




Early Praise for Designing Elixir Systems with OTP

This book has a pragmatic approach that (correctly) prioritizes what you need to
do over what the frameworks do.

➤ Dave Thomas
Author of Programming Elixir 1.6

James and Bruce have a way of teaching that distills ideas into easily understand-
able chunks. Designing Elixir Systems with OTP brings their reliable teaching
techniques to print. You will walk away with a solid foundation of functional
programming design principles and a wheelhouse of simple techniques to help
you along your journey.

➤ Amos King
CEO, Binary Noggin

This isn’t a textbook or a reference. It’s a mentorship. It doesn’t teach you how to
do something. It teaches you how to think about all the things you do in Elixir.

➤ Adrian P. Dunston
Senior Software Engineer, Papa, Inc.

This is the book I wish I’d had after getting comfortable with Elixir syntax but was
struggling to learn crucial core OTP concepts that make it so powerful. The book
uses a great coding example to see each of these concepts in use and would have
been invaluable to me while fumbling through learning them on my own. 10/10,
would recommend.

➤ Jon Carstens
Embedded Systems Engineer, SmartRent



A straightforward guide on how to design OTP applications. This book shows some
of the best techniques behind popular Elixir projects. A great read for anyone
working with Elixir.

➤ Pedro Medeiros
Senior Software Developer, Shopify

An invaluable book for Elixir developers wishing to leverage framework/library-
agnostic techniques to craft robust, complex, functional systems that are layered
and unit testable. Packed with indispensable tips from the trenches, including
techniques to integrate with persistence libraries like Ecto, web frameworks like
Phoenix, and newer UI frameworks like Scenic.

➤ Eoghan O’Donnell
Experienced Software Engineer



Designing Elixir Systems with OTP
Write Highly Scalable, Self-Healing Software with Layers

James Edward Gray, II
Bruce A. Tate

The Pragmatic Bookshelf
Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwytin
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-661-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com


Contents

Acknowledgments . . . . . . . . . . . ix

Introduction . . . . . . . . . . . . . xi

1. Build Your Project in Layers . . . . . . . . . 1
We Must Reimagine Design Choices 1
Choose Your Layers 2
Begin with the Right Datatypes 5
Build Your Functional Core 6
Establish Your Boundaries 8
Test Your Code 12
Plan Your Lifecycle 13
Invoke Your Workers 15
Do Fun Things with Big, Loud Worker-Bees 15

Part I — Do Fun Things...

2. Know Your Elixir Datatypes . . . . . . . . . 21
Primitive Types 22
Lists 23
Maps and Structs 25
Strings 28
Tuples 31
Functions as Data 32
When to Leave Elixir 34
Know Your Elixir Datatypes 34

3. Start with the Right Data Layer . . . . . . . . 37
Access Patterns Shape Data Structures 38
Immutability Drives Everything 41



Try It Out 44
Start with the Right Data 50

4. Build a Functional Core . . . . . . . . . . 53
Organize Core Functions by Purpose 54
Compose a Quiz from Functions 61
Build at a Single Level of Abstraction 64
Keep the Left Margin Skinny 68
Try Out the Core 70
Build Your Functional Core 73

5. Test Your Core . . . . . . . . . . . . 75
Simplify Tests with Common Setup Functions 77
Improve the ExUnit Infrastructure 78
Provide Test Data with Fixtures 80
Prime Tests with Named Setups 84
Make Tests Repeatable 88
Compose Within Tests 91
Take Tests Beyond the Elixir Base 95
Test Your Functional Core 97

Part II — ...with Big, Loud Worker-Bees

6. Isolate Process Machinery in a Boundary . . . . . 101
Maintain Composition Through Uncertainty 102
Build Your Optional Server 106
Wrap the Server in an API 116
Prefer Call Over Cast to Provide Back Pressure 125
Extend Your APIs Safely 128
Wrap Your Core in a Boundary API 130

7. Customize Your Lifecycle . . . . . . . . . 131
Understand the Lifecycle Building Blocks 132
Configure Applications to Start Supervisors 136
Start Per-User Processes with a Dynamic Supervisor 140
Touch Up the API Layer 147
Manage Your Lifecycles with Supervisors 151

8. Summon Your Workers . . . . . . . . . . 153
Know Your Motivations 154
Know Your Tools 155

Contents • vi



Add a Proctor to Run Timed Quizzes 162
Summon Your Workers 171

9. Assemble Your Components . . . . . . . . 173
Add Persistence as a Boundary Service 173
Integrate MasteryPersistence into Mastery 181
Integrate Your OTP Dependencies into Phoenix 183
Organize Code for OTP Abstractions 186
Build Scenic Projects with Layers 191
Assemble Your Components 193

10. Test the Boundary . . . . . . . . . . . 195
Tests Call the API as a User Would 196
Isolate the Proctor’s Boundary Concerns 203
Test Your Boundary 210

Bibliography . . . . . . . . . . . . 211
Index . . . . . . . . . . . . . . 213

Contents • vii



Acknowledgments
This book was a joint effort. It’s written in our shared voice. We will begin our
thanks in that same voice, then finish with some personal additions.

You are probably pretty familiar with this drill, but it takes a lot more than
authors to make a book. We both need to thank our editor Jackie Carter. She
is a champion herder of these two cats. We also need to thank our reviewers:
Chris Keathly, Amos King, Bruce Williams, Doyle Turner, Adrian P. Dunston,
Pedro Medeiros, Jonathan Carstens, Eoghan O’Donnell, Ryan Huber, and
Kim Shrier. More so than many other books, we asked them to work through
big ideas and no small amount of code while it was still very much under
construction. They pushed us back on track whenever we were slipping off.

We want to send special thanks to those pushers of Pimento Cheese, Amos,
Anna, and Chris. They were among our first and most ardent supporters,
using both the microphone and the electronic pen to advance our book.

Joe Armstrong, a co-creator of the Erlang programming language, died while
we were writing this book. Joe had a significant impact on the trajectories of
our careers. Joe had a hand in the design of the platform that we now poke
around inside of to learn better ways to build software. We’re pretty sure Joe
would have liked that practice too. We can tell from his conference talks and
forum posts that he loved to tinker, explore, and try out new ideas.

Eventually, José Valim came along and expanded Joe’s platform in such way
that he convinced these old programmers to give it a chance. He’s cultivating
a core team and a language that combine new ideas with Erlang’s inner wis-
dom. Now there are all new ways to play.

We hope the joy of their creations shine through in these pages.

There’s another voice that’s quieter than it used to be, but was still critical
for this team. Dave Thomas helped us kick around more than a few ideas,
and we borrowed some of his as well. We greatly appreciate what you’ve done
for Elixir, and how you shaped these ideas.

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


James Gray
Joe and José did the hard parts of what you will see ahead and I owe them
a lot for sharing their work. Speaking of hard parts, this book was hard for
me. I’ve been writing it for years. It was challenging to find the right way to
present these ideas. In fact, I didn’t do that! Bruce did. He brought the narra-
tive and cohesion and so much more. He tirelessly reigned in my asides. I am
beyond grateful for his guidence and readers should be too.

The rest of my support structure consists of two amazing women: my wife,
Dana, and our daughter, Summer. No one will ever really understand why a
husband or father asks if he can hide out for years to scribble down some
code and prose in the hope that total strangers will read it, but these two
bore it with exceptional grace. For me, they made the impossible, possible.

Bruce Tate
Writing this book was hard because of the various people on different sides
of ideas that seem important. However, the fun of writing it luckily far out-
weighed these difficulties. I got to spend time talking about this enjoyable
topic with my amazing coauthor and put out something that we both believe
in. The partnership was striking in its effectiveness. James has so many deep
insights and ideas from poking under every toadstool and flipping over musty
stones that others have the sense to leave alone! When we started this effort,
I didn’t think we’d have enough to say. It turns out that we had just enough!

As always, I want to thank Maggie, my joy and inspiration. You inspire me.
Thanks also to Kayla and Julia. I am in awe of the young ladies you’ve become.

Readers, we’ll be on the road and we’re bound to run into each other. Don’t
be shy. Come talk to us and tell us what you think. You make writing fun!

Acknowledgments  • x

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Introduction
In October 2018, we were gathered with some family and friends in a mock
Chattanooga train station working to solve a fictional puzzle so we could
escape. We had burned through most of our clock and were calling for our
next clue. We scrambled to take this last bit of information and translate it
to the various combination locks and levers that would let us out of the room.
Eventually the host called through the intercom that we’d failed. We’d run
out of time.

Roughly two years before, we started working on an advanced book about
OTP. We knew that Elixir developers were starting to push the set of tools
beyond the basic libraries and books that were on the market at that time.
They wanted a way to express increasingly complex code in ways that would
scale and hold up to years of revision.

We set ourselves to this effort with a will and fell short. It seemed that we
would run out of time, or patience, or will. Some days we came up with out-
lines that looked like a watered down table of contents for better books.
Others we wrote chapters that had nuggets of wisdom presented awkwardly.
Sometimes life just got in the way. The train was all but dead and we hauled
it back to the station.

Luckily, not every project has a time limit. The last few months seem like
we’ve just been given a clue, the cheat codes that helped us start to pressurize
the boiler in this train to get the wheels turning again. These insights helped
us break through:

• We didn’t want to write strictly about OTP. Sometimes OTP is the wrong
thing to do. The first half of this book does not cover OTP at all!

• We didn’t want to write about simplicity. We wanted to write about
revealing complexity piece by piece in layers.

• We wanted to present material that developers could remember and take
with them.

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


With these ideas in mind, we rebooted the project. The boiler pressure built
enough that our wheels started to turn and we pulled out of the station once
again.

Worker-Bee-Driven Design
James came up with a great way to generalize the layers for a typical OTP
project, which led to the sentence “Do fun things with big, loud worker-bees”
to remember the layers: data, functions, tests, boundaries, lifecycles, workers.
We shared these ideas with some trusted advisors and they resonated
strongly. We began to experience an unfamiliar feeling of blessed momentum!

All at once, with that system of layering we had the overarching structure for
our table of contents. We could finally imagine the book that Elixir developers
have long desired. The system of layers gave us a framework for expressing
the deep wisdom we’ve collected and the simple layers let us express those
ideas in a way our readers could understand and digest piecemeal.

James picked the perfect project for the book and we could immediately
imagine what the layers in our software would look like and how to present
each piece to the user. As we used all of these layers together in the context
of a complex project, it felt right. We had discovered WDD, or worker-bee-
driven design. As we continue to write software, we can testify that the
approaches work.

We hope these layers have the same impact on your software that it has had
on our book. We hope they feel like cheat codes that completely unlock your
thought processes so you can escape some of the concurrency ceremony and
move on to the hard pieces of your problem.

Who Should Read This Book
Hopefully, you have a rough idea of the work we’ll be doing together. We’ll
examine design through layers.

In this book, we’re addressing intermediate and advanced programmers who
want a better understanding of how to design Elixir projects. We’ll offer advice
in this book that may conflict with concepts you’ve seen elsewhere, but that’s
OK. You can take what you like and leave the rest behind.

If you are an Elixir beginner, this book will be for you eventually, but not yet.
You should take advantage of one of the many excellent Elixir books and
courses available, including Programming Elixir 1.6 [Tho18] by Dave Thomas.

Introduction  • xii

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


If you would like to focus on programming user interfaces and want to skip
the heavy back-end designs, you’d be better off reading Programming Phoenix
1.4 [TV19]. Similarly, if you’re concerned with pure database programming,
Programming Ecto [WM19] is the book you’ll want to check out instead.

Online Resources
You can get the code from the book page on the Pragmatic Bookshelf website.1

We hope that when you find errors or suggestions that you will report them
via the book’s errata page.2

If you like the book we hope you’ll take the time to let others know about it.
Reviews matter, and one tweet or post from you is worth ten of ours! We’re
both on Twitter, and tweet regularly. Find James at @jeg2 and Bruce at
@redrapids. You can also drop notes to @pragprog!

We’re excited to head down the tracks with you. We hope you enjoy it as much
as we have.

James E. Gray, II and Bruce A. Tate

December 2019

1. https://pragprog.com/book/jgotp
2. https://pragprog.com/titles/jgotp/errata

report erratum  •  discuss

Online Resources • xiii

https://pragprog.com/book/jgotp
https://pragprog.com/titles/jgotp/errata
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


CHAPTER 1

Build Your Project in Layers
Don’t let anyone tell you differently. Building great software is hard, and
Elixir’s not a silver bullet. Though it makes dealing with processes easier,
concurrent code will never be easy. If your checklist includes intimidating
scalability requirements, performance consistency under load, or highly
interactive experiences or the like, programming gets harder still. In this book,
we won’t shy away from these demands.

If you’re like us, you found a valuable companion in Elixir, with some character-
istics you believe can help you with some of these challenges, even if you don’t
fully understand it. Perhaps Elixir is your first functional language, as it is for
many of us. You may need some guidance for how to choose your data structures
or organize your functions. Or, you might have found several ways to deal with
concurrency and need some advice on which approach to use.

We can tell you definitively that you’re not alone and we’re here to help. We
won’t offer panaceas, or full solutions to toy problems that have general advice
about design. We will offer some mental models for how to deal with complex-
ity piece by piece.

With most any new endeavor, progress comes at a price. Our first payment
is a willingness to change.

We Must Reimagine Design Choices
We believe good software design is about building layers, so perhaps the most
important aspect of this book is helping good programmers understand where
layers should go and how they work. Some of the techniques that we used
when the internet was young are not the ones we’ll be using into the future,
but take heart. This author team doesn’t have all of the answers, but both of
us have a strong corpus to draw from.

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Some of our inspiration comes from the past. Throughout this book, we’re
going to distill much of the conventional wisdom from functional programmers
and we’re not shy about crossing language boundaries to learn. We’re going
to draw on the expertise of Elixir programmers, including many of the people
who shaped the language as it was formed.

We’ll also draw inspiration from Erlang, Clojure, and Elm for algorithms and
techniques to solve problems similar to the ones we’re facing as we determine
what the right set of layers should be. We’ll rely heavily on Erlang, especially
the OTP framework that helps manage concurrency state and lifecycle.

This book is about design, and because Elixir heavily uses OTP, we must
address how to construct layers around an OTP program. Let’s define that
term quickly with a brief generality. OTP is a library that uses processes and
layers to make it easy to build concurrent, self-healing software. Throughout
the book, we’ll deepen that understanding.

In this brief journey together, we will show you how to write effective Elixir
by showing you how to use layers to hide complex features until you need to
think about them. We’ll extend our layers to take advantage of OTP, offering
some intuition for how it works and some guidance for how to incorporate it
into your layered designs.

If you find some tools to improve that skill, even if you don’t use every tech-
nique in this book, you’ll be much better positioned to create good Elixir code
that takes full advantage of the wide variety of libraries and frameworks in
the Elixir ecosystem.

The first question you may be asking is which layers you should build. In the
sections that follow, we’ll offer some guidance to help you choose.

Choose Your Layers
The layers we will present to write a typical project are not set in stone. Instead,
they are a rough scaffold, a framework for thinking about solutions to common
design problems. We’re not slaves to these systems but they help to free us from
dealing with mechanical details so that we can focus on solving problems.

We recommend the software layers: data structures, a functional core, tests,
boundaries, lifecycle, and workers. Not every project will have all of these
layers, but some will. It’s your job as the author of a codebase to decide which
layers are worth the price and which ones to eliminate. It’s a lot to remember,
so use this sentence as a mnemonic:

Do fun things with big, loud worker-bees.

Chapter 1. Build Your Project in Layers  • 2

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


The first letter of the essential words in the sentence match the first letters
in our layers: data, functional core, tests, boundaries, lifecycles, workers.
You can see how they all fit together in the following figure:

In this chapter, we will explore each layer in detail. We’ll call each unit of
software you build that honors these concepts a component.

To help you understand what each of these layers do, we’re going to build
two components in this book. The first will be a trivial counter. We know you
understand how counters work, but building this component will help you
internalize the design framework we’ve established, and what each of the
layers means.

The next component, a project called Mastery, will be much more complex,
and will comprise the whole rest of the book. It will be a quiz, but not a typical
one. This quiz will tailor itself as the user answers questions. Its purpose will
be to help you learn to use that design framework in context to build a project
with real complexity.

Let’s get started with that first component, the counter. Rather, let’s not get
started. It always pays to think first.

Think Before You Start
This isn’t as much a layer in our framework as a philosophy for coding. Most
programmers don’t think enough before opening the editor. It’s healthy to
start every problem with whatever tools help you think. It may just mean
propping your feet up on a desk; it may be spending a little bit of time with

report erratum  •  discuss

Choose Your Layers • 3

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


a whiteboard or even a pen and paper. Testing zealots like us believe bugs
are less expensive to fix before they reach the customer. We’ll take this idea
further. Bugs are cheapest to catch before you write your first line of code.

At this stage, your first goal is to understand how to break down the major
components in your system. Within the Elixir community, you won’t find any
single answer to how fine you should break down your components.

Here’s the thing. If you think of OTP as a way to encapsulate data, or even
objects, you’re going to get it wrong. Elixir processes work best when they
span a few modules that belong together. Breaking your processes up too
finely invites integrity problems the same way that global variables do.

We believe that whenever possible, concepts that belong together should be
packaged together as part of the same component. For example, we’d rather
wrap a process around a chess game as a standalone component than have
each piece in its own process, so we can enforce the integrity of the board at
the game level.

Our counter is a standalone component that we’ll use to count things in isola-
tion. The data is an integer, does not need to persist through a failure or restart.
The counter has a two function API to increment the counter and get the value.
We only have a single component so we don’t have to divide responsibilities.

We’ll make the critical assumption that persisting state is unimportant and
we don’t have to worry about guaranteed delivery of messages, even across
restarts, but our counter should track a value transiently, and that value
should be available to other processes. Such state is ephemeral. Freedom
from persistence allows us much more flexibility than we’d otherwise experi-
ence. Elixir is extremely good at managing ephemeral state such as counters
and caches. In later chapters, you’ll see a good way to add persistence to a
component as we deal with the second component.

Create a Mix Project
With those details firmly in place, we can create our software. You might have
noticed that until now, we’ve steadfastly avoided the word “application.”
There’s a reason for that decision. The term is overloaded. To any given Elixir
developer, an application might be the thing you:

• Build with OTP
• Create when you type mix new
• Create when you type mix phx.new
• Deploy

Chapter 1. Build Your Project in Layers  • 4

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


And each of these, in some context, is right. We’re going to refrain from using
“application” in the context of the thing we’re creating with mix new. That thing
is a project. Let’s create one now.

Create a new project from your OS console. Type mix new counter and change
into the counter directory. We are finally ready to build our first layer.

Begin with the Right Datatypes
The “data” layer has the simple data structures your functions will use. Just
as an artist needs to learn to use the colors on their palette, Elixir developers
need to learn the best ways to mix the data structures. Every programmer
making a transition to functional programming needs to understand its impact
on data design.

In this book, we won’t tell you what maps or lists are, but we will provide an
overview of what kinds of datatypes to choose for selected tasks and how you
can weave them together into a good functional data strategy. We’ll give you
some dos and don’ts for the most common datatypes, and provide you some
tips for choosing good ways to express the concepts in your program as data.

Our counter’s datatype couldn’t be simpler. It’s an integer. Normally, you’ll
spend much more time thinking about your data than we do here. You’ll
likely begin to code up the major entities in your system. We don’t need to
do that for our counter because Elixir already has the integer, and it already
supports the kinds of things we’ll do to it.

As this book grows, we’ll spend a good amount of time working through data
structures. Our focus will be primarily in three areas:

• We’ll look at what’s idiomatic and efficient in Elixir.
• We’ll review how our structures will influence the designs of our functions.
• We’ll consider some of the trade-offs around cohesion, meaning how

closely we group related bits of data.

When the data structure is right, the functions holding the algorithms that
do things can seem to write themselves. Get them wrong and it doesn’t really
matter how good a programmer you are; your functions will feel clumsy and
awkward.

Since we don’t have any custom data structures, we can move on. Let’s write
some functions.

report erratum  •  discuss

Begin with the Right Datatypes • 5

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Build Your Functional Core
Now we’ll finally start coding. Our functional core is what some programmers
call the business logic. This inner layer does not care about any of the
machinery related to processes; it does not try to preserve state; and it has
no side effects (or, at least, the bare minimum that we must deal with). It is
made up of functions.

Our goal is to deal with complexity in isolation. Make no mistake, processes
and side effects add complexity. Building our core allows us to isolate the
inherent complexity of our domain from the complexity of the machinery we
need to manage processes, handle side effects, and the like.

In a chess game, this logic would have functions that take a board, move an
individual piece, and return an updated board. It may also have a function
to take a board with all of its pieces and calculate the relative strength of a
position. In a calculator, the core would handle all of the numeric operators
for the calculator.

Let’s look at a specific example, our counter. Our business logic will count
numbers. This code should be as side effect free as we can make it. It should
observe two rules:

• It must not have side effects, meaning it should not alter the state of its
environment in any way.

• A function invoked with the same inputs will always return the same
outputs.

Our counter’s business logic increments a value. Let’s write that inner func-
tional core now. Crack open lib/counter/core.ex and make it look like this:

GettingStarted/counter/lib/counter/core.ex
defmodule Counter.Core do

def inc(value) do
value + 1

end
end

Though you can’t yet behold the power of the fully operational counter, the
business logic makes it easy to track exactly what is happening. Our public
API has two functions: one to advance the counter and one to return state.
The process we’ll use to manage state doesn’t belong here so we need only
the inc function. Let’s take it for a quick spin. Open it with iex -S mix, like this:

iex(1)> Counter.Core.inc(1)
2

Chapter 1. Build Your Project in Layers  • 6

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/lib/counter/core.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Documentation and Typespecs

Before we dive into code, let’s say a brief word about documentation. We’ll mainly
strip out the module docs and doc tests when we initially work on a project because
we want to keep a tight feedback loop. A book is a poor place for comments and
documentation fixtures in code because prose serves that role. In practice, when code
reaches a fairly mature point, we’ll add typespecs and module docs, and possibly
even doc tests if they make sense. We also made the tough decision to remove type-
specs because books are about trade-offs between space and concept. We believe the
story arc flows better without them.

All of this is to say documentation and typespecs are important, but do what works
for you. If you want to read more, check out Adopting Elixir [Tat18].

That’s all our functional core needs, just the functions that manipulate our
data structure. If you want to see this code in the context of a program, spin
up the following program:

defmodule Clock do
def start(f) do

run(f, 0)
end

def run(your_hearts_desire, count) do
your_hearts_desire.(count)
new_count = Counter.Core.inc(count)
:timer.sleep(1000)
run(your_hearts_desire, new_count)

end
end

If you want to run this much, open up a new IEx shell because we’ll have to
kill the following one after running the timer since it loops forever. Then pick
what you want to do every cycle by passing whichever function your heart
desires into run, like this:

iex> Clock.start(fn(tick) -> IO.puts "The clock is ticking with #{tick}" end)
The clock is ticking with 1
The clock is ticking with 2
The clock is ticking with 3
...

And you’ll have to kill that session with hot fire because it loops forever. Still,
you can see the way we build our inner layer into a functional core.

We’ve addressed the data and functional core in “Do fun things”; we will come
back to tests. For now, we understand that our counter must be more than
a simple library. Counters exist to count and that means saving state. It’s

report erratum  •  discuss

Build Your Functional Core • 7

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


time to address the process machinery, the “big, loud worker-bees” part of
our mnemonic. We’ll start with a boundary layer.

Establish Your Boundaries
The boundary layer deals with side effects and state. This layer is where you’ll
deal with processes, and where you’ll present your API to the outside world.
In Elixir, that means OTP.

We want to dispel the notion that each time you type mix new, you must reach
for a GenServer, the fundamental abstraction in OTP. The first way to win
the boundary game is not to play. Some projects don’t need boundary layers
at all. If you’re building a library of functions that doesn’t need processes,
don’t add them. Your code is a library and can present an API that serves
your purposes just fine. There’s no boundary; no GenServer; no lifecycle.
Your library will serve other software systems that provide this infrastructure,
but it need not introduce those concepts.

With that disclaimer out of the way, if you’re dealing with state in Elixir, you’ll
often use processes in conjunction with recursion and message passing, and
you’ll usually use OTP GenServers to provide that concept.

It’s time to be a little more precise with our definition of boundary. A boundary
layer is:

• The machinery of processes, message passing, and recursion that form
the heart of concurrency in Elixir systems

• An API of plain functions that hides that machinery from clients

We typically call the collective machinery a server, the code that calls that
server an API, and the code that calls that API a client. In OTP’s case, the
server in that boundary layer is called a GenServer, which is an abbreviation
for Generic Server.

In this section, rather than using OTP, we’ll build similar concepts from
scratch. We do this to demystify OTP and show you exactly what’s happening
under the hood, so when it’s time to build your boundary layer with OTP,
you’ll understand exactly what’s happening.

Now we’ll code a process that looks a little like the clock in the previous
example. Our new counter will have two functions: one to tick the counter
and another to get the current count. It’s surprisingly easy. Crack open
/lib/counter/server.ex and key this in:

Chapter 1. Build Your Project in Layers  • 8

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


GettingStarted/counter/lib/counter/server.ex
defmodule Counter.Server do

def run(count) do
new_count = listen(count)
run(new_count)

end

We define a module called server. Our server is just a process that exposes a
service layer. Don’t get hung up in today’s baggage about the name. We’re
calling it a server to mirror Elixir’s terminology, and it means a process that
provides a service. We save state by running a loop, with each iteration of the
loop containing the new state. In the midst of our loop, we invite users to
send a message to our server, a message which may change the state.

Now, to code the listen function, the heart of our loop:

GettingStarted/counter/lib/counter/server.ex
def listen(count) do

receive do
{:tick, _pid} ->

Counter.Core.inc(count)
{:state, pid} ->

send(pid, {:count, count})
count

end
end

end

Here’s the magic. The receive block allows us to interact with the server at
each iteration of the loop. The tick message uses the functional core to calculate
the new state. The listen function sends the state message back to the server
and returns the count. All that remains is to wrap all of these features up into
a friendly API, which we’ll put in lib/counter.ex, like this:

GettingStarted/counter/lib/counter.ex
defmodule Counter do

def start(initial_count) do
spawn( fn() -> Counter.Server.run(initial_count) end )

end

def tick(pid) do
send pid, {:tick, self()}

end

report erratum  •  discuss

Establish Your Boundaries • 9

http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/lib/counter/server.ex
http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/lib/counter/server.ex
http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/lib/counter.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


def state(pid) do
send pid, {:state, self()}
receive do

{:count, value} -> value
end

end
end

Our API interacts with our process with spawn, send, and receive, just as you’d
expect. We track each counter process with a pid, which we keep as we spawn
a new process. The tick and state functions are ridiculously simple. They send
messages to the server, and retrieve a response if we expect one back.

And that’s it. We can interact with our counter. Either recompile or restart
IEx with iex -S mix, and you’re ready to play:

iex(1)> counter_pid = Counter.start(0)
#PID<0.112.0>
iex(2)> Counter.tick(counter_pid)
{:tick, #PID<0.112.0>}
iex(3)> Counter.state(counter_pid)
1
iex(4)> Counter.tick(counter_pid)
{:tick, #PID<0.112.0>}
iex(5)> Counter.tick(counter_pid)
{:tick, #PID<0.112.0>}
iex(6)> Counter.state(counter_pid)
3

The counter_pid points to a process, and that process is our homemade
GenServer. We can interact with it directly by sending it messages with our
API layer. Together those two concepts make up our boundary layer. Notice
that the sends and receives are hidden from us. At this level of abstraction,
we just know that we have an API endpoint that counts.

OTP and State
We built some boilerplate to use recursion and message passing to manage
state. The OTP GenServer does precisely that. It creates a process and loops
over some state. Then other processes can modify that state by sending the
GenServer messages.

In Elixir, OTP uses the magic of macros and functions to make all of this
available with little ceremony: the recursive loop, the message passing, and
more. They hide many of the messy details from you. It gives the user control
of the receive_message function by calling functions called callbacks in your
code. We’ll get into the details, but for now, understand that OTP is an Elixir

Chapter 1. Build Your Project in Layers  • 10

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


feature that uses concurrency, recursion, and process primitives to track
processes and manage state. It also has features we’ll need but have not yet
discussed to handle circumstances like graceful startup and shutdown.

Few creatures are as mysterious or misunderstood as the OTP server. Consider
the name. Ask a grizzled Elixir or Erlang veteran what OTP means and you’ll
get a story that goes something like this:

Long ago, the acronym stood for “open telephone platform”, but it doesn’t have
anything to do with telephony. So now, it doesn’t stand for anything.

Or check out the anchor concept, the GenServer. Forget that gen is abbrevi-
ated. The server word is confusing enough as it is because these GenServers
are abstractions that usually don’t have anything to do with network commu-
nication at all.

It’s no wonder that this concept is poorly understood by the bulk of program-
mers that enter the Elixir ecosystem, even though the concepts underneath
the architecture are stunningly simple. Remember the loop and the counter.
That’s the heart of OTP.

Since variables in functional languages are immutable, we can’t just change
them when we want to change state. Instead, OTP uses function arguments
to represent our state, and have a recursive loop just calling itself with a new
state as shown in the following diagram. All our counter needs to do is spec-
ify a call message to our process, which increments the counter and specifies
the new value for the state.

def run( state) do
…
new_state = listen( state )
…
run( new_state)
end

send(
pid,
new_state
)

Keep Your Functional Core Separate
A surprising number of Elixir developers get tripped up at this point. It’s
tempting to wrap up the details of your business logic in the state manage-
ment. Doing so conflates two concerns: organization and concurrency. We’ll

report erratum  •  discuss

Establish Your Boundaries • 11

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


use modules not processes to organize our code so basic strategy changes
won’t necessarily lead to changing your core business logic. We’ll use an API
that hides messaging. If we need to, we can then wrap that core in a process
layer to provide concurrent performance and error isolation.

If we wanted to, we could also add some code to do tests, manage the counter’s
lifecycle, and perhaps pool resources. These bits of function and configuration
would be part of a boundary, but our counter does not really need them. All
of these layers are working together to form a single working unit, and that’s
the API we’ll expose to the rest of the world.

As we dive in to more sophisticated examples, we’ll tap the depths of functional
composition as well. We’ll show you the nuances of coding and testing these
kinds of solutions, designing your functions to be friendly to Elixir’s main
units of composition, pipelines and with/1. For now, we have a promising start
so it’s time to move on.

Test Your Code
One of the benefits of structuring your project into core and boundary layers
is that our coding organization will simplify testing. With a basic API layer
that does most of the business logic, you’ll be able to write tests to thoroughly
exercise your business code should you choose to do so. You’ll be able to
represent your testing concepts in any way you choose, and we’ll discuss a
few strategies as the book evolves.

We will focus on unit testing here with ExUnit, but the same principles apply
to property-based testing, a philosophy that allows you to specify properties
about your code so that the computer can generate many different tests. For
now, let’s write a simple test for our counter. We’ll start with the business
logic.

Since we have only a single function, testing it should go quickly. Open up
test/counter_test.exs and make it look like this:

GettingStarted/counter/test/counter_test.exs
defmodule CounterTest do

use ExUnit.Case
test "inc increments an integer value" do

assert Counter.Core.inc(1) == 2
end

end

We dropped the doctest that appears by default for now, but we could add it
again later after our code stabilizes, should we choose to do so. We won’t talk
too much about testing philosophies yet. We’ll just mention that testing core

Chapter 1. Build Your Project in Layers  • 12

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/test/counter_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


code is easier and more predictable, so it often receives the bulk of the test
focus.

Testing the boundary layer is important, but it’s also pretty simple because
we’ll use the outer API to do so. That test looks like this:

GettingStarted/counter/test/counter_api_test.exs
defmodule CounterApiTest do

use ExUnit.Case

test "use counter through API" do
pid = Counter.start(0)
assert Counter.state(pid) == 0

Counter.tick(pid)
Counter.tick(pid)

count = Counter.state(pid)
assert count == 2

end
end

Notice that we’re testing by interacting with our servers via an API, the way
our client users would. Sometimes, testing using only this API layer is the
right thing to do.

We’re just getting started and you can already tell that testing the functional
core will be easy because we don’t have to deal with external conditions. Since
that’s where most of the logic should be, it will give you a good opportunity
to do as much work as possible before you start integrating components.

That’s a pretty good start on the testing layer, but you can learn more, starting
with the ExUnit documentation.1 Testing your components will often mean
using techniques to isolate elements of your code, and clean out messages
in your queue.

Now that we’ve dealt with data, functions, tests, and boundaries, it’s time to
focus on lifecycle.

Plan Your Lifecycle
We’re going to break with tradition and use the word lifecycle instead of
supervisor. Most Elixir developers think of Elixir’s supervision as a way to
handle failure, and it’s easy to see why. Some Erlang deployments using OTP
have been up for years at a time. If you’ve been telling yourself that “supervi-
sors are about failure,” we want to help you reshape that idea.

1. https://hexdocs.pm/ex_unit/ExUnit.html

report erratum  •  discuss

Plan Your Lifecycle • 13

http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/test/counter_api_test.exs
https://hexdocs.pm/ex_unit/ExUnit.html
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


To illustrate, let’s look at some holes in our Counter component. Look at the
start function in our counter again:

GettingStarted/counter/lib/counter.ex
defmodule Counter do

def start(initial_count) do
spawn( fn() -> Counter.Server.run(initial_count) end )

end

def tick(pid) do
send pid, {:tick, self()}

end
def state(pid) do

send pid, {:state, self()}
receive do

{:count, value} -> value
end

end
end

This code has a problem. If the code crashes at any time, the counter will not
recover and components using it will likely fail too. If we were to continue to
build out our own personal OTP, we would have to start a linked process.
Then we’d wait for a DOWN or EXIT message and restart the process with a
clean, good state.

Supervisors are about starting and stopping cleanly, whether you have a
single server or a bunch of them. Once you can start cleanly and detect failure,
you can get failover almost for free. When a customer support person says
“Did you try turning it off and on again?”, they are using lifecycle to recover
from failure, whether you’re working with a TV or a desktop computer program.
They are making a good bet that shutting things down cleanly and starting
with a known good state is a powerful way to heal broken things.

Here, then, is the premise of the whole supervision strategy underneath Elixir.
Get the lifecycle right and you have a very good chance to get failure recovery
right as well.

We’ll look at our lifecycle in exactly these terms in Chapter 7, Customize Your
Lifecycle, on page 131. We’ll rely on OTP to do the heavy lifting. We’ll define
how to start things and stop them correctly. Whether you’re bringing your
system up after a deploy or after a failure doesn’t really matter.

Elixir will give us the tools to handle complexity, including a strategy and
ordering for starting your code, shutting things down correctly, and, yes,
handling failure. Our simple counter has a simple lifecycle, a broken one.
Failure will result in the failure of our counter, and possibly failure of the

Chapter 1. Build Your Project in Layers  • 14

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/lib/counter.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


systems that rely on it. When we build our next component, one based on
OTP, we’ll fix those limitations.

Here’s the point to the lifecycle layer. One of the core ideas in Elixir that
passed straight down from Erlang is that lifecycle is a fundamental principle
of design.

It’s time to move on to the next layer.

Invoke Your Workers
The workers are the different processes in your component. Generally, you’ll
start with a flat design having a single worker and decide where you need to
be more sophisticated. As your design evolves you will possibly see places
that you need to add workers, for cleaning up lifecycles or for concurrently
dividing work. Connection pools are workers; tasks and agents can be as well.

Believe it or not, our Counter component is not the simplest possible. We
could have a library with a counter API but no state at all. That program
would not have any workers. Our counter has a single worker, one we use to
encapsulate state with OTP. Still, we don’t have to yet consider how to effi-
ciently partition work, but Elixir will give us some of the best tools in the
world for dealing with these kinds of issues.

When it’s time, we’ll have several options to summon workers, from unsuper-
vised processes and simple tasks on the simple end of the spectrum to pro-
cesses spawned from dynamic supervisors on the other. We also have to
consider how to partition workers. Sometimes we’ll want to start a process
per user such as web requests, and other times we’ll have a consistent pool
of processes to serve requests such as a database connection pool.

As you can imagine, this section is closely related to the last one. Once you
introduce a process, you must also consider its lifecycle. We considered
grouping them together, but we view supervision as primarily a lifecycle dis-
cussion and process control as a process organization discussion.

There you have it. Our counter is done and you’ve seen all of our layers. Let’s
wrap up, and then we’ll be ready to go into more detail about each layer in turn.

Do Fun Things with Big, Loud Worker-Bees
We’ve addressed all of the major concepts in our mental framework. You can
remember them all with the sentence above. The sentence is a mental
mnemonic for data, functions, tests, boundaries, lifecycle, and workers.

report erratum  •  discuss

Invoke Your Workers • 15

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Look. We know not every program needs every one of these layers. For
example, if you just need a couple of temperature functions and you try to
create all of these layers, your project is going to stink. Not all components
need all of these layers, but if you teach yourself to think in these terms,
you’ll understand exactly how to think about Elixir’s development.

Elixir is probably different from languages you have used before. It is
functional, with great language features to support concurrency, and great
abstractions for dealing with both lifecycle and state. All of that power
across so many dimensions comes with risk of building so much complex-
ity that you can’t manage it all. In this chapter, we introduced principles
for thinking about development to allow you to introduce features and
abstractions in layers, so you do not have to think about too much at any
given time.

Data, Functions, Tests
Remember these with the mnemonic “do fun things.”

Our first three steps relate to the internal building blocks of your project.
They are datatypes, functions, and tests. We construct the datatypes that
will later guide the structure of our component and the interactions between
our functions. We divide our functions along the obvious lines of purpose,
but we don’t stop there. We also separate our core from our boundary layers.
Finally, we use tests to verify what we’ve done. Our test layers use conventional
techniques to test our core, boundary, supervision, and workers.

Boundaries, Lifecycles, Workers
Remember these by thinking of “big, loud worker-bees.”

Our next three steps relate to how the components of your system work
together. We begin with the important boundaries within your solution.
We built this layer into our counter from scratch to show you how OTP
works underneath. Getting these interfaces right is the secret to dealing
with only small pieces of complexity at a time. The boundary API for our
counter was clean, with only very small hints to the implementation
underneath.

We use the term lifecycle rather than failover because you must get lifecycles
right to build in failover, deployments, startup, and clean shutdown. Our
counter built only a broken version of lifecycle but we’ll show how to do the
same with OTP as the book progresses.

Chapter 1. Build Your Project in Layers  • 16

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Finally, we talked about dividing our work. Our counter had a single process
so we didn’t need to do more, though we did point out some of the other fea-
tures in your tool box. Elixir and its libraries provides tasks, agents, worker
pools, and the like.

With the groundwork behind us, in the next chapter we can dive into the first
step! Turn the page and we’ll dig deeply into datatypes.

report erratum  •  discuss

Do Fun Things with Big, Loud Worker-Bees • 17

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Part I

Do Fun Things...

In this part of the book, we’ll look at the first half
of the sentence, “Do fun things with big, loud
worker-bees.” Data, functions, and tests are the
layers that focus on the parts of your program that
don’t require supervision, OTP, or any other process
machinery at all.



CHAPTER 2

Know Your Elixir Datatypes
Since our book is about design, it’s about layers, and all other layers depend
on the data layer. The next two chapters will focus on the “D” for “data” in
the sentence “Do fun things with big, loud worker-bees.” In this chapter, we’ll
look at Elixir’s implementation of the foundational datatypes, and in the next
chapter you’ll see how to use them as building blocks in the data structures
that will form your data layer.

You may be primed to “get to the good stuff,” the functions or the OTP. Give
us a moment to talk you out of that mindset.

In Elixir, the data is the good stuff. If you have worked with functional lan-
guages before, you know that they work differently under the hood than what
you’d find in other languages. Those who love programming contests or ana-
lyzing algorithms know that your data structures drive the shape of your
design. If you want to get the most out of this language, you need to know
the best Elixir datatype to employ in each situation—which structures are
the fastest to copy, and which ones allow the smoothest updates. You need
to understand how functional programs will impact your choices and why
certain structures most elegantly represent the problems you’re likely to
encounter.

In that spirit, in this chapter we’ll tell you more than simply what a datatype
does. We’ll describe the trade-offs so that if you’re building a structure that
needs to be updated often, you can choose between maps, lists, and tuples.
It’s a short chapter, but a tough one. Come with focus. It’s going to be fun.

Not all languages are alike, but languages in different families often have
similar characteristics. Functional languages like Elixir tend to support the
same kinds of datatypes. Functional lists are almost always linked lists
because of the ease of traversing them with functions and the required

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


internal implementation for efficiency. Functional languages generally support
fixed-length lists like Elixir’s tuples. Elixir also supports maps and structs
for dealing with key-value pairs, strings, and charlists for dealing with text,
and bitstrings for dealing with bitwise data, as well as some other complex
types and primitive ones, as you can see in the following figure:

There’s a lot of ground to cover, including the datatypes in this figure. Let’s
start with the most simple building blocks, our primitive types.

Primitive Types
Elixir supports a short list of primitive types, including booleans, floats,
integers, atoms, and references. We don’t have much guidance for primitive
types since for the most part they behave much like they do in other lan-
guages. We do have a couple of thoughts, though.

Numbers
Elixir numbers are integers and floats. Remember that floats are estimates.1

Consider this example:

iex(1)> 0.1 + 0.2
0.30000000000000004

1. https://floating-point-gui.de/

Chapter 2. Know Your Elixir Datatypes  • 22

report erratum  •  discuss

https://floating-point-gui.de/
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Therefore, unless you’re in a position to profit illegally, prefer integers or
decimals over floats when you can. Here are a few places that strategy might
make, er, sense:

• If you have a choice, store money in cents.
• Use div() and rem() to get integer division rather than /.
• make_ref() is a function that returns a reference,2 an Elixir type that is

typically used as a globally unique identifier. These references are gener-
ally better than numbers for identifying things.

With numbers behind us, let’s move on to atoms, the next primitive datatype.

Atoms
Since languages such as Java don’t support atoms, it’s probably worth talking
through where to use them versus strings. In general, atoms are for naming
concepts. The keys in a struct, the colors your API supports, or the mix
environment are examples. Atoms are quite efficient, taking a single word,
plus a lookup table.

Atoms are different than strings internally. Two different strings in Elixir with the
same contents may or may not be the same, but two different atoms are the same
object. This concept is the atom’s greatest strength and its greatest weakness.

The strength is the representation of concise concepts efficiently. One atom
is one integer. That efficiency carries a potential trap, though. If you choose
to use atoms for user data or generated concepts, the table that maps atoms
onto integers will keep growing until you run out of memory. Exhausting the
atom table will crash the BEAM, the virtual machine that runs all Elixir code.
Therefore, it’s important to use atoms only for things with a finite set of pos-
sible values, even a relatively small set of values.

Lists
One of the most important data structures in Elixir is the list. If you’re
thinking about skipping this section because lists are arrays, please stop and
read on. In Elixir, lists are singly linked, meaning that each node of a list
points to the next node. That’s extremely different than arrays. Arrays make
random access cheap, but traversing lists takes longer.

Here’s the main point. In Elixir, a list with n elements is actually n different
lists. Said another way, you can accurately represent [1, 2, 3] with a list con-
struction operator, called cons cells, like this:

2. https://hexdocs.pm/elixir/Kernel.html#make_ref/0

report erratum  •  discuss

Lists • 23

https://hexdocs.pm/elixir/Kernel.html#make_ref/0
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


[ 1 |
[ 2 |

[ 3 | [] ] ] ]

We have four different lists. Each list starts with an open bracket and any
code can bind to any one of those individual lists. Each | operator will create
a brand-new list, leaving the tail intact. Depending on how you use these
lists, this construction actually comes into play as you navigate your various
access strategies and modifications. Let’s see why.

Order Of

As we discuss the performance of algorithms, let’s take a brief moment to describe a
key indicator of performance, order-of (sometimes called Big O). It’s a brief rough
description of the efficiency of an algorithm. If something is O(1) for a list, that means
it has one step regardless of the size of the list. (Elixir’s hd function is O(1).) If a
function is O(n) for a list n elements long, that means the algorithm has n steps. It
also means that some algorithms grow very quickly or slowly with the number of
elements in a list. The efficiency of algorithms, then, follows the rules of math. From
fastest to slowest, we’ll see algorithms with O(1), O(log n), and O(n).

Random Access in Lists
Lists are built head-first as you’ll see in the figure on page 25. Accessing them
by the head is extremely efficient. Pattern matching on the head is O(1).
Random access is far less so. To access the third element of a list you need
to access the first two. That kind of expense can add up quickly if you’re
working with recursion and long lists.

Updating Lists
Updating lists has similar characteristics, but also some surprising efficiencies.
Adding an element to the head is O(1). Elixir doesn’t need to copy anything,
it just makes a new head and points it at the existing list you’re adding to.
This may be surprising to you. For example, changing the third element of a
list is more efficient than you might expect, whether you’re measuring mem-
ory or time. Let’s say you want to replace an item in a list:

iex> list = [1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]
iex> replaced = List.replace_at(list, 2, 0)
[1, 2, 0, 4, 5]

Chapter 2. Know Your Elixir Datatypes  • 24

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Each list in Elixir is a head pointed to another list, so [1, 2, 3, 4, 5] is actually
six different lists. One of those is [4, 5]. The replace_at/3 function must discard
the first half of the list, but it’s not a complete replacement.

The following figure shows what’s happening. We can actually leave the sublist
- 4 - 5 alone, since it’s at the tail and can serve both lists in memory. We need
only copy the first two elements of the list.

That means though replacements are more expensive in functional languages
than their imperative counterparts, the story is not as bad as it otherwise
might be. You do need to be careful, though. When accessing long lists, the
head is far better than the tail, and using algorithms that avoid copying
altogether are better than algorithms that don’t.

Elixir Is Lazy When You Need It to Be
Though we don’t talk much about it, streams provide some wonderful proper-
ties because Elixir can be lazy when you want it to be. Lazy functional lan-
guages do exactly what you think. They delay execution of a sequence until
the values are actually needed. The Stream module is the implementation of
Elixir’s laziness. It’s full of functions that don’t compute values until they are
needed. Elixir’s streams let you deal with large blocks of data and infinite
sequences, while avoiding unnecessary computation.

When you’re dealing with very large datasets, data of indeterminate size, or
data from external sources, you’ll want to use streams. If you want to delay
execution for computed lists, you’ll also be using a stream.

We’ve taken an initial look at lists and streams. Next is one of Elixir’s most
recent additions, the map.

