern tools like QEMU, the worst
that can happen is that your tiny OS crashes, and you’ll need to run it
again instantly.



12 Signals, interrupts, and exceptions

This chapter covers

What interrupts, exceptions, traps, and faults are
How device drivers inform applications that data is ready
How to transmit signals between running applications

This chapter describes the process by which the outside world communicates
with your operating system (OS). The network constantly interrupts program
execution when bytes are ready to be delivered. This means that after
connecting to a database (or at any other time), the OS can demand that your
application deal with a message. This chapter describes this process and how
to prepare your programs for it.

In chapter 9, you learned that a digital clock periodically notifies the OS that
time has progressed. This chapter explains how those notifications occur. It
also introduces the concept of multiple applications running at the same time
via the concept of signals. Signals emerged as part of the UNIX OS tradition.
These can be used to send messages between different running programs.

We’ll address both concepts—signals and interrupts—together, as the
programming models are similar. But it’s simpler to start with signals.
Although this chapter focuses on the Linux OS running on x86 CPUs, that’s
not to say that users of other operating systems won’t be able to follow along.



12.1 Glossary

Learning how CPUs, device drivers, applications, and operating systems
interact is difficult. There is a lot of jargon to take in. To make matters worse,
the terms all look similar, and it certainly does not help that these are often
used interchangeably. Here are some examples of the jargon that is used in
this chapter. Figure 12.1 illustrates how these interrelate:

Abort—An unrecoverable exception. If an application triggers an abort,
the application terminates.

Fault—A recoverable exception that is expected in routine operations
such as a page fault. Page faults occur when a memory address is not
available and data must be fetched from the main memory chip(s). This
process is known as virtual memory and is explained in section 4 of
chapter 6.

Exception—Exception is an umbrella term that incudes aborts, faults,
and traps. Formally referred to as synchronous interrupts, exceptions are
sometimes described as a form of an interrupt.

Hardware interrupt—An interrupt generated by a device such as a
keyboard or hard disk controller. Typically used by devices to notify the
CPU that data is available to be read from the device.

Interrupt—A hardware-level term that is used in two senses. It can refer
only to synchronous interrupts, which include hardware and software
interrupts. Depending on context, it can also include exceptions.
Interrupts are usually handled by the OS.

Signal—An OS-level term for interruptions to an application’s control
flow. Signals are handled by applications.

Software interrupt—An interrupt generated by a program. Within Intel’s



x86 CPU family, programs can trigger an interrupt with the INT
instruction. Among other uses of this facility, debuggers use software
interrupts to set breakpoints.

Trap—A recoverable exception such as an integer overflow detected by
the CPU. Integer overflow is explained in section 5.2.

Figure 12.1 A visual taxonomy of how the terms interrupt, exception,
trap, and fault interact within Intel’s x86 family of CPUs. Note that
signals do not appear within this figure. Signals are not interrupts.

NOTE The meaning of the term exception may differ from your previous programming experience.
Programming languages often use the term exception to refer to any error, whereas the term has a
specialized meaning when referring to CPUs.



12.1.1 Signals vs. interrupts

The two concepts that are most important to distinguish between are signals
and interrupts. A signal is a software-level abstraction that is associated with
an OS. An interrupt is a CPU-related abstraction that is closely associated
with the system’s hardware.

Signals are a form of limited interprocess communication. They don’t contain
content, but their presence indicates something. They’re analogous to a
physical, audible buzzer. The buzzer doesn’t provide content, but the person
who presses it still knows what’s intended as it makes a very jarring sound.
To add confusion to the mix, signals are often described as software
interrupts. This chapter, however, avoids the use of the term interrupt when
referring to a signal.

There are two forms of interrupts, which differ in their origin. One form of
interrupt occurs within the CPU during its processing. This is the result of
attempting to process illegal instructions and trying to access invalid memory
addresses. This first form is known technically as a synchronous interrupt,
but you may have heard it referred to by its more common name, exception.

The second form of interrupt is generated by hardware devices like keyboards
and accelerometers. This is what’s commonly implied by the term interrupt.
This can occur at any time and is formally known as an asynchronous
interrupt. Like signals, this can also be generated within software.

Interrupts can be specialized. A trap is an error detected by the CPU, so it
gives the OS a chance to recover. A fault is another form of a recoverable
problem. If the CPU is given a memory address that it can’t read from, it
notifies the OS and asks for an updated address.

Interrupts force an application’s control flow to change, whereas many



signals can be ignored if desired. Upon receiving an interrupt, the CPU jumps
to handler code, irrespective of the current state of the program. The location
of the handler code is predefined by the BIOS and OS during a system’s
bootup process.

Treating signals as interrupts

Handling interrupts directly means manipulating the OS kernel. Because we would prefer not to
do that in a learning environment, we’ll play fast and loose with the terminology. The rest of this
chapter, therefore, treats signals as interrupts.
Why simplify things? Writing OS components involves tweaking the kernel. Breaking things
there means that our system could become completely unresponsive without a clear way to fix
anything. From a more pragmatic perspective, avoiding tweaks to the kernel means that we’ll
avoid learning a whole new compiler toolchain.
To our advantage, code that handles signals looks similar to code that handles interrupts.
Practicing with signals allows us to keep any errors within our code constrained to our
application rather than risk bringing the whole system down. The general pattern is as follows:

1. Model your application’s standard control flow.

2. Model the interrupted control flow and identify resources that need to be cleanly shut
down, if required.

3. Write the interrupt/signal handler to update some state and return quickly.

4. You will typically delegate time-consuming operations by only modifying a global
variable that is regularly checked by the main loop of the program.

5. Modify your application’s standard control flow to look for the GO/NO GO flag that a
signal handler may have changed.



12.2 How interrupts affect applications

Let’s work through this challenge by considering a small code example. The
following listing shows a simple calculation that sums two integers.

