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Disclaimer
This publication was privately produced and is not the product of an official
in the United States Army acting in an official capacity. The contents of this
publication, including words, images, and opinions, are unofficial and not to
be considered as the official views of the United States Military Academy,
United States Army, or Department of Defense. Neither this publication nor
its content are endorsed by the United States Military Academy, United States
Army, or Department of Defense.
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Preface
Genetic algorithms are a powerful and often overlooked tool for solving difficult
problems. Some of the most beautiful solutions to practical problems are
inspired by or modeled after solutions found in mother nature. Genetic algo-
rithms are no exception. Inspired by the original optimization algorithm—evo-
lution—genetic algorithms can be used to solve a variety of problems in a
variety of fields. As you’ll see in this book, genetic algorithms have applications
in finance, logistics, artificial intelligence, and more.

Unfortunately, despite being one of the first “artificial intelligence” algorithms,
there’s a surprising lack of resources available for programmers to explore
the ins and outs of using evolution to solve problems. Even still, there are no
books designed specifically with Elixir programmers in mind.

My goal in writing this book is to introduce Elixir programmers to a field of
programming they might have never been exposed to or were too intimidated
to try. Technology evolves rapidly, and programmers need to constantly seek
out and learn about new fields and new technologies. While Elixir may not
be the ideal language for solving computationally expensive problems, a pro-
grammer shouldn’t be forced to learn a new language just to learn about
genetic algorithms.

In this book, you’ll learn everything you need to know to start working with
genetic algorithms. As you work through the book, you’ll build a framework
for problems using genetic algorithms. By the end, you’ll have a full-featured,
customizable framework complete with statistics, genealogy tracking, and
more, and you’ll have learned everything you need to solve practical problems
with genetic algorithms. You’ll do all of this using Elixir. Along the way, you’ll
learn some Elixir-specific tips and tricks to idiomatically encode problems
and solutions, speed up your code, and verify the correctness of the algorithms
you implement.

I hope this book forces you to think outside the box and inspires you to further
explore the beauty of genetic algorithms.
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Who This Book Is For
This book is for programmers with some experience or familiarity working
with Elixir, who are looking to expand their knowledge into the field of
genetic algorithms. While not traditionally thought of as a language suited
for computationally expensive problems, Elixir’s simple syntax and functional
style make for the creation of idiomatic solutions to optimization problems
with genetic algorithms. These solutions gently introduce the user to genetic
algorithms and optimization problems without the overhead of learning a
completely new programming language.

If you have no experience with Elixir, you might find this book difficult to
follow at times. Before getting started, I recommend checking out Elixir School1

or the Elixir Guides2 to get some familiarity with the language.

What’s in This Book
In Chapter 1, Writing Your First Genetic Algorithm, on page 1, you’ll learn
the basics of the genetic algorithm by solving an introductory optimization
problem. You’ll learn about the core concepts of a genetic algorithm by writing
an Elixir script. By the end of the chapter, you’ll get to see a genetic algorithm
in action, and you’ll begin to understand the kinds of problems best suited
for using genetic algorithms.

In Chapter 2, Breaking Down Genetic Algorithms, on page 15, you’ll dive
deeper into the core concepts you learned about in the first chapter and you’ll
use some of Elixir’s code constructs to turn the script you wrote in Chapter
1, Writing Your First Genetic Algorithm, on page 1, into a reusable framework
for solving optimization problems. You’ll learn more about each step in the
evolutionary process of a genetic algorithm and, by the end of the chapter,
have a barebones framework for using genetic algorithms.

In Chapter 3, Encoding Problems and Solutions, on page 33, you’ll learn
about how to use Elixir to represent optimization problems and solutions to
optimization problems. You’ll learn about how genetic algorithms represent
solutions and how you can use a variety of strategies to represent real-world
solutions using code. Finally, you’ll create a program that learns how to spell
in order to see how you can use Elixir behaviours to represent any optimization
problem imaginable.

1. https://elixirschool.com/en/
2. https://elixir-lang.org/getting-started/introduction.html
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In Chapter 4, Evaluating Solutions and Populations, on page 51, you’ll explore
how genetic algorithms learn to find better and better solutions by evaluating
a set of solutions. You’ll learn more about the concept of fitness. You’ll also
learn about how to write different fitness functions and termination criteria
for different types of problems, including shipping optimization, portfolio
optimization, and website optimization.

In Chapter 5, Selecting the Best, on page 71, you’ll learn about the first
operator in a genetic algorithm—selection. You’ll learn about why selection
is important, how selection rate affects your algorithms, and how to write
different types of selection strategies. You’ll learn about how different selection
strategies apply best to different types of problems, and you’ll learn how to
customize them within your genetic algorithms.

In Chapter 6, Generating New Solutions, on page 87, you’ll learn about how
genetic algorithms create new solutions from existing ones using crossover.
You will learn about different types of crossover strategies and how to imple-
ment them in Elixir. You’ll learn how to solve the N-queens problem to see
how crossover strategies can affect the solutions produced by your genetic
algorithm.

In Chapter 7, Preventing Premature Convergence, on page 107, you’ll learn
about a common problem in genetic algorithms—premature convergence—and
how to solve it using mutation. You’ll create a basic password cracker to
demonstrate premature convergence. You’ll learn how to implement several
different types of mutation strategies, and you’ll learn which ones apply best
to different problems.

In Chapter 9, Tracking Genetic Algorithms, on page 139, you’ll learn about the
different metrics and statistics you can track while running your genetic
algorithms. You’ll learn how to implement an evolutionary simulation using
genetic algorithms, and you’ll build statistics and genealogy tracking mecha-
nisms around that problem.

In Chapter 10, Visualizing the Results, on page 157, you’ll use the statistics
collected in Chapter 9, Tracking Genetic Algorithms, on page 139, to create
visualizations using different plotting tools. Next, you’ll create a genetic
algorithm that learns how to play Tetris, and you’ll learn how to use different
tools to watch your algorithm in action.

In Chapter 11, Optimizing Your Algorithms, on page 169, you’ll work through
a general optimization process to learn how to get the most performance out
of your code. You’ll learn how to use Elixir tools to benchmark and profile
your algorithms. You’ll learn how to write faster Elixir and faster algorithms.
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You’ll learn how to parallelize your algorithms and how to implement NIFs
that run faster than pure Elixir code.

In Chapter 12, Writing Tests and Code Quality, on page 187, you’ll learn how
to use Elixir features and packages to test and type check your code. You’ll
learn a bit about writing tests that work well with randomness. You’ll then
learn how to write typespecs and how to verify your typespecs are correct.

In Chapter 13, Moving Forward, on page 199, you’ll be introduced to a variety
of practical applications of genetic algorithms. From artificial intelligence to
finance to advertising, you’ll learn how genetic algorithms are applied in
practice, and you’ll learn about how you can use them in almost any field.

How to Use This Book
Each chapter in this book builds on the last by making additions to a genetic
algorithm framework in some meaningful way. You should read this book in
successive order and follow along with the code examples as they are presented
to you. If, for some reason, you want to skip around, you can download the
code from each chapter on the book’s web page.

How Does Elixir Fit In?
Before you start reading this book, you’re likely wondering two things:

• Why would I do this in Elixir?
• How does Elixir fit in the bigger picture of genetic algorithm design?

Elixir is certainly not a popular choice for genetic algorithm design; however,
that doesn’t mean it’s not a good choice.

First, the significant increases in available computing power over the last
decade have meant the need for incredibly efficient code has diminished.
That’s not to say you shouldn’t pay attention to efficiency and writing efficient
code; however, the need to optimize code for low-power hardware has signifi-
cantly decreased.

Second, as you’ll see in Chapter 11, Optimizing Your Algorithms, on page 169,
parallelism in Elixir is a straightforward task. The BEAM is especially opti-
mized for running numerous processes at once, so writing and running par-
allel code is easy. Genetic algorithms are by nature very parallel. A portion
of research3 into genetic algorithms takes advantage of the parallelism offered
by Erlang to experiment with parallel genetic algorithms.

3. http://personal.denison.edu/~lalla/MCURCSM2011/6.pdf

Preface • xvi

report erratum  •  discuss

http://personal.denison.edu/~lalla/MCURCSM2011/6.pdf
http://pragprog.com/titles/smgaelixir/errata/add
http://forums.pragprog.com/forums/smgaelixir


Finally, Elixir’s syntax and design patterns lend themselves nicely to writing
idiomatic genetic algorithms. As you’ll see throughout this book, Elixir offers
a number of useful features for creating a general framework for genetic
algorithm design. This is not only excellent for learning but also for rapid
prototyping of new ideas.

You might not choose to implement a production-level genetic algorithm in
Elixir, but using Elixir to prototype and experiment can save you significant
amounts of time and effort.

Now, it’s time to get started writing your first genetic algorithm.
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CHAPTER 1

Writing Your First Genetic Algorithm
In a world of competition, people are always searching for the best. The best
job, the best diet, the best financial plan, and so on. Unfortunately, with so
many options, it’s impossible to make the best decisions all the time. Fortu-
nately, humans have evolved to navigate the complexity of everyday life and
make informed decisions that ultimately lead to success.

While your brain is naturally wired to make informed decisions, computers
are not. Computers are naive—they can only do what you program them to
do. So how do you program a computer to make informed decisions, and why
is this even necessary?

Consider this example: you’re tasked with designing the shipping route for a
large shipping company. You’re given a list of fifteen cities and your job is to
pick the shortest route between them to save the company money on gas and
travel expenses. At first, you might think it’s best to calculate every possible
path between the cities—there’re only fifteen. Unfortunately, the number of
possible paths is 130,766,744,000,000—that’s 130 trillion. This problem is
an example of the traveling salesman problem. The goal of the traveling
salesman problem is to find the shortest route between a designated number
of cities.

The number of possible paths grows at a factorial rate. A factorial is the
product of every integer up to a certain integer. In the shipping example with
fifteen cities, you can calculate the number of paths by multiplying every
integer from 1 to 15.

Nobody has enough time to calculate the distance of 130 trillion paths. You
have to take a better, more informed approach. You could choose a random
start point and choose to travel to the next closest city after every stop. This
strategy might produce the shortest path—you could even calculate the distance
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of the paths produced from starting at every city and choose the shortest one
from that. You’d then only have to calculate the distance of fifteen paths.
Unfortunately, experimenting with different strategies is still time consuming,
and without a calculated approach you might miss the best strategy.

So how can you make the best decisions and teach a computer to do the same?

The answer is optimization. Optimization is the practice of making the best
possible decisions in a situation. You can think of optimization as the search
for the best. Humans are great at optimizing—it’s natural for us to find and
make the best decisions for ourselves. Computers can be great at optimizing
too; they just need a little help.

Optimization algorithms are techniques for solving optimization problems—
problems where your goal is to find the best of something. An algorithm is a
series of instructions. An optimization algorithm is a set of instructions for
finding the best solution to a problem. While there are countless optimization
algorithms, one of the oldest and most common is the genetic algorithm.

Understanding Genetic Algorithms
Genetic algorithms are a class of optimization algorithms based on evolution
and natural selection. They use strategies loosely based on genetics and biology
to produce optimal—think “best”—or near-optimal solutions to complicated
problems. Initially conceived in the 1960s, the intended use for genetic algo-
rithms was simply a technique for creating adaptable programs. Today,
genetic algorithms are used in numerous applications in fields like artificial
intelligence and finance. They’re great at solving difficult optimization problems
and lend themselves nicely to parallel computing and distributed architectures.
They can even yield solutions to the shipping problem mentioned earlier.

The First Genetic Algorithm

The first genetic algorithm was introduced by John Holland at the
University of Michigan in the 1960s; however, evolutionary algorithms
had been around long before that. Early artificial intelligence
researchers believed evolution was the key to creating truly intel-
ligent programs. Today, the field of evolutionary computation has
many, somewhat loosely defined, branches of research, such as
evolution strategies, genetic programming, and genetic algorithms.

At their core, optimization problems are search problems. Search problems
require you to navigate an area, like a maze, to find an objective, like the end
of the maze. Optimization problems are basically the same thing, only there
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are multiple possible solutions. Imagine a maze with multiple exits. Your goal
is to exit the maze as quick as possible—this means your goal is to find the
shortest path to any of the maze exits.

Two basic approaches are used for search problems: brute-force search and
informed search. It’s important to understand the difference to understand
why optimization and genetic algorithms are so useful.

Understanding Informed Search
An informed search relies on a search strategy. In an informed search, you
make smart decisions based on the available information. In a brute-force
search, you iterate over every possible solution linearly. Brute-force searches
use no knowledge of the search area to make decisions. In a maze, a brute-
force solution would try every possible path—never stopping to consider
whether or not the paths are getting smaller or larger, or if the paths will even
lead to an exit. Brute-force searches are naive. Eventually you’ll find a solution,
but it might take a long time, and it might not even be the best one.

The key to informed search and thus optimization techniques, like genetic
algorithms, lies in how they balance exploration versus exploitation. Imagine
you find yourself lost in the woods without a map or compass. How would
you navigate out of the woods?

Using Crossover to Exploit
One option is to use a brute-force strategy—walk in circles around every tree,
hoping you make it back to civilization before you get too tired. Of course, if
the woods are large, the brute-force strategy becomes especially difficult.
Another option is to use the information around you. With this strategy, you
exploit or take advantage of the information available to you to determine
which direction to head next. To exploit in search means to use what you
already know to navigate. In this example, perhaps you know that the nearest
town is north, and you can tell where north is because of the position of the
sun. This, in essence, is what genetic algorithms do. They use the data around
them to make correct decisions.

Crossover is how genetic algorithms exploit in search. Crossover is the process
of creating new child solutions from parent solutions. The idea is that the
strongest solutions have characteristics that make them strong. These char-
acteristics are called schemas. Schemas are building blocks of fit solu-
tions—you’ll learn more about them in Chapter 4, Evaluating Solutions and
Populations, on page 51.
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The term crossover is a loose analogy to genetic reproduction. While the
analogy is weak and crossover in genetic algorithms isn’t remotely the same
as crossover in biology, it can better help you understand what’s going on
under the hood. Crossover is a part of how genetic algorithms make good
decisions. In the woods example, you choose where to go next based on your
current position. Your next step is a product of where you were last. The idea
is to build progressively better solutions over time, until you reach your goal.

Using Mutation to Explore
Now, imagine that some of the information available to you is misleading.
Perhaps somebody tells you there’s a road that leads to the nearest town, but
the road just takes you in circles around the woods. Would you continue to
repeatedly follow the road, never realizing that the path you’re on isn’t correct?
No, you’d explore other paths in the woods, hoping that one would eventually
lead you out. To explore in search is to try new, random paths to see if they
produce a better outcome. This concept of getting stuck in the same place in
the search space is parallel to a common pitfall in optimization problems
known as premature convergence. It’s easy for genetic algorithms to get stuck
in one part of a search space because some solutions appear to be good
enough—even though better solutions exist. You’ll learn more about premature
convergence in Chapter 7, Preventing Premature Convergence, on page 107.

Mutation is how genetic algorithms explore. It’s not enough to simply keep
trying to build new solutions from previous ones, which is essentially the
same as trying the same path over and over again. Mutation introduces ran-
domness into your genetic algorithms. The goal is to slightly alter some aspect
of the previous solutions to create newer solutions, which may lead to newer,
better paths.

The effectiveness of genetic algorithms largely relies on how you balance
exploitation versus exploration. Favoring one over the other has merits.
Oftentimes, if you don’t know much about a search space, it’s best to favor
exploration first and then slowly shift toward exploiting the information you
already know. This is similar to how you might learn to navigate a new
town—try new things until you have enough information to take the best
routes.

The best way to understand how genetic algorithms work is to create one. In
this next section, you’ll learn the basics of genetic algorithms by solving a
very simple problem known as the One-Max problem.

Chapter 1. Writing Your First Genetic Algorithm • 4
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Introducing the One-Max Problem
The One-Max problem is a trivial problem often used to introduce the concept
of genetic algorithms. It’s incredibly simple, but it’s great for introducing many
of the critical aspects of a genetic algorithm. The problem boils down to one
question: what is the maximum sum of a bitstring (a string consisting of only
1s and 0s) of length N?

Of course, you know that the maximum sum of a bitstring of length N is N.
However, if you wanted to prove this using a brute-force search, you’d end
up needing to search through 2^N different solutions. As with any search
problem, this isn’t too difficult with relatively small bitstrings. But what
happens if you want to use this technique for bitstrings of length 40? You’d
have to search over one trillion possible bitstrings. To avoid this, you’ll create
a genetic algorithm that produces an optimal solution without iterating over
every possible solution in the search space.

To get started, open a terminal or command prompt. This book presents Unix
commands, but you won’t need to do anything more difficult than create files
and directories or work with Elixir and Mix. With a terminal open, run the
following commands:

$ mkdir genetic && mkdir genetic/scripts
$ cd genetic/scripts
$ touch one_max.exs

This creates a new directory named genetic and a directory within that directory
named scripts. It then creates a file within scripts titled one_max.exs. The one_max.exs
is where you’ll write your genetic algorithm.

Genetic algorithms work via transformations on populations of chromosomes
over some number of generations. Imagine you’re playing a card game where
your goal is to get the highest possible card after some number of turns. You
are initially given five cards and you can choose to keep any number of cards
at the end of every turn.

In this example, a single card is a chromosome. It represents one solution to
your problem. Your entire hand is the population; it’s a collection of possible
solutions. The changes you make to your hand after every turn are transfor-
mations. Finally, every turn represents one generation—one transformation
of the population.

The figure on page 6 illustrates the basic structure of a genetic algorithm.
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Initialize 
Population

Evaluate 
Population

Create ChildrenSelect Parents Mutate Children

Each step depicted in the image performs a transformation on the population
that brings you closer to finding a solution. The process is repeated until a
solution is found.

Most genetic algorithms follow a structure similar to the one in the figure, which
is easily translated into equally structured code. Your genetic algorithm will
also follow these same steps—with code that mirrors each step in the process.

Initializing the Population
You need to start by initializing a population. Remember, the problem wants
the maximum sum of bitstrings of length N. So your population will consist
of some number of N-length bitstrings. For this example, N is 1000, so you
need a population of 1000-length bitstrings.

The number of chromosomes in your population is irrelevant. A larger popu-
lation means you’re currently looking at a larger area of the search space.
Typically, the more chromosomes you have, the longer it takes to perform trans-
formations on the entire population. Conversely, the fewer chromosomes you
have, the longer it takes to produce a viable solution to your problem and the
more susceptible your population is to premature convergence. For this example
problem, a population size of 100 strikes a nice balance between the two.

Understanding Population Size

In a traditional search method like depth-first search or breadth-
first search, you examine one solution at a time and determine
where to go next. Even in other informed search algorithms like
A* or uniform-cost search, you examine one solution at a time.
Genetic algorithms examine many solutions at once, ruling out
large areas of the search space after every generation. The popula-
tion size dictates the size of the area of the search space you’re
looking at.

At the top of the one_max.exs file, define a population consisting of 100,
1000-length bitstrings, like this:

population = for _ <- 1..100, do: for _ <- 1..1000, do: Enum.random(0..1)

Chapter 1. Writing Your First Genetic Algorithm • 6
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This is a nested list comprehension. You create a list of size 100 consisting of
lists of size 1000.

Enum.random/1 takes an enumerable and selects a random value from the enu-
merable. Enumerables are data structures that implement the Enumerable
protocol, and that can take advantage of Elixir’s Enum library. This book makes
extensive use of Enum and the Enumerable protocol. You can read more about
both in the Elixir documentation.1

The 0..1 syntax is a generator that creates a Range from 0 to 1. You don’t need
to understand what a Range is—you just need to understand that when fed
into Enum.random/1, this function will select a 0 or a 1 at random. This is done
to produce variation in the population of 1000-length bitstrings. Starting with
a random distribution of bitstrings introduces solutions with sufficiently dif-
ferent characteristics. This helps to avoid premature convergence.

Understanding the Flow of Genetic Algorithms
You’re now ready to start writing your algorithm. But, before you begin, what
do you notice about the structure of the genetic algorithm previously de-
scribed? Specifically, what happens after children are mutated?

The answer: the process repeats itself. Genetic algorithms are recursive meaning
the algorithm repeats itself over and over until it hits a termination point.

Below the initial population, add the following:

algorithm =
fn population, algorithm ->

# Algorithm here
end

The algorithm is an anonymous function that takes two parameters: population
represents the current generation’s population, and algorithm is a reference to
itself. This is a trick used to implement a recursive anonymous function. It’s
not essential to understand why this works or why this is necessary. All you
need to know is that algorithm is a reference to your algorithm function.

In other languages, you’ll likely see genetic algorithms implemented using loops
instead of recursion. You need to use recursion because Elixir doesn’t support
loops. But remember, a recursive function is just as powerful as a loop.

Recursive functions usually have two branches: a base-case and a recursive case.
The base case produces the solution to your problem. You should think of this

1. https://hexdocs.pm/elixir/Enum.html
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as the termination criteria. Your termination criteria are the measurements you
use to determine when to stop your algorithm. Because you already know what
your final solution should look like—a bitstring with a sum of 1000—you can tell
your algorithm to stop when this solution appears. You’ll learn more about other
strategies for telling your algorithm when to stop in Chapter 4, Evaluating Solutions
and Populations, on page 51. Replace the # Algorithm here with the following:

best = Enum.max_by(population, &Enum.sum/1)
IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
if Enum.sum(best) == 1000 do

best
else

# Rest of algorithm here
end

The first line extracts the current best solution from the population. The best
solution is the one with the largest sum. Next, the algorithm prints out the
value of the largest sum. Finally, you define your termination criteria—telling
the algorithm to stop and return the best solution when the maximum sum
has reached 1000.

Now, once again, refer to the steps in a genetic algorithm. The first step is to
initialize a population. You already have a population; now you need to do
everything else. Replace # Rest of algorithm here with the following:

population # Initial Population
|> evaluate.() # Evaluate Population
|> selection.() # Select Parents
|> crossover.() # Create Children
|> algorithm.(algorithm) # Repeat the Process with new Population

Notice how the algorithm is defined as a series of transformations on the initial
population. The population starts as a random list of 1000-length bitstrings.
It’s then passed into a set of functions that do some work on the population
to produce a new, hopefully better population.

This is a pattern you’ll see throughout this book. You start with a population,
do some predefined work on the population, and then pass the population
on to the next generation. A single step in the pattern is called an evolution.
Genetic algorithms work via evolutions over multiple generations.

Now you need to go about implementing these transformations. Start by
adding the following below your population definition:

evaluate = fn population -> ... end
selection = fn population -> ... end
crossover = fn population -> ... end

Chapter 1. Writing Your First Genetic Algorithm • 8
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Here, you create stubs for three anonymous functions: evaluate, selection, and
crossover. Each of these functions represents a step in the genetic algorithm.
Each function takes a population and returns a transformed version of the
population.

Evaluating the Population
Start by writing the first function—evaluate. This function represents Step #2
in the genetic algorithm. This function takes a population, evaluates each
chromosome based on a fitness function, and sorts the population based on
each chromosome’s fitness. Fitness is simply a heuristic that tells you how
good or bad a solution is—a fitness function calculates this fitness for you.
In this problem, the fitness of a chromosome is represented by the sum of
the bitstring.

Replace the stub of the the evaluate function with this:

evaluate =
fn population ->

Enum.sort_by(population, &Enum.sum/1, &>=/2)
end

The evaluate function uses the Enum.sort_by/3 function to sort the population by
the sum in descending order. This means that better solutions will exist at
the top of the population. It also means that better solutions will be grouped
together. Sorting your population is important for the next step.

Selecting Parents
You now have a list of chromosomes sorted by sum. You want to produce
parents for reproduction. This step is referred to as selection. Selection is the
process of picking the parents that will be combined to create new solutions.
The goal of selection is to pick some parents that can easily be combined to
create better solutions.

For this step, you’ll want the result of the selection function to be formatted
nicely for crossover. Your selection function should return a list of tuples con-
sisting of a pair of parents to be combined. Inside the selection function, add
the following:

selection =
fn population ->

population
|> Enum.chunk_every(2)
|> Enum.map(&List.to_tuple(&1))

end
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In this function, you use Enum.chunk_every/2 to create a list of pairs. These pairs
are parents that are selected for combination in the crossover step. Sometimes,
the population you’re working with isn’t necessarily a friendly number like
100. You can also use Enum.chunk_every/3 and tell Elixir what to do with the
leftover elements in your list.

The result of Enum.chunk_every/2 is passed to Enum.map/2, which iterates over the
list and transforms the values using List.to_tuple/1. This function transforms
the list of lists to a list of tuples. This is done because tuples are much easier
to work with in the next step.

Notice how the last two steps have created pairs of parents of approximately
equal fitness. The list is sorted by the maximum sum in descending order.
This means that the selection function will automatically pair more fit chro-
mosomes with other fit chromosomes and vice versa with unfit chromosomes.
This isn’t always the best strategy, but you’ll learn more about this in Chapter
5, Selecting the Best, on page 71.

Creating Children
With a population of parents prepared for crossover, it’s time to implement
the crossover function.

Crossover is analogous to reproduction. It’s a genetic operator that takes two
or more parent chromosomes and produces two or more child chromosomes.
Thus far, the transformations have produced a list of tuples consisting of two
1000-length bitstrings. You want to produce a population you can pass back
into the algorithm function. Implement the crossover function like this:

crossover =
fn population ->

Enum.reduce(population, [],
fn {p1, p2}, acc ->

cx_point = :rand.uniform(1000)
{{h1, t1}, {h2, t2}} =

{Enum.split(p1, cx_point),
Enum.split(p2, cx_point)}

[h1 ++ t2, h2 ++ t1 | acc]
end

)
end

First, take note of the first argument passed to the anonymous function in
Enum.reduce/3. Elixir has a rich set of pattern-matching features. In the selection
step, the list of chromosomes was turned into a list of tuples of adjacent pairs.
Because of this, you can use pattern-matching to extract the individual

Chapter 1. Writing Your First Genetic Algorithm • 10

report erratum  •  discuss

http://pragprog.com/titles/smgaelixir/errata/add
http://forums.pragprog.com/forums/smgaelixir


chromosomes—denoted p1 and p2 for Parent 1 and Parent 2—and perform
some operation on them.

Enum.reduce/3 requires the anonymous function to also accept an accumula-
tor—denoted acc—which takes an initial value and builds from the return
value of the function. The initial value here is the empty list shown in the
second parameter. The function returns two new chromosomes prepended
to the accumulator.

So, how are the new chromosomes created? A random crossover point is
selected using Erlang’s rand module. The :rand.uniform/1 function produces a
uniform integer between 0 and N-1 where N is the integer parameter it receives.
Passing 1000 to this function means you’ll receive a random integer between
0 and 1000.

Enum.split/2 returns a tuple of two enumerables. The enumerables are split at
the random point selected earlier. The chromosomes are then recombined
with the tails swapped. This is known as single-point crossover and is one of
the simplest crossover methods used. You’ll learn more about single-point
crossover and other crossover techniques in Chapter 6, Generating New
Solutions, on page 87.

Running Your Solution
Your genetic algorithm will now look something like this:

population = for _ <- 1..100, do: for _ <- 1..1000, do: Enum.random(0..1)

evaluate =
fn population ->

Enum.sort_by(population, &Enum.sum/1, &>=/2)
end

selection =
fn population ->

population
|> Enum.chunk_every(2)
|> Enum.map(&List.to_tuple(&1))

end

crossover =
fn population ->

Enum.reduce(population, [],
fn {p1, p2}, acc ->

cx_point = :rand.uniform(1000)
{{h1, t1}, {h2, t2}} =

{Enum.split(p1, cx_point),
Enum.split(p2, cx_point)}
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[h1 ++ t2, h2 ++ t1 | acc]
end

)
end

algorithm =
fn population, algorithm ->

best = Enum.max_by(population, &Enum.sum/1)
IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
if Enum.sum(best) == 1000 do
best

else
population
|> evaluate.()
|> selection.()
|> crossover.()
|> algorithm.(algorithm)

end
end

Your algorithm now has all of the necessary components it needs to produce
a solution; however, you might be wondering why the mutation step was left
out. You’ll find out in a minute—before then, try running your algorithm to
ensure that everything works correctly.

Remember, the algorithm function takes a population and a reference to itself
as input. Additionally, remember that it returns a solution when a maximum
sum of 1000 is achieved. Add the following lines to the end of the one_max.exs
file:

solution = algorithm.(population, algorithm)

IO.write("\n Answer is \n")
IO.inspect solution

Here, you assign the result of the completed algorithm (that is, the solution)
to a variable named solution. You then output some text to the screen to show
what your algorithm has come up with.

Next, go back to your terminal and navigate to the scripts folder. Then run the
following command:

$ elixir one_max.exs
Current Best: 982

But wait, what’s going on here? Why is the algorithm stopping on a best fit-
ness below 1000? It’s likely that, no matter how many times you run it, the
algorithm’s improvement will almost certainly slow near 1000. You may even
find it difficult for the problem to ever reach 1000. The problem is premature
convergence.
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Adding Mutation
Despite initializing your population to a seemingly random distribution, eventu-
ally the parents got too genetically similar to make any improvements during
crossover. This illustrates the importance of including the mutation step in
your algorithm and how vital exploration is to informed search techniques.

After the crossover function in the algorithm, add the following:

|> mutation.()

Now, the structure of the algorithm looks like this:

population
|> fitness.()
|> selection.()
|> crossover.()
|> mutation.()
|> algorithm.(algorithm)

Mutation is similar to the other functions in that it accepts a population as
a parameter. You only want to mutate a small percentage of your population
as well—this is to preserve the progress that’s already been made. Below your
crossover definition, add the following:

mutation =
fn population ->

population
|> Enum.map(
fn chromosome ->

if :rand.uniform() < 0.05 do
Enum.shuffle(chromosome)

else
chromosome

end
end)

end

This function iterates over the entire population and randomly shuffles a
chromosome with a probability of 5%. The :rand.uniform() < 0.05 condition is a
pattern that emerges a lot throughout this book. It’s one way of simulating a
random event in Elixir.

Enum.shuffle/1 takes in an enumerable and randomizes the elements in the
enumerable. Think of it like shuffling a deck of cards. Doing this actually
preserves the fitness of the chromosome; however, it also prevents the parents
from becoming too similar before they crossover. You’ll learn more about this
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technique and others in Chapter 7, Preventing Premature Convergence, on
page 107.

With the mutation function implemented, you’re ready to try running your
algorithm again, like this:

$ elixir one_max.exs
Current Best: 1000
Answer is
[1,1,1...,1]

Congratulations, you’ve just written your first genetic algorithm.

What You Learned
In this chapter, you learned about informed search and why it’s superior to
brute-force search for finding solutions to difficult problems. You also learned
about the types of problems, like finding an optimal shipping route between
cities, that are nearly impossible to solve using brute-force search. Most
importantly, you learned what genetic algorithms are and how to implement
a basic genetic algorithm to solve the One-Max problem.

In the next section, you’ll take the genetic algorithm you created here and
use it to start implementing a general framework that you can apply to
numerous other problems.
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CHAPTER 2

Breaking Down Genetic Algorithms
In the previous chapter, you learned about informed search and why it’s
superior to brute-force search. You were introduced to genetic algorithms
and saw how they balance exploitation and exploration for different problems.
You used this knowledge to tackle the One-Max problem, which is an intro-
ductory optimization problem.

While your previous solution to the One-Max problem was effective, it’s difficult
to both tweak and expand. More advanced applications of genetic algorithms
will require extensive fine-tuning and experimentation to achieve the best
results, which means you need to create modular and easily customizable
solutions.

In this chapter, you’ll once again attack the One-Max problem; but your goal
this time around is to use the One-Max problem to help you design and build
a framework you can use to create genetic algorithms. You can then apply
this framework and structure to other problems—making it easier to tweak
the different aspects of your algorithms.

Reviewing Genetic Algorithms
Recall from the previous chapter that genetic algorithms work via a series of
transformations on populations of chromosomes over some number of gener-
ations. One generation represents one complete series of transformations.
Ideally, the population that results from subsequent generations have better
solutions than previous ones.

The structure of a genetic algorithm provides a generic framework on which
to build. For example, every step in the process takes a population and pro-
duces a population for the next step. Because you know what every step
expects, you can easily generalize your genetic algorithms to all types of
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problems. While some parts of the algorithm—such as encoding, evaluation,
and termination—pertain only to specific problems, most aspects of a genetic
algorithm are common to all problems.

You can use this structure to plan out how your framework will look. You’ll
ask yourself questions like: what parts of the algorithm are common to all
problems? What parts are unique? How can I best split each step for easy
customization? How can I take advantage of Elixir’s features to make my
algorithms as idiomatic, customizable, and modular as possible?

Think about these questions as you continue through the rest of this chapter.

Looking Deeper into Genetic Algorithms
Based on what you’ve learned so far, you should understand that every
genetic algorithm follows the same basic steps. While different algorithms for
different problems may use different techniques, probabilities, or strategies,
they all share the same structure. As a programmer, you want to take
advantage of this.

One of the golden rules of programming is Don’t Repeat Yourself (DRY), which
essentially boils down to not rewriting unnecessary code. You can exploit the
shared structure of genetic algorithms to avoid rewriting code that remains
the same from algorithm to algorithm. Unfortunately, you have to start from
scratch.

So how do you go about designing a versatile framework from the ground up?
Start with the basics. All genetic algorithms follow the same structure. They
all use chromosomes and populations, and they all require similar inputs.
You can use this to your advantage and begin designing from the ground up.

Chromosomes and Populations
Chromosomes represent solutions to problems. In the One-Max problem,
your solutions consisted of a series of 1s and 0s; however, that won’t be the
case for every problem. Some problems are encoded using real values, some
as permutations, and some using characters. Also, some problems require
that you use a data structure other than a list to encode solutions.

All of this means that specific encoding schemes are unique and vary from
problem to problem. To ensure your framework is as general as possible and
works for all of your encoding schemes, you can use the Enumerable protocol.

In Elixir, protocols allow you to implement polymorphism within your libraries.
Data structures that implement the Enumerable protocol can be passed into
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any function within the Enum library. That means you can encode your chro-
mosomes using any data structure that implements Enumerable—even ones
you build yourself.

A population, on the other hand, is simply a collection of chromosomes. The
following image demonstrates the difference between a chromosome and a
population:

Single Chromosome in Search Space Population of Chromosomes in Search Space

For the most part, how you encode a population won’t change—as long as the
population is a series of chromosomes, it doesn’t matter what data structure
you use. For simplicity, this book uses lists to contain chromosomes.

Also, the size of your population doesn’t matter. Bigger populations take
longer to transform, but they may converge on a solution faster, whereas
smaller populations are easier to transform, but they may take longer to
converge.

Based on what you know now, you can begin to define some rules your
framework must enforce, such as:

• To use polymorphism, you must encode chromosomes using a data
structure that implements the Enumerable protocol.

• Because populations are stored as lists, you can use any function in the
Enum or List library to implement transformations.

• Your algorithm should work on any population size.

By enforcing each of these rules, you’ll be able to expand your framework for
a variety of problems.

Initializing the Population
The first step in every genetic algorithm is initializing a population. Typically,
the first population is random—it’s like a shotgun blast onto the search space.
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The idea is to start out examining many different solutions and slowly work
toward the best ones.

You’ve already determined that a population is a list, which means the function
you implement for this step must return a list of chromosomes. But you need
to ensure that your function can apply to all types of problems and doesn’t
include specifics about how chromosomes are encoded. To do this, you can
take a function that generates chromosomes as input.

Elixir allows you to pass functions as arguments to other functions. You can
ensure one of the parameters is a function that produces a chromosome. You
don’t care about the specifics of how this function is implemented; you only
care that this function returns a chromosome.

With this step, you have two main goals:

• The initialization step must produce an initial population—a list of possible
solutions.

• The function which initializes the population should be agnostic to how
the chromosome is encoded. You can achieve this by accepting a function
that returns a chromosome.

Evaluating the Population
The evaluation step is responsible for evaluating each chromosome based on
some fitness function and sorting the population based on this fitness. This
makes it easy to extract the best chromosome from the population. It also
makes it easier to work with the population in the selection step.

Just like encoding schemes vary from problem to problem, so does fitness.
Different problems require different measures of how good a solution is. If
you were trying to find the shortest path between two points, you’d evaluate
your solutions based on the distance of the path they produce. If you were
trying to optimize a portfolio full of stocks, you’d evaluate the portfolio based
on potential return. Essentially, you don’t care how the fitness function is
implemented or even what it returns—you just need a measure that allows
you to compare the fitness of each chromosome against the rest of the chro-
mosomes in the population.

This leaves you with the following goals or requirements of the evaluation step:

• The evaluation step must take a population as input.
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• The evaluation step must produce a population sorted by fitness.

• The function which evaluates the population should take a parameter
that is a function that returns the fitness of each chromosome.

• The fitness function can return anything, as long as the fitness can be
sorted.

Selecting Parents
With a sorted population, you can begin to select parents for reproduction.
Remember, selection is responsible for matching parents that will produce
strong children. Later on, you’ll implement different selection methods to
achieve this effect. For now, the selection method should only pair adjacent
chromosomes in the population. Because the population is sorted, the
strongest chromosomes will reproduce with other strong chromosomes. This
is referred to as elitism selection.

One additional goal of the selection function is to make it easy for the crossover
function to transform the population into a new population. You can do this
by transforming the population of chromosomes into tuples—as you did in
the previous chapter.

Therefore, the rules for selection are:

• The selection step must take a population as input.
• The selection step must produce a transformed population that’s easy to

work with during crossover—say by returning a list of tuples which are
pairs of parents.

Creating Children
Remember that crossover is analogous to reproduction. The goal of crossover
is to exploit the strengths of current solutions to find new, better solutions.
Crossover is one of the last steps before starting a new generation and should
create a population that looks and feels identical to the one you started
with—albeit with new solutions.

In Chapter 6, Generating New Solutions, on page 87, you’ll learn a variety of
crossover methods to use in different circumstances. Remember from the last
step that the transformed population is a list of tuples, which are pairs of
adjacent parents. You need to take these parents and transform the population
into a brand-new population.
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This image might help you understand this step better:

1 0 1 1 1

0 1 0 0 1

0 1 0 0 1

1 0 1 1 1

1 1 0 1 0

1 1 0 1 1

0 0 1 1 1

0 1 1 0 1

1 1 1 1 1

0 0 1 0 1

0 1 0 0 1

1 1 1 1 1

0 0 1 1 0

1 1 0 1 1

1 1 1 1 1

0 1 1 0 1

Parents Children

Notice how you combine each pair of parents to create a new pair of children.
After this step, you should be left with a population that is identical in size
to your original one.

With that in mind, the crossover step should:

• Take a list of 2-tuples as input.

• Combine the 2-tuples, which represent pairs of parents. For now, use
single-point crossover.

• Return a population identical in size to the initial population.

Creating Mutants
Mutation is the last step before the next generation. Remember, the goal of
mutation is to prevent premature convergence by transforming some of the
chromosomes in the population. There are a number of mutation strategies.
For now, you can keep your mutation function the same as the one you used
in Chapter 1, Writing Your First Genetic Algorithm, on page 1. In Chapter
7, Preventing Premature Convergence, on page 107, we’ll introduce other types
of mutation functions. The mutation rate should be kept relatively low—typi-
cally somewhere around 5%.

So what can you gather from this?
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• The mutation step should accept a population as input.

• The mutation step should mutate only some of the chromosomes in the
population—the percentage should be relatively small.

• The mutation strategy should be identical to the mutation function from
the previous chapter.

Termination Criteria
In Chapter 1, Writing Your First Genetic Algorithm, on page 1, you told your
genetic algorithm to stop when the solution reached a maximum. Will you
always know the maximum? Is there always a maximum? What if your algo-
rithm can never achieve a maximum? Do you want it to run forever?

You can gather from this that termination criteria vary from problem to
problem. Sometimes you know the answer; you just need to get there. Other
times you want to see how good you can get your population, but you don’t
want to waste time evolving over millions of generations. You’ll learn various
termination criteria in Chapter 4, Evaluating Solutions and Populations, on
page 51. What you need to know right now is that termination criteria are
defined by the problem you’re working with.

What does this mean? It means you need to accept some kind of termination
criteria. To keep things simple, assume that you’re only ever working with
the One-Max problem with strictly positive, integer fitnesses. When does the
One-Max problem terminate? When the maximum is found.
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What rules can you generate from this?

• Termination criteria must be defined by the problem—the framework
must accept some problem-defined criteria to stop the algorithm.

• Termination criteria, for now, must be just an integer—the maximum
value needed to stop evolution.

Using Mix to Write Genetic Algorithms
Elixir projects are created, built, and tested using Mix. You’ll use Mix for
managing dependencies, testing your libraries, and running your genetic
algorithms. For now, you’ll create a Mix project that contains a framework
for writing genetic algorithms.

Start by opening a terminal and navigating to the genetic directory you created
in the previous chapter, like this:

$ cd genetic

Inside the genetic directory, create a new Mix project using the new command:

$ mix new genetic

genetic is the name of your Mix project. You can choose whatever name you’d
like, so long as it’s a valid name for a Mix project.

Navigate to the genetic directory and inspect its contents, like so:

$ cd genetic && ls
lib mix.exs README.md test

lib will contain all of the contents of your genetic algorithm framework. It
should only contain genetic.ex.

test will contain all of your tests. Don’t worry about the contents of the direc-
tory for now.

mix.exs will contain dependencies and other project configurations. The default
configuration is sufficient for now.