Maps and Structs
The map has rapidly become the go-to data structure for Elixir programmers.
For the purposes of this section, we’re going to treat maps and structs as

report erratum  •  discuss

Maps and Structs • 25

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


basically the same thing. In IEx, you can see that a struct is actually imple-
mented as a map. Let’s take a peek under the hood:

iex(1)> defmodule User do
...(1)> defstruct [:name, :email]
...(1)> end
{:module, User, ...}
iex(2)> map = %User{}
%User{email: nil, name: nil}
iex(3)> is_map(map)
true
iex(4)> map.__struct__
User

So a User is actually a map. All structs have a __struct__ field that plain Elixir
maps don’t have. Let’s look at the functions User supports. In IEx, type “User.”
and then type tab, twice:

iex(5)> User.__struct__
__struct__/0 __struct__/1
iex(6)> User.__struct__
%User{email: nil, name: nil}
iex(7)> User.__struct__ name: "James"
%User{email: nil, name: "James"}

The defstruct macro adds the __struct__ function to User with two arities. The
zero arity function creates a default struct and the second takes a list of key-
value pairs.

One capability of structs that’s often missed is the @enforce_keys module
attribute. You can use it to force the specification of one or more fields when
creating a new struct, like this:

iex(1)> defmodule User do
...(1)> @enforce_keys [:name]
...(1)> defstruct [:name, :age]
...(1)> end
{:module, User,..., %User{age: nil, name: nil}}
iex(2)> %User{age: 25}
** (ArgumentError) the following keys must also be given

when building struct User: [:name]
expanding struct: User.__struct__/1
iex:2: (file)

We specify a key to enforce, and then try to create a struct without it. We get
an exception. That’s a handy trick to make sure default values don’t slip by and
cause data integrity problems within your codebase. Even with this extra
enforcement, when you use a struct you’re dealing with aMap. The characteristics

Chapter 2. Know Your Elixir Datatypes  • 26

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


of maps and structs are the same because the implementation is the same.
Structs provide validation of the fields when you need it.

While random access in lists is quite slow, random access in maps is O(log
n), significantly faster than O(n) for lists. Updating also is O(log n). Whenever
possible, any data that you’ll heavily edit should be in a map, and data with
unique values must be in a map. Maps also work with core Elixir concepts
very well, especially pattern matching. Let’s see how.

Pattern Matching
Two of the most iconic parts of Elixir, the map datatype and pattern matching,
are even stronger in combination. The Elixir community is full of developers
who have made the trek from object-oriented programming. Most of them at
one time or another try to find a way to replicate inheritance, a way to share
behavior across parts of a program. What they are really looking for is poly-
morphism or a way to write behaviors that work differently for the same data
structure. Elixir can simulate polymorphism by explicitly matching map types
with pattern matching.

Let’s say you have a struct called Animal, like this:

defmodule Animal do
defstruct type: "", legs: 4

end

If you wanted to change the implementation of speak based on the type of the
animal, it’s easy. Within some module you’d do this:

def speak(%Animal{type: "dog"}), do: "Woof"
def speak(%Animal{type: "cat"}), do: "Meow"

You can also use this technique to delegate speaking to another module
altogether.

The difference between this approach and OOP’s approach is that you can
match on two dimensions at once, say animal.type and animal.size should you
need to do so, like this:

def speak(%Animal{ type: "dog", size: _}), do: "Woof"
def speak(%Animal{ type: "cat", size: "small"}), do: "Meow"
def speak(%Animal{ type: "cat", size: "large"}), do: "Roar!!!"

Inheritance limits extension to a single dimension. Often, you may need to be
able to invoke logic across more than one dimension. Even if you have thou-
sands of clauses, pattern matching used in this way is fast. Matching a map
or struct is O(log n).

report erratum  •  discuss

Maps and Structs • 27

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Another nice feature of pattern matching is quick validation. Say your code
expects maps to have a status code set, and if that code is missing, something
is broken. If so, you can fail quickly, in the manner of your choosing:

def(%{status: status}=thing), do: process(thing)
def(_thing_without_status), do: raise "boom"

This strategy allows code that fails quickly and explicitly. Those are the
characteristics you want.

We’ve extolled the virtues of maps, but all languages are opinionated, temper-
mental beasts. In any language, datatypes work best when they are matched
to their intended use. Next we’ll look at some traps you’ll find as you dive
into maps.

Map Traps
These are some of the traps you might fall into if you’re not careful. Don’t be
fooled by the fact that IEx sorts small maps in the console for convenience.
You cannot count on this ordering! If you need to enforce order, prefer lists.

Keyword lists were the maps in Elixir before we had true maps. They are liter-
ally lists of two-tuples, each with an atom key and any type for a value. They
make better function options than maps because they allow duplications and
support some useful syntactic sugar. For example, if the last argument in a
function is a keyword list, you can omit the surrounding [], such as Elixir’s
short-form functions.

When you find yourself working with keys and ignoring the values, switch to
MapSet. The MapSet is a collection of values of any type that supports ==. They
enforce uniqueness and provide a full set of functions for set math. Often,
Elixir developers will use maps to enforce uniqueness for things like set math.
MapSets are optimized for set math and maps are not. Finally, if you know
the keys in advance, you may want to upgrade to a struct. In this book, we’ll
use structs primarily for internal interfaces, except when we’re building com-
mon infrastructure such as Plug.Conn in the Phoenix framework.

We’ve just looked at maps and structs. Next are a couple of data structures
for dealing with text, charlists, and binaries.

Strings
You’ve already seen one of our suggestions, to prefer strings for user-defined
text and atoms for naming concepts in code. In this section, we’re going to
dive a little deeper. Elixir’s strings have a slightly different set of characteristics

Chapter 2. Know Your Elixir Datatypes  • 28

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


from maps or lists, and you should know about those subtle differences. Let’s
talk a little bit about these concepts.

Elixir has two different kinds of strings. The first is the charlist, and it’s just
a list of characters, like this:

iex> [67, 65, 66]
'CAB'
iex> ?C
67

Notice the single quotes. The representation of the charlist is simply a list of
numbers, the ASCII codes for those characters. Use this datatype to work
with the individual characters in a list, or when you are working with an
underlying framework that uses them. You can also use String.graphemes/1 to
break a string down into characters.

You may have also noticed strings with double quotes, and they are not the
same as charlists:

iex> 'CAB' == "CAB"
false

The reason is that "CAB" is a compacted string, a more efficient representation.
Let’s see how.

Strings Are Binaries
Elixir has datatypes and libraries for dealing with strings of data called bit-
strings. A bitstring that’s a multiple of 8 bits is a binary. The operator for
converting something to a bitstring is << >>. You can actually see them at
work, like this:

iex> <<?C, ?A, ?B>>
"CAB"

The ?C expression returns a code point,3 the numeric value for “C”. That means
“?C” is an integer:

iex> ?C
67

While the <<>> operator looks like a sharp tool that could hurt you, don’t be
afraid. It’s a binary, and the most common Elixir strings are binaries manip-
ulated and matched4 in exactly this way. It’s invaluable for storing and

3. https://elixir-lang.org/getting-started/binaries-strings-and-char-lists.html
4. https://zohaib.me/binary-pattern-matching-in-elixir/

report erratum  •  discuss

Strings • 29

https://elixir-lang.org/getting-started/binaries-strings-and-char-lists.html
https://zohaib.me/binary-pattern-matching-in-elixir/
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


accessing bytes in a sequence and even breaking them into requisite pieces.
As you can see in the following diagram, some elements of strings take one
byte and others take two or three:

We won’t go into more detail, but we encourage you to read more about bit-
strings in the Elixir documentation.5

For the most part, prefer strings to charlists. They represent data more effi-
ciently. While the mechanics are beyond the scope of this book, you should
know binaries are extremely efficient for dealing with low-level protocols. To
wrap up this section on strings, we’ll look at the common tricks and traps
associated with them.

String Traps
Because strings are not typical lists, Elixir has several ways to break the
usual rules for efficiency. For example, the BEAM shares long strings across
processes,6 and lets them go after all references are cleared. Therefore, it’s
extremely important to refrain from letting processes hold references to large
strings for longer than needed, to avoid hard-to-find memory leaks.7 Such
leaks can crash the BEAM, and do so in ways that are hard to diagnose.

Keep in mind that editing or even just finding a character are O(n), just as
they are with lists. Therefore you shouldn’t use long strings to encode infor-
mation. For example, translating such things as URLs with many parts to an
intermediate form can pay big dividends if you’re doing many lookups for the
component parts, like the protocol, host, path, and query parameters.

5. https://hexdocs.pm/elixir/Kernel.SpecialForms.html#%3C%3C%3E%3E/1
6. https://medium.com/@mentels/a-short-guide-to-refc-binaries-f13f9029f6e2
7. https://blog.heroku.com/logplex-down-the-rabbit-hole

Chapter 2. Know Your Elixir Datatypes  • 30

report erratum  •  discuss

https://hexdocs.pm/elixir/Kernel.SpecialForms.html#%3C%3C%3E%3E/1
https://medium.com/@mentels/a-short-guide-to-refc-binaries-f13f9029f6e2
https://blog.heroku.com/logplex-down-the-rabbit-hole
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


For strings, a copy is a full copy, like a tuple instead of a list, but the BEAM
cheats as much as it can. To avoid copying strings across processes, if you
have a long string, the BEAM puts it into common memory. The BEAM also
takes very large strings and cuts them into smaller ones, some of which will
never change.

There’s another potential trap, string concatenation. Simply put, it’s slow.
There’s a cheat code for this game, though. You should prefer I/O lists to
concatenation.8 That technique is beyond the scope of this book but you can
check the footnote to learn more. That’s the way that Phoenix templates work,
for example. They pass lists of strings to I/O for export instead of concatenat-
ing and then processing. That tip makes a huge difference when you’re doing
high-volume concatenations with large strings.

If your eyes are starting to glaze over, sit tight. There’s just a few more
datatypes we need to cover, starting with the tuple, before we start to put
what we’ve learned into practice.

Tuples
Tuples are fixed-length data structures. Like all Elixir data structures, they
are immutable. You can access, or pattern match against, any element of the
tuple and you can do so efficiently. This section will show you the types of
problems you can generally solve with tuples.

Good Tuples
Generally, think of tuples as structures where the position within the tuple
means something. Coordinates, {key, value} pairs from maps, and {city, state}
pairs are all good examples of what you’ll see in tuples.

A common and acceptable use for tuples is tagging data. This technique pairs
a result tag with data. For example, you’ll see this technique in action with
many Elixir functions in return codes like {:ok, value} or {:error, reason}

You’ll also sometimes find the need to read chunks of data with the same
structure, such as columns. These types of rows are data clumps,9 and APIs
that use them favor tuples. Database query results and CSV rows are good
examples of data clumps.

8. https://www.bignerdranch.com/blog/elixir-and-io-lists-part-1-building-output-efficiently/
9. https://refactoring.guru/smells/data-clumps

report erratum  •  discuss

Tuples • 31

https://www.bignerdranch.com/blog/elixir-and-io-lists-part-1-building-output-efficiently/
https://refactoring.guru/smells/data-clumps
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Tuple Traps
Since tuples are not as structured as other datatypes, they often lead to code
that’s hard to read or understand. When you find yourself having trouble
remembering which element of the tuple goes in which position, it’s time to
switch to a map. Tuples give no opportunity to label their columns, whether
you’re matching a particular column or extracting a value from a specific
column. This problem is common across many functional languages and it
is called connascence of position.10

Appending to tuples is slow, as you might expect. You can see in the following
figure that appending to a tuple means creating a whole new copy:

Similarly, if you find yourself editing tuples, you should prefer maps. Tuples
are also not enumerable. If you find yourself iterating through them by using
an index, switch to a list.

That’s most of the Elixir types, but we should offer one more. Let’s move on
to the most iconic of datatypes for functional languages, the function.

Functions as Data
Since Elixir is a functional language, we should all remember that func-
tions are data too. Sometimes using functions can offer tremendous per-
formance wins.

For example, this is one way to store the drawing instructions for a square:

iex(1)> square = [ {:line, {5, 0}, {15, 0}},
{:line, {15, 0}, {15, 10}},
{:line, {15, 10}, {5, 10}},
{:line, {5, 10}, {5, 0}}]

[
{:line, {5, 0}, {15, 0}},
{:line, {15, 0}, {15, 10}},

10. http://connascence.io/position.html

Chapter 2. Know Your Elixir Datatypes  • 32

report erratum  •  discuss

http://connascence.io/position.html
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


{:line, {15, 10}, {5, 10}},
{:line, {5, 10}, {5, 0}}

]

That way works fine. Each tuple has an instruction, a beginning point and
an ending point. A CAD system would have an extensive list of such instruc-
tions. The problem comes when you start to partition work across processes.
When Elixir moves across process boundaries, it often has to copy data.

Here’s another, very powerful, way:

iex(2)> square = fn {x, y}, size ->
[ {:line, {x, y},
{x + size, y}},
{:line, {x + size, y},
{x + size, y + size}},
{:line, {x + size, y + size},
{x, y + size}},
{:line, {x, y + size},
{x, y}}

]
end

#Function<12.127694169/2 in :erl_eval.expr/5>
iex(3)> square.({5, 0}, 10)
[

{:line, {5, 0}, {15, 0}},
{:line, {15, 0}, {15, 10}},
{:line, {15, 10}, {5, 10}},
{:line, {5, 10}, {5, 0}}

]

We start with a function called square. It takes a point and a size, and trans-
forms that data to the same square format we saw earlier. This technique has
far-reaching implications for a language built on the actor model11 with heavy
distributed computing influences: don’t send the data to the functions because
that’s slow. Send the functions to the data!

Functions can be sent into processes as part of a message, just like other
datatypes. Inside the process, a received function can filter or manipulate
data that the code sending the function didn’t even have access to. It’s also
important to remember that these processes could transparently be running
on other machines. This can save us from copying a bunch of data across
the network. A function can pick out what is needed and then we can copy
just that.

11. https://www.brianstorti.com/the-actor-model/

report erratum  •  discuss

Functions as Data • 33

https://www.brianstorti.com/the-actor-model/
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


When to Leave Elixir
Elixir datatypes are good for many problems, but not all. Data structures
built with those types are not always efficient. The classic example is number
crunching. If you find yourself working with arrays that you need to update
frequently and randomly, you should consider integrating a third-party
solution into your program. Such integration strategies are outside the scope
of this book, but Adopting Elixir [Tat18] has an excellent treatment of tech-
niques you can use.

A great example of when to leave Elixir is a SQL database. Most projects need
one and there’s so much you can gain from it: ACID compliance, transactions,
table joins, and the list goes on for miles. Maybe even more importantly, it’s
so helpful to be able to scale your database separately from your production
Elixir deployment. It’s wins all around.

We should point out that the BEAM gives us a toolkit that means we don’t
need external dependencies as often as many other environments do. It’s rare
to need memcached or Redis for ephemeral state with ets built in. If you need
a worker pool or a background job system, you can probably meet your exact
need with around 100 lines of code. If you want to save even that, there are
libraries that handle the general case for you, without leaving the VM. There
are some advantages to having all of this with the rest of your app too: the
same data structures work everywhere, you get to use supervision, it’s easier
to react to subsystems becoming unavailable, and so on. The BEAM is closer
to an operating system than most programming language runtimes, so
building out various kinds of processing with it is much easier.

This chapter was not long, but the content is dense. It’s a good time to take
a break and digest what we’ve consumed so far.

Know Your Elixir Datatypes
In this chapter, we focused on what it means to work with data in the Elixir
language. We started with basic datatypes such as atoms and numbers,
paying close attention to the traps related to float precision and exhausting
the atom table, which can crash the BEAM.

We moved on to lists and maps. For lists, we showed a representation of lists
in memory. We emphasize the need to access lists head first. Maps and structs
are arguably the workhorses of the language. Access, both read and write,
were extremely fast and this datatype is appropriate for a wide list of purposes.

Chapter 2. Know Your Elixir Datatypes  • 34

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Next, we tackled strings and tuples. We worked through the differences
between strings and charlists and practiced accessing elements of a binary.
We showed the relative positive usage patterns and traps along the way. We
then explored tuples, the fastest data structure for random access but with
traps for updating and cognitive load.

We moved on to functions as data. We represented squares as both data and
functions. After the original function was built, representing squares with
different dimensions was trivial.

Finally, we concluded that Elixir data structures specifically, and functional
data structures more broadly, are not appropriate for every problem.

With these tools in our pocket, we can start to write some code. In the next
chapter we’ll put these tips into practice building the data layer for our quiz
project. Let’s go!

report erratum  •  discuss

Know Your Elixir Datatypes • 35

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


CHAPTER 3

Start with the Right Data Layer
This chapter will continue looking at the “D” for “data” part of “Do fun things
with big, loud worker-bees.” We’ll use the Elixir datatypes you saw in the
previous chapter to roll up data structures. Elixir is a functional programming
language and that concept will have a huge impact on how you represent
data. In functional programming, functions can’t update data in place, they
must create new copies that transform data step by step. When your data
structures are wrong, your code must compensate and will in turn not only
look awkward but also just feel wrong. The following figure shows that your
data layer often serves as the foundation:

In the sections that follow, we’ll explore how your foundational data structures
will shape your project, especially access patterns. Throughout the chapter,
we’re going to introduce several different hypothetical problems because we

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


want you to see the impact of data structures on the various decisions we
will make.

We’ll also explore what it means to build data structures in the functional
world, and why it’s fundamentally different than programming models like
OOP or procedural programming.

Finally, we’ll take all of that wisdom and start to design data for a real-world
project, a quiz engine. There’s a lot on our plate, but it’s a tasty dish. Let’s
get started.

Access Patterns Shape Data Structures
In functional programming, data structures are inextricably linked to func-
tions. Building good programs means considering how those programs use
the data. Some data structures are primarily read-only and others exist to
be updated. As you saw in the previous chapter, some datatypes are easier
to update than others.

Let’s take a very simple programming problem, representing a tic-tac-toe
game. For those rare folks who have never played this game, it’s a childhood
favorite where two players, denoted by “X” and “O”,  take turns putting their
markers on a 3x3 grid. The game ends when the first player gets three in a row.

Since it’s a small game, performance isn’t really a concern. Even when full,
our biggest board will have nine cells. We’ll be updating the board frequently,
and reading frequently as well. Elixir has no multi-dimensional arrays, so we
need some kind of composite data structure to represent the game board.
Because tuples work best for fixed-length structures, we’ll build our board
with a three-tuple of three-tuples. Each tuple will have an "X" or "O" for a spot
a player has marked, or a " " character for a blank space, like this:

iex(1)> board = { {"O", " ", " "},
...(1)> {" ", "X", " "},
...(1)> {" ", " ", " "} }

-> {{"O", " ", " "}, {" ", "X", " "}, {" ", " ", " "}}

This structure will work. In fact, it has some nice qualities. Accessing random
contents is acceptable with pipes and indexes. For example, we can get the
middle square like this:

iex(2)> board |> elem(1) |> elem(1)
"X"

Chapter 3. Start with the Right Data Layer  • 38

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


We can even abstract that much into a function, like this:

def square(board, row, col) do
board
|> elem(row)
|> elem(col)

end

Checking the value of some cell means finding the right row and then finding
the right column. Kernel.elem/2 is all we need. square(1, 1) isn’t so bad to read, or
to use. There’s a fly in the ointment though. Things get more complex when
we want to change the board. Functional languages are generally immutable,
meaning updates return a new copy rather than change the old one. Playing
an “X” on the first cell of the middle row looks like this:

iex(3)> new_middle_row = board |> elem(1) |> put_elem(0, "X")
{"X", "X", " "}
iex(4)> new_board = put_elem(board, 1, new_middle_row)
{{"O", " ", " "}, {"X", "X", " "}, {" ", " ", " "}}

Our data structure is an awkward choice for updates and that awkward
structure leads to awkward code. Since the tuples are immutable, every piece
of the data structure that changes must be replaced. The outer tuple and the
middle row need to be changed, and that takes too much awkward code. We
need to build a new middle row and place that new middle row into the board.
The complexity definitely ramped up when we went from reading to writing.
Since our board will probably have only a single update function, the one to
make a move, we may be willing to live with this complexity for such a simple
game. Still, let’s see if we can do better.

Use Cases Shape Data
What if we make one small change by choosing to represent the board as a
list of lists of strings?

iex(5)> board = [ ["O", " ", " "],
...(5)> [" ", "X", " "],
...(5)> [" ", " ", " "] ]
-> [["O", " ", " "], [" ", "X", " "], [" ", " ", " "]]

iex(6)> get_in(board, [Access.at(1), Access.at(1)])
"X"
iex(7)> put_in(board, [Access.at(1), Access.at(0)], "X")
-> [["O", " ", " "], ["X", "X", " "], [" ", " ", " "]]

Ah, that’s better. We can use Elixir’s Access module and paths to update one
cell. With this change reading and writing have the same level of complexity.
We construct a path into the data structure and hand it to the appropriate

report erratum  •  discuss

Access Patterns Shape Data Structures • 39

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


function, depending on our intended operation. In fact, the get_in and put_in
functions exist exactly because working with nested data structures in Elixir
is awkward! A small tweak to how we represent our data has had a noticeable
impact on the code that has to manipulate it.

We can do even better, though. One of the problems with both the list of lists
and tuple of tuples we chose earlier is the depth, as you will see. Let’s explore
an alternative.

Prefer Flat Data to Deep Ones
Updates to deep places in data structures are often more complex in deep
data structures, as with our tuple of tuples. That’s an avoidable problem:
don’t use deep data structures. In addition, flatter data structures generally
allow simpler algorithms and easier pattern matches.

By thinking out of the box, we can get a more effective representation. Maps
can use a variety of datatypes as keys, including tuples, like this:

iex> board =
... %{
... {0, 0} => "O", {0, 1} => " ", {0, 2} => " ",
... {1, 0} => " ", {1, 1} => "X", {1, 2} => " ",
... {2, 0} => " ", {2, 1} => " ", {2, 2} => " ",
}

Now, both reads and writes are trivial:

iex> board[{1,1}]
"X"
iex> Map.put(board, {1, 0}, "O")
...

Finally, we have a clean, simple way to store and fetch the elements of our
board. It’s not perfect, though—for instance, the default representation in
tools like IEX is ugly. Still, it does allow quick access for storing and retrieving
our game pieces.

Here’s the moral of our simple example. If you want to write beautiful code,
you need to design the right data structures that consider your primary access
patterns. This rule of thumb is doubly true for functional languages because
data structures are immutable. We’ll spend the rest of the chapter giving a
little guidance on the right structure. We won’t give you any silver bullets, but
we can offer a few basic rules to help you choose.

Chapter 3. Start with the Right Data Layer  • 40

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


At this point, you may be starting to appreciate that working with data in
functional programs is different. We’ve only reached the tip of the iceberg.
Read on.

Immutability Drives Everything
You’ve probably heard that functional programming means that the same
inputs will give you the same outputs. You’ve likely also heard that Elixir
binds variables exactly once.

When we say Elixir doesn’t allow mutable variables, you might be tempted to
push back. Technically, you’d be right, but we should show you the games
the compiler is playing to maintain the illusion of mutability. Take a look at
this example:

iex> x = 10
10
iex> x
10
iex> x = 11
11
iex> x
11

That looks like x is mutable, but what you’re seeing is not the full picture.
The values 10 and 11 are immutable. x is a variable that can be rebound at
will within the scope of a function. Look at this second example:

iex> x = 10
10
iex> f = fn() -> x end
#Function<20.99386804/0 in :erl_eval.expr/5>
iex> x = 11
11
iex> x
11
iex> f.()
10

Each function has its own bindings and they can’t be changed by another
function, or another process. In the end, we have immutability. You can’t
invent a flow that allows colliding mutable values because Erlang, the foun-
dational language, simply doesn’t support mutable variables. Once a variable
is bound, the underlying representation is fixed, period.

With immutability, rather than updating your data in place, you create a new
copy of that data. That rule is true of simple types such as integers or complex

report erratum  •  discuss

Immutability Drives Everything • 41

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


ones like structs or maps. There are some subtleties related to this approach.
Let’s look at them.

New Facts Don’t Invalidate Old Facts
Sometimes, it helps to think of pieces of data as facts, or assertions about
the world. Say you have code that depends on a data structure in a variable
in Elixir or some other functional language. Elixir makes a guarantee: that
data structure in that variable is always stable. That’s why functional lan-
guages are so good at concurrency. Multiple processes can access the same
data without having to deal with the data changing out from under them.

It does mean that you’ll often need to change the way you think about data.
In an object-oriented system, a bank account might be an object with a bal-
ance and some other fields. The bank account might process transactions at
any time, resulting in a changing balance.

On the other hand, a functional bank account is something different entirely.
It’s an initial balance plus a set of transactions at a point in time. These
transactions are functions. If you’re writing a program, once you have a rep-
resentation of an account, you don’t have to worry about it ever changing.
Rather than having an ever-changing account that reflects the present value,
you have an account as of a point in time. This means that adding new facts
doesn’t invalidate your old facts. If you’re holding an account as of 11:25 and
someone makes a deposit at 11:30, you just don’t care because your data
structure protects you.

Functional programmers look at the world in this way. If you represent a
mouse as locations and clicks at a point in time rather than a variable (x, y)
location that changes over time, each function in your program is dealing
with fixed data instead of changing data. Your test cases no longer care about
an ever-changing mouse location; an error captured in a log can give you
enough information about how to reproduce a problem exactly, and so on.

Object-oriented data structures change over time. Functional data structures
are maps of stable values over time. Functional programs do this automatically.
Changing anything means creating a new copy, and your data structures will
reflect these new realities. Your programming techniques should reflect this
reality.

Write Data Structures Functionally
Let’s keep exploring our bank account. Here’s one way to think about our
bank account example:

Chapter 3. Start with the Right Data Layer  • 42

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


account:
%{

account_number: String,
account_holder: %User{},
balance: Int,
transaction_log: [strings],

}

This structure works OK in many languages, but it is not a functional data
structure. There’s a hidden problem. Let’s take a quick hypothetical.

Processes Are Not Data
Since we’re writing an Elixir program, it’s tempting to wrap this data in a
process, and allow other processes to access it. We have two functions,
read_balance and write_balance. Then, say we have other worker processes that
use those functions to do the work of debiting and crediting. Such a design
would be a mistake.

Say two different processes called worker 1 and worker 2 fetch the account
balance near the same time, both retrieving a value of say $100. Both wish
to modify the balance, one adding $50 and one subtracting $50. They then
both write their balance, as in the following figure. Depending on which actor
writes first, the balance will be either $50 or $150. Both are incorrect. Either
the bank or the user will be happy, for a while, but the data is inconsistent
with the truth.

Account

Time

Worker 1

Worker 2

Read
balance:
100

Read
balance:
100

Write
balance:
150

Write
balance:

50

What we’ve done is built our own datatype with processes, with its own set
of rules. We’ve taken much of the goodness of functional programming away.
We have built something that works just like an OOP variable that answers
the question “What is the current balance?”

A much better question is “What is the balance at a specific time?” To answer
that question, we can store an initial balance and all of the changes represent-
ed in our transactions. We can get all transactions since the beginning of
time, or if this becomes a performance problem, all transactions since a

report erratum  •  discuss

Immutability Drives Everything • 43

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


checkpoint. We’re never changing the initial balance. We’re just adding
transactions to our account as they come in, like this:

account:
%{

account_number: String,
initial_balance: Integer,
account_holder: %User{},
transactions: [%Transaction{}],

}

transaction:
%{

change: Integer,
inserted_at: DateTime,
note: String,

%}

def balance(account_number, date_time), do: ...

Hey, we know these aren’t true type specs, but bear with us. We’re trying to
communicate abstract concepts instead of precise types.

In this example, balance becomes a function that computes a balance at a point
in time based on adding all of the transactions, each with a change that has
positive or negative values. We can then start with a balance and reduce
over the transactions to get a balance. There’s no ambiguity. It’s completely
deterministic.

To get the most out of functional programming, you’re going to have to extend
the thinking beyond the functions and into the data. With these high-level
concepts in mind, it’s time to dive to a lower level and look at data in Elixir
itself.

Try It Out
Let’s take the ideas we’ve learned and put them into practice. Throughout
the rest of the book, we’re going to build a project that generates quizzes. As
a rough rule of thumb, we’ll start by thinking about the nouns in the system.
Those will be data, and many of them will be custom datatypes.

Let’s get started. From a system console, create a new mix project:

mix new mastery --sup

That command creates a new project. We added the --sup flag because we’ll
be building an OTP project and it will need a supervisor. We’ll need to fill the
project with a few data structures, but as usual, it pays to think first.

Chapter 3. Start with the Right Data Layer  • 44

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Break Nouns into Data Structures
In our quiz project, we can have templates in various categories that create
questions. For an example, a template for a simple addition problem may be
<%= left %> + <%= right %> with [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] being valid values for left
and right. This means a quiz might generate 3 + 2 or 0 + 0. As we ask questions,
we track the user’s responses and we keep generating questions until our
user masters the template. Once they get three in a row right, we’ll let them
move on to the next category. Look at the following figure for a quick overview
of the data layer:

In this figure, you can see that picking the nouns out of our description gives
us a good start toward the structure of our data. A category will be a string,
and a user will just be an email address for now. The rest of those
nouns—quizzes, templates, questions, and responses—are going to be structs
in our system. Let’s take a look.

Define a Template
We’re going to use the primary Elixir data structure, the map. We know
exactly what the fields will be and that’s a struct. The centerpiece of our quiz
is the template. The fields in our templates will serve three purposes.

report erratum  •  discuss

Try It Out • 45

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Our Flow

In truth, when we wrote this code, we didn’t magically land on the
perfect data structure. We made mistakes, refactored our data,
refactored our functions, and then made more mistakes. We’re
showing you all of these data structures in their final form because
we think it makes a better book, one that reinforces our layering
concepts.

Our first three fields will describe our templates. As such, we’ll have a name
and a category, which we’ll represent as atoms. We’ll also have an instruction
to tell users what to do as they answer a question. These are the fields that
describe our template:

name (atom)
The name of this template.

category (atom)
A grouping for questions of the same name.

instructions (string)
A string telling the user how to answer questions of this type.

Second, our templates will generate questions. We’ll need the raw and compiled
version of the template to generate a question, and a generator for each sub-
stitution pattern in our template. These are the fields that support question
generation:

raw (string)
The template code before compilation.

compiled (macro)
The compiled version of the template for execution.

generators (%{ substitution: list or function})
The generator for each substitution in a template. Each generator is a list
of elements or a function. Generating a template substitution will either
fire the function or pick a random item from the list.

Finally, our templates will check responses. This responsibility will fall on
the checkers, which are functions. This is the field for processing responses:

checker (function(substitutions, string) -> boolean)
Given the substitutions strings and an answer, the function returns true
if the answer is correct. For example, fn subs, answer -> to_string(subs.left +
subs.right) == String.trim(answer) end).

Chapter 3. Start with the Right Data Layer  • 46

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Taken together, we have a structure that defines the template. We’ll create a
lib/mastery/core directory to hold the modules with our data layer (and later our
core functions). Crack open lib/mastery/core/template.ex and key this in:

defmodule Mastery.Core.Template do
defstruct ~w[name category instructions raw compiled generators checker]a

end

We use the sigil ~w to create a list of words. Though you usually see () char-
acters with this sigil, the [] characters work perfectly fine. The a modifier
means the statement will create a list of atoms instead of strings. This data
structure is complex, but it reflects the values we’ve discussed in this section.
Rather than just keeping transient data, this permanent data structure gives
us everything we need. We can use the data structure to:

• Represent a grouping of questions on a quiz
• Generate questions with a compilable template and functions
• Check the response of a single question in the template

We have the data for a template. Now we can move on to the individual
questions.

Templates Generate Questions
Once again, we have a known set of fields of disparate types. That structure
screams map. Questions consist of the text a user is asked, the template that
created them, and the specific substitutions used to build this question. These
are the field details:

asked (String.t)
The question text for a user. For example, "1 + 2".

template (Template.t)
The template that created the question.

substitutions (%{ substitution: any})
The values chosen for each substitution field in a template. For example, for
a template <%= left %> + <%= right %>, the substitutions might be %{ "left" => 1,
"right" => 2}.

Templates generate questions, and questions are instantiations of those
templates. Once again the data structure is functional. A question is
immutable and constant. Now, let’s code it up. Create a new file called
lib/mastery/core/question.ex and make it look like this:

report erratum  •  discuss

Try It Out • 47

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


defmodule Mastery.Core.Question do
defstruct ~w[asked substitutions template]a

end

Those are the three fields we need: the asked question, the actual substitutions
for this question, and the template we used to create this one. Now that we have
the templates and questions, we should allow a user to answer a question.

Users Answer with Responses
When a user answers a question, we’ll generate a response. Our responses
don’t really need too much data. We’ll track some extra data we might have
otherwise computed just to make it easy to debug and reason about the pro-
gram. This is the data we want to track:

quiz_title (String.t)
Title field from the quiz.

template_name (atom)
Name field identifying the template.

to (String.t)
The question being answered, as in “this is a response to the asked
question.”

email (String.t)
The email address of the user answering the question.

answer (String.t)
The answer provided by the user.

correct (boolean)
Whether the given answer was correct.

timestamp (Time.t)
The time the answer was provided.

The code to implement those fields is, as you might expect, a struct. Create
a new lib/mastery/core/response.ex to look like this:

defmodule Mastery.Core.Response do
defstruct ~w[quiz_title template_name to email answer correct timestamp]a

end

That’s all we really need. We could have provided the underlying question
and quiz, but since we’ll be dealing with many responses, it’s nice to be able
to print them cleanly, and keep these data structures flat. Next, we roll it all
together in a quiz.

Chapter 3. Start with the Right Data Layer  • 48

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Quizzes Ask Questions
Here’s one of the key concepts of Mastery. Our quiz will ask questions until
a user achieves mastery. Once we have templates that create questions, we
can use them to build quizzes. Before we code up this data structure, let’s
talk about our overall strategy.

We’ll start with a set of templates, organized by category. We’ll cycle through
the templates, one at a time. Once the user gets enough right in a row, we’ll
stop asking that question.

Given that set of directions, we’ll need to keep track of the following.

For the overall quiz, we’ll need to name the quiz, and we’ll need to let the user
specify how many answers a user will need to get correct before we finish
asking the question:

title (String.t)
The title for a quiz.

mastery (integer)
The number of questions a user must get right to master a quiz category.

Next, we’ll need to keep track of some metadata as users advance through
the quiz:

current_question (Question.t)
The current question being presented to the user.

last_response (Response.t)
The last response given by the user.

templates (%{ "category" => [Template.t]})
The master list of templates, by category.

used ([Template.t])
The templates that we’ve used, this cycle, that have not yet been mastered.

mastered ([Template.t])
The templates that have been mastered.

record (%{ "template_name" => integer})
The number of correct answers in a row a user has given for each template.

That’s all we need. With the fields we need, let’s build a struct with the fields and
defaults we’ll need. Crack open lib/mastery/core/quiz.ex and make it look like this:

report erratum  •  discuss

Try It Out • 49

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


defmodule Mastery.Core.Quiz do
defstruct title: nil,

mastery: 3,
templates: %{ },
used: [ ],
current_question: nil,
last_response: nil,
record: %{ },
mastered: [ ]

end

Initially, all questions will start in templates. The quiz will select a question,
and that question will move from templates to used. After all questions get asked
once, unless they’re mastered in the meantime, they’ll move back from used
to templates.

Getting an answer right will increment a record, and getting enough right in
a row will move a template from used to mastered. Getting an answer wrong will
reset the record.

We haven’t written any code yet, but we have a pretty good idea of how our
program will work, just by looking at the data structure of the quiz. We know
the overall structure our component will take. We have a good idea how our
algorithms will work as we create templates, add them to a quiz, and then
move from question to question. The representation of our data will drive how
we think about managing the quiz.

We are not yet thinking about the user interface or database layers at all.
We’ll address those concerns elsewhere. Our next job is to create the functional
core that will manipulate those data structures.

That’s enough to digest. It’s time to wrap up.

Start with the Right Data
First, we examined how choices of data structure might change access patterns
and impact the complexity of the code we write. We introduced simple princi-
ples to keep data structures flat and saw that functional data structures are
generally slower.

Next we introduced the way functional programmers shape data, preferring
many versions of a value over time rather than continuously mutating a single
value.

We looked at Elixir’s data structures, including lists, tuples, maps, and structs,
among others. We showed some of the strengths and weaknesses of each.

Chapter 3. Start with the Right Data Layer  • 50

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Finally, we applied all of those lessons using a functional component. We
defined templates with functions to generate questions, and we defined
function fields to check each question we created. When we were done, we
had a rough skeleton to build on.

In the next chapter, we’ll begin to add meat to those bones. We’ll build a
functional core to manipulate the data structures, functions that will create
questions from templates, check responses, and move the quiz from question
to question as the user answers them. We’ll build a concise layer that will be
easy to reason about and easy to test before we get into the intricacies of
concurrency and state.

It’s starting to get exciting. Turn the page and let’s write some functions.

report erratum  •  discuss

Start with the Right Data • 51

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


CHAPTER 4

Build a Functional Core
In this chapter, we’ll dive into the functional core, sometimes called the
business logic of your component. Functional-core is the “F” for “fun” in “Do
fun things with big loud worker-bees.” In the previous chapter, we worked
with data. We carved our project into hollow modules holding structs that
form our data skeleton. In this chapter, we’ll fill those empty modules up with
functions, each logically addressing a part of the whole functional core. The
following figure shows where this core fits:

A functional core is a group of functions and the type definitions representing
the data layer, organized into modules. Our core doesn’t access external
interfaces or use any process machinery your component might use. In Elixir,
that process machinery is the GenServer, and those bits are banished to the
outer bands of our architecture.

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Your core will present a clear, stable interface to any external code. This API
decouples core code from any process machinery in the outer layers and hides
implementation details. By establishing a firm API without side effects to the
rest of the world, you can effectively deal with your most complex code piece
by piece. Your algorithm complexity and process machinery are defined in
isolated layers so you can deal with each separately. In the end, each piece
is easier to test and understand so the whole is more manageable.

Just as your data shapes your functions, your functional core will shape your
tests, your boundary layer, and ultimately the code your clients write. The
most understandable Elixir code uses composition features to weave functions
together into an easily understandable story, and your core will lean on those
composition features heavily.

Some say that functional cores should be pure functions. In this book, we
won’t say too much about “pure” versus “impure” functions because such
debates are rarely constructive. We do think it’s important to mention the
concept of purity here. For the most part, a pure function returns the same
value given the same inputs each time you run it.

Your core doesn’t have to be completely pure. Some functions will have con-
cepts like timestamps, ID generation, or random number generation that are
not strictly pure. For the most part, though, a functional core gets much
easier to manage if the same inputs always generate the same outputs.

As we build our quiz project, the functional core will use a random number
generator because that’s where we believe that concept should be. As we write
test cases, you’ll see that we pay the price for making that compromise.

In the sections that follow, we’re going to build our functional core for our
Mastery project. As we walk through each module, we’ll illustrate some core
concepts of composing with functions along the way. When we’re done you’ll
have a better understanding of how cores work. You’ll also know some useful
techniques for weaving together those functions inside the core.

Organize Core Functions by Purpose
Recall our initial data architecture. We have Quizzes made up of Templates and
Questions. Users answer questions with Responses. We designed our data by
putting structs inside empty modules. That design will serve as a useful
foundation of our core, as shown in the figure on page 55.

Chapter 4. Build a Functional Core  • 54

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Now, we’ll slowly start to fill those modules up with functions. It’s time to
build out the first few modules for our Quiz component.

Let’s look first at three pieces of our Mastery core: the Response, Question, and
Template. Remember, each of these is a module, and also the name of the struct
that lives inside the module. We will fill each of those modules with functions
that deal with those structs.

This is a primary Elixir design goal. When you group like functions together
based on the data with the sole purpose of managing that kind of data, Elixir
code becomes easier to code. You’ll find that it’s easier to compose with pipes
and easier to tell where functions belong.

Let’s start with a simple example. Nothing in Mastery is simpler than a Response.

You might wonder how large a module has to be. The answer is “as big as it
needs to be to do a single job.” On a module basis, we want to keep the
external API simple and internal details hidden. That way the interactions
between modules will be simpler. In a sense, we’re building layers inside of
layers.

Some of our modules have only data and a constructor, and that’s OK.
Responses exist only to be data-holding structs, so all we need is a constructor.
Think of a constructor as a convenience function to instantiate a piece of
data. Add your constructor to lib/mastery/core/response.ex, like this:

report erratum  •  discuss

Organize Core Functions by Purpose • 55

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Code Structure

The example code for this book will be packaged by chapter. You’ll
see a filename at the top that will point you to the folder for the
chapter, and then the project code therein. For example, the code
in this chapter will live in FunctionsCore with the code in FunctionsCore/lib
and the tests in FunctionsCore/test.

FunctionsCore/lib/mastery/core/response.ex
defmodule Mastery.Core.Response do

defstruct ~w[quiz_title template_name to email answer correct timestamp]a

def new(quiz, email, answer) do
question = quiz.current_question
template = question.template

%__MODULE__{
quiz_title: quiz.title,
template_name: template.name,
to: question.asked,
email: email,
answer: answer,
correct: template.checker.(question.substitutions, answer),
timestamp: DateTime.utc_now

}
end

end

We’re using __MODULE__ instead of typing the full name of the module because
that code defaults to the current module, and protects us from refactoring
code whenever we reorganize the project.

If you were designing your own Mastery component, you might be tempted
to put questions and templates together, but we chose not to do so because
templates and questions are different concepts with different purposes. A
template exists to generate questions, and a question exists to present an
answerable construct to a user.

Edit to a Single Purpose
We’re approaching the first complex piece of our project, the template. After
all, templates will need to compile code to perform substitutions. You may
find it tempting to reach right for a GenServer instead of pure functions to
build our template. If we did that, we’d need to take another pass through
our design since we’re working only with modules within our functional core,
and cores don’t deal with processes.

Chapter 4. Build a Functional Core  • 56

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/response.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


When you run into situations like this one, we’d like to counsel you to sit
tight and try to attack the problem with functions first, and those should be
as pure as you can make them. Our rule of thumb is to use processes only
when we need them to control execution, divide work, or store common state
where functions won’t work.

Given that rule of thumb, we’ll try to keep things inside the core by carving
our modules into specific functions. If we hit a wall and find a problem that
mandates a task or a GenServer, we’ll slow down and re-examine our inter-
faces. For now, recall the struct defining the data for templates:

defstruct ~w[name category instructions raw compiled generators checker]a

The templates have some descriptive names, but the most important pieces are
the raw field containing code we’re going to use to create questions, generators to
fill in each of the substitutions in the template, and a checker functions to test
results. For now, let’s focus on the raw field. The rest will come into play when
we write tests, generate quizzes, and answer questions.

A typical template for a math problem might be <%= left %>+<%= right %>. We’ll
compile that to Elixir, and put the result in compiled. We’ll need to compile
templates as users create them. That’s a library function, not a process
function so it belongs in our core. Open up the existing lib/mastery/core/template.ex
and add the new function:

FunctionsCore/lib/mastery/core/template.ex
defmodule Mastery.Core.Template do

defstruct ~w[name category instructions raw compiled generators checker]a

def new(fields) do
raw = Keyword.fetch!(fields, :raw)
struct!(
__MODULE__,
Keyword.put(fields, :compiled, EEx.compile_string(raw))

)
end

end

Typically, we’ll create a simple constructor named new when we want to add
any default behaviors to the default constructor for struct. Since struct! takes
some fields as a Keyword, we’ll conform to that API. We’ll compile the template
and add it to the keyword list.

EEx is a module used to compile idiomatic Elixir templates, called EEx templates.
Though our template looked complex on the surface, it wraps the complexity in
the EEx module, and that module does the work in a reasonably pure way.

report erratum  •  discuss

Organize Core Functions by Purpose • 57

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/template.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


There’s no need for a GenServer because we can use pure functions instead.
Much of the time, solutions with functions can satisfy many of our needs.

Now we can use those templates to create questions. Let’s strategize a bit.
Recall that our question fields look like this:

defstruct ~w[asked substitutions template]a

We will need to use the template to generate the question text we put in asked,
and we’ll store the template we use to generate a question, as well as the
substitutions we choose. Note that we can’t really compute asked because
sometimes we’re going to rely on a function to pick a random substitution
from a list, and we want the question to be locked down once we decide to
ask a user.

Since we’ll need templates to create questions, let’s add an alias to make it
easier. Open up lib/mastery/core/question.ex to add this code:

FunctionsCore/lib/mastery/core/question.ex
defmodule Mastery.Core.Question do

alias Mastery.Core.Template

defstruct ~w[asked substitutions template]a

These are the things a question needs to be able to do:

• We need a constructor called new that will take a Template and generate a
Question.

• We need a function to build the substitutions to plug into our templates.

• As we build substitutions, we’ll need to process two different kinds of
generators, a random choice from a list and a function that generates a
substitution.

• We need to process the substitutions for our template.

Let’s start from the bottom up. We need to generate substitutions. We’ll use
those substitution strings to fill out our template. Recall that our template
had generators. We have two types of generators, a list of potential substitu-
tions or a function. If it’s a function, we’ll execute it; if it’s a list, we’ll pick a
random element from it, like this:

FunctionsCore/lib/mastery/core/question.ex
defp build_substitution({name, choices_or_generator}) do

{name, choose(choices_or_generator)}
end

Chapter 4. Build a Functional Core  • 58

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/question.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/question.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


defp choose(choices) when is_list(choices) do
Enum.random(choices)

end

defp choose(generator) when is_function(generator) do
generator.()

end

The magic happens in the choose function supporting build_substitution. choose
matches each of our generator types and picks the appropriate one. If it’s a
generator, we call it; if it’s a list, we pick a random one with Enum.random. Then
the build_substitution function takes a two-tuple with a name and a generator
and returns a tuple with a two-tuple having a name and substitution.

Functions Are Data
The generators in the previous example illustrate an underappreciated aspect
of functional programming: functions are just another datatype. Anywhere
you can pass some data as an argument, you can pass a function instead.
The BEAM even serializes functions, just like other types.

When you learn to think of functions as data, it should radically change the
way you approach problems. Take another look at the previous example. We
wrapped the template.generator functions with choose/1 to normalize our treatment
of options. We combined this tool with guard functions so choose becomes a
general tool that works with both lists and functions. That code greatly sim-
plifies the build_substitution function to a trivial level.

Elixir and Erlang use functions as data all over the place, to process random
numbers and manage iterators and streams. They take functions that produce
the next values. The entire OTP is based on behaviours that use groups of
functions to implement common patterns. The list goes on and on.

Joe Armstrong, one of the creators of Erlang, used to say we’re always taking
the data to the code, which is really hard, when we could take the code to
the data, and that’s much easier. In Elixir, this idea is tremendously powerful.