Listing 12.1 A program that calculates the sum of two integers

1 fn add(a: i32, b:i32) -> i32 {

2   a + b

3 }

4  

5 fn main() {

6   let a = 5;

7   let b = 6;

8   let c = add(a,b);

9 }

Irrespective of the number of hardware interrupts, c is always calculated. But
the program’s wall clock time becomes nondeterministic because the CPU
performs different tasks every time it runs.

When an interrupt occurs, the CPU immediately halts execution of the
program and jumps to the interrupt handler. The next listing (illustrated in
figure 12.2) details what happens when an interrupt occurs between lines 7
and 8 in listing 12.1.

Listing 12.2 Depicting the flow of listing 12.1 as it handles an interrupt

 1 #[allow(unused)]

 2 fn interrupt_handler() {      ①

 3   / / ..

 4 }

 5  

 6 fn add(a: i32, b:i32) -> i32 {

 7   a + b

 8 }

 9  

10 fn main() {



11   let a = 5;

12   let b = 6;

13  

14   / / Key pressed on keyboard!

15   interrupt_handler()

16  

17   let c = add(a,b);

18 }

① Although presented in this listing as an extra function, the interrupt handler is typically defined by
the OS.

 

Figure 12.2 Using addition to demonstrate control flow for handling
signals

One important point to remember is that, from the program’s perspective,
little changes. It isn’t aware that its control flow has been interrupted. Listing



12.1 is still an accurate representation of the program.



12.3 Software interrupts

Software interrupts are generated by programs sending specific instructions
to the CPU. To do this in Rust, you can invoke the asm! macro. The
following code, available at ch12/asm.rs, provides a brief view of the syntax:

#![feature(asm)]        ①

 

use std::asm;

 

fn main() {

    unsafe {

        asm!("int 42");

    }

}

① Enables an unstable feature

Running the compiled executable presents the following error from the OS:

$ rustc +nightly asm.rs 

$ ./asm 

Segmentation fault (core dumped)

As of Rust 1.50, the asm! macro is unstable and requires that you execute
the nightly Rust compiler. To install the nightly compiler, use rustup:

$ rustup install nightly



12.4 Hardware interrupts

Hardware interrupts have a special flow. Devices interface with a specialized
chip, known as the Programmable Interrupt Controller (PIC), to notify the
CPU. Figure 12.3 provides a view of how interrupts flow from hardware
devices to an application.

Figure 12.3 How applications are notified of an interrupt generated from
a hardware device. Once the OS has been notified that data is ready, it
then directly communicates with the device (in this case, the keyboard)
to read the data into its own memory.



12.5 Signal handling

Signals require immediate attention. Failing to handling a signal typically
results in the application being terminated.

12.5.1 Default behavior

Sometimes the best approach is to let the system’s defaults do the work. Code
that you don’t need to write is code that’s free from bugs that you
inadvertently cause.

The default behavior for most signals is shutting down the application. When
an application does not provide a special handler function (we’ll learn how to
do that in this chapter), the OS considers the signal to be an abnormal
condition. When an OS detects an abnormal condition within an application,
things don’t end well for the application—it terminates the application.
Figure 12.4 depicts this scenario.

Figure 12.4 An application defending itself from marauding hoards of
unwanted signals. Signal handlers are the friendly giants of the
computing world. They generally stay out of the way but are there when
your application needs to defend its castle. Although not part of



everyday control flow, signal handlers are extremely useful when the
time is right. Not all signals can be handled. SIGKILL is particularly
vicious.

Your application can receive three common signals. The following lists them
and their intended actions:

SIGINT—Terminates the program (usually generated by a person)

SIGTERM—Terminates the program (usually generated by another
program)

SIGKILL—Immediately terminates the program without the ability to
recover

You’ll find many other less common signals. For your convenience, a fuller
list is provided in table 12.2.

You may have noticed that the three examples listed here are heavily
associated with terminating a running program. But that’s not necessarily the
case.

12.5.2 Suspend and resume a program’s operation

There are two special signals worth mentioning: SIGSTOP and
SIGCONT. SIGSTOP halts the program’s execution, and it remains
suspended until it receives SIGCONT. UNIX systems use this signal for job
control. It’s also useful to know about if you want to manually intervene and
halt a running application but would like the ability to recover at some time
in the future.

The following snippet shows the structure for the sixty project that we’ll



develop in this chapter. To download the project, enter these commands in
the console:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action

$ cd rust-in-action/ch12/ch12-sixty

To create the project manually, set up a directory structure that resembles the
following and populate its contents from listings 12.3 and 12.4:

ch12-sixty

├── src

│   └── main.rs      ①

└── Cargo.toml       ②

① See listing 12.4.

② See listing 12.3.

The following listing shows the initial crate metadata for the sixty project.
The source code for this listing is in the ch12/ch12-sixty/ directory.

Listing 12.3 Crate metadata for the sixty project

[package]

name = "sixty"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

 

[dependencies]

The next listing provides the code to build a basic application that lives for 60
seconds and prints its progress along the way. You’ll find the source for this
listing in ch12/ch12-sixty/src/main.rs.

Listing 12.4 A basic application that receives SIGSTOP and SIGCONT

 1 use std::time;

 2 use std::process;

 3 use std::thread::{sleep};

 4  



 5 fn main() {

 6     let delay = time::Duration::from_secs(1);

 7  

 8     let pid = process::id();

 9     println!("{}", pid);

10  

11     for i in 1..=60 {

12         sleep(delay);

13         println!(". {}", i);

14     }

15 }

Once the code from listing 12.4 is saved to disk, two consoles open. In the
first, execute cargo run. A 3–5 digit number appears, followed by a
counter that increments by the second. The first line number is the PID or
process ID. Table 12.1 shows the operation and expected output.