In addition to the default directories and files, you’ll need a directory named
scripts. This directory will contain your solutions to various optimization
problems. In a terminal inside of your Mix project, create a new directory,
like this:

$ mkdir scripts

With the project set up, it’s time to create your framework.
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Building a Framework for Genetic Algorithms
You now have an empty project and an idea of what your genetic algorithm
framework should look like. It’s time to start implementing each step.

Start by opening the genetic.ex file. The file is populated with some default code
and will look something like this:

defmodule Genetic do
...documentation...
def hello do

:world
end

end

You can delete the default documentation and Hello World function. This
module will contain the most basic parts of your genetic algorithm. This is
where you’ll define each step of the algorithm based on the rules you deter-
mined earlier.

Creating an Initial Outline
In genetic.ex, start by creating a function named run, like this:

def run(...) do
population = initialize()
population
|> evolve()

end

This function calls the initialize function, which is responsible for creating the
initial population. You might be wondering why the parameters of run are left
blank. You’ll worry about them later. For now, concentrate on the overall
structure of the code.

After you initialize the population, you pass the population into a function
named evolve. evolve is designed to model a single evolution in your genetic
algorithm. Below the run function, define evolve, like this:

def evolve(population, max_fitness) do
population = evaluate(population, ..., opts)
best = hd(population)
IO.write("\rCurrent Best: ...")
if ... == max_fitness do

best
else

population
|> select()
|> crossover()
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|> mutation()
|> evolve()

end
end

For now, disregard the blank parts of the code. You’ll fill these in at the end.
This function evaluates the population and then extracts the “best” solution
from the population. You can do this using the hd/1 function because one of
the rules for evaluate was that it returns a sorted population. This means the
fittest chromosome will always be the first one in the population.

This function also implements the recursion you need. It defines the base or
termination case. Part of the termination criteria is left blank for now. It
checks some blank value versus the maximum desired fitness. The recursive
case is essentially identical to the recursive case from Chapter 1, Writing Your
First Genetic Algorithm, on page 1.

With the basic outline defined, you can start implementing each step.

Initialization
Remember the rules you defined in the previous section? You’ll use them now
to implement each step correctly. Start with the initialize function. Based on
the design rules discussed previously, you know the function must return a
population represented as a list of chromosomes. You also know that it must
accept some function which produces an encoding of a single solution.

Above the run function, define the initialize function as follows:

def initialize(genotype) do
for _ <- 1..100, do: genotype.()

end

This function is a list comprehension that generates chromosomes using the
provided genotype/0 function. You might be wondering why this function is
called genotype. You’ll learn more about this in Chapter 3, Encoding Problems
and Solutions, on page 33. 1..100 is a range that creates a total of 100 chromo-
somes. Remember, your population can be any size. You can change this
depending on your problem. The function returns a list of 100 chromosomes.

Evaluation
The next step is evaluation. Your rules for evaluation require you to create a
function that sorts the provided population based on a provided fitness
function. Based on how you define the transformations in the outline of your
algorithm, the first parameter of the function should be a population.
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Below initialize/1, create a new function named evaluate:

def evaluate(population, fitness_function) do
population
|> Enum.sort_by(fitness_function, &>=/2)

end

This function is identical to the evaluate function that you defined in Chapter
1, Writing Your First Genetic Algorithm, on page 1. However, rather than
sorting chromosomes by sum, you sort chromosomes based on the provided
fitness_function.

Selection
Now that you have a sorted population, you can define the selection step.
Remember that your selection function needs to return an enumerable of
tuples. For now, it doesn’t take any inputs besides population.

Below evaluate/2, define the select/1 function, like this:

def select(population) do
population
|> Enum.chunk_every(2)
|> Enum.map(&List.to_tuple(&1))

end

This function is identical to the select function you defined in Chapter 1,
Writing Your First Genetic Algorithm, on page 1. The resulting population
is an enumerable of tuples. This makes it easier to implement crossover.

Crossover
At this point, you performed initialization, evaluation, and selection. The
population is transformed and ready for recombination.

Below select/1, add the following:

def crossover(population) do
population
|> Enum.reduce([],

fn {p1, p2}, acc ->
cx_point = :rand.uniform(length(p1))
{{h1, t1}, {h2, t2}} =

{Enum.split(p1, cx_point),
Enum.split(p2, cx_point)}

{c1, c2} = {h1 ++ t2, h2 ++ t1}
[c1, c2 | acc]

end
)

end
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This function should look similar to the crossover method in the previous
chapter. The only difference is that :rand.uniform/1 accepts the length of one of
the parents as input. This is done so the algorithm can work on chromosomes
of any length. Other than that, the algorithm is identical. It splits the parents
at the crossover point, creates two new children, and prepends them to the
population.

Mutation
The final step in the algorithm is mutation. Mutation has no special rules. It
should look identical to the mutation function you defined in Chapter 1,
Writing Your First Genetic Algorithm, on page 1.

Below crossover/1, add the following:

def mutation(population) do
population
|> Enum.map(

fn chromosome ->
if :rand.uniform() < 0.05 do

Enum.shuffle(chromosome)
else

chromosome
end

end
)

end

You iterate over every chromosome in the population, checking to see if some
condition is met. The condition is meant to model picking chromosomes at
random with a probability of 5%. If a chromosome is picked, its genes are
shuffled. If it isn’t, it remains the same.

With that, the basic steps of your algorithm are complete.

Filling in the Blanks
Remember the blanks you left in the evolve and run functions? Also, did you
notice that none of the functions you called in evolve took parameters? It’s
time to fill in these blanks.

The functions initialize/2 and evaluate/2 take extra parameters aside from a pop-
ulation. Because you won’t be calling these functions individually outside the
module, you can take these parameters inside the run and evolve functions
and pass them to initialize and evaluate from there. You need to take the following
parameters into both run and evaluate: fitness_function, genotype, and max_fitness.
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Additionally, with the required parameters in place, you can fill in the blanks
left in the outline of the run and evolve functions.

Edit the functions so they look like this:

def run(fitness_function, genotype, max_fitness) do
population = initialize(genotype)
population
|> evolve(fitness_function, genotype, max_fitness)

end
def evolve(population, fitness_function, genotype, max_fitness) do

population = evaluate(population, fitness_function)
best = hd(population)
IO.write("\rCurrent Best: #{fitness_function.(best)}")
if fitness_function.(best) == max_fitness do

best
else

population
|> select()
|> crossover()
|> mutation()
|> evolve(fitness_function, genotype, max_fitness)

end
end

At this point, all of the blanks are filled. Additionally, the evolve and run func-
tions accept the required problem-specific parameters and pass them to the
functions that need them.

You now have a complete, working framework.

Understanding Hyperparameters
In machine learning, hyperparameters refer to the parts of the algorithm you
set before the algorithm starts training. Internally, the algorithm learns
parameters that help it perform a task. Externally, the programmer controls
parameters that dictate how the algorithm trains.

In the context of genetic algorithms, hyperparameters refer to things like
population size, mutation rate, and so on, that you choose before running
the algorithm.

Because your hyperparameters can have a huge impact on the outcome of
your algorithms, it’s important that you’re able to rapidly change them. To
ensure you can change hyperparameters without too much of a headache,
you need to implement a simple configuration mechanism into your framework
that separates the hyperparameters from the overall structure of the algorithm.
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To start, change the signature of both run/3 and evolve/4 to accept an additional
parameter:

def run(genotype, fitness_function, max_fitness, opts \\ []) do
# ...omitted...
end
def evolve(population, fitness_function, max_fitness, opts \\ []) do
# ...omitted...
end

opts \\ [] indicates an optional parameter that will default to an empty list if
you pass nothing in its place. You can use opts to pass hyperparameters in a
Keyword list. Using a parameter like opts is a common paradigm for Elixir
programs.

After you add opts to the signatures of run, you need to edit all of your functions
to accept opts. Change the function signatures of all of the functions in genetic.ex
to accept an optional opts parameter, like this:

def initialize(genotype, opts \\ []) do
# ...omitted...

end

def evaluate(population, fitness_function, opts \\ []) do
# ...omitted...

end

def select(population, opts \\ []) do
# ...omitted...

end

def crossover(population, opts \\ []) do
# ...omitted...

end

def mutation(population, opts \\ []) do
# ...omitted...

end

Finally, pass opts to every function in run and evolve:

def run(genotype, fitness_function, max_fitness, opts \\ []) do
population = initialize(genotype)
population
|> evolve(fitness_function, max_fitness, opts)

end
def evolve(population, fitness_function, max_fitness, opts \\ []) do

population = evaluate(population, fitness_function, opts)
best = hd(population)
IO.write("\rCurrent Best: #{fitness_function.(best)}")
if fitness_function.(best) == max_fitness do

best
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else
population
|> select(opts)
|> crossover(opts)
|> mutation(opts)
|> evolve(fitness_function, max_fitness, opts)

end
end

For now, the only hyperparameter you’ll account for is population size. To do
this, edit initialize/2 to look like this:

def initialize(genotype, opts \\ []) do
population_size = Keyword.get(opts, :population_size, 100)
for _ <- 1..population_size, do: genotype.()

end

Keyword.get/3 accepts a Keyword, a key, and a default value if there’s no value
for the given key. Here you set the default population size to 100, which is
sufficient for most genetic algorithms.

In later chapters, you’ll be introduced to more hyperparameters and learn to
account for them so your algorithms are easily configurable.

Solving the One-Max Problem Again
With your framework built, it’s time to apply it to the One-Max problem. Open
a terminal and create a new file in the scripts directory named one_max.exs,
like this:

$ touch scripts/one_max.exs

Open the one_max.exs file. Now, think about what your framework already
accomplishes for you and what parts of the problem you need to define. What
are the problem-specific parameters you need to pass into run?

Once you determine what these parameters are, you’ll need to start defining
them. Logically, the first one is how you encode chromosomes. Remember,
for the One-Max problem, you’re looking for the maximum sum of a bitstring
of length N. To keep things consistent, your length should be 1000. This means
your solutions should be bitstrings of length N.

To define your genotype, at the top of the one_max.exs file, add the following:

genotype = fn -> for _ <- 1..1000, do: Enum.random(0..1) end

This should look similar to what you did in Chapter 1, Writing Your First
Genetic Algorithm, on page 1. All that’s missing is the outside for-loop.
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However, if you recall, the outside for-loop is taken care of for you in the ini-
tialization step, so it’s unnecessary now.

The next step is to define your fitness function and termination criteria. How
did you evaluate solutions in the previous chapter? Remember, you want a
maximum sum, so fitness is just the sum. What’s the maximum possible sum
you can achieve with a bitstring of length 1000? 1000. Therefore, your termina-
tion criteria or max_fitness is 1000.

Below genotype, define your fitness function and termination criteria like this:

fitness_function = fn chromosome -> Enum.sum(chromosome) end
max_fitness = 1000

You might notice that you can just pass &Enum.sum/1 into the run function.
That’s perfectly fine; however, it won’t always work out like that. It may make
more sense to be more verbose so you really understand what’s going on.

All you need to do now is call run/4 with your predetermined parameters and
extract your solution. Remember that run/4 returns the best solution once it
is found. You’ll want to assign this to a variable so you can inspect its contents
later on.

Below fitness_function, add the following:

soln = Genetic.run(fitness_function, genotype, max_fitness)

IO.write("\n")
IO.inspect(soln)

Because this file gets run inside of a Mix project, you can call module functions
defined in the Mix project. You assign soln to the result of Genetic.run/4 and
output its contents to the console. This simply runs the genetic algorithm
then inspects the resulting solution.

You’ll notice that, for now, nothing was passed in place of opts. That’s okay,
because you’ve already defined default configuration options.

The next step is to open a terminal and navigate to your Mix project. Once
there, you can run your genetic algorithm like this:

$ mix run scripts/one_max.exs
Current Best: 1000
[1,1,1...,1]

You should note that you must use mix run and not elixir like in the previous
chapter. Using mix ensures your Mix project is compiled and loaded before
the script is executed. From this point forward, you’ll be using mix to run your
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algorithms. For every algorithm, you’ll be told exactly when you can compile
and run your code from a terminal.

What You Learned
In this chapter, you started to create a framework for writing genetic algo-
rithms. You designed the framework by defining criteria that’s consistent and
different between problems. You defined rules that your framework must
enforce to ensure it can be generalized to a number of problems.

You then took the basic framework you created and re-solved the One-Max
problem. Notice that the framework did most of the legwork for you. With the
framework defined, you can focus on solving more difficult problems using
genetic algorithms.

Up next, you’ll explore the problem-specific aspects of genetic algorithms and
learn how to fit problems into the framework you created in this chapter.
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CHAPTER 3

Encoding Problems and Solutions
Not all problems are created equal. Every optimization problem you face will
inevitably have a unique set of challenges. However, this doesn’t mean that
you should approach every problem differently, as patterns will often arise
from one problem to the next.

A key aspect of problem solving is to model problems in a way that makes them
easier to understand and thus easier to solve. This might mean translating data
into formats that are easier to work with, choosing or creating data structures
that simplify solutions, or transforming the problem itself into a form you already
know. The steps you take at the beginning when planning your approach to
solving a specific problem are vital to finding its solution.

In the previous chapter, you designed a framework for writing genetic algo-
rithms. The framework you designed generalized the steps common to all
genetic algorithms. The purpose of this exercise was both to better understand
the structure of genetic algorithms and optimization problems and to make
it easier for you to write genetic algorithms in the future.

In the process of designing this framework, you separated problem-specific
aspects from more general aspects of genetic algorithms. In this chapter, you’ll
take a closer look at these problem-specific aspects and how to handle them.

Using Structs to Represent Chromosomes
The chromosomes you created in the previous chapters are enumerable objects
that represent solutions to a problem. At the most fundamental level, this is
correct; however, in practice, this isn’t a viable implementation.

Consider this: you’re attempting to solve a problem in which the age of the
chromosome determines its fitness. One reason you’d do this is to ensure
enough variance between generations. Ideally, you’d persist older chromosomes
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between generations to a certain point, before killing them off once they’ve
reached a certain age. In this respect, you ensure an equal distribution of
both old and young chromosomes and, thus, naturally occurring variance in
the population. Solving a problem like this using only an Enum type to represent
a chromosome creates unnecessary complexity. It’s often the case that you
need a more robust data structure to keep track of a number of metrics at a
time. In Elixir, you can accomplish this task using a struct.

A struct is a map with a few additional features. Structs allow you to define
default values and required fields. They also cannot take on additional fields
after their creation.

The guarantees that structs provide make them a perfect fit for defining cus-
tom types—without the fear of breaking your programs. With structs, you
can ensure that a predefined chromosome type is initialized with a predefined
set of genes—one that won’t break your genetic algorithms.

Creating a chromosome struct offers a number of conveniences that you
wouldn’t have if you simply used an Enum or some other data type to represent
a chromosome. For example, if you wanted to calculate the average fitness
of a population, you would need to recalculate the fitness of each individual
chromosome first, which can be a computationally expensive task. Using a
struct, however, you can save time by only calculating the fitness once, and
then storing it as a key-value pair within the struct itself.

Understanding Chromosomes

1 1 0 0 1 1 0

1

1

Chromosome

Gene

Allele

Before you’re ready to create a struct that models a chromosome, you first
need to understand what a chromosome is and what characteristics it has.
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At the most basic level, a chromosome is a single solution to your problem.
It’s a series of genes consisting of values known as alleles. Genes can represent
any number of things. For example, in the shipping problem introduced in
Chapter 1, Writing Your First Genetic Algorithm, on page 1, each gene rep-
resents a successive stop in a city. The entire chromosome, then, represents
a complete path to every city defined in the problem.

Genes are typically represented using list types or other enumerable data
types, like trees, sets, and arrays. In Elixir, the Enum library provides a number
of useful functions for manipulating any data type that implements the Enu-
merable protocol. In fact, the framework you wrote in the previous chapter
exclusively uses Enum library functions. Therefore, you can represent genes
using any data type that implements the Enumerable protocol—even ones that
are not part of the Elixir standard library.

While genes are the most fundamental piece of a chromosome, there are
several characteristics you can track for both convenience and functionality.
A basic chromosome struct could include fitness, size, and age on top of
genes. For simplicity, the chromosome struct in this book will consist of these
exact features. In later chapters, you’ll see the convenience that tracking
these characteristics can provide.

The characteristics you may choose to add to your chromosome struct have
no limits. Some problems may require additional features not described in
this chapter—the beauty of structs is in their flexibility. Choosing to represent
a chromosome in this manner gives you the ability to rapidly adjust what you
need for each problem.

Creating a Chromosome Struct
Open a terminal and navigate to the genetic/lib directory. From there, create a
new directory named types, as well as a new file named chromosome.ex, like this:

$ mkdir types
$ touch types/chromosome.ex

You’ll create the chromosome struct within types/chromosome.ex. Open the
types/chromosome.ex file and add the following code:

defmodule Types.Chromosome do

defstruct [:genes, :size, :fitness, :age]

end
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This code defines a module Types.Chromosome, which contains a struct consisting
of the keys :genes, :size, :fitness, and :age. Remember, defstruct is used to define a
new struct. The atoms that follow are the fields the struct contains. You can
create a new chromosome struct using the %Types.Chromosome syntax.

This version of the chromosome struct will work, but it lacks a bit of function-
ality. Currently, none of the fields have default values and there are no
required keys. This means that a newly created chromosome struct could
technically contain fields with all nil values.

Change the chromosome struct by adding defaults for :size, :fitness, and :age,
like this:

defstruct [:genes, size: 0, fitness: 0, age: 0]

Now, any newly created chromosome will have a default size, fitness, and age
of 0. You could technically make the default values whatever you want—it all
depends on what you’re trying to accomplish.

Finally, all chromosomes must contain genes. If a chromosome doesn’t have
any genes, it’s not really a chromosome. To make this chromosome require
genes, add the following code above defstruct:

@enforce_keys :genes

Your final module will look like this:

defmodule Types.Chromosome do

@enforce_keys :genes
defstruct [:genes, size: 0, fitness: 0, age: 0]

end

You can now create chromosome structs that track the genes, size, fitness,
and age of a chromosome in your populations.

Creating a Chromosome Type
Elixir is a dynamically typed language; however, it’s often useful to create
typespecs for custom data types. Typespecs are useful for documentation
and static code analysis using tools like dialyzer. This book won’t cover the use
of dialyzer, but you’ll use the types you create in this section later in the
chapter.

A typespec is defined using the @type attribute followed by the name and
definition of the type. Elixir supports compound types as well as the creation
of custom types using structs.
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You’ll create your chromosome type in the types/chromosome.ex file. Open the
types/chromosome.ex file and add the following code above the struct you defined
in the previous section:

@type t :: %__MODULE__{
genes: Enum.t,
size: integer(),
fitness: number(),
age: integer()

}

This code creates a custom type t, which is an instance of a Types.Chromosome
struct. The __MODULE__ keyword is a macro that gets replaced with the name
of the module in which it’s defined. t is a standard practice for defining module
types in Elixir.

The chromosome type also declares specific types for the fields of the chromo-
some. As mentioned previously, genes must be an Enum type. Size and age
are both integers. Fitness is a number, which is a built-in Elixir type represent-
ing a float or integer.

The final Chromosome module will look like this:

defmodule Types.Chromosome do

@type t :: %__MODULE__{
genes: Enum.t,
size: integer(),
fitness: number(),
age: integer()

}

@enforce_keys :genes
defstruct [:genes, size: 0, fitness: 0, age: 0]

end

Using Behaviours to Model Problems
Recall that one technique to solving problems is to transform them into a
form you already understand. While every problem seems different, and on
the surface may require different techniques to solve, they almost always
have patterns and similarities between them. This is especially true with the
problems you’ll solve with genetic algorithms.

The framework you built in Chapter 2, Breaking Down Genetic Algorithms,
on page 15, separates a few problem-specific parameters from the common
aspects of a genetic algorithm. These parameters are a fitness function, a
genotype, and termination criteria. This means that every problem you attempt
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to solve using a genetic algorithm must implement all three of these func-
tions—the nature of the framework creates a natural abstraction for problems.

An abstraction is a simplification of underlying complexities and implementa-
tions. The purpose of abstraction is to force you to think of things at different
levels of specificity. It gives you an idea of what to look for before you approach
a problem. This is especially useful when approaching new problems with
genetic algorithms. When you want to approach a new problem, you already
know that you need a fitness function, or a way to measure success; a geno-
type, or a way to represent solutions; and some termination criteria, or a way
to tell the algorithm when to stop. While the specifics are the difficult part,
you’re never starting from scratch with this abstraction in place.

Unfortunately, Elixir doesn’t feature abstract classes, interfaces, or traits like
other object-oriented languages. Instead, you can implement abstraction
using behaviours.

Mind the “u”

Elixir uses the British spelling of “behaviour.”

Behaviours Are a Contract
In much the same way that interfaces enforce a specification in object-oriented
languages, behaviours enforce specifications in Elixir.

A behaviour is a contract—a means of defining what you want with specifica-
tions and ensuring that any module that implements a behaviour does the
same. With a behaviour, you can define functions that a module must
implement to be valid.

Behaviours consist of a number of callbacks. Callbacks are function signatures
with an accompanying return type. Callbacks indicate what functions
behaviours must implement, with guidelines on what they take and what
they return.

A callback looks something like this:

@callback function_name(parameter_type, parameter_type, ...) :: return_type

To define a behaviour, you define a series of callbacks within a module. A
behaviour looks like this:
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defmodule Behaviour do

@callback function1(String.t) :: {:ok, String.t}
@callback function2(List.t) :: {:ok, List.t} | {:error, String.t}

end

You would then adopt a behaviour, like so:

defmodule Adopt do
@behaviour Behaviour

@impl Behaviour
def function1(string), do: {:ok, string}

@impl Behaviour
def function2(list) do

case list do
nil -> {:error, "Can't be nil!"}
_ -> {:ok, list}

end
end

end

Behaviours are relatively straightforward to implement. You define a module
that contains a series of callbacks. Defining a behaviour is the same as
defining an outline for a module which adopts that behaviour. When adopting
a behaviour, you simply enumerate the name of the behaviour, followed by
implementations of the required callbacks.

Note that the @impl keyword is not necessarily required; however, it does
generate useful warnings when your functions don’t do what they’re specified
to do.

You’ll use behaviours to define a contract for the problems you want to solve
using genetic algorithms. The problem behaviour will ensure that the problem-
specific parts of your genetic algorithm are implemented correctly and are
seamlessly integrated with the framework you designed earlier in Chapter 2,
Breaking Down Genetic Algorithms, on page 15.

Creating the Problem Behaviour
To get started writing your behaviour, create a new file within the lib directory
named problem.ex.

Now, open the problem.ex file and add a new module named Problem, like this:

defmodule Problem do
alias Types.Chromosome

end
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This is a barebones module that contains an alias for the Chromosome module
you created in the previous section. The alias makes accessing the Chromosome
module easier later on.

At this point, it’s time to start thinking about what a problem consists of.
Remember, you need to define callbacks that modules adopting the Problem
behaviour will need to implement. In the previous chapter, the problem-spe-
cific functions were a fitness function and a genotype function, which is a
good place to start.

Think about what each of these functions took as input and what they
needed to do. The genotype function didn’t require any input. All it needed
to do was return an enumerable which represented a single chromosome. In
this chapter, you created a chromosome type that works in place of the orig-
inal representation of a chromosome. Therefore, all the function needs to do
is return a chromosome.

Your genotype callback will look like this:

@callback genotype :: Chromosome.t

Chromosome.t is the custom type you built in the previous section. This means
that genotype/0 must return a chromosome struct.

The next function a problem needs is a fitness function. Remember, a fitness
function assesses the fitness of a single chromosome and returns some sort
of fitness value. In practice, a fitness function can return any value, so long
as the value can be sorted in some way. In this book, you’ll only create fitness
functions that return positive or negative numbers, so you can simplify the
callback to only return numbers. The callback will look like this:

@callback fitness_function(Chromosome.t) :: number()

The last problem-specific parameter you must implement is a termination
criteria. In the previous chapter, this criteria was represented as a max fitness.
This was sufficient for the One-Max problem; however, you won’t always be
able to reach a specific fitness threshold. Sometimes you won’t even know
what a solid threshold is. You’ll need more problem-specific termination
criteria.

Most of the time, termination is determined based on information about the
population or after a maximum number of steps. In Chapter 4, Evaluating
Solutions and Populations, on page 51, you’ll learn more about termination
criteria. What you need to define at this point is a function that analyzes the
population and tells your framework whether to continue evolving or to cease
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and return the best solution. This function should take an enumerable repre-
senting the population and return a Boolean indicating whether the evolution
should stop or continue.

Something like this will work:

@callback terminate?(Enum.t) :: boolean()

The function terminate?/1 takes in a population and returns a Boolean—false
means continue evolving and true means stop and return. The question-mark
at the end is common to Boolean functions in Elixir.

The problem behaviour will now look like this:

defmodule Problem do
alias Types.Chromosome

@callback genotype :: Chromosome.t

@callback fitness_function(Chromosome.t) :: number()

@callback terminate?(Enum.t) :: boolean()

end

This module represents a contract you can use for all of the problems you
want to solve using a genetic algorithm. It provides a very simple abstraction
from which to start—implementing specifics is difficult, but you know exactly
what you need to implement with each problem.

Adjusting the Framework
To insert the Problem behaviour into your framework, you’ll need to make a
few minor adjustments. Additionally, you’ll need to make some changes to
account for your new chromosome struct.

First, open the genetic.ex file and add the following at the top:

alias Types.Chromosome

The alias is necessary to easily access the chromosome struct.

Next, locate the run and evolve functions you defined in the previous chapter,
and change them to look like this:

def run(problem, opts \\ []) do
...

end
def evolve(population, problem, opts \\ []) do

...
end
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Now you need to reference the functions specific to the problem behaviour
rather than those passed in as parameters. Change the body of the run and
evolve functions to look like this:

def run(problem, opts \\ []) do
population = initialize(&problem.genotype/0)➤

population
|> evolve(problem, opts)➤

end
def evolve(population, problem, opts \\ []) do

population = evaluate(population, &problem.fitness_function/1, opts)➤

best = hd(population)
IO.write("\rCurrent best: #{best.fitness}")➤

if problem.terminate?(population) do➤

best
else

population
|> select(opts)
|> crossover(opts)
|> mutation(opts)
|> evolve(problem, opts)➤

end
end

Notice that all the references to parameters have been changed to references
to the corresponding function in the problem parameter. This is because the
termination criteria depends on the population of chromosomes already
having an associated fitness. All of the other code is the same.

The next change you need to make is to ensure you’re constantly updating
your chromosome structs with new ages and fitnesses as you transition
between generations. You can do this in the evaluate function. Change it to
look like this:

def evaluate(population, fitness_function, opts \\ []) do
population
|> Enum.map(➤

fn chromosome ->➤

fitness = fitness_function.(chromosome)➤

age = chromosome.age + 1➤

%Chromosome{chromosome | fitness: fitness, age: age}➤

end➤

)➤

|> Enum.sort_by(& &1.fitness, &>=/2)
end

Finally, you need to adjust the crossover and mutation functions so they work
correctly with your chromosome type. Change your functions to look like this:
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def crossover(population, opts \\ []) do
population
|> Enum.reduce([],

fn {p1, p2}, acc ->
cx_point = :rand.uniform(length(p1.genes))➤

{{h1, t1}, {h2, t2}} =
{Enum.split(p1.genes, cx_point),➤

Enum.split(p2.genes, cx_point)}➤

{c1, c2} =
{%Chromosome{p1 | genes: h1 ++ t2},➤

%Chromosome{p2 | genes: h2 ++ t1}}➤

[c1, c2 | acc]
end

)
end

def mutation(population, opts \\ []) do
population
|> Enum.map(

fn chromosome ->
if :rand.uniform() < 0.05 do

%Chromosome{chromosome | genes: Enum.shuffle(chromosome.genes)}➤

else
chromosome

end
end

)
end

Notice how these functions now return new chromosomes as well as reference
the genes of old chromosomes rather than working on the chromosomes
directly with Enum. This will give you access to the fields you define for the
Chromosome struct, such as age, fitness, and size.

With these minor adjustments, your framework is now completely compatible
with the work you did in this chapter.

Understanding and Choosing Genotypes
One of the most important decisions you can make when using a genetic
algorithm is the type of encoding you use to represent solutions. Encodings
are simply representations of a single solution. A good encoding needs to
contain only the information necessary to represent a complete solution to a
problem. If a solution is a path through a grid, an encoding of a solution
would only need to contain the coordinates of each gridpoint it passes through.

The type of encoding scheme you use is known as a genotype. The genotype
of a chromosome tells you what the chromosome should look like. It defines
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your search space. For example, if you’re trying to create an optimal shipping
route through fifteen cities, your genotype is a permutation of all fifteen cities.

While the genotype is the internal representation of solutions, the phenotype
is the expressed representation of solutions. The following figure illustrates
the relationship between genotype and phenotype:

5 4 0 1 3 2

City 5

City 4

City 0

City 1

City 3
City 2

Genotype

Phenotype

You don’t need to understand the distinction between genotype and phenotype.
It’s just some useful terminology.

Out of a number of different genotypes, this book will use three—binary, permu-
tation, and real-value—because these are the most common and sufficient for
fully understanding genetic algorithms. You’ll also meet a fourth—tree-based—
because it’s relatively common, but you won’t use any in this book.

Binary Genotypes

1 1 0 0 1 1 0

Binary genotypes, or bitstrings, are genes consisting of only 1s and 0s. This
is the genotype you used to represent solutions to the One-Max problem. The
binary genotype is the most common genotype because you can apply it to
such a wide variety of problems. One example of how you can use binary
genotypes is in representing different characteristics. Each gene can represent
the presence of a single characteristic—either with a 1 or a 0. You can even
use binary genotypes to represent continuous values.
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Binary Genotypes

The binary genotype or bitstring was the original intended solution
representation in the original genetic algorithm. For a long time,
the use of a binary genotype is one thing that helped differentiate
genetic algorithms from other evolutionary algorithms like evolution
strategies. Some might argue that an algorithm can’t reasonably
be considered a genetic algorithm if solutions aren’t encoded as
bitstrings. Most of the time, however, this distinction doesn’t
matter.

Permutation Genotypes

5 4 0 1 3 2 6

The second most common genotype is permutations. Permutations are espe-
cially effective for scheduling problems or finding paths in a finite set of points.
The types of problems involving permutation genotypes are called combinato-
rial optimization. Combinatorial optimization problems look for ordered solu-
tions. The traveling salesman problem is an example that you can implement
using a permutation genotype. Each city is encoded as a number and the
path is an order of cities. One limitation of permutations is the type of
mutation and crossover that you can use. It’s especially difficult to create
new chromosomes that maintain the integrity of the permutation.

Real-Value Genotypes

0.9 0.5 0.8 0.4 0.2 0.3 0.1

S A B Q T Y K

The last genotype you’ll see in this book is the real-value genotype. Real-value
genotypes represent solutions using real values. This “real value” could be a
string, a float, a character, and so forth. This is especially common for prob-
lems involving weights of some sort or where you need to generate a string.
Real-value genotypes are less common, but they prove useful when you need
to optimize parameters of some sort.
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Why Real-Value Genotypes?

As mentioned before, you can use binary genotypes to represent
pretty much anything. So why is it necessary to have real-value
genotypes? One reason is precision. When you manually encode
and decode continuous values as binary genotypes, you lose access
to the floating-point precision implemented natively on your
machine. Additionally, the use of real-value genotypes can simplify
your code, as you don’t have to worry about manually encoding
and decoding solutions.

Tree/Graph Genotypes

+

- X

6571

One particularly interesting genotype that you’ll encounter is a tree-based or
graph genotype. The most common application of tree genotypes is in genetic
programming. Genetic programming is a branch of evolutionary computation
in which one tries to evolve programs to achieve a desired result. The idea is
that you can teach a computer to program itself. In these cases, solutions
are typically represented as syntax trees representing valid programs. As
interesting as they are, there’s little evidence that shows genetic programming
is of any tangible use. It’s difficult to evolve solutions so that they remain
valid, and other techniques out there perform better on programming tasks.

Solving One-Max for the Last Time
To get your feet wet with the Problem behaviour you created in this chapter,
start small by solving the One-Max problem. You already know what the three
problem-specific parameters should look like; all you have to do is fit them
into the framework you defined in this chapter.
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Open the scripts/one_max.exs file and replace the contents with this:

defmodule OneMax do
@behaviour Problem
alias Types.Chromosome

@impl true
def genotype do

genes = for _ <- 1..42, do: Enum.random(0..1)
%Chromosome{genes: genes, size: 42}

end

@impl true
def fitness_function(chromosome), do: Enum.sum(chromosome.genes)

@impl true
def terminate?([best | _]), do: best.fitness == 42

end

By now, you should be familiar with these functions, as they are identical to
the functions you implemented in your previous attempts at solving the One-
Max problem. This time, however, they fit within your problem behaviour.

To run your solution, add the following code below your module definition:

soln = Genetic.run(OneMax)

IO.write("\n")
IO.inspect(soln)

Now, run one_max.exs:

$ mix run scripts/one_max.exs
Current Best: 42
%Types.Chromosome{

age: 1,
fitness: 42,
genes: [1, 1,..1],
size: 42

}

Spelling Words with Genetic Algorithms
To illustrate the power of your new framework, you’ll use it to solve a new
basic problem: spelling. You’ll teach your algorithm to spell an impossibly
long word: supercalifragilisticexpialidocious.

Start by creating a new file called speller.exs in scripts and define a new problem:

defmodule Speller do
@behaviour Problem
alias Types.Chromosome
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def genotype, do: # ...

def fitness_function(chromosome), do: # ...

def terminate?(population), do: # ...

end

Now you need to define a Problem implementation for your tasks. In this
chapter, you learned there are three parts to every problem: a genotype, a
fitness function, and termination criteria.

The first thing you’ll want to decide is the genotype. Your goal is to spell
supercalifragilisticexpialidocious which is a 34-letter word. That means your
search space is all 34-letter words. You can define your genotype like this:

def genotype do
genes =

Stream.repeatedly(fn -> Enum.random(?a..?z) end)
|> Enum.take(34)

%Chromosome{genes: genes, size: 34}
end

Stream.repeatedly/1 returns a Stream that will continuously apply a function. In
this case, the function you want it to apply is Enum.random/1 over every single
alphabetical character. You then take 34 different characters from the stream
to produce solutions.

The next thing you need is a fitness function. You want your fitness function
to be a measure of how close the guessed word is to the target word. Luckily,
Elixir has some functions that implement the desired behavior. Implement
your fitness function like this:

def fitness_function(chromosome) do
target = "supercalifragilisticexpialidocious"
guess = List.to_string(chromosome.genes)
String.jaro_distance(target, guess)

end

String.jaro_distance/2 returns the similarity between the two words, with 1 meaning
the words are the same. You need to convert your genes to a string because
String.jaro_distance/2 expects two Strings.

Because String.jaro_distance/2 only returns 1 when the words are the same, you
can implement your termination criteria like this:

def terminate?([best | _]), do: best.fitness == 1

That’s all you need. Your whole problem should look like:
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defmodule Speller do
@behaviour Problem
alias Types.Chromosome

def genotype do
genes =
Stream.repeatedly(fn -> Enum.random(?a..?z) end)
|> Enum.take(34)

%Chromosome{genes: genes, size: 34}
end

def fitness_function(chromosome) do
target = 'supercalifragilisticexpialidocious'
guess = chromosome.genes
String.jaro_distance(target, guess)

end

def terminate?([best | _]), do: best.fitness == 1
end

Now, add the following below your module:

soln = Genetic.run(Speller)

IO.write("\n")
IO.inspect(soln)

Now run your algorithm:

$ mix run scripts/speller.exs
Current Best: 1.0
supercalifragilisticexpialidocious

That’s all it takes. Spelling a word you can just look up might not be the most
impressive task; however, this problem shows the power of your framework.
All you need to run a genetic algorithm against a problem is to define a
genotype, fitness function, and termination criteria.

“It’s Taking Too Long...”

You might find that your algorithm in the last problem takes
awhile to converge. That’s OK. You haven’t been equipped with
the necessary tools to write algorithms that converge quickly on
more difficult problems like this one. In the next few chapters,
you’ll add some tools that will make algorithms like this one a
breeze.

As you continue through this book, you’ll use this same Problem abstraction
to solve progressively more difficult problems.
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What You Learned
In this chapter, you learned how to take advantage of Elixir’s language features
to better represent chromosomes. You also learned about the importance of
abstraction to solving difficult problems. You used this principle to create a
basic problem behaviour for modeling an optimization problem. You then
learned about the different genotypes and how important encoding is.

In the next chapter, you’ll take a short detour before diving into more difficult
aspects of genetic algorithms. You’ll learn about testing with randomness and
verifying the correctness of the algorithms you’ve already written.
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CHAPTER 4

Evaluating Solutions and Populations
Every problem has an objective. The goal of optimization is to maximize or
minimize a value. The goal of search is to find a path to an objective. The
common thread between optimization and search is an objective.

Your objective is your final destination—the end goal of your genetic algorithm.
Sometimes, you might not know exactly what your end goal looks like, but
you still need a way to know if you’re moving in the right direction. If you’ve
ever played the game “Hot or Cold,” you understand what this looks like. You
search for an object and somebody gives you clues to its location by telling
you whether you’re “hot”—close to the object—or “cold”—further from the
object. “Hot” and “cold” are basic assessments of your current location—they
help you continue moving in the right direction without actually knowing
where you’re going.

In genetic algorithms, fitness functions tell you how “hot” or “cold” you are. You
use them as a barometer to measure your progress toward the best solution.

That’s why each new generation in a genetic algorithm starts with an evalua-
tion of the current population. The evaluation step is crucial in ensuring your
algorithm is progressing toward the best solution. In Chapter 2, Breaking
Down Genetic Algorithms, on page 15, you defined the evolve/3 function in
lib/genetic.ex. If you recall, that function looks like this:

def evolve(population, problem, opts \\ []) do
population = evaluate(population, &problem.fitness_function/1, opts)
best = hd(population)
IO.write("\rCurrent best: #{best.fitness}")
if problem.terminate?(population) do

best
else

population
|> select(opts)
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|> crossover(opts)
|> mutation(opts)
|> evolve(problem, opts)

end
end

At two points in this code, the population is being evaluated. The first instance
occurs in the first line of the function body, and looks like this:

population = evaluate(population, &problem.fitness_function/1, opts)

This line of code immediately transforms the population variable passed to the
run/2 function by calling the evaluate/2 function to assess the population based
on your problem-specific fitness function.

The next point of evaluation is a little less obvious. Take note of the if-condi-
tion, which determines when to stop an evolution and return the best solution.
The condition calls problem.terminate?/1, which assesses the population based
on some problem-specific parameter and decides whether or not to continue.

Fitness functions and termination criteria are two means of assessing solutions
in a genetic algorithm. Fitness functions tell you how good a solution is.
Termination criteria tells you when to stop the genetic algorithm and return
the solution. More often than not, your termination criteria is tied to the best
fitness in your population. Both fitness functions and termination criteria
are equally important in creating an effective genetic algorithm to solve your
problems.

In this chapter, you’ll start by examining a new kind of problem to illustrate
the importance of crafting a good fitness function and to learn how to craft
fitness functions using common techniques for different problems. Addition-
ally, you’ll learn how to define termination criteria that stops your algorithms
from searching and returns the best possible solutions.

Optimizing Cargo Loads
Suppose you work for a shipping company that has asked you to determine
how to properly load cargo with different products so that you maximize
profits and don’t exceed a specified weight limit. You have ten products,
labeled A–J, with corresponding weights: [10, 6, 8, 7, 10, 9, 7, 11, 6, 8]. Each project
has an associated profit margin: [6, 5, 8, 9, 6, 7, 3, 1, 2, 6] and the weight limit of
the cargo is 40. The image on page 53 shows the loads and their corresponding
weights and profit margin.

You need to determine exactly which products to load to maximize profits
and not go over the weight limit.
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A
Weight: 10

Profit: 6

C
Weight: 8
Profit: 8

E
Weight: 10

Profit: 6

G
Weight: 7
Profit: 3

H
Weight: 11

Profit: 1

I
Weight: 6
Profit: 2

B
Weight: 6
Profit: 5

D
Weight: 7
Profit: 9

F
Weight: 9
Profit: 7

J
Weight: 8
Profit: 6

Truck Bed
Weight Limit: 40

The problem presented here is a modification of the knapsack problem. The
knapsack problem belongs to a class of optimization problems known as
constraint satisfaction problems. Constraint satisfaction problems or CSPs
are a type of optimization problem in which you’re asked to optimize a value
under a set of constraints. Constraints are some limitation placed on your
solutions. For example, in the problem above, your profits are limited by the
amount of cargo you can fit in your truck.

To get started solving this problem, create a new file cargo.exs and add a new
Problem implementation to it:

defmodule Cargo do
@behaviour Problem
alias Types.Chromosome

@impl true
def genotype, do: # ...

@impl true
def fitness_function(chromosome), do: # ...

@impl true
def terminate?(population), do: # ...

end

The first thing you need to do is determine how to represent your solutions.
You have ten classes of cargo you can bring on board. You have two options
with each class of cargo: bring it or not bring it. You can represent configura-
tions with a binary genotype of size 10. In this case, the solution 1011000010
means you are bringing Product A, Product C, Product D, and Product I.
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Implement the genotype like this:

def genotype do
genes = for _ <- 1..10, do: Enum.random(0..1)
%Chromosome{genes: genes, size: 10}

end

Next, you need to implement a fitness function. Your objective is to maximize
profit, so your fitness function needs to somehow relate back to profitability.
You need to somehow account for weights, but you can worry about that later.