Name Concepts with Functions
Sometimes, when we have a concept in our code that needs a description,
it’s tempting to reach for a comment. Instead, think about whether there’s a
way to name the concept with code. A new variable or a function with a
descriptive name is better than a comment because those concepts get checked
by the compiler and comments don’t. Let’s look at an example.

report erratum  •  discuss

Organize Core Functions by Purpose • 59

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


In the first version of this code, we combined the concepts of compiling a
macro and evaluating it in a single function that looked like this:

defp evaluate(substitutions, template) do
{asked, _bound} =

Code.eval_quoted(template.compiled, assigns: substitutions)

%__MODULE__{
asked: asked,
substitutions: substitutions,
template: template

}
end

After thinking about it more, we opted to simplify that code by following two
coding principles. The first is single-purpose functions. The second is using
functions to name important concepts. We decided to break out the compilation
concept. That led to a better design. Given substitutions and a template, let’s
fill in the template to form our question text. Crack open lib/mastery/core/question.ex
and add these functions:

FunctionsCore/lib/mastery/core/question.ex
defp compile(template, substitutions) do

template.compiled
|> Code.eval_quoted(assigns: substitutions)
|> elem(0)

end

defp evaluate(substitutions, template) do
%__MODULE__{
asked: compile(template, substitutions),
substitutions: substitutions,
template: template

}
end

end

We named the compile concept with a function called compile to do the work,
we pipe template.compiled to Code.eval_quoted which returns a tuple. We need the
first element, so we grab that with elem(0) and we’re off to the races. Now that
we can build substitutions and evaluate the template, it’s trivial to build our
remaining constructor, called new. Key these lines into the top of the module,
just below the struct:

FunctionsCore/lib/mastery/core/question.ex
def new(%Template{ } = template) do

template.generators
|> Enum.map(&build_substitution/1)
|> evaluate(template)

end

Chapter 4. Build a Functional Core  • 60

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/question.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/question.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


We have a good start in our organization. We’ve defined functions for the
simple modules in our system, Response, Question, and Template. We’ve chosen a
problem with meat on it for a reason, though.

Organizing the quiz will stretch us a little more. Let’s explore some of the
basic principles of functional programming and put those into practice as we
compose the functions that make up our quiz.

Compose a Quiz from Functions
Every program is a conversation; as programmers, our first job is to be
understood. Whether you’re communicating to your future teammate or
future you, the goals should be the same. This section is about writing
functions that are easier to understand. Though getting better at this critical
skill is a lifelong pursuit, adding certain tools to your tool belt where you can
use them daily will improve your readability immediately, if you’re not already
using them.

Hopefully, we’ll give terminology and voice to concepts you’ve already experi-
enced. Over the next few sections, watch for some important concepts as we
write code. We will choose function names to fully communicate core concepts.
Those well-named functions will focus on a single purpose. Then, we’ll
structure those functions specifically for composition.

Build Well-Named Functions
If a program is a story, functions represent the verbs, a critical part of your
vocabulary. Your function arguments are nouns. Programming is about
naming things well. Too many programmers are afraid of long names. Usually,
that’s a mistake. The best name is as long as it needs to be. Consider this
example:

def tax(amount, city, state, sku), do: ...

That name may save typing, but it carries a pretty significant risk because it
does not have enough information. It needs context. We could make the name
more descriptive, and it would help:

def compute_cart_tax(amount, city, state, sku), do: ...

Now we know the tax is for a shopping cart. We have more context and less
of a chance of confusion that could change business behavior. Still, an
important piece of information is missing:

def compute_cart_tax_in_cents(taxable_cents, city, state, sku), do: ...

report erratum  •  discuss

Compose a Quiz from Functions • 61

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Now we’re getting there. cart shows what we’re computing, and in_cents makes
sure our clients know we’re returning currency in cents rather than dollars.
If you’re so inclined, you could use a typespec and explicitly specify dollars
and cent types to accomplish the same things.

To be fair, short names have their place. Honk if you’d rather be typing
Enumerable than Enum. For the most part, though, acronyms and abbreviations
do more harm than good. Functions are opportunities to name concepts. Take
full advantage.

Shape Them for Composition
Once you have functions with good names, the next step in organizing them
is to shape them for composition. In Elixir, that means pipes. The progression
of good Elixir code often goes something like this:

• Try to string together a pipeline of transformations using |>.
• Fallback to with/1 when you need to embrace failure.
• To shape code that’s difficult to compose, use tokens (more on this later).

In Elixir, we’ll typically want to compose across functions with these strategies.
In the core, we’ll focus on the first and third concepts, both forms of piping.
In the service layer, we’ll lean on the second, since we’ll have to deal with
more failure and uncertainty, places where with shines.

So far, we’ve built out questions, templates, and responses. With modules
having functions shaped around a single concept and taking a common
datatype as the first argument, we’re already moving toward structures that
will pipe well. When functions in your module also return the module’s struct,
you’re built to pipe. Then complex multipurpose functions break down into
pipes of single-purpose functions.

The concept we mention above, tokens, is an extreme form of composition
with pipes. Let’s explore.

Use Tokens to Share Complex Context
One of the key concepts in functional programming is the token.1 Think of a
token as a piece representing a player on a board game. It moves and marks
concepts. Tokens in programming are very much the same.

1. https://youtu.be/ycpNi701aCs

Chapter 4. Build a Functional Core  • 62

report erratum  •  discuss

https://youtu.be/ycpNi701aCs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


If you’re familiar with the Phoenix framework, the Plug.Conn is a token. An
Ecto.Changeset or Query is also a token. Pipelines of functions transform these
structures, tracking progress through a program.

Think about our quiz. The quiz will mark a user’s progress through answering
a set of generated questions as they master concepts and repeat others. It’s
not a linear progression through a list, or a reduction across some other
datatype. It’s a token, the representation of a quiz at a point in time. Our quiz
is still a functional data structure because we represent each point in time
with a different quiz.

Build Single-Purpose Functions
Let’s use these concepts to build out our quiz. Along the way we can examine
other principles of good design. We’ll try to make each function take on one
single task, however simple. Functions should be relatively short, but a much
more important concept is to keep them to a single task. Decoupling concepts
is a foundational concept for any kind of programming, regardless of language.

Let’s put this advice into practice as we build our quiz. Recall our initial
structure for quizzes (Quizzes Ask Questions, on page 49). We have the struct,
the constructor, and the common aliases we’ll need to keep our sanity and
reduce our typing. Open up lib/mastery/core/quiz.ex and key this in:

FunctionsCore/lib/mastery/core/quiz.ex
defmodule Mastery.Core.Quiz do

alias Mastery.Core.{Template, Question, Response}

defstruct title: nil,
mastery: 3,
templates: %{ },
used: [ ],
current_question: nil,
last_response: nil,
record: %{ },
mastered: [ ]

def new(fields) do
struct!(__MODULE__, fields)

end

Sometimes we don’t need to build a custom constructor, but in this case, the
new function will help us compose cleanly in our tests and other functions.

Our next few functions allow us to add a template to the quiz. Remember,
our Quiz is a token. It will track the composition of new quizzes and track a
user through answering questions. Building a single-purpose function to add
templates to a quiz makes sense:

report erratum  •  discuss

Compose a Quiz from Functions • 63

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


FunctionsCore/lib/mastery/core/quiz.ex
def add_template(quiz, fields) do

template = Template.new(fields)

templates =
update_in(
quiz.templates,
[template.category],
&add_to_list_or_nil(&1, template)

)

%{quiz | templates: templates}
end

defp add_to_list_or_nil(nil, template), do: [template]
defp add_to_list_or_nil(templates, template), do: [template | templates]

Here we create a new template and add it to quiz.templates[category], building a
new list if none exists and returning a new module. That means when it’s
time, we can beautifully generate a new test like this:

Quiz.new(title: "Basic math", mastery: 4)
|> add_template(fields_for_addition)
|> add_template(fields_for_subtraction)
|> add_template(fields_for_multiplication)
|> add_template(fields_for_division)

Each step moves our token with a simple transformation. Each step represents
a single-purpose function, and we compose each of those to form bigger steps.
Once the quiz has templates, we’re ready to pick a question for the user. Let’s
do that now.

Build at a Single Level of Abstraction
As we’re building the quiz, we’ll continue to build single-purpose functions
that are easy to compose. One of the things that makes code easy or hard to
read is the number of abstractions a programmer has to deal with at once.
It turns out that we can handle many different abstractions if those abstrac-
tions are well named, well organized, and close together. This concept is the
single level of abstraction2 principle introduced by Bob Martin in Clean Code:
A Handbook of Agile Software Craftsmanship [Mar08].

Choose a Random Question
The single level of abstraction principle says that each line of a function or
method should be at the same level of abstraction. It’s a tough principle to

2. http://principles-wiki.net/principles:single_level_of_abstraction

Chapter 4. Build a Functional Core  • 64

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://principles-wiki.net/principles:single_level_of_abstraction
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


articulate, but we know it when we see it. A good example of that principle
is our select_question function:

FunctionsCore/lib/mastery/core/quiz.ex
def select_question(%__MODULE__{templates: t}) when map_size(t) == 0, do: nil
def select_question(quiz) do

quiz
|> pick_current_question
|> move_template(:used)
|> reset_template_cycle

end

That code is written to a single level of abstraction. It picks a random question,
moves the template to the used list, and resets the cycle if we’ve gone through
all of our templates.

Earlier versions of our code looked like this:

def select_question(quiz) do
quiz
|> Map.put( :current_question, select_a_random_question(quiz) )
|> move_template(:used)
|> reset_template_cycle

end

The problem is that Map.put is at a different level of abstraction than
select_a_question. One deals with questions; one deals with Elixir basic datatypes.
Sometimes, code written to a single level of abstraction is longer. In the end,
it’s worth it because the most complex logic is what we’re optimizing. Let’s
fill out the details of selecting a question by looking at each of the individual
pieces. First, we’ll look at pick_current_question:

FunctionsCore/lib/mastery/core/quiz.ex
defp pick_current_question(quiz) do

Map.put(
quiz,
:current_question,
select_a_random_question(quiz)

)
end

defp select_a_random_question(quiz) do
quiz.templates
|> Enum.random
|> elem(1)
|> Enum.random
|> Question.new

end

report erratum  •  discuss

Build at a Single Level of Abstraction • 65

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Recall that quiz.templates has a list of all unused templates for a test, grouped
by category. The function select_a_random_question takes a random template cat-
egory in the form {category_name, templates}, selects the second element of the
tuple at index 1, picks a random template from that list, and then creates a
new question based on that template.

Then pick_current_question adds that question to a quiz. pick_current_question exists
solely to make select_a_random_question composable by returning a Quiz, which is
our token.

Move Our Tokens Through Transformations
Remember, our quiz is a token, like a token on a game board. Think of our
token advancing through the game board squares where each square is a
new question. The most critical advancements happen when we choose a
question and when the user answers questions. The Quiz token will need to
seamlessly move through states just as a token moves through the game.

With a question chosen, we can now move a template from our master
quiz.templates list to quiz.used, like this:

FunctionsCore/lib/mastery/core/quiz.ex
defp move_template(quiz, field) do

quiz
|> remove_template_from_category
|> add_template_to_field(field)

end

defp template(quiz), do: quiz.current_question.template

Moving a template to used or any other field is the same, so we generalize the
concept. We remove the template from the quiz.templates list and then add it to
the specified field of quiz. We’ll get to the details next, but first we’ll define a
helper function to make things a little easier.

The current template for a quiz comes from the current question for a quiz,
so we have a simple helper function called quiz.template that returns the template
from the current question.

Let’s look at that remove_template_from_category function now:

FunctionsCore/lib/mastery/core/quiz.ex
defp remove_template_from_category(quiz) do

template = template(quiz)
new_category_templates =

quiz.templates
|> Map.fetch!(template.category)
|> List.delete(template)

Chapter 4. Build a Functional Core  • 66

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


new_templates =
if new_category_templates == [ ] do
Map.delete(quiz.templates, template.category)

else
Map.put(quiz.templates, template.category, new_category_templates)

end

Map.put(quiz, :templates, new_templates)
end

This function is a little awkward because it deals with the most complex of
our data structures in a quiz, the path quiz.templates[category]. We start by
computing the new value for quiz.templates. We get templates[category] and then
delete the current template from the list.

Next, we build the new quiz.templates record. This is made slightly more compli-
cated because we don’t want an empty category, so if the new list of templates
for a category is empty, we delete the key in quiz.templates. Otherwise, we put
the new template list into quiz.templates[category].

This code isn’t complex but it is awkward. We hide the complexity from the
user by wrapping it in a single-purpose function. The only time a coder needs
to consider this code is when they are reprogramming how templates are
organized.

Now that we’ve done the hard part, we can move on to happier things. Adding
our template to a field is as simple as Map.put, like this:

FunctionsCore/lib/mastery/core/quiz.ex
defp add_template_to_field(quiz, field) do

template = template(quiz)
list = Map.get(quiz, field)

Map.put(quiz, field, [template | list])
end

We get the current template, we get the list for the field, and then replace
that list with a new list having our new template.

Reset a Quiz
After we’ve moved all of the templates from quiz.templates to quiz.used, we need
to consider what to do next, now that quiz.templates is empty. If the quiz
user has yet to master all concepts in the quiz, we need to reset quiz.templates
from the quizzes we’ve used but not yet mastered. That will happen in
reset_template_cycle, like this:

report erratum  •  discuss

Build at a Single Level of Abstraction • 67

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


FunctionsCore/lib/mastery/core/quiz.ex
defp reset_template_cycle(%{templates: templates, used: used} = quiz)
when map_size(templates) == 0 do

%__MODULE__{
quiz |
templates: Enum.group_by(used, fn template -> template.category end),
used: [ ]

}
end
defp reset_template_cycle(quiz), do: quiz

Now, our token can successfully represent new quizzes, adding templates to
quizzes, and advancing through questions. The next step is to finish up our
business logic by letting a user answer questions.

Keep the Left Margin Skinny
You can tell a lot about a programmer by scanning code. For Elixir, this is
especially true. When scanning Elixir, look for long pipelines, short functions,
and skinny left margins. We’ve talked about designing for composition and
single level of abstraction. Skinny left margins mean decisions are often made
in pattern matches instead of control structures like if, cond, and case. Skinny
left margins make single concept functions much more likely, and simplify
tests. Let’s take an example.

When a user answers a question, the response may be correct or incorrect.
We’ve built a boolean into our Response struct for the purposes of quickly
making decisions with pattern matching. It looks like this:

FunctionsCore/lib/mastery/core/quiz.ex
def answer_question(quiz, %Response{correct: true}=response) do

new_quiz =
quiz
|> inc_record
|> save_response(response)

maybe_advance(new_quiz, mastered?(new_quiz))
end
def answer_question(quiz, %Response{correct: false}=response) do

quiz
|> reset_record
|> save_response(response)

end

def save_response(quiz, response) do
Map.put(quiz, :last_response, response)

end

Chapter 4. Build a Functional Core  • 68

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


def mastered?(quiz) do
score = Map.get(quiz.record, template(quiz).name, 0)
score == quiz.mastery

end

We decide how to handle a response by pattern matching on response.correct.
When we answer a question, the behavior is different for correct and incorrect
questions. In either case, we need to appropriately set the number of consec-
utive correct answers which we store in quiz.record and to save the response in
quiz.last_response.

If the answer is correct, we increment the record, save the response, and may
possibly advance, based on whether the user has mastered that template.
We’ll handle the potential advancement in maybe_advance. On an incorrect
response, we reset the record for that template and save the response.

The save_response function is just a Map.put. We break out a function only to
name the concept. Similarly, mastered? is trivial. A template is mastered? if the
record matches the quiz mastery.

This coding style may seem alien to you at first, but once you get used to it,
reading code like this is more like reading independent business rules, and
flows seamlessly. Debugging is often simpler because you’ll often have the
arguments to a failing function when things break, so you have all the data
you need at your disposal.

Let’s look at the independent pieces that make up answer_question. For a right
answer, we need to increment the record, like this:

FunctionsCore/lib/mastery/core/quiz.ex
defp inc_record(%{current_question: question}=quiz) do

new_record = Map.update(quiz.record, question.template.name, 1, &(&1 + 1))
Map.put(quiz, :record, new_record)

end

Easy. We compute the new record with Map.update. That function takes a data
structure, a path to data within that structure, a default value and a function.
The function updates the data at the path with the given function, using the
default if there’s not yet a value.

Next, we handle advancing. This is the crux of our token movement, but
breaking our system down into composable steps makes quick work of it:

FunctionsCore/lib/mastery/core/quiz.ex
defp maybe_advance(quiz, false = _mastered), do: quiz
defp maybe_advance(quiz, true = _mastered), do: advance(quiz)

report erratum  •  discuss

Keep the Left Margin Skinny • 69

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


def advance(quiz) do
quiz
|> move_template(:mastered)
|> reset_record
|> reset_used

end

Notice we name the second boolean argument, and immediately discard that
name. We’re doing so to name the concept related to the boolean as _mastered.
If a concept is not yet mastered, we do nothing, meaning we return our token,
the quiz. Once a concept is mastered, we move the template to quiz.mastered,
reset quiz.record for that category to zero, and reset quiz.used.

There are just a few remaining concepts to handle. We need to code reset_record
and reset_used, like this:

FunctionsCore/lib/mastery/core/quiz.ex
defp reset_record(%{current_question: question} = quiz) do

Map.put(
quiz,
:record,
Map.delete(quiz.record, question.template.name)

)
end

defp reset_used(%{current_question: question} = quiz) do
Map.put(
quiz,
:used,
List.delete(quiz.used, question.template)

)
end

end

Those functions are trivial. In each case, we update the quiz with a Map.put.
reset_record deletes the record for a template, and reset_used deletes a question
template from quiz.used. With that last detail, we’re done. Let’s take it for a spin!

Try Out the Core
IEx is a great tool to sanity check our code as we go. We’re not going to run
an exhaustive test; we’ll save that work for the test chapter (Chapter 5, Test
Your Core, on page 75). We’ll use IEx to do a quick integration check to make
sure our tools work together as we expect.

To do any meaningful integration test, we need a quiz but before we can build one
we’ll need a template. Our quiz will use a single template for addition that generates
questions of the form “x + y”. Type iex -S mix to open the codebase interactively:

Chapter 4. Build a Functional Core  • 70

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/FunctionsCore/lib/mastery/core/quiz.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


$ iex -S mix
iex(1)> alias Mastery.Core.{Template, Quiz, Response}
[Mastery.Core.Template, Mastery.Core.Quiz, Mastery.Core.Response]
iex(2)> generator = %{ left: [1, 2], right: [1, 2] }
%{left: [1, 2], right: [1, 2]}
iex(3)> checker = fn(sub, answer) ->
...(3)> sub[:left] + sub[:right] == String.to_integer(answer)
...(3)> end
#Function<12.99386804/2 in :erl_eval.expr/5>

We get the aliases out of the way before moving on to the generator and
checker functions our template will need. The generator uses two short lists
of integers and the checker tests that the answer is left + right. The user data
will arrive in string form so we account for that with the String.to_integer/1 function.

Next we’ll create a quiz, and then add the template with the pieces we’ve
created, like this:

iex(4)> quiz = Quiz.new(title: "Addition", mastery: 2) \
...(4)> |> Quiz.add_template(
...(4)> name: :single_digit_addition,
...(4)> category: :addition,
...(4)> instructions: "Add the numbers",
...(4)> raw: "<%= @left %> + <%= @right %>",
...(4)> generators: generator,
...(4)> checker: checker ) \
...(4)> |> Quiz.select_question
%Mastery.Core.Quiz{

current_question: %Mastery.Core.Question{
asked: "1 + 2",
substitutions: [left: 1, right: 2],
template: %Mastery.Core.Template{
category: :addition,
checker: #Function<12.99386804/2 in :erl_eval.expr/5>,
compiled: {...},
generators: %{left: [1, 2], right: [1, 2]},
instructions: "Add the numbers",
name: :single_digit_addition,
raw: "<%= @left %> + <%= @right %>"

}
},
last_response: nil,
mastered: [],
mastery: 2,
record: %{},
templates: %{ addition: [...] },
title: "Addition",
used: []

}

report erratum  •  discuss

Try Out the Core • 71

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Perfect. Our new quiz looks like it should with an empty record, nothing yet
mastered and a single addition category for templates. Let’s create an incorrect
response, like this:

iex(5)> email="jill@example.com"
"jill@example.com"
iex(6)> response = Response.new(quiz, email, "0")
%Mastery.Core.Response{

answer: "0",
correct: false,
email: "jill@example.com",
quiz_title: "Addition",
template_name: :single_digit_addition,
timestamp: #DateTime<2019-03-31 20:59:12.823720Z>,
to: "1 + 2"

}
iex(7)> quiz = Quiz.answer_question(quiz, response)
%Mastery.Core.Quiz{...}
iex(8)> quiz.record
%{}

We create a response. Mastery runs checkers as it creates the responses to
make debugging and inspection easier so you can see that the response is
incorrect. We advance our token with answer_question/2 and just as we expect,
the record field remains empty.

Let’s try a correct response instead:

iex(9)> quiz = Quiz.select_question(quiz)
%Mastery.Core.Quiz{...}
iex(10)> quiz.current_question.asked
"1 + 2"
iex(11)> response = Response.new quiz, email, "3"
%Mastery.Core.Response{

answer: "3",
correct: true,
email: "jill@example.com",
quiz_title: "Addition",
template_name: :single_digit_addition,
timestamp: #DateTime<2019-03-31 20:59:43.820340Z>,
to: "1 + 2"

}
iex(12)> quiz = Quiz.answer_question(quiz, response)
%Mastery.Core.Quiz{...}
iex(13)> quiz.record
%{single_digit_addition: 1}

Perfect. We create a new question, check the question text and build a new
correct response. Next, we advance our token with answer_question/2 and check

Chapter 4. Build a Functional Core  • 72

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


the question record. Fortunately, we get a record of 1 for our :single_digit_addition
template.

It works! We’re tracking incorrect and correct answers correctly. We’ll work
through mastery in the next chapter. For now, we can take a deep breath and
wrap up.

Build Your Functional Core
In this chapter, we showed how to build a functional core. It’s mostly datatypes
and code made up of strictly functions in modules, with the same inputs
producing the same outputs as often as you can. The functional core has no
processes and invokes no external services. It encapsulates the bulk of the
business logic.

We also built the functional core of our Mastery project. Along the way, we
embraced some core programming principles.

• Build single-purpose functions

• Where possible, bring functions to data rather than bringing your data
to functions.

• Name concepts with functions

• Shape functions for composition

• Build functions at a single level of abstraction

• Make decisions in function heads where possible

We’ll try to keep as much business logic and complexity as possible in the
functional core. Building code this way makes it much easier to reason about
functions, since the same inputs will always have the same outputs making
testing much simpler.

In the next chapter, we’ll exercise our functions in tests. We’ll be getting some
tests in while the system is easy to understand and tests are easy to shape,
without any external interfaces or processes. When you’re ready, turn the page!

report erratum  •  discuss

Build Your Functional Core • 73

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


CHAPTER 5

Test Your Core
If you’re like us, you’ve been continuously asking a nagging question as
we wrestled the data design and functional core to the ground. Where are
the tests?

Here’s a confession. We don’t write code the way it’s presented in this book.
In real life, we make more mistakes, switch between data, functions, and
tests often. We have debates, spike on feature branches, and we almost always
create a test baseline as we go.

That coding style is a great way to work, but a lousy way to write a book like
this, and with good reason. A book about layers can’t jerk its readers
breathlessly from layer to layer and still hope to teach the core concepts of
each one. That’s why we are going to present the tests, fully formed, line by
line giving you the usual commentary of supporting theory and our thought
process as we go.

We believe strongly that tests matter, test designs impact product designs,
and testing as a whole has a tremendous impact on everything a development
organization does. Rather than distributing bits of knowledge throughout the
book, we decided to consolidate all of the testing philosophy and discussion
to two different chapters, one for the core layers and one for the boundary
layers.

Tests are the “T” for “things” in “Do fun things with big, loud worker-bees.” You
can see how they fit into the big picture as shown in the figure on page 76.

In this chapter, we’ll lay out tests for the whole functional core. We will pay
special attention to setup and composition. That strategy will allow us to
build much more concise tests that tell a story. Later, our boundary tests will
handle our boundary, lifecycle, and worker layers (in Chapter 10, Test the
Boundary, on page 195).

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


If you’re writing tests, you already know about ExUnit,1 Elixir’s sole framework
for running unit tests. We’re not going to tell you how it works because we
want to spend time on concepts rather than mechanics. We’ll suggest tools
for coverage and property testing, but we won’t show you those in practice.
We believe in those concepts, but it would take a whole book to cover all of
them. Instead, we’ll mention the tools and techniques that will let you build
your own testing philosophy.

When you’re done, you’ll be able to raise your thought process from individual
tests to building systems of tests with supporting functions that compose.
You’ll be able to take a chaotic mix of code and refactor it so that the story
beneath shines true. It all starts with a plan.

In broad strokes, this is our plan. We will focus as much effort as possible
on composable functions for setup. Though we can test simple functions in
isolation, the complex ones will require composition. We’ll test the harder
concepts with pipelines and custom test functions called fixtures.

A fixture is a bit of code in a test that sets up project code for convenient
testing. In the core layer, fixtures return data. Investing in this setup code
will take longer at first, but as our project grows in complexity our test cases
will have the organizational structure to grow with the rest of our codebase.

Let’s look at that plan in the context of ExUnit. Consider a typical test. Testing
frameworks typically separate the tests into three broad pieces:

1. https://elixirschool.com/en/lessons/basics/testing/

Chapter 5. Test Your Core  • 76

report erratum  •  discuss

https://elixirschool.com/en/lessons/basics/testing/
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


• Shared setup code prepares tests for execution. Their job is to lay a com-
mon foundation for experiments.

• A typical test compares expectations with actual results.

• Shared teardown code cleans up any side effects, so one test does not
impact the rest.

Since we’re testing our functional core (which is mostly pure), we won’t need
teardown code. All of our effort in this chapter will be on the setup and tests.
As we go, we’ll point out where to focus our attention. Let’s put that plan into
action.

Simplify Tests with Common Setup Functions
When we decided to write this book, one of our strongest desires was to solve
a nontrivial problem. Recall that Mastery is the project we’ve been working
on throughout this book. The project illustrates tests well because it has an
intricate structure with many moving parts. Mastery quiz designers need to
build complex structures. Mastery end users will answer questions with wrong
and right answers, and the sequencing of questions will change based on
those responses. Testing this flow is nontrivial, and here’s why.

Writing tests is about establishing a flow. In each test, we prepare a question,
ask the question, and compare the actual response with our expectations.
As the domain grows in complexity, preparing for a question will take more
and more effort.

In specific terms, for Mastery we must create quizzes with templates, as a
teacher would, and then answer the questions those quizzes generate, as a
user would. It’s not just enough for our tests to answer questions in isolation.
We must prove that users repeat sections until they achieve mastery by getting
enough answers right. A substantial amount of this work is creating quizzes
in the first place.

Here’s the point. You must get setup right to get the rest of your tests right.
Creating complex data structures to prepare for a test takes space on your
editor page and space in your brain. Both are limited. Tests that pack too
much into the test function itself obscure the purpose of the test so we’ll put
substantial effort into extracting common code from tests into setup.

We’re going to use two primary types of setup. One type, called fixtures, are
functions that return data structures. We can call fixtures from anywhere in
our tests. The second kind of setup code, called named setups, are functions
that create project-specific data and place it into data structures that we’ll

report erratum  •  discuss

Simplify Tests with Common Setup Functions • 77

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


pass directly into our tests as formal parameters. Let’s look at each one in
greater detail.

Fixtures are constructors. They are convenience functions that return complex,
project-specific structures for the purposes of tests. We’ll build fixtures to
create quizzes, templates, and the other kinds of data structures we’ll need
to put Mastery through its paces. A convenient place to put such data is the
test context.

Whether you need it or not, ExUnit has a special argument, called a context,
to track metadata about each individual test. The context is a Map that has
all of the data Elixir needs to run a test, such as the name of the test case
and so on. Conveniently, developers can add test-specific data to the context
as well. Since contexts are maps, they are easy to work with.

Rather than giving each test the responsibility of creating all of its own test
data, we will use named setup functions to build a common set of data that
works across several tests and load it into the context. Named setups are
essentially test fixtures. Like other fixtures for the core layer, they return
data. Named setups are special because:

• They are functions with a specific signature. They take a context and return
an {:ok, context} tuple.

• They return test data that they put into the context.

Tests can then invoke named setups by name to set up specific scenarios.
We’ll go into them in detail in the sections that follow, but first we will look
at a trick for making our tests less noisy by stripping away unnecessary cer-
emony. To do so, we’ll need to make a brief detour into the ExUnit test helpers.

Improve the ExUnit Infrastructure
Improving our setup is important, but it’s not enough. We can also improve
our tests by stripping away ceremony and organizing our infrastructure.
Things like common aliases and helper functions can quickly cut a couple of
dozen characters in half. In a nutshell, these tiny bits of infrastructure will
make it easier for our users to invoke the setups that improve our tests.

Normally, we’d add a few aliases to the top of a file and call it a day, but
we’ll often have several different test files that need to use the same lines.
Instead of tacking the same aliases to multiple files, we need a way to reuse
these lines. Let’s pay a visit to the man behind the curtain to see how we’ll
do that work.

Chapter 5. Test Your Core  • 78

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


When mix new project_name creates a new project, it builds a test directory with
two files. One is a simple test with a single line of consequence: use ExUnit.Case.
That statement is a macro that includes all the macros and functions our
tests will need. One of the things that macro does is include the file
test/test_helper.exs. Let’s open it up and see what’s inside:

ExUnit.start()

This helper starts the ExUnit process that will run our tests. It’s an ideal
place to put the additional ceremony our project will need, things like aliases
or imports for our project modules or setup functions. We’ll use test/test_helper.exs
to import the testing fixtures our project will need, like this:

Tests/test/test_helper.exs
Code.require_file "support/quiz_builders.exs", __DIR__

ExUnit.start()

We require support/quiz_builders.exs, which will have our fixtures that build quizzes,
templates, and the like. Let’s begin to build out our fixtures, and all of the
machinery they will need to conveniently create quizzes. Crack that file open
and let’s get it started by adding a __using__ macro, like this:

Tests/test/support/quiz_builders.exs
defmodule QuizBuilders do

defmacro __using__(_options) do
quote do
alias Mastery.Core.{Template, Response, Quiz}
import QuizBuilders, only: :functions

end
end

alias Mastery.Core.{Template, Question, Quiz}

We could easily just make this file a standalone module. That’s not good
enough for our tests. We want to remove the obstacle of processing the full
module name, a test support name that’s meaningless to our user, each of
the hundreds of times we need to create test data. That means using a macro.

This one does two simple things. First, it aliases key modules so the user can
use the abbreviated names. Then, it inserts the functions into the test module
as if those functions had been defined there. Now, our quizzes can do

assert Quiz.function(build_data())

instead of

assert Mastery.Core.Quiz.function(Mastery.QuizBuilder.build_data())

report erratum  •  discuss

Improve the ExUnit Infrastructure • 79

http://media.pragprog.com/titles/jgotp/code/Tests/test/test_helper.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Don’t worry about the build_data function right now. It’s just a placeholder as
we work out the details.

Saving that bit of ceremony with the fully qualified Mastery.QuizBuilder is important
since the test setup is such a big part of our overall testing experience.
Alternatively, the test user could explicitly add an alias to the top of the test
file to save that ceremony, but that strategy comes with its own limitations
because you’d need to add the aliases to each test file. Either way, it’s a
substantial win.

With the machinery out of the way, let’s add the constructors to QuizBuilders
that will smooth out our tests.

Provide Test Data with Fixtures
We’ll focus on fixtures in this section. Recall that in our functional core, test
fixtures are functions that create data so we can write repeatable tests without
the extra ceremony. Our quizzes are complex, so the job of our fixtures is to
focus on building data—the various structs and maps that make up our data
layer—so we can keep those details out of the tests.

Recall that our quizzes have the following structure:

defstruct title: nil,
mastery: 3,
templates: %{ },
used: [ ],
current_question: nil,
record: %{ },
last_response: nil,
mastered: [ ]

We’ll need to set those first three fields. The rest are computed. The best way
to populate the templates field is to call our add_template function with a set of
template fields.

That means our strategy is going to look something like this:

build_quiz
|> add_template(template_fields_1)
|> add_template(template_fields_2)

Templates are also complex, so we’ll start with those. While you’ve got sup-
port/quiz_builders.exs open, add this code:

Chapter 5. Test Your Core  • 80

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Tests/test/support/quiz_builders.exs
def template_fields(overrides \\ [ ]) do

Keyword.merge(
[
name: :single_digit_addition,
category: :addition,
instructions: "Add the numbers",
raw: "<%= @left %> + <%= @right %>",
generators: addition_generators(single_digits()),
checker: &addition_checker/2

],
overrides

)
end

That code looks nasty, but most of the job is delegated to other functions.
The rest sets up the raw fields our templates will need. Those fields set up a
template for single-digit addition. We have functions to set up the generators
and checkers we need. We wrap those fields in a Keyword.merge so the user can
customize our default templates with fields of their own.

Now we can look ahead to the functions that support these fields. Add the
following to support/quiz_builders.exs, like this:

Tests/test/support/quiz_builders.exs
def double_digit_addition_template_fields() do

template_fields(
name: :double_digit_addition,
generators: addition_generators(double_digits())

)
end

def addition_generators(left, right \\ nil) do
%{left: left, right: right || left}

end

def double_digits() do
Enum.to_list(10..99)

end

def single_digits() do
Enum.to_list(0..9)

end

We have a function that provides template fields for double-digit addition. It
uses a helper function to build out the generators. A generator is a map where
the keys are fields and the values are substitutions for those fields.

report erratum  •  discuss

Provide Test Data with Fixtures • 81

http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Next we have three trivial helper functions to help build generators. The first
builds a generator map we’ll use for all addition templates. It has :left and
:right substitutions. If the user provides only one list, the function will use the
same list for both :left and :right. The next two functions provide single-digit
and double-digit lists for addition substitutions.

The last piece of templates is the checkers. Add them to support/quiz_builders now:

Tests/test/support/quiz_builders.exs
def addition_checker(substitutions, answer) do

left = Keyword.fetch!(substitutions, :left)
right = Keyword.fetch!(substitutions, :right)
to_string(left + right) == String.trim(answer)

end

They fetch :left and :right from the template and then add them together, and
compare the result to a string. We use Keyword.fetch! because we want to know
immediately if the field is missing, and it will raise an error rather than
returning a nil value.

Now with the templates out of the way, the heavy lifting is mostly done. We
can focus on building quizzes. That’s nearly trivial now:

Tests/test/support/quiz_builders.exs
def quiz_fields(overrides) do

Keyword.merge([title: "Simple Arithmetic"], overrides)
end

def build_quiz(quiz_overrides \\ []) do
quiz_overrides
|> quiz_fields
|> Quiz.new

end

def build_question(overrides \\ [ ]) do
overrides
|> template_fields
|> Template.new
|> Question.new

end

Our quiz_fields function returns some default attributes and merges in overrides.
Then all build_quiz has to do is take the overrides, pipe them into quiz_fields, and
pipe that into Quiz.new. Lovely.

Building a question is also easy. Since we need only a template to generate
a question, we have all we need. We take our overrides, pipe them into
template_fields, pipe that into Template.new and pipe that into Question.new. Our
work to keep our functions composable is paying off.

Chapter 5. Test Your Core  • 82

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


It’s time to see the benefits of all of our hard work. We’re going to build a quiz
with two templates. That code looks like this:

Tests/test/support/quiz_builders.exs
def build_quiz_with_two_templates(quiz_overrides \\ []) do

build_quiz(quiz_overrides)
|> Quiz.add_template(template_fields())
|> Quiz.add_template(double_digit_addition_template_fields())

end
end

That uses the composition tools we’ve already built to construct a template.
Let’s try our shiny new QuizBuilders module.

Use Fixture Functions Directly
We have a single test we’ll need for templates. We want to make sure templates
get compiled correctly. That test would be difficult if we had to do all of the
setup work in the test block itself. Instead, we’ll use the helper functions in
QuizBuilders to bang our test out quickly.

Open up test/template_test.exs and add your new test, like this:

Tests/test/template_test.exs
defmodule TemplateTest do

use ExUnit.Case
use QuizBuilders

test "building compiles the raw template" do
fields = template_fields()
template = Template.new(fields)

assert is_nil(Keyword.get(fields, :compiled))
assert not is_nil(template.compiled)

end
end

The test is pretty tight. We get our default template fields for single-digit
addition. Then we use those to build a template. Finally, we check to make
sure the compiled keyword is nil in fields, but set in the template. The purpose
of our test shines through and we can be confident in our new tools.

Simplify Tests with Custom Data Fixtures
Here’s what we’ve done so far. Our testers can now build a large quiz in parts.
They can provide overrides for the overall quiz. If they need to build something
more custom, they can use the composable tools to generate template fields
and add those in whatever combinations they choose. So our data layer has
three main properties, and all are important:

report erratum  •  discuss

Provide Test Data with Fixtures • 83

http://media.pragprog.com/titles/jgotp/code/Tests/test/support/quiz_builders.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/template_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


• It allows one-shot creation of complex concepts, our quiz.

• It supports composition of complex options by exposing the constructors
for the simple ones.

• It exposes overrides to all core functions so that individual fields can be
changed.

In short, we moved the tedious repeated setup features out of the line of sight
of a typical test and into a custom toolbox that all tests can use. Now let’s
put those tools to work.

Prime Tests with Named Setups
You’ve just seen the first type of setup function, fixtures. In this section, we’ll
cover the next kind of reusable setup function, ExUnit’s named setup feature.
To understand how it works, let’s take a more detailed look at the flow of a
typical ExUnit testcase.

In version 1.3 of Elixir, the ExUnit.Case module added a describe block. Tests
within a block could share common setup code. When you specified a block
of tests within a describe, you could also specify the names of one or more
functions to create common setup data. Here’s how that would look, in our
test layer:

You can see how tests with describe work. Each test runs common setup
code, then a describe block, then any named setups specified by that describe

Chapter 5. Test Your Core  • 84

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


block, and then the test itself. Each one of those functions takes a common
context, a simple map that has all of the metadata required to run a test.

Describe blocks add a little bit of ceremony to the ExUnit flow, but this extra
little bit of complexity in the framework can go a long way toward simplifying
individual tests by moving common setup code into one or more named setups.

A named setup is a function that does one thing. It takes an ExUnit context
and adds project-specific data to it. Here’s what a named setup function
looks like:

def setup_function(context) do
{:ok, Map.put(context, :test_data, build_your_test_data() )}

end

It takes a context and returns a success tuple with a revised context. Every
named setup will have this same shape.

Now, if many functions need access to the same value in :test_data, you can
block those tests into a describe, like this:

describe "a group of tests needing :test_data" do
setup [:setup_function]

test "a test", %{test_data: data} do
assert MyModule.my_function(data) == :ok

end

test "another test", %{test_data: data} do
assert MyModule.another_function(data) == :ok

end
end

Keep in mind that the context is just a map. It’s the common data structure
that ties ExUnit together, just as Quiz ties Mastery together. It contains the
private and custom data each test needs.

You might have noticed that the setup function takes a list rather than an
atom. That means you can pass multiple named setup functions, like this:

describe "a group of tests needing :test_data" do
setup [:setup_function, :another_setup_function]

Since all named setups have the same signature and they all compose over
the same token, you can have as many setups as you want. It’s a wonderful
way to name the preconditions your tests need to run.

We now have some fixtures we’ve established in our QuizBuilders module and
know about the named setup feature, so we can apply those tools to our tests.

report erratum  •  discuss

Prime Tests with Named Setups • 85

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


All of this setup code may seem like too much boiler plate for such a small
test suite. Keep in mind that our test suite is not complete. We’re building
enough tests to make sure we’re giving you a book with code that works—a
full production test suite would usually be much larger. The investments
we’ve made will increasingly pay off as the test suite grows. Each new test
multiplies these benefits:

• You have less duplication
• The purpose for each test becomes more clear across teams
• Your codebase will grow much more slowly

With the trade-offs in mind, we’re going to choose to write some named setups
to control duplication and to simplify each test block. Let’s start with
test/response_test.exs since it’s complex enough to need named setups but simple
enough to illustrate the concept. The first step is to create the file with the
basic heading, like this:

Tests/test/response_test.exs
defmodule ResponseTest do

use ExUnit.Case
use QuizBuilders

We use the QuizBuildersmacro to build in our fixtures. Next, we’ll build a simple
local function to build a quiz with the exact quiz and templates we need,
like this:

Tests/test/response_test.exs
defp quiz() do

fields = template_fields(generators: %{left: [1], right: [2]})

build_quiz()
|> Quiz.add_template(fields)
|> Quiz.select_question

end

defp response(answer) do
Response.new(quiz(), "mathy@example.com", answer)

end

Since we’re testing for correct responses, we want a repeatable template with
only one possible correct answer, "3". That means we’ll build a custom addition
template with single item lists containing [1] and [2]. When our generator fires,
it will create a question with the problem 1 + 2.

We also create a response using the answer provided by the user, our custom
quiz function and a hardcoded email address.

Chapter 5. Test Your Core  • 86

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Tests/test/response_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/response_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Now we can use those functions to create trivial named setups, like this:

Tests/test/response_test.exs
defp right(context) do

{ :ok, Map.put(context, :right, response("3")) }
end

defp wrong(context) do
{ :ok, Map.put(context, :wrong, response("2")) }

end
end

We have a right setup and a wrong one. The names right and wrong are impor-
tant, both as function names and keys in the context map. They clearly indicate
the types of responses in the context.

All that remains is the need to use those keys in the context. Add this code
after the use macros:

Tests/test/response_test.exs
describe "a right response and a wrong response" do

setup [:right, :wrong]

test "building responses checks answers", %{right: right, wrong: wrong} do
assert right.correct
refute wrong.correct

end

test "a timestamp is added at build time", %{right: response} do
assert %DateTime{ } = response.timestamp
assert response.timestamp < DateTime.utc_now()

end
end

The describe serves two purposes. It puts tests in a named group and also
provides the scope for the named setups. The group of tests will have a right
and a wrong response in the context. Not every test will use every value in
the context, and that’s OK. Presumably as we add tests to this script to make
our suite more robust, we’ll be able to leverage these same setup details for
at least some of them.

Next, let’s explore the tests themselves, even though there’s not much to say.
The line assert right.correct is beautifully descriptive—we expect right answers
to be correct. We pattern match to get the assignments out of the body of the
test block and into the function head. We can assert different things about
each response: that we’re correctly firing the checker functions, that we’re
creating appropriate timestamps, and the like.

report erratum  •  discuss

Prime Tests with Named Setups • 87

http://media.pragprog.com/titles/jgotp/code/Tests/test/response_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/response_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Notice how clear the purpose of each test becomes. Building a response is
complicated. It requires a question, which requires a template, which requires
generators, checkers, and a quiz. We hide the complexity from the user and
let them slowly dig into the details, one layer of abstraction at a time.

Also notice that we needed a completely custom quiz with predictable answers.
That quiz was easy to build because we got the abstraction right. We build a
base quiz and pipe that through add_template with our overrides to give us
exactly what we need.

Finally notice that changes to new Response structs are limited to a few lines
of code in our codebase. This abstraction feels right so far. We still need to
see how our setup functions deal with both very simple tests and more com-
plicated ones in the tests to come.

With our QuizBuilders working, we can shift our attention to other tests. Let’s
deal with a sticky problem, dealing with functions that are not pure.

Make Tests Repeatable
All of our tests are inside our functional core. In the core, calling a function
with the same arguments will almost always result in the same output. That
word “almost” is a killer because our whole strategy involves comparing our
expectations to actual values. When we can’t have expectations from run to
run, we must change our approach.

Sometimes, functions are not perfectly pure. Functions that create timestamps
or random numbers are famously difficult to test. We have both types of
functions in our codebase. For example, recall the response test:

test "a timestamp is added at build time", %{right: response} do
assert %DateTime{ } = response.timestamp
assert response.timestamp < DateTime.utc_now

end

We deal with that problem by changing the way we think about expectations.
Rather than testing against an explicit value, we make sure the timestamp
is in fact a timestamp, and that it’s before the present moment, utc_now.

Random numbers will be a little trickier. As we build out the tests in our
test/question_test.exs file, we’ll dodge the random problem in most of them by
building tests that restrict choices in one way or another. Let’s solve the easy
problems first and save the toughest for last.

Chapter 5. Test Your Core  • 88

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


First, we need the typical test directives:

Tests/test/question_test.exs
defmodule QuestionTest do

use ExUnit.Case
use QuizBuilders

Next, we’ll ensure generators make a choice from a list. Rather than deal with
random numbers right off the bat, we’ll restrict the template to two lists of
one, like this:

Tests/test/question_test.exs
test "building chooses substitutions" do

question = build_question(generators: addition_generators([1], [2]))

assert question.substitutions == [left: 1, right: 2]
end

We generate a template for single-digit addition with two lists of a single item.
Then we test against the expected substitutions.

Here’s a trivial approach to dealing with our random number nemesis. Lists
of one certainly simplify the test because we know exactly what the result
should be. In this case, we can tell whether the choices get plugged into the
substitutions correctly. We essentially stacked the deck.

We’ll deal with a more complete test for the specific random problem in a bit.
For now, let’s make sure other types of generators work, like this:

Tests/test/question_test.exs
test "function generators are called" do

generators = addition_generators( fn -> 42 end, [0] )
substitutions = build_question(generators: generators).substitutions

assert Keyword.fetch!(substitutions, :left) == generators.left.()
end

That’s an interesting test. We pass in a function as one of the generators for
a custom template. We’ll include a function that returns 42, the most
important number in the universe.2 Then, we fire the generator, and compare
the value of the substitution to the value the function returns. Once again,
we stack the deck in our favor by picking a very simple function to use in our
generator.

The test is simple because we already know Elixir can reliably compute custom
functions, so we don’t need to test that. We need only test that our generator
fires a function, so a simple one works fine.

2. https://www.urbandictionary.com/define.php?term=42

report erratum  •  discuss

Make Tests Repeatable • 89

http://media.pragprog.com/titles/jgotp/code/Tests/test/question_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/question_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/question_test.exs
https://www.urbandictionary.com/define.php?term=42
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


With function and list generators in our pocket, we can move on to computing
the asked field for questions. Once again, we don’t really care how the values
are chosen. We only care that the correct values get plugged in. We’ll use a
simple template once again, like this:

Tests/test/question_test.exs
test "building creates asked question text" do

question = build_question(generators: addition_generators([1], [2]))

assert question.asked == "1 + 2"
end

Once again, we provide two lists of one item, making the generated text easy
to compare. The test becomes trivial.

We’ve successfully dodged the idea of random numbers, but it’s time to pay
the piper. We have to pay for the fact that we don’t have repeatable results
when we generate a question using random numbers, so we’ll have to
improvise.

