

Programmer Passport: OTP

Bruce Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: Vanya Wong
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-968-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Preface v
1. A Basic Handmade Server 1

Build a Server with a Process 2
Build the Boundary Layer 7
Build an OTP Server, with Mix 12
Your Turn 15

2. Communication Between Servers 17
Anatomy of a GenServer 17
handle_info Processes Nonstandard Messages 20
Schedule an Alarm with handle_cast 25
Implement a Status Message with handle_call 29
Your Turn 32

3. The Lifecycle and Supervision 35
The Primitive Mechanisms 36
OTP Supervisors Manage GenServer Lifecycles 38
Add Some Children 42
Lifecycle Policy 47
Your Turn 52

4. The Power of a Name 55
Add Dynamic Characters to SuperDuper 55
Dynamic Children 57
Dynamic Supervisors 63
The Process Registry: The Power of a Name 65
Your Turn 66

Bibliography 69

Preface
OTP is one of the most consequential inventions in the entire Erlang and
Elixir ecosystems. The library provides a common framework for reliably
starting, stopping, and running concurrent workers. OTP is the reason many
developers learn Erlang or Elixir. Elixir’s wonderful management characteris-
tics and seamless concurrency flow out of OTP. If you’re looking to take the
step from beginner to intermediate Elixir developer, OTP would be a great
place to start.

With so much attention on OTP, you might wonder if the world needs yet
another OTP book. The wonderful Designing Elixir Systems with OTP [IT19] I
wrote with James E Gray II and the brilliant Elixir in Action [Jur15] by Saša
Jurić provide excellent insight into how to design Elixir with OTP. If you’re
using OTP in conjunction with Phoenix, Lance Halvorsen’s treatment in
Functional Web Development with Elixir, OTP, and Phoenix [Hal18] might be
just the ticket.

Still, this short book fills a nice niche. OTP is a behaviour, a program written
by someone else. The only way to understand OTP is to know what the
behaviour is doing under the surface. After teaching OTP for four years, I’ve
learned that many developers don’t understand the underlying behaviour, so
they need more than the documentation. At the same time, they don’t always
have the time or attention for a longer text. This small companion to Groxio’s
OTP course1 presents a no-frills treatment for those needing more than stock
documentation or blog posts, without reading a more expansive OTP treatment.

If you find yourself in this niche, I’d love to join you in the journey. If you like
what you see, who knows? You might decide to join us on Groxio for some
video demonstrations of OTP and other Elixir concepts!

1. https://grox.io

report erratum • discuss

https://grox.io
http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

CHAPTER 1

A Basic Handmade Server
For dozens of years, the Erlang language has achieved extraordinary reliabil-
ity. Now, Elixir programmers expect the same. Elixir and Erlang systems can
support applications with even hundreds of thousands of processes without
skipping a beat. The actor-based message passing architecture is now common
across many programming languages. Perhaps the most important feature
in either of these languages is OTP.

OTP is a set of libraries and APIs that enable applications with extraordinary
reliability and scalability through concurrency. In the four OTP chapters that
follow, we’ll cover the main two main abstractions for OTP, the boundary and
lifecycle layers.

The boundary layers allow Elixir to share state across processes with a com-
bination of concurrency, message passing, and recursion called GenServers,
short for generic servers. They also allow processes to communicate and
control the impact of failures. All of this may seem like a mystery at first, but
don’t worry. We’ll walk you through a good example.

The lifecycle layers are responsible for starting and stopping processes with
supervisors. These supervisors can detect when a process crashes and execute
a policy for responding to failure, perhaps by starting a new process.

This combination of GenServers and supervisors has brilliantly withstood the
tests of time. Failures in any part of the system are transient because any
but the most catastrophic failures are quickly remedied with a restart.

This book is not designed to replace Designing Elixir Systems with OTP [IT19]
by James Edward Gray II and myself. That book focuses on design philoso-
phies and considerations for complex Elixir systems, which often include
OTP. Instead, it’s a companion. Instead of focusing on a single OTP application
using Elixir, this one will focus on the basic understanding of the OTP API.

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Instead of working with one primary project, we’ll solve several smaller prob-
lems. Since we won’t have to handle deep design questions throughout the
release, we’ll be able to spend more time on those aspects of OTP that are not
as commonly approached. Hopefully, when we’re done, you’ll have a better
understanding of the various knobs and levers that GenServer provides, and
where you might use them.

In this first chapter, we’re going to build a calculator application without OTP.
Along the way, we’ll teach you the OTP terminology for the features we’re
building. We’ll use native processes and message passing rather than the
OTP library. Then we’ll wrap the application in an API, and show how we
might implement that API using OTP instead.

At its basic level, a GenServer is a running process that sends and receives
messages. It has several standardized functions called callbacks that commu-
nicate with your application so you can customize the process with your own
code. Since OTP programs implement only these callbacks, beginners some-
times have a tough time understanding what a whole GenServer looks like.
We’re going to remedy that problem first by building an app without using
the GenServer API. Then, we’ll make a few tiny tweaks to replace our process
machinery with a GenServer.

Rather than walk through a lot of theory, let’s write a few dozen lines of simple
code that describe how you might build a server—a process that sends and
receives messages—without OTP. That will give you a good sense of how an
OTP service is built. Then, we’ll convert that service to use OTP.

Let’s get started!

Build a Server with a Process
In this chapter, we’re going to build a calculator service. First, we’re going to
build the core of our service, the piece that does the actual computation. Then
we’re going to wrap our core layer in a boundary layer that will hold the cal-
culator value as we add calculations, one at a time. Though we haven’t for-
mally mixed in OTP yet, this boundary layer is the realm of the OTP
GenServer. It will have a message loop, a means to start, and a means to send
messages.

The main building block of OTP is the GenServer. These tiny services are not
necessarily network servers. Instead, they are functions running in a process
in a recursive message loop. Rather than explain things with words, let’s show
some rough code that does the job.

Chapter 1. A Basic Handmade Server • 2

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

First, we need a recursive loop, one with potentially changing state. We’ll
capture the state of our server in the execution of a recursive loop:

def run(old_state) do

new_state = ???(old_state)

run(new_state)
end

A small but important bit of our program is undefined. It’s the part that
actually does the work. When you think about the ???(state) part of the program
as a function, we can express that program more simply, like this:

def run(state) do
state
|> Core.do_work
|> run

end

The two previous listings are the same. This recursive function is really the
heart of an OTP GenServer. The function takes some state, transforms it in
some way using our core, and then calls itself with the transformed state. As
you might expect, this recipe is a bit of an oversimplification. It needs a few
additional ingredients, especially some way to communicate with other pro-
grams. We’re going to wrap this tiny function in a process. To interact with
other processes, our run function needs to add some way to send and receive
messages. Let’s call it listen, and add some process machinery to start our
server, like this:

def start(initial_state) do
spawn fn -> run(initial_state) end

end

def run(state) do
state
|> listen
|> run

end

def listen(state) do
receive do

:some_message -> Core.do_work(state)
:another_message -> Core.do_other_work(state)

end
end

The above listing is a more complete look at our overall plan. We start a pro-
cess with spawn. Then we start with the state, and call listen(state) to do a bit of

report erratum • discuss

Build a Server with a Process • 3

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

work from our core layer, returning the new state. Finally, we recursively call
run again with the new state.

That’s our rough plan. When all is said and done, we’ll have:

• A piece of state data
• A core layer to do the work of our service by transforming our state
• A start link to start our service
• A message loop that recursively calls itself with transformed state
• A listen function to respond to messages on the server

Eventually, our OTP GenServers will also have these pieces. For now, let’s
follow this template by building a project using primitives rather than OTP.

Create a project with mix new calculator, and we’ll get to work. Let’s start with
the part of our program that does the work, the functional core.

Build a Core
Functional cores do the work of GenServers. The functional core should work
on data that’s validated and safe. It should be predictable, so it avoids side
effects.1 We’ll hit the highlights throughout this book. If you are looking for
deeper design considerations for building a functional core, check out
Designing Elixir Systems with OTP [IT19] for more details.

Add the following functions, which make up our core, to lib/core.ex:

defmodule Calculator.Core do
def add(acc, number), do: acc + number
def subtract(acc, number), do: acc - number
def multiply(acc, number), do: acc * number
def divide(acc, number), do: acc / number

def inc(acc), do: acc + 1
def dec(acc), do: acc - 1

def fold(list, acc, f) do
Enum.reduce(list, acc, fn item, acc -> f.(acc, item) end)

end
end

Each of the functions in our core will work on a state that consists of a
number. Each function will take a number as an argument, perform calcula-
tions on that number as a handheld calculator would, and return the
resulting number. We have a final function, one called fold, that isn’t part of
our API.

1. https://lispcast.com/what-are-side-effects/

Chapter 1. A Basic Handmade Server • 4

report erratum • discuss

https://lispcast.com/what-are-side-effects/
http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Organizing functions in a predictable core makes testing substantially easier.
We’ll write a tiny set of test cases here, but it’s also important to point out
that other more exhaustive forms of testing such as property-based testing
are far easier within a functional core. If you want to know more about
property-based testing, check out Property-Based Testing with PropEr, Erlang,
and Elixir [Heb19].

These tests can stay simple because they don’t have to deal with complex
testing issues such as processes, unpredictable results, or impure data:

defmodule CoreTest do
use ExUnit.Case
import Calculator.Core

test "subtracts" do
assert subtract(10, 4) == 6

end

test "adds" do
assert add(10, 4) == 14

end

test "multiplies" do
assert multiply(10, 4) == 40

end

test "divides" do
assert divide(10, 2) == 5.0

end

test "fold" do
assert fold([1, 2, 3, 4], 0, &add/2) == 10

end
end

This list of tests isn’t complete, but you get the idea. Rather than linger with
our tests too long, let’s look at the main functions that make up our core in
a little more detail.

Reducers do the Heavy Lifting
The main functions in our core, those that do the bulk of the work, are
reducers. These functions have a first argument of some type and return data
of that same type. Take, for example, &add/2. The first argument is a number,
and it returns a number.

Let’s look at why those functions are called reducers. Another name for reduce
in functional languages is fold. Add this fold function to lib/core.ex, like this:

def fold(list, acc, f), do: Enum.reduce(list, acc, &(f.(&2, &1)))

report erratum • discuss

Build a Server with a Process • 5

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Notice that we’re just calling the Enum.reduce function underneath. The only
difference is that we flip the two arguments in the reducer, called f. Said
another way, fold is an implementation of reduce with a slightly different API.

The main functions in our core, add, subtract, multiply, and divide are all reducers.
These functions work with Enum.reduce, but that explanation is a bit vague.
Let’s explore reducers in IEx:

iex> import Calculator.Core
Calculator.Core
iex> list = [1, 2, 3]
[1, 2, 3]
iex> acc = 10
10
iex> 10 |> subtract(1) |> subtract(2) |> subtract(3)
4

We take a list of numbers, [1, 2, 3]. They all work with our reducers. The last
piped expression in the previous example is exactly what happens in a reduce:
we start with an accumulator and pipe each number in our list through the
reducers.

Now, let’s execute the same function using our fold:

iex> fold(list, acc, &subtract/2)
4

So when we say that our reducers work with Enum.reduce/3, that’s not strictly
true. Our reducers specify the accumulator first instead of second.

You might notice that the Enum.reduce and our fold take reducers with exactly
two arguments. Strictly speaking, reducers don’t have to take two arguments.
For example, we can run inc/1 through our reducers by ignoring the second
reducer argument, like this:

iex> 10 |> inc |> inc |> inc
13
iex> fold([1, 2, 3], 10, fn acc, _ -> inc(acc) end)
13

We fold over a list. The list could actually contain any data; the result would
be the same. We ignore each item in the list and call inc on the accumulator
each time.

If you think of our service as a robot, these reducers form the CPU, or the
brain. We’ll add in the machinery to do the rest of the work in a handmade
boundary layer.

Chapter 1. A Basic Handmade Server • 6

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Build the Boundary Layer
A core by itself is a library. Boundaries, whether we build them ourselves or
with a GenServer, are process machinery. Remember, our boundary will
spawn a recursive function called run that has a listen function to interact with
other processes.

Since the concerns of the boundary are different from the concerns of the
core, we’ll put the code in a separate module. Open up the file lib/boundary.ex
and we’ll get to work.

Establish the Boundary Module
Now, let’s establish our boundary. Our boundary layer will use our core
functions in a message loop. The boundary will track state over time using
recursion and message passing. The boundary will use our core to transform
the state. If this all seems confusing, just key in the code below into boundary.ex.
It will eventually make sense:

defmodule Calculator.Boundary do
alias Calculator.Core

end

Let’s work from the inside out. We’ll first listen for requests to do work. We’ll
receive messages that do the work for each of our main reducer functions,
like this:

def listen(state) do
receive do

{:add, number} ->
Core.add(state, number)

{:subtract, number} ->
Core.subtract(state, number)

{:multiply, number} ->
Core.multiply(state, number)

{:divide, number} ->
Core.divide(state, number)

end
end

Each piece of code receives a message and modifies the state within our
functional core. We take messages in tuple form so clients can provide both
the command and the arguments for the command. We’ve cleanly separated
the concerns of the boundary from the concerns of the core.

report erratum • discuss

Build the Boundary Layer • 7

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

These messages are fire-and-forget asynchronous messages. Clients won’t
have to wait for a response. In GenServer speak, these messages are casts.

