




Programmer Passport: Elixir

Bruce Tate

The Pragmatic Bookshelf
Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: Corina Lebegioara
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-962-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com


Contents

Preface . . . . . . . . . . . . . . v
1. Sweet Tooling . . . . . . . . . . . . 1

Based on Erlang 2
Beyond Erlang 3
Tools 5
Mix Manages Development Tasks 5
IEx: Interactive Elixir 7
Built-in Testing 10
Custom Mix Tasks 11
Sound Dependency Management Fuels Adoption 13
Your Turn 16

2. Data and Code Organization . . . . . . . . . 19
Atoms, Pattern Matching, and Erlang Access 20
Booleans and Truthy Expressions 25
Numerics Favor Utility over Performance 26
Characters Are Code Points 27
Elixir Deemphasizes Control Structures 28
Your Turn 31

3. Tuples and Functions . . . . . . . . . . 33
Tuples, Deconstruction, and Pattern Matching 33
Functions and Code Organization 36
Advanced Pattern Matching and Constructors 41
Your Turn 44

4. Lists and Algorithms . . . . . . . . . . 45
Lists 45
Pattern Matching and Lists 49
Recursion over Lists 51



Reduce and Anonymous Functions 53
Implement a Polygon 56
Your Turn 57

5. Key-Value Data . . . . . . . . . . . . 61
Keyword Dictionaries 62
Maps 64
Map Manipulation 66
Using Maps in Bulk 69
Structs Are Restricted Maps 72
Structs, Maps, and Public APIs 75
Your Turn 78

6. Processes and Concurrency . . . . . . . . . 81
Processes, Inboxes, and Pattern Matching 81
Put It All Together in a Message Loop 86
Your Turn 93

7. Blind Spots . . . . . . . . . . . . . 95
Sigils 95
Dates, Times, and Comparisons 101
Binaries and Bit Strings 105
Your Turn 110

8. Macros . . . . . . . . . . . . . . 113
Elixir’s AST 114
Unquoting, Quoting, and defmacro 117
Introduce a DSL 119
Your Turn 121

Bibliography . . . . . . . . . . . . 123

Contents • iv



Preface
Since its release in 2011, Elixir has grown to be one of the leading functional
programming languages in the world. Many industry trends have contributed
to this, especially in areas where this budding language is strong. Insatiable
demand for computers with more cores is pushing programming languages
toward better concurrency support, and Elixir has a particularly good story
here. Explosive growth in the Internet of Things has created a demand for
Elixir’s many frameworks for managing, networking, and measuring hardware.
A push for more interactive web systems is driving demand for web program-
ming tools like Elixir’s Phoenix. These developments led Groxio to publish a
series of Elixir videos, projects, and this book.

You might wonder whether the world needs yet another Elixir book. It’s a
good question. Programming Elixir 1.6 [Tho18] by Dave Thomas provides a
great introduction to Elixir for intermediate programmers. Learn Functional
Programming with Elixir [Alm18] by Ulisses Almeida offers a good Elixir overview
for those learning functional programming. This book is neither as compre-
hensive as Dave’s book, nor as focused as Ulisses’s. We think those books
are better places to learn Elixir.

Still, we think there’s a place for this book.

If you think of a book as a travel guide, this book provides quick day trips
that many travelers miss. We’ll focus on several blind spots that beginning
and intermediate Elixir developers encounter. We’ll walk you through how to
explore types in IEx and when to use Elixir’s primitive data types. We’ll unlock
sigils and show you how macros work. Together, we’ll build a mix task.

If this doesn’t sound like what you’re looking for, that’s OK. Pick up another
book. If it sounds interesting to you, read on. If you find it particularly useful,
you might like it well enough to take the plunge and become a full Groxio

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


subscriber.1 Regardless, enjoy this quick guide through this fascinating lan-
guage!

Bruce Tate

May 2022

1. https://grox.io

Preface • vi

report erratum  •  discuss

https://grox.io
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


CHAPTER 1

Sweet Tooling
Elixir is one of the most important languages created in the past decade. It’s
a functional language, meaning the underlying concepts deal with mathemat-
ical functions. It’s an immutable language, meaning Elixir programs won’t
mutate or change values, opting instead to have functions that transform
values. Its smooth, friendly, Ruby-inspired syntax makes it understandable
by a generation of object-oriented programmers. Its Erlang foundations make
Elixir massively scalable with excellent features for reliability.

More than that, Elixir has libraries and tooling for solving some of the most
important problems of our day. Several growing communities exist under the
overall Elixir umbrella, and each community has impressive libraries and
infrastructures.

Phoenix is a community that’s growing rapidly. It has a web server that’s
stunningly reliable and concurrent. Though Elixir isn’t fast when measured
on a single core, it’s incredibly concurrent, leading Phoenix to accumulate
staggering statistics at scale. For some use cases a single Phoenix box can
serve hundreds of thousands of concurrent users. The OTP foundation leads
to great uptime numbers for Elixir applications. Phoenix offers these advan-
tages along with a development model that’s rich enough for experts but
simple enough for intermediate developers. A new library called Phoenix
LiveView leverages these strengths to build highly interactive web applications
without involving custom JavaScript, leading to excellent productivity.

The Nerves project is another Elixir community that’s growing hand over fist.
Most developers of embedded devices use C, and a few are starting to use
Python. Nerves offers better tooling along with the reliability features of Elixir.
As embedded chip designers begin to embrace multiple cores, the concurrency
advantages of Elixir will begin to tell. Like Phoenix, Nerves is experiencing
explosive growth.

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


The Elixir tooling stack is rich for such a young language. It has a package
manager called Hex, one that’s open to both Elixir and Erlang projects. Hex
provides a place to share a common infrastructure and also a way to resolve
dependencies. Another tool, called mix, provides a way to wrap up development
tasks such as running tests, compiling projects, and the like. Elixir also
provides a command-line shell, debugging services that work both locally and
remotely, and an inspector that makes it easy to see all of an application’s
processes.

Elixir is a language based on Joe Armstrong’s creation, Erlang. Before we
dive into Elixir, we’re going to devote a few paragraphs to exploring why Erlang
remains so important, even thirty years after its creation.

Based on Erlang
A team at Erickson, including Joe Armstrong, was building applications to
work with phone switches. Erlang, the movie,1 tells this story. These telecom
programs had to be extremely reliable, with real-time performance, and
excellent concurrency. Because of Joe’s experience with Prolog, they wanted
a language that would work in a declarative style. They quickly ruled out
languages like C and Smalltalk because they weren’t declarative or expressive
enough for the problems Erickson was solving. They also ruled out existing
functional languages like Prolog and ML because those languages didn’t have
the support for concurrency or low-level constructs for dealing with the bits
that often showed up in hardware problems. Reluctantly, they decided to
build a new language from scratch.

Erlang Escapes the Lab
Over time, the team built Erlang, and the new language quickly accumulated
an impressive list of successes in Erickson. They established a way of building
generic services called GenServers, and wrapped that up into a library called
OTP (the Open Telephony Protocol). This library established a strategy for
dealing with concurrency and failure in a uniform way. Eventually, Erlang
was released beyond Erickson and established a growing following as a lan-
guage for building reliable infrastructure.

OTP and the BEAM: Erlang’s Crown Jewels
The centerpieces of the Erlang language are the virtual machine it runs on,
called the BEAM, and the OTP framework for running scalable, reliable ser-

1. https://www.youtube.com/watch?v=xrIjfIjssLE

Chapter 1. Sweet Tooling • 2

report erratum  •  discuss

https://www.youtube.com/watch?v=xrIjfIjssLE
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


vices. As it grows, the BEAM is becoming known for high concurrency,
responsive performance, high reliability, and excellent support for processes.
OTP runs on the BEAM, and it describes an application’s processes and life-
cycles so that individual pieces can be easily shut down and restarted upon
failure.

These changes make Erlang one of the most reliable programming languages
in existence. When any part of a distributed Erlang system crashes, the
infrastructure can simply shut it down and restart it.

These advantages have gathered a fierce following among a small set of
infrastructure and application developers. So far, Erlang has yet to break
through into the mainstream. Most people believe that when a BEAM-based
language does break through, it’ll be Elixir. Let’s find out why José Valim
developed Elixir.

Beyond Erlang
José was a leader in the community supporting Ruby on Rails, one of the
most successful web development frameworks ever built. José was an author,
core team member, and framework developer in that Ruby space with a large
following, but he was growing increasingly frustrated with some of the prob-
lems he encountered related to scalability and programming abstractions.
Ruby was an excellent language, but not appropriate for the types of problems
José was solving most frequently:

• The Rails framework wasn’t explicit, so it was sometimes difficult to debug
and extend.

• The Ruby language didn’t support concurrency well, an increasingly
important language feature.

• Ruby applications didn’t scale particularly well for many users.

In 2011, Elixir emerged and began to solve some of these problems. With its
Erlang foundations, Elixir began to grow.

Let’s clarify one misconception right now. Elixir isn’t simply Erlang with a
different syntax. It’s a modern language with important new features and a
wide suite of tools that Erlang has traditionally lacked. In this section, we’ll
highlight some of those differences.

Mass Appeal
To grow rapidly, a language must be easy to learn, so it needs convenient and
popular syntax, strong documentation, and approachable tooling. Elixir has
all of these things in spades. Based on Ruby, Elixir’s syntax is far more

report erratum  •  discuss

Beyond Erlang • 3

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


approachable to a large audience than Erlang. It’s not that Elixir’s syntax is
inherently better. Rather, Elixir’s syntax is based on Ruby, a far more popular
language than the strongest influence on Erlang’s syntax, Prolog.

Having effective and consistent documentation is also critical. From the very
beginning, Elixir’s core team built on the successful documentation strategies
from Ruby. Elixir also has means for publishing documentation on Hex. The
result isn’t only a tool set, but also a culture around good documentation.

Elixir also provides tools that are critical to those who would build early
libraries: a good build tool called mix and a package manager to store and
share dependencies called Hex. These tools ensured that when others were
ready to contribute to Elixir, they could immediately build and share tools.

New Abstractions
In the thirty years since Erlang’s creation, the state of the art for what makes
an effective language has advanced. Elixir built in several critical advance-
ments that Erlang supports only poorly, or not at all. Protocols provide a way
to safely extend types to support new functions. Streams are an abstraction
for long or infinite data sets. Structs allow the rapid creation of structured
data types. Macros allow the rapid creation of advanced functions in Elixir
itself. Elixir pipes make Elixir easier to learn by letting beginners write pro-
grams as a series of transformations. We’ll look at each of these features
throughout the rest of this book.

Taken separately, these features are interesting. Taken together, they elevate
Elixir programming as a whole. More higher-level abstractions in the hands
of a good programmer improve productivity, allow better reliability, and make
language learning easier.

These features help Elixir extend the reach of the BEAM to more developers,
and potentially make each developer more effective. Effectively, Elixir is
drawing a whole new user base into the Erlang ecosystem.

Elixir is also having an unexpected impact on the BEAM. Elixir’s existence is
making a better Erlang. The Hex package manager is becoming increasingly
valuable to Erlang developers, and many Erlang libraries are consumed
directly by Elixir programmers.

Now that you have an appreciation of where Elixir came from, let’s start to
put some of those ideas into use. In this chapter, we’re going to focus on
Elixir’s tooling, the primary data types, and the functions that operate on
those data types.

Chapter 1. Sweet Tooling • 4

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


We’ll start by installing Elixir and then working with Elixir’s tooling, including
mix.

Tools
It’s time to take Elixir for a spin. If you haven’t already done so, install Elixir.2

Those instructions will also install Erlang. We’re going to use version 1.10,
though earlier versions should work fine, and later versions absolutely will
work. When you’ve done so, verify your installation by requesting a version
number, like this:

[elixir] ➔ elixir -v
Erlang/OTP 21 [erts-10.2] [source] [64-bit] [smp:12:12]
[ds:12:12:10] [async-threads:1] [hipe]

Elixir 1.10.1 (compiled with Erlang/OTP 21)
[elixir] ➔

We’re up! We’re using Elixir version 1.10, on Erlang/OTP release 21. Let’s
build our first Elixir app.

Mix Manages Development Tasks
One of the tools you installed is mix. This build tool is like rake for Ruby, ant
for Java, or make for C. It’s the tool we’ll use to compile programs, run tests,
fetch dependencies, and create projects. When you use Elixir, knowing mix is
a must. Let’s create our first project:

[elixir] ➔ mix new hello
* creating README.md
* creating mix.exs
* creating lib
* creating lib/hello.ex
* creating test
* creating test/hello_test.exs
...

Run "mix help" for more commands.

[elixir] ➔ cd hello
[hello] ➔

We created a project, and Mix generated several files. I’ve shortened that list
here a little bit, but you get the idea. Elixir will create the same project
structure each time, with a few additions. That means you’ll have a pretty
good idea where files go in any Elixir project that’s created with mix.

2. https://elixir-lang.org/install.html

report erratum  •  discuss

Tools • 5

https://elixir-lang.org/install.html
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Mix Runs Tasks
While we’re at it, let’s look at all of the things you can do with mix:

mix # Runs the default task (current: "mix run")
...
mix clean # Deletes generated application files
mix cmd # Executes the given command
mix compile # Compiles source files
mix deps # Lists dependencies and their status
mix deps.clean # Deletes the given dependencies' files
mix deps.compile # Compiles dependencies
mix deps.get # Gets all out-of-date dependencies
...
mix do # Executes the tasks separated by comma
mix format # Formats the given files/patterns
mix help # Prints help information for tasks
mix new # Creates a new Elixir project
mix release # Assembles a self-contained release
mix release.init # Generates sample files for releases
mix run # Starts and runs the current application
mix test # Runs a project's tests

mix xref # Prints cross-reference information
iex -S mix # Starts IEx and runs the default task

I’ve shortened this list a lot, but you can see it’s a pretty healthy tool with
plenty of options. Mostly, we’ll use it to compile and deploy our program, work
with dependencies, run tests, and run other custom commands.

Mix Projects Have a Strict Structure
We’ll get to more mix commands in a minute. For now, let’s go back to the
Elixir project we created. You can see that Elixir created a main /hello directory
with the two subdirectories test and lib. We’ll put application files in lib and
tests in test.

hello
├── lib
└── test

These directories will hold our configuration, application source files, and
test files, respectively. Elixir programs have two types of extensions. Interpret-
ed scripts have the extension exs and compiled source files have the extension
ex.

Mix generated three program files. The first is mix.exs which describes our
project. Next is hello.ex, an example program. Finally, hello_test.exs is a test for
our code. Here is where each of the files lives:

Chapter 1. Sweet Tooling • 6

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


hello
mix.exs
├── lib
│ hello.ex
└── test

hello_test.exs

Let’s look at those files one by one, and along the way, put the Mix features
through their paces. We’ll start with the program, hello.ex:

defmodule Hello do
@moduledoc """
Documentation for `Hello`.
"""

@doc """
Hello world.

## Examples

iex> Hello.hello()
:world

"""
def hello do

:world
end

end

That’s a typical program. We declare a module to hold our code, present some
documentation, and declare a function. You can see the emphasis the Elixir
community puts on strong documentation. The @doc lines signify that each
Elixir project should have documentation, and you can base your documen-
tation on the examples in your first generated Mix application.

To interact with our program, we’re going to need an interactive shell. Let’s
explore that now.

IEx: Interactive Elixir
Let’s fire up an interactive console from the /hello directory:

iex -S mix

IEx is interactive Elixir, and the -S flag starts Elixir with everything our project
needs so we can call functions within our project. We can see the documen-
tation for our function and call it:

report erratum  •  discuss

IEx: Interactive Elixir • 7

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


You can also get the Hello module information with h Hello as well:

iex(1)> h Hello

Hello

Documentation for Hello.
iex(2)> Hello.hello
Hello

We get help for the module, and then we call the Hello.hello function. To execute
any function, you’ll chase the module name with a period and then the
function name.

Let’s look into some more obscure Mix features.

Get a Past Value
For the most part, IEx has line numbers, as in the previous listing. We’ll
normally remove them because it’s tough for readers to try to perfectly syn-
chronize their output with ours. A nice feature of IEx is the ability to get the
previous value of a line. In the previous listing, we executed the command
Hello.hello(). Let’s say we’re lazy and want to retrieve that value without waiting
the few microseconds for the code to complete. We can use the v() command,
which stands for value. Pair that command with one of the line numbers in
IEx, like this:

iex> v(2)
:world

Brilliant! In fact, we can retrieve any previous value.

Chapter 1. Sweet Tooling • 8

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


IEx is a greatly underutilized feature for Elixir. It has many features we can
use to make programming easier. In particular, Elixir is great for accessing
Elixir documentation.

Explore Programs and Documentation
If we want to know the public functions we can call from a module (these
functions are called exported functions), we can simply ask:

iex> exports Hello
hello/0

Elixir correctly shows us there’s only one function in our module, hello/0
meaning the hello function with zero arguments.

We can get information about the last result in the console:

iex> v(2)
:world
iex> i
Term

:world
Data type

Atom
Reference modules

Atom
Implemented protocols

IEx.Info, Inspect, List.Chars, String.Chars

The last value was an atom, with the value :world, and we can see the module
that deals with other Atom modules. We can also see the protocols, and we’ll
get to those details later.

IEx also lets you build projects without exiting. Let’s find out how.

Recompile Programs
We can also recompile our program:

iex> recompile
:noop

We get a :noop, meaning no-operation, because the file doesn’t need compila-
tion. We’re going to be spending a ton of time in the console because it’s an
excellent way for you to follow along as we work through the chapter.

We’ve looked at one of our three generated program files. Let’s move on to
another, the test. Leave IEx behind for now. Unix and OSx developers will hit
command-c twice to exit the IEx shell. Since Windows installations diverge,

report erratum  •  discuss

IEx: Interactive Elixir • 9

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


you’ll need to follow the directions for your platform to exit IEx, perhaps Control-
g followed by q.

Let’s move on to tests.

Built-in Testing
Often, new programming languages lack the robust tools that mature lan-
guages have. Almost from the beginning, Elixir was created with a full set of
tools. This tooling has accelerated Elixir’s adoption. Two of the most critical
parts of that infrastructure are tests and tasks.

The Elixir tooling includes a built-in test environment called ExUnit. Believe
it or not, you’ve already created your first test. mix new created it for you. Let’s
run that test now:

[hello] ➔ mix test
Compiling 1 file (.ex)
Generated hello app
..

Finished in 0.02 seconds
1 doctest, 1 test, 0 failures

We ran our test, and got two dots. Let’s see what’s making all of the noise:

defmodule HelloTest do
use ExUnit.Case
doctest Hello

test "greets the world" do
assert Hello.hello() == :world

end
end

We have a module, a new directive called Use, a doctest3 directive which we
won’t cover here, and a test. Interestingly, without the use ExUnit.case, the test
"greets the world" wouldn’t be valid Elixir. The use directive is inviting Elixir to
import some macros. Think of macros as code that writes code through the
use of a template. We’ll cover macros a little bit later in this book.

You can see exactly what’s happening in the test. The test line defines a test,
and assert compares the :world result we expect against what actually happens
when we call Hello.hello(). If they match, the test succeeds.

Let’s break a test to see what happens when a test fails. Open up your file
test/hello_test.exs, and drop this new test in:

3. https://elixir-lang.org/getting-started/mix-otp/docs-tests-and-with.html

Chapter 1. Sweet Tooling • 10

report erratum  •  discuss

https://elixir-lang.org/getting-started/mix-otp/docs-tests-and-with.html
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


test "fails" do
assert Hello.hello() == :World

end

[hello] ➔ mix test
..

1) test fails (HelloTest)
test/hello_test.exs:9
Assertion with == failed
code: assert Hello.hello() == :World
left: :world
right: :World
stacktrace:

test/hello_test.exs:10: (test)

Finished in 0.02 seconds
1 doctest, 2 tests, 1 failure

And we get a failure! Rejoice in failures because they are bugs in your code
that you’ve found. In functional languages, they’re usually repeatable so you
can debug and fix them.

Since this failure is an artificial one, delete the broken test and let’s move on.
We’ll circle back to tests when it’s time to run some exercises.

We’ve used mix to build our project, start a console, and run tests. Let’s see
what else it can do.

Custom Mix Tasks
mix test is a custom task, one that the Elixir team has written for us. mix is a
tool that’s built in Elixir, and it’s an open one. From the beginning, the Elixir
team concentrated on tools that the earliest developers could use to build a
growing community library. We can write our own tasks as easily as we write
any Elixir function. Let’s build a trivial remind task to help us remember how
to do some simple tasks.

As you might expect, we’re going to create a new file. Because it’s part of our
application, we’ll put it in the lib directory. We’ll create one subdirectory called
mix within lib, and another subdirectory called tasks within mix. Then, we’ll
create a new task called remind to hold all of the details about running mix that
we can’t remember.

The Mix.Task Contract
To get started, we’re going to have to fulfill a contract. We need to name our
task the right way and write a function called run. We’ll explore how to specify

report erratum  •  discuss

Custom Mix Tasks • 11

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


such contracts later when we cover Elixir behaviours and protocols. (Note
that Elixir uses the British spelling of behavior.) For now, simply create a file
called lib/mix/tasks/remind.ex and key this much in:

defmodule Mix.Tasks.Remind do
use Mix.Task

@shortdoc "Return a reminder for how to use our project."
def run(_) do

IO.puts(
"""
iex -S mix
-> Start a console with our project

mix test
-> Run tests

mix deps.get
-> Fetch dependencies.
"""

)
end

end

We define a new module. The periods are actually namespaces, meaning a
module called Mix.Helper is different from one called Hex.Helper, and all of the
functions inside them are different too. It’s good for each organization to use
a different namespace so two organizations won’t accidentally create the same
functions in the same modules.

We want our module to be part of the Mix module, and we want it to be a Task.
Then, we create a unique module name that describes what we want to do,
Remind.

Next, we have the use directive. Remember, the use directive tells Elixir we’re
going to use macros that provide the features we need. In this case, the fea-
tures make creating mix tasks easy.

Then we have some documentation specific to mix tasks called the @shortdoc.

Finally, we use the function IO.puts to print out a multi-line string. When we’re
done, we have a simple little mix task.

Run Your Custom Task
We can run our custom task like any other mix task. Let’s call mix remind like
this:

[hello] ➔ mix remind
Compiling 1 file (.ex)

Chapter 1. Sweet Tooling • 12

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


iex -S mix
-> Start a console with our project

mix test
-> Run tests

mix deps.get
-> Fetch dependencies.