We can use streams to generate many random numbers, and then narrow
that value to the one we need, like this:

Tests/test/question_test.exs
test "a random choice is made from list generators" do

generators = addition_generators(Enum.to_list(1..9), [0])

assert eventually_match(generators, 1)
assert eventually_match(generators, 9)

end

def eventually_match(generators, answer) do
Stream.repeatedly(fn ->
build_question(generators: generators).substitutions

end)
|> Enum.find(fn substitution ->
Keyword.fetch!(substitution, :left) == answer end)

end
end

end

This time, our generator picks a random number from a list from 1 to 9. That
means we need to get creative. We don’t want to test that Elixir creates a
specific number, because that defeats the nature of the tool we built. We want
to test that Elixir eventually picks a number we expect. We’ll choose to pick
the edges of our random function, the digits 1 and 9.

Here’s the magic. We start from the same foundation, the generators created
at the top of the test. Building on the same foundation is important, and what

Chapter 5. Test Your Core  • 90

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Tests/test/question_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/question_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


makes this test a strong one. We want to make sure that this exact generator
will eventually generate a specific number we’re calling answer. We use
Stream.repeatedly to let our generator build an endless stream of substitutions,
and we then convert the stream to an enumerable with Enum.find. That means
we’ll get random numbers until we hit the one we’re looking for. Keep in mind
that this approach is not the only one that we could have chosen:

• We could have reseeded our random number generator so that our random
function generated a predictable list.

• We could’ve made our random function pluggable and picked a determin-
istic function for our tests and a random one for our other environments.

• We could’ve checked ranges.

The point is not which solution we chose but that we made a trade-off. We
chose to complicate our tests to build the impure random function into our
functional core and had to deal with some extra complexity in our tests as a
result. We think the trade-off is a good one, but you can choose to make a
different one.

With this tricky random-number problem out of the way, it’s time to look to
the next significant challenge. Let’s take on the six-headed hydra, the beast
we call Quiz.

Compose Within Tests
The most complex module is Quiz because that’s the module that holds state
as we progress through a test. It needs to generate questions from templates,
cycle through templates, track mastery, and finish when mastery is complete.
We’ve put it off as long as we can. We need to slay this beast. We’ll attack it
with our setups and by composing through our token, the Quiz.

Crack open test/quiz_test.exs to construct our quiz. Start with the typical cere-
mony, the module plus the two use directives, like this:

Tests/test/quiz_test.exs
defmodule QuizTest do

use ExUnit.Case
use QuizBuilders

Next, we’ll need helper functions, one that handles random question genera-
tion and one to build a convenient shortcut to return the template for a quiz,
like this:

report erratum  •  discuss

Compose Within Tests • 91

http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Tests/test/quiz_test.exs
defp eventually_pick_other_template(quiz, template) do

Stream.repeatedly(fn ->
Quiz.select_question(quiz).current_question.template

end)
|> Enum.find(fn other -> other != template end)

end

defp template(quiz) do
quiz.current_question.template

end

After we build a question, we know the generators will eventually build
another one. Just as we did in our Question test, we Stream.repeatedly, creating
questions until we eventually find a question that is different from the one
that’s passed in.

The next function, template, is just to save typing because we’re lazy. Let’s
make a few more helpers, this time to answer questions like this:

Tests/test/quiz_test.exs
defp right_answer(quiz), do: answer_question(quiz, "3")
defp wrong_answer(quiz), do: answer_question(quiz, "wrong")

defp answer_question(quiz, answer) do
email = "mathy@example.com"
response = Response.new(quiz, email, answer)
Quiz.answer_question(quiz, response)

end

The first two functions generate right and wrong answers using a third function.
It just passes data straight through to the quiz. Notice that these functions
all take and return a Quiz. This trick will help us compose complex flows.

Now, we’ll add a few more functions to serve as named setups, like this:

Tests/test/quiz_test.exs
defp quiz(context) do

{:ok, Map.put(context, :quiz, build_quiz_with_two_templates())}
end

defp quiz_always_adds_one_and_two(context) do
fields = template_fields(generators: addition_generators([1], [2]))

quiz =
build_quiz(mastery: 2)
|> Quiz.add_template(fields)

{:ok, Map.put(context, :quiz, quiz)}
end

They build quizzes using the functions we created in QuizBuilders, and return
the :ok tuple. The first builds the default quiz with two templates. We’ll use

Chapter 5. Test Your Core  • 92

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


that one to make sure our quiz cycles through templates as it should. The
second builds a template with predictable answers. We’ll use that one to test
mastery.

We need one more piece before we write our tests. We’d like to compose our
tests with long, simple pipelines that tell a story, but we want to do some
assertions in the midst of the pipeline. We build a couple of helper functions
that just change the shape of assertions, like this:

Tests/test/quiz_test.exs
defp assert_more_questions(quiz) do

refute is_nil(quiz)
quiz

end

defp refute_more_questions(quiz) do
assert is_nil(quiz)
quiz

end
end

These functions are dead simple, but they will have a tremendous impact on
our tests. They take a quiz and return one, but do an assertion in the middle.
An assertion is effectively a side effect. This technique will let us put together
a longer flow when we want to test a mastery.

It’s finally time to write some tests. Add these tests at the top of the file, after
the use directives. First, we need to make sure we’re generating random
questions. Here’s the approach:

Tests/test/quiz_test.exs
describe "when a quiz has two templates" do

setup [:quiz]

test "the next question is randomly selected", %{quiz: quiz} do
%{current_question: %{template: first_template}} =
Quiz.select_question(quiz)

other_template = eventually_pick_other_template(quiz, first_template)
assert first_template != other_template

end

This is the first of two tests that use named setups to hide the complexity of
data creation by creating our quiz outside of the test block. Our tests are
primed with the correct templates, and we have a function that will take the
same template and keep generating questions with that same template until
it eventually finds a question that doesn’t match the first one. It’s the same
technique we used when testing random substitution generation.

report erratum  •  discuss

Compose Within Tests • 93

http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Next, we have a test that makes sure we cycle through all templates until
we’ve exhausted them. Remember, it’s still in the describe block with the
same named setup that calls quiz:

Tests/test/quiz_test.exs
test "templates are unique until cycle repeats", %{quiz: quiz} do

first_quiz = Quiz.select_question(quiz)
second_quiz = Quiz.select_question(first_quiz)
reset_quiz = Quiz.select_question(second_quiz)

assert template(first_quiz) != template(second_quiz)
assert template(reset_quiz) in [template(first_quiz), template(second_quiz)]

end
end

This test is tricky because once again we have random generation. We expect
our quiz to generate two questions and then reset, but we don’t know in which
order. We generate the first and second questions, and make sure the first
two templates for those questions are different. Then, we make sure that the
third question’s template, the one we expect to be reset, is from the list of the
first two. It may take you a while to follow the logic, but it’s correct.

Finally, we need to test mastery. Since we have one template with a mastery
of two, and since a wrong question resets mastery, we need to generate a test
that goes something like quiz |> right |> wrong |> right |> right, and that should finish
the quiz. We can generate a test that’s almost as clear, like this:

Tests/test/quiz_test.exs
describe "a quiz that always adds one and two" do

setup [:quiz_always_adds_one_and_two]

test "a wrong answer resets mastery", %{quiz: quiz} do
quiz
|> Quiz.select_question
|> assert_more_questions
|> right_answer
|> Quiz.select_question
|> assert_more_questions
|> wrong_answer
|> Quiz.select_question
|> assert_more_questions
|> right_answer
|> Quiz.select_question
|> assert_more_questions
|> right_answer
|> Quiz.select_question
|> refute_more_questions

end
end

Chapter 5. Test Your Core  • 94

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://media.pragprog.com/titles/jgotp/code/Tests/test/quiz_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


These kinds of tests can get difficult to read without composition, but with
it, the story we’re trying to tell comes through beautifully.

We have taken this test as far as we should in this single chapter, but there
are still a couple more details to cover.

Take Tests Beyond the Elixir Base
Testing is a broad topic and a controversial one. The Elixir community has
so far shown pretty basic tastes as far as testing tools go. In this section, we’ll
look at a couple of interesting places where Elixir programmers are using
more cutting-edge techniques for testing a functional core.

The first idea, code coverage, is that you should understand what’s tested
and what’s not. Elixir has built-in tools to help you do so.

The second is that you can use tools to let your system generate many different
test inputs automatically and test those inputs against known properties of
your code. The technique, called property-based testing, has been around for
a while but is picking up momentum in the Elixir community.

Consider Measuring the Reach of Your Tests
Many teams think it’s important to know the reach of their tests. The mix tool
allows coverage tracking. We suggest that you have a coverage threshold as
a metric for your project. If the coverage falls below the metric, you can react
accordingly.

We don’t need to do anything to check coverage for the code we’ve built so far.
Run mix test --cover in a console that’s in the root directory of mastery, like this:

~/mastery ➔ mix test --cover
...
Cover compiling modules ...
...

Percentage | Module
-----------|--------------------------

100.00% | Mastery.Core.Quiz
100.00% | Mastery.Application
100.00% | Mastery.Core.Template
100.00% | Mastery
87.50% | Mastery.Core.Response
87.50% | Mastery.Core.Question

-----------|--------------------------
77.50% | Total

Generated HTML coverage results in 'cover' directory

report erratum  •  discuss

Take Tests Beyond the Elixir Base • 95

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Notice that two of the lines are showing uncovered. Those lines have defstruct
macros on them, and they are not showing that they are covered, though we
clearly defined those structs and exercised them in our functions. If you are
looking for a threshold below 100%, that’s OK. If you’re trying to maintain
full coverage, you’ll often need a tool with a little more configurability.

The ExCoveralls tool3 can work as a replacement for the default coverage
provided by ExUnit. All you need to do is add the hex dependency, and add
this line to your mix.exs:

test_coverage: [tool: ExCoveralls]

Then you can run it with mix coveralls. See the documentation for more details.
One of the nice things about ExCoveralls is that you can build a configuration
file to control what’s counted and what’s ignored. As always, use the tool that
works best for you.

Now that you know how to find out whether all of your lines are covered, we
can look at another advanced testing technique. Property-based tests show
how to automate your test creation.

Consider Property-Based Tests
In these examples, we’ve focused on unit testing. These kinds of tests pass
predetermined values to our functional core and measure the impact with
assertions. Another testing strategy is property-based testing. Fred Hebert
has an excellent book on property-based testing, Property-Based Testing with
PropEr, Erlang, and Elixir [Heb19]. The PropEr framework is an Erlang frame-
work with good support for Elixir too.

In property-based testing, you’ll define assumptions about the inputs called
properties and outputs of a function and let the computer generate values to
run through your tests. If the property holds true for all values, the test
passes. If it does not, the test fails, and simplifies the set of inputs that break
the assumptions. Here’s an example from Fred’s book:

property "a sorted list keeps its size" do
forall l <- list(number()) do

length(l) == length(Enum.sort(l))
end

end

That test is much more powerful than the tests you see written in this chapter.
list(number()) is a generator that creates a random list of numbers. For each

3. https://github.com/parroty/excoveralls/blob/master/README.md

Chapter 5. Test Your Core  • 96

report erratum  •  discuss

https://github.com/parroty/excoveralls/blob/master/README.md
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


list, we make sure the length of the sorted list is the same as the length of
the inbound list.

For token-based solutions like ours, these tests are especially powerful. We
can generate a much more diverse set of inputs and outputs to run against
our program. The topic is beyond the scope of this book. To learn more, see
Property-Based Testing with PropEr, Erlang, and Elixir [Heb19] by Fred Hebert.

Test Your Functional Core
In this chapter, we’ve been busy. We’ve tested our functional core from end
to end. Here’s how we did it.

We started with setup functions to build our test data. Since our quiz is a
complex model with many complex transitions, we needed some functions to
let us quickly set up quizzes to simulate a variety of conditions. We used
simple functions, and paid careful attention to composition. We also gave our
functions the ability to override defaults.

Once we had those functions, we used them in named setups. Those functions
are small composable purpose-built testing functions that layer complexity
for tests. We tested templates, questions, and responses in this way.

Once we moved to the QuizTest, we needed more help. We leaned on the com-
posable design of the quiz and the data helpers we built to write tests that
told a story. We made sure our tests communicated our intent from the
beginning.

Finally, we looked at some additional topics. We looked at the value of code
coverage and property-based tests. We pointed out a few projects that are
useful in that context.

This chapter concludes Part I. In Part II, we’re going to look into how to use
our functional cores to preserve state reliably but simply. Let’s get busy!

report erratum  •  discuss

Test Your Functional Core • 97

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Part II

...with Big, Loud Worker-Bees

Part II addresses the layers we’ll implement with
Elixir’s OTP. We’ll deal with the second part of the
sentence “Do fun things with big, loud worker-bees."
When you hear "big, loud worker-bees” think
“boundaries, lifecycles, and workers.”

These are the boundary layers. As a whole, they
represent the process machinery that establishes
processes (boundary), starts or stops them (lifecycle)
and divides work (workers).



CHAPTER 6

Isolate Process Machinery in a Boundary
Boundaries are the “B” for “big” in the sentence “Do fun things with big, loud
worker-bees.” In Part I of this book, we handled the first half of that sentence.
We built and tested the functional core that serves to isolate as much code
as possible from processes. Remember, many projects will not need any layers
beyond these three.

Part II deals with “big, loud worker-bees,” the outer layers. These layers include
all of the process machinery, message passing, and recursion that form the
heart of concurrency in Elixir systems. The boundary cleanly executes core
code in a process and wraps it in a generic API. The lifecycle layer provides
tools to start and stop the boundary layer, even in the context of a larger
project. Workers divide work for performance, isolation, or reliability. You’ll
see all of these layers in the following figure:

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


In this chapter, we focus on the boundary, the process that wraps the business
logic defined in the core. Our boundaries might share common state with
other processes, communicate with remote servers, or isolate a critical service
from failures in the rest of the system.

We will use OTP to implement our outer layers because it bakes in many of
the concepts we’ll need: a common API for dealing with initialization and
messages we’ll need in our boundary layer, the supervisors we’ll need to build
the lifecycle layer, and patterns we’ll use to spin up workers.

Boundaries introduce additional complexity and uncertainty. The inputs and
outputs of functions in the core are often trusted and well defined, but the
boundary machinery must deal with uncertainty because our boundary API
must process unsanitized user input and the external systems our boundary
might use can fail. Let’s look at some of the techniques our boundary can
use to deal with uncertainty.

Maintain Composition Through Uncertainty
External services such as databases or network requests can unexpectedly
slow down or fail; well-meaning users can make mistakes; malicious users
can try to cause mischief with inputs shaped to attack our systems.

Though Elixir programmers depend on pipes, dealing with errors midstream
in piped compositions is awkward and unreliable. As we build our boundary,
we will need strategies for maintaining a composable architecture through
this uncertainty.

Because our services may struggle under load, we may need to use back
pressure, a technique to slow requests to those services under duress. Since
the data will come from untrusted sources we must consider validations as
we wrap our functional core in an API.

You may have noticed that we make heavy use of Elixir’s |> operator. Often
pipes rely on functions we expect to succeed. Since the boundary can’t rely
on this kind of certainty, we need to adopt new techniques.

Before we get back into the Mastery project we’re building to take complex
quizzes, let’s address some of the techniques you might use to smooth out
our boundary in spite of all that uncertainty. We’ll work with errors as data,
and dig into the with function, which will let us compose with functions that
might fail.

Chapter 6. Isolate Process Machinery in a Boundary  • 102

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Treat Errors as Data
Functional programs are simpler when we can use pipelines to simplify code.
Transforming data is one of the fundamental tenets of Elixir, but there’s a
problem. Functions that fail often raise exceptions. When we don’t handle
errors, they transition to code execution in the form of exceptions.

Exceptions don’t compose neatly and the resulting error codes aren’t always
informative. In this section, we’ll examine ways to transform exceptions to data.

There’s another problem with relying on pipes that fail midstream. You can
often lose context. If you can treat errors as data, managing flows in pipelines
gets a little bit simpler. With error data structures, later functions in a pipeline
can decide how to handle them. You can report partial success, or even halt
on an error with context, just as the Plug framework from Phoenix does.

Here’s how it works. Let’s define a worker with some artificial failure:

defmodule Worker do
def work(n) do

if :rand.uniform(10) == 1 do
raise "Oops!"

else
{:result, :rand.uniform(n * 100)}

end
end

We write an intentionally buggy worker. A failure means an exception. We
can turn that exception into data, like this:

def make_work_safe(dangerous_work, arg) do
try do

apply(dangerous_work, [arg])
rescue

error ->
{:error, error, arg} # include any needed context here

end
end

It’s a simple rescue. Now we can stream the work, like this:

def stream_work do
Stream.iterate(1, &(&1 + 1))
|> Stream.map(fn i -> make_work_safe(&work/1, i) end)

end
end

That function will iterate on our work forever. We map over the stream making
the work function safe.

report erratum  •  discuss

Maintain Composition Through Uncertainty • 103

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Now, let’s put it to use, using the techniques we mentioned. First, let’s report
partial success as we go, until there’s an error, like this:

IO.puts "Report partial success:"
Worker.stream_work
|> Enum.take(10)
|> IO.inspect

We can now report on a block of work, with some successes and some errors.
Alternatively, we can report successes until we get to a failure, like this:

IO.puts "Halt on error with context:"
Worker.stream_work
|> Enum.reduce_while([ ], fn

{:error, _error, _context} = error, _results ->
{:halt, error}

result, results ->
{:cont, [result | results]}

end)
|> case do

{:error, _error, _context} = error ->
error

results ->
Enum.reverse(results)

end
|> IO.inspect

In the first pipe block, we reduce over the code using Enum.reduce_while. This
function will reduce until the function returns a {:halt, error} tuple. If there’s
an error, we return an error tuple. Otherwise, we collect the results.

In the second pipe block, we either return an error or reverse the results.

Running this code will give you something like this:

$ elixir pipeline_errors.exs
Report partial success:
[
{:result, 58},
{:result, 127},
{:error, %RuntimeError{message: "Oops!"}, 3},
{:result, 275},
{:result, 488},
{:error, %RuntimeError{message: "Oops!"}, 6},
{:result, 511},
{:result, 608},
{:result, 238},
{:result, 751}

]
Halt on error with context:
{:error, %RuntimeError{message: "Oops!"}, 5}

Chapter 6. Isolate Process Machinery in a Boundary  • 104

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Mastery works with two versions of this problem. The first is collecting all of
the validation errors related to a single piece of input. The second is composing
over functions that might fail with validation errors. We’ve talked about the
first, translating errors to data. Let’s address the second, composing over
functions that might fail.

Use with to Compose Uncertain Structures
The philosophy of with is simple. It allows you to specify pattern matches at
each step of composition. If the match succeeds, the composition proceeds.
If it fails, the composition halts and falls through to an else condition.

Here’s an example from later in this chapter. We will build an API layer that
has to validate data. The functions will have to have ugly if-then logic rather
than simple compositions. We’ll use with to smooth out the rough edges.

Here’s how the approach works. First, let’s say we’re building a new quiz with
data provided by the user. We’d like to pass validated data to a service that
stores quizzes like this:

def new(quiz_fields) do
quiz_fields
|> validate_quiz
|> QuizManager.build_quiz

end

The problem is that the output of validate_quiz will have a different shape, and
will need different logic to support the data. Also, our validation API doesn’t
compose the way we want it to. If validation fails, we want to deal with the
error, like this:

def new(quiz_fields) do
QuizValidator.errors(quiz_fields)
|> case do

{:error, message} ->
{:error, message}

_ ->
QuizManager.build_quiz(quiz_fields)

end
end

This function is relatively small, but the service layers must often compose
across more steps. When each individual step has its own error condition,
you’ll have to nest these case statements each time you deal with a separate
error. Any notion that you’re dealing with a composition is completely lost.

report erratum  •  discuss

Maintain Composition Through Uncertainty • 105

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


The solution is to use with to build the composition, like this:

def new(quiz_fields) do
with :ok <- QuizValidator.errors(quiz_fields) do

QuizManager.build_quiz(quiz_fields)
end

end

The with function does two things for us. It allows us to compose through the
“happy path” of the code by letting us delay error handling. with also lets us
clearly separate what to do if the composition succeeds or fails.

Now that we have a couple of strategies for dealing with errors, let’s start to
work on our own boundary layer. Remember, the first part of winning the
boundary game is deciding whether to play.

Build Your Optional Server
One of the trickiest parts of learning a concurrency-based language like Elixir
is understanding when to use processes at all. Here’s a little guidance. Con-
sider processes when these use cases show up:

• Sharing state across processes

• Presenting a uniform API for external services such as databases or
communications

• Managing side effects such as logging or file I/O

• Monitoring system-wide resources or performance metrics

• Isolating critical services from failure

This short list is not exhaustive, but it should give you a sense for the types
of things that should prompt you to think about a boundary. In short, our
boundary is an optional layer of impure integration code that make the core
fast, robust, and reliable.

For our Mastery project, a couple of those use cases ring true. We will need
to share data across two types of state including a repository of quizzes as
well as the data for an individual quiz session. We also want to isolate failure
because our overall quiz repository is a critical system and a single point of
failure. If it fails, no one will be taking any quizzes!

Now that we’ve decided to use processes, we can decide whether to use our
own machinery or to rely on other infrastructure. We might choose the Phoenix
web server because it already has excellent process infrastructure. In our
case, we’d like to preserve the freedom to provide other types of user interfaces

Chapter 6. Isolate Process Machinery in a Boundary  • 106

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


beyond the web, such as a possible native user interface, so we’ll go ahead
and flesh out our boundary layer.

Let’s look back at an example. In Chapter 1, Build Your Project in Layers, on
page 1, recall our simple counter that wrapped a tiny core with processes
and recursion to manage state. That wrapper is our service layer. We then
took that ad hoc server and wrapped it in an API. This last layer exists as a
convenience.

We’re going to follow the same pattern. Think about the boundary in two
parts: the service layer and the API layer. A boundary needs a service layer
around each individual process type and an external API for clean, direct
access across services. In Mastery, we’ll first need to decide what our
GenServers are. We’ll need a service layer for each of two GenServers: a quiz
session where users can take a quiz and a quiz manager where we’ll hold the
state for individual quizzes. Then we’ll put an API, like this:

This figure illustrates the story nicely. Our QuizManager and SessionManager will
be separate services and we’ll tie them together with a unified API.

The OTP framework is pretty expansive. We’ll work primarily with GenServers,
a short name for generic server. It’s the most basic OTP abstraction with the
features most users need. The original documentation says you will use
GenServers to establish a client–server relationship. You can use them to

report erratum  •  discuss

Build Your Optional Server • 107

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


write state machines, build process-based services such as web servers, or
even share common, independent state. Your main three APIs will be init/1,
handle_call/3 and handle_cast/2. You’ll use them this way.

init(initial_state) will establish the state of a new GenServer. Indirectly we’ll invoke
initial_state each time we start a server. More precisely, it comes from the
supervisor, which we’ll explore in more detail in Chapter 7, Customize Your
Lifecycle, on page 131. It returns a tuple that looks like {:ok, initial_state}.

handle_call(message, from, state) processes a synchronous two-way message. Think
phone call because phone calls are two way. When your code sends a
GenServer a call message, OTP will invoke the handle_call callback with the
message, a tuple describing the caller, and the current state of the server.
Then, your handle_call callback returns a value in a predetermined format. For
example, to reply, use {:reply, message_to_client, new_state}. The GenServer sends
the value message_to_client to the client process, and sets the new value of the
GenServer to new_state with a recursive function call.

handle_cast(message, state) processes a one-way asynchronous message. Think
pod cast because podcasts are one way. You’ll sometimes use cast messages
as a fire-and-forget mechanism to change state. A cast will typically respond
with a {:noreply, new_state} tuple to change the server’s state to new_state. There
are other callbacks and specialized responses you can find in the documen-
tation, but that’s all of the background we need to write a basic server API.

The main decision we need to make to start with is which servers we’ll need.
Intuitively, we’ll need two of them. One server will handle all of the quizzes
as users create and store them, and another server will let each user take a
quiz. That strategy makes sense because many users could take each quiz,
and each will need their own process because each has its own state. We only
need one server to hold our collection of quizzes. Let’s make it so.

Implement the QuizManager with Processes
The quiz manager will start with an empty map. We’ll add quizzes to it through
a call to :build_quiz. Then, we’ll add templates to a quiz in the store through a call
to :add_template, and we’ll add a function to let our users lookup a quiz by name.

Open a new editor session in lib/mastery/boundary/quiz_manager.ex. It’s a straight
Elixir module that looks like this:

Boundary/lib/mastery/boundary/quiz_manager.ex
defmodule Mastery.Boundary.QuizManager do

alias Mastery.Core.Quiz
use GenServer

Chapter 6. Isolate Process Machinery in a Boundary  • 108

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


We declare the module, set up our initial aliases for Quiz. Then we use GenServer.
use is an Elixir macro. As you know, macros are code that writes code. This one
adds the GenServer callbacks our component will need, and some machinery
the server needs to run that we don’t need to worry about quite yet.

The first order of business is to establish an external API for our GenServer:

Boundary/lib/mastery/boundary/quiz_manager.ex
def init(quizzes) when is_map(quizzes) do

{:ok, quizzes}
end

def init(_quizzes), do: {:error, "quizzes must be a map"}

Next is the simple init callback to initialize our server. That callback takes
some inbound arguments and translates those to an initial state for our
server. We want the initial state for for QuizManager to be a map called quizzes.
If it’s not a map, we’ll return a descriptive error.

Let’s write our first call callback, the one to build a quiz:

Boundary/lib/mastery/boundary/quiz_manager.ex
def handle_call({:build_quiz, quiz_fields}, _from, quizzes) do

quiz = Quiz.new(quiz_fields)
new_quizzes = Map.put(quizzes, quiz.title, quiz)
{:reply, :ok, new_quizzes}

end

This is our first handle_call callback. We use the word “callback” because a
GenServer implements all of the boilerplate for a generic server, including a
recursive loop to manage state. The generic implementation has a few hooks
that let users fill in the project-specific knowledge. In our case, our callback
builds and stores a quiz.

OTP invokes handle_call whenever our GenServer receives a call message. Rather
than handling all messages from one function, we’ll generally break up the
handle_call endpoints with pattern matching so we can keep each message in
its own function block.

This call takes the form {:build_quiz, quiz_fields}. The work is simple: we call our
functional core to create a new quiz from these fields, and then add that quiz
to our map.

When we’re done, we return a three-tuple. The first one instructs OTP to send
a reply to the user, the second has the value for the reply, and the third is
the new state for the GenServer, in our case the map new_quizzes containing
our new quiz.

report erratum  •  discuss

Build Your Optional Server • 109

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


That first call is a little tricky, but the rest will look the same. Let’s add a
template, like this:

Boundary/lib/mastery/boundary/quiz_manager.ex
def handle_call(

{:add_template, quiz_title, template_fields},
_from,
quizzes

) do
new_quizzes = Map.update!(quizzes, quiz_title, fn quiz ->

Quiz.add_template(quiz, template_fields)
end)
{:reply, :ok, new_quizzes}

end

This callback uses the same technique to add templates to a quiz. We invoke
Quiz.add_template from our core and store that result to our map using Map.update.
We return :ok to the user and set the new server state to new_quizzes.

Now that we can add quizzes with templates to our simple store, let’s support
fetches:

Boundary/lib/mastery/boundary/quiz_manager.ex
def handle_call({:lookup_quiz_by_title, quiz_title}, _from, quizzes) do

{:reply, quizzes[quiz_title], quizzes}
end

end

This final call looks up a quiz and returns it to the user. It’s a trivial Map.get.

We now have all of the machinery we need, but we could surface a cleaner
API. Let’s add more convenient functions to use that callback, like this:

Boundary/lib/mastery/boundary/quiz_manager.ex
def build_quiz(manager \\ __MODULE__, quiz_fields) do

GenServer.call(manager, {:build_quiz, quiz_fields})
end

def add_template(manager \\ __MODULE__, quiz_title, template_fields) do
GenServer.call(manager, {:add_template, quiz_title, template_fields})

end

def lookup_quiz_by_title(manager \\ __MODULE__, quiz_title) do
GenServer.call(manager, {:lookup_quiz_by_title, quiz_title})

end

Notice that most of the machinery for GenServer is pretty compact, but it
provides too many implementation details. We leak through the exact format
of each call message, unnecessarily coupling our GenServer to any code that
invokes it. We provide a cleaner API with these three client functions.

Chapter 6. Isolate Process Machinery in a Boundary  • 110

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_manager.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


In this layer, you can see the consumer side of the GenServer module. For each
of the messages in our API, we call a GenServer.call function to send a message.
We first pass the name of the GenServer which we’ll default to the module
name, then the message we’re sending. The message we send will match one
of the handle_call function clauses in our server. We expect clients to invoke
these three APIs and the handle_call callbacks to run on the server.

Now that we’re done, users can interact with our server with plain old func-
tions rather than messages, and we’ve sufficiently hidden the details of each
message. Let’s take this server for a test drive.

Try the Quiz Manager
In this section, we’re going to put the quiz through its paces. Part of writing
good code is building the infrastructure to support learning and exploration.
We’re going to create a trivial module to let new users and developers alike
explore our features in the console.

Let’s create a simple math quiz with mastery of two and a template for single-
digit addition. None of this code will be new to you:

Boundary/lib/mastery/examples/math.ex
defmodule Mastery.Examples.Math do

alias Mastery.Core.Quiz
def template_fields() do

[
name: :single_digit_addition,
category: :addition,
instructions: "Add the numbers",
raw: "<%= @left %> + <%= @right %>",
generators: addition_generators(),
checker: &addition_checker/2

]
end

def addition_checker(substitutions, answer) do
left = Keyword.fetch!(substitutions, :left)
right = Keyword.fetch!(substitutions, :right)
to_string(left + right) == String.trim(answer)

end

def addition_generators() do
%{left: Enum.to_list(0..9), right: Enum.to_list(0..9)}

end

def quiz_fields() do
%{ mastery: 2, title: :simple_addition}

end

report erratum  •  discuss

Build Your Optional Server • 111

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/examples/math.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


def quiz() do
quiz_fields()
|> Quiz.new
|> Quiz.add_template(template_fields())

end
end

We have separate functions for quiz and template fields. We also have a
function to roll that up into a new quiz. Now we have a few tools that will
make our module easy to test. Open up a new IEx session, or at least
recompile. Then, you can alias the modules we’ll need, like this:

iex(1)> alias Mastery.Examples.Math
Mastery.Examples.Math
iex(2)> alias Mastery.Boundary.QuizManager
Mastery.Boundary.QuizManager

We alias Math, the example quiz we just built for convenience, and QuizManager,
the server layer for building quizzes. Now, we need to start the quiz:

iex(3)> GenServer.start_link QuizManager, %{}, name: QuizManager
{:ok, #PID<0.123.0>}

We need to be able to access our server, perhaps from a web layer so we’ll
need to be able to reference it by name. We’ll use the name of the module,
which means we’ll only have one copy of QuizManager. The start_link has three
arguments, the module that has the GenServer implementation, the empty
map that will eventually contain our quizzes, and options. We use the :name
option to specify the name for our new server. Now, we can use it:

iex(4)> QuizManager.build_quiz title: :quiz
:ok
iex(5)> QuizManager.add_template :quiz, Math.template_fields
:ok

You can see the smoother API we offer from this layer. We build a quiz,
strictly with functions:

iex(6)> QuizManager.lookup_quiz_by_title :quiz
%Mastery.Core.Quiz{ ... }

Nice! That much works. We can see the individual fields of the quiz we added.
That’s more than half of our server. Now admin users can establish new
quizzes. It’s time to switch to the rest of our server layer, the part for taking
quizzes and answering questions.

Chapter 6. Isolate Process Machinery in a Boundary  • 112

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Implement the QuizSession with Processes
The quiz session will use the code we implemented in our functional core,
the code that answers and selects questions for a given user. Our core
implements the business functions that advance the state of the quiz based
on mastery. The quiz session will add the process machinery we’ll need to
independently manage state.

Each of our users will need the state for the quiz they’re working through as
well as their own email address for their answers. The state for our
GenServer will be a tuple with quiz email.

For now, we won’t worry about starting and stopping that server. We’ll just
make sure it works with a single process. Let’s start with the quiz session.
Open the new file lib/mastery/boundary/quiz_session.ex, and key this in:

Boundary/lib/mastery/boundary/quiz_session.ex
defmodule Mastery.Boundary.QuizSession do

alias Mastery.Core.{Quiz, Response}
use GenServer

We declare the module, set up our initial aliases for Quiz and Response. Once
again we use GenServer.

Next, let’s write a simple callback to initialize our server and our first callback,
like this:

Boundary/lib/mastery/boundary/quiz_session.ex
def init({quiz, email}) do

{:ok, {quiz, email}}
end

This init function looks like the first one we coded. We take the expected {quiz,
email} tuple and return it to our server. We don’t validate here, except making
sure we’re using the API in the right way with an inbound tuple. We’ll check
data integrity at the API layer.

Next, let’s process a callback to select a question, like this:

Boundary/lib/mastery/boundary/quiz_session.ex
def handle_call(:select_question, _from, {quiz, email}) do

quiz = Quiz.select_question(quiz)
{:reply, quiz.current_question.asked, {quiz, email}}

end

The task is complex, but we already handled the difficult part in the functional
core. This callback just calls that layer directly, and formats the :reply tuple.
We return the question to ask the user, and set our {quiz, email} tuple.

report erratum  •  discuss

Build Your Optional Server • 113

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_session.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_session.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_session.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Now, a user can start a quiz with a start_link and a call to :select_question. What
remains is to answer a question, like this:

Boundary/lib/mastery/boundary/quiz_session.ex
def handle_call({:answer_question, answer}, _from, {quiz, email}) do

quiz
|> Quiz.answer_question(Response.new(quiz, email, answer))
|> Quiz.select_question
|> maybe_finish(email)

end

defp maybe_finish(nil, _email), do: {:stop, :normal, :finished, nil}
defp maybe_finish(quiz, email) do

{
:reply,
{quiz.current_question.asked, quiz.last_response.correct},
{quiz, email}

}
end

end

This function calls answer_question to answer the question and then advances
the quiz. It returns the presentation data that we will need later to show to
the user: the question text and whether the answer is right or wrong.

This is the first handle_call that has significant logic in it, a pattern match to a
private function called maybe_finish. The logic actually belongs in the server
layer because it interprets the select_question response. When a quiz is through,
it is set to nil.

Our first maybe_finish clause does a lot of heavy lifting in a tiny amount of code.
By replying with a :stop tuple, we can tell the GenServer how to terminate and
what to send to the user, and the new state for the server. We want a :normal
termination, :finished goes to the user and the server gets nil as the new state.

If the quiz is not nil, we return the question.asked text and response.correct so the
user knows the next question and whether the previous question was right
or wrong.

Now we have the bare-metal GenServer, but we still need to wrap up our
external API. That’s easy since there are only two functions to provide, like this:

Boundary/lib/mastery/boundary/quiz_session.ex
def select_question(session) do

GenServer.call(session, :select_question)
end

def answer_question(session, answer) do
GenServer.call(session, {:answer_question, answer})

end

Chapter 6. Isolate Process Machinery in a Boundary  • 114

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_session.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_session.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


We’re processing two call functions, one to call :select_question and one to call
:answer_question. The concepts are exactly the same as the client functions we
added to the QuizManager server. It’s complete, and we can take it for a spin.

Test Drive the Quiz Session
We will connect to our server with the GenServer module and the various
functions we’ve built in the QuizManager module. Open up IEx with iex -S mix or
use recompile in your existing session. We’ll want to set up the aliases and start
up the server:

iex(1)> alias Mastery.Boundary.QuizSession
Mastery.Boundary.QuizSession
iex(2)> alias Mastery.Examples.Math
Mastery.Examples.Math

We alias the two modules we need, the Math example quiz and the QuizSession
server layer. Next, it’s an easy step to spin up a QuizSession process with a
GenServer.start_link, like this:

iex(3)> {:ok, session} = \
GenServer.start_link QuizSession, {Math.quiz(), "mathy@example.com"}

{:ok, #PID<0.114.0>}

Having the Math.quiz function ready to go made this easy. We started a QuizSession
GenServer with a quiz and email address, to match the QuizSession.init/1 function
we coded earlier. We got an :ok tuple, so we’re ready to proceed.

This time, we’ll need the session value; it contains our pid:

iex(4)> QuizSession.select_question session
"0 + 4"

We call our GenServer’s client API to select_question, providing our session, and
it picked a question for us. Now, we can answer a couple of questions right
twice in a row and finish our quiz as masters of the universe, or at least
masters of single-digit addition, like this:

iex(5)> QuizSession.answer_question session, "4"
{"2 + 8", true}
iex(6)> QuizSession.answer_question session, "10"
:finished

Marvelous! We answer two questions correctly in a row. The first time, the
QuizSession returns the question text and true, meaning we got the previous
question right. After two successive right answers, we have mastery and the
quiz is finished.

report erratum  •  discuss

Build Your Optional Server • 115

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


The GenServer API works, but we still have a little work to do. So far, our
servers have isolated client APIs which only do isolated jobs, and with
potentially corrupt user data. We’ll also need a layer to stitch together the
two concepts of making a quiz and taking the quiz. We’ll do that work now.

Wrap the Server in an API

The API layer’s job is to insulate the server layer from inconsistent data and
to stitch together independent concepts from the individual GenServer
implementations. It will also hide internal implementations from the user,
such as the Quiz struct we make available from our QuizManager server. Any
implementation details from server layers or the functional cores will be off
limits.

Though our internal details may be radically different, the API-wrapped
server will share many characteristics of an OOP object. It will hide implemen-
tation details, including state, behind an API of functions. It will allow complex
interactions between components with message passing, and will allow con-
venient state tracking.

Before we dive into the API, we’ll need some validations that assist us in our
work. Let’s do that now.

Build Validations
For validations, we want to pick the closest common access point to the user.
Right now, we’re imagining a quiz as service that can run without persistence,
say on an educational website or as a database-backed quiz engine in a more
formal classroom setting. In either case, we want to keep the code in our
server clean, and implement validations exactly once. Given those constraints,
we will validate at the API level.

Our strategy for building validations is simple. Each validator, whether it
works with a nested list or a simple field with a single validator, must reduce
over a list of errors. These errors serve as an accumulator. If the errors are
empty after fully validating each field, then the model is valid.

We could use changesets, but introducing changesets brings all of Ecto along
with them, at least as we write this. Rather than introduce database concepts
to a stateless layer, we’ll build a rough feature to do the work. It’s a surpris-
ingly easy task.

Chapter 6. Isolate Process Machinery in a Boundary  • 116

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Rough Out Generic Tools

Let’s start with a validation library with a couple of useful common functions.
We’ll start with the require function to validate all required fields and an
optional function, in lib/mastery/boundary/validator.ex like this:

Boundary/lib/mastery/boundary/validator.ex
defmodule Mastery.Boundary.Validator do

def require(errors, fields, field_name, validator) do
present = Map.has_key?(fields, field_name)
check_required_field(present, fields, errors, field_name, validator)

end

def optional(errors, fields, field_name, validator) do
if Map.has_key?(fields, field_name) do
require(errors, fields, field_name, validator)

else
errors

end
end

For both required and optional fields, we check to see if a field is present. We
pass the present through to the underlying check_required_field. It may seem strange
to pass optional fields through to this function, but if you think about it,
optional and required fields that are present behave exactly the same way.

Let’s look at a quick convenience function, check:

Boundary/lib/mastery/boundary/validator.ex
def check(true=_valid, _message), do: :ok
def check(false=_valid, message), do: message

This function just adds a little sugar to custom validations. Each check request
first makes some type of conditional test, indicating whether the field is valid.
If it is, we return :ok. If not we return the supplied tuple. This trivial function
will lighten up the individual validators considerably.

Now, let’s look at the functions that do the physical generic validations. First,
let’s look at the check_required_field function that looks like this:

Boundary/lib/mastery/boundary/validator.ex
defp check_required_field(true=_present, fields, errors, field_name, f) do

valid = fields |> Map.fetch!(field_name) |> f.()
check_field(valid, errors, field_name)

end
defp check_required_field(_present, _fields, errors, field_name, _f) do

errors ++ [{field_name, "is required"}]
end

report erratum  •  discuss

Wrap the Server in an API • 117

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/validator.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/validator.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/validator.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


defp check_field(:ok, _errors, _field_name), do: :ok
defp check_field({:error, message}, errors, field_name) do

errors ++ [{field_name, message}]
end
defp check_field({:errors, messages}, errors, field_name) do

errors ++ Enum.map(messages, &{field_name, &1})
end

end

If a function is present, we just fire the underlying validator, passing the result
through to check_field. If not, we add a {field_name,"is required"} tuple to the list of errors.

Since we’ve already fired the validation function, check_field is surprisingly lean.
It needs only match against expected results, which may be a single error,
multiple errors, or :ok. In either error case, we add the errors to the list of errors
and continue until all fields are validated. Now we can put these tools to work.

Validate Quizzes

We first need to validate a quiz. We are creating a module per validator, and we
only add models that take complex user data. In lib/mastery/boundary/quiz_validator.ex,
write this code:

Boundary/lib/mastery/boundary/quiz_validator.ex
defmodule Mastery.Boundary.QuizValidator do

import Mastery.Boundary.Validator

def errors(fields) when is_map(fields) do
[ ]
|> require(fields, :title, &validate_title/1)
|> optional(fields, :mastery, &validate_mastery/1)

end
def errors(_fields), do: [{nil, "A map of fields is required"}]

We have a core errors function that does the lion’s share of the work. We have
only two fields that have external input, an optional :mastery field and a required
:title field. We pipe through those, and return the responses. Now let’s work
on the individual fields:

Boundary/lib/mastery/boundary/quiz_validator.ex
def validate_title(title) when is_binary(title) do

check(String.match?(title, ~r{\S}), {:error, "can't be blank"})
end
def validate_title(_title), do: {:error, "must be a string"}

def validate_mastery(mastery) when is_integer(mastery) do
check(mastery >= 1, {:error, "must be greater than zero"})

end
def validate_mastery(_mastery), do: {:error, "must be an integer"}

end

Chapter 6. Isolate Process Machinery in a Boundary  • 118

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_validator.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/quiz_validator.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Elixir’s pattern matching and our check function makes individual validations
strikingly simple. We first match on the datatype and then call check to do
individual checks. Then, we add a catchall for other datatypes and return an
appropriate error.

With the simplest validation out of the way, we can shift to the trickier valida-
tion layer, templates. It’s a little tricker because it has some complex datatypes
like functions and lists of generators. Let’s see how we can structure those
concepts next.

Validate Templates

The template fields represent a sterner test. The checker and generators fields
will require us to validate lists and functions. Still, our simple framework
that’s based on composition will make quick work of them.

Let’s start with the basic errors function that composes validations over each
field. As before, we’ll enumerate required and optional fields, in lib/mastery/bound-
ary/template_validator.ex, like this:

Boundary/lib/mastery/boundary/template_validator.ex
defmodule Mastery.Boundary.TemplateValidator do

import Mastery.Boundary.Validator

def errors(fields) when is_list(fields) do
fields = Map.new(fields)
[ ]
|> require(fields, :name, &validate_name/1)
|> require(fields, :category, &validate_name/1)
|> optional(fields, :instructions, &validate_instructions/1)
|> require(fields, :raw, &validate_raw/1)
|> require(fields, :generators, &validate_generators/1)
|> require(fields, :checker, &validate_checker/1)

end
def errors(_fields), do: [{nil, "A keyword list of fields is required"}]

The technique works exactly as it did in the QuizValidator. Now, let’s work on
the individual fields. These are the easy ones:

Boundary/lib/mastery/boundary/template_validator.ex
def validate_name(name) when is_atom(name), do: :ok
def validate_name(_name), do: {:error, "must be an atom"}

def validate_instructions(instructions) when is_binary(instructions), do: :ok
def validate_instructions(_instructions), do: {:error, "must be a binary"}

def validate_raw(raw) when is_binary(raw) do
check(String.match?(raw, ~r{\S}), {:error, "can't be blank"})

end
def validate_raw(_raw), do: {:error, "must be a string"}

report erratum  •  discuss

Wrap the Server in an API • 119

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/template_validator.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/template_validator.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


The :name, :raw and :instructions fields work exactly as they did in QuizValidator. We use
a combination of pattern matching and the check function to do all of the validation
we need. Let’s see if our concepts extend to the generators and checkers:

Boundary/lib/mastery/boundary/template_validator.ex
def validate_generators(generators) when is_map(generators) do

generators
|> Enum.map(&validate_generator/1)
|> Enum.reject(&(&1 == :ok))
|> case do

[ ] ->
:ok

errors ->
{:errors, errors}

end
end
def validate_generators(_generators), do: {:error, "must be a map"}

Recall that we’re leaning on the composition of our validators. You can see
the benefits of this approach as we validate all generators. To validate the
list, we map over the list of generators, validating each one and filtering out
the :ok results. If the whole list is empty, we return :ok; otherwise, we return
the errors.

That code is complex, but our composition strategy does not break down.
We’re almost done. Let’s validate the individual generators, like this:

Boundary/lib/mastery/boundary/template_validator.ex
def validate_generator({name, generator})
when is_atom(name) and is_list(generator) do

check(generator != [ ], {:error, "can't be empty"})
end
def validate_generator({name, generator})
when is_atom(name) and is_function(generator, 0) do

:ok
end
def validate_generator(_generator),

do: {:error, "must be a string to list or function pair"}

def validate_checker(checker) when is_function(checker, 2), do: :ok
def validate_checker(_checker), do: {:error, "must be an arity 2 function"}

end

To validate a single generator, we use pattern matching and guards to make
sure that:

• The generator list is not empty
• The generator is a two-tuple with an atom as a name and a function of

the form &generator/0.

Chapter 6. Isolate Process Machinery in a Boundary  • 120

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/template_validator.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery/boundary/template_validator.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


If so we return :ok; if not we return an error tuple. And we’re done. We built
our own validations and it was not nearly as complicated as you might have
guessed. Our validator is easy to extend and each specialized validator
implements a single update scenario, much like Ecto changesets.

With the validations out of the way, it’s time to push out beyond the server
layer. It’s time to build the API. We’ll finally remove the hello world code and
use the mastery.ex file. Let’s make it happen.

Build the API Layer
Our API layer will name the concepts of the GenServer and also smooth out
some of the rough edges. We’ll build a lightweight API that uses the GenServer
module to do starts, calls, and casts. The first step is to do the typical imports
we need. In lib/mastery.ex we’ll delete the default implementation and set up the
aliases we need:

Boundary/lib/mastery.ex
defmodule Mastery do

alias Mastery.Boundary.{QuizSession, QuizManager}
alias Mastery.Boundary.{TemplateValidator, QuizValidator}
alias Mastery.Core.Quiz

If possible, we’d like to build a service layer where the only functions we need
are in the service layer. Unfortunately, we also have to manage the validations,
so we’ll add those aliases as well. We also need to alias the Core.Quiz module
to pass that data between the QuizManager and QuizSession modules. This is the
right place to do that job because this layer exists to stitch together these
disparate concepts. The main thing is to keep the API layer as thin as possible,
and take on as little of the business logic as we can.

