

Early Praise for Build a Weather Station with Elixir and Nerves

I came to this book without any Nerves experience, but left feeling empowered.
The authors demonstrate how powerful Nerves is and how we can build useful
hardware projects with very little code. I highly recommend this book, especially
if it’s your first hardware project.

➤ Stephen Bussey
Founder, Clove and author of Real-Time Phoenix

The project is very clear without being too simple. Looks really fun and I know
from experience that Nerves is a great way to get some hands-on experience with
Elixir.

➤ Lars Wikman
Founder and CEO, Underjord AB

A great introduction to Nerves with a practical project that also succeeds as an
introduction to powerful tools such as Docker Compose, Grafana, and
TimescaleDB.

➤ Anderson Cook
Software Engineer, dscout

A compelling interleaving of systems design and embedded development knowledge
that uncovers a productive and approachable workflow with Nerves.

➤ Jason Johnson
Co-owner, FullSteam Labs

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Build a Weather Station with
Elixir and Nerves

Visualize Your Sensor Data with
Phoenix and Grafana

Alexander Koutmos
Bruce A. Tate

Frank Hunleth

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: L. Sakhi MacMillan
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-902-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments vii

Introduction ix

1. Elixir and Nerves for IoT 1
Why Nerves for IoT? 2
Time-Series Sensor Hub 3
Laying Out the Architecture 4
Organizing Your Nerves Project 6
Assembling the Weather Station 9
Your Turn 12

2. Wirelessly Reading Sensor Data 15
Creating a Network-Enabled Sensor Hub Project 15
Getting on to the Network 18
Capturing Sensor Data 22
Your Turn 27

3. Aggregating Sensor Data 29
Wrapping Sensors in GenServers 29
Build the Firmware Project 38
Managing the Life Cycle 43
Your Turn 45

4. Publishing Sensor Data 47
Setting up Docker Compose 47
Creating the Phoenix Application 49
Publishing Metrics 55
Your Turn 60

5. Pulling It All Together 63
Adding Grafana to Docker Compose 63

Exploring the Data with SQL 64
Creating a Weather Dashboard 67
Your Turn 71

Contents • vi

Acknowledgments
It has most likely been said before, but we think it is worth saying again:
writing and publishing a book that you are genuinely proud of takes a village.
What you see before you would not have been possible without the people
mentioned in this section, and we would like to take the opportunity to thank
them for all of their time and effort.

We would like to start by thanking the staff at The Pragmatic Bookshelf for
all of their help and support. Working with The Pragmatic Bookshelf has been
both a pleasure and an honor. A special thanks must also be given to Jackie
Carter, our editor, who worked tirelessly to ensure that the book we produced
was all that it could possibly be. For a couple of us, this book was our first
publication, and Jackie was always there to guide us when we needed help.

Creating a project-based book that is both concise and a pleasure to read was
no easy task, and a huge thanks is needed for our technical reviewers who
helped us realize this goal. Steve Bussey, Anderson Cook, Sophie DeBenedetto,
Jason Johnson, Nikos Maroulis, Parker Selbert, and Lars Wikman all provided
the critical feedback necessary to ensure that the final book was technically
correct, easy to follow, and flowed naturally.

While also being an author of this book, a big thank you should also be
extended to Frank Hunleth for all of his hard work around Nerves. Without
all of his contributions to the Nerves framework and the ecosystem of tools
surrounding Nerves, this book would not have been possible. Similarly, we
would also like to thank Justin Schneck for all of his contributions to Nerves
and the supporting ecosystem, as the tools would not be what they are today
if it were not for his efforts.

A special thanks is also in order for the creator of the Elixir programming
language, José Valim. The Elixir programming language and community has
made a profound impact on all of our careers, and we are all extraordinarily
grateful for everything that José does to push the language, community, and
ecosystem forward.

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Lastly, we would like to thank our families and friends for all of the love and
support while we were working on this book. Creating this book was a labor
of love, and it would not have been possible if it were not for the amazing
people that surround us.

Alexander Koutmos
I would like to personally thank my wife, Carol, and our two daughters for
all of the love, happiness, and joy that you give me every single day. The three
of you are the source of my strength and motivation that allow me to create
things such as this book, and I am truly blessed to have you all in my life.

Bruce Tate
Writing is a labor of love, and my heart goes out to those who make it so.
Maggie, you are my joy and inspiration always. You stood by me with joy as
the tiny blinking LED grew to a full solder station, a bookcase, and more
spare parts than Tony Stark ever had. I love you!

Frank Hunleth
I would like to thank my coauthors for including me in this project. Being
able to share the enjoyment I get from working with hardware with both of
you was a blast. And Christy, thank you for making it possible to follow my
passions and bringing so much happiness to our family.

Acknowledgments • viii

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Introduction
The Erlang virtual machine and the Elixir programming language have man-
aged to find their way into a wide range of software domains. We believe that
this is very much in part due to the technical merits of the BEAM runtime
and the phenomenal developer experience that the Elixir programming lan-
guage provides. With both of these elements at your disposal, you truly feel
like you have superpowers when programming with Elixir.

This feeling of having “superpowers” is immediately apparent if you’ve ever
written, maintained, or deployed a Phoenix application.1 The fault tolerance,
scalability, and ease of development that you get from the Phoenix Framework
and Elixir is a thing of beauty. Not to mention that if your requirements
include some sort of real-time user interaction, the tooling available to you
in the Elixir ecosystem is second to none.

While Elixir has enjoyed great success in the API back end and web-application
space (thanks to Phoenix LiveView2), what if you could realize these same
“superpowers” in an embedded systems and IoT context? That is exactly what
the Nerves Project aims to do.3 With Nerves, you can develop reliable and
fault-tolerant IoT applications without compromising productivity. Nerves
takes care of all of the lower-level concerns, leaving you with only the appli-
cation-specific concerns. In addition, since you have the power of the Erlang
virtual machine at your fingertips, you can create concurrent real-time
applications leveraging all of the abstractions that you already use.

As you’ll see in this short book, Nerves allows you to create very capable IoT
applications in record time, without the pain and frustration of building
everything from scratch. In less than 100 pages you’ll have an end-to-end
solution for capturing and visualizing weather data, from the embedded Nerves
application capturing and publishing data to the Phoenix application that

1. https://phoenixframework.org/
2. https://hex.pm/packages/phoenix_live_view
3. https://www.nerves-project.org/

report erratum • discuss

https://phoenixframework.org/
https://hex.pm/packages/phoenix_live_view
https://www.nerves-project.org/
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

receives and persists the data. You can have a full stack Elixir solution all
the way from the embedded-hardware level without even breaking a sweat!

What You Will Build
To get hands-on experience with Nerves, you’ll be building a simple yet pow-
erful weather station. This book starts at the hardware layer first and focuses
on getting started with Nerves. After you get your Nerves-powered device up
and running, you’ll start writing the code necessary to retrieve sensor data
from your weather station sensors. After you get your Nerves application code
to a point where it needs to publish its collected data, you’ll shift your focus
to a lightweight Phoenix JSON API. The Phoenix JSON API will store the
captured weather data into TimescaleDB for efficient time-series querying.4

Once the Phoenix API is up and running, you’ll switch back to the Nerves
application code and write a lightweight HTTP-based data publisher that will
push environmental metrics to your Phoenix back end. With all the weather
data eventually finding its way into TimescaleDB, you’ll then leverage Grafana
to visualize all of the time-series data.5

How to Read This Book
This books takes you step by step through the process of building an end-to-
end IoT weather station—from data collection, data persistence, data visual-
ization, and everything in-between. As such, it’s strongly recommended that
you read this book cover to cover, as omitting steps may result in a nonfunc-
tional end product.

Who This Book Is For
This book is for any Elixir programmer that is comfortable with the basics of
the programming language and is interested in dabbling in the world of
embedded systems. No soldering or deep hardware experience is necessary,
given that you’ll be working with off-the-shelf plugin-and-play hardware.

Who This Book Isn’t For
If you’re just starting off with Elixir (welcome, by the way!) or struggle with
concepts such as GenServers and pattern matching, we highly suggest picking
up a more beginner-oriented Elixir book prior to starting this one. Luckily
there are some great resources out there such as Programming Elixir 1.6.6

4. https://www.timescale.com/
5. https://grafana.com/
6. https://pragprog.com/titles/elixir16/programming-elixir-1-6/

Introduction • x

report erratum • discuss

https://www.timescale.com/
https://grafana.com/
https://pragprog.com/titles/elixir16/programming-elixir-1-6/
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

While Elixir 1.6 came out a few years ago now, the core language hasn’t
changed much in that time, so the book will help you develop a solid Elixir
foundation. After you read that book, feel free to pick this one up again and
get your hands dirty with an IoT-based project.

Running the Code Exercises
Being able to build and run your application code will be key to understanding
the concepts outlined in this book. As such, it’s important that you have the
items outlined in the next couple sections so that you have everything you
need to complete the weather station project.

Software Requirements
Embedded hardware aside, you’ll need the following:

• Elixir version 1.9 or greater
• A Linux, MacOS, or Windows machine to do your development on
• A Linux, MacOS, or Windows machine to run your Phoenix API Server
• A wireless access point for your local area network
• The ability to run Docker containers

If you have all of those items, then you are good to go from a development
machine perspective, and all that’s needed is the Nerves-related hardware.

Hardware Requirements
While there is some flexibility with what hardware (like what version Raspberry
Pi) you can buy and from where, the following items were used by the authors:

• Raspberry Pi Zero W with headers
• Qwiic pHAT v2.0 for Raspberry Pi
• VEML6030 Light Sensor (Qwiic connection)
• BME680 Environmental Sensor (Qwiic connection)
• SGP30 Air Quality Sensor (Qwiic connection)
• Qwiic Connection Cables
• MicroUSB connection cables
• 4GB+ MicroSD card
• MicroSD card reader

If you don’t know what these things are or where to buy them, fear not—we
explain all of this in the first chapter.

report erratum • discuss

Running the Code Exercises • xi

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Online Resources
All of the code for this project can be found online at the Pragmatic Program-
mers web page for this book7 or in this GitHub repository.8 If you need any
assistance for all things Elixir and Nerves, be sure to check out the Elixir
Forums where you’ll find a vibrant community ready to help.9

7. https://pragprog.com/titles/passweather
8. https://github.com/akoutmos/nerves_weather_station
9. https://elixirforum.com/

Introduction • xii

report erratum • discuss

https://pragprog.com/titles/passweather
https://github.com/akoutmos/nerves_weather_station
https://elixirforum.com/
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

CHAPTER 1

Elixir and Nerves for IoT
In this book, we’ll be exploring the capabilities of the Elixir programming
language paired with the Nerves IoT (Internet of things) platform. To under-
stand how real-world Nerves applications are developed and structured, we’ll
be building a network-enabled IoT weather station. The Nerves-powered
weather station will be able to collect a wide array of sensor data and will
then publish that data to a lightweight Phoenix back-end application which
will be backed by a time-series database for efficient data storage and retrieval.

As you’ll see through the various stages of the project, having the power of
the Linux kernel at your disposal allows you to iterate quickly and to focus
on the important parts of your project—getting your weather station to read
sensor data and publish it over the network. Pair that with the power of the
concurrent, functional, and pragmatic Elixir programming language and you
have a recipe for a powerful yet simple, network-enabled, embedded IoT device.

You’ll start off the weather station sensor hub application by creating a
vanilla Nerves project and pushing that firmware to a Raspberry Pi. After
you’ve burned an initial firmware to the device, you’ll work on getting it onto
the wireless network so that you can communicate with your IoT device, even
when it’s not hooked up to your development machine. From there, you’ll
learn about organizing your Nerves projects and reading sensor data over
I2C. With all of your sensors hooked up and fetching data, you’ll add a com-
ponent to your Nerves application to publish data over the network.

Once you start developing network-enabled applications, the main features
of Elixir and OTP quickly jump to the forefront. Since networked software
must often wait for responses from remote servers, concurrency becomes
vitally important. In addition, given that complex software is more likely to
crash, the ability for OTP to restart itself becomes crucial. Finally, dealing
with complexity is easier in a higher-level language with more and better

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Frank says:

How Does Nerves Relate to Linux?
It’s important to differentiate the Linux kernel from all the libraries, shells, utilities,
and other software found on Linux systems. Nerves uses the Linux kernel for basic
operating services and device drivers such as those needed to use WiFi or operate a
camera. Nerves configures the Linux kernel so that it starts the BEAM and your
applications on boot.

Since OTP provides such a rich set of services out of the box, the usual Linux utilities
aren’t needed, and Nerves provides slim and efficient base images by default. In the
cases where you can’t avoid a Linux program or service, though, Nerves provides a
way to include those.a Elixir and the BEAM are always front and center with Nerves,
but you’re not locked into only using those technologies.

a. https://github.com/nerves-project/nerves/blob/main/docs/Customizing%20Systems.md

abstractions; Elixir’s functional programming model also presents plenty of
opportunities for higher productivity.

Before diving into the weather station project though, it’s important to first
discuss what IoT is at a high level and why Nerves is a good fit for the IoT
space.

Why Nerves for IoT?
IoT is all about having interconnected computational devices geographically
distributed to where they are able to perform their required work. In the
automotive industry, for example, an IoT device may be used to track the
whereabouts of a vehicle via GPS, detect when heavy-braking events occur
using accelerometers, or even capture data from the engine’s ECU (electronic
control unit) to see how it’s operating with regards to fuel economy. All of
these “things” can be measured and captured by IoT devices and then sent
via WiFi, Bluetooth, LTE, or NFC (near-field communication) to other systems
for further processing or long-term storage.

This need to capture and relay data from dynamic environments, is something
that spans many industries and sectors. IoT devices are being used in sectors
such as manufacturing, supply chain and logistics, agriculture, smart homes,
and even healthcare. What Nerves brings to the table when it comes to
developing IoT applications is the ability to use consumer-available hardware
(Raspberry Pi, BeagleBone, and even x86 powered hardware) without having
to build everything from scratch.

Chapter 1. Elixir and Nerves for IoT • 2

report erratum • discuss

https://github.com/nerves-project/nerves/blob/main/docs/Customizing%20Systems.md
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Specifically, Nerves provides the tooling and foundation to get a device from
zero to running a vanilla application in less than thirty minutes. A bunch of
community libraries are available to help you configure sensors, without
having to write any low-level code. Having the ability to deploy robust and
fault-tolerant IoT devices powered by Elixir, Nerves, and OTP can be a
strategic advantage for your business, or just plain fun if this is something
that powers a hobby of yours.

As you’ll see throughout this book, Elixir (and by extension Nerves) can provide
you the tools you need to get your IoT project up and running in record time!

Time-Series Sensor Hub
To experience the robustness of Elixir in an IoT setting, you’ll be leveraging
the Nerves framework and its many tools to build a sensor hub weather sta-
tion. The IoT sensor hub will collect weather data at a regular interval and
then publish that data to a Phoenix RESTful API. So that you can retrieve
this weather data for later review, your Phoenix server will be persisting that
sensor weather data into PostgreSQL.

While we could use a vanilla install of PostgreSQL for this project, the nature
of our data is time-series, and it would be best if we leverage a time-series
database. Specifically, it will be far more performant if we queried our sensor
data from a persistent datastore that supports time-series data as a first class
citizen. Luckily for us, a PostgreSQL extension solves this exact problem and
it’s called TimescaleDB.

By leveraging the TimescaleDB extension, you get all the benefits of using
PostgreSQL as well as utilities for dealing specifically with time-series data.
Under the hood, the TimescaleDB extension will automatically partition your
data by time and allow you to interact with this data as if it were all contained
within one database table. The database table that you interact with is also
known as a hypertable and is merely a facade for all of the time-sliced parti-
tions.1 This takes all the administrative overhead out of manually partitioning
tables and creating new partitions as days/weeks roll over in the database.
From the Elixir side of things, given that we are still interacting with a Post-
greSQL database, all of our database interactions still take place using Ecto.