Notice that Mix knows it must build the program first. Then, it dutifully prints
out our instructions.

Access Task Shortdoc Documentation
Because we provided some short documentation, we can see our task show
up in help. Type:

[hello] ➔ mix help
mix # Runs the default task (current: "mix run").
...
mix remind # Returns a reminder for how to use our project.
...

Nice. We can see our task is a full citizen. We also get spelling correction by
default:

[hello] ➔ mix rem
** (Mix) The task "rem" could not be found. Did you mean "remind"?

That’s a lot of extra benefit for such a short program. We can quickly add our
own custom tasks to our own projects.

We’ve barely scratched the surface of what you can do with mix. Your task
might depend on other tasks; you can take advantage of other parts of your
program or the environment. The point is not to give you a comprehensive
guide for building mix tasks but to underscore the importance of this kind of
tooling on the community. By making mix so open and extensible, the Elixir
team has encouraged others to make convenient tasks available to their users.

Let’s look at one final part of our ecosystem, working with dependencies.

Sound Dependency Management Fuels Adoption
As you begin to build projects in Elixir, you’ll begin to rely more and more on
the work of others. One of the first working tools in Elixir was a good package
manager. Let’s see how that works.

Each Elixir project has a configuration in a file called mix.exs. Open up mix.exs
so we can poke around. You’ll see three functions. Start with the def project(...)
function:

report erratum  •  discuss

Sound Dependency Management Fuels Adoption • 13

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


def project do
[

app: :hello,
version: "0.1.0",
elixir: "~> 1.10",
start_permanent: Mix.env() == :prod,
deps: deps()

]
end

This function is the description of your project. It’s stored in a list called a
Keyword list, made up of keys like :app and values like :hello. It has the name,
version number, and other details that make up your program. Notice the
line that says deps: deps(). That line calls a function called deps() and places the
result in the key :deps. We’ll skip the application function for now, noting only
that it defines the other full application ours depends on.

Now, let’s look at that deps() function:

defp deps do
[

# {:dep_from_hexpm, "~> 0.3.0"},
# {:dep_from_git, git: "https://github.com/elixir-lang/my_dep.git",
# tag: "0.1.0"}

]
end

This list will eventually hold the dependencies in our application. So far, there
aren’t any. The two lines are simply comments that tell us the types of
dependencies our applications can use.

Let’s say we want our application to be able to greet the world in the JSON
format. In case you’ve not seen it before, JSON stands for JavaScript Object
Notation and is a file format that’s often used on the web. Let’s say we don’t
want to write our own JSON parser. We want to use the Elixir package man-
ager called Hex.

So, we point our browser to Hex4 and search for json. The first result has been
downloaded 3,000,000 times, so we’ll pick that one. After a couple of clicks,
we find the documentation on github5 and read it.

Per the instructions there, we plug in our dependency on mix.exs, deleting the
comments as we go, like this:

defp deps do

4. hex.pm
5. https://hexdocs.pm/jason/readme.html

Chapter 1. Sweet Tooling • 14

report erratum  •  discuss

http://hex.pm
https://hexdocs.pm/jason/readme.html
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


[
{:jason, "~> 1.1"}

]
end

Then, we fetch dependencies with mix, like this:

[hello] ➔ mix deps.get
Could not find Hex, which is needed to build dependency :jason
Shall I install Hex?
(if running non-interactively, use "mix local.hex --force") [Yn] Y
* creating /Users/batate/.asdf/installs/elixir/1.10.1/.mix/archives/hex-0.20.5
Resolving Hex dependencies...
Dependency resolution completed:
New:

jason 1.1.2
* Getting jason (Hex package)

We say Y to the prompt when mix asks us if we want to install Hex since we’ve
not yet done that, and then we let mix do the work. It installs the dependency
and we’re good to go…

but what happened here?

It turns out that we fetched the dependency json, together with any dependen-
cies it needs to run. Like a cargo ship, we can see a manifest of all the goods
that we moved in a file called mix.lock:

%{
"jason":

{:hex, :jason, "1.1.2", "b03ded...64afe7", [:mix],
[{:decimal, "~> 1.0", [hex: :decimal, repo: "hexpm", optional: true]}],
"hexpm", "fdf8...c3afe"},

}

I’ve shortened some of the longer tokens and reformatted things a bit, but
otherwise, the file is untouched. It turns out that mix only had to fetch a single
dependency. This dependency is an Elixir project, and our project fetched it.
The next time we build our project, Elixir will automatically build version 1.1.2
of jason right along with it.

You can even see the source code. It’s in a directory predictably called deps/jason:

[hello] ➔ ls deps/
jason

We can open that project and edit the code as if it were our own. (Beyond
editing the code for a little debugging, that’s not a good idea because the
dependencies will often need to be fetched and rebuilt several times through
the course of a busy project.)

report erratum  •  discuss

Sound Dependency Management Fuels Adoption • 15

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Let’s use the dependency in our project. Open up lib/hello.ex and add this new
function:

def hello_json do
Jason.encode!( %{ hello: :world } )

end

Now, try it out:

[hello] ➔ iex -S mix
...

==> jason
Compiling 8 files (.ex)
Generated jason app
==> hello
Compiling 2 files (.ex)
Generated hello app

...
iex> Hello.hello_json
"{\"hello\":\"world\"}"

iex> IO.puts Hello.hello_json
{"hello":"world"}
:ok

And it works! In a few short minutes, we’ve built a completely useless trans-
lation of an Elixir map to JSON. Along the way, we got to poke into the Elixir
world of dependencies!

Your Turn
We’ve spent time with the tools and structures that make Elixir such a com-
pelling language for functional programming beginners and library creators
alike. Let’s sum it all up.

It’s All About the Alchemy Lab
The Ruby programming language is perhaps unique in how effectively it
embraced early adopters. Elixir developers, including the creator himself,
came from this community and provided excellent tooling from the beginning.
The mix tool provides the toolbox for managing development projects. We used
mix tasks to build our project, run tests, and get a list of other tasks. We then
built our own task.

We spent a good deal of time in IEx. It provided an excellent tool for running
and debugging bits of code. We spent time trying small examples and even
compiling programs.

Chapter 1. Sweet Tooling • 16

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


We then spent some time integrating a dependency into our program. We
included a Hex dependency to add a JSON representation for our short pro-
gram.

Now, it’s your turn to use some of these tools.

Try It Yourself
In this section, we’re going to focus on getting most of the tooling off of the
ground. We’ll list only the easiest Elixir track problem, the Hello problem, so
you can get the infrastructure working. We have a single Exercism problem.
To install an exercise, you’ll first install Exercism,6 and then join the Elixir
track. Then, you’ll download the problem. For example, to download a problem
called hello, you’d do this:

`exercism download --exercise=hello --track=elixir`

These questions will help you understand where to go for more information.

• How would you enable command history in IEx?
• How do you start a remote shell in IEx?
• Can you find a Hex package to run performance benchmarks in Elixir

apps?
• Can you find an Erlang package on Hex to process web HTTP commands?

These easy problems deal with establishing infrastructure.

• Install Elixir. If you’ve not done so yet, get busy! Install Elixir.
• Exercism hello-world problem. This will get you started with Exercism

exercises.

These medium problems deal with dependencies.

• Find out what’s required to package your own dependency on Hex.
• How would you create a mix project that requires a supervisor? (Check

the documentation.)

This hard problem will help you with building mix tasks.

• Build your own mix task to count the number of files in the project.
• Build an IEx representation of a module. Hint: use the Inspect protocol.

6. exercism.io

report erratum  •  discuss

Your Turn • 17

http://exercism.io
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Next Time
In the next chapter, we’re going to focus on code organization and data. We’ll
work through the standard data types and establish how to explore them
within IEx.

Chapter 1. Sweet Tooling • 18

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


CHAPTER 2

Data and Code Organization
In the first chapter, we looked at how to build and navigate your Elixir project.
In this chapter, you’ll learn how to organize your project’s code around ele-
ments of data called data types. Programming languages each have different
patterns for building things, and Elixir is no different. Elixir will reward you
if you organize your code in a certain way. In the next few chapters, we’ll
introduce the major Elixir data types and some ideas for building up the
modules, data, and functions that make up your applications, layer by layer.

Rather than focus entirely on data types and operators right out of the gate,
we’ll do a quick presentation of four concepts and explore them in greater
detail in the context of each of the major Elixir data types. The concepts are
these:

Structure
The primary structure for the data type, and what it looks like under the
hood.

Operators and functions
The main tools we’ll use to manipulate a data type.

Pattern matching
The Elixir tool to access and compare across data types.

Writing code
We’ll use most data types in a bit of code.

These concepts will be similar for each major data type, but we’ll introduce
more nuanced techniques as we go. We’ll focus on some core Elixir data types
including atoms, Booleans, numbers, and characters. Since the data types
are simple, we’ll get to introduce some IEx features that will aid us as we
explore. Then, we’ll layer on some simple Elixir code constructs and pattern
matching. Finally, we’ll write a little bit of code.

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Let’s get right to it!

Atoms, Pattern Matching, and Erlang Access
We’re going to start with atoms, a data type that might be confusing to Java,
C, or C# developers. If you’re a Ruby developer, atoms are like symbols. If
you come from Erlang, the data type is the atom.

Exploring a Type in IEx
Open up an IEx console and we’ll get right to work. So, what’s an atom?

iex> :atom
:atom

Atoms are names for concepts. Some good examples are :north, :string, and
:yellow. Preface an atom with a colon, followed by a word starting with an
alphabetic character.

You’re not limited to atoms with simple characters. By placing double quotes
around the text to the right of the colon, you can make more complex atoms
like :"blue-green" that would otherwise be invalid. In Elixir, we won’t do too
much of that. We’ll focus on atoms that start with a lower-case character and
contain alphanumeric characters, plus possibly some additional punctuation.
Let’s go back to the console and explore a bit.

Once you’ve typed :atom, you can use the console to get more information
about it. Type i for info, like this:

iex> i
Term

:atom
Data type

Atom
Reference modules

Atom
Implemented protocols

IEx.Info, Inspect, List.Chars, String.Chars

We can see the term we entered is :atom, its type is Atom, the main module for
the data type is Atom, and it supports some interfaces called protocols. These
include the info that we used to get this information, inspection for debugging,
and translations to two common types, Charlist and String.

Atom is a module, and modules contain functions. In Elixir, the central theme
of a module is often a data type. Modules have public functions and private
functions. In Erlang, public functions are ones we explicitly export. Instead,

Chapter 2. Data and Code Organization • 20

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Elixir exports all functions that we don’t declare as private. Let’s find the
exported functions for Atom, like this:

iex> exports Atom
to_char_list/1 to_charlist/1 to_string/1

That’s simple. We see the names of three functions. Each has a /1 after it.
The /1 is the arity, meaning the number of arguments the function takes. In
Elixir, it’s customary to make the first argument the best data type for the
underlying module. In our case, that’s an atom.

Let’s get a little more information about that last function:

iex> h Atom.to_string

def to_string(atom)

@spec to_string(atom()) :: String.t()

Converts an atom to a string.

Inlined by the compiler.

## Examples

iex> Atom.to_string(:foo)
"foo"

Now that we know enough to use the function, let’s do so:

iex> Atom.to_string(:atom)
"atom"

This pattern of Elixir exploration is a common one. We’ll get a term in the
console, obtain more information, examine the module through help or by
getting exports, and finally explore a function. Let’s look at some of the other
things we can do with atoms.

Atoms, Equality, and Matching
Atoms and equality work as you might expect:

iex(6)> :atom == :eve
false

The == operator checks for equality, and only identical atoms are equal. That’s
not too interesting, but you might run into a surprise if you use the = operator:

iex(7)> :atom = :eve
** (MatchError) no match of right hand side value: :eve

(stdlib) erl_eval.erl:453: :erl_eval.expr/5
...

report erratum  •  discuss

Atoms, Pattern Matching, and Erlang Access • 21

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


If you’re not familiar with a pattern matching language, this example might
surprise you. The = operator means match, which is used to make the thing
on the left match the thing on the right. Let’s say we want to bind a variable
to the value of the atom. We do it like this:

iex(7)> a = :atom
:atom
iex(8)> a
:atom
iex(9)> a = :eve
:eve
iex(10)> a
:eve

We bind the variable a to the atom called :atom. Then we rebind the variable
a to the atom :eve. Elixir is an immutable language, meaning values can’t
change. You’re actually getting an entirely new variable that’s also called a.

If you wanted to use = to match a variable on the left side of an expression
rather than rebind, you’d use the ̂  operator, called the pin operator, like this:

iex(10)> a
:eve
iex(11)> ^a = :atom
** (MatchError) no match of right hand side value: :atom

(stdlib) erl_eval.erl:453: :erl_eval.expr/5

That’s more like what we expected. We tried to match the old binding of the
variable a (:eve) against :atom, and it failed.

Let’s create a new application called graphics. Create a new mix project with
mix new graphics, and change into the directory. We’ll use that project to build
a few rough features dealing with the data types we encounter.

You can use atoms and pattern matches when you write functions. Let’s add
a file called lib/color.ex to the hello application we built in the previous chapter.

Now let’s make a short program that represents colors in lib/color.ex:

defmodule Color do
def hex_code(:white) do

"#ffffff"
end
def hex_code(:black) do

"#000000"
end

end

Cool. We create a module called Color. As is customary in many Elixir modules,
our module will contain functions that deal with one central idea, colors. We’ll

Chapter 2. Data and Code Organization • 22

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


represent the colors as atoms. As often as we can, within this module, the
first argument of each function will be the data type for our module, an atom
that represents a color.

We can try out the program. Open up the console for your project with iex -S
mix and use your program:

iex> Color.hex_code(:white)
"#ffffff"

Our two function heads have the same name, hex_code. When we call the
function, Elixir will return the first function that matches the argument we
provide.

Let’s see what our function exports:

iex(1)> exports Color
hex_code/1

The first hint that something interesting is up is that we have two function
heads but one export. It turns out that two functions with the same arity are
the same.

Now, we can try our functions with the values we expect:

iex(2)> Color.hex_code(:white)
"#ffffff"
iex(3)> Color.hex_code(:black)
"#000000"

Through pattern matching, Elixir picks the right function clause. Now, let’s
try a color we don’t expect:

iex(4)> Color.hex_code(:blue)
** (FunctionClauseError) no function clause matching in Color.hex_code/1

The following arguments were given to Color.hex_code/1:

# 1
:blue

Attempted function clauses (showing 2 out of 2):

def hex_code(:white)
def hex_code(:black)

(hello 0.1.0) lib/color.ex:2: Color.hex_code/1

Elixir tells us the color and the two function heads it tried.

We can tighten up our code to provide a better error. Add this function head
to our program:

def hex_code(_other) do

report erratum  •  discuss

Atoms, Pattern Matching, and Erlang Access • 23

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


raise "unsupported color"
end

And try it out:

iex> recompile
Compiling 1 file (.ex)
:ok
iex> Color.hex_code(:yellow)
** (RuntimeError) unsupported color

(graphics 0.1.0) lib/color.ex:9: Color.hex_code/1

We recompile our code and then provide an unsupported color. This time,
our function raises an exception with more information than a match error.

Now, you’ve seen three ways to use a pattern match: to bind a variable, to
compare values, and to select the code we want to execute. As we get further,
you’ll see still more ways to use pattern matching.

For now, we’ll put patterns aside and move on to some other uses for atoms
within Elixir.

Erlang Modules Are Atoms
Another way Elixir uses atoms is to represent modules in Erlang. This
behavior is a little jarring at first, but let’s explore a little bit. To see how this
works, enter this strange line of code:

iex(11)> exports :erlang
bitsize/1
check_process_code/2
check_process_code/3
...

Yes, those are functions exported by the :erlang module! You can access all
Erlang modules in this way. As you might expect, there’s a special function
to find the total number of atoms your application can support:

iex(12)> :erlang.system_info(:atom_limit)
1048576
iex(13)> :erlang.system_info(:atom_count)
10862

That’s cool! We can access the root Erlang system_info function. In this example,
there’s also a pretty significant nugget of information.

Atoms are not garbage collected. If you do things like use atoms for identifiers
or create them from user input, you can run out of space for atoms, and if you

Chapter 2. Data and Code Organization • 24

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


do, you’ll crash your virtual machine! Use atoms, but use them correctly, for
naming finite concepts.

Atoms as Booleans
As you might expect, Elixir uses atoms for several of the key concepts of the
language, Booleans included. Check out both the term we type and the term
that’s returned:

iex(14)> :true
true
iex(17)> true == :true
true
iex(18)> false == :false
true

The Booleans in the language are represented as atoms, and you can freely
substitute :true for true in Elixir. We’ve barely scratched the surface in Elixir
data types, but we’ve only covered atoms! Take heart, though, we’re about to
pick up speed dramatically.

We’re not going to spend a ton of time going over primitive data types and
operators in excruciating detail. Instead, we’ll let you cover the details of the
dozens of operators on your own. We’ll give you the highlights.

First, let’s look at Booleans.

Booleans and Truthy Expressions
Elixir has two Boolean values, and you’ve already seen they’re expressed as
atoms. Here’s a quick overview of Booleans in Elixir:

• Elixir allows pure Boolean with and, or, and not.
• Elixir allows truthy Boolean operations à la C and Ruby with && and ||.
• Elixir also allows bitwise Boolean operators, but you need a library.
• There’s excellent documentation1 for the rest.

This tiny error provides some quick proof of these concepts in IEx:

iex(1)> nil && true
nil
iex(2)> nil and true
** (BadBooleanError) expected a boolean on left-side of "and", got: nil

iex(2)> nil || true
true
iex(3)> !nil

1. https://elixir-lang.org/getting-started/basic-operators.html

report erratum  •  discuss

Booleans and Truthy Expressions • 25

https://elixir-lang.org/getting-started/basic-operators.html
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


true
iex(4)> not nil
** (ArgumentError) argument error

:erlang.not(nil)

In Elixir’s truthy expressions, nil, :false, and false are false. Everything else is
true. A commonly used trick in Elixir takes advantage of the || operator and
true.

Now that we’ve seen them in action, let’s look at numerics and comparisons.

Numerics Favor Utility over Performance
Elixir supports a couple of important numeric types, most prominently floats
and integers. Elixir doesn’t support small and big ints out of the box, opting
to convert integers to use more bytes as needed:

iex(7)> big = 256 * 256 * 256 * 256
4294967296
iex(9)> huge = big * big * big * big
340282366920938463463374607431768211456
iex(10)> huge * huge * huge * huge
1340780792994259709957402499820584612747936582059239337772356144372176
4030073546976801874298166903427690031858186486050853753882811946569946
433649006084096
iex(11)> i
Term

1340780792994259709957402499820584612747936582059239337772356144372176
4030073546976801874298166903427690031858186486050853753882811946569946
433649006084096

Data type
Integer

Reference modules
Integer

Implemented protocols
IEx.Info, Inspect, List.Chars, String.Chars

The biggest one is huge, but it’s still only an integer. This numeric representa-
tion is a compromise of utility over performance. If you’d like you can dig into
the Integer module to find some of the functions you can use with integers,
but remember Erlang has many more.

Note that Elixir focuses on floats, but decimals of fixed precisions are available
as a library. Elixir has a bunch of operators for dealing with numerics, and
you can look them up. As a language that’s been around for 40 years, Erlang
has even more. We’ll call out a few highlights.

Some of those operators are comparisons. Elixir actually has two checks for
equality, == and ===. The second is stricter:

Chapter 2. Data and Code Organization • 26

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


iex(11)> 1 == 1.0
true
iex(12)> 1 === 1.0
false

These numbers are mathematically equivalent so the first comparison
matches. They’re not structurally identical, so the second one doesn’t match.

Before we move on, there’s one usage of an integer that might seem strange
to you. Let’s look at characters.

Characters Are Code Points
The process of making code safe for multiple languages at once is internation-
alization. If you’re familiar with it, you know that every single character in a
string is called a code point. In Elixir, a code point is represented with a
number. Here’s how it works:

iex(18)> ?a
97

If this were the only surprising behavior, I’d probably let you read about it
yourself, but there’s a strange remnant from Elixir’s dependence on Erlang.
Namely, Elixir can’t always tell the difference between lists of numbers and
character lists!

Here’s what I mean:

iex(22)> [99, 97, 116]
'cat'

This happens because Erlang can’t tell the difference between a list of integers
and a list of characters, so it guesses. Sometimes these lists of characters
can be a bit disconcerting. If it ever happens to you, tack on a zero, which
isn’t a printable character:

iex(22)> [99, 97, 116]
'cat'
iex(23)> list = [99, 97, 116]
'cat'
iex(24)> list ++ [0]
[99, 97, 116, 0]

Problem solved. The Charlist is surrounded by single quotes. Under the hood,
linked lists are made up of a slot for data and another for the pointer to the
next bit of data. You should know that this type of text data isn’t an efficient
format for long bits of data like text. Elixir does have a more efficient repre-

report erratum  •  discuss

Characters Are Code Points • 27

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


sentation of strings, called the Binary type. We’ll cover it in more depth later.
For now, we’ll touch on it briefly.

Say we wanted to represent three numbers in the most efficient way. We put
them in memory, back-to-back. We’d use a binary, surrounded by double
angle brackets, like this:

iex> <<1, 2, 3>>
<<1, 2, 3>>

These numbers are in one big block of memory, and that’s a pretty efficient
way to store data in Elixir as long as you don’t need to modify it. You can
probably guess what would happen if we put characters in those angle
brackets:

iex> <<?c, ?a, ?t>>
"cat"

Rather than putting characters into a linked list like Charlists do, Elixir puts
each character in a Binary back to back in memory. Strings are binaries, and
charlists are lists. In Elixir, since lists have overhead, we’ll choose to deal
with text data using strings.

We’re ready to move on. Now, let’s compare some numeric values to look into
Elixir’s main control structures.

Elixir Deemphasizes Control Structures
For the most part, Elixir doesn’t have as many data structures as typical
procedural or object-oriented languages. Instead, programmers will use other
features such as functions or pattern matching. We’ll look at three now:
if/unless, case, and cond. We’ll save with for later.

Compare with if and unless
You’ve already seen one way to do comparisons in Elixir, and it’s often a good
way. In the Color module, we used pattern matching within our function head
to compare values. The performance of this kind of comparison is very good.

Another way to do such comparisons is with the if statement. Go to your IEx
session. Let’s assign a variable to compare against, like this:

iex(16)> x = 10
10

Now, let’s use x for some comparisons. There’s a one-line form that looks like
this:

Chapter 2. Data and Code Organization • 28

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


iex(17)> if x == 11, do: :tis_true, else: :tis_false
:tis_false

That’s a strange syntax for a function! What’s going on?

It turns out that if is actually a macro, with syntax like a function call. A
couple of things are happening all at once to give us this syntax at the end
of the statement:

, do: :tis_true, else: :tis_false

First, all of that code is actually the second argument to the if. That’s why we
need the first comma.

Second, the rest of the statement is a keyword list. In Elixir, if the last argu-
ment of a function is a key-value list, you can eliminate the square brackets
that would normally surround it. That’s why we don’t have to type , [do: :tis_true,
else: :tis_false].

Finally, when the first elements of a keyword list or map are atoms, you can
reverse the atom and eliminate some syntax. Here’s what a keyword list looks
like without that trick:

[{:do, :tis_true}, {:else, :tis_false}]

Usually, you won’t use this shortened version. Elixir has some sugar that lets
you use this form instead:

if x == 10 do
:tis_true

else
:tis_false

end

Whew. That’s prettier. You can try it in the console as well. I’ve broken it out
to show the syntax without the extra line numbers and other noise.

Elixir supports an unless that works exactly like an if, but in reverse. These
two functions aren’t the only ways you can compare data.

Cond
Sometimes, you need to make several comparisons at once. Elixir lets you do
so with the cond statement. Cond statements are like if statements with several
different conditions. Elixir will take the first one that’s true.

For example, we might have implemented our Color.hex_code function like this:

def hex_code(color) do
cond do

report erratum  •  discuss

Elixir Deemphasizes Control Structures • 29

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


color == :white ->
"#ffffff"

color == :black ->
"#000000"

true ->
:error

end
end

We have three conditions, but we could have had more or less. The only rule
is that at least one of the expressions on the left must evaluate to a truthy
value. The last true serves as our default. It’ll catch the execution if none of
the other clauses match. Elixir doesn’t require it, but it’s a good habit to have
at least one catch-all value like this one.

This code works, but it’s an awkward control structure to use because it often
forces us to repeat small bits of code, such as the color == bit. Elixir is a lan-
guage loosely based on Prolog, and if you went through our Prolog language,
you understand comparisons reward matching. The cond statement takes the
first statement that evaluates to true. Let’s see what case does.

Case
While the if, unless, and cond statements use Booleans to control flow, the case
statement works with pattern matching, as our Color.hex_codes did. Instead of
matching function heads, we’ll move the matching conditions inside of our
function, like this:

def hex_code(color) do
case color do

:white ->
"#ffffff"

:black ->
"#000000"

_ ->
:error

end
end

That code is much better because it eliminates the repetitive comparison
against color. Elixir will test color, and stop at the first condition that matches.
Notice that instead of true, our catch-all clause uses an underscore, which in
Elixir matches anything.

These constructs may seem like a thin foundation for programming, but that’s
not all we have to work with. Elixir is a functional language, and you’ll pri-

Chapter 2. Data and Code Organization • 30

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


marily rely on functions you’ll compose in various ways to do the bulk of your
work.

This is a great place to stop and take stock. It’s time to put some of what
you’ve learned to work.

Your Turn
This chapter introduced the primary primitive data types in Elixir. As you
work through this section, you’ll get a chance to build your own projects and
put Elixir through its paces.

Elixir Organizes Code Around Data
Elixir’s modules are all organized around data. The standard data types
include atoms, Booleans, and numerics. Where possible, the first argument
in a function is determined by the containing module. For example,
Atom.to_string/1 takes an atom first.

Atoms represent concepts, and pattern matches are expressions that attempt
to match the structure and content of data. Pattern matches work as individ-
ual expressions and also in function heads.

IEx is a great tool for exploring pieces of data and drilling into the underlying
data types. With the i command, you can get more information about the
underlying data type. Each main data type has an associated module, and
you can explore that module in IEx.

Boolean values are atoms under the hood. They work much like they do in
other languages. Elixir has a few types of numerics, including integers and
floats. We didn’t cover the huge number of expressions, leaving that explo-
ration to the reader. You’ll get plenty of practice with primitives in the following
exercises.

Try It Yourself
In this section, we’re going to focus on exercises related to primitive data and
Elixir control structures. We’ll mostly use Exercism.io. To install an exercise,
if you haven’t done so, you’ll first install Exercism, and then join the Elixir
track. Then, you’ll download the problem. For example, to download a problem
called hello, you’d do this:

`exercism download --exercise=hello --track=elixir`

Let’s look at a few problems related to data types and flow.

These easy problems deal with establishing infrastructure.

report erratum  •  discuss

Your Turn • 31

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


• leap: Implement the rules for a leap year.
• bob: We look ahead to strings. This problem uses Elixir cond statements.
• rna-transcription: We look ahead to breaking down strings, and working with

lists.

These medium problems deal with dependencies.

• roman: This problem looks ahead to joining strings, but the bulk of the
work is done with control structures.

• hexidecimal: You’ll need a few concepts we haven’t covered, including strings,
Enum.map, Enum.sum, and the function String.graphemes.

• sieve: Find prime numbers. You’ll need the Enum module, possibly with map
or filter.

• Represent an integer as a hex, octal, and binary number.

Next Time
In the next chapter, we’re going to ramp up the complexity of the data we can
handle. We’ll first address tuples, and then we’ll move on to lists.

Chapter 2. Data and Code Organization • 32

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


CHAPTER 3

Tuples and Functions
In our journey so far, we’ve learned to build and manipulate Elixir projects
and use primitive data types. The next few data types are for sequential data.
Languages like Ruby have one dominant way to represent sequential data,
the array. Elixir has multiple ways to represent sequential data. Tuples express
fixed-length sequential data, and lists represent variable-length sequential
data.

In this chapter, we’ll begin our exploration of tuples. Along the way, we’ll use
tools and techniques to create, inspect, and use them. As you might imagine,
central to those techniques will be functions and pattern matching. As usual,
we’ll explore each data structure in the console and we’ll also begin to roll
them up into advanced constructs.

Tuples, Deconstruction, and Pattern Matching
In Elixir, you use tuples to create lists of things with a fixed size. You represent
a tuple with curly braces surrounding elements with commas between:

iex(1)> place = {:stockholm, :sweden}
{:stockholm, :sweden}
iex(2)> origin = {0, 0}
{0, 0}
iex(3)> white = {0xff, 0xff, 0xff}
{255, 255, 255}
iex(4)> success = {:ok, "result"}
{:ok, "result"}
iex(5)> failure = {:error, 401}
{:error, 401}

Each of these examples is a tuple. A point is an iconic example of a tuple.
Erlang developers frequently use tuples to pair return codes with results.
Notice that the elements of a tuple aren’t necessarily the same type. For

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


example, in a result tuple from a function, the first element is usually an
atom describing the result, and the second element is the type the function
returns.

The most important part of representing tuples is that the position of an ele-
ment in a tuple determines its meaning. The parts of a place are city and country,
points are expressed as x and y, and so on.

Another ergonomic consideration for tuples has more to do with the computer
between your ears than the one running your code. Since we can’t label tuple
elements in any way, it’s hard to read code with tuples longer than two or
three elements, so keep them short!

Let’s look at tuples in more detail.

Exploring Tuples
Staying with IEx for a minute, let’s do our customary dive. Enter a line that
returns a tuple, and then get its info:

iex(6)> i
Term

{:error, 401}
Data type

Tuple
Reference modules

Tuple
Implemented protocols

IEx.Info, Inspect

As expected, the module for working with tuples is, well, Tuple. Let’s dive
deeper:

iex(7)> exports Tuple
append/2
delete_at/2
duplicate/2
insert_at/3
to_list/1

Usually, you can get a better sense for working with a data type by looking
at the exports of its primary module. Be careful, though. In this case, the
help will lead you astray. You might think that tuples are variable-length
constructs that you should transform with abandon. That’s a dangerous
assumption! Let’s look at what might happen if you did so.

Chapter 3. Tuples and Functions • 34

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Best Uses for Tuples
The implementation of a tuple in Elixir is one slice of memory of a fixed size
with no room for expansion. There are two significant ramifications of this
implementation:

• Longer short-lived tuples are tough on garbage collection. Creating and
freeing larger constructs breaks up memory.

• To change a tuple in any way, Elixir must create a whole new copy.

So, you should understand that changing or adding to tuples is not idiomatic
Elixir because it’s expensive to return a new, modified tuple. Tuples should
be created once in their final form and then left alone! Elixir will reward you
with better performance and friendlier code if you use tuples for structures
that are more permanent and shorter. You’ll be able to take better advantage
of pattern matching and your code will run more efficiently.

Let’s see a few ways to use pattern matching with tuples.

Pattern Matching
So far, we’ve used pattern matching with a whole atom or integer. We’re going
to broaden your repertoire a bit. Sometimes, you can use pattern matching
to deconstruct a complex data type. Let’s say you have a place you’ve chosen
to represent with a two-tuple, like this:

iex(1)> place = {:austin, :tx}
{:austin, :tx}

In Elixir, you can access the various elements in a tuple with pattern
matching, like this:

iex(2)> {city, state} = place
{:austin, :tx}
iex(3)> city
:austin
iex(4)> state
:tx

That’s nice! We access the city and state from within our place tuple. We can
also ignore either city or state, or even ignore both to match only tuples with
two elements, like this:

iex(5)> {city_name, _state_name} = place
{:austin, :tx}
iex(6)> city_name
:austin
iex(7)> {_, _} = place
{:austin, :tx}

report erratum  •  discuss

Tuples, Deconstruction, and Pattern Matching • 35

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


iex(8)> {_, _} = {:some, :thing, :else}
** (MatchError) no match of right hand side value: {:some, :thing, :else}
...

This code works exactly as you’d expect. We don’t have to access the elements
of a tuple in this way. We can use the function called elem/2 to return a tuple
element with a zero-based index, like this:

iex(8)> elem(place, 0)
:austin
iex(9)> elem(place, 1)
:tx

That lays out the foundation. Let’s see how we might use pattern matching
in the context of a greater application.

Functions and Code Organization
One of the central themes of our programs so far is that we package functions
that operate on like data together in a module. Let’s create a file called point.ex.
We’ll have functions on points in this module. We’ll strive to form functions
that take points as the first argument of our functions, and where possible,
our functions will return points as well.

Deconstruction in Function Heads
Let’s say we wanted to take a point in the form {x, y} and move it one unit to
the right. Knowing that elem(tuple, index) gives us an element of the tuple, we
might decide to write this bit of tedious code:

defmodule Point do
def right(point) do

x = elem(point, 0)
y = elem(point, 1)
{x + 1, y}

end
...

end

That’s a typical program that we might see in Java or Ruby. We can do better
in Elixir. We can deconstruct tuples in function heads, case statements, and
other Elixir constructs, like this:

defmodule Point do
def right({x, y}), do: {x+1, y}
def left({x, y}), do: {x-1, y}
def up({x, y}), do: {x, y-1}
def down({x, y}), do: {x, y+1}

Chapter 3. Tuples and Functions • 36

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


def move({x1, y1}, {x2, y2}), do: {x1 + x2, y1 + y2}
end

Nice. We use the one-line function syntax that works well when we are
expressing a single thought. In the function head, we deconstruct the tuple,
picking off the x and y variables. Then, we return the updated point.

In move, we match on both arguments: an initial point and a vector defining
the difference in x and the difference in y.

These functions are no longer tedious because we can let the function head
do most of the work. Our code expresses code with a single thought on a
single line.

Along the way, I’ve said if you build modules with functions returning the
same kind of data first, you’ll be rewarded. Here’s some of the candy.

Using Pipes
So far, we’ve leaned away from operators and into code organization. We’re
going to briefly break with that approach to introduce the pipe operator. Open
up your application in IEx with IEx -S mix, or issue a recompile command if it’s
already loaded.

Then, let’s create a point and work with it a bit. The first thing we’ll do is to
import the Point module, like this:

iex(1)> import Po
Point Port
iex(1)> import Point
Point
iex(2)>

You can see that I pressed the tab key after I typed import Po, and Elixir showed
me the modules that were available for importing. Then, I imported Point,
meaning I can fully access the module features as if they were functions in
IEx.

Specifically, importing functions adds them to your current module. Create a
point, and then call your function on it, like this:

iex(2)> origin = {0, 0}
{0, 0}
iex(3)> left(origin)
{-1, 0}
iex(4)> origin
{0, 0}

report erratum  •  discuss

Functions and Code Organization • 37

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


We create a point called origin, and then we create a new point that’s moved
left one place. Notice that when we check the value of origin, it hasn’t moved!
That’s because Elixir is an immutable language. Our function called left creates
a new point that’s to the left of origin.

Now, what happens if we want to start at the origin, and then move the point
like a knight on a chess board by moving right two and down one? The code
is surprisingly awkward:

iex(5)> down(right(right(origin)))
{2, 1}

That code is…

disappointing. We are taking the origin, moving the result right one, moving
that result right one more, and then moving that result down. Here’s what
pseudocode that describes that problem might look like:

origin
right
right
down

That’s much more readable. Interestingly, that’s what the code looks like
when we express the code as a pipe:

origin
|> right
|> right
|> down

In the console, it looks like this:

iex(7)> origin |> right |> right |> down
{2, 1}

That code is much more satisfying. The |> operator uses the code before the
pipe as the first argument for the function immediately after the pipe. We can
write this string of code explicitly because we structured our code to:

• Take a point as the first argument
• Return a point

We structured our code in that way, and Elixir rewarded us. Let’s build a
couple of quick functions to mirror and flip a point on a canvas. We’re going
to do a little bit of math within our point that’ll pay off down the line.

Chapter 3. Tuples and Functions • 38

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Reflect a Point on a Canvas
Reflecting a point on a canvas in various ways will give us some pretty cool
capabilities down the line. The following figure shows the types of features
we want to build:

All three of these functions reflect a point over a line. Transpose reflects the
point over a diagonal line down the middle of the canvas, mirrors across a
vertical line, and flips across a horizontal line.

Here’s what it looks like to mirror a point horizontally. Add this function to
point.ex:

...
def mirror({x, y}, w), do: {w - x, y}
...

Using tuple deconstruction, the function becomes trivial. We leave y intact,
and mirror x by subtracting it from the width of the canvas.

Flipping a point vertically looks nearly identical. Add this function to point.ex:

...

report erratum  •  discuss

Functions and Code Organization • 39

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


def flip({x, y}, h), do: {x, h - y}
...

Perfect. We use a similar technique, but we manipulate y based on the canvas
height instead.

With these two features, we’ll later be able to flip and mirror polygons on a
canvas.

Let’s build in a few more tweaks that’ll give us the ability to rotate polygons
in 90-degree increments. Using a quick function called transpose which mirrors
our shape along the line {0, 0} to {i, i}, we’ll have all of the building blocks we
need. Tack this function onto point.ex:

def transpose({x, y}), do: {y, x}

We reflect a point across the northwest to southeast diagonal with a transpose
by merely reversing the x and y coordinates. Next, let’s move a point:

def move({x, y}, {cx, cy}), do: {x + cx, y + cy}

We accept two tuples, one representing a point and one representing a vector
with the changes in x and y. We’ll use this later to move a bunch of points
together. For example, we’ll move a square by moving all of the corners at the
same time.

Rotate Around the Canvas Center
There’s an obscure geometry trick that lets us rotate shapes using the func-
tions we’ve built so far. Don’t worry too much about the technical details for
now. We’re rotating a point clockwise 90 degrees around the center of a canvas
as in the following figure.

To rotate a point, we’ll sequentially apply various transpose, flip, and mirror
functions. There are similar formulas for rotating the point 180 and 270

Chapter 3. Tuples and Functions • 40

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


degrees. With pipes, those rotations are surprisingly clear and beautiful. In
point.ex:

def rotate(point, 0, _w, _h) do
point

end
def rotate(point, 90, w, _h) do

point
|> transpose
|> mirror(w)

end
def rotate(point, 180, w, h) do

point
|> flip(h)
|> mirror(w)

end
def rotate(point, 270, _w, h) do

point
|> flip(h)
|> transpose

end

These functions combine flip, mirror, and transpose in various ways to rotate a
point. For example, transposing a point and then mirroring that result rotates
a point 90 degrees around the center point of a canvas.

Now, you can try it out:

iex(4)> Point.origin |> Point.rotate(270, 5, 4)
{4, 0}
iex(5)> Point.origin |> Point.rotate(180, 5, 4)
{5, 4}
iex(6)> Point.origin |> Point.rotate(90, 5, 4)
{5, 0}

If you think about it, these points are exactly right! Imagine the point as the
upper right corner of a rectangle, and you’ll know the points are right.

Let’s look at a few more examples of code organization before we move on.

Advanced Pattern Matching and Constructors
Most pattern matching uses simple deconstruction, but not all. Sometimes,
Elixir code needs to make allowances for special cases. One special case is
comparing elements within a function head. Let’s take a few examples.

Comparison Across Tuples
Let’s look at some special cases of pattern matching. The first is representing
exact matches of primitive data within a data structure like a tuple. When

report erratum  •  discuss

Advanced Pattern Matching and Constructors • 41

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


you use primitive data in a function head, Elixir will try to match it exactly.
An Elixir function to check and see if a point is the origin would look like this:

def origin?({0,0}), do: true
def origin?(_point), do: false

The function has two heads. The first matches the exact {0, 0} tuple, returning
true. The second starts with an underscore. The compiler ignores arguments
beginning with an underscore. We label our argument _point to document the
interface, returning false. Let’s look at another example that does a more
advanced match. Let’s say we wanted to match all elements where x and y
are the same. We might decide to do a guard, like this:

def identity?({x, y}) when x == y, do: true
def identity?(_point), do: false

The function has one new concept, the guard. A guard in a function head will
only match invocations where the values satisfy the guard. Guards can only
work with macros, not arbitrary functions. We’ll talk a bit about macros later.
Note that some things are possible in guards, and others are not, because of
the way Elixir compiles code.

The first function in this example deconstructs the point and uses the guard
to check if x and y are equal. If so, the first clause matches, returning true.
Otherwise, our catch-all guard matches, returning false.

There’s a better way, though. We can use a variable more than once in a
function head, and Elixir will make sure they’re the same value, like this:

def identity?({i, i}), do: true
def identity?(_point), do: false

When Elixir is doing a match with two identical variable names within a
function head, the data must match exactly. We use this quirk to match only
tuples with the same element in the first and second positions. This function
will match {5, 5}, but not {5, 4}. Can you explain why?

As we continue within Elixir, we’ll use tuples often to handle result tuples.
These return some version of {:ok, result} for success and {:error, code} or {:error,
code, message} for failure.

Constructors
Before we move on, let’s look at one final code organizational idea, the con-
structor. As you might expect, constructors are functions. They take standard
building blocks as arguments and return the modules’ data type. Let’s take

Chapter 3. Tuples and Functions • 42

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


a look at a few constructors for our Point module. First, we can create a special
function returning an origin. Add this function to your Point module:

def origin, do: {0, 0}

Constructors like this have the advantage of naming a concept. You can see
how much more expressive the origin function makes the next example:

iex(9)> Point.origin |> Point.right |> Point.right |> Point.down
{2, 1}

Nice! Our intention is marvelously clear. The pipes represent transformations,
and the reducers that do transformations between the same type are especially
powerful. Our constructor is better than using a simple {0, 0} because it names
the geometry concept: the point {0,0} is called the origin.

We can also use constructors to keep invalid data out of our functions:

def new(x, y) when is_integer(x) and is_integer(y) do
{x, y}

end

If the user invokes new with x and y values that are both integers, the clause
will match. Otherwise, it’ll fail, like this:

iex(11)> recompile
Compiling 1 file (.ex)
:ok
iex(12)> Point.new(1, 2)
{1, 2}
iex(13)> Point.new(1, :two)
** (FunctionClauseError) no function clause matching in Point.new/2

The following arguments were given to Point.new/2:

# 1
1

# 2
:two

Attempted function clauses (showing 1 out of 1):

def new(x, y) when is_integer(x) and is_integer(y)

(hello 0.1.0) lib/point.ex:3: Point.new/2

We attempt to create a point, but it fails. Elixir tells us exactly what’s wrong.
That means as long as our code uses constructors that enforce valid data,
the values we work with will be valid and won’t have to include an oppressive
amount of error data.

For now, let’s move on. It’s time to wrap up.

report erratum  •  discuss

Advanced Pattern Matching and Constructors • 43

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Your Turn
Tuples represent sequential data in Elixir. While tuples can be arbitrarily
long, we’ll tend to keep tuples short to make them easy to read. Also, while
full APIs exist to transform tuples, for efficiency reasons, we’ll create them
once in their final form.

The functions we build work best if the functions all take data of the same
shape, meaning tuples that all represent the same type. We built a function
to work with points. Our points were tuples with an x and y coordinate.

We built two special types of functions. We used constructors to name con-
cepts and keep data pure. We used reducers to perform operations that also
returned points. Rather than mutating a point, our reducers created whole
new points we transformed in some way.

Try It Yourself
In this section, we’re going to focus on exercises related to tuples. The Exer-
cism track doesn’t have too many examples, so we’ll make up a few problems
for you to try.

Let’s look at a few problems related to tuples. These easy questions deal with
pattern matching and code organization.

• How would you represent a three-dimensional point on a tuple?
• Write a function to determine if a three-dimensional point {x, y, z} is on a

plane identified by a z coordinate. For example, plane({4, 5, 0}, 0) would
return true but plane({1, 1, 1}, 0) would return false.

• How would you represent a shopping cart with a tuple?

This medium problem starts with an Exercism problem and refactors it to use
tuples.

• triangle: Solve this problem, then transform the program to take a three-
tuple instead of three different sides.

Next Time
In the next chapter, we’re going to address one of Elixir’s most important data
structures, the list.

We’ll see you on the next page!

Chapter 3. Tuples and Functions • 44

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


CHAPTER 4

Lists and Algorithms
In the previous chapter, we represented fixed-length sequences of elements,
holding potentially different types, in tuples. In this chapter, we’ll represent
variable-length data, usually holding similar or identical types, with lists.

We’ll add a few examples to our mini graphics application by incorporating
multiple points to represent polygons.

Lists
When you want to model sequential data in Elixir, you have two choices,
tuples and lists. We’ve already covered tuples. Tuples are great for short
sequences of data with a fixed length, while lists can hold potentially longer
sequences of data with variable lengths. While the same tuple has data that
might vary in type, lists tend to hold items of the same type, but not always.

Along with maps, lists are among the most important Elixir data structures.
Let’s do our usual exploration in the console:

iex(1)> [1, 2, 3]
[1, 2, 3]

Elixir syntax represents lists in square brackets. Let’s inspect the type. We’ll
look at the results in pieces:

iex(2)> i
Term

[1, 2, 3]
Data type

List

The term we typed is a list, and the module associated with that data type is
the List module. Let’s find out more:

Reference modules

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


List

There are a couple of dozen important functions on List, most notably flatten,
first, delete, and some conversions. When you get a chance, either run exports
List or type List and press tab to see the functions you can call from the List
module.

Let’s dive deeper into a list’s implementation.

List Construction
Elixir lists are linked lists, built head first. Take this list:

iex(1)> list = [1, 2, 3]
[1, 2, 3]

That’s not simply one list, but four. Here’s how we might represent it piece
by piece:

iex> list1 = []
[]
iex> list2 = [3|list1]
[3]
iex> list3 = [2|list2]
[2, 3]
iex> list4 = [1|list3]
[1, 2, 3]

Interesting. The | operator in functional programming is sometimes called the
cons operator, for list construction. [item|list] means add item to the head of list.
Strangely, every list in Elixir is made up of cons cells. The [1, 2, 3] list shown
here is made up of the three cons cells you see in the previous listing.

Looking at it another way, we can build a function called append, like this:

iex> append = fn lst, item -> [item|lst] end
#Function<12.128620087/2 in :erl_eval.expr/5>

We’ll provide more information about anonymous functions in a bit. For now,
know that we’re building a function that appends an item to a list. Remember,
each item is added to the head of list.

Then we start with an empty list and append each item using a pipe:

iex> [] |> append.(3) |> append.(2) |> append.(1)
[1, 2, 3]

When the full pipeline runs, we’re left with the final list. Note that we don’t
actually change a list. Instead, each call to append returns a new list.

Chapter 4. Lists and Algorithms • 46

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


That’s not just the way we’ve built the list [1, 2, 3]. It’s the way every list of [1,
2, 3] is represented, internally.

You might be wondering why you should care what happens under the hood.
The reason is that since Elixir is immutable, when you do anything to an
element of a list, each transformation gets progressively more expensive as
you navigate away from the head of a list.

When you’re searching for an element, accessing the head of a list is
extremely fast. Accessing the last element of a list n elements long will take
n steps. For a list n items long, we say algorithms like this one have an order
of n complexity using a system called big-O1 notation, while accessing an item
at the head is on the order of 1, or O(1).

When you’re updating a list, the same ideas apply. Changing the first element
of a list changes only the first element of a list, leaving the rest of the list intact
as you can see in the following image:

1 2 3 []
Each list item has a pointer to the rest of the list, but no pointer back to the
previous element. That means changing the last element is much worse than
changing the first. Since Elixir doesn’t allow value updates, changing one
element at the tail of a list forces your program to make a full copy of the list
to preserve the pointers. Tail updates are expensive for long lists.

Let’s dig a little deeper and explore how lists work with pattern matching.

The Enumerable Abstraction
We’re not going to stop and loiter here because many of the most important
functions you need for List are actually in other modules. Let’s do a little
detective work to find out why.

Let’s look at the description of the List module:

Implemented protocols
Collectable, Enumerable, IEx.Info, Inspect, List.Chars, String.Chars

That’s the last bit of our inspection, and there’s some interesting data in
there. Lists are part of several protocols. Remember, the protocols listed here
are essentially contracts that have functions you can use with List. Some, like
Inspect and the IEx.Info we’re using right now, are for debugging and information.

1. https://en.wikipedia.org/wiki/Big_O_notation

report erratum  •  discuss

Lists • 47

https://en.wikipedia.org/wiki/Big_O_notation
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Others, like List.Chars, Collectable, and Enumerable, are important classes that work
on collections of things in various contexts.

By far the most important of these is the Enumerable protocol. Elixir has two
major ways for working with lists. Both work with the Enumerable protocol. Let’s
take a look at it now:

iex(6)> h Enumerable

Enumerable

Enumerable protocol used by Enum and Stream modules.

There we go.

The eager data structures are in the Enum module and are immediately allo-
cated. The lazy ones are called Streams. These potentially infinite lists work
with functions in the Stream module and are only allocated as we need them.
In this chapter, we’re going to focus on the eager data structures in Enum.

Enum has many of the functions you need for accessing lists of things:

iex(7)> h Enum

Enum

Provides a set of algorithms to work with enumerables.

In Elixir, an enumerable is any data type that implements the Enumerable
protocol. Lists ([1, 2, 3]), Maps (%{foo: 1, bar: 2}) and Ranges (1..3) are
common data types used as enumerables:

iex> Enum.map([1, 2, 3], fn x -> x * 2 end)
[2, 4, 6]

iex> Enum.map(1..3, fn x -> x * 2 end)
[2, 4, 6]

The Enumerable protocol defines things that can be enumerated. The bulk of
the implementations are in Enum for dealing with eager lists and Stream for
dealing with lazy lists. You may notice the Enum functions all take an enumer-
able as the first argument. Let’s look at a few examples:

iex> Enum.sum([1, 2, 3])
6
iex> Enum.count([1, 2, 3])
3

We get the total for a list, or count the elements in a list. We’ll look at more
enumerable functions soon. For now, let’s look at the next building block for
Elixir list code, the pattern match.

Chapter 4. Lists and Algorithms • 48

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Pattern Matching and Lists
Matching tuples is easy in Elixir because tuples have fixed sizes. For example,
our points all have two elements. Lists are a bit trickier to match because
they can be any length. Let’s match a few lists.

ie> list
[1, 2, 3]
ie> [head|tail] = [1, 2, 3]
[1, 2, 3]
iex> head
1
iex> tail
[2, 3]
iex> [] = [1, 2, 3]
** (MatchError) no match of right hand side value: [1, 2, 3]

(stdlib) erl_eval.erl:453: :erl_eval.expr/5
(iex) lib/iex/evaluator.ex:257: IEx.Evaluator.handle_eval/5
(iex) lib/iex/evaluator.ex:237: IEx.Evaluator.do_eval/3
(iex) lib/iex/evaluator.ex:215: IEx.Evaluator.eval/3
(iex) lib/iex/evaluator.ex:103: IEx.Evaluator.loop/1
(iex) lib/iex/evaluator.ex:27: IEx.Evaluator.init/4

iex> [first, second|rest] = list
[1, 2, 3]
iex> second
2
iex> [first, second, third] = list
[1, 2, 3]

These pattern matches should give you a pretty good idea of what’s happening.
They use the [|] list construction operator, but in reverse.

Everything on the left of the | matches the head of the list exactly. Let’s try
some trickier pattern matches.

Advanced Patterns
We’re not limited to one element. We can try to match as many elements in
the head as we want, like this:

iex> list = [1, 2, 3]
[1, 2, 3]
iex> [first, second|rest] = list
[1, 2, 3]
iex> first
1
iex> second
2
iex> rest
[3]

report erratum  •  discuss

Pattern Matching and Lists • 49

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


iex> [_, second, third|rest] = list
[1, 2, 3]
iex> second
2
iex> third
3
iex> rest
[]

Matching more than one element in the head is OK and works similarly to
matching the first elements of a tuple. You can ignore elements, and if you
use the |, Elixir will match the remaining items as a list.

Can you guess what this code does? Try not to peek past the following listing:

iex(10)> [1|[_|rest]] = list
[1, 2, 3]

Try not to peek!

iex(11)> rest
[3]

Did you get it? Here’s what happened. The left-hand side is the head of our
list, a 1. That leaves the right-hand side to match the rest of our list, [2, 3].

We match the rest of the list with this code: [_|rest]. The underscore ignores
the head of the list, a 2. The rest of the list is [3].

The | is optional, but if you omit it, Elixir will treat the list like a tuple. It won’t
match lists where the number of elements on the left and right sides are dif-
ferent:

iex(15)> [first, second] = list
** (MatchError) no match of right hand side value: [1, 2, 3]

(stdlib) erl_eval.erl:453: :erl_eval.expr/5
(iex) lib/iex/evaluator.ex:257: IEx.Evaluator.handle_eval/5
(iex) lib/iex/evaluator.ex:237: IEx.Evaluator.do_eval/3
(iex) lib/iex/evaluator.ex:215: IEx.Evaluator.eval/3
(iex) lib/iex/evaluator.ex:103: IEx.Evaluator.loop/1
(iex) lib/iex/evaluator.ex:27: IEx.Evaluator.init/4

As expected, Elixir complains. The number of elements on the left and right
don’t match. The same holds true for too many elements on the left-hand
side.

If you’re new to functional programming, you might wonder how to take
advantage of this kind of pattern matching. Let’s find out.

Chapter 4. Lists and Algorithms • 50

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Recursion over Lists
Elixir is immutable, meaning our algorithms won’t iterate the way you might
see them do in a procedural language like C or an object-oriented language
like Python. Instead of iteration, functional languages use pattern matching
and functions.

The Simplest Recursive Algorithms
Recursion picks off the head from a list, deals with it directly, and then makes
a recursive call to deal with the rest. Here’s an example of using a list with
recursion over the tail.

def total([]), do: 0
def total([head|tail]), do: head + total(tail)

If you’ve not seen code like this before, take a little time to understand what’s
going on. The first clause is easy to understand. The total of an empty list is
zero. The second feels a bit like we’re picking ourselves up by our own shoe
laces.

Let’s dig a little deeper. Say we’re calling this function with a list of [1, 2, 3].
Here’s what the execution would look like step by step.

total([1, 2, 3])

We start by invoking total with the whole list. Elixir won’t match the first
clause, because there’s something in the list. So, we take the second clause,
with head getting 1 and tail getting [2, 3]. Let’s plug that into the return value,
like this:

1 + total([2, 3])

You can start to see what’s happening. Now, let’s run the function again, but
with [2, 3]:

1 + 2 total([3])

And so on:

1 + 2 + 3 + total([])

This time we match the final clause:

1 + 2 + 3 + 0

At least, that’s the idea. If you’re having trouble with this concept, push it
aside for a little while and come back to it. You won’t need to write much
recursive code in Elixir because many Elixir libraries do that work for you.

report erratum  •  discuss

Recursion over Lists • 51

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


There’s one more detail we need to cover. It’s a concept called tail recursive
optimization. Functional languages use tail recursive optimization to convert
inefficient recursive calls to efficient loops. The key concept to understand is
that if the last function the compiler must execute is a recursive call, Elixir
can optimize that code. Let’s see how that concept might work.

Tail Recursion with Accumulators
You might have noticed that the previous example started with a large list
and made it smaller and smaller with every invocation. The code was easy to
understand, but not necessarily efficient. Let’s make a tail recursive version.
Using this strategy, we’ll have one function argument holding a list that gets
smaller and smaller and another argument that accumulates the answer
we’ve accumulated so far. As you might have guessed, we’ll call this second
argument the accumulator. The program looks like this:

def total_with_accumulator([], partial_total) do
partial_total

end

def total_with_accumulator([first|rest], partial_total) do
total_with_accumulator(rest, partial_total + first)

end

That code might look a little confusing, but it’s not too bad if we break it down
step by step. Let’s call it with our usual list of [1, 2, 3]. We’ll start the ball rolling
with a partial_total of 0, like this:

total_with_accumulator([1, 2, 3], 0)

This code won’t match the first head, because the list isn’t empty yet. Let’s
take the second clause:

total_with_accumulator([2, 3], 0 + 1)

And again:

total_with_accumulator([3], 1 + 2)

And once again, with feeling:

total_with_accumulator([], 3 + 3)

Which brings us to the last clause, so we return 6!

We can make one tiny improvement. We know the initial accumulator will
always be zero, so we don’t have to make the user specify it:

def total_with_accumulator_api(list) do
total_with_accumulator(list, 0)

Chapter 4. Lists and Algorithms • 52

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


end

Nice. Now the user can simply invoke our total with only a list. We can improve
on this code, but to do so, we’ll need a concept called higher order functions.

Reduce and Anonymous Functions
Anonymous functions, also called higher order functions, allow developers
to treat functions like data. You can pass anonymous functions as arguments,
or hold them in variables.

You can then use anonymous functions to automate the code we’ve written
so far. Sometimes, you might want to build your own function to combine
elements in a list. Take another look at the critical line of code that uses an
accumulator:

total_with_accumulator(rest, partial_total + first)

Now that you know how that works, let’s organize the code with a slight dif-
ference:

process_list(rest, arbitrary_function)

This pattern is common enough that there’s a function to do this work called
reduce. To use it, we need to be able to specify our own functions or use ones
we’ve coded elsewhere.

Let’s start with creating our own functions on the fly. That’s the role of
anonymous functions. They take this form:

fn arguments -> body end

Notice there’s no way to specify a name. Instead of naming them, we’ll pass
them as arguments to other functions or bind them to variables. In short, we
treat them like data.

The arguments will use the same form they do in the named functions we’ve
already created. The body of the function is also the same. This syntax is
useful when we need to create tiny, shorthand one-shot functions to solve a
focused problem.

iex(8)> add = fn x, y -> x + y end
#Function<12.128620087/2 in :erl_eval.expr/5>
iex(9)> i
Term

#Function<12.128620087/2 in :erl_eval.expr/5>
Data type

Function
Type

report erratum  •  discuss

Reduce and Anonymous Functions • 53

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


local
Arity

2
Description

This is an anonymous function.
Implemented protocols

Enumerable, IEx.Info, Inspect

iex(10)> add.(3, 4)
7

We create a function that adds x and y together. Then, we inspect it. The
function is as much a data type as any other piece of data in Elixir. The term
is a function, the type is Function, and the Info protocol correctly recognizes it
as an anonymous function.

You might have noticed that we need an additional . when we invoke it, like
this:

add.(3, 4)

Let’s mark that extra period a little better, like this:

add<<<.>>>(3, 4)

Any time you want to invoke an anonymous function, you need to add the .
operator and then supply the arguments. This syntax becomes a little awkward
when you want to use the function in a pipe, like this:

iex(11)> inc = fn x -> add.(x, 1) end
#Function<6.128620087/1 in :erl_eval.expr/5>
iex(12)> inc.(4)
5
iex(13)> 4 |> inc.() |> inc.()
6

Normally, when we use a pipe and we don’t have to specify any arguments,
we don’t need any parentheses at all. Since the . is not optional, when we
pipe with anonymous functions, we need to specify both the dot and the
parentheses.

We’re not limited to simple single-headed functions.

Multiple Anonymous Function Heads
We have a surprisingly full bag of tricks when we’re dealing with anonymous
functions in Elixir. We can use pattern matching, multiple function heads,
and even guards, like this:

iex(17)> fn x when x > 0 -> :positive

Chapter 4. Lists and Algorithms • 54

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


...(17)> 0 -> :zero

...(17)> x when x < 0 -> :negative

...(17)> end

This function specifies multiple heads and guards. It’ll work fine. Recursion
isn’t possible because recursive functions call themselves and anonymous
functions don’t have names. Still, take heart. You can make your anonymous
functions as long, complex, and unreadable as their named counterparts!

Pitfalls of Anonymous Functions
When you’re marveling over all of the things you can do as you build your
anonymous functions, sometimes it’s good to answer the question “Yeah, but
should I?” Here are a couple of questions you can ask yourself.

• Would giving my function a name make my code easier to understand?
• Does creating my beautiful anonymous function make the function it’s

embedded in less readable?
• Can I reorganize my code, perhaps by extracting a bit from an existing

function, to obviate the need for the anonymous function altogether?

Anonymous functions are powerful and important. Still, they have their limi-
tations. The main rule when using them is simply to think.

Higher Order Functions
So, now we have another building block, a function we can use as data. We’ll
call this a higher order function. This concept isn’t unique to Elixir. It’s the
foundation for all functional languages. Anonymous functions are playing an
increasingly important role in object-oriented languages as well. Let’s see how
we might use this idea in the total_with_accumulator we were building earlier.

Elixir’s Enum module lets us take a list and a two-argument function to reduce
a list to a single value, step by step. When you think about it, that’s exactly
what our total_with_accumulator function was doing! Here’s how it works.

First, create a function with arguments for a list item and an accumulator,
like this:

iex(18)> add = fn list_item, acc -> list_item + acc end
#Function<12.128620087/2 in :erl_eval.expr/5>

Now, you can call reduce, like this:

iex> Enum.reduce(list, 0, add)
6

report erratum  •  discuss

Reduce and Anonymous Functions • 55

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Notice we need to specify the initial accumulator, and Elixir does the rest of
the work for us. Sometimes, the first element of your list can actually serve
as the accumulator, and let Elixir run Enum.reduce/2. Remember, the /2 suffix
means the function needs two arguments:

iex> Enum.reduce(list, add)
6

And it’s the same. If this is a bit confusing, this piped version of the same
idea may help you understand what’s happening:

0
|> add.(1)
|> add.(2)
|> add.(3)

Marvelous! We’re simply using the add function over and over to combine the
accumulated total so far with an item from the list. I cheated, but only a little.
The pipe expects the accumulator to be first, while the Enum.reduce function
expects the reducer to be the second argument. Still, this little snippet may
help you understand exactly what’s happening.

Now, we’re ready to pull together some of these ideas into another example.
We’ll implement a polygon using lists.

Implement a Polygon
Roughly stated, a polygon is a shape made up of the area between connected
lines. For example, triangles are polygons with three sides. Let’s create a
module for working with polygons.

We’ll start with a few constructors. Here are a couple of constructors for
building squares and rectangles:

defmodule Polygon do
def rectangle({x, y}, height, width) do

[{x, y}, {x+width, y}, {x+width, y+height}, {x, y+height}]
end

def square(point, length) do
rectangle(point, length, length)

end
end

Both of these functions take the building blocks of the shape and return a
polygon, a list of points. Now, let’s build some reducers. We’ve already done
the bulk of the work in the Point module. The functions in Point work with a

Chapter 4. Lists and Algorithms • 56

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


single point. All we have to do is call those functions for every point in a
polygon, like this:

def mirror(polygon, w), do: Enum.map(polygon, &Point.mirror(&1, w))
def flip(polygon, h), do: Enum.map(polygon, &Point.flip(&1, h))
def transpose(polygon), do: Enum.map(polygon, &Point.transpose/1)

def rotate(polygon, degrees, w, h) do
Enum.map(polygon, &Point.rotate(&1, degrees, w, h))

end

def move(polygon, vector) do
Enum.map(

polygon,
fn point ->
Point.move(point, vector)

end
)

end

Each polygon is a list of points. To move, flip, or rotate a polygon, we simply
call the same function on all of the points in our polygon, passing the height
or width through as needed. The notation &function(&1, arg) builds a new function
that looks like this:

second_argument = ...some_value...
fn first_argument -> function(first_argument, second_argument) end

Enum.map combines the concepts of enumerables and higher order functions
in a different way from reduce. Enum.map takes an enumerable and makes a
new one by applying a function to each of the arguments in the first one.
We’re effectively building a mathematical mapping between elements, using
a function.

Let’s take it for a spin.

iex> r = Polygon.rectangle(Point.origin, 4, 2)
[{0, 0}, {2, 0}, {2, 4}, {0, 4}]
iex> r |> Polygon.rotate(270, 2, 4)
[{4, 0}, {4, 2}, {0, 2}, {0, 0}]

It works! We create a new polygon and then move it around a bit. We’ve cov-
ered plenty of ground in this example. It’s time for you to explore concepts
on your own.

Your Turn
This entire chapter was focused on lists, the algorithms we can build with
them, the libraries that work on them, and a quick program.

report erratum  •  discuss

Your Turn • 57

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Let’s review.

Lists Hold Sequential Variable-Length Data
Lists represent sequences of variable lengths, and they usually have elements
of the same type. Pattern matching in lists breaks the list into the head and
the rest of the elements.

Under the hood, lists are linked lists, and that means each list is made up of
its links, sometimes called cons cells. Like links in a chain, these cons cells
make list access at the front of the list relatively fast, but they also make
access at the end of the list much slower.

Because Elixir is a functional language, our programs don’t iterate over lists.
Instead, they use a combination of functions and pattern patching to traverse
lists.

We used lists to build out a polygon, a quick program that used our underlying
points in a list.

Try It Yourself
We finally have enough tools in the box to solve a good number of the Exercism
problems, so we’re going to focus on that area for a bit.

These easy problems work with lists and enumerables.

• beer-song: List the verses of a famous beer song. It’ll use enumerables and
the concept of a range.

• rna-transcription: Work with lists, characters, charlists, and strings to tran-
scribe RNA codes.

• twelve-days: Print out the days to the twelve days of Christmas.

These medium problems work with lists and recursion.

• list-ops: Use recursive algorithms to build list operations like length and the
like.

• nucleotide-count: Work with lists, strings, and characters to count nucleotides
within a string.

• strain: Use primitive functions to build a filter.

This is a good set of problems for lists and strings. We’ll fold in more complex
problems as we go on.

Chapter 4. Lists and Algorithms • 58

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Next Time
In the next chapter, we’re going to begin to address more advanced program-
ming concepts. We’ll also spend a good amount of time with maps and structs.
These data structures will give us plenty of firepower to work on more complex
data structures. Then, we’ll move on to more advanced programming tech-
niques like streams and protocols.

report erratum  •  discuss

Your Turn • 59

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


CHAPTER 5

Key-Value Data
The previous two chapters were about linear data. This chapter will focus on
key-value data. Let’s set the stage, right from the beginning.

Key-value data is everywhere in functional programming because key-value
data is everywhere in the world. All of these examples represent key-value
pairs:

• We look up definitions in a dictionary by a word.
• Programs refer to people informally by name, or formally by a social

security number or email address.
• Function or program options have names and values.
• Database rows have columns.
• Data structures often have fields.

These examples all associate a key with a value. To put it another way, these
associations are mappings. In fact, way down at its foundation, functional
programming is also about associations because a function is also an associ-
ation.

Since associations are everywhere in functional programming, it shouldn’t
surprise you that Elixir has several different ways to refer to key-value data.

But it might surprise you that Elixir had to wait on Erlang before adding
maps to the language! That’s right. Erlang existed more than 20 years before
adding maps, and today, Elixir uses maps everywhere.

In this chapter, you’ll see the old way that Elixir used to represent key-value
data, called the Keyword dictionary, or Keyword for short. Then, we’ll move on to
Elixir maps, which are more efficient representations of key-value data.
Finally, we’ll use structs, which are maps with restrictions.

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Along the way, we’ll show you how to use a single map, but also how to work
with maps en masse to build our software in layers. We’ll also look at some
strategies for building APIs that use associations, and where each key-value
Elixir data type might fit.