Validation belongs here because we want to reduce the need for dealing with
the uncertainty of the outside world from the API layer as we can.

Our first job is to kick off the manager, like this:

Boundary/lib/mastery.ex
def start_quiz_manager() do

GenServer.start_link(QuizManager, %{}, name: QuizManager)
end

The GenServer.start_link does the heavy lifting. We need to name the server so
that in the event of a crash, we’ll be able to find it again. Since we’ll only ever
need one, we’ll name it after the module. You may have noticed we defaulted
our client APIs to use the module name as well, so we’ll be able to keep the
ceremony in this layer low.

report erratum  •  discuss

Wrap the Server in an API • 121

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Now, let’s build a quiz:

Boundary/lib/mastery.ex
def build_quiz(fields) do

with :ok <- QuizValidator.errors(fields),
:ok <-GenServer.call(QuizManager, {:build_quiz, fields}),

do: :ok, else: (error -> error)
end

The real work starts when we add a quiz. Now, we have imperfect user data
that we need to validate. Earlier, we learned that composition with pipes is
elegant and beautiful, but pipes do not deal well with the midstream errors
we’re dealing with in this example.

To solve that problem, instead of pipes we use with to validate the fields and
do a GenServer call to :build_quiz. Notice we use a one-line syntax for the do: :ok,
else: (error -> error) clauses. We do this strictly because we are passing values
straight through. We don’t want to distract from the purpose of this function,
which is the composition of the actions in the first clause.

We’ll use a similar technique to add the templates:

Boundary/lib/mastery.ex
def add_template(title, fields) do

with :ok <- TemplateValidator.errors(fields),
:ok <- GenServer.call(QuizManager, {:add_template, title, fields}),

do: :ok, else: (error -> error)
end

We compose two functions with with, one to validate the templates and the
second to invoke our server layer with GenServer.call.

With that, the QuizManager has set up the quiz and can pass the baton to the
QuizSession server:

Boundary/lib/mastery.ex
def take_quiz(title, email) do

with %Quiz{}=quiz <- QuizManager.lookup_quiz_by_title(title),
{:ok, session} <- GenServer.start_link(QuizSession, {quiz, email})

do
session

else
error -> error

end
end

This code does the handoff from one system to the next. The take_quiz function
first looks up a quiz and then uses a GenServer.start_link to create a new server

Chapter 6. Isolate Process Machinery in a Boundary  • 122

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


with that quiz and an email. We return the session pid so other functions can
call it later.

Next, we build a function each to select a question, like this:

Boundary/lib/mastery.ex
def select_question(session) do

GenServer.call(session, :select_question)
end

def answer_question(session, answer) do
GenServer.call(session, {:answer_question, answer})

end
end

They are straight calls to GenServer, with no intervening logic. That’s about
as thin a layer around a GenServer as we could hope to have. The API is easy
to understand and about as easy as it could be to use.

The layer may seem unnecessary, but it’s not. This API layer is the first point
of access for developers investigating our function. A simple API layer that
handles only external concerns is the secret to good client–server design.
Presenting a public-facing API makes it crystal clear that changes to these
functions comes at a cost.

It’s also an anchor point for public-facing ceremony. If we were to build doc-
umentation, this file is where it would go. It’s the first place we would add
type specs, module docs, and the like.

Our goal is to make the maintenance on the borders between APIs explicit.
The secret to doing so is decoupling. Let’s see how we did. Our first test of
this public interface will be an in-console session.

Test Drive the API
This exercise is the culmination of everything we’ve done in the boundary
layer. We’ll roll up all the work we’ve done so far. This quiz flow will depend
on the data structures we defined and make use of the functions we estab-
lished in the functional core.

The service layers will use that functional core to track state in two pieces,
the quiz maker we call the manager and the quiz taker we call the session.
We’ll use the client APIs from those GenServers that hide those details. We
won’t see the shapes of internal call or cast messages. All of the data flowing
out of the API will be pure Elixir data structures, with no custom structs.
Aside from lifecycle details, this layer will show data exactly as we’ll present
it to the outside world.

report erratum  •  discuss

Wrap the Server in an API • 123

http://media.pragprog.com/titles/jgotp/code/Boundary/lib/mastery.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Rev up iex -S mix. If you’ve left it open from last time you’ll need to issue the
recompile command. Then we can start to use our API:

iex(1)> alias Mastery.Examples.Math
Mastery.Examples.Math

Notice that the only piece of information we need to alias is the Math module
that has the raw data we’ll use to create a quiz. That’s a good sign. We really
don’t need anything else to use our API because none of the inner details are
exposed.

Let’s fire up the manager and create a quiz, like this:

iex(2)> Mastery.start_quiz_manager
{:ok, #PID<0.113.0>}
iex(3)> Mastery.build_quiz Math.quiz_fields
:ok
iex(4)> Mastery.add_template Math.quiz.title, Math.template_fields
:ok

With the example data, establishing a new quiz with exactly what we need is
trivial. We build a quiz and add a template.

Now we can take a quiz, like this:

iex(5)> session = Mastery.take_quiz Math.quiz.title, "mathy@email.com"
#PID<0.117.0>
iex(6)> Mastery.select_question session
"8 + 7"

We get the session, which is a pid, and use it to select the first question:

iex(7)> Mastery.answer_question session, "wrong"
{"9 + 5", false}
iex(8)> Mastery.answer_question session, "14"
{"0 + 2", true}
iex(9)> Mastery.answer_question session, "2"
:finished

We get the first answer wrong. With a mastery of two and a single template,
we need only get two consecutive questions correct to finish the quiz. We can
tell that the process is dead, like this:

iex(10)> Process.alive? session
false

Boom. The server is stopped, as it should be. In all, we’ve done good work.
We’re using the top-level Mastery module as it should be, and the concepts are
well named. We don’t have to worry about sending messages. We just call
functions.

Chapter 6. Isolate Process Machinery in a Boundary  • 124

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Now that the service layer is in, let’s review some of the main decisions we
made. You might have noticed that we used call several times when we returned
an :ok value. You might be wondering why we chose not to use cast messages
instead. The answer is not as simple as it may seem on the surface. Let’s find
out why.

Prefer Call Over Cast to Provide Back Pressure
Intuitively, you might think that it’s best to use the one-way handle_cast to send
messages that don’t need responses. For example, the :add_template message
doesn’t really need a response. We just trust that the template was added
successfully. If it’s not, something has gone horribly wrong. There’s nothing
we can do beyond crashing the server and reporting the reasons for the crash
back to the user.

Interestingly, handle_cast is rarely the best option for sending messages. In this
section, we’ll look at one of the reasons why. They are called serializability
and back pressure. Let’s explore why.

As you probably know, each Elixir process has a message queue. We’ll call it
the mailbox. Unlike a physical mailbox, Elixir processes only receive messages
from it; they don’t send from the mailbox. Like a true mailbox, if the receiving
process for a given message is struggling, the mailbox can overflow, often
leading to severe problems that are hard to debug.

A good example is the Elixir logger. If your production code is sending log
messages quicker than the logger can handle them, either because the sender
is logging too many log requests or because the logger’s disk I/O is somehow
compromised, we don’t want the logger to immediately stop logging messages.

The Elixir logger has an excellent solution for this problem. It’s called selective
back-pressure. That means that when the logger gets into trouble, it will
detect this problem and start slowing the clients down by switching from cast
to call.

Making the logger’s client wait for every request to finish before sending the
next one relieves the pressure on the logger itself by slowing down the flow
of messages. If the logger still can’t keep up, it announces this failure as a
log message and begins to discard messages until the logger gets to a more
manageable threshold.

Let’s dive into some specific details. We’ll start with configuration.

Users can configure options to represent thresholds. These thresholds specify
when a healthy logger becomes sick because its message logger gets too long.

report erratum  •  discuss

Prefer Call Over Cast to Provide Back Pressure • 125

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Two of these thresholds specify when to go from cast to call, or when to start
shedding messages.

Users can also configure thresholds defining when the system goes from sick
to healthy. When an unhealthy system has a message queue that shrinks
below these thresholds, the logger can stop discarding messages, or go back
to cast from call.

The logger code then uses that configuration to implement three different
modes to implement the cast, call and shedding modes. They are called :async,
:sync, and :discard, respectively.

Now, let’s look at the specific Elixir implementation. As a general metric for
system health, sometimes it helps to look at the number of messages in a
processes mail box. Here’s the code that does that job:

defp message_queue_length() do
{:message_queue_len, messages} = Process.info(self(), :message_queue_len)
messages

end

Process.info(self(), :message_queue_length)does the magic. It returns an integer value
that is the number of messages in the queue. The logger can then make
use of it.

Now we can see how the logger switches modes. In logger/config.ex, the logger
computes the right mode, like this:

case mode do
_ when messages >= discard_threshold -> :discard
:discard when messages > keep_threshold -> :discard
_ when messages >= sync_threshold -> :sync
:sync when messages > async_threshold -> :sync
_ -> :async

end

This snippet computes the mode given the message queue length in messages.
The thresholds in this function all come from the logger configuration. These
thresholds work in pairs. One threshold in each pair marks the transition
from healthy to sick, and one marks the transition from sick to healthy.

We shed messages if the function is greater than discard_threshold; we stay in
discard mode if we stay above the keep_threshold. Otherwise, we switch to sync
mode if we are over the sync_threshold, and stay in that mode if it’s already in
sync mode and the messages are above the async_threshold. If none of those things
are true, we’re healthy, so we send async.

Chapter 6. Isolate Process Machinery in a Boundary  • 126

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Now, we can compare the configured mode with the computed one, like this:

def handle_event(_event, {state, thresholds}) do
%{mode: mode} = state

case compute_mode(mode, thresholds) do
^mode ->

{:ok, {state, thresholds}}

If the mode matches the mode that was configured, do nothing. Otherwise:

new_mode ->
if new_mode == :discard do

message =
"Logger has #{message_queue_length()} messages in its queue, " <>

"which is above :discard_threshold. Messages will be discarded " <>
"until the message queue goes back to 75% of the threshold size"

log(:warn, message, state)
end

if mode == :discard do
log(:warn, "Logger has stopped discarding messages", state)

end

If things are very bad and we’re beyond the discard limit, we set the :discard
state so we can shed messages until we’re healthy. We log a message to tell
the user we’re no longer logging, pending improvements.

All that remains is to set the new mode in the logger, like this:

state = persist(%{state | mode: new_mode})
{:ok, {state, thresholds}}

end

We set the new mode and let the logger lose. Let’s see :discard in action.

def __should_log__(level) when level in @levels do
...
if compare_levels(level, min_level) != :lt and mode != :discard do

{level, config, pdict}
else

:error
end
...

end

In a function called __should_log__ we check the mode for :discard. If it’s set,
regardless of log level, we’ll return :error.

report erratum  •  discuss

Prefer Call Over Cast to Provide Back Pressure • 127

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


In logger.ex, the bare log looks like this:

def bare_log(level, chardata_or_fun, metadata \\ []) do
case __should_log__(level) do

:error -> :ok
info -> __do_log__(info, chardata_or_fun, metadata)

end
end

If the mode is :error, we do nothing, shedding the messages. Otherwise we call
do_log, a long function which eventually does this:

notify(mode, {level, Process.group_leader(), tuple})

We’re finally at the magic moment. We choose call or cast to handle back
pressure. At the very bottom of logger.ex, you’ll see these functions:

defp notify(:sync, msg), do: :gen_event.sync_notify(Logger, msg)
defp notify(:async, msg), do: :gen_event.notify(Logger, msg)

This means Elixir will log messages as a call (sync) or cast (async).

Here’s the point. If your code uses handle_call instead of handle_cast, you don’t
need to worry as much because you can only send messages as fast as your
server can process them. It’s a great automatic governor on a server.

Rarely, you’ll want to use cast messages to start multiple workers at once, or
to notify multiple workers simultaneously. Try to be judicious with this
approach, though.

Back pressure is one reason to avoid cast messages. It’s not the only reason,
though. Let’s look at the next one.

Extend Your APIs Safely
So far, we’ve strongly advocated building many small components and man-
aging those components through dependencies. When this strategy is working
well, it simplifies your job by limiting the scope of what you need to understand
to make any given change.

This strategy can go to a special hell fueled by cascading dependencies in a
hurry, if you’re not careful with how you build your APIs. Specifically, main-
taining a healthy ecosystem is difficult if each release of an API breaks com-
patibility to old versions of the API. Breaking changes have several different
forms:

• An API can add requirements to input parameters such as adding a new
required field to our Quiz.

Chapter 6. Isolate Process Machinery in a Boundary  • 128

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


• An API can change the shape of the output such as changing all of our
quiz functions to {:ok, quiz}.

• An API can change their behavior in unexpected ways such as treating
an amount as dollars rather than cents.

Let’s look quickly at an approach to APIs that will improve compatibility as
you improve the various independent components in your system. We’ll
honor three rules.

Don’t Add New Requirements to Existing APIs, Only Options
Many beginning developers tend to validate all arguments for a remote API.
Then, as those APIs need to be extended, they require those as well. There’s
a problem with that approach.

If servers provide requests that require all parameters, each new parameter
means you’ll have to upgrade the client and server simultaneously. With just
one client and one server component, that strategy may seem viable but as
dependencies like this cascade through a system, upgrades get exponentially
more difficult. Then, you lose all of the advantages you were seeking by
building decoupled components in the first place.

If you want to extend an API, extend it with options. Then, servers can provide
new API functionality to the same endpoints without requiring all clients to
change. Later, clients can upgrade to take advantage of these new options.

Ignore Anything You Don’t Understand
The “no new requirements” rule pertains to public-facing APIs. There’s a
similar rule for dealing with data. Ignoring everything you don’t understand
makes it possible to slowly add new fields, request options that may not yet
be supported, and to upgrade your systems incrementally.

These first two rules work together well. For example, say there’s an export
program that’s expecting a fixed set of fields representing a product. The
server makes new fields optional. The server does two things:

• It ignores optional fields that are empty
• It ignores fields it doesn’t know about

This way, the system will function well through change. It doesn’t matter
which system deploys first. The server exports the new fields only when both
the client and server provide them. This is the ideal behavior.

report erratum  •  discuss

Extend Your APIs Safely • 129

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Don’t Break Compatibility; Provide a New Endpoint
Here’s the punch line. Don’t break users of an endpoint, ever. Rather than
extending an existing endpoint in incompatible ways, provide a new endpoint
to do the new thing. Modern languages have many ways to scope and delegate
functions, and these features give us infinite flexibility with naming.

We’ll go one step further. Server endpoints are not the only APIs that could
stand to benefit from this approach. Everyday function libraries break these
rules every day. There’s a concept called semantic versioning that says minor
versions are compatible, and major versions are possibly incompatible. These
rules might look wise, but a far better way is to adopt rules that don’t break
compatibility in the first place.

It’s been a busy chapter, and it’s time to wrap up.

Wrap Your Core in a Boundary API
In this chapter, we left our safe bubble of the functional core and ventured
out to the real world to deal with state, processes, and communication between
components. Here’s how we did it.

To begin our exploration, we dove into some techniques to handle composition
with inputs and outputs that were less certain. We looked at ways to transform
executing errors to data. We also encountered composition using with.

Next, we built a server layer in two pieces, the QuizManager and the QuizSession.
We used a GenServer to build a quiz and another to let a user take a quiz. The
server layer used start_link and handle_call functions to encapsulate state and
handle communication between processes. We eschewed handle_cast to handle
back pressure issues.

We built validations to make sure our servers will work on consistent data,
and then we built an API layer to access our server layer in a convenient way.

It’s all starting to come together, but we know our boundary layer supports
only one running quiz at a time. In the next chapter, we’ll build a dynamic
supervisor to allow each user to run a process per quiz. We’ll also build a
quiz manager to let users build and store multiple quizzes.

You’ve reached the crux of the book, so turn the page and let’s get busy!

Chapter 6. Isolate Process Machinery in a Boundary  • 130

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


CHAPTER 7

Customize Your Lifecycle
In the sentence “Do fun things with big, loud worker-bees” the “L” in “loud”
stands for lifecycles. This layer is the part of process machinery that estab-
lishes how each component will start, restart, and stop. In this chapter, we’ll
build and configure the OTP supervisors that form the foundation of our
lifecycle control, as shown in the following figure:

The lifecycle layer starts up the OTP server and will take it down, or restart
it should the need arise. Components create and destroy each other through
their lifecycle layers, and communicate with each other primarily through
their boundary APIs.

As we build out the lifecycle layer we’ll lean on the OTP supervision architec-
ture. It’s going to take us a surprisingly small amount of code, but that code
will be dense and require lots of explanation. We will build your intuition as

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


we go, to help you understand what the layers of your project are doing and
when. We’ll write code soon enough, but first let’s take a little bit of time to
address a few foundational concepts.

Understand the Lifecycle Building Blocks
We’ll risk sounding like a broken record to say your project may never need
to create its own processes. Many projects are libraries, meaning they’ll never
need to have their own service layer. They don’t need start links or supervisors
at all. In the terms we’ve discussed so far, these libraries will never use the
“big, loud worker-bee” layers.

When your project does need processes, it will often use the OTP architecture.
OTP might be overkill for some use cases but most often, OTP lets your pro-
cesses exist seamlessly with others that need the common lifecycle services
we’ll discuss in the sections that follow. For example, a common OTP archi-
tecture means when you start Phoenix, it automatically starts your database
pool, if you need it, with a few short lines of configuration.

Let’s go one step deeper by defining the different slices of the lifecycle layer
and what each one does. We’ll start with three main pieces for now: the start
link, the supervisor, and the configuration.

The first slice of the lifecycle layer is actually a shared interface that creeps
into the boundary. Recall that our boundary layer provided a start_link function
(with both /1 and /2 arities) and an init/1 function. Taken together, these func-
tions are part of a behaviour, a contract with GenServer. This part of the contract
says “Other processes can use these two functions to safely start a process,
given an initial value.” The function start_link has the _link postfix because the
BEAM will notify any process that calls it when the process exits, either nor-
mally or abnormally.

You also may have noticed that we don’t start the boundary layer directly.
That brings us to the second slice of the lifecycle layer, the supervisor. We
give that supervisor the job of starting and stopping processes. When any
OTP process needs to start another, it must go through the supervisor.

The third slice is the configuration. When any failure happens, the supervisor
can follow a procedure to bring it back up again. This procedure is called a
child spec. Since the BEAM notifies the supervisor any time a linked process
fails, the supervisor can use the child spec to determine exactly how to start
a new process from scratch, taking other processes into account if necessary.

Chapter 7. Customize Your Lifecycle  • 132

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Let’s think about how we might go about tailoring the lifecycle for Mastery.
Throughout this chapter, we’ll sharpen our understanding of our lifecycle
implementation. Generally, these tasks will guide you regardless of your Elixir
project:

• Define which types of processes your project needs, and how many of
each process

• Appoint a designated process, our supervisor, to start and stop your
working processes in an organized repeatable way

• Name and register your processes so supervisors can find and use them
at will, even after failure

• Extend this structure hierarchically by defining the child supervisors that
we use so one component can manage the lifecycle of many others

Let’s peek under the hood at a few of the basic functions Elixir uses to manage
processes. In this section, we will look at two of the building blocks that go into
OTP: process creation through spawn_link/1 and notification through Process.monitor/1.
We won’t actually use those functions directly as we build out Mastery, but
knowing how they work will help you understand how OTP supervisors work.
First, let’s start at the beginning, with mix new.

Mix Projects Define Applications
When you type mix new, you’re defining a project. At this point, we need to
introduce that ambigous overloaded word we warned you about, application.
Earlier, we said it’s an overloaded and ambiguous term. We told you that we’d
use it only when we have to. In this section, we’re using the term in a specific
sense.1 An application in this sense is a way to package software for OTP.

Applications have a specific specification. Here’s the one for Mastery. Elixir
places the compiled structure inside the _build directory. You can peek inside
_build/dev/lib/mastery/ebin/mastery.app:

{application,mastery,
[{applications,[kernel,stdlib,elixir,logger]},
{description,"mastery"},
{modules,['Elixir.Mastery','Elixir.Mastery.Application',

'Elixir.Mastery.Boundary.QuizManager',
'Elixir.Mastery.Boundary.QuizSession',
'Elixir.Mastery.Boundary.QuizValidator',
'Elixir.Mastery.Boundary.Server',
'Elixir.Mastery.Boundary.TemplateValidator',

1. https://hexdocs.pm/elixir/Application.html

report erratum  •  discuss

Understand the Lifecycle Building Blocks • 133

https://hexdocs.pm/elixir/Application.html
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


'Elixir.Mastery.Boundary.Validator',
'Elixir.Mastery.Core.Question',
'Elixir.Mastery.Core.Quiz',
'Elixir.Mastery.Core.Response',
'Elixir.Mastery.Core.Template',
'Elixir.Mastery.Examples.Math']},

{registered,[]},
{vsn,"0.1.0"}.

This is an Erlang file, so the syntax may be a little foreign, but you can still
tell what’s happening. At the top level, you have a tuple, and the next level
down has keyword/value pairs.

Reading the list of tuples from the top, we have the applications Mastery depends
on, [kernel,stdlib,elixir,logger]. Next, we have the description, "mastery", and all of
the custom modules that we wrote in lib. Next, we have registered, which allows
other applications to find this one and vsn, the version number.

If you open up lib/mastery/application.ex, you’ll find the code that actually starts
our application. Use IO.puts/1 to print a line to the console right after the def
start line, like this:

defmodule Mastery.Application do
@moduledoc false

use Application

def start(_type, _args) do
IO.puts "Starting Mastery"
children = [
]
opts = [strategy: :one_for_one, name: Mastery.Supervisor]
Supervisor.start_link(children, opts)

end
end

<  Now, we’ll be able to tell exactly when Mastery formally starts. Most of
this file deals with supervisors and child specs. Grossly generalized, supervi-
sors manage lifecycles and child specs configure the lifecycle policies. You
don’t need to know specifics about those terms yet; we’ll address details
shortly. What you should understand is that starting our application actually
starts our supervisors, and they start the processes that make up the appli-
cation. To prove to ourselves we’re in the right place, let’s start iex -S mix to fire
Application.start:

➔ iex -S mix
Erlang/OTP 20 [erts-9.0] [source] [64-bit] [smp:12:12] [ds:12:12:10]
[async-threads:10] [hipe] [kernel-poll:false]

Chapter 7. Customize Your Lifecycle  • 134

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Compiling 1 file (.ex)
Starting Mastery
Interactive Elixir (1.7.4) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

Voilà. You can see the line we added right after the Compiling 1 file (.ex). Through
the course of this chapter, we’ll build up application.ex to manage Mastery’s
lifecycle, adding children to supervise as we go. Before we do so, let’s look at
the last of the building blocks for supervisors.

Start Processes with Links
Supervisors are built on an interesting primitive: notification. Remember,
when a process uses start_link/2 to create a child, the Erlang BEAM will notify
the parent process when the child dies. This capability can work in a couple
of ways.

First, using spawn_link causes all linked processes to die with the same error
if any one of them dies. That may sound like a weird behavior to want, but if
the top-level processes of your system die, we don’t want their child processes
carrying on without them.

Here’s how spawn_link works. Let’s spawn a process that crashes, like this:

iex(1)> spawn fn -> raise "boom" end
#PID<0.86.0>
iex(2)>
10:45:24.797 [error] Process #PID<0.86.0> raised an exception
** (RuntimeError) boom

(stdlib) erl_eval.erl:668: :erl_eval.do_apply/6
IO.puts "Still alive"
Still alive
:ok

In this case, we spawn a process that crashes, and we just keep running as
if nothing happened. But if we spawn that process and link it, the behavior
is different:

iex(1)> spawn_link fn -> raise "boom" end
** (EXIT from #PID<0.84.0>) shell process exited with reason:

an exception was raised:
** (RuntimeError) boom

(stdlib) erl_eval.erl:668: :erl_eval.do_apply/6

Interactive Elixir (1.7.4) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>
10:47:36.660 [error] Process #PID<0.86.0> raised an exception
** (RuntimeError) boom

(stdlib) erl_eval.erl:668: :erl_eval.do_apply/6

report erratum  •  discuss

Understand the Lifecycle Building Blocks • 135

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


This second time, we ran linked, and the exception in the spawned process
also crashed the IEx shell. You can see that the IEx app’s supervisor restarted
the shell!

Let’s look at a another option, the monitor:

iex(1)> {pid, _monitor_ref} = spawn_monitor fn -> raise "boom" end
{#PID<0.109.0>, #Reference<0.1777096488.2680160258.17278>}
iex(2)>
15:26:52.401 [error] Process #PID<0.109.0> raised an exception
** (RuntimeError) boom

(stdlib) erl_eval.erl:678: :erl_eval.do_apply/6

We started a process, this time with a monitor instead of a link. The process
we started failed. We don’t know it yet, but there’s already a message waiting
for us. (You might not see the iex(2)> prompt because of the previous failure,
but it’s there. Just go ahead and type.)

flush
{:DOWN, #Reference<0.1777096488.2680160258.17278>, :process, #PID<0.109.0>,
{%RuntimeError{message: "boom"},
[{:erl_eval, :do_apply, 6, [file: 'erl_eval.erl', line: 678]}]}}

:ok

We flush out all messages, and we can see the :DOWN message. Unlike links,
monitors just notify on exit, leaving the process that receives the message to
take whatever action is appropriate. Monitors are also one-way, so an exit
from the monitoring process doesn’t send a message to the monitored process.

Supervisors use a combination of these techniques to manage failures. They
link to all processes they start, so those processes will go down if the super-
visor goes down. However, they set a special trap_exit flag, so that child process-
es going down just send messages to the supervisors, similar to how monitors
work. A supervisor can then decide which processes to restart, since it wasn’t
forced to crash.

We won’t start and stop GenServer processes with spawn_link or spawn_monitor.
Instead, we’ll lean on the start_link function to start a process that’s linked to
a supervisor, so that supervisor process can react to notification of failure.

Now we’ve seen two of the basic building blocks in action in the context of an
application, spawn_link/1 and Process.monitor. Let’s put them into action.

Configure Applications to Start Supervisors
Now that we’ve established some groundwork in vocabulary and you’ve seen
how linked processes work, we should make a plan for what to do with Mastery.

Chapter 7. Customize Your Lifecycle  • 136

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Before we can build out the different supervisors and start links, we need to
look at our architecture and think logically about the lifecycles.

We have two kinds of GenServers. We will have exactly one QuizManager server
and we’ll have one QuizSession server per user. The QuizManager will start when
we bring the application up and will remain running throughout.

The QuizSession is a different beast entirely. It’s going to have a different lifecycle
policy. The supervisor will need to start a QuizSession process when a user takes
a quiz and shut it down when they finish a quiz. We will give the processes
names so that we can find them easily. Our QuizSession names will be {quiz.title,
email} tuples. Those names will be in a specialized registry we’ll bring up with
the application and keep running throughout. The QuizManager will have a
single process named after the module. If a Registry or QuizManager process stops,
we’ll want it to restart, but if a QuizSession stops, we’ll just let it die and let the
user start a new one.

Now that we’ve formed a plan for which servers Mastery will support, we can
shift our attention to building out the pieces of the lifecycle layer. Let’s start
with the QuizManager GenServer.

Create a start_link
The main role of the application will be to provide a packaging structure and
lifecycle support for the processes that make up your boundary layer. Here’s
how it will work.

When your application starts via Application.start, that function doesn’t call your
boundary’s start links directly. Instead, it will call your supervisor’s start_link,
and that process will start and monitor your application’s main processes.

Let’s set up our application to start up our QuizManager whenever we start it
via mix. That much should be pretty easy to do, since we need only start a
single copy of our application. When the supervisor starts, it will call the
start_link of the boundary layer. Let’s set that up now. Open up quiz_manager.ex
and add this start_link callback right below the init callback, like this:

Lifecycle/lib/mastery/boundary/quiz_manager.ex
def start_link(options \\ [ ]) do

GenServer.start_link(__MODULE__, %{ }, options)
end

That’s all there is to it. We provide the module that defines the GenServer,
the initial state of %{}, and options we’ll use later, particularly to store the
pid by name in a local registry. Recall that we name the QuizManager process

report erratum  •  discuss

Configure Applications to Start Supervisors • 137

http://media.pragprog.com/titles/jgotp/code/Lifecycle/lib/mastery/boundary/quiz_manager.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


with its module name, so we should be able to tell easily if there’s one running.
Notice when we start IEx, there’s no running QuizManager process.

iex(1)> alias Mastery.Boundary.QuizManager
Mastery.Boundary.QuizManager
iex(2)> Process.whereis QuizManager
nil

The function Process.whereis uses a local process registry to look up the process.
As expected, there’s no process registered with the QuizManager key. That makes
sense because we’ve not started it yet. We can start one manually using our
new start link like this:

iex(3)> QuizManager.start_link name: QuizManager
{:ok, #PID<0.133.0>}
iex(4)> pid = Process.whereis QuizManager
#PID<0.133.0>
iex(5)> Process.alive? pid
true

Now the process registry has a pid, and the process is alive, and it’s bound to
the name QuizManager. We’re a step closer. The last step in establishing this
lifecycle is integrating the work we just did into application.ex.

Configure the Application
The next step is to tell application.ex to automatically use the QuizManager.start_link/3
we just wrote to start a child. In lib/mastery/application.ex, add the following to the
list of children, like this:

def start(_type, _args) do
children = [

{ Mastery.Boundary.QuizManager,
[name: Mastery.Boundary.QuizManager] }

]

We’ve told OTP that this application should have a generic supervisor. The
following code tells the Supervisor how to get a child specification for this
process:

{ Mastery.Boundary.QuizManager,
[name: Mastery.Boundary.QuizManager] }

Remember, a child specification defines a supervisor’s lifecycle policies, the
rules that govern when and how to start and stop a given process.

Our code will call child_spec on the module in the first element of the tuple:
Mastery.Boundary.QuizManager. The QuizManager supports that function because use
GenServer provides a default implementation. The second element of the tuple

Chapter 7. Customize Your Lifecycle  • 138

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


is the argument passed in this call, which the default implementation will
just forward to our start_link function. That start_link function takes a single
argument called options. This will start a QuizManager with the initial state we
gave it in the start_link, %{}. The end result is that the supervisor knows how
to start a singleton process, stored under the name QuizManager in the process
registry, and with the initial value of %{}. That’s exactly what we want.

Now shut down IEx, and open it back up. When the application starts, it will
start a supervisor. That supervisor will walk down the list of children, starting
each one via their start_link functions, using the state in each child spec.

Let’s see if it works. We’ll walk through a session in IEx, like this:

iex(1)> alias Mastery.Boundary.QuizManager
Mastery.Boundary.QuizManager
iex(2)> alias Mastery.Examples.Math
Mastery.Examples.Math
iex(3)> pid = Process.whereis QuizManager
#PID<0.139.0>
iex(4)> Process.alive? pid
true
iex(5)> Supervisor.which_children(Mastery.Supervisor) |> List.last
{Mastery.Boundary.QuizManager, #PID<0.139.0>, :worker,
[Mastery.Boundary.QuizManager]}

iex(6)> QuizManager.build_quiz Math.quiz_fields
:ok

It works! We have a process, it’s alive, and it’s now supervised. Take a note
of the pid, 0.119.0. When you kill the process, the supervisor will start it again:

iex(6)> Process.exit pid, :kill
true
iex(7)> pid = Process.whereis QuizManager
#PID<0.127.0>

We killed the process using Process.exit. The first attribute is the pid for the
process, and the second is the reason code. Then we did a Process.whereis
request, and got a pid. Notice the pid of 0.127.0. That’s not the same pid we
started with! The different pid confirms the restart.

Notice that by building in the start_link and the supervision structure into
application.ex, we got both the automatic start of our QuizManager, and failover
control. GenServer built the rest in for us by linking the process and trapping
exit messages.

Before zooming off to the next topic, let’s look at manipulating supervisors in
more detail. To explicitly start and stop a supervisor, you’d do this:

report erratum  •  discuss

Configure Applications to Start Supervisors • 139

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


iex(1)> {:ok, sup_pid} = Supervisor.start_link(
[%{id: Mastery.Boundary.QuizManager, \

start: { Mastery.Boundary.QuizManager, :start_link, [[ ]]}}], \
[strategy: :one_for_one, name: TestSupervisor])

{:ok, #PID<0.144.0>}
iex(2)> Supervisor.stop(TestSupervisor)
:ok

Or you can examine the policies our supervisor uses to watch over the Quiz-
Manager like this:

iex(3)> Mastery.Boundary.QuizManager.child_spec(
[name: Mastery.Boundary.QuizManager])

%{
id: Mastery.Boundary.QuizManager,
start: {Mastery.Boundary.QuizManager, :start_link,
[[name: Mastery.Boundary.QuizManager]]}

}

Child specs are lifecycle policies and you can see one for any GenServer. Now
half of Mastery is working so we can shift our focus to the rest, the QuizSession.

Start Per-User Processes with a Dynamic Supervisor
Now we need to start a process per user. Since we don’t have a fixed number
of processes to start, and since we’ll also need to be able to look them up
based on a user’s attributes, we will need a structure that is a little more
sophisticated. We will use a dynamic supervisor.

Most supervisors create processes when an application starts or restarts.
That’s normally what you want, but not always. A dynamic supervisor is a
supervisor that starts children dynamically. Since we have no way of knowing
who will take quizzes and when, that sounds like exactly what we need. To
use a dynamic supervisor, you need many of the same pieces of information:

• You must provide a child spec, the description for how to start and restart
processes

• The GenServer you’re starting must have a start_link

• You need a strategy for naming and accessing the process

• You must register your dynamic supervisor, perhaps in application.ex

We’ll do each of these things in the sections to follow. Let’s start at the top,
the child spec.

Chapter 7. Customize Your Lifecycle  • 140

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Establish a Child Spec
An OTP child spec is really a policy. It defines how the lifecycle should work
for a particular type of process. Remember, lifecycles define behaviors for
starts, restarts, and shutdowns.

Our child spec will need to identify the process by name, define exactly how
to start the worker process and determine a restart strategy. We’ll do those
with :id, :start, and :restart keys. Add this child spec to quiz_session.ex, just below
the module heading and aliases:

Lifecycle/lib/mastery/boundary/quiz_session.ex
def child_spec({quiz, email}) do

%{
id: {__MODULE__, {quiz.title, email}},
start: { __MODULE__, :start_link, [{quiz, email}]},
restart: :temporary

}
end

This time we manually define a child specification so we can fine-tune it to
the needs of managing our named, dynamic processes. Let’s go through it
key by key.

If you’ve never worked with child specs before, the :id might not make any
sense at all. The :id tuple needs to uniquely identify the process so supervisors
can differentiate them.

The :start key has everything OTP needs to invoke our start_link function. It is
a tuple with:

• A module
• The name of the function
• And an argument list

Our argument list has one item, the two-tuple {quiz, email}. That’s the starting
state of our GenServer so we pass it through to the QuizSession.start_link/1 function.

Finally, the :restart key defines the policy for restarts. In our case, if the quiz
crashes, we can’t really remedy the problem. We’ll expect the supervisor to
do nothing; we’ll just let the user restart. The worst that can happen is that
the user may lose mastery scores accumulated along the way. If we wanted
to, we could bring in some extra code to store the state and retrieve it in the
event of a crash.

Now that we’ve wired up the start_link, let’s establish it in the codebase.

report erratum  •  discuss

Start Per-User Processes with a Dynamic Supervisor • 141

http://media.pragprog.com/titles/jgotp/code/Lifecycle/lib/mastery/boundary/quiz_session.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Add a Start Link
Rather than starting our start_link directly, our code is going to use the
dynamic supervisor to start the code for us. Let’s do that now. Add this code
below the child_spec code:

Lifecycle/lib/mastery/boundary/quiz_session.ex
def start_link({quiz, email}) do

GenServer.start_link(
__MODULE__,
{quiz, email},
name: via({quiz.title, email}))

end

The start_link itself looks exactly like you’d expect. It specifies the module con-
taining the GenServer, the initial state tuple of {quiz, email}, and the options.
We provide a name for the process using a :via tuple, one we’ll build with a
function. We’ll provide this implementation in the listings to follow.

A via tuple is a tuple that OTP uses to register a process. They typically look
like {:via, Registry, name}. :via is a fixed atom signalling this technique to OTP.
Registry is the module containing the registry we’re using, as Elixir has several
registry implementations.

The real magic happens in the following take_quiz function you’ll add just below
start_link:

Lifecycle/lib/mastery/boundary/quiz_session.ex
def take_quiz(quiz, email) do

DynamicSupervisor.start_child(
Mastery.Supervisor.QuizSession,
{__MODULE__, {quiz, email}}

)
end

There’s the magic. To take a quiz, our code uses the supervisor directly to
start a child. We provide the module and the start tuple with our module and
initial state. This strategy is at the heart of every OTP application. Don’t start
processes directly; start them through a supervisor, an intermediary that acts
on our behalf to start and monitor our application. As things go wrong, the
supervisor can intervene on our behalf.

We still have to touch up the code that will let us name the processes and
use them in our code. Let’s do that now.

Chapter 7. Customize Your Lifecycle  • 142

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Lifecycle/lib/mastery/boundary/quiz_session.ex
http://media.pragprog.com/titles/jgotp/code/Lifecycle/lib/mastery/boundary/quiz_session.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Use Names to Find Services
When you have names in a concurrent system, part of handling failure is
referencing your services by name and not pid. That’s important because as
processes fail, pids change. That means we’ll need strategies to find our process
IDs by name.

We have a couple of pieces of code to write. We need to implement the function
to make our :via tuple and finally plug that function into our API. At the bottom
of quiz_session.ex, add this function:

Lifecycle/lib/mastery/boundary/quiz_session.ex
def via({_title, _email}=name) do

{
:via,
Registry,
{Mastery.Registry.QuizSession, name}

}
end

end

This builds our :via tuple. Recall the tuple looks like {:via, registry, name}, where
registry is the module of the registry implementation and name is a tuple that
uniquely identifies the process. In our case, we use the quiz title and user’s
email.

Now we can start a process and reference it by name. We will need to plug
that via lookup into our client API. Let’s do that now. Change the API functions
to use the via function we wrote previously, like this:

Lifecycle/lib/mastery/boundary/quiz_session.ex
def select_question(name) do

GenServer.call(via(name), :select_question)
end

def answer_question(name, answer) do
GenServer.call(via(name), {:answer_question, answer})

end

Now, each of our API functions calls via(name) to look up the process ID in our
registry. Should any process restart, we’re protected, and we’re also able to
access a user’s data by quiz title and email as they advance through the quiz.
That’s all we have to do to quiz_session.ex, so you can save that file.

Add the Registry and Dynamic Supervisor to application.ex
The last step is to plug our registry process and dynamic supervisor into
application.ex. Only permanent services get listed here, not transient or temporary

report erratum  •  discuss

Start Per-User Processes with a Dynamic Supervisor • 143

http://media.pragprog.com/titles/jgotp/code/Lifecycle/lib/mastery/boundary/quiz_session.ex
http://media.pragprog.com/titles/jgotp/code/Lifecycle/lib/mastery/boundary/quiz_session.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


processes such as our QuizSession. In other words, we are making the infrastruc-
ture for dynamically creating quizzes available to our user, and resilient.

Open up application.ex once again and add the children services so that it looks
like this:

Lifecycle/lib/mastery/application.ex
defmodule Mastery.Application do

use Application

def start(_type, _args) do
children = [
{ Mastery.Boundary.QuizManager,

[name: Mastery.Boundary.QuizManager] },
{ Registry,

[name: Mastery.Registry.QuizSession, keys: :unique] },
{ DynamicSupervisor,

[name: Mastery.Supervisor.QuizSession, strategy: :one_for_one] }
]

opts = [strategy: :one_for_one, name: Mastery.Supervisor]
Supervisor.start_link(children, opts)

end
end

Each of these tuples is a start specification. It has the module name we’re
starting and the arguments to pass. The Registry options are :name and :keys.
The :name field is the name we’ll use for the registry. You’ve seen that strategy
before in our QuizManager. The :keys field allows us to specify whether the
keys we register will be unique or not. In our case, they will.

The second tuple is our dynamic supervisor. We don’t need to name it but
we do need to specify a strategy for restarts. :one_for_one is the right strategy
for us. It’s a good time to look not just at this strategy, but all of the potential
strategies we can establish when we build a child spec.

Establish Supervision Strategies
As you’ll recall, when we build a child spec, we define the naming and lifecycle
strategies our supervisors will apply to child processes. In general, this con-
figuration code guides OTP in building the lifecycle. Let’s talk about what
happens when you start a worker.

At startup, the worker will go down the list of child specs and start each of
them using the child specs. Some of those child specs will identify other
supervisors or applications. Our application.ex child list has both.

Application.start, then, walks down a list of children and starts each one. Those
children could be single processes, such as our QuizManager, or they could be

Chapter 7. Customize Your Lifecycle  • 144

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Lifecycle/lib/mastery/application.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


applications in their own right. Spinning up a child application means loading
that application’s child list, and so on. That means our child list is really a
supervison tree.

Starting your application, then, is pretty straightforward. The children will
start in order, and each child will load its own complete supervision tree
before the next child starts. Shutting down or restarting the application is
another story altogether. You’ll need to carefully evaluate dependencies
between applications, and specialized shutdown requirements. Here are some
questions you might need to consider:

• Do you need to wait for in-progress work to finish?

• After a fixed period of time, should you abandon your attempts to cleanly
shutdown?

• Are there dependencies between loading applications?

• Do processes need to load in order?

OTP child specs provide a good amount of detail when it’s time to configure
the lifecycle policies for a given application. These are the options you have
at your disposal as you’re making a child spec:

id
The :id option lets OTP uniquely identify processes managed by supervisors.

start
The :start tuple has the information the supervisor needs to start a worker,
a module, function name, and the argument list with the initial state of
the server. There’s no strategy here; only the description of a raw function
invocation.

restart
This attribute defines policies for restart. This setting is a strategy.
:one_for_one means when a child fails, the supervisor will restart only that
child. This strategy makes sense for long-running singletons or pools.
:one_for_all means when a child fails, the supervisor will terminate all chil-
dren and restart all of them. :rest_for_one means when a child fails, the
supervisor will terminate and restart all workers started after the failing
one. This option makes sense when later processes in the Application.start
child list depend on earlier ones.

modules
This key is primarily managed internally by OTP.

report erratum  •  discuss

Start Per-User Processes with a Dynamic Supervisor • 145

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


type
:worker or :supervisor. As you know, workers have business logic; supervisors
manage lifecycles.

shutdown
This attribute defines the last part of the lifecycle, policies for shutdown.
:brutal_kill means immediately, an integer specifies a timeout, and :infinity
means wait as long as it takes. Supervisors by default are set to :infinity to
let subtrees shut down, but should never be used for workers. Waiting
for a process to finish work, pausing for a short period of time to make
sure the shutdown happens cleanly, and instantly killing a process are
all valid options.

That set of options encapsulates years of experience. This is the strategy that’s
behind it:

• Repeatable startup is about order.
• Shutdown is about timing.
• Restart is about dependencies.

If you’re optimizing startup, all you can hope to do is get the order right. Each
supervisor must start its own child list in the order the user specifies. Because
supervisors can only start child processes through other supervisors, we’re
guaranteed an orderly startup that correctly cascades through each of the
children.

A working restart then is a combination of the shutdown and startup policies.
The user can decide to be as conservative as they want by specifying the three
available options. :one_for_one will isolate the restart to a single node; :rest_for_one
isolates the supervison tree that started after this process; and :one_for_all just
brings down all children.

With automation out of the way, let’s shift gears to debugging and visualization.

Observe It
We’ve fully configured the application for Mastery, and we know what those
options mean. Think back to the configuration in application.ex. You can probably
guess which processes might be running in the application so far:

• A process or two to load the application and start the main Mastery
supervisor

• An application supervisor for Mastery

• A quiz manager

Chapter 7. Customize Your Lifecycle  • 146

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


• A registry for the QuizSession

• A dynamic supervisor

There may be another housekeeping process or two, but that should be about
it. Fortunately, we don’t have to guess. We can see exactly what’s happening.

Fire up Mastery with iex -S mix, and type :observer.start. We’ll open the graphical
interface for managing Erlang applications.

When you get there, you’ll see a menu near the top of the page that starts
with System. The fourth entry or so should be Application. Click it. You’ll see a
list of applications running on your local computer.

Choose Mastery. You’ll see the following process graph. It may not match
ours exactly but your graph will be similar to this one:

And it’s pretty much what we expected it to be. We see an extra process for
a partition for the registry, and a second housekeeping process for the initial
application on the far left, but otherwise our guess was exact.

At any time, we can lean on Observer to find out exactly what’s going on. We
can get memory statistics, message queue length, OTP state and the like.
That’s going to be especially useful when it’s time to debug any OTP applica-
tion, especially since we’ve decided to keep a pure functional core. We can
get the input values for our functions and we can call our core and find out
exactly what will happen.

Now, we have the configuration in application.ex and we’ve verified that it’s
working. The next step is to surface our new features in the context of our
API. Believe it or not, we’ve almost completed our full lifecycle support.

Touch Up the API Layer
We’ve built our boundary layer with an outer API. We know we’ll need to make
a few changes, but not too many. Here’s the bill we have to pay for earlier changes:

• We no longer need to start our QuizManager, so we can remove that API.

• We refer to all QuizSession APIs by pid, and we’ll need to change those to use
{quiz.title, email} tuples.

• The take_quiz function will shift to our new take_quiz API.

report erratum  •  discuss

Touch Up the API Layer • 147

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


There’s not too much work to do. Let’s get to it.

The first order of business is to remove the start_quiz_manager API. We no longer
need to do that work. Open up mastery.ex and remove the entire function
start_quiz_manager. It won’t hurt anything, but we may as well be good citizens
and keep down our future maintenance requirements. If we need to start a
manager at some point in the future, we can use a start_link directly.

Next we need to make select_question and answer_question use {title, email} tuples
rather than pids, but wait. Here’s the code we have now:

def select_question(session) do
GenServer.call(session, :select_question)

end

Here’s the code we’re going to call:

def select_question(name) do ...

Here’s the lookup function:

def via({_title, _email}=name) do ...

As long as we’re OK with referring to the name tuple as session, that works fine.
Realistically, that tuple is naming a session, so we don’t need to change any
code at all.

The last order of business is to use the take_quiz function in the QuizSession
library to establish a new session, like this:

Lifecycle/lib/mastery.ex
def take_quiz(title, email) do

with %Quiz{}=quiz <- QuizManager.lookup_quiz_by_title(title),
{:ok, _} <- QuizSession.take_quiz(quiz, email)

do
{title, email}

else
error -> error

end
end

We have inputs, the quiz title, and the email. There’s potential failure because
the title may not be in the QuizManager. Still, the with statement makes short
work of this problem by letting us compose the two functions together, and
ignore error conditions until the very end.