As you’ll see from working on the project throughout this book, the pairing
of a time-series database with an IoT sensor hub is a very powerful technology
stack. For this particular project, we’ll be connecting to a wireless LAN and

1. https://docs.timescale.com/latest/introduction/architecture

report erratum • discuss

Time-Series Sensor Hub • 3

https://docs.timescale.com/latest/introduction/architecture
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Alex says:

Partitioning by Space
In addition to partitioning your data efficiently by time, TimescaleDB also allows you
to partition your data by space. What this means is that you can tell TimescaleDB
to further partition each hypertable by an additional dimension to extract even more
performance out of TimescaleDB. This additional dimension is derived from your
table’s schema and can be any other column aside from the timestamp column that
you used to create the hypertable.

Leveraging space partitioning can be useful when you have a dataset that is well
suited for time and space partitioning, but it can also decrease performance if the
dataset isn’t well suited.a In the context of IoT applications, it may be useful to space
partition inbound data by the device that it was published from or by a geographical
region where multiple devices have been deployed to.

a. https://docs.timescale.com/timescaledb/latest/how-to-guides/hypertables/best-practices/#space-partitions

will be publishing the measurements to a server running on the LAN. While
in a real-world setting these IoT devices may find themselves in remote loca-
tions well out of reach of a WiFi network, the proposed setup is suitable for
this application.

If you’re interested in building Nerves projects that run in remote environments,
be sure to check out the VintageNetMobile2 and VintageNetQMI3 projects to see
how you can leverage cellular modems from your embedded devices.

Laying Out the Architecture
Given that there are a number of components to this project (a time-series
database, a nerves sensor hub, and a Phoenix back-end API) and they all
operate at different layers, it would be beneficial to first visualize all the parts
and how they interact with one another. Let’s take a look at the architecture
diagram on page 5 and break down how the various components will work
with one another.

At the bottom left of the diagram you’ll notice that we have entries for Nerves
Weather Stations 1, 2, and N, which denotes that we can arbitrarily scale our
IoT fleet up and down as the need arises. In a real-world application, you may
have a vast number of sensor hubs deployed, all of which are reporting back

2. https://github.com/nerves-networking/vintage_net_mobile
3. https://github.com/nerves-networking/vintage_net_qmi

Chapter 1. Elixir and Nerves for IoT • 4

report erratum • discuss

https://docs.timescale.com/timescaledb/latest/how-to-guides/hypertables/best-practices/#space-partitions
https://github.com/nerves-networking/vintage_net_mobile
https://github.com/nerves-networking/vintage_net_qmi
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

to your server-side application. Thus the Phoenix API acts as the gateway for
all of the sensor data collected by your IoT devices.

Between our fleet of IoT sensor hubs and our Phoenix API is a network
interface. For the weather station application that we’ll be building throughout
this book, that network interface is the WiFi antenna built into the Raspberry
Pi, and our home LAN. For production use, this network interface could be
ethernet or LTE,4 depending on where your IoT device is deployed to.

Once our data is pushed from our Nerves IoT devices to our Phoenix API (via
HTTP), our server-side application will persist that data into our TimescaleDB-
enabled PostgreSQL instance. One of the reasons that TimescaleDB is a good
fit for the problem at hand is that it deals well with high-cardinality data.5

What Is Cardinality?

Cardinality, as it pertains to the data stored in a database, is a
measure of how many different values are present for a particular
field or column. For example, if you’re using UUIDs to capture a
user’s id, you will have high cardinality because each user will
have a unique ID. In other words, if you have 50,000 users, you
will have 50,000 possible values for the id column.

4. https://github.com/nerves-networking/vintage_net_mobile
5. https://blog.timescale.com/blog/what-is-high-cardinality-how-do-time-series-databases-influxdb-timescaledb-

compare

report erratum • discuss

Laying Out the Architecture • 5

https://github.com/nerves-networking/vintage_net_mobile
https://blog.timescale.com/blog/what-is-high-cardinality-how-do-time-series-databases-influxdb-timescaledb-compare
https://blog.timescale.com/blog/what-is-high-cardinality-how-do-time-series-databases-influxdb-timescaledb-compare
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

What Is Cardinality?

On the other hand, if you have have a column called user_type, for
example, and that is an enum with possible values of basic, admin,
and super_user, you would have low cardinality for the user_type col-
umn. The reason for this is that even if you have 50,000 users
stored in your database table, user_type can only be one of three
possible values.

After our Phoenix application has persisted our data into PostgreSQL, its
responsibilities with regards to that data are effectively over. We could possibly
extend our Phoenix application to return this data via a RESTful API or even
present the time-series data via a LiveView SVG chart.6 But in the spirit of
getting things up and running quickly, we’ll lean on the powerful yet simple
data visualization tool Grafana.7

Grafana has the ability to connect to a wide array of data sources like
Prometheus,8 InfluxDB,9 and even PostgreSQL+TimescaleDB.10 This will allow
us to host our own instance of Grafana (via Docker), which we can then
interact with, to visualize all of our time-series data as it is persisted into our
database.

With a high-level understanding of how all the pieces fit together and how
they communicate with one another, it’s time to dive deeper into the Nerves
side of things and see how you’ll be structuring your Nerves project.

Organizing Your Nerves Project
Before writing any code, it’s important to first understand the features that
will be required for the weather station and how we can go about organizing
the project structure. As you’ll shortly see, Nerves projects have their own
special organization structure that makes it really convenient for embedded
Elixir applications.

Planning the Features
Fundamentally, the weather station sensor hub project is composed of sensors,
a REST API interface, and a firmware project to manage the application life

6. https://github.com/mindok/contex
7. https://grafana.com/
8. https://prometheus.io
9. https://www.influxdata.com
10. https://grafana.com/docs/grafana/latest/datasources/postgres/

Chapter 1. Elixir and Nerves for IoT • 6

report erratum • discuss

https://github.com/mindok/contex
https://grafana.com/
https://prometheus.io
https://www.influxdata.com
https://grafana.com/docs/grafana/latest/datasources/postgres/
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

cycle. Let’s be a bit more specific, though. Here are the individual features
we need to build:

• Each sensor will need to have its own GenServer and will be responsible
for collecting its sensor’s measurements.

• Our network-enabled Raspberry Pi will have a GenServer that periodically
captures measurements from the connected sensors and publishes them
to our Phoenix REST API.

• The firmware project will be responsible for building the Nerves firmware,
starting all the sensor GenServers, and also starting the HTTP publisher
GenServer. This will act as the glue that brings together all our dependen-
cies and our externally sourced dependencies.

Let’s dig a little deeper into how we’ll be structuring the code for the weather
station.

Organizing the Project
If you’ve worked with Elixir projects before, you may know that they come in
two general flavors. The first being regular stand-alone Elixir applications
and the other being umbrella applications. The former can be used to house
a single Elixir application where dependencies are pulled from external sources
(like Hex, for example). The latter, on the other hand, allows you to have
multiple applications all colocated within the same mono-repo. In addition,
you can also have dependencies in the umbrella project for use by the separate
applications. While you can organize your Nerves applications in either of the
aforementioned ways, there’s another recommended method for organizing
Nerves projects called the poncho project.

In short, poncho projects provide an opportunity to isolate the Nerves-specific
code from dependencies, protect major interfaces, relegate complexity to one
layer at a time, and separate the concerns of packaging and distribution.
Poncho projects achieve this goal by grouping separate Elixir projects within
the same top-level directory structure. If an Elixir application in the poncho
project needs to reference a dependency that is also in the poncho project, it
does so by leveraging the path: "../adjacent_elixir_app" keyword list entry in your
mix.exs file.

This is particularly useful since each application in the poncho project can
maintain its own configuration files and you can burn your firmware from
the poncho application that is specific for Nerves. This is in contrast to an
umbrella project where all the applications share the same configuration files.

report erratum • discuss

Organizing Your Nerves Project • 7

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Frank says:

How Poncho Projects Came to Be
Early on, many people were interested in using Phoenix on their Nerves devices to
provide local management interfaces. Both Phoenix and Nerves have enough complex-
ity on their own that combining them in the same project was difficult. At the time,
technical issues prevented Elixir’s umbrella project from working, and Justin Schneck
found that using simple path dependencies in a mono-repo worked well and was easy
to explain. He coined the term poncho project for one of our early training classes to
differentiate the strategy from the more well-known umbrella project.

With that being said, let’s see how we’ll lay out the project. Here’s the poncho
project structure that we’ll follow (we’ll start building this in the next chapter,
but it’s useful to see how the project will be laid out):

└── sensor_hub_poncho
├── publisher
├── sensor_hub
└── veml6030

The sensor_hub_poncho top-level folder will typically be the one that serves as
your repository. It’s not an Elixir project per se, as you’ll create it with a plain
old mkdir instead of a mix new or mix nerves.new. Each of the subprojects within
sensor_hub_poncho is then a regular Elixir application with its own config/ directo-
ries and mix.exs files.

Important to note here is that the sensor_hub subproject is your firmware project.
Firmware projects only deal with configuration, life-cycle concerns, dependen-
cies, and glue code. As a result, you’ll need to add your other subprojects to
sensor_hub as you build out additional functionality and project dependencies.

Ponchos also often have two types of dependency projects. Hardware depen-
dency projects don’t need firmware because they usually write to hardware
interfaces. These projects are usually completely independent of specific
configuration. The veml6030 project is a great example of a hardware depen-
dency project, as it will only wrap the ambient light sensor.

The second kind of dependency project—the hardware-independent depen-
dency—is more interesting. If you think about it, placing as much code as
possible in hardware-independent layers makes sense because development
on hosts is often more productive than working on targets, since there’s no
firmware update cycle. Whenever you can, it’s important to move code from
hardware dependencies into hardware-independent dependencies. Our publisher
subproject will provide our HTTP API client implementation and is a great

Chapter 1. Elixir and Nerves for IoT • 8

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

example of an independent project. You’ll build the publisher subproject so that
it doesn’t need to integrate with specific hardware features.

Firmware projects will connect to dependency projects using path dependen-
cies.11 For the example, the sensor_hub subproject will have path dependencies
to the publisher and veml6030 subprojects in the mix.exs file. We’ll do the prepon-
derance of the configuration and dependency management in the firmware
project and as much of the rest of the project code as possible in the depen-
dency projects.

With a good sense as to how the Nerves application will be structured, we’ll
need to assemble our weather station before we can have it executing any
code. Let’s look into the hardware required for this project and how it all looks
once it’s assembled.

Assembling the Weather Station
To build our IoT sensor hub, we’ll need some sensors and a way to attach
those sensors to the board. Typically, sensors are tiny chips that must be
attached to circuit boards called breakout boards. These boards are beyond
the scope of this book, but the good news is that there are plenty of interfaces
and pre-built breakout boards at our disposal. We’re going to use a solderless
connect interface called Qwiic Connect System. Using the Qwiic Connect
System, we’ll be able to attach I2C12-compatible sensors to our Nerves IoT
and get up and running in record time.

What Is I2C?

Inter-Integrated Circuit (or I2C for short) is a communication
protocol that allows us to connect multiple external devices to one
or more host devices. The external devices (in our case sensors)
can all be daisy-chained together and communicate with the host
device over the same data bus.

You can set up your Raspberry Pi to support Qwiic Connect sensors by either
buying an easy to use header HAT,13 or if you are feeling more DIY, you can
also solder your own Qwiic Connect SHIM14 onto your Raspberry Pi. You can
also buy some sensors on breakout boards that already have Qwiic Connect
headers available, so that you can assemble the project quickly. Let’s take a
look at what’s needed to build the weather station.

11. https://hexdocs.pm/mix/Mix.Tasks.Deps.html
12. https://learn.sparkfun.com/tutorials/i2c/all
13. https://www.sparkfun.com/products/15945
14. https://www.sparkfun.com/products/15794

report erratum • discuss

Assembling the Weather Station • 9

https://hexdocs.pm/mix/Mix.Tasks.Deps.html
https://learn.sparkfun.com/tutorials/i2c/all
https://www.sparkfun.com/products/15945
https://www.sparkfun.com/products/15794
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Gathering the Hardware
A maker store called SparkFun is a good place to get sensors, so we’ll build
our whole project list from that site. These products come and go, and prices
frequently change, so be sure to shop around for the best deal. We’re going
to need a Raspberry Pi along with some supporting hardware, an environment
sensor, an air quality sensor, an ambient light sensor and a way to connect
it all using the Qwiic interface:

Raspberry Pi Zero W with headers15

The computer that will serve as our IoT sensor hub. You’re not limited to
only the Raspberry Pi Zero W, as Nerves supports a wide array of
embedded devices, but this one is the most cost-effective device out there.
If you get the Raspberry Pi with the headers pre-soldered then you can
easily connect your sensors to the 2x20 rows or pins.

Qwiic pHAT v2.0 for Raspberry Pi16

This board will allow you to easily connect Qwiic Connect breakout boards
to your Raspberry Pi and communicate with other I2C devices. As previ-
ously mentioned, you can opt for the SparkFun Qwiic SHIM for Raspberry
Pi instead if you’re looking for something cheaper and more DIY.

VEML6030 Light Sensor (Qwiic)17

A device that can detect light and connect to the Raspberry Pi over a
standardized interface called I2C.

BME680 Environmental Sensor18

A sensor to measure temperature, humidity, and barometric pressure,
and connect to the Raspberry Pi over I2C.

SGP30 Air Quality Sensor19

A sensor to detect air quality that can be chained to other sensors and
connected to the Raspberry Pi over I2C.

Qwiic Connection Cables20

If your sensors don’t come with these cables, get a few. They are usually
under a dollar.

15. https://www.sparkfun.com/products/15470
16. https://www.sparkfun.com/products/15945
17. https://www.sparkfun.com/products/15436
18. https://www.sparkfun.com/products/16466
19. https://www.sparkfun.com/products/16531
20. https://www.sparkfun.com/products/14426

Chapter 1. Elixir and Nerves for IoT • 10

report erratum • discuss

https://www.sparkfun.com/products/15470
https://www.sparkfun.com/products/15945
https://www.sparkfun.com/products/15436
https://www.sparkfun.com/products/16466
https://www.sparkfun.com/products/16531
https://www.sparkfun.com/products/14426
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

MicroUSB connection cables21

You’ll need to make a wired connection from your Raspberry Pi to your
computer to configure the network and to power the device.

4GB+ MicroSD card22

You’ll need a MicroSD card to store the Nerves firmware for your Raspberry
Pi. Anything with 4GB of capacity or greater will do fine.

Other I2C sensors23

You might want to connect other sensors over I2C as well. Use a Qwiic
connector, if possible, to connect to other sensors on the chain.

Assembling the Sensor Hub
The following picture shows all the components that we’ll be working with.
From breakout boards to Qwiic cables to the Raspberry Pi itself along with
the Qwiic Connect HAT, this is everything that we’ll need to capture environ-
mental data.

21. https://www.sparkfun.com/products/10215
22. https://www.sparkfun.com/products/15051
23. https://www.sparkfun.com/qwiic

report erratum • discuss

Assembling the Weather Station • 11

https://www.sparkfun.com/products/10215
https://www.sparkfun.com/products/15051
https://www.sparkfun.com/qwiic
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Putting together the sensor hub should feel like putting together a collection
of Lego pieces. The Qwiic Connect HAT should slide nicely on top of the
Raspberry Pi header pins, and from there you can daisy chain all the breakout
boards together (in no particular order, as I2C doesn’t dictate any particular
orientation), as shown in the following picture.

With your weather station assembled, you’re ready to start putting those
sensors to use and capturing weather data.

Your Turn
In this chapter we talked about why Elixir and Nerves are an excellent choice
for developing the IoT application and how we plan to use those tools to
develop a network-enabled weather station.

What You Built
While we didn’t get into any of the Elixir and Nerves code in this chapter, we
discussed what components we’ll need to build the project and even assembled
all of the hardware. This sets us up nicely for the next chapter, where we’ll
be writing all of our Nerves-specific code and will even pull sensor data
directly from our breakout boards.

Why It Matters
The material covered in this chapter was important in that it laid the founda-
tion for what we’ll be building, how these concepts align with the real world,

Chapter 1. Elixir and Nerves for IoT • 12

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

and how we might approach similar problems in the future given our toolbox
of Elixir and Nerves.

What’s Next
In the next chapter, we’ll be diving head first into the code that will power
our device. We’ll take all of the architecture-related concepts that we covered
in this chapter and will be putting them into practice in our Nerves sensor
hub poncho project.

report erratum • discuss

Your Turn • 13

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

CHAPTER 2

Wirelessly Reading Sensor Data
Now that we have a clear idea what we’ll be building and how we’ll be approach-
ing the problem, let’s start off by creating a brand-new Nerves project and
getting on to our home wireless network.

Creating a Network-Enabled Sensor Hub Project
To get things rolling we’re going to start by generating a new Nerves project,
then burning the firmware to the device, and finally connecting to the device
via SSH. Once we connect to the device over SSH, we’ll be able to configure
the network settings.

Installing the Nerves Project Generator

Prior to using the Nerves project generator and the Nerves CLI
tools, you’ll need to make sure that your workstation is correctly
set up. Be sure to visit the installation instructions on HexDocs
to get everything installed for your particular platform (MacOS,
Linux, or Windows).1

Once you have the Nerves tooling in place, we’ll start out by creating a top-
level directory that will house our poncho project. After that, we’ll change
directories into that top-level poncho directory and create a new Nerves project,
as we discussed in the previous chapter:

$ mkdir sensor_hub_poncho

$ cd sensor_hub_poncho

1. https://hexdocs.pm/nerves/installation.html

report erratum • discuss

https://hexdocs.pm/nerves/installation.html
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

$ mix nerves.new sensor_hub
* creating sensor_hub/config/config.exs
* creating sensor_hub/config/host.exs
* creating sensor_hub/config/target.exs
* creating ...

Your Nerves project was created successfully.

...

For the next series of commands, you need to tell Nerves what “target” you’re
acting upon. In other words, Nerves needs to know what platform it’s building
a firmware for. In this book we’ll be using a Raspberry Pi 0 Wireless, but if
you happen to have another Raspberry Pi model or even a BeagleBone, be
sure to check out the supported target list.2

Since you’ll be performing a few commands in rapid succession, it will be
easier if you export the target environment variable for the duration of your
terminal session. In addition, you’ll also need to have your MicroSD card
inserted into your workstation so that you can burn your first Nerves firmware
to the MicroSD card (make sure that the correct MicroSD card is being used
during the mix burn step if there are multiple MicroSD cards attached to your
workstation).

$ cd sensor_hub
$ export MIX_TARGET=rpi0

$ mix deps.get
...

$ mix firmware
...

$ mix burn
==> nerves
==> sensor_hub

Nerves environment
MIX_TARGET: rpi0
MIX_ENV: dev

Use 14.84 GiB memory card found at /dev/rdisk2? [Yn] y
100% [====================================] 33.32 MB in / 35.76 MB out
Success!
Elapsed time: 4.765 s

2. https://hexdocs.pm/nerves/targets.html#supported-targets-and-systems

Chapter 2. Wirelessly Reading Sensor Data • 16

report erratum • discuss

https://hexdocs.pm/nerves/targets.html#supported-targets-and-systems
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Setting up Device SSH Keys

When you’re trying to burn your firmware to your Raspberry Pi,
you may come across an error about a lack of SSH public keys:

** (Mix) No SSH public keys found in ~/.ssh. An ssh authorized ...
log into the Nerves device and update firmware on it using ssh.
See your project's config.exs for this error message.
Be sure to follow the directions laid out in the Nerves documenta-
tion to set up your SSH keys.3

And just like that, you have a super-slim Erlang-based firmware burned onto
your MicroSD card with your vanilla Elixir Nerves application! You can now
insert your MicroSD card into the Raspberry Pi and SSH over to it once it has
started up (you can leave your sensor hub assembled as it was at the end of
Chapter 1). Be sure that you’re also using a USB data cable and not a power-
only cable:

$ ssh nerves.local
...

iex(1)> hostname()
"nerves-dc74"

iex(2)> exit()
Connection to nerves.local closed.

Once you know the hostname of your Nerves device, you can also SSH into
it by using its name. For example, you could run ssh nerves-dc74.local instead of
ssh nerves.local and also connect to the Nerves device (be sure to replace nerves-
dc74.local with whatever the hostname of your device is).

As a side note, be sure to connect the USB cable from your workstation to
the port marked USB and not PWR IN. The reason for this is that the port marked
with USB enables you to have a virtual Ethernet network connection with the
Raspberry Pi, which is how you are able to SSH into the Raspberry Pi. The
first image on page 18 highlights which MicroUSB port you should use to
connect to your device to enable the virtual Ethernet connection:

You should now be up up and running if you’re able to SSH into the device!
If you’d like to terminate your IEx session, you can run the exit() function as
shown in the second image on page 18.

Now let’s get to work on understanding networking on the Nerves-powered
device and how to configure our wireless networking interface.

3. https://hexdocs.pm/nerves_firmware_ssh/readme.html#device-keys

report erratum • discuss

Creating a Network-Enabled Sensor Hub Project • 17

https://hexdocs.pm/nerves_firmware_ssh/readme.html#device-keys
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Getting on to the Network
As previously mentioned, you’re already networking with your project but
through a wired connection over the USB cable. Shelling into the Raspberry Pi
and updating firmware both use this USB network. Let’s take a look at the config-
uration that makes USB networking possible. Open up sensor_hub/config/target.exs:

config :vintage_net,
regulatory_domain: "US",
config: [

{"usb0", %{type: VintageNetDirect}},
{"eth0",
%{

type: VintageNetEthernet,
ipv4: %{method: :dhcp}

}},
{"wlan0", %{type: VintageNetWiFi}}

]

Chapter 2. Wirelessly Reading Sensor Data • 18

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

This config entry establishes the configuration for all of the networking needs
related to your project. The line of interest in this case is {"usb0", %{type: Vintage
NetDirect}}. The name usb0 is important in that it is the network interface name
that the Linux kernel uses to access the virtual USB Ethernet. The second
value in that first tuple is a configuration map that VintageNet4 uses under the
hood to configure that particular network interface. The VintageNetDirect module
configures a direct connection over usb0. While it accepts additional options,
the defaults work well for point-to-point Ethernet links like the one we’re
using.

Configuring the Wireless Network
As our project evolves, we’ll want to migrate away from using the USB cable
for networking and instead leverage WiFi. This will let us plug the Raspberry
Pi Zero W into a USB wall power supply or battery pack and run disconnected
from our workstation. You can either create a new access point on the Rasp-
berry Pi (that is, the Raspberry Pi is hosting its own WiFi network) or connect
to an existing access point.

We’re going to take the second option and connect to an existing access point.
If you want, you can configure the network connection directly in the target.exs
configuration file. While that approach will work, you need to be careful when
it’s time to check that configuration file into source control. Instead, we’ll take
another approach—we’ll shell into the Raspberry Pi and build a persistent
connection.

Before setting up our wireless network interface, we should do one more thing.
If we want our device to access the internet, we’ll need to add :inets to our
extra_applications list in mix.exs. Then, with our MIX_TARGET=rpi0 environment variable
exported, call mix firmware and mix upload. This new mix upload command will per-
form an upgrade of the firmware on the Nerves device, all over SSH. Now, it’s
time to configure the wireless network to make full use of our Raspberry Pi’s
wireless adapter.

Build a Persistent Wireless Configuration
To connect to a wireless access point, you’ll need to specify a configuration,
either in target.exs or by using VintageNet via remote IEx. To keep the configura-
tion out of source control, let’s add it via shelling into the Raspberry Pi. With
your Raspberry Pi hooked up via the USB cable, shell into your system:

4. https://github.com/nerves-networking/vintage_net

report erratum • discuss

Getting on to the Network • 19

https://github.com/nerves-networking/vintage_net
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

ssh nerves.local
...

iex(1)> VintageNet.configure("wlan0", %{
...(1)> type: VintageNetWiFi,
...(1)> vintage_net_wifi: %{
...(1)> networks: [%{
...(1)> key_mgmt: :wpa_psk,
...(1)> ssid: "<YOUR NETWORK NAME>",
...(1)> psk: "<YOUR WIRELESS PASSWORD>"
...(1)> }]
...(1)> },
...(1)> ipv4: %{method: :dhcp}
...(1)> })
:ok

After we shell into the device and configure the network, VintageNet will auto-
matically save that configuration to persistent storage on the Raspberry Pi.
Alternatively, you can use the abbreviated API that takes this form:

iex> VintageNetWiFi.quick_configure("<NETWORK NAME>", "<WIRELESS PASSWORD>")

With either approach, we can make use of IEx to make sure that the file is
on the device:

iex> ls "/data/vintage_net/wlan0"
/data/vintage_net/wlan0

We’re close to having our device decoupled from our workstation. All we need
to do now is disconnect the USB cable from the USB port, and then hook it up
to the other MicroUSB on the Raspberry Pi (the one marked PWR IN). The fol-
lowing image highlights the MicroUSB port that you should use for only
powering the device:

With that MicroUSB port only providing power to the device, we’ll be able to
check and see whether the wireless network is configured properly. You can

Chapter 2. Wirelessly Reading Sensor Data • 20

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

either plug the other end of the USB cable back into your computer to provide
power or use a USB power adapter. After giving the Raspberry Pi a minute or
so to boot up, you should be able to remote shell back into the Raspberry Pi
by running ssh nerves.local in the terminal. Once connected to the Nerves device,
run the following to ensure you have internet connectivity:

iex(1)> ping "akoutmos.com"
Press enter to stop
Response from akoutmos.com (52.73.87.228): time=31.992ms
Response from akoutmos.com (52.73.87.228): time=35.048ms
ctrl-c

Brilliant! We’re connected to our wireless network and to the Internet. Now,
enter this command to get info about the connection:

iex(1)> VintageNet.info()
VintageNet 0.9.3

All interfaces: ["lo", "usb0", "wlan0"]
Available interfaces: ["wlan0"]

Interface eth0
...

Interface usb0
...

Interface wlan0
Type: VintageNetWiFi
Present: true
State: :configured (28.7 s)
Connection: :internet (21.2 s)
Addresses: 192.168.1.52/24, fe80::ba27:ebff:fecb:8921/64
Configuration:

%{
ipv4: %{method: :dhcp},
type: VintageNetWiFi,
vintage_net_wifi: %{

networks: [
%{
key_mgmt: :wpa_psk,
mode: :infrastructure,
psk: "....",
ssid: "<YOUR NETWORK NAME>"

}
]

}
}

As you can see with the wlan0 entry, it’s present, it has an IP address, and it’s
connected. Since you know the IP address is 192.168.1.52, you can even ping

report erratum • discuss

Getting on to the Network • 21

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

it from your host. If you ever have any trouble, be sure to check out the tools
available to you via h Toolshed so that you can debug your network connection
troubles. With our device now hooked up to the wireless network, it’s time to
start reading data from our array of sensors.

Capturing Sensor Data
The interface we’ll be working with is Inter Integrated Circuit Protocol, or I2C
for short. It’s a protocol used to connect two integrated circuits. The standard
is a communications bus, meaning you can use it to attach multiple devices
connected together. You can have one controller connected to multiple periph-
erals, as we will, or even multiple controllers connected to multiple peripherals,
which comes in handy when you’re building more complex circuits.

Broadly, the protocol uses a system clock and voltages to send values between
devices. Each I2C device has an address, and we’ll typically send a request
and receive a response. We’ll read the spec sheet to find out exactly which
values you’ll need to interact with the light sensor.

Let’s download the spec sheet and see what it says.

Reading the Spec Sheet
If you look closely at our light sensor board, you’ll see that the underlying
sensor is the VEML6030 ambient light sensor. The chip maker has two
important PDFs, a spec sheet5 and an application guide,6 that define how to
interact with the sensor. All the details we need are there, but there’s a ton
of information, and if you don’t work with hardware every day, some of it
might be confusing. Sparkfun also has a guide7 with much of the information
we need to hook it up.

We’re going to express values in hexadecimal because it makes dealing with
the various bytes and bits the sensor needs easier. In Elixir, a hex value is
written in the form 0xff. The sensor has an address of 0x48. It also has a feature
called an interrupt that you can configure, but we won’t use it. If we wanted
to, we could trip the interrupt to fire when the sensor detects levels above or
below a certain threshold.

Instead, we’re interested in reading the value from the sensor and reporting
it over to our Phoenix API server. The sensor supports various sensitivities,

5. https://www.vishay.com/docs/84366/veml6030.pdf
6. https://www.vishay.com/docs/84367/designingveml6030.pdf
7. https://learn.sparkfun.com/tutorials/qwiic-ambient-light-sensor-veml6030-hookup-guide

Chapter 2. Wirelessly Reading Sensor Data • 22

report erratum • discuss

https://www.vishay.com/docs/84366/veml6030.pdf
https://www.vishay.com/docs/84367/designingveml6030.pdf
https://learn.sparkfun.com/tutorials/qwiic-ambient-light-sensor-veml6030-hookup-guide
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

called gains. The possible values are 1, 2, 1/8, and 1/4 , and we’re going to work
with a fairly low setting of 1/4 based on the advice in the Sparkfun guide.

The sensor also needs an integration time setting. The trade-off is that a
higher time takes longer but lets you measure dimmer light levels. The possible
values are 800, 400, 200, 100, 50, and 25. We’re going to use 100. That means
we’ll need to wait at least a tenth of a second between readings.

Remember, the readings we get back will have several different resolutions,
and that means the sensor value we get back will have to take that resolution
into account. There’s a conversion table in both the spec sheet8 and the
Sparkfun guide.9

Keep your spec sheets handy, because it’s time to use them to interact with
the device.

Fetching Sensor Data via Circuits.I2C
Now, it’s time to power up the Raspberry Pi and update our code a bit. You’ve
probably noticed any time your device has power, all the connected sensors
have a bright red LED that lights up. If you read the label right above the
LED, you’ll see it’s marked as PWR. This let’s us know the sensor is operational
and is ready to interface with our Raspberry Pi. If everything is correctly
assembled, your weather station should look like so when it has power:

8. https://www.vishay.com/docs/84366/veml6030.pdf
9. https://learn.sparkfun.com/tutorials/qwiic-ambient-light-sensor-veml6030-hookup-guide

report erratum • discuss

Capturing Sensor Data • 23

https://www.vishay.com/docs/84366/veml6030.pdf
https://learn.sparkfun.com/tutorials/qwiic-ambient-light-sensor-veml6030-hookup-guide
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Let’s open up mix.exs and add an additional dependency to our project. This
dependency allows us to interface with I2C sensors and is maintained by the
Elixir Circuits GitHub organization.10 All we need to do is add the following
to our sensor_hub/mix.exs file:

defp deps do
[

Dependencies for all targets
...
{:circuits_i2c, "~> 0.3.8"},

Dependencies for all targets except :host
...

Dependencies for specific targets
...

]
end

With that in place, run the following commands in your terminal so that you
can fetch your new dependency, create a new firmware, upload the new
firmware to your Raspberry Pi, and lastly, connect to the device after it has
rebooted (make sure you’re in the sensor_hub poncho project and MIX_TARGET=rpi0
has been exported):

$ mix deps.get
...

$ mix firmware
...

$ mix upload
...

$ ssh nerves.local
...

Now that we’re connected to the device (SSHing into the device may take a
minute while the new firmware is swapped for the old firmware), let’s alias
the Circuits.I2C library and see what devices are connected:

iex(1)> alias Circuits.I2C
Circuits.I2C

iex(2)> I2C.detect_devices()
Devices on I2C bus "i2c-1":
* 72 (0x48)
* 88 (0x58)
* 119 (0x77)

3 devices detected on 1 I2C buses

10. https://github.com/elixir-circuits/circuits_i2c

Chapter 2. Wirelessly Reading Sensor Data • 24

report erratum • discuss

https://github.com/elixir-circuits/circuits_i2c
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Excellent. You’ll notice that there are three devices connected to the I2C bus
(one entry for each of our sensors). Let’s play with the VEML6030 ambient
light sensor (which is device 0x48) from the IEx REPL to see if we can extract
a measurement reading.

A common I2C pattern is to write to a device and register and then read the
value that comes back. The Elixir Circuits library wraps up this write/read
pattern in a single function call. Reading the default setting will show how
the pattern works. The write_read!/4 function takes an i2c reference, a device
address, a register, and the number of bytes to read. The result will come
back as a 16-bit value, with the least significant byte first (also known as little-
endian). Since typical Elixir returns the most significant byte first (big-endian),
we’ll need to tweak the result. Let’s use the command to fetch register 0 to
see what the value is:

iex(1)> alias Circuits.I2C
Circuits.I2C

iex(2)> sensor = 0x48
72

iex(3)> command = <<0>>
<<0>>

iex(4)> byte_size = 2
2

iex(5)> {:ok, i2c_ref} = I2C.open("i2c-1")
{:ok, #Reference<0.1635386997.268828675.62058>}

iex(6)> <<value::little-16>> = I2C.write_read!(i2c_ref, sensor, command, 2)
<<1, 0>>

iex(7)> value |> inspect(base: :binary)
"0b1"

We start off by setting up a few constants for use throughout our REPL ses-
sion. Then we fetch a value from our I2C-enabled light sensor, and we finally
convert the value to binary to make it easier to compare to the spec sheet.
As you can see, the value of ob1 means that the device is turned off.

Let’s fix that.

The spec sheet tells us that we need to set bits 11 and 12 to 0b11 to set the
gain. The integration time setting is in bits 6 through 9, and we need to set
those all to 0. That’s convenient. We also need to set bit 0 to 0, to power things
up. We can set that value using a 16-bit binary number with the 0bxxxx syntax,
and then write to register 0 to open the sensor, like this:

report erratum • discuss

Capturing Sensor Data • 25

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

iex(8)> config = 0b0001100000000000
6144

iex(9)> Circuits.I2C.write(i2c_ref, sensor, <<0, config::little-16>>)
:ok

iex(10)> <<value::little-16>> = I2C.write_read!(i2c_ref, sensor, command, 2)
<<0, 24>>

iex(11)> value |> inspect(base: :binary)
"0b1100000000000"

We specify the sensor by building a 16-bit number using the bits on the spec
sheet. We get back an :ok, and then we read the register and get the same
number back. It’s open, and it’s configured just as we expect it to be.

With that done, our sensor is ready to use. The spec sheet says the light
reading is in register 4, so let’s read that value:

iex(12)> light_reading = 4
4

iex(13)> <<value::little-16>> =
...(13)> Circuits.I2C.write_read!(i2c_ref, sensor, <<light_reading>>, 2)

iex(14)> value
440

We get a value back. Now, put your hand over the sensor so that there’s less
light and see if the value is lower:

iex(15)> <<value::little-16>> =
...(15)> Circuits.I2C.write_read!(i2c_ref, sensor, <<light_reading>>, 2)

iex(16)> value
40

It’s lower, so the sensor is working as expected! But what do the numbers
mean? It turns out that we need to apply a conversion factor based on our
settings. If you read the application guide under the heading “Translating
ALS Measurement Results into a Decimal Value,” you’ll find a factor to use
for converting to lumens, a measurement of light for a rough conversion. In
some circumstances, such as working through tinted glass or very bright
lights, you’ll need to apply a correction formula, but the rough values will fit
our purposes just fine. Our conversion factor is 0.2304. Let’s write a quick
function in our IEx session to read, extract the value, and convert our mea-
surements to lumens:

iex(17)> measure_light = fn i2c, address ->
...(17)> <<value::little-16>> = I2C.write_read!(i2c, address, <<4>>, 2)
...(17)> value * 0.2304
...(17)> end

Chapter 2. Wirelessly Reading Sensor Data • 26

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

#Function<43.97283095/2 in :erl_eval.expr/5>

iex(16)> measure_light.(i2c_ref, sensor)
57.6

This function takes the data we’ve accumulated so far and rolls it up into a
convenient function. Now, drag your family or co-workers around the house,
trying your sensor in a variety of locations:

iex(18)> IO.puts("In the shade: #{measure_light.(i2c_ref, sensor)}")
In the shade: 64.512
:ok

iex(19)> IO.puts("In the sunlight: #{measure_light.(i2c_ref, sensor)}")
In the sunlight: 5339.9808
:ok

iex(20)> IO.puts("In the closet: #{measure_light.(i2c_ref, sensor)}")
In the closet: 1.3824
:ok

Marvelous! The sensor is reporting pretty broad and sensitive responses,
depending on the surrounding environment. Now we have a working sensor
for the hub. That’s a good start, and you also have a second sensor to try out.
It’s time for you to apply these techniques.

Your Turn
In this chapter, you found out why Elixir and Nerves provide an excellent
platform for creating network-enabled IoT devices. By leveraging the provided
Nerves networking tools, you were able to connect to your device, remotely
push firmware updates, and read live sensor data. All of this was possible
thanks to the solid foundation provided to us by Elixir and Nerves. This
allowed us to focus on the core of our problem as opposed to worrying about
the lower-level details.

What You Built
You created the first poncho project in the application using the Nerves mix
nerves.new command. With your newly created project, you were able to burn
your firmware to the device and SSH into it using the default wired connection
over a USB cable. With an active IEx REPL session, you were able to run a
few commands and establish a wireless connection. Thanks to the Nerves
VintageNet tooling, your network configuration was automatically saved so
that whenever the device reboots, it can connect to the wireless network
without any manual intervention from you.

report erratum • discuss

Your Turn • 27

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Sensors in Nerves typically use the I2C interface, and have broadly different
interfaces to access them. The typical model for working with them is to write
to one register to issue a command and read from another register as a
response. The Circuits.I2C library has some functions to make that process
easier, as you saw with the light sensor.

Why It Matters
This was your first pass at getting things up and running with Nerves and
our Raspberry Pi. You were able to accomplish a lot toward your end goal of
an environmental sensor hub with only a little configuration and some initial
set up. The important takeaway here is that you now have a development
workflow established where you can make code changes on your workstation
and then, over the wireless network, flash your device with an updated
firmware. This is one of the main benefits of Elixir and Nerves, in that you
can rapidly build and test your devices without out much ceremony.

What’s Next
This chapter got you ready for the work you’ll do in the next chapter, where
you’ll build a core and boundary layer in order to set up your sensor hub to
publish metrics to your Phoenix API server. You’ll also set up the remainder
of your sensors so that you can get a holistic view of the environment using
your Nerves-powered Raspberry Pi.

Chapter 2. Wirelessly Reading Sensor Data • 28

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

CHAPTER 3

Aggregating Sensor Data
Now that we have a productive development workflow in place, it’s time to
get our project into a production-level state. While connecting to our Nerves
device over the wireless network is a great way to validate that things are
working as expected, our goal is to get things working autonomously so that
sensor data can be aggregated and published automatically when the device
powers on. To achieve that, we’ll need to wrap each sensor in its own
GenServer1 and add it to our application supervision tree. That way we can
leverage the fault-tolerant and reliable properties of Erlang and OTP for our
IoT weather station.

Wrapping Sensors in GenServers
From the previous chapter, you already know the VEML6030 sensor works
well with the Circuits.I2C interface, and you can to interact with it by writing I2C
commands and reading the response. While users could call the sensor
straight from I2C, it would be nice to shield them from many tedious I2C
details. The spec sheets have details, such as configuration settings and
conversion factors, that our users shouldn’t have to know.

While we could put the GenServer wrapper directly in the sensor_hub project,
it would be better for our architecture to instead lean on the poncho project
structure and split this out into its own separate project. We can then lean
on Mix’s ability to resolve path dependencies and use our veml6030 project
directly from our sensor_hub firmware project.

With that said, let’s build a skinny GenServer wrapper. Later, if there’s a need
and if we build up a critical mass of features, we can extract it into a published

1. https://hexdocs.pm/elixir/GenServer.html

report erratum • discuss

https://hexdocs.pm/elixir/GenServer.html
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Hex package so the community can share the costs and benefits of working
with the project.

Navigate to the sensor_hub_poncho directory and create a new project:

$ mix new veml6030
$ cd veml6030

After the project is created, update the mix.exs file in the veml6030 subproject
to have the following dependencies (given that we need to communicate with
an I2C sensor, we’ll need the Circuits.I2C library):

defp deps do
[

{:circuits_i2c, "~> 0.3.8"}
]

end

The veml6030 subproject will be a basic dependency project. Supervision of the
VEML6030 GenServer will happen later in the sensor_hub firmware project, which
is responsible for starting and configuring those dependencies.

Since this project is complex, we’ll start our code where development is simple
and predictable. We’ll implement the hardest part of the project within the
core, the layer that builds commands for the sensor.

Build a Core from the Spec Sheet
Much of a typical hardware project is dedicated to moving bits and bytes
around in various configurations. Elixir bitstrings make quick work of such
tasks. The most difficult part of working with our light sensor is to send a
command that represents the configuration of the data we want to read.
Pretty much everything else is sending and receiving trivial one-byte com-
mands via I2C and reading the result.

Bruce says:

Construct |> Reduce |> Convert
CRC is a way to think about composing functions that mirror an Elixir pipe. Construc-
tors at the head of the pipe transform convenient inputs to a central type convenient
for consumption. Reducers in the middle of a pipe do a tiny bit of work. Converters
at the end of a pipe transform the central data type into data that’s convenient for
consumption. See this blog post for more information.a

a. https://redrapids.medium.com/learning-elixir-its-all-reduce-204d05f52ee7

Chapter 3. Aggregating Sensor Data • 30

report erratum • discuss

https://redrapids.medium.com/learning-elixir-its-all-reduce-204d05f52ee7
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Let’s create a file located at lib/veml6030/config.ex that represents an abstract
configuration. In it, you’ll build a constructor to build the individual compo-
nents, and a converter to convert to the configuration command you’ll even-
tually send. After you create a configuration, you’ll never change it, so there’s
no need for a reducer.

Let’s start of by creating the lib/veml6030/config.ex file one chunk at a time. Add
the following contents to lib/veml6030/config.ex:

defmodule VEML6030.Config do
defstruct [

gain: :gain_1_4th,
int_time: :it_100_ms,
shutdown: false,
interrupt: false

]

def new, do: struct(__MODULE__)
def new(opts), do: struct(__MODULE__, opts)

end

This new VEML6030.Config module will contain the configuration settings, includ-
ing settings for the integration time via :int_time and gain via :gain. We also in-
clude shutdown and interrupt settings in our struct since these features can
be supported through I2C.

With the constructor out of the way, let’s move on to the converter. It will use
bit strings and small custom functions that plug in individual values, straight
from the spec sheet, like this:

defmodule VEML6030.Config do
...

def to_integer(config) do
reserved = 0
persistence_protect = 0

<<integer::16>> = <<
reserved::3,
gain(config.gain)::2,
reserved::1,
int_time(config.int_time)::4,
persistence_protect::2,
reserved::2,
interrupt(config.interrupt)::1,
shutdown(config.shutdown)::1

>>

integer
end

end

report erratum • discuss

Wrapping Sensors in GenServers • 31

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

That’s the overall format of the command. You can see that it translates
directly to the spec sheet, and that makes us happy. Now we’ll build short
functions using pattern matching to handle each of the settings, like this:

defmodule VEML6030.Config do
...

defp gain(:gain_1x), do: 0b0
defp gain(:gain_2x), do: 0b01
defp gain(:gain_1_8th), do: 0b10
defp gain(:gain_1_4th), do: 0b11
defp gain(:gain_default), do: 0b11

defp int_time(:it_25_ms), do: 0b1100
defp int_time(:it_50_ms), do: 0b1000
defp int_time(:it_100_ms), do: 0b0000
defp int_time(:it_200_ms), do: 0b0001
defp int_time(:it_400_ms), do: 0b0010
defp int_time(:it_800_ms), do: 0b0011
defp int_time(:it_default), do: 0b0000

defp shutdown(true), do: 1
defp shutdown(_), do: 0

defp interrupt(true), do: 1
defp interrupt(_), do: 0

end

These tiny functions are super-simple. Each one converts a configuration
setting to the bits from the spec sheet that trigger the command. All that
remains is a conversion factor that the user will apply to each measurement.
Since the conversion factor is based on the configuration, we’ll put it in a
module attribute and translate it within the configuration, like this:

defmodule VEML6030.Config do
There's more to this lumens factor map. For the full listing see
the nerves_code/veml6030/lib/veml6030/config.ex file in the
https://github.com/akoutmos/nerves_weather_station repo.
@to_lumens_factor %{

{:it_800_ms, :gain_2x} => 0.0036,
{:it_800_ms, :gain_1x} => 0.0072,
{:it_800_ms, :gain_1_4th} => 0.0288,
{:it_800_ms, :gain_1_8th} => 0.0576,
...

}

def to_lumens(config, measurement) do
@to_lumens_factor[{config.int_time, config.gain}] * measurement

end
end

Chapter 3. Aggregating Sensor Data • 32

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

This table is pretty long, so we’ve omitted much of it. If you would like to see
the whole table, check out the GitHub project in the comment. Let’s take it
for a quick test drive on our host development machine by running iex -S mix:

iex(1) ▶ VEML6030.Config.new()
%VEML6030.Config{

gain: :gain_1_4th,
int_time: :it_100_ms,
interrupt: false,
shutdown: false

}

iex(2) ▶ VEML6030.Config.new() |>
...(2) ▶ VEML6030.Config.to_integer() |>
...(2) ▶ inspect(base: :hex)
"0x1800"

iex(3) ▶ [gain: :gain_1x] |>
...(3) ▶ VEML6030.Config.new() |>
...(3) ▶ VEML6030.Config.to_integer() |>
...(3) ▶ inspect(base: :hex)
"0x0"

If you check the VEML6030 spec sheet, you’ll see that these values are all
correct. Now we need to consume these functions in a hardware layer.

Create Boundary Hardware Layer
The lib/veml6030/config.ex file does a good job of representing a configuration,
both abstractly and in bytes. It also shields the user from tedious ceremony
by choosing sane defaults, although it’s only a solution to part of the problem
of interacting with this sensor, as it doesn’t yet interact with the hardware.

We already know how to open the device using Circuits.I2C, but there’s also
another function called discover_one!/1 that we can use to simplify the experience.
Create a file called lib/veml6030/comm.ex and start by adding this:

defmodule VEML6030.Comm do
alias Circuits.I2C
alias VEML6030.Config

@light_register <<4>>
end

We alias the core we made and the Circuits.I2C hardware interface. Now it’s time
to make use of that new discover_one!/1 function:

defmodule VEML6030.Comm do
...

report erratum • discuss

Wrapping Sensors in GenServers • 33

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

def discover(possible_addresses \\ [0x10, 0x48]) do
I2C.discover_one!(possible_addresses)

end
end

Different IoT devices and different sensors present different combinations of
buses and addresses. By narrowing the list of addresses to only a few possi-
bilities, the I2C library can scan for a working bus and sensor. Then we can
present an API to open the sensor, raising on a failure, like this:

defmodule VEML6030.Comm do
...

def open(bus_name) do
{:ok, i2c} = I2C.open(bus_name)

i2c
end

end

It’s just an I2C.open/1 and a pattern match. Since we have an interface that
can build the configuration command, writing the configuration becomes a
trivial I2C write:

defmodule VEML6030.Comm do
...

def write_config(configuration, i2c, sensor) do
command = Config.to_integer(configuration)

I2C.write(i2c, sensor, <<0, command::little-16>>)
end

end

We take the configuration, convert it to a command, and write it. Notice that
the command register is 0, and the spec sheet says commands must be sent
as a 16-bit little-endian encoding. In Elixir, we do so by expressing 16-bit
bytes—with the least significant byte first—using the ::little-16 encoding.

Now we can read and unpack the result by writing the register name and
converting the result to lumens.

defmodule VEML6030.Comm do
...

def read(i2c, sensor, configuration) do
<<value::little-16>> =
I2C.write_read!(i2c, sensor, @light_register, 2)

Config.to_lumens(configuration, value)
end

end

Chapter 3. Aggregating Sensor Data • 34

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

That all works fine. We’ll wait to exercise this code until we’re able to stand
up the GenServer and reference it from the sensor_hub project. For now, it’s
time to move on.

Wrap the Core and Hardware in a GenServer
It’s customary to wrap sensors in OTP GenServers because there are often
requirements to read from them periodically to get consistent readings. In our
case, the wrapping is also practical because the code must wait between readings.
The amount of time is specified in the sensor’s spec sheet. By periodically taking
measurements every second, we’ll be fine. Let’s build a GenServer to do so.

Since the GenServer will also double as the API for the whole project, we can
put the GenServer in the top-level lib/veml6030.ex file. Go ahead and delete the
module code created by mix new and start with the GenServer boilerplate:

defmodule VEML6030 do
use GenServer

require Logger

alias VEML6030.{Comm, Config}
end

Here we use, require, and alias various dependencies as needed. Next, add
two versions of the init/1 GenServer callback, like so:

defmodule VEML6030 do
...

@impl true
def init(%{address: address, i2c_bus_name: bus_name} = args) do

i2c = Comm.open(bus_name)

config =
args
|> Map.take([:gain, :int_time, :shutdown, :interrupt])
|> Config.new()

Comm.write_config(config, i2c, address)
:timer.send_interval(1_000, :measure)

state = %{
i2c: i2c,
address: address,
config: config,
last_reading: :no_reading

}

{:ok, state}
end

end

report erratum • discuss

Wrapping Sensors in GenServers • 35

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

This version creates a configuration and opens the I2C bus. It also sends a
periodic message to itself at a one-second interval. Then it sets the state of
the GenServer.

Now we can write an alternative init to discover the address and bus if they’re
not set, like this:

defmodule VEML6030 do
...

def init(args) do
{bus_name, address} = Comm.discover()
transport = "bus: #{bus_name}, address: #{address}"

Logger.info("Starting VEML6030. Please specify an address and a bus.")
Logger.info("Starting on " <> transport)

defaults =
args
|> Map.put(:address, address)
|> Map.put(:i2c_bus_name, bus_name)

init(defaults)
end

end

If either the address or bus is not there, the code automatically discovers the
sensor, creates a set of default configurations, and calls our prior init/1
implementation. Next, we’ll write the GenServer callbacks to handle our
:measure message that’s sent at a regular one-second interval and the
:get_measurement message that returns the GenServer’s last measurement
reading:

defmodule VEML6030 do
...

@impl true
def handle_info(

:measure,
%{i2c: i2c, address: address, config: config} = state

) do
last_reading = Comm.read(i2c, address, config)
updated_with_reading = %{state | last_reading: last_reading}

{:noreply, updated_with_reading}
end

@impl true
def handle_call(:get_measurement, _from, state) do

{:reply, state.last_reading, state}
end

end

Chapter 3. Aggregating Sensor Data • 36

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

The handle_info/2 callback, which handles the :measure message, updates the
:last_reading key in our GenServer state based on the response from our Comm
module. This updated GenServer state now contains the latest light measure-
ment from the VEML6030 sensor.

To make this data easily accessible, we’ll also want to add a couple of public
API functions:

defmodule VEML6030 do
...

def start_link(options \\ %{}) do
GenServer.start_link(__MODULE__, options, name: __MODULE__)

end

def get_measurement do
GenServer.call(__MODULE__, :get_measurement)

end

...
end

Our start_link/1 function wraps the GenServer start_link/3 function and sets the
name of the GenServer process to VEML6030 (the name of the module). The
get_measurement/0 function is another GenServer wrapper that makes it easier
to fetch the light measurement from the GenServer process. Since we gave
our GenServer the :name option, we can call it directly via __MODULE__ (think of
this as a singleton process).

Let’s go ahead and test all of this out on our Raspberry Pi. Open up the mix.exs
file in the sensor_hub subproject and add the following to your dependencies:

defp deps do
[

...

Dependencies for all targets except :host
{:veml6030, path: "../veml6030", targets: @all_targets},
...

]
end

Then, in a terminal session, run the following commands to burn the firmware
to the device (assuming that your Raspberry Pi is connected to the wireless
network and that you have exported MIX_TARGET=rpi0):

$ cd sensor_hub
$ mix deps.get
...

$ mix firmware
...

report erratum • discuss

Wrapping Sensors in GenServers • 37

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

$ mix upload
...

You may have to wait a little until the device reboots
$ ssh nerves.local
...

After you connect to the Raspberry Pi over SSH, run the following commands:

iex(1)> VEML6030.start_link()
{:ok, #PID<0.1278.0>}

iex(2)> VEML6030.get_measurement() # Hand covering the sensor
6.4512

iex(3)> VEML6030.get_measurement() # Hand not covering the sensor
71.6544

As you can see, we’re able to get sensor readings from our VEML6030 GenServer
without any issues. The only problem here is that we need to manually start
our GenServer process from the IEx session and nothing is in place to
supervise it in the event that it crashes. Luckily OTP provides us all the con-
structs necessary to have our GenServers be fault tolerant and highly avail-
able. Let’s tackle that in the next section as we complete the configuration
and glue code in the sensor_hub firmware project.

Build the Firmware Project
The sensor_hub subproject is the head honcho of the ponchos. Firmware projects
exist for each major configuration of a project. For example, if you decide to
deploy sensor hubs around your home, you might opt for a wind gauge on a
Grisp2 outside but an air quality sensor on a Raspberry Pi Zero inside. If so,
you’d create a subproject for each one.

Each firmware subproject is responsible for collecting dependencies, config-
uring the target, providing glue code, and managing the life cycle of the device
that it’s deployed to. That means you will not see many lib/*.ex files, beyond
glue code and the supervisor in application.ex. Most of the code you build will
be in config.exs, possibly a few tests in test/*_test.exs, and the dependencies in
mix.exs.

The sensor_hub project will handle dependencies, manage configuration, provide
glue code, and implement the application life cycle. These are the tasks that
we’ll need to do:

2. https://www.grisp.org

Chapter 3. Aggregating Sensor Data • 38

report erratum • discuss

https://www.grisp.org
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

• Add the path and hex dependencies the project needs.

• Provide configuration for the project.

• Create sensor wrappers so each sensor will present a uniform interface
in lib/sensor_hub/sensor.ex.

• Start each of the sensor dependencies and the HTTP data publisher.

Let’s start with a bit of common configuration that will establish our applica-
tion life cycle and set the network name of our device.

Configure the Name
In the spirit of configuring our project, let’s set the name. Open up config/tar-
get.exs in the sensor_hub project. Remember, this is the configuration file that
works on all targets except the host. Let’s name the node hub to keep it short
and descriptive:

config :mdns_lite,
...comments...
host: [:hostname, "hub"],

From now on, you’ll refer to the Nerves device as hub.local rather than nerves.local.
After you upload the completed application and the target restarts, you’ll use
the command mix upload hub.local to upload firmware and ssh hub.local to connect
to the device.

With a shiny new name in hand, it’s time to configure the first few sensor
dependencies.

Include Dependencies for Sensors
In the previous section we added our veml6030 subproject as a path dependency
in our sensor_hub subproject. That is what allowed us to query the sensor for
light measurements while we were connected to the device over SSH. You
may be wondering what we’ll do to connect to the other two sensors daisy-
chained together (the SGP30 and BME680 sensors). To answer that question
we’ll turn to the Elixir ecosystem and lean on open source packages published
to Hex.

The BME680 sensor already has a couple dependencies on Hex. The best one
as of this writing is the bmp2803 project (this project covers a wide array of
Bosch sensors including our BME680). Make sure you get version 0.2.5 or

3. https://hex.pm/packages/bmp280

report erratum • discuss

Build the Firmware Project • 39

https://hex.pm/packages/bmp280
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

greater because Nerves co-founder Frank Hunleth has done some work to
make the dependency work for this book. (Thanks, Frank!).

The SGP30 sensor also has a package available for it on Hex.4 At the time of
this writing, 0.2.0 was the latest version of this library, so we’ll be using that.

Let’s go ahead and update our mix.exs file in the sensor_hub subproject to leverage
these community libraries. Make sure that your deps function looks like so:

defp deps do
[

...

Dependencies for all targets except :host
{:veml6030, path: "../veml6030", targets: @all_targets},
{:sgp30, "~> 0.2.0", targets: @all_targets},
{:bmp280, "~> 0.2.5", targets: @all_targets},
...

]
end

With that done, run mix deps.get to fetch all of the new project dependencies.
Now we can take the project for a test drive. Burn firmware with mix firmware,
and upload it with mix upload hub.local. Next, we’ll shell in and play around with
the new sensors.

Trying the New Sensors
While the project may not be fully configured yet, we’re making progress, and
it’s our first chance to try out the BME680 and SGP30 sensors. After you’ve
connected to the device via ssh hub.local, run the following commands:

iex(1)> SGP30.start_link([])
{:ok, #PID<0.1309.0>}

iex(2)> SGP30.state()
%SGP30{

address: 88,
co2_eq_ppm: 400,
ethanol_raw: 16681,
h2_raw: 12746,
i2c: #Reference<0.1234438711.268828680.114585>,
serial: 22277397,
tvoc_ppb: 0

}

iex(3)> BMP280.start_link([i2c_address: 0x77, name: BMP280])
{:ok, #PID<0.1312.0>}

4. https://hex.pm/packages/sgp30

Chapter 3. Aggregating Sensor Data • 40

report erratum • discuss

https://hex.pm/packages/sgp30
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

iex(4)> BMP280.read(BMP280)
{:ok,
%BMP280.Measurement{

altitude_m: 70.54530262376304,
dew_point_c: 8.70336750857366,
gas_resistance_ohms: 1616.047839376146,
humidity_rh: 37.11383545983376,
pressure_pa: 99166.5629969961,
temperature_c: 24.274734566038205,
timestamp_ms: 245233

}}

It all works, but each sensor packs up its information differently. The SGP30
sensor returns a struct, the BMP280 returns a result tuple, and our VEML6030
sensor library returns a single value. Let’s fix that problem with a sensor wrapper.

Normalize Sensor Measurements with Glue Code
Let’s write a few functions to normalize the sensor measurements so we can
read each sensor in the same way and convert them to measurements that
all have the same format. Each sensor will have a struct with the fields it
measures, a read function to measure them, a convert function to normalize
those measurements, and a name, which will be the module that implements
the sensor. In the sensor_hub firmware project, let’s open up a new file at
lib/sensor_hub/sensor.ex and start with the struct definition:

defmodule SensorHub.Sensor do
defstruct [:name, :fields, :read, :convert]

end

Each sensor will track the fields that it measures and will have functions that
know how to read and write to each sensor. Let’s now add the constructor
for this struct as well as the field reading functions:

defmodule SensorHub.Sensor do
...

def new(name) do
%__MODULE__{
read: read_fn(name),
convert: convert_fn(name),
fields: fields(name),
name: name

}
end

def fields(SGP30), do: [:co2_eq_ppm, :tvoc_ppb]
def fields(BMP280), do: [:altitude_m, :pressure_pa, :temperature_c]
def fields(VEML6030), do: [:light_lumens]

end

report erratum • discuss

Build the Firmware Project • 41

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

The constructor creates a new sensor, tracking all of the data we’ll later need
to interact with it or measure it. The name and fields attributes track the name
of the sensors and measurements it collects. We use pattern matching to
extract the desired fields, depending on the sensor type. We’ll also need to in-
teract with each sensor, so let’s write functions that know how to read a
measurement, like so:

defmodule SensorHub.Sensor do
...

def read_fn(SGP30), do: fn -> SGP30.state() end
def read_fn(BMP280), do: fn -> BMP280.measure(BMP280) end
def read_fn(VEML6030), do: fn -> VEML6030.get_measurement() end

def convert_fn(SGP30) do
fn reading ->
Map.take(reading, [:co2_eq_ppm, :tvoc_ppb])

end
end

def convert_fn(BMP280) do
fn reading ->
case reading do

{:ok, measurement} ->
Map.take(measurement, [:altitude_m, :pressure_pa, :temperature_c])

_ ->
%{}

end
end

end

def convert_fn(VEML6030) do
fn data -> %{light_lumens: data} end

end
end

Like our fields/1 function, we leverage pattern matching for these functions to
calculate the values we need for each of the sensor types. You might recognize
these conversion functions because we used the same techniques while we
were experimenting with our device via our SSH session. Finally, we can
abstract out a measurement with a convenience function, like this:

defmodule SensorHub.Sensor do
...

def measure(sensor) do
sensor.read.()
|> sensor.convert.()

end
end

Chapter 3. Aggregating Sensor Data • 42

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

That’s all our glue code needs to do. We take a sensor, read a value, and then
convert the value to a valid measurement. We can use these new functions
to simplify our sensor interaction work. Let’s test all of this out by creating
an updated firmware, uploading it, and SSHing into our device. After you
connect to your device, run the following:

iex(1)> SGP30.start_link([])
{:ok, #PID<0.1343.0>}

iex(2)> BMP280.start_link([i2c_address: 0x77, name: BMP280])
{:ok, #PID<0.1345.0>}

iex(3)> alias SensorHub.Sensor
SensorHub.Sensor

iex(4)> gas = Sensor.new(SGP30)
%SensorHub.Sensor{

...
}

iex(5)> environment = Sensor.new(BMP280)
%SensorHub.Sensor{

...
}

iex(6)> Sensor.measure(gas)
%{co2_eq_ppm: 413, tvoc_ppb: 4}

iex(7)> Sensor.measure(environment)
%{

altitude_m: 71.55274464815629,
pressure_pa: 99154.70173348083,
temperature_c: 25.223801961747085

}

Everything is working splendidly. Thus far, the firmware subproject contains
code for dependencies, configuration, and a tiny amount of glue code. If we
wanted, we could build out tiny sensor hubs for custom Raspberry Pis, all
with their own set of custom sensors in firmware projects of their own. Now
all we need to do is write the code to manage the life cycle of our devices.

Managing the Life Cycle
The application.ex file is often the first module called by Elixir within a new
application. It implements a supervisor and is a convenient point for attaching
initial startup features. For the purposes of this project, we also need to start
the sensors and server publisher services (we’ll tackle the publisher in the
next chapter). Most of the configuration will go in the application.ex file as
arguments to each of the new GenServers we start.

report erratum • discuss

Managing the Life Cycle • 43

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Setting up the Supervision Tree
Open up lib/sensor_hub/application.ex in the sensor_hub subproject, and let’s fill out
the small functions that will start the pieces of the firmware project. Let’s
begin with the children/1 function (specifically the version that pattern matches
on _target):

defmodule SensorHub.Application do
...

def children(_target) do
The sensors will fail on the host so let's
only start them on the target devices.
[
{SGP30, []},
{BMP280, [i2c_address: 0x77, name: BMP280]},
{VEML6030, %{}}

]
end

...
end

This code should look slightly familiar. If you recall from our IEx sessions,
when we started the sensor GenServers manually, we had to pass certain
options to their start_link/1 functions for them to work properly. Instead of doing
that ourselves manually on application start, we’ll let our application super-
visor take care of that now.

Let’s also update our start/2 callback and ensure that it looks like so:

defmodule SensorHub.Application do
...

@impl true
def start(_type, _args) do

See https://hexdocs.pm/elixir/Supervisor.html
for other strategies and supported options
opts = [strategy: :one_for_one, name: SensorHub.Supervisor]

children = children(target())

Supervisor.start_link(children, opts)
end

...
end

As we can see here, our supervisor is provided the list of child processes,
depending on what target we’re running on. If you look at the Nerves-gener-
ated code, the version of children/1 that matches on :host has no child processes,

Chapter 3. Aggregating Sensor Data • 44

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

while our Raspberry Pi target contains all of our sensors (this value is provided
by the target/0 function). This means that any time we run this project on our
workstation, we won’t be starting up any of our sensor GenServers, which
makes sense given that the sensors are only supposed to run when the project
is running on our Raspberry Pi.

With our application life-cycle code set up in our supervisor, it’s time to test
it all out and make sure that things start up and behave as expected.

Trying It Out
With our code up-to-date, it’s time to create an up-to-date firmware via mix
firmware, upload the firmware with mix upload hub.local, and then connect to the
device with ssh hub.local. After we connect to the device, we can run the following
commands to introspect the device and ensure that our sensor GenServers
are up and running:

iex(1)> Supervisor.which_children(SensorHub.Supervisor)
[

{VEML6030, #PID<0.1287.0>, :worker, [VEML6030]},
{BMP280, #PID<0.1286.0>, :worker, [BMP280]},
{SGP30, #PID<0.1285.0>, :worker, [SGP30]}

]

iex(2)> alias SensorHub.Sensor
SensorHub.Sensor

iex(3)> BMP280 |> Sensor.new() |> Sensor.measure()
%{

altitude_m: 77.29732484024902,
pressure_pa: 99087.08904119114,
temperature_c: 25.63860611162145

}

By running the which_children/1 call in IEx, we’re able to see what child processes
are under the provided supervisor. As you can see, our Nerves application
started up all of the GenServers that were specified in the application.ex file, and
you were even able to interact with the BMP280 sensor to get sensor data.

Your Turn
In this chapter, we took what we learned from the previous sections and put
it all together to create a Nerves application that starts up by itself, initializes
all of the sensor hardware, and refreshes sensor measurements automatically.

report erratum • discuss

Your Turn • 45

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

What You Built
You started the chapter by creating the veml6030 subproject and creating the
stateless components to work with your light sensor. These stateless compo-
nents were derived from the VEML6030 spec sheet and were needed to con-
figure and communicate with the sensor. Once you had these things in place,
you added a stateful element to the mix—namely the VEML6030 GenServer
module. This GenServer would regularly poll the sensor and store the results
in its state. You could then read from this state at any point to get an up-to-
date reading on the ambient light in the room.

After creating the veml6030 sensor subproject, you were able to lean on the
Elixir and Nerves ecosystem to pull down libraries for working with the addi-
tional weather station sensors. You then configured your application supervi-
sion tree to start up all of your sensors on device init, and added some glue
code to make it easy to fetch data from all of the sensors.

Why It Matters
This chapter walked through exactly how to structure your Nerves applications
so that they are bulletproof and production ready. While SSHing into devices
and configuring them ad hoc is acceptable for development and experimenta-
tion, we need to leverage the OTP available to us to create a reliable and fault-
tolerant IoT experience. By using GenServers and Supervisors, we were able
to accomplish just that.

What’s Next
Now that your Nerves application is almost complete, it’s time to set up a
Phoenix REST API so that you can publish and persist your sensor data to
PostgreSQL+TimescaleDB. Once you have an HTTP server up and running,
you’ll revisit your Nerves application and add a data publisher subproject to
the poncho project, similarly to how you created the veml6030 subproject.

Chapter 3. Aggregating Sensor Data • 46

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

CHAPTER 4

Publishing Sensor Data
With the hardware side of the project almost complete, it’s time to create a
Phoenix-powered REST server so that you can persist your weather station
data. SSHing into the device in an “on-demand” fashion is great for validating
that things are working, but in a production-grade application, you’ll need a
database to house all that data. For this particular project (as well as many
other IoT applications), the database of choice is a time-series database.
Luckily PostgreSQL has a time-series extension called TimescaleDB, so you
can use all of the great Elixir PostgreSQL tooling without any issues (namely
Ecto1).

The only things that you’ll need to have installed on your workstation are
Docker2 and Docker Compose.3 Once you install both of those for your specific
platform, you’re ready to dive in!

Setting up Docker Compose
While proficiency with Docker and Docker Compose isn’t required, if you’re
interested in learning more about how Docker works and why it’s a useful
piece of technology, we suggest going through the Docker documentation4

and familiarizing yourself with some of the terminology and concepts surround-
ing containerized applications. In short, you can think of containers as very
slim virtual machines (or VMs for short). The key difference is that VMs have
separate kernels for each instance, while containers share the underlying
operating system kernel. With that being said, let’s start off by standing up
PostgreSQL so that your Phoenix application has a database to talk to.

1. https://hex.pm/packages/ecto
2. https://docs.docker.com/get-docker/
3. https://docs.docker.com/compose/install/
4. https://docs.docker.com/get-started/overview/

report erratum • discuss

https://hex.pm/packages/ecto
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://docs.docker.com/get-started/overview/
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Adding PostgreSQL to the Stack
You’ll first want to create a vanilla Phoenix application so that you have
somewhere to put your docker-compose.yml configuration file. If you don’t already
have the Phoenix project generator installed on your machine, do so by run-
ning mix archive.install hex phx_new 1.5.8. After that is in place, find a directory on
your workstation to create your Phoenix application by running the following:

$ mix phx.new weather_tracker \
--binary-id --no-webpack --no-html --no-gettext --no-dashboard

This command will create a vanilla Phoenix application with binary IDs, no
front-end related tooling, no LiveDashboard, and no internationalization
tooling. You can enable these disabled items as you see fit, but given that
this is strictly a RESTful service, these other components aren’t necessary.

With your new vanilla application in place, go ahead and run cd weather_tracker
&& touch docker-compose.yml to change into the application directory and create
the docker-compose.yml file. Using your editor now, add the following to the
docker-compose.yml file, and we’ll walk through what each bit does:

version: '3.3'

services:
postgres:

image: timescale/timescaledb:2.1.0-pg13
ports:
- '5432:5432'

volumes:
- postgres-data:/var/lib/postgresql/data

environment:
POSTGRES_PASSWORD: postgres
POSTGRES_USER: postgres

volumes:
postgres-data: {}

You’ll notice that the YAML file has two primary sections: the services and vol-
umes. The services key is used to tell Docker what services it should start as
part of the stack, while the volumes key is used to tell Docker what volumes
need to be allocated to the running containers. As you can see, the postgres-
data entry is referenced in the volumes section of the postgres definition. This
enables us to keep our database data across container restarts so that we
don’t lose the state of our database. You’ll also see that we’re leveraging the
timescale/timescaledb:2.1.0-pg13 image for our postgres service. This PostgreSQL
image comes with TimescaleDB pre-installed so that you have all the time-
series tooling at your disposal without having to worry about installing or

Chapter 4. Publishing Sensor Data • 48

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

configuring anything yourself. With that in place, you’re ready to fire up the
Docker Compose stack.

Starting the Docker Compose Stack
All that you have to do now is run docker-compose up from the terminal (assuming
you are in the same directory as the docker-compose.yml file), and your PostgreSQL
container should start right up and begin outputting logs:

$ docker-compose up
...
postgres_1 | PostgreSQL init process complete; ready for start up.

And just like that, you have PostgreSQL up and running with time-series
data support! Let’s get back into Elixir land and work on the Phoenix applica-
tion. You can leave Docker Compose up and running, given that you’ll be
connecting to it shortly from your Phoenix application. If you do need to shut
it down for whatever reason, all you need to do is press Control+C.

Creating the Phoenix Application
To persist our data in PostgreSQL, we’ll need to execute some database
migrations so that we have the necessary table in place to store our data. Do
that by running the following:

$ mix ecto.gen.migration set_up_weather_data_table

That command should have generated a file in the priv/repo/migrations directory.
Open up that file and set it up so that it looks like this:

weather_tracker/priv/repo/migrations/20210504160714_set_up_weather_data_table.exs
defmodule WeatherTracker.Repo.Migrations.SetUpWeatherDataTable do

use Ecto.Migration

def up do
execute("CREATE EXTENSION IF NOT EXISTS timescaledb")

create table(:weather_conditions, primary_key: false) do
add :timestamp, :naive_datetime, null: false
add :altitude_m, :decimal, null: false
add :pressure_pa, :decimal, null: false
add :temperature_c, :decimal, null: false
add :co2_eq_ppm, :decimal, null: false
add :tvoc_ppb, :decimal, null: false
add :light_lumens, :decimal, null: false

end

execute("SELECT create_hypertable('weather_conditions', 'timestamp')")
end

report erratum • discuss

Creating the Phoenix Application • 49

http://media.pragprog.com/titles/passweather/code/weather_tracker/priv/repo/migrations/20210504160714_set_up_weather_data_table.exs
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

def down do
drop table(:weather_conditions)
execute("DROP EXTENSION IF EXISTS timescaledb")

end
end

This particular migration is split into two parts, the up/0 function and the
down/0 function. The up/0 function will migrate the database forward and put
in place the items that you define, while the down/0 function will roll the
database backward, removing all the items that you define. In this particular
case, we want our migration to create a new table called weather_conditions, with
a column for each of the sensor data points that we’ll be collecting (tempera-
ture, altitude, ambient light, and so on). The migration will also enable the
timescaledb extension for the application database and will finally convert the
weather_conditions table to a time-series table (create_hypertable is a function call
provided to us by the TimescaleDB extension to turn regular PostgreSQL
tables into time-series capable hypertables).5

With the migration in place, all you need to do is run the following:

$ mix ecto.setup
The database for WeatherTracker.Repo has been created

12:23:18.621 [info] == Running 20210504160714 WeatherTracker.Repo.Mig...
12:23:18.622 [info] execute "CREATE EXTENSION IF NOT EXISTS timescaledb"
12:23:18.623 [info] extension "timescaledb" already exists, skipping
12:23:18.623 [info] create table weather_conditions
12:23:18.626 [info] execute "SELECT create_hyper..."

12:23:18.629 [info] == Migrated 20210504160714 in 0.0s

Let’s shift our focus now to our Phoenix context that will be responsible for
interacting with this database table.

Creating our Ecto Schema
To handle instances of weather_conditions coming from the database, we’ll need
to have an Ecto Schema in place to map 1:1 with the fields that you defined
in the migration. To that end, create a file in lib/weather_tracker/weather_conditions/
called weather_condition.ex. This file will contains all the Ecto related parts so
that we can read and write weather condition data to the database. In that
file put the following:

defmodule WeatherTracker.WeatherConditions.WeatherCondition do
use Ecto.Schema
import Ecto.Changeset

5. https://docs.timescale.com/api/latest/hypertable/create_hypertable/

Chapter 4. Publishing Sensor Data • 50

report erratum • discuss

https://docs.timescale.com/api/latest/hypertable/create_hypertable/
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

@allowed_fields [
:altitude_m,
:pressure_pa,
:temperature_c,
:co2_eq_ppm,
:tvoc_ppb,
:light_lumens

]

@derive {Jason.Encoder, only: @allowed_fields}
@primary_key false
schema "weather_conditions" do

field :timestamp, :naive_datetime
field :altitude_m, :decimal
field :pressure_pa, :decimal
field :temperature_c, :decimal
field :co2_eq_ppm, :decimal
field :tvoc_ppb, :decimal
field :light_lumens, :decimal

end
end

This Ecto Schema module contains fields for all of the sensor data that we
have at our disposal on the Nerves device and also adds a timestamp so that
we know exactly when the entry was added to the database. You’ll also notice
that the schema is annotated with @primary_key false. The reason for this is that
there’s not much of a use case for fetching data out of the database by a
unique identifier. The timestamp field is the key index in this table, and it’s
what you used in your migration to tell TimescaleDB how to generate the
hypertable. The @derive attribute is used to instruct Jason (the JSON serializa-
tion/deserialization library) how it should encode the %WeatherCondition{} struct
into JSON so that it can be conveniently returned to the requesting application
(in most cases your response payload will be very lightweight, but it’s useful
in this application for debugging purposes, as you’ll see). You’ll also need to
add {:decimal, "~> 2.0.0"} to your mix.exs file since we’re using the :decimal type for
all of the sensor measurement fields.

Next we’ll need to add a changeset function to the schema module so that we
can cast and validate incoming data in preparation for writing to the database.
Append the following to the WeatherCondition schema module:

defmodule WeatherTracker.WeatherConditions.WeatherCondition do
...

def create_changeset(weather_condition = %__MODULE__{}, attrs) do
timestamp =
NaiveDateTime.utc_now()
|> NaiveDateTime.truncate(:second)

report erratum • discuss

Creating the Phoenix Application • 51

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

weather_condition
|> cast(attrs, @allowed_fields)
|> validate_required(@allowed_fields)
|> put_change(:timestamp, timestamp)

end
end

And with that, our incoming data can be cast appropriately and validated for
required fields, and you’ll also have the timestamp created automatically for
you when the changeset function is invoked. With that in place, we can move
on to creating our Phoenix context module so that data can be inserted into
the database.

Creating the Phoenix Context Module
Given that our Phoenix application will only be writing to the PostgreSQL
(Grafana will be taking care of our presentation layer requirement in the next
chapter), our Phoenix context module will only have a single function in it.
That function will leverage the WeatherCondition schema that you created in the
previous section and insert it into the database via your Repo module. To
create the the Phoenix WeatherCondition context module, create a file at lib/
weather_tracker/weather_conditions.ex with the following contents:

weather_tracker/lib/weather_tracker/weather_conditions.ex
defmodule WeatherTracker.WeatherConditions do

alias WeatherTracker.{
Repo,
WeatherConditions.WeatherCondition

}

def create_entry(attrs) do
%WeatherCondition{}
|> WeatherCondition.create_changeset(attrs)
|> Repo.insert()

end
end

If the data passed in via attrs is invalid, then this function will return an error
tagged tuple in the shape of {:error, %Ecto.Changeset{}}. If all goes well and the
data is inserted into the database, you’ll get a {:ok, %WeatherCondition{}} tagged
tuple back.

With the Phoenix context ready to go, all that’s left for the server-side appli-
cation is to create a controller to handle incoming API requests and to then
hook up that controller in our router.

Chapter 4. Publishing Sensor Data • 52

report erratum • discuss

http://media.pragprog.com/titles/passweather/code/weather_tracker/lib/weather_tracker/weather_conditions.ex
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Setting up the Phoenix API
Similarly to our Phoenix context, our WeatherConditionsController will be very
lightweight and will be focused on creating entries in the database, so we’ll
only have a POST handler (as per the REST conventions where POST is used to
create data in a service). One thing to note is that we won’t be performing any
kind of input validation at the controller layer, given that we validate the input
payload at the Ecto Schema layer.

Another item that should be called out here is that our API is not performing
any kind of validation to check that the incoming data is coming from a
trusted source. Given that we’re running both the Nerves device and the
Phoenix API on the same LAN, this problem of request authenticity isn’t
something that we’ll tackle in this book. If you plan on deploying this project
and having it be accessible over the public internet, you’ll want to have
something in place in the controller to validate that the incoming requests
are coming from trusted sources. For that purpose you may want to investigate
using an HMAC and signing your outgoing Nerves payloads with a shared
secret key that the server can also validate.6

With that small disclaimer out of the way, let’s get the controller in place.
Create a file weather_conditions_controller.ex in lib/weather_tracker_web/controllers, with
the following contents:

weather_tracker/lib/weather_tracker_web/controllers/weather_conditions_controller.ex
defmodule WeatherTrackerWeb.WeatherConditionsController do

use WeatherTrackerWeb, :controller

require Logger

alias WeatherTracker.{
WeatherConditions,
WeatherConditions.WeatherCondition

}

def create(conn, params) do
IO.inspect(params)

case WeatherConditions.create_entry(params) do
{:ok, weather_condition = %WeatherCondition{}} ->

Logger.debug("Successfully created a weather condition entry")

conn
|> put_status(:created)
|> json(weather_condition)

6. https://dashbit.co/blog/how-we-verify-webhooks

report erratum • discuss

Creating the Phoenix Application • 53

http://media.pragprog.com/titles/passweather/code/weather_tracker/lib/weather_tracker_web/controllers/weather_conditions_controller.ex
https://dashbit.co/blog/how-we-verify-webhooks
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

error ->
Logger.warn("Failed to create a weather entry: #{inspect(error)}")

conn
|> put_status(:unprocessable_entity)
|> json(%{message: "Poorly formatted payload"})

end
end

end

Our controller is leveraging the standard Phoenix.Controller7 function calls
as well as the context module that we wrote in the previous section. When
the context module successfully creates a weather condition entry in the
database, we return a 201 to the client. If you fail due to malformed data, we
log out the errors and return a 422 back to the client. This will be helpful when
you implement your data publisher in the Nerves application so that you can
debug any API issues.

With the controller in place, the last thing that needs to be done is to add an
entry to our router.ex file so our controller will be invoked when the route is
invoked. Open up lib/weather_tracker_web/router.ex and ensure that it looks like so:

weather_tracker/lib/weather_tracker_web/router.ex
defmodule WeatherTrackerWeb.Router do

use WeatherTrackerWeb, :router

pipeline :api do
plug :accepts, ["json"]

end

scope "/api", WeatherTrackerWeb do
pipe_through :api

post "/weather-conditions", WeatherConditionsController, :create
end

end

Since the Phoenix application is only serving RESTful API calls, you’ll only
have a single :api pipeline that validates that the incoming payload is of type
application/json. Further down you’ll notice that WeatherConditionsController is only
invoked whenever a POST request is made to /api/weather-conditions. With that in
place, you can run mix phx.server and start up the Phoenix server! Leave the
server running, as you’ll be publishing metrics soon, and make sure that you
know the IP address of your workstation so you can send your metrics to the
correct server.

7. https://hexdocs.pm/phoenix/Phoenix.Controller.html

Chapter 4. Publishing Sensor Data • 54

report erratum • discuss

http://media.pragprog.com/titles/passweather/code/weather_tracker/lib/weather_tracker_web/router.ex
https://hexdocs.pm/phoenix/Phoenix.Controller.html
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

All that needs to be done now is to configure the Nerves application to publish
metrics to the Phoenix server and we’re ready to view all of our time-series
data. Let’s dive back into the Nerves app and get that up and running.

Publishing Metrics
With our Phoenix server now listening for incoming requests, we’ll want to have
something running on the Raspberry Pi that regularly collects and publishes
metrics from the sensors. Similarly to how we split out the VEML6030 sensor code
into a separate poncho subproject, you’ll also want to split out the publisher
code into its own subproject. If you navigate back to the sensor_hub_poncho project
directory and run mix new publisher, you’ll create a new vanilla Mix project. With
that in place, let’s start setting up the publisher code.

Creating the Data Publisher
After navigating to the publisher directory, open up the lib/publisher.ex file. This
subproject will be laser focused on only publishing sensor data, and so this
file will be the only one you’ll be editing. Much like how the VEML6030 module
was a GenServer that was started in the firmware subproject, our Publisher
module will follow a similar pattern. At a high level, the Publisher module will
also be a GenServer that regularly publishes sensor data to a configured host.
Let’s start off by implementing the start_link/1 and init/1 functions:

defmodule Publisher do
use GenServer

require Logger

def start_link(options \\ %{}) do
GenServer.start_link(__MODULE__, options, name: __MODULE__)

end

@impl true
def init(options) do

state = %{
interval: options[:interval] || 10_000,
weather_tracker_url: options[:weather_tracker_url],
sensors: options[:sensors],
measurements: :no_measurements

}

schedule_next_publish(state.interval)

{:ok, state}
end

report erratum • discuss

Publishing Metrics • 55

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

defp schedule_next_publish(interval) do
Process.send_after(self(), :publish_data, interval)

end
end

The start_link/1 function is used to start the Publisher GenServer and give it a
unique name so that this singleton process can be referenced by the module
name. In the init/1 function, you’ll see that you are extracting certain fields
from the provided options and building the state for the GenServer. The call
to the schedule_next_publish/0 function schedules a message that will be sent to
self() (the GenServer PID) ten seconds into the future (or however long you
decide to configure the interval). We’ll get into why this is important shortly.

Alex says:

Why Not Publish Sensor Data Every Second?
If you recall from Chapter 3, you made a call in your VEML6030 GenServer init/1 callback
to refresh the sensor data every second via: :timer.send_interval(1_000, :measure). You may
be wondering why the Publisher module only sends data to the server every ten seconds
when we have measurements captured at a one-second resolution?

The reason for this is that for this particular project, a ten-second resolution is more
than sufficient. Weather conditions are relatively slow-moving phenomena and over
sampling the sensor would result in excess data being stored in the database. For
example, if you were to store a collection of measurements every second, that would
result in about 86,400 rows in the database every single day that the Nerves device
is capturing and publishing data. For some use cases this may be required, but for
this application it’s not necessary.

You can experiment with this on your own by adjusting the data publish interval to
see what your data looks like in the database. Or you can even sample the sensor
every second for ten seconds, average the results over that time window to smooth
out the sensor readings over time, and publish only a single data point for that ten-
second time window. We encourage you to experiment with the data collection and
data massaging aspects to see how the end result is altered.

What needs to be taken care of now is the handle_info/2 callback to service the
:publish_data message. Let’s add that next along with its supporting private
functions:

defmodule Publisher do
...

@impl true
def handle_info(:publish_data, state) do

{:noreply, state |> measure() |> publish()}
end

Chapter 4. Publishing Sensor Data • 56

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

defp measure(state) do
measurements =
Enum.reduce(state.sensors, %{}, fn sensor, acc ->

sensor_data = sensor.read.() |> sensor.convert.()
Map.merge(acc, sensor_data)

end)

%{state | measurements: measurements}
end

defp publish(state) do
result =
:post
|> Finch.build(

state.weather_tracker_url,
[{"Content-Type", "application/json"}],
Jason.encode!(state.measurements)

)
|> Finch.request(WeatherTrackerClient)

Logger.debug("Server response: #{inspect(result)}")

schedule_next_publish(state.interval)

state
end

end

The handle_info/2 callback is short and delegates most of the work to the sup-
porting private functions. The private functions return an updated state map
so you can compose them with the pipe operator. The measure/1 function is
responsible for aggregating metrics from all of the configured sensors and
then updating the GenServer state with the captured measurements. It then
passes that updated state to the next private function publish/1, which leverages
the HTTP library Finch to send the data to the configured URL (the data is
converted to JSON using the Jason library).

One line to that you should take note of is the last element of the pipe chain
Finch.request(WeatherTrackerClient). This function call is what makes the HTTP
request to our server. To make this HTTP call, Finch requires a running pool
of connections (in that case, the connection pool is addressable by the name
WeatherTrackerClient). To use the Finch HTTP library, you’ll need to update the
mix.exs file in the publisher subproject and include both {:finch, "~> 0.6.3"} and
{:jason, "~> 1.2.2"} in the dependency list. Let’s now add the data publishing
GenServer and the Finch connection pool to the firmware project supervision
tree to get this working end-to-end.

report erratum • discuss

Publishing Metrics • 57

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Hooking It into the Firmware Project
To wrap up the Nerves side of this application, open up lib/sensor_hub/application.ex
in the sensor_hub subproject and update the module to look like so:

defmodule SensorHub.Application do
...

alias SensorHub.Sensor

...

def children(_target) do
[
{SGP30, []},
{BMP280, [i2c_address: 0x77, name: BMP280]},
{VEML6030, %{}},
{Finch, name: WeatherTrackerClient},
{

Publisher,
%{

sensors: sensors(),
weather_tracker_url: weather_tracker_url()

}
}

]
end

defp sensors do
[Sensor.new(BMP280), Sensor.new(VEML6030), Sensor.new(SGP30)]

end

defp weather_tracker_url do
Application.get_env(:sensor_hub, :weather_tracker_url)

end

...
end

As you can see from the updated children/1 function, we now have an entry for
the Publisher GenServer module that we wrote in the previous section along
with the Finch process that will handle the creation of HTTP connection pools.
The last thing that needs to be done now is to update the sensor_hub/config/tar-
get.exs file and include a config entry for :weather_tracker_url that you see refer-
enced at the bottom of the SensorHub.Application module.

With that being said, add the following to sensor_hub/config/target.exs and replace
<SERVER_IP_ADDRESS> with the IP address of your Phoenix server on the LAN:

config :sensor_hub, :weather_tracker_url,
"http://<SERVER_IP_ADDRESS>:4000/api/weather-conditions"

Chapter 4. Publishing Sensor Data • 58

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Lastly, you’ll need to update the mix.exs file found in the sensor_hub subproject
to include the new poncho project dependency. As you’ve done with the other
poncho project dependencies, include the :publisher subproject using the :path
option:

defp deps do
[

Dependencies for all targets
...

Dependencies for all targets except :host
{:publisher, path: "../publisher", targets: @all_targets},
...

Dependencies for specific targets
...

]
end

All that’s left now is to burn a firmware and upload it to the Raspberry Pi. As
before, be sure to have the MIX_TARGET environment variable exported, and run
the following:

$ mix firmware
$ mix upload
$ ssh hub.local

After you connect to the device over SSH, run the following in your IEx session
to attach to the default Nerves logger back end and see the server responses
coming back to your Nerves device:

iex(1)> RingLogger.attach()
:ok

19:28:48.411 [debug] Server response: {:ok, %Finch.Response{..., status: 201}}

19:28:58.855 [debug] Server response: {:ok, %Finch.Response{..., status: 201}}

iex(2)> exit()

By running RingLogger.attach() on the Nerves device, you can see the debug log
messages coming out of the Publisher GenServer to let you know that your
device is communicating with the Phoenix application. If you see anything
aside from a status: 201, you know that there’s an issue with the server-side of
the application and you can start debugging from there. If you see something
along the lines of the following, then you know that you have an issue with
the Nerves application configuration, as it is unable to communicate with the
Phoenix server.

report erratum • discuss

Publishing Metrics • 59

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

iex(1)> RingLogger.attach()
:ok
19:33:11.235 [debug] Server response: {:error, %Mint.TransportError{...}}

If you do see this, make sure that the IP address that you set in the configu-
ration is the actual IP address of the server on the LAN and that the port
number is also set correctly.

Your Turn
In this chapter, we built the Phoenix server application that’s used to ingest
all of the Nerves sensor data. The sensor data is then stored into Postgres as
time-series data, thanks to TimescaleDB.

What You Built
You started off the chapter by creating a Docker Compose stack to start a
Postgres container with the TimescaleDB extension pre-installed. You also
made sure to have a volume entry in the YAML manifest file so that your time-
series data is persisted across application restarts. You then leveraged this
Postgres instance through a Phoenix back-end application that you wrote.
Once the Ecto migration, schema, Phoenix context, and controller were put
together, you were ready to ingest time-series data.

Next, you shifted gears back to the Nerves application and added an additional
poncho subproject that was used to publish sensor data at a regular interval.
Once you added some minor configuration for the data-publishing GenServer
you were able to see from the IEx session logs were flowing back successfully.

Why It Matters
This chapter marks a big milestone since you finally have a technology stack
that completely works end-to-end. The Nerves application on the Raspberry
Pi is able to capture sensor data and publish it to the Phoenix server over the
wireless LAN, and the Phoenix application is able to persist all the data to
the database. The amazing part is that you were able to leverage the same
programming language across both platforms without having to lean on any
escape hatches. Elixir is just as capable on the back end as it is on an embed-
ded device (thanks to Nerves).

What’s Next
Now that you have data flowing from the Raspberry Pi to the Phoenix back
end, all that’s left is to visualize all that data. You probably noticed that there
were no read operations in the WeatherConditions Phoenix context. The reason

Chapter 4. Publishing Sensor Data • 60

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

for this is that you’ll leverage the amazingly capable visualization service
called Grafana. Luckily Grafana runs great inside of a Docker container, so
you’ll update your Docker Compose stack to include Grafana and effortlessly
visualize all of the weather data that your Nerves sensor hub is capturing.
With that said, be sure to leave your Nerves sensor hub plugged in somewhere
interesting for a few hours so that you’ll have ample time-series data to surface
through Grafana.

report erratum • discuss

Your Turn • 61

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

CHAPTER 5

Pulling It All Together
With the Nerves device regularly sending data to our Phoenix application, all
that’s left is to present all of this time-series data in a dashboard. Luckily,
Grafana is both open source and very capable at surfacing data (and in par-
ticular time-series data) in configurable visuals like line graphs, pie charts,
heatmaps, and gauges, to name a few.

Let’s start off by adding Grafana to the Docker compose stack and getting it
to fetch data out of the Postgres instance.

Adding Grafana to Docker Compose
Like TimescaleDB, we can easily run Grafana inside of a container and simply
mount the appropriate volumes where necessary so that Grafana can persist
the dashboard changes across restarts. We’ll leverage the Docker image from
Docker Hub and add this additional service to our YAML docker-compose.yml
manifest file.1

Open up docker-compose.yml and add the following:

version: '3.3'

services:
postgres:

...

grafana:
image: grafana/grafana:8.0.5
depends_on:
- postgres

ports:
- '3000:3000'

1. https://hub.docker.com/r/grafana/grafana

report erratum • discuss

https://hub.docker.com/r/grafana/grafana
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

volumes:
- grafana-data:/var/lib/grafana

volumes:
...
grafana-data: {}

Similarly to how we defined the postgres service, we define the new grafana service
and specify what Docker image should be leveraged for the service. At the
time of this writing, version 8.0.5 was the latest version of Grafana. We also
specify a depends_on clause to let Docker Compose know this service should
be started after Postgres, given the dashboard will depend on reading data
out of Postgres. We also specify the service should be accessible on port 3000
of the host workstation, and lastly we have the volume definition in place so
we don’t lose our dashboards when the Docker Compose stack is restarted.

With that in place, all that’s left is to start up the updated Docker Compose
stack with docker-compose up. If your Docker Compose stack is still running and
collecting data, press Control+C to stop it and then run docker-compose up. After
Docker has finished downloading the new container image, navigate to local-
host:3000 and we’ll start exploring the data (by default the username and
password to Grafana are both admin).

Exploring the Data with SQL
After you’ve navigated to http://localhost:3000, hover on the Configuration button in
the left-hand side navigation bar and select Data Sources (you can also navigate
directly to http://localhost:3000/datasources as opposed to going through the side
menus).