Let’s get to it.

Keyword Dictionaries
The first way to represent key-value data in Elixir is to use a combination of
the data types we’ve seen so far. To do so, let’s think about the data structures
we know about and how to use them.

Remember, tuples hold fixed-length data, where the position of the tuple
determines how we treat it. Let’s represent a single key-value pair with a
tuple. We’ll create atoms with a number’s name as the key, and the number
itself as the value, like this:

iex> one = {:one, 1}
{:one, 1}
iex> two = {:two, 2}
{:two, 2}
iex> three = {:three, 3}
{:three, 3}

That’s a good start. We have a few key-value pairs. That’s not going to get us
too far, though. We need to group the data together. Let’s use the only data
structure we’ve studied so far that can take variable-sized data, a list:

iex> numbers = [one, two, three]
[one: 1, two: 2, three: 3]

That was unexpected! We gave Elixir a list of tuples, and it presented the
result as [one: 1, two: 2, three: 3].

What you’re actually seeing is some syntactic sugar for a keyword list. Let’s
do our usual inspection of the data type:

iex> i
Term

[one: 1, two: 2, three: 3]
Data type

List
Description

This is what is referred to as a "keyword list". A keyword list is a list
of two-element tuples where the first element of each tuple is an atom.

Reference modules
--> Keyword <--, List

Implemented protocols

Chapter 5. Key-Value Data • 62

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Collectable, Enumerable, IEx.Info, Inspect, List.Chars, String.Chars

Look at the emphasized Keyword module under Reference modules. Elixir is recog-
nizing that our structure is a keyword list. Keyword lists are lists of two tuples.
These represent key-value pairs. All Erlang associations in the past used this
format.

We used atoms to represent keys, and that’s an important Elixir idiom.
Because all of our tuples start with atoms, we have access to some sugar.
First, we can represent our keyword lists the same as in the previous listing.
Let’s give it a try:

iex> bigger = [four: 4, five: 5, six: 6]
[four: 4, five: 5, six: 6]
iex> [first|rest] = bigger
[four: 4, five: 5, six: 6]
iex> first
{:four, 4}

We represent a list using the sugar and pick off the first item. You can see
the first element is simply a two-tuple.

Though we’ll usually prefer maps to keywords, we’ll still use keywords for
representing things like Elixir configuration in places and function options.

Keywords as Options
In fact, keywords are so important as options that you can omit the square
brackets if the last argument of a function expects a keyword. Let’s say that
you have the following code:

def optional(required, opt) do
one = Keyword.get(opt, :option1) || "default value"
two = Keyword.get(opt, :option2) || "default value"
do_something_with(required, one, two)

end

You could call it like this:

optional(:required, option1: "first option", option2: "second option")

You’ll see syntax sprinkled around Elixir that looks like this, including the
one-line function syntax.

Since keywords are lists, it’s efficient to access keywords near the front of a
list, but doing so becomes increasingly expensive as they hold more tuples
for keys that aren’t at the front of the list.

report erratum  •  discuss

Keyword Dictionaries • 63

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


That’s all we need to address with keywords. Let’s move on to a workhorse
data structure for Elixir, the map.

Maps
Maps are key-value pairs, but they’re built for fast random access. That means
you can access any key quickly. In big O notation,1 the operation is O(Log n)
for an n-item map.

Map Syntax, Sugar, and Access
Let’s build a map from a list of tuples. In your console, make sure you still
have the Keyword called numbers defined. Then, create a new map with Map.new,
like this:

iex> numbers = [one: 1, two: 2, three: 3]
[one: 1, two: 2, three: 3]
iex> numbers_map = Map.new(numbers)
%{one: 1, three: 3, two: 2}

That’s straightforward. The syntax of a map is the same as when the keys
are atoms. Maps have a leading % and curly braces surrounding the keys and
values. If keys are first, you can use the shorthand atom syntax.

If you don’t have a key in the first position, you need to use the => operator.
We’ll call it the hash rocket:

iex> names = %{1 => :one, 2 => :two}
%{1 => :one, 2 => :two}

Like a Keyword, a Map holds key value pairs. There are a few key differences.
The first, which we’ve already mentioned, is speed, especially for larger collec-
tions. The second is uniqueness. Map keys must be unique.

To access an element from a map, you can use one of three common tech-
niques:

iex> numbers_map.one
1
iex> names[1]
:one
iex> Map.get(names, 2)
:two

1. https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/

Chapter 5. Key-Value Data • 64

report erratum  •  discuss

https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


We accessed a map three ways. First, if the keys are atoms, you can use the
dot syntax. Second, you can use the square brackets, sometimes called the
access protocol. Finally, you can use a library function.

If a key isn’t there, Map.get/2 returns a nil, and Map.get/3 allows you to specify a
default value, like this:

iex> Map.get(names, 4)
nil
iex> Map.get(names, 4, 0)
0

That behavior may make you nervous because it can cause silent failures.
You actually have two more options.

Safe Access with Map.fetch
You can use the different versions of Map.fetch to return an error or raise an
exception, like this:

iex> Map.fetch(names, 4)
:error
iex> Map.fetch!(names, 4)
** (KeyError) key 4 not found in: %{1 => :one, 2 => :two}

(stdlib) :maps.get(4, %{1 => :one, 2 => :two})

In general, it’s better to fail as soon and as hard as you can within application
code. The worst behavior is code that silently does something wrong.

As you might expect, you can use pattern matching with maps. Here’s how
it works:

iex> numbers_map
%{one: 1, three: 3, two: 2}
iex> %{one: value1, two: value2, three: value3} = numbers_map
%{one: 1, three: 3, two: 2}
iex> value3
3
iex> %{two: two} = numbers_map
%{one: 1, three: 3, two: 2}
iex> two
2
iex> %{} = numbers_map
%{one: 1, three: 3, two: 2}

Brilliant. Pattern matching will fail in these conditions:

• If the pattern on the left is a map and the pattern on the right is not, the
pattern won’t match.

report erratum  •  discuss

Maps • 65

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


• If a key is in the pattern on the left, but not the expression on the right,
the pattern won’t match.

• If any of the values on the left don’t match the associated keys on the
right, the pattern won’t match.

Otherwise, the maps will match. These matching techniques are especially
useful for pulling values out of maps. There are a few peculiarities, though.

You can use pattern matching to extract the values for a given key, but you
can’t extract the key for a value. That’s true because Elixir’s maps are built
to look up by keys efficiently, but not the other way around.

You don’t have to specify all of the keys in a map. A successful match guaran-
tees only that the keys you specify match. That means:

An empty map matches every map. That’s right. If you need to identify an
empty map, you need to use some other tool to do so.

Map pattern matches in function heads are especially useful for extracting
values:

def total(%{quantity: quantity, price: price}), do: quantity * price

The function head does most of the work, pulling out the quantity and price
from the line item.

Or verifying structure:

def map?(%{}), do: true
def map?(_other), do: false

Remember, the empty map matches every map, not only empty ones. This
way, we can tell whether we’re getting a data type we expect.

Or comparing items:

def identity?(%{x: value, y: value}), do: true
def identity?(_point), do: false

Now that you’ve seen a few ways to access the data within a map, we can
begin to work on some specialized code to transform them.

Let’s look at a few ways we can transform maps.

Map Manipulation
Remember, Elixir data structures can’t be updated. When we say “change”
or “update”, we’re talking about returning a new changed map. Let’s look at
a few techniques we can use to transform maps.

Chapter 5. Key-Value Data • 66

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


We’ll look at a convenient way to change one or more keys in a map using an
expression called the map update syntax. Then we’ll look at a few functions
in the Map API that transform maps. These are two ways to change one map.

We’ll also do our usual exploration through maps using the IEx console. We’ll
look at the underlying data type and explore it a bit. Let’s get started.

Map Update Syntax
The map update syntax works best when maps have a known set of keys.
Say we have a map representing a person:

iex> person = %{first: "Joe", last: "Armstrong", profession: "Programmer"}
%{first: "Joe", last: "Armstrong", profession: "Programmer"}

Let’s say we wanted to change the profession to author. We could do so like
this:

iex> %{person|profession: "Author"}
%{first: "Joe", last: "Armstrong", profession: "Author"}

Nice. We can change one or more keys, but introducing a new key will throw
an error. The map update syntax is good for building reducers in modules
that work on maps (or their sister data types structs that we’ll explore next.)
The variable to the left of the | must contain a map, and the expression will
return a new map with changes to only the keys we specify.

Let’s look at some functions for working with maps.

Map Transformation Functions
Let’s say we had a map with some page counts. Let’s start with an empty map
and then use functions to add some counts to it, like this:

iex> counts = %{} |> Map.put(:index, 1) |> Map.put(:elixir, 1)
%{elixir: 1, index: 1}

We use the Map.put function to add a couple of items to our map. Now, let’s
use an anonymous function to update a key, like this:

iex> inc = fn x -> x + 1 end
#Function<6.128620087/1 in :erl_eval.expr/5>
iex> counts = Map.update(counts, :elixir, 0, inc)
%{elixir: 2, index: 1}
iex> counts = Map.update(counts, :erlang, 0, inc)
%{elixir: 2, erlang: 0, index: 1}

Great. If the key is found, Elixir applies the function in the fourth argument.
If not, Elixir uses the default value in the third argument.

report erratum  •  discuss

Map Manipulation • 67

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


We can use various functions to get the keys or values, delete keys, or drop
specific keys. We’ll let you look them up in IEx with h Map and exports Map, or
look them up in Elixir’s excellent online documentation.2

So far, the techniques we’ve talked about were good for working with a single
map. Sometimes, we need to work with all of the values in a map, or at least
a healthy number of them. To do so, it’s best to use the Enumerable protocol.

Protocols and Enumerable
Working with a map as a whole instead of piecemeal is different. It’s going to
take a new set of tools beyond the ones we’ve seen so far. Let’s look at the
Map in the IEx console and search for clues, like this:

iex> %{}
%{}
iex> i
Term

%{}
Data type

Map
Reference modules

Map
Implemented protocols

Collectable, Enumerable, IEx.Info, Inspect

Interesting. We’ve used the IEx.Info protocol, and if you look at the bottom of
that listing, you can see that Elixir uses the Collectable and Enumerable protocols
as well!

A protocol provides a contract. To implement a protocol, a programmer must
implement a fixed set of functions. In exchange, the protocol provides a set
of services. For example, by implementing Enumerable, the creator of the Map
module ensured all maps can work with the functions in the Enum module.

Said another way, if you want your module to work with Enum, you have to
implement the Enumerable protocol. That means your module needs to imple-
ment the functions reduce/3, count/1, member?/2, and slice/1. Similarly, by imple-
menting into/1, your module can participate in the Collectable protocol, a service
for traversing data structures in a linear way.

If you don’t understand how all of this works, simply remember these two
things: you can use maps with the Enum functions, and you can use maps
with features that work with into. If you’re confused, sit tight. We’ll give you
plenty of examples in a bit.

2. https://hexdocs.pm/elixir/Map.html

Chapter 5. Key-Value Data • 68

report erratum  •  discuss

https://hexdocs.pm/elixir/Map.html
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Using Maps in Bulk
Let’s build a program to create all of the Roman numeral values from 1 to
1000. We could do so by adding a number to a map, one at a time, but that’s
not a functional design.

There’s a better way, though. When you can, it’s better to think more broadly.
When you’re building a big, predictable map, don’t build it one piece at a
time. Build all of the tuples at once, and then dump them all at once into a
new map.

Let’s take an example. Create a new mix project called Romans, like this:

[elixir] ➔ mix new roman
...
[elixir] ➔ cd roman
[roman] ➔

Now, let’s think a bit. We’ll want to build a function to calculate the first
Roman digit from the left, given a decimal number. The code will look like
this:

def digit(number) do
cond do

number >= 1000 ->
"M"

number >= 900 ->
"CM"

number >= 500 ->
"D"

number >= 400 ->
"CD"

...and so on...
end

end

That program will get us the next digit. Still, it would be better to build a
function that we could use either with reduce or with recursion. Reduce works
with lists of things, but we don’t actually have a list. Let’s make it work with
recursion instead.

Let’s make our program work with a tuple that looks like {decimal, roman}. With
each pass, our function will subtract from the decimal value and add a digit
to roman. The function will append to our list head first, for efficiency.

Open up roman.ex, and key this in:

defmodule Roman do
def next_digit({decimal, romans}) do

report erratum  •  discuss

Using Maps in Bulk • 69

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


result =
cond do

decimal >= 1000 ->
{decimal - 1000, ["m"|romans]}

decimal >= 900 ->
{decimal - 900, ["cm"|romans]}

decimal >= 500 ->
{decimal - 500, ["d"|romans]}

decimal >= 400 ->
{decimal - 400, ["cd"|romans]}

decimal >= 100 ->
{decimal - 100, ["c"|romans]}

decimal >= 90 ->
{decimal - 90, ["xc"|romans]}

decimal >= 50 ->
{decimal - 50, ["l"|romans]}

decimal >= 40 ->
{decimal - 40, ["xl"|romans]}

decimal >= 10 ->
{decimal - 10, ["x"|romans]}

decimal >= 9 ->
{decimal - 9, ["ix"|romans]}

decimal >= 5 ->
{decimal - 5, ["v"|romans]}

decimal >= 4 ->
{decimal - 4, ["iv"|romans]}

decimal >= 1 ->
{decimal - 1, ["i"|romans]}

end
next_digit(result)

end
end

We take a tuple with the digits we’ve accumulated so far, and a number. Then
we match the largest decimal value we can and return a tuple with the new
values. Notice we’re building our list head first for efficiency. When we’re done,
we make a recursive call.

This function is long and tedious. There are ways to tighten up this code, but
in the interest of making the program easy to understand for our beginners,
we’ll leave those improvements to our advanced readers. For now, let’s give
the function a try in IEx:

iex> Roman.next_digit({10, []})
{0, ["X"]}
iex> Roman.next_digit({8, []})
{0, ["I", "I", "I", "V"]}
iex> Roman.next_digit({158, []})
{0, ["I", "I", "I", "V", "L", "C"]}

Chapter 5. Key-Value Data • 70

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Excellent! We’re well on our way. Our code does exactly what we need. Now,
we need a convenience function to convert those values to a friendly format.
Add this function to your program:

def convert(decimal) when is_integer(decimal) and decimal > 0 do
{0, romans} = next_digit({decimal, []})

romans
|> Enum.reverse
|> Enum.join("")
|> String.to_atom

end

We take a decimal number, build the digits, and then convert the digits in
romans to a friendly format. We reverse the list and then join them together.
For good measure, we convert the string to an atom, which will make it easier
to access the Roman numerals in our map, as you’ll see in a bit.

This pattern of building lists head first and then reversing the result in the
end is a common one in Elixir and other functional languages that rely on
linked lists.

Try it out:

iex> recompile
:ok
iex> Roman.convert 3
:iii
iex> Roman.convert 64
:lxiv

Perfect! Our conversions are working the way they’re supposed to. Now, we
can use our Roman.convert function to build out our whole, big map. Add this
final function to our roman.ex file:

def map() do
for x <- (1..1000), into: %{} do

{convert(x), x}
end

end

We’re using a new feature called a for comprehension. You can get help on it
by typing h for in iex.

Let’s focus on the top of the for expression first. The value (1..1000) is called a
range, and it’s an Enumerable. Reading the expression in English, you might
say “For every possible x taken from the range of numbers from 1 to 1000,
build a list of tuples where the first element is the result of convert(x) and the
second element is x. Dump the result into a map.”

report erratum  •  discuss

Using Maps in Bulk • 71

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


We’ve barely scratched the surface of what for can do. You can read about
them later. For now, let’s try it out!

iex> recompile
Compiling 1 file (.ex)
:ok
iex> map = Roman.map
%{

cclxiv: 264,
dccv: 705,
xliv: 44,
clv: 155,
cxcii: 192,
dclxvii: 667,
...

%}
iex> map.iii
3
iex> map.clv
155

It works! Building larger maps from lists of tuples is a great way to bring the
whole Enumerable protocol to bear on problems that require large blocks of
associative data.

Now that you’ve seen maps and put them into practice, it’s time to address
the last Elixir key-value type, structs!

Structs Are Restricted Maps
A struct is a specific kind of map. Where a map can have any combination
of keys, every struct that conforms to a type has a specific list of keys.

Structs are ideal for holding metadata for a type. Let’s put structs into practice
to build an SVG graphic.

We’re going to create an SVG graphic representation that we’ll eventually put
in a text file that looks like this:

<svg viewBox="0 0 200 200" xmlns="http://www.w3.org/2000/svg">
<polygon points="100,100 150,25 150,75 200,0"

fill="none" stroke="black" />
</svg>

defstruct Defines a Struct
Let’s switch back to our graphics project. Open up a file called shape.ex and key
this in:

defmodule Shape do

Chapter 5. Key-Value Data • 72

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


defstruct([:points, :stroke, :fill])
end

We’ve defined the structure we’ll use for the Shape module. The single defstruct
line completely changes the nature of our module. Now, the data type associ-
ated with our module is a Shape struct. Rather than define the word, let’s try
it out instead.

[graphics] ➔ iex -S mix
...
iex> exports Shape
__struct__/0 __struct__/1
iex> Shape.__struct__
%Shape{fill: nil, points: nil, stroke: nil}

We got the exports of the Shape module and found one more. By virtue of the
defstruct definition, we created a struct, and we can access it with the command
Shape.__struct__. That’s the __struct__/0 form, but there’s also a version of __struct__
with one argument, and we can use a Keyword to pass key-value pairs to it,
when we initialize it:

iex> shape = Shape.__struct__(fill: :white, stroke: :black,
points: [Point.new(1, 2), Point.new(2, 2), Point.new(2, 1)])

%Shape{fill: :white, points: [{1, 2}, {2, 2}, {2, 1}], stroke: :black}

Notice that we’ve built a map, but the map has the Shape name right after the
% character. That’s the signal that our map is in fact a struct.

In fact, maps are structs in every sense. You can access individual keys, or
use pattern matching just as you can with other maps:

iex> shape.fill
:white
iex> %{points: [first, second, third]} = shape
%Shape{fill: :white, points: [{1, 2}, {2, 2}, {2, 1}], stroke: :black}
iex> first
{1, 2}

You can use the struct syntax to create a new struct:

iex> %Shape{fill: :white, points: [{1, 2}, {2, 2}, {2, 1}], stroke: :black}
%Shape{fill: :white, points: [{1, 2}, {2, 2}, {2, 1}], stroke: :black}

You can also provide default values for some or all of your keys, and require
keys to be supported. Tweak your shape.ex file to look like this:

defmodule Shape do
@enforce_keys [:points]
defstruct([

:points,
stroke: :blue,

report erratum  •  discuss

Structs Are Restricted Maps • 73

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


fill: :black
])

end

Now, when you create a struct, you’ll get the default values:

iex> Shape.__struct__
%Shape{fill: :black, points: nil, stroke: :blue}

Notice you’re getting the default values, but it’s not honoring the @enforce_keys
module attribute. For this reason, when you create a struct, use the struct
syntax.

So, let’s look at some of the differences between maps and structs.

Structs vs. Maps
Before we shut this section down, let’s do a bit more exploration. The thing
that distinguishes a struct from a map internally is one specific key:

iex(17)> Map.keys(shape)
[:__struct__, :fill, :points, :stroke]
iex(18)> shape.__struct__
Shape

If the __struct__ key is set to a module, the data structure will act like a struct.
You can convert from structs to maps by dropping the key, or by calling the
convenience method Map.from_struct, like this:

iex> map = Map.from_struct(shape)
%{fill: :white, points: [{1, 2}, {2, 2}, {2, 1}], stroke: :black}
iex> map = Map.drop(shape, [:__struct__])
%{fill: :white, points: [{1, 2}, {2, 2}, {2, 1}], stroke: :black}

You can also convert from a map to a struct by adding that key, like this:

iex> Map.put(map, :__struct__, Shape)
%Shape{fill: :white, points: [{1, 2}, {2, 2}, {2, 1}], stroke: :black}

Bingo. Let’s talk about the biggest difference between structs and maps, the
ability to access keys.

You can use the . syntax or the Map functions to access the data in a struct:

iex> Map.get(shape, :fill)
:white
iex> shape.fill
:white

But you can’t use the access protocol, the one that uses the map[:key] syntax:

iex> shape[:fill]

Chapter 5. Key-Value Data • 74

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


** (UndefinedFunctionError) function Shape.fetch/2 is undefined
(Shape does not implement the Access behaviour)

(graphics 0.1.0) Shape.fetch(
%Shape{fill: :white,

points: [{1, 2}, {2, 2}, {2, 1}], stroke: :black}, :fill)
(elixir 1.10.1) lib/access.ex:286: Access.get/3

You should prefer the map update syntax to update maps as it won’t allow
you to access a key that’s not there:

iex> %{shape|backgrond: :plaid}
** (KeyError) key :backgrond not found in:
%Shape{fill: :white, points: [{1, 2}, {2, 2}, {2, 1}], stroke: :black}

(stdlib 3.7) :maps.update(:backgrond, :plaid,
%Shape{fill: :white, points: [{1, 2}, {2, 2}, {2, 1}], stroke: :black})
(stdlib 3.7) erl_eval.erl:259: anonymous fn/2 in :erl_eval.expr/5
(stdlib 3.7) lists.erl:1263: :lists.foldl/3

Don’t use Map.put to alter a struct, because it doesn’t honor the struct
restrictions:

iex> Map.put(shape, :background, :polka_dot)
%{

__struct__: Shape,
background: :polka_dot,
fill: :white,
points: [{1, 2}, {2, 2}, {2, 1}],
stroke: :black

}

That’s a good whirlwind tour through the primary differences. Before we move
on, let’s address one more thing. You might be wondering where you should
use structs and maps in your greater architecture. In the next section, we’ll
provide a little guidance.

Structs, Maps, and Public APIs
When you’re building software that’s bigger than a side project, two language
features often come into conflict: type safety and API design. When you’re
building a structure with type safety, the idea is to give the compiler all of
the data that you can so that the compiler can catch mistakes.

So, let’s think about the API for our SVG library. So far, the main output for
our Shape will be an SVG string. That’s easy.

Add this function to your shape.ex file:

def to_svg(shape) do
"""
<polygon

report erratum  •  discuss

Structs, Maps, and Public APIs • 75

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


points="#{render_points(shape)}"
style="#{render_style(shape)}"

/>
"""

end

That’s a simple function. The main syntactic trick is a feature called the
heredoc, which uses """ to surround multiline strings, and the #{} delimiters
to interpret Elixir code within a string.

Now we come to a crossroads. We could blindly rush through the code for
the render_points/1 function, but the devil is in the details. A naive implementa-
tion might fail silently, or fail with poor error messages. We need to make
sure the points and colors are valid. Let’s make sure to catch any errors and
reraise them with convenient error messages. These patterns will give us a
chance to explore the error handling in Elixir and show off some common API
patterns. Add this function to your shape.ex module:

def render_points(shape) do
shape.points
|> Enum.map(fn {x, y} -> "#{x},#{y}" end)
|> Enum.join(" ")

rescue
_exception ->

reraise "Invalid points: #{inspect shape.points}", __STACKTRACE__
end

We render the points using some techniques you’ve seen before. We use
Enum.map to call our custom function to put our points into the correct format
for our SVG code. Then, we join it all together.

If anything fails, we want to give the user a clear error message, so we raise
a clear error message. Rather than using raise, we use reraise to preserve the
stack trace.

Let’s finish things out with one more function to render the style which will
handle fills for us. Add this code to shape.ex:

def render_style(shape) do
fill = "fill:#{Color.hex_code(shape.fill)}"
stroke = "stroke:#{Color.hex_code(shape.stroke)};stroke-width:1"
"#{fill};#{stroke}"

end

Notice that these functions go into the Shape module, so we try our hardest
to make the first argument a Shape, rather than a color name. It’s a small
thing, but doing so will keep your Elixir code clear and easy to use.

Chapter 5. Key-Value Data • 76

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Let’s try things out, first with a bad list of points. Run iex -S mix within the
graphics project and try out your code:

iex(12)> IO.puts Shape.to_svg(%Shape{points: "1, 2"})
** (RuntimeError) Invalid points: "1, 2"

(elixir 1.10.1) lib/enum.ex:1: Enumerable.impl_for!/1
(elixir 1.10.1) lib/enum.ex:141: Enumerable.reduce/3
(elixir 1.10.1) lib/enum.ex:3383: Enum.map/2
(graphics 0.1.0) lib/Shape.ex:22: Shape.render_points/1
(graphics 0.1.0) lib/Shape.ex:13: Shape.to_svg/1

We get a full stack trace, but one with a descriptive error message. That’s
ideal for debugging.

Now, let’s try out the function with a valid list of points:

iex> shape = %Shape{points: [{10, 20}, {10, 30}, {20, 20}]}
%Shape{fill: :black, points: [{10, 20}, {10, 30}, {20, 20}], stroke: :blue}

We get a valid Shape, but if you call the Shape.to_svg(shape) function, you’ll find
our Color.hex_code/1 function doesn’t support the color :blue! Let’s fix that in col-
or.ex, like this:

def hex_code(:blue) do
"#0000FF"

end

Now, you can successfully print out some SVG code:

iex> recompile
Compiling 1 file (.ex)
:ok
iex> IO.puts Shape.to_svg(shape)
<polygon

points="10,20 10,30 20,20"
style="fill:#000000;stroke:#0000FF;stroke-width:1"

/>

:ok

And we’re happy. We’re returning a string. The one problem is that to use the
API, other developers must use the %Shape{} constructor. Actually, that’s OK,
as long as we provide sensible defaults for all new fields and don’t add any
new required fields. That would let outside users take advantage of our code
without needing to know about any new arguments.

On the other hand, if you have multiple systems that use the same types,
adding any required field will force an incompatible change. For example, if
we were to push our Shape module broadly and add a required background field,
every system that used the struct would have to change.

report erratum  •  discuss

Structs, Maps, and Public APIs • 77

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


For this reason, it’s recommended to use structs for internal APIs where you
can for additional compiler benefits. But you should prefer maps around the
perimeter. That means maps are best for public API boundaries, process
boundaries, and remote service layers.

Further, your APIs should encourage deprecating keys instead of removing
them. Additionally, any new key should be optional, and the types associated
with keys shouldn’t change.

This has been a pretty full chapter, and it’s time to wrap up.

Your Turn
This chapter was extremely long, and there’s a reason for that. Key-value
data is important to all functional programming. The fact that Elixir added
maps after much of the language was designed complicates things some.

Let’s review.

Elixir Places Heavy Emphasis on Key-Value Data
Elixir supports three main kinds of key-value stores. The Keyword type is simply
a list of tuples. It has the same performance characteristics as lists, so it’s
not ideal for handling large key-value datasets where you may need to access
any individual element. The Map type is designed from the ground up as an
efficient key-value data structure with random access. The Struct is a type that
restricts maps to a known set of keys.

We built a couple of programs to illustrate these concepts. The roman project
worked with data in bulk, building a complex map with a list of tuples instead
of inserting key-value sets one at a time. We also extended the graphics project
to illustrate the use of structs and added some lessons about public APIs.

We’ve given you a pretty good start with associative data. It’s time to put it
all to use.

Try It Yourself
In this section, we’re going to push full steam ahead into the Exercism problem
set. Many of them rely heavily on maps. To install an exercise, you’ll first
install Exercism, and then join the Elixir track. Then, you’ll download the
problem. For example, to download a problem called hello-world, you’d do this:

exercism download --exercise=hello --track=elixir

These easy problems are a bit harder than the ones you’ve seen so far. Many
will require you to mix and match maps, lists, and tuples.

Chapter 5. Key-Value Data • 78

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


• word-count: Without using the built-in functions, implement a word counter
that outputs a map.

• roman-numerals: We solved the problem in this chapter. Use this problem as
an opportunity to solve the problem in the other direction: convert a
Roman numeral to a decimal number.

These medium problems work with lists and recursion.

• rotational-cipher: Use Elixir to build a cipher to decode messages using this
iconic weak cipher.

• robot-simulator: This problem is great for thinking through reduce.
• markdown: A refactoring exercise. Take code that works, and turn it into

better code that works.
• minesweeper: Add the numbers to a minesweeper game board.

These hard problems are good for more experienced developers:

• zipper: Zippers are pure functional algorithms for dealing with trees.
• bowling: Score a bowling game. This problem has enough special cases to

make it a great problem for exploring data structures.

This is a good set of problems for lists and strings. We’ll fold in more complex
problems as we go on.

Next Time
In the next chapter, we’ll continue to get more advanced. We’ll address the
more advanced programming features in Elixir, like concurrency and process-
es. Let’s get started!

report erratum  •  discuss

Your Turn • 79

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


CHAPTER 6

Processes and Concurrency
Though you might not know it yet, every Elixir program runs in a process.
So far, we’ve not had to write any code to start our own process. In this
chapter, we’ll change all of that. We’ll look at the functions and primitives for
spawning processes, sending messages, and building connections between
them.

Let’s plan our attack. First, we’re going to walk through what Elixir processes
are and how you can work with them. We’ll explore them first in IEx.

Next, we’ll use processes to build a key-value store using primitives. We’ll
talk about the pros and cons of our approach and also concepts like message
passing and back pressure.

Finally, we’ll give you the chance to try some of these concepts yourself. The
chapter will be fairly intense.

Let’s get started.

Processes, Inboxes, and Pattern Matching
As you find in other languages, processes execute programs. Elixir processes
are completely isolated from one another. Processes run concurrently to one
another using preemptive multitasking. That means that Elixir is responsible
for dividing up work, and processes don’t share memory with one another.
All communication between processes uses message passing.

Elixir processes aren’t the same as operating system processes. They’re
extremely lightweight in terms of resources, including memory. Elixir processes
are even more lightweight than operating system threads. It’s common to
have hundreds of thousands of them running concurrently.

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


The techniques and data structures you’ve seen so far might make some
sense to you. When they use message passing and pattern matching together
with tuples, many developers find that Elixir begins to resonate in earnest
because working with processes in Elixir is often much easier than in other
languages.

Processes and message passing are the primitives that serve to build the
foundations of Elixir’s OTP system, the library that Elixir uses to abstract
concurrency, application lifecycles, message passing, supervision, and failover.
Because it’s such a central concept in other functional languages like Erlang
and Scala, Programmer Passport will focus an entire book on OTP. This
chapter will provide many of the primitives Elixir builds on for OTP.

Let’s start to play with processes.

Processes Have Pids and Message Queues
Regardless of whether an Elixir program is running in a test script, IEx, or
mix task, it’s running in a process. Let’s open up IEx and start to play. Let’s
find the IEx process ID, like this:

iex> iex = self()
iex = #PID<0.103.0>

All processes are identified by a process ID, called a pid. Let’s get the info for
our pid:

iex> i
Term

#PID<0.103.0>
Data type

PID
Alive

true
Name

not registered
Links

none
Message queue length

0
Description

Use Process.info/1 to get more info about this process
Reference modules

Process, Node
Implemented protocols

IEx.Info, Inspect

Chapter 6. Processes and Concurrency • 82

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


This list is interesting. In addition to the usual information, you can see a
few extra bits of information. For example, the Alive section tells us our process
is in fact alive.

The modules for working with a process are Process for processes on one system
and Node for working with distributed systems. A distributed system divides
a single system into slices, potentially across different networked computers.

Notice also the message queue length. Think of the message queue as a
mailbox. We can send messages to our process, like this:

iex> send iex, :hello
:hello
iex> send iex, {:is, :anyone, :home}
{:is, :anyone, :home}
iex> i iex
Term

#PID<0.103.0>
...
Message queue length

2
...

Nice! We’ve sent a message to ourselves, so there are two messages in our
own mailbox. Let’s use the API to get information about this process:

iex> Process.info iex
[

current_function: {Process, :info, 1},
status: :running,
message_queue_len: 2,
...

]

I’ve shortened this list, but you get the idea. Our process is running, and it
has a message queue length of 2. In IEx, you can issue the command flush to
empty the queue and print all of the messages, like this:

iex(14)> flush
:hello
{:is, :anyone, :home}

And we see the two messages we sent previously!

Typically, you don’t receive messages with flush/0. That function is in the
IEx.Helpers module. Let’s look at a more realistic example.

report erratum  •  discuss

Processes, Inboxes, and Pattern Matching • 83

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Get Matching Messages with receive
The receive control structure lets us receive a message matching a pattern.
Let’s build a function to send a message to IEx. A common pattern in Elixir
is to shape messages into tuples. These messages often have some type of
atom to match against, some kind of numeric code, and a string with an
English message so we can easily tell what the message means. Let’s build a
function called deliver to send such a message:

iex> deliver = fn i -> send self(), {:message, i, "Message#{i}"} end
#Function<6.128620087/1 in :erl_eval.expr/5>
iex> Enum.each((1..6), deliver)
:ok
iex> Process.info(self())[:message_queue_len]
6

We build the deliver function to send a message in a three-tuple based on some
integer to self(). The message is a three-tuple. Then, we deliver messages to
each of the six integers in the range from 1 to 6. To make sure the messages
got sent, we check the :message_queue_len using Process.info/1.

We already know how to flush all of the messages. Let’s receive a message:

iex> receive do
...> message ->
...> IO.inspect(message)
...> end
{:message, 1, "Message1"}
{:message, 1, "Message1"}

We ask Elixir to receive a message and give it the message pattern to match.
Elixir will return the first message in the queue that matches the pattern. We
match the first message in the queue, print it out, and return it.

Let’s look at receive in more detail. The expression we’ll use is the receive mes-
sage. It takes the form:

receive do
pattern ->

expression
after

timeout_in_milliseconds ->
timeout_expression

end

Let’s try another one. Let’s match an explicit message, like this:

iex> receive do
...> {:message, 4, text} ->
...> text

Chapter 6. Processes and Concurrency • 84

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


...> end
"Message4"
iex> Process.info(self())[:message_queue_len]
4

We ask Elixir to match the message that matches the tuple {:message, 4, text}.
Elixir skips the next two messages until it reaches the tuple {:message, 4, "Mes-
sage4"} and binds the text variable to Message4. Four messages remain: 2, 3, 5,
and 6. We’ve not received them yet.

Let’s see how the timeout works.

iex> receive do
...> {:message, 4, text} ->
...> text
...> after
...> 1000 ->
...> {:error, :no_message}
...> end
{:error, :no_message}

We ask for message 4. Finding none, Elixir waits one thousand milliseconds,
or one second, and returns the value we provide. Using receive, we can match
any pattern we choose. If there’s no message yet in the message queue, Elixir
will wait until there is a message. If you specify an optional after block, Elixir
will raise a timeout error if no message is received.

receive is the way all processes interact with each other.

There’s still an important tool you haven’t seen yet. The next step in working
with processes is starting them.

Start a Process with spawn
The easiest way to start a process is to provide a function. There are several
versions of spawn. We’ll use the one that takes a function with no arguments.
Let’s start a process that uses receive to wait for a message, and then print it
out, like this:

iex> catcher =
...> fn ->
...> receive do
...> m ->
...> IO.inspect(m)
...> end
...> end
#Function<20.128620087/0 in :erl_eval.expr/5>
iex> pid = spawn(catcher)

report erratum  •  discuss

Processes, Inboxes, and Pattern Matching • 85

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Now, we have a process running a function. The process is called receive, so
it’s waiting on a message:

iex(42)> Process.alive?(pid)
true

Let’s send a message:

iex> send pid, :boink
:boink
:boink
iex> Process.alive? pid
false

Don’t worry. We didn’t actually kill the catcher. The catcher simply received
the message and then finished processing it. There’s no more work to do, so
it exited.

We can use these tools to build programs. Let’s put them into practice. Let’s
build a key-value store.

Put It All Together in a Message Loop
A common way to use Elixir processes is within a message loop. Let’s build
a quick key-value store, a process that can be shared across processes.

Our general strategy is to divide our application into three parts: the Core, the
Server, and the API. Let’s talk about each piece in turn.

The Core will have the simple functions we need to process individual requests.
These functions will be reducers. They’ll take a key-value store and return a
transformed store.

The Boundary will wrap the Core layer. It’ll manage the process machinery that
starts processes, receives messages, and returns responses. We can’t com-
pletely remove the complexity in the Boundary. The best we can do is to hide
the complexity of the service features, the ones we place in the Core, so that
the programmer can deal with one bit of complexity at a time.

The API layer will wrap the Server layer. That way, programmers can make
simple function calls rather than sending messages between processes.

Let’s get started.

Create the Project
Our project will take the shape of all other Elixir projects. We’ll build it using
mix new, like this:

Chapter 6. Processes and Concurrency • 86

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


[elixir] mix new key_value_store
...
* creating lib
* creating lib/key_value_store.ex
* creating test
* creating test/test_helper.exs
* creating test/key_value_store_test.exs

...
cd key_value_store
[key_value_store] ➔

Now, we have a bite-sized Elixir project that handles one concern, a key-value
store. Next, we’ll go through the system, layer by layer, writing the code and
test-driving it.

Establish a Core
The first step in our plan is to create our business features. Our business
layer answers the question “What?” It defines the features our clients will
want to see.

We’re going to separate the process machinery from our business features.
We’ll create the business layer in lib/core.ex, like this:

defmodule KeyValueStore.Core do
def new, do: %{}
def add_or_update(store, key, value), do: Map.put(store, key, value)
def delete(store, key), do: Map.delete(store, key)
def retrieve(store, key), do: Map.get(store, key)

end

The Core module has all of the functions we have that are unrelated to process-
es. They’re sometimes called pure functions. This core makes it easy to capture
the essence of our program. We can create, read, update, and delete values
in our store. All of our functions are constructors or reducers. That means
we’re ready to try it out.

Let’s try it out.

iex> alias KeyValueStore.Core
KeyValueStore.Core
iex> KeyValueStore.Core.new
%{}
iex> KeyValueStore.Core.new |> Core.add_or_update(:one, 1)
%{one: 1}
iex> %{} |> Core.add_or_update(:one, 1) |> Core.retrieve(:one)
1

report erratum  •  discuss

Put It All Together in a Message Loop • 87

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


It works. The pipes let us know that we’re on the right track because it means
our module is structured in the right way. Of course, we’re using Elixir’s Map
module to do all of the work. We could have easily used Map in our modules
instead of Core, but put that idea aside for the moment. Instead, focus on the
way we’ve isolated a back-end feature, one with its own functions, into a
functional core.

Let’s look at this problem in yet another way. Our functional core works with
one slice of time. Our key-value store builds the next key value store by adding
or deleting one key at a time. A game server would build the next frame. A
bank account would process a single transaction. If you understand this
concept, you’re one step closer to understanding Elixir.

Everything is reduce.

Now, let’s build our process layer around all of these reducers.

Wrap the Core in a Boundary
Our next step is to build the boundary. The best way to describe how this
layer works is to see one in action. The boundary deals with the process
machinery we’ll use to maintain state over time.

We’ll put our boundary in server.ex. We’ll describe the program piece by piece.
Start with an empty module, like this:

defmodule KeyValueStore.Server do
alias KeyValueStore.Core

end

Our module is called a Server, not in the sense of a networked server, but in
the sense of a process establishing a service. This terminology is common in
the Elixir ecosystem based on the language established in Erlang, many years
ago.

This server will be the only module that directly accesses our functional core,
so we alias it. The only job of the server is to handle boundary concerns. the
process machinery in the application.

The first step is to write a function to spawn our process, like this:

def start do
spawn(fn ->

run(Core.new())
end)

end

Chapter 6. Processes and Concurrency • 88

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


We use a spawn function to start a process and pass it the run/1 function. Notice
that run/1 takes the initial value of our key-value store. This function is
important because it processes our message loop. In Elixir, a message loop
is a recursive function that receives messages.

Let’s write run now. Add it beneath the start function, like this:

def run(store) do
store
|> listen
|> run

end

That tiny function packs a punch. It starts with the state, pipes it first into
listen to process a message, and finally pipes recursively back into run itself to
complete the message loop.

The last step is to write a tiny function whose only job is to listen for a single
response, like this:

def listen(store) do
receive do

{:put, key, value} ->
Core.add_or_update(store, key, value)

{:delete, key} ->
Core.delete(store, key)

{:get, pid, key} ->
value = Core.retrieve(store, key)
send(pid, {:value, value})
store

{:state, pid} ->
send(pid, {:store, store})
store

end
end

This function is a reducer with a side effect. It’s a reducer because the function
takes a key-value store, and each of our messages returns a key-value store.
Our function also has a side effect. In functional programming, a side effect
is something that changes the state of the environment. In our case, the side
effect is to receive a message.

Two of our messages simply modify our store. The other two don’t modify the
core but send some information back to the caller.

Let’s give it a try. Recompile your iex session, alias the server, and start the
server, saving a pid, like this:

iex> alias KeyValueStore.Server

report erratum  •  discuss

Put It All Together in a Message Loop • 89

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


KeyValueStore.Server
iex> pid = Server.start
#PID<0.157.0>

We can get information about the process:

iex(9)> Process.alive?(pid)
true
iex(10)> Process.info(pid)
[

current_function: {KeyValueStore.Server, :listen, 1},
initial_call: {:erlang, :apply, 2},
status: :waiting,
message_queue_len: 0,
links: [],
dictionary: [],
priority: :normal,
total_heap_size: 233,
heap_size: 233,
stack_size: 4,
reductions: 29,
...

]

I’ve trimmed some of the information out of this list, but there’s plenty of
useful information remaining. We know that the process is waiting in the
function KeyValueStore.Server.listen/1, that it’s in the :waiting state, and that the
message queue length is zero.

The message queue length is an important attribute when you’re working
with processes in production because a backed-up process will have many
unprocessed messages in the message queue. We can also see information
about the memory heap and stack sizes, and the amount of work done,
measured in reductions. When you see reductions, think Enum.reduce. We could
also see other linked processes, and important monitoring relationships you’ll
see in the OTP release.

Now, let’s interact with the server. Our Server is perfectly functional, if a bit
awkward:

iex> send pid, {:put, :one, 1}
{:put, :one, 1}
iex> send pid, {:put, :two, 2}
{:put, :two, 2}
iex> send pid, {:state, self()}
{:state, #PID<0.137.0>}
iex> flush
{:store, %{one: 1, two: 2}}
:ok

Chapter 6. Processes and Concurrency • 90

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


This server works, but it’s a bit awkward. We can do better. Let’s focus next
on cleaning up the API.

Establish an API Layer
We’re going to put the code in the existing lib/key_value_store.ex file. Let’s start
with a simple module that starts the server:

defmodule KeyValueStore do
alias KeyValueStore.Server

def start() do
Server.start()

end
end

All of our access goes through the Server module. None of our code uses the
Core layer. This design is intentional. We want to work with a single layer at
a time, if possible.

Next, let’s implement the functions that modify the store:

def put(server, key, value) do
send(server, {:put, key, value})
:ok

end

def delete(server, key) do
send(server, {:delete, key})
:ok

end

These two functions send messages to the server process to transform the store
and return an :ok tuple. Users will be able to call the put and delete functions
rather than send messages. That’s a simpler API that’s less error prone.

Now, let’s work on the complex cases, the ones that must receive responses:

def get(server, key) do
send server, {:get, self(), key}
receive do

{:value, value} -> value
end

end

def state(server) do
send server, {:state, self()}
receive do

{:store, store} -> store
end

end

report erratum  •  discuss

Put It All Together in a Message Loop • 91

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


These functions are a little more sophisticated, and we’re happy to process
the receive in these functions so our clients won’t have to do so. For example,
the get function sends the :get tuple with our process ID and the key we want
to retrieve. Next, we receive the response from the server, matching the message
against the {:value, value} tuple we expect to receive. The state function looks
more or less the same.

We have all we need to take our API for a test-drive! Let’s do that now:

iex> recompile
Compiling 1 file (.ex)
:ok
iex> server = KeyValueStore.start
#PID<0.165.0>
iex> KeyValueStore.state server
%{}
iex> KeyValueStore.put server, :one, 1
:ok
iex> KeyValueStore.state server
%{one: 1}
iex> KeyValueStore.get server, :one
1
iex> KeyValueStore.delete server, :one
:ok
iex> KeyValueStore.state server
%{}

Everything works perfectly! We no longer have to worry about sending mes-
sages. The API layer handles that problem. Especially refreshing are the APIs
that require receiving a response. We simply let the API layer do the work.

Before moving on, we should talk about potential problems with our solution.

What’s Wrong
Our server is nice, but there are several problems. It won’t handle failure well.
A failing server will simply stop, causing hangs or crashes in our API code.
We also have to write a bit of boilerplate code to build something as trivial as
a key-value store.

What’s needed is a generic implementation that builds all of these services
into Elixir, one step at a time. Fortunately, such a service exists. It’s called
OTP.

If you want to understand Elixir, you’ll eventually need to dive into OTP. The
documentation for both Elixir and Erlang are excellent, and several books
cover the topic well, including Programming Elixir 1.6 [Tho18] by Dave Thomas,
Designing Elixir Systems with OTP [IT19] by James Edward Gray II and Bruce

Chapter 6. Processes and Concurrency • 92

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


A. Tate, and Functional Web Development with Elixir, OTP, and Phoenix [Hal18]
by Lance Halvorsen.

We’ve almost exhausted the content for this chapter. It’s time to move on.

Your Turn
Elixir exists partially because its creator José Valim wanted abstractions for
dealing with concurrency at scale. The processes you see in this chapter begin
to tell that story.

Processes
Elixir’s lightweight processes are ideally suited for building multiprocess
frameworks for dealing with concurrency at scale. Using processes in Elixir
feels natural. The processes are even more lightweight than operating system
threads. Elixir processes can send messages to one another. Each process
has its own message queue, and processes can receive messages that match
individual patterns.

Programs use these primitives within message loops. Programs use receive to
match messages of a particular type to do a job. Our program matched mes-
sages to put, get, and delete keys in our KeyValueStore. In addition, our program
had an API to spawn a new key-value store.

Finally, we looked at flaws in programs built out of primitives. While under-
standing these building blocks is helpful, most Elixir programmers use a
prebuilt framework called OTP to build their multiprocess applications.

Now that you’ve seen message passing in action, you can write your own
programs that use these techniques.

Try It Yourself
In this section, you’re going to extend existing exercism programs to wrap a
message loop around them. Since these projects are more involved, we’ll only
offer four problems. All are around the medium level of difficulty.

• Implement the Exercism bob problem using a message passing API with
a message loop.

• Implement the Exercism robot-simulator problem using a message passing
API that responds to messages to turn left, right, and move ahead.

• Work the Exercism bank-account problem.
• Work the Exercism parallel-letter-frequency problem.

report erratum  •  discuss

Your Turn • 93

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Next Time
In the next chapter, we’ll look at sigils, binary pattern matching, and date/time
types. These are typical weak spots for intermediate Elixir developers.

Chapter 6. Processes and Concurrency • 94

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


CHAPTER 7

Blind Spots
Many Elixir programmers, regardless of whether they’re beginners, interme-
diates, or experts, struggle with some pretty common issues. This chapter is
dedicated to filling in typical blind spots for Elixir programmers.

We’ll start this tour with a bit of syntactic sugar called sigils. These little gems
improve your code by making it easier to express awkward concepts like
strings with quotes in them and lists of atoms or strings. Elixir also makes
it much easier to express dates and times with sigils.

We’ll then shift toward a discussion about time. Dealing with time, dates,
calendars, and time zones has knocked many great programmers to the
ground. This area is ripe for bugs and misunderstandings.

Finally, we’ll shift to booleans, bits, and binary pattern matching. These tips
can let you shorten functions and pack a lot of information into a small
number of bytes when space is at a premium.

These quick tools will definitely help intermediates smooth out their Elixir.
Let’s get started.

Sigils
Elixir developers must deal with many different data types with different
representations. Sigils exist to make text representations of data types less
awkward. Let’s look at an example.

Every programmer knows it’s hard to read code with strings containing quotes.
In Elixir, you’d represent quotes within a string with a preceding backslash,
like this:

IO.puts "\"string with quotes\""
"string with quotes"
:ok

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Now, how would you represent the first line in the previous listing as a string?
You would need to escape every quote and backslash! Or, you could use a
sigil, like this:

iex> ~s("string with quotes")
"\"string with quotes\""

~s is a sigil. The alternative syntax for strings without quotes means we don’t
have to escape anything.

Even experienced Elixir developers may not know how to get the most out of
sigils. That’s a shame because they can make your code much more readable.
Don’t worry. We’ll fill in some of the knowledge gaps for you.

We’ll start with the pieces that make up a sigil.

The Shape of a Sigil
Think of a sigil as a bit of syntax that has a ~ character, a sigil character or
word, a string surrounded by delimiters, and some option characters, like
this:

~s[string]a

Delimeters

String Input

OptionsFunction

Operator

The operator is the leading ~ character. That character lets Elixir know the
next bit of syntax will be a sigil. The function defines how Elixir will convert
the string to some data type. The delimiters are the two characters that sur-
round the sigil’s input. We’ll look at the list of supported delimiters in a second.
The options are one or more characters that define customizable options for
each sigil.

For example, look at the following sigil:

iex> ~w[one two three]
["one", "two", "three"]
iex> ~w(one two three)a
[:one, :two, :three]

Both of these sigils are w sigils, used to build a list of words. The first invoca-
tion uses [] characters as delimiters, and specifies no options. The second

Chapter 7. Blind Spots • 96

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


sigil uses the () delimiters, and the a option denotes a list of atoms instead of
strings.

The delimiters you choose can have a tremendous impact on the readability
of your code. Elixir sigils allow eight delimiters:

• ~s"string"
• ~s'string'
• ~s/string/
• ~s|string|
• ~s(string)
• ~s[string]
• ~s{string}
• ~s<string>

You can use any delimiter with any kind of sigil. Regular expressions often
have the / delimiter, and arrays of words will often use (), but they don’t have
to. Pick the delimiter that makes your code the prettiest.

Sigils for Strings and Lists
String in Elixir will usually use the "" delimiters, but sigils can make it easier
to represent strings with special characters. Two sigils support strings. The
s sigil allows interpolation, and the S doesn’t:

iex> int = 42
42
iex> ~S[The magic number is "#{int}"]
"The magic number is \"\#{int}\""
iex> ~s[The magic number is "#{int}"]
"The magic number is \"42\""

The c sigil works with Charlists the same way the s sigil works with strings:

iex> ~c[This math quote has p and p' variables]
'This math quote has p and p\' variables'

The w builds lists of words. It has options for both strings and atoms, like
this:

iex> romans = ~w[i v x v c l]
["i", "v", "x", "v", "c", "l"]
iex> roman_atoms = ~w[i v x v c l]a
[:i, :v, :x, :v, :c, :l]

The w sigil with the a character is particularly good for building modules that
have structs with a bunch of attributes, like this:

defmodule Person do

report erratum  •  discuss

Sigils • 97

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


defstruct ~w[first middle last prefix suffix id gender profession etc]a
end

The representation is more compact than spelling out the syntax:

[:first, :middle, :last, :prefix, :suffix, :id, :gender, ...]

These s and w sigils help us by simplifying the process of building long lists
or escaping strings. Sometimes, remembering all of the details associated
with a particular data type makes representations difficult. Such is the case
with regular expressions, and they’re next.

Regular Expressions
Regular expressions are data types that match complex strings. They’re an
ugly but necessary part of many modern programming languages. We won’t
offer you a comprehensive guide for them, but the chances are good that
you’ll encounter them in Elixir, so we’ll offer you a brief overview.

By far the most common way to express a regular expression is with the r
sigil with the / delimiters. For example, to build a regular expression that
matches one or two, you’d do this:

iex> either = ~r/one|two/
~r/one|two/

Then, to determine whether a regular expression matches, you’d use the =~
operator, like this:

iex> "one" =~ either
true
iex> "three" =~ either
false

Notice your regular expression is case sensitive:

iex> "ONE" =~ either
false

You can add an i option to make a regular expression case insensitive:

iex> either = ~r/one|two/i
~r/one|two/i
iex> "ONE" =~ either
true

Sometimes, when you’re matching slashes, it pays to change up the delimiter:

iex> path = ~r|/index/|
~r/\/index\//
iex> "/products/index/1" =~ path

Chapter 7. Blind Spots • 98

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


true

The power of the sigil shines through! We’ve covered two of the most common
sigil families. Let’s move on to a third, dates and times.

Sigils for Dates and Times
Remembering the functions for creating dates and times can be demanding.
In this section, we’ll walk through some of the sigils that allow you to represent
various common date and time formats. We’ll work through the list quickly.

You can use a sigil to represent a Date:

iex> d = ~D[2020-04-06]
~D[2020-04-06]
iex> d.day
6

Or a time:

iex> t = ~T[20:00:00.0]
~T[20:00:00.0]
iex> t.second
0

Or a DateTime:

iex> dt = ~U[2019-10-31 19:59:03Z]
~U[2019-10-31 19:59:03Z]
iex> %DateTime{minute: minute, time_zone: time_zone} = dt
~U[2019-10-31 19:59:03Z]
iex> minute
59
iex> time_zone
"Etc/UTC"

Or a NaiveDateTime, which is a DateTime type without time zone information:

iex> ndt = ~N[2019-10-31 23:00:07]
~N[2019-10-31 23:00:07]

These date and time formats are typically easier to remember and read. You’ll
often find that the inspect protocol for these types of data returns a sigil form.
We’ll work more with these sigils in a little bit.

For now, let’s find out how to write our own sigil.

Define Your Own Sigil
Under the hood, a sigil is a function. Its name takes the form sigil_c/2, where
c is the character representing your sigil. The function takes two arguments,

report erratum  •  discuss

Sigils • 99

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


a string and the options. Let’s write a sigil that can represent a number in
binary format. Create an Elixir project like this:

[elixir]-> mix new sigil
[elixir]-> cd sigil
[sigil]->

Key this program into lib/sigil.ex:

defmodule Sigil do
@erlang_32_bit_format_string "~32.2B"
def sigil_b(string, []) do

string
|> to_bits_string
|> String.to_integer

end

def sigil_b(string, [?s]) do
string
|> to_bits_string

end

defp to_bits_string(string) do
@erlang_32_bit_format_string
|> :io_lib.format([String.to_integer string])
|> List.to_string
|> String.trim

end
end

We have two function heads for the sigil. The first takes no options, and an
inbound string. It pipes the string through the function to_bits_string, which
uses an Erlang function and a few Elixir helper functions to represent a
number as a string of bits.

The second function head takes the options. Our sigil has one, a charlist. A
common way to match single options is to use the ? operator to get the code
point for a character. In this case, we match ?s which stands for “string”.

Now, we can put our sigil to use:

iex> import Sigil
Sigil
iex> ~b/254/
11111110
iex> ~b/254/s
"11111110"

It works like a charm! Whenever we use the ~b sigil, Elixir will invoke sigil_b,
passing the string between the delimiters as a string and the options after
the final delimiter as a charlist.

Chapter 7. Blind Spots • 100

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Now, you know a bit more about using sigils. Let’s put some of those date
and time sigils to use as we explore dates and times.

Dates, Times, and Comparisons
Date math is like the apple in the garden of Eden. It looks so simple and
delicious, and by the time you take a bite, it’s too late to change your mind.
Date math nearly brought the world to its collective knees when the calendar
flipped over from 1999 to 2000 because the industry wrote code that expressed
years with two characters instead of four. Those two characters worked fine
until close to the turn of the century. Then, billions of lines of code tried to
incorrectly compare the years of 1999 to 2000 in millions of codebases. Since
00 is less than 99, we had a huge problem, one that even had its own acronym:
Y2K.

Dates Are Structs
Elixir has plenty of tools for dealing with dates and times, but you need to
know about the pitfalls. The main gotchas all relate to date comparison:

iex> {:ok, earlier} = Date.new(2000, 12, 1)
{:ok, ~D[2000-12-01]}
iex> {:ok, later} = Date.new(2000, 12, 1)
{:ok, ~D[2000-12-01]}
iex> {:ok, earlier} = Date.new(1999, 11, 30)
{:ok, ~D[1999-11-30]}
iex> earlier < later
false
iex> earlier
~D[1999-11-30]
iex> later
~D[2000-12-01]

That was unexpected. What’s going on here?

If we were dealing with simple tuples, we’d be OK:

iex> {1999, 12, 1} < {2000, 11, 30}
true

The sad truth is that we’re not. Let’s get a few more clues about the data type:

iex> i earlier
Term

~D[1999-11-30]
Data type

Date
Description

This is a struct representing a date. It is commonly

report erratum  •  discuss

Dates, Times, and Comparisons • 101

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


represented using the `~D` sigil syntax, that is
defined in the `Kernel.sigil_D/2` macro.

Raw representation
%Date{calendar: Calendar.ISO, day: 30, month: 11, year: 1999}
...

IEx.info comes to the rescue again! The raw representation is a struct, and
that’s the problem. Elixir is trying to compare raw structs but doesn’t know
how. Help is on the way, but as of this writing, it’s not here yet. Now, the best
way to compare a Date, Time, or Datetime is with the module’s compare function,
like this:

iex> Date.compare(earlier, later)
:lt

This function will return :lt, :gt, or :eq for less-than, greater-than, or equal.
The comparison works like a charm. Let’s look at some of the other Date and
Time features.

Times Are Structs Too
As you might imagine, under the hood, times are structs too. We can do a
little exploration in IEx to see what’s happening.

iex> Time.new(12, 11, 10)
{:ok, ~T[12:11:10]}
iex> ~T[12:11:10]
~T[12:11:10]

We call Time.new. Notice that it returns an :ok tuple when successful. That
means you’ll have to be able to handle an error if your code passes bad time
data. Notice the sigil representation that comes back. Let’s get a little more
information about times with info. Type i:

iex> i
Term
iex(31)> i Calendar.ISO
Term
Calendar.ISO
Data type
Atom
Module bytecode
/Users/batate/.asdf/installs/elixir/1.10.1/bin/...
Source
/home/build/elixir/lib/elixir/lib/calendar/iso.ex
Version
[321360612332988397742151427117946492255]
Compile options
[:dialyzer, :no_spawn_compiler_process, :from_core, :no_auto_import]

Chapter 7. Blind Spots • 102

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Description
Use h(Calendar.ISO) to access its documentation.
Call Calendar.ISO.module_info() to access metadata.
Raw representation
:"Elixir.Calendar.ISO"
Reference modules
Module, Atom
Implemented protocols
IEx.Info, Inspect, List.Chars, String.Char
Data type

Time
Description

This is a struct representing a time. It is commonly
represented using the `~T` sigil syntax, that is
defined in the `Kernel.sigil_T/2` macro.

Raw representation
%Time{calendar: Calendar.ISO, hour: 12, microsecond: {0, 0},

minute: 11, second: 10}
Reference modules

Time, Calendar, Map
Implemented protocols

IEx.Info, Inspect, String.Chars

Times are also structs under the hood, and comparing them works the same
way comparing dates does. Working with an individual time is pretty
straightforward. Once you know the underlying structure, you can quickly
access the individual pieces of a time, just as you might expect:

iex> time = ~T[12:11:10]
~T[12:11:10]
iex> time.hour
12
iex> time.minute
11
iex> time.mi
microsecond minute
iex> time.microsecond
{0, 0}
iex> time.calendar
Calendar.ISO

We create a time with a sigil and then pick off the pieces of the Time struct.
Notice that the microsecond is simply a two-tuple, with each element an integer
from zero to one thousand.

But what’s the calendar field? Let’s find out now.

report erratum  •  discuss

Dates, Times, and Comparisons • 103

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Calendars and Dates
While we’re here, let’s look at the concept of a Calendar. If you look closely, you
can see the ~T[12:11:10] time has a :calendar field with the Calendar.ISO value. Let’s
see what that means.

A calendar is an API. In Elixir, the Calendar module is a behaviour that makes
it easier to deal with date math. (Yes, that spelling of behaviour is correct.
Elixir and Erlang use the British spelling.) You might use a Calendar to find
out the day of the week or to find out how much time has passed between
two dates. To satisfy this behaviour, a module must implement the functions
specified in the behaviour.1 Calendar.ISO implements the Calendar behaviour. Let’s
get a little more information about it:

iex(31)> i Calendar.ISO

Term
Calendar.ISO

Data type
Atom

Module bytecode
/Users/batate/.asdf/installs/elixir/1.10.1/bin/...

...
Description

Use h(Calendar.ISO) to access its documentation.
Call Calendar.ISO.module_info() to access metadata.

IEx is telling us this is an Erlang module and suggesting a better way to get
information. Typing h Calendar.ISO tells us that Calendar.ISO is the implementation
of a particular calendar, one that follows ISO 8601, an international standard
for representing dates and times.

Providing a full description of dates and times is beyond the scope of this
book. Keep in mind that when you’re doing date math, this is the place to do
it. This is true whether you’re converting dates or times or you’re adding time
to a calendar date.

Let’s cover one more concept before moving on to binaries and bit strings.

Time Zones
In the real world, a time zone represents a local representation of time. The
rules are surprisingly complex. 12:00 AM in New York City is three hours ahead

1. https://elixir-lang.org/getting-started/typespecs-and-behaviours.html#behaviours

Chapter 7. Blind Spots • 104

report erratum  •  discuss

https://elixir-lang.org/getting-started/typespecs-and-behaviours.html#behaviours
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


of the same time in San Francisco. Some time zones respect daylight savings
time and some don’t. The rules can get even more complex.2

In Elixir, there are two specific types of date/time representations. A DateTime
has built-in information about its time zone. A NaiveDateTime doesn’t. In Elixir,
the recommendation is that you work strictly with a single time zone, the UTC
time zone. If that’s not an option for you, work with NaiveDateTime, which has
no underlying time zone representation.

We’re not going to go into much depth here, but since there are potential
problems, we want you to know where to find the right information. Working
with dates and times is surprisingly fluid in Elixir, so it’s best to stay within
Elixir’s standard library documentation3 or the resources maintained by
groups4 rather than trying to rely on older articles. That way you can stay up
to date.

That’s probably enough about times and time zones. Let’s shift to another
kind of obscure math, working with bits, bytes, and binaries.

Binaries and Bit Strings
Elixir is a language built on top of Erlang, and Erlang was built to work on
phone switches. As you might expect, Erlang is good at working with data
down at the level of bits and bytes, and Elixir has inherited many of these
capabilities. In this section, we’ll quickly cover the tools you can use if you
ever find yourself working with low-level protocols like parsing a .jpg5 image
or taking apart a low-level TCPIP6 header.

Binaries
Let’s dive a little deeper. At their lowest level, computers are about the flow
of data, and that data is all made up of 1s and 0s. These bits represent a
numerical format called binary. One binary digit is a bit. While decimal systems
are made up of digits from 0 to 9, binary numbers are made up of digits from
0 to 1. Check out this binary number system7 website for more information.

We’ll need a few numbers to work with. Here are the first eight numbers in
binary:

2. http://www.creativedeletion.com/2015/01/28/falsehoods-programmers-date-time-zones.html
3. https://hexdocs.pm/elixir/DateTime.html
4. https://elixirschool.com/en/lessons/basics/date-time/#working-with-timezones
5. https://web.stanford.edu/class/ee398a/handouts/lectures/08-JPEG.pdf
6. https://tools.ietf.org/html/rfc793
7. https://www.mathsisfun.com/binary-number-system.html

report erratum  •  discuss

Binaries and Bit Strings • 105

http://www.creativedeletion.com/2015/01/28/falsehoods-programmers-date-time-zones.html
https://hexdocs.pm/elixir/DateTime.html
https://elixirschool.com/en/lessons/basics/date-time/#working-with-timezones
https://web.stanford.edu/class/ee398a/handouts/lectures/08-JPEG.pdf
https://tools.ietf.org/html/rfc793
https://www.mathsisfun.com/binary-number-system.html
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


binarydecimal

00

11

102

113

1004

1015

1106

1117

The most basic form of non-structured data in Elixir is the binary. It consists
of bytes, listed sequentially, in the binary syntax. The binary syntax uses the
<<>> delimiters, like this:

iex> binary = <<1>>
<<1>>
iex> byte_size binary
1
iex> bit_size binary
8

Internally, a byte is a number eight bits long. Binaries are made of bytes.

Strings are binaries with code points in them. Remember, code points are
integers representing characters:

iex> <<?c, ?a, ?t>>
"cat"

Bits and Pattern Matching
Communications and data storage are problem spaces that often require data
placement at the single-bit level. Elixir has a great tool for dealing with bit-
level data, the bit strings. A bit string represents sequential collections of bits
in memory using the binary syntax.

Data formats often have several bits within a byte that are dedicated to some
purpose, such as flags or indicators. Let’s say you wanted to represent some
data that was eight bits long, with numbers 2 bits long, then 3 bits. The fol-
lowing table tells the story:

663

11011011

You could represent it this way:

Chapter 7. Blind Spots • 106

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


iex> bit_string = << 3 :: size(2), 6 :: size(3), 6 :: size(3) >>
<<246>>

That makes sense. This number consists of the bits in 3, 6, and 6, placed
back-to-back. The binary number is 11 110 110, which is 246.

Now, let’s say you want to break 246 into three pieces. Here’s how you could
do so:

iex> << first :: size(2), second :: size(3), third :: size(3) >> = <<246>>
<<246>>
iex> first
3
iex> second
6
iex> third
6
iex>

You do it the other way around! Elixir takes it apart. Of course, you’re not
limited to bytes that are 8 bits long. You can work with whatever byte sizes
you want.

Pattern Matches for Longer Data
Sometimes, to work with patterns, we’ll need to be able to match longer
streams of data. As you might expect from the relationship between binaries
and strings, binaries can represent variable-size data. That means we need
to be able to match variable sizes of data.

Let’s build a binary out of different kinds of data. Our super-sophisticated
binary format has four consecutive bytes that we’ll interpret as a large number,
followed by a string, like this:

iex> large_number = <<1, 2, 3, 4>>
<<1, 2, 3, 4>>
iex> string = "This is a string"
"This is a string"
iex> combined = large_number <> string
<<1, 2, 3, 4, 84, 104, 105, 115, 32, 105, 115, 32, 97, 32, 115, 116, 114, 105,

110, 103>>

Keep in mind binaries are simply numbers in memory. In our case, we’re
choosing to look at the first part of our binary as one big 32-bit number, like
this:

iex> <<16909060 :: size(32)>>
<<1, 2, 3, 4>>

report erratum  •  discuss

Binaries and Bit Strings • 107

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Now, let’s use pattern matching to extract the elements of our binary, like
this:

iex> <<big :: size(32), rest :: binary>> = combined
<<1, 2, 3, 4, 84, 104, 105, 115, 32, 105, 115, 32, 97, 32, 115, 116, 114, 105,

110, 103>>
iex> rest
"This is a string"

Perfect! We have the two parts of our design, tucked neatly away into variables.
Now you can represent any large binary format using Elixir pattern matching.

Pattern matching with binaries works much like it does with lists. You need
to specify a fixed number of bytes at the beginning of a binary, but the rest
of the list can be a variable size. Since strings are binaries, you can use pattern
matching on them in interesting ways.