Thankfully, that’s all we need to do. Let’s put the new API to work.

Chapter 7. Customize Your Lifecycle  • 148

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Lifecycle/lib/mastery.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Run with Multiple Users
This trial run will be different from all of the others. We’re going to assume
our user interface will keep track of the email address for each user, and the
quiz they are taking at any given time. Other than that, we’ll make no
assumptions at all. We’ll refer to all processes by some name, and we’ll keep
track of more than one user at a time.

Let’s see how it works:

iex(1)> alias Mastery.Examples.Math
Mastery.Examples.Math
iex(2)> email1 = "mathter_of_the_universe@example.com"
"mathter_of_the_universe@example.com"
iex(3)> email2 = "mam_math@example.com"
"mam_math@example.com"
iex(4)> title = Math.quiz.title
:simple_addition

We prepare our IEx session with the data we’ll need to track a quiz and two
users. The next job is to buid a quiz and add the template:

iex(5)> Mastery.build_quiz Math.quiz_fields
:ok
iex(6)> Mastery.add_template title, Math.template_fields
:ok

Though we’ve done nothing specifically to start the QuizManager, it’s running
thanks to the configuration we added in application.ex. Now, we can start indi-
vidual sessions, like this:

iex(7)> user1 = Mastery.take_quiz title, email1
{:simple_addition, "mathter_of_the_universe@example.com"}
iex(8)> user2 = Mastery.take_quiz title, email2
{:simple_addition, "mam_math@example.com"}
iex(9)> Mastery.select_question user1
"5 + 2"

Each user took the quiz, establishing a session. We’re labeling the session
with the {title, email} tuples as expected. We pick a question for the first user.

Let’s see what the state looks like internally:

iex(10)> :observer.start
:ok

report erratum  •  discuss

Touch Up the API Layer • 149

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Fire up the observer, click on applications and then click on mastery. You’ll see
the following process diagram, with two running QuizSessions:

Next, you can actually look at the state of the server. Double click on the top
QuizSession process. On our diagram, it’s the one labelled 0.122.0, but yours will
probably be different:

{#{'__struct__' => 'Elixir.Mastery.Core.Quiz',
current_question =>

#{'__struct__' => 'Elixir.Mastery.Core.Question',asked => <<"5 + 2">>,
substitutions => [{...}|...],
template => #{...}},

last_response => nil,mastered => [],mastery => 2,record => #{},...},
<<"mathter_of_the_unive"...>>}

You’ll be able to see a little Erlang code representing the state, but it should
be easy enough for you to read. The question text matches exactly what the
user was asked!

Now, you can track both users at the same time. Notice that each must cor-
rectly answer two questions in a row:

iex(11)> Mastery.answer_question user1, "7"
{"4 + 4", true}
iex(12)> Mastery.select_question user2
"2 + 1"
iex(13)> Mastery.answer_question user1, "8"
:finished
iex(14)> Mastery.answer_question user2, "3"
{"0 + 5", true}
iex(15)> Mastery.answer_question user2, "5"
:finished

Excellent! We are tracking two different users, just as we should! We can also
tell that the processes are no longer alive. You can check the registry to be sure:

iex(16)> Registry.lookup(Mastery.Registry.QuizSession, user1)
[]

There’s no entry for user1 or user2, and there shouldn’t be. We shut down those
processes when the user finished. Our lifecycle API is doing exactly what we
need it to do so it’s a good time to wrap up.

Chapter 7. Customize Your Lifecycle  • 150

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Manage Your Lifecycles with Supervisors
This chapter covered a lot of ground. First, we formed a strategy to incorporate
lifecycle management into our application. We planned a single QuizManager
and one QuizSession per user. We decided to use a registry to name the processes
so that workers could find them as needed.

Next, we built in the requisite start links into our QuizManager and automated
the start and supervision in application.ex. We tried it in IEx to verify that it
automatically started.

We then built the machinery for dynamic supervision into our QuizSession,
including the child spec, the start link and the take_quiz function to invoke the
supervisor to create the process. We used the observer to look at our processes
in action and even peeked into the state.

Next, we’re going to continue our journey by looking at workers. We’ll build
a persistence layer to save the data for our quiz maker. Then we’ll wrap things
up by testing the boundary layer and seeing how our components work
together.

Keep on plugging. We’re almost done. Turn the page!

report erratum  •  discuss

Manage Your Lifecycles with Supervisors • 151

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


CHAPTER 8

Summon Your Workers
At last we’ve come to the “W” in the sentence “Do fun things with big, loud
worker-bees.” “W” stands for workers. A worker is process machinery that
lets us divide labor for reliability, performance, or scalability. The following
figure tells the story:

Workers are various constructs that provide concurrency. Worker code lives
in the boundary with the rest of our process machinery. The worker layer
exists to manage concurrency using a variety of tools: naked processes, con-
nection pools, tasks, and other dependencies.

The worker layer is not exactly the lifecycle layer because it lives outside of
the OTP policy found in child specs. It is not exactly the boundary layer either
because it starts and stops work. It’s the worker layer. We separate this layer

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


because often it pays to have a conceptual name for constructs that start and
stop work in a concurrent or distributed system.

In this chapter, the first order of business is to look at the concurrency game
and help you decide whether to increase your stakes by adding a worker
layer. Then we’ll look at the ways you might go about summoning and man-
aging workers should you need to do so. We will then solve a problem in
Mastery that will require worker machinery, scheduling quizzes. We’ll build
that feature with another OTP GenServer. Let’s get started.

Know Your Motivations
We strongly believe adding concurrency has a price, and it is one that nearly
every team will need to pay. Modern developers build distributed, concurrent
systems, period. Even the simplest web projects are split into pieces. The web
server itself exists to run one user’s request concurrently with others. The
browser, static content server, and database all use concurrent processes.
All but the most basic developers need to deal with concurrency issues pre-
sented by those layers, whether or not they decide to introduce their own
processes or threads. Knowing how these pieces work will make you a better
programmer.

Still, you will want to decide whether to code worker machinery yourself or
rely on the work of others to do the job for you. To make that determination,
we’ll quickly discuss the reasons you might want to introduce workers. We’ll
focus on three of them: concurrency, isolation, and scalability.

Concurrency
In the simplest terms, concurrency means doing more than one thing at the
same time. In our venacular, it’s a micro concern. A program with a timer
requires both a scheduler and an end user’s program. A web request firing a
long-running task will time out if we don’t address the need for concurrency.
A client request can farm out six different database requests to six different
processes rather than waiting for all of them to return separately, shortening
the end user’s wait time substantially.

In the core layers, concurrency won’t necessarily come into play directly but
in the boundary layers where we deal with issues like file I/O and database
access, the latency makes concurrency matter more.

Often, Elixir developers will rely on frameworks to implement concurrency
concerns for them. For example, if you’re working with Phoenix Channels,
each connection from each user has its own process. You don’t need to lift a

Chapter 8. Summon Your Workers  • 154

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


finger to do more. Throughout this chapter, we’ll look at several different
solutions to this problem.

Isolation
Processes aren’t just for concurrency. They also insulate users from one
another. If the Elixir supervisor only monitored a single system-wide process,
it would not be a big deal. In reality, an OTP application is a whole tree of
processes so crashes in one user’s processes won’t impact another.

In the boundary layers, isolation is a big deal. Isolation can limit the damage
of failure to a noncritical subsystem. We can build a Twitter integration that
won’t take our whole system down on failure or we can shut the whole system
down if the database layer crashes. In short, developers can make policy
decisions based on the needs of the business because we can isolate one
process from another.

Scaling is the last reason we’ll discuss to embrace workers.

Scalability
When you strategically use concurrency across an entire system, Elixir allows
a single instance of a program to take advantage of all system cores. In our
vernacular, it’s a macro concern. That capability makes Elixir scale extremely
well. Almost always, our strategy for handling scalability will be to pick a good
framework that scales well and stay out of the way!

In fact, most of the time in Elixir you’re not going to need to introduce your
own concurrency abstractions yourself. When we implement workers, we’ll
be leaning on the work of others, specifically the OTP team. The most impor-
tant thing is to understand what a framework or tool is doing for you and
how to use it appropriately.

We’ve taken a short peek at why we have a worker layer. Now, let’s look at
how. We’ll examine some techniques for controlling the processes in your
system.

Know Your Tools
You are doubtlessly using Elixir partially because it provides an excellent
foundation for concurrency. The worker layer is a concurrency management
layer, and in this section, we’ll look at the different tools at your disposal to
manage concurrency. We will start with some of the most basic ones.

report erratum  •  discuss

Know Your Tools • 155

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Dependencies will allow us to simply include the work of others. Processes
are Elixir concurrency primitives we can certainly lean on in a pinch, but
normally we’ll be working at a higher level of abstraction. Tasks will allow us
to do one-off jobs and still rely on the rich OTP library. Connection pooling
libraries let us share long-running connections across processes. Finally, we
can integrate into existing frameworks that provide OTP abstractions that
serve as containers for our code.

Let’s look at the simplest example possible for starting a worker, the depen-
dency.

Leverage Workers in Dependencies
The easiest way to use concurrency in Elixir is to leverage code someone else
has already written. When you think about it, that’s not such a strange con-
cept. Most of us don’t use much recursion in our day to day code because we
can lean on Enum’s implementations to do that work for us. Many of Elixir’s
most popular dependencies are full OTP implementations, and most of them
take the job of dealing with concurrency off of your plate. For example, when
you use Phoenix Channels, you’re actually using OTP, and Phoenix deals with
the hard parts so you don’t have to. The same is true of hundreds of other
dependencies. Let’s see how that works.

As you saw in Chapter 7, Customize Your Lifecycle, on page 131, each mix
project potentially has its own application file, thus its own lifecycle. Unless
a dependency specifies app: false, mix will use the policies in the app file to
determine how to start, restart or shutdown the application. We can actually
see the running dependencies. Let’s build an empty app to see what happens:

mix new workers
...
iex -S mix
...

Now, let’s use the Application module to find out what’s running, like this:

iex(1)> Application.loaded_applications
[

{:stdlib, 'ERTS CXC 138 10', '3.7'},
{:logger, 'logger', '1.8.1'},
{:kernel, 'ERTS CXC 138 10', '6.2'},
{:elixir, 'elixir', '1.8.1'},
{:compiler, 'ERTS CXC 138 10', '7.3'},
{:workers, 'workers', '0.1.0'},
{:mix, 'mix', '1.8.1'},
{:iex, 'iex', '1.8.1'}

]

Chapter 8. Summon Your Workers  • 156

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


That’s a surprisingly long list for an empty application, but it makes sense. You
may suspect that some of those are due to IEx and mix, but we don’t have to
guess. Take a look at the worker.app file by typing cat _build/dev/lib/wks/ebin/worker.app,
and you’ll get this output:

{application,worker,
[{applications,[kernel,stdlib,elixir,logger]},
{description,"worker"},
{modules,['Elixir.Worker']},
{registered,[]},
{vsn,"0.1.0"}]}.

By going down the dependency tree, we can tell exactly which applications
Elixir will start, and when. Now, let’s add a dependency. Let’s add an arbitrary
dependency that is an OTP app. Add the dependency { :earmark, "> 1.0.0" } (by
the remarkable Dave Thomas) to your application. When you’re done, fetch
dependencies, like this:

mix deps.get
...
iex -S mix
...

Now let’s look at the application dependencies again, and the list will be
longer:

iex(1)> Application.loaded_applications

[
{:stdlib, 'ERTS CXC 138 10', '3.7'},
{:logger, 'logger', '1.8.1'},
{:earmark,
'Earmark is a pure-Elixir Markdown converter..., '1.3.2'},

...
]

We didn’t even have to add the dependencies to application.ex! In other words,
OTP applications are the default type of dependency. If we had a dependency
that was a library without its own .app file, we’d specify the dependency with
the flag app: false flag in mix.exs. Earmark is an OTP dependency with an .app file,
so that means when we use Earmark, starting our own application starts Earmark
as well. You can even verify that’s true by looking at the new applications tuple
in the worker.app file:

{application,workers,
[{applications,[kernel,stdlib,elixir,logger,earmark]},
{description,"workers"},

...

report erratum  •  discuss

Know Your Tools • 157

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


And when we take advantage of the features of Earmark, it will have its own
OTP lifecycle as a child of our server, and we’ll be able to take advantage of
them by merely using the Earmark API.

With the simplest way to spin up workers, let’s look at the most primitive,
naked Elixir processes and why we might want to avoid them in favor of
higher abstractions.

Generally, Avoid Naked Processes
The natural go-to concurrency construct for Elixir beginners is the process,
but we strongly believe that instead, you will normally want to incorporate
proven features that have already addressed the subtle complexities of con-
currency. Still, we’ll cover processes here so you can put them in context
when the inevitable edge cases do occur.

We’ve already spent a bit of time using Elixir primitives for processes, but it
bears repeating. We have access to the primitives to send messages with
send/2, spawn processes with the various versions of spawn/n, and spawn_monitor/n.
Typically, we will want our processes to be OTP processes because we’ll want
to take advantage of the GenServer lifecycle. Elixir can’t manage what it
doesn’t know about.

You’ll rarely send messages with the send varients, though you might use
some of its close cousins. Process.send_after and :timer.send_interval are useful for
dealing with various scheduling problems, but those are exceptions. The rule
of thumb is to use higher abstractions to work with processes, so let’s move
up the food chain to a pretty simple alternative to naked processes, the task.

Make Serial Code Concurrent with Tasks
Elixir has a nice abstraction for executing one-time single-purpose jobs in a
process, the task. Generally, you’ll fire a task, go do some work and then
await the results. Tasks are great for making sequential code concurrent.
Let’s look at a couple of different ways to handle long-running jobs.

An easy way to run two slow jobs concurrently is to use Task.async/1 and
Task.await/1, like this:

task = Task.async(fn -> Slow.job1() end)
slow_job2()
Task.await(task)

That code fires the first slow job and runs it in a separate process. While
that’s processing, it fires the second job, and finally awaits the results of the
first job. It doesn’t really matter which job finishes first; either the first job

Chapter 8. Summon Your Workers  • 158

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


will finish early and will wait, or the second process will finish early and the
first won’t have to wait. The code will be much faster on average if the jobs
take roughly the same amount of time.

You might be tempted to generalize this approach, like this:

def multi_task(slow_funs) do
slow_funs
|> Enum.map(&Task.async/1)
|> Enum.map(&Task.await/1)

end

That code will work OK until you start throwing real numbers at it. Then,
you’ll be in trouble. Let’s say you’re using that code to smooth out some very
slow database transactions. You’ll increase the proportion of long transactions
until you swamp your database pool by creating too many requests to process
at once. In short, we’ve removed backpressure for our worst database calls!

What you really need is a way to spread that work out. Even better, you would
like to divide the work optimally, based on the number of cores supported by
your hardware. And that’s precisely what Task.async_stream/2 does for you:

def multi_task(slow_funs) do
slow_funs
|> Task.async_stream(fn(f) -> f.() end)
|> Enum.map(fn {:ok, x} -> x end)

end

This code is a little tricky, but it’s worth understanding. Task.async_stream/3
takes three arguments:

• A list of items
• A function to call in a task
• The maximum number of tasks to run at a time

We pass a list of functions into the first argument. These functions identify
slow work. Then, we define a simple little function that takes a function and
invokes it. The result is that the first list of functions will be called in a task.

Here’s the good part. The last argument defaults to System.schedulers_online/0.,
and that’s usually the number of cores! We get all the concurrency we can
use but not more.

We can easily do some work like this:

[users, projects] =
[&fetch_users(user_filter), &fetch_projects(project_filter)]
|> multi_task

report erratum  •  discuss

Know Your Tools • 159

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Marvelous! It’s now trivial to take two high-latency jobs and do them at the
same time. In a sense, we have built a narrow type of pool, one to share pro-
cesses. Erlang also has a great general-purpose solution for pooling resources
called Poolboy.

Build Pools of Common Resources with Poolboy
Poolboy is an Erlang application for sharing pools of common resources.
Sometimes programs need to use processes that take a while to start. In such
instances, it’s best to have a pool of processes to share across a whole project.
It’s ideal for situations where you need to throttle many requests down to a
smaller number of resources. For example, most web servers run thousands
of concurrent jobs through a handful of database connections because those
connections often consume a good amount of memory and take a while to
start.

Since Poolboy is an OTP application, you already know how to use it. Just
add a dependency, configure it in application.ex, and create an OTP server to do
some work.

In the configuration in application.ex, you can specify the number of permanent
and temporary workers, like this:

defmodule MyApp.Application do
@moduledoc false

use Application

defp poolboy_config do
[

{:name, :worker_pool},
{:worker_module, MyApp.Worker},
{:size, 3},
{:max_overflow, 2}

]
end

def start(_type, _args) do
children = [
:poolboy.child_spec(:worker, poolboy_config())

]

opts = [strategy: :one_for_one, name: PoolboyApp.Supervisor]
Supervisor.start_link(children, opts)

end
end

Chapter 8. Summon Your Workers  • 160

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


You’ve seen this code before. This configuration for a mix project called MyApp
would have three permanent workers and two additional workers that go
away once they complete their work.

A worker is a pure OTP GenServer, and works something like this:

defmodule MyApp.Worker do
use GenServer

def start_link(_) do
GenServer.start_link(__MODULE__, nil, [])

end

def init(_) do
{:ok, nil}

end

def handle_call({:process_work, x}, _from, state) do
IO.puts("Doing work for #{inspect(self())} #{x}")
# do work here
{:reply, result, state}

end
end

We have functions to start the server process and an empty init. Then we
have the typical handle_call that does whatever work you want it to do in the
commented area. All in all, this code is just a bare OTP server, one where the
state doesn’t really matter. Invoking a worker looks like this:

:poolboy.transaction(
:worker_pool,
fn(pid) ->

GenServer.call(pid, request)
end)

We make a direct call to the Erlang module :poolboy, wrapping the GenServer.call/2
in a function. That’s all there is to it.

This Poolboy example is a great illustration of leveraging other frameworks
to provide workers. We don’t need to know the details underneath. We just
configure our policies and let the chosen framework do the work.

In the next section, we’re going to implement a scheduling solution. We’ll rely
on OTP plus simple message passing to schedule timed tests that will stop
quizzes at a scheduled time. Let’s look at how that will work.

report erratum  •  discuss

Know Your Tools • 161

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Add a Proctor to Run Timed Quizzes
To be useful in a classroom setting, Mastery should be able to schedule
quizzes. Step by step, here’s the flow for the major actors working with
Mastery:

1. A teacher schedules a quiz.

2. At the quiz’s scheduled starting time, the proctor makes that quiz available
in the quiz manager.

3. A student takes a quiz.

4. At the scheduled end time, the proctor automatically stops all student
processes for that quiz and removes the quiz from the manager.

This is exactly the kind of machinery that defines the worker layer. It’s not
lifecycle code because it lives outside of the configured lifecycle policies in
our GenServers. It goes beyond simple boundary code because it will stop
GenServer processes. This is the domain of the worker layer.

We’ll implement it with a GenServer and a boundary API. Let’s look at
scheduling a quiz first. We’ll write an API function in Mastery, one that will call
the API function in our as-yet unwritten Boundary GenServer module.

Establish the Boundary API
Let’s work from the outside in. Sometimes, working in this direction gives us
an idea of what our API will look like before we dive into the details. The
boundary layer will need a complex API to schedule a quiz so it will be available
to users. We will start with the usual aliases:

Workers/lib/mastery.ex
defmodule Mastery do

alias Mastery.Boundary.{QuizSession, QuizManager, Proctor}
alias Mastery.Boundary.{TemplateValidator, QuizValidator}
alias Mastery.Core.Quiz

We add a simple alias for Proctor. Note that this code looks like our other
boundary functions, and this organization is not unusual. The worker layer
does not change the way we organize our code from what we normally do on
the boundary. Rather, the worker layer will define the way we organize pro-
cesses outside of the typical policies in the lifecycle layer.

Chapter 8. Summon Your Workers  • 162

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Let’s provide the API function from Mastery:

Workers/lib/mastery.ex
def schedule_quiz(quiz, templates, start_at, end_at) do

with :ok <- QuizValidator.errors(quiz),
true <- Enum.all?(templates, &(:ok == TemplateValidator.errors(&1))),
:ok <- Proctor.schedule_quiz(quiz, templates, start_at, end_at),

do: :ok, else: (error -> error)
end

Scheduling a quiz should take the typical quiz and template fields. We also
need a couple of DateTime timestamps for the beginning and ending of the test
session.

Now, we can move onto the boundary. We will start with the Proctor boundary
layer.

Write the Proctor Boundary Server
We’ll create a new Proctor module in the Boundary namespace to implement a
GenServer to schedule quizzes. It’s a single API, Proctor.schedule_quiz, but a complex
one. Let’s walk through it step by step.

Create a new file lib/mastery/boundary/proctor.ex so we can establish our GenServer:

Workers/lib/mastery/boundary/proctor.ex
defmodule Mastery.Boundary.Proctor do

use GenServer
require Logger
alias Mastery.Boundary.{QuizManager, QuizSession}

We create the usual ceremonial module definition and a few aliases. We’ll
need access to both managers and the logger, but nothing else.

Next, we initialize the server and create a start link, like this:

Workers/lib/mastery/boundary/proctor.ex
def start_link(options \\ [ ]) do

GenServer.start_link(__MODULE__, [ ], options)
end

def init(quizzes) do
{:ok, quizzes}

end

We need only one Proctor GenServer, so the start_link is trivial. We simply name
the GenServer a module. We initialize with a list of quizzes.

report erratum  •  discuss

Add a Proctor to Run Timed Quizzes • 163

http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery.ex
http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/proctor.ex
http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/proctor.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Next, we will write the GenServer code to schedule a quiz. Once again, we’ll
work from the outside in, starting with our API:

Workers/lib/mastery/boundary/proctor.ex
def schedule_quiz(proctor \\ __MODULE__, quiz, temps, start_at, end_at) do

quiz = %{
fields: quiz,
templates: temps,
start_at: start_at,
end_at: end_at

}
GenServer.call(proctor, {:schedule_quiz, quiz})

end

That’s simple enough. We create a quiz and pass it straight through to the
GenServer with a handle_call. Now, we dive into the gritty details. Don’t let
anyone tell you differently. Concurrent systems are complex, and it’s the
interactions between processes that make them so. Still, our end users need
to schedule quizzes as a foundational capibility for Mastery so we will move
forward to the heart of our scheduler.

Let’s look at that outer handle_call for :schedule_quiz, where things start to get a
little more interesting.

This service will add the quiz to be scheduled, order the quizzes in the
scheduler to make them easier to deal with, start any quizzes that need to be
managed, and then build a reply tuple, like this:

Workers/lib/mastery/boundary/proctor.ex
def handle_call({:schedule_quiz, quiz}, _from, quizzes) do

now = DateTime.utc_now
ordered_quizzes =

[quiz | quizzes]
|> start_quizzes(now)
|> Enum.sort(fn a, b ->
date_time_less_than_or_equal?(a.start_at, b.start_at)

end)
build_reply_with_timeout({:reply, :ok}, ordered_quizzes, now)

end

We calculate the current time, and then build a list of all of the quizzes from
the new inbound quiz and the current GenServer state. We pipe that list to
a function to start all of the quizzes that need starting, and then sort the
remaining quizzes.

Let’s talk about the reply. It needs to set the state of the GenServer and also
set a timeout, so we’ll get control back for starting the next quiz. In this code,
we’re going to make use of a little-used GenServer feature, appending an

Chapter 8. Summon Your Workers  • 164

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/proctor.ex
http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/proctor.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


optional timeout to a :reply tuple. When we’re done, our :reply tuple should look
like {:reply, :ok, quizzes, timeout}. The timeout is optional, so if the quizzes are
empty, we’ll leave it off.

Our code, then, returns any quizzes that have not yet been started, and tacks
on a timeout so that we’ll get control back in time to start the next quiz.

Whew! With the broad strokes coded, let’s see how we go about building that
reply tuple:

Workers/lib/mastery/boundary/proctor.ex
defp build_reply_with_timeout(reply, quizzes, now) do

reply
|> append_state(quizzes)
|> maybe_append_timeout(quizzes, now)

end

defp append_state(tuple, quizzes), do: Tuple.append(tuple, quizzes)

defp maybe_append_timeout(tuple, [], _now), do: tuple
defp maybe_append_timeout(tuple, quizzes, now) do

timeout =
quizzes
|> hd
|> Map.fetch!(:start_at)
|> DateTime.diff(now, :millisecond)

Tuple.append(tuple, timeout)
end

Remember, handle_call and handle_info take two different kinds of responses and
our function will need to support one of each. Therefore, we call the function
with a base tuple, say {:reply, :ok} for a handle_call. We then append the quizzes
and optionally append a timeout.

To append the quizzes, we have a tiny one-line function that just delegates
to Tuple.append/2. You might be wondering why we didn’t just pipe to Tuple.append/2.
The reason is that we want to name the concept for future readers of this
code. It’s easy to understand a flow of starting with a tuple, appending the
GenServer state and then appending a timeout. We’re just maintaining a
uniform level of abstraction.

The last function picks off the head of the list and calculates the date math
based on now and quiz.start. These three functions represent the heart of our
scheduler. Don’t move on until you understand them!

There are plenty more details to handle. Next, let’s look at how we’ll start
quizzes when timeouts do occur:

report erratum  •  discuss

Add a Proctor to Run Timed Quizzes • 165

http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/proctor.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Workers/lib/mastery/boundary/proctor.ex
defp start_quizzes(quizzes, now) do

{ready, not_ready} = Enum.split_while(quizzes, fn quiz ->
date_time_less_than_or_equal?(quiz.start_at, now)

end )
Enum.each(ready, fn quiz -> start_quiz(quiz, now) end)
not_ready

end

Next, we shift from the ceremony of scheduling quizzes to the work of actually
starting them. We split the remaining quizzes into two groups, those that are
ready to be scheduled and those that aren’t. For each one of the ready ones,
we call start_quiz. We return the quizzes that have not yet been scheduled.

Since we’re working with DateTime, we write a quick function to shape our
inputs so that we can use Elixir’s library to process the date difference so we
don’t have to write the date/time comparison ourselves.

Now, let’s look at what happens when we start an individual quiz:

Workers/lib/mastery/boundary/proctor.ex
def start_quiz(quiz, now) do

Logger.info "Starting quiz #{quiz.fields.title}..."
QuizManager.build_quiz(quiz.fields)
Enum.each(quiz.templates, &add_template(quiz, &1))
timeout = DateTime.diff(quiz.end_at, now, :millisecond)
Process.send_after(self(), {:end_quiz, quiz.fields.title}, timeout)

end

defp date_time_less_than_or_equal?(a, b) do
DateTime.compare(a, b) in ~w[lt eq]a

end

We’re getting close to the finish line. We build the quiz, add each template
and then add the result to the QuizManager. Then, we use Process.send_after to
send a message to end the quiz when it’s done.

Now we have to process that timeout we set when we were scheduling a quiz:

Workers/lib/mastery/boundary/proctor.ex
def handle_info(:timeout, quizzes) do

now = DateTime.utc_now
remaining_quizzes = start_quizzes(quizzes, now)
build_reply_with_timeout({:noreply}, remaining_quizzes, now)

end

GenServer timeouts are one of the most underused features in OTP. Loosely
stated, a timeout says “If nothing is happening in x milliseconds, I’ll make it
happen.” More specifically, if no message is received before the timeout occurs,
OTP will send the scheduled timeout. That’s ideal for our purposes.

Chapter 8. Summon Your Workers  • 166

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/proctor.ex
http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/proctor.ex
http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/proctor.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


We process a handle_info where we basically take advantage of two functions
we’ve already built, start_quizzes and build_reply_with_timeout.

Last of all, we need to stop a quiz at it’s end time. We’ve already sent the
timeout so all that remains is for us to process it:

Workers/lib/mastery/boundary/proctor.ex
def handle_info({:end_quiz, title}, quizzes) do

QuizManager.remove_quiz(title)
title
|> QuizSession.active_sessions_for
|> QuizSession.end_sessions
Logger.info "Stopped quiz #{title}."
handle_info(:timeout, quizzes)

end
end

We remove the quiz from the quiz manager and then lean on unwritten
functions in QuizSession to get a list of titles and end all running quizzes with
that title. Then, we return the state to the GenServer, unchanged.

With the Proctor coded, we can move on to the remaining integrations in
QuizSession and QuizManager.

Integrate the Proctor into the Boundary
Our Proctor is a masterpiece, but we still have to wire it in to the rest of
Mastery. The boundary has two different points of integration. We will need
to revise the QuizManager to return the active sessions for a quiz and also adapt
QuizSession to end the sessions for a given title as our scheduler terminates
them. Those integrations should go quickly.

A big part of the battle of building concurrent systems is finding the processes
so we can manage them. That’s the domain of the registry. To get the existing
sessions with a given title, we’re going to lean on our supervisor and the cor-
responding registry for our dynamic supervisor. Open up lib/mastery/bound-
ary/quiz_session.ex and add this function to return active sessions:

Workers/lib/mastery/boundary/quiz_session.ex
def active_sessions_for(quiz_title) do

Mastery.Supervisor.QuizSession
|> DynamicSupervisor.which_children
|> Enum.filter(&child_pid?/1)
|> Enum.flat_map(&active_sessions(&1, quiz_title))

end

We start with the name for our supervisor, Mastery.Supervisor.QuizSession. This is
the one we configured in application.ex. We can use that key to find the processes

report erratum  •  discuss

Add a Proctor to Run Timed Quizzes • 167

http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/proctor.ex
http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/quiz_session.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


registered by our supervisor. We pipe that to DynamicSupervisor.which_children/1
and filter those registry entries to a a custom function to pick off pids which
should give us active processes. From those, we flat map across another
custom function that lets us accumulate active sessions.

Let’s build those two helper functions, one to filter registry entries and one
to determine which ones are active:

Workers/lib/mastery/boundary/quiz_session.ex
defp child_pid?({:undefined, pid, :worker, [__MODULE__]})
when is_pid(pid) do

true
end
defp child_pid?(_child), do: false

defp active_sessions({:undefined, pid, :worker, [__MODULE__]}, title) do
Mastery.Registry.QuizSession
|> Registry.keys(pid)
|> Enum.filter(fn {quiz_title, _email} ->

quiz_title == title
end)

end

child_pid? is a two-headed function that takes a registry tuple and filters out
the active processes. Our function takes in registry keys and identifies entries
for our module that match the pid we’re seeking. If the first head matches,
we’ll return true; otherwise, we’ll return false. When we’re through this filter,
we have a list of the registry entries for active quizzes.

The active_sessions function works by finding all of the keys associated with
each pid. Those keys are the {email, quiz_title} tuples we establish for each ses-
sion. We look up all of those sessions that match the titles we’re looking for
so we can take action.

Of course, the action we want to take is to be unkind to those processes by
shutting them down. Add this last bit to end the sessions:

Workers/lib/mastery/boundary/quiz_session.ex
def end_sessions(names) do

Enum.each(names, fn name -> GenServer.stop(via(name)) end)
end

We can take the registry tuples and stop the session, using the via(name)
function for each tuple. That’s all that needs to happen to the session manager,
but we still need to do a little integration to our quiz manager.

Chapter 8. Summon Your Workers  • 168

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/quiz_session.ex
http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/quiz_session.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


In the boundary manager, we need only to remove quizzes once the proctor
is through with them. That’s pretty trivial. First, add this API to lib/mastery/bound-
ary/quiz_manager.ex, like this:

Workers/lib/mastery/boundary/quiz_manager.ex
def remove_quiz(manager \\ __MODULE__, quiz_title) do

GenServer.call(manager, {:remove_quiz, quiz_title})
end

That simple function is just a GenServer.call, passing in the title of the quiz. The
server implementation is almost as small:

Workers/lib/mastery/boundary/quiz_manager.ex
def handle_call({:remove_quiz, quiz_title}, _from, quizzes) do

new_quizzes = Map.delete(quizzes, quiz_title)
{:reply, :ok, new_quizzes}

end

It’s a simple Map.delete, and we return the new state to the GenServer. Now,
we add our dependencies to application.ex, like this:

Workers/lib/mastery/application.ex
children = [

{ Mastery.Boundary.QuizManager,
[name: Mastery.Boundary.QuizManager] },

{ Registry,
[name: Mastery.Registry.QuizSession, keys: :unique] },

{ Mastery.Boundary.Proctor,
[name: Mastery.Boundary.Proctor] },

{ DynamicSupervisor,
[name: Mastery.Supervisor.QuizSession, strategy: :one_for_one] }

]

And we’re done! Take a breath. We’re finally at the point where we can try it out.

Put the Proctor to Work
That’s a lot of code without anything to show for it, but we finally get to sample
the wares. Here’s a taste for what it can do. First, let’s schedule a quiz:

iex(1)> alias Mastery.Examples.Math
Mastery.Examples.Math
iex(2)> alias Mastery.Boundary.QuizSession
Mastery.Boundary.QuizSession
iex(3)>
nil
iex(4)> now = DateTime.utc_now()
#DateTime<2019-05-09 13:33:22.337162Z>
iex(5)> five_seconds_from_now = DateTime.add(now, 5)

report erratum  •  discuss

Add a Proctor to Run Timed Quizzes • 169

http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/quiz_manager.ex
http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/boundary/quiz_manager.ex
http://media.pragprog.com/titles/jgotp/code/Workers/lib/mastery/application.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


#DateTime<2019-05-09 13:33:27.337162Z>
iex(6)> one_minute_from_now = DateTime.add(now, 60)
#DateTime<2019-05-09 13:34:22.337162Z>
iex(7)> Mastery.schedule_quiz(Mastery.Examples.Math.quiz_fields(),
...(7)> [Math.template_fields()], five_seconds_from_now, one_minute_from_now)
:ok
iex(8)>

Now we have a quiz scheduled. Wait a few seconds and it will come online:

08:33:27.337 [info] Starting quiz simple_addition...

It’s online! Remember, you might not get an IEx prompt, but it’s there. We
can take the quiz like this:

Mastery.take_quiz(Math.quiz_fields().title, "james@graysoftinc.com")
{:simple_addition, "james@graysoftinc.com"}
iex(9)> QuizSession.active_sessions_for(
...(9)> Mastery.Examples.Math.quiz_fields().title)
[simple_addition: "james@graysoftinc.com"]

We can see the quiz in active session! Now wait a minute or so and we’ll get
notice that it’s been terminated:

iex(12)>
08:34:22.353 [info] Stopped quiz simple_addition.
nil

As expected, we get the message. Press Enter if you like to get a new prompt.
Then we’ll try to list active sessions again:

iex(12)>
08:34:22.353 [info] Stopped quiz simple_addition.
nil
iex(13)> QuizSession.active_sessions_for(Math.quiz_fields().title)
[]

And there are no longer active sessions!

This is a distributed system, and as with all of them, there are trade-offs. We
need to establish a policy. If our server crashes midstream, we’ll lose the
timeouts that have already been set. Maybe this is OK; a crash could just
notify the proctor and they could intervene manually.

But maybe we want to do a little bit of extra work to rehydrate the data in
the event of a crash but the init callback gives us a perfectly convenient place
to add that code. If you decide that’s where Mastery should go, we’ll leave
that code for you to write!

We’ve covered a lot of ground, so it’s a good time to wrap up.

Chapter 8. Summon Your Workers  • 170

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Summon Your Workers
This chapter presented the worker layer, the process machinery that manages
concurrency apart from lifecycle policy. We framed the discussion in three
parts: the reasons to adopt a worker layer, the tools we might use for doing
so, and the implementation of worker concepts to build a scheduler.

First, we established three primary motivations for introducing a worker layer:
concurrency, isolation and scalability. Concurrency is a focused issue that
allows more than one task to happen at a time, often reducing latency or
enabling a feature like a scheduler. Isolation improves system reliability by
limiting the damage any single bug can do by crashing a process. Scalability
is a broader architectural concern, allowing one program to run across many
processes.

We moved on to some of the tools for implementing a worker layer. By far the
preferred approach we introduced was to leverage other dependencies to do
work for us. The GenServer application architecture allows us to mix in Elixir
or Erlang dependencies such as Poolboy that spin up their own applications
with their own worker layers that we can leverage through an API. Tasks also
allow single-purpose one-shot functions to fire concurrently with our applica-
tion code.

Finally, we put these ideas into practice with our own worker layer. We relied
on GenServer’s timeouts to implement a schedule, and we used various
GenServer and Registry APIs to start, find and stop Mastery processes.

We’ve made it through all of the layers in our sentence, “Do fun things with
big, loud worker-bees” but there’s still work to do. In the next chapter, we’ll
integrate persistence with an external dependency. We’ll also explore how our
strategy plays with librares such as Phoenix LiveView and Scenic. When you’re
ready, turn the page and we’ll see how our components work together!

report erratum  •  discuss

Summon Your Workers • 171

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


CHAPTER 9

Assemble Your Components
Congratulations on making it through all of the layers in a single OTP project,
from data to workers. In this chapter, we’re going to focus on putting these
layers into context. We’ll help you answer the core question: how do our
projects work with others, whether they are external dependencies or projects
we build? This overarching question has two undergirding concerns.

The first concern is how components interact with dependencies, particularly
in more complex interfaces. The questions this concern opens up are serious:
How might we implement persistence? How do our layers relate to user
interfaces? Generally, how do our components connect to the rest of the world
without coupling too tightly?

Consider persistence. If we rush into designing a new project by going straight
to a database schema and wiring that schema directly to database functions,
we’ll be running to the boundary layer before building a core. We’ll miss an
opportunity to explore a true functional core free from boundary concerns of
heavy side effects and process machinery. For example, business problems
often demand state machines, and those types of projects benefit tremendously
from delaying the persistence implementation until the transitions of the state
machine are fully settled.

The second concern is how components fit into existing frameworks. The
questions in this area are weighty: Do worker-bees play nicely with emerging
frameworks like LiveView or Scenic? How do these components play with
Phoenix Channels? With those questions in mind, let’s seek some answers.

Add Persistence as a Boundary Service
In most Elixir projects, we inevitably begin our data layer with schemas and
go from there. We tack on queries and services that use them to count, save,

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


and summarize things. Ecto makes that much easy. What emerges might be
a unified API, but it will be one that combines the issues of boundary and
core. We, the authors know. We’re guilty of the same thing. The problem is
that when we build software like this, we take on too much at once. Our
software doesn’t get the benefits of the separation of concerns, and each
reader of the code is doomed to deal with too much complexity at once.

This approach is not a functional one. In fact, we’re making a number of
commitments, often from the first few hours of developments:

• Our database schemas will have the same shape as our projects.
• Our core code will be thin and our boundary code will be thick.
• Often, we won’t have a separate core layer, at all!

Sometimes, this early database coupling doesn’t work against us. In some
cases, a struct exists purely as a conduit in a tightly coupled flow that passes
straight from an API and directly into a database. Think audit records.

Other times, it pays to think. For example, building Mastery without consid-
ering Ecto integration at all led us to an interesting design, one where the
foundational Quiz design allows us to advance from question to question
based on correct answers without the benefit of a database at all.

It turns out that the main things we might want to persist are quiz designs
and responses. In this section, we’ll focus on persisting responses. Our per-
sistence solution will allow us to save responses as a user takes a quiz. Then,
admins can review reports of the responses to quizzes.

As with most database integrations, we’ll take advantage of a framework to
manage our concurrency for us: Ecto, the most popular persistence framework
for Elixir.

Manage Persistence with Callbacks
Let’s build our persistence solution. Fair warning. We’re going to write a bit
more code to start with, including a second Response model. We think the
benefits will be worth it. The second response will not be exactly the same as
the first, because each response struct solves a different problem. One captures
user responses and the other persists them to the database.

We’ll manage persistence with callbacks, tweaking Mastery to take a function
we’ll call when each new response is submitted. In some solutions, perhaps
with an online practice quiz, if we don’t need to save responses, that function
will do nothing. In others, that function will save responses to the database.

Chapter 9. Assemble Your Components  • 174

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


We’re not suggesting that every project be built this way. In fact, this persistence
strategy may be dead wrong if you’re worried about moving too much data, or
your solution is too distributed, or if your solution risks integrity problems.

We’re suggesting that you think. Database coupling can be absolutely toxic.
Developers should strongly consider reducing the coupling between the
database layer and the rest of your project. Furthermore, it’s often a good
idea to imagine how you’ll go about isolating a pure functional core.

Build a Poncho Project
We’ve determined that we want to use Mastery in a couple of use cases, some
which require permanent persistence to a database and some that don’t. For
such a situation, we’ll want to be able to create a persistence solution as a
dependency.

A convenient way to do so is through a poncho project. It’s not a term that
we invented, but it’s an almost trivial concept. We’ll just create the dependency
from within the mastery directory, but its code will live outside lib and have its
own lib directory. The advantage to this approach is that we’ll be able to grow
these two projects within the same codebase and still reduce coupling. When
it’s time to separate them at the directory level we’ll be able to tweak the mix
dependencies, check them into different repositories and everything else will
just work.

You can accomplish similar goals with umbrellas, a mix construct that lets
you manage multiple applications with tighter coupling but less ceremony.
Use the solution that feels right for you. We’re going to blow through the
ceremony of creating a new Ecto project quickly because that information
can be found elsewhere. Still, in the interest of completeness, we feel obligated
to list all of the steps, so let’s go.

From the mastery directory, create the project:

mix new mastery_persistence --sup

We created a full mix project with a full application.ex file that defines our
supervision structure. Notice the application entry in mix.exs:

Persistence/mastery_persistence/mix.exs
def application do

[
extra_applications: [:logger],
mod: {MasteryPersistence.Application, []}

]
end

report erratum  •  discuss

Add Persistence as a Boundary Service • 175

http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/mix.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


And add the Ecto dependencies to mix.exs:

Persistence/mastery_persistence/mix.exs
defp deps do

[
{:ecto_sql, "~> 3.1"},
{:postgrex, "~> 0.14.1"}

]
end

The only dependencies we need are ecto_sql and postgrex, so we add them. Make
sure to fetch dependencies:

➔ mix deps.get
Resolving Hex dependencies...
New:
...
➔

Dependencies fetched! Now change config/config.exs to add the Ecto repo:

Persistence/mastery_persistence/config/config.exs
use Mix.Config

config :mastery_persistence,
ecto_repos: [MasteryPersistence.Repo]

config :logger, level: :info

import_config "#{Mix.env()}.exs"

We added the MasteryPersistence.Repo so we are ready to change dev.exs and test.exs
to configure the Postgres connections, like this:

Persistence/mastery_persistence/config/dev.exs
use Mix.Config

config :mastery_persistence, MasteryPersistence.Repo,
database: "mastery_dev",
hostname: "localhost"

With persistence configured for dev.exs, we can move on to test.exs:

Persistence/mastery_persistence/config/test.exs
use Mix.Config

config :mastery_persistence, MasteryPersistence.Repo,
database: "mastery_test",
hostname: "localhost",
pool: Ecto.Adapters.SQL.Sandbox

Our dev.exs and test.exs configurations point to separate databases as they
should and our Test configuration points to the Ecto.Adapters.SQL.Sandbox pool
which has some tools to speed up our tests.

Chapter 9. Assemble Your Components  • 176

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/mix.exs
http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/config/config.exs
http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/config/dev.exs
http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/config/test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Now, we can finally write some code! Our first stop: the Repo and Response
modules.

Persist the Responses
We’ve done some tedious work to prepare our project to work with Ecto. Now
we need to deal with concurrency. As you saw in Chapter 7, Customize Your
Lifecycle, on page 131, the nice thing is that we can deal with lifecycle concerns
with policy configuration and not code.

Open up lib/mastery_persistence/application.exs and add these lines:

children = [
MasteryPersistence.Repo

]

The Repo has the Ecto processes that will access our database. With this
configuration, we’re giving OTP the responsibility of starting them up and
shutting them down cleanly. Let’s build that repo now, like this:

Persistence/mastery_persistence/lib/mastery_persistence/repo.ex
defmodule MasteryPersistence.Repo do

use Ecto.Repo,
otp_app: :mastery_persistence,
adapter: Ecto.Adapters.Postgres

end

It’s dead simple; we call use Ecto.Repo to mix in the code we’ll need, taking all
of the defaults.

With the usual ceremony for setting up the project for Ecto out of the way,
we can address the schema. In Ecto, the schema connects the Elixir struct
to the database schema.

In Mastery, we will save only the responses. Add the file lib/mastery_persis-
tence/response.ex:

Persistence/mastery_persistence/lib/mastery_persistence/response.ex
defmodule MasteryPersistence.Response do

use Ecto.Schema
import Ecto.Changeset

@mastery_fields ~w[quiz_title template_name to email answer correct]a
@timestamps ~w[inserted_at updated_at]a

We define the module and include the usual Ecto ceremony. Also we define
the @mastery_fields and @timestamps to save us a little typing later on. Now, we
can create the fields for our schema. There are no surprises:

report erratum  •  discuss

Add Persistence as a Boundary Service • 177

http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/lib/mastery_persistence/repo.ex
http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/lib/mastery_persistence/response.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Persistence/mastery_persistence/lib/mastery_persistence/response.ex
schema "responses" do

field :quiz_title, :string
field :template_name, :string
field :to, :string
field :email, :string
field :answer, :string
field :correct, :boolean

timestamps()
end

That’s a typical Ecto schema, with the fields from our Mastery response plus
a silent id field and a couple of timestamps. There’s just one function we need,
the one that actually builds the changeset we’ll use to persist the struct:

Persistence/mastery_persistence/lib/mastery_persistence/response.ex
def record_changeset(fields) do

%__MODULE__{ }
|> cast(fields, @mastery_fields ++ @timestamps)
|> validate_required(@mastery_fields ++ @timestamps)

end
end

We pipe an empty Response struct through cast to build a changeset, whitelisting
the fields we’ll accept. Then we pipe that through validate_required to make sure
all of the data is correct.

We recognize there’s some duplication in this code. That’s OK. We think sep-
arating the concerns of saving a response and operating a timed quiz is a good
idea. Inevitably, the needs of the persistence layer and our Mastery boundary
will diverge. Rather than bloating the model to support both concerns, we
need only maintain a function doing a transformation between the two.

Establish an API
Let’s move on to the main API at lib/mastery_persistence.ex. For this project, our API
exists to save and fetch items from a SQL database. For the most part our API
will consist of Ecto queries that collect and aggregate responses in various ways.

Where Are the Layers?

You might be asking yourself, “Where are all of the layers?” In this
case, almost the whole project is boundary code. In a database,
it’s nearly impossible to do anything without side effects. You could
call Ecto schemas core functions, but those tiny slices of code are
not enough to justify another layer of ceremony by adding one
more directory in lib.