Your fitness function should sum the total profits gained by the proposed
cargo configuration. Implement it like this:

def fitness_function(chromosome) do
profits = [6, 5, 8, 9, 6, 7, 3, 1, 2, 6]
profits
|> Enum.zip(chromosome.genes)
|> Enum.map(fn {p, g} -> p * g end)
|> Enum.sum()

end

Here you multiply the potential profit of a product by 1 or 0 depending whether
or not it’s present in the cargo configuration. Then you sum the list to receive
the total profits.

The final thing you need to implement is the termination criteria. The maxi-
mum total profit you can achieve if you fit all the cargo on your truck is 53.
For now, your termination criteria will look like this:

def terminate?(population), do:
Enum.max_by(population, &Cargo.fitness_function/1).fitness == 53

Now, below your module definition, add the following:

soln = Genetic.run(Cargo, population_size: 50)

IO.write("\n")
IO.inspect(soln)

weight =
soln.genes
|> Enum.zip([10, 6, 8, 7, 10, 9, 7, 11, 6, 8])
|> Enum.map(fn {g, w} -> w*g end)
|> Enum.sum()

IO.write("\nWeight is: #{weight}\n")

In this snippet, you run your algorithm with a population of 50 to obtain a
solution. Then, you inspect the solution to see what the best configuration
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is. Finally, you calculate the total weight of this configuration and output the
result to the console.

Next, run your problem like this:

$ mix run examples/cargo.exs
Current Best: 53
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Weight is: 82

While your profits are very high, your weight is through the roof. Your solution
doesn’t correctly account for the stated constraint. Essentially, you’ve just
implemented One-Max all over again. You need a different technique to
account for constraints: penalty functions.

Introducing Penalty Functions
You need a way to account for solutions that aren’t considered valid—meaning
they don’t meet the constraints defined by the problem. For example, in your
cargo problem, you need a way to penalize solutions that exceed the weight
limit so your algorithm doesn’t produce an invalid solution. A penalty function
is a function applied to constraint satisfaction problems for the purpose of
reducing the constraint satisfaction problem into an unconstrained problem.
Rather than putting constraints on possible solutions, penalty functions incur
a cost on solutions that violate a constraint of the original problem.

In layman’s terms, that means you take points away from solutions that aren’t
valid so they don’t get considered better than solutions that are valid.

To better understand penalty functions, consider this: the speed limit changes
depending on the road you’re driving on. Law enforcement would love it if
your car automatically detected the speed limit of a certain road and allowed
you to drive only at or below that speed. Of course, implementing this would
be impossible—there are too many roads, and speed limits change rapidly
between them. Rather than putting constraints on cars, the law introduces
a penalty for driving over the speed limit. The penalty is a speeding ticket.
The cost of speeding outweighs the cost of driving within the speed limit. In
this way, the law eliminates the need for explicit constraints and instead
punishes drivers who don’t obey the rules.

Penalty functions can be simple or complex depending on your problem.
Oftentimes, it’s useful to make the penalty proportional to how much the
constraint was violated. In the speeding example, you could fine somebody
$10 for every mile per hour they drove above the speed limit. This means
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excessive speeders are punished more heavily than those who operate close
to the limits.

Penalty Functions

If you research penalty functions outside of this book, you’ll find
several common penalty functions for optimization problems such
as delta penalty, quadratic penalty, or closest valid penalty. It can
be useful to know these for advanced problems, but it’s not neces-
sary right now. As long as you understand what penalty functions
are meant to accomplish, you’ll be able to understand and apply
more complex methods of implementing them.

Applying a Penalty to the Shipping Problem
Now that you understand penalty functions, you need to apply them in the
context of your cargo problem. You’ll implement a very basic penalty: if a
solution exceeds the weight limit, its fitness is 0. Otherwise, its fitness is equal
to the profit it yields.

To implement this penalty, change your fitness function to look like this:

def fitness_function(chromosome) do
profits = [6, 5, 8, 9, 6, 7, 3, 1, 2, 6]
weights = [10, 6, 8, 7, 10, 9, 7, 11, 6, 8]
weight_limit = 40

potential_profits =
chromosome.genes
|> Enum.zip(profits)
|> Enum.map(fn {c, p} -> c * p end)
|> Enum.sum()

over_limit? =
chromosome.genes
|> Enum.zip(weights)
|> Enum.map(fn {c, w} -> c * w end)
|> Enum.sum()
|> Kernel.>(weight_limit)

profits = if over_limit?, do: 0, else: potential_profits
profits

end

In this snippet, you define problem-specific constants: profits, weights, and
weight_limit. Then you calculate the potential profit in the same way you did in
your previous fitness function. Next, you calculate the total weight and
determine whether or not it exceeds weight_limit. Finally, you return a profit
based on your penalty.
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Now, you can try running your algorithm again:

$ mix run scripts/cargo.exs
Current Best: 39

After awhile, you might notice your algorithm stops improving but doesn’t
stop running. You may have anticipated this. With your new penalty, but old
termination criteria, your algorithm will never stop running because it can
never reach the maximum possible profits.

Theoretically, you could calculate your new potential max, but that defeats the
purpose of using a genetic algorithm. Instead, you need to know when to stop
your algorithm, even when you don’t know what the best solution looks like.

Defining Termination Criteria
Next to a good fitness function, termination criteria is the most important
aspect of your genetic algorithms. If you don’t know when to stop and return
a solution, you’ll never get a solution in the first place. The goal of termination
criteria is to stop the algorithm when it has reached maximum fitness. You
could write a perfect algorithm, but if it never knows when to stop, it wouldn’t
matter. Imagine if you successfully managed to get out of the woods and
reached civilization, but you kept wandering back into the woods because
you didn’t know you were back to safety.

Most of the problems you worked with so far have explicit goals. You know
what the solution should look like, so you know exactly when to stop.
Unfortunately, as you saw with the cargo problem, you’ll almost never have
all of the information you need. One of the challenges is trying to determine
when to stop your evolution and return a solution. The goal is to produce the
best solution possible, even when you don’t know that it’s the absolute best.

In this section, you’ll learn three basic techniques for defining termination
criteria. Of course, you may find it beneficial to define termination criteria
specific to your problem; however, these techniques will work for a majority
of the problems you encounter.

Stopping Evolution at a Fitness Threshold
Stopping when your population has reached a certain fitness threshold is the
most straightforward approach to terminating your algorithms. This approach
is common when you either know what the solution is supposed to be or
you’ve been given specific success criteria.
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In the first few chapters, you worked with a maximum fitness threshold—you
terminated when the best solution reached a target fitness. You can also
terminate your algorithms at a minimum fitness, or even an average fitness.
For example, in portfolio optimization, you might want to create a number of
possible portfolios that meet an average threshold of success—in this case,
you would check the population’s average fitness and return when it meets
some threshold.

You can apply these techniques to the One-Max problem. Open lib/one_max.exs
and experiment with the following termination criteria:

defmodule OneMax do
# ...Genotype/Fitness Function defined...

# Maximum Fitness Threshold
def terminate?(population), do:

Enum.max_by(population, &OneMax.fitness_function/1) == 42

# Minimum Fitness Threshold
def terminate?(population), do:

Enum.min_by(population, &OneMax.fitness_function/1) == 0

# Average Fitness Threshold
def terminate?(population) do

avg =
population
|> Enum.map(&(Enum.sum(&1) / length(&1)))

avg == 21
end

end

Each of these termination criteria will return different solutions. The first will
stop when the best chromosome possible is found, the second will stop when
the worst chromosome possible is found, and the last will stop when the
average chromosome is found.

Fitness-based termination criteria is the most straightforward to implement;
however, it’s difficult to come across a problem where you’re certain about
when to stop.

Stopping Evolution after n Generations
Another method for designating termination criteria is to stop after your
algorithm has run for a sufficiently long time. With this approach, you need
to determine what “sufficiently long” means. The beauty of this approach is
the ability to experiment with different numbers of generations. You may
initially believe your algorithm will converge after 10,000 generations, only
to find it continues to improve after 20,000 generations.
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Another benefit of this method is its relative simplicity. To implement it, all
you have to do is keep track of the current generation. Open lib/genetic.ex and
alter the evolve function to track a generation parameter, like this:

def run(problem, opts \\ []) do
population = initialize(&problem.genotype/0, opts)
first_generation = 0

population
|> evolve(problem, first_generation, opts)

end
def evolve(population, problem, generation, opts \\ []) do➤

# ...
if problem.terminate?(population, generation) do➤

# ...
else

generation = generation + 1➤

...
|> evolve(problem, generation opts)

end
end

Next, you’ll need to slightly modify the Problem behaviour, so the terminate? function
expects two parameters rather than one. Open the lib/problem.ex file and change
the terminate? callback to this:

@callback terminate?(Enum.t(), integer()) :: boolean()

Now, all you’ll need to do is specify a generation stopping point in one of your
genetic algorithms. Try it with lib/one_max.exs, like this:

def terminate?(population, generation), do: generation == 100

Generation Tracking

For the remainder of this book, this is what your terminate? callback
should look like. You’ll see another termination method next, but
you’ll only ever use generation-based or fitness-based termination.

When you run this script on the cargo problem, notice how sometimes the
algorithm converges on an optimal solution and sometimes it doesn’t:

$ mix run scripts/cargo.exs
Current Best: 30
%Types.Chromosome{

age: 1,
fitness: 30,
genes: [0, 1, 0, 1, 1, 1, 1, 0, 0, 0],
size: 10

}

Weight is: 39
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$ mix run scripts/cargo.exs
Current Best: 35
%Types.Chromosome{

age: 1,
fitness: 35,
genes: [0, 1, 1, 1, 0, 1, 0, 0, 0, 1],
size: 10

}

Weight is: 38

This is the tradeoff with this approach—sometimes you get lucky and some-
times you don’t. You could experiment with different generation thresholds,
but that can be time consuming. After awhile, you’ll find your algorithms will
continue to converge to the same value after a certain number of generations.

Stopping Evolution with No Improvements
A more sophisticated technique for determining when to stop is by tracking
how long it’s been since your algorithm has improved and stopping when
progress has stalled. Implementing the tracking necessary for this can be a
little tricky; however, it can pay off because it automatically determines when
the algorithm has converged.

The simplest way to stop based on changes in fitness is by using a temperature.
Temperature tells you how hot or cold an algorithm is. Algorithms that are
hot are making significant improvements between generations. Algorithms
that are cold haven’t made improvements in a long time.

Temperature

You might recognize the term temperature from another optimiza-
tion technique known as simulated annealing. Typically, tempera-
ture is a parameter that controls some of the movement in that
algorithm; however, it’s also useful in genetic algorithms for mea-
suring when to stop. You may not want to refer to the measure of
progress in the algorithm as temperature—you can also call it
momentum or something else that makes sense to you.

To measure the temperature of your algorithm, you’ll need to alter run/2 to
track changes in fitness between generations. To accomplish this, open
lib/genetic.ex and add the following changes:

def run(problem, opts \\ []) do
population = initialize(&problem.genotype/0, opts)
population
|> evolve(problem, 0, 0, 0, opts)➤

end
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def evolve(problem, generation, last_max_fitness, temperature, opts) do
...
best = Enum.max_by(population, &problem.fitness_function/1)
best_fitness = best.fitness
temperature = 0.8 * (temperature + (best_fitness - last_max_fitness))➤

if terminate?(population, generation, temperature) do➤

...
else

...
|> evolve(problem, generation, best_fitness, temperature, opts)➤

end
end

As with tracking generations, you’ll need to change the terminate? callback in
the Problem behaviour to reflect the additional parameter.

One thing you’ll see here is that the temperature is calculated by multiplying
the sum of the old temperature and the change in maximum fitness by a
factor of 0.8. You don’t have to use 0.8. In fact, you may want to take an
additional parameter, known as a cooling rate, which determines how fast
the temperature lowers. Your formula would then look like this: (1 - cooling_rate)
* (temperature + (best - last_max_fitness)). A higher cooling rate means your algorithms
will terminate faster.

To see the temperature strategy in action, open lib/one_max.exs and adjust the
termination criteria like this:

def terminate?(population, generation, temperature), do: temperature < 25

This example stops when the temperature is less than 25. This technique is
useful because it allows you to determine when an algorithm has converged
automatically. The temperature will automatically decrease when there’s no
progress being made. You can play around with different cooling rates and
temperature thresholds to see which works best for you.

Applying Termination Criteria to Shipping
With three possible means of determining when to stop, you need to decide
which one works best for your cargo problem. The simplest is to stop after a
certain number of generations. Of course, you could use a temperature
mechanism; however, it’s too complicated for the task at hand.

Ensure the terminate? callback in the Problem module is set up to accept a gener-
ation argument. Additionally, ensure run and evolve are configured to track
generations:
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# problem.ex
@callback terminate?(Enum.t(), integer()) :: boolean()

# genetic.ex
def run(problem, opts \\ [])

population = initialize(&problem.genotype/0, opts)
population
|> evolve(problem, 0, opts)➤

end

def evolve(population, problem, generation, opts \\ []) do➤

...
if terminate?(population, generation) do➤

...
|> mutation(opts)
|> evolve(problem, generation+1, opts)➤

end

Now, implement your termination criteria like this:

def terminate?(_population, generation), do: generation == 1000

Now, run your algorithm:

$ mix run scripts/cargo.exs
Current Best: 35
[0, 1, 1, 1, 0, 1, 0, 0, 0, 1]
Weight is: 38

While your profit definitely went down, your cargo configuration stayed under
the weight limit. You may find if you run this algorithm multiple times, your
configuration will vary slightly. Remember, genetic algorithms are subject to
randomness, so your solutions will vary. Try to run it mulitple times to see
what the best configuration is.

As you can see, how you evaluate solutions significantly impacts the outcome
of your algorithms. In this problem, you examined one specific way to evaluate
one specific type of problem. Unfortunately, there are countless classes of
problems out there. In the next section, you’ll gain a better understanding of
fitness and fitness functions, and you’ll learn about some other types of
optimization problems and how they’re evaluated.

Crafting Fitness Functions
In the previous few sections, you explored the importance of evaluation
through the context of a modified knapsack problem. While the problem shows
the importance of crafting a good fitness function, you learned only one way
to evaluate a specific type of problem. Countless problems exist, each
requiring unique evaluation tools. Unfortunately, you can’t generalize one
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fitness function to all problems. You need to fully understand what fitness
functions aim to accomplish.

Understanding Fitness
Recall from Chapter 1, Writing Your First Genetic Algorithm, on page 1, the
problem of being lost in the woods. Some of the trees are marked indicating
how close you are to escaping the woods. The markings on the trees show
the value of your current position—they tell you how to navigate the woods
and where to go next. Without this information, it’s likely you’d never escape.

Fitness is, in essence, the same as the markings on the trees. Specifically,
fitness is the value assigned to a particular chromosome based on the criteria
defined in the fitness function. Consider this: you’re lost in the woods again,
only this time, the trees aren’t marked. Instead, you have a guide who tells
you how close to civilization you are after every step. In this example, the
guide acts as your fitness function, providing you with information based on
your current position. This information is the fitness of your current position
and tells you how close you are to making it back to civilization.

Understanding Schemas
Theoretically, fitness is supposed to be tied to a chromosome’s viability for
reproduction. Viability for reproduction means that the chromosome is likely
to produce strong offspring—something about the chromosome makes it
fundamentally better than others for creating children.

That “something” that makes some chromosomes better than others are the
schemas that comprise the chromosome. In Chapter 1, Writing Your First
Genetic Algorithm, on page 1, we briefly introduced the idea of schemas.
Schemas are templates of genes that make up the genes of a chromosome.
A schema is represented by a set of valid genes and wildcards represented
by *. For example, the following are example schemas for a binary genotype.

• 11*01*
• 0*10*1
• 011*00

Schemas propagate from generation to generation as parents pass their
schemas down to their children. Over time, as chromosomes exchange fit
schemas, the presence of fit schemas in the population grows exponentially.
Of course, with more fit schemas in the population, the fitness of the popula-
tion inevitably grows as well. The theory behind schemas and how they
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improve populations is called the schema theorem or fundamental theorem of
genetic algorithms.

The schema theorem is important because it tells you why genetic algorithms
work. So, how does this relate to fitness functions? Ideally, you want to craft
fitness functions that map meaningful schemas in your encoding of a problem
to meaningful solutions in the real world. For example, if you tasked a
genetic algorithm with designing a chair, you’d want a fitness function that
was able to extract valuable schemas from certain designs, such as the
presence of a flat surface to sit on or a support mechanism to hold weight.

In practice, you can’t tell a fitness function exactly what to look for because
you don’t always know exactly what it should look for. Instead, you give it an
estimate.

Fitness Functions Are Heuristics
A fitness function is a heuristic. In other words, it’s an approximation or
estimate based on limited information. For example, you can’t tell your fitness
function to look for seats or support in chair designs, but you can measure
how much weight it will support or how comfortable the chair would be.

As another example, imagine you’re writing a program that optimizes a port-
folio of stocks. Your goal is to maximize your return on investment (ROI).
Unfortunately, you can’t perfectly predict what stocks will have the highest
ROI. Instead, you have to make estimates based on the information available
to you, such as the price-to-earnings ratio (P/E ratio). Picking stocks based
on some metric like the P/E ratio won’t guarantee you perfectly maximize
ROI, but it will give you a much better approximation than random stock-
picking.

In the portfolio example, the P/E ratio is a heuristic used to measure the
potential of a stock to provide the greatest ROI. If you were writing a genetic
algorithm to accomplish portfolio optimization, evaluating a chromosome—or
in this case, a portfolio—based on the P/E ratio is an example of a good fitness
function because it provides a somewhat accurate estimate of how good a
portfolio is.

Heuristics, like all things, are imperfect. A good heuristic will be right most
of the time, but occasionally, it can be wrong. For example, Amazon is a stock
with a very high ROI over the last five years that would be completely ignored
when using the P/E ratio as a heuristic. A fitness function will never perfectly
assess every solution; it just needs to capture the essential characteristics of
your problem.
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Fitness Landscapes

One thing you’ll see mentioned often with genetic algorithms is
the concept of a fitness landscape. At a high level, the fitness
landscape is a representation of all of the fitnesses of every possible
solution in your search space. For example, in portfolio optimiza-
tion, the fitness landscape would graphically depict every possible
portfolio and its corresponding fitness. Fitness landscapes are an
abstract concept, and you don’t need to understand them to apply
genetic algorithms effectively.

Exploring Different Types of Optimization
So far, the problems you’ve implemented in this book have focused on opti-
mizing a single objective using a simple fitness function. In the real world,
some of the problems you’ll encounter will be much more complex.

In this section, you’ll briefly explore two classes of optimization that require
more advanced approaches to evaluation: multi-objective optimization and
interactive optimization.

Optimizing Multiple Objectives
The real world is full of competing interests that need to be optimized. For
example, you might find yourself trying to balance work, relationships, health,
fun, and sleep every day—a classic example of a multi-objective optimization
problem. A multi-objective optimization problem is one in which you have mul-
tiple parameters or objective functions that need to be optimized. Oftentimes,
but not always, the objective functions are in competition with one another—
when you increase the value of one, the value of the other goes down.

Multi-objective optimization problems are some of the most common problems
that appear in the real world. They also can be the most difficult to solve
because they require a means of balancing your objectives. It’s important to
note that there isn’t a single global solution to a multi-objective optimization
problem. Instead, the best solutions exist on a line representing a set of
optimal solutions. You can intuitively think of this in the context of people
balancing work, relationships, health, and so on. In this context, no single
balance works for everybody—instead, people determine what works best for
them. There are multiple solutions.

The simplest way to solve a multi-objective optimization problem is to trans-
form it into a single objective. This makes the problem simple enough because
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you can use the same means you used to solve optimization problems with
a single objective.

To better understand this concept, consider a trivial portfolio optimization
problem. Start by creating a new file scripts/portfolio.exs. In this file, you’ll write
a genetic algorithm for solving a trivial portfolio optimization problem. In the
original portfolio example, your goal was to maximize ROI. In this example,
you’re still trying to maximize ROI, but this time you also have to minimize risk.

To simplify the problem, assume you have a function which provides a pre-
dicted ROI and risk score for every stock in your portfolio. A solution in this
situation is a collection of stocks. Stocks are represented as tuples of the form
(ROI, Risk). Note that in a practical example, you’d need some way of differenti-
ating between stocks using a Ticker or some other identifier. That’s excluded
to simplify the example.

Open scripts/portfolio.exs and implement genotype/0 and terminate?/1 like this:

defmodule Portfolio do
@behaviour Problem
alias Types.Chromosome

@target_fitness 180

@impl true
def genotype do

genes =
for _ <- 1..10, do:

{:rand.uniform(10), :rand.uniform(10)}
%Chromosome{genes: genes, size: 10}

end

@impl true
def fitness_function(chromosome) do

# TODO
end

@impl true
def terminate?(population, _generation) do

max_value = Enum.max_by(population, &Portfolio.fitness_function/1)
max_value > @target_fitness

end
end

The genotype generates portfolios of 10 stocks each with ROI and risk scores
between 0 and 10. The algorithm is set to terminate when the max fitness of
the population is greater than @target_fitness, which is defined as 180.

Your goal, then, is to implement a fitness function that effectively optimizes
both ROI and risk. The simplest way to do this is to turn it into a single
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objective. You can achieve this using a weighted sum. A weighted sum is
when you assign weights to each parameter and sum them to produce a single
fitness. A weighted sum for this problem would look something like this:

def fitness_function(chromosome) do
chromosome
|> Enum.map(fn {roi, risk} -> 2 * roi - risk end)
|> Enum.sum()

end

Notice how the formula in this case weights ROI as two times more important
than risk. With this fitness function, you’ve effectively turned your multi-
objective optimization problem into a single-objective optimization problem.
You can now run your algorithm using the same means as a simple optimiza-
tion problem.

Real-Value Genotypes

If you tried running this novel genetic algorithm, you’d struggle
to find any improvements in fitness. That’s because you haven’t
yet been equipped with tools for driving real-value genotypes for-
ward. You need special crossover and mutation operators to work
with them. You’ll learn some in Chapter 6, Generating New Solu-
tions, on page 87 and Chapter 7, Preventing Premature Conver-
gence, on page 107.

Weighted sums are easy to implement and they greatly simplify your problem,
but it’s difficult to determine how to weight some objectives versus others.
This is once again where domain expertise comes into play. You can play
around with multiple weights and determine which weights give you the best
solutions.

Interactive Optimization
All of the techniques introduced in this chapter rely on numerical data that
can be assessed explicitly using mathematical formulas. In every example,
you were able to transform a chromosome according to a formula or set of
rules; however, this isn’t always the case.

Some optimization problems are impossible to encode numerically but could
still benefit from the application of a genetic algorithm. One example of this
is web design optimization. A website is written as a series of rules and styles.
While it’s possible to encode and interpret a website using a numerical repre-
sentation, it is complex and would be difficult to change using a genetic
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algorithm. Additionally, it’s impossible to mathematically assess one web
design as being better than the other.

To handle and assess perceptual data, you can write interactive fitness func-
tions. Perceptual data is information based off of sensory inputs. An interactive
fitness function is useful when the solutions you’re working with are impos-
sible to assess mathematically. Instead, you present the user with a solution
and ask them to assess its fitness. For example, in the case of web design,
you’d show a user several different designs with slight alterations and ask
them to rate the designs on a numerical scale. The values a user assigns to
different solutions represents the fitness of the solution.

Another unique example of interactive optimization is generating suspect
sketches from eyewitness responses. A sketch artist creates an initial sketch
from an eyewitness description, and then the eyewitness is presented with
variations of the sketch—rating each one based on how closely it resembles
a suspect. Over time, the sketches evolve to closely match the eyewitness
description, all thanks to a genetic algorithm.

Implementing interactive fitness functions is as simple as displaying a solution
and asking for feedback from the user using Elixir’s IO module. To demon-
strate this concept, create and open a new file in the scripts directory named
one_max_interactive.exs.

Next, copy the code from scripts/one_max.exs into the body of scripts/one_max_interac-
tive.exs. Now, change the fitness function to look like this:

def fitness_function(chromosome) do
IO.inspect(chromosome)
fit = IO.get("Rate from 1 to 10 ")
String.to_integer(fit)

end

When you run this algorithm, you’ll be prompted to assess the fitness of every
chromosome in the population during every generation. If you want the
algorithm to run to completion, you can limit the population size and the size
of a chromosome.

It’s useful to note that how you display solutions to the user is problem-
dependent. In the case of web design optimization, you’ll want to display the
actual design and ask the user to rate it. Additionally, understand that
interactive fitness functions take time and are subject to a user’s bias. You’ll
likely have to work with much smaller population sizes and determine a
solution over the course of fewer generations than in a traditional algorithm.
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You’ll also likely have to take input from multiple users to mitigate the bias
from a single user assessing fitness.

One final consideration is handling user input. In this example, there’s no
sanity checking on the input. The program will break pretty quickly if the
user doesn’t input exactly what’s expected. You’ll want to consider how to
mitigate the possibility of users breaking your algorithms if you choose to
work with interactive fitness functions. Interactive fitness functions have
some interesting applications; however, they require much more time and
effort to utilize effectively.

Other Types of Optimization
Optimization is an incredibly broad field with a wide array of applications in
science, engineering, and math. As in this chapter, in the rest of the book
you’ll focus on constraint satisfaction problems, combinatorial optimization
problems, single- and multi-objective optimization problems, and interactive
optimizaton problems. You might also find numerous other subfields of opti-
mization interesting:

• No-objective optimization: also called feasability problems, seeks to find
feasible solutions without worrying about any particular objective.

• Convex optimization: optimization on special types of functions called
convex functions that is very useful in computational finance.

• Shape optimization: seeks to find the optimal shape of an object that
minimizes some cost function—for example, finding the optimal shape of
a cam.

Genetic algorithms are applicable to all of these fields with varying degree. If
you’re ever faced with any optimization problem, genetic algorithms are always
a good place to start.

What You Learned
In this chapter, you explored the importance of evaluation. You saw how bad
fitness functions can yield incorrect solutions through the lense of a knapsack
problem. You also explored the different ways of terminating your algorithm.

After you solved your shipping problem, you dove deeper into fitness and fit-
ness functions and were introduced to the schema theorem, or the fundamen-
tal theorem of genetic algorithms. You saw how the schema theorem relates
to fitness functions, and you explored the concepts of heuristics.
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Finally, you were briefly introduced to two unique types of optimization that
require different evaluation techniques.

With your evaluation techniques in place, it’s time to move on to the next
stage in the genetic algorithm: selection.
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CHAPTER 5

Selecting the Best
In the last chapter, you learned how to evaluate solutions using fitness
functions. Remember, fitness functions measure the viability of a solution.
Fitness functions are an important aspect of your genetic algorithm, but they
mean nothing if you don’t do anything with them. With your population
evaluated, and each chromosome assigned a fitness, it’s time to perform
selection.

If you’ve ever been on a team, you understand the importance of having the
right people. Whether it be in sports, music, work, or any collaboration,
choosing the right people to fill positions and complement other members is
vital to the success of the organization. This idea of selecting the right people
to fill the right roles directly correlates to selection in genetic algorithms.

Selection is the first genetic operator in an evolution. On the surface, selection
is responsible for choosing chromosomes that will reproduce in the next step.
At its core, selection is responsible for ensuring the next generation of chro-
mosomes is even stronger than the last.

Charles Darwin’s theory of evolution suggests that strong traits that are key
to survival become more common in successive generations. Whether you
believe in evolution or not, the idea of natural selection is a key aspect of
genetic algorithms.

In the context of genetic algorithms, the process of selection is better described
as artificial selection. It’s important to note the distinction between natural
and artificial selection. In the case of genetic algorithms, you have the ability
to define your selection and fitness criteria whereas in nature, selection is
nondeterministic, and fitness is an emergent property of selection. That is to
say the process of selection comes before the determination of fitness. In a
genetic algorithm, you have the power to select which traits of a solution
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correlate to it’s fitness and the power to select based on this fitness criteria,
thus you have the power to determine which traits persist between generations.
Note the process differs between natural selection because, in nature, fitness
cannot be determined until after selection takes place.

Artificial selection gives you the power to choose which traits are important
to your problem. To think about this more concretely, imagine you’re coaching
a team of sprinters. You have three sprinters, but you need to pick a fourth
to have a full team for the 4x100m relay. You get to choose between two
sprinters: one with a 100-meter time of 25 seconds and another with a time
below 11 seconds. In this situation, you have the power to choose which
sprinter you believe gives you a better chance of success and you have the
power to define your notion of success.

The goal of selection is to build the best team of parents based on your prede-
fined fitness criteria to increase your chances of success in later generations.
In this chapter, you’ll further explore how selection can impact the perfor-
mance of your algorithms. You’ll be introduced to selection rates and will
learn about different selection techniques and how to choose the right one.

Exploring Selection
Selection is vital to the performance of a genetic algorithm because it con-
tributes to the creation of good solutions for the next generation. The idea is
that parents have characteristics that make them strong based on your fitness
criteria and will pass these characteristics on to the next generation of solu-
tions.

Consider this: in medieval and early modern Europe, monarchs would care-
fully select partners to maintain their status as royalty. The idea was based
on the assumption that royal blood was stronger and the genes of a commoner
would ruin the purity of the bloodline.

Monarchs practiced a loose derivative of selection. They would choose partners
based on territory, power, money, and other factors, which essentially amounted
to the “fitness” of a potential partner. They hoped that marrying other royals
would lead to a strong bloodline and continued success for the royal family.

Unfortunately, the lack of royals to marry outside of preexisting royal families
meant that later monarchs often had to “keep it in the family.” A lot of monarchs
were forced to marry cousins. While this initially didn’t seem like an issue—both
cousins would be royalty and thus strong, after all—as the practice of intermar-
riage increased, so did the severity of birth defects within the royal family. But,
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how could the purity and strength of the royal bloodline suffer from often crip-
pling birth defects? The problem was a lack of genetic diversity.

The selection strategy of early monarchs focused too much on perceived fitness
of partners and not enough on maintaining genetic diversity. The plight of
the monarchs can teach lessons about the importance of selection in your
genetic algorithms.

Selection is about balancing genetic diversity and fitness. Genetic diversity
is the variety in your population. This doesn’t mean variety in fitness—you
can have equally strong individuals that are very different. Consider the two
potential solutions to the One-Max problem in the image on page 73.

1 1 1 1 0 0 0

0 0 0 0 1 1 1 1

0

Both individuals have the same fitness, but they’re very different. These two
chromosomes would be a perfect match because their diverse characteristics
would be combined to form a strong child during crossover. You can see an
example of this here:

1 1 1 1 0 0 0

0 0 0 0 1 1 1 1

0

1 1 1 1 1 1 1 1

If you can’t maintain the genetic diversity of your population, then your
algorithm will likely converge without finding the best solution. While there
are other strategies, such as mutation, for maintaining the genetic diversity
of a population, selection is the first step and can make a significant difference
in performance.

Selection Is Biased Sampling
If you’re familiar with statistics, you understand that selection is a biased
form of sampling. Sampling is the practice of choosing a smaller subset of
the population to represent the entire population. Sampling is especially
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important in surveys and quality assurance because it’s used to estimate the
beliefs or characteristics of the population on the whole.

Sampling is done because it’s almost always impossible to survey an entire
population. Instead, statisticians aim to get a sample that is representative
of the population. The goal is diversity. Selection, on the other hand, is done
to improve the population over the next generation. This means that most
selection strategies will favor certain individuals over others because they
have a better chance of improving the population.

Just as sampling only chooses part of the population, it’s common for selection
strategies to only select part of the population as well. The idea is that not
every chromosome is fit to be a parent, which would hopefully eliminate the
weaker characteristics of a population while keeping the stronger ones.

The number of parents selected for crossover is known as the selection rate.
The selection rate is a number between 0 and 1 that dictates the percentage
of the population to select for crossover. For example, a selection rate of 0.8
with a population of 100 would mean 80 parents would be selected for crossover.

Varying the selection rate will affect the speed of your algorithms as well as
how quickly they converge. Having a selection rate of 1 isn’t a problem.
Selection rates are typically high—somewhere in the 0.75–1 range.

Importance of Selection Pressure
You can measure how well a selection strategy balances genetic diversity and
fitness by determining its selection pressure. Selection pressure is a mathemat-
ical measure of the likelihood of a chromosome getting selected to be a parent.
It’s defined as the ratio between the probability of the fittest individual getting
picked versus the probability of an individual of average fitness getting picked.

Selection pressure is dictated by the selection rate and the selection strategy.
In a truly random selection, the selection pressure is exactly 1 because every
individual is equally likely to get picked. Higher selection pressures mean
that a selection strategy more heavily favors fitter individuals. It’s a measure
of how biased a selection strategy is.

You can use selection pressure to quantify how well your selection strategy
fits into the context of your problem. If you have a problem that requires more
genetic diversity, you’ll want a selection strategy with a lower selection pres-
sure. If you want your problem to converge quickly, you’ll want a selection
strategy with high selection pressure.
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Types of Selection
The two main types of selection are fitness-based selection and rewards-based
selection.

Fitness-based selection is selection based strictly on fitness criteria. Fitness-
based selection strategies are the most common selection strategies. The goal
of selection is to increase fitness; therefore, these strategies assume that fit-
ness is the best indication of future potential fitness.

Reward-based selection is selection based on the cumulative reward obtained
by an individual. The idea is that parents with high rewards create the best
children. The reward can be calculated by a number of different reward
functions. Reward-based selection can be useful in multi-objective optimiza-
tion; however, it’s not all that common.

In this book, you’ll only work with fitness-based selection strategies because
they’re the most common and the simplest to implement.

Customizing Selection in Your Framework
In Chapter 2, Breaking Down Genetic Algorithms, on page 15, you briefly
learned about hyperparameters and how to pass configuration options to
your framework. At the time, the only hyperparameter you could change was
population size.

Selection introduces two more hyperparameters: selection strategy and
selection rate. In this section, you’ll tweak your framework to allow for changes
in both.

Creating a Selection Toolbox
Before you begin, you’ll want a place to store some common selection strategies
that you may need to solve some of the problems you encounter. Create a
new folder called toolbox. toolbox is your toolbox of genetic operators. You’ll
implement modules for selection, crossover, and mutation in the toolbox so
you always have them available when you need them.

For now, create selection.ex and add the following module definition:

defmodule Toolbox.Selection do

# ...strategies here

end

Whenever you implement a new selection strategy, add it to your toolbox so
you never have to implement it again.
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Changing Selection Strategies
Open up genetic.ex and examine select. It looks like this:

def select(population, opts \\ []) do
population
|> Enum.chunk_every(2)
|> Enum.map(&List.to_tuple(&1))

end

Right now, your algorithm implements elitism selection in which you always
select the most fit chromosomes for crossover. You’ll want to adjust it so it
can accept many different kinds of selection. To do that, add the following:

def select(population, opts \\ []) do
select_fn =

Keyword.get(opts, :selection_type, Toolbox.Selection.elite/2)
parents =

select_fn
|> apply([population])

# rest goes here
end

Keyword.get/3 takes the option list and searches for the key :selection_type. If
nothing is there, it defaults to Toolbox.Selection.elite/2. You haven’t implemented
this yet, but you will later.

apply/2 takes a reference to a function and a list of arguments and applies the
function. All of your selection strategies will take a population as input, so
that’s the only parameter you pass for now. In the next section, you’ll pass
the additional parameter that’s required.

Adjusting the Selection Rate
In your first few genetic algorithms, you selected 100% of the population for
reproduction. The purpose of this was to simplify your algorithms. Now, you’ll
need to account for different selection rates.

First, change select so it looks like this:

def select(population, opts \\ []) do
select_fn =

Keyword.get(opts, :selection_type, &Toolbox.Selection.elite/2)
select_rate = Keyword.get(opts, :selection_rate, 0.8)

n = round(length(population) * select_rate)
n = if rem(n, 2) == 0, do: n, else: n+1

parents =
select_fn
|> apply([population, n])
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leftover =
population
|> MapSet.new()
|> MapSet.difference(MapSet.new(parents))

parents =
parents
|> Enum.chunk_every(2)
|> Enum.map(& List.to_tuple(&1))

{parents, MapSet.to_list(leftover)}
end

A few things are going on here. First, you extract the selection rate from opts.
Next, you calculate n, which represents the number of parents to select. The
math and if statement simply ensure you have enough parents to make even
pairs.

Next, you extract the parents using apply/2 and your selection strategy. You
then determine who wasn’t selected using Elixir’s MapSet. Finally, you turn
the parents into tuples for crossover and you return a tuple containing the
parents and the leftover.

Now, you’ll need to slightly modify evolve to reflect the changes you’ve made
here. Change run to look like this:

def evolve(population, problem, generation, opts \\ []) do
population = evaluate(population, &problem.fitness_function/1, opts)
best = hd(population)
IO.write("\rCurrent best: #{best.fitness}")
if problem.terminate?(population, generation) do

best
else

{parents, leftover} = select(population, opts)
children = crossover(parents, opts)
children ++ leftover
|> mutation(opts)
|> evolve(problem, generation+1, opts)

end
end

Here you adjust run to account for select returning a tuple of parents and left-
over chromosomes. Then you obtain the children by passing parents into
crossover. Finally, you recombine children with leftover and mutate them before
running an evolution again.

The practice of replacing parents with children in a genetic algorithm is fairly
common. You’ll learn more about reinsertion strategies in Chapter 8, Replacing
and Transitioning, on page 125. For now, this naive approach works fine.
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Now you can customize your algorithms with any selection strategy you
implement by passing in a reference to your selection function.

Implementing Common Selection Strategies
Balancing genetic diversity with strong solutions can be difficult to achieve
without a smart selection strategy. Fortunately, there are common selection
strategies that are battle-tested and proven to work well for many different
problem sets.

The strategies you’ll learn about in this section are:

• Elitism selection
• Random selection
• Tournament selection
• Roulette selection

You’ll see how these strategies work, what each of their drawbacks are, and
how to implement them in Elixir so you can add them to your toolbox.

Elitism Selection
Elitism selection is the simplest and most common selection strategy. The
idea is simple: choose the best n chromosomes to reproduce. Elitism selection
gives preference to the most elite chromosomes.

The problem with elitism selection is that it doesn’t factor genetic diversity
into the mix at all. It’s common with elitism selection that your algorithms will
converge onto a strong solution quickly but fail to improve from that point on
because your population is too similar. Fortunately, you can counteract the
lack of diversity with mutation, large populations, and even large chromosomes.

The algorithm behind elitism selection is straightforward. Given a population
of sorted chromosomes, select the n best. The image shown on page 79 should
help you visualize elitism selection.

In Elixir, elitism selection is easy to implement using Enum.take/2. Open
lib/genetic/toolbox/selection.ex and add the following function:

def elite(population, n) do
population
|> Enum.take(n)

end

That’s all there is to it. Because you took the time to sort your population in
the evaluation step of your algorithm, you don’t need to worry about handling
it here. Sorting guarantees that the first n chromosomes in the population
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are the best n chromosomes. That means you can simply call Enum.take/2 which
returns the first n elements of an enumerable.

Elitism selection is fast and simple, but it can lend itself to premature con-
vergence.

Random Selection
Random selection, when compared to elitism selection, lies on the opposite
end of balancing genetic diversity and fitness. Random selection pays no mind
to a chromosome’s fitness and instead selects a completely random sample
of chromosomes from the population.

Random selection can be useful if your problem absolutely requires genetic
diversity. This is an uncommon requirement, but it can pop up in certain
cases. For example, novelty search is the search for new, different solutions.
Rather than rewarding solutions for being strong, novelty search rewards
solutions for being different.

One unique application of novelty search is scenario generation. In scenario
generation, you’re trying to come up with different, valid scenarios from a set
of starting scenarios. For example, you could use novelty search to generate
different starting configurations for Sudoku or crossword puzzles.
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In novelty search, you could also design a fitness function that evaluates
chromosomes based on how different they are; however, this could also
overcomplicate your problem. Perhaps you want fitness to reflect a different
aspect of your problem, like the difficulty of the puzzle. You could then use
random selection to ensure you’re maintaining your population’s genetic
diversity.

Random selection, like elitism selection, is straightforward. You can think of
random selection like picking cards out of a shuffled deck or choosing names
out of a hat.

Elixir provides a convenient function named Enum.take_random/2 that makes the
implementation of random selection almost identical to elitism selection. Add
the following function to Genetic.Toolbox.Selection:

def random(population, n) do
population
|> Enum.take_random(n)

end

Enum.take_random/2 selects n random chromosomes from the population. This
function will select chromosomes without any consideration of fitness.

Random selection is uncommon, but it can be useful in special cases. If your
goal is genetic diversity, random selection is the way to go.

Tournament Selection
Tournament selection is a strategy that pits chromosomes against one
another in a tournament. While selections are still based on fitness, tourna-
ment selection introduces a strategy to choose parents that are both diverse
and strong.

Tournament selection works like this:

1. Choose a pool of n chromosomes where n is the “tournament size.”
2. Choose the fittest chromosome from the tournament.
3. Repeat.

The image on page 81 might help you visualize tournament selection a little
better.

The beauty of tournament selection is that it’s simple, yet it effectively balances
genetic diversity and fitness. The strongest solutions will still get selected,
but they’ll be mixed in with weak solutions that might otherwise have not
been picked.
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In tournament selection, tournaments can be any n-way: the tournament size
can be any number from 1 to the size of the population. Notice, however, a
1-way tournament is equivalent to random selection, and a tournament the
size of your population is equivalent to elitism selection.

Tournament selection works well in parallel and can effectively balance
genetic diversity and fitness. One drawback of tournament selection is that
it might not be appropriate for smaller populations.

You can implement tournament selection with two approaches: with duplicates
and without duplicates. If you allow duplicate parents to be selected, you risk
allowing your population to become less genetically diverse; however, you
greatly simplify and speed up your algorithm. If you don’t allow duplicates,
your algorithm is slower, but genetic diversity will increase.

This is how you implement tournament selection with duplicates in Elixir:

def tournament(population, n, tournsize) do
0..(n-1)
|> Enum.map(

fn _ ->
population
|> Enum.take_random(tournsize)
|> Enum.max_by(&(&1.fitness))

end
)

end
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Allowing duplicates simplifies tournament selection. This implementation
uses a range to create and then map over a list of size n. A tournament is
conducted at every iteration where the strongest individual is selected from
the tournament pool. The result is a list of selected chromosomes—some of
which will be identical.

Alternatively, the following is how you implement tournament selection
without duplicates in Elixir:

def tournament_no_duplicates(population, n, tournsize) do
selected = MapSet.new()
tournament_helper(population, n, tournsize, selected)

end

defp tournament_helper(population, n, tournsize, selected) do
if MapSet.size(selected) == n do

MapSet.to_list(selected)
else

chosen = population
|> Enum.take_random(tournsize)
|> Enum.max_by(&(&1.fitness))

tournament_helper(population, n, tournsize, MapSet.put(selected, chosen))
end

end

This implementation is slightly longer and uses a helper function, but the
idea is the same. You use a MapSet to ensure no duplicate chromosomes are
selected. Notice that this implementation uses the same code to implement
a tournament at every iteration.

One thing you might notice is that the code can be optimized a little using
tail-recursive calls. You can disregard this for now as it will be covered in
Chapter 11, Optimizing Your Algorithms, on page 169.

Tournament selection is useful when you want to effectively balance genetic
diversity with fitness. One thing you should remember is that tournament
size will affect the balance in your selected parents. You can experiment with
different tournament sizes to see what gives you the best results.

Roulette Selection
Roulette selection, also known as fitness-proportionate selection, chooses parents
with a probability proportional to their fitness. Roulette selection puts every
chromosome on a roulette wheel based on their fitness. Individuals with higher
fitness occupy a larger space on the roulette wheel—meaning they have a higher
chance of getting picked. You then spin the wheel to select parents. Like tourna-
ment selection, roulette selection can be implemented with or without duplicates.
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Roulette selection attempts to balance genetic diversity and fitness based on
probability. Individuals that are more fit have a higher chance of getting
selected; however, it’s still possible that individuals that are less fit will get
selected as well. Think of it like this: in Wheel of Fortune, the more valuable
spaces have a smaller area, meaning the probability of landing on them is
lower. The relationship is the same in roulette selection, albeit in reverse.

The following image might help you visualize roulette selection:

Chromosome A

Chromosome B

Chromosome C

Chromosome D

Chromosome E

Chromosome F
Chromosome G

Roulette selection is by far the slowest and most difficult algorithm to imple-
ment; however, it does a great job of maintaining the fitness of a population
while including some diverse parents.

This is how you can implement roulette selection with duplicates in Elixir:

def roulette(chromosomes, n) do
sum_fitness =

chromosomes
|> Enum.map(&(&1.fitness))
|> Enum.sum()

0..(n - 1)
|> Enum.map(fn _ ->
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u = :rand.uniform() * sum_fitness
chromosomes
|> Enum.reduce_while(
0,
fn x, sum ->

if x.fitness + sum > u do
{:halt, x}

else
{:cont, x.fitness + sum}

end
end

)
end)

end

To get a better understanding of what’s going on here, look at each section
of code starting with the following section:

sum_fitness =
chromosomes
|> Enum.map(&(&1.fitness))
|> Enum.sum()

This section calculates the total fitness of the population. This step is neces-
sary to determine the proportion of the roulette wheel that each chromosome
will occupy.

Now, examine the following section:

0..(n-1)
|> Enum.map(fn _ ->)

You should be familiar with this pattern by now. It’s necessary to simulate a
loop from 0 to n. In this case, you need to loop n times because you want to
select n individuals.

u = :rand.uniform() * sum_fitness
chromosomes
|> Enum.reduce_while(

0,
fn x, sum ->

if x.fitness + sum > u do
{:halt, x}

else
{:cont, x.fitness + sum}

end
end

This is where the real magic happens. The first line calculates a random value
u, which represents one spin of the wheel. You then use Enum.reduce_while/3 to
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loop over individuals in the population until you’re within the selected area.
Once you reach the selected area, you stop the reduction and return the
selected individual.

Roulette selection is the slowest and most complex selection strategy presented
here. You should try simpler strategies like tournament selection before
experimenting with roulette selection.

Other Types of Selection
These selection strategies are by no means the only ones out there. You’ll see
numerous takes on selection and selection strategies. You can find descrip-
tions of new and unique selection strategies in academic papers and in
tutorials online. You might find it useful to research the following and try to
implement them on your own.

• Boltzmann selection: selection according to a “temperature” function.
• Stochastic universal sampling: selection at evenly spaced intervals.
• Rank selection: selection based on “rank” in the population.

Remember, selection strategies are nothing more than algorithms for choosing
samples from a population. Any statistical sampling strategy would work as
a selection strategy. You could even implement your own unique selection
strategy.

What You Learned
In this chapter, you learned about the importance of selection and how it
correlates to picking the best team. You also learned about the importance
of balancing genetic diversity with fitness and how selection pressure is an
indication of how well a strategy balances those two characteristics.

You also learned about various selection strategies, how to implement them,
and when they’re useful. You should now have four different selection strategies
in your toolbox to experiment with on various problems. Try messing around
with each of these strategies to see what kind of results you get.

In the next chapter, you’re going to utilize selected parents to create new
solutions for your population.
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CHAPTER 6

Generating New Solutions
In the previous chapter, you learned about selection—the process of choosing
parents for reproduction. Selection is important; however, you now need to
decide what to do with your pairs of parents.

In Chapter 1, Writing Your First Genetic Algorithm, on page 1, you learned
about the need to balance exploitation and exploration. Recall that exploitation
is the process of using the information you have available, while exploration is
the process of searching for new information. You exploit the environment to
find your objective—like using the sun as a guide to navigate out of the woods.
You explore the environment in search of better clues—like trying to find new
roads or paths that lead you to your objective.

Crossover is how genetic algorithms exploit information. If you recall from
Chapter 4, Evaluating Solutions and Populations, on page 51, different
chromosomes have different schemas that make them better or worse than
others. Crossover strategies attempt to combine schemas in an intelligent
manner to create new, better solutions.

In this chapter, you’ll see what crossover is and why it’s important. You’ll
learn about different types of crossover and how to implement them. Finally,
you’ll see some problems crossover might cause and learn how to fix them.
Before you begin, you’ll start with an example of why you need different
crossover strategies.

Introducing N-Queens
Imagine your friend challenges you to array eight queens on a standard chess
board so that none of the queens conflict with another. This problem, known
as N-queens, is a fundamental constraint satisfaction problem, similar to
the knapsack problem introduced in Chapter 4, Evaluating Solutions and
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Populations, on page 51. In N-queens, the objective is to configure N queens
on a chess board so that no queen threatens another. In chess, a piece is
“threatened” when another piece can move to the square it occupies to “cap-
ture” it. The queen is permitted to move horizontally, vertically, and diagonally
any number of spaces on the board. Because queens can move in any direction
horizontally or vertically, it’s only possible to create a correct configuration
of N queens on an NxN chess board.

The following image illustrates a correct solution to the N-queens problem
with eight queens on an 8x8 chess board:

Q

Q

Q

Q

Q

Q

Q

Q

N-queens is a combinatorial optimization problem—which, as you already
know, genetic algorithms are well-suited for. You’ll attempt to solve N-queens
to demonstrate the importance of using a good crossover strategy in your
algorithms.

Start by creating a new file called n_queens.exs in your scripts folder. In this file,
you’ll write an encoding of the N-queens problem and run your algorithm to
obtain a solution.

In n_queens.exs, define the module and specify the Problem behaviour, like this:

defmodule NQueens
@behaviour Problem
alias Types.Chromosome

# Rest goes here
end

Implementing the Genotype
Remember, you need to define three functions to correctly implement the
Problem behaviour. The first function is genotype/0, which returns the genotype
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your algorithm will use. At first, you might be tempted to encode solutions
using a binary genotype where each index represents whether a queen is
present or not. However, it’s smarter to keep track of a permutation of size 8
representing the location of each queen on the board. For example, the solution
[0, 2, 1, 3, 6, 4, 7, 5] represents the following configuration on the chess board:

Q
Q

Q
Q

Q
Q

Q
Q

To create a permutation genotype, add the following function to NQueens:

@impl true
def genotype do

genes = Enum.shuffle(0..7)
%Chromosome{genes: genes, size: 8}

end

Enum.shuffle/1 scrambles the given enumerable. In this function, you pass the
range 0..7 to represent a permutation of size 8.

Next, you need to define a fitness function.

Implementing the Fitness Function
Remember, the objective is to configure a chess board so that there are no
conflicts between any of the pieces on the board. Your objective is to minimize
these conflicts; therefore, your fitness function should measure the number
of conflicts in some way.

To do this, you need to check solutions across each row and diagonally. Your
genotype restricts queens from being in the same column; however, they can
still be in the same row.

Your fitness function should look like this:
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@impl true
def fitness_function(chromosome) do

diag_clashes =
for i <- 0..7, j <- 0..7 do
if i != j do

dx = abs(i - j)
dy =

abs(
chromosome.genes
|> Enum.at(i)
|> Kernel.-(Enum.at(chromosome.genes), j)

)
if dx == dy do

1
else

0
end

else
0

end
end

length(Enum.uniq(chromosome.genes)) - Enum.sum(diag_clashes)
end

First, you calculate the number of diagonal clashes in the solution. Next, you
filter out duplicate values in the chromosome because those represent row
clashes. Finally, you return the difference. The fitness function will return
the number of non-conflicts or the number of pieces that don’t conflict with
any others.

The final step is to define your termination criteria.

Defining Termination Criteria and Running
Because the fitness function returns the number of non-conflicts, your algo-
rithm is complete when the maximum fitness of the population is 8. In other
words, your algorithm is complete when there are no conflicts on the board.

Your termination criteria is:

@impl true
def terminate?(population, _generation), do:

Enum.max_by(population, &NQueens.fitness_function/1).fitness == 8

To run your algorithm, add the following lines beneath your module definition:

soln = Genetic.run(NQueens)

IO.write("\n")
IO.inspect(soln)
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Next, open a terminal and run mix run scripts/n_queens.exs:

$ mix run scripts/n_queens.exs
Current Best: 5

What’s going on here? Your solution stagnates before ever reaching the
maximum possible fitness.

The problem is your crossover function creates invalid chromosomes. Right
now, your framework uses single-point crossover. Single-point crossover
doesn’t preserve the integrity of the permutation—you need to implement a
crossover strategy that works for permutations.

Solving N-Queens with Order-One Crossover
To solve N-queens, you need to implement a crossover strategy that preserves
the integrity of your permutation. While there are numerous approaches to
doing this, one common strategy is known as order-one crossover.

Before you start, create a new file crossover.ex within the toolbox folder. Next,
create a new module that looks like this:

defmodule Toolbox.Crossover do
alias Types.Chromosome
# ...

end

Just like selection.ex in toolbox contains useful selection strategies, you’ll
implement useful crossover strategies in Toolbox.Crossover.

Implementing Order-One Crossover
Order-one crossover, sometimes called “Davis order” crossover, is a crossover
strategy on ordered lists or permutations. Order-one crossover is part of a
unique set of crossover strategies that will preserve the integrity of a permu-
tation solution.

Order-one crossover will maintain the integrity of the permutation without
the need for chromosome repair. This is useful and eliminates some complex-
ity in your algorithms.

Order-one crossover works like this:

1. Select a random slice of genes from Parent 1.
2. Remove the values from the slice of Parent 1 from Parent 2.
3. Insert the slice from Parent 1 into the same position in Parent 2.
4. Repeat with a random slice from Parent 2.
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Order-one crossover will produce two new, valid children. The following image
demonstrates the algorithm used to produce one child:

5 4 0 1 3 2 6

53 026 4 0
Step 1: Select Slice from Parent One and Place into Child One

0 1 3 2
Step 2: Fill Child One with Remaining Parent Two in Order

6 5 0 1 3 2 4
Step 3: Repeat with Parent Two for Child Two

Because of its complexity, order-one crossover is difficult to implement in Elixir.
It requires the use of MapSet and is generally harder to understand than other
crossover strategies. Add the following function to your Toolbox.Crossover module:

def order_one_crossover(p1, p2) do
lim = Enum.count(p1.genes) - 1
# Get random range
{i1, i2} =

[:rand.uniform(lim), :rand.uniform(lim)]
|> Enum.sort()
|> List.to_tuple()

# p2 contribution
slice1 = Enum.slice(p1.genes, i1..i2)
slice1_set = MapSet.new(slice1)
p2_contrib = Enum.reject(p2.genes, &MapSet.member?(slice1_set, &1))
{head1, tail1} = Enum.split(p2_contrib, i1)

# p1 contribution
slice2 = Enum.slice(p2.genes, i1..i2)
slice2_set = MapSet.new(slice2)
p1_contrib = Enum.reject(p1.genes, &MapSet.member?(slice2_set, &1))
{head2, tail2} = Enum.split(p1_contrib, i1)

# Make and return
{c1, c2} = {head1 ++ slice1 ++ tail1, head2 ++ slice2 ++ tail2}

{%Chromosome{
genes: c1,
size: p1.size

},
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%Chromosome{
genes: c2,
size: p2.size

}}
end

Start by examining the first code block under the first comment. The code
creates a tuple that is a random range in ascending order within the length
of your chromosome.

The next block creates a slice from p1 using the range you just created. It
then determines which elements from p1 are present in p2 and eliminates
them from p2’s contribution to the child. Finally, it splits this contribution at
the first index in the range, so the elements of p2’s contribution are added in
the correct place in the new chromosome.

The process is repeated with p2, and the chromosomes are combined to return
two new child chromosomes.

Order-one crossover is one strategy for solving problems with permutation
genotypes. One drawback of order-one crossover is that it’s slow. With large
solutions, order-one crossover will significantly slow down your algorithm.
Fortunately, most problems that use permutation genotypes are small.

Adding Crossover Customization
Before you can finish solving N-queens, you need to tweak the crossover function
in genetic.ex to support custom crossover functions. Recall from the previous
chapter how you used opts to extract and apply a custom crossover function.
You’ll do the same thing here.

First, open genetic.ex and navigate to the crossover function. Right now, it should
look like this:

def crossover(population, opts \\ []) do
population
|> Enum.reduce([],

fn {p1, p2}, acc ->
cx_point = :rand.uniform(length(p1))
{{h1, t1}, {h2, t2}} =

{Enum.split(p1, cx_point),
Enum.split(p2, cx_point)}

{c1, c2} = {h1 ++ t2, h2 ++ t1}
[c1, c2 | acc]

end
)

end
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Remember, this function takes a list of tuples representing pairs of parents.
If you notice, the actual process of crossover takes place within the body of
the anonymous function passed to Enum.reduce/3. That means you can replace
this code with whatever crossover function you want.

First, extract a :crossover_type parameter from opts:

def crossover(population opts \\ []) do
crossover_fn = Keyword.get(opts,

:crossover_type,
&Toolbox.Crossover.order_one/2)

end

For now, the default can remain Toolbox.Crossover.order_one/2 because that’s the
only one you’ve implemented thus far. Next, in the body of the anonymous
function in reduce, replace the code with the following:

# ...
|> Enum.reduce([],

fn {p1, p2}, acc ->
{c1, c2} = apply(crossover_fn, [p1, p2])
[c1, c2 | acc]

end
)

Remember from the last chapter that apply/2 simply applies the given function
with the given arguments.

Now, you should be set to run N-queens. Add the following to nqueens.exs below
your module:

soln = Genetic.run(NQueens)

IO.write("\n")
IO.inspect(soln)

A quick note: you don’t need to specify any specific crossover type because
order_one/2 is the current default. You can adjust the population size, selection
type, or crossover rate if you’d like.

Next, open your terminal and run the script:

$ mix run scripts/nqueens.exs
Current best: 8
%Types.Chromosome{

age: 1,
fitness: 8,
genes: [4, 6, 1, 5, 2, 0, 3, 7],
size: 8

}
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Exploring Crossover
With the N-queens problem, you saw how much choosing the correct crossover
strategy can affect your algorithms. Now, you need to develop an understand-
ing of what crossover is and how it works.

Crossover is analogous to reproduction—the process of combining the genes
of two chromosomes to create new chromosomes. The idea is that solutions
will combine to create even better solutions—like how evolution slowly opti-
mizes organisms to adapt and become stronger in their environment.

While the parallels between biological reproduction and crossover are neither
perfect nor sound, you can better understand crossover if you have a general
understanding of biology. In biology, traits are passed down to children from
parents. These traits, for example, include hair color, eye color, and muscle
composition. If both parents possess the same traits, the child is more likely
to inherit those traits from their parents.

Now, imagine two sets of parents. One set of parents consists of two world-
class distance runners. The other set of parents consists of two world-class
weightlifters. Which set of parents is more likely to produce a better distance
runner? The set of distance runners, because they possess and are more
likely to pass on traits that contribute to success in distance running.

The same idea applies to crossover in genetic algorithms. Your goal is to take
the strongest traits present in two solutions and pass them on to child solu-
tions. Over time, your strategy will produce a fitter population.

The crossover strategy you use can have a big impact on the performance of
your algorithm. Strategies are very problem-dependent. Some strategies are
designed with certain genotypes in mind. Other strategies are built for speed
or simplicity. In the next section, you’ll see how crossover can impact the
performance of a genetic algorithm.

Implementing Other Common Crossover Strategies
The goal of crossover is to produce child solutions that are better than their
parents. A good crossover strategy will produce, on average, better child
solutions in the long run. Additionally, a good crossover strategy will respect
the genotype of your chromosome. For example, if you’re using a permutation
genotype, a good crossover strategy will maintain the integrity of the permu-
tation. You don’t want to use a crossover strategy that will produce invalid
solutions because, eventually, all of your solutions will become invalid and
your algorithm will never produce the best solution.
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In this section, you’ll learn about several common crossover strategies that
work on all of the genotypes you’ve learned about so far. With these crossover
strategies in place, you’ll be able to effectively solve problems that use
binary, permutation, and real-value genotypes. The crossover strategies
you’ll implement are:

• Single-point crossover
• Uniform crossover
• Whole arithmetic recombination

Additionally, you’ll be introduced to a variety of more advanced crossover
strategies that you can research and implement on your own.

Single-Point Crossover
Single-point crossover is the most basic crossover strategy and the one you’ve
been using since Chapter 1, Writing Your First Genetic Algorithm, on page 1.
John Holland proposed it as the crossover strategy in the original genetic
algorithm. Single-point crossover is common in solving basic problems because
it’s the easiest to implement.

The basic algorithm for single-point crossover is:

1. Choose a random number k between 0 and n-1 where n is the length of the
parent chromosomes.

2. Split both parents at k to produce four slices of genes.

3. Swap the tails of each parent at k to produce two new children.

The following picture illustrates single-point crossover:

1 1 1 1 0 1 1

1 1 1 1 1 0 0 1

0

Crossover Point = 4

1 1 1 1 0 011

1 1 1 1 1 0 0 1
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This is how you would implement single-point crossover in Elixir:

def single_point(p1, p2) do
cx_point = :rand.uniform(p1.size)
{p1_head, p1_tail} = Enum.split(p1.genes, cx_point)
{p2_head, p2_tail} = Enum.split(p2.genes, cx_point)
{c1, c2} = {p1_head ++ p2_tail, p2_head ++ p1_tail}
{%Chromosome{genes: c1, size: length(c1)},

%Chromosome{genes: c2, size: length(c2)}}
end

First, you select a random number. Remember, :rand.uniform/1 returns a uniform
random number between 0 and n-1. Next, you split both chromosomes at
cx_point. Enum.split/2 returns a tuple of slices. Finally, you swap the tails of each
parent to produce new children. You then wrap these children in a Chromosome
struct and return them as a tuple.

The advantages of single-point crossover lie in its simplicity. It’s a simple
algorithm that runs very fast on solutions of all sizes. Unfortunately, single-
point crossover does a poor job producing stronger solutions. This fact is
especially evident when you’re dealing with large solutions. Additionally,
single-point crossover won’t maintain the integrity of a permutation, and it
might not “blend” real-value solutions like you’d need. Single-point crossover
works most effectively on binary genotypes where order matters.

Single-point crossover is only useful for basic problems; however, you can
use it to prototype problems and as a benchmark against other crossover
strategies.

Uniform Crossover
Uniform crossover is a slightly more advanced crossover strategy in which
genes in the parent chromosome are treated separately. While single-point
crossover only works on blocks of genes, uniform crossover works on individ-
ual genes.

Uniform crossover works by pairing corresponding genes in a chromosome
and swapping them according to a rate. The rate is a number between 0 and
1 that represents the probability that two genes will be swapped. A rate of 0.5
indicates that genes have a 50% chance of swapping between parent chro-
mosomes.

The image on page 98 demonstrates uniform crossover.
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1 0 0 1 0 010

0 1 1 0 1 1 0 1

0 0 0 0 0 000

1 1 1 1 1 1 1 1

This is how you would implement uniform crossover in Elixir:

def uniform(p1, p2, rate) do
{c1, c2} =

p1.genes
|> Enum.zip(p2.genes)
|> Enum.map(fn {x, y} ->
if :rand.uniform() < rate do

{x, y}
else

{y, x}
end

end)
|> Enum.unzip()

{%Chromosome{genes: c1, size: length(c1)},
%Chromosome{genes: c2, size: length(c2)}}

end

First, you use Enum.zip/2 to pair corresponding genes from both parents.
Enum.zip/2 returns a single enumerable from two enumerables with correspond-
ing elements “zipped” in a tuple. Next, you iterate over each tuple with
Enum.map/2 and swap genes according to the rate provided. Finally, you use
Enum.unzip/1 to unpack the tuples back into two lists of new chromosomes.

Uniform crossover is more versatile in its ability to isolate and swap single
genes that could significantly improve the fitness of child chromosomes. For
example, imagine you have two parent solutions that look like the image on
page 99.
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1 1 1 1 0 1 1

1 1 1 1 1 0 0 1

0

If you were to try and use single-point crossover on those parent chromosomes,
it would be difficult to produce solutions that effectively maximize the potential
of each parent. Notice what happens when using single-point crossover at
the following crossover point:

1 1 1 1 0 1 1

1 1 1 1 1 0 0 1

0

Crossover Point = 4

1 1 1 1 0 011

1 1 1 1 1 0 0 1

If you used uniform crossover, you could effectively isolate individual genes
and potentially swap the correct genes to produce the best solution, like the
image on page 100.

One thing to consider with uniform crossover is the impact the rate will have
on its effectiveness. A higher uniform crossover rate means more genes will
be swapped. A lower uniform crossover rate means fewer genes will be
swapped. Think of it like this: a uniform crossover rate of 0.8 means that each
child will be made up of 80% of one parent and 20% of the other. Typically,
it’s best to choose a rate of 0.5.

Uniform crossover doesn’t work on permutations, nor will it produce desired
results for most real-valued genotypes. Additionally, because uniform crossover
needs to iterate over the entirety of both parent chromosomes, it can be slow
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1 1 1 1 0 1 1

1 1 1 1 1 0 0 1

0

1 1 1 1 1 111

1 1 1 1 0 0 0 0

with extremely large chromosomes. Uniform crossover works best with binary
genotypes. It’s effective and relatively fast with small chromosomes.

Whole Arithmetic Recombination
Whole arithmetic recombination is a crossover strategy for real-value chromo-
somes that mathematically mixes each gene of the parents to produce children.
Whole arithmetic recombination takes a percentage of each parent gene and
adds them to produce new solutions. The percentage of each parent gene
present in the child gene is determined by a parameter alpha.

Whole arithmetic recombination combines genes according to the formula:

z = x * α + y * (1 − α)

Where x and y are parent genes, and z is a resulting child gene.

That formula is applied on each corresponding gene in the parent chromo-
somes. One thing to note is that an alpha of 0.5 will produce identical child
chromosomes.

The image on page 101 demonstrates whole arithmetic recombination.

This is how you would implement whole arithmetic recombination in Elixir:

def whole_arithmetic_crossover(p1, p2, alpha) do
{c1, c2} =

p1.genes
|> Enum.zip(p2.genes)
|> Enum.map(

Chapter 6. Generating New Solutions • 100

report erratum  •  discuss

http://pragprog.com/titles/smgaelixir/errata/add
http://forums.pragprog.com/forums/smgaelixir


0.9 0.6 0.8 0.5 0.2 0.3 0.1

0.5 0.2 0.4 0.7 0.6 0.1 0.9

0.7 0.4 0.6 0.6 0.4 0.2 0.5

0.7 0.4 0.6 0.6 0.4 0.2 0.5

Alpha = 0.5

fn {x, y} ->
{
x*alpha + y*(1-alpha),
x*(1-alpha) + y*alpha

}
end

)
|> Enum.unzip()

{%Chromosome{genes: c1, size: length(c1)},
%Chromosome{genes: c2, size: length(c2)}}

end

Because whole arithmetic recombination also works on corresponding genes
in the parents, you use Enum.zip/2 to pair genes like in uniform crossover. Next,
you use Enum.map/2 to iterate over each pair and combine them according to
the formula mentioned earlier. Finally, you use Enum.unzip/2 to return two new
sets of genes.

Whole arithmetic recombination is a basic strategy for combining real-value
chromosomes. One issue it has is its tendency to converge quickly on poor
solutions. Because there’s no randomness involved, all chromosomes will
inevitably become the same without other strategies to prevent premature
convergence. You can defeat this by only combining a percentage of genes in
the chromosome.

Whole arithmetic recombination, like uniform crossover, iterates over entire
chromosomes. This means it will be slower on larger solutions. It can be
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useful with floating-point solutions—like in portfolio optimization and deter-
mining what percentage of your portfolio to allocate to each asset.

Other Crossover Strategies
Numerous algorithms for implementing crossover on various genotypes are
available, such as:

• Messy single-point: messy crossover strategy doesn’t preserve the length
of chromosomes.

• Cycle: crossover on ordered list using cycles.

• Multi-point: crossover at multiple points.

You can find these algorithms online and attempt to implement them yourself.

Crossing Over More Than Two Parents
Some algorithms require you to select more than two parents for crossover.
All of the algorithms presented above can be implemented on multiple parents.

Here’s an example of single-point crossover on multiple parents:

def single_point_crossover([]), do:
raise "You must have at least one parent!"

def single_point_crossover([p1 | []]), do: p1

def single_point_crossover(parents) do
crossover_point = :rand.uniform(hd(parents).size)
parents
|> Enum.chunk_every(2, 1, [hd(parents)])
|> Enum.map(&(List.to_tuple(&1)))
|> Enum.reduce(

[],
fn {p1, p2}, chd ->

{front, _} = Enum.split(p1.genes, crossover_point)
{_, back} = Enum.split(p2.genes, crossover_point)
c = %Chromosome{genes: front ++ back, size: length(p1)}
[c | chd]

end
)

end

Start by examining the first two function definitions. Thanks to Elixir’s rich
set of pattern matching features, you can define functions on specific inputs.
The first definition is to ensure that the function doesn’t accept empty lists.
The next definition simply returns the same chromosome if only one parent
is provided.
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The next function will work on a list of an arbitrary number of parents. The
function starts by selecting a crossover point between 0 and the length of the
first parent.

Now, examine this code block:

parents
|> Enum.chunk_every(2, 1, [hd(parents)])
|> Enum.map(&(List.to_tuple(&1)))

Enum.chunk_every/3 will pair every parent into groupings of two starting at index
1. The last argument, [hd(parents)], tells the function to group the leftover ele-
ments with the first element of parents. Then, each element is transformed into
a tuple to make pattern matching easier.

Now, examine the final block:

|> Enum.reduce(
[],
fn {p1, p2}, chd ->

{front, _} = Enum.split(p1.genes, crossover_point)
{_, back} = Enum.split(p2.genes, crossover_point)
c = %Chromosome{genes: front ++ back, size: length(p1)}
[c | chd]

end

Enum.reduce/3 takes an enumerable, an accumulator, and a function as input.
The enumerable is the list of tuples that represent pairs of parents. The
accumulator is an empty list. The function simply implements single-point
crossover on each pairing of parents and returns the child at the front of the
accumulator.

This same algorithm can be implemented for each crossover strategy,
replacing the body of the anonymous function in Enum.reduce/3 with whatever
strategy you want.

Crossing over more than two parents can add a lot of unnecessary complexity
to your algorithms. It’s best not to use this approach unless you absolutely
have to.

Implementing Chromosome Repairment
Sometimes, you’re limited in the crossover strategy you can use. In Chapter
4, Evaluating Solutions and Populations, on page 51, you explored a solution
to the N-queens problem that wouldn’t work because you used single-point
crossover.
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One approach that works around limitations in crossover strategies is the
concept of chromosome repairment. Chromosome repairment is the process
of ensuring solutions remain valid after crossover or mutation. In the case of
N-queens, using single-point crossover ruins the integrity of the permutation.
This means after crossover takes place, you have to go in and individually
repair every chromosome.

Chromosome repairment isn’t necessary if you choose a crossover strategy
that maintains the integrity of your permutation; however, if you’re restricted
to using specific crossover strategies, then it will be necessary. To implement
chromosome repairment into your genetic algorithm, add the following to
crossover/1 in lib/genetic.ex:

def crossover(population, opts \\ []) do
crossover_fn = Keyword.get(opts,

:crossover_type,
Toolbox.Crossover.single_point/2)

population
|> Enum.reduce([],

fn {p1, p2}, acc ->
{c1, c2} = apply(crossover_fn, [p1, p2])
[c1, c2 | acc]

)
|> Enum.map(& repair_chromosome(&1))

end

The addition of Enum.map/2 will go through each chromosome in the population
and call repair_chromosome/1, which is a function that will repair chromosomes.
Now, implement the repair_chromosome/1 function like this:

def repair_chromosome(chromosome) do
genes = MapSet.new(chromosome.genes)
new_genes = repair_helper(chromosome, 8)
%Chromosome{chromosome | genes: new_genes}

end
defp repair_helper(chromosome, k) do

if MapSet.size(chromosome) >= k do
MapSet.to_list(chromosome)

else
num = :rand.uniform(8)
repair_helper(MapSet.put(chromosome, num), k)

end
end

Here, you use a MapSet to get the unique elements of the provided chromosome.
Next, you pass it into a recursive helper. The helper function will generate
random numbers and attempt to put them into the MapSet until the chromo-
some is the appropriate length.
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Now, if you change crossover/1 back to use single_point_crossover/2, you can run
scripts/nqueens.exs and obtain a solution:

$ mix run scripts/nqueens.exs
Current Best: 8
[3, 6, 2, 7, 1, 4, 0, 5]

What You Learned
In this chapter, you learned about the importance of crossover and how
crossover helps genetic algorithms exploit in search. You learned about N-
queens and how choosing an appropriate crossover strategy affects the out-
come of your algorithms.

You also learned four different types of crossover strategies that can be applied
to different genotypes. Single-point crossover is the most basic and is only
useful with binary genotypes. Uniform crossover is a slightly more useful
crossover strategy, but it doesn’t preserve order in permutations. Order-one
crossover is a crossover strategy specifically for permutation genotypes. Whole
arithmetic recombination is a basic strategy for real-value genotypes.

With these four strategies, you have the ability to solve a wide variety of
problems with different genotypes. You also should have a basic understanding
of what strategies will work with different genotypes.

Finally, you learned about other less common techniques for generating new
solutions, including crossing over multiple parents and chromosome
repairment.

In the next chapter, you’ll explore how selection and crossover alone can lead
to problems in your algorithm, and you’ll see how mutation addresses these
problems.
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CHAPTER 7

Preventing Premature Convergence
The previous two chapters were dedicated to the process of making better
populations from an existing population. Chapter 5, Selecting the Best, on
page 71, focused on choosing solutions for reproduction that give you the
best opportunity to increase the overall fitness of your population. Chapter
6, Generating New Solutions, on page 87, focused specifically on the process
of creating new solutions.

Correctly applying selection and crossover on populations is vital to the suc-
cess of your genetic algorithms. Selection and crossover alone are sufficient
for a complete genetic algorithm—you don’t need any additional steps for
varying your population if you don’t want to. However, using selection and
crossover alone can lead you into a common pitfall: premature convergence.

Premature convergence refers to the stalling of progress in your algorithms
as a result of a lack of genetic diversity in your population. As you saw in
Chapter 5, Selecting the Best, on page 71, over time, populations tend to drift
toward a similar genetic pattern. To understand why this can be problematic,
consider this small population of binary chromosomes as shown in the image
on page 108.

Notice the first gene in every chromosome. If your objective was to maximize
the number of 1s in each sequence, it would be impossible for you to reach
an optimal solution with crossover alone. The first gene in every chromosome
is a 0—there’s no way to turn that gene into a 1. In practice, you would call
this a converged allele.

Remember from Chapter 3, Encoding Problems and Solutions, on page 33,
an allele is simply the value of a particular gene. A converged allele is one
that is the same in a majority of the solutions of the population.
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While it’s not practical to have a population size of 5 with chromosomes of
size 5, it doesn’t mean this phenomenon isn’t possible in practice. In the next
section, you’ll implement a genetic algorithm with and without mutation to
see the very real impact of premature convergence.

Population Diversity and Premature Convergence

It’s generally agreed upon that mutation works to prevent premature
convergence because it helps maintain population diversity. It’s
understood that a decrease in population diversity has a direct cor-
relation to premature convergence; however, there’s no real formal-
ized understanding or measures of population diversity. So, while
you may intuitively understand your algorithm stopped improving
because there’s insufficient diversity in the population, there’s no
formal definition for when a population is considered converged.

Breaking Codes with Genetic Algorithms
Imagine that you’ve been tasked with protecting the integrity of your firm’s
data. One day, a hacker manages to get on your system and encrypts all of
your data before demanding a ransom to decrypt it.

Luckily, the hacker decided to use a basic XOR cipher with what appears to
be a 64-bit key. That means, if you’re able to determine the key, you’ll be able
to easily apply the cipher in reverse to restore all of your data.

XOR ciphers are reversible ciphers that work by applying a bitwise XOR with
a key on every character in a string. Unicode characters are represented with
16-bits. Given a key and a string, you can encrypt the string by applying an
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XOR of every character with your key. The following image demonstrates this
process:
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Encrypted: “NMLK”

XOR

Key: 15

Plain Text: “ABCD”

To decrypt an XOR cipher, you can apply the same process in reverse—if you
know the key. XOR is the inverse of itself, so you can apply the cipher on
encrypted text with the same key to obtain the decrypted version. The following
image illustrates this:
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Because of the hacker’s choice to use a basic XOR cipher, all you need to do
is find the 64-bit key they used to encrypt your data. Unfortunately, it’s not
feasible to search through all 2^64 possible keys. Instead, it makes sense to
use a genetic algorithm.

Representing the Problem
First, create a new file scripts/codebreaker.exs.

Next, create the shell of your Problem definition:

defmodule Codebreaker do
@behaviour Problem
alias Types.Chromosome
use Bitwise

def genotype, do: # genotype

def fitness_function(chromosome), do: # fitness

def terminate?(population, generation), do: # population
end

Notice the additional use Bitwise at the beginning of your module definition.
You’ll need this to implement the fitness function.

Now you need to implement your problem-specific functions.

You’re trying to find the 64-bit key the hacker used to encrypt your informa-
tion. Naturally, you’ll want to represent your chromosome as a bitstring with
64-bits:

def genotype do
genes = for _ <- 1..64, do: Enum.random(0..1)
%Chromosome{genes: genes, size: 64}

end

Here, you generate random binary genotypes of size 64 and return a new
Chromosome struct.

Evaluating and Stopping
Next, you need a way of evaluating how close you are to finding the correct
key. Luckily, you remember one of the names of the files on your desktop:
ILoveGeneticAlgorithms. It appears the name of this file has been changed to
LIjs`B`k`qlfDibjwlqmhv. Given you have an encrypted string, and you know the
decrypted version, you can guess a key and apply it on your encrypted string
to see how close it gets you to the decrypted version.
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Implement your fitness function like this:

def fitness_function(chromosome) do
target = 'ILoveGeneticAlgorithms'
encrypted = 'LIjs`B`k`qlfDibjwlqmhv'
cipher = fn word, key -> Enum.map(word, rem(& &1 ^^^ key, 32768)) end
key =

chromosome.genes
|> Enum.map(& Integer.to_string(&1))
|> Enum.join("")
|> String.to_integer(2)

guess = List.to_string(cipher.(encrypted, key))
String.jaro_distance(target, guess)

end

You start the function by declaring your target, which is the correctly
decrypted version of one of your encrypted filenames, as a charlist. You also
define encrypted in the same way. Next, you define a basic XOR cipher which
iterates through each character in a provided word and applies an XOR before
taking the remainder of the result of the XOR and 32768 to ensure your guessed
cipher has codepoints within the usable character range for Elixir strings.

The next step generates an integer key from the provided chromosome. Your
chromosomes are lists of 1s and 0s. To convert the list of 1s and 0s to a decimal
integer, you need to convert the list to a string and then parse the string with
a base 2, indicating the number is a binary representation of an integer.

After you’ve defined your key, you need to generate a guess from your key. The
guess is just an attempt at decrypting encrypted with the key your chromosome
represents. Finally, you compare your guess with the target using String.jaro_dis-
tance/2. String.jaro_distance/2 is a measure of the similarity between two strings.
It returns a value between 0 and 1, with 1 meaning the compared strings are
identical.

Because your fitness function returns 1 only when the strings are identical,
you can safely assume that you’ve identified the correct key when the fitness
of a chromosome is 1. Therefore, your termination criteria is this:

def terminate?(population, _generation), do:
Enum.max_by(population, &Codebreaker.fitness_function/1).fitness == 1

Running the Algorithm
Now, add the following below your module definition:

soln = Genetic.run(Codebreaker,
crossover_type: &Toolbox.Crossover.single_point/2)
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{key, ""} =
soln.genes
|> Enum.map(& Integer.to_string(&1))
|> Enum.join("")
|> Integer.parse(2)

IO.write "\nThe Key is #{key}\n"

With your algorithm complete, you’re ready to run. First, go to lib/genetic.ex and
edit the evolve/3 function to run generations without mutation by commenting
out the mutation line, like this:

def evolve(population, problem, generation, opts \\ []) do
population = evaluate(population, &problem.fitness_function/1, opts)
best = hd(population)
IO.write("\rCurrent best: #{best.fitness}\tGeneration: #{generation}")
if problem.terminate?(population, generation) do

best
else

{parents, leftover} = select(population, opts)
children = crossover(parents, opts)
children ++ leftover
# |> mutation(opts)➤

|> evolve(problem, generation+1, opts)
end

end

Now, run your algorithm like this:

$ mix run examples/codebreaker.exs
Current Best: 0.273

After awhile, you might get tired of your algorithm running and not making
any progress. More than likely, your algorithm is suffering from premature
convergence. Uncomment the mutation/1 function in run/2 and try running your
algorithm again:

$ mix run examples/codebreaker.exs
Current Best: 1.000
Key is 2491717835680677893

To see that this key is, in fact, the correct key, open up iex and use it to unci-
pher your encrypted string, like this:

$ iex
iex(1)> use Bitwise
Bitwise
iex(2)> key = 2491717835680677893
2491717835680677893
iex(3)> cipher = fn word, key -> Enum.map(word, & rem(&1 ^^^ key, 32768)) end
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#Function<13.126501267/2 in :erl_eval.expr/5>
iex(4)> List.to_string(cipher.('LIjs`B`k`qlfDibjwlqmhv', key))
"ILoveGeneticAlgorithms"

Congratulations, you’ve cracked the code.

Understanding Mutation
As with most of the other aspects of a genetic algorithm, mutation has a loose
analogy to a real biological process. In biology, mutation is a random change
in an individual’s DNA sequence that often manifests itself in physical traits.
For example, if you have blue eyes, you can thank genetic mutation.

Mutation in genetic algorithms works in much the same way. It’s a random
change to some or all of the genes in a chromosome. The purpose of mutation
is to introduce genetic diversity into the population.

If you recall from Chapter 1, Writing Your First Genetic Algorithm, on page
1, the algorithm you wrote to solve the One-Max problem struggled to find
the best solution until you added mutation. When dealing with binary geno-
types, premature convergence is more common because genes can only take
on one of two values. The possibility of premature convergence increases
when dealing with small population sizes relative to your search space.

Stimulating Change
Mutation works by stimulating change—it prevents your algorithm from
becoming complacent. Imagine you roll a ball down a small hill. Halfway down
the hill there’s a slight rise in elevation, but afterwards, the hill declines again
very sharply. You roll the ball down the hill, but it doesn’t have enough
momentum to make it over the bump. What do you do? You give it a little
push. You can visualize this in the following image:

Solution 
Mutates

Solution Cannot Improve in Either Direction Solution Can Improve Downwards
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The purpose of mutation is to give your algorithms a little push in a different,
possibly better direction. Mutations drive change when selection and crossover
are otherwise not enough. The goal of mutation is to introduce new solutions
that may improve upon or be better than old ones.

One thing that’s important to note is that premature convergence doesn’t
necessarily mean your algorithm has reached a global or even local optimum.
That is to say, premature convergence doesn’t mean your algorithm has found
good solutions. Premature convergence simply means you’re no longer able
to produce different solutions due to a lack of population diversity.

A final consideration is that while the intent of mutation is to stimulate
change, it can be difficult to quantify whether or not it actually works.
Genetic algorithms are sensitive to the random nature of their operators.
Mutation is random, and sometimes it doesn’t improve your algorithms at
all. For example, perhaps your first solution to the codebreaking problem
converged faster than your second. It’s hard to predict or even prove that
mutation will offer you any benefits at all. Sometimes you just have to try it.

Balancing Diversity and Fitness
The key struggle with mutation is finding a balance between population
diversity and overall fitness.

Remember from Chapter 1, Writing Your First Genetic Algorithm, on page 1,
the struggle between exploration and exploitation. Mutation is a means of
exploration. If you mutate too much, your algorithm works essentially the
same as random search, and you have no way of exploiting the environment
around you.

Mutation rate is the rate at which you mutate chromosomes. Some genetic
algorithms call for the mutation of every child, some call for the mutation of
only a few children, and some call for the mutation of only surviving chromo-
somes. The choice of who to mutate isn’t necessarily as important to your
algorithm as the choice of how many you mutate.

A mutation rate of 5% essentially means that you mutate about 5% of your
population every generation. It’s common to have a mutation rate at or around
5%, because it’s low enough that it still allows your algorithm to progress but
high enough that it maintains the genetic diversity of your population. You
may want to experiment with different mutation rates to see how they affect
your algorithms.

Chapter 7. Preventing Premature Convergence • 114

report erratum  •  discuss

http://pragprog.com/titles/smgaelixir/errata/add
http://forums.pragprog.com/forums/smgaelixir


One uncommon technique is to use a changing mutation rate. For example,
you might want your mutation rate to decay over time—indicating that your
algorithm should stop exploring at later generations. This technique is common
with learning rates in other machine learning algorithms, but it’s not as
effective with genetic algorithms.

Mutation Aggressiveness
An additional parameter that’s not often mentioned with mutation is the
notion of mutation aggressiveness. The aggressiveness of a mutation dictates
how much it changes a chromosome. For example, you can choose to change
all of the genes in a chromosome with new genes, or you can choose to replace
only some.

Most of the algorithms you find online will opt to mutate the entire chromo-
some, but sometimes you might find it useful to further control your muta-
tions. In a later section, you’ll see exactly how you can introduce additional
parameters to control how aggressive your mutations are.

Customizing Mutation in Your Framework
Just like in Chapter 5, Selecting the Best, on page 71, and Chapter 6, Gener-
ating New Solutions, on page 87, you’ll need to slightly modify your framework
to allow you to customize mutation hyperparameters. These hyperparameters
are mutation strategy and mutation rate.

In this section, you’ll create a mutation toolbox and modify your framework
to allow you to easily customize mutation in your algorithms.

Creating the Toolbox
First, you need to create a mutation toolbox, just like you created a selection
and crossover toolbox. Create a new file in toolbox called mutation.ex.

Next, create the Toolbox.Mutation module, like this:

defmodule Toolbox.Mutation do
alias Types.Chromosome

# ...
end

You’ll be working a lot with the Chromosome struct in this module, so you’ll
want to create an alias. Now, whenever you implement a new mutation
strategy, you’ll add it to your mutation toolbox.
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Changing Mutation Strategy
Open up genetic.ex and navigate to the mutation/2 function. It looks like this:

def mutation(population, opts \\ []) do
population
|> Enum.map(

fn chromosome ->
if :rand.uniform() < 0.05 do

%Chromosome{genes: Enum.shuffle(chromosome.genes)}
else

chromosome
end

end
)

end

Remember, opts is a Keyword representing the options you can pass to your
algorithm when you call Genetic.run/2. First, you need to extract a mutation
strategy from opts, like this:

mutate_fn = Keyword.get(opts, :mutation_type, &Toolbox.Mutation.flip/1)

Right now, the default is called flip mutation, which is a mutation strategy
you’ll implement in the next section. You can change this default to another
method if you prefer.

Next, you need to apply your mutation strategy to chromosomes in the popu-
lation. Change the body of Enum.map/2 to look like this:

|> Enum.map(
fn chromosome ->
if :rand.uniform() < 0.05 do

apply(mutate_fn, [chromosome])➤

else
chromosome

end
)

Here you use apply/2 to apply your extracted mutation strategy to chromosome.
The mutation strategies you’ll implement in this chapter accept a chromosome
and return the mutated chromosome, so apply/2 returns a mutated version of
chromosome.

Adjusting Mutation Rate
You also need a way to control the mutation rate of your algorithm. Start by
extracting :mutation_rate from opts:
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mutate_fn = Keyword.get(opts, :mutation_type, &Toolbox.Mutation.flip/1)
rate = Keyword.get(opts, :mutation_rate, 0.05)

0.05 represents a mutation rate of 5%, which is a good default.

Next, you need to change Enum.map/2 to only mutate chromosomes according
to rate. To do this, change the if-condition to look like this:

|> Enum.map(
fn chromosome ->
if :rand.uniform() < rate do➤

apply(mutate_fn, [chromosome])
else

chromosome
end

)

Your new mutation/2 function should look like this:

def mutation(population, opts \\ []) do
mutate_fn = Keyword.get(opts, :mutation_type, &Toolbox.Mutation.scramble/1)➤

rate = Keyword.get(opts, :mutation_rate, 0.05)➤

population
|> Enum.map(

fn chromosome ->
if :rand.uniform() < rate do➤

apply(mutate_fn, [chromosome])➤

else
chromosome

end
end

)
end

Implementing Common Mutation Strategies
You’ll likely only ever need to work with a few mutation strategies depending
on the genotype of your solutions. The mutation strategy you use has less of
an impact on your algorithm than, say, crossover strategy or selection strat-
egy. The presence of mutation matters more—so long as the mutation strategy
you choose maintains the validity of your solutions.

In this section, you’ll learn how to implement three different types of mutation
that you can use for binary, permutation, and real-value genotypes. At the
end of this section, you’ll find a list of other common mutation strategies to
research and implement on your own.
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Flip Mutation
Flip mutation, also known as bit flip mutation, is the type of mutation pro-
posed in the Holland’s original genetic algorithm. It’s simple and effective on
binary genotypes. Flip mutation “flips” some or all of the bits in the chromo-
some. So, if a gene is a 1, it’s flipped to a 0. If a gene is a 0, it’s flipped to a 1.

The following image depicts flip mutation:

1 1 1 1 0 1 1 0

0 0 0 0 1 0 0 1

Flip mutation can be implemented in a few lines of code using Elixir’s Enum
library. First, at the top of your Toolbox.Mutation module, add the following line:

use Bitwise

Bitwise is a module in the Elixir standard library for working with bitwise
operations. Bitwise is applicable here because flip mutation is essentially just
a bitwise XOR between 1 and the value of a gene. XOR with 1 produces the
desired flip because 1 XOR 1 is 0 and 0 XOR 1 is 1.

To implement flip mutation in Elixir, add the following code to your Toolbox.Muta-
tion module:

def flip(chromosome) do
genes =

chromosome.genes
|> Enum.map(& &1 ^^^ 1)

%Chromosomes{genes: genes, size: chromosome.size}
end

This function maps over every gene in chromosome and performs a bitwise XOR
with the value at the gene and 1. Of course, this function changes every gene in
the chromosome. Sometimes, you want to implement something less aggres-
sive. The following function performs flip mutation with a given probability:

def flip(chromosome, p) do
genes =

chromosome.genes
|> Enum.map(

fn g ->
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if :rand.uniform() < p do
g ^^^ 1

else
g

end
end

)

%Chromosome{genes: genes, size: chromosome.size}
end

This function simply adds a “coin-flip” to determine which genes to flip. The
probability of a gene being flipped is equal to the provided parameter p. You
can modify this p to adjust the aggressiveness of the flip mutation. In practice,
a probability of around 50%, or 50% of the genes in a chromosome being
flipped, is usually suitable.

Flip mutation is simple and effective. One drawback, however, is that it only
applies to binary genotypes.

Scramble Mutation
Scramble mutation is the type of mutation you implemented in Chapter 1,
Writing Your First Genetic Algorithm, on page 1. You simply shuffled all of
the genes in a given chromosome to create a new chromosome. While shuffling
the bits had no impact on the fitness of a chromosome, it served to ensure
some percentage of your population remained different from the rest.

Scramble mutation is versatile in that it can apply to almost all genotypes.
You saw it in practice with binary genotypes, but it also can apply to permu-
tation genotypes and some real-value genotypes.

Scramble mutation is like shuffling a deck of cards. The following image
demonstrates scramble mutation on a permutation genotype:

5 4 0 1 3 2 6

3 4 5 2 1 6 0
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You can implement scramble mutation in Elixir using the Enum.shuffle/1 method.
The following function demonstrates scramble mutation:

def scramble(chromosome) do
genes =

chromosome.genes
|> Enum.shuffle()

%Chromosome{genes: genes, size: chromosome.size}
end

This function uses Enum.shuffle/1 to scramble or randomize all of the genes in
the chromosome to create a new chromosome. You can also implement
scramble mutation on a random slice of size n, like this:

def scramble(chromosome, n) do
start = :rand.uniform(n-1)
{lo, hi} =

if start + n >= chromosome.size do
{start - n, start}

else
{start, start + n}

end
head = Enum.slice(chromosome.genes, 0, lo)
mid = Enum.slice(chromosome.genes, lo, hi)
tail = Enum.slice(chromosome.genes, hi, chromosome.size)
%Chromosome{genes: head ++ Enum.shuffle(mid) ++ tail, size: chromosome.size}

end

In this function, you pick a start point for your random slice. You then choose
whether to slice forward or backward, based on the start point. Once you
determine lo and hi, you divide your chromosome into three slices: head, mid,
and tail. You recombine the slices, but shuffle mid.

Scramble mutation is versatile and effective. It does a good job of ensuring
chromosomes change sufficiently to avoid premature convergence.

Gaussian Mutation
Gaussian mutation is a mutation operator meant specifically for real-value
representations of chromosomes. It generates Gaussian random numbers
based on the provided chromosome. A Gaussian random number is just a
random number from a normal distribution.

The normal distribution is perhaps the most common distribution in statistics.
If you know what a bell curve is, then you know what the normal distribution
is. It’s a bell curve centered around 0 that slopes off in both directions as
shown in the image on page 121.
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Standard Normal Curve

In Gaussian mutation, you calculate the mean and standard deviation of the
genes in the chromosome, and then use them to generate numbers in the
distribution.

The idea behind Gaussian mutation is that you are able to slightly adjust a
chromosome without changing it too much. The random numbers that replace
the genes in your chromosome belong to the same distribution as the existing
genes in your chromosome. It’s like picking new CEOs and managers from
inside a company, rather than introducing new personnel to the mix.

To implement Gaussian mutation in Elixir, you first need to calculate the
mean and standard deviation, and then you generate new numbers at every
gene with :rand.normal/2. :rand.normal/2 pulls random numbers from a Gaussian
or normal distribution. This code implements Gaussian mutation:

def gaussian(chromosome) do
mu = Enum.sum(chromosome.genes) / length(chromosome.genes)

sigma =
chromosome.genes
|> Enum.map(fn x -> (mu - x) * (mu - x) end)
|> Enum.sum()
|> Kernel./(length(chromosome.genes))

genes =
chromosome.genes
|> Enum.map(fn _ ->
:rand.normal(mu, sigma)

end)

%Chromosome{genes: genes, size: chromosome.size}
end
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The variable mu represents the mean of the genes in the chromosome which
is calculated by the sum of the genes divided by the length of the genes. sigma
represents the standard deviation which is calculated by the sum of the dis-
tance squared between every gene in the chromosome and the mean divided
by the length. You can think of standard deviation as a measure of how far
something is from the mean.

After you calculate mu and sigma, you map through every gene in the chromo-
some and replace it with a number using :rand.normal/2.

Gaussian mutation is useful for real-value genotypes. It’s perhaps one of the
most effective types of mutation for real-value genotypes because it introduces
diversity to the population with small, incremental changes. Over time,
Gaussian mutation does a great job of balancing diversity and fitness.

Other Mutation Strategies
Numerous mutation strategies aim to maintain the diversity of your population
while also increasing the overall fitness of your population. Some are specific
to specific genotypes and others are generalized for all genotypes. Below is a
list of just a few. See if you can implement them:

• Swap: swap random pairs of genes.
• Uniform: replace genes with uniform random numbers.
• Invert: invert the order of the chromosome.

Other Methods to Combat Convergence
Mutation is the most common method for preventing premature convergence
in the real world. This is largely because it’s so effective.

While mutation is the most common method of preventing premature conver-
gence, other methods exist. In Chapter 5, Selecting the Best, on page 71, you
saw how important it was to select sufficiently different chromosomes for
crossover. A proper selection strategy can go a long way in preventing prema-
ture convergence.

Choosing an effective crossover strategy is another means of preventing pre-
mature convergence. For example, if you use uniform crossover instead of
single-point crossover, your algorithms are less susceptible to premature
convergence.

Yet another means is by replacing similar individuals with new children—this
is something you’ll explore further in Chapter 8, Replacing and Transitioning,
on page 125.
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A ton of research is dedicated to methods of preventing genetic algorithms
from converging. You might find it interesting to research and implement
some theoretical strategies on your own.

In practice, you’ll likely never need more than a good mutation strategy to
keep your algorithms from converging too soon.

What You Learned
In this chapter, you learned about premature convergence and some of the
conditions that lead to premature convergence. You saw how mutation can
help prevent premature convergence and learned about what mutation is and
how it works.

You also implemented flip mutation, scramble mutation, and Gaussian
mutation that you can use for binary, permutation, and real-value genotypes,
respectively. You saw how to add additional parameters to adjust the
aggressiveness of these mutations, and you learned which ones are the best
to implement for different problems.

Finally, you briefly learned about other strategies for preventing premature
convergence and how mutation is the most common and often all you need.

In the next chapter, you’ll learn how to move on from old populations and
how to combine the parents, children, and mutants that you’ve been producing
in the previous chapters.
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CHAPTER 8

Replacing and Transitioning
In the previous three chapters, your primary focus was on transforming the
existing population of chromosomes into a better population using selection,
crossover, and mutation.

In Chapter 5, Selecting the Best, on page 71, you isolated a collection of
chromosomes to be used as parents. You learned that it’s important that your
parents are both fit and genetically diverse—so you can avoid premature
convergence. In Chapter 6, Generating New Solutions, on page 87, you learned
how to take chosen parents and use them to create new solutions. In Chapter
7, Preventing Premature Convergence, on page 107, you learned about mutation
and how you can use it to stop your algorithms from converging too early.

Each of these steps—selection, crossover, and mutation—accepted a collection
of chromosomes and transformed the collection in some way to produce a
new collection of chromosomes. At this point, you can divide your population
into three categories: parents, children, and leftovers.

You have three groups of chromosomes from which to choose, and you need
to combine them in such a way that your new population retains the strengths
of old chromosomes while integrating the strengths of new chromosomes.
Ideally, good selection, crossover, and mutation strategies would effectively
capture the strongest traits of older generations and combine them to make
stronger generations; however, the process of combining the products of all
of these steps is crucial to the success of an evolution.

The process of combining the byproducts of selection, crossover, and mutation
into a new population is known as reinsertion or replacement. Both of these
terms mean essentially the same thing; however, you’ll learn about some of
the minute differences later on in this chapter.
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For the remainder of this chapter, you’ll explore several approaches to rein-
sertion and replacement by applying different approaches to a realistic prob-
lem: creating the best class schedule for your next college semester.

Creating a Class Schedule
Imagine you’re trying to decide what classes you should sign up for for the
fall semester. You can choose from the following classes: Algorithms, Artificial
Intelligence, Calculus, Chemistry, Data Structures, Discrete Math, History,
Literature, Physics, and Volleyball. You can only take eighteen credits. Addi-
tionally, you weigh each of these classes based on their difficulty, usefulness
to you, and your own interest in them. You’ve rated each class in each of
these categories from 1 to 10. To keep things simple, you weigh each of these
criteria evenly.

Your goal is to make the best possible schedule according to these criteria
that also meets your credit-hour limitation. You’ve already assigned weights
to each class according to the following table:

InterestUsefulnessDifficultyCredit HoursClass

  8.08.08.03.0Algorithms

  8.09.09.03.0Artificial Intelligence

  5.06.04.03.0Calculus

  9.02.03.04.5Chemistry

  7.08.05.03.0Data Structures

  2.09.02.03.0Discrete Math

  8.01.04.03.0History

  2.02.02.03.0Literature

  7.05.06.04.5Physics

10.01.01.01.5Volleyball

This is a constrained optimization problem with multiple objectives—meaning,
it’s perfect to address using a genetic algorithm.

Start by creating a new file schedule.exs in scripts. Next, in schedule.exs outline a
basic Problem implementation, like this:

defmodule Schedule do
@behaviour Problem
alias Types.Chromosome

@impl true
def genotype, do: # ...
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@impl true
def fitness_function(chromosome), do: # ...

@impl true
def terminate?(population, generation), do: # ...

end

Now all you have to do is implement each of these functions and run your
algorithm.

Representing Schedules
The easiest way to represent a schedule is with a binary genotype. A binary
genotype ensures the size of your chromosome remains fixed, even with a
varying number of classes in your schedule.

In this case, each index represents a specific class. The value at that index,
1 or 0, represents whether or not you’re taking that class. The schedule [1, 1,
0, 0, 0, 1, 0, 0, 1, 1] means you’re taking Algorithms, Artificial Intelligence, Discrete
Math, Physics, and Volleyball.

Implement genotype/0 like this:

def genotype do
genes = for _ <- 1..10, do: Enum.random(0..1)
%Chromosome{genes: genes, size: 10}

end

You’ve seen this before in problems like the One-Max problem, introduced in
Chapter 1, Writing Your First Genetic Algorithm, on page 1. You create a
binary genotype of size 10 with a for-comprehension.

Evaluating Schedules
Evaluating a schedule is a bit tricky. First, you need to equally weigh all of
your criteria: difficulty, usefulness, and interest. Second, you obviously want
to maximize interest and usefulness while minimizing difficulty. Third, you
need to consider the constraint of eighteen credit hours when constructing
schedules.

You’ve decided to weigh each criteria evenly, so difficulty, usefulness, and
interest are all worth 33% of a class’s final rating. You can use each of these
weights to calculate the fitness of each schedule as a sum of each weighted
criteria. Additionally, you’ll have to introduce a penalty for schedules that
don’t meet your credit-hour obligation. Because it’s possible for a schedule
to be rated negatively, you’ll want your penalty to be a really large negative
value, like -99999.
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Implement fitness_function/1 like this:

def fitness_function(chromosome) do
schedule = chromosome.genes
fitness =

[schedule, difficulties(), usefulness(), interest()]
|> Enum.zip()
|> Enum.map(

fn {class, diff, use, int} ->
class * (0.3*use + 0.3*int - 0.3*diff)

end
)

|> Enum.sum()
credit =

schedule
|> Enum.zip(credit_hours())
|> Enum.map(fn {class, credits} -> class * credits end)
|> Enum.sum()

if credit > 18.0, do: -99999, else: fitness
end

defp credit_hours, do: [3.0, 3.0, 3.0, 4.5, 3.0, 3.0, 3.0, 3.0, 4.5, 1.5]
defp difficulties, do: [8.0, 9.0, 4.0, 3.0, 5.0, 2.0, 4.0, 2.0, 6.0, 1.0]
defp usefulness, do: [8.0, 9.0, 6.0, 2.0, 8.0, 9.0, 1.0, 2.0, 5.0, 1.0]
defp interest, do: [8.0, 8.0, 5.0, 9.0, 7.0, 2.0, 8.0, 2.0, 7.0, 10.0]

Quite a bit is going on here. First, you define each of the associated criteria
values outside of the function for clarity. Next, you use Enum.zip/1 to combine
all of these values into a tuple. Then you use Enum.map/2 to determine the score
for each class based on criteria and whether or not it’s present in the schedule.
Finally, you calculate the number of credit hours in a schedule, and if it
exceeds the limit, return -99999; otherwise, you return fitness.

All that’s left to do is define some termination criteria and run the algorithm.

Terminating and Running
Because you don’t know the exact fitness of the optimal schedule, you’ll ter-
minate based on the generation. 1000 generations is sufficient, but you can
experiment with evolving for more or less generations. Implement terminate?/2
like this:

def terminate?(_population, generation), do: generation == 1000

Next, you need to run your algorithm. Add the following below Schedule:

soln = Genetic.run(Schedule)

IO.write("\n")
IO.inspect(soln.genes)
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Now, run the algorithm:

$ mix run scripts/schedule.exs
Current best: 14.7000 Generation: 1000
%Types.Chromosome{

age: 1,
fitness: 14.7,
genes: [0, 1, 1, 0, 1, 1, 1, 0, 0, 1],
size: 10

}

According to this evolution, the best schedule is [0, 1, 1, 0, 1, 1, 1, 0, 0, 1], which
represents Artificial Intelligence, Calculus, Data Structures, Discrete Math,
History, and Volleyball.

Now, you’ll experiment with different reinsertion strategies to see how they
affect your evolutions, if at all.

Understanding Reinsertion
Reinsertion is the process of taking chromosomes produced from selection,
crossover, and mutation and inserting them back into a population to move
on to the next generation.
Look at evolve/4 in genetic.ex. It looks like this:

def evolve(population, problem, generation, opts \\ []) do
population = evaluate(population, &problem.fitness_function/1, opts)
best = hd(population)
IO.write("\rCurrent best: #{best.fitness}\tGeneration: #{generation}")
if problem.terminate?(population, generation) do

best
else

{parents, leftover} = select(population, opts)
children = crossover(parents, opts)
children ++ leftover
|> mutation(opts)
|> evolve(problem, generation+1, opts)

end
end

If you recall from Chapter 5, Selecting the Best, on page 71, you combined
children and leftover and mutated the result to form a new population. This was
a naive approach, but it ensured your population size remained fixed and
worked well enough at the time.

Your goal with reinsertion is to utilize all of the chromosomes at your disposal
to create a new population that has a good amount of genetic diversity and
has a better fitness than your previous one. Your previous reinsertion strategy
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was to replace your parents with their children. This approach works well
enough, but you’ll want to be able to experiment with different reinsertion
strategies and take smarter approaches to creating new populations.

Now, you will see how you can implement a few common reinsertion strate-
gies and integrate them in your framework. First, edit evolve/4 so that it
matches this:

def evolve(population, problem, generation, opts \\ []) do
population = evaluate(population, &problem.fitness_function/1, opts)
best = hd(population)
fit_str =

best.fitness
|> :erlang.float_to_binary(decimals: 4)

IO.write("\rCurrent best: #{fit_str}\tGeneration: #{generation}")
if problem.terminate?(population, generation) do

best
else

{parents, leftover} = select(population, opts)
children = crossover(parents, opts)
mutants = mutation(population, opts)
offspring = children ++ mutants
new_population = reinsertion(parents, offspring, leftover, opts)
evolve(new_population, problem, generation+1, opts)

end
end

Here, you’ve broken your population down into four parts: parents, leftover,
mutants, and children. mutants and children are combined to form offspring—this is
the most traditional approach; however, you could just as easily choose to
mutate your children or mutate your new combined population.

Next, you call reinsertion/4 to create a new_population. reinsertion/4 will use one of a
number of reinsertion strategies to create a new population for you. Finally,
you call evolve/4 on the new population.

You can create reinsertion/4 like this:

def reinsertion(parents, offspring, leftover, opts \\ []) do
strategy = Keyword.get(opts,

:reinsertion_strategy,
&Toolbox.Reinsertion.pure/3)

apply(strategy, [parents, offspring, leftover])
end

In this function, you use apply to apply the specified reinsertion strategy. To
customize a reinsertion strategy, you’d pass a function to the :reinsertion_strategy
argument.
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Next, you’ll want to edit the mutation function so that it only returns the chro-
mosomes it’s mutated:

def mutation(population, opts \\ []) do
mutate_fn = Keyword.get(opts, :mutation_type, &Toolbox.Mutation.scramble/1)
rate = Keyword.get(opts, :mutation_rate, 0.05)
n = floor(length(population) * rate)
population
|> Enum.take_random(n)
|> Enum.map(& apply(mutate_fn, [&1]))

end

Next, you need to create your reinsertion toolbox. Create a file reinsertion.ex in
toolbox. Inside the file, define a module Toolbox.Reinsertion. This module will contain
all of your reinsertion strategies.

You now need to define a few reinsertion strategies in your toolbox.

Pure Reinsertion and Generational Replacement
Pure reinsertion is the type of reinsertion you used in the first few chapters
of this book. Every chromosome in the old population is replaced with an
offspring of the new population. With pure reinsertion, you can either treat
mutants as offspring—which is fairly common—and ensure your selection
rate and your mutation rate add to 1. Another option is to simply have a
selection rate of 1 and mutate children.

Pure reinsertion is a type of generational replacement. Generational replace-
ment refers to the process of creating an entirely new population so that
there’s no overlap between populations. Technically, in a generational
replacement strategy, offspring directly replace parents.

You’re likely to encounter two derivatives of generational replacement when
working with genetic algorithms. They are μ+λ, read “mu plus lambda” and
μ,λ, read “mu comma lambda.” In μ+λ replacement, a child competes with its
parent for survival—the winner being the one with the larger fitness. In μ,λ
replacement, more children than the required population size are created and
the best children survive. You might also see μ,λ replacement referred to as
fitness-based insertion.

Given parents, offspring, and leftovers, you can implement pure reinsertion like this:

def pure(_parents, offspring, _leftovers), do: offspring

Notice only offspring is returned to the next generation.

Pure reinsertion maintains none of the strengths of the old population and
instead relies on the ability of selection, crossover, and mutation to form a
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stronger population. Pure reinsertion is fast, but you could potentially elimi-
nate some of your stronger characteristics in a population as a result.

Elitist Reinsertion
Elitist reinsertion or elitist replacement is a type of reinsertion strategy in which
you keep a top-portion of your old population to survive to the next generation.
With this strategy, you introduce the notion of a survival rate. The survival
rate dictates the percentage of parent chromosomes that survive to the next
generation. With a population of 100 and a survival rate of 20% or 0.2, you’d
keep the top 20% of your parents.

One thing to consider with elitist reinsertion is how survival rate affects your
population size. Later in this chapter, you’ll see how your population grows
based on different survival rates.

Given parents, offspring, leftovers, and a survival_rate, this is how you would imple-
ment elitist reinsertion:

def elitist(parents, offspring, leftovers, survival_rate) do
old = parents ++ leftovers
n = floor(length(old) * survival_rate)
survivors =

old
|> Enum.sort_by(& &1.fitness, &>=/2)
|> Enum.take(n)

offspring ++ survivors
end

In this function, you combine parents and leftovers to represent your old popu-
lation. You ensure the old population is sorted by each chromosome’s fitness
in descending order. You then select the first n where n is calculated from the
population size and the survival rate. Next, you combine offspring with the top
n chromosomes from your old population.

Elitist reinsertion is probably the most common reinsertion strategy. It’s
reasonably fast with small populations, and it works well because it preserves
the strengths of your old population. The purest form of elitist reinsertion
maintains only the strongest individual from the previous population. You
can do this by specifying a selection rate that selects only one chromosome
from the old population to move on to the next generation.

Uniform Reinsertion
Uniform reinsertion or random replacement is a reinsertion strategy that
selects random chromosomes from the old population to survive to the next
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generation. The purpose of uniform reinsertion is to maintain as much
genetic diversity as possible in the new population. Uniform reinsertion isn’t
very common, but it’s worth trying to see what happens.

Just as with elitist reinsertion, you need to consider how your survival rate
will impact your population size when using uniform reinsertion. With uniform
reinsertion, you select n random chromosomes from the old population to
survive to the next generation.

Given parents, offspring, leftover, and a survival_rate, you can implement uniform
reinsertion like this:

def uniform(parents, offspring, leftover, survival_rate) do
old = parents ++ leftover
n = floor(length(old) * survival_rate)
survivors =

old
|> Enum.take_random(n)

offspring ++ survivors
end

This implementation of uniform reinsertion is very similar to elitist reinsertion
with a few key differences. First, there’s no need to sort the old population
based on fitness because you don’t care about the fitness when selecting
survivors. Second, you use take_random/2 rather than take/2 to sample random
chromosomes from the old population.

You’ll likely never want to use uniform reinsertion, but it can be good in
maintaining the genetic diversity of your population.

Experimenting with Reinsertion
To see the impact of each of these reinsertion strategies in action, you can
apply them to the scheduling problem you implemented earlier in this chapter
to see how your outcomes differ.

Pure reinsertion is the default reinsertion strategy, so you should try that
one first because you don’t have to change anything in your original problem:

$ mix run scripts/schedule.exs
Current best: 15.9000 Generation: 1000
%Types.Chromosome{

age: 1,
fitness: 15.899999999999999,
genes: [1, 1, 0, 1, 1, 1, 0, 0, 0, 1],
size: 10

}
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Next, try elitist reinsertion with a survival rate of 10%. To use elitist reinser-
tion, you have to use a partial application of the elitist/4 function, like this:

soln = Genetic.run(Schedule,
reinserton_strategy:

&Toolbox.Reinsertion.elitist(&1, &2, &3, 0.1),
selection_rate: 0.8,
mutation_rate: 0.1)

IO.write("\n")
IO.inspect(soln)

You use & to create a partial application of elitist/4 and then specify a survival
rate of 0.1. Additionally, you ensure that selection_rate, mutation_rate, and the
specified survival rate all add up to 1.0. You’ll see why that’s important in the
next section.

Run your algorithm with elitist reinsertion:

$ mix run scripts/schedule.exs
Current best: 15.9000 Generation: 1000
%Types.Chromosome{

age: 1,
fitness: 15.899999999999999,
genes: [1, 1, 0, 1, 1, 1, 0, 0, 0, 1],
size: 10

}

Finally, test your problem with uniform reinsertion. To do this, take the same
approach you took with elitist reinsertion:

soln = Genetic.run(Schedule,
reinserton_strategy:

&Toolbox.Reinsertion.elitist(&1, &2, &3, 0.1),
selection_rate: 0.8,
mutation_rate: 0.1)

IO.write("\n")
IO.inspect(soln)

Now run your algorithm with uniform reinsertion:

$ mix run scripts/schedule.exs
Current best: 15.3000 Generation: 1000
%Types.Chromosome{

age: 1,
fitness: 15.299999999999999,
genes: [1, 1, 1, 1, 1, 0, 0, 0, 0, 1],
size: 10

}
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You can see that each reinsertion strategy performed similarly. They all con-
verged on similar results, albeit likely with different levels of efficiency. Uniform
reinsertion performed slightly worse than both elitist and pure reinser-
tion—which is to be expected, considering it doesn’t account for fitness at all.
It’s also likely that pure reinsertion and elitist reinsertion converged before
uniform reinsertion. The results of this experiment are sensitive to the random
nature of genetic algorithms.

What you should take away from this is that in practice, if you need your
algorithms to converge quickly and efficiently, use elitist or pure reinsertion.
Ultimately, elitist reinsertion is usually the better choice, although it’s difficult
to determine without concrete statistics. In Chapter 9, Tracking Genetic
Algorithms, on page 139, you’ll learn more about comparing different genetic
algorithms.

Growing and Shrinking Populations
Genetic algorithms can operate on either fixed or variable population sizes.
All of the genetic algorithms you’ve implemented so far have had fixed size
populations. The distinction between replacement and reinsertion lies in how
the population size is affected. Replacement strategies focus specifically on
maintaining a fixed population size—they replace old chromosomes with new
ones. Reinsertion strategies focus mainly on inserting new chromosomes into
a population—they integrate new chromosomes with old ones. Although you’ll
often see the terms used interchangeably, their meanings are slightly different.

If you opt for populations of variable size, you need to consider how fast the
size of the population changes. For example, if you have a selection rate of
80% and choose to keep the top 30% of chromosomes every generation, your
population will grow by 10% every generation. If you start with a population
of 100 chromosomes, your population will have 1.37 million chromosomes by
the hundredth generation. You’d notice your algorithm quickly stalls and
crashes as it consumes all of the memory on the machine.

Alternatively, if you choose to have a selection rate of 80%, but only keep the
top 10% of your chromosomes, your population will shrink by 10% every
generation. If you start with a population of 100 chromosomes, your population
will only have 1 chromosome by the fortieth generation. You’d stop making
progress at that point, and more than likely won’t have converged on a good
solution.
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Your population size is subject to exponential growth or exponential decay if
you choose to grow or shrink them according to selection and survival rates.
The following graph illustrates how population sizes grow or shrink according
to exponential growth or decay:
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Exponential Growth vs. Decay

As you can see, it’s infeasible to maintain a constant rate of growth or decay
and maintain progress in your genetic algorithm. Fortunately, there are a few
solutions.

One solution is to constrain the growth rate of your population based on the
size of your population. If you don’t want your population to get any larger
than 1000 chromosomes, you can ensure that both selection and survival rates
coincide with a 0% growth rate once your population hits 1000 chromosomes.

Another solution is to alternate growing and shrinking of the population. With
odd generations your population grows, and with even populations your
population shrinks. This ensures your population size always falls in some
reasonable size window.

One final solution is to subject your population to constant growth or decay
rather than exponential growth or decay. Rather than grow by 10% each gener-
ation, you can choose to explicitly grow by ten chromosomes every generation.

Of course, you can always come up with your own unique solution to address-
ing exponential growth or decay in population sizes. Most of the populations
you work with will function fine with fixed population sizes. In the event you
need to vary the size of your population, you’ll need to consider these factors.

Local Versus Global Reinsertion
One concept you may come across when working with genetic algorithms is
the concept of local populations. Local populations are populations that consist
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of neighborhoods of chromosomes. A neighborhood is a collection of adjacent
chromosomes in a population. Neighborhoods are of different types with var-
ious structures. The following image illustrates a basic linear neighborhood:

Linear Neighborhoods of Size 3

Local populations constrain interactions between chromosomes. A chromo-
some can only interact with chromosomes inside its neighborhood. Addition-
ally, in some local populations, chromosomes can migrate between neighbor-
hoods. Some genetic algorithms employ special techniques like assigning
neighborhood leaders.

Genetic algorithms that employ local populations are often called multi-popu-
lation genetic algorithms. Strategies for implementing multi-population
genetic algorithms fall out of the scope of this book; however, it’s useful to
understand what they are and how they differ from the genetic algorithms
you’ve implemented.

Because chromosomes are constrained to only interact with other chromo-
somes in their neighborhood, multi-population genetic algorithms require
special selection and reinsertion strategies for ensuring neighborhoods
maintain their local integrity. This is where the notion of global versus local
reinsertion comes into play. Local reinsertion operates on neighborhoods;
global reinsertion operates on entire populations.

Multi-population genetic algorithms are often used to help parallelize a
genetic algorithm because evolution can take place independently in each
neighborhood. Multi-population genetic algorithms are also used to simulate
competition over resources in different environments.

What You Learned
In this chapter, you learned about reinsertion and different types of reinsertion
strategies. You learned how to implement different reinsertion strategies, and
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you analyzed the impacts of different reinsertion strategies on a scheduling
problem.

You also learned how you can grow and shrink your population—and do so
without falling into the traps of exponential decay and growth.

Finally, you learned about local reinsertion and local populations and how
they differ from global reinsertion strategies and global genetic algorithms.

In the next chapter, you’ll step away from the internals of a genetic algorithm
and instead focus on how you can track how fitness, age, and other metrics
change during evolutions. Rather than focus on improving your algorithms
and learning new techniques, you’ll learn how to compare performance
between algorithms and better track the progress of an algorithm.
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CHAPTER 9

Tracking Genetic Algorithms
Up to this chapter, you’ve spent all your time learning about the details and
intricacies that drive genetic algorithms. You learned how to represent solu-
tions, how to evaluate solutions, and how to alter populations using selection,
crossover, mutation, and reinsertion.

The goal of all of the problems you’ve solved has been to optimize an objective.
In all of the algorithms you’ve written, you define the problem, configure the
algorithm, and run the algorithm until you obtain a solution. While, for the
most part, the process of obtaining the solution is the most important thing,
sometimes you need a way to track the progress of an evolution over time.

Imagine if you wanted to analyze how your population’s collective fitness grew
over time. Or perhaps you want to visualize how the distribution of fitness
changed between generations. Or even still, perhaps you want to trace the
genealogy of your best solution when the algorithm returns.

Metrics are important because they offer insights that can help you make
decisions about how to reconfigure or adjust your algorithm. It’s difficult to
make decisions and identify bottlenecks in your algorithm without detailed
metrics to analyze.

In this chapter, you’ll learn how to integrate utilities that allow you to track
various metrics in your framework. You’ll build these utilities around a unique
application of genetic algorithms.

Using Genetic Algorithms to Simulate Evolution
One of the more interesting applications of genetic algorithms that you have
yet to discover is their ability to model real evolutionary processes. Genetic
algorithms are inspired by evolution, and while the internal processes that
guide genetic algorithms such as selection, crossover, and mutation are only
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loosely based on science, they can still be used to offer valuable insights into
the evolutionary process.

Say you’ve been tasked by a biologist to write a simulation of how tigers evolve
under different environmental conditions. Obviously, the traits required to
survive in a desert versus an arctic tundra differ drastically. Your goal is to
write a simulation that models the basic evolution of the tiger in two different
environments, tropical and tundra, over the course of 1000 generations.
Additionally, your simulation needs to keep track of valuable statistics such
as average fitness, average age, genealogy, and the most fit chromosome from
every generation.

Using a genetic algorithm and a bit of knowledge about tigers, you can
accomplish this task in no time.

Start by creating a new file in scripts named tiger_simulation.exs. Next, create a
shell for a Problem in tiger_simulation.exs, like so:

defmodule TigerSimulation do
@behaviour Problem
alias Types.Chromosome

@impl true
def genotype, do: # ...

@impl true
def fitness_function(c), do: # ...

@impl true
def terminate?(population, generation), do: # ...

end

By now, all of this code should be familiar. Now you need to figure out how
to fit your simulation into the Problem behaviour.

Representing Tigers as Chromosomes
The first thing you need to do is determine how to represent tigers as chro-
mosomes.

While there’s no right or wrong answer, the easiest way is to use a binary
genotype that represents various traits present in a single tiger. Each of these
traits contributes in one way or another to the tiger’s ability to survive in
different environments.

You’ll monitor eight traits as shown in the table on page 141.

Because you’re monitoring eight traits, your chromosome will consist of eight
binary genes. Implement the genotype like this:
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10

largersmallerSize

highlowSwimming Ability

morelessFat Stores

nocturnaldiurnalActivity Period

largersmallerHunting Range

more thickless thickFur Thickness

largersmallerTail Length

def genotype do
genes = for _ <- 1..8, do: Enum.random(0..1)
%Chromosome{genes: genes, size: 8}

end

As you’ve seen before, this is a basic binary genotype of size 8. The initial
population will contain tigers of varying combinations of traits.

The next thing you need to do is determine how to evaluate each tiger based
on its traits in both a tropical and tundra environment.

Evaluating Fitness in Different Environments
Remember, your goal is to determine how tigers evolve in each environment.
Because the importance of each trait differs between environments, you need
to evaluate chromosomes differently depending on the environment.

The easiest way to do this is to assign weights or scores to each trait, indicating
whether or not a trait is positive or negative to survival. The magnitude of a
weight or score indicates the relative importance of that trait in a given envi-
ronment.

The table on page 142 shows the scores you’ll assign to each trait in both
environments.

Determining Scores

The scores chosen for each trait in this example are arbitrary. In
a practical simulation, you’d want to determine scores with
research and data, and hopefully be able to provide a justification
for each one. These scores were chosen based on intuition. They
don’t mean anything nor are they scientifically correct. You can
always adjust them and see how it affects your evolutions.
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TundraTropicalTrait

 1.00.0Size

 3.03.0Swimming Ability

-2.02.0Fur Color

 1.0-1.0Fat Stores

 0.50.5Activity Period

 2.01.0Hunting Ground

 1.0-1.0Fur Thickness

 0.00.0Tail Length

Notice that some scores are negative, indicating that they have a negative
impact on survival; some scores are zero, indicating they have no impact on
survival; and some are positive, indicating they have a positive impact on
survival.

Now, to translate these scores into a fitness function, add the following code
to tiger_simulation.exs:

def fitness_function(chromosome) do
tropic_scores = [0.0, 3.0, 2.0, 1.0, 0.5, 1.0, -1.0, 0.0]
tundra_scores = [1.0, 3.0, -2.0, -1.0, 0.5, 2.0, 1.0, 0.0]
traits = chromosome.genes

traits
|> Enum.zip(tropic_scores)
|> Enum.map(fn {t, s} -> t*s end)
|> Enum.sum()

end

The fitness function pairs traits with their corresponding score, multiplies
them together, and returns the sum to represent a tiger’s ability to survive
in the given environment. For simplicity, you can just change tropic_scores with
tundra_scores in Enum.map/2 when running trials on different environments. In
practice, you’d want a way to change this dynamically and run experiments
side by side.

Finishing and Running the Simulation
All that’s left for you to do is define some termination criteria. You’ll want to
stop the evolution after 1000 generations. Implement your termination criteria
like this:

def terminate?(_population, generation), do: generation == 1000
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Next, add the following below the TigerSimulation module:

tiger = Genetic.run(TigerSimulation,
population_size: 20,
selection_rate: 0.9,
mutation_rate: 0.1)

IO.write("\n")
IO.inspect(tiger)

You pass your TigerSimulation into Genetic.run/2 as well as specify a population
size of 20, selection rate of 0.9 and a mutation rate of 0.9.

Remember, Genetic.run/2 returns the best chromosome in the population after
the termination criteria has been met. That means that tiger will be the current
best chromosome in the population after 1000 generations.

Now, run your genetic algorithm in a tropic environment (with tropic_scores):

$ mix run scripts/tiger_simulation.exs
Current best: 7.5000 Generation: 1000
%Types.Chromosome{

age: 1,
fitness: 7.5,
genes: [0, 1, 1, 1, 1, 1, 0, 1],
size: 8

}

And again in a tundra environment (with tundra_scores):

$ mix run scripts/tiger_simulation.exs
Current best: 7.5000 Generation: 1000
%Types.Chromosome{

age: 1,
fitness: 7.5,
genes: [1, 1, 0, 0, 1, 1, 1, 0],
size: 8

}

You’ve successfully analyzed and produced the fittest tiger in each environ-
ment. You can see that in tropical environments, the best tiger is smaller, a
strong swimmer, and has dark fur and a generally smaller hunting territory.
The tundra tiger is larger, a strong swimmer, and has lighter fur and larger
fat stores.

You might be thinking that achieving this result isn’t that impressive. You
could have derived them yourself intuitively or through a simple brute-force
search. However, the most important aspect of this experiment isn’t the final
result but what happens before that. You need a way to peek inside.
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Logging Statistics Using ETS
During an evolution, you may want to track statistics about fitness, age, or
variation in your population over the course of the evolution. For example,
perhaps you want to determine the distribution of a particular gene at different
generations during the evolution.

In this section, you’ll create a statistics server using a GenServer and an ETS
table. Remember, a GenServer is an abstraction around state that models
client-server behavior. It allows you to spin up a long-running process and
alter its state through message passing. ETS stands for Erlang Term Storage
and offers a built-in storage API through Erlang interpolation. The GenServer
will allow you to supervise the ETS table. The ETS table will allow you to
quickly and easily insert and look up statistics across generations. Addition-
ally, it’ll be easy for you to expand this approach to all kinds of statistics and
metrics.

Creating the Statistics Server
Start by creating a new utilities directory inside lib, and inside that new direc-
tory, add a new file named statistics.ex. This file will contain the implementation
for your statistics server. Start by defining a bare-bones GenServer imple-
mentation:

defmodule Utilities.Statistics do
use GenServer

def init(_opts) do
:ok

end

def start_link(opts) do
GenServer.start_link(__MODULE__, opts, name: __MODULE__)

end
end

Your GenServer is a wrapper around the ETS table to ensure it’s created when
your application is started. You only need to implement callbacks for init/1
and start_link/1.

You’ll also want to add the Statistics module to your supervision tree. You’ll
need to create a new file application.ex that implements a supervision tree. The
file should look like this:

defmodule Genetic.Application do
use Application
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def start(_type, _args) do
children = [
{Utilities.Statistics, []},

]

opts = [strategy: :one_for_one, name: Genetic.Supervisor]
Supervisor.start_link(children, opts)

end
end

You also need to update application in mix.exs to look like this:

def application do
[

extra_applications: [:logger],
mod: {Genetic.Application, []}

]
end

This code ensures your GenServer starts on application start.

Now you’ll need functionality for accessing the statistics for a generation and
for inserting the statistics of a generation. ETS allows you to store any Elixir
term in a key-value pair. That means you can use generations as keys and
maps of statistics as values. Each field in the map will represent a different
statistic you want to track, such as minimum fitness, maximum fitness,
average fitness, and so on.

GenServers typically use a client-server paradigm, but for this example, you
just need the GenServer to encapsulate your ETS table and initialize it on
Application startup. The only GenServer function you need to implement is
init/1, like this:

def init(opts) do
:ets.new(:statistics, [:set, :public, :named_table])
{:ok, opts}

end

This function will run when your application is started and ensures you have
a new ETS table that you can access with the name :statistics.

You now need to implement insert and lookup functions. insert takes a generation
and a map of statistics. You can implement it like this:

def insert(generation, statistics) do
:ets.insert(:statistics, {generation, statistics})

end

ETS lookup works much the same way as insertion. You can implement lookup
like this:
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def lookup(generation) do
hd(:ets.lookup(:statistics, generation))

end

:ets.lookup/2 returns a list, so you return the head of the list to extract the
statistics entry. There should only be one entry for every generation, so this
implementation is fine.

In these functions, you use the ETS API to implement basic insertion and
lookup functionality. Your statistics will be logged as a map of statistics every
generation. For example, if you wanted to track mean fitness and mean age
for an evolution of 1000 generations, your ETS table would contain 1000 entries
each with a map containing mean_fitness and mean_age entries.

With your Statistics server set up, you just need to ensure your algorithm
tracks statistics during your evolution.

Tracking Statistics in Your Framework
Before you can access the different statistics of an evolution, you need to
ensure your algorithm tracks them after every generation. To do this, you’ll
implement a new function statistics that runs immediately after your population
is evaluated and updates the statistics server appropriately.

Start by updating evolve/4 to call statistics/2, like this:

def evolve(population, problem, generation, opts \\ []) do
population = evaluate(population, &problem.fitness_function/1, opts)
statistics(population, generation, opts)➤

best = hd(population)
# ...

end

Next, you need to implement statistics/3. To customize the statistics you take
between generations, you can accept a :statistics option in opts, which is a key-
word list of functions that implement different calculations on your population.
You’ll want to define a default suite of statistics so you don’t have to define
these every time. Implement statistics/3 like this:

def statistics(population, generation, opts \\ []) do
default_stats = [

min_fitness: &Enum.min_by(&1, fn c -> c.fitness end).fitness,
max_fitness: &Enum.max_by(&1, fn c -> c.fitness end).fitness,
mean_fitness: &Enum.sum(Enum.map(&1, fn c -> c.fitness end))

]
stats = Keyword.get(opts, :statistics, default_stats)
stats_map =

stats
|> Enum.reduce(%{},
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fn {key, func}, acc ->
Map.put(acc, key, func.(population))

end
)

Utilities.Statistics.insert(generation, stats_map)
end

First, you define a suite of default statistics, in this case min and max fitness.
You then use Keyword.get/3 to obtain the statistics passed to opts. Next, you create
a statistics map that applies every function in stats to your population. Finally,
you insert this map into your statistics table.

Accessing the Statistics
To access the statistics of an evolution, you can either use the basic API you
implemented previously or you can access the :statistics table using ETS. For
example, if you wanted to look up the minimum fitness during the third
generation of your simulation, you’d do this:

# After Algorithm runs

{_, third_gen_stats} = Utilities.Statistics.lookup(3)
IO.write("Min fitness after 3rd Generation: #{third_gen_stats.min_fitness}")

The ETS entry is a tuple of {generation, map}. In this example you use pattern
matching to extract just the map of statistics.

You can use the basic statistics you’ve implemented to see how the population
tends toward the best fitness over time. Try taking a look at the mean fitness
of the 0th, 500th, and 1000th generations:

{_, zero_gen_stats} = Utilities.Statistics.lookup(0)
{_, fivehundred_gen_stats} = Utilities.Statistics.lookup(500)
{_, onethousand_gen_stats} = Utilities.Statistics.lookup(1000)

IO.write("""
0th: #{zero_gen_stats.mean_fitness}
500th: #{fivehundred_gen_stats.mean_fitness}
1000th: #{onethousand_gen_stats.mean_fitness}
""")

When you run your algorithm, you’ll see:

$ mix run scripts/tiger_simulation.exs
...
0th: 2.43
500th: 7.09
1000th: 7.0

Notice your mean fitness doesn’t change much at all between the 500th and
1000th generation. It actually goes slightly down. Your population probably
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converges well before your algorithm terminates. In Chapter 10, Visualizing
the Results, on page 157, you’ll see how you can turn these statistics into
graphs and identify about when your algorithm begins to converge.

That’s all it takes. You can extend the statistics utility using libraries like
elixir-statistics or your own custom statistics functions.

Finding the Average Tiger
Now that you have extensible statistics tracking in place, you can use it to
monitor more insightful statistics for your evolution—such as the average
tiger for each climate.

You’ve already identified the fittest tiger for each climate; however, what
matters more is how the entire population changes in a given climate. To
identify this, you can implement an average_tiger statistic that tells you the
average tiger for any given generation.

Start by creating the following average_tiger/1 function in your TigerSimulation
module:

def average_tiger(population) do
genes = Enum.map(population, & &1.genes)
fitnesses = Enum.map(population, & &1.fitness)
ages = Enum.map(population, & &1.age)
num_tigers = length(population)

avg_fitness = Enum.sum(fitnesses) / num_tigers
avg_age = Enum.sum(ages) / num_tigers
avg_genes =

genes
|> Enum.zip()
|> Enum.map(& Enum.sum(&1) / num_tigers)

%Chromosome{genes: avg_genes, age: avg_age, fitness: avg_fitness}
end

If you recall from how you implemented statistics/3, each statistic reflects a
measure of some value over the entire population. Your average_tiger/1 function
takes in the entire population and calculates averages for age, fitness, and
genes. Average genes are the average value of each trait.

Now you need to adjust your run to account for this statistic on every generation:

tiger = Genetic.run(TigerSimulation,
population_size: 20,
selection_rate: 0.9,
mutation_rate: 0.1,
statistics:
%{average_tiger: &TigerSimulation.average_tiger/1})
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Next, rather than inspecting the mean fitness at the 0th, 500th, and 1000th
generation, inspect the average tiger:

{_, zero_gen_stats} = Utilities.Statistics.lookup(0)
{_, fivehundred_gen_stats} = Utilities.Statistics.lookup(500)
{_, onethousand_gen_stats} = Utilities.Statistics.lookup(1000)

IO.inspect(zero_gen_stats.average_tiger)
IO.inspect(fivehundred_gen_stats.average_tiger)
IO.inspect(onethousand_gen_stats.average_tiger)

When you run the simulation in a tropic climate, this is what you should see:

%Types.Chromosome{
age: 1.0,
fitness: 3.19,
genes: [0.46, 0.51, 0.38, 0.55, 0.48, 0.6, 0.49, 0.54],

}
%Types.Chromosome{

age: 1.0,
fitness: 7.245,
genes: [0.58, 0.98, 0.99, 0.97, 0.99, 0.96, 0.1, 0.66],

}
%Types.Chromosome{

age: 1.0,
fitness: 7.165,
genes: [0.6, 0.98, 0.94, 0.96, 0.99, 0.97, 0.08, 0.67],

}

And you’ll see this in a tundra climate:

%Types.Chromosome{
age: 1.0,
fitness: 2.3,
genes: [0.49, 0.51, 0.58, 0.39, 0.6, 0.49, 0.55, 0.49],

}
%Types.Chromosome{

age: 1.0,
fitness: 6.98,
genes: [0.96, 0.98, 0.1, 0.09, 0.94, 0.98, 0.94, 0.64],

}
%Types.Chromosome{

age: 1.0,
fitness: 7.055,
genes: [0.98, 0.96, 0.06, 0.08, 0.97, 0.97, 0.97, 0.66],

}

You can notice some distinct differences here. In a tropical climate, fat stores
and fur thickness are detrimental to a tiger’s ability to survive, so over time
tigers with those traits become less prevalent. Similiarly, in a tundra climate,
these traits are important, so tigers with these traits become more prevalent.
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You can also notice the traits that didn’t have any meaning in a climate, such
as tail length, tend to be present in around 50%–60% of tigers. The evolution
doesn’t place much emphasis on shorter or longer tails in either environment,
so there isn’t much of a trend in either direction.

If you’re wondering what type of tigers are developed in each environment,
it’s the Bengal tiger and Siberian tiger.

Tracking Genealogy in a Genealogy Tree
Sometimes, especially in evolutionary simulations, it’s useful to track the
genealogy of the evolution. Genealogy is the study of families and family his-
tories. In the context of genetic algorithms, genealogy is the history of a
chromosome’s lineage. It allows you to trace the ancestry of a specific chro-
mosome—all the way back to the initial population.

To track genealogy, you’ll take advantage of the libgraph1 package. libgraph is an
Elixir package for creating graph structures. libgraph offers a ton of convenient
features for creating, manipulating, and querying graphs. If you want to learn
more about the beauty of graphs in Elixir, check out Elixir for Graphs [Ham20].

You’ll use libgraph to implement a genealogy tree. A genealogy tree is a directed
graph that points from parent chromosome to child chromosome and shows
the transition of the evolution from the first population to the last population.
A directed graph is a graph whose edges have a direction—edges start on one
node (the parent) and point to another (the child).

You can use the genealogy tree to trace the origins of your strongest chromo-
some or to see how traits evolved over time. You can even export your
genealogy tree and visualize the genealogy of your evolution with third-party
tools. First, you’ll need to implement it.

Before you begin, start by adding libgraph to your dependencies:

defp deps do
{:libgraph, "~> 0.13"}

end

Then, run mix deps.get.

One important thing you need to do before you begin tracking genealogy is to
ensure that each chromosome has a unique id associated with it. libgraph will
overwrite existing entries in a genealogy tree if the attributes of a chromosome

1. https://github.com/bitwalker/libgraph
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match one that’s already in the genealogy tree. To prevent this, alter your
Types.Chromosome struct to look like this:

defmodule Types.Chromosome do

@enforce_keys :genes
defstruct [:genes,

id: Base.encode16(:crypto.strong_rand_bytes(64)),
size: 0,
fitness: 0,
age: 0]

end

This code will generate a unique ID every time a chromosome is created. This
will allow you to more easily query your graph for unique chromosomes.

Creating the Genealogy GenServer
Just like with statistics, you’ll use a GenServer to store your genealogy tree.
Start by creating a new file genealogy.ex in utilities. In genealogy.ex, create a module,
like this:

defmodule Utilities.Genealogy do
use GenServer

end

Now, go to application.ex and ensure Utilities.Genealogy is started with your application:

defmodule Genetic.Application do
use Application

def start(_type, _args) do
children = [
{Utilities.Statistics, []}
{Utilities.Genealogy, []}➤

]

opts = [strategy: :one_for_one, name: Genetic.Supervisor]
Supervisor.start_link(children, opts)

end
end

Now, you need to implement the client-server behaviour of the GenServer.
You’ll need to be able to do the following:

• Add chromosomes.
• Add child chromosome with parent(s).
• Access libgraph graph.

To keep things simple, you’ll only use the GenServer to add chromosomes to
the genealogy tree and to obtain the current tree. If you need to explore the
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tree, you can obtain the graph from the GenServer and use any of libgraph’s
functions.

You’ll start by implementing the server. First, you need to define what happens
when the GenServer starts via the init function. This function should just
initialize a new libgraph graph. libgraph’s API is exposed via the Graph module.
Creating a new graph is as easy as calling Graph.new. Implement init, like so:

def init(_opts) do
{:ok, Graph.new()}

end

Graph.new automatically creates a new directed graph. Once your GenServer
starts, it’ll be initialized with an empty directed graph.

Next, you’ll need a function that inserts multiple chromosomes at once. You’ll
need this function to store the initial population of chromosomes in the graph.
Because you’re updating the state of the genealogy tree, this functionality
will be invoked via cast messages, so you’ll handle it using handle_cast/2. The
message should come with a list of chromosomes to add and should be invoked
using :add_chromosomes:

def handle_cast({:add_chromosomes, chromosomes}, genealogy) do
{:noreply, Graph.add_vertices(genealogy, chromosomes)}

end

libgraph has a convenient function, Graph.add_vertices/2, that handles adding
multiple vertices to your graph.

Now you need to implement functionality for adding a chromosome with either
one parent, in the event a chromosome is the result of mutation, or two par-
ents, in the event a chromosome is the result of crossover. This functionality
will be invoked via cast messages using the :add_chromosome message with either
two or three chromosomes. Add the following to Utilities.Genealogy:

# Child is mutant of Parent
def handle_cast({:add_chromosome, parent, child}, genealogy) do

new_genealogy =
genealogy
|> Graph.add_edge(parent, child)

{:noreply, new_genealogy}
end

# Child is crossover of Parents
def handle_cast({:add_chromosome, parent_a, parent_b, child}, genealogy) do

new_genealogy =
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genealogy
|> Graph.add_edge(parent_a, child)
|> Graph.add_edge(parent_b, child)

{:noreply, new_genealogy}
end

Graph.add_edge/3 adds an edge between two vertices. In this example,
Graph.add_edge/3 will add an edge from parent to child. You don’t need to add child
to the graph because Graph.add_edge/3 will automatically add it to the graph
for you.

Finally, you need a way to obtain the current genealogy tree from the
GenServer. This functionality will be invoked via call messages, so you’ll handle
them with handle_call/3. Implement this functionality like this:

def handle_call(:get_tree, _, genealogy) do
{:reply, genealogy, genealogy}

end

This function is invoked with the message :get_tree and returns the current
state of the genealogy tree.

With the server implemented, you need to implement accompanying client
functions. The client functions should be friendly interfaces that invoke
server methods. You’ll implement one client method for each server method
you implemented: add_chromosomes/1, add_chromosome/2, add_chromosome/3, and
get_tree/0. Additionally, you need to implement start_link, which initializes the
GenServer. You can implement the client like this:

def start_link(_opts) do
GenServer.start_link(__MODULE__, _opts, name: __MODULE__)

end

def add_chromosomes(chromosomes) do
GenServer.cast(__MODULE__, {:add_chromosomes, chromosomes})

end

def add_chromosome(parent, child) do
GenServer.cast(__MODULE__, {:add_chromosome, parent, child})

end

def add_chromosome(parent_a, parent_b, child) do
GenServer.cast(__MODULE__, {:add_chromosome, parent_a, parent_b, child})

end

def get_tree do
GenServer.call(__MODULE__, :get_tree)

end
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Now that you’ve successfully implemented the functionality of a genealogy
tree, you’ll need to update the genealogy tree using the GenServer in your
framework.

Tracking Genealogy in Your Framework
The genealogy tree should be updated every time you add a new chromosome
into the population. That means you should update the genealogy tree after
population initialization, after any crossover takes place, and after any
mutation takes place.

Start with population initialization. After you create your population in initial-
ize/2, you’ll want to immediately add those chromosomes to your genealogy
tree, like this:

def initialize(genotype, opts \\ []) do
population_size = Keyword.get(opts, :population_size, 100)
population = for _ <- 1..population_size, do: genotype.()
Utilities.Genealogy.add_chromosomes(population)
population

end

In this function, rather than immediately returning a new population, you
initialize the population to a variable and add the list of chromosomes to the
genealogy tree using the Utilities.Genealogy client. You then return the population.

Next, you’ll need to update your genealogy tree when children are created
from crossover. Update your crossover/2 function to look like this:

def crossover(population, opts \\ []) do
crossover_fn = Keyword.get(opts,

:crossover_type,
&Toolbox.Crossover.single_point/2)

population
|> Enum.reduce([],

fn {p1, p2}, acc ->
{c1, c2} = apply(crossover_fn, [p1, p2])
Utilities.Genealogy.add_chromosome(p1, p2, c1)➤

Utilities.Genealogy.add_chromosome(p1, p2, c2)➤

[c1, c2 | acc]
end

)
end

This function is pretty much the same as it originally was; however, you add
both c1 and c2 to your genealogy tree with p1 and p2 as parents.
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Finally, you need to update the mutation/2 function. Change it so it looks
like this:

def mutation(population, opts \\ []) do
mutate_fn = Keyword.get(opts, :mutation_type, &Toolbox.Mutation.scramble/1)
rate = Keyword.get(opts, :mutation_rate, 0.05)
n = floor(length(population) * rate)
population
|> Enum.take(n)
|> Enum.map(

fn c ->
mutant = apply(mutate_fn, [c])
Utilities.Genealogy.add_chromosome(c, mutant)➤

mutant
end

)
end

Again, the only change here is adding the mutant to the genealogy tree with
the original chromosome as its parent. At this point, you’re all set to track
your genealogy during every genetic algorithm.

Exploring Genealogy of a Simulation
You can use any of the functions in the libgraph API to explore your genealogy
tree. For example, if you wanted to see every chromosome that ever existed
over the course of an evolution, you can access the vertices of the genealogy
tree, like this:

tiger = Genetic.run(TigerSimulation,
population_size: 20,
selection_rate: 0.9,
mutation_rate: 0.1,
statistics:
%{average_tiger: &TigerSimulation.average_tiger/1})

genealogy = Utilities.Genealogy.get_tree()

IO.inspect(Graph.vertices(genealogy))

If you run this, you’ll see a very long list of chromosomes. In the next chapter,
you’ll learn how to export a visualization of the genealogy tree to better see
how your evolution progresses over time.

What You Learned
In this chapter, you learned about a unique application of genetic algorithms
in simulating evolution. You saw how this worked through a basic tiger
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evolution simulation. Through this simulation, you learned that tracking
what happens between generations is just as important as the final result.

You also learned how to track statistics during an evolution. You implemented
a basic statistics server and saw how you could use it to track any statistics
you want over the course of an evolution.

Finally, you were introduced to the concept of a genealogy tree, and you saw
how to implement a genealogy tree using libgraph and a GenServer.

In the next chapter, you’ll use some of your work in this chapter to visualize
the results of your algorithm using Phoenix LiveView.
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CHAPTER 10

Visualizing the Results
In the previous chapter, you worked to add some tracking mechanisms to
your genetic algorithm. The purpose of tracking things like statistics,
genealogy, and other metrics is not only to improve the performance of your
algorithms but also to demonstrate the overall effectiveness of your algorithm
at solving a particular problem. For example, a biologist simulating the evo-
lution of tigers would use the metrics implemented in the previous chapter
to theorize about how evolution in the wild takes place.

Of course, good biologists wouldn’t present the data collected in its raw form.
Instead, they would do some analysis, transform the data in some way, and
then create graphs, charts, and other visualizations that best depict evidence
supporting their theories. These visualizations are often the best way to
present results. You might also benefit from analyzing certain visualizations
to determine how to tweak your algorithm in certain ways.

Additionally, depending on the problem you’re trying to solve, you want to be
able to see what’s going on in real time. For example, if you were trying to
create a Tetris-playing AI, you’d want to watch it play Tetris in real time.

In this chapter, you’re going to learn how to create visualizations for both of
these purposes—visualizing metrics and visualizing evolutions in real time.
You’ll start by visualizing the genealogy of the tiger evolution you created
earlier. Then you’ll export some basic statistics to a graph and visually analyze
the statistics before moving on to a different problem—playing Tetris with a
genetic algorithm.

Visualizing the Genealogy of the Tiger Evolution
In the previous chapter, you fully integrated some basic tracking mechanisms
into your genetic algorithm framework. These mechanisms allowed you to
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track statistics on age, fitness, and pretty much any other aspect of your
genetic algorithm. You also created a mechanism for tracking the genealogy
of your evolution. Remember, genealogy is a family tree of the entire evolution.

In this section, you’ll learn how to export the genealogy tree and visualize it
using a third-party tool.

Start by opening tiger_simulation.exs. At the moment, it looks like this:

defmodule TigerSimulation do
@behaviour Problem
alias Types.Chromosome

@impl true
def genotype do

genes = for _ <- 1..8, do: Enum.random(0..1)
%Chromosome{genes: genes, size: 8}

end

@impl true
def fitness_function(chromosome) do

tropic_scores = [0.0, 3.0, 2.0, 1.0, 0.5, 1.0, -1.0, 0.0]
tundra_scores = [1.0, 3.0, -2.0, -1.0, 0.5, 2.0, 1.0, 0.0]
traits = chromosome.genes

traits
|> Enum.zip(tundra_scores)
|> Enum.map(fn {t, s} -> t*s end)
|> Enum.sum()

end

@impl true
def terminate?(_population, generation), do: generation == 1000

def average_tiger(population) do
genes = Enum.map(population, & &1.genes)
fitnesses = Enum.map(population, & &1.fitness)
ages = Enum.map(population, & &1.age)
num_tigers = length(population)

avg_fitness = Enum.sum(fitnesses) / num_tigers
avg_age = Enum.sum(ages) / num_tigers
avg_genes =
genes
|> Enum.zip()
|> Enum.map(& Enum.sum(Tuple.to_list(&1)) / num_tigers)

%Chromosome{genes: avg_genes, age: avg_age, fitness: avg_fitness}
end

end

tiger = Genetic.run(TigerSimulation,
population_size: 20,
selection_rate: 0.9,
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mutation_rate: 0.1,
statistics:
%{average_tiger: &TigerSimulation.average_tiger/1})

IO.write("\n")
IO.inspect(tiger)
genealogy = Utilities.Genealogy.get_tree()

IO.inspect(Graph.vertices(genealogy))

You’ll need to start by adjusting the termination criteria. Currently, the
algorithm is set to terminate after 1000 generations. For the purposes of this
chapter, you’ll decrease this number significantly to make it easier to visualize
the genealogy. In this example, you’ll decrease the number of generations to
1 and the population size to 5:

defmodule TigerSimulation do
# ...
def terminate?(_population, generation), do: generation == 0
# ...

end

tiger = Genetic.run(TigerSimulation,
population_size: 2,
selection_rate: 1.0,
mutation_rate: 0.0,
statistics:
%{average_tiger: &TigerSimulation.average_tiger/1})

Next, you need to export your genealogy tree to a DOT file, like this:

genealogy = Utilities.Genealogy.get_tree()

{:ok, dot} = Graph.Serializers.DOT.serialize(genealogy)
{:ok, dotfile} = File.open("tiger_simulation.dot", [:write])
:ok = IO.binwrite(dotfile, dot)
:ok = File.close(dotfile)

In this snippet, you serialize the genealogy tree to a DOT binary using the
libgraph API. DOT is a standard serialized graph format. You then create a new
file and write the serialized graph to it.

When you run your algorithm, you’ll see tiger_simulation.dot in your main direc-
tory. Now, to visualize, you can download Graphviz1 or navigate to Web-
graphviz2 and copy the contents of tiger_simulation.dot into the text field. Your
genealogy tree will end up looking something like the image on page 160.

1. http://www.graphviz.org
2. http://www.webgraphviz.com/
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Notice the genealogy is essentially a tree starting from 2 chromosomes in the
first generation and spanning out from there. This type of visualization is
excellent in showing how the fittest chromosome transformed over time.

Visualizing Basic Statistics
In the previous chapter, one of the issues you encountered during your evo-
lution was continuing your algorithm after it had already converged. When
you analyzed the mean fitness at different generations, you saw that there
was basically no change between the 500th and 1000th generation. This is
because the algorithm had already converged.

The easiest way to recognize roughly when your algorithm converges is by
creating a graph of mean fitness versus generation. When you do this, you’ll
notice a dramatic plateau.

To create a basic graph, you’ll use gnuplot-elixir.3 gnuplot-elixir is a port of the
Gnuplot library. Gnuplot is a library for generating simple plots using the
command line. You first need to ensure you have Gnuplot installed. Go to
the Gnuplot home page4 to learn how to install it for your specific operating
system. In Ubuntu, you install Gnuplot like this:

$ sudo apt-get install gnuplot

Once it’s installed, you need to add gnuplot-elixir to your dependencies in mix.exs:

defp deps do
# ...
{:gnuplut, "~> 1.19"}

end

Next, adjust your algorithm to only run with the default statistics:

tiger = Genetic.run(TigerSimulation,
population_size: 5,
selection_rate: 0.9,
mutation_rate: 0.1)

3. https://github.com/devstopfix/gnuplot-elixir
4. http://www.gnuplot.info/
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Finally, you need to export these statistics to a format that is compatible with
gnuplot-elixir:

stats =
:ets.tab2list(:statistics)
|> Enum.map(fn {gen, stats} -> [gen, stats.mean_fitness] end)

The tab2list/1 function converts an ETS table to a list of tuples. You need to
adjust this list of tuples to be a list of lists where each list contains a genera-
tion and the mean fitness of each generation. Now you can generate a plot
using the Gnuplot library:

{:ok, cmd} =
Gnuplot.plot([

[:set, :title, "mean fitness versus generation"],
[:plot, "-", :with, :points]
], [stats])

When you run your script, you’ll see a window appear that looks like this:
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Notice how almost immediately the mean fitness climbs up to around 7 before
it plateaus. If you move your cursor around the plot, you’ll notice that after
around 150 generations the evolution plateaus. Try adjusting your termination
criteria to 150 generations. Your graph should now look something like the
image on page 162.

Your graph looks similar to the last one; however, you should notice a slight
increase in mean fitness versus generation up to the 150th generation.
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Gnuplot is a useful tool for providing insights into some of the statistics you
gather during your evolutions. This section introduced only one way of visu-
alizing one statistic. The possibilities are literally endless.

Now, you can finally wrap up your work on the tiger evolution and move into
a different problem requiring visualizations: playing Tetris.

Playing Tetris with Genetic Algorithms
The Arcade Learning Environment (ALE) is a framework designed to allow
programmers to easily develop AI agents for Atari 2600 games. The ALE was
originally written in C++ with interfaces to Python, Java, and other languages.
The ALE supports numerous Atari ROMs, including popular titles like Tetris,
Space Invaders, and Pac-Man.

ALEx stands for Arcade Learning Environment in Elixir. ALEx uses NIFs to
create an Elixir wrapper around the ALE to allow Elixir programmers to
develop agents for the ALE. ALEx offers all of the same functionality as the
ALE, conveniently packaged in an Elixir library.

In this section, you’ll use ALEx to evolve agents to play Tetris. The agents you
design in this chapter will be naive—the purpose is simply to see how genetic
algorithms can integrate with visual tools to produce real results.
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Installing and Compiling ALEx
The ALE, and subsequently ALEx, requires libsdl1.25 and cmake.6 If you don’t
have either, you can install them like this:

$ sudo apt-get install libsdl1.2-dev libsdl-gfx1.2-dev \
libsdl-image1.2-dev cmake

The easiest way to build ALEx on Windows is by installing the Windows
Subsystem for Linux (WSL) and running your project in the WSL.

Next, you need to add ALEx to your dependencies in mix.exs:

defp deps do
...
{:alex, "~> 0.3.2"}
...

end

Now, run mix deps.get. After your dependencies are downloaded, run mix
deps.compile. You should see something like this:

$ mix deps.compile
Compiling ALE. This will take some time.

As the output says, the ALE compilation will take a very long time to complete.
If your compilation fails, it’s likely because ALEx can’t find erl_nif.h. This usu-
ally happens if you don’t have erlang-dev installed. You can fix this by running
the following:

$ sudo apt-get install erlang-dev

And then run this:

$ mix deps.clean
$ mix deps.get
$ mix deps.compile

After awhile, here’s what you should see:

$ mix deps.compile
Compiling ALE. This will take some time.
Successfully compiled ALE.

Once that’s done, you’re ready to go. Fortunately, you won’t have to recompile
the ALE every time you recompile your program.

5. https://www.libsdl.org/
6. https://cmake.org/
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Interacting with ALEx
ALEx offers functionality through the Alex module. You’ll likely only ever need
to work with the functions in the Alex module; however, ALEx also offers a
number of modules for interacting with things like game state, RAM, Atari
ROMs, and the screen. The Alex.Interface module offers functions that directly
interact with the ALE interface.

Future versions of ALEx will offer interactions with the ALE interface through
a GenServer. For now, to interact with ALEx inside your genetic algorithm,
you’ll need to create a basic wrapper around the ALE interface. To keep things
simple, you’ll create a simple game Agent that holds a reference to the ALE
interface.

First, create a new file tetris.exs in scripts. In tetris.exs, define a new TetrisInterface
module, like this:

defmodule TetrisInterface do
use Agent

def start_link(path_to_tetris_rom) do
end

end

You’ll only need to implement start_link/1 to spin up a new Agent around an ALEx
interface. Implement start_link/1 like this:

def start_link(path_to_tetris_rom) do
int = Alex.new()

game =
int
|> Alex.set_option(:display_screen, true)
|> Alex.set_option(:sound, true)
|> Alex.set_option(:random_seed, 123)
|> Alex.load(path_to_tetris_rom)

Agent.start_link(fn -> game end, name: __MODULE__)
end

This function spins up a new Agent that’s a wrapper around an ALEx interface.
It takes a path to a ROM file—which you’ll learn about in the next section—and
initializes a new ALEx interface with some options. :display_screen ensures you
can see the gameplay that’s happening, :sound ensures you can hear the sound,
and :random_seed is the seed the game starts with. Setting the seed ensures
every single iteration of game play is exactly the same. This is important for
comparing between solutions.
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Creating a Tetris Agent
Before you can get started evolving Tetris agents, you need to download a
copy of an Atari 2600 Tetris ROM. Fortunately, the ALE repo offers the official
Tetris ROM.7 Atari 2600 ROMs are also available from a number of websites.
If you’re worried about the contents of a ROM, you can see the checksums
of supported ROMs here.8

Once you download tetris.bin, create a new folder named priv and place tetris.bin
into it. Next, in tetris.exs, create a new problem:

defmodule Tetris do
@behaviour Problem
alias Types.Chromosome

@impl true
def genotype, do: # ...

@impl true
def fitness_function(chromosome), do: # ...

@impl true
def terminate?(population, generation), do: # ...

end

Now you need to get started encoding your problem.

Your Tetris AI will need to perform a series of actions that change the game
state. If you recall, Tetris is a game where tiles fall into the playing field until
they stack on another tile or hit the bottom. If the tiles are stacked such that
they create a horizontal line filling the entire playing field, all of the blocks
on the horizontal line disappear, and the player is awarded points.

In Tetris, you can choose to move left or right or rotate a tile. You can also
choose to speed up or slow down the falling of the tile. In ALEx, actions are
encoded as positive integers and stored in the legal_actions field of an ALEx
interface. You want your agent to make a series of actions that maximize the
score of the game. If your goal is to find the best series of actions, you can
encode solutions as a list of integer actions, like this:

def genotype do
game = Agent.get(TetrisInterface, & &1) # Get the ALE
genes = for _ <- 1..1000, do: Enum.random(game.legal_actions)
%Chromosome{genes: genes, size: 1000}

end

7. https://github.com/mgbellemare/Arcade-Learning-Environment/blob/master/ale_py/tests/fixtures/tetris.bin
8. https://hexdocs.pm/alex/supported-roms.html#content
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First, you grab the running game from the TetrisGame Agent. The game gives you
access to legal_actions, which is the set of legal actions you can perform in Tetris.
Next, you use Enum.random/1 to select 100 random actions to perform in a series.
Note, 1000 actions is probably not long enough to complete a full game of
Tetris. Additionally, implementing agents in this way is a bit naive—typically
you’d want to make decisions based off of the game state, but doing this is
outside of the scope of this book.

Next, you need to define a fitness function. Remember, your goal is to maxi-
mize the reward of a series of 100 actions. To do this, you need to run a series
of 100 actions and get the final score. You can accomplish that like this:

def fitness_function(chromosome) do
game = Agent.get(TetrisInterface, & &1) # Get the ALE
actions = chromosome.genes

game =
actions
|> Enum.reduce(game, fn act, game -> Alex.step(game, act) end)

reward = game.reward
Alex.reset(game) # Reset the game after a run
reward

end

In this function, you start by getting the ALEx interface. Next, you get the actions
specified by the current solution. After that you run each action, updating
the game state every time with Enum.reduce/3. Alex.step/2 represents a single step
through the game, given an action. After you complete all of the actions, you
extract the current reward from the game and then reset the game.

The fitness function corresponds to a single episode of 100 steps. An episode
is a static run through a game. After each episode, you need to reset the game
to evaluate the next episode.

Now you need to define your termination criteria. You don’t know exactly
what the best score possible is, so it’s best to terminate based on generation:

def terminate?(_population, generation), do: generation == 5

Each episode will take a long time to run, so you’ll want to keep the number
of generations low. You can always run the algorithm longer if you want to.

Now, you’re ready to run.

Running the Tetris Agent
With your algorithm implemented, you’re ready to roll. First, you need to start
the TetrisGame agent so your algorithm can interact with the game, like this:
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TetrisInterface.start_link("priv/tetris.bin")

Next, add the following:

soln = Genetic.run(Tetris, population_size: 10)

IO.write("\n")
IO.write("Best is #{soln}\n")

Because it takes so long to run a solution, you’ll want to keep your population
size small as well. Now, you can run your algorithm:

$ mix run scripts/tetris.exs

While your algorithm is running, you should see something like this:

ALEx will display a small Tetris window that runs through each solution in
your population and tests it. It will reset each solution once the run is com-
plete. All you need to do is wait.

If you don’t wish to watch the evolution in real time, you can always set :display_
screen to false and instead take screenshots at the end of every episode using
Alex.screenshot/1.

After the algorithm runs for awhile, you’ll get some output like this:

$ mix run scripts/tetris.exs
%Types.Chromosome{

age: 1,
fitness: 0,
genes: [0, 1, 1, 2, 3..., 1, 0],
size: 1000

}

Your algorithm didn’t learn how to play Tetris very well. That’s OK—you can
improve upon it in plenty of ways. See if you can build off of your work here
and create a better Tetris agent. Additionally, you can implement agents for
a ton of different Atari 2600 games, so be sure to check them out.
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ALEx is just one tool—a sandbox for creating algorithms that interact with
actual environments. OpenAI has lots of other environments for a wide variety
of different games and scenarios. Hopefully, you saw how these tools can help
you understand how solutions translate to actions in an environment.

What You Learned
In this chapter, you learned a few different ways to add visualizations to your
algorithms.

In the first section, you learned how to create visualizations from the geneal-
ogy tree generated over the course of an evolution. You learned how to export
the tree to a DOT file and use a third-party tool like Graphviz to view the
result.

After that, you learned how to use Gnuplot to generate plots of basic statistics
like mean fitness over the course of an evolution. You learned how to use the
graph to adjust your termination criteria.

Finally, you learned how to visualize specific solutions to specific problems
using a tool like ALEx.

You now have a fully-featured genetic algorithm library with the following
features:

• Basic problem definitions
• Customizable hyperparameters
• Customizable selection, crossover, mutation, and reinsertion strategies
• Customizable statistics
• Genealogy tracking

You can customize this library to accomplish any task imaginable. In the next
chapter, rather than add new features, you’ll improve your library by learning
how to optimize your existing code base.
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CHAPTER 11

Optimizing Your Algorithms
Thus far, you haven’t needed to worry too much about the performance of
the algorithms you’ve implemented. The solutions have been small, and you’ve
been working with relatively small populations. Because of this, you haven’t
needed to be concerned with efficiency. In the real world, you’ll often need to
deal with significantly larger solutions and populations when applying
genetic algorithms to practical problems.

As it turns out, Elixir is a language that wasn’t designed to be extremely effi-
cient at computationally expensive tasks. Things like floating-point math and
matrix multiplication are slow in Elixir. Elixir runs on the BEAM, which was
designed for telecommunication systems. This doesn’t mean you can’t write
performant genetic algorithms in Elixir; it means you need to be deliberate
in optimizing those algorithms.

The BEAM is the Erlang virtual machine. It’s the core of Erlang/OTP. Every
Elixir file compiles to BEAM bytecode. The best way to understand the perfor-
mance of your applications is to understand what happens when your appli-
cation compiles and runs the BEAM bytecode. This chapter will briefly cover
some aspects of the BEAM; however, the material isn’t comprehensive by any
means. For a fantastic explanation of the internals of the BEAM, check out
The BEAM Book.1

In this chapter, you’ll learn how to benchmark and profile your algorithms,
and you’ll briefly learn about where performance really matters. Additionally,
you’ll learn different ways to optimize your algorithms. We’ll walk through a
series of optimizations, in the following order:

1. Creating benchmarks and profiling your algorithms.
2. Optimizing the performance of Elixir code.

1. https://github.com/happi/theBeamBook
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3. Parallelizing your algorithms.
4. Writing NIFS.

When working through optimizations, this is generally the order of optimiza-
tions you should make—only progressing to the next step when absolutely
necessary.

Benchmarking and Profiling Genetic Algorithms
The first step in any optimization process is doing some investigative work
by establishing baselines and determining where your code is slow. Bench-
marking is the process of evaluating your code from a performance point of
view. Benchmarking is usually done to assess the performance of units of
code in the context of space (memory usage) or time (execution time). Profiling
is the process of evaluating specific aspects of a program in space or time to
aid in performance optimization. Profiling helps you identify specific bottle-
necks in your code.

The difference between benchmarking and profiling is subtle. The purpose of
benchmarking is to establish performance metrics for an entire operation to
compare between operations. This could mean comparing operations performed
with different settings or comparing operations on different hardware.

The purpose of profiling is to understand the behavior of a program. For
example, a profiler might tell you where a program spends most of its time
or what functions a program invokes the most. Profiling offers detailed insights
into where you should try to optimize your code the most.

You can use a number of tools to benchmark and profile your code. In this
section, you’ll use Benchee to benchmark your algorithms and ExProf to profile
them. But before you begin optimizing, you need to decide if it’s even worth it.

Deciding When to Optimize
Oftentimes, programmers make the decision to optimize code prematurely
and unnecessarily. Optimization isn’t a bad thing; however, choosing to
optimize at the wrong time—or for the wrong reasons—hinders the develop-
ment process.

Practical genetic algorithms are computationally expensive—real-world
problems will often require you to work with significant amounts of data.
Fortunately, modern hardware alleviates a lot of the pressure on software to
be optimized. Often, the available computing power far exceeds computational
requirements. In a lot of situations, optimization isn’t necessary.
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Of course, when you’re dealing with a lot of data, optimization can be neces-
sary to prevent algorithms from crashing. On a moderately powerful machine,
your genetic algorithms will become noticeably slower when the population
size, and the size of each chromosome, multiplies to around 1,000,000. In most
other circumstances, you’ll see no noticeable performance dips and optimiza-
tion is unnecessary.

You can reference the Erlang documentation2 for explicit information on the
limits of the BEAM and memory usage of different data types. This might help
you in determining if you need to devote time to optimization.

Using Benchee to Analyze Performance
If you decide that optimization is necessary, the first thing you need to do is
establish a baseline. Benchmarking your algorithm allows you to determine
if the optimizations you’re making are having any impact on the overall per-
formance of your algorithm. Benchmarking is a necessary first step to deter-
mine if your optimizations are meaningful.

Benchee3 is an Elixir benchmarking package that’s easy to use and provides a
lot of information out of the box. You’ll use Benchee to benchmark the different
aspects of your genetic algorithms.

Start by adding Benchee to your dependencies in mix.exs:

defp deps do
# ... other deps
{:benchee, ~> "1.0.1"}

end

Next, create a new file benchmark.exs in a new directory bench. You’ll declare
basic benchmarks of each of your core functions in this file.

Benchmarks are typically done on large parts of programs. In this example,
you’ll benchmark each of the core functions in your genetic algorithm
framework, and you’ll also benchmark a single evolution. To do this, you need
to declare a DummyProblem that serves as a baseline problem for your genetic
algorithm to work on. The problem you declare won’t solve anything useful,
but it will serve as a means to benchmark the different functions in your
algorithm. In benchmark.exs, declare your DummyProblem, like this:

defmodule DummyProblem do
@behaviour Problem
alias Types.Chromosome

2. http://erlang.org/documentation/doc-5.8.4/doc/efficiency_guide/advanced.html
3. https://github.com/bencheeorg/benchee
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@impl true
def genotype do

genes = for _ <- 1..100, do: Enum.random(0..1)
%Chromosome{genes: genes, size: 100}

end

@impl true
def fitness_function(chromosome), do: Enum.sum(chromosome.genes)

@impl true
def terminate?(_population, generation), do: generation == 1

end

initialize requires a genotype that returns a new chromosome. Here, you declare
a genotype that’s identical to one you’ve used in other problems. You can
change this to whatever you like, but the idea is to use a typical genotype so
that you understand how initialize performs in an average scenario.

evaluate requires a fitness_function. In the same spirit as the genotype you declared
for initialize, you’ll use a fitness function that’s identical to other ones you’ve
used before. Once again, you can change the fitness function, but the function
you defined here will represent a typical fitness function for any problem.

terminate? is a dummy termination function. It terminates after a single gener-
ation to ensure you can get one full iteration of the evolve function. You could
create a dummy evolve function and see negligible differences in performance;
however, this methodology ensures you get a true picture of the performance
of your functions.

Next, you need to declare dummy populations to pass to your other functions.
You can use initialize and the genotype you declared, like this:

dummy_population = Genetic.initialize(&DummyProblem.genotype/0,
population_size: 100)

{dummy_selected_population, _} = Genetic.select(dummy_population,
selection_rate: 1.0)

You need two different populations for the functions in your algorithm. dum-
my_population is a standard population that can be passed to select, evaluate, and
mutation. dummy_selected_population represents a population of parents for use in
crossover. If you recall from Chapter 2, Breaking Down Genetic Algorithms, on
page 15, crossover requires a list of tuples. Calling select on the dummy_population
takes care of this for you. Additionally, you declare a :selection_rate of 1.0. You
can change this, but understand that the performance of crossover changes
with respect to the selection rate because the selection rate determines how
many parents are in the selected population.
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The final step is to declare your benchmarks for each function. At the bottom
of benchmark.exs, add the following:

Benchee.run(
%{

"initialize" => fn -> Genetic.initialize(&DummyProblem.genotype/0) end,
"evaluate" =>
fn ->

Genetic.evaluate(dummy_population, &DummyProblem.fitness_function/1)
end,

"select" => fn -> Genetic.select(dummy_population) end,
"crossover" => fn -> Genetic.crossover(dummy_selected_population) end,
"mutation" => fn -> Genetic.mutation(dummy_population) end,
"evolve" => fn -> Genetic.evolve(dummy_population, DummyProblem, 0) end

},
memory_time: 2

)

Here, you declare the functions you’re trying to benchmark. Benchee will run
each of these functions and report the performance of each. The :memory_time
option tells Benchee how long memory tests should be performed for. The
default is 0, so to turn it on, you need to declare a positive number.

Next, run your benchmarks, like this:

$ mix run bench/benchmark.exs
...

Comparison:
evaluate 8.94 K
select 7.84 K - 1.14x slower +15.72 μs
mutation 5.59 K - 1.60x slower +67.12 μs
crossover 2.30 K - 3.88x slower +322.20 μs
evolve 0.88 K - 10.17x slower +1025.02 μs
initialize 0.26 K - 34.72x slower +3770.38 μs

...

Comparison:
evaluate 24.29 KB
select 31.66 KB - 1.30x memory usage +7.37 KB
mutation 117.23 KB - 4.83x memory usage +92.94 KB
crossover 264.77 KB - 10.90x memory usage +240.48 KB
evolve 412.39 KB - 16.98x memory usage +388.10 KB
initialize 2201.65 KB - 90.64x memory usage +2177.36 KB

After some system information, you’ll see the results of the benchmarks. Your
results might differ slightly from what you see here. You should see some
statistics related to each benchmark. That information has been left out here.
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You can also see the baseline performance of each of your functions in both
memory usage and overall performance. You might notice that initialize/2 is the
slowest function. Your immediate reaction here might be to aggressively
optimize initialize/2; however, that wouldn’t make much sense because initialize/2
only runs once. You wouldn’t get much benefit out of optimizing it.

In the next section, you’ll learn how to use a profiler to determine where you
should optimize.

Identifying Bottlenecks with ExProf
ExProf4 is an Elixir profiling tool that wraps around Erlang’s :eprof. A profiler
tells you about the behavior of your code and helps you determine where to
optimize.

To start using ExProf, first add it as a dependency:

defp deps do
...
{:exprof, "~> 0.2.0"}
...

end

Next, create a new file profile.exs in bench. In the newly created file, add a Dum-
myProblem module identical to the one you declared in the last section, like
this:

defmodule DummyProblem do
@behaviour Problem
alias Types.Chromosome

@impl true
def genotype do

genes = for _ <- 1..100, do: Enum.random(0..1)
%Chromosome{genes: genes, size: 100}

end

@impl true
def fitness_function(chromosome), do: Enum.sum(chromosome.genes)

@impl true
def terminate?(_population, generation), do: generation == 1

end

You’ll use this problem to benchmark the performance of your algorithm.
Next, create a Profiler module like this:

defmodule Profiler do
import ExProf.Macro

4. https://github.com/parroty/exprof
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def do_analyze do
profile do
Genetic.run(DummyProblem)

end
end

def run do
{records, _block_result} = do_analyze
total_percent = Enum.reduce(records, 0.0, &(&1.percent + &2))
IO.inspect "total = #{total_percent}"

end
end

This code uses the profile macro from ExProf to profile the performance of your
genetic algorithm. You wrap whatever functions you want to profile inside of
the profile macro. The rest of the code is required to run the overall profile.

Next, you need to run the profiler in the script:

Profiler.run()

Now, run the profiler:

$ mix run scripts/profile.exs
...

You should see a long list of results indicating where your genetic algorithm
spends most of its time. Overall, you’ll notice that most of the work in the
algorithm happens in list functions and random number generation. So how
do you best address these? You can speed up list functions by writing algo-
rithmically efficient code and by parallelizing the code. You’ll learn about both
of those concepts in the next two sections. You can speed up RNG by rolling
simpler, custom RNGs with NIFs. You’ll learn about that in Improving Perfor-
mance with NIFs, on page 183.

Writing Fast Elixir
One of the first rules of thumb for optimizing code states: “you can’t optimize
a bad algorithm.” The most significant performance gains in your code will
often come from better algorithms. Efficient algorithms can make up for lim-
itations in computing power.

A comprehensive introduction to data structure and algorithm design is outside
of the scope of this book. If you want to learn about writing efficient algorithms
and improving your code’s performance, check out A Common-Sense Guide
to Data Structures and Algorithms [Wen20].
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Instead, this section will cover some basic tips to increase the performance
of your Elixir code—this is simply an overview and is not meant to be a com-
prehensive guide for writing fast Elixir. You can reference Fast Elixir5 for a
more in-depth look at the performance of different functions.

Reduce or Map?
A basic optimization you can make when you don’t need to preserve the order
of your lists is to replace Enum.map/2 with Enum.reduce/3. The reason this works
is because all of Elixir’s Enum functions are implemented using a reduce
function. For example, in crossover, you could just as easily use Enum.map/2 to
apply crossover to every pair of parents in the population, like this:

def crossover(population, opts \\ []) do
crossover_fn = Keyword.get(opts,

:crossover_type,
&Toolbox.Crossover.single_point/2)

population
|> Enum.map(fn {p1, p2} -> apply(crossover_fn, [p1, p2]) end)

end

This function is much more concise than your original implementation:

def crossover(population, opts \\ []) do
crossover_fn =

opts
|> Keyword.get(:crossover_type, &Toolbox.Crossover.single_point/2)

population
|> Enum.reduce([],

fn {p1, p2}, acc ->
{c1, c2} = apply(crossover_fn, [p1, p2])
[c1, c2 | acc]

end
)

end

However, it’s also slightly less performant. Note that Enum.reduce/3 will reverse
the order of your list. If you need to preserve order, use Enum.map/2.

Take and Drop
When using Enum.take/2 and Enum.drop/2, you have the option to use negative
numbers to indicate “taking” or “dropping” from the back of the list. Doing
so will result in a significant performance drop.

5. https://github.com/devonestes/fast-elixir
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The reason lies in how these two functions are implemented in the Elixir
standard library. If you find yourself using Enum.take/2 with a negative number,
like this:

x = Enum.take(some_list, -50)

You can replace it with Enum.drop/2, like this:

x = Enum.drop(some_list, 50)

Performing this “optimization” on my machine resulted in an almost 2x in-
crease in performance. It’s also more correct to use drop in this instance.

Lazy Evaluation
Elixir offers the Stream module which allows you to use lazy evaluation over
eager evaluation. Lazy evaluation ensures that you only execute functions
when you need to. It eliminates unnecessary calculations. In general, the
Stream module is slightly less performant than Enum for the same tasks; how-
ever, Stream offers some benefits that can increase performance.

For example, when creating new populations, you can use Stream.repeatedly/2
in initialize, like this:

def initialize(genotype, opts \\ []) do
Stream.repeatedly(genotype)

end

You can then pass the Stream from function to function until you absolutely
need the entire population. This saves some memory up until you need to
produce the entire population for selection, crossover, and mutation. In gen-
eral, you might not see performance increases from this approach; however,
you can benefit from using streams when you need to cut out unnecessary
calculations.

Improving Performance with Parallelization
One of the strengths of genetic algorithms is their ability to be parallelized.
Parallelism is when processes execute simultaneously on multiple cores,
systems, and the like. The tasks that make up an evolution can be performed
in parallel to yield significant performance gains. The BEAM is optimized for
orchestrating computations in parallel. You can take advantage of this fact
to improve the performance of your genetic algorithms.

The benefit of writing genetic algorithms in Elixir is the availability of a rich
set of parallelization features. Parallelizing algorithms in Elixir is straightfor-
ward thanks to modules like Task, Agent, and GenServer. You can parallelize your
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program in just a few lines of code, and let the Erlang Scheduler handle the
orchestration of computation for you. The Erlang Scheduler is responsible
for orchestrating the processes you spawn during the life cycle of your Elixir
applications. You can think of a scheduler like a parent who forces siblings
to share toys. Each sibling (process) gets some time (runtime) to play with
the toy (computing power). To learn more about how the Erlang Scheduler
works, check out The BEAM Book.6

You can achieve parallelization in your genetic algorithms on the BEAM in many
ways. In this section, you’ll explore two: using the Task module and using
Agents. However, before you begin, it’s important to understand the difference
between concurrency and parallelism, and how parallelism in Elixir works.

Concurrency Versus Parallelism
The distinction between concurrency and parallelism is important when
determining how best to speed up your genetic algorithms. Erlang is built to
be a concurrent language. Processes are concurrent when they appear to be
executing simultaneously but they’re actually executing on the same thread.
The scheduler achieves concurrency by alternating between processes until
all processes are complete.

You can achieve true parallelism on the BEAM if you have a multi-core or
distributed system. The BEAM will automatically parallelize your processes
using symmetric multiprocessing (SMP). You don’t need to understand what
SMP is or how it works. If your machine supports SMP and has multiple
cores, the scheduler handles the parallelization for you.

To check if you have SMP enabled, open iex and type:

iex(1)> :erlang.system_info :smp_support
true

If it returns true, your system is capable of parallel execution. To see how
many schedulers your system will use, type the following:

iex(2)> :erlang.system_info :schedulers_online
12

The number of schedulers indicates the number of processes that will run in
parallel on your machine. Most modern machines will have at least four cores
and thus four schedulers. Just because you have four cores, however, doesn’t
mean that the BEAM will bind one scheduler per core or thread. Instead, the

6. https://github.com/happi/theBeamBook
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BEAM will leave it up to your operating system to decide how to allocate
schedulers.

One thing to remember is that parallelism doesn’t always lead to better per-
formance. Some code just isn’t parallelizable. Sometimes the overhead asso-
ciated with parallelism is too expensive for simple tasks. You need to consider
these things when determining which parts of your code will benefit the most
from parallelism.

An additional consideration is that there’s a point of diminishing returns
when it comes to parallelism. In most languages, creating threads is expensive
and has a certain amount of overhead. The overhead makes it such that
creating too many threads will decrease performance rather than increase.
Additionally, on small tasks, parallelism would be unnecessary because of
the associated overhead.

On the BEAM, spawning processes is an inexpensive process; however, you
still need to be conscious of how attempts at parallelism will impact the per-
formance of your algorithms. If you’re processing relatively small amounts of
data, it doesn’t usually make sense to parallelize because the associated
overhead of parallelism will decrease your performance. You should turn to
parallelism when dealing with larger amounts of data that takes a long time
to process.

Using the Task Module
The easiest way to parallelize in Elixir is using the Task module. The Task
module offers convenience functions for working with tasks. In Elixir, a task
is a process meant to perform a single action throughout its lifetime. You can
use the Task module to execute code concurrently or in parallel.

In genetic.ex, create a new function pmap/2 like this:

def pmap(collection, func) do
collection
|> Enum.map(&Task.async(func.(&1)))
|> Enum.map(&Task.await(&1))

end

This function comes from Programming Elixir [Tho14]. It implements a parallel
map function by attaching every element in a collection to a process. The
processes will then all execute in parallel. Task.await/2 will return the result of
every process.
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You can use pmap/2 to replace the traditional Enum.map/2 calls in your code;
however, it doesn’t always make sense to do this. To understand why, you’ll
look at some basic examples.

Create a new file pmap.exs in scripts. At the top of the file, create two anonymous
functions expensive and inexpensive, like this:

expensive =
fn x ->

x = x * x
:timer.sleep(500)
x

end
inexpensive = fn x -> x * x end

expensive simulates a computationally expensive function using :timer.sleep/1.
inexpensive is a computationally inexpensive function.

Next, create some dummy data with 100 elements, like this:

data = for x <- 1..100, do: x

Finally, benchmark pmap/2 and Enum.map/2 with both inexpensive and expensive
functions:

Benchee.run(%{
"pmap, expensive" => fn -> Genetic.pmap(data, &(expensive.(&1))) end,
"pmap, inexpensive" => fn -> Genetic.pmap(data, &(inexpensive.(&1))) end,
"map, expensive" => fn -> Enum.map(data, &(expensive.(&1))) end,
"map, inexpensive" => fn -> Enum.map(data, &(inexpensive.(&1))) end

}, memory_time: 7)

You’ll benchmark both performance and memory usage to get a clear picture
of what’s happening. Now, run pmap.exs:

$ mix run scripts/pmap.exs
...

Comparison:
map, inexpensive 423.09 K
pmap, inexpensive 3.13 K - 134.98x slower +316.68 μs
pmap, expensive 0.00200 K - 212074.08x slower +501245.72 μs
map, expensive 0.00002 K - 21196897.26x slower +50099963.86 μs

...

Comparison:
map, inexpensive 1.62 KB
pmap, inexpensive 51.78 KB - 32.02x memory usage +50.17 KB
pmap, expensive 52.46 KB - 32.44x memory usage +50.85 KB
map, expensive 1.62 KB - 1.00x memory usage +0 KB
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What you’ll notice here is that pmap/2 runs significantly faster on the compu-
tationally expensive function and significantly slower on the inexpensive
function. Why is this? It’s all about overhead.

Notice the memory usage of pmap/2 is much higher than map/2. That’s because you
create a new process for every element in your list. Every process on the BEAM
comes with its own stack, heap, message area, and process control block. You
don’t need to know what each of these areas is for, but you should understand
that process creation comes with some associated memory overhead.

With the inexpensive function, the creation of new processes is more expensive
than the work being parallelized. Using pmap/2 on an inexpensive function is
overkill. With the expensive function, pmap/2 is significantly faster because it
can execute all of the expensive work in parallel.

In your genetic algorithm framework, it makes the most sense to replace
Enum.map/2 in areas where computation is most expensive. For example, you’ll
probably see speedups using pmap/2 over Enum.map/2 in evaluate, crossover, and
mutation if you’re using expensive fitness functions and crossover or mutation
strategies. If you aren’t using expensive fitness functions or strategies, you’ll
likely end up hurting rather than helping performance.

Treating Chromosomes as Processes
The strongest aspect of the BEAM is its ability to create and work with pro-
cesses. You saw how easy it was to spin up new processes using the Task
module in the last section. In this section, you’ll use the Agent module to
accomplish parallelization in a different manner.

An Agent is an abstraction around state. Agents allow you to keep track of state
between entities. In your original genetic algorithm framework, you perform
transformations on Chromosome structs. Using an Agent, you can replace these
transformations with interactions between processes. These processes will
naturally run in parallel and your algorithms will achieve parallelism naturally.

Note that you probably won’t see significant performance increases using this
approach on normal machines. Using this approach in practice requires a
massively parallel system to be viable. It also requires some additional com-
plexities to implement correctly. In this section, you’ll implement a basic agent
and see how you can evaluate a population of agents.

Start by opening chromosome.ex in types. At the top of the file, add the following line:

use Agent

This line tells Elixir that you’ll be implementing the Agent behaviour.
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Next, you need to implement some functions for interacting with the Agent.
Add the following to chromosome.ex:

def start_link(genes) do
Agent.start_link(fn -> %Chromosome{genes: genes, size: Enum.count(genes)})

end

def get_fitness(pid) do
Agent.get(pid, & &1.fitness)

end

def eval(pid, fitness) do
c = Agent.get(pid, & &1)
Agent.update(pid, fn -> %Chromosome{c | fitness: fitness.(c)})

end

Here, you implement three functions start_link/1, get_fitness/1, and eval/2. start_link/1
creates a new Chromosome given some genes. get_fitness/1 returns fitness for use
in evaluate/1. eval/2 evaluates a Chromosome given a fitness function. You’ll use
this function to evaluate chromosomes in parallel.

Now you need to tweak how you implement initialize/1 and evaluate/2. In genetic.ex,
change both functions to match this:

def initialize(genotype, opts \\ []) do
population_size = Keyword.get(opts, :population_size, 100)
for _ <- 1..100, do: Chromosome.start_link(genes: genotype.())

end

def evaluate(population, fitness_function, _opts \\ []) do
population
|> Enum.map(&Task.async(fn -> Chromosome.eval(&1, fitness_function)))
|> Enum.sort_by(fn c -> Chromosome.get_fitness(c) end, &>=/2)

end

You’ll notice a few changes here. First, in initialize/0 you replace the declaration
of a new Chromosome struct with a call to start_link/1. Next, in evaluate/1 you use
both eval/2 and get_fitness/1 to first evaluate every chromosome process and
then sort them. Note, for simplicity, in this example evaluate doesn’t update
the age of a chromosome.

Now, when you run evaluate on an expensive fitness function, they’ll execute
in parallel as messages sent to each Agent process.

This approach follows similar approaches taken in evolutionary-based algo-
rithms written in Erlang, but it’s not necessary for the situations you will
encounter.
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Improving Performance with NIFs
Native Implemented Functions (NIFs) are a great way to inject speed into your
Elixir/Erlang programs. NIFs are programs implemented in compiled lan-
guages like Rust or C/C++ that are then linked and loaded into your Elixir
module at runtime.

NIFs were designed to be a simpler and more efficient way of interfacing with
native code than ports. Ports interact with external programs and offer a
mechanism of implementing program features in a different language.

NIFs are often used in places where Elixir/Erlang alone isn’t enough to effi-
ciently get the job done. For example, the Matrex7 library uses NIFs to perform
fast matrix operations because Elixir/Erlang isn’t optimized to perform these
operations alone.

One thing to consider with NIFs is that they have the potential to crash your
program. NIFs take the fault-tolerance out of applications because the code
loaded is from an external program. Additionally, NIFs have a strange way of
interacting with Erlang’s scheduler. The scheduler expects NIFs to return in
a certain amount of time; however, if they don’t, it can dramatically impact
the performance of your programs.

You can use NIFs to boost performance on your crossover and mutation functions
or to augment Elixir implementations of slower functions. For example, random
number generation is a notoriously expensive task. You can augment random
number generation with a simple and fast C/C++ implementation of a more
basic RNG like an XOR-Shift RNG. This repository8 implements a number of
XOR-shift RNGs in C.

To get a better idea of how to implement NIFs, you’ll implement a basic RNG
NIF in C. Start by creating a new file genetic.c in a new directory src. In the file,
add the following:

#include <erl_nif.h>
#include <inttypes.h>
#include <stdint.h>

static uint32_t x = 123456789, y = 362436069, z = 521288629;

static ERL_NIF_TERM xor96(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{

uint32_t t = (x^(x<<10));
x = y;

7. https://github.com/versilov/matrex
8. https://github.com/WebDrake/xorshift/
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y = z;
z = (z^(z>>26))^(t^(t>>5));

return enif_make_int(env, z);
}

static ErlNifFunc nif_funcs[] =
{

{"xor96", 0, xor96}
};

ERL_NIF_INIT(Elixir.Genetic, nif_funcs, NULL, NULL, NULL, NULL);

This code defines an XOR96 random number generator and returns it to the
Erlang environment using the Erlang NIF C interfaces. Most of the code you
see defined here is boilerplate code necessary to create NIFs in C.

Next, you need to define a new Mix compiler in mix.exs, like this:

defmodule Mix.Tasks.Compile.Genetic do
use Mix.Task.Compiler

def run(_args) do
{result, _errcode} =
System.cmd(

"gcc",
["-fpic", "-shared", "-o", "genetic.so", "src/genetic.c"],
stderr_to_stdout: true

)
IO.puts(result)

end
end

This code uses the Mix.Compiler API to create a new Mix compiler that will
compile your NIFs to a shared-object library using GCC. If you’re using Win-
dows, you’ll have to either use MingW, Windows Subsystem for Linux (WSL),
or integrate this workflow with Visual Studio. MingW is probably the most
straightforward option. It’s a port of the C compiler, GCC, to Windows.

Next, you add your compiler to your projects :compilers like this:

defmodule Genetic.Mixfile do
use Mix.Project

def project do
[
app: :genetic,
...
compilers: [:genetic] ++ Mix.compilers,

]
end
...

end
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Now, whenever you compile your algorithms, Mix will run your custom com-
piler and compile your NIFs for you. To call xor96 from your code, add the fol-
lowing to the top of genetic.ex:

defmodule Genetic do
@on_load :load_nif

def load_nif do
:erlang.load_nif('./genetic', 0)

end

def xor96, do: raise "NIF xor96/0 not implemented."

...
end

This code defines a function to run once the module is loaded. The function
load_nif/0 uses Erlang’s load_nif/2 function to load your shared object library at
runtime. You also define a fallback implementation of xor96 to run if Elixir
can’t find your C implementation.

xor96/0 will generate integers. You can use it to generate integers between 0
and some number, like this:

iex(0)> rem(xor96(), 100)
42

In an example function like single_point_crossover/2, it would look like this:

def single_point_crossover(p1, p2) do
cx_point = rem(Genetic.xor96(), p1.size)
{p1_head, p1_tail} = Enum.split(p1.genes, cx_point)
{p2_head, p2_tail} = Enum.split(p2.genes, cx_point)
{c1, c2} = {p1_head ++ p2_tail, p2_head ++ p1_tail}
{%Chromosome{genes: c1, size: length(c1)},

%Chromosome{genes: c2, size: length(c2)}}
end

One issue with this RNG is that it starts from the same state every time your
application is run. So it will produce the same order of random numbers every
time you run your genetic algorithm. You can find other, better ways to take
advantage of NIFs. For example, you could implement entire crossover or
mutation functions using NIFs and use your current implementations as
fallbacks in case the NIFs don’t load for some reason.

What You Learned
In this chapter, you learned some basic tips for optimizing your genetic algo-
rithms. You also learned how to decide when to optimize and that it’s often

report erratum  •  discuss

What You Learned • 185

http://pragprog.com/titles/smgaelixir/errata/add
http://forums.pragprog.com/forums/smgaelixir


unnecessary to optimize on modern machines. You used benchmarking and
profiling tools to establish baselines and determine where to optimize.

You then went through some basic optimization tips and the order in which
to try them. You also learned some basic tips for writing faster Elixir and
improving the performance of your algorithms.

Next, you learned how parallelization can be used to speed up the performance
of your algorithms under certain conditions. You learned when it’s best to try
and parallelize your algorithms and when it’s best to avoid it.

Finally, you learned about NIFs and where you can use NIFs to see perfor-
mance gains.

Remember, the optimization tips you learned about in this chapter should
generally be worked through in the order they were presented here. Start by
determining if optimization is even necessary, and then go through some
investigative work to establish baselines and determine where you need to
optimize. Next, attempt to optimize your Elixir code. After that, you should
see if your algorithms would benefit from parallelism in certain places.
Finally, if you need to, you can see if NIFs would speed up the performance
of some of your functions.

In the next chapter, you’ll build up the resiliency of your genetic algorithm
framework by learning how to test and analyze the correctness of the code
you’ve written so far.
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CHAPTER 12

Writing Tests and Code Quality
In the last chapter, you learned how to optimize your framework in three
different ways to get the most performance out of Elixir and the BEAM. So
far, you’ve created a framework for writing genetic algorithms capable of
solving a wide variety of problems. One thing you haven’t done, however, is
test and analyze this framework to ensure your code is correct and clean.

Testing is a crucial part of any development process. Typically, you’d want to
write tests that mirror a specification or some behavior first, before writing
any code. This process, called test driven development, calls for writing small
unit tests first and then improving code to mirror a specification. Elixir
emphasizes the importance of tests and makes the process of writing unit
tests a breeze.

In addition to testing, another key aspect of the development process is
ensuring your code is concise and understandable for yourself and any other
developers that may be contributing to your project. Fortunately, Elixir has
a few packages that make analyzing your code easy, such as credo1 and dialyxir.2

In this chapter, you’ll learn how to use ExUnit3 and StreamData4 to write property-
based tests for your code. You’ll also learn how to use credo and dialyxir to
improve the code in your framework with some code analysis. Normally, you’d
want to use these tools much earlier in the development process; however,
I’ve omitted them until this point to place more emphasis on the core concepts
of genetic algorithms. This chapter will get you on track with using these tools
to improve upon your existing code base.

1. https://github.com/rrrene/credo
2. https://github.com/jeremyjh/dialyxir
3. https://hexdocs.pm/ex_unit/ExUnit.html
4. https://hexdocs.pm/stream_data/StreamData.html
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Understanding Randomness
One challenge to writing tests for genetic algorithms is their stochastic nature.
When something is stochastic, it’s dictated by random processes—usually
with some associated probability. For example, if you examine how you imple-
mented flip mutation in Chapter 7, Preventing Premature Convergence, on
page 107, it looks like this:

def flip(chromosome, p) do
genes =

chromosome.genes
|> Enum.map(

fn g ->
if :rand.uniform() < p do➤

g ^^^ 1
else
g

end
end
)

%Chromosome{genes: genes, size: chromosome.size}
end

Remember this function performs a bit-flip with probability p on the genes in
a chromosome. Notice the highlighted if-condition. The condition :rand.uniform
< p represents a coin-flip that is true with probability p and false with proba-
bility 1 - p. If you were to test this function with a probability of 0.5, on average,
50% of the genes in your chromosome would be flipped. If you tried to test
this, you’d quickly run into problems because the behavior of the function is
stochastic. You could run this function on the same chromosome 100 times
and get a different outcome every time.

Testing with randomness is difficult because testing often relies on you being
able to dictate and understand the outcome of a function. Because most of
the functions in your genetic algorithm rely on randomness, you’re unable
to predict exactly what the output of a function is, which in turn makes it
difficult to write tests. Fortunately, there are ways to address the challenge
of randomness to effectively test your functions.

In this chapter, you’ll learn how to use property-based testing to test the
functions in your framework. You’ll learn more about property-based testing
in the next section. For now, you’ll learn about two alternative approaches
to testing with randomness: seeding and mocking.

Seeding relies on the need for random number generators to be initialized
with a random seed from which they generate new random numbers. The
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:rand module you’ve been using implements pseudo-random number generation
(PRNG) algorithms. This means that the algorithms aren’t truly random but
give the illusion of randomness. An algorithm is truly random if it can generate
numbers infinitely many times without repeating itself. The PRNGs implement-
ed in the :rand module have periods of around 2^64, which means they repeat
themselves after 2^64 calls. Essentially, you’ll never have to worry about your
algorithms not being truly random.

You can provide a random seed to :rand before you generate numbers to control
the behavior of the numbers generated. To see this in action, open iex and try
the following:

iex(1)> :rand.seed(:exsss, 1)
...
iex(2)> :rand.uniform(100000000000000)
82609428762732
iex(3)> :rand.seed(:exsss, 2)
...
iex(4)> :rand.uniform(100000000000000)
4
iex(5)> :rand.seed(:exsss, 1)
...
iex(6)> :rand.uniform(100000000000000)
82609428762732

If you repeat that process forever, you’ll continue to get the same numbers
every time. You could use this same strategy to seed the PRNG before running
your tests to guarantee the behavior of your random functions is the same
every time. One of the flaws of this approach is you have to trace through the
behavior of your function by hand to determine what the outcome of your
function is with your chosen seed.

Another approach to testing with randomness is by using mocking. Mocking
refers to creating an imitation module to replace the behavior of :rand with
something predictable. For this approach, you’d have to create a module to
replace :rand at test time with predictable behaviors. This approach is common
when testing the behaviors of functions that interact with some API offline.
It doesn’t work as well with randomness.

Writing Property Tests with ExUnit
Elixir makes testing a breeze using it’s testing framework ExUnit. ExUnit is a
framework for writing unit tests that’s built in to every Elixir project. Every
time you create a new project using mix new, Elixir will automatically create a
test directory for you and populate it with a skeleton for writing unit tests for
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your project. ExUnit is already packaged with Elixir, so you don’t need to install
any dependencies.

StreamData is an Elixir library for writing property-based tests. Property-based
tests test the properties of a function to ensure your code meets some specified
properties every time. Property-based tests are especially useful when your
functions contain randomness, because you can write tests that run hundreds
of times and ensure your functions meet specified properties and behaviors.
For example, if you had a function that generated lists of length 10 of random
integers between 1 and 10, you could run the function hundreds of times and
ensure that every time it ran, the list it generated contained 10 elements and
all of the elements were integers between 1 and 10. StreamData offers utilities
for creating streams of data that can be combined with it’s ExUnitProperties
module to write property-based tests.

This section will walk you through an example property-based test for Tool-
box.Crossover.single_point/2. You can repeat this process with the rest of your
functions in your framework. To learn more about property-based testing,
check out Property-Based Testing with PropEr, Erlang, and Elixir [Heb19] or
Testing Elixir [LM20].

To get started, you first need to add StreamData to your dependencies, like this:

defp deps do
...
{:stream_data, "~> 0.5", only: :test}

end

The only: :test property specifies that you only need this dependency in a test
environment. Run mix deps.get to ensure StreamData is loaded.

Next, create a new file in tests called crossover_test.exs. In that file, add the following:

def CrossoverTest do
use ExUnit.Case
use ExUnitProperties
alias Types.Chromosome

end

Here you define a module that will contain your test and ensure it uses the
ExUnit.Case suite of tools. You then use ExUnitProperties to import the macros for
writing property-based tests. Finally, you alias Types.Chromosome, because you’ll
be creating chromosomes to test your function with later on.

Now, consider what properties the function Toolbox.Crossover.single_point/2 needs
to maintain. Recall from Chapter 6, Generating New Solutions, on page 87,
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single-point crossover takes in two chromosomes and swaps slices of genes
at a random crossover point. It maintains the size of both chromosomes, and
produces two unique chromosomes at the end. Your test should check to
ensure that the size of the chromosomes produced by Toolbox.Crossover.single_point/2
is the same as the input chromosomes. You can try to enforce other properties
later on; for now you’ll just ensure that single_point/2 maintains the size of the
input chromosomes.

Define your test like this:

property "single_point/2 maintains the size of input chromosomes" do
check all size <- integer(0..100),

gene_1 <- list_of(integer(), length: size),
gene_2 <- list_of(integer(), length: size) do

p1 = %Chromosome{genes: gene_1, size: size}
p2 = %Chromosome{genes: gene_2, size: size}
{c1, c2} = Toolbox.Crossover.single_point(p1, p2)
assert c1.size == size and c2.size == size

end
end

Here you define a property using the property macro. You then use the check all
macro to generate some data to test your function with. StreamData comes with
a number of helpful generators that make creating data easy. In this example
you use them to generate genes for two parent chromosomes. In the body of
the test, you define two parent chromosomes and then run Toolbox.Crossover.sin-
gle_point/2 to get two children. Finally, you assert that the size of the children
is equal to the original size of both of the original sets of genes.

Next, run mix test, like this:

$ mix test
...
Finished in 0.08 seconds
1 property, 1 failure

After running, your test might have failed; but why? If you inspect the output
of the test, you’ll notice that the function doesn’t behave well when running
on chromosomes with empty genes. While it’s not likely you’ll run into this
problem in practice, you should fix your function to handle empty genes just
in case. Open up crossover.ex in toolbox and add the following above single_point/2:

def single_point(c1 = %Chromosome{genes: []},
c2 = %Chromosome{genes: []}), do: {c1, c2}

This function uses pattern matching to check if c1 and c2 are empty. If they
are, it returns the original chromosomes. Now, run mix test again:
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$ mix test
...
Finished in 0.08 seconds
1 property, 0 failures

And your problem is fixed. Property-based testing is a useful tool for quickly
identifying bugs in your code, especially when trying to test stochastic func-
tions. You may have written a test to explicitly handle the case of empty
chromosomes, but the property-based test here caught it for you automatically.
You can implement tests like this example for most of the functions in your
framework to identify any similar bugs in your code.

Now that you know how to test, in the next section you’ll learn how to clean
up your code using the static analysis tool, credo.

Cleaning Up Your Framework
Part of good development practice is making sure your code is consistent,
clean, and concise. Keeping your code clean and consistent is important to
the long-term maintenance of your framework. You, and any future developers
who improve your code base, will benefit by ensuring your code is easy to
build upon in the future.

In this section, you’ll use two tools: credo and the Elixir formatter to improve
the structure and style of your code.

Using the Elixir Formatter
Following the coding style of a particular programming language is important
to ensuring your code is readable to you and any other developers that work
on your project. Fortunately, Elixir comes with a formatter that will help you
enforce the formatting standards of the language.

If you take a look at your framework, the genetic directory should contain a
file .formatter.exs. This file contains configurations for the mix format task. It looks
like this:

# Used by "mix format"
[

inputs: ["{mix,.formatter}.exs", "{config,lib,test}/**/*.{ex,exs}"]
]

You can configure the formatter from this file; however, you don’t need to for
your framework. You just need to run mix format in the terminal in your genetic
directory, like this:

$ mix format
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The formatter will run for a bit and then exit without any output. The formatter
ensures your code meets the Elixir Style Guide.5 For the most part, your code
shouldn’t be much different, minus a few additional newlines here or there.

This step isn’t entirely necessary, but it’s beneficial to the readability of your
code and your development moving forward.

Using Credo
credo6 is a static code analysis tool for Elixir. It will analyze your code for you
and offer suggestions for refactoring, improving readability, and avoiding
warnings. You’ll run credo and address some minor issues in your framework.

To get started, add credo to your dependencies:

{:credo, "~> 1.4", only: [:dev, :test], runtime: false}

You only need credo during development and testing, so you specify that here.
The runtime: false option tells Elixir that credo doesn’t need to be compiled at
runtime.

Now, run mix deps.get. After you’ve successfully pulled down the credo package,
you’ll be able to use the credo mix tasks. To do that, run the following in the
base directory of your genetic framework:

$ mix credo --strict
...
Analysis took 0.07 seconds (0.00s to load, 0.07s running 54 checks on 12 files)
55 mods/funs, found 1 refactoring opportunity, 10 code readability issues.

The task might take awhile to run. Once it’s complete, you’ll see some output
related to the issues credo finds with your project. In this example, all of your
modules will be tagged for not including a @moduledoc tag. That’s OK; you can
add documentation later. credo also identified a refactoring opportunity in
toolbox/selection.exs. This is because the function body of Toolbox.Selection.roulette/2
is nested too deeply. As a general rule, functions should only do one thing—the
level of nesting in your function is usually an indication that your function
is doing more than it’s supposed to. The warning is telling you that you could
possibly break the function into smaller pieces that would make your code
cleaner and easier to test.

Take a look at the function Toolbox.Selection.roulette/2 in selection.ex:

5. https://github.com/christopheradams/elixir_style_guide
6. https://github.com/rrrene/credo
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def roulette(chromosomes, n) do
sum_fitness =

chromosomes
|> Enum.map(& &1.fitness)
|> Enum.sum()

0..(n - 1)
|> Enum.map(fn _ ->

u = :rand.uniform() * sum_fitness

chromosomes
|> Enum.reduce_while(
0,
fn x, sum ->

if x.fitness + sum > u do
{:halt, x}

else
{:cont, x.fitness + sum}

end
end

)
end)

end

You defined this function in Chapter 5, Selecting the Best, on page 71.
Remember, roulette selection simulates the spinning of a roulette wheel to
select chromosomes where each chromosome occupies a percentage of the
wheel based on its fitness. The offending part of the function occurs in the
body of the anonymous function in Enum.reduce_while/3. The function is meant
to simulate the spinning of a roulette wheel. To fix it, replace the call to
Enum.reduce_while/3 with a call to a private function spin/2, like this:

def roulette(chromosomes, n) do
sum_fitness =

chromosomes
|> Enum.map(& &1.fitness)
|> Enum.sum()

0..(n - 1)
|> Enum.map(fn _ ->

u = :rand.uniform() * sum_fitness
spin(chromosomes, u)

end)
end

Then implement spin/2 like this:

defp spin(chromosomes, u) do
chromosomes
|> Enum.reduce_while(

0,
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fn x, sum ->
if x.fitness + sum > u do

{:halt, x}
else

{:cont, x.fitness + sum}
end

end
)

end

Notice you’ve broken your code down into separate functions that are easier
to read and, in theory, easier to work with. Now if you run mix credo again, the
warning should disappear:

$ mix credo --strict
...
Analysis took 0.1 seconds (0.00s to load, 0.1s running 54 checks on 13 files)
58 mods/funs, found 10 code readability issues.

Again, this step isn’t entirely necessary, but it can help you identify possible
issues with your code and clean up your code so it’s easier for you and others
to work with. You should perform checks with credo as you develop.

Writing Type Specifications
While Elixir isn’t a statically typed language, it does give you the ability to
specify types using typespecs. Typespecs are specifications that communicate
the intended use of a function. For example, a function add/2 that adds two
numbers a and b might have the following specification:

@spec add(number, number) :: number
def add(a, b) do

a + b
end

Notice the syntax used to declare a specification. You use the @spec attribute
to indicate you’re defining a specification and then declare the parameter
types and the return type of the function. The syntax is similar to the syntax
you used in Chapter 3, Encoding Problems and Solutions, on page 33, to
define callbacks for your Problem behaviour and to define your Chromosome type.

Defining typespecs for your functions won’t do anything to improve the perfor-
mance of your code; however, it does serve to enhance the readability of your
code and can be used by dialyxir to find bugs and other problems with your code.
In this section, you’ll define typespecs for the functions in the Toolbox.Crossover
module and analyze them using dialyxir. You can extend this method to the other
functions in your framework to identify problems and inconsistencies and
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improve your code base overall. You can also check out the Elixir typespec
documentation7 to learn more about typespecs and how to use them.

Crossover Typespecs
To get started, open up crossover.ex in toolbox. You’ll write typespecs for all of
the functions in the Toolbox.Crossover module. Your file should contain four
functions: single_point/2, uniform/3, whole_arithmetic/3, and order_one/2.

Every function takes at least two parameters which are two parent chromosomes
and returns a tuple of two child chromosomes. uniform/3 and whole_arithmetic/3
take an additional parameter. uniform/3 takes a float between 0 and 1, repre-
senting the uniform crossover rate. whole_arithmetic/3 takes a float between 0
and 1, representing the percentage of genes to blend in each child chromosome.

Based on the parameters and return values of each function, implement your
typespecs like this:

@spec single_point(Chromosome.t, Chromosome.t)
:: {Chromosome.t, Chromosome.t}

def single_point(p1, p2) do
...
end

@spec uniform(Chromosome.t, Chromosome.t, float)
:: {Chromosome.t, Chromosome.t}

def uniform(p1, p2, rate) do
...
end

@spec whole_arithmetic(Chromosome.t, Chromosome.t, float)
:: {Chromosome.t, Chromosome.t}

def whole_arithmetic(p1, p2, alpha) do
...
end

@spec order_one(Chromosome.t, Chromosome.t)
:: {Chromosome.t, Chromosome.t}

def order_one(p1, p2) do
...
end

Here you define typespecs for every function. Notice how you can use the
custom type t from the Chromosome module. Each function takes at least two
parent chromosomes and they all return a tuple of child chromosomes. Your
code is now a bit more expressive, and you can run it through tools like dialyxir
to perform some static code analysis.

7. https://hexdocs.pm/elixir/typespecs.html
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Running Dialyxir
dialyzer8 is an Erlang static analysis tool that identifies type errors, unreachable
code, software discrepancies, and more. dialyxir implements mix tasks that
make using dialyzer from Elixir projects easier.

You’ll run your code module through dialyxir to identify any possible issues
with your code. To start, add dialyxir to your dependencies, like this:

defp deps do
...
{:dialyxir, "~> 1.0", only: [:dev], runtime: false}

end

Next, run mix deps.get. Once you have dialyxir installed, you can run it like this:

$ mix dialyzer
...
Total errors: 0, Skipped: 0, Unnecessary Skips: 0
done in 0m0.89s
done (passed successfully)

dialyzer will take a long time to run. Your code should have passed without
any errors. To see what it looks like when your code has errors, change the
specification for single_point/2 to look like this:

@spec single_point(Chromosome.t, Chromosome.t) :: Chromosome.t
def single_point(p1, p2) do
...
end

Then run dialyzer again:

$ mix dialyzer
...
Total errors: 1, Skipped: 0, Unnecessary Skips: 0
done in 0m0.95s
lib/toolbox/crossover.ex:6:invalid_contract
The @spec for the function does not match the success typing of the function.

Function:
Toolbox.Crossover.single_point/2

Success typing:
@spec single_point(atom() | %{:genes => _, _ => _},

atom() | %{:genes => _, _ => _}) ::
{%Types.Chromosome{:genes => [any()], _ => _},
%Types.Chromosome{:genes => [any()], _ => _}}

8. http://erlang.org/doc/apps/dialyzer/dialyzer_chapter.html
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This time dialyzer should run faster. Notice how it identifies the invalid type
specification for you and then tells you what the correct type specification
looks like. Obviously, this error was intentional, but it’s possible to make
mistakes like this if your code has many different branches or if you don’t
stop and check your code often.

Once you change your typespec back, dialyzer will return correctly. You can
implement typespecs for all of the functions in your framework and try to run
dialyzer to ensure they are correct.

What You Learned
In this chapter, you learned about how to use testing and code analysis to
improve your framework and identify any bugs that might negatively affect
your algorithms. You started by learning a little about randomness and how
randomness can be difficult to test. Then, you learned how to use property-
based tests to ensure your functions maintain some specified behaviors.

Next, you used credo to analyze your code for consistency and clarity. You also
learned how to use the Elixir formatter to enforce Elixir’s style standards in
your code.

Finally, you learned about typespecs and how to use dialyxir and typespecs to
identify possible bugs in your code.

At this point, you’ve built a complete framework and learned how to optimize
its performance and ensure your code is correct. You’ve learned how to solve
many types of problems. In the next chapter, you’ll learn about genetic algo-
rithms in the real world and how you can use the knowledge you’ve learned
in this book in practical settings.
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CHAPTER 13

Moving Forward
Throughout this book, you learned how to use genetic algorithms to solve
optimization problems. You discovered the ins and outs of basic genetic
algorithms and worked through solving difficult problems with a problem-
solving framework. You designed a genetic algorithm framework from start
to finish and expanded on this framework with the addition of basic tracking
mechanisms and visualizations. You then optimized your framework with
tools like ExProf and Benchee, and you learned how to ensure the code you
implement within your framework is correct using tools like ExUnit and dialyxir.

At this point, you have a powerful suite of skills and tools in front of you that
you can build upon or use to solve practically any problem with a genetic
algorithm. One thing you might be wondering now is, “Where do I go next?”

In this chapter, you’ll learn about some of the recent advancements in genetic
algorithms and the recent innovations driven by genetic algorithms and evolu-
tionary algorithms. Additionally, you’ll get familiar with some advanced resources
that you can use to continue your journey with genetic algorithms.

Learning with Evolution
Artificial intelligence (AI) and machine learning (ML) have dominated the last
decade of computing. AI is experiencing its third “boom” with no signs of
stopping. It seems that almost everyday there’s a new revolutionary innovation
in AI or another startup using AI to improve everyday life. The demand for
developers who are familiar with and can solve problems using AI/ML will
continue to increase over the next decade.

The latest AI boom is owed mainly to advancements in deep learning. Deep
learning is the application of multiple layers of transformations on data to
extract features from raw inputs and perform tasks like classification or
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regression. One area deep learning has found a lot of success is in reinforce-
ment learning.

Reinforcement learning is a subset of machine learning concerned with teaching
agents to take optimal actions in an environment. For example, reinforcement
learning is often used to implement AI capable of playing arcade games like
the Tetris playing agent you implemented in Chapter 10, Visualizing the
Results, on page 157.

Reinforcement learning is all about rewards and punishments. Agents are
rewarded for certain actions they take, like completing a line of blocks in
Tetris, and punished for others, like losing the game in Tetris. Based on these
rewards and their interactions with the environment, agents learn to optimize
the decisions under certain conditions.

One area reinforcement learning is applicable is in the optimization of mechan-
ical movement. For example, you can use reinforcement learning to teach a
robot how to walk by modeling the movements and angles of a robot’s limbs
as a series of actions the robot has to take. Over time, the robot learns to lift
its legs at a certain angle and plant them at a certain angle, and so on, until
it can efficiently move forward.

So, what does this have to do with genetic algorithms? In some situations,
genetic algorithms are a viable alternative to reinforcement learning. One of
the drawbacks of reinforcement learning is that it relies on deep learning
techniques to train. These techniques can be expensive, difficult to optimize,
and ultimately may take a long time to converge on effective solutions. That’s
where genetic algorithms come in.

OpenAI proved that in many circumstances evolution strategies1 were a better
alternative to reinforcement learning, as they converged faster and were far
less expensive to train. If you recall from previous chapters, evolution
strategies are a subset of evolutionary algorithms that very closely resemble
genetic algorithms. Evolution is an excellent alternative to reinforcement
learning for many of the same tasks because they’re much easier to train and
are far less computationally expensive.

Designing with Evolution
NASA is responsible for perhaps the most famous application of genetic
algorithms, as they used them to evolve the design of an antenna for maximum

1. https://openai.com/blog/evolution-strategies/
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efficiency aboard their ST52 mission. They were able to produce a number of
viable designs in a short amount of time—replacing the usual labor intensive
work of designing by hand. Their algorithms also produced a number of unique
designs that likely would never have been considered by human designers.

The concept of evolving designs extends to other fields as well. For example,
game designers use artificial intelligence to develop unique levels. As you
learned in the previous section, you can use evolution as a viable alternative to
other machine learning approaches. Imagine you were a game designer tasked
with designing new levels for a new puzzle game. Your task is to design 500
unique levels. Using a genetic algorithm, you could evolve levels from a collec-
tion of a few hand-designed levels to be sufficiently different from one another,
adding in penalties for levels that are invalid or impossible to complete.

Researchers3 in 2018 experimented and outlined an approach to evolutionary
game design and developed a fitness function that rates evolved levels based
on their playability. They also created recombination methods that enforced
creativity between levels and ultimately proved that evolution is a viable
approach to level design.

Designing anything from games to antennas to websites is a practical appli-
cation of genetic algorithms. As you’ve learned in this book, genetic algorithms
are capable of intelligently searching through a large space of solutions to
iteratively produce better and better solutions. One advantage of genetic
algorithms in this space is they’re not bottlenecked by the limits of human
design philosophy. It’s often difficult for human designers to break away from
convention to come up with truly unique and revolutionary designs. Genetic
algorithms don’t have these same limitations.

Trading with Evolution
In Chapter 4, Evaluating Solutions and Populations, on page 51, we briefly
introduced portfolio optimization using genetic algorithms. In that chapter,
you learned a little about how genetic algorithms can be used to balance risk
and reward in financial portfolios. The best portfolio with respect to risk and
reward is called the efficient frontier.

Genetic algorithms can also be used to make trades. Institutional quantitative
traders use genetic algorithms to evolve the parameters that help them decide

2. https://www.nasa.gov/mission_pages/st-5/main/index.html
3. https://www.semanticscholar.org/paper/EAI-Endorsed-Transactions-on-Creative-Technologies-Connor-Greig/

2624416bea5b3ccab0f53e64b470efaaef1bf8db
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which assets to trade. They can also be used to identify which parameters
most significantly impact the price of a given asset.

Financial trading has used genetic algorithms for almost as long as genetic
algorithms have been around. The abundance of available financial information
coupled with the power of genetic algorithms to find useful solutions in a sea
of information makes the combination incredibly powerful.

Networking with Evolution
The world today is undoubtedly more connected than it has ever been. In one
way or another, the majority of people are connected all around the world
virtually and physically through social networks and trade. In an increasingly
connected world, network science has become more and more relevant.

Initially, genetic algorithms might not seem like a relevant tool for network
science, but if you dig deeper, you’ll find plenty of practical applications of
basic genetic algorithms being used in network science. One relevant example
is in epidemic mitigation.

Epidemic mitigation is the study of how to effectively prevent the spread of
disease in a social network. Ideas surrounding epidemic mitigation are
increasingly relevant in today’s world with the proliferation of COVID-19. As
early as 2017, researchers4 showed that genetic algorithms could be used to
mitigate epidemics by removing, especially, the most impactful relationships
in a social network. Disease spreads through contact between individuals.
The paper shows how you could use genetic algorithms to remove key rela-
tionships to prevent the spread of a disease. This repository5 shows an Elixir
example of this application using libgraph6 and genex.7

Another relevant application of network science is mapping and understand-
ing social networks. In the same respect as the process of identifying relevant
nodes in a network to mitigate the spread of disease, you can use genetic
algorithms to identify the most influential nodes in a social network. The
process of identifying and understanding influential nodes helps advertisers
identify the most influential people on a platform. Identifying influential
nodes can also help you understand the spread of information in a social
network.

4. https://arxiv.org/pdf/1707.05377.pdf
5. https://github.com/seanmor5/covid
6. https://github.com/bitwalker/libgraph
7. https://github.com/seanmor5/genex
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Evolving Neural Networks
As you learned in the first section, advancements in deep learning have fueled
unprecedented advances in AI. You’ve seen instances throughout this chapter
where genetic algorithms are a viable alternative to neural networks; however,
genetic algorithms are also a viable tool for designing neural networks.

In Chapter 2, Breaking Down Genetic Algorithms, on page 15, you learned
about hyperparameters. Remember, hyperparameters are the settings you
choose, such as selection rate, crossover rate, and mutation rate, and not
the parameters your algorithm learns. When designing neural networks, you
can choose from a number of hyperparameters, such as how many neurons
are in each layer or what the learning rate of an optimizer is.

Genetic algorithms are a great choice for hyperparameter optimization. Hyper-
parameter optimization in the context of neural networks is the practice of
maximizing the performance of a neural network by tweaking the combination
of hyperparameters. As you’ve seen in this book, genetic algorithms work well
for optimization tasks. You can use genetic algorithms to intelligently search
through a set of hyperparameters for the best combination of hyperparameters.
The process of hyperparameter optimization can be long and tedious to perform
by hand—so genetic algorithms are a smart choice, as they automate the
process and are proven to work effectively with optimization problems.

Another application of genetic algorithms to neural networks is the field of
neuroevolution. Neuroevolution is different from hyperparameter optimization
in that it involves evolving not only the hyperparameters used in the neural
network but also the weights and structure of the network. The NEAT algorithm
is an example of this use case. NEAT stands for NeuroEvolution of Augmented
Topologies. The NEAT algorithm is an algorithm for evolving a neural network
using genetic algorithms.

Compared to more traditional deep learning approaches, neuroevolution is
relatively understudied. Uber8 proved in 2018 that genetic algorithms can
significantly reduce the training time of neural networks.

One of the most significant works on genetic algorithms on the BEAM is Gene
Sher’s Handbook of Neuroevolution Through Erlang [She12]. Sher firmly believes
the BEAM is the best platform for the development of neuroevolutionary
algorithms because the interaction of processes so closely mirrors the inter-
action of neurons in the brain.

8. https://eng.uber.com/accelerated-neuroevolution/
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Where to Go Next
As you continue your journey with genetic algorithms, you’ll inevitably need
to seek out more advanced resources related to the theory and application of
genetic algorithms. Genetic Algorithms in Search, Optimization, and Machine
Learning [Gol89] by David Goldberg, while published in 1989, offers some
excellent insights into the theory and practice of genetic algorithms. You’ll
also find numerous other books on evolutionary computing and evolutionary
algorithms in general.

The field of evolutionary algorithms is large. A logical next step would be to
research the more nuanced differences between genetic programming, evolu-
tion strategies, and genetic algorithms. You might also want to learn more
about other algorithms inspired by nature. Many people believe that algorithms
derived from nature, such as particle swarm optimization, ant colony opti-
mization, and so on, will have a significant role in the advancements of com-
puting over the next few decades. The Springer Natural Computing Series9

offers a number of textbooks on the theory behind evolutionary algorithms
and natural computing.

If you want to continue developing genetic algorithms in Elixir and need
something a bit more mature than the framework you designed in this book,
you can check out Genex,10 a framework for writing genetic algorithms in
Elixir. The implementation of problems in Genex is nearly identical to how
you implemented problems in this book, and it contains a number of other
useful tools for the development of genetic algorithms.

Overall, this book was designed to be a stepping stone into the world of
genetic algorithms for Elixir programmers. You might not choose to continue
working with genetic algorithms, but hopefully you learned a thing or two
that you otherwise may not have been exposed to in a traditional Elixir book.

9. https://www.springer.com/series/4190?detailsPage=titles
10. https://github.com/seanmor5/genex
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genetic algorithm frame-

work with behaviours,
40

genetic algorithm frame-
work, setup, 24, 26

graph genotypes, 46
mutation strategies, 119
N-queens problem, 88
One-Max problem, 29, 

44, 46
vs. phenotypes, 44
profiling setup, 174
spelling example, 48
Tetris example, 165
tiger evolution example,

140
tree-based, 46
understanding, 43–47
XOR cipher example, 110

GenServers
creating, 144
genealogy trees, 151–154
starting, 144–145, 152–

153
tracking statistics with

ETS, 144–146

get (Keyword), 29, 76, 147

get (Mix), 150

Gnuplot, 160

gnuplot-elixir, 160–162

Goldberg, David, 204

graph genotypes, 46

Graph module, 152

graphs
creating, 152
DOT files, 159
edges, adding, 153
epidemic mitigation exam-

ple, 202
exporting, 159
genealogy trees, 150–

155, 157–162
resources on, 150
serializing, 159
vertices, 152, 155

Graphviz, 159

growth, exponential, 136

H
Handbook of Neuroevolution

Through Erlang, 203

handle_call, 153

handle_cast, 152

hd function, 24

head in scramble mutation,
120

hi in scramble mutation, 120

Holland, John, 2, 118

hyperparameters
defined, 27
genetic algorithm frame-

work setup, 27
mutation rate, 115–117
mutation strategies, 115
neural networks and, 203
optimization, 203
passing, 28, 77
selection rate as, 75
selection strategy as, 75

I
IDs, chromosomes, 150

@impl keyword, 39

improvement-based termina-
tion criteria, 60–61

influential nodes, 202

information spread and social
networks, 202

informed search, 3

initializing
genealogy tree, 152, 154
GenServers, 144–145, 

152
populations, 17, 23, 26
populations for genealogy

trees, 154
treating chromosomes as

processes, 182

insertion, see also reinsertion
fitness-based, 131
inserting chromosomes

into graphs, 152
tracking statistics with

ETS, 145

interactive optimization, 67

Interface module (ALEx), 164

invert mutation, 122

J
jaro_distance (String), 48, 111
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K
keys, 29, 145

Keyword module, hyperparame-
ters, 28

knapsack problem, 53, see
also cargo loading example

L
lazy evaluation, 177

learning
deep, 199
with genetic algorithms,

199, 203
machine, 199
reinforcement learning,

199

legal_actions (ALEx), 165

lib directory, 22

libgraph
epidemic mitigation exam-

ple, 202
genealogy trees, 150–

155, 159
serializing graphs, 159

libsdl1.2, 163

lists
chromosomes as, 17
converting to strings, 111
cycle crossover, 102
hyperparameters, 28
Keyword lists, 28
order, 176
populations as, 17
transforming into tuples,

10

lo in scramble mutation, 120

load_nif (Erlang), 185

lookup functions with ETS,
145

loops, 7

M
machine learning, 199

map (Enum)
about, 10
chromosome repairment,

104
class schedule example,

128
crossover, 101
mutation, 117
vs. parallel maps, 180–

181
performance and, 176

MapSet
chromosome repairment,

104
order-one crossover and,

92
selection and, 77, 82

Matrex, 183

max_by, 58

max_fitness, 26, 30

mazes, 2

mean, in Gaussian mutation,
121

mechanical movement and
reinforcement learning, 200

memory
benchmarking usage,

170–174
parallel maps, 181
resources on, 171

:memory_time option (Benchee),
173

messy single-point crossover,
102

metrics, see tracking

mid in scramble mutation, 120

min_by, 58

MingW, 184

Mix
about, 22
ALEx, adding, 163
Benchee, adding, 171
compiler for NIFs, 184
dependencies, adding,

150, 160
dialyxir, adding, 197
directories, creating, 22
formatter, using, 192
genetic algorithm frame-

work setup, 22–27
projects, creating, 22
projects, running, 30
property-based tests,

running, 191

mkdir (Mix), 22

mocking, testing and, 188–
189

__MODULE__ keyword, 37

modules
aliasing, 40
defining, 36
defining behaviours, 38

mu variable, 122

multi-objective optimization,
65–67, 75

multi-point crossover, 102

multi-population genetic algo-
rithms, 137

mutation, see also mutation
rate

aggressiveness, 115, 118
benchmarking setup, 172
chromosome repairment,

104
default strategy, 116
defined, 4, 113
flip, 116, 118, 188
Gaussian, 120–122
genealogy trees, 152–155
genetic algorithm frame-

work with behaviours,
42

genetic algorithm frame-
work, customizing,
115–117

genetic algorithm frame-
work, reinsertion
strategies, 131

genetic algorithm frame-
work, running without,
112

genetic algorithm frame-
work, setup, 20, 26

in genetic algorithm
structure, 20

genetic diversity and, 73, 
114, 122

invert, 122
need for, 4, 13, 20
with NIFs, 183, 185
One-Max problem, 13–14
permutation genotypes

and, 45, 119
quantifying, 114
with rand.uniform, 13
random slices, 120
real-value genotypes, 67
reinsertion and, 77, 131
scramble, 119
as stimulating change,

113
strategies, 115–122
swap, 122
toolbox folder, 115
understanding, 113–115
uniform, 122

mutation aggressiveness,
115, 118

mutation rate
defined, 114
elitist reinsertion, 134
genetic algorithm frame-

work, 26, 115–117
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tiger evolution example,
143

typical, 20

:mutation_rate parameter, 116

N
N-queens problem, 87–95, 

104

NASA, 200

Native Implemented Func-
tions (NIFs), 183–185

natural selection, see elitism
selection

NEAT algorithm, 203

negative numbers and perfor-
mance, 176

neighborhoods, 136

nesting, 193

network science, 202

networking with genetic algo-
rithms, 202

neural networks, 203

neuroevolution, 203

NeuroEvolution of Augmented
Topologies (NEAT) algo-
rithm, 203

new (Graph), 152

new (MapSet), 77

new (Mix), 22

NIFs (Native Implemented
Functions), 183–185

no-objective optimization, 69

normal (Erlang rand module),
121

normal distribution in Gaus-
sian mutation, 120–122

novelty search, 79

number type, 37

O
objectives, evaluating, 51–52

One-Max problem
basic algorithm for, 5–

14, 21
with behaviours, 46
fitness function, 8, 46, 68
with genetic algorithm

framework, 29
genetic diversity in, 73
genotypes, 29, 44, 46
population, defining, 6
termination criteria, 7, 

21, 30, 46, 58–59, 61
user input, 68

only: :test property, 190

OpenAI, 168, 200

optimization, see also opti-
mization algorithms; opti-
mizing code; performance;
performance portfolio opti-
mization

cargo loading example,
52–57, 59, 61

combinatorial optimiza-
tion problems, 45

convex optimization, 69
defined, 2
hyperparameter optimiza-

tion, 203
interactive, 67
multi-objective optimiza-

tion, 65–67, 75
neural networks, 203
no-objective optimization,

69
problems as search prob-

lems, 2
shape optimization, 69
web design optimization,

67

optimization algorithms, 2,
see also genetic algorithms

optimizing code
benchmarking, 170–174, 

180
lazy evaluation and, 177
with NIFs, 183–185
parallelization, 177–183
profiling, 170, 174
treating chromosomes as

processes, 181–183
when to, 170, 173
writing efficient code,

175–177

opts
crossover, customizing,

93–95
mutation rate, extracting,

116
mutation strategies, 116
One-Max problem, 30
passing hyperparameters,

28, 77, 116
selection rate, extracting,

77
statistics option, 146

order, see also sorting
invert mutation, 122
using map and reduce, 176

order-one crossover, 91–95, 
196

outlining algorithms, 23

P
parallel map functions, 179–

181

parallelism
BEAM and, xvi, 177–

178, 181
vs. concurrency, 178
defined, 177
Elixir advantages, xvi, 

177
multi-population genetic

algorithms, 137
optimizing code with,

177–183
with processes, 181–183
with Task module, 179–

183
tournament selection, 81

parents, see also crossover;
fitness functions; mutation;
reinsertion; replacement;
selection

duplicate parents in selec-
tion, 81–82

genealogy trees, 150–155
in genetic algorithm

structure, 6
length of, 26
reproduction diagram, 20
using more than two, 102

pattern matching
accessing statistics, 147
in crossover, 10, 102
property-based tests, 191

penalty functions, 55–57, 127

performance, see also opti-
mization

BEAM and, 169
benchmarking, 170–174, 

180
crossover strategies, 93, 

95, 97, 99, 101
elitism selection and, 79
in examples, 49
lazy evaluation and, 177
negative numbers and,

176
neural networks, 203
NIFs and, 183–185
order-one crossover, 93
parallelization, 177–183
processes, treating chro-

mosomes as, 181–183
profiling, 170, 174
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reinsertion strategies,
131–132, 135

resources on, 175
roulette selection, 83, 85
selection rate and, 74
single-point crossover, 97
tournament selection, 81
uniform crossover, 99
whole arithmetic recombi-

nation, 101
writing efficient code,

175–177

permutation genotypes
creating, 89
defined, 45
mutation strategies, 45, 

119
order-one crossover and,

91–95
single-point crossover

and, 91, 97
uniform crossover and,

99

phenotypes, 44

plotting, visualizations, 160–
162

pmap, 179–181

polymorphism, 16–17

populations, see al-
so crossover; evaluation;
fitness functions; mutation;
reinsertion; replacement;
selection; sorting

benchmarking setup, 172
calculating total fitness,

84
vs. chromosomes, 17
defined, 17
defining, 6
diversity and premature

convergence, 108, 114
genetic algorithm frame-

work, setup, 16–19
in genetic algorithm

structure, 5, 15–19
initializing, 17, 23, 26
local, 136
monitoring with statis-

tics, 148–150
One-Max problem, 6
size hyperparameter, 29
size of, 6, 17, 24
size, adjusting in

crossover, 94
size, convergence and, 17
size, default, 29
size, growth/decay of,

135

size, premature conver-
gence and, 6, 113

size, survival rate and,
132

transforming into tuples
for crossover, 19, 77, 
103

portfolio optimization
efficient frontier, 201
fitness landscapes, 65
multi-objective optimiza-

tion example, 66
termination criteria and

fitness threshold, 57

ports, 183

precision and real-value
genotypes, 46

premature convergence, see
also mutation

avoiding with random-
ness, 7

crossover and, 122
defined, 4, 107
elitism selection and, 79
genetic diversity and,

108, 114
One-Max problem, 12
population size and, 6, 

113
replacement and, 122
selection strategies and,

122
XOR cipher example, 112

PRNG (pseudo-random num-
ber generation), 188

probability
flip mutation, 118, 188
roulette selection, 83
selection pressure and,

74
testing and, 188
in uniform crossover, 97

processes, 179–181

profile macro, 175

profiling, 170, 174

Programming Elixir, 179

projects
configuration files, 22
creating in Mix, 22
running in Mix, 30

property macro, 191

property-based testing, 188–
192

Property-Based Testing with
PropEr, Erlang, and Elixir,
190

protocols, 16

pseudo-random number gen-
eration (PRNG), 188

pure reinsertion, 131, 133, 
135

Q
question mark (?), for Boolean

functions, 41

R
rand module, 13, 188

random (Enum)
streaming, 48
Tetris game, 166
using, 7

random replacement, 132, 
134

random selection, 79

:random_seed (ALEx), 164

randomness, see also muta-
tion

avoiding premature con-
vergence with, 7

crossover points, 11
with Enum.random, 7, 48, 

166
with Enum.shuffle, 13, 26, 

89, 120
property-based testing

and, 190
pseudo-random number

generation (PRNG), 188
with rand.uniform, 13, 26, 

84, 97
random number genera-

tors, 183–185, 188
random replacement,

132, 134
random selection, 79
scramble mutation, 119
seeding and, 164, 188
in single-point crossover,

96
solutions and, 62
testing and, 188–189
true, 188
uniform, 11

Ranges, 7

rank selection, 85

real-value genotypes
crossover strategies, 67, 

99
defined, 45
Gaussian mutation, 120–

122
scramble mutation, 119
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recursion
with algorithm, 7, 12
base case, 7, 24
genetic algorithm frame-

work setup, 24
genetic algorithms as, 7, 

12
recursive case, 7
tail-recursion, 82
tournament selection, 82

recursive case, 7

reduce (Enum)
crossover with multiple

parents, 103
N-queens problem, 94
performance and, 176
Tetris game, 166
using, 10

reduce_while (Enum), 84, 194

reinforcement learning, 199

reinsertion
basic, 77
class schedule example,

126–129, 133
customizing strategies,

130
default strategy, 133
defined, 125, 129
elitist, 132, 134–135
local vs. global, 136
performance and, 131–

132, 135
pure, 131, 133, 135
vs. replacement, 125, 135
strategies, 130–133
toolbox for, 131
uniform, 132, 134

:reinsertion_strategy parameter,
130

repair_chromosome, 104

repair_helper, 104

repairment, chromosome, 91, 
103

repeatedly (Stream), 48, 177

replacement
avoiding premature con-

vergence, 122
class schedule example,

126–129, 133
defined, 125
elitist, 132, 134–135
generational, 131
performance and, 131–

132, 135
random, 132, 134
vs. reinsertion, 125, 135
strategies, 130–133

reproduction, see crossover

resources for this book
BEAM, 169, 171, 177
Elixir, xiv, 7, 150, 175
enumerables, 7
genetic algorithms, 204
graphs, 150
memory, 171
testing, 190
typespecs, 195
writing efficient code, 175

rewards-based selection, 75

RNGs (random number gener-
ators), 183–185, 188

robots and reinforcement
learning, 200

ROM files, 164–165

roulette selection, 82–85, 193

run (Mix), 30

runtime: false option, 193

S
sampling

biased, 73
stochastic universal

sampling, 85

scenario generation, 79

schedulers, parallelization
and, 177–178, 183

schema theorem, 63

schemas, 3, 63

scores
determining, 141
Tetris example, 166
tiger evolution example,

141

scramble mutation, 119

screenshot (ALEx), 167

scripts directory, 22

search
brute-force search, 3, 5
informed search, 3
looking up statistics with

ETS, 145
novelty search, 79
optimization problems as,

2

seeding
in ALEx, 164
testing and, 188
Tetris example, 164

selection, see also elitism se-
lection; fitness; fitness
functions; selection rate

balancing genetic diversi-
ty and fitness, 72, 122

as biased sampling, 73
Boltzmann selection, 85
changing strategies, 76
customizing, 75–78
default strategy, 76
defined, 9, 71
fitness-based selection,

75
fitness-proportionate se-

lection, 82–85
genetic algorithm frame-

work, customizing, 75–
78

genetic algorithm frame-
work, setup, 24–25

in genetic algorithm
structure, 19

leftovers, 77
One-Max problem, 8–10
performance and, 74
random selection, 79
rank selection, 85
rewards-based selection,

75
roulette selection, 82–85, 

193
selection pressure, 74
stochastic universal

sampling, 85
strategies, 10, 78–85
toolbox folder, 75
tournament selection,

80–82
understanding, 71–75

selection pressure, 74

selection rate
adjusting, 76, 94
benchmarking setup, 172
defined, 74
in genetic algorithm

framework, 75–76
performance and, 74
reinsertion strategies,

132, 134–135
tiger evolution example,

143

:selection_type key, 76

serializing, graphs, 159

servers
creating, 144
genealogy trees, 151–154
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starting, 144–145, 152–
153

statistics, 144–146

shape optimization, 69

Sher, Gene, 203

shuffle (Enum), 13, 26, 89, 120

sigma variable, 122

simulated annealing, 60

single-point crossover
code analysis with dialyxir,

197
defined, 96
limitations, 91
with multiple parents,

102, 104
with NIFs, 185
One-Max problem, 11
performance, 97
premature convergence

and, 122
property-based testing,

190
typespecs, 196

slice (Enum), 93

slicing, 93, 96

SMP (symmetric multiprocess-
ing), 178

social networks, 202

solutions, see also crossover;
visualizations

assigning variables to, 12
outputting, 30
randomness and, 62
scripts directory, 22

sort_by (Enum), 9, 25

sorting, see also fitness func-
tions; order

elitism selection and, 78
in elitist reinsertion, 132
with Enum.sort_by, 9, 25
fitness, 10, 18, 24

:sound (ALEx), 164

@spec attribute, 195

speed, see performance

spelling example, 47–50

split (Enum)
in order-one crossover,

93
single-point crossover, 97
using, 11, 25

splitting
with Enum.split, 11, 25, 93, 

97

in order-one crossover,
93

in single-point crossover,
96

ST5 mission, 200

standard deviation, in Gaus-
sian mutation, 121

start point for scramble muta-
tion, 120

starting
Agents, 164
GenServers, 144–145, 

152–153
Tetris game, 166

statistics, see also tracking
accessing, 147
benchmarking, 173
default suite, 146
with ETS, 144–150
libraries, 148
tiger evolution example,

148–150
visualizations, 157–162

step (ALEx), 166

stochastic universal sam-
pling, 85

stocks
portfolio optimization,

57, 65–66, 201
trading with genetic algo-

rithms, 201

stopping, see termination cri-
teria

Stream
lazy evaluation with, 177
spelling example, 48

StreamData, 187, 190–192

strings
converting lists to, 111
measuring similarity be-

tween, 111

structs
aliasing, 41, 115
creating, 35
using, 33–37

sum (Enum), 30

sum_fitness, 84

sums, weighted, 66

supervision tree, 144

survival rate, 132–135

suspect sketches, 68

swap mutation, 122

symmetric multiprocessing
(SMP), 178

T
t custom type, 37, 196

tab2list, 161

tables
converting ETS tables to

tuples, 161
exporting, 161

tail in scramble mutation, 120

tail-recursion, 82

take (Enum), 78, 176

take_random (Enum), 80, 133

Task module, 179–181

tasks
concurrency with, 179
parallelization with, 179–

181

temperature, 60, 85

termination criteria
about, 52
benchmarking setup, 172
cargo loading example,

54, 59, 61
class schedule example,

128
defined, 7
fitness-based, 57, 59
generation-based, 58, 

61, 128, 159
genetic algorithm frame-

work with behaviours,
40

genetic algorithm frame-
work, setup, 21, 24

in genetic algorithm
structure, 21

goals of, 57
importance of, 57
improvement-based, 60–

61
N-queens problem, 90
One-Max problem, 7, 21, 

30, 46, 58–59, 61
profiling setup, 174
spelling example, 48
temperature, 60
Tetris game, 166
tiger evolution example,

142, 159
XOR cipher example, 111

test (Mix), 191

test directory, 22

test-driven development, 187

testing
generating test data, 191
importance of, 187
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memory benchmarking,
173

mocking and, 188–189
property-based, 188–192
randomness and, 188–

189
resources on, 190
seeding and, 188
test directory, 22
test-driven development,

187

Testing Elixir, 190

Tetris example, 162–168

Tetris ROM, 165

tiger evolution example, 139–
144, 148–150, 157–162

to_list (MapSet), 77, 104

tournament selection, 80–82

tracking
advantages, 139
chromosome fields, 35–

37, 42
genealogy trees, 150–

155, 157–162
statistics with ETS, 144–

150
tiger evolution example,

139–144, 148–150, 
157–162

visualizations, 157–162

transformations
data formats, 33
in genetic algorithm

structure, 5, 15
population size and, 17
replacing with processes,

181
transforming populations

into tuples for
crossover, 19, 77, 103

traveling salesman problem,
1, 35, 45

tree-based genotypes, 46

tuples
converting ETS tables to,

161
returning with Enum.split,

11
statistics, 147
transforming populations

into for crossover, 19, 
77, 103

transforming values into,
10, 25

zipping and unzipping,
98, 101

@type attribute, 36

types
compound types, 36
custom types, 37, 196

typespecs, 36, 195–198

U
Uber, 203

uniform (Erlang rand module)
parent length and, 26
probability rate, 13
roulette selection, 84
single-point crossover, 97
using, 11

uniform crossover, 97–100, 
122, 196

uniform mutation, 122

uniform reinsertion, 132, 134

unzip (Enum), 98, 101

use Bitwise, 110, 118

user input in interactive opti-
mization, 68

utilities directory, 144, 151

V
values

ETS, 145

filtering duplicate, 90
Keyword.get, 29
transforming into tuples,

10, 25

variables, assigning to solu-
tions, 12

vertices
accessing, 155
adding, 152

visualizations
convergence, 160–162
evolutions in real time,

157, 162–168
problem dependency in,

68
tiger evolution example,

157–162
tracking, 157–162

W
web design optimization, 67

Webgraphviz, 159

weighted sums, 66

weights
class schedule example,

126–127
in multi-objective opti-

mization, 66
tiger evolution example,

141

whole arithmetic recombina-
tion, 100, 196

X
XOR cipher example, 108–

113

XOR-Shift RNG, 183–185

XOR96 random number gen-
erator, 184

Z
zip (Enum), 98, 101, 128
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A Common-Sense Guide to Data Structures and Algorithms,
Second Edition
If you thought that data structures and algorithms
were all just theory, you’re missing out on what they
can do for your code. Learn to use Big O Notation to
make your code run faster by orders of magnitude.
Choose from data structures such as hash tables,
trees, and graphs to increase your code’s efficiency
exponentially. With simple language and clear dia-
grams, this book makes this complex topic accessible,
no matter your background. This new edition features
practice exercises in every chapter, and new chapters
on topics such as dynamic programming and heaps
and tries. Get the hands-on info you need to master
data structures and algorithms for your day-to-day
work.

Jay Wengrow
(506 pages) ISBN: 9781680507225. $45.95
https://pragprog.com/book/jwdsal2

Build Location-Based Projects for iOS
Coding is awesome. So is being outside. With location-
based iOS apps, you can combine the two for an en-
hanced outdoor experience. Use Swift to create your
own apps that use GPS data, read sensor data from
your iPhone, draw on maps, automate with geofences,
and store augmented reality world maps. You’ll have
a great time without even noticing that you’re learning.
And even better, each of the projects is designed to be
extended and eventually submitted to the App Store.
Explore, share, and have fun.

Dominik Hauser
(154 pages) ISBN: 9781680507812. $26.95
https://pragprog.com/book/dhios

https://pragprog.com/book/jwdsal2
https://pragprog.com/book/dhios


iOS Unit Testing by Example
Fearlessly change the design of your iOS code with
solid unit tests. Use Xcode’s built-in test framework
XCTest and Swift to get rapid feedback on all your code
— including legacy code. Learn the tricks and tech-
niques of testing all iOS code, especially view con-
trollers (UIViewControllers), which are critical to iOS
apps. Learn to isolate and replace dependencies in
legacy code written without tests. Practice safe refac-
toring that makes these tests possible, and watch all
your changes get verified quickly and automatically.
Make even the boldest code changes with complete
confidence.

Jon Reid
(300 pages) ISBN: 9781680506815. $47.95
https://pragprog.com/book/jrlegios

Become an Effective Software Engineering Manager
Software startups make global headlines every day. As
technology companies succeed and grow, so do their
engineering departments. In your career, you’ll may
suddenly get the opportunity to lead teams: to become
a manager. But this is often uncharted territory. How
do you decide whether this career move is right for
you? And if you do, what do you need to learn to suc-
ceed? Where do you start? How do you know that
you’re doing it right? What does “it” even mean? And
isn’t management a dirty word? This book will share
the secrets you need to know to manage engineers
successfully.

James Stanier
(396 pages) ISBN: 9781680507249. $45.95
https://pragprog.com/book/jsengman

https://pragprog.com/book/jrlegios
https://pragprog.com/book/jsengman


Build Websites with Hugo
Rediscover how fun web development can be with
Hugo, the static site generator and web framework that
lets you build content sites quickly, using the skills
you already have. Design layouts with HTML and share
common components across pages. Create Markdown
templates that let you create new content quickly.
Consume and generate JSON, enhance layouts with
logic, and generate a site that works on any platform
with no runtime dependencies or database. Hugo gives
you everything you need to build your next content
site and have fun doing it.

Brian P. Hogan
(154 pages) ISBN: 9781680507263. $26.95
https://pragprog.com/book/bhhugo

Practical Microservices
MVC and CRUD make software easier to write, but
harder to change. Microservice-based architectures
can help even the smallest of projects remain agile in
the long term, but most tutorials meander in theory
or completely miss the point of what it means to be
microservice based. Roll up your sleeves with real
projects and learn the most important concepts of
evented architectures. You’ll have your own deployable,
testable project and a direction for where to go next.

Ethan Garofolo
(290 pages) ISBN: 9781680506457. $45.95
https://pragprog.com/book/egmicro

https://pragprog.com/book/bhhugo
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Real-Time Phoenix
Give users the real-time experience they expect, by
using Elixir and Phoenix Channels to build applications
that instantly react to changes and reflect the applica-
tion’s true state. Learn how Elixir and Phoenix make
it easy and enjoyable to create real-time applications
that scale to a large number of users. Apply system
design and development best practices to create appli-
cations that are easy to maintain. Gain confidence by
learning how to break your applications before your
users do. Deploy applications with minimized resource
use and maximized performance.

Stephen Bussey
(326 pages) ISBN: 9781680507195. $45.95
https://pragprog.com/book/sbsockets

Programming Machine Learning
You’ve decided to tackle machine learning — because
you’re job hunting, embarking on a new project, or
just think self-driving cars are cool. But where to start?
It’s easy to be intimidated, even as a software develop-
er. The good news is that it doesn’t have to be that
hard. Master machine learning by writing code one
line at a time, from simple learning programs all the
way to a true deep learning system. Tackle the hard
topics by breaking them down so they’re easier to un-
derstand, and build your confidence by getting your
hands dirty.

Paolo Perrotta
(340 pages) ISBN: 9781680506600. $47.95
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Competing with Unicorns
Today’s tech unicorns develop software differently.
They’ve developed a way of working that lets them scale
like an enterprise while working like a startup. These
techniques can be learned. This book takes you behind
the scenes and shows you how companies like Google,
Facebook, and Spotify do it. Leverage their insights,
so your teams can work better together, ship higher-
quality product faster, innovate more quickly, and
compete with the unicorns.

Jonathan Rasmusson
(138 pages) ISBN: 9781680507232. $26.95
https://pragprog.com/book/jragile

Programming Flutter
Develop your next app with Flutter and deliver native
look, feel, and performance on both iOS and Android
from a single code base. Bring along your favorite li-
braries and existing code from Java, Kotlin, Objective-
C, and Swift, so you don’t have to start over from
scratch. Write your next app in one language, and
build it for both Android and iOS. Deliver the native
look, feel, and performance you and your users expect
from an app written with each platform’s own tools
and languages. Deliver apps fast, doing half the work
you were doing before and exploiting powerful new
features to speed up development. Write once, run
anywhere.

Carmine Zaccagnino
(368 pages) ISBN: 9781680506952. $47.95
https://pragprog.com/book/czflutr
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The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/smgaelixir
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.
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