This part of Grafana is used to configure what persistent data sources Grafana
can communicate with to retrieve and display data. While there are many
supported data sources in Grafana, the one that we’re interested in is Postgres.
Click the Add data source button and then search for Postgres, as seen in the fol-
lowing image:

Chapter 5. Pulling It All Together • 64

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

After you find it, select it and configure the data source similarly to how the
following image shows:

Be sure to toggle the TimescaleDB option to enabled so that Grafana knows
that the Postgres instance it is working with supports TimescaleDB time-
series queries, and use the same user and password that you did for the
Phoenix back end (both the username and password should be postgres if you
didn’t provide your own credentials). Also be sure to disable TLS/SSL Mode,
since this application stack isn’t operating over the public internet, and
communicating over insecure transports on the LAN is acceptable for the
purposes of this project. After all that is done, click the Save & Test button at
the bottom and ensure that Grafana reports back Database Connection OK. With
the Postgres data source set up, we’re ready to explore our Postgres database.

report erratum • discuss

Exploring the Data with SQL • 65

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Inspecting Environment CO2
While Grafana can be used to create awesome dashboards in very little time,
it also offers a great way to do ad-hoc queries and explore the data present
in your configured data sources. Let’s give this a test-drive by hovering on
the compass icon on the side navigation and clicking the Explore menu item
(or go there directly by navigating to http://localhost:3000/explore). Once at the
Explore page, fill out the query builder as follows:

Before previewing the results, let’s walk through what we’ve done with the
query builder here. Firstly, we told Grafana to query the weather_conditions table
and to specifically SELECT the co2_eq_ppm column from the table. The Time column
and WHERE options were left as is, given that the Grafana defaults were suffi-
cient for the query.

With the query built, click the Run query button in the upper-right side of the
screen and observe the results. Here are the results that I got after running
the query and plotting my captured data:

In my particular instance, I had my sensor hub in my office while writing this
chapter and was observing the CO2 levels that the SGP30 sensor was mea-
suring. It was interesting to see that while I was in my office without the
window open, the CO2 levels were increasing at a regular rate. As soon as I
opened the office window, it only took about five minutes for the CO2 PPM
measurement to drop by almost 100 points. Feel free to explore and investigate

Chapter 5. Pulling It All Together • 66

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

the other sensor data points and try to correlate the data with events occurring
in your environment.

Now that we have a sense for how to explore the time-series data, let’s switch
over from making ad-hoc database queries to having a dashboard present all
of the data points of interest to us automatically.

Creating a Weather Dashboard
Out of the box, Grafana can generate a wide array of visualizations appropriate
for different types of data. You can create bar charts, stat panels, gauges,
heatmaps, line graphs, and many more. To get comfortable with a few of the
visualization types that Grafana offers, you’ll be creating a dashboard that
leverages the stat panel, gauge, and time-series chart types. The end product
for what we’ll be building in this chapter will look something like this:

Feel free to deviate from the instructions if you want to make the dashboard
your own and want a different look and feel. With that said, let’s start off by
creating the Current Measurements row of panels.

Adding a Stat Panel
To create your first Grafana dashboard, start off by hovering on the plus icon
in the side navigation and selecting Dashboard. After you click that, you’ll be
presented with a blank dashboard and an option to Add an empty panel or Add a
new row. Select Add a new row and then hover on the row and click the gear icon
to give it the name of Current Measurements. With that in place, click the button
in the upper right labeled Add panel to create a new panel, as shown in the
image on page 68.

report erratum • discuss

Creating a Weather Dashboard • 67

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

After clicking the Add panel button, you’ll be presented with the same options
that you had when you first created the dashboard. This time around, click
the Add an empty panel button. You should now be at the Edit Panel page so that
you can configure your new panel. Given that this will be a state panel, click
the drop-down menu in the upper right to change the visualization type (the
default selected type is Time Series) to Stat. The stat panel will display the last
non-null value from the database for the selected time range. The first thing
to do here on the Edit Panel page is to fill out the query builder so that it looks
like so:

Once you fill out the query builder, you should see your data populate the
stat panel above. Feel free to go through the menu on the right and customize
the panel, now that it’s displaying data. Be sure to provide a title for the
panel, set the units to Lumens (Lm), and remove the default color threshold if
you don’t want the stat panel to change colors when the light sensor is picking
up a lot of light.

With your stat panel configured, click the Apply button in the upper right and
resize the panel by dragging it from the bottom-right corner of the panel. Now
that one stat panel has been created, you can easily duplicate it and slightly
tweak the query builder to display a different data point. To duplicate the stat
panel, click the title for the panel, go to the More... menu, and select Duplicate.
You can then edit the duplicated panel by again clicking the title and selecting
Edit. In the query builder you can then input altitude_m, for example, to display

Chapter 5. Pulling It All Together • 68

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

the altitude (be sure to change the units and the title so you don’t confuse
yourself as to which panel is which). For reference, the final dashboard visual
at the beginning of the section has stat panels for ambient light, altitude, and
atmospheric pressure.

With that done, let’s play around with the gauge visualization type.

Adding a Gauge
Similarly to before, start off by clicking the Add panel button in the upper left,
and move the blank panel under the stat panels that you just created. Then
click Add an empty panel and select Gauge from the visuals drop-down menu.
Similarly to the stat panel, fill out the query builder, but this time select the
temperature_c column.

After filling out the title and units fields, go down to the Thresholds section and
fill it out like so:

You can set the color for each threshold by clicking the colored circle and
selecting a color for that threshold. Also be sure to set the Min to 0, Max to 50,
and Show threshold labels to enabled. With that done, you should have a gauge
that looks something like this:

report erratum • discuss

Creating a Weather Dashboard • 69

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

As with the stat panels, you can duplicate the gauge that you just created,
and edit the selected column to display gauges for CO2 and TVOC measure-
ments. Feel free to reference the screenshot at the beginning of the section
to set the thresholds for these panels. All that’s left now to complete the
weather station dashboard is to plot some measurements over time. Let’s do
that next.

Adding a Line Graph
As before, start out by clicking the Add panel button, and select Add a new row.
Give the row a title of Over Time Records, and drag it down to the bottom of the
dashboard (you’ll have to collapse the row prior to dragging it or else it will
stay fixed in place). With that done, press the Add panel button again and then
Add an empty panel. Given that Time series is the default visualization type in
Grafana, you won’t have to change anything to plot time-series data in a line
graph.

As with the previous visualizations, fill out the query builder and input tem-
perature_c as the desired column to plot. When that’s done, enter a title for the
panel and be sure to set the unit to Celsius (°C). Once that’s done, you should
have a visualization that looks something like so:

Once you have the time-series graph set up how you like, you can go ahead
and duplicate it to plot the CO2 and TVOC levels. While the stat and gauge
visuals only show the last non-null value, the time-series graphs will plot all
the persisted data points within the selected time range. You can customize
the visible time window by selecting the desired range in the drop-down menu
in the upper-right corner.

Wrapping Up
From the dashboard page you can save the dashboard’s current state by
clicking the Save dashboard button next to the Add panel button, or you can add
additional visualization panels. From here, it comes down to what data points
are of particular interest to you and how you want to surface that information.

Chapter 5. Pulling It All Together • 70

report erratum • discuss

http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

You can even go so far as to have Grafana send notifications any time envi-
ronmental readings hit a certain threshold.2

If you want to import the dashboard that was presented at the beginning of
the section, be sure to check out the GitHub source for this project.3 The
JSON dashboard definition in that repository can be imported using the
Grafana import tool that can be found at http://localhost:3000/dashboard/import. You
can also export your dashboard by clicking the gear icon next to the time
range drop-down menu. Once in the Dashboard settings page, you can go to the
JSONModel tab and extract the JSON definition of the dashboard. This can then
be saved into source control so that you can load up this dashboard into any
future Grafana deployments.

Your Turn
Congratulations for setting up your Nerves-powered weather station and
getting it all running end-to-end! Now that you have a complete weather station
solution in place (from data collection to presentation), it’s easy to see why
Elixir and Nerves are such a compelling technology stack for IoT applications
and how well they work for this class of problems. From Elixir’s GenServer
and supervision constructs to Nerve’s out-of-the-box ability to upload device
firmware images wirelessly, the whole development experience has been tuned
for optimal productivity and reliability.

What You Built
In this chapter, you wrapped up your weather station project by adding
Grafana to the technology stack. With Grafana in place and connected to
Postgres+TimescaleDB, you were able to create dashboards that could surface
the time-series measurements captured by the Nerves device. With this last
piece of the puzzle in place, you have an end-to-end solution that can capture,
persist, and view weather data collected by your Raspberry Pi.

Why It Matters
This is an important milestone in the project as it showcases the capabilities
of the Nerves-powered weather station as a complete IoT solution. Using the
Elixir programming language, you were able to capture and publish metrics
from an embedded device. And using the same programming language, you
were able to persist that data into a time-series database. This is a testament

2. https://grafana.com/docs/grafana/latest/alerting/notifications/
3. https://github.com/akoutmos/nerves_weather_station

report erratum • discuss

Your Turn • 71

https://grafana.com/docs/grafana/latest/alerting/notifications/
https://github.com/akoutmos/nerves_weather_station
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

to how well suited the Elixir programming language and Erlang virtual
machine are to a wide array of problem domains. The fundamental promises
of reliability, fault tolerance, and a productive developer experience are on
display in the context of an embedded device and of a back-end API.

What’s Next
Now that you have a productive development workflow and a working Nerves
device, where you go next is up to you. You can hook up other I2C Qwiic
sensors or LCD screens,4 you can deploy a fleet of Nerves devices and aggregate
metrics across all the devices, or you can even try and deploy the same Nerves
application to other embedded devices like the BeagleBone Black.5 With an
understanding of how to develop, organize, and deploy Nerves applications,
you should be comfortable with a wide array of embedded Elixir+Nerves
projects. We encourage you to explore the many facets of the Nerves framework
and build more robust and reliable Nerves applications.

4. https://www.sparkfun.com/qwiic
5. https://beagleboard.org/black

Chapter 5. Pulling It All Together • 72

report erratum • discuss

https://www.sparkfun.com/qwiic
https://beagleboard.org/black
http://pragprog.com/titles/passweather/errata/add
http://forums.pragprog.com/forums/passweather

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering
you this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2022 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of the The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose
a writing idea to us? After all, many of our best authors started off as our
readers, just like you. With a 50% royalty, world-class editorial services,
and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

We thank you for your continued support, and we hope to hear from you
again soon!

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2022

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/

Powerful Command-Line Applications in Go
Write your own fast, reliable, and cross-platform com-
mand-line tools with the Go programming language.
Go might be the fastest—and perhaps the most
fun—way to automate tasks, analyze data, parse logs,
talk to network services, or address other systems re-
quirements. Create all kinds of command-line tools
that work with files, connect to services, and manage
external processes, all while using tests and bench-
marks to ensure your programs are fast and correct.

Ricardo Gerardi
(508 pages) ISBN: 9781680506969. $45.95
https://pragprog.com/book/rggo

Pythonic Programming
Make your good Python code even better by following
proven and effective pythonic programming tips. Avoid
logical errors that usually go undetected by Python
linters and code formatters, such as frequent data
look-ups in long lists, improper use of local and global
variables, and mishandled user input. Discover rare
language features, like rational numbers, set compre-
hensions, counters, and pickling, that may boost your
productivity. Discover how to apply general program-
ming patterns, including caching, in your Python code.
Become a better-than-average Python programmer,
and develop self-documented, maintainable, easy-to-
understand programs that are fast to run and hard to
break.

Dmitry Zinoviev
(150 pages) ISBN: 9781680508611. $26.95
https://pragprog.com/book/dzpythonic

https://pragprog.com/book/rggo
https://pragprog.com/book/dzpythonic

Concurrent Data Processing in Elixir
Learn different ways of writing concurrent code in Elixir
and increase your application’s performance, without
sacrificing scalability or fault-tolerance. Most projects
benefit from running background tasks and processing
data concurrently, but the world of OTP and various
libraries can be challenging. Which Supervisor and
what strategy to use? What about GenServer? Maybe
you need back-pressure, but is GenStage, Flow, or
Broadway a better choice? You will learn everything
you need to know to answer these questions, start
building highly concurrent applications in no time,
and write code that’s not only fast, but also resilient
to errors and easy to scale.

Svilen Gospodinov
(174 pages) ISBN: 9781680508192. $39.95
https://pragprog.com/book/sgdpelixir

Testing Elixir
Elixir offers new paradigms, and challenges you to test
in unconventional ways. Start with ExUnit: almost ev-
erything you need to write tests covering all levels of
detail, from unit to integration, but only if you know
how to use it to the fullest—we’ll show you how. Ex-
plore testing Elixir-specific challenges such as OTP-
based modules, asynchronous code, Ecto-based appli-
cations, and Phoenix applications. Explore new tools
like Mox for mocks and StreamData for property-based
testing. Armed with this knowledge, you can create
test suites that add value to your production cycle and
guard you from regressions.

Andrea Leopardi and Jeffrey Matthias
(262 pages) ISBN: 9781680507829. $45.95
https://pragprog.com/book/lmelixir

https://pragprog.com/book/sgdpelixir
https://pragprog.com/book/lmelixir

Help Your Boss Help You
Develop more productive habits in dealing with your
manager. As a professional in the business world, you
care about doing your job the right way. The quality
of your work matters to you, both as a professional
and as a person. The company you work for cares
about making money and your boss is evaluated on
that basis. Sometimes those goals overlap, but the
different priorities mean conflict is inevitable. Take
concrete steps to build a relationship with your man-
ager that helps both sides succeed.

Ken Kousen
(160 pages) ISBN: 9781680508222. $26.95
https://pragprog.com/book/kkmanage

Web Development with Clojure, Third Edition
Today, developers are increasingly adopting Clojure as
a web-development platform. See for yourself what
makes Clojure so desirable as you create a series of
web apps of growing complexity, exploring the full
process of web development using a modern functional
language. This fully updated third edition reveals the
changes in the rapidly evolving Clojure ecosystem and
provides a practical, complete walkthrough of the Clo-
jure web stack.

Dmitri Sotnikov and Scot Brown
(468 pages) ISBN: 9781680506822. $47.95
https://pragprog.com/book/dswdcloj3

https://pragprog.com/book/kkmanage
https://pragprog.com/book/dswdcloj3

Hands-on Rust
Rust is an exciting new programming language com-
bining the power of C with memory safety, fearless
concurrency, and productivity boosters—and what
better way to learn than by making games. Each
chapter in this book presents hands-on, practical
projects ranging from “Hello, World” to building a full
dungeon crawler game. With this book, you’ll learn
game development skills applicable to other engines,
including Unity and Unreal.

Herbert Wolverson
(342 pages) ISBN: 9781680508161. $47.95
https://pragprog.com/book/hwrust

Modern Front-End Development for Rails
Improve the user experience for your Rails app with
rich, engaging client-side interactions. Learn to use
the Rails 6 tools and simplify the complex JavaScript
ecosystem. It’s easier than ever to build user interac-
tions with Hotwire, Turbo, Stimulus, and Webpacker.
You can add great front-end flair without much extra
complication. Use React to build a more complex set
of client-side features. Structure your code for different
levels of client-side needs with these powerful options.
Add to your toolkit today!

Noel Rappin
(396 pages) ISBN: 9781680507218. $45.95
https://pragprog.com/book/nrclient

https://pragprog.com/book/hwrust
https://pragprog.com/book/nrclient

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/passweather
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/passweather
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Alexander Koutmos
	Bruce Tate
	Frank Hunleth

	Introduction
	What You Will Build
	How to Read This Book
	Running the Code Exercises
	Online Resources

	1. Elixir and Nerves for IoT
	Why Nerves for IoT?
	Time-Series Sensor Hub
	Laying Out the Architecture
	Organizing Your Nerves Project
	Assembling the Weather Station
	Your Turn

	2. Wirelessly Reading Sensor Data
	Creating a Network-Enabled Sensor Hub Project
	Getting on to the Network
	Capturing Sensor Data
	Your Turn

	3. Aggregating Sensor Data
	Wrapping Sensors in GenServers
	Build the Firmware Project
	Managing the Life Cycle
	Your Turn

	4. Publishing Sensor Data
	Setting up Docker Compose
	Creating the Phoenix Application
	Publishing Metrics
	Your Turn

	5. Pulling It All Together
	Adding Grafana to Docker Compose
	Exploring the Data with SQL
	Creating a Weather Dashboard
	Your Turn