Chapter 9. Assemble Your Components  • 178

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/lib/mastery_persistence/response.ex
http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/lib/mastery_persistence/response.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


It’s time to open up lib/mastery_persistence.ex to actually save and query our
responses:

Persistence/mastery_persistence/lib/mastery_persistence.ex
defmodule MasteryPersistence do

import Ecto.Query, only: [from: 2]
alias MasteryPersistence.{Response, Repo}

We import Ecto.Query and alias our Repo and Response modules because this file
will exist to provide a SQL-focused API to access Mastery responses. Now, we
can insert changes into the database, like this:

Persistence/mastery_persistence/lib/mastery_persistence.ex
def record_response(response, in_transaction \\ fn _response -> :ok end) do

{:ok, result} = Repo.transaction(fn ->
%{
quiz_title: to_string(response.quiz_title),
template_name: to_string(response.template_name),
to: response.to,
email: response.email,
answer: response.answer,
correct: response.correct,
inserted_at: response.timestamp,
updated_at: response.timestamp

}
|> Response.record_changeset
|> Repo.insert!
in_transaction.(response)

end)
result

end

This function takes raw fields, pipes them through our function to create a
changeset and then we save the result to the database.

We also provide an API so that a teacher or an admin can get a report of
responses, like so:

Persistence/mastery_persistence/lib/mastery_persistence.ex
def report(quiz_title) do

quiz_title = to_string(quiz_title)
from(
r in Response,
select: {r.email, count(r.id)},
where: r.quiz_title == ^quiz_title,
group_by: [r.quiz_title, r.email]

)
|> Repo.all
|> Enum.into(Map.new)

end
end

report erratum  •  discuss

Add Persistence as a Boundary Service • 179

http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/lib/mastery_persistence.ex
http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/lib/mastery_persistence.ex
http://media.pragprog.com/titles/jgotp/code/Persistence/mastery_persistence/lib/mastery_persistence.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


We select email and a count(id) column, filter by our quiz title and group by email
to give a rough feel for the performance of each individual student. It’s a
simple grouping of responses by group title, and we’re done.

We created our schema and backed it with a repo. All that remains is to build
out our final database tables. We’ll do that through a migration.

Build Your Postgres Table
Our migration will only require a single table, and we don’t need any special
behaviors. Create your initial migration with mix, like this:

➔ mix ecto.gen.migration create_responses
* creating priv/repo/migrations
* creating priv/repo/migrations/20190504175500_create_responses.exs

Open up the migration you created. Your name will be a little different from
ours due to the date in the filename. Key in this file:

defmodule MasteryPersistence.Repo.Migrations.CreateResponses do
use Ecto.Migration

def change do
create table(:responses) do
add :quiz_title, :string, null: false
add :template_name, :string, null: false
add :to, :text, null: false
add :email, :string, null: false
add :answer, :string, null: false
add :correct, :boolean, null: false

timestamps()
end

create index(:responses, :email)
end

end

We create a Postgres table called :responses with the fields we need. Use it to
create your database and run the test and development migrations, like this:

➔ mix ecto.create
➔ mix ecto.migrate

➔ MIX_ENV=test mix ecto.create
➔ MIX_ENV=test mix ecto.migrate

The migration works! We have a working persistence back end. It’s not yet
woven into Mastery, but the integration may be easer than you might think.

Chapter 9. Assemble Your Components  • 180

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Integrate MasteryPersistence into Mastery
Now, it’s time to finish up the integration. First, let’s think about what needs
to happen for Mastery to work with our tiny external persistence project. We’ll
specify the dependency and modify QuizSession.answer_question to take an extra
configurable function, one that will actually persist a response. Here’s our
checklist:

• Configure the project to use a repository.
• Add a perstence function to our external API.
• Wire that persistence function into the Boundary.QuizSession GenServer.

It’s going to go quickly. Let’s do the configuration first.

Configure Mastery for Persistence
The first step of our integration is adding the repository to our configuration.
To us, the repository is just an external GenServer dependency. Switch over
to the mastery directory so we can work on the mother ship. Go to config/config.exs
to add the repo, like this:

config :mastery_persistence,
ecto_repos: [MasteryPersistence.Repo]

config :logger, level: :info

Simple enough. We configure the :ecto_repos for the new dependency. We’ll also
need to configure our dev environment, so go to config/dev.exs and add the cre-
dentials for our development database like this:

use Mix.Config

config :mastery_persistence, MasteryPersistence.Repo,
database: "mastery_dev",
hostname: "localhost"

config :mastery, :persistence_fn, &MasteryPersistence.record_response/2

We configure the database for the integrated app. Notice we’re also providing
the database function that Mastery will use to save responses. We’ll consume
this function in a callback API a few steps later.

Next, we want to configure the test environment to use a sandbox environ-
ment that rolls back new changes after every test, speeding up our test cases
substantially:

report erratum  •  discuss

Integrate MasteryPersistence into Mastery • 181

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


config/test.exs

use Mix.Config

config :mastery_persistence, MasteryPersistence.Repo,
database: "mastery_test",
hostname: "localhost",
pool: Ecto.Adapters.SQL.Sandbox

We provide the database credentials, making sure the pool uses the Ecto
sandbox. Next, we add the dependencies. From mix.exs, add this dependency:

{:mastery_persistence, path: "../mastery_persistence"}

We’re using a poncho-style project. That means our dependencies will use
relative paths. With the ceremony out of the way, we can integrate that per-
sistence function.

Integrate a Function to Persist Records
For this feature, let’s go from the outside in, addressing the outer API layer
first. That way we can think about the shape of our external APIs.

In lib/mastery.ex, we need to pull a persistence function from the environment
to dictate the persistence mechanism, like this:

Persistence/lib/mastery.ex
@persistence_fn Application.get_env(:mastery, :persistence_fn)

Easy enough. We pass in another argument, a function to optionally persist
each new response. The responsibility of the function from Mastery’s perspec-
tive is to return a response. We can use it any way we want. We might decide
to save a response to a database or file, or do nothing at all.

We will optionally pass our new function to the QuizSession.answer_question/3
function, like this:

Persistence/lib/mastery.ex
def answer_question(name, answer, persistence_fn \\ @persistence_fn) do

QuizSession.answer_question(name, answer, persistence_fn)
end

This code maintains backward compatibility by providing a default function.
If no persistence function is specified, either in the environment or the config-
uration, our default persistence function will do nothing. Any external client
code will continue to work and our tests won’t need modification.

Let’s write that new function we called from mastery.ex api. Open up lib/mas-
tery/boundary/quiz_session.ex and tweak the answer_question message, like this:

Chapter 9. Assemble Your Components  • 182

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/Persistence/lib/mastery.ex
http://media.pragprog.com/titles/jgotp/code/Persistence/lib/mastery.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Persistence/lib/mastery/boundary/quiz_session.ex
def answer_question(name, answer, persistence_fn) do

GenServer.call(via(name), {:answer_question, answer, persistence_fn})
end

This is the ninja move, the place we finally consume the persistence function.
Rather than piping a quiz to answer_question and select_question, we do those things
in a function. The developer can build a persistence function to save the
response to a database or file. Alternatively, the developer can choose to
invoke the function and do nothing with the response.

All that remains is to wrap our function in the boundary API. Add the new
argument to the QuizSession.answer_question/3 function, like this:

Persistence/lib/mastery/boundary/quiz_session.ex
def handle_call({:answer_question, answer, fun}, _from, {quiz, email}) do

fun = fun || fn r, f -> f.(r) end
response = Response.new(quiz, email, answer)
fun.(response, fn r ->

quiz
|> Quiz.answer_question(r)
|> Quiz.select_question

end)
|> maybe_finish(email)

end

If the user passes in a persistence function, we’ll use that one. Otherwise, we
take a function which effectively returns the response.

That was easy! Now we can codify the right persistence strategy for persistence.
Recall that we configured the database configuration and persistence functions
in config and nothing else needs to change. You can specify this configuration
any way you would like, depending on the configuration needs of your project.

Notice that it would be easy to integrate persistence within our boundary
layer. The files and code are exactly the same. Only the configuration would
change.

Now that we’ve seen how to tackle the tricky issues of persistence in a separate
dependency, let’s look at how we might use these layering strategies within
some of Elixir’s more popular frameworks, including LiveView and Scenic.

Integrate Your OTP Dependencies into Phoenix
Phoenix is a web framework. Once any web project grows beyond the most
rudimentary level of complexity, you’re going to need to deal with complexity.
We’ve been clear with the layers that make up any internal component. In

report erratum  •  discuss

Integrate Your OTP Dependencies into Phoenix • 183

http://media.pragprog.com/titles/jgotp/code/Persistence/lib/mastery/boundary/quiz_session.ex
http://media.pragprog.com/titles/jgotp/code/Persistence/lib/mastery/boundary/quiz_session.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


this section, we’ll discuss how to think about your code organization when
you need to plug in to someone else’s organization.

By now, you are familiar with the coding guidelines for layers that this book
promotes. You are doubtlessly wondering how to integrate OTP code into
Phoenix. Here’s the good news. Like all Elixir projects built with Mix, OTP
is already built in! If you want to integrate a full and separate OTP project,
you have a couple of options at your disposal: dependencies, umbrellas, or
contexts.

Use External Git or Hex Dependencies
The first approach is to build a fully isolated mix project and use mix depen-
dencies to deal with them. It’s a strategy that we’ve promoted strongly within
these pages. To use this technique, you’ll build a full independent OTP com-
ponent you can integrate with other projects.

Since Phoenix is itself an OTP framework, integration is straightforward.
Throughout Part II of this book, we’ve shown you how to organize and integrate
your boundary, and how to make a simple API available to other programs.
You need only configure your project:

1. Register your dependencies in mix.exs
2. Configure your supervisors in application.exs
3. Provide any project-specific configuration (for example, the persistence

configuration in Mastery)

We’ve covered these first two steps fairly exhaustively throughout this book.
In terms of how to make your dependencies available, we’re going to examine
several different approaches, starting with the greatest separation and working
toward the most integrated. We’ll address external dependencies, umbrella
projects, and file organization techniques.

Let’s start with external dependencies. Through the mix deps1 configuration,
you can publish a public or private Hex dependency or access your project
as a direct git dependency. So far, most of the dependencies in this book have
been Hex dependencies, meaning the code comes from a centralized repository
called Hex. Git dependencies look like this:

{:gettext, git: "https://github.com/elixir-lang/gettext.git", tag: "0.1"}

This dependency will fetch the dependency from github.com instead of hex.pm.
The benefits of using fully external git or hex dependencies are all around

1. https://hexdocs.pm/mix/Mix.Tasks.Deps.html

Chapter 9. Assemble Your Components  • 184

report erratum  •  discuss

https://hexdocs.pm/mix/Mix.Tasks.Deps.html
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


reduced coupling. You can work with each project with complete isolation.
For this reason, when you’re working with something like microservices in
Elixir, external dependencies are the perfect choice. You’re forced to think
hard about your external interfaces and get them right.

There’s a drawback, though. From a workflow perspective, if a dependency
is not yet mature, working with independent repositories does have a cost.
It’s more labor intensive because you need a separate workflow to publish
each dependency when you change it. These kinds of dependencies are also
less forgiving when you get your major interface boundaries wrong. For that
reason, it’s usually best to start with a slightly more integrated approach
such as ponchos and then extract projects to external dependencies once
those interfaces mature.

Use External Path Dependencies
If you want to work with an external dependency but want the convenience
of keeping everything in the same repository, you can take the same approach
we did with persistence and use a poncho-style dependency. Poncho depen-
dencies have an ever-so-slight coupling to their parent projects, an organiza-
tional coupling.

The benefits are development independence with reduced ceremony. You’ll
be able to evolve interfaces side by side. Since all of your dependencies are
in the same repository, you’ll be able to better keep them in sync.

There’s also a downside to path dependencies with respect to tooling. There’s
no automated way to build and test an entire project, dependencies and all.
If tooling becomes a burden, you can go with an umbrella dependency.

Use Umbrella Projects
Like poncho projects, umbrella mix projects2 integrate dependencies in a
single repository. Umbrella projects also have another benefit: they let devel-
opers both work on each project independently and do selected tasks project
wide. For example, using umbrellas you can choose to run tests for all projects
with a single command or switch into a single project and run only those
tests.

Umbrellas have that tooling advantage, and it’s nice. When it’s easy to run
tests across all projects, those tests will get run more often before checkin.

2. https://elixir-lang.org/getting-started/mix-otp/dependencies-and-umbrella-projects.html

report erratum  •  discuss

Integrate Your OTP Dependencies into Phoenix • 185

https://elixir-lang.org/getting-started/mix-otp/dependencies-and-umbrella-projects.html
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


That’s important if you’re not running some kind of automated test when you
commit code.

There’s a significant downside, though. Umbrellas must share all dependencies.
That means when you upgrade a single dependency for one project, you must
upgrade it for all. As the surface area for the combined umbrella projects
increases, this burden can get more and more daunting.

The benefits and weaknesses might be speaking to you. Your dependency
strategies all decrease development time ceremony to varying degrees, at the
expense of various degrees of coupling. Let’s look at one final piece of the
puzzle, Phoenix contexts.

Contexts Decrease Ceremony and Increase Coupling
The Phoenix documentation defines contexts like this: “Contexts are dedicated
modules that expose and group related functionality.” In other words, contexts
look much like the top level Mastery module we’ve built in this book. Contexts
serve the same purpose that our API modules serve for our OTP projects. In
fact, all of the advice that we provide in this book can apply to a Phoenix
context.

If you want to know more, the book Programming Phoenix 1.4 [TV19] has a
good discussion of how to use contexts. Since Elixir creator José Valim and
Phoenix creator Chris McCord are on the author byline for that book, you
can trust the advice you get there.

In the next section, we’ll go beyond integrating dependencies and walk you
through the strategies you can use for integrating into OTP projects. While
the task might seem daunting, it’s not as tricky as you think.

Organize Code for OTP Abstractions
A growing number of Elixir projects are allowing library integration by making
OTP callbacks, or something like them, directly available to developers. In
the next few pages, we’ll suggest how you might integrate our layers into those
frameworks. We’ll cover Phoenix Channels, Phoenix LiveView, and Scenic.
Once you know how these work, you’ll have a pretty good idea of how to
integrate with other callback-style frameworks.

Even if you don’t have experience with any of these frameworks, allow us a
moment to offer a few clues that will help you recognize where the main
integration points might be for each section. Once you can recognize those
integration points, you’ll know how to tie in to the rest of the layers in your

Chapter 9. Assemble Your Components  • 186

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


project. In each case, the key will be to find where each library exposes call-
backs from within an OTP GenServer.

Understand Callback-Style Libraries
If you want to use a simple mix project as a dependency, whether it’s an OTP
project or a simple library, you don’t care about the callback structure.
Sometimes, though, you’ll want to replace the boundary layer in Chapter 6,
Isolate Process Machinery in a Boundary, on page 101 with one wired directly
to the framework you’re using. The GenServer behaviour has at least two
pieces of functionality any framework needs to wrap:

A way to start a process
GenServer calls these functions within process start machinery. The formal
GenServer behaviour has both a start_link function and an init function.

A way to process a callback
GenServers invoke these callbacks in the machinery that receives mes-
sages. The GenServer behaviour has at least three callbacks that are
interesting to us, including handle_call, handle_cast, and handle_info.

For convenience, we also wrapped our callbacks in functions, but don’t let
that distract you. Startup and callbacks are the pieces you want to look for.
Once you identify those pieces, then incorporating an event-based library is
easy. Let’s see a couple of examples, starting with Phoenix Channels.

Add Layers to Phoenix Channels
Phoenix Channels3 is a great way to build interactive applications, using
JavaScript. We won’t try to cover this framework exhaustively, only the parts
related to the integration of OTP applications. Briefly, it works like this.

• The developer configures Phoenix using some kind of transport. For con-
venience, let’s say the user is using websockets.4

• On the client, the developer establishes communication with Phoenix by
opening a websocket connection on a particular channel, meaning all
communication covering a topic of interest for that user.

• On the server, the developer implements the code for that channel using
a callback library.

3. https://hexdocs.pm/phoenix/channels.html
4. https://en.wikipedia.org/wiki/WebSocket

report erratum  •  discuss

Organize Code for OTP Abstractions • 187

https://hexdocs.pm/phoenix/channels.html
https://en.wikipedia.org/wiki/WebSocket
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


We won’t get into the client side JavaScript or all of the layers of configuration
between the client and the channel implementation. You’ll find better sources
of information in the Hex documentation for Channels5 listed previously and
Programming Phoenix 1.4 [TV19]. We’ll focus instead on the integration points
for OTP.

Generally speaking, coding a channel looks much like coding an OTP
boundary layer. Here’s an example from the documentation cited previously.
First, here’s how a user would join a channel:

defmodule HelloWeb.RoomChannel do
use Phoenix.Channel

def join("room:lobby", _message, socket) do
{:ok, socket}

end
end

Though it may not look like it, this code is a GenServer! The base implemen-
tation is inside Phoenix.Channel. Think of this code as the combination of start_link
and init. When the client calls the web socket and asks to join a channel with
the topic room:lobby, Phoenix invokes the callback join with a topic, a message,
and a socket. Think of the socket as the initial state for this GenServer.

Once we’ve established a connection between a user and their channel, we
can send and receive messages. For example, here’s an example of a new
message in a room:

def handle_in("new_msg", %{"body" => body}, socket) do
broadcast!(socket, "new_msg", %{body: body})
{:noreply, socket}

end

This information looks just like a handle_cast because it is a handle_cast. Under
the hood, this GenServer is receiving the message for us and giving us a
chance to change the state or process side effects. In this case, we want to
simply send the message to everyone else subscribed to the topic with the
broadcast! function.

There are other functions to give Phoenix users the ability to send and receive
messages, but these are the basics. In OTP, you start a process with a start_link
and then process callbacks as they come in with handle_call, handle_cast, and the
like. With Phoenix, you start a process with join and process callbacks with
handle_in, handle_out, and the like.

5. https://hexdocs.pm/phoenix/channels.html

Chapter 9. Assemble Your Components  • 188

report erratum  •  discuss

https://hexdocs.pm/phoenix/channels.html
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Here’s the point. Since you already know how to use OTP, using Phoenix does
not change the way we structure our layers one bit. If we’d decided to imple-
ment Mastery as a pure Phoenix application, our design would look very much
the same as it does right now. We’d have a few tweaks based on Phoenix
capabilities and the use case, but we’d still have the same exact layers. We’d
just replace the SessionServer with a SessionChannel, and that Channel module
would accept the exact same messages, though we might not choose to wrap
those handle calls in a public API.

We should point out that it would be perfectly valid to maintain our Mastery
project exactly as it is, and use it as a dependency rather than breaking out
the individual callbacks in the boundary layer, and to use the various public
Mastery.x functions within, perhaps, QuizChannel and QuizBuilderChannel.

Let’s move on to a few other implementations. You’ll find the story very much
the same.

Add Layers to LiveView
Since LiveView is an implementation of Phoenix Channels, the integration
story for the two frameworks is going to be similar. Phoenix LiveView6 is a
library for allowing highly interactive applications with impressive performance
and bidirectional communication. That sounds much like Channels, but
there’s an important distinction. LiveView does so with no custom JavaScript!

Here’s how it works:

1. The developer configures LiveView, including integrating some OTP
dependencies and a common JavaScript library. (Don’t worry. As promised,
you’ll not use JavaScript in the day-to-day coding of your project.)

2. The infrastructure calls a mount point when a user connects to start a
new GenServer process the first time.

3. A server-side function renders a user interface using the state and tem-
plates.

4. The framework JavaScript automatically sends messages to the server,
which the server translates to GenServer callbacks.

5. When those callbacks fire, LiveView sends any state changes back to the
client, resulting in a fresh page in the browser.

6. https://github.com/phoenixframework/phoenix_live_view

report erratum  •  discuss

Organize Code for OTP Abstractions • 189

https://github.com/phoenixframework/phoenix_live_view
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Watching a highly interactive web page built with LiveView is really quite a
spectacle, but implementing them is quite simple. Here are a few relevant
snippets of LiveView details from the main project’s documentation. It’s an
implementation of a Thermostat.

First, this mount function establishes a new process when the user loads a
LiveView:

defmodule AppWeb.ThermostatLive do
use Phoenix.LiveView

def mount(%{id: id, current_user_id: user_id}, socket) do
case Thermostat.get_user_reading(user_id, id) do
{:ok, temperature} ->

{:ok, assign(socket, :temperature, temperature)}
{:error, reason} ->

{:error, reason}
end

end
end

OK, there’s your start link. Loading a LiveView calls mount, passing an initial
message and the initial state of socket, particularly the temperature field within
the assigns map that resides in socket. Then, changes come in on handle_event,
like this:

def handle_event("inc_temperature", _value, socket) do
{:ok, new_temp} = Thermostat.inc_temperature(socket.assigns.id)
{:noreply, assign(socket, :temperature, new_temp)}

end

We increment the temperature on the thermostat and then set socket.assigns.tem-
perature with the new :temperature. Now all that remains is to update the view.
Implicitly, every call to handle_event also calls render on that LiveView. Let’s show
a bare-bones user interface, like this:

def render(assigns) do
~L\"""
Current temperature: <%= @temperature %>
\"""

end

The render/1 function takes one argument, socket.assigns, which is where Phoenix
keeps all user data within a socket. The function is a straight template, with
two slight customizations. The ~L"”” sigil represents the heart of the LiveView
module, and provides a shorthand way to modify the template for LiveView’s
needs. <%= @temperature %> is a shorthand directive for doing a substitution.

Chapter 9. Assemble Your Components  • 190

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


And that’s it. As with Phoenix Channels, this example has the right shape to
plug straight into our boundary layer. Since this structure is a channel and
is an OTP GenServer, all of the organizational techniques we’ve presented to
layer your code still work.

There’s one last framework to visit. Let’s take a quick look at Scenic.

Build Scenic Projects with Layers
Scenic is an Elixir library that builds native user interfaces. Like Channels
and LiveView for Phoenix, Scenic is an OTP callback-based library. A Scenic
Scene is a GenServer process which creates and manages a Graph that gets
drawn to the screen. You can possibly already see where this is going. This
is how it all works:

1. At initialization, a scene creates a Graph module, one with the buttons,
text, and other features that make up a user interface.

2. Events from the user interface come into scenes as GenServer messages,
which can change the graphs or other custom state.

3. Event callbacks can optionally render the scene.

The initialization is like the start link; the events are GenServer callbacks;
and the render code is just a function. Conceptually, that’s what’s happening
with the other frameworks we talked about. Let’s take a quick look at at a
trivial Scenic app:

defmodule MyApp.Scene.Example do
use Scenic.Scene
alias Scenic.Graph
alias Scenic.Primitives
alias Scenic.Components

We use Scenic.Scene, which bring in the GenServer features among other things.
We alias Scenic.Graph so we can build the graph having the instructions to build
our user interface. The GenServer process will hold that graph. Then we
import the primitives and controls so we can use Scenic within module.

Now we can build the initial graph in a module attribute like this:

@graph Graph.build()
|> Primitives.text("Hello World", font_size: 16, translate: {20, 80})
|> Components.button({"Big Button", :button}, translate: {20, 180})

We build a default scene and then add some text and a button. Then we can
initialize the graph.

report erratum  •  discuss

Build Scenic Projects with Layers • 191

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


def init( _scene, _options ) do
{:ok, @graph, push: @graph}

end

...
end

We implement our initial callback, init. This function takes the arguments for
a scene and options. In Scenic terminology, the push: @graph option pushes the
data to the viewport, making it available to the user.

This code fills all of the requirements to be a working scene. Let’s get a little
more sophisticated by building the skeleton of a hypothetical game. To peri-
odically update the game at specific intervals, we can send a timer event to
our scene with Erlang’s timer, like this:

def init( _scene, _options ) do
{:ok, timer} = :timer.send_interval(@ms_to_next_frame, :update_frame)
...
{:ok, @game, push: @initial_game}

end

Since a scene is a GenServer, we can send messages using any mechanism
that we want. Now, we can update the user interface in @game by processing
an inbound callback, like this:

def handle_info(:update_frame, %{frame_count: frame_count} = game) do
game = update_game(game)

game.graph
|> draw_game(game.objects)
|> push_graph()

{:noreply, %{game | frame_count: frame_count + 1}}
end

You may recognize handle_info as a GenServer callback, and it is. The only
Scenic-specific code here is between the do and the return tuple. We take our
game graph, update it with a function called draw_game and then pipe that to
push_graph, a Scenic function that renders the graph to your chosen hardware.
Conceptually, all that remains is to process input. You can do so with one of a
number of messages Scenic supports, such as this one to receive key presses:

def handle_input({:key, {"left", :press, _}}, _context, game) do
{:noreply, update_pacman_direction(game, {-1, 0})}

end

def handle_input({:key, {"up", :press, _}}, _context, game) do
{:noreply, update_pacman_direction(game, {0, -1})}

end

...

Chapter 9. Assemble Your Components  • 192

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


We take a message that’s an inbound keypress and update the state of the
game based on the keypress. You can see the messages for a left key and an
up key, which should show you the idea. Then, you could implement the
update_game function to move the game token based on the direction.

While Scenic has some features that may be new to you, the organization of
the layers is right in line with what you already know. The scene is a boundary
layer with some additional machinery to represent and render user interfaces,
based on state. Our GenServer behind the curtain provides a message loop
we can use to update game state. If you’d like to see the game that provided
the rough inspiration for this example, check out this excellent writeup for
building the classic snake7 game.

Assemble Your Components
In this chapter we showed how components work together. Starting a project
with abstract structs rather than immediately into persistence give us some
tangible benefits. The biggest one was having a bigger functional core and a
smaller boundary. Building in persistence at that point allowed us to reduce
coupling between the base OTP component and the database schema. To
illustrate that benefit, we have implemented persistence as a straight path
dependency.

Building MasteryPersistence with path dependencies let us isolate implemen-
tations into separate projects without the additional ceremony of maintaining
separate repositories. Git and Hex dependencies offer their own trade-offs,
providing reduced coupling at the cost of additional ceremony. On the other
side of the coin, building in umbrellas or contexts made the opposite trade-
offs, offering less ceremony at the cost of tighter coupling.

Elixir provides a wide slate of solutions for consuming libraries and OTP
applications. One such solution is callback-style integration. It’s a strategy
that is growing in popularity in many of the most powerful OTP frameworks.
Phoenix Channels, Phoenix LiveView, and Scenic all offer frameworks for
rendering user interfaces. A project implementing any of those solutions works
well with the layers presented in this book. In each case, the solution is to
replace the boundary layer with the GenServer-specific module that imple-
ments callbacks, a Channel, LiveView, or Scene.

7. https://blog.usejournal.com/elixir-scenic-snake-game-b8616b1d7ee0

report erratum  •  discuss

Assemble Your Components • 193

https://blog.usejournal.com/elixir-scenic-snake-game-b8616b1d7ee0
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


If you’re like us, you might feel a little nervous when you implement so much
code without having the tests to show for it. Now that we’ve built out our
boundary layer and examined strategies to integrate our components, it’s
time to test the GenServers.

Our tests will give us a great opportunity to provide a more cohesive view of
how the APIs work together. It’s time for the big finish!

Chapter 9. Assemble Your Components  • 194

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


CHAPTER 10

Test the Boundary
We’ve finally reached the last chapter of this book. We’re going to test the
boundary layers of Mastery, the “big loud worker-bees” words of our sentence.
These layers deal with the boundary API, lifecycles, and workers. As a bonus,
we’ll also test the external component we introduced in Chapter 9, Assemble
Your Components, on page 173.

As we work through our tests, we’ll need to deal with some complex issues
that were not on the table when we tested the relatively pure core layers in
Chapter 5, Test Your Core, on page 75. Luckily, our layering system means
we won’t have to repeat the core-centered tests of the pure business logic.
We’ll focus on the complexity of the machinery dealing with processes, timing,
and external interfaces.

Mastery has some of the same interesting testing challenges you’ll find in
many other systems. We’ll focus on three of them.

A common integration testing layer allows a test to exercise a codebase just
as an end user would, at least with respect to the way it executes code. We’ll
write such a test for Mastery’s boundary layers.

We won’t stop testing persistence at the base Mastery API, though. We’ll be
sure to test the basic usage of our external poncho project and work in some
coverage of error conditions at the same time.

Testing intricately timed code often provides specific challenges for testers.
We’ll wrap things up by doing some slight modifications to Mastery to enable
a better testing experience. Then, we’ll wrap up this entire project.

Along the way, you should get a better sense of the API we’ve created and how
to use it in a project. We know you’re excited, so we’ll get right to the code.

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Tests Call the API as a User Would
Our test will deal with the entire Mastery API. This whole book has been
building up to this point. This test will not exercise our code as an interior
function might, rather, it will test the whole API as an end user of the
dependency. If we’ve done our job well, we’ll be able to express the entire test
in a few short pages of code.

Our plan is to cover tests for the overarching API, and then move on to more
specific tests within the poncho project. In this chapter, we won’t provide an
exhaustive test to cover every corner condition. Instead, we’ll give you the
strategies you might use to meet the testing strategies you’re likely to face to
build effective boundary tests. Let’s write the first test.

Test the External API
It’s finally time to override the pristine test/mastery_test.exs that mix created when
we built the initial Mastery project. This test is designed to exercise the
external API that allows access to external dependencies. We’ll work from the
outside in. Crack it open now:

BoundaryTests/test/mastery_test.exs
defmodule MasteryTest do

use ExUnit.Case, async: false
use QuizBuilders
alias MasteryPersistence.Repo
alias Mastery.Examples.Math
alias Mastery.Boundary.QuizSession
alias MasteryPersistence.Response

We start with the module definition, the use directive for the ExUnit test case
for running tests, and the use directive for our helper fixtures. We establish
these tests as async: false because they should not run concurrently. We have
a single QuizManager GenServer that’s bound to the module so running a con-
current version of this test would interfere with our test. Luckily, this file will
be pretty thin so we won’t pay too much of a penalty.

We follow our use directives up with more than a few aliases for all of the
services we plan to use. It’s an integration test, after all. Now, we can turn
our attention to persistence:

BoundaryTests/test/mastery_test.exs
defp enable_persistence() do

:ok = Ecto.Adapters.SQL.Sandbox.checkout(Repo)
end

Chapter 10. Test the Boundary  • 196

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/mastery_test.exs
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/mastery_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Our enable_persistence function will check out an Ecto sandbox database to
make sure we get the Repo that manages transactions for us in test mode.
Later, when we answer a question, we will specify our persistence function.
That way we can leave persistence disabled for most of our tests, but include
them when we need to. We want our tests to run quickly, so if a test is not
working directly with persistence concerns we don’t want the database and
its overhead enabled!

With the configuration behind us, we can shift our attention to the implemen-
tation of the aggregation we’ll need to count responses:

BoundaryTests/test/mastery_test.exs
defp response_count() do

Repo.aggregate(Response, :count, :id)
end

This little Ecto one-liner will make it easy for us to count responses and keep
the test focused on high-level abstractions. We name the concept well with a
descriptive function name to keep our intentions clear.

That’s all we need to do for persistence within Mastery. Next, we can move
on to the helpers that will let us build and start and take the quiz:

BoundaryTests/test/mastery_test.exs
defp start_quiz(fields) do

now = DateTime.utc_now()
ending = DateTime.add(now, 60)

Mastery.schedule_quiz(Math.quiz_fields(), fields, now, ending)
end

defp take_quiz(email) do
Mastery.take_quiz(Math.quiz.title, email)

end

start_quiz schedules the quiz to start immediately with more than enough time
to take the quiz. We’ll achieve mastery far before the timer runs out. take_quiz
lets a user establish a session.

Now we can move on to the helpers to answer a quiz:

BoundaryTests/test/mastery_test.exs
defp select_question(session) do

assert Mastery.select_question(session) == "1 + 2"
end

report erratum  •  discuss

Tests Call the API as a User Would • 197

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/mastery_test.exs
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/mastery_test.exs
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/mastery_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


defp give_wrong_answer(session) do
Mastery.answer_question(

session,
"wrong",
&MasteryPersistence.record_response/2

)
end

defp give_right_answer(session) do
Mastery.answer_question(

session,
"3",
&MasteryPersistence.record_response/2

)
end

By now, these functions should be pretty familiar. We have a function to
select a question and then a couple of functions to provide right and wrong
answers. Notice that we provide the persistence function to use for saving
the responses. That way, only the tests that use these functions will actually
persist responses.

We’ve already tested the functionality for creating new questions from a
template, so our templates will build questions where the right answer is
always 3. Now we are ready to do the setup:

BoundaryTests/test/mastery_test.exs
setup do

enable_persistence()

always_add_1_to_2 =
[
template_fields(generators: addition_generators([1], [2]))

]

assert "" != ExUnit.CaptureLog.capture_log(fn ->
:ok = start_quiz(always_add_1_to_2)

end)

:ok
end

The setup establishes persistence and then builds the now-familiar templates
using our helpers that allow only questions with a specific answer.

Let’s shift our attention to the quiz startup. We capture the log so that our
“Quiz Starting” log message won’t give us noisy testing output. We also run
an assertion here to make sure we get a log message.

Chapter 10. Test the Boundary  • 198

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/mastery_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Finally, we return an :ok atom, which is one of two acceptable responses for
ExUnit setup blocks. All that remains is the test itself:

BoundaryTests/test/mastery_test.exs
test "Take a quiz, manage lifecycle and persist responses" do

session = take_quiz("yes_mathter@example.com")

select_question(session)
assert give_wrong_answer(session) == {"1 + 2", false}
assert give_right_answer(session) == {"1 + 2", true}
assert response_count() > 0

assert give_right_answer(session) == :finished
assert QuizSession.active_sessions_for(Math.quiz_fields().title) == []

end
end

The test itself is almost anticlimactic. We start a session, select a question,
answer some questions and then count responses. We don’t know for sure
that our abstraction is right, but we do know that if your abstraction is right,
your tests should be simple. We’ll take this as a good sign.

We can run our tests now:

➔ mix test test/mastery_test.exs
.

Finished in 0.06 seconds
1 test, 0 failures

We’re clean and green! We have packed a ton of functionality into our brief
test, but it’s a good one. We make a trade-off here. Our test mixes the concerns
of lifecycle through processes and persistence, but for a good reason.

We believe that a test is like a scientific experiment. It does something
using the codebase and then makes a series of measurements. In ExUnit,
those experiments are function calls and the measurements are assertions.
We’re not terribly concerned about mixing several different kinds of asser-
tions in the same test, especially for tests that are pretty expensive in terms
of time.

It’s a trade-off though. If you value decoupling of these concerns more than
time, feel free to separate the database and lifecycle portions of this test. The
structure of the codebase will make this separation easy to do.

The relatively short test also shows how simple it is to attach optional persis-
tence with this method. We’ve effectively built a solution that lets us turn
persistence on and off with a few short lines of code. For the right problem,

report erratum  •  discuss

Tests Call the API as a User Would • 199

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/mastery_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


this approach is a boon that allows multiple persistence approaches within
the same codebase. For Mastery, this approach will pay dividends should we
want to build a web-based practice front end without involving the database,
while still allowing a full featured front end that supports reporting in the
classroom.

Our tests are not enough, though. We need to isolate the most complex ele-
ments of our boundary and test those layers independently. Let’s dive into
the test for our poncho project and build some basic tests for MasteryPersistence,
ones that cover basic corner cases such as error conditions.

Test Poncho Projects Directly
As we build our poncho dependencies, they’ll need testing just like our other
solutions do. Testing is especially important for boundary concerns as those
code paths will need to embrace the chaos inherent in external dependencies,
timing-based error conditions, and the complexity inherent in systems that
allow mutability. Boundaries encapsulate many of the properties that make
our programs the most useful.

MasteryPersistence is a pretty shallow codebase that has a pretty clear API for its
most important features. We’ll focus all of our energy testing that API. We’ll
put all of our tests in a single file, understanding that we can break up that
file should we need to do so.

Since the project doesn’t have a complex schema, we won’t need to build any
test fixtures for it. We’ll be able to get away with a basic setup for all tests
and then independent tests for each concept we want to test.

Crack open mastery_persistence/test/mastery_persistence_test.exs and key this in. We’ll
follow the entire flow and then run the tests:

BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
defmodule MasteryPersistenceTest do

use ExUnit.Case

alias MasteryPersistence.{Response, Repo}

We start with the basic ceremony, the code that defines the module, fires the
use directive to enable ExUnit test cases and includes the parts of MasteryPer-
sistence that we intend to consume. Moving on to the setup code:

Chapter 10. Test the Boundary  • 200

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
setup do

:ok = Ecto.Adapters.SQL.Sandbox.checkout(Repo)
response = %{

quiz_title: :simple_addition,
template_name: :single_digit_addition,
to: "3 + 4",
email: "student@example.com",
answer: "7",
correct: true,
timestamp: DateTime.utc_now

}
{:ok, %{response: response}}

end

The setup code enables our Ecto test repo to establish test-style transactions
and creates a basic response for us to use. Now, we can move on to the indi-
vidual tests. First, we’ll test the function that persists response structs
directly:

BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
test "responses are recorded", %{response: response} do

assert Repo.aggregate(Response, :count, :id) == 0
assert :ok = MasteryPersistence.record_response(response)
assert Repo.all(Response)

|> Enum.map(fn r -> r.email end) == [response.email]
end

This test makes sure our table is empty and then fires the underlying persis-
tence mechanism, the record_response/1 function. Finally, we make sure the
function in fact records responses with a simple aggregate call to our Repo that
counts distinct :id values.

With that much behind us, we can test the feature that persists responses
through a user-defined function, the same one Mastery uses:

BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
test "a function can be run in the saving transaction",

%{response: response} do
assert response.answer ==

MasteryPersistence.record_response(response, fn r -> r.answer end)
end

We fire the MasteryPersistence.record_response/2 function, passing it a simple function
returning a response. We assert that the answer property matches the one we
passed in.

report erratum  •  discuss

Tests Call the API as a User Would • 201

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


With the base cases behind us, we can exercise the corner cases, starting
with error conditions:

BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
test "an error in the function rolls back the save",

%{response: response} do
assert Repo.aggregate(Response, :count, :id) == 0
assert_raise RuntimeError, fn ->

MasteryPersistence.record_response(response, fn _r -> raise "oops" end)
end
assert Repo.aggregate(Response, :count, :id) == 0

end

In this test, we use the ExUnit assert_raise function and pass it a code block.
Notice the anonymous function we pass to record_response intentionally raises
an error. After calling the record_response function, we make sure that no
responses are saved once again with Repo.aggregate.

We can smell the finish line. We need only do a rudimentary function to test
out our persistence reporting feature, like this:

BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
test "simple reporting", %{response: response} do

MasteryPersistence.record_response(response)
MasteryPersistence.record_response(response)

response
|> Map.put(:email, "other_#{response.email}")
|> MasteryPersistence.record_response

assert MasteryPersistence.report(response.quiz_title) == %{
response.email => 2,
"other_#{response.email}" => 1

}
end

end

We record a few responses and then check the results of the reporting against
expectations. We’re done!

We can run our tests independently of the rest of Mastery. Let’s change into
the mastery_persistence directory and then run tests, like this:

➔ cd mastery_persistence
➔ mix test
....

Finished in 0.07 seconds
4 tests, 0 failures

Chapter 10. Test the Boundary  • 202

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/mastery_persistence/test/mastery_persistence_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Everything works! The tests are not quite as simple as they would have been
had we integrated persistence into Mastery, but the benefit for our use case
is worth it, as we can determine which persistence back end is best for our
users.

We have one last feature to test, the proctor. Since it has some timing related
features, it will have some particularly strong challenges for us.

Isolate the Proctor’s Boundary Concerns
In many ways, our proctor is the biggest testing challenge in this book. We
have a scheduler that depends on concepts of both mutability and time, ideas
that are generally kryptonite for tests.

The scheduler has three events: schedule, start quiz, and stop quiz. Each of
these ideas is important. Our tests could wait, using sleeps, as our quizzes
cycle through their respective states, but that strategy would make our tests
both fragile and slow.

Sleeps in tests are inherently bad. Wait too long and your tests are slow; don’t
wait long enough and your tests won’t be consistent. To prevent race condi-
tions and timing dependent code, we’ll need to find a better approach.

Here’s our plan, then. Let’s modify our code to allow custom notifications
when important things happen, namely when a quiz starts and finishes. Our
tests can then await an event instead of sleeping for some specific amount
of time.

The bonus is that by building in this new feature, our project will be better
as it’s precisely the kind of feature that user interfaces will need to keep our
customers informed.

In detail, this is what we’ll do. In Mastery, we will:

1. Add an optional process ID to Mastery.schedule_quiz
2. Modify the Proctor to accept this new argument
3. Notify the specified process when a quiz starts
4. Notify the process when a quiz stops

When we are done, our tests will be much simpler. They will need only await
these specific messages as they work their way through the test. Let us do
that now.

report erratum  •  discuss

Isolate the Proctor’s Boundary Concerns • 203

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Add a Notification to Mastery and the Boundary
We’ll start with lib/mastery.ex to make the API changes, and then we’ll enable
that new API in the boundary. In Mastery, we need to change the API to accept
our new notify_pid, like this:

BoundaryTests/lib/mastery.ex
def schedule_quiz(quiz, templates, start_at, end_at, notify_pid \\ nil) do

with :ok <- QuizValidator.errors(quiz),
true <- Enum.all?(templates, &(:ok == TemplateValidator.errors(&1))),
:ok <-

Proctor.schedule_quiz(
quiz,
templates,
start_at,
end_at,
notify_pid),

do: :ok, else: (error -> error)
end

That’s simple enough. We add a new optional argument to schedule_quiz and
pass it straight through to the proctor. We’ll make the notify_pid optional here
so the change will be compatible.

With the easy part behind us, we need to make this new API work on the
back end. Open up lib/mastery/boundary/proctor.ex, and add the new argument to
schedule_quiz, like this:

BoundaryTests/lib/mastery/boundary/proctor.ex
def schedule_quiz(

proctor \\ __MODULE__,
quiz,
temps,
start_at,
end_at,
notify_pid) do
quiz = %{

fields: quiz,
templates: temps,
start_at: start_at,
end_at: end_at,
notify_pid: notify_pid,

}
GenServer.call(proctor, {:schedule_quiz, quiz})

end

We add the new argument and pass it through to the handle_call callback as a
quiz map key. Though it won’t need any changes, let’s refresh our memory of
the handle_call function for add_quiz in the GenServer:

Chapter 10. Test the Boundary  • 204

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/lib/mastery.ex
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/lib/mastery/boundary/proctor.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


BoundaryTests/lib/mastery/boundary/proctor.ex
def handle_call({:schedule_quiz, quiz}, _from, quizzes) do

now = DateTime.utc_now
ordered_quizzes =

[quiz | quizzes]
|> start_quizzes(now)
|> Enum.sort(fn a, b ->
date_time_less_than_or_equal?(a.start_at, b.start_at)

end)
build_reply_with_timeout({:reply, :ok}, ordered_quizzes, now)

end

Notice that our quiz already has the notify built in so we don’t need to make
any changes. We can jump straight to the implementation of start_quizzes:

BoundaryTests/lib/mastery/boundary/proctor.ex
defp start_quizzes(quizzes, now) do

{ready, not_ready} = Enum.split_while(quizzes, fn quiz ->
date_time_less_than_or_equal?(quiz.start_at, now)

end )
Enum.each(ready, fn quiz -> start_quiz(quiz, now) end)
not_ready

end

Once again, passing the details through as a quiz key has saved us one more
interface change.

Let’s add the notification to start_quiz:

BoundaryTests/lib/mastery/boundary/proctor.ex
def start_quiz(quiz, now) do

Logger.info "Starting quiz #{quiz.fields.title}..."
notify_start(quiz)
QuizManager.build_quiz(quiz.fields)
Enum.each(quiz.templates, &add_template(quiz, &1))
timeout = DateTime.diff(quiz.end_at, now, :millisecond)
Process.send_after(

self(),
{:end_quiz, quiz.fields.title, quiz.notify_pid},
timeout)

end

In start_quiz, we have two changes to make. First, after we log the start of the
quiz, we call our new notify_start function where we’ll actually do the notification
via send. Next, scan down to the message we send in Process.send_after. We don’t
send the whole quiz to that message so we add the notify_pid as the third part
of that message tuple.

report erratum  •  discuss

Isolate the Proctor’s Boundary Concerns • 205

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/lib/mastery/boundary/proctor.ex
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/lib/mastery/boundary/proctor.ex
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/lib/mastery/boundary/proctor.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Now we can finally do the first notification, the one that happens when a quiz
starts:

BoundaryTests/lib/mastery/boundary/proctor.ex
defp notify_start(%{notify_pid: nil}), do: nil
defp notify_start(quiz) do

send(quiz.notify_pid, {:started, quiz.fields.title})
end

In the first clause, there’s nothing to do if there’s no pid. In the second head,
we match the pid and then we actually send the notification message via send.

Now we need to adjust our message for the :end_quiz, and actually do the
notification there:

BoundaryTests/lib/mastery/boundary/proctor.ex
def handle_info({:end_quiz, title, notify_pid}, quizzes) do

QuizManager.remove_quiz(title)
title
|> QuizSession.active_sessions_for
|> QuizSession.end_sessions
Logger.info "Stopped quiz #{title}."
notify_stopped(notify_pid, title)
handle_info(:timeout, quizzes)

end

All we need to do is to accept the additional element in the :end_quiz message
tuple and then call the notification. Once again, the point where we do the
logging is ideal. The function to do the work looks much like the one for
start_quiz:

BoundaryTests/lib/mastery/boundary/proctor.ex
defp notify_stopped(nil, _title), do: nil
defp notify_stopped(pid, title), do: send(pid, {:stopped, title})

end

If there’s no pid, there’s nothing to do. If there’s a pid, we send a tuple with the
:stopping_quiz atom and the title of the quiz. We’re almost ready to write the
tests, but first let’s verify that all of our new code actually works.

Work with the New Notifications
To review, rather than jumping straight into our tests with sleeps and timing
dependent code, we built a quick feature that our tests can use. Other pro-
grams can take advantage of notifications too. Let’s test that theory with the
IEx program. Fire it up with iex -S mix. Then, type this much:

iex(1)> alias Mastery.Examples.Math
Mastery.Examples.Math

Chapter 10. Test the Boundary  • 206

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/lib/mastery/boundary/proctor.ex
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/lib/mastery/boundary/proctor.ex
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/lib/mastery/boundary/proctor.ex
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


We alias the Math example so we can use those fields to create our quiz and
templates. Next, we can do a little date math, like this:

iex(2)> now = DateTime.utc_now()
#DateTime<2019-06-30 14:21:53.159751Z>
iex(3)> five_seconds_from_now = DateTime.add(now, 5)
#DateTime<2019-06-30 14:21:58.159751Z>
iex(4)> one_minute_from_now = DateTime.add(now, 60)
#DateTime<2019-06-30 14:22:53.159751Z>
iex(5)> Mastery.schedule_quiz(Mastery.Examples.Math.quiz_fields(),
...(5)> [Math.template_fields()], five_seconds_from_now, one_minute_from_now,
...(5)> self())

We schedule a quiz with some times relative to now. You may have to adjust
the timing of these features to get things to work right for you, but the premise
is the same. The first time is now, the second is the time we’ll use to start a
quiz, and the third is the time the quiz will no longer be available.