Before we move on, let’s add a way to clear the calculator and a way to return
state. Add these two messages before the end statement for the receive do
expression:

:clear ->
0

{:state, pid} ->
send(pid, {:state, state})
state

The clear command is dead simple. It simply returns 0 for the state. Technically
speaking, it doesn’t use the core. It simply resets the state.

The :state message is a little more complicated. This message contains the
caller’s process id so it can send the state back to the client. We send a {:state,
state} tuple with an atom and the state back to the client to provide some
assurance that the client is receiving the correct state. Then, we return the
original state, since a query to get the :state should not change its value.

Next, we’ll provide the run loop, like this:

def run(state) do
state
|> listen
|> run

end

Lovely! It’s just like our template. All that remains is a function to start the
process:

def start(initial_state) do
spawn(fn -> run(initial_state) end)

end

And we’re off to the races! We now have a working service. Let’s take it for a
test drive.

Use the Server with send
We can use our service, but we’re going to have to interact with it using pro-
cess primitives of send and receive. Open up an IEx console with iex -S mix, or
recompile your existing IEx session if it’s already open with recompile. Let’s
play with our service.

iex> import Calculator.Boundary
Calculator.Boundary

Chapter 1. A Basic Handmade Server • 8

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

iex> pid = start 0
#PID<0.215.0>

We now have a started server. We can verify that it’s alive, like this:

iex> Process.alive? pid
true

It’s running! Let’s get the state.

iex> send pid, {:state, self()}
{:state, #PID<0.140.0>}
iex> flush
{:state, 0}
:ok

We use flush to see the results in our mailbox. We get a state of 0 back, so it’s
working! Now, we can interact with our calculator by sending messages that
use the reducers in our core to change the state of the calculator:

iex> send pid, {:add, 10}
{:add, 10}
iex> send pid, {:add, 20}
{:add, 20}
iex> send pid, {:subtract, 40}
{:subtract, 40}
iex> send pid, {:state, self()}
{:state, #PID<0.140.0>}
iex> flush
{:state, -10}
:ok

We interact with the calculator server. We add 10, add 20, and subtract 40 and
then get a state that looks like my college bank balance. The interaction is
ugly, though. Using this API is ugly and error prone. There’s a better way.
Let’s add an API layer.

Establish an API
We’ve coded the core with functions to do the work for each service. We’ve
added the boundary layer that handles process machinery. Now, it’s time to
code the API. It’s the API’s job to present a common, convenient interface to
other programs, whether they are part of the same application or a remote
one.

The Calculator module is the right place for the API. It’s the module with the
flattest namespace, and the one that should contain documentation about
our API. Instead of forcing our users to use process primitives, our API will
consist of functions.

report erratum • discuss

Build the Boundary Layer • 9

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Open up lib/calculator.ex so we can get started:

defmodule Calculator do
alias Calculator.Boundary

end

We’ll start from scratch. We clear out the ceremony from the original mix
project. While you’re at it, clean out the test, too. Now to start the process:

def start(initial_state) do
Boundary.start(initial_state)

end

We call the API to create our process. This function is a constructor since it
creates the process. Our function returns a pid. If we ever wanted to harden
this service, we’d want to return an {:ok, pid} tuple to allow for errors. For our
trivial illustration, our simple service will suffice.

Next, we’ll build an API version for each of our service’s messages. Let’s start
with the five asynchronous calls:

def add(calculator, n), do: send(calculator, {:add, n})
def subtract(calculator, n), do: send(calculator, {:subtract, n})
def multiply(calculator, n), do: send(calculator, {:multiply, n})
def divide(calculator, n), do: send(calculator, {:divide, n})

def clear(calculator), do: send(calculator, :clear)

Remember, Elixir’s modules should have functions where the first argument
is the data type for our module. Since this file wraps with a backend server,
the type we’ll use is the pid. We can be more descriptive, though. Our process
IDs represent processes that wrap our calculator services. We’ll name them
calculators.

These will become GenServer casts, asynchronous fire-and-forget messages.
Let’s look at the synchronous counterpart, those with a call and response:

def state(calculator) do
send(calculator, {:state, self()})
receive do

{:state, state} ->
state

after
5000 ->
{:error, :timeout}

end
end

We send the state message, but we also need to receive the response. That
means our message also needs the pid for our process, self().

Chapter 1. A Basic Handmade Server • 10

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Now that we have an API, let’s take it for a spin.

Use the Server through Our API
We’ll exercise our GenServer through an API layer. To see how that layer
might work, let’s go back to IEx. Remember to recompile if you haven’t already
done so.

iex> calc = Calculator.start 10
#PID<0.260.0>
iex> Calculator.add calc, 1
{:add, 1}
iex> Calculator.add calc, 5
{:add, 5}
iex> Calculator.state calc
16

As expected, it’s working perfectly! All is not well, though. Our calculator has
problems:

iex> Calculator.add calc, :this_will_crash
{:add, :this_will_crash}
iex>
14:09:25.004 [error] Process #PID<0.139.0> raised an exception
** (ArithmeticError) bad argument in arithmetic expression

:erlang.+(1, :this_will_crash)
(calc) lib/core.ex:2: Calculator.Core.add/2
(calc) lib/boundary.ex:10: Calculator.Boundary.run/1

nil
iex> Process.alive? calc
false

We crashed our server, and that shows two flaws in our design. The first is
a boundary concern. Our boundary doesn’t adequately validate our data, and
our core doesn’t adequately guard against incorrect data. These are generic
programming concerns.

The second problem is more serious. It’s an infrastructure problem. We need
to be able to detect failure and take action. These are lifecycle concerns.

We need a process server, one that we can integrate into our calculator or
any other project we might build. This process server should know how to
start up a service, shut it down cleanly, and detect when services shut down.

We need OTP.

report erratum • discuss

Build the Boundary Layer • 11

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Build an OTP Server, with Mix
Elixir’s OTP has the features we’ve built so far from the boundary on out
called GenServers. OTP also has a way to build and configure process servers
called supervisors. We’ll save the supervisors for later in this series and focus
on the GenServers.

Let’s build a new boundary. Instead of building our process machinery from
scratch, we’ll use the OTP library instead.

Build the OTP Boundary
Before we use the GenServer library, let’s think about the parts of our program
that we might need to customize. Let’s bring back the boundary layer, which
looks like this:

defmodule Calculator.Boundary do
alias Calculator.Core

def start(initial_state) do
spawn(fn -> run(initial_state) end) # <--- init

end

def run(state) do
state
|> listen
|> run

end

def listen(state) do
receive do
{:add, number} ->

Core.add(state, number) # handle_cast

{:subtract, number} ->
Core.subtract(state, number) # handle_cast

{:multiply, number} ->
Core.multiply(state, number) # handle_cast

{:divide, number} ->
Core.divide(state, number) # handle_cast

{:state, pid} ->
send(pid, {:state, state}) # handle_call
state

end
end

end

These comments point to the lines of code that you’ll be writing yourself. We’ll
need to specify our own starting callback using init. We’ll also need a callback

Chapter 1. A Basic Handmade Server • 12

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

for each of the custom messages our server supports. The handle_cast callback
will implement one-way asynchronous functions, and the handle_call callback
will support two-way synchronous ones. You can remember these because
phone CALLS are two way, and podCASTS are one way.

Here’s what our program looks like, piece by piece:

defmodule Calculator.Server do
use GenServer
alias Calculator.Core

def start_link(initial) when is_integer(initial) do
GenServer.start_link(__MODULE__, initial)

end

def init(number) do
{:ok, number}

end
end

We start with the use GenServer, which announces our intention to use the
macros in this API. We will keep as much of our custom code as possible
within our core, so we alias that. We also provide a start_link to spawn our
process. Don’t worry about the details just yet. Simply understand that start_link
starts a process, linked back to this one, so that Elixir can restart the process
in the event of failure.

We provide a name (the module for our program) and an initial value to start_link.
Elixir will store our pid in a registry under the name Calculator.Server in case
the process crashes and we need to start a new one.

Now, let’s add the callbacks:

def handle_cast({:add, number}, state) do
{:noreply, Core.add(state, number)}

end
def handle_cast({:subtract, number}, state) do

{:noreply, Core.subtract(state, number)}
end
def handle_cast({:multiply, number}, state) do

{:noreply, Core.multiply(state, number)}
end
def handle_cast({:divide, number}, state) do

{:noreply, Core.divide(state, number)}
end
def handle_cast(:clear, _state) do

{:noreply, 0}
end

def handle_call(:state, _from, state) do
{:reply, state, state}

report erratum • discuss

Build an OTP Server, with Mix • 13

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

end

The arguments may not make complete sense, but you can see the general
pattern. Each function is a callback that implements a single clause of the
receive argument. The handle_cast callbacks don’t need to reply, because they’re
asynchronous, so they respond with a :noreply tuple. The handle_call function
needs to specify a :reply tuple. The second tuple element goes to the client and
the third goes back to the recursive call in the server.

All that remains is to define an API. Within OTP programs, it’s customary to
build an API layer into the GenServer, so add these lines to lib/server.ex, like
this:

def add(pid, number), do: GenServer.cast(pid, {:add, number})
def subtract(pid, number), do: GenServer.cast(pid, {:subtract, number})
def multiply(pid, number), do: GenServer.cast(pid, {:multiply, number})
def divide(pid, number), do: GenServer.cast(pid, {:divide, number})
def clear(pid), do: GenServer.cast(pid, :clear)

def state(pid) do
GenServer.call(pid, :state)

end

These functions use GenServer calls to do calls and casts rather than using
native send and receive functions. That’s all there is to it!

Let’s take it for a spin:

iex> recompile
Compiling 1 file (.ex)
:ok
iex> alias Calculator.Server
Calculator.Server
iex> {:ok, server} = Server.start_link(0)
{:ok, #PID<0.228.0>}
iex> Server.add server, 10
:ok
iex> Server.state server
10
iex> Server.subtract server, 2
:ok
iex> Server.state server
8

It works! In the following chapters, you’ll see us use this GenServer to auto-
matically restore a crashing server. We’ll leave it to you to decide whether to
decide which Calculator to integrate.

Now, it’s a good time to wrap up.

Chapter 1. A Basic Handmade Server • 14

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Your Turn
We started this chapter with a little basic background, and then we went
right into how you might build something without OTP first. We just went
through a whole long chapter, building a service from scratch that we could
have built using OTP. We used the same techniques you might use in other
distributed, functional languages. We used processes and a message loop to
manage state. By now, you may realize why.

Layers of an OTP App
OTP is like a template for an application. Your code fills in the template by
using callbacks. We wrote the code for a calculator in layers, with a core, a
boundary, and an API. Once we finished our calculator, we replaced the
boundary with an OTP server.

OTP is a framework for building concurrent, reliable services. You can abso-
lutely build the services in OTP by hand using Elixir’s primitives, but you
shouldn’t. Instead, you should rely on an OTP foundation to take advantage
of years of experience.

You’ll build your OTP servers application in layers. The functional core has
the functions that perform each of your services. The boundary has process
machinery, validations, and the like. The api layer wraps up the boundary
layer with tiny functions that present the service to your user.

The best way to understand services is to build your own or add on to ours.
These exercises will help.

Try It Yourself
In this section, we’ll introduce a few simple problems with OTP. Build each
of the following services with OTP and GenServer.

• Add a negate command to the calculator. It should multiply the calculator
value by -1.

• Implement inc as a handle_info callback instead of a handle_cast.

These medium problems have you building your own OTP server. Each of
your services should have a functional core, a boundary, and an API layer.

• Build a stack server. You can find a good example of a service in the OTP
documentation within IEx. From IEx, issue the command h GenServer, and
you’ll see an example of a stack application. You’ll need to extract the push

report erratum • discuss

Your Turn • 15

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

and pop features into a functional core, and wrap your service in an API.
It should support the commands push, pop, and state.

• Build a Counter server. Handle the commands inc and state.

This hard problem needs to take advantage of the init callback to start a peri-
odic timer, and calls a function.

• Implement a clock server that prints the time every minute. The server
should support one message: tick, which prints the time every minute.
You must also send that message every minute.

Next Time
In the next chapter, we’ll dig into the GenServer callbacks. We’ll go beyond
the generic servers you find in the documentation. In particular, we’ll dive
into the response tuples and how they work.

Chapter 1. A Basic Handmade Server • 16

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

CHAPTER 2

Communication Between Servers
Typical libraries are made up of simple functions. You use them by writing
calls to functions, and the library returns a result. The GenServer API is a
little different. A GenServer reverses the roles. These generic servers are fully
functioning servers with a few pieces missing. Your application implements
these missing pieces, called callbacks so rather than you calling functions
on the GenServer API, often the GenServer calls your functions instead.

As you might imagine, over the years, GenServers have evolved to handle
many different scenarios, so the various knobs and levers you can use to
tailor your applications can bewilder even the hardiest developer. Take heart.
When you look closely, several patterns emerge. This chapter is dedicated to
helping you understand the communication between a Genserver, your
application, and other processes. Let’s get started.

Anatomy of a GenServer
In the last chapter, we built a basic calculator, with and without a GenServer.
Let’s look back at that program. We’ll focus on a a couple major messages:
add and state:

def start(initial_state) do
spawn(fn -> run(initial_state) end)

end

def run(state) do
state
|> listen
|> run

end

def listen(state) do
receive do

{:add, number} ->
Core.add(state, number)

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

{:state, pid} ->
send(pid, {:state, state})
state

end
end

This program has the same basic shape of many other Elixir programs. There
are two major parts, the lifecycle management and the message process. Our
lifecycle management is a simple start function to start a process. The run and
listen messages represent the message loop.

Our server supports two different kinds of messages. The first kind, the add
message, simply receives a message and transforms the state. It’s a one-way
message, a simple asyncronous message. It’s a cast in GenServer terminology.
The other kind, the state message, is a two-way call-response message, a call
in GenServer terminology.

A GenServer is a Template
You can think of a GenServer as a template for your code. You can fill in the
blanks with callbacks, bits of code you’ll implement in your own modules as
shown in the following figure.

Receive

Start

1 way
message:

Cast

Run loop

2 way
message:

Call

Return
Result

init

handle_cast

handle_call

GenServer API Your App:
Callbacks

This diagram gives you a good picture of what’s happening. When we work
with OTP, the GenServer library builds the generic lifecycle management and

Chapter 2. Communication Between Servers • 18

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

message loops, leaving the rest to your application. The GenServer calls your
application’s callback functions at certain specific times.

Notice the structure of the GenServer. It has the same application components
as the calculator we built in the last chapter. It implements the lifecycle
management by spawning a process. We’ll cover the lifecycle in Chapter 3,
The Lifecycle and Supervision, on page 35. For now, let’s focus on the rest.

The Basic Callbacks
At each possible application integration, OTP will call your app. The most-
used callbacks are:

init
called when a server starts a GenServer

handle_call
called when a server receives a two-way message

handle_cast
called when a server receives a one-way message

handle_info
called when a server process receives a generic message, a message not
formatted for OTP

This is the general shape your code will have when you’re using these call-
backs:

def init(state) do
custom-code-here
{:ok, initial_server_state}

end

def handle_call(message, from_pid, server_state) do
custom-code-here
{:reply, client_response, new_server_state}

end

def handle_cast(message, server_state) do
custom-code-here
{:noreply, new_server_state}

end

def handle_info(message, server_state) do
custom-code-here
{:noreply, new_server_state}

end

You’ll use init callback exists to do one or both of these two things:

report erratum • discuss

Anatomy of a GenServer • 19

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

• Call some code with a side effect before starting your application.
• Transform the inbound state into a state that’s friendlier for your

GenServer.

The handle_ callbacks are slightly more complicated. Each has its own signature,
but there are some common themes:

• the first argument is always the message
• the last argument is always the server’s state
• the response is always a standard response tuple

The handle_info callback is the simplest. It takes two arguments, the message
the server is receiving and the state of the server. It usually returns a :noreply
tuple, one that provides the new state for the GenServer. This state will be
passed to the next handle_ callback.

The handle_cast callback works almost exactly like a handle_info, but with one
major difference. The API gets the pid of the caller in the second argument,
the from field. Otherwise, it’s the same. You provide your custom code and
typically return a standard :noreply tuple.

The handle_call is a two-way synchronous API, so it needs to send a :reply tuple.
Usually, the reply tuple has the atom :reply, followed by the message to send
to the client, followed by the new state for the GenServer. This new state will
flow back into the next handle_ callback, and the circle of life continues!

This chapter will focus on making the most of those callbacks. You’ll learn
how Elixir calls them, and how your callbacks should respond. We’ll go off
the beaten path a bit to explore some of the optional bits of OTP that you
might miss if you’re not a careful reader. We’ll look at response tuples beyond
the typical use cases and how to find them.

We’re going to start our tour with the simplest message, one that OTP does
not create. Let’s explore the handle_info callback.

handle_info Processes Nonstandard Messages
You’ve seen a brief introduction of handle_info, but now we can fill in some more
details. Use the handle_info callback to send generic Elixir messages to a
GenServer. By generic, we mean messages that work with any generic Elixir
process, not necessarily a GenServer process.

Elixir uses the actor programming model, meaning each process has its own
message queue. You can use process primitives to send messages to any
Elixir process, as long as you have a pid.

Chapter 2. Communication Between Servers • 20

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Sometimes, you may want your GenServer to receive messages from Elixir or
Erlang process primitives rather than calls or casts built for OTP. A good
example is the Process.send_after/2 function. Let’s see how that works.

Send a Timed Message
As you might expect, Elixir and Erlang have several tools for sending messages
to any process based on some interval. The tools are easy to use and useful.
Let’s take a look at a few of them.

iex> Process.send_after(self(), :hi, 2000);
receive do m -> m end;
IO.puts("Done!")
Done!
:ok

Process is Elixir’s module for dealing with any process, including GenServers.
The self() function returns the pid for our own process. As is customary, the
first argument to functions in Process will represent a process. We chase that
argument with the message, :hi, and a duration in milliseconds.

A similar message, :timer.send_interval, sends a message after a specified
period of time to a pid, like this:

iex(3)> :timer.send_interval(1000, self(), :tick)
{:ok, {:interval, #Reference<0.1649946897.170917896.30200>}}
iex(4)> flush
:tick
:tick
:ok
iex(5)> flush
:tick
:tick
:ok

We ask the timer, in another process, to send a message :tick at one-second
intervals. Then, we flush the message buffer a couple of times to see what’s
in the message box. After running this short program, it would be good to
exit the console to prevent your mailbox from being flooded with :tick messages!

Both of these tools are interesting to OTP programmers, but neither the :tick
nor the :hi message was formatted for OTP. It turns out that handle_info is built
especially for retrieving generic messages like these.

report erratum • discuss

handle_info Processes Nonstandard Messages • 21

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

The Bones of a Simple Egg Timer
Say we want to build our very own overpowered egg timer using Elixir. We
could use OTP to start the timer, and it could send a message to any process
that we want when the timer expires.

We’ll make use of the send_after message to implement the timer functional-
ity, and we’ll use the handle_info callback to receive the message to respond to
our timer.

Our functional core will let us create a timer with the beginning time, a
duration, a status, and a function to call when it expires. Eventually, we’ll
store them in our GenServer in a map with a string key.

Type mix new egg_timer. Change into the project directory, and key this into
alarm.ex:

defmodule EggTimer.Alarm do
defstruct ~w[duration name time f]a

def new(name, duration, f \\ &default_fn/0)
when is_atom(name) and is_integer(duration) and is_function(f) do

__struct__(
time: Time.utc_now(),
name: name,
duration: duration,
f: f

)
end

def trigger(alarm) do
alarm.f.()
alarm

end

def default_fn do
IO.puts("Alarm triggered!")

end
end

Our functional core is an alarm. We have attributes for a name that we’ll use
to register an alarm, the current time (this will come in handy later when we
want to compute how much time is left on the timer), the total amount of
time for the alarm, and a function to call when the alarm triggers.

Keep in mind that while our alarm has the data and functions for managing
alarms, it does not know how to send timed messages. Such process
machinery belongs in the boundary. Instead of implementing an actual trigger,
we use a high-order function to keep our core pure and provide flexibility for

Chapter 2. Communication Between Servers • 22

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

our API. This way, a user can provide a function so any alarm can trigger any
activity our users can wrap in a function.

There are only three functions: a constructor to create new alarms, one that
provides a function to call when the alarm triggers, and the default function
for our alarm. We won’t worry about adding alarms to our map of alarms
within our core. We’ll manage that map in our GenServer.

To kick off our example, let’s build the beginnings of our process machinery,
code that lives in our boundary. We’ll start with a function to start a server.

Build a GenServer
Our initial GenServer will have three pieces. We’ll create a start_link to start
the server, with an init callback. We’ll also include a function to send a message
at the prescribed time with Process.send_after. Since that message is generic
instead of a GenServer message, we’ll need a handle_info callback to process it.
Open up server.ex and key this in. We’ll cover the file in pieces to explain each
one:

defmodule EggTimer.Server do
use GenServer
alias EggTimer.Alarm

def start_link(timers) when is_map(timers) do
GenServer.start_link(__MODULE__, timers)

end

We create our boundary code in a separate file. Our goal is to keep all of the
process machinery in this file, but nothing else. This code will handle all of
the mechanics of the GenServer, and also do the work of sending timed
messages across processes.

Next, we’ll look at the code that will schedule our physical Elixir process timer:

def schedule(pid, alarm) do
Process.send_after(pid, {:alarm, alarm.name}, alarm.duration)
:ok

end

That code is simple enough. We take a pid and an alarm. Since this module
is a server, we list the server pid as the first argument. Next, we’ll look at our
first callback:

def init(timers) do
{:ok, timers}

end

report erratum • discuss

handle_info Processes Nonstandard Messages • 23

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

This init function looks practically useless here, but there’s a good reason for
it. This callback is a great place to process side effects our GenServer may
need, like connecting to an external resource.

init is also a great place to do any transformation on the data. For example,
we might fetch a user, given an ID or something similar. Since init may use
functions that fail, we must return an error tuple so the GenServer can
properly handle startup problems.

Next, we’ll do the main callback that handles a tripped alarm:

def handle_info({:alarm, name}, timers) do
Alarm.trigger(timers[name])
new_timers = Map.delete(timers, name)

{:noreply, new_timers}
end

end

This is the heart of our server. You’ll notice that the message we receive in
handle_info matches the format of the message we send exactly. Just as all
other handle_ callbacks do, we get the state of the GenServer in the timers
argument. We trigger the timer, remove it from our map, and then feed the
new list of timers, without the one we just executed, back into our server.
Since the user is not expecting a reply, we send a noreply tuple with the new
state of the GenServer.

We have a pretty good start, and surprisingly, we can see it in action!

Test Drive It
Let’s take our timer for a test drive, even though we haven’t integrated the
code to schedule a timer. We’ll do the work to schedule a timer by hand.

Open up IEx, or recompile, and follow this script:

iex(1)> alias EggTimer.Server
EggTimer.Server
iex(2)> alias EggTimer.Alarm
EggTimer.Alarm
iex(3)> a = Alarm.new :wake_up, 5000
%EggTimer.Alarm{

duration: 5000,
f: #Function<1.57107384/0 in EggTimer.Alarm.new/2>,
name: :wake_up,
time: ~T[19:51:06.540203]

}
iex(4)> {:ok, t} = Server.start_link %{a.name => a}
{:ok, #PID<0.206.0>}

Chapter 2. Communication Between Servers • 24

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

iex(5)> Server.schedule t, a
:ok
Alarm triggered!

We alias the files we’ll need, then we build an alarm. Next, we start a
GenServer, and we give it a map with our alarm already inside. Eventually,
we’ll have a schedule message that does that work.

Then, we schedule our timer by hand by calling the Server.schedule function
with our timer and alarm. After we wait a few seconds, our alarm triggers.
It’s not a smooth API yet, but everything works well so far!

Next, let’s build in the scheduler.

Schedule an Alarm with handle_cast
The handle_cast callback is an asynchronous message, a one-way message. Use
it when you don’t need a reply from a server, and you want to send the mes-
sage through the GenServer API. We’ll amend this advice a bit at the end of
the chapter. The client calls the server and does not bother waiting for a
response. We’ll use a cast message to implement the schedule message for our
timer.

Scheduling a new alarm will require a name, the duration for a timer, and a
function to call when the alarm triggers. We’ll implement the cast with a han-
dle_cast.

Implement the handle_cast Callback
Key the following code into the server module. Note that our callback has a
similar shape to the handle_info callback:

def handle_cast({:schedule, name, duration, f}, timers) do
alarm = Alarm.new(name, duration, f)
schedule(self(), alarm)

{:noreply, Map.put(timers, alarm.name, alarm)}
end

We use handle_cast to process our message. Messages aren’t function calls.
Elixir will receive them with pattern matches. Idiomatic Elixir uses either
simple atoms or tuples to express messages.

Since the :schedule message needs a name, duration, and function, we use a
tuple instead of an atom. We schedule an alarm, and then send a response
tuple telling GenServer that we don’t plan to reply, and that the new state for
our server is a map of timers with our new scheduled timer.

report erratum • discuss

Schedule an Alarm with handle_cast • 25

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Let’s dig a little bit more into response tuples.

Response Tuples
Remember, a GenServer is a contract, called a behaviour. The contract is
between your application and the generic server. When you add the directive
use GenServer, Elixir includes this behaviour so the generic server knows
exactly which functions to call when certain events happen.

Part of the contract is which callbacks are allowed. So far, we’ve looked at init,
handle_info, and handle_cast.

Another part of this contract is the signature of the callback functions. For
example, our handle_cast/2 callback takes a message and a state.

The final part of this contract is the return value of each callback. With
GenServer, we’ll specify responses in a response tuple. Depending on the type
of the tuple, these tuples have two or more of the following elements:

• the type of tuple, from :noreply, :reply, :stop, and :ok
• the response to send back to the server
• the value to send to the server
• extra services, which we’ll get to later

So far, the two response tuples you’ve seen are {:ok, state} from the init callback,
and the {:noreply, state} response tuple from handle_info and handle_cast.

The response tuples are hard to find in the GenServer documentation, unless
you know where to look. Let’s look at the documentation for the GenServer.
We’re going to dive in a bit, so open up the documentation for the GenServer
on hex.1

Look at the lefthand margin. Click the callbacks link. You’ll see the callbacks
expanded, like in the following image:

1. https://hexdocs.pm/elixir/GenServer.html

Chapter 2. Communication Between Servers • 26

report erratum • discuss

https://hexdocs.pm/elixir/GenServer.html
http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Now click on the handle_cast callback. Look on the right-hand side, under the
heading Specs. You will see the type specs that follow:

This is how to interpret what you’re seeing. The line

callback_name(argument_name :: argument_type, ...) :: return_type`

shows the callback name, an argument list in the form name::type, and the
return type. We’re looking for the return type. You can see a bunch of tuples
with a | between them. Read the | as or.

Our handle_call can take two kinds of :noreply tuples or a :stop tuple. If you look
closely at the no_reply tuple, the third argument has concepts we won’t
encounter in this chapter. It will be one of the following:

• An integer timeout value to specify a timeout
• A :continue tuple that GenServer will use to split a feature across two mes-

sages
• A :hibernate atom used to tell GenServer it’s OK to do garbage collection

report erratum • discuss

Schedule an Alarm with handle_cast • 27

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Once you know the names of the concepts, you’ll know where to find them.
Suffice to say, if you find yourself needing to worry about garbage collection
or race conditions for long-running processes, you should explore the :hibernate
and continue responses, respectively.

Next, we’ll use a response tuple other than :noreply.

Shut Down Our Timer with a :stop Tuple
Now that you know what to look for, it’s easy to shut down our server when
something goes wrong. We just return a :stop response tuple. Add this code
to our server.ex file, right below the existing handle_cast for the :schedule message:

def handle_cast(:stop, timers) do
something goes wrong
{:stop, :we_broke_something, timers}

end

This callback is dead simple. We take a simple message called :stop in the
function head and the existing state. We do nothing but return a :stop tuple
with the required :stop atom, a reason, and the final state.

Let’s try out this much. First, let’s do our typical alias to make things a little
less tedious, and start our server:

iex(1)> recompile
Compiling 1 file (.ex)
:ok
iex(2)> alias EggTimer.Server
EggTimer.Server
iex(3)> {:ok, t} = Server.start_link %{}
{:ok, #PID<0.229.0>}

Next, we’ll schedule an alarm. While we’re at it, we’ll check to see if the process
is alive:

iex(4)> GenServer.cast(t, {:schedule, :wake_up, 10_000, fn ->
IO.puts("Wake up!")

end})
:ok
iex(5)> Process.alive? t
true

Eventually, our alarm fires:

Wake up!

And we can send our message to simulate failure:

iex(6)> GenServer.cast(t, :stop)

Chapter 2. Communication Between Servers • 28

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

11:34:16.453 [error] GenServer #PID<0.229.0> terminating
** (stop) :we_broke_something
Last message: {:"$gen_cast", :stop}
State: %{wake_up: %EggTimer.Alarm{duration: 10000,

f: #Function<20.128620087/0 in :erl_eval.expr/5>,
name: :wake_up, time: ~U[2020-05-08 15:33:59.635523Z]}}

:ok
** (EXIT from #PID<0.198.0>)
shell process exited with reason: :we_broke_something

Interactive Elixir (1.10.3) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

Now, you can see our supervisor at work! The process crashes, but our
GenServer starts it right back up. Sure, we lose our alarms, but we’ll learn
to deal with that kind of failure later. Let’s move on to our last major feature,
a :status message.

Implement a Status Message with handle_call
The last callback we’ll cover is the handle_call. The handle_call is a two-way mes-
sage, or a synchronous one. Use handle_call when you want to return a result
to the client. This result may be nothing more than a simple :ok acknowledge-
ment, or it may be much more. We’ll use handle_call to implement a :status fea-
ture, to get a list of all alarms.

Since a request to :status will require our server to send a message back to our
client, we’ll need to use handle_call. Most of the status work will come in the
functional core, our alarm.ex module.

Implement the Status in the Core
Since we are dealing with timers, the most important information to the user
is the timer, how long it is, and how much time is left. We’ll let Elixir handle
the date math for us with the DateTime module. We’ll need to keep our units
straight, but it should flow pretty quickly.

We’ll return our status using tuples, so the client can format the status any
way they want. First, we’ll open up alarm.ex to add two functions, like this:

def status(alarm) do
{alarm.name, alarm.duration, remaining(alarm)}

end

def remaining(alarm) do
alarm.time
|> DateTime.add(alarm.duration, :millisecond)
|> DateTime.diff(DateTime.utc_now)

end

report erratum • discuss

Implement a Status Message with handle_call • 29

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

The status function returns a three-tuple. We get the name and duration straight
from the alarm, but also must calculate the remaining time, so we write a
function to do so.

The remaining function takes an alarm. We start with the time the alarm was
set, add alarm.duration using the :millisecond unit, and then take the difference.
Since the difference is reported in seconds by default, we’re all set.

As a sanity check, let’s use that much in IEx:

Test Drive the Status
Test driving will be easy. We’ll create an alarm, report the status a few times,
and make sure it counts down as we expect:

iex> alias EggTimer.Alarm
EggTimer.Alarm
iex> a = Alarm.new :timer, 20_000
%EggTimer.Alarm{

duration: 20000,
f: #Function<1.45243404/0 in EggTimer.Alarm.new/2>,
name: :timer,
time: ~U[2020-05-08 16:03:40.335048Z]

}
iex> Alarm.status a
{:timer, 20000, 14}
iex> Alarm.status a
{:timer, 20000, 9}
iex> Alarm.status a
{:timer, 20000, 2}

So far, so good. We’re ready to wire a status message into our server.

Use handle_call to Implement a Service
Now we come to the handle_call callback. The signature is a little different from
the two handle_ callbacks we’ve worked with so far. The reason is that the
GenServer must return a result to the client. These are a few of the major
differences you’ll notice:

• The callback arguments include the pid of the client, usually called from
• The typical response tuple is a :reply rather than a :noreply
• The response tuple includes both the response to the client and the new

state that feeds into the GenServer
• The response tuple allows for an optional timeout

Let’s add our handle_call to implement our :status message. Add this code to
server.ex after the handle_cast callbacks:

Chapter 2. Communication Between Servers • 30

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

def handle_call(:status, _from, timers) do
status =

timers
|> Enum.map(fn {_name, alarm} -> Alarm.status(alarm) end)

{:reply, status, timers}
end

Easy enough. Our server provides the GenServer state. We build a result from
the map of timers by mapping over the timers, ignoring the name key, and
calling our new Alarm.status/1 function.

In the :reply tuple, we return the status list to the user, and feed the timers map
back into the server. It’s time for a test drive.

iex> recompile
Compiling 1 file (.ex)
:ok
iex> alias EggTimer.Server
EggTimer.Server
iex> {:ok, t} = Server.start_link %{}
{:ok, #PID<0.174.0>}

First, we recompile, alias our server, and start the server. Now to set some
timers.

iex> GenServer.cast t, {:schedule, :eggs, 300_000, fn ->
IO.puts "Eggs are done"

end}
:ok
iex> GenServer.cast t, {:schedule, :waffles, 600_000, fn -> IO.puts "Eggs are done" end}
:ok

Next, we schedule a couple of alarms for five-minute eggs and ten-minute
waffles. It’s time for the great payoff:

iex(5)> GenServer.call t, :status
[{:eggs, 300000, 280}, {:waffles, 600000, 590}]
iex(6)> GenServer.call t, :status
[{:eggs, 300000, 276}, {:waffles, 600000, 586}]

We call our status, and things are counting down brilliantly! They’ll all go to
zero and trip eventually.

There’s one more issue we should cover, the concept of backpressure. We’ll
introduce that concept and then conclude.

Prefer Call to Cast to Create Backpressure
Often, clients send messages more quickly than a server can process them.
Even services like Elixir’s logger can fail. For this reason, it’s often helpful to

report erratum • discuss

Implement a Status Message with handle_call • 31

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

have two-way communication between a client and server, even when it may
slow down the system as a whole.

For such solutions, it’s useful to build in backpressure, meaning when the
server slows down, the clients have to slow down too. The easiest way to build
this responsiveness is to use the GenServer.call function instead of GenServer.cast,
and to await the return code. Then, if the server gets behind, the client must
also slow down because clients can’t send a following message until the pre-
vious one is completed.

For this reason, in GenServer, we typically prefer calls to casts when perfor-
mance may be a problem. Also, for this reason, the message queue length is
a great metric to check first when you’re trying to address bottlenecks, as
longer message queues mean a server is not getting to all messages. You can
check this message with the new LiveView dashboard or Observer.

This chapter is long enough, so it’s time to wrap up.

Your Turn
When you’re building an Elixir multiprocess application, chances are you’ll
be using OTP. This chapter explored callbacks, the primary means for cus-
tomizing OTP programs.

Customize GenServers with Callbacks and Response Tuples
As you communicate with your GenServers, knowing how to use the basic
communication callbacks will set you up for success. The init callback estab-
lishes the initial state of a GenServer. The handle_info, handle_call, and handle_cast
callbacks allow communication with a GenServer. These are the primary
functions OTP will call when you send messages to a GenServer. You’ll use
handle_info to process native messages, handle_call to process synchronous mes-
sages, and handle_cast to process asynchronous messages.

Try It Yourself
We’ve covered the basics of OTP message passing. Now, you can experiment
with those concepts by writing some of your own programs.

These easy problems involve changing our existing programs in ways that
help you understand the core concepts.

• Change the calculator in the previous chapter to relieve backpressure
with call instead of cast

• Add the API layer to our GenServer

Chapter 2. Communication Between Servers • 32

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

• Make it possible to cancel an alarm without crashing the server

This medium problem involves working in the functional core.

• Change the status message to report duration and time remaining in the
result tuples with hours, minutes, and seconds.

This problem is a hard problem. It involves trapping exit messages to build
an API that shuts down the GenServer gracefully.

• Trap the exit in init and change the application that makes our :stop tuple
shut down gracefully.

Next Time
In the next chapter, we’re going to work on lifecycles we’ll implement with
supervisors. It’s going to be heavy with videos and a great project, so stay
tuned!

report erratum • discuss

Your Turn • 33

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

CHAPTER 3

The Lifecycle and Supervision
As we explore OTP together, we’ve been slowly working through the API. First,
we built a tiny calculator service without OTP. In the last chapter, we focused
on the GenServer API, and the communication between processes with mes-
sages, calls, and casts. In this chapter, we’re going to shift gears to the second
major part of OTP, the supervisor. You may be asking yourself, “Why name
this chapter after lifecycles if we’re describing a supervisor?”

Let’s answer this question in a roundabout way. Open up an IEx session.
Next, type h Supervisor, and look at the names of concepts in the API. Your
system may vary, but mine has headings in gold and API names emphasized
in blue, as in the following figure.

A quick browse will show you all you need to know. The headings in the
documentation tell the story. The heading shown in the figure is “Start and
shutdown”. That one clearly has lifecycle terms, but other major headings
are too. Among them are the following:

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

• Shutdown
• Child spec
• start_link/2, init/2, and strategies
• Exit reasons and restarts

Also, look at the blue words. On one page, you might find start, init, and start_link.
On other pages, you might find terminate, kill, and shutdown. There are terms for
children, restarts, and policies describing those things. If you want to
understand OTP, think of a supervisor as a process server that manages a
list of processes we call children. That term is yet another lifecycle word.

In this chapter, we’re going to build a mix project from scratch. We’ll dig into
the tools you need to build your own supervisor, and we’ll plug in some chil-
dren.

Along the way, notice that everything we do is related to a few main concepts.
A supervisor must start a child, and shut down children. Supervisors also
detect and respond to failure. There are plenty of knobs and levers you can
manipulate to control this process, but in the end, you’ll find that everything
we do boils down to these basic ideas.

As usual, the best way to understand what’s happening is to dig into some
code, so let’s get busy!