Binary Pattern Matching on Strings
This technique is often useful for matching strings with a prefix. Let’s say
there’s a list of return codes of functions. We don’t care about the successful
ones. We only care about the failures. We can build a multi-headed function
that uses binary pattern matching to match a "success_" prefix, like this:

iex> successful = fn
...> "success_" <> _suffix -> true
...> _ -> false
...> end
#Function<6.128620087/1 in :erl_eval.expr/5>
iex> successful.("success_result")
true
iex> successful.("error_result")
false

Then, we can take some list of return codes:

iex> returns = ~w[success_worked success_worked error_failed]
["success_worked", "success_worked", "error_failed"]

And throw away the ones that succeeded:

iex> Enum.reject(returns, successful)
["error_failed"]

Nice! The pattern match does have its limits, though. You can only match
constants, not variables. And you can only match a fixed pattern at the
beginning of a string.

Chapter 7. Blind Spots • 108

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Using these tools, you can take the specification for an image, or a communi-
cations protocol, and break down all of the individual bits, piece by piece.
You only need to know the dimensions of each piece of the binary.

Before we break for the chapter, there’s one more quick section we should
cover: bitwise comparisons.

Working with Binary Data
You’ve already seen a series of operators called Boolean operators that work
with true and false. There’s another family of operators called BitWise operators
that work with 1s and 0s as if they were true and false, respectively. These
operators form the foundation of many types of math, including working with
binary images or compressing many bits of data into a singular value.

You know the drill. We won’t give you a comprehensive walkthrough. But
we’ll show you enough to find what you’re looking for. To enable bitwise math,
the first thing you need to do is include the code use Bitwise:

iex> use Bitwise
Bitwise

As you recall, use is a macro. Its job is to write code that writes code, making
the macros and functions in the Bitwise module available for your use. There
are two kinds of functions in the module. nfix functions are like + and - oper-
ators. They’re used as inline operators, like this:

iex> import Sigil
Sigil
iex> ~b|3|
11
iex> ~b|12|
1100
iex> 3 ||| 12
15
iex> ~b|15|
1111

We use our binary sigil to look at a couple of numbers. Then, we combine the
binary digits in 3 with the ones in 12, getting all of the digits in 15. We could
accomplish the same thing in a function:

iex> Bitwise.bor 3, 12
15

Bitwise.bor/2 is the function that the ||| infix operator calls. You can get all of
the exports for Bitwise and see the general shape of the API:

__using__/1 &&&/2 <<</2 >>>/2 ^^^/2

report erratum  •  discuss

Binaries and Bit Strings • 109

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


band/2 bnot/1 bor/2 bsl/2 bsr/2
bxor/2 |||/2 ~~~/1

The __using__ API supports the use Bitwise we typed earlier. The rest are prefix
operators and postfix operators. Here’s a table showing how to use them:

nameinfixfunction

bitwise and&&&band

bitwise or|||bor

bitwise x-or^^^bxor

bitwise not~~~bnot

bitwise shift right>>>bsr

bitwise shift left<<<bsl

This table shows all of the Bitwise infix operators, the functions that go with
them, and what they do. Check out Elixir’s Bitwise8 module for more details.

Elixir is a rich language, so we could peruse it for intermediate tips and tricks
all day, but this chapter has gone on long enough. It’s time to wrap up.

Your Turn
Elixir is a robust and powerful language. Even advanced programmers can
improve their skills by brushing up on certain specifications. Binaries, dates,
and sigils are areas that most developers could stand to improve. This chapter
is only the beginning.

Sigils, Dates, Times, and Binaries Add Power to Programs
A sigil is a bit of syntactic sugar in Elixir to represent complex or cumbersome
ideas with simple text. String and list sigils can shorten code and make strings
with quotes easier to understand. Date and time sigils allow rapid represen-
tation of date and time formats of various kinds. Custom sigils extend the
power of sigils beyond Elixir. Knowing them will sharpen your tools, allowing
you to represent complex ideas quickly.

Dates and times are common breeding grounds for bugs in many languages
and Elixir is no exception. Comparison of dates and times should use Date,
Time, and DateTime library comparison features rather than <. Calendars are
behaviours that group together features supporting date math.

Elixir provides superlative support for dealing with binary data. Elixir binaries
allow access to individual data elements at the bit or byte level.

8. https://hexdocs.pm/elixir/Bitwise.html

Chapter 7. Blind Spots • 110

report erratum  •  discuss

https://hexdocs.pm/elixir/Bitwise.html
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


The best way to learn these tools is to put them into practice.

Try It Yourself
This easy problem starts with an Exercism problem and refactors it to use
tuples.

• secret-handshake: Use bitwise operators to build a secret protocol.

This medium problem deals with sigils.

• translate: Make a sigil to translate an integer to binary, octal, and hex for-
mats.

This hard problem deal with binary representations.

• Use pattern matching to extract the exif orientation of a JPEG file

Next Time
In the final Elixir chapter, we’re going to shift our attention to macros. We’ll
use macros to write code that writes code.

report erratum  •  discuss

Your Turn • 111

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


CHAPTER 8

Macros
In this chapter, our programs are going to write Elixir code. That concept may
sound strange to you, but thanks to the concept of macros, it’s possible.

Before we get too far down that road, we should issue the standard warning.
In Programming Clojure, Third Edition [HB18], Stuart Halloway and Alex Miller
of Clojure fame said:

The first rule of Macro Club is Don’t Write Macros.

Sometimes, languages have important features that are rarely used. In the
case of macros, they’re important because of their ability to build stunningly
beautiful APIs. They’re rarely used because the implementation and mainte-
nance of those beautiful APIs can be complex and awkward. In fact, much of
Elixir itself is written in Elixir macros.

Macros are indeed dangerous in the sense that code that relies on them too
heavily is difficult to understand and maintain. In the right dose, though,
macros can convert the bulk of your code to something that more fully
expresses your intent.

Our advice? Avoid macros when functions or data will suffice. Use macros
when they give your users a significant boost. When you use them, write your
code in layers to expose a little bit of complexity at a time. Whether or not
you use them, understand them so you can navigate code that has them.

Elixir macros work by letting users directly modify Elixir’s AST, Elixir’s abstract
syntax tree. The AST is the internal representation of code in Elixir, and it’s
made up of regular Elixir data structures. Like Lisp, Elixir’s AST is made up
of the same data structures you see in the language: tuples, lists, and atoms.

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Throughout this chapter, we’ll look at Elixir’s AST. Then, we’ll use macros to
build our own function using the functions quote and unquote. Finally, we’ll
look at a brief technique for using module attributes to help build macros.

It’s going to be an interesting ride, so let’s get started.

Elixir’s AST
The building block of the whole Elixir language is the AST. This concept is
extremely powerful, and not one that every programming language supports.
Building Elixir’s AST with Elixir data structures means the Elixir language
and the tools it depends on can be built layer by layer, mostly in Elixir itself.

Every line of code you write has an underlying representation in the AST.
Fortunately, it’s easy to see the representation of any line of code. Let’s see
the AST for some primitive types:

iex> quote do "string" end
"string"
iex> quote do :atom end
:atom
iex> quote do [:list, :of, :atoms] end
[:list, :of, :atoms]
iex> quote do 1 end
1
iex> quote do {:one, 1} end
{:one, 1}

The quote function asks Elixir for the internal representation for the code
wrapped in the do and end operators. Quoting any of the simplest Elixir data
elements returns themselves. The first building blocks of the AST are these
primitive data types.

It turns out that the major building block of the AST is the three-tuple:

iex> quote do 1 + 2 end
{:+, [context: Elixir, import: Kernel], [1, 2]}

That’s a bit more interesting. This simple line of code says “Give me the
internal AST representation for the code 1 + 2.”

We get back a three-tuple. Every AST is made up of this building block, shown
here:

{ :function, [metadata_key: metadata_value], [arguments] }

Chapter 8. Macros • 114

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


function
Since Elixir is a functional language, every element of an Elixir program
is a function call. In the AST, each function call is an atom.

metadata
Elixir sometimes needs additional information to execute a program. The
metadata provides this data in a Keyword, a list of two tuples, where the
keys and values provide information such as line numbers and imports.

arguments
Functions take arguments, and the argument list is passed to the function
in the first argument.

With that information in your pocket, remember the AST for 1 + 2. It looked
like this:

{:+, [context: Elixir, import: Kernel], [1, 2]}

So, :+ is the function and the arguments are 1 and 2, and there’s also some
metadata that may be needed to execute the program. The context is the
module we’re running in. We’re running in IEx outside of any module, so the
context is simply Elixir. The import is the module that’s been imported to make
this statement run, or Kernel. The + function is from Kernel, and Elixir imports
it by default.

Since the arguments to functions can themselves be expressions, function
arguments can be ASTs themselves! That means programs aren’t merely
tuples. They’re trees of tuples.

You might ask what to do with syntax trees. Why, you execute them, of course!

Evaluate a Syntax Tree
If you have a syntax tree, you can run the program, like this:

iex> code = {:*, [], [6, 7]}
{:*, [], [6, 7]}
iex> Code.eval_quoted code
{42, []}

We build an AST that multiplies two numbers together. We use the multipli-
cation function :* from Kernel, and the arguments of [6, 7]. Then, we call
Code.eval_quoted/1 to execute the function.

Elixir’s functions return a single value, but surprisingly, the result of
eval_quoted is a two-tuple. Let’s find out why.

report erratum  •  discuss

Elixir’s AST • 115

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Variables and Bindings
Let’s open a brand new IEx session and set a variable, like this:

iex> x = 42
42
iex> binding()
[x: 42]

These bindings represent the values of variables in our program’s execution.
You can see the bindings from IEx. Those are the variables we’ve set so far.

Let’s see how we might represent a variable:

iex> quote do x end
{:x, [], Elixir}

That makes sense. Instead of a function, we have an atom representing the
variable name. And instead of an argument list, we have the context for the
variable.

Now, let’s use all of that knowledge we’ve gathered to work with the AST! Let’s
say we want to work with a binding to ultimate_answer, like this:

iex> variable = {:ultimate_answer, Elixir}
{:ultimate_answer, Elixir}

The AST for introducing a variable is {:ultimate_answer, [], Elixir}. We can build a
little program to calculate that answer, like this:

iex> code = {:*, [], [7, 6]}
{:*, [], [6, 6]}

That program will execute 6*6. Now, let’s use these two parts to write our
program. We can bind the variable with the = operator, like this:

iex> Code.eval_quoted( {:=, [], [variable, code]} )
{42, [{{:ultimate_answer, Elixir}, 42}]}

Beautiful! Notice that we now have a variable binding to :ultimate_answer in the
context of Elixir. The only problem is that our program is wrong. That’s OK.
Elixir code is the same as Elixir data! That means we can change it because
we know the structure of the AST, like this:

iex> {function, metadata, [arg1, _arg2]} = code
{:*, [], [6, 6]}
iex> revised_code = {function, metadata, [arg1, 7]}
{:*, [], [6, 7]}
iex> Code.eval_quoted( {:=, [], [variable, revised_code]} )
{42, [{{:ultimate_answer, Elixir}, 42}]}

Chapter 8. Macros • 116

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


That’s amazing! Don’t gloss over what we’ve done. We took an AST, changed
its representation with an Elixir program, and we executed the revised pro-
gram.

This is the essence of Macro programming.

Unquoting, Quoting, and defmacro
Let’s take a moment to recap. Elixir programs are made up of ASTs. These
trees have the representation of all Elixir code. Building the AST doesn’t
happen all at once, though. Each program is compiled with several different
steps. The following figure tells the story.

Program Parse Expand Compile

After a program is loaded, Elixir translates the program into an initial AST
in a step called parsing. Then, Elixir applies all macros to the AST in a step
called macro expansion. Only then is the program turned into its final exe-
cutable form.

Because Elixir is a language built mostly in itself, the macro expansion step
is important. Let’s look at how it’s done.

The defmacro expression means define a macro. Each defmacro statement takes
valid Elixir code that compiles and modifies the AST to build other Elixir code
that compiles. This is the macro expansion step in the previous figure.

A Simple Macro
Let’s build a prettier interface into our Roman numerals program. You can find
the original at Groxio’s Github.1 Initially, our plan is to build a module with
all of the Roman numerals built in, looking something like this:

defmodule R do
def i, do: 1
def ii, do: 2
def iii, do: 3
...and so on...

end

Then, your users could quickly access a Roman numeral like R.iii, or by
importing the file, by simply typing iii. Next, we’ll want to create a macro.

1. https://github.com/groxio-learning/progpass-elixir/

report erratum  •  discuss

Unquoting, Quoting, and defmacro • 117

https://github.com/groxio-learning/progpass-elixir/
http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Define a Macro with defmacro
We’re finally ready to define a macro. Open up a new file in lib/roman_macro.ex.
The base of our macro is going to look like this:

quote do def roman, do: decimal

We’ll wrap that code in a macro, like this:

defmodule RomanMacro do
defmacro roman_function(roman, decimal) do

quote do
def roman(), do: decimal

end
end

end

Then, create a module called lib/hardcoded.ex to use the macro, like this:

defmodule Hardcoded do
require RomanMacro

RomanMacro.roman_function(:i, 1)
RomanMacro.roman_function(:ii, 2)

end

The require asks Elixir to do macro expansion using the macros in RomanMacro.
When you try that much out, you’ll find the code doesn’t compile:

** (CompileError) lib/hardcoded.ex:4: undefined function decimal/0
...

That’s because instead of using the roman and the decimal that we pass in, Elixir
is trying to actually use the words roman and decimal, and those don’t exist. We
need a way to use the variables in our program. We need a sort of interpolation
for macros.

That feature is called unquote. Change your macro a tiny bit to unquote the decimal
and roman values, like this:

defmodule RomanMacro do
defmacro roman_function(roman, decimal) do

quote do
def unquote(roman)(), do: unquote(decimal)

end
end

end

Perfect. We should pick up the roman and decimal arguments from our function.
Now, try it out:

iex> recompile

Chapter 8. Macros • 118

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Compiling 3 files (.ex)
:ok
iex> Hardcoded.i
1
iex> Hardcoded.ii
2

So far, so good! Let’s apply the same techniques to a module that defines all
Roman numerals!

Introduce a DSL
Domain specific languages (DSLs) are tiny, specific languages written in a
generic programming language. If you know where to look, Elixir embeds
DSLs everywhere. ExUnit uses a DSL to build unit tests. Ecto Query uses a
DSL to express queries and schemas. Phoenix uses a DSL to build a router
table.

If you think about it, our code is building a tiny DSL that expresses Roman
numerals. Some of the work is defining an API that our consumers can use.
Other pieces of the problem involve packaging up our DSL in a convenient
package our customers can consume.

Our Roman API already has some convenient functions that return a map of
Roman numerals and an API to convert singles. It would be nice to introduce
a feature that allows users to announce their intention to use our functions
like iii to express individual numbers in roman notation.

To do so, we’ll need to write two bits of code. One will define all of the functions
in a module, and another will import them.

Define Many Functions with unquote and def
It turns out that you don’t need to use quote and unquote with defmacro. They
work fine inside modules. Remember, we already have a function called
Roman.map/0 that returns a map with all of the Roman numerals and their
decimal values in them. All we need to do is iterate over them at compile time,
calling def on each one.

Crack open a new file called numbers.ex that we’ll use to hold all of our Roman
numerals, like this:

defmodule Roman.Numbers do
Enum.each(Roman.map, fn {roman, decimal} ->

def unquote(roman)(), do: unquote(decimal)
end)

end

report erratum  •  discuss

Introduce a DSL • 119

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Perfect! That code should look somewhat familiar. The def unquote(roman)(), do:
unquote(decimal) does the bulk of the work. Each one defines one function
within the module. The unquote statements allow us to substitute values from
our Roman.map list.

The first value in Roman.map will be {:i, 1}, and we’ll match roman to :i and decimal
to 1. That means when Elixir replaces unquote(roman) with :i and unquote(decimal)
with 1, we’re left with def i(), do: 1!

When you try it out, you’ll see that it works:

iex> Roman.Numbers.xix
19

It works perfectly. The last step is to write a little code to do the import so our
API clients won’t have to type Roman.Numbers.

Smooth Out the End User Experience with __using__
The __using__ macro helps developers set up their macros with any initial
macros, aliases, or imports. They’re easy to use. Let’s add a __using__ function
to Roman that will import all of the functions in Roman.Numbers.

When an API client calls use SomeModule, Elixir will call the __using__ function
within SomeModule. We’ll use the technique to add the imports we need for our
Roman numerals.

Add this code to lib/roman.ex, like this:

defmacro __using__(_opts) do
quote do

import Roman.Numbers
end

end

Now, our users don’t need to know anything about the underlying modules
behind Roman. We can simply have our users use Roman to consume the API,
like this:

iex> use Roman
Roman.Numbers
iex> iii
3
iex> iv
4
iex> ix
9

All is not well in IEx land, though.

Chapter 8. Macros • 120

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


iex> v
** (CompileError) iex:7: function v/0 imported from both Roman.Numbers

and IEx.Helpers, call is ambiguous
iex> i
** (CompileError) iex:7: function i/0 imported from both Roman.Numbers

and IEx.Helpers, call is ambiguous

We need to be careful when we export these functions because some of the
Roman numerals conflict with IEx helpers, namely i and v. Still, we can be
happy with the results. Our users can now use the Roman numerals we
specify, even if we can’t call use Roman and use every number within IEx. This
code serves as a useful example for how to write code that writes code.

This chapter has been short, but intense. It’s a good time to wrap up.

Your Turn
Elixir macros are a rarely used but important feature. They’re used to write
both Elixir code and beautiful APIs called domain specific languages.

Macros
Underneath, Elixir code is represented within the abstract syntax tree, or
AST. A macro is code that writes code. Macros take a bit of the AST and
translate it into other ASTs. The quote function lets developers convert Elixir
code into the AST format, and the unquote function allows interpolation of
Elixir code. Together, they can make existing Elixir code do new and interesting
things.

A DSL is a domain specific language. While Elixir is a general-purpose pro-
gramming language, a DSL uses the features of Elixir, especially macros, to
represent other concepts. For example, the Ecto DSL represents database
queries and schemas, and the Plug router uses a DSL to represent the routers
for a web server.

The __using__ macro, in conjunction with use, allows an API designer to quickly
import and alias common modules. The use command fires the __using__ macro
for a module. This technique can smooth out rough edges for an API.

Try It Yourself
You may have noticed that our exercises are getting increasingly open-ended.
That’s intentional. Open-ended exercises will help intermediate and expert
developers learn more quickly.

These two medium problems use macros, quote, and unquote.

report erratum  •  discuss

Your Turn • 121

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


• Write a macro that uses the same technique our Roman DSL used to convert
the number RN to a Roman numeral where N is some number between 1
and 1000, inclusive.

• Write an unless macro that works like if, one that takes :else and :do clauses.
It should take the form unless clause, do: expression1, else: expression2.

This hard problem uses macros to implement a state machine.

State Machine Problem

Consider this code:

defmodule TurnStile do
use StateMachine,

initial: :closed,
states: [
closed: [coin: :open],
open: [person: :closed]

]
end

The preceding code expands to:

defmodule TurnStile do
...

def new(), do: :closed

def enter(:open), do: :closed
def coin(:closed), do: :open

end

This produces the behavior:

iex> import TurnStile
TurnStile
iex> new |> coin
:open
iex> new |> coin |> enter
:closed

Implement this state machine using a macro.

This concludes our journey through Elixir. A combination of productive syntax
with sigils, good support for concurrency, and macros allowing language
extensions makes Elixir a powerful tool that can grow with you for years to
come. If you like what you see and aren’t yet a full Groxio subscriber, we
invite you to join. Either way, we hope you’ve enjoyed our brief exploration
and learned things about Elixir you didn’t already know. We’ll see you
somewhere down the road!

Chapter 8. Macros • 122

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Bibliography

[Alm18] Ulisses Almeida. Learn Functional Programming with Elixir. The Pragmatic
Bookshelf, Raleigh, NC, 2018.

[Hal18] Lance Halvorsen. Functional Web Development with Elixir, OTP, and Phoenix.
The Pragmatic Bookshelf, Raleigh, NC, 2018.

[HB18] Alex Miller with Stuart Halloway and Aaron Bedra. Programming Clojure,
Third Edition. The Pragmatic Bookshelf, Raleigh, NC, 2018.

[IT19] James Edward Gray, II and Bruce A. Tate. Designing Elixir Systems with
OTP. The Pragmatic Bookshelf, Raleigh, NC, 2019.

[Tho18] Dave Thomas. Programming Elixir 1.6. The Pragmatic Bookshelf, Raleigh,
NC, 2018.

report erratum  •  discuss

http://pragprog.com/titles/passelixir/errata/add
http://forums.pragprog.com/forums/passelixir


Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering
you this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2022 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of the The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose
a writing idea to us? After all, many of our best authors started off as our
readers, just like you. With a 50% royalty, world-class editorial services,
and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

We thank you for your continued support, and we hope to hear from you
again soon!

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code 
BUYANOTHER2022

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/passelixir
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/passelixir
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Preface
	1. Sweet Tooling
	Based on Erlang
	Beyond Erlang
	Tools
	Mix Manages Development Tasks
	IEx: Interactive Elixir
	Built-in Testing
	Custom Mix Tasks
	Sound Dependency Management Fuels Adoption
	Your Turn

	2. Data and Code Organization
	Atoms, Pattern Matching, and Erlang Access
	Booleans and Truthy Expressions
	Numerics Favor Utility over Performance
	Characters Are Code Points
	Elixir Deemphasizes Control Structures
	Your Turn

	3. Tuples and Functions
	Tuples, Deconstruction, and Pattern Matching
	Functions and Code Organization
	Advanced Pattern Matching and Constructors
	Your Turn

	4. Lists and Algorithms
	Lists
	Pattern Matching and Lists
	Recursion over Lists
	Reduce and Anonymous Functions
	Implement a Polygon
	Your Turn

	5. Key-Value Data
	Keyword Dictionaries
	Maps
	Map Manipulation
	Using Maps in Bulk
	Structs Are Restricted Maps
	Structs, Maps, and Public APIs
	Your Turn

	6. Processes and Concurrency
	Processes, Inboxes, and Pattern Matching
	Put It All Together in a Message Loop
	Your Turn

	7. Blind Spots
	Sigils
	Dates, Times, and Comparisons
	Binaries and Bit Strings
	Your Turn

	8. Macros
	Elixir’s AST
	Unquoting, Quoting, and defmacro
	Introduce a DSL
	Your Turn

	Bibliography