Next, we will see the quiz start:

10:23:48.562 [info] Starting quiz simple_addition...
:ok

The scheduler is working. Now we can take the quiz, like this:

iex(6)> Mastery.take_quiz(Math.quiz_fields().title, "james@graysoftinc.com")
{:simple_addition, "james@graysoftinc.com"}
iex(7)>
10:24:33.560 [info] Stopped quiz simple_addition.

nil

After a minute or so, we had to press Enter. At that point we could see that
the quiz had stopped.

If we implemented the notify_pid correctly, we should see a couple of messages
in our process message queue, like this:

iex(8)> receive do message -> message end
{:started, :simple_addition}
iex(9)> receive do message -> message end
{:stopped, :simple_addition}

It works! We get two notifications, one when the Proctor starts the quiz and
one when it stops the quiz. Now we have everything we need. We’re finally
ready to write the tests.

Write the Tests
Once the additional infrastructure of the scheduling notification is in place,
our tests will be easier to write. Let’s dive right in:

report erratum  •  discuss

Isolate the Proctor’s Boundary Concerns • 207

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


BoundaryTests/test/proctor_test.exs
defmodule ProctorTest do

use ExUnit.Case

alias Mastery.Examples.Math
alias Mastery.Boundary.QuizSession

@moduletag capture_log: true

We do the typical setup ceremony, with one addition. With the module
attribute @capture_log, we turn on the logging capture so that we won’t add
noisy logging to our test cases.

The rest of this test case will deal with time. Boundaries are powerful but all
of that power has a cost: the ceremony of dealing with time. This test exists
specifically to walk our code through its entire lifecycle, step by step. We’ll
do all of this work in a single test to keep things simple to read and maintain
in the future.

The first step is to start up the quiz, like this:

BoundaryTests/test/proctor_test.exs
test "quizzes can be scheduled" do

quiz = Math.quiz_fields |> Map.put(:title, :timed_addition)
now = DateTime.utc_now
email = "student@example.com"

We declare the test and handle all of the ceremony for a quiz startup, complete
with the quiz fields and the initial date math.

The next step is to use those fields to schedule a quiz:

BoundaryTests/test/proctor_test.exs
assert :ok == Mastery.schedule_quiz(

quiz,
[Math.template_fields],
DateTime.add(now, 50, :millisecond),
DateTime.add(now, 100, :millisecond),
self()

)

We call the Mastery.schedule_quiz function to schedule the quiz. We pass in a start
time and a stop time, both using fractions of a second. Keep in mind that
we’re effectively doing a sleep, so we don’t want to do too many of these in
our test cases, but this test is only burning up a tenth of a second so we
grudgingly pay that penalty to make sure we can exercise this real-world
feature.

Chapter 10. Test the Boundary  • 208

report erratum  •  discuss

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/proctor_test.exs
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/proctor_test.exs
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/proctor_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Notice we use the self() for the notification pid, just as we did within IEx. We’ll
be able to use it to check for the notification messages as the server goes
through its paces.

Now that the setup is behind us, we can test the quiz as it goes through the
various parts of its lifecycle, like this:

BoundaryTests/test/proctor_test.exs
refute Mastery.take_quiz(quiz.title, email)

We initially make sure the quiz is not available. Remember, Mastery.take_quiz
will return a nil if it’s not yet scheduled.

Once we verify that this condition is satisfied, we can use the :started notifica-
tion we just added, like this:

BoundaryTests/test/proctor_test.exs
assert_receive {:started, :timed_addition}
assert Mastery.take_quiz(quiz.title, email)

We make sure that the test receives the :started notification for the :timed_addition
quiz, and then we take the quiz again, ensuring that we get a value back.

Next, we’ll make sure the test terminates as we expect. Once again, we can
use the notification again, like this:

BoundaryTests/test/proctor_test.exs
assert_receive {:stopped, :timed_addition}
assert [ ] == QuizSession.active_sessions_for(quiz.title)

end
end

We get the notifications and then assert that the active sessions are in fact
empty, and we’re done. We need only run the test to make sure we’re clean
and green:

➔ mix test test/proctor_test.exs
.

Finished in 0.1 seconds
1 test, 0 failures

The test runs, and it runs quickly! We can use our notify_pid feature to keep
our tests running quickly without requiring sleeps and intricate timing. There’s
no doubt that adding timing elements to our GenServer has a significant
impact in the complexity of our tests. Mercifully, we’re only testing one aspect
of the quiz, the time-based lifecycle we introduce within our worker code. If
we had done a poor job of separating the boundary and core of our code, we’d

report erratum  •  discuss

Isolate the Proctor’s Boundary Concerns • 209

http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/proctor_test.exs
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/proctor_test.exs
http://media.pragprog.com/titles/jgotp/code/BoundaryTests/test/proctor_test.exs
http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


have to deal with all of those elements at once within our tests so our job
would have been much more difficult.

We’ve finished up our test and all of the code for the book! We’re ready to
conclude this chapter.

Test Your Boundary
This chapter has gone quickly. We built an integration test to work through
the base mastery.exs API. We built only a single test, but it covered an end-to-
end scenario with persistence enabled and a quiz. We even built in enough
wrong and right answers to show that our mastery feature was working.

Next, we dove into specific persistence tests. We wrote tests to call our basic
persistence function two different ways. Then we simulated an exception and
followed that up with a brief test of our reporting function.

Along the way we experienced the impacts of the layering strategy we’ve used
throughout this book. In particular, for each API we were able to isolate the
concerns of our test to one sliver of complexity. After all, that’s the purpose
of this whole book.

Good layering does not remove complexity. Instead, layering selectively limits
the issues programmers have to deal with at any given time.

So do fun things with big, loud worker-bees. Build your projects in layers
that expose the right complexity at the right time within your OTP projects.
It’s time to close the book and open up your editor to build something. We
can’t wait to see what you’ll create!

Thanks for joining us.

—James and Bruce

Chapter 10. Test the Boundary  • 210

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Bibliography

[Heb19] Fred Hebert. Property-Based Testing with PropEr, Erlang, and Elixir. The
Pragmatic Bookshelf, Raleigh, NC, 2019.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, Englewood Cliffs, NJ, 2008.

[Tat18] Ben Marx, José Valim, Bruce Tate. Adopting Elixir. The Pragmatic Bookshelf,
Raleigh, NC, 2018.

[Tho18] Dave Thomas. Programming Elixir 1.6. The Pragmatic Bookshelf, Raleigh,
NC, 2018.

[TV19] Chris McCord, Bruce Tate and José Valim. Programming Phoenix 1.4. The
Pragmatic Bookshelf, Raleigh, NC, 2019.

[WM19] Darin Wilson and Eric Meadows-Jönsson. Programming Ecto. The Pragmatic
Bookshelf, Raleigh, NC, 2019.

report erratum  •  discuss

http://pragprog.com/titles/jgotp/errata/add
http://forums.pragprog.com/forums/jgotp


Index

SYMBOLS
"" (double quotes), for bit-

strings, 29

'' (single quotes), for charlists,
29

/ for division, 23

<< >> operator, 29

| operator, 24

A
a modifier, 47

abstractions
building at single level of,

64–68
names, 64

active_sessions, 168, 170

actor model, 33

Adopting Elixir, 7, 34

agents, 15

aggregate, 197, 201

algorithms
flat vs. deep data struc-

tures, 40
performance, 24

aliasing
with macros, 78–80
modules for API layer,

121
templates, 58

alive?, 124

answers, 48–49, see also re-
sponses

APIs
adding options vs. require-

ments, 129
boundary layer as, 107

defined, 8
documentation and, 123
extending safely, 128–130
need for API layer, 123
persistence, 178, 183
removing, 147
wrapping server in, 116–

125

append, 165

append_state, 165

Application module, 156

application.ex file
adding dynamic supervi-

sion to, 143
adding registry to, 143
configuring for supervi-

sors, 136–140
specifications, 133
viewing running depen-

dencies, 156

applications, as term, 4, 133

Armstrong, Joe, 59

arrays vs. lists, 23

assert_raise, 202

assertions
changing with helper

functions, 93
raising errors intentional-

ly, 202

async, 158

:async mode, 126

async_stream, 159

async_threshold, 126

atoms
creating list of, 47

template names, 46
using, 22–23, 28

await, 158

B
back pressure, 102, 125–128

bank account example, 42–44

BEAM
advantages, 34
atoms and, 23
notifications, 135
serialization of functions,

59
strings and, 30

behaviours
functions as data, 59
start_link as, 132
wrapping frameworks,

187

Big O, 24

bitstrings, 22, 29

booleans, 22

boundary layer, 101–130
about, 2, 101
API in, 107
building GenServer for,

106–107
building without OTP, 8–

12
composition and, 102–

106
composition with with,

105
counter example, 8–12, 

107
defined, 8, 101
error handling in, 102–

106



extending API safely,
128–130

handle_call vs. handle_cast,
125–128

latency and concurrency
in, 154

managing quiz sessions,
113–116, 147, 167

managing quizzes, 108–
112, 147, 167–169

Mastery, 105–130
persistence, 173–183
proctor for timed quizzes,

162–170
replacing for frameworks,

187
separation in, 11
shaping by functional

core, 54
starting with supervisors,

132
testing, 13, 75, 195–210
validations, 116–121
when to use, 106
wrapping server in API,

116–125

broadcast!, 188

:brutal_kill, 146

build_substitution, 58

business logic, see functional
core

C
call, 108–109, 125–128

callbacks
integrating frameworks,

187
persistence with, 174
Phoenix LiveView, 189
term, 109

Case module, 79, 84

case statements, 105

cast, 108, 125–128, 178

categories in Mastery, 45, 49

changesets
persistence, 178
as tokens, 63
validations with, 116

Channels, Phoenix, 156, 186–
189

charlists, 22, 29

check, 117, 119

check_field, 118

check_required_field, 117

checkers
data structure, 46
test data with fixtures, 82
testing, 71
validating, 119

child spec
configuring, 138, 145
defined, 132, 134
dynamic supervisors, 140
manually defining, 141
restart strategies, 144–

146

child_pid?, 168

choose, 59

Clean Code, 64

clients, defined, 8

code
for this book, xiii, 56
naming concepts with

functions, 59, 70, 165
organization and frame-

works, 183, 186–193
organization vs. concur-

rency, 11
organization, Mastery,

49, 162
separation, 11, 54, 73, 

173
skinny left margin, 68

code coverage, 95

cohesion and data structures,
5

columns, 31

comments, 7

compiling
recompiling, 10
templates, 46, 57, 83
testing, 83

composition
boundary layer and, 102–

106
shaping functions for, 62
tests and, 91–95
with with, 105, 122

compute_mode, 126

concurrency, see also workers
avoiding naked process-

es, 158
connection pools, 156, 

160
defined, 154
vs. organization, 11
with persistence, 177
scaling and, 155
with tasks, 156, 158–160

connascence of position, 32

connection pools, 15, 156, 
160

cons cells, 23

constructors, 55, 78

contexts, ExUnit, 78, 84–85

contexts, Phoenix, 184, 186

core, see functional core

core directory, 47

correct, 48

counter example, 3–5, 8–13, 
15, 107

coupling
database, 174–175
decoupling with single-

purpose functions, 63
external dependencies,

184
poncho-style dependen-

cies, 185
in tests, 199

--cover, 95

coveralls, 96

crashes, see restart strategies

CSV, 31

custom data fixtures, see fix-
tures

D
data, see also data layer; data

structures; databases;
datatypes

functions as, 32–33, 59
vs. processes, 43
tagging with tuples, 31
test data with fixtures,

80–84
treating errors as, 103–

105
validating, 122

data clumps, 31

data fixtures, see fixtures

data layer, 37–51
about, 2, 37
access patterns, 38–41
core directory, 47
counter example, 4–5
immutability, 41–44
Mastery, 44–50

data structures, see also data
layer; datatypes

access patterns, 38–41
errors as data, 103–105
fixtures and, 77
immutability, 41–44
importance of, 37

Index • 214



influence on design, 5, 
37, 40

Mastery example, 44–50
prefer flat over deep, 40
vs. processes, 43
selecting datatypes and,

5
using nouns to identify,

45
writing functionally, 42

databases, see also Ecto
coupling, 174–175
migrations, 180
persistence, 173–183
sandbox, 176, 181, 197
SQL, 34
tuples, 31

datatypes, see also data layer;
data structures; lists;
maps; streams; strings;
structs; tuples

functions as, 32–33
influence on design, 21
primitive types, 22
selecting, 5
third-party, 34
understanding, 21–35

debugging, 147

decoupling, see coupling

defstruct, 26

delete, 169

dependencies
fetching, 176
integrating with frame-

works, 173, 183–193
as OTP implementation,

156
persistence as, 175–183
relative paths in poncho

projects, 182
umbrella projects, 175, 

184–185
viewing running, 156
workers from, 156–158

describe block, 84–88, 94

design, see also layers
breaking down into com-

ponents, 4
building at single level of

abstraction, 64–68
data structures and

types, 5, 21, 37, 40
influence of tests, 75
reimagining, 1
thinking before starting,

3

dev.exs file, 176, 181

:discard mode, 126–128

discard_threshold, 126

div(), 23

division, integer, 23

“Do fun things with big, loud
worker-bees” concept, xii, 
3, 15

__do_log__, 128

doctest, 12

documentation, 7, 123, see
also resources for this book

dynamic supervisors, 140–
147, 167

E
Earmark, 157

Ecto
changesets as tokens, 63
migrations, 180
persistence, 173–183
resources on, xii
sandbox, 176, 181, 197

ecto_sql, 176

EEx module, 57

EEx templates, 57

Elixir
advantages, 1
complexity of, 16
resources on, xii, 7, 34
scanning code, 68

email, Mastery users, 48, 113

end_session, 168

endpoints, avoiding breaking,
130

@enforce_keys, 26

enums, converting streams
to, 90

Erlang
about, 2
functions as data, 59
importance of lifecycle

layer, 15
managing applications

interface, 147
mutable variables in, 41
Poolboy, 160
property-based testing,

96
timer, 192

errors
handling in boundary

layer, 102–106
raising intentionally, 202
treating as data, 103–105
validations with, 116–121

exceptions, see errors

ExCoveralls, 96

exit, 139

external dependencies, 184–
186

ExUnit, see also tests
about, 76
contexts, 78, 84–85
organizing test infrastruc-

ture, 78–80
principles, 12–13, 84

F
fetch!, 82

fields, forcing specification,
26

find, 90

fixtures
as constructors, 78
defined, 76
importing, 79
shared test setup with,

77, 80–84

floats, 22

frameworks, see also OTP;
Phoenix

concurrency, 155–156, 
161

integrating with, 173, 
183–193

Scenic, 186, 191–193

functional core, 53–73
building at single level of

abstraction, 64–68
as layer, 2, 53
organizing by purpose,

54–64
separation in, 11, 54, 73
testing, 75–97
testing integration with

IEX, 70–73
testing, focus on, 12

functional languages
datatypes in, 21
immutability in, 41–44
laziness in, 25

functional lists, as linked
lists, 21

functions, see also functional
core

as data, 32–33, 59
function arguments in

OTP, 11
generators, testing, 89–91
guard, 59
named setups as, 85

Index • 215



names, 59, 61, 70
naming concepts with,

59, 70, 165
organizing by purpose,

54–64
performance, 32
pure, 54
reducing, 104
serialization, 59
shaping for composition,

62
single-purpose, 60, 62–

63, 67

G
games

snake, 193
tic-tac-toe, 38–41

generators
as maps, 81
organizing functional

core, 57–58
templates, 46
test data with fixtures, 81
testing, 71, 88–95
validating, 119–120

GenServer
about, 11
API layer, 121–125
as boundary layer, 8, 107
building, 106–107
Channels as, 188
configuring for supervi-

sors, 137–140
defined, 107
managing quiz sessions,

113–116, 137, 147, 
167

managing quizzes, 108–
112, 147, 167–169

managing state with OTP,
10–12

names, 121
persistence, integrating,

181
proctor for timed quizzes,

162–170, 203–210
Scenic, 191–193
state of, 108
testing, 115, 123
workers as, 161
wrapping frameworks,

187
wrapping server in API,

116–125

get, 110, 176

get_in, 40

Git dependencies, 184

Graph, 191–193

guard functions, 59

H
handle_call

about, 107
connection pools, 161
vs. handle_cast, 125–128
integrating frameworks,

187
with notifications, 204
proctor, 164
selecting questions, 113

handle_cast, 107, 125–128, 
187–188

handle_event, 190

handle_in, 188

handle_info, 167, 187, 192

handle_input, 192

handle_out, 188

Hebert, Fred, 96

Hex dependencies, 184

I
I/O lists, 31

:id key, 141, 145

IEx
integration tests, 70
restarting/recompiling,

10

iex -S mix, 10

ignoring things you don’t un-
derstand, 129

immutability, understanding,
41–44

inert!, 179

:infinity, 146

info, 126

inheritance, 27

init, 107, 109, 113, 187, 192

initial_state, 108

instructions, Mastery, 46, 
120

integer datatype, 5, 22

integration tests, 70–73, 195–
200

isolation, see also separation
external dependencies,

184
functional core layer, 6, 

54

importance of, 210
with workers, 155

iterate, 103

K
keep_threshold, 126

keys
datatypes for key-value

pairs, 22
forcing specification, 26
MapSet, 28
registering unique, 144

:keys options, 144

keyword lists, 28

L
~L"”” sigil, 190

layers, see also boundary
layer; data layer; functional
core; lifecycle layer; tests;
workers

advantages of, 210
choosing which to build,

2–5
recommended, 2
understanding, 1–17
in Worker-Bee-Driven

Design, xii, 3, 15

laziness with streams, 25

lifecycle layer, 131–151, see
also supervision

about, 2, 101, 131
configuration, 132, 134, 

136–140
configuring applications

for, 184
counter example, 13
dynamic supervisors,

140–147, 167
importance of, 15
name of, 13
Observer, 146
restart strategies, 141, 

144–146, 170
starting boundary layer

with, 132
starting process with,

134–136
strategies for, 133
when to use, 132
workers and, 15

linked lists, 21

lists
vs. arrays, 23
atoms, creating list of, 47
of errors, 116
fixed-length, 22

Index • 216



functional, 21
generators, testing, 89–91
I/O, 31
keyword, 28
linked, 21
vs. maps, 28
named setups, 85
order of, 24
performance, 23–25
random access in, 24
of templates, 49
tic-tac-toe game, 39
vs. tuples, 32
understanding, 21, 23–25
updating, 24
words, 47

LiveView, see Phoenix Live-
View

loaded_applications, 156

logger
back pressure and, 125–

128
capturing log, 198, 208
configuring, 125
switching modes, 126

M
macros, aliasing with, 78–80

make_ref(), 23

maps
about, 22
cautions, 28
contexts as, 78, 85
generators as, 81
vs. lists, 28
Mastery questions, 47
Mastery templates, 45
pattern matching, 27
random access in, 27
structs as, 25
vs. structs, 28
tic-tac-toe game, 40
vs. tuples, 32
understanding, 25–28

MapSet, 28

margin, skinny left, 68

Martin, Bob, 64

Mastery, see also questions;
quizzes; responses; tem-
plates

about, 3
API layer, 107, 121–125
application specifications,

133
boundary layer, 105–130
building GenServer, 106–

107

building at single level of
abstraction, 64–68

with Channels, 189
code organization, 49
core directory, 47
creating, 44
data layer, 44–50
dynamic supervisors,

140–147
error handling, 105
functional core, 54–73
functional core, organiz-

ing, 54–64
lifecycle layer, 133, 136–

150
metadata, 49
multiple users, 149–150
with persistence, 173–

183
proctor, 162–170, 203–

210
reports, 179
resetting, 70
restart strategies, 141, 

144–146, 170
test setup code, sharing

with fixtures, 80–84
test setup code, sharing

with named setups,
84–88, 92

test strategy, 77
testing, API, 123
testing, integration, 70–

73, 195–200
testing, organizing test

infrastructure, 78–80
testing, quiz session, 115
testing, repeatable, 88–91
tests, composition in, 91–

95
validations, 105, 116–121
wrapping server in API,

116–125

mastery field, 49

math, set, 28

maybe_append_timeout, 165

McCord, Chris, 186

memory
atoms and, 23
leaks, 30
lists, 24
strings and, 30

merge, 81

message_queue_length, 126

message_to_client, 108

messages
avoiding naked process-

es, 158
back pressure and, 125–

128
in boundary layer, 8
functions as data, 33
GenServer, 108, 111
Phoenix Channels, 188
Phoenix LiveView, 189

metadata, 49, 78

migrations, 180

Mix
code coverage, 95
creating projects, 4, 44
restarting/recompiling

projects, 10

mix coveralls, 96

mix new, 4, 44

mix test --cover, 95

__MODULE__, 56

modules
code organization, 11
default to current, 56
fully qualified names, 79
modules key, 145
names, 79, 121
organizing functional

core, 54–64
size of, 55

modules key, 145

monitor, 133

monitors, 133, 136

mount, 190

mount point, 189

N
:name options, 144

named setups, 77, 84–88, 92

names
abstractions, 64
with atoms, 23
fully qualified, 79
functions, 59, 61, 70
length of, 61
modules, 79, 121
naming concepts, 59, 70, 

165
processes, 133, 137, 

140, 143
quizzes, 49
servers, 121
templates, 46, 48, 120
validating, 120

new, 4, 44, 57, 60

Index • 217



new_state, 108

notifications
about, 133, 135
notifying multiple work-

ers with cast, 128
testing proctor for timed

quizzes, 203–207

notify_start, 206

notify_stopped, 206

numerical datatypes, 22

O
O(1), 24

O(log n), 24, 27

O(n), 24

Observer, 146

:one_for_all, 145–146

:one_for_one, 145–146

optional, 117, 119

order
lists, 24
maps, 28
performance, 24
quizzes, 164
supervisors, 146

OTP, see also GenServer; life-
cycle layer; supervisors

about, 2, 132
advantages, 102, 107
behaviours and functions

as data, 59
code organization and

frameworks, 186–193
dependencies as OTP im-

plementation, 156
integrating with frame-

works, 173, 183–193
managing state with, 10–

12
name, 11
workers as OTP GenServ-

er, 161

P
partitioning workers, 15

pattern matching
flat vs. deep data struc-

tures, 40
lists, 24
maps, 27
performance, 27, 40
responses, 68–70, 114
sharing test setup with

named setups, 87
structs, 27

tuples, 31
validation with, 28, 105, 

119–120

performance
algorithms, 24
flat vs. deep data struc-

tures, 40
functions as data, 32
lists, 23–25
maps, 27
order-of, 24
pattern matching, 27, 40
strings, 30
tuples, 32

persistence
about, 4
adding, 173–183
as optional, 199
testing, 195–203

Phoenix, see also tokens
about, 183
Channels, 156, 186–189
contexts, 184, 186
creating projects, 4
external dependencies,

184–186
I/O lists in templates, 31
integrating with, 183–191
LiveView, 186, 189–191
resources on, xii, 186, 

188

Phoenix LiveView, 186, 189–
191

phx.new, 4

pid
changes in, 143
counter example, 10
looking up with dynamic

supervisors, 143
notifications, 203–207
in session value, 115, 124
storing, 137

pipes
| operator, 24
error handling, 102–105
test composition, 93
using, 62

polymorphism, 27

ponchos
external dependencies,

185
persistence, 175–183
testing, 195, 200–203

Poolboy, 160

Postgres, 176, 180

postgrex, 176

primitive types, 22

processes, see also boundary
layer; OTP; workers

avoiding naked process-
es, 158

back pressure and, 125–
128

code organization, 11
creating, 133
vs. data, 43
dynamic supervisors,

140–147
finding, 167
functions as data, 33
isolation with, 155
killing, 139
managing quiz sessions,

113–116
managing quizzes, 108–

112
managing without OTP,

8–12
names, 133, 137, 140, 

143
querying if alive, 124
registry, 133, 137, 142–

144, 167
singleton, 139
starting and frameworks,

187
starting manually, 138
starting with monitors,

136
starting with supervisors,

134–136, 142
stopping, 135, 139, 146
terminating and spawn_link,

135
when to use, 57, 106, 

132

proctor, 162–170, 203–210

Programming Ecto, xii

Programming Elixir 1.6, xii

Programming Phoenix 1.4, xii, 
186, 188

projects
configuring for external

dependencies, 184
creating, 4, 44
restarting/recompiling,

10
viewing running depen-

dencies, 156

property-based testing, 12, 
95–96

Index • 218



Property-Based Testing with
PropEr, Erlang, and Elixir,
96

pure functions, 54

push, 192

push_graph, 192

put, 67, 69

put_in, 40

Q
Query, 179

questions, see also responses
asked, 47
current, 49
data structure, 45–47
functional core, organiz-

ing, 55–61
generators, testing, 90
Mastery code organiza-

tion, 49
separation from tem-

plates, 56
single level of abstraction,

64
test data with fixtures, 82
testing, 71, 90

quiz project, see Mastery ex-
ample

quiz_title, 48

quizzes, see also responses
adding, 108, 122
adding templates to, 63, 

67, 110, 122, 166
building in API layer, 122
configuring for supervi-

sors, 137–140
data structure, 45
functional core, organiz-

ing, 61–64
managing quiz sessions,

113–116, 137, 147, 
167

managing quizzes, 108–
112, 147, 167–169

Mastery code organiza-
tion, 49

with multiple users, 149–
150

names, 49
notifications, 206
ordering, 164
proctor for timed quizzes,

162–170, 203–210
removing, 167, 169
reports on, 179
resetting, 67

scheduling, 162–170, 
197, 203–210

sharing test setup with
named setups, 86

starting, 166, 206
stopping, 167, 206
test data with fixtures,

82–84
testing, 70–73, 91–95, 

197
testing quiz session, 115
titles, 48–49
validating, 105, 118, 122

quotes
"" (double quotes) for bit-

strings, 29
'' (single quotes) for

charlists, 29

R
random, 59

random access
in lists, 24
in maps, 27

random numbers generator,
54, 59, 88–96

receive block, 9

recompiling IEx, 10

record, 49

record_changeset, 178

records, resetting, 70

recursion
in boundary layer, 8
managing state with OTP,

10
performance, 24

reduce_while, 104

references, 22–23

registry
dynamic supervisors,

140, 167
filtering, 167
processes, 133, 137, 

142–144, 167

Registry module, 142–144

rem(), 23

render, 190

repeatedly, 90, 92

replace_at, 25

:reply, 164

reports, 179

repositories and persistence,
176–184, 197

require, 117

required, 119

requirements, avoiding
adding to APIs, 129

resetting
quizzes, 67
records, 70
templates, 67

resources, connection pools,
156, 160

resources for this book
bitstrings, 30
contexts, 186
Ecto, xii
Elixir, xii, 7, 34
example code, xiii, 56
ExUnit, 13
Phoenix, xii, 186, 188
Phoenix Channels, 188
property-based testing,

96
testing, 96
tests, 13

responses
counting, 197
data structure, 45–46, 48
functional core, organiz-

ing, 55–61
last, 49
Mastery code organiza-

tion, 49
number of correct, 49
pattern matching, 68–

70, 114
persistence, 174–183
saving, 198
sharing test setup with

named setups, 86–88
testing, 72, 197–200

:rest_for_one, 145–146

:restart key, 141, 145

restart strategies, 141, 144–
146, 170

restarting IEx, 10

S
sandbox environment, 176, 

181, 197

scaling and workers, 155

Scene, 191–193

Scenic, 186, 191–193

schemas, Ecto, 177

scope, named setups, 87

self(), 209

semantic versioning, 130

send, 10, 158

Index • 219



send_after, 158, 166

send_interval, 158

separation
boundary layer, 11
functional core, 11, 54, 

73
importance of, 173, 210

serialization, 59, 125

servers, see also GenServer
defined, 8
names, 121

services, finding by names,
143

session, 115, 124

sessions
integrating persistence,

181
listing active, 168, 170
managing, 113–116, 167
multiple users, 149–150
session value, 115, 124
stopping, 168

set math, 28

setup
sharing test setup with

fixtures, 76, 80–84
sharing test setup with

named setups, 77, 84–
88, 92

__should_log__, 127

shutdown, 146

side effects
assertions as, 93
boundary layer and, 8
databases, 178
functional core layer, 6

singleton processes, 139

skinny left margin, 68

sleeps, testing with, 203, 208

snake game, 193

spawn, 10

spawn_link, 133, 135

spawn_monitor, 136

specification, forcing, 26

SQL, 34, see also Ecto

start, 144

:start key, 141, 145

start_child, 142

start_link
boundary layer, 112, 

115, 121–122, 137
creating, 137
dynamic supervisors,

140, 142

integrating frameworks,
187

singleton processes, 139
supervision in lifecycle

layer, 132, 136–137, 
139

startup, optimizing, 146

state, see also boundary layer
counter example, 4, 8–12
of GenServer, 108
managing with OTP, 10–

12

stop, 140

stopping
processes, 135, 139, 146
quizzes, 167, 206
sessions, 168
supervisors, 139

streams
about, 25
converting to enums, 90
random number genera-

tion, 90, 92
tasks, 159
treating errors as data,

103

string concatenation, 31

strings
vs. atoms, 23, 28
as binaries, 29
bitstrings, 22, 29
cautions, 30
charlists, 22, 29
concatenation, 31
in Mastery instructions,

46
in Mastery questions, 46
performance, 30
tic-tac-toe game, 39
understanding, 22, 28–31
when to use, 28

struct!, 57

__struct__, 26

structs
about, 22
adding behaviors, 57
cautions, 28
forcing specification, 26
as maps, 25
vs. maps, 28
pattern matching, 27
responses, 48
understanding, 25–28
when to use, 28

substitutions, Mastery ques-
tions, 47

--sup flag, 44

supervision tree, 144

supervisors, see also lifecycle
layer

configuring applications
for, 132, 134, 136–
140, 184

defined, 134
dynamic, 140–147, 167
with Observer, 146
ordering, 146
restart strategies, 141, 

144–146, 170
starting, 139
starting boundary layer

with, 132
starting process with,

134–136
stopping, 139
strategies for, 133
--sup flag, 44

:sync mode, 126

sync_threshold, 126

T
tables, Postgres, 180

tagging data with tuples, 31

tasks, 15, 156, 158–160

teardown, sharing test, 76

template_name, 48

templates
adding to quizzes, 63, 

67, 110, 122, 166
aliasing, 58
compiling, 46, 57, 83
creating questions with,

47
data structure, 45
defining, 45
EEx, 57
functional core, organiz-

ing, 55–61
list of, 49
mastered, 49
Mastery code organiza-

tion, 49
moving, 66
names, 46, 48, 120
Phoenix LiveView, 190
populating with fixtures,

80–82
proctor, adding with, 166
raw, 46, 57, 120
removing, 66
resetting, 67
separation from ques-

tions, 56

Index • 220



sharing test setup with
named setups, 86

testing, 71, 83, 91–95
testing compilation, 83
used, 49
validating, 119–122

test --cover, 95

test.exs file, 176, 181

test_helper.exs, 79

tests
aliases with macros, 78–

80
API for Mastery, 123
beyond Elixir, 95–97
boundary layer, 13, 75, 

195–210
capturing log, 198, 208
code coverage, 95
compiling of templates,

83
composition in, 91–95
configurations, 176, 181, 

196
contexts, 78, 84–85
counter example, 12–13
directory, 79
documentation, 7
functional core, 12, 70–

97
generators, 71, 88–96
grouping tests, 87
importance of, 75, 86, 

199–200
influence on design, 75
integration, 70–73, 195–

200
as layer, 2, 12
metadata, 78
organizing test infrastruc-

ture, 78–80
persistence, 195–203
poncho projects, 195, 

200–203
proctor, 203–210
property-based, 12, 95–

96
questions, 71
quiz session, 115
quizzes, 70–73, 197
raising errors intentional-

ly, 202
random number genera-

tor, 88–96
repeatable, 88–91
resources on, 13, 96
responses, 72, 197–200
sandbox environment,

176, 181, 197

setup code, sharing with
fixtures, 76, 80–84

setup code, sharing with
named setups, 77, 84–
88, 92

shaping by functional
core, 54

with sleeps, 203, 208
strategies, 76
teardown code, sharing,

76
templates, 71, 83, 91–95
test data with fixtures,

80–84
test helpers, 78–80
timestamps and, 88
with umbrellas, 185
unit tests, 12–13

thermostat example, 190

thinking before starting, 3

Thomas, Dave, xii, 157

tic-tac-toe game, 38–41

time
testing proctor for timed

quizzes, 203–210
timer event in Scenic,

192

timeouts, 146, 164–167, 170

timestamps
persistence with Ecto,

177
proctor, 163
responses, 48, 177
testing and, 88

to in Mastery responses, 48

tokens
moving through transfor-

mations, 66–69
named setups, 85
organizing functional

core, 62–64, 66–68
testing, 72, 91–95, 97

trap_exit, 136

tuples, 22, 31–32, 38

type key, 146

typespecs, 7

U
umbrellas, 175, 184–185

uniqueness, 28

unit tests, 12–13

update, 69

updating
lists, 24

maps, 27
records, 69

use, 86, 109, 196

users, see also responses
data structure, 45
email, 48, 113
managing sessions with

multiple users, 149–
150

__using__, 79

V
validate_required, 178

validations
about, 102
in API layer, 121
building, 116–121
with pattern matching,

28, 105, 119–120
user data, 122
with with, 105, 122

Valim, José, 186

versioning, semantic, 130

:via, 142–143

views, see Phoenix LiveView

W
~w, 47

websockets, 187

whereis, 138

which_children, 167

whitelisting, 178

with
composition with, 105, 

122
when to use, 62

words, creating list of, 47

Worker-Bee-Driven Design
(WDD), xii, 3, 15

workers, 153–171
connection pools, 15, 

156, 160
counter example, 15
defined, 153
from dependencies, 156–

158
as GenServer, 161
isolation with, 155
as layer, 2, 101, 153
partitioning, 15
proctor for timed quizzes,

162–170
restart strategies, 144–

146
scaling with, 155

Index • 221



starting/notifying multi-
ple workers with cast,
128

tasks, 15, 156, 158–160
understanding, 15

using, 155–161
when to use, 154–155

Index • 222



Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2020 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2020

https://pragprog.com


Programming Elm
Elm brings the safety and stability of functional pro-
graming to front-end development, making it one of
the most popular new languages. Elm’s functional na-
ture and static typing means that runtime errors are
nearly impossible, and it compiles to JavaScript for
easy web deployment. This book helps you take advan-
tage of this new language in your web site development.
Learn how the Elm Architecture will help you create
fast applications. Discover how to integrate Elm with
JavaScript so you can update legacy applications. See
how Elm tooling makes deployment quicker and easier.

Jeremy Fairbank
(308 pages) ISBN: 9781680502855. $40.95
https://pragprog.com/book/jfelm

Technical Blogging, Second Edition
Successful technical blogging is not easy but it’s also
not magic. Use these techniques to attract and keep
an audience of loyal, regular readers. Leverage this
popularity to reach your goals and amplify your influ-
ence in your field. Get more users for your startup or
open source project, or simply find an outlet to share
your expertise. This book is your blueprint, with step-
by-step instructions that leave no stone unturned.
Plan, create, maintain, and promote a successful blog
that will have remarkable effects on your career or
business.

Antonio Cangiano
(336 pages) ISBN: 9781680506471. $47.95
https://pragprog.com/book/actb2

https://pragprog.com/book/jfelm
https://pragprog.com/book/actb2


Build Chatbot Interactions
The next step in the evolution of user interfaces is here.
Chatbots let your users interact with your service in
their own natural language. Use free and open source
tools along with Ruby to build creative, useful, and
unexpected interactions for users. Take advantage of
the Lita framework’s step-by-step implementation
strategy to simplify bot development and testing. From
novices to experts, chatbots are an area in which every-
one can participate. Exercise your creativity by creating
chatbot skills for communicating, information, and
fun.

Daniel Pritchett
(206 pages) ISBN: 9781680506327. $35.95
https://pragprog.com/book/dpchat

Test-Driven React
You work in a loop: write code, get feedback, iterate.
The faster you get feedback, the faster you can learn
and become a more effective developer. Test-Driven
React helps you refine your React workflow to give you
the feedback you need as quickly as possible. Write
strong tests and run them continuously as you work,
split complex code up into manageable pieces, and
stay focused on what’s important by automating away
mundane, trivial tasks. Adopt these techniques and
you’ll be able to avoid productivity traps and start
building React components at a stunning pace!

Trevor Burnham
(190 pages) ISBN: 9781680506464. $45.95
https://pragprog.com/book/tbreact

https://pragprog.com/book/dpchat
https://pragprog.com/book/tbreact


Small, Sharp Software Tools
The command-line interface is making a comeback.
That’s because developers know that all the best fea-
tures of your operating system are hidden behind a
user interface designed to help average people use the
computer. But you’re not the average user, and the
CLI is the most efficient way to get work done fast.
Turn tedious chores into quick tasks: read and write
files, manage complex directory hierarchies, perform
network diagnostics, download files, work with APIs,
and combine individual programs to create your own
workflows. Put down that mouse, open the CLI, and
take control of your software development environment.

Brian P. Hogan
(326 pages) ISBN: 9781680502961. $38.95
https://pragprog.com/book/bhcldev

Programming Ecto
Languages may come and go, but the relational
database endures. Learn how to use Ecto, the premier
database library for Elixir, to connect your Elixir and
Phoenix apps to databases. Get a firm handle on Ecto
fundamentals with a module-by-module tour of the
critical parts of Ecto. Then move on to more advanced
topics and advice on best practices with a series of
recipes that provide clear, step-by-step instructions
on scenarios commonly encountered by app developers.
Co-authored by the creator of Ecto, this title provides
all the essentials you need to use Ecto effectively.

Darin Wilson and Eric Meadows-Jönsson
(242 pages) ISBN: 9781680502824. $45.95
https://pragprog.com/book/wmecto

https://pragprog.com/book/bhcldev
https://pragprog.com/book/wmecto


Web Development with ReasonML
ReasonML is a new, type-safe, functional language that
compiles to efficient, readable JavaScript. ReasonML
interoperates with existing JavaScript libraries and
works especially well with React, one of the most pop-
ular front-end frameworks. Learn how to take advan-
tage of the power of a functional language while keep-
ing the flexibility of the whole JavaScript ecosystem.
Move beyond theory and get things done faster and
more reliably with ReasonML today.

J. David Eisenberg
(208 pages) ISBN: 9781680506334. $45.95
https://pragprog.com/book/reasonml

Programming WebAssembly with Rust
WebAssembly fulfills the long-awaited promise of web
technologies: fast code, type-safe at compile time, exe-
cution in the browser, on embedded devices, or any-
where else. Rust delivers the power of C in a language
that strictly enforces type safety. Combine both lan-
guages and you can write for the web like never before!
Learn how to integrate with JavaScript, run code on
platforms other than the browser, and take a step into
IoT. Discover the easy way to build cross-platform ap-
plications without sacrificing power, and change the
way you write code for the web.

Kevin Hoffman
(238 pages) ISBN: 9781680506365. $45.95
https://pragprog.com/book/khrust

https://pragprog.com/book/reasonml
https://pragprog.com/book/khrust


The Ray Tracer Challenge
Brace yourself for a fun challenge: build a photorealis-
tic 3D renderer from scratch! It’s easier than you think.
In just a couple of weeks, build a ray tracer that ren-
ders beautiful scenes with shadows, reflections, bril-
liant refraction effects, and subjects composed of vari-
ous graphics primitives: spheres, cubes, cylinders,
triangles, and more. With each chapter, implement
another piece of the puzzle and move the renderer that
much further forward. Do all of this in whichever lan-
guage and environment you prefer, and do it entirely
test-first, so you know it’s correct. Recharge yourself
with this project’s immense potential for personal ex-
ploration, experimentation, and discovery.

Jamis Buck
(290 pages) ISBN: 9781680502718. $45.95
https://pragprog.com/book/jbtracer

Docker for Rails Developers
Docker does for DevOps what Rails did for web devel-
opment—it gives you a new set of superpowers. Gone
are “works on my machine” woes and lengthy setup
tasks, replaced instead by a simple, consistent, Docker-
based development environment that will have your
team up and running in seconds. Gain hands-on, real-
world experience with a tool that’s rapidly becoming
fundamental to software development. Go from zero
all the way to production as Docker transforms the
massive leap of deploying your app in the cloud into a
baby step.

Rob Isenberg
(238 pages) ISBN: 9781680502732. $35.95
https://pragprog.com/book/ridocker

https://pragprog.com/book/jbtracer
https://pragprog.com/book/ridocker


Practical Security
Most security professionals don’t have the words “se-
curity” or “hacker” in their job title. Instead, as a devel-
oper or admin you often have to fit in security alongside
your official responsibilities — building and maintain-
ing computer systems. Implement the basics of good
security now, and you’ll have a solid foundation if you
bring in a dedicated security staff later. Identify the
weaknesses in your system, and defend against the
attacks most likely to compromise your organization,
without needing to become a trained security profes-
sional.

Roman Zabicki
(132 pages) ISBN: 9781680506341. $26.95
https://pragprog.com/book/rzsecur

Programming Crystal
Crystal is for Ruby programmers who want more per-
formance or for developers who enjoy working in a
high-level scripting environment. Crystal combines
native execution speed and concurrency with Ruby-
like syntax, so you will feel right at home. This book,
the first available on Crystal, shows you how to write
applications that have the beauty and elegance of a
modern language, combined with the power of types
and modern concurrency tooling. Now you can write
beautiful code that runs faster, scales better, and is a
breeze to deploy.

Ivo Balbaert and Simon St. Laurent
(244 pages) ISBN: 9781680502862. $35.95
https://pragprog.com/book/crystal

https://pragprog.com/book/rzsecur
https://pragprog.com/book/crystal


Genetic Algorithms and Machine Learning for Programmers
Self-driving cars, natural language recognition, and
online recommendation engines are all possible thanks
to Machine Learning. Now you can create your own
genetic algorithms, nature-inspired swarms, Monte
Carlo simulations, cellular automata, and clusters.
Learn how to test your ML code and dive into even
more advanced topics. If you are a beginner-to-inter-
mediate programmer keen to understand machine
learning, this book is for you.

Frances Buontempo
(234 pages) ISBN: 9781680506204. $45.95
https://pragprog.com/book/fbmach

Property-Based Testing with PropEr, Erlang, and Elixir
Property-based testing helps you create better, more
solid tests with little code. By using the PropEr frame-
work in both Erlang and Elixir, this book teaches you
how to automatically generate test cases, test stateful
programs, and change how you design your software
for more principled and reliable approaches. You will
be able to better explore the problem space, validate
the assumptions you make when coming up with pro-
gram behavior, and expose unexpected weaknesses in
your design. PropEr will even show you how to repro-
duce the bugs it found. With this book, you will be
writing efficient property-based tests in no time.

Fred Hebert
(374 pages) ISBN: 9781680506211. $45.95
https://pragprog.com/book/fhproper

https://pragprog.com/book/fbmach
https://pragprog.com/book/fhproper


Forge Your Future with Open Source
Free and open source is the foundation of software
development, and it’s built by people just like you.
Discover the fundamental tenets that drive the move-
ment. Take control of your career by selecting the right
project to meet your professional goals. Master the
language and avoid the pitfalls that typically ensnare
new contributors. Join a community of like-minded
people and change the world. Programmers, writers,
designers, and everyone interested in software will
make their mark through free and open source software
contributions.

VM (Vicky) Brasseur
(222 pages) ISBN: 9781680503012. $33.95
https://pragprog.com/book/vbopens

Code with the Wisdom of the Crowd
Build systems faster and more effectively with Mob
Programming. Mob Programming is an approach to
developing software that radically reduces defects and
key-person dependencies by having a group of people
work together at a single machine. See how to avoid
the most common pitfalls that teams make when first
starting out. Discover what it takes to create and sup-
port a successful mob. Take collaborative programming
to the next level!

Mark Pearl
(122 pages) ISBN: 9781680506150. $26.95
https://pragprog.com/book/mpmob

https://pragprog.com/book/vbopens
https://pragprog.com/book/mpmob


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/jgotp
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/jgotp

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/jgotp
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/book/jgotp
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	James Gray
	Bruce Tate

	Introduction
	Worker-Bee-Driven Design
	Who Should Read This Book
	Online Resources

	1. Build Your Project in Layers
	We Must Reimagine Design Choices
	Choose Your Layers
	Begin with the Right Datatypes
	Build Your Functional Core
	Establish Your Boundaries
	Test Your Code
	Plan Your Lifecycle
	Invoke Your Workers
	Do Fun Things with Big, Loud Worker-Bees

	Part I—Do Fun Things...
	2. Know Your Elixir Datatypes
	Primitive Types
	Lists
	Maps and Structs
	Strings
	Tuples
	Functions as Data
	When to Leave Elixir
	Know Your Elixir Datatypes

	3. Start with the Right Data Layer
	Access Patterns Shape Data Structures
	Immutability Drives Everything
	Try It Out
	Start with the Right Data

	4. Build a Functional Core
	Organize Core Functions by Purpose
	Compose a Quiz from Functions
	Build at a Single Level of Abstraction
	Keep the Left Margin Skinny
	Try Out the Core
	Build Your Functional Core

	5. Test Your Core
	Simplify Tests with Common Setup Functions
	Improve the ExUnit Infrastructure
	Provide Test Data with Fixtures
	Prime Tests with Named Setups
	Make Tests Repeatable
	Compose Within Tests
	Take Tests Beyond the Elixir Base
	Test Your Functional Core


	Part II—...with Big, Loud Worker-Bees
	6. Isolate Process Machinery in a Boundary
	Maintain Composition Through Uncertainty
	Build Your Optional Server
	Wrap the Server in an API
	Prefer Call Over Cast to Provide Back Pressure
	Extend Your APIs Safely
	Wrap Your Core in a Boundary API

	7. Customize Your Lifecycle
	Understand the Lifecycle Building Blocks
	Configure Applications to Start Supervisors
	Start Per-User Processes with a Dynamic Supervisor
	Touch Up the API Layer
	Manage Your Lifecycles with Supervisors

	8. Summon Your Workers
	Know Your Motivations
	Know Your Tools
	Add a Proctor to Run Timed Quizzes
	Summon Your Workers

	9. Assemble Your Components
	Add Persistence as a Boundary Service
	Integrate MasteryPersistence into Mastery
	Integrate Your OTP Dependencies into Phoenix
	Organize Code for OTP Abstractions
	Build Scenic Projects with Layers
	Assemble Your Components

	10. Test the Boundary
	Tests Call the API as a User Would
	Isolate the Proctor’s Boundary Concerns
	Test Your Boundary


	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –


