Beginning
React and
Firebase

Create Four Beginner-Friendly Projects
Using React and Firebase

Nabendu Biswas

Apress:

Beginning React
and Firebase

Create Four Beginner-Friendly
Projects Using React and Firebase

Nabendu Biswas

Apress’

Beginning React and Firebase: Create Four Beginner-Friendly Projects Using React
and Firebase

Nabendu Biswas
Bhopal, India

ISBN-13 (pbk): 978-1-4842-7811-6 ISBN-13 (electronic): 978-1-4842-7812-3
https://doi.org/10.1007/978-1-4842-7812-3

Copyright © 2022 by Nabendu Biswas

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Copyeditor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY Plaza,

New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7811-6. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7812-3

Table of Contents

About the AUtROKccvcmmimmmenmiensnns s vii
About the Technical REVIEWETccususssassssnsssansssassssssssasssssssssssssasssssssssnsssassssasssansss ix
Chapter 1: Setting Up and Deploying a ReactJS Project with Firebase...........cccuruus 1
Introduction t0 FIreDase ... ————— 1
Creating a Firebase ACCOUNTccoevrieririere s s sr e sae s aesa e nne s 2
LT T8 o 5 (0153 (o 3
Deploying a Simple ReactJS Project from the Terminal............ccoocvininninnnininsnsnc e, 13
SUIMIMAIY....e et e e e e re e e e e e e e Re e e r e e se e e e nRe e s ee e nensn e nrnnnns 17
Chapter 2: Building a To-Do App with React and Firebase...........ccccusssemnnrssssannsnnns 19
GEtiNG STAMA......eeecereeeee e 20
INitial FIreDASe SELUPccvvverircriree e e 20
5 (o 1= Tt T (o O 21
(0T | 0RO R S 23
USING FIFBDASEcveiieiecirsire st r e e bbb e s r e e ae s 28
Adding Firebase 10 the APP ... e e 35
DePIOYiNg FIFBDASEcovecerererereeriese s 43
SUMIMAIY ...ttt e s e R e e r e e e e e e R e e e R e nenRe e e Re e Re e nr e e e nrnnn s 44
Chapter 3: Building a Stories App with React and Firebase.........cccccusseennrnsssnnnnsasns 45
Initial FireDase SEIUP ...vccvvverere s sr e e 46
50 [l 1= T T (] o 48
Basic STructure of the AP ..o s 50
Showing Short Videos in the APP ... s 53
Creating the Header COMPONENT.........ccocoveimresrn e 57

iii

TABLE OF CONTENTS

Creating the Footer COMPONENTcccvirieriern i ss s e s sr e e naennes 60
Setting Up the Firebase Database...........ccoverrinrnnnnicnininsensse s se s sessenens 69
Integrating the Firebase Database with React..........c.ccocovvriiicnvninisnsn e 76
Deploying and Hosting Through FIreDasecocecovenresrnnenneserssesesese e 79
SUMIMAIY ...ttt e e R e e e e e e e R e e R e ne e e e e Re e R e e nr e e nrnrnnn s 79
Chapter 4: Building a Storage App with React and Firebase........cc.ccusseenrinsssnnnnnnans 81
[T T =T (=T o RS 82
Initial Firebase SEIUP......cov v e nne 82
BaSiC REACE SEIUD ...vevrereerie ittt e e e e 84
(=T LT o W T T 1T R 86
Creating the SIdEDA ... e e 91
Uploading Files USiNg FIr€DASE........c.cccvvrininininsinese s sss s s sssssssessesnes 96
Displaying Files with the FileViewer Component............cocveernnrnnennnenesese s 105
Creating the FileCard COMPONENL...........covvemrnnerrnesere s 114
Creating the Sidelcons COMPONENT........c.ccocevririniennnnnr e naes 117
Adding Google AUthentiCation.........c.ccveererrrninie e e ene s 120
Deploying and Hosting Through FirebDasecccvvererirserseniscersesse s ssesses e sesses e sssesesaenns 127
SUMIMANY ..ttt e e e R e e e e e R e R e e e e R e R e e e e e Re e Re R e e e e e ReeR e e e e e aenrin 128
Chapter 5: Building a Career-Related Social Media App with React
11] =] 1 129
[T T3 = (=T o OO 130
Initial FireDase SEIUP ...vccveerirrirre s a e e e sae s a e e nae 130
BaSiC REACT SELUPcceveeriecrirerire ettt e e e 132
Creating the HEader ... e s e 134
Creating the SIdEDANcovcirerrrr e e 138
Creating the Feed COMPONENTccovermriserncsre s 145
Building the POSt SECHION.........cccvvriierirrrer s s nae s 149
Integrating Firebase With RBACL...........ccecvverererrerieniene s ses s s e s s sseses e saessessssessesaens 152
INtEgrating REAUX.......cceiircire et a e s s e e s n e s s e e e sne e ae e e ans 155

iv

TABLE OF CONTENTS

Building the LOgin PAQEccuveriiriiirieririerin e nenes e sse e s se s s s e s e sse s sses s ssaesnenaenns 157
Adding Email AuthentiCation...........ccccvcieniincni e 161
Using User INfOrmation ... s ss e s s st sessesnens 169
Building the Widget SECHON..........cccreeerrcrrerere e 174
Deploying and Hosting Through Firebasec.cccvvvrnennesnnss s sessesenns 178
£ 1] 1134 RS 179
INO@X . uueniissnnnsssnnnsssnnnsssanssssanssssanssssanssssannssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 181

About the Author

Nabendu Biswas is a full-stack JavaScript developer who has been working in the IT
industry for the past 16 years and has worked for some of the world’s top development
firms and investment banks. He is a popular tech blogger who publishes on dev. to,
medium.com, and thewebdev.tech. He is an all-round nerd, passionate about everything
JavaScript, React, and Gatsby. You can find him on Twitter @nabendu82.

vii

About the Technical Reviewer

Alexander Nnakwue is a self-taught software engineer with experience in back-end
and full-stack engineering. Nnakwue loves to solve problems at scale. He is currently
interested in startups, open source web development, and distributed systems. In his
spare time, he loves watching soccer and listening to all genres of music.

ix

CHAPTER 1

Setting Up and Deploying
a ReactJS Project
with Firebase

In this chapter, you will learn about Firebase, which is a set of tools provided by Google.
You will also learn how to deploy a simple React app through Firebase hosting.

Introduction to Firebase

Firebase is not just a database but a set of tools; it is often called a back-end-as-a-service
(BaaS). Firebase contains a variety of services, as listed here:

o Authentication: User login and identity

e Real-time database: Real-time, cloud-hosted, NoSQL database
o Cloud Firestore: Real-time, cloud-hosted, NoSQL database

e Cloud storage: Massively scalable file storage

e Cloud functions: Serverless, event-driven back-end functions

o Firebase hosting: Global web hosting

e ML Kit: An SDK for common machine learning tasks

Firebase makes it easy for front-end developers to integrate a back end into their
application, without creating any API routes and other back-end code. Figure 1-1 shows
an example of a traditional web app, which does API requests to the server from the

© Nabendu Biswas 2022
N. Biswas, Beginning React and Firebase, https://doi.org/10.1007/978-1-4842-7812-3_1

https://doi.org/10.1007/978-1-4842-7812-3_1#DOI

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

client apps. The rest of the code is handled by the server. As you can see in Figure 1-1,
Firebase eliminates the back-end work, and you communicate directly with Firebase,
hosted on the Google platform with an SDK.

Traditional i
[0—— om
HTTP API
Client apps Your
-
Firebase
Jl
[0——73
0 =
Client apps SDK @ }

Figure 1-1. Firebase

It's extremely easy to build a project in the Firebase back end with React]S as the
front end. If you made the same project in MERN (meaning MongoDB, Express, React]S,
Node]S), it would take more time and would be far more complicated as you would need
to make the back-end APIs in Node]JS.

The other thing I find easy to do in Firebase is the authentication part.
Authentication used to be one of the most complicated parts of JWT authentication,
but with Firebase you need only a few lines of code. Even better, you get all types of
authentication.

Firebase hosting is also extremely easy to use for your React]S apps, and that is what
we are going to look at in this book.

Creating a Firebase Account

To work with Firebase, you just need a Google account. So, go to Firebase site at
https://firebase.google.com/ and click Go to console in the top-right corner. You
need to be logged in with your Google account to do so, as shown in Figure 1-2.

https://firebase.google.com/

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

(c)> e © @ rissiesisegoagecom T IS -~ © 71 [T =-
Firebase Products = Use Casos Pricing Docs Support Mora = Q English ~ Go to consola . -

Google is committed 1o advancing racial equity for Black communities. See how,

Firebase helps you build
and run successful apps

Backed by Google and loved by app development
teams - from startups to global enterprises

Get started Try demo Watch video

Figure 1-2. Firebase site

Setting Up Hosting

Click the Add project link on the page, as shown in Figure 1-3. Since I have a lot of
projects, the figure shows them on this page. For your first time, you will see only the Add
project link.

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

(e)> ¢ @

@ Firebase

Recent projects

tinder-clone PokeSearch

tinder-clone-fdb74 pokesearch-46e26

© Explore a demo project L
homemade-recipes Catch Of The Day Nabendu Nabs Social
homemade-recipes-da051 catch-of-the-day-nabendu nabs-social
<> s

All Firebase projects

Catch Of The Day Nabendu homemade-recipes Nabs Scocial
catch-of-the-day-nabendu homemade-recipes-dans1 nabs-social
<> 5

Figure 1-3. Adding a project

On the page that opens, give the project a name like final-space-react and click the
Continue button, as shown in Figure 1-4.

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

RN O T el b goegein. - SFLMDOR® BEe. =

X Create a project(Step 1 of 3)

Let's start with a name for
your project?

Preject rame

final-space-react

final-space-react-ci4fa

Continue

Figure 1-4. Naming the project

On the next page, click the Create project button after disabling Google Analytics, as
shown in Figure 1-5. We are disabling Google Analytics as we're creating a demo project
here. If you intend to deploy your app in production, you should keep it enabled.

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

lesee T Y 5 N] FinmOe%k® BEe

X Create a project(Step 2 of 2)

Google Analytics
for your Firebase project
Google Analytics is a free and unlimited analytics solution that enables targeting,

repaorting and more in Firebase C Cloud ging, In-App ging, Remate
Gonfig, A/B Testing. Predictions and Cloud Functions.

Google Analytics enables:

X Addesteg 0 X Geashdpassess (B
M Aser sedimertain Al D L] M Everibasen Gt Funcions s 0
CIOCE Fiubikas Beoucts

K Feesumbiiedieposing 3
M Fredcbagasebehavos (1)

I Enable Google Analytics for this project

Recommendod

Previous Create project

Figure 1-5. Creating a project

After some time, you will see the screen shown in Figure 1-6. Here, you need to click
the Continue button.

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

& | @ nopsiorsne e poogemmian) y - FiMDO%® BEE. =

finak-space-react

@ Your new project Is ready

Continue

Figure 1-6. Continuing

Now, click the Settings icon at the top-left corner of the screen, as shown in
Figure 1-7. After that, click Project settings.

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

((_—)-)'e"e T O TS o o Ao ; =

E‘ EYOject Bmings I_Space—react Spark plan
Users and permissions
Usage and billing

Get started by adding
Firebase to your app

090

@ Firebase

Store and sync app data in milliseconds

Cloud Firestore

Rzl tire wpdates, powerful quenies and automatic scaling

Authentication

Athenticats ard manage users

Figure 1-7. Project settings

On the next page, click the code icon at the bottom of the page, as shown in Figure 1-8.

CHAPTER 1 SETTING UP AND DEPLQYING A REACTJS PROJECT WITH FIREBASE

(= U & googhe.com , v @ Y LD O %W Bee =

final-space-react = Golodocs M ’
Project settings L]
General Clotd Messaging megration Service sccounts Data privacy Users and permissions

final-space-react-cB4fa

40478679817

Public settings

project-20478679617

There are no apps in your project e o @ Q

Figure 1-8. Code icon

On the next page, enter the same name of the app that you entered earlier, which is
final-space-react in my case. Also, click the checkbox for Firebase hosting. After that,
click the Register app button, as shown in Figure 1-9.

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

3 < ﬁr‘)“-:a"é' D | & hipsiiconiciasrebase googiacom) r~;T_T e ~or ALY DS 50 = gn ; ﬁq@

% Add Firebase to your web app

o Register app
App nickname (5

final-space-react

[Also set up Firebase Hosting for this app. Learn more 4

Hieciting can 450 be et up later. 113 froe astied 8 oy time

) final-space-react-cBafa (No deploys yet) -

Register app

© Add Firebase SDK

Figure 1-9. Selecting Firebase hosting

On the next page, just click the Next button (Figure 1-10).

10

CHAPTER 1

@ Sy @ & rttpsliconzclefirebase google.comu/Dpraject i

% Add Firebase to your web app

@ Registerapp

© Add Firebase 50K

Copy and paste these scripts into the Botiom of your <body> tag, but bafore you use any Firedase services:

=!-- The core Firebase J§ SDK is always required and must be listed first --»
<seript sre="/__/firebase/8.2.7/firebase-app.js"></scripts

-~ TOO: Add S0Ks for Firebase products that you want to use
https://Tirebase.google.com/docs /web/setupfavailable-labraries —-»

-- Initialize Firebase --»

cgeript sre="/__/firebase/init. js"s</seript> rl_j

Leam mare about Firebags for web: Gat started (4, Web SOK AP refersnce (4, Sameles (4

© instan Firebase CLI

o Deploy to Firebase Hosting

3 n reach AT AT S eATE. e B TX FLMNDO%R® BEe

SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

Figure 1-10. Next button

On the next page, you will see the command to install firebase-tools globally from

the terminal (Figure 1-11). So, open any terminal and run the command from anywhere.

Notice that this is a one-time setup on a machine, since we are using it with the -g

option. The -g option specifies that it needs to be installed globally.

11

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

[e)oe'e D & hipr/korsclefeebase grogimen'/0forjec it space-resct-ciafetingafgenersioaut v & 1 FLMNOCXS® BEe . =

% Add Firebase to your web app

@ Register app
@ 1 Firebase SOK

© install Firebase CLI

To host your sde with Firebase Hosting. you need the Firebase CLI (0 command line tool).

Foun the foliowing o [command 10 install the CLI or update to the latest CLI version,
% npa install -g firebase-tools 0

Devent work? Toko 3 look o1 the Finbase CLI reference () of change your npm pormipsiona (4

o Deploy to Firebase Hosting

Figure 1-11. Installing Firebase globally

Ignore the next set of commands for now and click the Continue to the console

button (Figure 1-12).

12

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

(\(_-J.-) e @ D | & hitpsyjiconsolefrebase google.comu/Dproject/nal-space-react -cBita/setingu/generalmetvT = & 7 | LMD RS

% Add Firebase to your web app

@ Register app
@ Add Firebase SDK
@ Install Firebase CLI

© Deploy to Firebase Hosting

You can deploy now of laler 3. To deploy now, apen & terminal window, then navigate to or
create a root directory for your web app.
Sign In 1o Google

5 firebase login]

Initiate your project
Run this command from your app's root directory ~

§ firebase init]

‘When you're ready, deploy your web app
Put your static files (e.9. HTML. G55, JS) in your app's deploy directorny (the default is public).
Then, run this command from your app's root directary:

% firebase deploy [m]

After deploying. view your app at final-spece reactoBdla web S0 (5
Heed heip? Take a look at the Hosting docs [

Figure 1-12. Continuing to the console

Deploying a Simple ReactJS Project
from the Terminal

In this section, you will learn how to deploy a simple React]S app that gets data from
a simple APL. Open https://github.com/nabendu82/final-space-react and then
click Code and the clipboard copy icon (Figure 1-13).

13

https://github.com/nabendu82/final-space-react

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

README md

Getting Started with Create React App

npm start

Figure 1-13. GitHub

Now, go to any terminal and clone the project using the following command:
git clone https://github.com/nabendu82/final-space-react.git

After that, change to the project’s directory and run npm 1i to install all the
dependencies, as shown here:

cd final-space-react
npm i

Now run firebase login from the terminal. If you are running it for the first time, it
will give you a pop-up message. After that, run the firebase init command. TypeY to
proceed (Figure 1-14).

14

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

$|firebase login|

Already logged in as nabendu.biswas@gmail.com

s
HHHHHEHHE HEHE HHHEEE HEHHHEEE HRHRE i HHHEEE HEHEE
#H Lo - L ## L ## W ##
Fnfsdd #5 HRIFHAFER SRR HERafands SHSSAsEEE BREEds Resdss
#H ## R ## ## #H B #E #i
#RAH B RE R SRR S8R #E HIERERE BRFHHRE
You're about to initialize a Firebase project in this directory:

E:\React-Projects\final-space-react

Are you ready to proceed?

Figure 1-14. Firebase login

Next, go down to Hosting using the arrow keys, press the spacebar to select Hosting,
and then press Enter, as shown in Figure 1-15.

Are you ready to proceed?
Which Firebase CLI features do you want to set up for this folder? Press Space to select features, then Enter to co
nfirm your choice
() Databa
Firestor
() Function

) Emulator et up 1 emulato rebase features
(te Config: , deploy, and rollback configurations for Remote Config

Figure 1-15. Hosting

Then select Use anexisting project and press Enter, as shown in Figure 1-16.

Please select an option:

Create a new project

Add Firebase to an existing Google Cloud Platform pr
Don't set up a default project

Figure 1-16. Existing project

Here, you need to select the correct project, which is final-space-react-c84fain
my case (Figure 1-17).

15

CHAPTER 1 SETTING UP AND DEPLOYING A REACTJS PROJECT WITH FIREBASE

Please select an option:
Select a default Firebase project for this directory:
f - T a | ¢-cl 1)

Figure 1-17. Selecting the final-space-react project

Next, choose the public directory, which is build. The next option is Yes for a single-
page app and GitHub deploys, where you select No (Figure 1-18).

What do you want to use as your public directory?

Configure as a single-page app (rewrite all urls to findex.html)?[::]
Set up automatic builds and deploys with GitHub?

Wrote build/index.html

Writing configuration info to firebase.json...
i Writing project information to .firebaserc...

Firebase initialization complete!

Update available

To update to the latest v ion using npm,

For other CLI management options, visit the

Figure 1-18. Building the project

Now, you need to run npm run build in the terminal for a production-optimal build,
with this command:

npm run build

n

16

CHAPTER 1 SETTING UP AND DEPLQYING A REACTJS PROJECT WITH FIREBASE

The final command is firebase deploy to deploy the project to Firebase, as shown
here:

firebase deploy

Now, you can go to https://final-space-react-c84fa.web.app/ (or adjust to your
project name) to see the app running correctly, as shown in Figure 1-19.

« 2w @ & httpsiSnal-space-react-cBdfa web app o @ A FimDQ %W Bee@d =

Figure 1-19. Complete app

Summary

In this chapter, you learned about the awesome Firebase suite of tools from Google. After
that you learned how to deploy a React project in Firebase.