Table 12.1 How processes can be suspended and resumed with
SIGSTOP and SIGCONT

Step Console 1 Console 2
 Executes application Sends signals

1 $ cd ch12/ch12-sixty  

2 $ cargo run

23221

. 1

. 2

. 3

. 4

 

3  $ kill -SIGSTOP 23221

4 [1]+ Stopped cargo

run

$

 

5  $ kill -SIGCONT 23221

6 . 5

. 6

. 7

. 8

 



 
⋮

 
. 60

The program flow in table 12.1 follows:

1. In console 1, move to the project directory (created from listings 12.3
and 12.4).

2. Compile and run the project.

cargo provides debugging output that is omitted here. When running, the
sixty program prints the PID, and then prints some numbers to the
console every second. Because it was the PID for this invocation,
23221 appears as output in the table.

3. In console 2, execute the kill command, specifying -SIGSTOP.

If you are unfamiliar with the shell command kill, its role is to send
signals. It’s named after its most common role, terminating programs
with either SIGKILL or SIGTERM. The numeric argument
(23221) must match the PID provided in step 2.

4. Console 1 returns to the command prompt as there is no longer anything
running in the foreground.

5. Resume the program by sending SIGCONT to the PID provided in step
2.

6. The program resumes counting. It terminates when it hits 60, unless
interrupted by Ctrl-C (SIGINT).

SIGSTOP and SIGCONT are interesting special cases. Let’s continue by



investigating more typical signal behavior.

12.5.3 Listing all signals supported by the OS

What are the other signals and what are their default handlers? To find the
answer, we can ask the kill command to provide that information:

$ kill -l        ①

 1) SIGHUP       2) SIGINT       3) SIGQUIT      4) SIGILL       5) SIGTRAP

 6) SIGABRT      7) SIGEMT       8) SIGFPE       9) SIGKILL     10) SIGBUS

11) SIGSEGV     12) SIGSYS      13) SIGPIPE     14) SIGALRM     15) SIGTERM

16) SIGURG      17) SIGSTOP     18) SIGTSTP     19) SIGCONT     20) SIGCHLD

21) SIGTTIN     22) SIGTTOU     23) SIGIO       24) SIGXCPU     25) SIGXFSZ

26) SIGVTALRM   27) SIGPROF     28) SIGWINCH    29) SIGPWR      30) SIGUSR1

31) SIGUSR2     32) SIGRTMAX

① -l stands for list.

That’s a lot, Linux! To make matters worse, few signals have standardized
behavior. Thankfully, most applications don’t need to worry about setting
handlers for many of these signals (if any). Table 12.1 shows a much tighter
list of signals. These are more likely to be encountered in day-to-day
programming.

Table 12.2 List of common signals, their default actions, and shortcuts
for sending them from the command line

Signal Read as Default
action

Comment Shortcut

SIGHUP Hung up Terminate Originally from
telephone-based digital
communications. Now
often sent to background
applications
(daemons/services) to
request that these reread

Ctrl-D



their configuration files.
Sent to running programs
when you log out from a
shell.

SIGINT Interrupt (or
perhaps
interactive)

Terminate User-generated signal to
terminate a running
application.

Ctrl-C

SIGTERM Terminate Terminate Asks application to
gracefully terminate.

 

SIGKILL Kill Terminate This action is
unstoppable.

 

SIGQUIT Quit  Writes memory to disk as
a core dump, then
terminates.

Ctrl-\

SIGTSTP Terminal
stop

Pause
execution

The terminal requests the
application to stop.

Ctrl-Z

SIGSTOP Stop Pause
execution

This action is
unstoppable.

 

SIGCONT Continue Resume
execution
when
paused

  

NOTE SIGKILL and SIGSTOP have special status: these cannot be handled or blocked by the
application. Programs can avoid the others.



12.6 Handling signals with custom actions

The default actions for signals are fairly limited. By default, receiving a
signal tends to end badly for applications. For example, if external resources
such as database connections are left open, they might not be cleaned up
properly when the application ends.

The most common use case for signal handlers is to allow an application to
shut down cleanly. Some common tasks that might be necessary when an
application shuts down include

Flushing the hard disk drive to ensure that pending data is written to disk

Closing any network connections

Deregistering from any distributed scheduler or work queue

To stop the current workload and shut down, a signal handler is required. To
set up a signal handler, we need to create a function with the signature
f(i32) -> (). That is, the function needs to accept an i32 integer as
its sole argument and returns no value.

This poses some software engineering issues. The signal handler isn’t able to
access any information from the application except which signal was sent.
Therefore, because it doesn’t know what state anything is in, it doesn’t know
what needs shutting down beforehand.

There are some additional restrictions in addition to the architectural one.
Signal handlers are constrained in time and scope. These must also act
quickly within a subset of functionality available to general code for these
reasons:



Signal handlers can block other signals of the same type from being
handled.

Moving fast reduces the likelihood of operating alongside another signal
handler of a different type.

Signal handlers have reduced scope in what they’re permitted to do. For
example, they must avoid executing any code that might itself generate
signals.

To wriggle out of this constrained environment, the ordinary approach is to
use a Boolean flag as a global variable that is regularly checked during a
program’s execution. If the flag is set, then you can call a function to
shutdown the application cleanly within the context of the application. For
this pattern to work, there are two requirements:

The signal handler’s sole responsibility is to mutate the flag.

The application must regularly check the flag to detect whether the flag
has been modified.

To avoid race conditions caused by multiple signal handlers running at the
same time, signal handlers typically do little. A common pattern is to set a
flag via a global variable.

12.6.1 Global variables in Rust

Rust facilitates global variables (variables accessible anywhere within the
program) by declaring a variable with the static keyword in global
scope. Suppose we want to create a global value SHUT_DOWN that we can
set to true when a signal handler believes it’s time to urgently shut down.
We can use this declaration:



static mut SHUT_DOWN: bool = false;

NOTE static mut is read as mutable static, irrespective of how grammatically contorted that is.

Global variables present an issue for Rust programmers. Accessing these
(even just for reading) is unsafe. This means that the code can become quite
cluttered if it’s wrapped in unsafe blocks. This ugliness is a signal to wary
programmers—avoid global state whenever possible.

Listing 12.6 presents a example of a static mut variable that reads
from line 12 and writes to lines 7–9. The call to rand::random() on
line 8 produces Boolean values. Output is a series of dots. About 50% of the
time, you’ll receive output that looks like what’s shown in the following
console session:1

$ git clone https:/ /github.com/rust-in-action/code rust-in-action

$ cd rust-in-action/ch12/ch2-toy-global

$ cargo run -q 

.

The following listing provides the metadata for listing 12.6. You can access
its source code in ch12/ch12-toy-global/Cargo.toml.

Listing 12.5 Crate metadata for listing 12.6

[package]

name = "ch12-toy-global"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

rand = "0.6"

The following listing presents our toy example. Its source code is in
ch12/ch12-toy-global/src/main.rs.



Listing 12.6 Accessing global variables (mutable statics) in Rust

 1 use rand;

 2  

 3 static mut SHUT_DOWN: bool = false;

 4  

 5 fn main() {

 6   loop {

 7     unsafe {                          ①

 8       SHUT_DOWN = rand::random();     ②

 9     }

10     print!(".");

11  

12     if unsafe { SHUT_DOWN } {

13       break

14     };

15   }

16   println!()

17 }

① Reading from and writing to a static mut variable requires an unsafe block.

② rand::random() is a shortcut that calls rand::thread_rng().gen() to produce a random value. The
required type is inferred from the type of SHUT_DOWN.

12.6.2 Using a global variable to indicate that
shutdown has been initiated

Given that signal handlers must be quick and simple, we’ll do the minimal
amount of possible work. In the next example, we’ll set a variable to indicate
that the program needs to shut down. This technique is demonstrated by
listing 12.8, which is structured into these three functions:

register_signal_handlers()—Communicates to the OS
via libc, the signal handler for each signal. This function makes use of a
function pointer, which treats a function as data. Function pointers are
explained in section 11.7.1.

handle_signals()—Handles incoming signals. This function is
agnostic as to which signal is sent, although we’ll only deal with



SIGTERM.

main()—Initializes the program and iterates through a main loop.

When run, the resulting executable produces a trace of where it is. The
following console session shows the trace:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action

$ cd rust-in-action/ch12/ch12-basic-handler

$ cargo run -q 

1

SIGUSR1

2

SIGUSR1

3

SIGTERM

4

*        ①

① I hope that you will forgive the cheap ASCII art explosion.

NOTE If the signal handler is not correctly registered, Terminated may appear in the output.
Make sure that you add a call to register_signal_handler() early within main(). Listing
12.8 does this on line 38.

The following listing shows the package and dependency for listing 12.8.
You can view the source for this listing in ch12/ch12-basic-
handler/Cargo.toml.

Listing 12.7 Crate setup for listing 12.10

[package]

name = "ch12-handler"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]

libc = "0.2"

When executed, the following listing uses a signal handler to modify a global



variable. The source for this listing is in ch12/ch12-basic-handler/src/main.rs.

Listing 12.8 Creating a signal handler that modifies a global variable

 1 #![cfg(not(windows))]               ①

 2  

 3 use std::time::{Duration};

 4 use std::thread::{sleep};

 5 use libc::{SIGTERM, SIGUSR1};

 6  

 7 static mut SHUT_DOWN: bool = false;

 8  

 9 fn main() {

10   register_signal_handlers();       ②

11  

12   let delay = Duration::from_secs(1);

13  

14   for i in 1_usize.. {

15     println!("{}", i);

16     unsafe {                        ③

17       if SHUT_DOWN {

18         println!("*");

19         return;

20       }

21     }

22  

23     sleep(delay);

24  

25     let signal = if i > 2 {

26       SIGTERM

27     } else {

28       SIGUSR1

29     };

30  

31     unsafe {                        ④

32       libc::raise(signal);

33     }

34   }

35   unreachable!();

36 }

37  

38 fn register_signal_handlers() {

39   unsafe {                          ④

40     libc::signal(SIGTERM, handle_sigterm as usize);

41     libc::signal(SIGUSR1, handle_sigusr1 as usize);

42   }

43 }

44  

45 #[allow(dead_code)]                 ⑤

46 fn handle_sigterm(_signal: i32) {

47   register_signal_handlers();       ⑥



48  

49   println!("SIGTERM");

50  

51   unsafe {                          ⑦

52     SHUT_DOWN = true;

53   }

54 }

55  

56 #[allow(dead_code)]                 ⑤

57 fn handle_sigusr1(_signal: i32) {

58   register_signal_handlers();       ⑥

59  

60   println!("SIGUSR1");

61 }

① Indicates that this code won’t run on Windows

② Must occur as soon as possible; otherwise signals will be incorrectly handled

③ Accessing a mutable static is unsafe.

④ Calling libc functions is unsafe; their effects are outside of Rust’s control.

⑤ Without this attribute, rustc warns that these functions are never called.

⑥ Reregisters signals as soon as possible to minimize signal changes affecting the signal handler itself

⑦ Modifying a mutable static is unsafe.

In the preceding listing, there is something special about the calls to
libc::signal() on lines 40 and 41. libc::signal takes a
signal name (which is actually an integer) and an untyped function pointer
(known in C parlance as a void function pointer) as arguments and associates
the signal with the function. Rust’s fn keyword creates function pointers.
handle_sigterm() and handle_sigusr1() both have the
type fn(i32) -> (). We need to cast these as usize values to erase
any type information. Function pointers are explained in more detail in
section 12.7.1.