The Primitive Mechanisms
We’ll build our intuition for what’s happening within a supervisor by playing
with the underlying primitives it’s built on. Let’s begin our exploration inside
IEx, before moving into our own program. First, we’ll create some unreliable
code:

iex(1)> problem = fn -> raise "oh snap" end
#Function<20.128620087/0 in :erl_eval.expr/5>
iex(2)> problem.()
** (RuntimeError) oh snap

This code is reliably unreliable, which is perfect for our purposes. Let’s simu-
late a failure by firing up problem in its own process:

iex(2)> spawn problem
#PID<0.107.0>
iex(3)>
11:11:48.957 [error] Process #PID<0.107.0> raised an exception
** (RuntimeError) oh snap

(stdlib) erl_eval.erl:678: :erl_eval.do_apply/6

Chapter 3. The Lifecycle and Supervision • 36

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

That code did exactly what we expect. The process failed and we saw the
results in the IEx console. Now, we can simulate a failure whenever we need
one.

Linked Processes Maintain Consistency
Now, let’s do the same thing, but we’ll link the spawned process to our own:

iex(4)> spawn_link problem
** (EXIT from #PID<0.103.0>) shell process exited with reason:
an exception was raised:

** (RuntimeError) oh snap
(stdlib) erl_eval.erl:678: :erl_eval.do_apply/6

11:12:03.188 [error] Process #PID<0.110.0> raised an exception
** (RuntimeError) oh snap

(stdlib) erl_eval.erl:678: :erl_eval.do_apply/6

Interactive Elixir (1.8.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

The function spawn_link starts a process, and links the new process to the one
that spawns it. When our unreliable process fails, the IEx console also
crashes because it’s linked! Sometimes, linking processes in this way helps
us preserve consistency by letting us bring down two related processes at
once in the event of a failure.

Notice the line number for IEx. It crashed and restarted! What’s happening
under the covers is that IEx is actually running in OTP. It has a supervisor
that detects failure. When the supervisor sees that our IEx session has
crashed, it diligently restarts IEx.

That means our supervisor can’t be using spawn_link. It’s actually using
another version of spawn, called spawn_monitor.

Spawn with Monitor Allows Control
Sometimes one process wants to know about the fate of others. Elixir uses
Process.monitor/1 for that purpose. The spawn_monitor is a convenience method
that lets us spawn and monitor a process at the same time. Let’s use it now:

iex(1)> problem = fn -> raise "oh snap" end
#Function<20.128620087/0 in :erl_eval.expr/5>
iex(2)> {pid, ref} = spawn_monitor problem
{#PID<0.127.0>, #Reference<0.4055542344.2876506120.76641>}

Since our IEx session crashed, we need to create the problem code again.
Then we create a monitored process. Notice we get a tuple back. The first
element of the tuple is a process ID. The second is a reference. Elixir references

report erratum • discuss

The Primitive Mechanisms • 37

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

are globally unique, and this one will uniquely identify our process when
Elixir returns an error.

Now, we can see that our process is no longer alive:

iex(3)> Process.alive? pid
false

We also got notified that the process is down! There’s a message waiting for
us in the process mailbox. Let’s get it:

iex(4)> receive do m -> m end
{:DOWN, #Reference<0.4055542344.2876506120.76641>, :process,
#PID<0.127.0>,
{%RuntimeError{message: "oh snap"},
[{:erl_eval, :do_apply, 6, [file: 'erl_eval.erl', line: 678]}]}}

That’s the message! We get back a tuple describing the crash. You can read
more about monitors and the resulting tuples in the hex monitor documenta-
tion1.

This is the mechanism that supervisors use to detect failure. With firmly
established knowledge for what’s happening under the hood, let’s move on
to a project that uses OTP to do the hard work of managing the lifecycles of
our programs.

OTP Supervisors Manage GenServer Lifecycles
Let’s create a new project, one with a supervisor. We’ll call this app super_duper:

[otp] ➔ mix new super_duper --sup
...
* creating lib/super_duper/application.ex
...

[otp] ➔ cd super_duper/

Notice the list of files mix created for you. One of them is application.ex. That’s
your supervisor.

Application is a Supervisor Template
Just as the GenServer module is a template for a generic server, the Application
module is a template for a supervisor. The documentation says, “Applications
are the idiomatic way to package software in Erlang/OTP.” When you start
an application, you’re really starting a supervisor, and that supervisor is
starting the GenServers that make up the rest of your code base.

1. https://hexdocs.pm/elixir/Process.html#monitor/1

Chapter 3. The Lifecycle and Supervision • 38

report erratum • discuss

https://hexdocs.pm/elixir/Process.html#monitor/1
http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Your application might have other projects it depends on, and you can start
these within this SuperDuper.Application module.

This is what it looks like, without the comments:

defmodule SuperDuper.Application do
use Application

def start(_type, _args) do
children = []

opts = [strategy: :one_for_one, name: SuperDuper.Supervisor]
Supervisor.start_link(children, opts)

end
end

We get the usual use Application ceremony. That command executes Applica-
tion.__using__, which establishes SuperDuper.Application as a module that implements
the Application behaviour. As you might expect, this behaviour has various
callback functions2 for starting and stopping applications.

The main callback is start. Ours establishes an empty list of children. This is
where we’ll add dependent services later on. Then, we start the server with
Supervisor.start, passing our children and options including a name and a policy
for restarting the children in our list. We’ll talk about these policies later.

Test Drive the Application
Let’s tweak the codebase to get a better feel for when it starts. Add this line
within the start function, like this:

...
def start(_type, _args) do

IO.puts ">>>> Starting Super-duper Super-visor <<<<"
...

Now, when you start up IEx, you will see it’s starting:

[super_duper] ➔ iex -S mix
Erlang/OTP 21 [erts-10.2] [source] [64-bit] [smp:12:12] [ds:12:12:10]
[async-threads:1] [hipe]

Compiling 1 file (.ex)
>>>> Starting Super-duper Super-visor <<<<
Interactive Elixir (1.10.3) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

You can see that IEx automatically loads and starts the application. This IEx
feature is not unique. Since Elixir has a standard way for packaging applica-

2. https://hexdocs.pm/elixir/Application.html#callbacks

report erratum • discuss

OTP Supervisors Manage GenServer Lifecycles • 39

https://hexdocs.pm/elixir/Application.html#callbacks
http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

tions, any other project can start ours in their own supervisor children, or as
extra applications. In fact, although it’s just a skeleton, our application already
has an extra one included! Let’s try to find it.

super_duper.app File Configures Erlang Applications
If you open up the file _build/dev/lib/super_duper/ebin/super_duper.app, you’ll find an
Erlang data structure. The first two lines of it look like this:

{application,super_duper,
[{applications,[kernel,stdlib,elixir,logger]},

Our application is super_duper, and a few extra applications were included
for us. We get the kernel, stdlib, and elixir for free. The logger is included explic-
itly in mix.exs:

Run "mix help compile.app" to learn about applications.
def application do

[
extra_applications: [:logger],
mod: {SuperDuper.Application, []}

]
end

The so-called extra applications include our own and the logger! Normally,
these listings don’t include comments, but you should pay attention to that
one. When you type mix compile.app, you get a few lines, including this one:

>> mix compile.app

>> Writes an .app file.

>> An .app file is a file containing Erlang terms
>> that defines your application. Mix automatically
>> generates this file based on your mix.exs
>> configuration.

Beautiful! As usual, José Valim, creator of Elixir, comes through. His foresight
turned an invisible feature into an explicit step of the compilation process.
This must be done to make our application execute as an OTP app within the
Erlang ecosystem.

Let’s dive deeper.

Run start Manually
We have pretty good control at development time over our supervisors and
applications. Let’s go ahead and start IEx, and tell mix not to run our applica-
tion, like this:

Chapter 3. The Lifecycle and Supervision • 40

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

[super_duper] ➔ iex -S mix run --no-start
Erlang/OTP 21 [erts-10.2] [source] [64-bit] [smp:12:12]
[ds:12:12:10] [async-threads:1] [hipe]

Compiling 1 file (.ex)
Interactive Elixir (1.10.3) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

This time, we get no start command. We can start the supervisor manually:

iex(1)> {:ok, pid} = SuperDuper.Application.start :duper, []
>>>> Starting Super-duper Super-visor <<<<
{:ok, #PID<0.137.0>}
iex(2)> Supervisor.stop pid
:ok
iex(3)> Process.alive? pid
false
iex(4)> {:ok, duper} = SuperDuper.Application.start :duper, []
>>>> Starting Super-duper Super-visor <<<<
{:ok, #PID<0.148.0>}

Perfect. We can control our own app, starting and stopping our supervisor at
will. We have many tools at our disposal to get more information.

Process.info Gets Process Information
We can get some info about the running process, like this:

iex(5)> Process.info pid
[

registered_name: SuperDuper.Supervisor,
current_function: {:gen_server, :loop, 7},
initial_call: {:proc_lib, :init_p, 5},
status: :waiting,
message_queue_len: 0,
links: [#PID<0.135.0>],
dictionary: [

"$initial_call": {:supervisor, Supervisor.Default, 1},
"$ancestors": [#PID<0.135.0>, #PID<0.75.0>]

],
...

]
iex(6)> self
#PID<0.135.0>

There’s a ton of information packed in there! Notice that the name is
SuperDuper.Supervisor. We’ll talk about naming a bit later. For now, the name
makes sense because SuperDuper.Application, after all, is an application, which
is in turn a supervisor template.

report erratum • discuss

OTP Supervisors Manage GenServer Lifecycles • 41

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

You can see we’re waiting in a GenServer message loop. In fact, a Supervisor
itself is built using the GenServer specification.

You can also see that the supervisor is linked to the process ID #PID<0.135.0>.
Notice that’s the same pid as our IEX session! In fact, you can see that our
first ancestor is also the IEx session.

We have a good start. Let’s build a tiny app so we can start some children.

Add Some Children
Before we start children, we’re going to need a GenServer. We’ll create a few
fixed characters for our server. Our nonsensical app will say a quote from a
famous character. As usual, we’ll put the business logic into a functional
core.

Create a Core
Let’s create the core in super_duper/core.

defmodule SuperDuper.Core do
def say(:superdave) do

"Next time you shoot a bullet at a metal object, watch the ricochet."
end
def say(:superman) do

"It doesn't take X-Ray Vision to see you are up to no good."
end
def say(:supermario) do

"Hoo hoo! Just what I needed!"
end

def info(name), do: {name, say(name)}
end

Our core has two pure functions. The say function has heads for each of our
three characters. We can try it out:

iex(12)> recompile
Compiling 1 file (.ex)
Generated super_duper app
:ok
iex(13)> SuperDuper.Core.info(:supermario)
{:supermario, "Hoo hoo! Just what I needed!"}
iex(14)> SuperDuper.Core.info(:superman)
{:superman, "It doesn't take X-Ray Vision to see you are up to no good."}
iex(15)> SuperDuper.Core.info(:superdave)
{:superdave,
"Next time you shoot a bullet at a metal object, watch the ricochet."}

It works just fine. The next step is to add a boundary layer.

Chapter 3. The Lifecycle and Supervision • 42

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Establish a Boundary
Now, let’s whip up a GenServer, one that accepts :say and :die messages. We’ll
need an info callback, a handle_call for say, and a handle_cast for :die to simulate
failure. Open up super_duper/server.ex and key this in:

defmodule SuperDuper.Server do
use GenServer
alias SuperDuper.Core

def init(character) do
IO.puts "Starting #{character}"
{:ok, Core.info(character)}

end

def handle_cast(:die, state) do
raise "Boom"
{:no_reply, state}

end

def handle_call(:say, _from, {_name, says}=state) do
{:reply, says, state}

end
end

We build a tiny GenServer with the usual callbacks for info, handle_cast, and
handle_call. The :die message is just a tool to help us simulate instability.

And add the API:

def start_link(character) do
GenServer.start_link(__MODULE__, character, name: character)

end

def die(server), do: GenServer.cast server, :die
def say(server), do: GenServer.call server, :say

That’s the same API layer we’ve built before. We have a convenient interface.
Now we can try that out:

iex(1)> recompile
Compiling 1 file (.ex)
:ok
iex(2)> alias SuperDuper.Server
SuperDuper.Server
iex(3)> {:ok, pid} = Server.start_link :superdave
Starting superdave
{:ok, #PID<0.172.0>}
iex(4)> Server.say pid
"Next time you shoot a bullet at a metal object, watch the ricochet."

So far so good. Now, what happens when we make a little mischief for our
venerable hero?

report erratum • discuss

Add Some Children • 43

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

iex(5)> Server.die pid
:ok
iex(6)>
18:12:51.979 [error] GenServer :superdave terminating
** (RuntimeError) Boom

...stacktrace...
Last message: {:"$gen_cast", :die}
State: {:superdave,

"Next time you shoot a bullet at a metal object, watch the ricochet."}
** (EXIT from #PID<0.150.0>)
shell process exited with reason: an exception was raised:

** (RuntimeError) Boom
...stacktrace...

Interactive Elixir (1.10.3) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

Well, that was disappointing. Crashing our server crashed our IEx session.
That’s no good! We know how to fix it, though. We can start children in our
supervisor.

Add the Children to a Supervisor
Let’s start each of our children in the SuperDuper.Application file. Let’s review the
contents of the start function:

def start(_type, _args) do
IO.puts ">>>> Starting Super-duper Super-visor <<<<"
children = []

opts = [strategy: :one_for_one, name: SuperDuper.Supervisor]
Supervisor.start_link(children, opts)

end

We’ll need to populate the children argument, but we need to specify the right
format for the children. We need a child spec. The hex docs for child spec3

say that a child spec is a map with six potential keys. The first two keys, a
:id and a :start, are required. The :id must be unique, and is used as a key in
the process registry. The :start key specifies a tuple with the name of the
module and the arguments you can use to start the child.

You can check the documentation for the children. It’s excellent. For now,
we know enough to specify a child spec. Key in these changes:

def start(_type, _args) do
IO.puts ">>>> Starting Super-duper Super-visor <<<<"
children = [

%{id: :superdave, start: {Server, :start_link, [:superdave]}},

3. https://hexdocs.pm/elixir/Supervisor.html#module-child-specification

Chapter 3. The Lifecycle and Supervision • 44

report erratum • discuss

https://hexdocs.pm/elixir/Supervisor.html#module-child-specification
http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

%{id: :superman, start: {Server, :start_link, [:superman]}},
%{id: :supermario, start: {Server, :start_link, [:supermario]}}

]

opts = [strategy: :rest_for_one, name: SuperDuper.Supervisor]
Supervisor.start_link(children, opts)

end

We specify which children to start, in order. We’re using a child spec. Each
child spec has an id key so we can refer to processes by their IDs instead of
their pids, and a start key to tell the supervisor exactly how to start the process.

Test Drive the Supervisor
Let’s take things for a test drive. We’ll make sure to recompile and stop the
existing supervisor. Remember, the name is SuperDuper.Supervisor:

iex(4)> recompile
...
iex(5)> Supervisor.stop SuperDuper.Supervisor
:ok

Things shut down just fine. Now, we can restart the app:

iex(6)> SuperDuper.Application.start SuperDuper.Supervisor, []
>>>> Starting Super-duper Super-visor <<<<
Starting superdave
Starting superman
Starting supermario
{:ok, #PID<0.169.0>}

Perfect! Now we have three GenServers started. We can access them by name:

iex> alias SuperDuper.Server
SuperDuper.Server
iex> Server.
child_spec/1 die/1 init/1 say/1
start_link/1
iex> Server.say :supermario
"Hoo hoo! Just what I needed!"
iex> Server.say :superdave
"Next time you shoot a bullet at a metal object, watch the ricochet."
iex> Server.say :superman
"It doesn't take X-Ray Vision to see you are up to no good."

In truth, our API is a bit messy. We can tighten up the child spec. Let’s find
out how.

report erratum • discuss

Add Some Children • 45

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Tighten Up the Child Spec
We could refactor our code to let a function build our child specs. It turns
out that writing a function to build child specs is a common pattern, so use
GenServer builds in a child_spec function automatically. Let’s see what ours
returns:

iex> Server.child_spec :supermario
%{id: SuperDuper.Server,

start: {SuperDuper.Server, :start_link, [:supermario]}}

That doesn’t quite work for us because we get the module name instead of
the character name, but we can override it. Let’s add our own child_spec/1 to
our server.ex:

def child_spec(name) do
%{id: name, start: {__MODULE__, :start_link, [name]}}

end

Now, we can use that spec to tighten up the child list in application.ex. We can
specify the children like this:

children = [
{Server, :superdave},
{Server, :superman},
{Server, :supermario}

]

That’s better. We specify each child as a tuple with the module name and
starting parameters.

The Supervisor Protects from Failure
Now is the moment we’ve all been waiting for. We can try to feed :superman a
little kryptonite:

iex(11)> Server.die :superman
:ok
iex(12)>
18:47:54.559 [error] GenServer :superman terminating
** (RuntimeError) Boom

(super_duper 0.1.0) lib/super_duper/server.ex:18:
SuperDuper.Server.handle_cast/2
(stdlib 3.7) gen_server.erl:637: :gen_server.try_dispatch/4
(stdlib 3.7) gen_server.erl:711: :gen_server.handle_msg/6
(stdlib 3.7) proc_lib.erl:249: :proc_lib.init_p_do_apply/3

Last message: {:"$gen_cast", :die}
State: {:superman,

"It doesn't take X-Ray Vision to see you are up to no good."}
Starting superman

Chapter 3. The Lifecycle and Supervision • 46

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

iex(12)> Server.say :superman
"It doesn't take X-Ray Vision to see you are up to no good."

But the man of steel restarts! The OTP story doesn’t stop there, though. Part
of handling lifecycles is establishing a policy for the way services started or
restarted.

We can verify with GenServer.whereis, like this:

iex(14)> pid = GenServer.whereis :superman
#PID<0.179.0>
iex(15)> Process.alive? pid
true

Superman lives to fly another day! Let’s look at some of the finer knobs and
levers involved with starting a GenServer.

Lifecycle Policy
We’ve described the supervisor as a place to have lifecycle policy. There are
four concerns we need to consider. Two are constant: startup order and
shutdown order. Two more may vary depending on application requirements,
shutdown policy, and restart policy.

Let’s start with the startup and shutdown order. Then we can move into pol-
icy.

Startup and Shutdown Are Synchronous and Ordered
When an OTP supervisor starts any application, it will start the supervisor,
and then start the children in the order you specify. The startup will also be
synchronous, meaning one process (including any children) will finish coming
up before another starts. You probably recognize the call mechanism the
supervisor is using under the hood.

So far, our supervisor’s children are plain GenServers, but they don’t have
to be. When a supervisor starts other applications, the children will be other
supervisors. That means we have a tree with supervisors and the children
for each of those supervisors.

Think about a typical tree. Say supervisor1 has three children: supervisor2,
genserver1a, and genserver1b. Say supervisor2 also has two children, as shown in
the following figure.

report erratum • discuss

Lifecycle Policy • 47

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Supervisor 1

Supervisor 2 GenServer 1a GenServer 1b

GenServer 2a GenServer 2b

1

2

3 4

5 6

You can see now why OTP developers use the term supervision tree. Let’s walk
through the rules we specified about ordering, synchronous messaging, and
the child relationships in a proper list:

• It starts children in the order they are listed.
• It waits for acknowledgment after starting each child before moving on to

the next one.
• As part of its own startup, each supervisor starts its own children.

That means the startup order follows the numbers in the previous figure.
Shutdown happens precisely in reverse.

If you think about it, having a precise order makes sense. The logger must
start before our application. A connection pool must start before applications
that connect to a database. More generally, some services depend on others.
Processes must come after dependencies in a supervisor’s child list.

Let’s look back at what happened when we started our application:

>>>> Starting Super-duper Super-visor <<<<
Starting superdave
Starting superman
Starting supermario

If we started the same code a million times, each successful start would look
exactly like this one.

Once you know what your dependencies are, you can start to think about
the startup and shutdown policy for failure cases.

Set a Restart Policy
None of our services have dependencies between each other. As such, it makes
sense that in the event of failure, only the affected process should restart.

Chapter 3. The Lifecycle and Supervision • 48

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Let’s try it out. Let’s add a bit of code to track termination in server.ex, like
this:

def terminate(_reason, {name, _says}=state) do
IO.puts "Mayday! Mayday! #{name} going down..."

{:error, "oh noes", state}
end

Now we can recompile, stop, and start the supervisor:

iex(24)> recompile
Compiling 1 file (.ex)
:ok
iex(25)> Supervisor.stop SuperDuper.Supervisor
:ok
iex(26)> SuperDuper.Application.start SuperDuper.Supervisor, []
>>>> Starting Super-duper Super-visor <<<<
Starting superdave
Starting superman
Starting supermario
{:ok, #PID<0.262.0>}

Our supervisor defines a strategy to control the restart policy. You can find
it in application.ex:

opts = [strategy: :one_for_one, name: SuperDuper.Supervisor]

That strategy: :one_for_one atom is our restart policy. This one means we’ll restart
only the failing process.

The policy works for us because none of our GenServers depends on any
other. Let’s imagine what we would do if we did have dependencies.

Recall the listing of our children:

children = [
%{id: :superdave, start: {Server, :start_link, [:superdave]}},
%{id: :superman, start: {Server, :start_link, [:superman]}},
%{id: :supermario, start: {Server, :start_link, [:supermario]}}

]

GenServer starts them in the order of Super Dave, Superman, and Super
Mario. The shutdown goes in the opposite order.

Here’s what happens when we kill one node. Let’s tug on Super Dave’s cape.
Make sure you recompile and restart servers if you need to:

iex(24)> Server.die :superdave
Mayday! Mayday! superdave going down...
:ok
iex(25)>

report erratum • discuss

Lifecycle Policy • 49

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

11:27:50.377 [error] GenServer :superdave terminating
** (RuntimeError) Boom

(super_duper 0.1.0) lib/super_duper/server.ex:25:
SuperDuper.Server.handle_cast/2
(stdlib 3.7) gen_server.erl:637: :gen_server.try_dispatch/4
(stdlib 3.7) gen_server.erl:711: :gen_server.handle_msg/6
(stdlib 3.7) proc_lib.erl:249: :proc_lib.init_p_do_apply/3

Last message: {:"$gen_cast", :die}
State: {:superdave,

"Next time you shoot a bullet at a metal object, watch the ricochet."}
Starting superdave

As we expected, only a single process died and was restarted. That policy will
work fine most of the time, but there may be dependencies between children.

One for All Restarts All Children
Imagine all of our GenServers had dependencies between each other, so that
each had the process ID of the other two. We would want a restart policy to
restart all other children in the event any one failed. Change the strategy in
your application.ex to :one_for_all, like this:

opts = [strategy: :one_for_all, name: SuperDuper.Supervisor]

That tiny bit of code packs a punch! We’ve completely rewired the restart
policy. To see the impact, let’s recompile and restart things:

iex(14)> recompile
Compiling 1 file (.ex)
:ok
iex(15)> Supervisor.stop SuperDuper.Supervisor
Mayday! Mayday! supermario going down...
Mayday! Mayday! superman going down...
Mayday! Mayday! superdave going down...
:ok
iex(16)> SuperDuper.Application.start SuperDuper.Supervisor, []
>>>> Starting Super-duper Super-visor <<<<
Starting superdave
Starting superman
Starting supermario
{:ok, #PID<0.368.0>}

We can see the shutdown goes in reverse order of the startup, just as we
expected. Now, let’s put a wrinkle into Super Dave’s trousers:

Mayday! Mayday! superdave going down...
:ok
iex(18)>
11:21:09.155 [error] GenServer :superdave terminating
** (RuntimeError) Boom

Chapter 3. The Lifecycle and Supervision • 50

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

(super_duper 0.1.0) lib/super_duper/server.ex:25:
SuperDuper.Server.handle_cast/2
(stdlib 3.7) gen_server.erl:637: :gen_server.try_dispatch/4
(stdlib 3.7) gen_server.erl:711: :gen_server.handle_msg/6
(stdlib 3.7) proc_lib.erl:249: :proc_lib.init_p_do_apply/3

Last message: {:"$gen_cast", :die}
State: {:superdave,

"Next time you shoot a bullet at a metal object, watch the ricochet."}
Starting superdave
Starting superman
Starting supermario

Perfect! Super Dave goes down. GenServer restarts all three processes. Pay
close attention to the flow of callbacks. After the initial terminate callback for
:superdave, we don’t get any other terminate events. When you think about it,
that flow makes sense because we only want callbacks for terminates that
require our action, not the ones the GenServer restarts based on policy.

Before we move on, there’s one more policy we should try.

Rest for One Restarts Children with Dependencies
The last interesting scenario is that a child list only implements proper
dependencies. A proper dependency means a supervisor’s children can only
depend on previous children in the supervisor tree. The last policy works like
this. Change the restart policy to :rest_for_one, and you’ll get this result. Make
sure to recompile and restart the server:

iex(28)> Server.die :superman
Mayday! Mayday! superman going down...
:ok
iex(29)>
11:30:23.924 [error] GenServer :superman terminating
** (RuntimeError) Boom

(super_duper 0.1.0) lib/super_duper/server.ex:25:
SuperDuper.Server.handle_cast/2
(stdlib 3.7) gen_server.erl:637: :gen_server.try_dispatch/4
(stdlib 3.7) gen_server.erl:711: :gen_server.handle_msg/6
(stdlib 3.7) proc_lib.erl:249: :proc_lib.init_p_do_apply/3

Last message: {:"$gen_cast", :die}
State: {:superman,

"It doesn't take X-Ray Vision to see you are up to no good."}
Starting superman
Starting supermario

Nice! This policy works great when there are dependencies between servers
listed earlier in the child list, but no dependencies in the opposite direction.

report erratum • discuss

Lifecycle Policy • 51

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

This interesting configuration option can save many restarts in the event of
failure in large supervision trees.

You can see how tweaking a bit of configuration code can give you tremendous
returns. This is one of our longest chapters so far, so it’s past time to wrap
up.

Your Turn
In this chapter, we put OTP through its paces. You got to see firsthand how
to package a generic Elixir application. We started with mix new using the sup
option and built a full application piece by piece. Instead of focusing on the
internals of our application, we lived mostly in the supervisor layer. Let’s
summarize how things work.

Supervisors Implement Lifecycles
Where GenServers handle application concerns, supervisors define lifecycles.
Together, these two layers form the heart of OTP.

A supervisor is like a process server for your application. It’s responsible for
implementing the lifecycle of your project. Your job is to tell OTP how to start
your application, including all of your GenServers, dependencies, other
supervisors, and applications. The result is a tree of processes called a
supervisor tree.

Supervisors start and stop their children in a specified order to preserve
dependencies between them. In the event of failure, they can follow restart
policies you specify. Configuring these policies is nearly trivial.

The best way to understand what’s happening is to build your own supervisors,
and change the existing code of services that already exist.

Try It Out
These exercises range from easy to difficult. The difficulty is not in the amount
of code you need to write. Each of the solutions is short. The difficulty lies in
understanding the underlying technology.

These easy problems build onto the existing application.

• Add an API layer to SuperDuper in super_duper.ex.
• Explicitly change the child spec in SuperDuper to specify that the three

GenServer processes are workers.
• Change SuperDuper so that the workers are :temporary, and do not restart

when they fail. What happens when you kill a process?

Chapter 3. The Lifecycle and Supervision • 52

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

• Change SuperDuper so that the workers are :transient. How can you make
sure :kill messages restart? Stay dead?

This medium problem involves working with the EggTimer app from Chapter 2,
Communication Between Servers, on page 17.

• Build a supervisor for the EggTimer application in Chapter 2. Crash the egg
timer. Does it come back as you expect?

These hard problems involve building a dynamic supervisor.

• If you would like to peek ahead, you can add a dynamic supervisor to the
SuperDuper application. We’ll cover dynamic supervisors more in the next
chapter.

• Build the API layer for SuperDuper which adds a new supervised character
via an API.

Next Time
In the final chapter, we’ll focus on working with dynamic supervisors. These
supervisors will let you create new instances at any time, not just when your
application is started. It’s going to be a nice complement to OTP!

report erratum • discuss

Your Turn • 53

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

CHAPTER 4

The Power of a Name
In our journey so far, we’ve explored both major layers of OTP. Let’s take a
few brief moments to explore what’s happened because these ideas will shape
what we do next.

First, we coded a typical Elixir application with a process and a message loop
without OTP, and then with it. The OTP library relies on an application tem-
plate called GenServer. All OTP applications have these servers. Rather than
starting the server directly, we used a supervisor to manage our applications,
start our applications when the application starts, and stop them when our
application shuts down or a restart is required.

So far, each of the applications we start is a fixed GenServer or supervisor in
the supervisor’s child list. Since we supply that list when the supervisor starts,
we have a limitation. Many of the types of processes we’d like to manage—an
end user’s session in a web server, a new scene in a user interface, or a new
connection to a network—are dynamic.

If you think about it, Elixir is good at managing lists. OTP supervisors are
good at starting and stopping things at any time. We can’t refer to our pro-
cesses by a process ID because they can potentially fail, so the main problem
we need to solve to enable a dynamic server is referring to a process by some
name other than the process ID. We need a naming strategy.

In this chapter, we’ll explore the registries, via tuples, and dynamic supervisors
that OTP uses to build dynamic supervision trees that manage our project’s
lifecycle. Let’s get started.

Add Dynamic Characters to SuperDuper
Think about the SuperDuper service we built in the previous chapter. The service
works just fine if there are only three static characters. Sometimes, programs

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

need to add services dynamically. Servers that model individual users are
almost always unpredictable, requiring starts and stops. Scaling up and down
based on load is another area that might require dynamically adding and
removing services.

We’re going to build a feature to let SuperDuper have both static and dynamic
characters. Along the way, we’ll take a deeper dive into how the names work.

Before we get too far, let’s review our application and see how it works.

Explore SuperDuper in IEx
Navigate to your super_duper project and start IEx with iex -S mix. We’ll see the
supervision tree start up, piece by piece:

[super_duper] ➔ iex -S mix
Erlang/OTP 21 [erts-10.2] [source] [64-bit] [smp:12:12] ...
>>>> Starting Super-duper Super-visor <<<<
Starting superdave
Starting superman
Starting supermario
Interactive Elixir (1.10.3) - press Ctrl+C to exit (type h() ENTER for help)

Elixir, through OTP, has started our application. One of the applications it
started was in SuperDuper.Application. Remember, we started our application with
the start function in application.ex:

children = [
{Server, :superdave},
{Server, :superman},
{Server, :supermario}

]

opts = [strategy: :rest_for_one, name: SuperDuper.Supervisor]
Supervisor.start_link(children, opts)

The name is SuperDuper.Supervisor. We can see metadata about all of the currently
started children with the command Supervisor.which_children, using our supervisor’s
name:

iex(1)> Supervisor.which_children SuperDuper.Supervisor
[

{:supermario, #PID<0.141.0>, :worker, [SuperDuper.Server]},
{:superman, #PID<0.140.0>, :worker, [SuperDuper.Server]},
{:superdave, #PID<0.139.0>, :worker, [SuperDuper.Server]}

]

Perfect. We have three children, :supermario, :superman, and :superdave. We can
see the names for each, and the process for each one. The next step is to
understand how we might add children dynamically, after runtime.

Chapter 4. The Power of a Name • 56

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

A Plan for (Dynamic) Children
Let’s think about how we might add a child to our family of supers, or shut
one down. Type exports Supervisor into your IEx console:

iex(2)> exports Supervisor
__using__/1 child_spec/2 count_children/1 delete_child/2
init/2 restart_child/2 start_child/2 start_link/2
start_link/3 stop/1 stop/2 stop/3
terminate_child/2 which_children/1

The start_child looks promising. Briefly calling h start_child/2 tells us that the
arguments are a supervisor and a child spec. That solves one problem.

We have another problem, though. Take a look at our start_link and init functions:

def start_link(character) do
GenServer.start_link(__MODULE__, character, name: character)

end

...

def init(character) do
{:ok, Core.info(character)}

end

...

def child_spec(name) do
%{id: name, start: {__MODULE__, :start_link, [name]}}

end

Our code looks up the initial data for each child GenServer directly from our
core. The start_link, info callback, and the child_spec functions all participate in
this strategy. We’ll need to make this code dynamic, instead of looking up
static information from our code. It shouldn’t be too hard to do.

That means we have to use the DynamicSupervisor.start_child function to start the
supervisor, then make the information we pass to a starting child dynamic.
Let’s get started.

Dynamic Children
When traditional supervisors start services, they usually use a static list of
children. A dynamic service can’t depend on a list of children, so we’ll need
to provide an API instead. We’ll also need to be able to refer to each of the
children by name. Remember, supervisors are about lifecycles. Our plan is
to build an API to add_character, and another to stop a character. Then we’ll
touch up the rest of the functions to refer to GenServers by name.

report erratum • discuss

Dynamic Children • 57

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

We’ll need to start with the functions we’ve identified: init, start_link, and child_spec.
Not surprisingly, these functions all have lifecycle names. Tweaking them to
support both dynamic and static services becomes pretty easy once we get
Elixir’s pattern matching involved.

Tweak the Lifecycle APIs
We’ll start with the start_link function. It takes one argument, a character. We’ll
need to pass in both the character’s name and its statement. We’ll leave the
original start_link in place and add one that accepts a tuple:

def start_link({character, _says}=info) do
GenServer.start_link(__MODULE__, info, name: character)

end
def start_link(character) do

GenServer.start_link(__MODULE__, character, name: character)
end

Nice. Our function head matching the new tuple must come first. Otherwise,
the character would match both the tuple and atom forms. We extract the
character to name the server and pass the info through.

The init callback comes next. We do the same trick, adding a function head
with a tuple first:

def init({character, _says}=info) do
IO.puts "Starting #{character}"
{:ok, info}

end
def init(character) do

IO.puts "Starting #{character}"

{:ok, Core.info(character)}
end

These callbacks look much like the start_link ones. Finally, we need to tweak
the child_spec, like this:

def child_spec({name, says}) do
%{id: name, start: {__MODULE__, :start_link, [{name, says}]}}

end
def child_spec(name) do

%{id: name, start: {__MODULE__, :start_link, [name]}}
end

Beautiful. We extract the name to pass to the spec as the id key, and then we
pass through the tuple. We leave the second form of the child_spec alone to
handle the short form.

Let’s try out what we have so far.

Chapter 4. The Power of a Name • 58

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Manually Add a Child in IEx
Recompile the code you have so far or fire up IEx. Let’s say we wanted to add
another child. You could do it this way. Let’s say we wanted to add another
child, for instance, Yoshi from the Smash Brothers game. You could do it this
way:

iex> recompile
Compiling 1 file (.ex)
:ok
iex> app = SuperDuper.Supervisor
SuperDuper.Supervisor
iex> Supervisor.which_children app
[

{:supermario, #PID<0.141.0>, :worker, [SuperDuper.Server]},
{:superman, #PID<0.140.0>, :worker, [SuperDuper.Server]},
{:superdave, #PID<0.139.0>, :worker, [SuperDuper.Server]}

]
iex> cspec = Server.child_spec({:yoshi, "Yoshi do! Yoshi do!"})
%{

id: :yoshi,
start: {SuperDuper.Server, :start_link, [yoshi: "Yoshi do! Yoshi do!"]}

}
iex> Supervisor.start_child app, cspec
Starting yoshi
{:ok, #PID<0.182.0>}
iex> Supervisor.which_children SuperDuper.Supervisor
[

{:yoshi, #PID<0.182.0>, :worker, [SuperDuper.Server]},
{:supermario, #PID<0.141.0>, :worker, [SuperDuper.Server]},
{:superman, #PID<0.140.0>, :worker, [SuperDuper.Server]},
{:superdave, #PID<0.139.0>, :worker, [SuperDuper.Server]}

]
iex> Server.say :yoshi
"Yoshi do! Yoshi do!"

Excellent! It works! Now, we can build out our SuperDuper service.

Build an API with add_character
Our API works exactly like it did before, with one small difference. Instead of
calling a start_link directly, we’re going to do the work through the supervisor.
Open up super_duper.ex so we can add our API, like this:

defmodule SuperDuper do
alias SuperDuper.Server
@app __MODULE__.Supervisor

def add_character(name, says) do
Supervisor.start_child @app, Server.child_spec({name, says})

end

report erratum • discuss

Dynamic Children • 59

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

def say(character) do
Server.say(character)

end

def die(character) do
Server.die(character)

end
end

It’s too easy. We let our add_character start our server with the new child spec.
We pass through the other requests directly to our Server.

Now, we can take it for a spin. Let’s start it up:

[super_duper] ➔ iex -S mix
Erlang/OTP 21 [erts-10.2] [source] [64-bit] [smp:12:12]
[ds:12:12:10] [async-threads:1] [hipe]

>>>> Starting Super-duper Super-visor <<<<
Starting superdave
Starting superman
Starting supermario
Interactive Elixir (1.10.3) - press Ctrl+C to exit (type h() ENTER for help)
iex> SuperDuper.say :supermario
"Hoo hoo! Just what I needed!"

We start up our service, and use our existing service, as usual. Let’s add a
new server dynamically:

iex> SuperDuper.add_character :supernova, "Expanding at light speed"
Starting supernova
{:ok, #PID<0.146.0>}
iex> SuperDuper.say :supernova
"Expanding at light speed"

We add a service and make sure it’s up. Let’s test it out. What happens when
we kill it?

iex> SuperDuper.die :supernova
:ok
iex> Mayday! Mayday! supernova going down...
11:01:08.896 [error] GenServer :supernova terminating
** (RuntimeError) Boom
...
Starting supernova
iex> SuperDuper.say :supernova
"Expanding at light speed to a theater near you"

It dies and starts right back up! We’re referring to it by name, so that we can
use the new service just fine. Let’s see how that works.

Chapter 4. The Power of a Name • 60

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Stop a Character Manually
Shutting down a server has a little more nuance than adding one, so let’s
bring out the trusty console and play around a bit. The console can show us
how to build the service we’ll need to remove a character from our list.

First, let’s start with a clean console. Shut down your console and restart it
with iex -S mix. Then set up a few bits of convenience:

iex> app = SuperDuper.Supervisor
SuperDuper.Supervisor
iex(22)> cs = Server.child_spec({:superfreak, "She's alright"})
%{

id: :superfreak,
start: {SuperDuper.Server, :start_link, [superfreak: "She's alright"]}

}
iex> alias SuperDuper.Server
SuperDuper.Server

Perfect. The service is up and working. Now, let’s start a child process,
:superfreak:

iex> Supervisor.start_child app, cs)
Starting superfreak
{:ok, #PID<0.159.0>}
iex> Server.say :superfreak
"She's alright"

So far, so good. We’re going to need a way to shut down a process. Type
Supervisor. and then the tab key. If you have tab completion set up, you’ll see
the following listing. If not, use exports Supervisor instead:

iex> Supervisor.
Default Spec child_spec/2
count_children/1 delete_child/2 init/2
restart_child/2 start_child/2 start_link/2
start_link/3 stop/1 stop/2
stop/3 terminate_child/2 which_children/1

Both terminate_child and delete_child look promising. Let’s try them out:

iex> Supervisor.terminate_child app, :superfreak
:ok
iex> Supervisor.which_children app
[

{:superfreak, :undefined, :worker, [SuperDuper.Server]},
{:supermario, #PID<0.151.0>, :worker, [SuperDuper.Server]},
{:superman, #PID<0.150.0>, :worker, [SuperDuper.Server]},
{:superdave, #PID<0.149.0>, :worker, [SuperDuper.Server]}

]

report erratum • discuss

Dynamic Children • 61

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

The child is still listed, but its pid is :undefined. Let’s see if we can use it:

iex> SuperDuper.say :superfreak
** (exit) exited in: GenServer.call(:superfreak, :say, 5000)

** (EXIT) no process: the process is not alive
or there's no process currently associated with the given name,
possibly because its application isn't started
...

No dice. It’s down. We can delete it though:

iex> Supervisor.delete_child app, :superfreak
:ok
iex> Supervisor.which_children app
[

{:supermario, #PID<0.151.0>, :worker, [SuperDuper.Server]},
{:superman, #PID<0.150.0>, :worker, [SuperDuper.Server]},
{:superdave, #PID<0.149.0>, :worker, [SuperDuper.Server]}

]

Now, it’s gone. There’s just another bit of exploration we need to do to shut
down cleanly. First, we need to be able to add a child again after it’s been
removed. Let’s see what happens when a child is in the :undefined state:

iex> Supervisor.start_child app, cs)
Starting superfreak
{:ok, #PID<0.159.0>}
iex> Supervisor.terminate_child app, :superfreak
:ok

We start a child and terminate the child, without deleting it. Now, let’s try a
start:

iex> Supervisor.start_child app, cs)
{:error, :already_present}
iex> Supervisor.restart_child app, :superfreak
Starting superfreak

So we can’t start it, but we can restart it, and we don’t even need a child spec.
That doesn’t help us, though. It looks like our remove_child API is going to
need to terminate and delete the child. Then, we’ll be able to start another
cleanly.

Let’s finish up this API layer.

Shutdown Via the API
Once again, you can see that the supervision layer is about managing
GenServer lifecycle. Our dynamic function to remove children will need to call

Chapter 4. The Power of a Name • 62

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

both Supervisor.terminate and Supervisor.delete_child, but that’s all we’ll need to do.
Add this final bit of API code to super_duper.ex, like this:

def remove_character(name) do
Supervisor.terminate_child(@app, name)
Supervisor.delete_child(@app, name)

end

We add the tiny bits of code to terminate a child and remove it from the tree.
Let’s make sure it works:

iex> SuperDuper.add_character :superfreak, "She's alright"
Starting superfreak
{:ok, #PID<0.226.0>}
iex> Supervisor.which_children app
[

{:superfreak, #PID<0.226.0>, :worker, [SuperDuper.Server]},
{:supermario, #PID<0.151.0>, :worker, [SuperDuper.Server]},
{:superman, #PID<0.150.0>, :worker, [SuperDuper.Server]},
{:superdave, #PID<0.149.0>, :worker, [SuperDuper.Server]}

]
iex> SuperDuper.remove_character :superfreak
:ok
iex> Supervisor.which_children app
[

{:supermario, #PID<0.151.0>, :worker, [SuperDuper.Server]},
{:superman, #PID<0.150.0>, :worker, [SuperDuper.Server]},
{:superdave, #PID<0.149.0>, :worker, [SuperDuper.Server]}

]

Nice! We add a child and then we remove it. We’re working dynamically! There
are still a few tweaks we can make. Let’s look at a few problems.

Dynamic Supervisors
Our supervisor is working great. There are a few problems, though. Think
about a web server such as Phoenix. Most of its servers would be dynamically
added. Think about the guarantees of a supervisor. The children are started
in order and restarted in reverse order. When all of these are processed
sequentially, this strategy can lead to long waits when we shut down or restart
servers.

Fortunately, OTP provides a good solution, the dynamic supervisor.

Since dynamically supervised servers are all independent, OTP can shut them
down and even restart them at the same time. Since a dynamic supervisor is
really just a supervisor, we can make a couple of tiny tweaks to our application
and keep it running just fine.

report erratum • discuss

Dynamic Supervisors • 63

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Here’s our plan. We’ll start our three regular children and a dynamic super-
visor in the SuperDuper.Application module. Then, we’ll use that supervisor to start
and shut down our individual modules. Let’s see what that code looks like.

First, we start the dynamic supervisor.

children = [
{Server, :superdave},
{Server, :superman},
{Server, :supermario},
{

DynamicSupervisor,
name: SuperDuper.DynamicSupervisor,
strategy: :one_for_one

}
]

Easy enough. We just add a dynamic supervisor to the list. Now, we can use
our existing API to delete it from the dynamic supervisor, like this:

@app __MODULE__.DynamicSupervisor

def add_character(name, says) do
DynamicSupervisor.start_child @app, Server.child_spec({name, says})

end

def remove_character(name) do
DynamicSupervisor.terminate_child(@app, GenServer.whereis(name))

end

We change the supervisor from SuperDuper.Supervisor to SuperDuper.DynamicSupervisor.
Then, we use the API to create and stop the children. Notice there’s no need
to do the extra delete_child as this version of the terminate_child handles the removal
for us. The final change is that terminate does take a pid, so we need to look
that up.

Let’s try it out. Start your server from scratch.

iex> alias SuperDuper.Server
SuperDuper.Server
iex> SuperDuper.add_character :supervisor, "Keeps my eyes shaded"
Starting supervisor
{:ok, #PID<0.147.0>}
iex> Supervisor.which_children SuperDuper.Supervisor
[

{SuperDuper.DynamicSupervisor, #PID<0.142.0>, :supervisor,
[DynamicSupervisor]},

{:supermario, #PID<0.141.0>, :worker, [SuperDuper.Server]},
{:superman, #PID<0.140.0>, :worker, [SuperDuper.Server]},
{:superdave, #PID<0.139.0>, :worker, [SuperDuper.Server]}

]

Chapter 4. The Power of a Name • 64

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

iex> DynamicSupervisor.which_children SuperDuper.DynamicSupervisor
[{:undefined, #PID<0.147.0>, :worker, [SuperDuper.Server]}]

We do a quick alias and add a child with a very bad pun. Then, we check to
see that the dynamic supervisor is added, and that the supervisor has the
new child. Now, we can remove the last child.

iex(8)> SuperDuper.remove_character :supervisor
:ok
iex(9)> DynamicSupervisor.which_children SuperDuper.DynamicSupervisor
[]

We remove the last child and it’s gone!

The Process Registry: The Power of a Name
Everything we’ve done is possible because Elixir makes sure you can find the
processes you need through a central registry. In fact, let’s look at the snippet
that removes our child:

DynamicSupervisor.terminate_child(@app, GenServer.whereis(name))

The terminate_child refers to a child by a pid. The last part of that function looks
up the pid from a name. GenServer gives us an easy way to do this, but we
could have just as easily used the process registry. Let’s go back to IEx and
see exactly what’s happening.

GenServer Defaults to the Default Process Registry
iex(1)> app = SuperDuper.Supervisor
SuperDuper.Supervisor
iex(2)> Supervisor.which_children app
[

{SuperDuper.DynamicSupervisor, #PID<0.152.0>, :supervisor,
[DynamicSupervisor]},

{:supermario, #PID<0.151.0>, :worker, [SuperDuper.Server]},
{:superman, #PID<0.150.0>, :worker, [SuperDuper.Server]},
{:superdave, #PID<0.149.0>, :worker, [SuperDuper.Server]}

]

You can see that supervisors register each of these names, and hold those
names in a permanent child list. When you start a child with a child spec
that has an id, or when you call a start_link with a name: option, you register that
process.

The default mechanism to register a process is the process registry. We can
look it up using either GenServer.whereis or Process.whereis:

iex(3)> GenServer.whereis :superdave

report erratum • discuss

The Process Registry: The Power of a Name • 65

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

#PID<0.149.0>
iex(4)> Process.whereis :superdave
#PID<0.149.0>

These both have the same pid because they use the same registry for process
lookup.

Alternative Registries
Sometimes, you need a more advanced solution for finding processes.
GenServer has three ways to name processes.

Atoms.
Since module names are atoms, we typically see this option.

Global terms.
These look like {:global, global_term}. They use the global registry. See Erlang’s
:global module1 for more details.

Via tuples.
These look like {:via, Module, term}. This strategy lets you implement your
own custom registry. Your module must implement register_name/2, unregis-
ter_name/1, whereis/1, and send/2. See the GenServer behaviour2 for more
details.

These functions make everything we’ve talked about possible. Instead of
referring to a process by ID, we can refer to it by name. That means in the
event of failure, we can simply look up the new pid and be off to the races.

Now, if you should ever decide to do so, you can change your naming strategy
to meet the needs of the application. With those final details, we’re ready to
close out this final OTP chapter.

Your Turn
We just finished our OTP series with a dynamic supervisor, and took a brief
look at the various naming strategies you might encounter. We built up our
dynamic supervisor by exploring the excellent Elixir documentation. Let’s
review how things work.

Dynamic Supervisors Register Through an API
While supervisors use child specifications to start lists of child processes
when a user or other OTP application starts your project, dynamic supervisors

1. http://erlang.org/doc/man/global.html
2. https://hexdocs.pm/elixir/1.5.1/GenServer.html

Chapter 4. The Power of a Name • 66

report erratum • discuss

http://erlang.org/doc/man/global.html
https://hexdocs.pm/elixir/1.5.1/GenServer.html
http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

use an explicit API to add children to an existing tree. There are a few major
differences. Primarily, dynamic supervisors shut down all children at the
same time, without guarantees regarding shutdown or restart order, and
that’s what we want for the sake of efficiency.

Naming is an important part of the overall equation. Registries exist for that
purpose. The Groxio video series has a video on via tuples that will walk you
through those problems.

Now is a good time to put what you’ve learned into practice.

Try It Yourself
This easy problem builds onto the existing SuperDuper application.

• Rather than restarting the application on a crash, make the project restart.

These medium problems also build onto the existing SuperDuper application.

• Add a custom registry that allows you to look up entries using a via tuple.
• Use ETS to save state when you add a dynamic server, and then allow

your GenServers to look up that state when there’s a crash.
• Make the SuperDuper app distributed. You’ll need to build a registry with a

via tuple that looks up a server based on the existing node.

This hard problem shows the composition within an OTP app.

• Design a rock-paper-scissors GenServer. Then, design a waiting room so
that when one player gets added, the GenServer waits until a second is
added. When the second player is added, it connects them, dynamically
starting a game. How did you decide to manage crashes? Did you decide
to make them transient or save state somehow?

This concludes our whirlwind tour through OTP. Along the way, we’ve explored
the same library that the OTP team built more than 30 years ago! You’ve built
GenServers, sent them messages with call and cast, crashed them, and recov-
ered from those crashes. You’ve explored simple techniques to layer your
systems and even launch services dynamically. If you like the presentation
of these concepts and want more, please join us on Groxio or in other Prag-
matic Bookshelf books. We’d love to have you.

report erratum • discuss

Your Turn • 67

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Bibliography

[Hal18] Lance Halvorsen. Functional Web Development with Elixir, OTP, and Phoenix.
The Pragmatic Bookshelf, Raleigh, NC, 2018.

[Heb19] Fred Hebert. Property-Based Testing with PropEr, Erlang, and Elixir. The
Pragmatic Bookshelf, Raleigh, NC, 2019.

[IT19] James Edward Gray, II and Bruce A. Tate. Designing Elixir Systems with
OTP. The Pragmatic Bookshelf, Raleigh, NC, 2019.

[Jur15] Saša Jurić. Elixir in Action. Manning Publications Co., Greenwich, CT,
2015.

report erratum • discuss

http://pragprog.com/titles/passotp/errata/add
http://forums.pragprog.com/forums/passotp

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering
you this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2022 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of the The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose
a writing idea to us? After all, many of our best authors started off as our
readers, just like you. With a 50% royalty, world-class editorial services,
and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

We thank you for your continued support, and we hope to hear from you
again soon!

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2022

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/passotp
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/passotp
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Preface
	1. A Basic Handmade Server
	Build a Server with a Process
	Build the Boundary Layer
	Build an OTP Server, with Mix
	Your Turn

	2. Communication Between Servers
	Anatomy of a GenServer
	handle_info Processes Nonstandard Messages
	Schedule an Alarm with handle_cast
	Implement a Status Message with handle_call
	Your Turn

	3. The Lifecycle and Supervision
	The Primitive Mechanisms
	OTP Supervisors Manage GenServer Lifecycles
	Add Some Children
	Lifecycle Policy
	Your Turn

	4. The Power of a Name
	Add Dynamic Characters to SuperDuper
	Dynamic Children
	Dynamic Supervisors
	The Process Registry: The Power of a Name
	Your Turn

	Bibliography