17

https://final-space-react-c84fa.web.app/

CHAPTER 2

Building a To-Do App
with React and Firebase

In the previous chapter, you learned to deploy a React app through Firebase. In this
chapter, you will learn how to build an awesome to-do list app in React]S, with the data
stored in the back end, specifically in a Firebase Firestore database. The hosting will also
be in Firebase.

We will show how to use Material UI for the icons in the project, and we will be using
a useRef hook in this project. Figure 2-1 shows what the app will look like. The user will
be able to enter a to-do item and store it in a lovely list in the firebase database. So, this
list is permanent and won’t be changed after a refresh of browser.

My Todo List

Write a TODO

Teach React J5 1
Teach React IS B
Create a youtube video E
‘Write a book E
Create an Udemy course .u

Figure 2-1. Completed app

19
© Nabendu Biswas 2022

N. Biswas, Beginning React and Firebase, https://doi.org/10.1007/978-1-4842-7812-3_2

https://doi.org/10.1007/978-1-4842-7812-3_2#DOI

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

Getting Started

To get started, use the create-react-app command to create a new app called
todo-react-firebase. Specifically, the command for this is as follows:

npx create-react-app todo-react-firebase

Initial Firebase Setup

Since our front-end site will also be hosted through Firebase, we will create the basic
settings while the create-react-app command creates our React app. Follow the same
steps as in Chapter 1 to set up Firebase.

One additional setup step is required after you click the Continue to the console
button in the setup procedure. You need to scroll down and click the Config radio button
and then copy all the data for the firebaseConfig section. This is required because we
are going to use the Firebase database in our project (Figure 2-2).

o I R FEMDO % ® B ¥ @

todo-react-firebase = Project settings Gotodocs ML .

.(;) lodo-react-firebase todoreactiehase &
A S Web Aop

1:336145703281 web:921c45af 2090071 022 3640
%) todo-react-firebase-35bb7

Firebase SDK snippet
O mtomatic® Qconed| @

Release and menitor Copy and paste these scripts into the bottomn of your <body= tag, but before you use anmy
F ices

Irebase services.

nst firebaseConfig = {
apikey: A
authDemain
projectId: “to
storsgeduckel
messagingSende
appId: =1:336145783281 :web

Analytics

Ln|

Figure 2-2. Firebase config
20

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

Now, open the code in VS Code and create a file called firebase. js inside the src
folder. Paste the following code into the file:

const firebaseConfig = {
apiKey: "AIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
authDomain: "todo-react-xxxxxxxx.firebaseapp.com",
projectId: "todo-react-xxxxxx",
storageBucket: "todo-react-XxXXXXXXXXXXXXXXX.com",
messagingSenderId: "33xxxxxxxxxxx",
appId: "1 :XXXXXXXXXXXX : IXXXXXXXXXXXXX6d0"

s

Basic React Setup

Now, we will do the basic setup for React]S. Inside the todo-react-firebase directory,
start the React app with npm start. Next, we will delete some of the files because we
don’t need them. They are actually part of the logo and the other test, which we will not
be using in this project. Figure 2-3 shows the files to delete.

21

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

) ile n View Go Run Terminal Help

@ ER 1% firebaseis J5 sefupTestsjs X
2 OPEN EDITORS

~ TODO-REACT-FIREBASE

blic

Open in Integrated Terminal
Select f
Open Timeline
Chrl+X

Cirl+C

Rename

» OUTLINE
TIMELINE
X Pmaster @ ®oho n1,Col1 Spacesi4 UTF-8 LF JavaSuipt ®Go

Figure 2-3. Delete option

We will remove all the unnecessary boilerplate code, so our index. js file will look
like this:

import React from 'react’;

import ReactDOM from 'react-dom';
import './index.css';

import App from './App';

ReactDOM.render (
<React.StrictMode>
<App />
</React.StrictMode>,
document.getElementById('root")

)5

22

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE
The App. js file contains only the “TODO React Firebase” text, as shown here:
import './App.css';

function App() {
return (
<div className="App">
<h1>TODO React Firebase</h1>
</div>
)s
}

export default App;

Now, our app will look like Figure 2-4 in localhost.

@ DS localhost:3000

TODO React Firebase

Figure 2-4. Localhost app

Local To-Do List

After doing the setup in the previous section, we will work on our to-do app. We will
update our App. js file to contain the logic for a basic to-do list. Here, we are using two state
variables: todos and input. We are using the useState hook to declare both of them. todos
contains an array containing two strings, and input contains an empty string.

Next, inside the return statement, we use the controlled input of React to update the
input of an input box. Next, we have a button and a click event assigned to the button.
When we click it, we run a function called addTodo() that changes the state of todos,
with setTodos. Here, it appends the already existing content with the user-typed content.

We are using a form to wrap our input and button, and the button type is submit.
Therefore, if we type anything in the input box and press Enter on the keyboard, it
will work. For that reason, we need to use e.preventDefault() inside the addTodo()

function.

23

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

import { useState } from 'react’;
import './App.css’;

function App() {

const [todos, setTodos] = useState([
'Make a react firebase project',
'Record a coding video'

)
const [input, setInput] = useState('")

const addTodo = e => {
e.preventDefault()
setTodos([...todos, input])
setInput('")

}
return (
<div className="App">
<h1>TODO React Firebase</h1>
<form>
<input value={input} onChange={e => setInput(e.target.value)}/>
<button type="submit" onClick={addTodo}>Add Todo</button>
</form>

{todos.map(todo => <1li>{todo}</1i>)}

</div>
);
}

export default App;

Now, in localhost, we will get two items by default, as they are in our initial state of
todos. But when we type, we will get new items, as shown in Figure 2-5.

24

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

@ D25 localhost 3000 K E_ﬁt

s = ———— ar EETISEE

TODO React Firebase
[wirite = blog | AddTodo

* Make a react firebase project
* Record a coding video
* Write a book

Figure 2-5. List in localhost

We will be using Material UI for the icons. So, we need to run two npm install
commands as per the documentation. We will install core and icons through the
integrated terminal, as shown here:

npm install @material-ui/core @material-ui/icons

Now, we will use the icons from material-ui on our project. We have replaced our
Button and Input fields with the Button and Input from material-ui, and we imported
them at the top. The updated code is marked in bold here:

import { Button, FormControl, Input, InputLabel } from '@material-ui/core’;

function App() {

return (
<div className="App">
<h1>TODO React Firebase</h1>

<form>
<FormControl»
<InputLabelsWrite a TODO</InputLabels
<Input value={input} onChange={e => setInput(e.target.
value)}/>
</FormControl>
<Button type="submit" onClick={addTodo} variant="contained"
color="primary" disabled={!input}>Add Todo</Button>
</form>

25

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

{todos.map(todo => {todo}</1i>)}

</div>
)5
}

export default App;

Now, our web app is looking good (Figure 2-6).

0 D23 localhost:3000 - @

My Todo List

Write a TODO
Write a Book

* Make a react firebase project
* Record a coding video

Figure 2-6. The updated web app

Next, we will move the to-do list to a separate component. So, create a new file called
Todo. js inside a components folder. We will send the separate to-do to it as a props. The
updated code is shown in bold here:

import { Button, FormControl, Input, InputLabel } from '@material-ui/core’;
import Todo from './components/Todo';

function App() {

return (
<div className="App">
<h1>TODO React Firebase</h1>
<form>

</form>

26

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

{todos.map(todo => <Todo todo={todo} /»)}

</div>
)5
}

export default App;

Now add the following code into the Todo. js file. We are just using a bunch of
material-uiicons and showing the props called todo. These icons help us to make the

list item prettier.

import { List, ListItem, ListItemAvatar, ListItemText } from
'@material-ui/core’
import React from 'react’

const Todo = ({ todo }) => {

return (
<List className="todo list">
<ListItem>
<ListItemAvatar />
<ListItemText primary={todo} secondary={todo} />
</ListItem>
</List>
)

}
export default Todo

Now, in localhost, we will be able to see these changes, and our list will be looking

good (Figure 2-7).

27

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

@ D% loalhost3000

My Todo List
okl bl

Make a react firebase project

Make a react firebase project

Record a coding video
Record a coding video

Wite a Book

Write a Book

Geta Job
Gel a Job

Figure 2-7. Todo list

Now, it’s time to hook up Firebase to the project.

Using Firebase

Now, we will start setting up Firebase for the back end. For that we will first install all
dependencies for Firebase in the terminal by running the following command:

npm i firebase

Next, we will update our firebase. js file to use the config to initialize the app. After
that, we use Firestore as the database. The updated code is highlighted in bold here:

import firebase from 'firebase’

const firebaseConfig = {

};

const firebaseApp = firebase.initializeApp(firebaseConfig)
const db = firebaseApp.firestore()

export { db }

28

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

Now, we will go back to Firebase and click Cloud Firestore and then click the Create
database button, as shown in Figure 2-8.

- @ Ll IND SRS B E

fOfprojecttodo-react-firebase-85b

Cloud Firestore

Real-time updates, powerful queries and
automatic scaling

Release and monitor
Is Cleud Firestore right for you? Compare Databases [

Learn more

How do | get started?

View the docs

How much will Cloud
@ Firestore cost?

View pricing

Engage

What can Cloud Firestore
— Y& Cloud Firestore

Figure 2-8. Creating the database

On the next screen, select Start in test mode and then click the Next button, as
shown in Figure 2-9.

29

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

Create database

@ secure rules for Cloud Firestore 2 Set Cloud Firestore location

After you've defined your data structure, you will need to write rules to secure your data
Leam more

O Start in production mode
private by defauit
cess will ony be
fied by your securty

allow read, write: if
(® startintest mode request.time < timestamp.date(2821, 3, 22):
You ata will be open by default to 3
1= up. Client r 1
 diniled after 30 days if
ules are not updated

@ Anyone with your database reference will be able to view, edit
and delete all data in your database for 30 days

e restore will peeventt you from using Clowd Datastore with this project, natably from the sssociated
,.t.o.ure.ioe Il preventt you from using Cloud Datastore with this project, notably from the associa cancel m

Figure 2-9. Test mode

On the next screen, click the Enable button (Figure 2-10).

30

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

hitzpe:/ conzoledirebace.google.com/wl) project/todo-react-firebase- 85607 firestare

Create database

@ Secure rules for Cloud Firestore @ st Cloud Firestore location

Your location setting is where your Cloud Firestore data will be stored

A Afer you've set this location, you cannot change it later. Also, this location setting will be the lecation for your
default Cloud Storage bucket.

Learn more

Cloud Firestore location

nam3 (us-central)

Enabing Clow re will prevent you from wsing Cioud Datastore with this project, notabily trom the
Enabing ore W ent you Trom wsing Cioud Datastors with this proj otably from Cancel m
associated A P

Figure 2-10. Enable button

On the next screen, click Start collection, as shown in Figure 2-11.

31

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

g—— I S DI LA M AYER, 7T

firebase.googhe.com,u/0/project/todo-react-firsbase-85bb. +»» @ & i DS %W B € &

.\@ ﬂ hitpsy/consalefreb: . =
todo-react-firebase ~ Gotodocs M o
™8 Cloud Firestore)

Data Rules Indexes Usage
+: Prototype and test end-to-end with the Local Emulater Suite, now with Firebase Authentication Get started [b4
L.
Database
= tod

+ start collection
-J) Functions

3 Machine Leaming

Release and monitor

Analytics

Engage

% Extensions

Kk

Upgrade Cloud Firestore location; namS (us-central)

¢

Figure 2-11. Starting the collection

It will open the pop-up shown in Figure 2-12. We need to enter todos in the
Collection ID field and click the Next button.

32

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

AL MEDOGXkSDEERD =

Start a collection

o Give the collection an ID

Farent path

cancel | OE |

Figure 2-12. The to-dos

On the next screen, fill the Document ID field by clicking Auto ID. Also enter todo in
the Field field. After that, click the Save button (Figure 2-13).

33

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

L MDQ kSR €S

Start a collection

@ Give the collection an 1D © ~dd s first document

Document parent path

[todos

Document 1D

LéroAbgNGOVolgloWsL

Field Type Value

todo = slring - | tfirebase project | @

Figure 2-13. Fields

That will take us back to the main screen. Now click the Add document link. This
will again open the same pop-up, where we will add the details of another to-do item.
Now, we have two to-dos in our database (Figure 2-14).

34

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

- @ i LMD %S B €@ =
todo-react-firebase - Gotodocs M e
Cloud Firestore 2]
Data Rules Indexes Usage
+: Praototype and test end-to-end with the Local Emulator Suite, now with Firehase Authentication Get started [*
* ﬁ > todos > OA3zZ8eMMHTHF.
=]
=
By 23 todo-react-firchase-850h7 IE todos = b B 0A3z8eMHTHFSE6LONLME
® + start collection + Add document + start collection
- todos » BA3z8eMHTHFSe6LONLME > | .4dvield
& VoIglénsl
todo: "Record a coding video"
Release and monitor
Analytics
Engage
Cloud Firestore location: 1] tral

Figure 2-14. Two to-dos

Adding Firebase to the App

Now we are going to remove the hard-coded to-dos in App. js and use the data from
the Firebase database. So, go back to App. js and remove the hard-coded stuff in the
useState code for todos. We have also created the required imports.

After that, within useEffect, we are calling the collection todos, and then we take
the snapshot. In Firebase terms, it is the live data, which we will get instantly. We will
then set this data in the todos array, via setTodos ().

Also, notice that useEffect has input inside the array. So, any time a todo is added
by the user, it will instantly display in our app.

35

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

Also, notice that we have changed the way we loop through data, using todos. This
is done because we receive the data as an array of objects. The updated code is shown in
bold here:

import { useState, useEffect } from 'react’;
import Todo from './components/Todo';
import { db } from './firebase';

function App() {

const [todos, setTodos]

const [input, setInput]

useEffect(() => {
db.collection('todos').onSnapshot(snapshot =» {

setTodos (snapshot.docs.map(doc =» doc.data()))

)

}> [input])

useState([])
useState('")

return (
<div className="App">
<h1>TODO React Firebase</h1>

{todos.map(({ todo }) => <Todo todo={todo} />)}

</div>
)5
}

export default App;

Now, we will add the functionality so the user can add the to-do item. For this we just
need to add the input to the collection, using add(). Also, notice that we are adding the
server timestamp, while adding a to-do. We are doing this because we need to order the
to-dos in descending order. The updated code is marked in bold here:

36

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

import { db } from './firebase';
import firebase from 'firebase’;

function App() {
const [todos, setTodos]
const [input, setInput]
useEffect(() => {
db.collection('todos").ordexBy("'timestamp', 'desc").onSnapshot
(snapshot => {
setTodos (snapshot.docs.map(doc => doc.data()))
9
}, [input])

const addTodo = e => {
e.preventDefault()
db.collection('todos").add({
todo: input,

useState([])
useState('")

timestamp: firebase.firestore.FieldValue.serverTimestamp()

)
setInput('")

Now, we need to delete the old collection in Firebase, because none of the records
has a timestamp (Figure 2-15).

37

CHAPTER 2

e

B Firebase

A Project Overview

Build

&% Authentication

Release and monitor

Analytics

Engage

BUILDING A TO-DO APP WITH REACT AND FIREBASE

sl firebase.googhe.com,u/0/project /todo-react-firebase-B5bbT - v» i+ 4 oL DO RS

G €@

todo-react-firebase ~ Gotodocs M e

Cloud Firestore

Data Rules Indexes Usage

4, Prolotype and test end-to-

envd with the Local Emulator Suite, now with Firebase Authentication Gel started [

ﬂ > todos > OA3ZBeMHTHF..

Delete collection

4+ start collection 4+ Add document = Slartcuiiection
todos » BA3zBeMHTHFSebLoNLME > + Addfield
iroAbghGatVoIgleWsL

zdo: “Record a coding video"

Cloud Firestore location: nam5 (us-central)

Figure 2-15. Deleting the collection

38

It will also display a pop-up to confirm this (Figure 2-16).

@

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

A Delete this collection?

Doing so will parmanently delete the data at this collection path, including all nested
documents and collections.

Collection path

ftodos

Confirm that you want 1 delete this collection by typing its ID: todos.

Ilodod I

eyl

Figure 2-16. Confirmation before deleting

Now, we also want to get the ID of each item that we require for the key and also for
deleting, which we are going to implement. The key is essential in React for optimization,
and we also get a warning in the console. So, we need to change the structure in which
we set the data in setTodos ().

Now, we are mapping through it in a different way, specifically when we are passing
the single item to a Todo component. Here’s the updated code:

function App() {
useEffect(() => {
db.collection('todos").orderBy('timestamp', 'desc').onSnapshot(snapshot => {

setTodos (snapshot.docs.map(doc => ({
id: doc.id,

39

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

item: doc.data()

N))
1)
3, [input])

console.log(todos);

return (
<div className="App">
<h1>TODO React Firebase</h1>

{todos.map(it =» <Todo key={it.id} arr={it} />)}

</div>
);
}

export default App;

Now, in the Todo. js file, we are getting a different structure, and we are updating our
file for that.

We have also added the delete functionality, in which we have to get the ID of the
item and call the delete(). The updated code is marked in bold here:

import { db } from '../firebase’
import DeleteForeverIcon from '@material-ui/icons/DeleteForever’

const Todo = ({ arr }) => {
return (
<List className="todo list">
<ListItem>
<ListItemAvatar />
<ListItemText
primary={arr.item.todo}
secondary={arr.item.todo}
/>

40

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

</ListItem>

<DeleteForeverIcon
onClick={() => {db.collection('todos').doc(arr.id).delete()}}

/>
</List>

)
}

export default Todo

Now, in localhost, we can add and delete any item. Also, notice the structure in the

console log (Figure 2-17).

s Jil-:n:fza;;:mgﬁ f’j- {J!»ﬁw X

= o\ o
. @ {:,_l,- Bk i R 3 L

o— S| SO

| © D)% lccalhostaod
e T Y T 1 I ATy P IR e

My Todo List

Wrile a TODO

White a book
Write a bock

Create an Udemy course

al

Figure 2-17. Console log

41

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

We are done with the app, and only the styling remains. Let’s make it prettier now. In
the App. js file, change className to app. The updated code is marked in bold here:

return (
<div className="app">

</div>
)5
}
export default App;

Next, in the App. css file, remove everything and insert the content shown here:

-app {
display:grid;
place-items: center;

Now, in the Todo. js file, add the import for the Todo.css file. Also, set fontSize to
large for the Delete icon. The updated code is marked in bold here:

import './Todo.css'

const Todo = ({ arr }) => {
return (
<List className="todo list">

<DeleteForeverIcon fontSize='large'

onClick={() => {db.collection('todos").doc(arr.id).delete()}}
/>
</List>

)

42

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE
Next, in the Todo. css file, add the following content:

.todo_ list{
display:flex;
justify-content: center;
align-items: center;
width: 800px;
border: 1px solid lightgray;
margin-bottom: 10px !important;

Now, in localhost, the app is looking perfect (Figure 2-18).

U D% localhost:3000
My Todo List

Wittt a TODO

|
Create a youtube video -
Creale a youlube video x|
Write a book
Write a book u
Create an Udemy course =
Create an Udemy course u

Figure 2-18. Our app after adding the styling

Deploying Firebase

To deploy the app, we will follow the same steps as in Chapter 1. After doing that, we can
see that the app was successfully deployed from the terminal (Figure 2-19).

43

CHAPTER 2 BUILDING A TO-DO APP WITH REACT AND FIREBASE

My Todo List

Wrile a TODO

Teach React J5 1
Teach React JS B
Create a youtube video — 1
Create a youtube video u
Write a book

Write a book s
Create an Udemy course E
Create an Udemy course

Figure 2-19. The completed app

Summary

In this chapter, you created a beautiful to-do app. The data for the app was stored in a
Firebase Firestore database, and it even has delete functionality.

44

CHAPTER 3

Building a Stories App
with React and Firebase

In this chapter, you will learn how to build a stories app in React]S. Stories apps are quite
popular nowadays, and every big social media platform has the capability for users to
add stories, which are short videos, to their platforms. In our app, we will be able to scroll
short videos that will be stored in the Firebase Firestore database. The final app will look
like Figure 3-1.

5 X @ D @ nipsstones- app - @ LD O %® Beeoe@d =

E nabendu. Follow

Figure 3-1. Final app in use

45
© Nabendu Biswas 2022

N. Biswas, Beginning React and Firebase, https://doi.org/10.1007/978-1-4842-7812-3_3

https://doi.org/10.1007/978-1-4842-7812-3_3#DOI

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

The hosting and the database will be in Firebase. We will also be using Material UI
for the icons in the project.

So, use the create-react-app command to create a new app called stories-
firebase-app. Specifically, open any terminal and run the following command:

npx create-react-app stories-firebase-app

Initial Firebase Setup

Since our front-end site will also be hosted through Firebase, we will create the basic
settings while the create-react-app command creates our React app. Go ahead and

follow the steps listed in Chapter 1 to create the app. I have created an app named
stories-firebase-app (Figure 3-2).

FLNDS %W

Bee | =

stories-firebase-app (s

2 1 app + Add app

Choose a product to add to your
app

Store and sync app data in milliseconds

r.g

Cloud Firestore

Autherticate and manage users Fieal timie updates, powerful queries and owlomatic scaling

Authentication

See all Build features

Keep tabs on your app's quality x

Figure 3-2. Creating the app

46

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

Now, click the Settings icon at the top-left corner of the screen. After that, click the
Project settings button (Figure 3-3).

FENDSXS Bee8)

@ Firebase

E Project semings ries-firebase-app « sts=

Users and permissions
app 4+ Addapp
Usage and billing

Choose a product to add to your
app

Store and sync app data in milliseconds

x

o

Attt sl resnagpe users Fumab e kst prerestil pueiens urel silcmitic scalng

Authentication Cloud Firestore

See all Bulld features

Keep tabs on your app’s quality X

Figure 3-3. Settings

Now, scroll down, click the Config radio button, and then copy all the code for the
firebaseConfig section (Figure 3-4).

47

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

L D & hupe oo ehase googlecom sz e @ 1Y kM D S %W B €&

h Firebase stories-firchase-app ~ Project settings Gotodocs MR Q
TYour appe
Add opp

(<jy| Stones-firchase-app stonies-firebase-app
Web App

150 WebDCH2ISeST S0

&) stories-frebase-app

Firebase SDK snippet

Copy and paste these scripts info the bottom of your <body tag but befare you use any
Fitebage senices:

nst firsbaseConfig = {
apikey:
authDomain: ~stor
projectId: -
storageBucket :
messagingSenderld:
appld: ~1:50752695

; O

Figure 3-4. . firebaseConfig code

Basic React Setup

Our React setup should be completed by this time. So, go back to the terminal and cd
into the newly created stories-firebase-app directory.

After that, open the directory in VS Code, create a file called firebase. js inside the
src folder, and paste the content from the previous Firebase screen there. The code is

shown here:

const firebaseConfig = {
apiKey: "AIXXXXXXXXXXXXXXXXXXXXXXXXXXKT4",
authDomain: "stories-xxxxxx.XXXXXXxx.com",
projectId: "stories-xxxxxx",
storageBucket: "stories-fxxxxxxxx.com",
messagingSenderId: "50xxxxxxxx63",
appIld: "1:507xxxxxxx63:web:0coxxxxxxxxxxdade"

};

48

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

In the stories-firebase-app directory, start the React app with npm start. Next,
we will delete some of the files, as shown in Figure 3-5, because we don’t need them.

@ e 15 Apptestjs X

~ OPEN EDITORS

* STORIES-FIREBASE-APP

test('re

Alt+L Alt+0
Ctrl+Enter

Shifts Alt+R

Open Timeline

Cut

Ctrl+K Crrl

Rename

Delete Delete

> OUTLINE
» TIMELINE

¥ Pmaster @ oo In1,Col1 Spaces? UTF-8 LF JavaSaipt @ Golive & 0

Figure 3-5. Deleting some code

We will remove all the unnecessary boilerplate code, so our index. js file will look
like this:

import React from 'react’;
import ReactDOM from 'react-dom';
import './index.css';

import App from './App';

ReactDOM.render (
<React.StrictMode>
<App />

49

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

</React.StrictMode>,
document.getElementById('root")

)5

The App. js file contains only the “Stories app React” text. We have removed all the
other content from the App. css file. The updated code for the App. css file is shown here:

import './App.css’;

function App() {
return (
<div className="app">
<h1>Stories app React</h1>
</div>
);
}
export default App;

In the index. css file, update the CSS to use margin: 0 throughout. Specifically, add
the following code at the top:

*A

margin: 0;

Basic Structure of the App

We will now create the basic structure in our app. So, update App. js with the following
content. We are adding the image and heading first. Here, we have created two divs:
app__topand app__videos. Now, the app__top contains an image and an h1.

import './App.css’;

function App() {
return (
<div className="app">
<div className="app_ top">
<img src="logo192.png" alt="App Logo" className=
"app__logo"/>
50

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

<h1>Shorts</h1>
</div>
<div className="app__videos">

</div>
</div>
)5
}
export default App;

Next, we will add new content in the App. css file. Here, we are placing everything in
the center using a grid. We also have a style of scroll-snap-type: y mandatory at two
places. It is used to give the scroll feature in our app for smooth scrolling.

html{
scroll-snap-type: y mandatory;
}
-app{
display: grid;
place-items: center;
height: 100vh;
background-color: black;
}
.app__top {
margin-bottom: -150px;
}

.app__top > h1 {
text-align: center;
color: white;

}

.app__logo {
height: 12vh;

}

51

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

.app__videos {
position:relative;
height: 65vh;
background-color: white;
width: 70%;
border-radius: 20px;
max-width: 450px;
max-height: 1200px;
overflow: scroll;
scroll-snap-type: y mandatory;

}

.app__videos::-webkit-scrollbar{
display: none;

}

.app__videos{
-ms-overflow-style: none;
scrollbar-width: none;

Now, our app will look like Figure 3-6 in localhost.

52

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

Shorts

Figure 3-6. App outline

Showing Short Videos in the App

After setting up the basic layout in the previous section, we will now start creating the
functionality to show short videos in our app.

To start, create a components folder inside the src folder and create two files called
VideoCard. js and VideoCard.css inside the src folder.

Next, in the VideoCard. js file, put the video tag and a vertical video link. I copied
the link from a short YouTube video on my channel.

import React from 'react’
import './VideoCard.css'

const VideoCard = () => {
return (

53

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

<div className="videoCard">
<video
src="https://res.cloudinary.com/dxkxvfo2o/video/upload/
v1608169738/videol_cvrjfm.mp4"
className="videoCard player"
alt="Short Video App"
loop
/>
</div>

}
export default VideoCard

Now, we will add the following code in the VideoCard.css file. Here, we again need
to add scroll-snap-align: start to have the smooth scroll feature in the videos.

.videoCard{
position: relative;
background-color: white;
width: 100%;
height:100%;
scroll-snap-align: start;

}

.videoCard player{
object-fit: fill;
width: 100%;
height: 100%;

Now, in App. js, add two VideoCard components, because we are need more than
one video to see the snapping feature. The updated code is shown in bold here:

import './App.css’;
import VideoCard from './components/VideoCard';

function App() {
return (

54

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

<div className="app">
<div className="app__top">

</div>
<div className="app__videos">
<VideoCard /»
<VideoCard /»
</div>
</div>
)5
}
export default App;

Now, videos are showing perfectly with the snapping feature (Figure 3-7).

© D% lahos O ¢ 1 ek el |

Figure 3-7. Video snapping
55

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

Right now our videos don'’t play, because we have not implemented the onClick
functionality. To make them play, we will need to use a reference (or ref). A ref is required
because we will be implementing the pause and play functions for when the user clicks
the mouse on the screen. We will first import the useRef and useState hooks, and then
we will add a videoRef variable. We are using videoRef inside the video element, where
we also created an onClick handler that fires the function handleVideoPress.

Inside the handleVideoPress function, we are using a state variable called playing
to check whether the video is playing. We are setting it to pause with videoRef.current.
pause() and also changing the playing state to false. We are doing the reverse in the
else part. The updated code is marked in bold here:

import React, { useRef, useState } from 'react’
import './VideoCard.css'

const VideoCard = () => {
const [playing, setPlaying] = useState(false)
const videoRef = useRef(null)

const handleVideoPress = () => {

if(playing){
videoRef.current.pause()
setPlaying(false)

} else {
videoRef.current.play()
setPlaying(txue)

}

}

return (

<div className="videoCard">
<video
loop

ref={videoRef}
onClick={handleVideoPress}
/>

</div>

56

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

}
export default VideoCard

Now, in localhost, just click the video and it will play. Click again to pause it.

Creating the Header Component

We will be using Material UT for the icons, which we will use next. So, we need to do
two npm installs per the documentation. We will install core and icons through the
terminal by using the following command:

npm i @material-ui/core @material-ui/icons

We will now create the header for our video component. So, create files called
VideoHeader. js and VideoHeader.css inside the components folder.

import React from 'react’
import './VideoHeader.css'

const VideoHeader = () => {
return (
<div className="videoHeader">

</div>

)
}

export default VideoHeader

Now, in the VideoHeader. js file, put the following content. Here, we are using
material-ui to show two icons: ArrowBackIos and CameraAltOutlined. The updated
content is marked as bold here:

import React from 'react’

import './VideoHeader.css'

import ArrowBackIosIcon from '@material-ui/icons/ArrowBackIos'

import CameraAltOutlinedIcon from '@material-ui/icons/CameraAltOutlined’

57

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

const VideoHeader = () => {
return (
<div className="videoHeader">
<ArrowBackIosIcon /»
<h3»Shorts</h3»
<CameraAltOutlinedIcon /»
</div>

}

export default VideoHeader
Next, we will style these in the VideoHeader.css file.

.videoHeader {
display: flex;
justify-content: space-between;
align-items: center;
position: absolute;
width: 100%;
color: white;

}

.videoHeader > * {
padding: 20px;

Now, include this VideoHeader component in the VideoCard. js file. The updated
content is marked as bold here:

import VideoHeader from './VideoHeader'

const VideoCard = () => {

return (
<div className="videoCard">
<VideoHeader /»

58

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE
<video

/>
</div>

)
}

export default VideoCard

Now, in localhost we see our nice header component (Figure 3-8).

Figure 3-8. Header

59

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

Creating the Footer Component

We will now create a footer for our video component. The footer component will show
some icons in the footer of the app. So, create two files called VideoFooter.js and
VideoFooter.css inside the components folder.

Also, we are doing a bit of optimization by passing props from the App. js file in
the VideoCard component. We are passing two different set of props, in two VideoCard
components. The updated content is marked in bold here:

import './App.css’;
import VideoCard from './components/VideoCard';

function App() {
return (
<div className="app">
<div className="app__top">

</div>
<div className="app__videos">
<VideoCard
url="https://res.cloudinary.com/dxkxvfo20/video/upload/
v1608169738/video1_cvrjfm.mpg"
channel="TWD"
avatarSrc="https://pbs.twimg.com/profile_
images/1020939891457241088/fcbu814K_400x400.jpg"
song="I am a Windows PC"
likes={950}
shares={200}
/>
<VideoCard
url="https://res.cloudinary.com/dxkxvfo20/video/upload/
v1608169739/video2_mecbdo.mpg"
channel="nabendu"
avatarSrc="https://pbs.twimg.com/profile_
images/1020939891457241088/fcbu814K_400x400. jpg"
song="I am a good PC"

60

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

likes={850}
shares={150}
/>
</div>
</div>
)5
}
export default App;

Then in the VideoCard. js file, we will first use the prop called url in video. Also, call
the new VideoFooter component, where we will pass the rest of the props. The updated
content is marked in bold here:

import VideoFooter from './VideoFooter’
import VideoHeader from './VideoHeader'

const VideoCard = ({ url, channel, avatarSrc, song, likes, shares }) => {

return (
<div className="videoCard">
<VideoHeader />
<video
src={url}
className="videoCard player"
alt="Short Video App"
loop
ref={videoRef}
onClick={handleVideoPress}
/>
<VideoFooter
channel={channel}
likes={likes}
shares={shares}
avatarSrc={avatarSrc}
song={song}

61

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

/>
</div>
)
}

export default VideoCard

Now, our VideoFooter. js file will contain the following content. We are using the
channel and avatarSrc props and showing an avatar and a channel name.

import React from 'react’
import './VideoFooter.css'
import { Button, Avatar } from '@material-ui/core’

const VideoFooter = ({ channel, avatarSrc, song, likes, shares }) => {
return (
<div className="'videoFooter'>
<div className="videoFooter text">
<Avatar src={avatarSrc} />
<h3>
{channel} . <Button>Follow</Buttony
</h3>
</div>
</div>

}

export default VideoFooter
Next, we will add the styles for these in the VideoFooter.css file.

.videoFooter text{
position: absolute;
bottom: 0;
color: white;
display: flex;
margin-bottom: 20px;

62

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

.videoFooter text > h3 {
margin-left: 10px;
padding-bottom: 20px;

}

.videoFooter text > h3 > button {
color: white;
font-weight: 900;
text-transform: inherit;

Now, in localhost we will start setting the footer component (Figure 3-9).

T D% locslhost 1§ + e %k ®

<P

Shorts

Figure 3-9. Footer

63

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

Now, let’s create a nice ticker in our project. For that we will install a package
called react-ticker in our project. This package allows us to show moving text, like a
news feed. We can use the integrated terminal to do the installation with the following
command:

npm i react-ticker

Next, we will include Ticker as per the documentation, along with MusicNoteIcon,
in our VideoFooter. js file, as shown here:

import MusicNoteIcon from '@material-ui/icons/MusicNote’
import Ticker from 'react-ticker'

const VideoFooter = ({ channel, avatarSrc, song, likes, shares }) => {
return (
<div className="videoFooter'>
<div className="videoFooter text">

</div>

<div className="videoFooter__ticker"»
<MusicNoteIcon className="videoFooter__icon" /»
<Ticker mode="smooth"»

{({ index }) => (

<>
<h1{song}</h1»
</>
)}
</Ticker»
</divy
</div>
)

}

export default VideoFooter

64

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

Next, we will include the following styles in the VideoFooter. css file:

.videoFooter{
position: relative;
bottom: 100px;
margin-left: 20px;

}

.videoFooter ticker > .ticker{
height: fit-content;
margin-left: 30px;
margin-bottom: 20px;
width: 60%;

}

.videoFooter ticker hi{
padding-top: 7px;
font-size: 12px;
color: white;

}

.videoFooter icon{
position: absolute;
left: 5px;
color: white;

}

Now, we will see this nice ticker scrolling across our screen in localhost (Figure 3-10).

65

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

Figure 3-10. Ticker

Now, we will add some remaining elements in the VideoFooter. js file to finish our
app. Here, we are adding some more icons and using the 1ikes and shares props:

import Ticker from 'react-ticker'
import { Favorite, ModeComment, MoreHoriz, Send } from '@material-ui/icons’

const VideoFooter = ({ channel, avatarSrc, song, likes, shares }) => {
return (
<div className="videoFooter'>
<div className="videoFooter text">

</div>
<div className="videoFooter ticker">

66

}

</div>

)

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

</div>

<div className="videoFooter__actions"»
<div className="videoFooter__actionsLeft"»
<Favorite fontSize="large" />

<ModeComment fontSize="large" /»

<Send fontSize="large" />

<MoreHoriz fontSize="large" />

</div>

<div className="videoFooter__actionsRight"»

<div className="videoFooter _stat"»
<Favorite />
<p>{likes}</p>

</divy

<div className="videoFooter__stat"»
<ModeComment /»
<p>{shares}</p>

</divy

</div>

</divy

export default VideoFooter

Next, we will add some new styles in the VideoFooter.css file, as shown here:

.videoFooter actions{

}

display: flex;

position: absolute;

width: 95%;

color: white;

justify-content: space-between;

.videoFooter actionsLeft > .MuiSvgIcon-root{

padding: 0 10px;

67

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

.videoFooter actionsRight{
display: flex;
}

.videoFooter stat{
display: flex;
align-items: center;
margin-right: 10px;

}

.videoFooter stat > p{
margin-left: 3px;

Now, our app is complete with the additional elements we just added (Figure 3-11).

O x 3 D!; OCOL"CS'."“ T

¥ 950 WM 200

Figure 3-11. App complete
68

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

Setting Up the Firebase Database

We will now be setting up Firebase. The first thing to do is install Firebase in our project
by running the following command from the terminal:

npm i firebase

Next, we will update our firebase. js file to use the config to initialize the app. After that,
we can use Firestore as the database. The updated content for this is marked in bold here:

import firebase from 'firebase’;

const firebaseConfig = {

}s

const firebaseApp = firebase.initializeApp(firebaseConfig)
const db = firebaseApp.firestore()

export default db

Now, we will go back to Firebase and click Cloud Firestore and then the Create
database button (Figure 3-12).

=
firebase.google.com,u/0/pr fstorigs-firebase-app/ffires: ==

stories-firebase-app

Cloud Firestore

Real-time updates, powerful queries and
automatic scaling

+: Is Cloud Firestore right for you? Compare Databases [

Analytics

Learn more

Introducing Cloud Firestore gl

AW e A L aet started?

Figure 3-12. Creating a database
69

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

On the next screen, select Start in test mode and then click the Next button
(Figure 3-13).

2. google.com,u,/0/pr

Create database

° Secure rules for Cloud Firestore 2 Set Cloud Firestore location

After you've defined your data structure, you will need to write rules to secure your data
Leamn maore [

(O startin preduction mode

|

nt= o
allow read, write: if
request.time < timestamp.date(2021, 4, 1);

o Anyone with your database reference will be able to view, edit
and defete all data in your database for 30 days

Ciowd Firestore will prevent you from using Cloud Datastore with this project, notably from the associated
b = / cancel m

Figure 3-13. Test mode

On the next screen, click the Enable button (Figure 3-14).

70

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

e.firebase.google.com/u,

Create database

@ secure rules for Cloud Firestore @ et Cloud Firestore location

Your location setting is where your Cloud Firestore data will be stored.

A After you've set this location, you cannot change it later. Also, this location setting will be the location for your
default Cloud Storage bucket.

Learn mare

Cloud Firestore location

nam5 (us-central)

tore will prevent you from using Cloud Datastore with thi 1, notably from the
950008 Wil prevent you from using Cloud Datastone with this project, rotably from th el Enable

Figure 3-14. Enable button

On the next screen, click Start collection (Figure 3-15).

71

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

= - . e T P T L ET T T
» firebase. le.com,/uu/0/ project/stories-firebase-app/f i £ ¥ =
e Tl o o RN AR AT A
stories-firebase-app ~ Golodocs & e
Cloud Firestore o
Data Rules Indexes Usage
Build
1»: Prototype and test end-1o-end with the Local Emulator Suite, now with Firebase Authentication Gel started [»
=% Authentication
L
=5 storiesfirebase-ap,

+ start collection

T el iD»

Release and monitor

Analytics

Engage

¥ Extensions

Upgrade Cloud Firestore location: nams (us-central)

Figure 3-15. Starting the collection

This will open the pop-up shown in Figure 3-16. We need to give the collection ID, so
enter videos in the Collection ID field and then click the Next button.

72

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

ries-firebase-appjfires: *o*

Start a collection

o Give the collection an ID 2 Add its first document

!

Collection 10

| videos

Figure 3-16. Entering the collection ID

On the next screen, create the document ID by clicking Auto ID. Also add the fields
url, channel, avatarSrc, song, likes, and shares. Put all the values from the App. js file
in the Value fields. Also, note that the likes, shares, and messages are the number type and
the rest are the string type. After that, click the Save button (Figure 3-17).

73

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

otart a collection

° Give the collection an 1D o Add its first document

Document padent path

Mvideos

Document ID

Sp0sqbXbpREBGRG9Cvgo
Fleld Type Walue
url = string feol_cvifmmpd @
Fieid Type value
channel = string TWD °
Field Type Value
avatarSrc = string 14K_400x400 jpg e

Value

maWindows PC @

Value

number 950 =]

Type

= string e

Figure 3-17. Creating a collection

This will take us back to the main screen. Now click the Add document link. This
will again open the same pop-up we saw earlier, where we will add the details of another
video from the App. js file (Figure 3-18).

74

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

Add a document

Document 1D &

KIS3HQIPFByPIN3H18sQ

: Field Type Value
=l o2_mecbdo.mpd @
Field Value
S channel nabendu e
Value
14K_400x400jpg @
Value
| am a good FC -

Value

850 -]

; Field

:- shares 150] e

e Add field

Figure 3-18. Another collection

Now, we have two videos in our database (Figure 3-19).

75

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

mam oecrsess oo

e e R

stories-firebase-app ~

Cloud Firestore @
Data Rules Indexes Usage
4, Prototype and test end-to-end with the Local Emulater Suite, now with Firebase Authentication Get started [x
ﬁ > vide > KISZHQIPFBYPS...
2 stories-firebase-app W videos = % B HI53HOIPFEYPINaH1850
+ start collection + Add document 4+ start collection

videos ¥ K153HQ1PFByPfn3H18s] > + Add field

REICvy
c: "hitps:/pbs twimg.comy/profile_images
f1020939891457241088
Release and monitor ScbuS14K_400x400 jpg"
:) ! 1: ‘nabendu’
kes: 850
Analytics
ik " res: 150
72 "1am a good PC”
Engage srl: “htipsires.cloudinary.com/dudorfo2o/ video/upload

M608169739/video2_mecbdo.mpd’

Cloud Firestore location: nam5 (us-central)

Figure 3-19. Two videos

Integrating the Firebase Database with React

Now, go back to App. js and create a new state called videos using the useState

hook. We will then map over it and pass the parameters to the VideoCard component.
Notice that we have removed the hard-coded stuff, as we will not get this data from the
database. The updated content is marked in bold here:

import { useState } from 'react';
import './App.css’;
import VideoCard from './components/VideoCard';

function App() {
const [videos, setVideos] = useState([])

76

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

return (
<div className="app">
<div className="app__top">
</div>
<div className="app__videos">
{videos.map(({ url, channel, avatarSrc, song, likes,
shares }) => (
<VideoCard
url={url}
channel={channel}
avatarSrc={avatarSrc}
song={song}
likes={likes}
shares={shares}
/>
N}
</div>
</div>
)
}
export default App;

Now, we will use the data stored in the local Firebase file in our app. After that,
within useEffect, we are calling the collection videos and then taking a snapshot. In
Firebase terms, this is the live data, which we will get instantly. We will then set this data
in a video array, via setVideos().

Also, notice that useEffect has videos inside the array. So, anytime a new video is
added in the Firebase database, it will instantly display in our app. The updated content
is marked in bold here:

import { useEffect, useState } from 'react’;
import './App.css’;

import VideoCard from './components/VideoCard';
import db from './firebase’;

77

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

function App() {
const [videos, setVideos] = useState([])

useEffect(() => {
db.collection('videos').onSnapshot(snapshot =» {
setVideos(snapshot.docs.map(doc =» doc.data()))

)
}» [videos])

return (

Now, our app is complete, and we are getting the data from the Firebase back end
(Figure 3-20).

€« 2> C o D D25 localnost ’ = @B 7 Frin DD %W BeeE@ =

Shorts

ﬁ nabendu. Follow

J 1 am a goad PC oy

; ' . > P _._6.350 W50

Figure 3-20. Getting data from database
78

CHAPTER 3 BUILDING A STORIES APP WITH REACT AND FIREBASE

Deploying and Hosting Through Firebase

Now, we can deploy our app in Firebase. We just follow the same steps as described
earlier.
The deployment was successful, and our app is working properly (Figure 3-21).

> X @ © & niips//stories- app - D LD %W BeeBd =

Shorts

jﬁ nabendu. Fallow

=) “Fam a good PC

'- > v ®ss0 Miso

Figure 3-21. Deployed app

Summary

In this chapter, you learned how to create a stories video app. The data for the app is
stored in the Firebase Firestore database, and it also has a nice scroll feature.

79

CHAPTER 4

Building a Storage App
with React and Firebase

Welcome to a new React]S project, where we are going to build a storage app in
React]S. Storage apps are used to store your data in the cloud as a backup. There are
many popular storage apps such as Dropbox and Google Drive.

The hosting and the database will be in Firebase. The login of the app will be through
Google Authentication. We will also be using Material UI for the icons in the project. The

final project will look like Figure 4-1.

- o
> O @ O B & nups/storage-firebase-app.aweb.app g F @ D e % B € B 2 $ =
B import bookmarks... £F Most Visited [Tutorals D088 [oss2 Dosss Doss .i_"fA: [0 Other Bockmarks.
Storage Q = @ Lo ﬂ
4+ new B
» . My Drive
» Eﬁ Computers 0
&, Shared with strawberry.png whatsapp-firebase jpg BuySellHold jpg instagram-firebase,jpg +
me
(D Recent
Mame Last modified File size
¥r Stamed
B strawberrypng 11 0ct 2021 314.2kB
O e&in
B Storsge . whatsapp-firebase.jpg 4 Apr 2021 166.1 kB
‘ BuySellHoldjpg 4 Apr2021 886.6 kB
B instagram-firebasejpg 4 Apr2021 1609 kB

Figure 4-1. Completed project

81
© Nabendu Biswas 2022

N. Biswas, Beginning React and Firebase, https://doi.org/10.1007/978-1-4842-7812-3_4

https://doi.org/10.1007/978-1-4842-7812-3_4#DOI

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

Getting Started

Use the create-react-app command to create a new app called storage-firebase-app.
Specifically, open any terminal and provide the following command:

npx create-react-app storage-firebase-app

Initial Firebase Setup

Since our front-end site will also be hosted through Firebase, we will create the basic
settings while this create-react-app command creates our React app. In this section,
we will follow the same steps as in Chapter 1. I have created an app with name storage-
firebase-app (Figure 4-2).

“ 5 ¢ @ © & % hitpsyjconsolefirebase google.comyu/D/project/storage-frebase-appfover *= T 4 "5_:_ n oo % % B € @ =

" Firebase storage-firebase-app Gotodocs ks

storage-firebase-app (ssxsn

Get started by adding
Firebase to your app

Learning
Add an app to ted

Release and monitor

Analytics

Store and sync app data in milliseconds

Figure 4-2. Creating a storage app

Now, click the Settings icon at the top-left corner of the screen. After that, click the
Project settings button, as in Figure 4-3.

82

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

';F;k N Do kW

Users and perrmissions et
ic app data in milliseconds

=

Usage and billing

Authentication Cloud Firestore

Authenticate and manage users. Real-time updates, powerful queries and automatic scaling
and monitor

See all Build features
Analytics

Keep tabs on your app's quality X

Engage

Performance

Get insights inlo your app's performance

Upgrade

See all Release and monitor features

Figure 4-3. Project settings

Now, scroll down, click the Config radio button, and then copy all the code for the
firebaseConfig element, as shown in Figure 4-4.

83

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

—_— - —— 2
€« >=C @& © & 25 hupsiconsole renase googhe.com/u/0/project/storage-fresase-agpiser = & 1)g‘ir\mg*g B ¥ @ =
s — e = - —— - ST e RN oy
k Firebase slorage-firebase-app = Project seflings Gotodocs M@ Q
Project Overvies - .
it e (e) storage-firebase-app storage-firebase-app
N web app
Build App D @
1:142041 540829 web-621aa7 7fa71df703071 234
A% Authentication
Linked Firebase Hosting site
2= cloud Fi
= %) slorage-firebase-app
By s
® . .
Firebase SDK snippet
) Funeti
z Automatic @ CON & ®) Config ®
@) Machine Learning O a @ O ° @ .
Copy and paste these scripts into the bottom of your <body= tag, but before you use any
Fiscbace sendges:
Release and monitor
const firebaseConfig = {
apiKey: A _
Analytics authDomain: “storage
[projectid: “storage
storageBucket: “storage-
messagingSenderId: 142 .
Engage appld: "1:1428¢ ~ TTTT LeE04aaTTFaT 0T
Y D

Remove this app

¥ Extensions

il Delete project

Figure 4-4. Firebase configuration

Basic React Setup

We will now complete our React setup. So, go back to the terminal and cd into the newly
created storage-firebase-app directory.

After that, open the directory in VS Code and create a file named firebase. js inside
the src folder. Paste the following content from the previous Firebase screen into that file:

const xxxxxxConfig = {
apiKey: "AIXXXXXXXXXXXXXXXXXXXXXXXXXX",
authDomain: "storage-XXXXXXXX.XXXXXXXXX.com",
projectld: "storage- xxxxxx-app",
storageBucket: "storage- xxxxxx-app.appspot.com”,
messagingSenderId: "14xxxxxxxx",
appId: "1:142XXXXXXXXXXXXX:Web:6XXXXXXXXXXX"

%

84

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

Inside the storage-firebase-app directory, start the React app with npm start.
Next, we will delete some of the files because we don’t need them. We are removing
them because they show the React logo and other things, which need to be cleaned
before starting the project. Figure 4-5 shows the files to be deleted.

> OPEN EDITORS
.+ STORAGE-FIREBASE-APP ; { render, screen } from
? no t App from *./ A

test('r learn react link', () => {
rende

CO 1 = screen.getByText(/learn react/i);
expect(linkElement).toBeInTheDocument();

> DUTLINE
» TIMELINE

¥ Praster ® @oko In1.Col1 Spaces2 UTF-8 IF lawaScript @ Golve & 0O

Figure 4-5. Deleting files

We will remove all the unnecessary boilerplate code, and our index. js file will look
like this:

import React from 'react’;

import ReactDOM from 'react-dom';
import './index.css';

import App from './App';

85

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

ReactDOM.render (
<React.StrictMode>
<App />
</React.StrictMode>,
document.getElementById('root")
);

The App. js file contains only the “Storage app React” text. We have also removed all
the content from the App.css file.

import './App.css’;

function App() {
return (
<div className="app">
<h1>Storage app React</h1>
</div>
);
}
export default App;

In the index. css file, update the CSS to use margin: 0 for all the content, as shown
here:

*{
margin: O;

}

Creating a Header

Our React setup is done, and we will be working on the Header component first. So,
create a folder called components inside the src folder. Create a Header. js file inside the
components folder. We will import it first in the App. js file.

function App() {
return (
<div className="app">

86

}

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

<Header />
</divy

)5

export default App;

We will also be using Material UI for the icons. So, we need to do two npm installs

per the documentation.

npm i @material-ui/core @material-ui/icons

Now, our Header . js file will mostly be static. It will mainly contain icons and logos.

Here, we have a div called header, containing three divs. The first one is header

logo, which contains an image and text. The next div is header _searchContainer,

which contains a SearchIcon, an input box, and ExpandMoreIcon.

The third div, called header__icons, contains four icons: HelpOutlineIcon,

SettingsIcon, AppsIcon, and Avatar.

import React from 'react'
import SearchIcon from '@material-ui/icons/Search’
import ExpandMoreIcon from '@material-ui/icons/ExpandMore’

import HelpOutlineIcon from '@material-ui/icons/HelpOutline

import SettingsIcon from '@material-ui/icons/Settings'’
import AppsIcon from '@material-ui/icons/Apps’

import { Avatar } from '@material-ui/core’

import './Header.css'

const Header = () => {

return (
<div className="header">
<div className="header logo">

Storage
</div>
<div className="header _searchContainer">
<div className="header searchBar">
<SearchIcon />
<input type="text" placeholder='Search in Storage' />

87

https://material-ui.com/

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

<ExpandMoreIcon />
</div>
</div>
<div className="header icons">

<HelpOutlineIcon />
<SettingsIcon />

<AppsIcon />
<Avatar className="header iconsAvatar" />
</div>
</div>

}

export default Header

Now, create a file called Header.css in the same folder and add the following content
to it. Here, we are using a lot of flexboxes to style our header.

.header {
display: flex;
height: 60px;
border-bottom: 1px solid rgb(219, 219, 219);
width: 100vw;

}

.header>div {
padding: 12px;
}

.header logo {
display: flex;
justify-content: flex-start;
align-items: center;

88

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

.header__logo>img {
height: 100%;
object-fit: contain;

}

.header logo>span {
color: gray;
font-size: 20px;
font-weight: 500;
margin-left: 16px;

}

.header searchContainer {
flex: 1;
display: flex;
align-items: center;
padding: 8px;

}

.header _searchBar {
width: 45%;
height: 120%;
border-radius: 6px;
background-color: rgb(237, 237, 237);
display: flex;
align-items: center;
padding: 0 8px;
}

.MuiSvgIcon-root {
color: rgh(82, 82, 82);
}

.header _searchBar>input {
flex: 1;
height: 60%;
font-size: 16px;
color: lightgray;

89

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

background: none;
border: none;
margin-left: 12px;

}

.header__searchBar>input:focus {
outline: none;
color: black;

}

.header icons {
display: flex;
align-items: center;
margin-right: -30px;

}

.header _icons .MuiSvgIcon-root {
font-size: 28px;
color: rgh(82, 82, 82);
margin: 4px;

}

.header__icons>span{
margin-right: 20px;

}

.header _iconsAvatar{
margin-right: 24px;

Now, our header is complete and looks like Figure 4-6 on localhost.

D D 25 locathost3000

Storage Q

Figure 4-6. Our header on localhost

90

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

Creating the Sidebar

Now that our header component is complete, we will be creating the Siderbar
component. For this, firstimport the Siderbar component into our App. js file. The code
for this is shown in bold here:

import './App.css’;
import Header from './components/Header’;
import Sidebar from './components/Sidebar’;

function App() {
return (
<div className="app">
<Header />
<Sidebar />
</div>
)5
}
export default App;

Next, create a file called Sidebar. js in the components folder and add the following
content in it. Here, we are calling two components: FileComponent and SidebarItem. In
the SidebarItem components, we are also passing props, one of which is the icon.

import React from 'react’;

import FileComponent from './FileComponent’;

import SidebarItem from './SidebarItem';

import InsertDriveFileIcon from '@material-ui/icons/InsertDriveFile’;
import ImportantDevicesIcon from '@material-ui/icons/ImportantDevices';
import PeopleAltIcon from '@material-ui/icons/PeopleAlt’;

import QueryBuilderIcon from '@material-ui/icons/QueryBuilder’;
import StarBorderIcon from '@material-ui/icons/StarBorder’;

import DeleteOutlineIcon from '@material-ui/icons/DeleteOutline’;
import StorageIcon from '@material-ui/icons/Storage’;

import './Sidebar.css’;

91

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

const Sidebar = () => {
return (
<div className="sidebar">

<FileComponent />

<div className="sidebar _itemsContainer">
<SidebarItem arrow icon={(<InsertDriveFileIcon />)}
label={'My Drive'} />
<SidebarItem arrow icon={(<ImportantDevicesIcon />)}
label={"Computers'} />
<SidebarItem icon={(<PeopleAltIcon />)} label={'Shared with
me'} />
<SidebarItem icon={(<QueryBuilderIcon />)} label={'Recent'}
/>
<SidebarItem icon={(<StarBorderIcon />)} label={'Starred'}
/>
<SidebarItem icon={(<DeleteOutlineIcon />)} label={'Bin'}
/>
<hr/>
<SidebarItem icon={(<StorageIcon />)} label={'Storage'} />

</div>

</div>

}
export default Sidebar

Now, create a FileComponent. js file in the same components folder. It contains
AddIcon and New icons.

import React from 'react'
import AddIcon from '@material-ui/icons/Add’

import './FileComponent.css'

const FileComponent = () => {
return (
<div className="file">
<div className="file container"»

92

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

<AddIcon fontSize='large' />
<p>New</p>
</div>
</div>

}

export default FileComponent

Now, create a file called SidebarItem. js inside the components folder. It takes
three props: arrow, icon, and label. We show ArrowRightIcon only if the arrow prop is
passed.

import React from 'react'
import './SidebarItem.css’

import ArrowRightIcon from '@material-ui/icons/ArrowRight’;

const SidebarItem = ({ arrow, icon, label }) => {
return (
<div className='sidebarItem'>
<div className="sidebarItem arrow">
{arrow && (<ArrowRightIcon />)}
</div>

<div className='sidebarItem main'>
{icon}
<p>{label}</p>
</div>
</div>

export default SidebarItem

Figure 4-7 shows what the icons look like on localhost.

93

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

I(:-—) c @ @ D % localnest 3000 B

Storage Q e

=+

Mew
L3

]

My Drive

»

=

Computers

L 1]

-

Shared with me

Recent
Tt

Starred

g

E

Storage

Figure 4-7. Icons on localhost

Now, it’s time to fix our styles. So, add the following code in the Sidebar.css file:

.sidebar{
width: 15%;
height: 100vh;
margin-right: 5px;

}

hr{
background-color: rgh(197, 197, 197);
height: 1px;
border: none;

}

Next, in the SidebarItem.css file, add the following content:

.sidebarItem{
display: flex;
padding: 10px O0;
border-radius: 0 100px 100px O;

94

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

.sidebarItem:hover{
background-color: rgba(o, 0, 0, 0.04);

}

.sidebarItem_arrow{
width: 28px;
margin-left: 12px;

}

.sidebarItem_ main{
display: flex;
}

.sidebarItem main>p{
margin-left: 12px;

}

In FileComponent.css, add the following content:
.file {

display: flex;

align-items: center;

padding: 12px 0;

padding-left: 20px;
}

.file container {
display: flex;
justify-content: center;
align-items: center;
padding: 6px 32px 6px 8px;
border-radius: 50px;
box-shadow: 0 1px 2px 0 rgba(60, 64, 67, 0.302), O 1px 3px 1px rgba(60,
64, 67, 0.149);
cursor: pointer;

}

.file_ container>p{
margin-left: 14px;

95

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

The sidebar looks great, as shown in Figure 4-8.

(C)> clh D O £ tocathost3000 @ g remooxe e o gy
Storage Q ot @ o I -
+ Mew
v [My Drive
v [Z3 Computers

» Shared with me

-
-
© Recent
+r Starred

Ein

Storage

Figure 4-8. Sidebar

Uploading Files Using Firebase

We need to have some logic to upload the files, but for that we will need to have Firebase
in our project first.

The first thing to do is install Firebase in our project by running the following
command from the terminal:

npm i firebase

Next, we will update our firebase. js file to use the configuration to initialize
the app. After that, we can use Firestore as the database. We are also using Google
Authentication and storage in the project.

import firebase from 'firebase’

const firebaseConfig = {
b5

96

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE
const firebaseApp = firebase.initializeApp(firebaseConfig)

const auth = firebase.auth()

const provider = new firebase.auth.GoogleAuthProvider()
const storage = firebase.storage()

const db = firebaseApp.firestore()

export { auth, provider, db, storage }

Back in the FileComponent. js file, we will import the necessary modules. We are
using Modal from Material UI here. The updated code is marked in bold here:

import React, { useState } from 'react’
import AddIcon from '@material-ui/icons/Add’
import './FileComponent.css'’
import firebase from 'firebase’
import { storage, db } from '../firebase’
import { makeStyles } from '@material-ui/core/styles’;
import Modal from '@material-ui/core/Modal’;
function getModalStyle() {
return {
top: “50%,
left: “50%,
transform: "translate(-50%, -50%),
};
}
const useStyles = makeStyles((theme) =» ({
paper: {
position: 'absolute’,
width: 400,
backgroundColox: theme.palette.background.paper,
border: '2px solid #000',
boxShadow: theme.shadows[5],
padding: theme.spacing(2, 4, 3),
}s
N);

97

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

const FileComponent = () => {
const classes = useStyles();
const [modalStyle] = useState(getModalStyle);
const [open, setOpen] = useState(false);
const [file, setFile] = useState(null)
const [uploading, setUploading] = useState(false)
const handleOpen = () => { setOpen(true); };
const handleClose = () =» { setOpen(false); };
return (
<div className="file">
<div className="file container"»
<AddIcon fontSize="large' />
<p>New</p>
</div>
</div>

)

}

export default FileComponent

Now, inside the return block in FileComponent. js, we will show the Modal. The
content of the Modal will be an input type file and a button. The updated code is marked
in bold here:

return (
<div className="file">

<div className="file container" onClick={handleOpen}>
<AddIcon fontSize='large' />
<p>New</p>
</div>
<Modal
open={open}
onClose={handleClose}
aria-labelledby="simple-modal-title"

98

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

aria-describedby="simple-modal-description"
>
<div style={modalStyle} className={classes.paper}>
<p>Select files you want to upload!</p>
{
uploading ? (
<p>Uploading...</p>
) 2 (
<>
<input type="file" onChange={handleChange} />
<button onClick=
{handleUpload}>Upload</button>
</>
)
}

</divy
</Modaly
</div>

Next, we will create the handleChange and handleUpload functions in the
FileComponent. js file. In the handleChange function, we are setting the file to
setFile(), and inside the handleUpload function, we are taking the uploaded file and
saving its various elements, such as its caption, in fileUrl. These will be shown later in
our app. The updated code is marked in bold here:

const FileComponent = () => {

const handleChange = (e) =» {
if (e.target.files[o0]) {

99

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

setFile(e.target.files[0])

}
}

const handleUpload = () => {
setUploading(true)
storage.ref(" files/${file.name}").put(file).then(snapshot =» {
console.log(snapshot)
storage.ref('files').child(file.name).getDownloadURL().then(url = {
db.collection('myFiles').add({
timestamp: firebase.firestore.FieldValue.
serverTimestamp(),
caption: file.name,
fileUrl: url,
size: snapshot._delegate.bytesTransferred,
}
setUploading(false)
setOpen(false)
setFile(null)

b))

storage.ref('files').child(file.name).getMetadata().then(meta =»> {
console.log(meta.size)

)

)
}

return (

}
export default FileComponent

100

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

For our code to work, we need to set up storage in Firebase. So, from the Firebase
console, click Storage and then Get Started. Now, the pop-up shown in Figure 4-9 will
display, where you need to click the Next button.

f0/project/storage-firebase-app/stor:

Set up Cloud Storage

@ secure rules for Cloud Storage 2 Set Cloud Storage location

By default, your rules allow all reads and writes from authenticated users

After you define your data structure, you will need to write rules to secure your
data Learn more (A

service firebase. storage {
match /bf{bucket}/o {
match /{allPaths=+=} {
allow read, write: if reguest.auth != null;

Figure 4-9. Getting started

On the next screen, just click the Done button, as shown in Figure 4-10.

101

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

ctystorage-fireba:

Set up Cloud Storage

@ Ssecure rules for Cloud Storage @ set cloud Starage location

Your location setting ks where your default Cloud Storage bucket and Its data will be stored

A After you set this location, you cannot change it later. This location setting will
also be the default location for Cloud Firestore,

Learn mare

Cloud Storage location

nam$ (us-central)

Blaze plan customirs can choose olher locations for additional backts Cancel m

Figure 4-10. Done

Firebase requires authentication to upload files. Since we have not set up
authentication yet, we need to change the rules, as shown in Figure 4-11.

102

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

sole firebase. google-com/u/0/project/storage-fircbase-app/fstoras *»» f.‘u‘|

k Firebase storage-firebase-app ~

A Project Overview Storage

Files Rules Usage

g
&

Edit rules Monitor rules

Realtime Database

1 rules_version = '2°;

service firebase.st
3 match fbf{
4 match [/{allPaths=#+} {
5 allow read, write;

Functions

Machine Learning

Release and monitor Guard your data with rules that
define who has access to it and
how it is structured

F View the docs

Analytics

Engage

3= Rules Playground

Upgrade

€

Figure 4-11. Rules

Now, back on localhost, click the New button, which will display a pop-up. In the
pop-up, you can upload any file, as shown in Figure 4-12.

103

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

@ D 25 localhost 2000

Select files you want to upload! _
whatsapp-firabesa.jpg | Upload |

Figure 4-12. Pop-up to upload a file

Clicking the Upload button after selecting a file will upload the file to Firebase, as
shown in Figure 4-13.

104

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

T T BT ey T e e Q[T' I Clgiey - B e e
storage-firebase-app ~ Gotodocs IR o
8 Storage o
Files Rules Usage
&% Authentication
F Cloud Firestore GD gsuistoragefirebase-app.appspoteom > files 4 Upload file [+]
Realtime Database
(] Hame Size Type Last madified

M whatsapp-firebase.j.. X

O M whatsapp-firebase jpg 166.1 KB mage/jpeg

=) Machine Leaming

Release and monitor

h: ase g [
Analytics

170,087 bytes
Engage image/jpeg

4 Mar 2021, 14:53:52
4 Mar 2021, 16:53:52

¥ Extensions

Figure 4-13. Firebase upload

Displaying Files with the FileViewer Component

We have the logic to upload the files, but now we want to display the files in our project.
We also need to enable Firestore first. For that, go back to the Firebase console and
click Cloud Firestore and then the Create database button, as shown in Figure 4-14.

105

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

Cloud Firestore

Real-time updates, powerful queries and

automatic scaling

Release and monitor
Is Cloud Firestore right for you? Compare Databases [

Analytics

Learn more
Engage

o How do | get started? @ Introducing Cloud Firestore,

View the docs

Figure 4-14. Creating a database

On the next screen, select Start in test mode and then click the Next button, as
shown in Figure 4-15.

106

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

Create database

o Secure rules for Cloud Firestore 2 Set Cloud Firestore location

After you've defined your data structure, you will need 1o write rules 1o secure your data

() start in praduction mode
Your data will be private by il
Chant raads eSS
qgranted as specified by y
e
allow read, write: i
(@) Start in test mode request.time < timestamp.date(2021, 4, 3);
Your data will be open by default to

o Anyone with your database reference will be able to view, edit
and delete all data in your database for 30 days

Firestore will prevent you from using Cloud Datastore with this prject, notably from the associsted
! cancel

Figure 4-15. Test mode

After that, on the next screen, click the Enable button, as shown in Figure 4-16.

107

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

e — e T — o ——— T
h firebase google.com/u,0/project,/stora estor wor % e ——— |

Create database

° Secure rules for Cloud Firestore e Set Cloud Firestore location

Your location setting is where your Cloud Firestore data will be stored
Clowd Firestore location

nam$5 (us-central)

nahling Cioud Firestore wil prevent you from using Cloud Detasiore with this poject. natably from the
Enabiing ok esiore will prevent you from using Cloud Datasiore w project, ¥ o cancel
assecialed Ap: Engine 3pp

Figure 4-16. Enable button

Now, create a file called FilesViewer. js and add the following content in it. Here,
we are getting all the file details from Firebase by calling FilesViewer. js inside the
useEffect hook. After getting the data, we are mapping through it and passing it to the
FileItem component, which we will create next.

import React, { useEffect, useState } from 'react’
import './FilesViewer.css'

import { db } from '../firebase’

import FileItem from './Fileltem’

const FilesViewer = () => {
const [files, setFiles] = useState()

108

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

useEffect(() => {
db.collection('myFiles").onSnapshot(snapshot => {
setFiles(snapshot.docs.map(doc => ({

id: doc.id,
item: doc.data()
1))
1)
b oID
return (

<div className="'fileViewer'>
<div className="fileViewer row">
</div>
<div className="fileViewer titles">
<div className="fileViewer titles--left">
<p>Name</p>
</div>
<div className="fileViewer titles--right">
<p>Last modified</p>
<p>File size</p>

</div>
</div>
{
files.map(({ id, item }) => (
<FileItem id={id} caption={item.caption}
timestamp={item.timestamp} fileUrl={item.fileUrl}
size={item.size} />
)
}
</div>

}

export default FilesViewer

109

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

Next, create a file named FileItem. js and add the following content in it. Here,
we are just displaying the data. But one of the main things is the readableFileSizeStr
function. Through this function we are showing the correct numbers.

import React from 'react’
import './FileItem.css'

import InsertDriveFileIcon from '@material-ui/icons/InsertDriveFile’;

const monthNames = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug",
llSepll) Iloc_t"’ IINOVII’ "Dec"];

const FileItem = ({ id, caption, timestamp, fileUrl, size }) => {
const fileDate = “${timestamp?.toDate().getDate()}
${monthNames[timestamp?.toDate().getMonth() + 1]} ${timestamp?.
toDate().getFullYear()}"

const readableFileSizeStr = (fileSizeInBytes) => {

let i = -1;
const byteUnits = [' kB', ' MB', ' GB', ' TB', 'PB', 'EB', 'ZB', 'YB'];
do {

fileSizeInBytes = fileSizeInBytes / 1024;

it+;

} while (fileSizeInBytes > 1024);
return Math.max(fileSizeInBytes, 0.1).toFixed(1) + byteUnits[i];
};

return (
<div className='fileItem'>

<div className="fileItem--left">
<InsertDriveFileIcon />
<p>{caption}</p>

</div>

<div className="fileItem--right">
<p>{fileDate}</p>
<p>{readableFileSizeStr(size)}</p>

110

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

</div>

</div>

}
export default FileItem

Now, back in App. js we have included the FilesViewer component and also added

adiv called app__main to contain it and the Sidebar component. The updated code for

this is marked in bold:

import './App.css’;

import Header from './components/Header';

import Sidebar from './components/Sidebar’;

import FilesViewer from './components/FilesViewer';

function App() {
return (
<div className="app">
<Header />
<div className="app__main"»
<Sidebar /»
<FilesViewer />
</div>
</div>
);
}
export default App;

Next, in App.css, add the following styles:

.app__main{
display: flex;

Now, back on localhost, we have to upload another file; then we will see the file
details, as shown in Figure 4-17.

111

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

e DY T Y5 A1 B S - u ¥ o 1 . -
S 4 @ D 2 lecalhost3000 (R I + I__ e A i“\‘ﬂ—*—ﬂg’-_&*ﬂ— &_ﬂ_‘a
Storage Q v Q% (s
Name
+ New Last modified
File size
v n My Drive ‘ firek irg

4 Apr 2021
v [Zh Computers 160.9 kB

& Shared with me
(© Recent
Tr Starred
Bin

a]
i= Storage

Figure 4-17. File details

Now, we will add styles in these components. First add the styles in the FileItem.
css file.

fileItem{
height: 55px;
border-bottom: 1px solid rgb(219, 219, 219);
border-top: 1px solid rgb(219, 219, 219);
width: 100%;

}
.fileItem>a{
height: 100%;
display: flex;
text-decoration: none;
color: rgh(85, 78, 78);
}
.fileItemy>a>div{

display: flex;
align-items: center;

}

112

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

.fileItemsa>div>*{
margin: 10px;

}

.fileItem--left{
flex: 1;

Next, add the styles in the FilesViewer.css file.

.fileViewer{
width: 100%;

}

.fileViewer _row{
height: 250px;
display: flex;
align-items: center;

}

.fileviewer titles{
display: flex;
margin-bottom: 5px;
color: rgh(85, 78, 78);

}

.fileViewer titles>div>*{
margin: 5px;

.fileViewer titles--left{
flex: 1;

}

.fileViewer titles--right{
display: flex;

113

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

Now, our file is looking great on localhost, as shown in Figure 4-18.

< FER O e s T
S e ———— i o
Storage Q v Q% =2
+ New
v W My Drive
v G3 Computers

2 shared with
me

Recent i
MName Last modified File size
Starred

¥ @

‘ instagram-firebase jpg 4 Apr 2021 160.9 kB
Bin

i o

Storage

Figure 4-18. The layout

Creating the FileCard Component

We now create a FileCard component to show nice icons for the files in our project.
Create a file named FileCard. js and put the following content in it. Here, we are
just showing a big icon and the name of the file, passed from the parent component.

import React from 'react’
import './FileCard.css'

import InsertDriveFileIcon from '@material-ui/icons/InsertDriveFile’;

const FileCard = ({ name }) => {
return (
<div className='fileCard'>
<div className="fileCard--top">
<InsertDriveFileIcon style={{ fontSize: 130 }} />

</div>

<div className="fileCard--bottom">
<p>{name}</p>

</div>

114

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

</div>

}
export default FileCard

Next, in FileCard.css, put the following styles:

.fileCard {
height: 190px;
width: 240px;
border-radius: 10px;
border: 1px solid rgb(219, 219, 219);
margin: 5px;

}

.fileCard--top {
height: 70%;
border-bottom: 1px solid rgb(219, 219, 219);
display: flex;
justify-content: center;
align-items: center;

}

.fileCard--bottom {
display: flex;
align-items: center;
justify-content: center;
width: 100%;
height: 30%;

}

.fileCard--bottom>p {
width: 90%;
overflow: hidden;
white-space: nowrap;

115

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

Now, we need to import the FileCard component in the FilesViewer. js file. Here,
we are mapping through all the files but selecting only five and sending the name value to
the FileCard component. The updated code is marked as bold here:

import FileCard from './FileCarxd'

const FilesViewer = () => {

return (
<div className='fileViewer'>
<div className="fileViewer row">

{
files.slice(0, 5).map(({ id, item }) => (
<FileCard key={id} name={item.caption} />

)
}

</div>

</div>
)
}

export default FilesViewer

Now, we can see a big icon on localhost, as shown in Figure 4-19.

116

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

D D % localhost:3000

Storage Q ™ @ e (s

N
i
=
|
o
™
®

+ New

» [MyDrive
» Eﬁ Computers.

& sharedwith jnceagram-firebase jpg
me

@ Recent
Name Last modified File size
1r Starred
. instagram-firebasejp 4 Apr 2021 1609 kB
g JPg
Bin

Storage

Figure 4-19. Bigicon

Creating the Sidelcons Component

We now create a SideIcons component to show some nice icons on the side. Create a file
called SideIcons.js and put the following content in it:

import React from 'react’
import './Sidelcons.css'
import AddIcon from '@material-ui/icons/Add’

const SideIcons = () => {
return (
<div className="'sideIcons'>
<div className="sideIcons__top">
<img src="https://cdn4.iconfinder.com/data/icons/logos-
brands-in-colors/48/google-calendar-512.png"
alt="Calendar" />
<img src="https://assets.materialup.com/uploads/64f5506e-
2577-4d19-9425-11a1e1fa31a8/0x0ss-85.jpg" alt="Keep" />

117

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

<img src="https://www.androidpolice.com/wp-content/
uploads/2018/03/nexus2cee_new-tasks-icon.png" alt="Tasks"
/>

</div>

<hr />

<div className="sideIcons__plusIcon">
<AddIcon />

</div>

</div>

}

export default SideIcons
Next, in SideIcons.css, put the following styles:

.sideIcons{

width: 50px;

display: flex;

flex-direction: column;

align-items: center;

border-left: 1px solid rgb(219, 219, 219);
}

.sideIcons_ top{
width: 100%;
display: flex;
flex-direction: column;
align-items: center;

}

.sideIcons_ top>img{
object-fit: contain;
width: 30px;
margin: 10px O;

118

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

.sideIcons>hr{
margin: 12px 0;
width: 90%;

}

.sideIcons_ plusIcon{
display: flex;
align-items: center;

Now, import the code in the App. js file. The updated code for this is marked in bold
here:

import SideIcons from './components/Sidelcons';

function App() {
return (
<div className="app">
<Header />
<div className="app__main">
<Sidebar />
<FilesViewer />
<SideIcons /»
</div>
</div>
)5
}
export default App;

Now, we can see these nice icons in the right sidebar, as in Figure 4-20.

119

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

@ D 25 locahest3000 ~ T } -]

Storage Q e Qo8 =2

+ New B

v B My Drive
v 33 Computers o

&, Shared with jngragram-firebasejpg E
me
(© Recent
Hame Last modiified File size
Tr Starred
. instagram-firebase.jpg 4 Apr 2021 1609 kB
O Bin
= Storage

Figure 4-20. Icons on the right

Adding Google Authentication

Now, our app is almost complete, but we still need to add Google Authentication to it.
So, go to the Firebase console and click the Authentication tab and then the Get started
button, as shown in Figure 4-21.

120

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

onsole.firebase.google.comu/0/project fstorage-fireba:

Authentication

Authenticate and manage users from a
variety of providers without server-side

maonitor

Analytics Learn more

View the docs

niicati o 2
?
Engage e How do | get started? P s [| | atehater | shore

Figure 4-21. Getting started with authentication

On the next screen, click the Edit configuration icon beside Google, as shown in
Figure 4-22.

121

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

——
D & hiipsy e firebase googhe.com u/0] i+
T o
storage-firebase-app
¥ Authentication
Users Sign-in method Templales Usage
Sign-in providers
Provider Status
e
[-) Functions Lo
) Machine Learning (5 600 Lot
Release and monitor B ey
L X i
Analytics
s O e
b I
Engage
[L]
M it
0
[
& 4

Authorised domains 3

Gotodoes M s

Figure 4-22. Clicking Google

In the pop-up message, click the Enable button, and after that enter your Gmail ID

and click the Save button, as shown in Figure 4-23.

122

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

b Firebase storage-firebase-app { Gotodocs &R .

#A Project Overview

Build
e
a3 A G
=
=
=
By s
© Hosting A1 fingerpent B4 for each app In your
) Functions
€) Machine Learning etting below to continue

elease and monitor project-142041540829

temail (D

Analytics
s nabendu biswas@gmail.com

Engage

¥ Extensions

Spark

Figure 4-23. Signingin

Next in the App. js file, we just need to import auth and provider from our local
Firebase file. After that, we use the method called signInWithPopup() to enable
authentication.

After that, inside the return block, we are using a ternary operator to show all the
components, if we have a user. We show a login div if no user is found. The updated code
for this is marked in bold here:

import { auth, provider } from "./firebase";
import { useState } from 'react’;

function App() {
const [user, setUser] = useState(null)
const handleLogin = () => {
if (luser) {

123

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

}

auth.signInllithPopup(provider).then(result =» setUser(result.user))

.catch(error =» alert(error.message));

return (

)5
}

<div className="app">

{user ? (

<

<Header userPhoto={user?.photoURL}/>
<div className="app_ main">

<Sidebar />

<FilesViewer />

<SideIcons />

</div>

</>

)+ (

<div className='app__login's

<img src="logo512.png" alt="Storage" /»
<button onClick={handleLogin}>Log in to Storage</button>
</divy

)}

</divy

export default App;

Now, in the App.css file, add these additional styles:

.app__login {

}

width: 100vw;
height: 100vh;
display: grid;
place-items: center;

.app__login>button{

124

border: none;

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

font-size: 24px;

background-color: rgbh(67, 130, 244);
color: white;

padding: 10px 20px;

border-radius: 6px;

transition: all 0.2s;

}

.app__login>button:hover{
cursor: pointer;
background-color: rgb(49, 94, 179);
transform: scale(1.1);

Since we are passing the userPhoto props to the Header component, we will use it in
the Header. js file.The updated code for this is marked in bold here:

const Header = ({ userPhoto }) => {
return (
<div className="header">

<div className="header icons">

<HelpOutlineIcon />
<SettingsIcon />

<AppsIcon />
<Avatar className="header _iconsAvatar"
sxrc={usexPhoto} />
</div>
</div>

}

export default Header

125

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

Now, when we go to localhost and click Log in to Storage, we will see the Google
Authentication pop-up, as shown in Figure 4-24.

© D %5 loealhest3000

@ Sign in - Google Accounts — Firefox Developer Edition = =] *
Lo i gl it fauth, e

G Sign in with Google

Choose an account

to continue to sterage-firebase-app.firebaseapp.com

Nabendu Biswas
navendu biswasgymail com

@ shikha das
@& Uso another account
Ta continue, Google will share your name, email address, language

preference, and profile picture with storage-fiuebase-
app.firetaseapp.com.

Engiish (United States) = Help Privacy Tems

‘ Log in to Storage ‘

Figure 4-24. Google Authentication pop-up

When we click the Gmail ID, we will be taken to our app. Here, we can see the
logged-in user image at the top-right corner, as shown in Figure 4-25.

126

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

§ © D % lcalhost3000

Storage Q

4+ Mew

v [My Drive

L Eﬁ Computers

& Sharedwith wiaisapp-firebase,jpg instagram-firebase jpg
me

(@ Recent

MName
+r Starred

. whatsapp-firebase jpg
O Bin

. i ;

= Stwrage B instagram-firebase,jpa

Figure 4-25. Logged-in user

Last modified File size

4 Apr2021 1661 kB

4 Apr2d21 1609 kB

Deploying and Hosting Through Firebase

Now we can deploy our app in Firebase by following the same steps as described earlier.

The deployment was successful and working properly, as shown in Figure 4-26.

D & %5 npsystorage

Storage Q

+New
» B MyDrive

+ G} Computers

& Shared with hatsanp-firebase jpg BuySellHoldjpg
me

(O Recent

Name
¥r Starred

B whatsapp-firebase,jpg
T sin

ySellHold j

= swrage . BuySellHold jpg

. instagram-firebase jpg

Figure 4-26. Storage app

instagram-firebase jpg +

Last modified File size

4 Apr2021 1661 kB

4 Apr2021 8866 kB

4 Apr2021 1609 kB

127

CHAPTER 4 BUILDING A STORAGE APP WITH REACT AND FIREBASE

Summary

In this chapter, you learned how to make a storage app, where you can log in through
Google Authentication and can upload files. We created the web app with React
and stored the data in Firebase storage. You also learned how to do the hosting in

Firebase.

128

CHAPTER 5

Building a Career-Related
Social Media App with
React and Firebase

Welcome to a new React]S project, which is going to be a career-related social media
app built in React]S. Also, we will use Redux and a lot of other wonderful technologies to
create this app.

The hosting and the database will be in Firebase. We will also be using Material UI
for the icons in the project.

Figure 5-1 shows the complete app.

129
© Nabendu Biswas 2022
N. Biswas, Beginning React and Firebase, https://doi.org/10.1007/978-1-4842-7812-3_5

https://doi.org/10.1007/978-1-4842-7812-3_5#DOI

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

o AT — v il AT R RN
s & B a

2]
& 2 s R B s
3 o
. Tech News
rd
@ TWD at top with 500k
Nabendu Biswas ™ Photo (i Video Event = Write Article ﬂtb:f"h' o
nabendu@gmail.com
® Qualcomm Snapdragon
o ; 775 Series
Who viewed you 2544 Nabendu Biswas fop Rews - 5760 readers
Views on post 2,300 shendu grmail.com
® Amazfit T-Rex Pro Hands
This completes our build of the app. Hope you liked it. Top niews - 999 readers
Recent
® Apple Music Servi
2 reactjs |6‘ Like Comment “i Share 2 Send F::':" v:r‘ios S
P — Top news - 699 readers
7 developer Hriday Biswas @ Mars Ru_wer O_Qrswnranm
hitdsy@arnailoom Takes First Drive
o javascript R gTRALD Top mews - 700 readers
. i The build is complete and thanks you all for staying sc long.
g design P yo ying g @ Twitter CEO Jack Dorscy
Auctions Tweet
|f‘_7 Like [E comment <. Share & Send Top news - 500 rexders
Hriday Biswas

This build turned out to be aweseme and interesting. Keep up the good work.

|b Like E Comment "\): Share 2 Send

Shikha Das
shikhaZgrrail.com

This is awesome and working

I(5 Like = comment «, Share > Send

Figure 5-1. Completed app

Getting Started

Use the create-react-app command to create a new app called career-firebase-app.
Specifically, open any terminal and enter the following command. Notice that we are
using template redux to include Redux in our project.

npx create-react-app career-firebase-app --template redux

Initial Firebase Setup

Since our front-end site will also be hosted through Firebase, we will create the basic settings
while this create-react-app command creates our React app. We will follow the same steps
as in Chapter 1. I have created an app with the name career-firebase-app (Figure 5-2).

130

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

MDD kD B €@

career-firehase-app -

Career-ﬁrebase—app Spark plan

22 1opp -+ Add app

m
E
a

Choose a product to add to your
app

a3 my» bk

Store and sync app data in milliseconds

ine Leamning ‘ﬁ

Release and monitor

(S

Analytics

Authentication Cloud Firestore

Engage Authenticate and manage users Reaktime updates, powerful queries and automatic scalng

See all Build features

Keep tabs on your app's quality x

Upgrade

Figure 5-2. career-firebase-app

We will also enable Cloud Firestore like we did in the previous chapter. Lastly, copy
all the code for firebaseConfig, as shown in Figure 5-3. (You can find the steps for doing
this in the previous chapter.)

131

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

= Oy @ & 55 hitpsyjconsclefirebase.googhe.com/u/0)/project fcareer-firebase-app/se. =+ @ ¥ D@ %W B €@ =
-
“ Firebase career-firebase-app « Project settings Gotodocs M o
A Project Overview oo ! :
(e r).\u career-firebase-app career-firebase-app
N/ Web App
Build App 1D (B
1:1060670665162web:1c340514b10fa636b65 133
== Authentication
2 cloud Firestore
= Realtime Database @ career-firebase-app
u G
©
%) Firebase SDK snippet
o) O automsatic @ (O coN® (@) config ®
Release and monitor
const firebaseConfig = {
apiKey: “AI * .
Analytics authDomain: “career- cew - LS

projectId: “career
storageBucket: “career-

messagingSenderId: “18¢
appld: "1:1¢

Remove this app

1l Delete project

Upgrade

¢

Figure 5-3. Config

Basic React Setup

Our React setup will have completed by this time. So, go back to the terminal and cd into
the newly created career-firebase-app directory.

After that, open the directory in VS Code and create a file called firebase. js inside
the src folder and paste the content from the previous Firebase screen into it.

const xxxxxxConfig = {
apiKey: "AXXXXXXXXXXXXXXXXXXXXXXXX" ,
authDomain: "career- Xxxxxx-app. XXxxxxapp.com",
projectId: "career- xxxxxx-app",
storageBucket: "career- xxxxxx-app.appspot.com",

132

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

messagingSenderId: "106XXXXXXXXXXXXXX",
appId: "1:10XXXXXXXXXXX:Web : IXXXXXXXXXXXXXX"

b

Next, we will do the cleanup process, which is similar to what we did in the previous

chapter. First we'll delete the unnecessary files and change index. js.

import React from 'react’;

import ReactDOM from 'react-dom';
import './index.css';

import App from './App';

import store from './app/store’;

import { Provider } from 'react-redux';

ReactDOM. render (
<React.StrictMode>
<Provider store={store}>
<App />
</Provider>
</React.StrictMode>,
document.getElementById('root")

)
Then we'll change App. js, as shown here:

import React from 'react’;
import './App.css’;

function App() {
return (
<div className="app">
<h1>Career Firebase App</h1>
</div>
)
}

export default App;

133

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Now both files contain the bare minimum. Also, remove everything from App.css
and make the margins zero in index.css. Our localhost will look like Figure 5-4 after the

process.
Léaeg /Em:mm;;:: — ~eeaq FLMODG%® B €¢eR =
areer Firebase App

Figure 5-4. Initial app

Creating the Header

Our React setup is done, and we will be working on the Header component first. So,
create a folder named components inside the src folder. Create the Header. js and
Header. css files inside the components folder. But we will import Header component
first in the App. js file.

import React from 'react’;
import './App.css';
import Header from './components/Header’;

function App() {
return (
<div className="app">
<Header />
</div>
);
}

export default App;

We will be using Material UI for the icons. So, we need to do two npm installs per
the documentation. We will install core and icons through the integrated terminal.

npm i @material-ui/core @material-ui/icons

Now, our Header . js files will be static mostly. File will contain mainly icons and
logos.

134

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Here, we have a div called header, containing two divs. The first one is header
left, which contains an image and another div containing Search as input. The next div
isheader _right, which contains a call to another component, called HeaderOption.

import { Search, Home, SupervisorAccount, BusinessCenter, Chat,
Notifications } from '@material-ui/icons’

import React from 'react’

import './Header.css'

import HeaderOption from './HeaderOption'

const Header = () => {
return (
<div className="header">
<div className="header _left">

<div className="header search">

<Search />
<input type="text"/>
</div>

</div>

<div className="header right">
<HeaderOption Icon={Home} title="Home" />
<HeaderOption Icon={SupervisorAccount} title=
"My Network" />
<HeaderOption Icon={BusinessCenter} title="Jobs" />
<HeaderOption Icon={Chat} title="Messaging" />
<HeaderOption Icon={Notifications} title="Notifications" />
<HeaderOption avatar="https://pbs.twimg.com/profile_
images/1020939891457241088/fcbu814K_400x400.jpg" title="me"
/>

</div>

</div>

}

export default Header

135

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Now, create a file called Header.css in the same folder and add the following content
in it. Here, we are using a lot of flexboxes to style our header.

.header({
position: sticky;
top: 0;
display: flex;
background-color: white;
justify-content: space-evenly;
border-bottom: 0.1px solid lightgray;
padding: 10px 0;
width: 100%;
z-index: 999;

}

.header left{
display: flex;
}

.header__left > img{
object-fit: contain;
height: 40px;
margin-right: 10px;

}

.header search{
padding: 10px;
display: flex;
align-items: center;
border-radius: 5px;
height: 22px;
color:gray;
background-color: #eef3f8;

}

.header search > input{
outline: none;
border: none;

136

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

background: none;

}

.header__right{
display: flex;

Next, create the HeaderOption. js file, which will take an avatar, icon, title, and
props, as shown here:

import { Avatar } from '@material-ui/core’
import React from 'react’
import './HeaderOption.css'

const HeaderOption = ({ avatar, Icon, title }) => {
return (

<div className="headerOption">
{Icon && <Icon className="headerOption icon" />}
{avatar && <Avatar className="headerOption icon" src={avatar}
/>}
<h3 className="headerOption title">{title}</h3>

</div>

}
export default HeaderOption

Now, create the style for this in the HeaderOption.css file.

.headerOption{
display: flex;
flex-direction: column;
align-items: center;
margin-right: 20px;
color:gray;
cursor: pointer;

137

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

.headerOption:hover{
color: black;

}

.headerOption title{
font-size: 12px;
font-weight: 400;

}

.headerOption icon{
object-fit: contain;
height: 25px !important;
width: 25px !important;

Now, on localhost, we can see the nice header shown in Figure 5-5.

{E—"-) C‘gﬁ ’W_Dﬁzn;uj.@:st.;-::: .

Figure 5-5. Our header

Creating the Sidebar

We will be working on the Sidebar component now. So, create the Sidebar.js and
Sidebar.css files inside the folder components. But we will import Sidebar first in the
App. js file. The updated code is shown in bold, as shown here:

import Sidebar from './components/Sidebar’;

function App() {
return (
<div className="app">
<Header />
<div className="app__body">
<Sidebar /»
</divy

138

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

</div>
);
}

export default App;

Next, we will also add styles for app and app__body in the App.css file.

-app{
background-color: #f3f2ef;

display: flex;
flex-direction: column;
align-items: center;

}

.app__body{
display: flex;

Next put the following content in the file Sidebar. js. Here, the primary div of the
sidebar contains three divs: sidebar__top, sidebar _stats, and sidebar _bottom.

e Thesidebar top contains an image, avatar, name, and email. For
the image, I have put one image in the public folder so that we can
use it directly.

e Thesidebar stats contains two divs called sidebar stat, each
of which contains a text and a number paragraph.

e Thesidebar bottom contains only a p tag with the “Recent” word as

of now.

import { Avatar } from '@material-ui/core’
import React from 'react’
import './Sidebar.css'

const Sidebar = () => {
return (
<div className="sidebar">
<div className="sidebar top">

139

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

<Avatar className="sidebar avatar" />
<h2>Nabendu Biswas</h2>
<h4>nabendu.biswas@gmail.com</h4>
</div>
<div className="sidebar stats">
<div className="sidebar stat">
<p>Who viewed you</p>
<p className="sidebar statNumber">2,544</p>
</div>
<div className="sidebar stat">
<p>Views on post</p>
<p className="sidebar _statNumber">2,300</p>

</div>

</div>

<div className="sidebar bottom">
<p>Recent</p>

</div>

</div>

}
export default Sidebar

Now, put the following styles in the Sidebar.css file:

.sidebar{
position: sticky;
top: 80px;
flex: 0.2;
border-radius: 10px;
text-align: center;
height: fit-content;

}

.sidebar avatar{
margin-bottom: 10px;

140

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

.sidebar_top{
display: flex;
flex-direction: column;
align-items: center;
border: 1px solid lightgray;
border-bottom: 0;
border-top-left-radius: 10px;
border-top-right-radius: 10px;
background-color: white;
padding-bottom: 10px;

}

.sidebar top > img{
margin-bottom: -20px;
width: 100%;
height: 60px;
border-top-left-radius: 10px;
border-top-right-radius: 10px;
object-fit: cover;

}

.sidebar_top > h4{
color: gray;
font-size: 12px;

}

.sidebar top > h2{
font-size: 18px;

}

.sidebar stats{
padding: 10px;
margin-bottom: 10px;
border: 1px solid lightgray;
background-color: white;
border-bottom-left-radius: 10px;
border-bottom-right-radius: 10px;

141

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

.sidebar stat{
margin-top: 10px;
display: flex;
justify-content: space-between;

}

.sidebar stat > p{
color: gray;
font-size: 13px;
font-weight: 600;

}

.sidebar statNumber{
font-weight: bold;
color: #0a66c2 !important;

}

.sidebar__bottom{
text-align: left;
padding: 10px;
border: 1px solid lightgray;
background-color: white;
border-radius: 10px;
margin-top: 10px;

Now, our sidebar looks like Figure 5-6 on localhost.

&« C 0 @ kcalhost o C @O > BN 2

Hiapps B De? B Ds2 Dot o Bogs il Web | Web? [Gatsky [Reoct | Argulsr I Work [Tutoisks | Projet | Tutosial? | Tutorstd » | Other bookmads |

& @ g s el e

Nabendu Biswas

nabendu. biswas@gmail.com

2,544
2.300

Recent

Figure 5-6. Our sidebar
142

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Now, we will put all items in sidebar _bottomin the Sidebar. js file. Here, we have
created the function recentItem and are passing different props to it. The updated code
for this is shown in bold here:

const Sidebar = () => {
const recentItem = (topic) => (
<div className="sidebar__recentItem"»
<span className="sidebar__hash"»#
<p>{topic}</p>
</div>

)

return (
<div className="sidebar">

<div className="sidebar bottom">
<p>Recent</p>
{recentItem("reactjs")}
{recentItem("programming")}
{recentItem("developer")}
{recentItem("javascript")}
{recentItem("design")}
</div>

</div>

)

}

export default Sidebar
Next, we will put additional styles in the Sidebar.css file, as shown here:

.sidebar bottom > p{
font-size: 13px;
padding-bottom: 10px;

143

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

.sidebar recentItem{
display: flex;
font-size: 13px;
color: gray;
font-weight: bolder;
cursor: pointer;
margin-bottom: 5px;
padding: 5px;

}

.sidebar recentItem:hover{
background-color: whitesmoke;
border-radius: 10px;
cursor: pointer;
color: black;

}

.sidebar hash{
margin-right: 10px;
margin-left: 5px;

}

Now, our localhost will look like Figure 5-7 with the Recent box.

€ 2 C (t @ lmhost

fiApps M D2 M D3 B Dot B Blogs B Web [Web2 [Gatsby M React W Anguls [Work [Tutorial W Project [Tutoriah

“ o »

B Tutoriak?

» | I Other bookmarks

Nabendu Biswas

nabendu. biswas Sgmail.com

Figure 5-7. Recent box

144

©

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Creating the Feed Component

We will be working on the Feed component now. So, inside the folder components, create
files called Feed. js and Feed. css in the folder components. But we will import Feed
component first in the App. js file. The updated code for this is shown in bold here:

import Feed from './components/Feed';

function App() {
return (
<div className="app">
<Header />
<div className="app__body">
<Sidebar />
<Feed />
</div>
</div>
)
}

export default App;

Next, put the following content in the file Feed. js. Here, the primary div of feed
contains a div called feed _inputContainer, which contains two divs: feed input
and feed__inputOptions.

e Thefeed input contains a create icon and a form. The form
contains an input and a button.

o The feed__inputOptions is calling a component InputOption with
Icon, title, and color props. The Icon prop is actually a Material UI

icon.

import { CalendarViewDay, Create, EventNote, Image, Subscriptions } from
'@material-ui/icons’

import React from 'react'

import './Feed.css’

import InputOption from './InputOption’

145

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

const Feed = () => {
return (
<div className="feed">
<div className="feed inputContainer">

<div className="feed _input">
<Create />
<form>

<input type="text"/>
<button type="submit">Send</button>

</form>

</div>

<div className="feed _inputOptions">
<InputOption Icon={Image} title="Photo"
color="#70B5F9" />
<InputOption Icon={Subscriptions} title="Video"
color="#E7A33E" />
<InputOption Icon={EventNote} title="Event"
color="#CoCBCD" />
<InputOption Icon={CalendarViewDay} title="Write
Article" color="#7FC15E" />

</div>

</div>
</div>

}
export default Feed

Now, put the following styles in the Feed.css file:

.feed{
flex: 0.6;
margin: 0 20px;

}

.feed _inputContainer{
background-color: white;
padding: 10px;

146

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

padding-bottom: 20px;
border-radius: 10px;
margin-bottom: 20px;

}

.feed _input{
border: 1px solid lightgray;
border-radius: 30px;
display: flex;
padding: 10px;
color: gray;
padding-left: 15px;

}

.feed _input > form{
display: flex;
width: 100%;

}

.feed input > form > input{
border: none;
flex: 1;
margin-left: 10px;
outline-width: 0;
font-weight: 600;

}

.feed input > form > button{
display: none;

}

.feed _inputOptions{
display: flex;
justify-content: space-evenly;

Now, create a file called InputOption. js and put the following content in it. The
component is mainly used to show different icons with props passed to it.

147

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

import React from 'react’

import './InputOption.css’

const InputOption = ({ Icon, title, color }) => {
return (
<div className="inputOption">
<Icon style={{ color }} />
<hg>{title}</h4>
</div>

}
export default InputOption

Now, we will create the styles for this in the InputOption.css file.

.inputOption{
display: flex;
align-items: center;
margin-top: 15px;
color: gray;
padding: 10px;
cursor: pointer;

}

.inputOption:hover{
background-color: whitesmoke;
border-radius: 10px;

}
.inputOption > h4{
margin-left: 5px;

Our Feed component is complete and looks like Figure 5-8 on localhost.

148

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

% ¢ 0> B8 =
i Apps B Oz W ODed W Dot [l Blogs [Web W Webz W Gotsty [React W Anguisr W Work W Tutoriss W Project W Tutodsk2 [Tutodskd w» [Other bookmarks
& Az & B a2 @
= =
Nabendu Bim—m M Photo i3 Video Event = Write Article

nabendubiswasPgmail.com

2544

2.300

Racert

E reactis

£ programming
£ developer

£ javascript

£ dosign

Figure 5-8. Add Post section

Building the Post Section

We will be working on the Post section now. So, inside the folder components, create files
called Post.js and Post.css. But we will import Post component first into the Feed. js
file. Also, notice that we are passing three props to it: name, description, and message.
The updated code is shown in bold here:

import Post from './Post’

const Feed = () => {
return (
<div className="feed">
<div className="feed _inputContainer">

</div>
<Post name="Nabendu Biswas" description="This is a test"
message="This is awesome thing to do" />

</div>

)
}

export default Feed

149

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Next put the following content in the file Post. js. Here, the primary div of post
contains three divs: post__header, post__body, and post__buttons.

o Thepost header contains an avatar icon and another div called
post__info, which contains an h2 and p. We show the name and
description props here.

o Thepost__ body shows the message prop.

o Thepost__buttons is calling a component InputOption with Icon,
title, and color props. The Icon prop is actually a Material Ul icon.

import { Avatar } from '@material-ui/core’

import { ChatOutlined, SendOutlined, ShareOutlined, ThumbUpAltOutlined }
from '@material-ui/icons’

import React from 'react'

import InputOption from './InputOption’

import './Post.css'

const Post = ({ name, description, message, photoUrl }) => {
return (
<div className="post">
<div className="post_ _header">

<Avatar />
<div className="post__info">
<h2>{name}</h2>
<p>{description}</p>
</div>
</div>
<div className="post_body">
<p>{message}</p>
</div>

<div className="post buttons">

<InputOption Icon={ThumbUpAltOutlined} title="Like"
color="gray" />

<InputOption Icon={ChatOutlined} title="Comment"
color="gray" />

<InputOption Icon={ShareOutlined} title="Share"
color="gray" />

150

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

<InputOption Icon={SendOutlined} title="Send" color="gray" />
</div>
</div>

}
export default Post

Now, we will style this component in a Post.css file.

.post{
background-color: white;
padding: 15px;
margin-bottom: 10px;
border-radius: 10px;

}

.post__header{
display:flex;
margin-bottom: 10px;

}

.post__info{
margin-left: 10px;

}

.post__info > p{
font-size: 12px;
color: gray;

}

.post__info > h2{
font-size: 15px;

}

.post__body{
overflow-wrap: anywhere;

151

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

.post__buttons{
display: flex;
justify-content: space-evenly;

Now, on localhost, we will see a nice posting section, as shown in Figure 5-9.

o

™ Photo &= Video Event = Write Article

Nabendu Biswas

nabendu.biswas@gmail.cam

Who viewed you 2.54.
. * Mabendu Biswas
ws on post 2300 This is & test

This is awesome thing to do
Recent

£ reactjs |c,' Like [% Comment ": Share > Send
£ programming

¢ developer

& javaseript

£ design

Figure 5-9. Post example

Integrating Firebase with React

We will be now integrating Firebase into our project. The first thing to do is install
Firebase in our project by running the following command from the terminal.

npm install firebase

Next, you will update our firebase. js file to use the config to initialize the app. After
that, use Firestore as the database. We are also using authentication in the project.

import firebase from 'firebase’

const firebaseConfig = {

};
152

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

const firebaseApp = firebase.initializeApp(firebaseConfig)
const db = firebaseApp.firestore()
const auth = firebase.auth()

export { auth, db }

Now, back in Feed. js, we are first importing the required things. After that, we will
create two state variables: posts and input.

Now, inside useEffect, we will call Firebase to get the posts collection and then take
the snapshot. In Firebase terms, it is the live data, which we will get instantly. We will
then set this data in the posts array, via setPosts().

We also have a sendPost (), which will be linked to onClick soon. Here, we are
adding a post to Firebase. The message will be taken from the input field, and timestamp
is the server timestamp. We are hard-coding the rest of the fields.

Now, inside the return statement in the Feed. js file, we are adding value and
onChange to the input field and onClick to the button.

After that, we are mapping through the posts array and passing different props from
Firebase to the Post component. The updated code for this is shown in bold here:

import React, { useEffect, useState } from 'react'
import { db } from '../firebase’
import firebase from 'firebase’

const Feed = () => {
const [posts, setPosts]
const [input, setInput]

useState([])
useState('")

useEffect(() => {
db.collection('posts').orderBy('timestamp', 'desc').
onSnapshot(snapshot =»> {
setPosts(snapshot.docs.map(doc => ({

id: doc.id,

data: doc.data()

1))

1))

b [1)

153

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

154

const sendPost = e => {

e.preventDefault()

db.collection('posts').add({

name: 'Nabendu Biswas',

description: 'This is a test’,

message: input,

photoUrl: '',

timestamp: firebase.firestore.FieldValue.serverTimestamp()

}
setInput('')

}

return (
<div className="feed">
<div className="feed _inputContainer">
<div className="feed input">
<Create />
<form>
<input value={input} onChange={e =» setInput(e.target.value)}
type="text" />
<button onClick={sendPost} type="submit">Send
</button>
</form>
</div>
<div className="feed inputOptions">

</div>

</div>

{posts.map(({ id, data }) => (

<Post
key: { id }
name={data.name}
description={data.description}
message={data.message}
photoUrl={data.photoUrl}

/>

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

)}

</div>

)
}

export default Feed

Now, whenever we type something in the input box and press Enter, it is shown in
real time in our app, as shown in Figure 5-10.

“ 0 » B N &

5

asty | React [Anguiar [l Work [Tutorats | Project [Tutorak? | Tutonal3 » | | Other bookmads |

M Fhoto i@ Video Event = Write Article
Nabendu Biswas

ndu.biswas@gmail.com

2544 l‘fd benldu. Biswas

2,300

Waiting for ather cool builds

Fecent
17 Like [comment "-).: Share & Send
£ reactjs
programming
s Nabendu Biswas
i Pt This is too good TWD
desig
Ib Like E] Comment “c Share B Send

Figure 5-10. Real time

Integrating Redux

We will now be integrating Redux into our project. Redux will be used to take the user
details and store them in the global state so that they are available in all components.
Because we have already added Redux to the project while creating it, we need to
remove some boilerplate code. Inside the features\counter folder, delete the Counter.
js and Counter.module.css files.
Next, move the counterSlice. js file to the features folder and delete the empty
counter folder.

155

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Now, in the store. js file, change the name, as we want a user and not a counter.
Also, change the counterSlice. js filename to userSlice. js. The updated code for this
is shown in bold here:

import { configureStore } from '@reduxjs/toolkit’;

import userReducer from '../features/userSlice';

export const store = configureStore({

reducer: {
user: userReducer,
})
IOk

Now, update userSlice. js with the following content. Here, we have the initial
state of the user. After that, we have login and logout inside the reducers. Both of them
change the user state.

We are exporting the login and logout, which we will use soon to change the state.
We are also exporting selectUser, through which we can get the user state at any point
in time. The code for this is shown here:

import { createSlice } from '@reduxjs/toolkit’;

export const userSlice = createSlice({
name: ‘user',
initialState: {
user: null,
})
reducers: {
login: (state, action) => {
state.user = action.payload;
})
logout: state => {
state.user = null;
})
})
};

export const { login, logout } = userSlice.actions;

156

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE
export const selectUser = state => state.user.user;
export default userSlice.reducer;

Now, when we go to localhost and open the Redux devtool, we can see our global
Redux state of the user, as shown in Figure 5-11.

T ¢ o> BN

B Desd W Biogs i Web [Web2 [Gatsby [Resct [l Anguls | Work [l Tutorisl: [Project [l Tutorisk? [Tutoisk3 w» | | Other bookmarks

M Photo = Video Event = Write Article

Nabendu Biswas
nabendu. biswas@gmailcam

Mabendu Biswas
Waiting for other coal builds

Recant

17 Like [E comment <, Share & Send

Nabendu Biswas

This is too good TWD

Inspecior

Figure 5-11. Global state

Building the Login Page

In this section, we will build our login page and use Redux. So, create two files called
Login.js and Login.css in the components folder.

Make the following changes in the App. js file. Here, we are first importing the
useSelector and selectUser and then the Login component.

157

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Also, we are using the useSelector hook from react-redux. Inside the return
element, if the user is not available, we are showing the Login component or else the
other components. The updated code is shown in bold here:

import { useSelector } from 'react-redux';
import { selectUser } from './features/userSlice';
import Login from './components/Login';

function App() {
const user = useSelector(selectUser)

return (
<div className="app">
<Header />
{luser ? (<Login /») : (
<div className="app__body">
<Sidebar />
<Feed />
</div>
)}
</div>

);

}

export default App;

Now, in the Login. js file, put the following content. Here, we are showing an image
and then a form containing four input fields and one button.
We also have a paragraph outside the form, which contains a span to register.

import React from 'react'
import './Login.css'

const Login = () => {
const register = () => {}
const loginToApp = () => {}

return (
<div className="login">

158

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

<form>
<input type="text" placeholder="Full name (required if
registering)" />
<input type="text" placeholder="Profile pic URL
(optional)" />
<input type="email" placeholder="Email" />
<input type="password" placeholder="Password" />
<button type="submit" onClick={loginToApp}>Sign In
</button>

</form>

<p>Not a member?{' '}
<span onClick={register} className="login _
register">Register Now

</p>

</div>

}
export default Login

Also, add the following styles in the Login.css file:

.login{
display: grid;
place-items: center;
margin-left: auto;
margin-right: auto;
padding-top: 100pXx;
padding-bottom: 100px;

}

.login > img{
object-fit: contain;
height: 70px;
margin-top: 20px;
margin-bottom: 20px;

159

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

.login > form{
display: flex;
flex-direction: column;

}

.login > form > input{
width: 350px;
height: 50px;
font-size: 20px;
padding-left: 10px;
margin-bottom: 10px;
border-radius: 5px;

}

.login > form > button{
width: 365px;
height: 50px;
font-size: large;
color: #fff;
background-color: #0074b1;
border-radius: 5px;

}

.login_register{
color: #0177b7;
cursor: pointer;

}

.login > p{
margin-top: 20px;

}

Now, our login screen will look like Figure 5-12 on localhost.

160

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

L - C o> BN

Devi W Blogs W Web | Wet2 [Gatsty [React W Angulsr [Work [Tutosials [Project Wl Tutonsh? [l Twtorehkd » | | Other bookmarks

& a A som LS

&

[Full name (required if registering)

l Profile pic URL (optional)

|
|
|
|

Not a member? Register Mow

Figure 5-12. Login screen

Adding Email Authentication

Now, we will add email authentication to our app, so we have to enable it from the
Firebase console first.

So, click the Authentication tab and then the Get started button, as shown in
Figure 5-13.

161

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

(¢)> e

Authentication

Authenticate and manage users from a
variety of providers without server-side
code

nd monitor

Analytics Learn more

o How do | get started?
View the gocs

Figure 5-13. Authentication

f‘ Introducing Firebase Authentication o
: Watchater | Share

After that, hover over Email/Password and click the edit icon, as shown in
Figure 5-14.

162

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

= e ©.| & Tipsionsolerebase gt ogiecomiDi oot career-firdbase-appfauthentic =+ B, fF LMD ® B € s‘ " -i"l"

~
b Firebase career-firebase-app ~ Gotodocs MR e

™ Authentication @

Users Sign-in method Templates Usage

Sign-in providers

Provider Status

=} Machine Leaming

~
7

Release and monitor B> piay Garme
L
£}

Analytics

Engage

fie

Upgrada

¢ Authorised domains (3

Figure 5-14. Email configuration

In the pop-up, click the Enable button and then the Save button, as shown in
Figure 5-15.

163

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

“s e e)| @ Fitoe//ancaletisbasaoagisoom/Ofprojen ciesr Arbese-app/ithentics = & €1 FLMDO® B M

3
& Firebase career-firebase-app ~ Gotodocs M o

Project Overview Authentication e

Users sign-in method ~ Templates Usage

Sign-in providers

Release and monitor

Analytics Cancel m

Engage

Figure 5-15. Enable button

Now, in the Login. js file, we will create four different state variables for email,
password, name, and profilePic.

We are also completing our register function here. Inside the function, we
will return back, if the user doesn’t enter a name. After that, we are using the
createUserWithEmailAndPassword from Firebase to register the user.

After the registration is done, we are using the dispatch function from Redux to send
the login to set the global state. The updated code is shown in bold here:

import React, { useState } from 'react’
import { useDispatch } from 'react-redux'
import { auth } from '../firebase'

import { login } from '../features/userSlice’

const Login = () => {
const [email, setEmail] = useState('')
const [password, setPassword] = useState('')
const [name, setName] = useState('')
const [profilePic, setProfilePic] = useState('')
const dispatch = useDispatch()
const register = () =» {

164

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

if(!name) return alert('Please enter a Full Name')
auth.createUserWithEmailAndPassword(email,password)

.then(userAuth =» userAuth.user.updateProfile({ displayName: name,
photoURL: profilePic })

+then(() => {

dispatch(login({ email: userAuth.user.email, uid: userAuth.user.uid,
displayName: name, photoUrl: profilePic }))

N)
}

const loginToApp = (e) => {}

return (

}

<div className="login">

<form>

<input value={name} onChange={e =» setName(e.target.value)}
type="text" placeholder="Full name (required if registering)" />
<input value={profilePic} onChange={e =» setProfilePic(e.target.
value)} type="text" placeholder="Profile pic URL (optional)" />
<input value={email} onChange={e =» setEmail(e.target.value)}
type="email" placeholder="Email" />

<input value={password} onChange={e =» setPassword(e.target.value)}
type="password" placeholder="Password" />

<button type="submit" onClick={loginToApp}>Sign In</button>
</form>

</div>

)

export default Login

165

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Now, on localhost when we give the full name, profile picture, email, and password,
and click Register Now, we will be taken directly to all components, because in App. js
the user will not be blank, as shown in Figure 5-16.

o

B React Rechux App £ +

« G (0 O locathost o 1 C O B K

i Apps M Do B O3 B Dot W Blogs B Wes W Web2 [Gosby [Reoct W Arguler [Work [Tutorick [Project [Tutcral2 [Tutorias3 » | | Other bookmars |

A = & B A @

“ ™ Photo "_; Video Event = Write Article

Nabendu Biswas

abendu bswas@gmailoom MNabendu Biswas

Whao viewed you 2544 Waiting for other cool builds
Views on post 2.300
17 Like [E comment <5 Share 5 Send
Racent
£ reactjs
Nabendu Biswas
£ programming This is & test
developer This is too good TWD

£ javaseript

15 Like [= comment < Share = send

Action [State | Diff | Trace Test

Figure 5-16. User login

Now, we want to persist the login because if we refresh, we are taken back to the
Register page.

So, in the App. js file, we will use the dispatch and login methods again.
But we will check login from within a useEffect, where we are checking it from
onAuthStateChanged. The updated code is shown in bold here:

166

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

import React, { useEffect } from 'react’;

import { useDispatch, useSelector } from 'react-redux';
import { login, selectUser } from './features/userSlice';
import { auth } from './firebase’;

function App() {
const user = useSelector(selectUser)
const dispatch = useDispatch()

useEffect(() => {
auth.onAuthStateChanged(userAuth =» {
if (userAuth){
dispatch(login({ email: userAuth.email, uid: userAuth.uid,
displayName: userAuth.displayName, photoUrl: userAuth.
photoUrl }))
}
)
bLID

return (

)5
}

export default App;

Now, we will add the functionality to log out when we click the picture in the header.
So, in the Header . js file, update the code to the following. Here, we are first importing
the required things and after that in props sending the onClick, which runs the
logoutApp().

Inside the logoutApp function, we are just dispatch for the logout for Redux and the
auth.signout() for Firebase. The updated code is shown in bold here:

import { useDispatch } from 'react-redux'
import { logout } from '../features/userSlice’
import { auth } from '../firebase’

167

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

const Header = () => {
const dispatch = useDispatch()
const logoutApp = () => {
dispatch(logout())
auth.signOut()
}

return (
<div className="header">
<div className="header left">

</div>
<div className="header right">

<HeaderOption avatar="https://pbs.twimg.com/profile
images/1020939891457241088/fcbu814K_400x400.jpg" title="me"
onClick={logoutApp} />
</div>

</div>

}
export default Header

Now, we have to update the HeaderOption. js file, from where we will pass onClick
as a callback function. The updated code is shown in bold here:

const HeaderOption = ({ avatar, Icon, title, onClick }) => {
return (
<div onClick={onClick} className="headerOption">

</div>

)
}

export default HeaderOption

168

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Now, one thing that is remaining is for the user to log in after registering. For
that, in the Login. js file, update loginToApp(). Inside the function, we are using
signInWithEmailAndPassword from Firebase to send the email and password, and after
that we are dispatching it in Redux.

Now, we can go to localhost and give the email and password and click the Sign In
button. The updated code is shown in bold here:

const Login = () => {

const loginToApp = (e) => {
e.preventDefault()
auth.signInWithEmailAndPassword(email,password)
+then((userAuth) =» {
dispatch(login({
email: userAuth.user.email,
uid: userAuth.user.uid,
displayName: userAuth.user.displayName,
photoUrl: userAuth.user.photoUrl

)]
}
}
return (
)

}
export default Login

Using User Information

Now that we have gotten the user information, we will use it in different parts of the
application.

169

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

We will first change the information in the Sidebar. js file. To use the user data, we
need to call useSelector with selectUser. Inside the return statement, we are using it
in Avatar, username, and email. The updated code is shown in bold here:

import { useSelector } from 'react-redux’
import { selectUser } from '../features/userSlice'

const Sidebar = () => {
const user = useSelector(selectUser)

return (
<div className="sidebar">
<div className="sidebar top">

<Avatar src={user?.photoUrl} className="sidebar avatar">
{user.email[0]}</Avatar>
<h2>{user.displayName}</h2>
<h4>{user.email}</h4>
</div>

</div>
)
}

export default Sidebar

Now, in Header. js, instead of passing the hard-coded URL, we will pass the avatar
prop a Boolean value in the last HeaderOption. The updated code is shown in bold here:

const Header = () => {

return (
<div className="header">

<div className="header right">

170

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

<HeaderOption awvatar={true} title="me" onClick={logoutApp} />
</div>
</div>

)

Now, in the HeaderOption. js file, we will use uaeSelector again to get access to the
user. After that, we are using the first letter of email or photoUrl. The updated code is
shown in bold here:

import { useSelector } from 'react-redux’
import { selectUser } from '../features/userSlice'

const HeaderOption = ({ avatar, Icon, title, onClick }) => {
const user = useSelector(selectUser)

return (

<div onClick={onClick} className="headerOption">
{Icon && <Icon className="headerOption icon" />}
{avatar 8& <Avatar className="headerOption icon" src={user?.
photoUrl}>{user?.email[0] }</Avatar>}
<h3 className="headerOption title">{title}</h3>

</div>

)

}

export default HeaderOption

Next, in the Feed. js file, we will use the uaeSelector again to get access to the user.
Then we are using it while adding the post. The updated code is shown in bold here:

import { useSelector } from 'react-redux'
import { selectUser } from '../features/userSlice'

const Feed = () => {
const user = useSelector(selectUser)

171

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

const sendPost = e => {

e.preventDefault()

db.collection('posts').add({
name: user.displayName,
description: user.email,
message: input,

photoUrl: user.photoUrl || '',
timestamp: firebase.firestore.FieldValue.serverTimestamp()
1)
setInput('")
}
return (
)

}
export default Feed

Now, in Post. js, we are using the photoUrl passed from the Feed component. The
updated code is shown in bold here:

const Post = ({ name, description, message, photoUrl }) => {
return (
<div className="post">
<div className="post__header">
<Avatar src={photoUrl}>{name[0]}</Avatar>
<div className="post _info">
<h2>{name}</h2>
<p>{description}</p>
<div>
</div>
</div>

export default Post

172

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Now, a small fix is needed in App.css for our app to look good. The updated code is
shown in bold here:

.app__body{
display: flex;
margin-top: 35px;
max-width: 1200px;
margin-left: 20px;
margin-right: 20px;

Our app is almost complete and looking good with the user data (Figure 5-17).

“« C t @ localhost

iidpps M D2 WM Deni [l Ded W Blogs J Web L Web2 [Gatshy [Resct i Anguls [Work [l Tutodials [Project [Tutoriak?

& w & B [

Hriday Biswas &4 Photo i3 Video Event = Write Article

haiday@qma

2543 Hriday Biswas
2.300 hnday@gmad.c
This build turned out to be awesome and interesting. Keep up the good work.
Recent
® reactjs |6‘ Like E Comment ’i Share 2= send
¥ programming
& developer
Shikha Das

javaseript
design This is awesome and working

|C) Like E] Comment ¢< Share = send

MNabendu Biswas
Wiaiting for other cool builds

15 Like B comment =2 Share 5 Send

Mabendu Biswas
This is toe good TWD

19 Like = comment ‘f: Share 2 Send

Figure 5-17. Almost complete

173

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Building the Widget Section

We are going to build our last section, which is the widget section. Create two files,
Widgets.js and Widgets.css, inside the components folder. Also, include Widgets
component in the App. js file. The updated code is shown in bold here:

import Widgets from './components/Widgets’;

function App() {

return (
<div className="app">
<Header />
{!luser ? (<Login />) : (
<div className="app__body">
<Sidebar />
<Feed />
<Widgets />
</div>
)}
</div>

)

}

export default App;

Now, we will put the following content in the Widgets. js file. It is just a static
file, where we have a heading and an info icon. After that, we are calling the function
newsArticle, with different props.

import { FiberManualRecord, Info } from '@material-ui/icons’
import React from 'react’
import './Widgets.css'

const Widgets = () => {
const newsArticle = (heading, subtitle) => (

174

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

<div className="widgets article">
<div className="widgets articleleft">
<FiberManualRecord />

</div>

<div className="widgets articleright">
<h4>{heading}</h4>
<p>{subtitle}</p>

</div>

</div>
)
return (

<div className="widgets">
<div className="widgets header">
<h2>Tech News</h2>
<Info />
</div>
{newsArticle("TWD at top with 500k subscriber", "Top news - 9099
readers")}
{newsArticle("Qualcomm Snapdragon 775 Series", "Top news - 8760
readers")}
{newsArticle("Amazfit T-Rex Pro Hands", "Top news - 999 readers")}
{newsArticle("Apple Music Service Feature for i0S", "Top news - 899
readers")}
{newsArticle("Mars Rover Perseverance Takes First Drive", "Top
news - 799 readers")}
{newsArticle("Twitter CEO Jack Dorsey Auctions Tweet", "Top news -
599 readers")}
</div>

)
}

export default Widgets

175

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Now, we will put the styles for this in the Widgets.css file.

.widgets{

}

position: sticky;

top: 80px;

flex: 0.2;

background-color: white;
border-radius: 10px;

border: 1px solid lightgray;
height: fit-content;
padding-bottom: 10px;

.widgets header{

}

display: flex;

align-items: center;
justify-content: space-between;
padding: 10px;

.widgets header > h2{

}

font-size: 16px;
font-weight: 400;

.widgets article{

}

display: flex;
padding: 10px;
cursor: pointer;

.widgets article:hover{

}

background-color: whitesmoke;

.widgets articleleft{

176

color: #0177b7;
margin-left: 5px;

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

.widgets articleleft > .MuiSvgIcon-root{
font-size: 15px;

}

.widgets articleright{
flex: 1;

}

.widgets_articleright > h4{
font-size: 14px;

}

.widgets articleright > p{
font-size: 12px;
color: gray;

Our app is complete now! It looks like Figure 5-18.

177

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

B Resct Redux fpp

< C Y @ lecalhos o i “ ® - [

5
Haps B Dv2 W D3 J Dewd [Blogs | Web | Web2 [l Gotsty [Resct i Angular | Work [Tutodak | Project W Tutodsk?

& @ D o P

B Other bookmarks

Tech Mews o

®TWD at top with 500k

J i 3 . subscriber
#4 Photo Video Event = Write Article s
® Qualcomm Snapdragen 775
Series
2544 se
Hriday Biswas 2
2,300 riday @gmad.com

® Amazfit T-Rex Pro Hands
The build is complete and thanks you all for staying so long.

Iy Like

Racent

T " r & ® Apple Music Service
£ reactjs [E comment =, Share & Send Eeature for 105

£ programming

£ developer
£ javaseript

£ design

Hriday Biswas

This build turned out to be awesome and interesting, Keep up the good work.

® Mars Rover Perseverance
Takes First Drive

@ Twitter CEQ Jack Dorsey
Auctions Tweet
Ib Like EI Comment °< Share 2 Send Top naws - 509 readers
Shikha Das
This is awesome and working
|ﬂ7 Like l=] Comment "-’-: Share & Send
MNabendu Biswas
Waiting for other cool builds
|ﬁ Like E' Comment "i Share 2 Send

Figure 5-18. Our final app

Deploying and Hosting Through Firebase

We can deploy our app in Firebase, and we will follow the same steps as in earlier
chapters.

The deployment was successful and works properly (Figure 5-19).

178

CHAPTER 5 BUILDING A CAREER-RELATED SOCIAL MEDIA APP WITH REACT AND FIREBASE

Nabendu Biswas

nabendu@gmail.com

Who viewed you 2,544
Views on post 2,300
Recent

& reactjs

8 programming
o developer
& javascript

I design

™ Photo Ex Video Event

This completes our build of the app. Hope you liked it.

|b Like “: Share

E Comment

Hriday Biswas

hiiday@gmail.com

The build is complete and thanks you all for staying sc long.

15 Like « Share

EI Comment

Hriday Biswas

heiday@gmaiLcom

= Write Article

2 Send

> Send

This build turned out to be aweseme and interesting. Keep up the good work.

|b Like Comment K): Share
Shikha Das
shikhaZgmail.com
This is awesome and working
I(5 Like = comment < Share

Figure 5-19. Deployed

Summary

2 send

> Send

Tech MNews 0

@ TWD at top with 500k
subscriber

fop news - 9069 readers

® Qualcomm Snapdrageon
775 Series

Top news - §760 readers

® Amazfit T-Rex Pro Hands

Top news - 996 readers

® Apple Music Service
Feature for I05
Top news - 55 readers

® Mars Rover Perseverance
Takes First Drive

Top news - 799 readers

@ Twitter CEO Jack Dorsey
Auctions Tweet

op rews - 598 readers

In this chapter, you learned how to make a career-related social media app, which you

can log into through email. You saw how to create the web app with React and also

learned to use Redux. You also learned how to do the hosting in Firebase.

179

Index

A B

Back-end-as-a-service (BaaS), 1

C,D,E

Career-related social media

app, 129, 130
create-react-app, 130

deployment/hosting, 178, 179

email authentication
App.js, 166, 167

configuration, 162, 163
enable button, 163, 164
getting started, 161, 162
Header.js, 167, 168
HeaderOption.js, 168
Login.js, 164, 165
loginToApp(), 169
logoutApp function, 167
register function, 164
user login, 166

feed component

HeaderOption.css, 137, 138

HeaderOption.js, 137
localhost, 138
npm install, 134
integration
Feed.js, 153
firebase.js, 152
mapping, 153-155
real time, 155
sendPost(), 153
useEffect, 153
login page
App.js, 157, 158
Login.css, 159, 160
Login.js, 158, 159
login screen, 160, 161
useSelector, 158
Post section
divs, 150, 151
Feed.js, 149
localhost, 152
Post.css, 151, 152

App.js, 145 React setup, 132, 134
divs, 145 Redux, 155-157
Feed.css, 146, 147 sidebar
InputOption.css, 148 add styles, 139
InputOption.js, 147 App.js, 138

localhost, 148, 149

divs, 139, 140

firebase setup, 130, 132 localhost, 142, 144
header recentltem function, 143
App.js, 134 Sidebar.css, 140-144
divs, 135 user information, 170-173
Header.css, 136 widget section, 174-178
© Nabendu Biswas 2022 181

N. Biswas, Beginning React and Firebase, https://doi.org/10.1007/978-1-4842-7812-3

https://doi.org/10.1007/978-1-4842-7812-3#DOI

INDEX

FF.GHILJ KL S
Firebase Storage app, 81
authentication, 2 authentication
create account, 2, 3 App.js, 123
hosting edit configuration, 121, 122
add project, 3, 4 getting started, 120, 121
continue button, 6, 7 localhost, 126
continue to the console logged-in user, 126, 127
button, 12, 13 sign-in, 122, 123
create project, 5, 6 signInWithPopup() method, 123
installation, 11, 12 styles, 124, 125
naming project, 4, 5 userPhoto, 125
next button, 10, 11 create-react-app, 82
Project settings, 7, 8 deployment/hosting, 127
register app button, 9, 10 FileCard component
web icon, 8, 9 FileCard.css, 115
services, 1 FileCard.js, 114, 115
traditional web app, 1, 2 FilesViewer.js, 116

localhost, 116, 117
FileViewer component

M! Ns o! P! Q App.css, 111
MongoDB, Express, React]S, NodeJS app__main, 111
(MERN), 2 create database, 105, 106

enable button, 107, 108
file details, 111, 112

R FileItem.css, 112

React]S Fileltem.js, 110, 111
app running, 17 FilesViewer.css, 113
cloning, 14 FilesViewer.js, 108, 109
deployment, 17 localhost, 114
existing project, 15 test mode, 106, 107
final-space-react project, 15, 16 firebase, 82-84
firebase login, 14, 15 header
GitHub, 13, 14 divs/icons, 87, 88
hosting, 15 Header.css, 88-90
npmi, 14 Header.js, 86
npm run build, 16 localhost, 90
project building, 16 npm install, 87

182

react, 84-86
sidebar, 96
components/icons, 91, 92
creation, 91
FileComponent.css, 95
FileComponent.js, 92, 93
localhost, 93, 94
Sidebar.css, 94
SidebarItem.css, 94, 95
Sidebarltem.js, 93
Sidebar.js, 91
Sidelcons component, 118-120
uploading files
done button, 101, 102
FileComponent.js, 97, 98
firebase.js, 96, 97
handleChange function, 99, 100
handleUpload function, 99, 100
Modal, 98, 99
pop-up, 103, 104
rules, 102, 103
storage, 101
Upload button, 104, 105
Stories apps, 45, 68
create-react-app command, 46
deployment/hosting, 79
firebase
add document, 74, 75
collection ID, 72, 73
config code, 47, 48
create collection, 73, 74
create database, 69
create-react-app command, 46
enable button, 70, 71
firebase.js, 69
installation, 69
integration, 76-78
project settings, 47

INDEX

Start collection, 71, 72
test mode, 70
videos, 75, 76
footer component
add styles, 62, 65, 67, 68
channel/avatarSrc props, 62
likes/shares props, 66, 67
localhost, 63, 65, 66
MusicNotelcon, 64
react-ticker, 64
VideoCard components, 60, 61
VideoFooter component, 61, 62
header component, 57-59
react setup
App.css, 50
deletion, 49
firebase.js, 48
index.js, 49
short videos
create components, 53
handleVideoPress function, 56
onClick, 56
snapping, 55
VideoCard components, 54, 55
VideoCard.css file, 54
VideoCard.js file, 53, 54
structure
App.css, 51, 52
App.js, 50, 51
localhost, 52, 53

TUVWXY,Z
To-Do app, 19
create-react-app command, 20
firebase
App.css file, 42
App.js file, 42

183

INDEX

To-Do app (cont,)

184

confirmation, deletion, 38, 39

create database, 29
delete(), 40, 41
deleting collection, 37, 38
dependencies, 28
deployment, 43, 44
enable button, 30, 31
fields, 33, 34
firebase.js file, 28
functionality, 36, 37
localhost, 41, 43
mapping, 39, 40
setTodos(), 39

setup, 20

Start collection, 31, 32
test mode, 29, 30

Todo.css file, 43
Todo.js file, 42
todos, 32-36
useEffect, 35

React setup, 21-23
to-do list

addTodo() function, 23, 24

App.js file, 23

Button and Input, 25, 26

e.preventDefault()
function, 23, 24

localhost, 24, 25, 27, 28

material-uiicons, 27

npm install commands, 25

return statement, 23

Todo.js, 26

updated web app, 26

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Setting Up and Deploying a ReactJS Project with Firebase
	Introduction to Firebase
	Creating a Firebase Account
	Setting Up Hosting
	Deploying a Simple ReactJS Project from the Terminal
	Summary

	Chapter 2: Building a To-Do App with React and Firebase
	Getting Started
	Initial Firebase Setup
	Basic React Setup
	Local To-Do List
	Using Firebase
	Adding Firebase to the App
	Deploying Firebase
	Summary

	Chapter 3: Building a Stories App with React and Firebase
	Initial Firebase Setup
	Basic React Setup
	Basic Structure of the App
	Showing Short Videos in the App
	Creating the Header Component
	Creating the Footer Component
	Setting Up the Firebase Database
	Integrating the Firebase Database with React
	Deploying and Hosting Through Firebase
	Summary

	Chapter 4: Building a Storage App with React and Firebase
	Getting Started
	Initial Firebase Setup
	Basic React Setup

	Creating a Header
	Creating the Sidebar
	Uploading Files Using Firebase
	Displaying Files with the FileViewer Component
	Creating the FileCard Component
	Creating the SideIcons Component
	Adding Google Authentication
	Deploying and Hosting Through Firebase
	Summary

	Chapter 5: Building a Career-Related Social Media App with React and Firebase
	Getting Started
	Initial Firebase Setup
	Basic React Setup
	Creating the Header
	Creating the Sidebar
	Creating the Feed Component
	Building the Post Section
	Integrating Firebase with React
	Integrating Redux
	Building the Login Page
	Adding Email Authentication
	Using User Information
	Building the Widget Section
	Deploying and Hosting Through Firebase
	Summary

	Index