Understanding the difference between const and
static



Static and constant seem similar. Here is the main difference between them:

static values appear in a single location in memory.

const values can be duplicated in locations where they are accessed.

Duplicating const values can be a CPU-friendly optimization. It allows for data locality and
improved cache performance.
Why use confusingly similar names for two different things? It could be considered a historical
accident. The word static refers to the segment of the address space that the variables live in.
static values live outside the stack space, within the region where string literals are held,
near the bottom of the address space. That means accessing a static variable almost certainly
implies dereferencing a pointer.
The constant in const values refers to the value itself. When accessed from code, the data
might get duplicated to every location that it’s needed if the compiler believes that this will result
in faster access.



12.7 Sending application-defined signals

Signals can be used as a limited form of messaging. Within your business
rules, you can create definitions for SIGUSR1 and SIGUSR2. These are
unallocated by design. In listing 12.8, we used SIGUSR1 to do a small task.
It simply prints the string SIGUSR1. A more realistic use of custom signals
is to notify a peer application that some data is ready for further processing.

12.7.1 Understanding function pointers and their
syntax

Listing 12.8 includes some syntax that might be confusing. For example, on
line 40 handle_sigterm as usize appears to cast a function as
an integer.

What is happening here? The address where the function is stored is being
converted to an integer. In Rust, the fn keyword creates a function pointer.

Readers who have worked through chapter 5 will understand that functions
are just data. That is to say, functions are sequences of bytes that make sense
to the CPU. A function pointer is a pointer to the start of that sequence. Refer
back to chapter 5, especially section 5.7, for a refresher.

A pointer is a data type that acts as a stand-in for its referent. Within an
application’s source code, pointers contain both the address of the value
referred to as well as its type. The type information is something that’s
stripped away in the compiled binary. The internal representation for pointers
is an integer of usize. That makes pointers very economical to pass



around. In C, making use of function pointers can feel like arcane magic. In
Rust, they hide in plain sight.

Every fn declaration is actually declaring a function pointer. That means
that listing 12.9 is legal code and should print something similar to the
following line:

$ rustc ch12/fn-ptr-demo-1.rs && ./fn-ptr-demo-1 

noop as usize: 0x5620bb4af530

NOTE In the output, 0x5620bb4af530 is the memory address (in hexadecimal notation) of the
start of the noop() function. This number will be different on your machine.

The following listing, available at ch12/noop.rs, shows how to cast a function
to usize. This demonstrates how usize can be used as a function
pointer.

Listing 12.9 Casting a function to usize

fn noop() {}

 

fn main() {

    let fn_ptr = noop as usize;

 

    println!("noop as usize: 0x{:x}", fn_ptr);

}

But what is the type of the function pointer created from fn noop()? To
describe function pointers, Rust reuses its function signature syntax. In the
case of fn noop(), the type is *const fn() -> (). This type is
read as “a const pointer to a function that takes no arguments and returns
unit.” A const pointer is immutable. A unit is Rust’s stand-in value for
“nothingness.”

Listing 12.10 casts a function pointer to usize and then back again. Its



output, shown in the following snippet, should show two lines that are nearly
identical:

$ rustc ch12/fn-ptr-demo-2.rs && ./fn-ptr-demo-2 

noop as usize:    0x55ab3fdb05c0

noop as *const T: 0x55ab3fdb05c0

NOTE These two numbers will be different on your machine, but the two numbers will match each
other.

 

Listing 12.10 Casting a function to usize

fn noop() {}

 

fn main() {

  let fn_ptr = noop as usize;

  let typed_fn_ptr = noop as *const fn() -> ();

 

  println!("noop as usize:    0x{:x}", fn_ptr);

  println!("noop as *const T: {:p}", typed_fn_ptr);      ①

}

① Note the use of the pointer format modifier, {:p}.



12.8 Ignoring signals

As noted in table 12.2, most signals terminate the running program by
default. This can be somewhat disheartening for the running program
attempting to get its work done. (Sometimes the application knows best!) For
those cases, many signals can be ignored.

SIGSTOP and SIGKILL aside, the constant SIG_IGN can be provided
to libc:: signal() instead of a function pointer. An example of its
usage is provided by the ignore project. Listing 12.11 shows its Cargo.toml
file, and listing 12.12 shows src/main.rs. These are both available from the
ch12/ch12-ignore project directory. When executed, the project prints the
following line to the console:

$ cd ch12/ch12-ignore

$ cargo run -q 

ok

The ignore project demonstrates how to ignore selected signals. On line 6 of
listing 12.12, libc::SIG_IGN (short for signal ignore) is provided as
the signal handler to libc::signal(). The default behavior is reset on
line 13. libc::signal() is called again, this time with SIG_DFL
(short for signal default) as the signal handler.

Listing 12.11 Project metadata for ignore project

[package]

name = "ignore"

version = "0.1.0"

authors = ["Tim McNamara <author@rustinaction.com>"]

edition = "2018"

 

[dependencies]



libc = "0.2"

Listing 12.12 Ignoring signals with libc::SIG_IGN

 1 use libc::{signal,raise};

 2 use libc::{SIG_DFL, SIG_IGN, SIGTERM};

 3  

 4 fn main() {

 5   unsafe {                        ①

 6     signal(SIGTERM, SIG_IGN);     ②

 7     raise(SIGTERM);               ③

 8   }

 9  

10   println!("ok");

11  

12   unsafe {

13     signal(SIGTERM, SIG_DFL);     ④

14     raise(SIGTERM);               ⑤

15   }

16  

17   println!("not ok");             ⑥

18 }

① Requires an unsafe block because Rust does not control what happens beyond the function
boundaries

② Ignores the SIGTERM signal

③ libc::raise() allows code to make a signal; in this case, to itself.

④ Resets SIGTERM to its default

⑤ Terminates the program

⑥ This code is never reached, and therefore, this string is never printed.



12.9 Shutting down from deeply nested call
stacks

What if our program is deep in the middle of a call stack and can’t afford to
unwind? When receiving a signal, the program might want to execute some
cleanup code before terminating (or being forcefully terminated). This is
sometimes referred to as nonlocal control transfer. UNIX-based operating
systems provide some tools to enable you to make use of that machinery via
two system calls—setjmp and longjmp:

setjmp sets a marker location.

longjmp jumps back to the previously marked location.

Why bother with such programming gymnastics? Sometimes using low-level
techniques like these is the only way out of a tight spot. These approach the
“Dark Arts” of systems programming. To quote the manpage:

“setjmp() and longjmp() are useful for dealing with errors and
interrupts encountered in a low-level subroutine of a program.”

—Linux Documentation Project: setjmp(3)

These two tools circumvent normal control flow and allow programs to
teleport themselves through the code. Occasionally an error occurs deep
within a call stack. If our program takes too long to respond to the error, the
OS may simply abort the program, and the program’s data may be left in an
inconsistent state. To avoid this, you can use longjmp to shift control
directly to the error-handling code.



To understand the significance of this, consider what happens in an ordinary
program’s call stack during several calls to a recursive function as produced
by the code in listing 12.13. Each call to dive() adds another place that
control eventually returns to. See the left-hand side of table 12.3. The
longjmp system call, used by listing 12.17, bypasses several layers of the
call stack. Its effect on the call stack is visible on the right-hand side of table
12.3.

Table 12.3 Comparing the intended output from listing 12.13 and listing
12.17

Listing 12.13 produces a symmetrical
pattern. Each level is caused by a nested call
to dive(), which is removed when the
calls return.

Listing 12.17 produces a much different
pattern. After a few calls to dive(),
control teleports back to main() without
returning the calls to dive().

#

##

###

####

#####

###

##

#

#

##

###

early return!

finishing!

On the left side of table 12.3, the call stack grows one step as functions are
called, then shrinks by one as each function returns. On the right side, the
code jumps directly from the third call to the top to the call stack.

The following listing depicts how the call stack operates by printing its
progress as the program executes. The code for this listing is in ch10/ch10-
callstack/src/main.rs.



Listing 12.13 Illustrating how the call stack operates

 1 fn print_depth(depth:usize) {

 2     for _ in 0..depth {

 3         print!("#");

 4     }

 5     println!("");

 6 }

 7  

 8 fn dive(depth: usize, max_depth: usize) {

 9     print_depth(depth);

10     if depth >= max_depth {

11         return;

12  

13     } else {

14         dive(depth+1, max_depth);

15     }

16     print_depth(depth);

17 }

18  

19 fn main() {

20     dive(0, 5);

21 }

There’s a lot of work to do to make this happen. The Rust language itself
doesn’t have the tools to enable this control-flow trickery. It needs to access
some provided by its compiler’s toolchain. Compilers provide special
functions known as intrinsics to application programs. Using an intrinsic
function with Rust takes some ceremony to set up, but that operates as a
standard function once the set-up is in place.

12.9.1 Introducing the sjlj project

The sjlj project demonstrates contorting the normal control flow of a
function. With the help of some assistance from the OS and the compiler, it’s
actually possible to create a situation where a function can move to anywhere
in the program. Listing 12.17 uses that functionality to bypass several layers
of the call stack, creating the output from the right side of table 12.3. Figure
12.5 shows the control flow for the sjlj project.



Figure 12.5 Control flow of the sjlj project. The program’s control flow
can be intercepted via a signal and then resumed from the point of
setjmp().

12.9.2 Setting up intrinsics in a program

Listing 12.17 uses two intrinsics, setjmp() and longjmp(). To
enable these in our programs, the crate must be annotated with the attribute
provided. The following listing provides this documentation.



Listing 12.14 Crate-level attribute required in main.rs

#![feature(link_llvm_intrinsics)]

This raises two immediate questions. We’ll answer the following shortly:

What is an intrinsic function?

What is LLVM?

Additionally, we need to tell Rust about the functions that are being provided
by LLVM. Rust won’t know anything about them, apart from their type
signatures, which means that any use of these must occur within an
unsafe block. The following listing shows how to inform Rust about the
LLVM functions. The source for this listing is in ch12/ch12-sjlj/src/main.rs.

Listing 12.15 Declaring the LLVM intrinsic functions within listing 12.17

extern "C" {

  #[link_name = "llvm.eh.sjlj.setjmp"]      ①

  pub fn setjmp(_: *mut i8) -> i32;         ②

 

  #[link_name = "llvm.eh.sjlj.longjmp"]     ①

  pub fn longjmp(_: *mut i8);

}

① Provides specific instructions to the linker about where it should look to find the function definitions

② As we’re not using the argument’s name, uses an underscore (_) to make that explicit

This small section of code contains a fair amount of complexity. For example

extern "C" means “This block of code should obey C’s
conventions rather than Rust’s.”

The link_name attribute tells the linker where to find the two
functions that we’re declaring.

The eh in llvm.eh.sjlj.setjmp stands for exception



handling, and the sjlj stands for setjmp/longjmp.

*mut i8 is a pointer to a signed byte. For those with C programming
experience, you might recognize this as the pointer to the beginning of a
string (e.g., a *char type).

WHAT IS AN INTRINSIC FUNCTION?

Intrinsic functions, generally referred to as intrinsics, are functions made
available via the compiler rather than as part of the language. Whereas Rust is
largely target-agnostic, the compiler has access to the target environment.
This access can facilitate extra functionality. For example, a compiler
understands the characteristics of the CPU that the to-be-compiled program
will run on. The compiler can make that CPU’s instructions available to the
program via intrinsics. Some examples of intrinsic functions include

Atomic operations—Many CPUs provide specialist instructions to
optimize certain workloads. For example, the CPU might guarantee that
updating an integer is an atomic operation. Atomic here is meant in the
sense of being indivisible. This can be extremely important when
dealing with concurrent code.

Exception handling—The facilities provided by CPUs for managing
exceptions differ. These facilities can be used by programming language
designers to create custom control flow. The setjmp and longjmp
intrinsics, introduced later in this chapter, fall into this camp.

WHAT IS LLVM?

From the point of view of Rust programmers, LLVM can be considered as a
subcomponent of rustc, the Rust compiler. LLVM is an external tool that’s



bundled with rustc. Rust programmers can draw from the tools it provides.
One set of tools that LLVM provides is intrinsic functions.

LLVM is itself a compiler. Its role is illustrated in figure 12.6.

Figure 12.6 Some of the major steps required to generate an executable
from Rust source code. LLVM is an essential part of the process but not
one that is user-facing.

LLVM translates code produced by rustc, which produces LLVM IR
(intermediate language) into machine-readable assembly language. To make
matters more complicated, another tool, called a linker, is required to stitch
multiple crates together. On Windows, Rust uses link.exe, a program
provided by Microsoft as its linker. On other operating systems, the GNU
linker ld is used.

Understanding more detail about LLVM implies learning more about rustc
and compilation in general. Like many things, getting closer to the truth
requires exploring through a fractal-like domain. Learning every subsystem
seems to require learning about another set of subsystems. Explaining more
here would be a fascinating, but ultimately distracting diversion.



12.9.3 Casting a pointer to another type

One of the more arcane parts of Rust’s syntax is how to cast between pointer
types. You’ll encounter this as you make your way through listing 12.17. But
problems can arise because of the type signatures of setjmp() and
longjmp(). In this code snippet, extracted from listing 12.17, you can
see that both functions take a *mut i8 pointer as an argument:

extern "C" {

  #[link_name = "llvm.eh.sjlj.setjmp"]

  pub fn setjmp(_: *mut i8) -> i32;

 

  #[link_name = "llvm.eh.sjlj.longjmp"]

  pub fn longjmp(_: *mut i8);

}

Requiring a *mut i8 as an input argument is a problem because our Rust
code only has a reference to a jump buffer (e.g., &jmp_buf).2 The next
few paragraphs work through the process of resolving this conflict. The
jmp_buf type is defined like this:

const JMP_BUF_WIDTH: usize =

  mem::size_of::<usize>() * 8;        ①

type jmp_buf = [i8; JMP_BUF_WIDTH];

① This constant is 64 bits wide (8 × 8 bytes) in 64-bit machines and 32 bits wide (8 × 4 bytes) on 32-
bit machines.

The jmp_buf type is a type alias for an array of i8 that is as wide as 8
usize integers. The role of jmp_buf is to store the state of the program,
such that the CPU’s registers can be repopulated when needed. There is only
one jmp_buf value within listing 12.17, a global mutable static called
RETURN_HERE, defined on line 14. The following example shows how
jmp_buf is initialized:



static mut RETURN_HERE: jmp_buf = [0; JMP_BUF_WIDTH];

How do we treat RETURN_HERE as a pointer? Within the Rust code, we
refer to RETURN_ HERE as a reference (&RETURN_HERE). LLVM
expects those bytes to be presented as a *mut i8. To perform the
conversion, we apply four steps, which are all packed into a single line:

unsafe { &RETURN_HERE as *const i8 as *mut i8 }

Let’s explain what those four steps are:

1. Start with &RETURN_HERE, a read-only reference to a global static
variable of type [i8; 8] on 64-bit machines or [i8; 4] on 32-
bit machines.

2. Convert that reference to a *const i8. Casting between pointer
types is considered safe Rust, but deferencing that pointer requires an
unsafe block.

3. Convert the *const i8 to a *mut i8. This declares the memory
as mutable (read/write).

4. Wrap the conversion in an unsafe block because it deals with
accessing a global variable.

Why not use something like &mut RETURN_HERE as *mut i8?
The Rust compiler becomes quite concerned about giving LLVM access to its
data. The approach provided here, starting with a read-only reference, puts
Rust at ease.

12.9.4 Compiling the sjlj project



We’re now in a position where possible points of confusion about listing
12.17 should be minor. The following snippet again shows the behavior
we’re attempting to replicate:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action

$ cd rust-in-action/ch12/ch12-sjlj 

$ cargo run -q 

#

#

early return!

finishing!

One final note: to compile correctly, the sjlj project requires that rustc is on
the nightly channel. If you encounter the error “#![feature] may not be used
on the stable release channel,” use rustup install nightly to
install it. You can then make use of the nightly compiler by adding the
+nightly argument to cargo. The following console output demonstrates
encountering that error and recovering from it:

$ cargo run -q 

error[E0554]: #![feature] may not be used on the stable release channel

 --> src/main.rs:1:1

  |

1 | #![feature(link_llvm_intrinsics)]

  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

 

error: aborting due to previous error

 

For more information about this error, try `rustc --explain E0554`.

 

$ rustup toolchain install nightly 

...

 

$ cargo +nightly run -q 

#

##

###

early return!

finishing!

12.9.5 sjlj project source code



The following listing employs LLVM’s compiler to access the operating
system’s longjmp facilities. longjmp allows programs to escape their
stack frame and jump anywhere within their address space. The code for
listing 12.6 is in ch12/ch12-sjlj/Cargo.toml and listing 12.17 is in ch12/ch12-
sjlj/src/main.rs.

Listing 12.16 Project metadata for sjlj

[package]

name = "sjlj"

version = "0.1.0"

authors = ["Tim McNamara <code@timmcnamara.co.nz>"]

edition = "2018"

 

[dependencies]

libc = "0.2"

Listing 12.17 Using LLVM’s internal compiler machinery (intrinsics)

  1 #![feature(link_llvm_intrinsics)]

  2 #![allow(non_camel_case_types)]

  3 #![cfg(not(windows))]                                  ①

  4  

  5 use libc::{

  6   SIGALRM, SIGHUP, SIGQUIT, SIGTERM, SIGUSR1,

  7 };

  8 use std::mem;

  9  

 10 const JMP_BUF_WIDTH: usize =

 11   mem::size_of::<usize>() * 8;

 12 type jmp_buf = [i8; JMP_BUF_WIDTH];

 13  

 14 static mut SHUT_DOWN: bool = false;                    ②

 15 static mut RETURN_HERE: jmp_buf = [0; JMP_BUF_WIDTH];

 16 const MOCK_SIGNAL_AT: usize = 3;                       ③

 17  

 18 extern "C" {

 19   #[link_name = "llvm.eh.sjlj.setjmp"]

 20   pub fn setjmp(_: *mut i8) -> i32;

 21  

 22   #[link_name = "llvm.eh.sjlj.longjmp"]

 23   pub fn longjmp(_: *mut i8);

 24 }

 25  

 26 #[inline]                                              ④

 27 fn ptr_to_jmp_buf() -> *mut i8 {



 28   unsafe { &RETURN_HERE as *const i8 as *mut i8 }

 29 }

 30  

 31 #[inline]                                              ④

 32 fn return_early() {

 33   let franken_pointer = ptr_to_jmp_buf();

 34   unsafe { longjmp(franken_pointer) };                 ⑤

 35 }

 36  

 37 fn register_signal_handler() {

 38   unsafe {

 39     libc::signal(SIGUSR1, handle_signals as usize);    ⑥

 40   }

 41 }

 42  

 43 #[allow(dead_code)]

 44 fn handle_signals(sig: i32) {

 45   register_signal_handler();

 46  

 47   let should_shut_down = match sig {

 48     SIGHUP => false,

 49     SIGALRM => false,

 50     SIGTERM => true,

 51     SIGQUIT => true,

 52     SIGUSR1 => true,

 53     _ => false,

 54   };

 55  

 56   unsafe {

 57     SHUT_DOWN = should_shut_down;

 58   }

 59  

 60   return_early();

 61 }

 62  

 63 fn print_depth(depth: usize) {

 64   for _ in 0..depth {

 65     print!("#");

 66   }

 67   println!();

 68 }

 69  

 70 fn dive(depth: usize, max_depth: usize) {

 71   unsafe {

 72     if SHUT_DOWN {

 73       println!("!");

 74       return;

 75     }

 76   }

 77   print_depth(depth);

 78  

 79   if depth >= max_depth {

 80     return;

 81   } else if depth == MOCK_SIGNAL_AT {



 82     unsafe {

 83       libc::raise(SIGUSR1);

 84     }

 85   } else {

 86     dive(depth + 1, max_depth);

 87   }

 88   print_depth(depth);

 89 }

 90  

 91 fn main() {

 92   const JUMP_SET: i32 = 0;

 93  

 94   register_signal_handler();

 95  

 96   let return_point = ptr_to_jmp_buf();

 97   let rc = unsafe { setjmp(return_point) };

 98   if rc == JUMP_SET {

 99     dive(0, 10);

100   } else {

101     println!("early return!");

102   }

103  

104   println!("finishing!")

105 }

① Only compile on supported platforms.

② When true, the program exits.

③ Allows a recursion depth of 3

④ An #[inline] attribute marks the function as being available for inlining, which is a compiler
optimization technique for eliminating the cost of function calls.

⑤ This is unsafe because Rust cannot guarantee what LLVM does with the memory at
RETURN_HERE.

⑥ Asks libc to associate handle_signals with the SIGUSR1 signal



12.10 A note on applying these techniques to
platforms without signals

Signals are a “UNIX-ism.” On other platforms, messages from the OS are
handled differently. On MS Windows, for example, command-line
applications need to provide a handler function to the kernel via
SetConsoleCtrlHandler. That handler function is then invoked
when a signal is sent to the application.

Regardless of the specific mechanism, the high-level approach demonstrated
in this chapter should be fairly portable. Here is the pattern:

Your CPU generates interrupts that require the OS to respond.

Operating systems often delegate responsibility for handling interrupts
via some sort of callback system.

A callback system means creating a function pointer.



12.11 Revising exceptions

At the start of the chapter, we discussed the distinction between signals,
interrupts, and exceptions. There was little coverage of exceptions, directly.
We have treated these as a special class of interrupts. Interrupts themselves
have been modeled as signals.

To wrap up this chapter (and the book), we explored some of the features
available in rustc and LLVM. The bulk of this chapter utilized these features
to work with signals. Within Linux, signals are the main mechanism that the
OS uses to communicate with applications. On the Rust side, we have spent
lots of time interacting with libc and unsafe blocks, unpacking function
pointers, and tweaking global variables.



Summary

Hardware devices, such as the computer’s network card, notify
applications about data that is ready to be processed by sending an
interrupt to the CPU.

Function pointers are pointers that point to executable code rather than
to data. These are denoted in Rust by the fn keyword.

Unix operating systems manage job control with two signals:
SIGSTOP and SIGCONT.

Signal handlers do the least amount of work possible to mitigate the risk
of triggering race conditions caused when multiple signal handlers
operate concurrently. A typical pattern is to set a flag with a global
variable. That flag is periodically checked within the program’s main
loop.

To create a global variable in Rust, create a “mutable static.” Accessing
mutable statics requires an unsafe block.

The OS, signals, and the compiler can be utilized to implement
exception handling in programming languages via the setjmp and
longjmp syscalls.

Without the unsafe keyword, Rust programs would not be able to
interface effectively with the OS and other third-party components.

1.Output assumes a fair random number generator, which Rust uses by default. This assumption holds
as long as you trust your operating system’s random number generator.

2.
jmp_buf is the conventional name for this buffer, which might be useful for any readers who want to
dive deeper themselves.
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